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ABSTRACT 

A whole genome scan was conducted to identify and fine map QTL regions for 

ultrasound and carcass merit traits in beef cattle. A total of 465 steers and bulls, 

genotyped for 4592 SNPs, were analysed for 16 ultrasound and carcass merit 

traits using interval mapping, single marker regression and Bayesian shrinkage 

approaches. Thirty QTL and 22 SNPs associated with traits were identified by 

interval mapping and single marker regression respectively. In Bayesian 

shrinkage estimation, 218 QTL were identified, wherein 11 of the 30 QTL 

identified by interval mapping were confirmed. The proportions of QTL variance 

on the trait variations estimated by Bayesian shrinkage analysis were relatively 

small. They ranged from 0.1 to 4.8% compared to 6.1 to 11.7% in interval 

mapping because the QTL in Bayesian approach were adjusted to remove effects 

of other QTL in the genome. These results are useful for detection of underlying 

causative QTN variants.   
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1. General Introduction 

 

1.1. Introduction  

Cattle domestication started about 10 000 years ago and, to date, more 

than a billion cattle are being raised annually worldwide for beef and dairy 

products as well as hides and draft power (Hayes et al. 2008; Burt 2009; Tellam et 

al. 2009). Beef production plays an important role in economic development, in 

which bovine meat is one of the major sources of protein nutrition for a 6.6 billion 

human population (Tellam et al. 2009). Beef ranks third in the world meat market 

after pig and poultry meat, and beef production in 2009 was estimated at 65.1 

million tons (FAO, 2009).  Even though beef has been consumed by many people, 

however, the consumers’ demand on beef, especially in developed countries, is 

shifting towards the quality products that are leaner, healthy, safe, and produced 

using acceptable procedures (Verbeke et al. 2010).   Therefore, for the beef 

industry to remain profitable, breeders and producers should produce animals and 

meat products that meet consumer preferences.  

Significant genetic improvements of carcass quality in beef cattle have 

been achieved through traditional selection methods based on observable 

phenotypes and pedigree information without knowledge of the genetic 

architecture of the selected trait (Gutierrez-Gil et al. 2008; Dekkers and Hospital 

2002). Traditional selection is based on quantitative genetic theory derived from 

Fisher’s infinitesimal model that assumes a trait under selection is influenced by 

an infinite number of genes and that each gene has an infinitesimally small effect 
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on the trait (Dekkers and Hospital 2002).  Conventional quantitative analysis has 

been used to predict breeding values and animals with the best predicted genetic 

merit for the trait of interest are selected as parents (DeNise 2004). Despite the 

tremendous genetic improvements that have been achieved by the genetic merit 

prediction and selection, Dekkers and Hospital (2002) pointed out several factors 

that limit the effectiveness of quantitative genetic selection due to: 1) phenotype 

being an imperfect predictor of an animal’s breeding value or the trait has  a low 

heritability. 2) phenotype may not be observed on both sexes or prior to the time 

when selection decisions have to be made, 3) phenotype is not very effective in 

resolving negative associations between genes resulting from epistasis or linkage.  

Characterization of beef cattle at the molecular level can facilitate the 

understanding of genetic makeup of animals and their effect on phenotypic traits. 

Use of molecular information in beef cattle also makes it possible to select and 

breed animals with specific allele genotypes that naturally improve the quality of 

carcass and efficiency of production (Wibowo et al. 2007). Carcass traits are 

among the quantitative traits whose variations are controlled by segregation of 

multiple genes with small to moderate effects, therefore, selection of superior 

individuals in a population for genetic improvement using exiting variations 

requires collection of phenotype measurements on a relatively larger sample of 

progeny in order to accurately estimate breeding values of selected candidates 

(Dekkers and Hospital 2002). However, carcass merit traits are measured at a late 

stage of an animal’s production cycle and animals have to be sacrificed to obtain 

accurate measurements of carcass traits. Thus, mapping of QTL and identification 
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of DNA markers influencing carcass merit traits have a potential to enhance the 

rate of genetic improvement through incorporating these QTL in selection 

programs in comparison to selection based on breeding value obtained from 

phenotype alone (Davis and DeNise, 1998). The current advancement in 

molecular genetics technology has enabled sequencing the entire genome of an 

organism and a better understanding about genetic architecture and DNA variants. 

The discovery of DNA polymorphic markers such as single nucleotide 

polymorphisms (SNPs) or microsatellites have facilitated the detection of QTL in 

animals (Hocquette et al. 2007). Incorporation of QTL information on estimation 

of  breeding values (EBV) in animals through marker-assisted selection (MAS) 

can also increase selection accuracy and thus the rate of genetic improvement, 

especially for traits that are difficult or expensive to measure, or which can only 

be measured late in life such as carcass merit traits. Since DNA information can 

be obtained at any stage of an animal’s life to assess its genetic potential with no 

restriction to sex, as a result, some of the limitations associated with quantitative 

genetic prediction and selection based on phenotype can be alleviated (Dekkers 

and Hospital, 2002).  

Although numerous QTL has been reported for various carcass traits in 

beef cattle, however, most of the QTL mapped previously are in larger intervals 

which can range from 20 to 40 cM that may contain possibly thousands of genes 

(Grapes et al. 2004).  Therefore, further studies are still needed to fine map the 

previous detected QTL regions associated with traits in order to   facilitate 

detection of DNA markers or potential candidate genes contributing to variations 
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of traits in beef populations in order to effectively implement the MAS. 

Furthermore, the detection of QTL for carcass merit traits is still a focus of 

research because traditional QTL mapping procedures have encountered several 

biological and statistical complications. Some of the challenges that have been 

encountered in QTL mapping include small genetic variances of individual loci 

(Lynch and Walsh 1998), pleiotropy or interaction of QTL with other genes and 

environmental factors (Glazier et al. 2002), incidence of false positives as a result 

of statistical method robustness or unsuitable experimental designs as well as the 

increase of the number of DNA markers analyzed (Xu 2003a; Wang et al. 2005; 

Takasuga et al. 2007), and small number of informative offspring per pedigree 

(Beavis 1998; Xu 2003b).  

 

1.2. Research Hypothesis 

Phenotypic variations in ultrasound and carcass merit traits which exist 

among beef cattle in the Kinsella beef hybrid population are determined by 

genetic variations of alternative alleles of segregating genes. Hence it is possible 

to use genetic markers to identify and fine map quantitative trait loci that 

segregate in the population and to use this genetic markers information to improve 

the accuracy of selecting beef cattle with superior genotypes for carcass merit 

traits. In addition, the QTL regions can be fine mapped and the accuracy of 

estimations on QTL effects can be improved through more advanced statistical 

and QTL analyses.   
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2. Literature Review 

 

2.1. Quantitative Trait Loci Mapping 

Chromosome regions where the genes that affect quantitative traits are 

located are referred to as quantitative trait loci (QTL). The identification of such 

chromosome regions or QTL mapping is carried out using animal populations 

created to maximize phenotypic variance for the traits of interest. Individuals 

carrying the desired allelic variant of QTL can be identified through either linkage 

analysis, linkage-disequilibrium scanning or by a direct candidate gene study for 

the desired variant (Anderson, 2001). However, the linkage mapping approach 

usually identifies QTL in large confidence intervals which do not have sufficient 

resolution for effective identification of candidate genes to allow association tests 

(Ronin et al. 2003).  

The QTL regions identified by linkage analyses via interval mapping 

approaches can be fine mapped up to a certain point to increase the mapping 

resolution using a high density of genetic markers (Darvas et al. 1993) and/or 

through association analyses that identify QTL by exploring historical linkage 

disequilibrium (LD) between genetic markers and causative mutations.   Other 

alternatives for improving QTL mapping resolution include using enhanced 

statistical approaches such as composite interval mapping which fits selected 

markers in untested regions as cofactors in the model to absorb the effects of 

background QTL (Jansen 1993; Zeng 1994), multiple-interval mapping which 

estimates locations and effects of QTL simultaneously (Kao et al. 1999) and 
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Bayesian shrinkage approaches which can handle all model effects simultaneously 

(Xu 2003a; Wang et al. 2005). Subsequent to QTL mapping, further analysis is 

conducted to identify the underlying functional quantitative trait nucleotides 

(QTN) within the QTL regions, which give rise to phenotypic variations. 

Detection of QTL is an essential step for positional cloning of genes affecting the 

traits of interest (Imai et al. 2007).   

 

2.2. QTL Mapping Population 

The first step in the process of QTL mapping is to create a mapping 

population by making a cross using founder animals or by using an existing 

population. Different types of cross have been designed in livestock populations 

to establish linkage disequilibrium that allow co-segregation of QTL and markers 

within the mapping population to facilitate QTL detection (Kearsey 1998). Line 

crossing from divergent founder animals with large phenotypic differences is 

commonly used in swine and poultry to analyse the effects of two alternating QTL 

alleles segregating in a population through mean difference between the genotype 

groups (Kerje et al 2003; Knott et al. 1998). The power to detect QTL in line 

crossing is especially high if there are large differences in gene allele frequencies 

for the studied trait. In outbred animals, QTL mapping is more complicated than 

inbred line crosses because QTL are not segregating in all families and markers 

might not be fully informative, therefore large samples are needed to estimate the 

QTL effect on a trait.  
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Common mapping populations in outbred species such as bovine include 

full-sib, half-sib or daughter and granddaughter designs (Casas 2002; Weller et al. 

1990). In addition, existing commercial herd populations consisting of multiple 

half-sib families can be utilized for QTL mapping. Using available commercial 

lines of beef or dairy cattle is less expensive than creating experimental 

populations, which is costly and time consuming (Grapes et al., 2006; Grapes et 

al., 2004). Paternal half-sib family or daughter design in beef and dairy cattle, 

respectively, are mostly used for QTL mapping where two progeny groups from 

the common heterozygous parent (sire) tend to have different means of a 

quantitative trait  due to alternative alleles they received at a linked QTL 

(Mizoshita et al. 2004). On the other hand, divergent breeds of cattle such as Bos 

taurus and Bos indicus or beef and dairy breeds have also been commonly crossed 

to create second filial generation (F2) mapping populations, signifying that they 

may carry different alleles at loci controlling traits of interest, in which the 

statistical power of the experiment can be enhanced (Casas et al. 2003a, 

Guetierez-Gil et al. 2009). 

 

  2.3. Ultrasound and Carcass Merit Traits 

Ultrasound measures have been used to predict carcass merit traits such as 

back fat thickness, longissimus muscle area, and marbling in live animals. The 

ultrasound measurements provide an early indication of carcass quality status of 

animals and they are non-destructive procedures to animals and body tissues, 

which allow monitoring changes in fat and muscle accretion and body 
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composition in the live animals during growth (Robeiro et al. 2008). However, the 

accuracies of ultrasound in predicting carcass traits are variable and depend on the 

cattle populations and the traits that are being measured. The correlations between 

ultrasound measurements and carcass traits in beef range from 0.45 to 0.96 for fat 

thickness; 0.2 to 0.94 for the area of longissimus muscle; and 0.2 to 0.91 for the 

marbling score (Houghton and Turlington 1992; Greiner et al. 2003).  Although 

the ultimate measurement of carcass merit traits can only be made with high 

accuracy when animals are slaughtered, ultrasound measures provide a predictive 

or alternative measure to carcass merit traits, and data analyses on such ultrasound 

measures help in the understanding of the biological processes of animal 

development.  

 

2.4. Genetic Markers  

 Genetic markers are any polymorphic loci that are in a pedigree. Most 

genetic markers are neutral and have no effect on the trait but are in linkage 

disequilibrium with the causative genes. However, some genetic markers are 

themselves part of causative genes, where their polymorphisms have direct effects 

on the trait variation (Montaldo and Meza-Herrera 1998). Major types of genetic 

markers that have been used for QTL mapping include random amplified 

polymorphic DNA (RAPDs), restriction fragment length polymorphisms 

(RFLPs), simple sequence repeats (SSRs) or microsatellites, and single nucleotide 

polymorphism (SNPs). The RAPDs, SSRs and RFLPs were commonly used in 

plant and animal populations for genetic and QTL mapping studies in the past, 
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before SNPs became available. SNP markers have become widely used as genetic 

markers in human, bovine and other species due to their high abundance in the 

genome, possible direct cause of the phenotype variation, relative high stability 

and suitability for high throughput genotyping compared to other genetic markers.   

 

2.5. Methods of QTL Detection 

Several statistical methods have been developed and applied in QTL 

mapping studies. The statistical methods can be categorized according to 

dimension of their QTL models such as one-dimensional search algorithms, such 

as single marker linkage disequilibrium QTL mapping and interval mapping, as 

well as multiple-QTL model approaches which includes various modified 

versions of interval mapping, and several Bayesian QTL mapping approaches.  

 

2.5.1. Single marker linkage disequilibrium QTL mapping 

Linkage disequilibrium (LD) QTL mapping, also referred to as association 

mapping, is an approach that tests associations between a single marker and a 

quantitative trait based on linkage disequilibrium using either t-test, analysis of 

variance (ANOVA) or simple regression (Doerge 2002). Individuals are divided 

into distinct genotype groups according to their marker genotype classes which 

are assumed to be in LD with the genotypes of the causative gene, and the 

analysis is performed to compare the observed trait means of marker genotype 

groups. Experimental populations such as back cross (BC) has only two marker 

genotype classes in which difference between trait means of marker genotype 
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classes can be tested using t-test. The analysis of variance (ANOVA) is statistical 

procedures that partition observed variance into components due to different 

sources of variation. The ANOVA is used to test the difference between trait 

means in populations that have three marker genotype classes, for example second 

filial generation (F2) and half-sib whereas the effects of marker genotype classes 

can be estimated by simple regression for a single marker. The t or F-statistic test 

above the threshold value is considered as evidence for significant association 

between a marker allele and the phenotype. A linear model for simple regression 

analysis for single marker can be described as  

y = µ + βx + e 

where y is the phenotype, µ is the overall mean,  β is the maker effect, x is the 

marker genotype, and e is residual error. The model can also include other fixed 

effects as cofactors such as breed, age or contemporary group, which may have 

effects on the association between markers and phenotype. Least squares linear 

regression methods are used to estimate the values of unknown model parameters 

of µ, β, and variance (σ
2
) that minimize the mean squared residual errors obtained 

as the difference between phenotype and fitted value (Lynch and Walsh 1998).  

Single marker regression has less computational demand, however the position of 

a QTL is not precisely determined since this method cannot distinguish between 

large effect QTL far from the marker and small effects QTL close to the marker as 

both scenarios give the same likelihood ratio (Lander and Botstein (1989).     
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2.5.2. Interval Mapping 

The interval mapping is a useful approach for detection of QTL within 

pairs of flanking markers and therefore gives an additional power for QTL 

detection and relatively accurate estimates of QTL effects as well as the QTL 

position in comparison to single marker analysis, particularly when the markers 

are widely spaced. Lander and Botstein (1989) pioneered the interval mapping 

using linear regression models where QTL are searched along the chromosomes at 

intervals of genetic markers at 1 or 2 cM apart. Each marker interval is subject to 

statistical estimates of model parameters and is therefore called a putative QTL. 

Estimates of model parameters can be carried out using either maximum 

likelihood ratio test or ANOVA in which the F-statistic test is used to indicate the 

significant presence of QTL. Classic models for interval mapping analysis can be 

described as 

y = µ + mα + e 

where y is the observed phenotype (normally corrected for fixed effects), µ is the 

overall mean, m is the genotype of putative QTL, α is the QTL effect, and e is a 

residual effect.  

Interval mapping can be employed in either line-cross analysis, commonly 

used in pigs and poultry. It assumes founder lines are fixed for different QTL 

alleles (Haley et al. 1994) or the analysis is nested within half-sib families without 

making assumptions regarding the phase of common parents (sires) QTL alleles 

(Knott et al. 1996). The half-sib model described by Knott et al. (1996) is 

commonly used in beef and dairy cattle based on multiple-marker interval 
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mapping for half-sib families. In this approach, the probability of inheriting a 

sire’s putative QTL allele is usually calculated for each animal at 1-cM intervals 

conditional on the information from the closest informative flanking markers. 

Regression analysis of QTL effects are nested within sire families because the 

linkage phase between a marker and a QTL could be different for each family 

(Ashwell et al. 2004). The test statistic to estimate the most likely position of a 

putative QTL can be calculated as F-statistic profiles or maximum likelihood 

(ML) estimations (Lander and Botstein 1989; Lynch and Walsh 1998). The F-

ratio is calculated for every map position and the location with the largest F-

statistic is considered as the most likely position of a putative QTL. Since the 

interval mapping method involves multiple testing along the genome, the 

significance thresholds of F-statistics are normally derived empirically by a 

permutation test which involve shuffling of the original phenotype data in a given 

number of times e.g. 10,000 permutations in order to control the chromosome-

wise type-I error rate at a desired significance level as described by Churchill and 

Doerge (1994).  The interval mapping approach infers missing genotypes of a 

marker using the nearest flanking markers. Nevertheless, interval mapping 

procedure analyze one position of the genome at a time and cannot handle models 

with multiple QTL. Therefore, it often results in problems of false significant tests 

and overestimation of QTL variance especially when a small sample size is used 

for QTL mapping. Therefore, a number of improved versions of interval mapping 

approaches have been developed to handle multiple-QTL models. These include 
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composite interval mapping (Jansen 1993; Zeng 1994) and multiple-interval 

mapping approaches (Kao et al. 1999). 

Composite interval mapping is a multiple-QTL model approach, which 

estimates the effect for a target QTL in one interval while simultaneously 

including the effects of background QTL outside the testing interval as cofactors 

in order to adjust for the non-target QTL effects (Jansen 1993; Zeng 1994). The 

inclusion of cofactors as covariates improves the efficiency of QTL mapping. 

However, criteria for deleting and inserting a QTL can be arbitrary, which could 

obscure the significance of tested QTL (Xu 2003a).  

The multiple-interval mapping method is a one-step multiple-QTL model 

approach developed to overcome the limitations of composite interval mapping. 

The multiple-interval mapping method is based on a variable selection to select 

optimal sets of putative QTL using approaches such as stepwise regression (Kao 

et al. 1999), Bayesian information criteria (BIC) (Ball 2001) or stochastic search 

variable selection (SSVS) (Yi et al. 2003) to determine whether the QTL should 

be included or dropped from the model. The multiple-interval mapping method 

has improved power and precision of QTL mapping compared to composite 

interval mapping. 

 

2.5.3. Bayesian QTL mapping 

Bayesian analysis is a statistical approach which makes inferences from 

data using probability models that link the data to the parameters (Yi and Shriner, 

2008).  Bayesian QTL mapping can evaluate associations of all genetic markers 
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simultaneously in a single model in which the number of QTL, their genomic 

positions and their genetic effects are inferred jointly, hence overcoming some of 

the limitations associated with the interval mapping genome scan and the single 

marker association analyses (Xu 2003a; Yi and Shriner, 2008). Bayesian statistics 

are based on probabilistic models and treats every variable and parameters as 

random variables. Every unknown parameter is assigned a prior probability 

distribution. Bayesian analysis generates a posterior probability distribution 

regarding unknown parameters of interest using the sample data expressed by 

likelihood and prior probability. In Bayesian QTL mapping, parameters are 

classified into observables which include phenotype and marker information, and 

unobservable parameters which include QTL position, QTL genotype, QTL effect 

and/or variance (Xu 2003a). Bayesian analysis infers the posterior distribution of 

the unobservable conditional on the observable. Combination of the prior 

information and the data can be achieved through Bayes’ rule 

p(b, v, x, λ|y, m) =  p(y, m|b, v, x, λ) p(b, v, x, λ) 

                        p(y,m) 

where b is the QTL effect associated with markers, v is the QTL variance, x is 

QTL genotype, λ is the QTL position, y is the phenotype, and m is the marker 

genotype. The term p(b, v, x,  λ|y, m) represents posterior distribution of unknown 

parameters, the condition distribution of parameters given the data;  p(b, v, x, λ) 

represents the prior distribution, information based on previous experiments or 

theory;  p(y, m|b, v, x, λ) is the likelihood; p(y,m) is the marginal posterior 

probability, a normalizing factor. Bayesian analysis can be implemented through 

the Markov chain Monte Carlo (MCMC) to draw a sample from the simulated 
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joint posterior distribution in order to make inferences on the unknown parameters 

(Xu 2003a; Wang et al. 2005). The MCMC sampling steps from posterior 

distribution of unknown parameters can be achieved using one of the main 

algorithm such as Gibbs sampling (Xu 2003a; Wang et al. 2005) or the 

Metropolis-Hastings algorithm. The mean values of the sample distributions 

represent the estimate for the respective unknown parameters.  

Several Bayesian QTL mapping approaches have been developed including 

the Bayesian shrinkage estimation that forces marker intervals with no QTL to 

have estimated effects that shrink close to zero which increases the power to 

discriminate QTL effects from residual errors and generates clear signals of QTL 

effects (Xu 2003a; Wang et al. 2005). Other Bayesian QTL mapping approaches 

include genome-wide analysis of epistasis effects of QTL (Xu and Jia 2007; Xu 

2007) and Bayesian QTL mapping for multiple traits (Benerjee et al. 2008). 

Generally, Bayesian approaches allow the incorporation of prior information for 

multiple unknown parameters into the observed data and it can estimate the effect 

of all putative QTLs in a genome simultaneously.   

 

 2.5.4. Positional Candidate Gene Analysis 

The ultimate goal of QTL mapping is to identify causative mutations in 

genes responsible for the phenotype variation; therefore, candidate gene analysis 

can be carried out to identify polymorphic variants causing detectable phenotypic 

effects. The identified QTL regions could facilitate the identification of targeted 

candidate genes through positional candidate gene analysis. However the 
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candidate gene analysis needs a high resolution of the QTL region in order to 

increase the probability of selecting the potential candidate (Flint and Mott, 2001). 

Positional candidate gene analysis can be coupled with positional candidate 

cloning strategy for functional analysis to determine if the markers are true 

causative mutations (Anderson 2001; Marques et al. 2009). Examples of 

positional candidate gene analysis to determine associations between 

polymorphisms in genes and QTL with carcass merits in beef cattle include 

association analysis by Morsci et al. (2006) that confirmed the polymorphisms in 

the somatostatin (SST) and adiponectin (ADIPOQ) genes as the underlying effect 

to the ribeye muscle area QTL and the marbling score QTL on BTA 1, 

respectively. Buchanan et al. (2002) described associations between 

polymorphisms within the bovine leptin (LEP) with carcass fat levels in beef. 

Also, the SNPs in the leptin gene have shown significant associations with grade 

fat, ultrasound backfat thickness and lean meat yield (Nkrumah et al. 2004). 

Marques et al. (2009) reported the association between polymorphisms in the 2,4 

dienoyl CoA reductase 1 (DECR1) and core binding factor, runt domain, α 

subunit 2; translocated to 1 gene (CBFA2T1) positional candidate genes on BTA 

14 and 26 with ultrasound marbling score and ultrasound backfat in beef cattle, 

respectively. Additionally, the polymorphisms within the fibroblast growth factor 

8 (FGF8) candidate gene on BTA 26 were reported to influence the carcass 

backfat and lean meat yield in beef cattle (Marques et al. 2009). The association 

test on the candidate gene by Barendse et al. (2004) found that the single 

nucleotide polymorphism on the thyroglobulin (TG) gene was contributing to the 
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variation of carcass marbling score in beef cattle. A study performed by Grobet et 

al. (1997) proved that the mutation in the myostatin gene was causative of the 

double muscle phenotype in the Belgian Blue cattle. The progress in searching for 

polymorphisms associated with carcass merit traits in candidate genes has enabled 

the development of commercially available DNA tests for cattle QTL (Hocquette 

et al. 2007). Examples of several candidate genes with polymorphisms associated 

with carcass traits in beef cattle are also summarized in Table 2.1.  

 

2.6. QTL for Ultrasound and Carcass Merit traits 

Chromosomal regions harbouring QTL for several ultrasound and carcass 

merit traits in beef cattle have been reported by many researchers and summarized 

in Table 2.2. Also, the allelic variants influencing carcass traits has been identified 

in a number of these QTL regions through association studies (Hocquette et al. 

2007). The QTL for carcass traits in beef cattle that have been identified to date 

have also been summarized in an online QTL database (Cattle QTLdb 2003). 

These studies have used microsatellite or a combination of DNA markers to 

identify  QTL for carcass merit traits such as carcass weight (Gutierrez-Gil et al. 

2009; Takasuga et al. 2007; Mizoshita et al. 2004; Abe et al. 2008), and quality 

traits, such as carcass marbling (MacNeil and Grosz, 2002;  Imai et al. 2007; 

Mizoguchi et al. 2005), carcass fatness (Kim et al. 2003), meat tenderness (Davis 

et al. 2007), carcass composition (Casas et al. 2003a; Casas et al. 2003b; Casas et 

al. 2001; Casas et al. 2000), meat quality (Gutierrez-Gil et al. 2008) and 

ultrasound traits (Li et al. 2006). Some of these QTL may not be sufficiently  
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informative for the development of marker assisted selection strategies or to 

identify the underlying causative quantitative trait nucleotides (QTN) because 

they are localized to large chromosomal regions due to the low density of markers 

maps used. Various strategies have been applied to fine map the identified QTL 

regions. These include the population-wide LD mapping which exploits historic 

LD and has been commonly used in dairy cattle where artificial insemination is 

widely used and bulls have larger families with phenotypic records. The 

Population-wide LD mapping has seldom been used in beef cattle because of the 

small number of offspring per family which do not have enough power to detect 

QTL effects. Nonetheless, commercial lines of beef cattle have been used for LD 

analysis to fine map the QTL for carcass traits (Li et al. 2002; Moore et al. 2003; 

Li et al. 2004; Kneeland et al. 2004). Beef cattle commercial lines are semi-closed 

populations in which individuals are related and share common haplotypes that 

are identical by descent. Use of greater density SNP markers is another useful 

strategy that has been used successfully for QTL fine-mapping in both beef and 

dairy cattle (Hirano et al. 2007; Druet et al. 2008; Daetwyler et al. 2008; Sherman 

et al. 2009, Snelling et al. 2010).  

 

2.7. Scope of QTL Mapping Research 

QTL mapping has been carried out to identify genetic markers that could be 

used to improve the quality of economically important traits in agricultural 

organisms such as beef cattle through marker-assisted selection. The current 

release of the cattle QTL database contains 2359 QTL that represent 212 traits for 



 

22 
 

beef and dairy (Cattle QTLdb 2003). Among the 2359 QTL on the cattle QTL 

databases there are 135 QTL for 6 important carcass traits of weight, fat thickness, 

marbling score, ribeye area, yield grade and subcutaneous fat (Table 2.2).  

Despite the fact that many QTL for carcass merit traits have been identified 

in beef cattle, further studies are needed as previous studies, the QTL were 

analysed either using sparse marker density, few markers per chromosome, or the 

QTL were examined in only a few of the selected chromosomes and with less 

robust statistical methods. As a result, most of the reported QTLs are localized in 

larger chromosomal regions and thus have a weak confidence support. Therefore, 

a whole genome scan using a denser SNP marker set and with more robust QTL 

mapping methods will fine map and verify the previous identified QTL regions. 

Also, the SNP marker association analyses will be able to identify specific SNP 

markers influencing carcass merit traits which will facilitate marker-assisted 

selection. 

Moreover, most of the QTL results in beef cattle may have their use for 

MAS limited to a mapping population because each individual beef population 

can have a different genetic background in which the identified genetic markers in 

one population are not necessarily useful for another population due to differences 

in linkage phase of a genetic marker and QTL (Dekkers and Hospital 2002). 

Therefore, more populations of beef cattle need to be genotyped to validate the 

QTL results. On the other hand, it is seldom possible to establish associations 

between genetic markers and all important carcass merit traits by focusing on a 

few restricted populations of beef cattle since each population can have a given 
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set of QTL which segregates for a proportion of all traits of interest. Therefore, 

QTL mapping in different populations should allow the capture of sufficient 

numbers of QTL for each trait of interest.    

The objectives of this study is to conduct a whole genome scan to identify 

and fine map QTL regions for ultrasound and carcass merit traits in beef cattle 

using a denser SNP marker set through interval mapping, single marker regression 

and Bayesian shrinkage estimation approaches. The study also aims to identify 

SNP markers within genes that are associated with ultrasound and carcass merit 

traits as well as their possible gene locations and functions.  

 

2.8. Literature Cited 

Abe, T., Saburi, J., Hasebe, H., Nakagawa, T., Kawamura, T., Saito, K., Nade, T., 

Misumi, S., Okumura, S., Kuchida, K., et al.  2008. Bovine quantitative trait 

loci analysis for growth, carcass, and meat quality in an F2 population from 

a cross between Japanese Black and Limousin. J. Anim. Sci. 86:2821 – 

2832.  

Anderson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. 

Nature 2: 130 – 138. 

Anderson, L. 2008. Genome-wide association analysis in domestic animals: a 

powerful approach for genetic dissection of trait loci. Genetic D0I 

10.1007/s10709-008-9312-4 

Ashwell, M. S., Heyen, D. W., Sonstegard, T. S, Van Tassell, C. P., Da, Y., 

VanRaden, P. M., Ron, M., Weller, J. I, and Lewin, H. A. 2004. Detection 



 

24 
 

of quantitative trait loci affecting milk production, health, and reproductive 

traits in Holstein cattle. J Dairy Sci. 87(2):468-75. 

Ball, R. D. 2001. Bayesian methods for quantitative trait loci mapping based on 

model selection: approximate analysis using the Bayesian information 

criterion. Genetics 59: 1351 – 1364. 

Barendse, W., Bunch, R. J., Harrison, B. E., and Thomas, M. B. 2006. The growth 

hormone 1 GH1:c.457C>G mutation is associated with intramuscular and 

rump fat distribution in a large sample of Australian feedlot cattle. Anim 

Genet. 37(3):211 – 214. 

Barendse, W., Bunch, R., Thomas, M., Armitage, S., Baud S. and Donaldson, N. 

2004. The TG5 thyroglobulin gene test for a marbling quantitative trait loci 

evaluated in feedlot cattle. Australian Journal of Experimental Agriculture 

44: 669 – 74. 

Beavis, W. D. 1998. QTL analyses: power, precision, and accuracy. Molecular 

Dissection of Complex Trait. Edited by A.H. Paterson. CRC Press, New 

York. 145-162.  

Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-

Sim, D. C. and Schmutz, S. M. 2002. Association of a missense mutation in 

the bovine leptin gene with carcass fat content and leptin mRNA levels. 

Genetics Selection Evolution 34: 105 – 116. 

Casas, E. 2002. Identification of quantitative trait loci in beef cattle. Arch. 

Latinoam. Anim. 10(1): 54-61. 



 

25 
 

Casas, E., Keele, J.W., Shackelford, S.D., Koohmaraie, M., and Stone, R.T. 

2003b. Identification of quantitative trait loci for growth and carcass 

composition in cattle. Animal Genetics, 35, 2 – 6.  

Casas, E., Shackelford, S.D.,  Keele, J.W.,  Stone, R.T.,  Kappes, S.M.,  and 

Koomaraie, M. 2000. Quantitative trait loci affecting growth and carcass 

composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 

78:560 – 569. 

Casas, E., Shackelford, S.D., Keele, J.W., Koohmaraie, M., Smith, T.P.L. and 

Stone, R.T.. 2003a. Detection of quantitative trait loci for growth and 

carcass composition in cattle. J.Anim. Sci. 81:2976 – 2983. 

Casas, E., White, S.N., Riley, D.G., Smith, T.P.L., Brenneman, R.A., Olson, T.A., 

Johnson, D.D., Coleman, S.W., Bennet, G.L., and Chase, Jr. C.C. 2005. 

Assessment of single nucleotide polymorphisms in genes residing on 

chromosomes 14 and 29 for association with carcass composition traits in 

Bos indicus cattle. J. Anim. Sci. 83:13 – 19. 

Cattle Quantitative Trait Locus database (Cattle QTLdb). 2003. National Animal 

Genome Research Program (NAGRP) [Online] Available: 

http://www.animalgenome.org/cgi-bin/QTLdb/BT/index. [2010 Jan. 20] 

Churchill, G. A. and Doerge, R. W. 1994. Empirical threshold values for 

quantitative trait mapping. Genetics 138:963 – 971. 

Daetwyler, H.D., Schenkel, F.S., Sargolzaei, M., and Robinson, J.A.B. 2008. A 

genome scan to detect quantitative trait loci for economically important 

http://www.animalgenome.org/cgi-bin/QTLdb/BT/index


 

26 
 

traits in Holstein cattle using two methods and a dense single nucleotide 

polymorphism map. J. Dairy Sci. 91:3225 – 3236. 

Davis, G.P., Moore, S.S., Drinkwater, R.D., Shorthose, W.R., Loxton, I.D., 

Barendse, W., and Hetzel, D.J.S. 2007. QTL for meat tenderness in the M. 

longissimus lumborum  of cattle. Animal Genetics, 39, 40-45.  

Dekkers, J. C. M. and Hospital, F. 2002. The use of molecular genetics in the 

improvement of agricultural populations. Nature Reviews 3: 22 – 32. 

Doerge, R. W. 2002. Mapping and analysis of quantitative trait loci in 

experimental populations. Nature Reviews, Genetics 3: 43- 52. 

Druet, T., Fritz, S., Boussaha, M., Ben-Jemaa, S., Guillaume, F., Derbala, D., et 

al., 2008. Fine Mapping of Quantitative Trait Loci Affecting Female 

Fertility in Dairy Cattle on BTA03 Using a Dense Single-Nucleotide 

Polymorphism Map. Genetics 178: 2227–2235. 

Flint, J. and Mott, R.  2001. Finding the molecular basis of quantitative traits: 

successes and pitfalls.  Nature Reviews: Genetics 2: 437 – 445. 

Grapes, L., Dekkers, J.M.C., Rothschild, M.F., and Fernando, R.L. 2004. 

Comparing linkage disequilibrium-based methods for fine mapping 

quantitative trait loci. Genetics 166: 1561 – 1570.  

Grapes, L., Firat, M.Z., Dekkers, J.M.C., Rothschild, M.F., and Fernando, R.L. 

2006. Optimal haplotype structure for linkage disequilibrium-based fine 

mapping of quantitative trait loci using identical by descent. Genetics: 172: 

1955 – 1965. 



 

27 
 

Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V., Wheeler, T. L. 2003. 

The relationship between ultrasound measurements and carcass fat thickness 

and longissimus muscle area in beef cattle. J. Anim. Sci. 81(3):676 – 682. 

Grobet, C., Martin, L. J. R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., 

Schoebrelein, A., et al. 1997. A deletion in the bovine myostatin gene 

causes the double-muscled phenotype in cattle. Nature genetics 7: 71 – 74. 

Gutierrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., and Williams, J. 

L. 2008. Detection of quantitative trait loci for meat quality traits in cattle. J. 

Anim. Sci. 87:24 – 36. 

Gutierrez-Gil, B., Williams, J.L., Homer, D., Burton, D., Haley, C.S., and Wiener, 

P. 2009. Search for quantitative trait loci affecting growth and carcass traits 

in a cross population of beef and dairy cattle. J. Anim. Sci. 87:24 – 36. 

Haley, C. S, Knott, S. A. and Elsen, J. M. 1994. Mapping quantitative trait loci in 

crosses between outbred lines using least squares. Genetics 136:1195–1207. 

Hirano, T., Watanabe, T., Inoue, K., and Sugimoto, Y., 2007. Fine-mapping of a 

marbling trait to a 2.9-cM region on bovine chromosome 7 in Japanese 

Black cattle. Animal Genetics, 39, 79–83.  

Hocquette, J. F., Lehnert, S., Barendse, W., Cassar-Malek, I and Picard, B. 2007. 

Recent advances in cattle functional genomics and their application in beef 

quality. Animal 1: 159 – 173. 

Houghton, P. L. and Turlington, L. M. 1992. Application of ultrasound for 

feeding and finishing animals: a review. J. Anim. Sci. 70(3):930 – 941. 



 

28 
 

Imai, K., Matsughige, T., Watanabe, T., Sugimoto, Y. and Ihara, N. 2007. 

Mapping of a quantitative trait locus for beef marbling on bovine 

chromosome 9 in purebred Japanese black cattle. Animal Biotechnology 18: 

75 – 80. 

Jansen, R. C. 1993. Interval mapping of multiple quantitative trait loci. Genetics 

135(1):205-11. 

Kao, C. H, Zeng, Z. B. and Teasdale, R. D. 1999.  Multiple interval mapping for 

quantitative trait loci. Genetics 152(3): 1203 – 1216. 

Kearsey, M. J. 1998. The principles of QTL analysis (a minimal mathematics 

approach). Journal of Experimental Botany 49 (327): 1619 – 1623. 

Kerje, S., Carlborg, O., Jacobsson, L., Schütz, K., Hartmann, C., Jensen, P. and 

Andersson L. 2003. The twofold difference in adult size between the red 

jungle fowl and White Leghorn chickens is largely explained by a limited 

number of QTLs. Anim Genet. 34(4):264-74. 

Kim, J.J., Farnir, F., Savell, J., and Taylor, J.F. 2003. Detection of quantitative 

trait loci for growth and beef carcass fatness traits in a cross between Bos 

taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 2003. 

81:1933–1942.  

Kimura, M. and Ohta, T. 1969. The average number of generations until 

extinction of an individual mutant gene in a finite population. Genetics 63, 

701-709. 

Kneeland, J., Li, C., Basarab, J., Snelling, W.M., Benkel, B., Murdoch, B., 

Hansen, C., and Moore, S.S. 2004. Identification and fine mapping of 



 

29 
 

quantitative trait loci for growth traits on bovine chromosome 2, 6, 14, 19, 

21, and 23 within one commercial line of Bos Taurus. J. Anim. Sci. 82:3405 

– 3414. 

Knott, S. A., Elsen, J. M., and Haley, C. S. 1996. Methods for multiple-marker 

mapping of quantitative trait loci in half-sib populations. Theor. Appl. 

Genet. 93: 71 – 80. 

Knott, S. A., Marklund, L., Haley, C. S., Andersson, K., Davies, W., Ellegren, H., 

Fredholm, M., Hansson, I., Hoyheim, B., Lundström, K., Moller, M., and  

Andersson, L. 1998. Multiple marker mapping of quantitative trait loci in a 

cross between outbred wild boar and large white pigs. Genetics 

149(2):1069-80. 

Lander, E. S. and Schork, N. J. 1992. Genetic dissection of complex traits. 

Science 265: 2037 – 2048. 

Lander, E.S. and Botstein , D. 1989.  Mapping Mendelian Factors Underlying 

Quantitative Traits Using RFLP Linkage Maps. Genetics 121(1): 185–199. 

Li, C., Basarab, J., Snelling, W. M., Benkel, B., Kneeland, J., Murdoch, B., 

Hansen, C. and Moore, S.S. 2002. The identification haplotypes on bovine 

chromosome 5 within commercial line of Bos taurus  and their associations 

with growth traits. J. Anim. Sci. 2002. 80:1187 – 1194. 

Li, C., J. Basarab, W.M. Snelling, B. Benkel, J. Kneeland, B. Murdoch, C. 

Hansen, and S.S. Moore. 2004. Identification and fine mapping of 

quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 

23 in a commercial line of Bos taurus. J. Anim. Sci. 2004. 82:967 – 972. 



 

30 
 

Li, C., Nkrumah, J.D., Bartusiak, R., Fu, A., Murdoch, B. M., Sherman, E. L. 

McKay, S. D., Wang, Z., Crews Jr, D. H. and Moore, S. S. 2006. A 

genome-wide scan for quantitative trait loci affecting ultrasound and carcass 

backfat thickness in beef cattle. 8
th

 World congress on genetics applied to 

livestock production, August 13 – 18, 2006, Belo Horizonte, MG, Brasil. 

Lynch, M. and Walsh, B. 1998.  Genetics and analysis of quantitative traits. 

Sinauer associates, Sunderland, Massachusetts, USA. 

MacNeil, M. D.  and Grosz, M. D. 2002. Genome-wide scans for QTL affecting 

carcass traits in Hereford x composite double backcross populations. J Anim 

Sci 2002. 80:2316-2324. 

Marques, E., Nkrumah, J. D., Sherman, E. L., Moore, S. S. 2009. Polymorphisms 

in positional candidate genes on BTA14 and BTA26 affect carcass quality 

in beef cattle. J Anim Sci. 87(8): 2475-84. 

Mizoguchi, Y., Watanabe, T., Fujikana, K., Iwamoto, E., and Sugimoto, Y. 2005. 

Mapping of quantitative trait loci for carcass traits in a Japanese Black 

(Wagyu) cattle population. Animal Genetics 37: 51 – 54. 

Mizoshita, K., Watanabe, T., Hayashi, H., Kubota, C., Yamakuchi, H., Todoroki, 

J. and Sugimoto, Y. 2004. Quantitative trait loci analysis for growth and 

carcass traits in a half-sib family of purebred Japanese Black (Wagyu) 

cattle. J. Anim. Sci. 82: 3415 – 3420. 

Montaldo, H.H. and C.A. Meza-Herrera. 1998. Use of molecular markers and 

major genes in the genetic improvement of livestock. EJB Electronic 

Journal of Biotechnology Vol.1 No.2:1 – 7. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Marques%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nkrumah%20JD%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sherman%20EL%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moore%20SS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
javascript:AL_get(this,%20'jour',%20'J%20Anim%20Sci.');


 

31 
 

Moore, S. S, Li, C., Basarab, J., Snelling, W. M., Kneeland, J., Murdoch, B., 

Hansen, C. and Benkel, B. 2003. Fine mapping of quantitative trait loci and 

assessment of positional candidate genes for backfat on bovine chromosome 

14 in a commercial line of Bos taurus. J Anim Sci. 81(8):1919-25. 

Morsci, N. S., Schnabel, R. D. and Taylor, J. F. 2006. Association analysis of 

adiponectin and somatostatin polymorphisms on BTA1 with growth and 

carcass traits in Angus cattle. Animal Genetics. 37:554 – 562. 

National Center for Biotechnology Information (NCBI).  2002. U.S. National 

Library of Medicine [Online] Available:  www.ncbi.nlm.nih.gov [2010 Jan. 

20] 

Nkrumah, J.D., C. Li, J.B. Basarab, S. Guercio, Y. Meng, B. Murdoch, C. 

Hansen, and S.S. Moore. 2004. Association of single nucleotide 

polymorphism in the bovine leptin gene with feed intake, feed efficiency, 

growth, feeding behavior, carcass quality and body composition. Can. J. 

Anim. Sci. 84: 211 – 219. 

Robeiro, F.R.B., Tedeschi, L.O., Stouffer, J.R., and Carstens, G.E. 2008. 

Technical note: A novel technique to assess internal body fat of cattle by 

using real-time ultrasound. J.Anim. Sci. 86:763-767. 

Ronin, Y., Korol, A., Shtemberg, M., Nevo, E. and Soller, M. 2003. High-

resolution mapping of quantitative trait loci by selective recombinant 

genotyping. Genetics 164(4):1657-66. 

Schenkel, F. S., Miller, S. P., Moore, S. S.,  Li, C., Fu, A., Lobo, S., Mandell, I. 

B., and Wilton, J. W.   2006. Association of SNPs in the leptin and leptin 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ronin%20Y%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Korol%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shtemberg%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nevo%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Soller%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
javascript:AL_get(this,%20'jour',%20'Genetics.');


 

32 
 

receptor genes with different fat depots in beef cattle. 8
th

 World Congress on 

Genetics Applied to Livestock Production, August 13 – 18, Belo Horizonte, 

MG, Brazil.  

Sherman, E. L., Nkrumah, J. D., Li, C., Bartusiak, R., Murdock, B., and Moore, S. 

S. 2009. Fine mapping of quantitative trait loci for feed intake and feed 

efficiency in beef cattle. J. Anim. Sci. 87: 37 – 45. 

Sherman, E.L., Nkrumah, J.D., Murdoch, B.M., and Moore, S.S. 2008. 

Identification of polymorphisms influencing feed intake and efficiency in 

beef cattle. Animal Genetics, 39, 225–231. 

Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., McDaneld, T., Smith, 

T. P., Sonstegard, T. S., Thallman, R. M., and Bennett, G. L. 2010. 

Genome-wide association study of growth in crossbred beef cattle. J. Anim. 

Sci. 88(3):837 – 848. 

Takasuga, A., Watanabe, T., Mizoguchi, Y., Hirano, T., Ihara, N., Takano, A., 

Yokouchi, K., Fujikawa, A., et al. 2007. Identification of bovine QTL for 

growth and carcass traits in Japanese Black cattle by replication and 

identical-by-descent mapping. Mammalian Genome 18: 125-136. 

Tellam, R. L., Lemay, D. G., Van Tasell, C. P., Lewin, H. A., Worleys, K. C., and 

Elsik, C. G. 2009. Unlocking the bovine genome. BMC Genomics 2009, 

10:193 doi:10.1186/1471-2164-10-193 

Wang, H., Zhang, W., Li, X., Masinde, G. L., Mohan, S., Baylink, D. J., and Xu, 

S. 2005. Bayesian shrinkage estimation of quantitative trait loci parameters. 

Genetics 170: 465 – 480. 



 

33 
 

Watanabe, T., Hirano, T., Takano, A., Mizoguchi, Y., Sugimoto, Y., and 

Takasuga, A. 2008. Linkage disequilibrium structures in cattle and their 

application to breed identification testing. Animal Genetics, 38: 374 – 382. 

Weller, J. I., Kash, Y., and Soller, M. 1990. Power of daughter and granddaughter 

designs for determining linkage between maker loci and quantitative trait 

loci in dairy cattle. J. Dairy Sci. 73:2525 – 2537. 

Wibowo, T. A., Michal, J. J., and Jiang, Z. 2007. The corticotrophin releasing 

hormone as a strong candidate gene for marbling and subcutaneous fat 

depth in beef cattle. Proceedings, Western Section, American Society of 

Animal Science. 58:35 – 38. 

Xu, S. 2003a. Estimating polygenic effects using markers of the entire genome. 

Genetics 163: 789 – 801. 

Xu, S. 2003b. Theoretical basis of the Beavis effect. Genetics 165: 2259-2268. 

Xu, S. 2007. An empirical bayes method for estimating epistatic effects of 

quantitative trait loci. Biometry 63: 513 – 521. 

Xu, S. and Jia, Z. 2007. Genome-wide analysis of epistatic effects for quantitative 

trait in barley. Genetics 175: 1955 – 1963.  

Yi, N., George, V. and Allison, D. B. 2003. Stochastic search variable selection 

for identifying multiple quantitative trait loci. Genetics 164: 1129 – 1138. 

Yi, N. and Shriner, D. 2008. Advances in Bayesian multiple quantitative trait loci 

mapping in experimental crosses. Heredity 100: 240 – 252. 

Zeng, Z. B.1994. Precision mapping of quantitative trait loci. 

Genetics136(4):1457-68.     

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zeng%20ZB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
javascript:AL_get(this,%20'jour',%20'Genetics.');


 

34 
 

  



 

35 
 

Table 2.1: Examples of candidate genes with polymorphisms associated with carcass traits 

BTA 

Gene 

symbol Gene name Trait Breed Reference 

3 LEPR  leptin receptor  Grade fat, intramuscular fat 

content, Subcutaneous fat 

content 

Crossbreed Schenkel et al. 

(2006) 

4 NPY neuropeptide Y Carcass marbling, 

Ultrasound marbling 

Crossbreed Sherman et al. 

(2008) 

7 CAST calpastatin Meat tenderness - Hocquette et al. 

(2007) 

10 CAPN3 calpain 3, (p94) Meat tenderness - Hocquette et al. 

(2007) 

14 CRH  corticotropin 

releasing hormone  

Carcass marbling, 

Ultrasound ribeye area 

Crossbreed Buchanan et al. 

2005; Wibowo et 

al. (2007) 

14 TG thyroglobulin Carcass marbling - Hocquette et al. 

(2007) 

15 UCP2 uncoupling protein 

2 (mitochondrial, 

proton carrier) 

Average backfat, Lean meat 

yield, Yield grade 

Crossbreed Sherman et al. 

(2008) 

15 UCP3 uncoupling protein 

3 (mitochondrial, 

proton carrier) 

Carcass marbling, Lean 

meat yield 

Crossbreed Sherman et al. 

(2008) 

19 GH1 Growth hormone  Carcass marbling, Rump fat Angus, 

Shorthorn 

Barendse et al. 

(2006). 

29 IGF2 insulin-like growth 

factor 2 

(somatomedin A)  

Carcass ribeye area, 

Ultrasound backfat, 

Ultrasound marbling, 

Crossbreed Goodall and 

Schmutz (2007); 

Sherman et al. 

(2008) 

29 CAPN1 calpain 1, (mu/I) 

large subunit  

Meat tenderness - Hocquette et al. 

(2007) 
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Table 2.2: Number of QTL reported for 6 carcass traits in beef cattle
z
 

Trait Number of QTL Chromosomes 

Carcass weight 28 1, 2, 4, 6, 7, 10, 13, 14, 15, 16, 18, 22, 24 

Fat thickness 23 1, 2, 3, 5, 6, 7, 8, 14, 19, 20, 21, 23 

Marbling score 50 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 17, 18, 19, 20, 21, 22, 27 

Ribeye area 3 2, 19, 26 

Yield grade 9 1, 2, 5, 11, 14, 19, 20 

Subcutaneous fat 22 1, 2, 6, 7, 10, 11, 12, 13, 14, 15, 19, 28 

z
This list includes only those QTL reported in the current release (December 2009) of the cattle 

QTL database (Cattle QTLdb 2003). 

 

 

 

 
  



 

37 
 

3. Whole Genome Fine Mapping of QTL for Ultrasound and Carcass Merit 

Traits in Beef Cattle 

 

3.1. Introduction 

Carcass merit traits in beef cattle are of particular interest to the beef 

industry as they are related to both the efficiency of beef production and consumer 

preferences for meat consumption, and as a result, they affect the profitability of 

the industry. A sustainable beef industry depends on efficient production and 

constant improvement of meat quality. Carcass merit traits are among the 

quantitative traits that are measured relatively late in an animal’s production 

cycle. Incorporating the genes or DNA markers influencing carcass traits into the 

traditional genetic evaluation and selection programs using marker-assisted 

selection (MAS) holds great potential to accelerate the rate of genetic 

improvement by increasing the accuracy of genetic evaluation and shortening the 

generation interval (Dekkers and Hospital 2002). However, in order to implement 

marker-assisted selection effectively, closely linked DNA markers or gene alleles, 

or preferably functional quantitative trait nucleotides (QTN), influencing the 

quantitative traits of interest need be identified, characterized and validated. 

In beef cattle, most of the early gene-discovery studies conducted to 

identify quantitative trait loci (QTL) of economic importance including carcass 

quality traits used microsatellite markers alone or in combination with single 

nucleotide polymorphism (SNP) markers (Beever et al. 1990; Stone et al. 1999; 

Keele et al. 1999; Casas et al. 2000; Li et al. 2006). Candidate gene and positional 
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candidate gene approaches have also been used to identify polymorphisms that 

affect carcass quality traits in beef cattle (Grobet et al. 1997; Moore et al. 2003; 

Nkrumah et al. 2004). In a previous study, a genome-wide scan for QTL affecting 

ultrasound and carcass backfat thickness was conducted in a hybrid beef steer 

population using a combination of 100 microsatellite and 355 SNP markers with 8 

to 30 markers per chromosome (Li et al. 2006). However, the QTL were localized 

to large chromosomal regions (4 to 24 cM), which is likely due to the low density 

of markers used, thus limiting their usefulness in the development of marker-

assisted selection strategies and as a tool for identifying causative quantitative 

trait nucleotide(s).  

In cattle and other species, SNPs have become a widely used DNA marker 

type for QTL mapping and association analyses due to their high abundance in the 

genome, possible direct cause of phenotype variation, relatively high stability and 

suitability for high throughput genotyping in comparison to other DNA markers. 

The objective of this study was to conduct a whole genome scan to identify and 

fine map QTL regions for ultrasound and carcass merit traits in beef cattle by 

using a denser SNP marker set and to identify SNP markers within the QTL 

regions that are associated with the ultrasound and carcass merit traits through 

association analyses. 
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3.2. Materials and Methods 

 

3.2.1. Animal Resources and Phenotypic Data 

A total of 465 steers from 28 sire families from the University of Alberta’s 

Kinsella Research station were used in this study. The animals were managed and 

cared for according to the guidelines of the Canadian Council of Animal Care 

(CCAC, 1993). The composition of this population has been previously described 

by Nkrumah et al. (2007a, b). Briefly, it was produced by crossing Angus, 

Charolais, or University of Alberta hybrid bulls and a hybrid dam line. The hybrid 

dam line was obtained by crossing among three composite cattle lines, namely 

beef synthetic 1, beef synthetic 2, and dairy x beef synthetic for more than 10 

years. The beef synthetic 1 was composed of 33% Angus, 33% Charolais, and 

20% Galloway with the reminder from other beef breeds. The beef synthetic 2 

was composed of about 60% Hereford and 40% other beef breeds. The dairy x 

beef synthetic line was made up of approximately 60% dairy breeds (Holstein, 

Brown Swiss, or Simmental) and 40% beef breeds mainly Angus and Charolais 

(Goonewardene et al. 2003). Steers were produced over 3 years from a multiple-

sire breeding program on pasture and the sire of each calf was later determined 

using a panel of microsatellite markers (Nkrumah et al. 2007a, b). 

 

3.2.2. Traits Studied and Measurements 

The measurements of ultrasound traits were obtained as part of the 

phenotypic data collection during the feedlot tests that were conducted at the 

University of Alberta’s Kinsella Research Station in 2003, 2004 and 2005 with 2 
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batches of steers tested per year, and the carcass merit traits were collected in the 

abattoir, was described by Nkrumah et al. (2004; 2007a, b). Briefly, ultrasound 

measurements of rib eye area (UREA), backfat thickness (UBF) at the 12
th

 to 13
th

 

ribs, and marbling score (UMAR) were recorded at 28-day intervals during the 

feeding tests for a period of approximately 100 days using an Aloka 500V real-

time ultrasound with a 17-cm, 3.5-MHz linear array transducer (Overseas Monitor 

Corporation Ltd., Richmond, BC). Average daily gain for ultrasound ribeye area 

(ADG_UREA), ultrasound backfat (ADG_UBF), and ultrasound marbling score 

(ADG_UMAR) were estimated using a linear regression analysis. Carcass weight 

(CWT) was measured as a summation of the left and right halves of each carcass. 

Carcass grade fat (GRDFAT) was measured at the 12
th

 – 13
th

 rib. Carcass 

marbling (CMAR) is a measure of the intramuscular fat with a score of 1 to <2 for 

trace marbling, 2 to <3 for slight marbling, 3 to <4 for small to moderate 

marbling, and ≥ 4 for slightly abundant or more marbling. Carcass average back 

fat (AVE_BF) is the fat thickness measured over the ribeye muscle at 12
th

 rib. 

Lean meat yield (LMY), an estimate of the saleable meat, was estimated using the 

following equation: lean meat yield, % = 57.96 + (0.202 × L. thoracis area, cm
2
) – 

(0.027 × warm carcass weight, kg) – (0.703 × average backfat thickness, mm). 

Carcass ribeye area (CREA) was measured on the cross section of the longissimus 

dorsi muscle between the 12
th

 and 13
th

 ribs. Yield grade (YGRADE) refers to the 

proportion of lean meat and was classified as follows: 1 = ≥59%; 2 = 54 to 58%; 

and 3 = <54%. A total of 465 steers with phenotypic and genotype data were 

available for this study. However, only 370 steers from 16 sire families were used 
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for the interval QTL mapping analyses, with an average 23 progeny per sire and a 

half-sib family size that ranged between 9 and 56. Families where the number of 

offspring was less than 9 were excluded from the interval QTL mapping analyses. 

The average ages at start of test and at slaughter were 251 and 389 days, 

respectively. However, carcass merit data were available on 342 steers. The 

descriptive statistics of the ultrasound and carcass merit traits considered in the 

study are presented in Table 3.1. 

 

3.2.3. DNA Isolation and SNP Genotyping 

A 10-ml blood sample was collected by jugular venipuncture from each 

steer during the feedlot tests. Calf genomic DNA was extracted from blood 

samples using a standard saturated salt, phenol-chloroform method (Miller et al. 

1988). Steers were genotyped for a total of 4592 SNP markers. The 4592 SNP 

markers were chosen based on their locations on a radiation hybrid map that was 

constructed based on marker loci across eight breeds of cattle (McKay et al. 

2007). The 4592 SNP markers were distributed on all 29 bovine autosomes (BTA) 

spanning 2914.4 cM of the linkage maps with a range of number of SNPs per 

chromosome from 58 (BTA 27) to 334 (BTA5) and an average distance of 0.63 

cM between SNP markers. The approximate locations of the 4592 SNP markers in 

cM were inferred based on a composite physical map of the bovine genome of 

Snelling et al. (2007). 
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3.2.4. Whole Genome QTL Fine Mapping  

Phenotypes for ultrasound and carcass merit traits were pre-adjusted for 

the fixed effects of feedlot batch-year contemporary groups (6 levels for 2 feedlot 

batches over 3 years) and sire breeds as well as linear covariates of animal age at 

the start of the test for ultrasound traits and animal age at slaughter for carcass 

merit traits using PROC GLM (SAS 9.1.3 Institute Inc., NC), and the resulting 

residuals were used as phenotypes for the interval QTL mapping analyses. A 

whole genome QTL scan was first conducted using an across-family analysis 

through the multiple marker regression approach (Knott et al. 1996) as 

implemented in the QTL Express software (Seaton et al. 2002). The across-family 

QTL scan tests the QTL effects nested within sire families and provides evidence 

of the segregation of QTL in the overall experimental population. Subsequently, a 

within-family QTL analysis was carried out to further examine which sire family 

was potentially segregating for the putative QTL.  

Both the across-family and within-family QTL scans were performed at a 

1-cM marker interval and the F-statistic tests were plotted along the chromosome. 

The chromosome-wise significance thresholds of the F-statistic tests for both the 

across-family analyses and the within-family QTL analyses were obtained by 

10,000 permutations (Churchill and Doerge 1994) also as implemented in the 

QTL Express software (Seaton et al. 2002). The genome-wide significance 

thresholds, Pgenome, were determined for across-family analyses by applying a 

Bonferroni correction to the chromosome-wise thresholds, Pchromosome, as described 

by de Koning et al. (1998): 
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Pgenome = 1 – (1 – Pchromosome)
n
, 

where n is the number of chromosomes used in the analysis.  

The QTL search was first conducted using the one-QTL model. 

Background QTL effects were analyzed for chromosomes that showed multiple 

QTL peaks on F-statistic profiles. The most significant QTL were fitted as co-

factors to determine the presence of another QTL on the same linkage group. 

Results showed no evidence of multiple QTL on chromosomes which showed 

multiple peaks on the F-statistics profiles for the traits under investigation. 

 

3.2.5. Single SNP Association Analyses under Identified QTL Regions 

SNPs in the significant QTL regions identified in across-family analyses 

were further assessed for their associations with the phenotypic traits using a 

single SNP marker association analysis. The association analysis was conducted 

using the Linear Mixed Model Procedure of SAS (SAS 9.1.3 Institute Inc., NC) 

and the unadjusted phenotypic values of the data set including 418 steers with 28 

sires and 298 dams. The model included the fixed effects of breed of sire 

(Charolais, Angus, or hybrid), batch-year effect (six levels), SNP genotype effect 

and random effects of sire and dam of animal. Sires were considered to be 

unrelated and therefore the random effect of sire was included in the model to 

account for expected co-variances among paternal half-sibs as described in 

Nkrumah et al. (2007a).  Animal age at the start of the test was included as a 

covariate for the analysis of ultrasound traits. Animal age at slaughter was 

included as a covariate for the association analyses of carcass merit traits. The 
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additive effect of a SNP marker was estimated as half the difference between 

genotypic values of the two homozygous genotypes. The dominance deviation 

was estimated as the deviation of heterozygote genotypic value from the mean of 

the two homozygous genotypic values (Falconer and Mackay 1996). 

 

3.3. Results and Discussion 

3.3.1. QTL for Ultrasound and Carcass Merit Traits 

The whole genome across-family QTL scan identified 12 QTL that were 

significantly associated with 5 ultrasound measures on 9 Bos taurus autosomes 

(BTA) at a chromosome-wise significance level of 5% with 4 QTL exceeding the 

1% chromosome-wide significance threshold (Table 3.2). For the carcass merit 

traits, a total of 18 significant QTL for 6 carcass merit traits were identified on 10 

chromosomes at a chromosome-wise significance level of 5%, whereas 5 QTL 

exceeded the 1% chromosome-wise significance threshold (Table 3.3). However, 

none of the above QTL reached the genome-wide significance level of 5% (Table 

3.2 and 3.3). Examples of QTL profiles for the across-family analyses are shown 

on Figure 3.1 to 3.5.  

The within-family QTL analyses identified 53 QTL with significant 

effects for 9 ultrasound traits on 23 chromosomes in 14 sire families (Table 3.4) 

and 25 QTL regions for 7 carcass merit traits on 16 chromosomes in 11 families at 

the chromosome-wise threshold of 1% (Table 3.5). The within-family QTL 

analysis confirmed 4 QTL for ultrasound traits and 11 QTL for carcass merit traits 

that were identified by the across-family QTL analyses. For the remaining 15 
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across-families QTL identified, the within-family QTL analyses detected 

significant QTL nearby for 4 of them (Table 3.2 and 3.3).  

The average QTL 95% confidence interval of the 30 QTL identified in the 

across-family QTL analyses was 2.9 cM with a range of 0.6 to 11 cM. Three of 

the 30 across-family QTL regions identified in this study were localized to similar 

chromosomal regions that were reported previously by other studies using 

different beef cattle populations (Casas et al. 2001; Casas et al. 2003; Takasuga et 

al. 2007), providing additional support for the findings. These include QTL for 

ADG_UREA, MEAN_UBF and UMAR on BTA 5, 8 and 21 respectively. The 

ADG_UREA QTL on BTA 5 within the interval of 43.9 to 45.3 cM is consistent 

with longissimus muscle area QTL at 53 (38 – 66 cM) reported by Casas et al. 

(2003). The QTL for MEAN_UBF identified on BTA 8 (7.0 to 8.1 cM) is 

consistent with a previous identified QTL for fat thickness located in an interval 

between 6 to 30 cM   (Casas et al. 2001). On BTA 21, the chromosomal region of 

37.9 to 40 cM for UMAR QTL is consistent with marbling score QTL detected at 

40 cM by Takasuga et al. (2007) in Japanese Black Cattle..  

Six of the remaining 27 across-family QTL regions were close to regions 

reported on the same chromosomes by other studies (Kim et al. 2003; Li et al. 

2006; Takasuga et al. 2007). These comprised the QTL for CWT, UBF, 

GRDFAT, and AVE_BF on BTA 6, 13, 15 and 18 (Table 3.2 and 3.3). The CWT 

QTL on BTA 6 (18 to 20 cM) and 18 (53.9 to 55.6 cM) were closely located to 

carcass weight QTL reported at 38 cM (Takasuga et al. 2007) and between 33.4 to 

40.2 cM (Kim et al. 2003), respectively. UBF QTL on BTA 13 at 34.1 to 36.7 cM 
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in this study is also close to the QTL location for subcutaneous fat at 28 cM 

reported by Takasuga et al. (2007) in Japanese Black cattle.  The QTL for UBF, 

GRDFAT and AVE_BF detected on BTA 15 in this study were also reported in a 

previous study using the same beef cattle population (Li et al. 2006). However, 

the QTL locations were shifted by 11 to 25 cM, which is likely due to an updated 

version of the bovine composite map used in this study.  It may also represent 

different QTL as a denser marker set was used in this study for QTL detection in 

comparison to the previous study (Li et al. 2006). However, further investigation 

is required to confirm these QTL regions. The remaining 21 QTL identified by the 

across-family analyses in this study were not reported previously. Although using 

a higher density of markers could increase the resolution of QTL detection 

(Meuwissen and Goddard 2000), further studies using a larger sample size are 

needed to verify these QTL regions.  

In addition to the across-family analyses, we also performed a within-

family QTL analyses to further investigate the sire families segregating the QTL. 

For the 30 QTLs identified in the across-family analyses, 15 were confirmed by 

the within-family QTL analyses at the significance level of 5% (Table 3.2 and 

3.3). However, another 15 QTLs identified by the across family analysis were not 

confirmed by the within family QTL analyses at the significance level of 5%. 

Significant QTL effects that were obtained by pooling together several sire 

families with weak to moderate QTL effects may not be identified as a significant 

QTL within individual families, which was discussed in a previous QTL mapping 

study by Nkrumah et al. (2007a) for different traits. In addition, marker 
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heterozygosity differences between sires could be the cause of the shift of QTL 

locations between across-family and within family analyses (de Koning et al. 

1999). It was noted that additional QTL were identified in the within-family 

analysis in comparison to the across family QTL analyses. It is likely that the 

effects of some of these QTL were overestimated due to a small number of 

informative offspring per sire half-sib family (Beavis 1998; Xu 2003) although 

half-sib families with less than 9 offspring were not included in the analyses. 

It was observed that the ultrasound and carcass merit measurements made 

on similar traits do not share the same QTL. Possible explanation of the 

inconsistency between ultrasound and carcass merit traits QTL may be due to 

moderate correlations between ultrasound and carcass merit traits, which imply 

that matching evidence for both traits would not necessarily be expected (Johnson 

et al. 2005). It may also be due to the fact that different genes are involved at the 

various developmental stages.  

  

3.3.2. SNPs Associated with Ultrasound and Carcass Merit Traits 

 Single SNP association analyses were performed for SNPs under or near 

the 30 significant QTL regions that were identified in the across-family study. The 

analysis detected 22 SNPs under 12 QTL regions that were significantly 

associated with 7 ultrasound and carcass merit traits. These include 8 SNPs that 

showed significant association (P < 0.05) with ultrasound traits of MEAN_UBF, 

UBF, and MEAN_UMAR on BTA 15 and 23; whereas for the carcass merit traits, 

a total of 14 SNPs had significant association (P < 0.05) with LMY, GRDFAT, 
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AVE_BF and CMAR on BTA 1, 5, 15, 18, and 29 (Table 3.6).  Information 

regarding positions of the SNP on the chromosomes and their potential function 

of the above 22 SNPs were obtained from the databases of National Center for 

Biotechnology Information (NCBI) (Table 3.7).  

SNP ss38334774 that is located at 14.1 cM on BTA 15 was found to have 

a significant additive effect on MEAN_UBF, in which genotype AA had a higher 

MEAN_UBF value. The SNP is located in an intron of the Zinc finger and BTB 

domain-containing protein 16 (ZBTB16) gene (Table 3.7). In Human, the ZBTB16 

gene encodes a transcription factor that may play a role in myeloid maturation and 

in the development and maintenance of other differentiated tissues (Fischer et al. 

2008). However, the role of the ZBTB16 gene in regulating fat deposition in beef 

cattle needs further investigation.  

Six SNPs were found to be significantly associated with UBF, of which 

three were located on BTA 15 in the region of 41.7 - 49.6 cM and three on BTA 

23 in the region of 3.6 - 8.9 cM. The three SNP on BTA 15 had significant 

additive effects on UBF with the genotype GG of ss38325273 and TT of 

ss38323563 and ss38323565 SNPs having significant lower UBF. On BTA 23, 

ss38323823 SNP had a significant additive effect on UBF with the genotype GG 

having significantly lower UBF than genotype TT. The ss38323823 SNP also had 

a significant dominance effect on UBF. Both the ss38335355 and ss38335358 

SNPs on BTA 23 have only two genotypes, i.e. AA and AG, detected in the 

population. The genotype AA of both SNPs has significantly higher UBF than 

AG. Of the 6 SNPs associated with UBF, SNP ss38325273 on BTA15 is located 
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in an intron of the phosphodiesterase 3B, cGMP-inhibited (PDE3B) gene, while 

SNPs ss38323563 and ss38323565 are located in the intronic region of the RAB6A 

gene. Among the three SNPs for UBF on BTA 23, the SNP ss38323823 is near 

the BAK1 gene while SNPs ss38335355 and ss38335358 are close to 

C23H6ORF142 gene. The product of the PDE3B gene is cGMP-inhibited 3',5'-

cyclic phosphodiesterase B protein. Lobbert et al. (1996) reported that the human 

homologue PDE3A gene in rat is involved in fat metabolism. Furthermore, the 

PDE3B protein is the membrane component of adipose tissue microsomes, 

adipocytes and erythrocytes in human, rat and rabbit (Hanson et al. 2008; 

Kitamura et al. 1999), which suggests that the PDE3B gene may also play an 

important role on the deposition of body fat in beef cattle.  

The ss38331825 SNP on BTA 15 had a significant association with 

MEAN_UMAR and exhibited a significant additive effect on MEAN_UMAR 

with genotype GG having a significantly low trait value. This SNP is a 

synonymous SNP located in the USP2 (ubiquitin specific peptidase 2) gene. In 

human, the isopeptidase ubiquitin-specific protease-2a (USP2a) enzyme is the 

product of USP2 gene that regulates the stability of fatty acid synthase in cancer 

cells. Inactivation of the USP2a function causes decreased fatty acid synthase 

protein levels and increased apoptosis (Graner et al. 2004), which warrants further 

investigation of the function of the gene in beef cattle. 

For the carcass merit traits, four SNPs on BTA 5 and two SNPs on BTA 

15 showed significant associations with LMY. On BTA 5, ss38324422 and 

ss38339138 SNPs have significant additive effects on LMY. Animals with 
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genotype CC of ss38324422 and GG of ss38339138 had significantly lower LMY 

than animals with the other two SNP genotypes. Likewise ss38334596 SNP had a 

significant dominance effect on LMY with genotype TC having lower LMY than 

the two homozygous SNP genotypes. However, further study is needed to confirm 

the dominance effect of ss38334596 SNP on the LMY.  The ss61473002 SNP had 

two genotypes detected in the population and animals with AG genotype had 

higher LMY than those with GG genotype. On BTA 15, both the ss38332149 and 

ss38332148 SNP had significant additive effects on LMY whereby animals with 

CC genotypes for ss38332149 SNP and AA genotypes for ss38332148 SNP 

showed high amount of LMY than the other two SNP genotypes. Three of the 

four SNPs on BTA5 are located in the intronic regions of LIN7A gene while SNP 

ss38334596 is located in the intron of SYT1 gene. Gene LIN7A encodes Lin-7 

homolog A protein in bovine, and its molecular function based on thorough 

investigation has not been reported in cattle. The SYT1 gene encodes 

synaptotagmin-1 protein. Molecular function of synaptotagmin-1 protein is not 

fully understood. However, a study on the phosphorylation of synaptotagmin-1by 

casein kinase II in bovine has shown that it is a Ca
2+

 binding and phospholipid 

binding protein whose functions may involve synaptic vesicle exocytosis 

(Davletov et al. 1993). SNP ss38332148 and ss38332149 on BTA15, which also 

have significant associations with AVE_BF, however, are located near gene and 

its function remains unclear.  

Three SNPs on BTA 1, 18 and 27 were found to have significant 

associations with GRDFAT.  The ss66538078 SNP on BTA 1 had a significant 
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additive effect on GRDFAT with genotype CC having low grade fat. The 

ss38322834 and ss38324558 SNPs on BTA 18 and 27 respectively showed both 

additive and dominance effects on GRDFAT. Animals with TC genotypes for the 

ss38322834 SNP and CC for the ss38324558 SNP had high grade fat values 

compared to those with alternative genotypes. SNP ss38322834 SNP on BTA 18 

is located in the intron of LOC506171 gene encoding a similar protein to 

phospholipase C, gamma 2 protein. The phospholipase C, gamma 2 enzyme plays 

important role on leptin signaling and leptin-mediated activation of human 

platelets (Dellas et al. 2007). Leptin is a hormone that involved in regulation of 

appetite, energy expenditure and body composition (Houseknecht et al. 1998). 

The SNPs on leptin gene have shown significant associations with several carcass 

traits in beef cattle including grade fat (backfat), ultrasound backfat thickness and 

lean meat yield (Nkrumah et al. 2004), which implies that the LOC506171 gene 

may play an important role on regulation of GRDFAT through interaction with 

leptin gene. 

The ss38339295 SNP on BTA 5 showed significant dominance effect and 

slightly significant additive effect on AVE_BF with GG genotype having higher 

trait values. The SNP is located close to MYF6 gene which encodes myogenic 

factor 6 protein. In mice, the MYF6 gene is homologous to bovine MYF6 gene and 

plays a role in cell differentiation processes (Pin and Konieczny 2002). In cattle, 

the MYF6 gene is considered to be involved in regulation of skeletal muscle 

development (Maak et al. 2006; Hudson et al. 2009), which may also affect fat 

deposition through energy partitioning, which needs further investigation.   
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Of the 30 significant QTL regions detected in the across-family analyses, 

12 QTL regions for ultrasound and carcass merit traits were supported by SNPs in 

the proximate QTL locations with significant SNP associations whereas 18 QTL 

regions had no SNP that showed significant associations with traits (Table 3.6 and 

3.7). Absence of significant association for SNPs under or near the significant 

QTL regions identified by the across-family QTL analyses could be a result of the 

single SNP marker association analysis having relatively low power of detecting 

QTL compared to the multiple marker interval QTL mapping method. Therefore, 

further increasing the sample size and the density of SNP markers under the QTL 

regions may lead to the identification of SNPs associated with the traits.  

Nevertheless, this study used both an interval mapping QTL genome scan and 

single SNP marker association to fine map QTL regions and to detect SNPs 

affecting ultrasound and carcass merit traits in beef cattle. Both methods analyze 

one position of the genome or one marker at a time, which could possibly result in 

high incidences of false positives due to multiple testing. However, 10000 

permutations were carried out to set the significance threshold in order to combat 

false positives due to multiple testing in the whole genome QTL scan. Also, the 

QTL effects may be overestimated due to the fact that each QTL or SNP marker 

was analyzed independently, or due to a small number of animals in the genotype 

subclasses (Beavis 1998). Therefore, another study is underway to use a Bayesian 

approach to evaluate associations of all SNP markers simultaneously in a single 

model which will overcome some of the limitations associated with the interval 

mapping genome scan and the single SNP association analyses. Also, the use of 
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4592 SNPs in the current study may not capture all existing linkage 

disequilibrium between SNP markers and QTL on the bovine genome. Therefore, 

the use of the BovineSNP50 assay with a total of 58336 SNPs (Matukumalli et al. 

2009) would be more powerful in narrowing down reported QTL and identifying 

SNPs influencing complex traits. Nevertheless, the fine mapped QTL regions and 

SNPs that were identified in this study will provide a reference for the 

identification of DNA markers for ultrasound and carcass merit traits for the 

implantation of MAS in beef cattle genetic improvement programs. 
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Table 3.1: Descriptive statistics of ultrasound and carcass merit traits considered in the study 

Variable Steers, n Mean SD 

Mean ultrasound marbling score 418 4.0183 0.5589 

Average daily gain ultrasound marbling score 418 0.0071 0.0045 

Mean ultrasound backfat, mm 418 3.8963 1.6719 

Average daily gain ultrasound backfat, mm 418 0.0341 0.0193 

Mean ultrasound ribeye area, cm
2
 418 55.741 7.1370 

Average daily ultrasound ribeye area, cm
2
 418 0.1676 0.0717 

Ultrasound marbling 418 5.1870 0.7849 

Ultrasound backfat, mm 418 9.3168 3.5598 

Ultrasound ribeye area, cm
2
 418 83.545 10.572 

Carcass weight, kg 342 312.3988 31.909 

Grade fat, mm 342 10.7252 4.3051 

Average backfat, mm 342 12.2133 4.2543 

Carcass ribeye area, cm
2
 342 84.0673 9.2881 

Lean meat yield, % 342 57.9188 3.8099 

Carcass marbling score 342 2.4975 0.5352 

Yield grade 342 1.7193 0.7165 
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Table 3.2: Locations and QTL effects for ultrasound traits based on across-family 

analyses 

Trait
z
 BTA QTL peak cM) 

QTL 95% 

interval (cM) F-ratio Pchromosome Pgenome QTL%
y
 

MEAN_UBF 8 8 7.0 – 8.1 2.63 0.0093** 0.2374 7.1
x,w

 

 15 15 14.0 – 16.5 2.28 0.0477* 0.7577 5.7
x,w,v

 

 27 58 57.7 – 59.0 2.39 0.0098** 0.2484 6.1 

UBF 12 1 0.0 – 1.6 2.69 0.0496* 0.7713 7.8 

 13 35 34.1 – 36.7 2.6 0.0497* 0.772 7.4
v
 

 15 43 41.0 – 47.0 3.46 0.0090** 0.2306 11 

 23 0 0.0 – 8.0 2.45 0.0425* 0.7162 6.1 

MEAN_UMAR 15 14 11.5 – 17.2 2.74 0.0394* 0.6883 7.7
v
 

UMAR 13 39 37.9 – 39.6 2.73 0.0365* 0.6598 7.2
w
 

 21 39 37.9 – 40 2.53 0.0448* 0.7353 6.4
w
 

ADG_UREA 5 45 43.9 – 45.3 2.96 0.0074** 0.1938 8.3
v
 

 11 88 87.7 – 88.6 2.61 0.0384* 0.6786 8.3 
z
MEAN_UBF = mean ultrasound backfat; UBF = ultrasound backfat; MEAN_UMAR= mean ultrasound 

marbling; UMAR = ultrasound marbling;
 
ADG_UREA = average daily gain ultrasound ribeye area. 

yQTL contribution (%) = (residual mean square of reduced model – residual mean square of full model)/total 

phenotypic variance; *P < 0.05; **P < 0.01; xQTL confirmed at P < 0.01 in within-family analysis; wQTL confirmed 

at P < 0.05 in within-family analysis; vQTL detected at nearby region in within-family analysis 
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Table 3.3: Locations and QTL effects for carcass merit traits based on across-

family analyses  

Trait
z
 BTA QTL peak (cM) 

QTL 95% 

interval (cM) F-ratio Pchromosome Pgenome QTL%
y
 

CWT 6 19 18.0 – 20.0 3.01 0.0375* 0.6699 8.7 

 15 84 82.0 – 86.0 3.13 0.0491* 0.7678 9.2 

 18 54 53.9 – 55.6 3.21 0.0097** 0.2462 9.5
w
 

  21 34 33.9 – 34.5 2.63 0.0418* 0.7101 7.2
w
 

LMY 5 16 15.5 – 18.0 2.7 0.0466* 0.7494 8.5
w
 

 15 16 14.5 – 17.0 2.8 0.0065** 0.1723 8.9
w
 

GRDFAT 1 9 8.5 – 12.0 2.46 0.0389* 0.6836 7.3
w
 

 15 15 12.5 – 17.5 3.33 0.0085** 0.2193 11.1
w,v

 

 18 3 2.8 – 3.5 2.43 0.0428* 0.7186 7.2 

 27 59 58.0 – 59.0 2.33 0.0495* 0.7706 6.7
w
 

AVE_BF 5 8 0.0 – 11.0 2.74 0.0440* 0.7288 8.6 

 15 16 13.0 – 17.5 3.45 0.0093** 0.2373 11.7
w
 

CREA 1 6 4.0 – 6.1 2.69 0.0494* 0.7699 8.0
w
 

 6 111 109.0 – 111.4 2.66 0.0434* 0.7238 7.9
x
 

 10 16 15.9 – 16.5 2.34 0.0403* 0.6967 6.5 

CMAR 1 4 0.0 – 5.2 2.66 0.0443* 0.7313 7.9
v
 

 25 1 0.9 – 1.6 2.75 0.0092** 0.2351 8.3
w
 

 29 20 19.0 – 20.7 2.56 0.0489* 0.7663 7.4 
zCWT = carcass weight; LMY = lean meat yield; GRDFAT = carcass grade fat; AVE_BF = average backfat; CREA 

= carcass ribeye area; CMAR = carcass marbling.  
yQTL contribution (%) = (residual mean square of reduced model – residual mean square of full model)/total 

phenotypic variance; *P  < 0.05; **P < 0.01; xQTL confirmed at P < 0.01 in within-family analysis;  wQTL 

confirmed at P < 0.05 in within-family analysis; vQTL detected at nearby region in within-family analysis. 
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Table 3.4: QTL locations and effects for ultrasound traits based on within-family 

analyses  

Trait
z
 BTA QTL location, cM Family Estimate    S.E. p-value

y
 

ADG_UBF 4 12 4 -0.022 0.005 0.0076 

ADG_UBF 4 69 8 0.02 0.004 0.009 

ADG_UBF 4 79 9 -0.003 0.002 0.007 

ADG_UBF 8 51 6 -0.011 0.003 0.0096 

ADG_UBF 12 30 6 0.014 0.004 0.0097 

ADG_UBF 13 60 13 -0.026 0.007 0.008 

ADG_UBF 29 44 1 0.89 0.209 0.0074 

MEAN_UBF 2 110 12 3.873 0.098 0.0087 

MEAN_UBF 8 126 10 -3.633 0.681 0.0083 

MEAN_UBF 8 7 17 3.238 0.592 0.0097 

MEAN_UBF 9 23 12 4.275 0.293 0.0063 

MEAN_UBF 14 0 2 1.414 0.329 0.0097 

MEAN_UBF 15 16 14 -2.129 0.452 0.0068 

MEAN_UBF 15 31 17 -2.166 0.448 0.0086 

MEAN_UBF 24 47 10 2.683 0.586 0.0092 

MEAN_UBF 27 2 4 -1.552 0.372 0.0098 

MEAN_UBF 29 18 17 -2.219 0.43 0.0086 

UBF 17 83 2 4.711 1.188 0.0089 

UBF 18 4 9 3.895 0.451 0.0068 

UBF 21 29 4 -3.169 0.826 0.0079 

UBF 21 48 8 -4.3731 0.844 0.0087 

UBF 25 64 6 -2.501 0.696 0.0092 

ADG_UMAR 2 9 18 0.008 0.001 0.0065 

ADG_UMAR 4 60 3 0.004 0.001 0.0141 

ADG_UMAR 20 61 18 -0.009 0.001 0.0083 

MEAN_UMAR 1 32 4 0.754 0.158 0.0091 

MEAN_UMAR 8 20 8 -0.781 0.176 0.0091 

MEAN_UMAR 10 66 4 -0.398 0.095 0.009 

MEAN_UMAR 12 89 6 -0.288 0.083 0.0086 

MEAN_UMAR 13 1 14 -0.692 0.157 0.0095 

MEAN_UMAR 14 18 17 -0.609 0.109 0.0096 

UMAR 5 30 12 -15.904 1.053 0.0074 

UMAR 9 1 7 1.044 0.253 0.0095 

UMAR 10 110 3 -0.76 0.197 0.0078 

UMAR 18 8 4 -0.799 3.763 0.0092 

UMAR 19 71 4 -1.144 0.28 0.0084 

ADG_UREA 3 91 8 -0.066 0.012 0.0096 

ADG_UREA 9 59 18 0.106 0.013 0.0085 

ADG_UREA 21 31 4 0.049 0.012 0.0083 
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ADG_UREA 21 19 10 -0.087 0.018 0.0088 

ADG_UREA 27 40 4 0.043 0.012 0.0067 

MEAN_UREA 2 33 2 -10.176 1.943 0.0089 

MEAN_UREA 2 39 8 8.665 2.113 0.0083 

MEAN_UREA 10 71 9 11.692 0.298 0.002 

MEAN_UREA 12 61 10 -7.597 1.68 0.0088 

MEAN_UREA 13 44 2 9.401 2.002 0.0095 

MEAN_UREA 13 25 8 8.542 1.905 0.0081 

MEAN_UREA 19 37 13 8.483 1.828 0.009 

MEAN_UREA 23 19 3 4.545 1.181 0.0084 

MEAN_UREA 27 53 17 -14.375 2.276 0.0094 

UREA 9 63 18 19.073 1.947 0.007 

UREA 12 77 9 -15.518 0.708 0.0092 

UREA 20 12 1 -10.106 1.814 0.0096 
z
ADG_UBF = average daily gain ultrasound backfat; MEAN_UBF = mean ultrasound backfat; 

UBF = ultrasound backfat; ADG_UREA = average daily gain ultrasound ribeye area; 

MEAN_UREA = mean ultrasound ribeye area; UREA = ultrasound ribeye area; ADG_UMAR = 

average daily gain ultrasound marbling; MEAN_UMAR = mean ultrasound marbling;
  
UMAR = 

ultrasound marbling;  
y
Only 1% chromosome-wise significance level are reported for within-

family QTL effects. 
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Table 3.5: QTL locations and effects for carcass merit traits based on within-family 

analyses  

Trait
z
 BTA QTL location, cM Family Estimate S.E. p-value

y
 

CWT 9 39 8 60.984 11.268 0.0093 

CWT 15 20 8 47.946 9.278 0.0096 

CWT 15 37 10 -60.282 12.564 0.0019 

CWT 28 36 13 -52.616 10.712 0.0083 

CWT 29 41 13 56.33 10.715 0.0098 

LMY 1 121 9 -13.238 1.071 0.0063 

LMY 2 11 9 11.902 1.855 0.0033 

LMY 9 0 14 -6.172 1.433 0.0091 

LMY 13 98 18 11.873 2.412 0.0069 

LMY 16 19 5 3.52 0.825 0.0085 

LMY 16 84 14 6.626 1.601 0.0082 

GRDFAT 9 51 9 10.264 0.549 0.0092 

GRDFAT 15 77 5 -3.684 0.826 0.0083 

GRDFAT 17 93 4 -4.213 1.062 0.0096 

GRDFAT 25 52 7 7.737 2.059 0.0092 

GRDFAT 29 0 4 -4.294 1.177 0.0085 

AVE_BF 16 84 14 -6.578 1.699 0.0099 

CREA 6 107 2 20.606 3.915 0.0099 

CREA 25 28 5 9.06 2.267 0.0093 

CREA 26 42 8 -19.21 4.454 0.0089 

CMAR 4 43 10 0.992 0.226 0.0096 

CMAR 20 52 9 -1.847 0.07 0.0099 

CMAR 23 30 14 0.721 0.181 0.0078 

YGRADE 10 90 6 0.589 0.155 0.0084 

YGRADE 16 84 14 -1.182 0.272 0.0094 
z
CWT = carcass weight; LMY = lean meat yield; GRDFAT = carcass grade fat; AVE_BF = 

average backfat; CREA = carcass ribeye area; CMAR = carcass marbling; YGRDAE = carcass 

yield grade. 
 y
Only 1% chromosome-wise significance level are reported for within-family QTL effects  



 

66 
 

Table 3.6: Location, genotype frequency and effects of SNPs significantly associated with ultrasound and carcass merit traits 

 

 

Trait 

 

 

BTA 

 

 

SNP name 

 

 

SNP genotypes (No. of animals)x and Estimate (± SE) 

SNP 

location 

(cM) 

 

 

aw ± SE 

 

 

Probv. 

 

 

du ± SE 

 

 

Probv. 

MEAN_UBF 15 ss38334774 AA (97) 3.93 ± 0.17 AG (209) 3.73 ± 0.13 GG (106) 3.47 ± 0.16 14.1 0.228±0.10 0.0202 0.027 ±0.12 0.8235 

UBF 15 ss38325273 CC (13) 10.63 ± 0.79  GC (142) 9.17 ± 0.27 GG (254) 8.64 ± 0.22 41.7 0.994 ± 0.41 0.0151 -0.462 ± 0.47 0.3235 

 ss38323563 GG (169) 9.08 ± 0.26 TG (186) 8.96 ± 0.23 TT (59) 7.93 ± 0.40 41.7 0.572 ± 0.23 0.0164 0.458 ± 0.29 0.1253 

 ss38323565 GG (172) 9.03 ± 0.27 TG (180) 9.01 ± 0.25 TT (60) 7.99 ± 0.41 49.6 0.516 ± 0.24 0.0301 0.502 ± 0.30 0.0963 

UBF 23 ss38323823 GG (275) 8.86 ± 0.26 TG (132) 8.71 ± 0.31 TT (8) 11.21 ± 1.05 8.9 -1.177±0.53 0.0268 -1.329±0.57 0.0194 

  ss38335355 AA (358) 8.99 ± 0.20 AG (55) 8.13 ± 0.40 - 3.6 0.859± 0.42 0.0398 - - 

  ss38335358 AA (359) 8.99 ± 0.20 AG (56) 8.12 ± 0.40 - 3.8 0.865±0.41 0.0366 - - 

MEAN_UMAR 15 ss38331825 AA (19) 4.13 ± 0.10 AG (153) 4.03 ± 0.05 GG (237) 3.91 ± 0.04 20.2 0.107 ± 0.05 0.0444 0.007± 0.06 0.9058 

LMY 5 ss38324422 CC (29) 56.83  ±  0.0.76 TC (161) 57.75  ± 0.39 TT (227) 58.73  ±  0.37  16 -0.950 ± 0.39 0.0163 -0.027 ± 0.47 0.9541 

  ss38334596 CC (294) 58.52 ± 0.35 TC (102) 56.95 ± 0.54 TT (6) 59.00 ± 1.62 17.3 -0.218 ± 0.81 0.7664 -1.809 ± 0.86 0.0353 

  ss38339138   GG (39) 56.59 ± 0.72  TG (186) 58.09 ± 0.38 TT (186) 58.58 ± 0.39 14.8 -1.019 ±  0.38 0.0070 0.526  ± 0.45 0.2458 

  ss61473002 AG (139) 58.91 ± 0.42 GG (270) 57.73 ± 0.35 - 16.6 1.177 ± 0.46 0.0111 - - 

LMY 15 ss38332149 CC (182) 58.64 ± 0.33 TC (176) 57.99 ± 0.37 TT (51) 57.08 ± 0.60 8.7 0.778 ± 0.32 0.0153 0.130± 0.42 0.7539 

  ss38332148 AA (179) 58.57 ± 0.34 AG (173) 57.97 ± 0.39 GG (51) 57.11 ± 0.61 8.7 0.729 ±0.33 0.0266 0.125±0.43 0.7687 

GRDFAT 1 ss66538078 CC (165) 10.08 ± 0.36 TC (195) 10.34  ± 0.36 TT (51) 11.74  ± 0.64 8.7 -0.830 ± 0.35 0.0197 -0.564 ± 0.46 0.2214 

GRDFAT 18 ss38322834 CC (3) 16.69 ± 2.20 TC (76) 9.71 ± 0.57 TT (339) 10.42 ± 0.30 4.7 3.135 ± 1.10 0.0047 -3.843 ± 1.18 0.0013 

GRDFAT 27 ss38324558 CC (334) 10.14  ± 0.33 TC (79) 10.50  ± 0.53 TT (3) 16.77 ± 2.21  58.8 -3.313 ± 1.12 0.0032 -2.952 ± 1.20 0.0141 

AVE_BF 5 ss38339295 CC (354) 11.91 ± 0.31                                                               CG (60) 11.17 ± 0.61 GG (3) 15.67 ± 2.19  10.4 -1.881 ±  1.10 0.0889 -2.627 ± 1.22 0.0331 

AVE_BF 15 ss38332149 CC (182) 11.36  ± 0.32 TC (176) 11.97  ± 0.36 TT (51) 12.98  ± 0.63 8.7  -0.808 ± 0.35 0.0224 -0.195 ± 0.45 0.6678 

  ss38332148 AA (179) 11.40 ± 0.34 AG (173) 12.03 ± 0.39 GG (51) 12.96 ± 0.65 8.7 -0.779 ±0.36 0.0311 -0.149±0.46 0.7489 

CMAR 29 ss38322162 CC (6) 1.97 ± 0.20   TC (83) 2.44 ± 0.07 TT (327) 2.46 ± 0.05  21.6 -0.241 ± 0.10 0.0147 0.221 ± 0.11 0.0460 

  ss38324688 AG (33) 2.22 ± 0.10 GG (380) 2.48 ± 0.04 - 18.8 -0.253 ± 0.10 0.0093 - - 

 

xNumber of animals shown in brackets; aw, additive genotypic value; du, dominance deviation; Probv, probability of additive or dominance genotypic value 
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Table 3.7: Summary of position and gene annotation for SNPs significantly associated with ultrasound and carcass traits 

Trait BTA SNP name SNP position (bp) Function class In Gene ID In Gene name In Gene description 

MEAN_UBF 15 ss38334774 22919210 intron 534401 ZBTB16; 

MGC127918 

zinc finger and BTB domain containing 16 

UBF 15 ss38325273 36854388 intron 533323 PDE3B phosphodiesterase 3B, cGMP-inhibited 

  ss38323563 52710350 intron 616537 RAB6A RAB6A, member RAS oncogene family 

  ss38323565 52710098 intron 616537 RAB6A RAB6A, member RAS oncogene family 

UBF 23 ss38323823 
8498505 

nearest_gene 514090 BAK1 BCL2-antagonist/killer 1 

  ss38335355 
101039 

nearest_gene 790110 C23H6ORF142 chromosome 6 open reading  

  ss38335358 
101057 

nearest_gene 790110 C23H6ORF142 chromosome 6 open reading  

MEAN_UMAR 15 ss38331825 28495153 synonymous contig 

reference 

522980 USP2; MGC137635 ubiquitin specific peptidase 2 

LMY 5 ss38324422 12423627 intron 528379 LIN7A lin-7 homolog A (C. elegans) 

  ss38334596 9087028 intron 281511 SYT1 synaptotagmin I 

  ss38339138   12403425 intron 528379 LIN7A lin-7 homolog A (C. elegans) 

  ss61473002 12451776 intron 528379 LIN7A lin-7 homolog A (C. elegans) 

LMY 15 ss38332149 20509763 nearest_gene 538766 
MGC134087; 

MGC134087 
hypothetical LOC538766 

  ss38332148 20509821 nearest_gene 538766 
MGC134087; 

MGC134087 
hypothetical LOC538766 

GRDFAT 1 ss66538078 6350258 intron 540879 C1H21ORF7 
chromosome 21 open reading frame 7 

ortholog 

GRDFAT 18 ss38322834 7459380 intron 506171 LOC506171 similar to phospholipase C, gamma 2 

GRDFAT 27 ss38324558 42710278 nearest_gene 616397 ZMAT4 zinc finger, matrin type 4 

AVE_BF 5 ss38339295 12323876 nearest_gene 281336 MYF6 myogenic factor 6 (herculin) 

AVE_BF 15 ss38332149 20509763 nearest_gene 538766 
MGC134087; 

MGC134087 
hypothetical LOC538766 

  ss38332148 20509821 nearest_gene 538766 
MGC134087; 

MGC134087 
hypothetical LOC538766 

CMAR 29 ss38322162 16888647 nearest_gene 506046 
CCDC90B; 

MGC155307 
coiled-coil domain containing 90B 

  ss38324688 15572469 nearest_gene 506046 
CCDC90B; 

MGC155307 
coiled-coil domain containing 90B 
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Figure 3.1: QTL profiles for across-family analyses on bovine chromosome 5. 

Horizontal lines represent the chromosome-wise 1% (solid line) and 5% (dashed 

line) threshold levels based on 10,000 permutations. ADG_UREA = average daily 

gain ultrasound ribeye area; LMY = lean meat yield. 
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Figure 3.2 QTL profiles for across-family analyses on bovine chromosome 6. 

Horizontal lines represent the chromosome-wise 1% (solid line) and 5% (dashed 

line) threshold levels based on 10,000 permutations. CREA = carcass ribeye area; 

CARCTW = carcass weight. 
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Figure 3.3: QTL profiles for across-family analyses on bovine chromosome 13. 

Horizontal lines represent the chromosome-wise 1% (solid line) and 5% (dashed 

line) threshold levels based on 10,000 permutations. UBF = ultrasound backfat; 

UMAR = ultrasound marbling. 
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Figure 3.4: QTL profiles for across-family analyses on bovine chromosome 15. 

Horizontal lines represent the chromosome-wise 1% (solid line) and 5% (dashed 

line) threshold levels based on 10,000 permutations. MEAN_UBF = mean 

ultrasound backfat; UBF = ultrasound backfat; LMY = lean meat yield; GRDFAT 

= carcass grade fat; AVER_BF = average backfat. 
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Figure 3.5: QTL profiles for across-family analyses on bovine chromosome 21. 

Horizontal lines represent the chromosome-wise 1% (solid line) and 5% (dashed 

line) threshold level based on 10,000 permutations. UMAR = ultrasound 

marbling; CWT = carcass weight. 
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4. Whole Genome QTL Fine Mapping for Ultrasound and Carcass Merit 

Traits in Beef Cattle using Bayesian Shrinkage Method 

 

4.1. Introduction 

Several statistical methods have been developed to identify quantitative trait 

loci (QTL) for economically important traits in agricultural organisms and 

complex traits in human (Lander and Botstein 1989; Knott et al. 1996; Jansen 

1993; Zeng 1994; Kao et al. 1999; Xu 2003a, Wang et al. 2005). However, the 

statistical methods differ in terms of the power and accuracy of estimation of QTL 

effects and positions. Interval mapping with linear regression models for half-sib 

families has been commonly used for QTL analyses (Haley et al. 1994; Knott et 

al. 1996; Takasuga et al. 2007). However, the interval mapping approach and 

various modified versions of it may have limitations in evaluating the QTL effects 

of the entire genome with a dense marker map because it evaluates one interval at 

a time along the genome and requires multiple tests, which usually results in 

biased estimation of QTL effects and a higher false positive rate (Xu 2003a; 

Wang et al. 2005).  

Bayesian shrinkage estimation is an alternative method to map QTL 

locations and to estimate QTL effects for quantitative traits. The method is able to 

evaluate all candidate markers on the entire genome in a single model 

simultaneously, thus overcoming at least some of the limitations of interval 

mapping approach and tends to have a more accurate estimation of QTL positions 

and effects in comparison to the interval mapping approach (Xu 2003a; Wang et 
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al. 2005). More importantly, the Bayesian shrinkage estimation method can 

handle oversaturated models in which marker intervals with negligible QTL 

effects are shrunk close to zero whereas the intervals with remarkable QTL effects 

are subject to virtually no shrinkage (Wang et al. 2005). The method has been 

applied previously in several species including the identification of QTL for 

wound-healing (Wang et al. 2005) in mice, detection of genetic markers 

associated with bristle number variations (Kopp et al. 2003) in fruit flies, and 

mapping of QTLs for several production traits (Xu 2003a) in barley. The results 

from these studies suggest that the Bayesian shrinkage approach provides a 

promising alternative to interval QTL search approaches.  

In a previous study, we conducted a whole genome fine mapping of QTL 

for ultrasound and carcass merit traits based on 4592 SNPs in a composite beef 

cattle population using an interval mapping regression approach and single SNP 

marker association analyses (Nalaila et al. 2010). The objective of this study was 

to carry out fine mapping of QTL for the ultrasound and carcass merit traits in the 

composite beef cattle population using the Bayesian shrinkage estimation method, 

and to compare the QTL mapping results with those identified in our previous 

study (Nalaila et al. 2010). Use of different approaches for QTL analyses 

facilitates comparison and verification of QTL mapping results, which leads to the 

identification of reliable genetic markers for MAS and QTN search.  
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4.2. Materials and Methods 

4.2.1. Animal Resources and Phenotypic Data 

Information about animal resources and phenotypic data also traits studied 

and measurements are explained in Chapter 3.2.1 and 3.2.2 respectively. The 

statistics of the ultrasound and carcass merit traits are presented in Table 3.1.  

 

4.2.3. DNA Isolation and SNP Genotyping 

Information about DNA isolation and SNP genotyping are summarized in 

Chapter 3.2.3. The SNP markers with missing genotypes were imputed using 

fastPHASE (Scheet and Stephen 2006). The SNP markers with a minor allele 

frequency (MAF) less than 0.05 and Hardy-Weinberg equilibrium test P < 0.0005 

were filtered out using PLINK (Purcell et al. 2007). In order to remove redundant 

marker information in the Bayesian shrinkage model, only SNP markers with 

pair-wise linkage disequilibrium (r
2
) less than 0.2 were included in this analysis. 

Therefore, a total of 1207 SNP markers were selected for the Bayesian shrinkage 

analysis. The 1207 SNPs covered all 29 BTA with a range per chromosome of 4 

SNPs (BTA 26) to 80 SNPs (BTA 28). The average distance between SNP 

markers was 2.3 cM with a range of 0.77 cM (BTA 28) to 11.06 cM (BTA 23) 

cM. The number of markers per BTA and average distance between SNP markers 

are presented in Table 4.1. All SNP markers were formatted into one data set 

representing the whole genome for the Bayesian shrinkage analysis with 

cumulative positions in cM from BTA1 to BTA29. 
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4.2.4. Statistical Analysis 

Phenotypes of ultrasound and carcass merit traits were pre-adjusted for the 

fixed effects of year-batch contemporary groups, sire breeds, and as well as linear 

covariates of animal age at the start of the test for ultrasound traits and animal age 

at slaughter for carcass merit traits using PROC GLM (SAS 9.1.3 Institute Inc., 

NC), and the resulting residuals were used as phenotypes for the analyses. The 

Bayesian shrinkage QTL mapping was carried out using PROC QTL, which is a 

user-defined SAS procedure for QTL mapping software package that executes 

within the SAS platform (Hu and Xu 2009). The method allows fitting all of the 

1207 SNP markers in a single model and estimates QTL of the entire genome 

simultaneously using a Bayesian Shrinkage approach. The method assumes that 

each marker interval has its own variance parameter and its own prior distribution 

so that the variance of each QTL can be estimated from the data (Xu 2003a).  This 

assumption allows the obtaining of the shrinkage factors that vary across different 

QTL effects, in which chromosomal regions with no QTL are forced to shrink 

close to zero, whereas notable QTL effects are subject to less or virtually no 

shrinkage. The method also allows a dynamic estimation of the position of a QTL 

within a marker interval instead of being fixed at a marker (Wang et al., 2005).  

The statistical model used in this analysis was described by Xu (2003a) as 

follows:  

0

p p

i ij j ij j i

j j

y b x b w d e  
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where iy is the observed phenotypic value of individual i, b0 is the population 

mean, p is the number of markers included in the model, xij and wij are dummy 

variables indicating the genotypes of the j
th

 maker of the i
th

 individual for the 

additive and dominant QTL allele effects of bj and dj associated with marker j 

respectively. The dummy variables of xij and wij are defined as A1A1 = 'A', A1A2 

= 'H' and A2A2='B' indicating the three marker genotypes as the first 

homozygote, the heterozygote and the second homozygote, and xij and wij are 

defined as xij = 1, 0, -1 and wij = 0, 1, 0 for genotype A1A1, A1A2 and A2A2, 

respectively. 

The analysis was implemented through the Markov chain Monte Carlo 

(MCMC), in which Markov chain length contained 22,000 sweeps. The burn-in 

period was 2000 sweeps (i.e. the first 2000 sweeps were deleted) then the chain 

was trimmed to reduce the series correlation by keeping one observation in every 

20 sweeps and resulted in the posterior sample size of 1000 for the post-MCMC 

analysis. The MCMC sampling creates the empirical posterior distributions of 

parameters including QTL locations and effects, in which all the information 

about the QTL are inferred (Wang et al. 2005). The option of dynamic approach 

was specified, in which the QTL position is updated using the Metropolis-

Hastings algorithm approach to select a new position in the neighbourhood of the 

old position (Wang et al., 2005). Empirical significant threshold values of α=0.05 

and α=0.01 were determined for each QTL through a permutation procedure (Che 

and Xu 2010) in the PROC QTL with a static approach option specified based on 

3500 randomly-shuffled datasets for each phenotypic trait to control the type I 
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error rates. The genetic variance attributed by each QTL was determined as Vg = 

Va + Vd, where g, a and d are the genetic, additive and dominance effects for each 

QTL, respectively. The phenotypic variance (Vp) for each QTL was determined as 

Vp = Vg + Ve, where Ve is the residual variance for each QTL provided by PROC 

QTL within the MCMC sample data set for each QTL. 

 

4.3. Results and Discussion 

The whole genome analysis identified 218 QTL for 14 ultrasound and 

carcass merit traits, in which 105 QTL are for 7 ultrasound traits while 113 QTL 

are for 7 carcass merit traits. The detailed QTL positions, effects (additive and 

dominant), nearby markers and significant levels for the 14 ultrasound and carcass 

merit traits were summarized in Table 4.2. The percentile intervals and the QTL 

effect profiles that were plotted against the genome locations for each trait are 

shown in Figures 4.1 to 4.14. The distributions of the absolute QTL effects for 

each trait along the genome are shown in Figures 4.15 to 4.28. Although QTL 

effects for both additive and dominance were estimated in the present study, but 

most of the dominance effects are marginal. Therefore, the results and discussions 

were focused on the additive effects only. The dominance QTL effects and their 

variations are provided in Table 4.2 without explicitly discussing them due to 

limited results found in previous literatures.  

 Among the 218 QTL detected in this study, 176 of them were newly 

detected while 42 of them were in agreement with previous studies. Among the 42 

QTL, 11 of them were similar to the QTL regions reported previously in the 
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current beef cattle population (Nalaila et al. 2010) and 31 of 218 are within the 

QTL regions reported from studies in other beef populations. The proportion of 

individual QTL variance accounted for phenotypic variance ranged from less than 

1% for the majority of QTL to 4.8% for one QTL affecting CMAR on BTA 3. 

The proportion of phenotypic variance accounted jointly by all detected QTL 

ranged from 4.5% (CWT) to 23.9% (CMAR) (Table 4.2). In a previous interval 

QTL mapping study, the individual QTL effect ranged from 5.7% (MEAN_UBF) 

to 11.7% (AVE_BF) while the proportion of phenotypic variance accounted 

jointly by all significant QTL ranged the from 13.6% (UMAR) to 34.6% (CWT) 

(Nalaila et al. 2010). The QTL effects estimated by the current Bayesian 

shrinkage QTL analyses either individually or jointly are smaller than those 

estimated through the interval QTL method. Since the Bayesian shrinkage 

analysis fits all SNP markers in a single model simultaneously; therefore, it could 

reduce possible spurious QTL effects by adjusting all other QTL effects (Xu 

2003a). Therefore, the method is able to reduce the number of spurious QTL 

effects and to avoid overestimation of QTL variances and to detect smaller QTL 

that were undetectable through interval mapping methods. Generally, the 

estimates of QTL effects for all traits showed similar patterns, such that many 

QTL had small effects close to zero and few QTL had moderate to large effects, 

which closely approximate to a gamma distribution (Figure 4.15 – Figure 4.28). 

Therefore, the Bayesian analysis is a viable tool for evaluating the polygenic 

effects of the entire genome (Xu 2003a).  
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4.3.1. Ultrasound measures of carcass traits   

Sixteen QTL with significant effect on MEAN_UBF (P < 0.05) were 

identified on 15 different chromosomes and these QTL accounted for 5.4% of 

phenotypic variance. The individual QTL with highest variance for UBF was on   

BTA 4 (93.2 cM). The QTL for MEAN_UBF on BTA 2 (52.6 cM), 4 (93.2), 7 

(70.1 cM), 8 (29.8 cM), 13 (48.7 cM), 14 (87.5 cM) and 27 (56.4 cM) were 

located within the QTL span for backfat thickness reported in other cattle 

populations (Casas et al. 2001; Casas et al. 2003; McClure et al. 2010).  The 

MEAN_UBF QTL on BTA 27 was also similar to the QTL detected previously by 

interval mapping (Nalaila et al. 2010). Also, the MEAN_UBF QTL on BTA 8 

(29.8 cM) was located at 22 cM apart from the previous QTL detected by interval 

mapping (Nalaila et al. 2010).  

Twenty QTL identified on 13 different chromosomes were found to have a 

significant additive effect (P < 0.05) on UBF, which contributed to 20.7% of the 

phenotypic variation for the trait. The estimated proportion of UBF phenotypic 

variations accounted by a single QTL ranged from 0.2 to 3.6%. The individual 

QTL that accounted for 3.6% was the largest QTL mapped for the UBF and was 

located on BTA 1 (126.2 cM). The QTL on BTA 1 (126.2 cM) with other five 

QTL for UBF on BTA 4 (89.8 cM), 5 (53.6 cM), 6 (35.2 cM), 19 (94.7) and 21 

(41.8 cM) were within the QTL regions reported for backfat thickness (Casas et 

al. 2000; Li et al. 2004; McClure et al. 2010). Furthermore, the UBF QTL region 

on BTA 13 (42 cM) was similar to the QTL detected by a previous study (Nalaila 

et al. 2010). However, the other QTL including those with a small effect were not 
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reported previously, which may suggest that they are  the QTL segregating in the 

current beef cattle populations and the current Bayesian shrinkage method is 

capable of detecting QTL with smaller effects.  

Fourteen QTL detected on 11 different chromosomes had significant (P < 

0.05) effects on UMAR and they jointly accounted for 6.6% of the phenotypic 

variation for this trait with the individual QTL effect ranging from 0.17% to 

0.90% (Table 4.2). Three QTL for UMAR on BTA 5 (69.4 cM), 10 (21.2 cM) and 

27 (14.7 cM) were within the QTL confidence regions for marbling score found in 

the study by Casas et al. (2003), and one QTL on 13 (32 cM) was in agreement 

with the QTL region identified in the same beef cattle population using the 

interval QTL mapping method (Nalaila et al. 2010).   

Twenty-two QTL with significant effect on MEAN_UMAR (P < 0.05) were 

identified on 16 different chromosomes and jointly explained 7.1% of phenotypic 

variance (Table 4.2).  All individual QTL for MEAN_UMAR had less than 1% 

contribution on the phenotypic variance and the QTL with the highest variance for 

MEAN_UMAR was on BTA 2 (87.2 cM) accounting for 0.6% of phenotypic 

variance (Table 4.2). The MEAN_UMAR QTL on BTA 15 (35 cM) was located 

at 18 cM from the previous reported QTL (Nalaila et al. 2010).  

Fourteen QTL on 14 different chromosomes have been found to have 

significant effects on UREA (P < 0.05). The 14 QTL jointly accounted for about 

5.71% of phenotypic variation and the largest proportion accounted by a single 

QTL was 1.21% on BTA1 (28.3 cM) (Table 4.2). However, all of the 14 QTL 

regions were not reported in previous studies including the interval QTL mapping 
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study in the same beef cattle population (Nalaila et al. 2010). It is likely that the 

Bayesian shrinkage QTL mapping method is able to identify QTL with small 

effects in comparison to other QTL mapping methods. However, further studies 

are needed to validate these QTL regions.  

A total of 10 QTL on 7 different chromosomes had significant effects on 

ADG_UREA, which jointly accounted for about 6.0% of phenotypic variance and 

the highest variance accounted by a single QTL was 3.1% on BTA 3 (87 cM) 

(Table 4.2). The QTL for ADG_UREA in the current study have not been 

reported in previous studies including the interval QTL mapping study in the 

same beef cattle population (Nalaila et al. 2010). However, the ADG_UREA QTL 

on BTA 5 (60.0 cM) was located at 14.7 cM from the previous QTL detected by 

interval mapping (Nalaila et al. 2010).  

 

4.3.2. Carcass merit traits 

The present study detected 11 QTL that have significant effects on CWT (P < 

0.05) on 8 different chromosomes and they jointly accounted for 4.5% of the 

phenotypic variation (Table 4.2). The proportion of CWT phenotypic variance 

contributed by an individual QTL ranged from about 0.2 to 0.7% with the QTL on 

BTA 6 (26.2 cM) having a largest variance. Of the 11 QTL identified in this 

study, two QTL on BTA 2 (101.2 cM) and 6 (41.2 cM) were localized within the 

QTL regions that were identified previously (Takasuga et al. 2007; Setoguchi et 

al. 2009, McClure et al. 2010). The QTL on BTA 6 (26.2 cM) and 18 (63.5 cM) 
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were also detected in a previous interval QTL mapping study using the same beef 

cattle population (Nalaila et al. 2010).   

Seventeen QTL identified on 11 different chromosomes had significant 

effects for GRDFAT (P < 0.05) with a collective contribution of 7.8% to the 

phenotypic variance. The highest additive variance accounted by an individual 

QTL was 1.6% by the QTL on BTA 4 at 44.4 cM (Table 4.2). The QTL for 

GRDFAT on BTA 1 (153.4 cM), 6 (29 cM) and 13 (47.6 cM) were similar to the 

QTL locations reported for fat thickness at 12
th

 rib in commercial American 

Angus population (McClure et al. 2010), whereas the QTL on BTA 21 (41.1 cM) 

was consistent with the location of fat thickness QTL reported in a commercial 

line of Bos taurus (Li et al. 2004). However, these QTL regions were not similar 

to those detected previously by interval mapping (Nalaila et al. 2010). The QTL 

on BTA 1 (8.7 cM) and 27 (53.2 cM) were consistent with previous QTL 

identified by interval mapping (Nalaila et al. 2010).  

A total of 18 QTL on 12 different chromosomes were found to have 

significant (P < 0.05) effects on AVE_BF and these QTL jointly explained 7.24% 

of phenotypic variation with 0.72% being the largest proportion accounted by an 

individual QTL located on BTA 1 (9.7 cM) (Table 4.2). The 18 QTL for AVE_BF 

identified in this study were not reported previously. However, the AVE_BF QTL 

on BTA 5 (26.5 cM) was located about 15 cM apart from the QTL detected earlier 

by interval mapping (Nalaila et al. 2010) on the same population.  

Twenty QTL were identified on 13 different chromosomes had significant 

additive effects on CREA (P < 0.05), and they jointly contributed to 11.5% of 
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phenotypic variations with 1.3% being the largest proportion of variance 

explained by a single QTL on BTA 5 (52.6 cM) (Table 4.2). Five QTL on BTA 5 

(52.6 cM), 8 (114.9 cM), 11 (37.9 cM), 12 (59.7 cM) and 15 (101.6 cM) were 

consistent with the ribeye area QTL regions detected in a commercial American 

Angus populations (McClure et al. 2010). Two QTL positions for CREA on BTA 

5 (52.6 cM) and 14 (23 cM) were also similar to a longissimus muscle area QTL 

reported in other beef cattle populations by Casas et al. (2003) and Takasuga et al. 

(2007). The QTL on BTA 1 (8.7 cM) was in agreement with one of the 3 QTL 

identified by interval mapping previously in the same beef cattle population 

(Nalaila et al. 2010).   

Thirteen QTL on 11 chromosomes had significant additive effects on the 

LMY (P < 0.05), which jointly explained 16.5% of phenotypic variations (Table 

4.2). The phenotypic variance accounted by an individual QTL ranged from 

0.49% to 2.70%, in which the QTL on BTA 4 (89.8 cM) had the highest variance 

on LMY. The QTL on BTA 15 (24.3 cM) that accounted for 1.9% of the 

phenotypic variance was consistent with a previous identified QTL by interval 

mapping analysis (Nalaila et al. 2010).  

Fifteen QTL with significant additive effects on CMAR (P < 0.05) were 

identified on 11 different chromosomes (Table 4.2) and they together explained 

23.9% of the phenotypic variance. The phenotypic variance explained by an 

individual QTL ranged from 0.5 to 4.8 % with the CMAR QTL on BTA 3 (92.3 

cM) having the highest proportion of variance (Table 4.2). The QTL on BTA 3 

(6.8 cM) is within the span of the QTL region for marbling score reported by 
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Casas et al. (2003). Two QTL on BTA 1 (8.7 cM) and 29 (29.6 cM) were 

consistent with the QTL mapped by previous interval mapping (Nalaila et al. 

2010).  

 

4.3.3. QTL affecting more than one trait 

Several QTL had significant effects on more than one trait. The QTL for 

CMAR on BTA 9 (106.2 cM) also had a significant (P < 0.01) effect on 

MEAN_UMAR (Tables 4.1). In addition, two QTL for MEAN_UMAR on BTA 3 

(95.2 cM) and 27 (14.7 cM) also had significant (P < 0.01) effects on UMAR 

(Table 4.2). The UMAR QTL on BTA 28 (58.2 cM) also had significant (P < 

0.01) effects on CMAR (Table 4.2). Both UMAR and CMAR traits are the 

measures of the amount of intramuscular fat in the animal’s body or carcass, 

therefore, this result may imply that these traits might be affected by the same 

QTL. However, further study is needed to confirm these results.  

The GRDFAT QTL located at 8.7 cM on BTA 1 also had a significant (P < 

0.05) effect on CREA and CMAR (Table 4.2). The CREA and CMAR QTL 

regions on BTA 1 were also similar to the QTL detected by a previous study 

(Nalaila et al. 2010), which may imply that these traits are affected by the same 

QTL or different genes that are located very close to each other. The GRDFAT 

QTL on BTA 7 (128.9 cM) also had a significant effect on YGRADE (Table 4.2), 

and the AVE_BF QTL on BTA 15 (42.5 cM) also had a significant (P < 0.05) 

effect on MEAN_UBF (Tables 1). Both AVE_BF and MEAN_UBF are the 

measures of backfat thickness, which implies these traits could be sharing some of 
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the genes. In addition, the QTL for CWT on BTA 1 (46 cM) also showed a 

significant (P < 0.05) effect on CREA (Table 1). The QTL for CREA on BTA 4 

(89.8 cM) also had a significant (P < 0.01) effect on LMY (Table 4.2).  

 

4.3.4. Genes associated with SNPs that are located under or near the QTL 

regions 

The genes associated with SNPs that are located under or near the QTL 

regions are summarized in Table 4.3. The SNPs under the 218 QTL were within 

or nearest to 173 genes. The current discussion focuses on genes that are 

potentially related to beef carcass traits.    

SNP ss38333252 under the MEAN_UBF QTL on BTA 13 (48.7 cM) is 

located near UCN3 gene. The UCN3 is involved in regulation of insulin secretion 

in mice, particularly in the presence of nutrient excess (Li et al. 2007). However, 

the role of the UCN3 gene in regulating deposition of backfat in cattle needs 

further investigations. 

The ss38332167 SNP located under the UBF QTL on BTA 14 (50.3 cM) is 

close to CRH gene. The CRH regulates appetite and has been reported to be 

associated with post-natal growth in beef cattle (Buchanan et al. 2002). Other 

studies in beef cattle have shown that single nucleotide polymorphism in the 

corticotrophin-releasing hormone gene (CRH) was associated with end-of-test rib-

eye area and hot carcass weight (Buchanan et al. 2005). However, further studies 

are needed to determine the role of CRH gene on variation of carcass backfat. 
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The UMAR QTL on BTA 10 (21.2 cM) was closer to ss38328787 SNP (20.7 

cM). The ss38328787 SNP is close to the MIR2290 gene, which plays a crucial 

role in the regulation of gene expression in eukaryotes (Glazov et al. 2009). 

Glazov et al. (2009) reported several distinct classes of bovine miRNA and 

miRNA-like small regulatory RNAs that were expressed upon viral infection. 

Studies on the regulatory role of MIR2290 gene will improve our understanding 

of genes that affecting carcass marbling in beef.  

The QTL for CWT on BTA 1 (7.1 cM) was located close to ss38323939 SNP 

(6.6 cM). The ss38323939 SNP is close to SOD1 gene. The SOD1 gene encodes 

superoxide dismutase 1 enzyme (SOD1), which binds copper and zinc ions and is 

one of the three superoxide dismutases that play crucial roles in structural stability 

in the body (Borges-Alvarez et al. 2010). Findings in mice showed that 

individuals who were lacking SOD1 have increased age-related muscle mass loss 

(sarcopenia) and shortened lifespan (Muller et al. 2007). In view of the fact that 

the SOD1 gene plays an important role on muscle mass in mice, therefore it could 

also be a good candidate gene for further studies in beef cattle to determine its 

influence on the variations of carcass weight. SNP ss38331322 that is located at 

40.2 cM on BTA 6 was closer to CWT QTL (41.2 cM). The ss38331322 SNP is 

close to PPARGC1A gene that controls muscle fibre type and brown adipocyte 

differentiation in beef cattle (Soria et al. 2009). Also the PPARGC1A gene has 

been reported to associate with a significant increase in milk protein percentage in 

Holstein cattle population (Khatib et al. 2007). Therefore, the PPARGC1A gene 

could also be good candidate for carcass weight. 
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The CREA QTL on BTA 1 (116.7 cM) was located close to ss64843848 SNP 

(114.7 cM). The ss64843848 SNP is close to MIR551B gene. Characterization of 

MIR551B gene in bovine through MicroRNAs sequencing showed five miRNAs 

(miR-23a, -23b, -99a, -125b and -126-5p) were very abundant across 11 bovine 

tissues including brain, subcutaneous fat, muscle, liver, kidney, spleen and 

thymus, accounting for 44.3% of all small RNA sequences (Jin et al. 2009).  

Furthermore, expression analysis of miRNAs showed that miR-133a is 

predominantly expressed in muscle (Jin et al. 2009), which implies that MIR551B 

could be involved on variation of CREA in beef cattle. The ss38340471 SNP 

shares the same location with CREA QTL on BTA 5 (85.9 cM). The ss38340471 

SNP is close to MIR135A-2 gene, which is a class of non-coding RNA gene that 

plays important roles in the regulation of target genes by binding to 

complementary regions of messenger transcripts to repress their translation or 

regulate degradation (Griffiths-Jones et al. 2006). The miRNAs have shown 

diverse cellular roles in different species as developmental timing in worms, cell 

death and fat metabolism in flies and haematopoiesis in mammals (Griffiths-Jones 

et al. 2006). Therefore, MIR135A-2 gene warrants further studies in future to 

understand its regulatory roles on the development of carcass ribeye area. The 

CREA QTL on BTA 14 (23 cM) was at similar location with ss66538042 SNP, 

which is near to MYC gene. Conacci-Sorrell et al. (2010) reported the 

identification of Myc-nick, a cytoplasmically localized cleavage product of MYC, 

and provided an evidence for its role in cytoskeletal organization and cell 
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differentiation in humans. The MYC could have a significant role on the 

development of various tissues in bovine including muscle component of CREA. 

The CMAR QTL on BTA 8 (29.3 cM) was clos to ss38323808 SNP, which is 

near to MIR491 gene.  The MIR491 gene is in similar ontolog class with MIR551B 

gene, which is involved in post-transcriptional regulation of gene expression in 

multicellular organisms by affecting both the stability and translation of mRNAs 

(Jin et al. 2009). Although role of the MIR491 gene related to CMAR is unknown, 

however this gene provided a basis for further studies on its effect on the carcass 

traits.  

The QTL for CMAR on BTA 9 (106.2 cM) and 10 (54.5 cM) shared the same 

location with ss38335346 and ss38322538 SNPs respectively. The ss38335346 is 

near to AGPAT4 gene, which its role on CMAR is not clear. However, the 

ss38322538 SNP was close to CCNDBP1 gene, which is a synexpression group-

restricted regulator of TGF-b signalling. Studies in mice suggested that the 

CCNDBP1 appeared to regulate a subset of TGF-b target genes including the 

Olig1-Smad synexpression group (Ikushima et al. 2008). The growth factors have 

important functions in maintaining homoeostasis of multicellular organisms 

because they are proteins that mediate intercellular communication through 

regulation of cell growth and differentiation (Ikushima et al. 2008). However, the 

role of CCNDBP1 on CMAR in cattle needs further investigation. Overall 

identification of comprehensive sets of genes affecting carcass merit traits is a 

crucial step toward gene-assisted selection (GAS) in beef cattle. 
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4.3.5. Comparison of QTL effects estimated by the interval regression and 

the Bayesian shrinkage methods  

Generally, QTL with large effects can be detected by both the Bayesian 

shrinkage and interval regression mapping methods but the later is relatively 

incapable of detecting QTL with small effects. This was also noticed and 

explained by Xu (2003a).  The additive variance of individual QTL estimated by 

the Bayesian shrinkage method in the current study explained, relatively, a small 

proportion of phenotypic variation compared to the interval mapping analysis 

although large numbers of QTL were identified using the same dataset. This is 

due to the fact that the Bayesian shrinkage method evaluates all QTLs in a single 

model simultaneously, which is more robust than the interval mapping regression 

method. In contrast, the interval mapping regression method models one QTL at a 

time without fully adjusting for other QTLs on the genome, which is more likely 

to result in an overestimation of QTL effect and variance in particular when 

sample size is relatively small (Beavis 1998; Xu 2003b). In this study, 12 QTL for 

8 ultrasound and carcass merit traits detected earlier by the interval mapping 

approach (Nalaila, 2010) were not confirmed. It is likely that some QTL identified 

by the interval mapping approach were spurious QTL due to upward bias on 

estimation of their effects or higher false positive rate as the interval mapping 

method searches one QTL at a time (Zeng 1994; Goring et al. 2001). Therefore 

these QTL were not present in the current study following the adjustment of the 

effects of other QTL on the genome using this Bayesian shrinkage method.  
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Basically, the Bayesian shrinkage approach can provide estimates of QTL 

location and effects without a statistical threshold test. In this study, an empirical 

threshold was obtained using a permutation method under the framework of the 

Bayesian shrinkage method as developed by Che and Xu (2010). The application 

of a threshold in declaring a significant QTL region reduces the rate of false 

positives; thus increases the confidence of QTL detection.  In addition, the 

consistency of QTL results obtained from the same data set using different 

statistical approaches as well as with the QTL regions identified in other studies in 

different beef cattle populations can provide more reliable genetic markers for 

MAS and hence speed up the QTN search and positional candidate gene studies. 

The genes associated with SNPs that are located under or near the QTL regions 

provide a foundation for further studies that aim at identifying gene SNP markers 

for ultrasound and carcass merit traits for the implementation of marker assisted 

selection in beef cattle and for the search of the causative QTN. 
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Table 4.1: Number of markers per BTA and average distance between SNP markers 

BTA 

No. of 

SNPs 

Sum of SNP 

intervals 

SNPs average  

interval
1
 Std Dev

2
 Min.

3
 Max.

4
 

1 61 150.2 2.4623 3.1965 0.1 15.8 

2 66 119.2 1.8061 2.6939 0.1 15.7 

3 63 133.5 2.1190 3.4870 0.1 19.5 

4 45 102.5 2.2778 3.5347 0.1 19.9 

5 70 137.3 1.9614 3.0307 0.1 17.5 

6 47 123.4 2.6255 4.1442 0.1 21.8 

7 47 130.4 2.7745 3.2841 0.1 15.8 

8 44 131.7 2.9932 3.7842 0.1 13.9 

9 42 100.6 2.3952 2.3533 0.1 8.4 

10 53 112.9 2.1302 2.5688 0.1 10.6 

11 50 126.7 2.5340 3.7853 0.1 18.0 

12 34 108.0 3.1765 5.0246 0.1 26.4 

13 32 100.7 3.1469 4.2958 0.1 15.3 

14 34 101.6 2.9882 3.9388 0.1 14.0 

15 48 94.8 1.9750 2.8393 0.1 13.4 

16 47 94.3 2.0064 2.8392 0.1 15.6 

17 34 89.9 2.6441 3.3973 0.1 11.6 

18 40 87.6 2.1900 3.9730 0.1 18.3 

19 26 103.9 3.9961 5.1178 0.1 18.3 

20 43 68.0 1.5814 2.8442 0.1 14.2 

21 24 51.3 2.1375 2.6686 0.1 8.2 

22 28 78.8 2.8143 4.1128 0.1 15.9 

23 5 55.3 11.0600 11.998 0.4 29.0 

24 9 38.3 4.2555 7.2637 0.1 21.9 

25 27 65.3 2.4185 2.5727 0.1 8.3 

26 4 36.6 9.1500 7.2519 4.5 18.9 

27 39 59.2 1.5179 2.8076 0.1 16.6 

28 80 61.7 0.7712 1.8407 0.1 15.1 

29 65 69.3 1.0661 1.8885 0.1 11.4 
1
SNPs average interval in chromosome (cM); 

2
Standard deviation of SNP intervals; 

3
Minimun SNP interval (cM); 

4
Maximun SNP interval (cM). 
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Table 4.2: Estimates of QTL parameters for ultrasound and carcass merit traits 

Trait BTA SNP
y
 

SNP 

position
x
, 

cM 

QTL 

position, 

cM   Additive
w
 Variance

w
 Proportion

v
 Dominance Variance

u
 Proportion

t
 

MEAN_UBF 1 ss64321934 46 46 0.366122* 0.10554 0.089764 0.275341** 0.365909 0.311213 

 2 ss38333790 52.6 52.6 -0.74028** 0.386908 0.329073 -0.0346 0.010491 0.008923 

 3 - 87 87 -0.79171** 0.260958 0.22195 -0.00202 0.000792 0.000673 

 3 ss38333713 96.3 96.3 2.150722** 0.297559 0.25308 0.005573 0.005359 0.004558 

 4 ss38334500 92.1 93.2 1.716307** 1.17146 0.996352 0.015982 0.010036 0.008536 

 5 ss38323069 89.7 90.2 0.895244** 0.55347 0.470738 0.131144* 0.075375 0.064108 

 7 ss66538273 69.1 70.1 -1.00248** 0.219647 0.186814 -0.00341 0.001493 0.00127 

 8 ss66538273 29.3 29.8 1.187541** 0.54058 0.459775 -0.02972 0.005425 0.004614 

 9 ss66538150 69.1 69.6 -1.0092** 0.181073 0.154007 0.001274 0.000469 0.000399 

 11 ss38326296 116.5 116.5 1.329661** 0.169408 0.144085 0.004747 0.001829 0.001556 

 13 ss38333252 48.7 48.7 1.12253** 0.073483 0.062499 0.00606 0.001152 0.000979 

 14 ss66537607 87.5 87.5 0.622084** 0.683435 0.581276 0.107932* 0.098808 0.084038 

 15 ss38337040 42.5 42.5 -0.32033* 0.19536 0.166157 -0.35102** 0.098212 0.083532 

 18 ss38337298 46.7 47.2 -1.06405** 0.477837 0.40641 -0.02804 0.008235 0.007004 

 27 ss38323230 56.9 56.4 -1.54754** 0.606302 0.515673 -0.01849 0.004636 0.003943 

 28 ss63187445 40.4 40.9 1.411095** 0.462503 0.393369 -0.00464 0.003815 0.003245 

UBF 1 ss38322907 126.2 126.2 3.3433** 6.202805 3.622262 0.040994 0.370137 0.216149 

 2 ss66538237 64.6 64.6 0.809575** 0.889158 0.519243 -0.82662** 2.893903 1.689957 

 2 ss38322921 117.2 117.2 1.872115** 1.859609 1.085959 -0.08293 0.107526 0.062792 

 3 ss38336741 3.8 7.4 1.59071** 2.37223 1.385315 0.414964** 0.294481 0.171969 

 3 ss66537844 49.6 57.1 1.10124** 2.210567 1.290909 0.569734** 0.257627 0.150447 

 3 ss38333136 95.2 95.2 3.787901** 0.768364 0.448703 0.073811 0.021302 0.01244 

 4 ss38324841 89.8 89.8 1.710735** 2.644365 1.544234 -0.01097 0.044161 0.025789 

 5 ss38324813 27.3 27.3 -1.48786** 0.89942 0.525236 0.00094 0.000155 9.03E-05 

 5 ss38326905  53.6 53.6 0.826118* 0.458241 0.2676 0.001695 0.003364 0.001964 

 5 ss38323313 86.4 86.4 1.575255** 1.435758 0.838442 0.03042 0.02498 0.014588 

 6 ss38326151 35.2 35.2 -1.9783** 2.870818 1.676476 -0.08106 0.050114 0.029265 

 6 ss38323786 139 139 -1.09867** 2.724338 1.590936 -0.05579 0.040257 0.023509 

 7 ss38323611 88.8 88.8 1.968947** 1.614872 0.943039 0.102377 0.064753 0.037814 

 13 ss38324702 34.1 42 1.291641** 1.989188 1.161629 0.056281 0.036705 0.021435 

 14 ss38332167 50.3 50.3 2.03721** 2.290473 1.337571 0.050847 0.03712 0.021677 

 19 ss66538043 20.2 20.2 0.815144** 1.09587 0.639957 0.008418 0.021615 0.012623 

 19 ss66538209 94.7 94.7 -1.34209** 0.980687 0.572693 -0.00473 0.007642 0.004462 

 20 ss38324135 42.7 51.7 1.522028** 0.426474 0.249049 -0.00079 0.00099 0.000578 

 21 - 41.8 41.8 -1.22316** 1.179869 0.68901 -0.00511 0.004837 0.002824 

 22 ss38329030 57.2 57.2 0.731556** 0.603123 0.352207 -0.54641** 0.362536 0.211711 

MEAN_UMAR 1 ss38323846 40.6 39.6 0.275694** 0.012144 0.118878 -0.00105 8.96E-05 0.000877 
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 1 ss38334998 81.2 82.2 -0.54667** 0.023964 0.234597 -0.00053 2.40E-04 0.002344 

 1 ss38324135 148.1 147.6 -0.18196** 0.024128 0.236198 0.04883* 4.02E-03 0.039374 

 2 ss65205558 35.6 36.1 0.086591* 0.031826 0.311563 -0.13044** 8.40E-03 0.082269 

 2 ss66538027 86.7 87.2 -0.43474** 0.062946 0.616204 -0.00061 8.33E-05 0.000816 

 3 ss38333136 95.2 95.2 -0.11045* 0.019503 0.190924 0.26540** 4.23E-03 0.041415 

 4 ss38327339 103.4 103.4 -0.21116** 0.037113 0.363318 -0.00122 3.47E-05 0.00034 

 5 ss66538279 26 26.5 0.047413* 0.031782 0.311129 0.20786** 1.01E-02 0.099151 

 5 ss38333117 120.7 120.7 0.472339** 0.060132 0.588661 0.00256 6.10E-04 0.00597 

 6 ss66538247 43.8 45.3 -0.1841** 0.029045 0.284339 -0.00003 8.11E-05 0.000794 

 7 ss66537587 91.1 91.1 0.056997* 0.012659 0.123922 -0.24462** 3.76E-03 0.036768 

 8 ss38328464 118.4 118.9 -0.45127** 0.017594 0.17224 -0.00067 6.00E-05 0.000587 

 9 ss38335346 106.2 107.2 0.157528** 0.034896 0.341613 -0.01994 8.92E-03 0.08731 

 10 ss38324440 86 87.5 0.15624** 0.041256 0.403874 0.01291 1.23E-03 0.012073 

 11 ss66537563 119.4 119.9 -0.27588** 0.02724 0.26666 -0.00684 5.65E-04 0.005526 

 14 ss38323901 27.8 27.8 0.240492** 0.028129 0.275362 0.01066 1.57E-03 0.01535 

 14 ss66537607 87.5 87.5 -0.26254** 0.054286 0.531432 -0.03512* 2.42E-03 0.02368 

 15 ss66538055 35 35 0.234747** 0.051621 0.505337 -0.00098 1.30E-05 0.000128 

 15 ss38328343 59.8 61.3 0.165583** 0.032726 0.320373 0.08085** 6.93E-03 0.067817 

 19 ss38334236  58.5 62 -0.3166** 0.03125 0.305922 0.00128 7.90E-05 0.000773 

 21 ss38324150 41.1 41.1 -0.31963** 0.033232 0.325319 -0.00106 8.98E-05 0.000879 

 27 ss38335669 13.2 14.7 -0.34984** 0.025378 0.248437 0.00274 2.97E-04 0.002904 

UMAR 1 ss38322512 72.7 73.7 0.513131** 0.284835 0.777868 0.064164* 0.091844 0.250821 

 2 ss38333790 52.6 52.6 -0.62342** 0.212504 0.580335 -0.01577 0.007741 0.021139 

 3 ss38333136 95.2 95.7 0.692361 0.264134 0.721334 -0.13963** 0.051224 0.139891 

 3 ss66537544 120.8 121.3 1.111111** 0.208358 0.569014 -0.01671 0.00905 0.024715 

 5 ss38340495 68.9 69.4 0.168595* 0.0844 0.230493 -0.33263** 0.02266 0.061883 

 5 ss38323692 86.2 86.2 -0.32148** 0.082548 0.225434 -0.01176 0.001962 0.005358 

 6 ss66537977 47 47 -0.64388** 0.329364 0.899475 0.000662 0.000178 0.000487 

 10 ss38328787 20.7 21.2 0.380096** 0.098714 0.269584 -0.21757** 0.049972 0.136471 

 11 ss66538251 52.3 52.3 0.332194** 0.207323 0.566187 -0.13917** 0.023888 0.065238 

 11 ss38326296 116.5 116 -0.6611** 0.062517 0.170731 -0.00515 0.001085 0.002962 

 13 ss66537669 32 32 0.52248** 0.13558 0.37026 0.001593 0.000408 0.001115 

 15 ss38327992 55 55 0.485717** 0.140422 0.383485 -0.01059 0.026535 0.072466 

 27 ss38335669 13.2 14.7 -0.40758** 0.166849 0.455656 -0.00654 0.010433 0.028491 

 28 ss38323528 58.2 58.7 -0.40429** 0.149723 0.408885 -0.11727** 0.02185 0.059672 

ADG_UREA 1 ss38322907 126.2 127.7 0.061151** 0.001992 0.823555 0.007337* 0.000175 0.072181 

 1 ss38333732 155.1 155.1 -0.01702** 0.00143 0.591195 0.002568 6.46E-05 0.026713 

 2 ss61484221 104.7 104.7 -0.06522** 0.000222 0.091595 0.000112 8.86E-07 0.000366 

 3 ss38331439 3.8 5.3 -0.0805** 0.000301 0.124249 -0.00028 9.78E-06 0.004044 

 3 - 87 87 0.145246** 0.007462 3.084134 -0.05179** 0.001118 0.462183 
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 5 ss38339200 58.5 60 0.06111** 0.001328 0.549068 -0.00144 2.74E-05 0.011333 

 8 ss38325262 69.6 69.6 0.027765** 0.000512 0.211634 0.00443* 6.19E-05 0.025589 

 8 ss38336907 129.8 129.8 0.06241** 0.000208 0.086088 -0.00012 1.11E-06 0.000459 

 9 ss38322600 26.9 26.9 -0.03192** 0.001007 0.416075 0.005376 7.32E-05 0.030254 

 10 ss38329478 115.6 115.6 -0.03671** 0.000417 0.172385 -0.00192 3.61E-05 0.014932 

MEAN_UREA 1 ss38334998 81.2 81.2 2.835654** 10.01471 1.392706 0.008678 0.01324 0.001841 

 2 ss38322523 11 11 3.306072** 6.325473 0.879658 -0.00384 0.017524 0.002437 

 3 ss38331439 3.8 6.8 6.453504** 14.09327 1.959894 0.000203 1.027749 0.142925 

 3 ss38322909  102.2 102.2 -1.50727** 3.440323 0.478432 1.950103** 2.091331 0.290833 

 3 ss66537544 120.8 120.8 4.496742** 4.737407 0.658812 0.053052 0.093334 0.01298 

 4  s66538094  19.7 22.7 -4.50287** 1.901598 0.264448 0.002804 0.003316 0.000461 

 5 ss38339297 15.5 18.5 3.109329** 7.695158 1.070135 0.010177 0.012747 0.001773 

 8 ss38326154 42.1 45.1 2.7183** 6.023006 0.837595 0.000598 0.006307 0.000877 

 10 ss38334832 115.5 115.5 2.80134** 14.49225 2.015379 0.030088 0.053628 0.007458 

UREA 1 ss66537759 24.8 28.3 3.495519** 43.99802 1.214988 -0.25302 14.77981 0.408138 

 3 ss38324942 3.8 5.8 -3.9361** 10.96469 0.302785 4.913666** 5.638196 0.155696 

 5 ss38323767 101.7 102.7 5.240364** 5.827349 0.16092 0.004218 0.001069 2.95E-05 

 6 - 82.3 83.8 -9.51041** 30.88927 0.852995 -0.03528 0.034366 0.000949 

 7 ss38335142  131.5 131.5 2.444313** 5.316752 0.14682 1.534077** 2.578992 0.071218 

 9 ss38335346 106.2 107.2 -2.37492** 12.2008 0.33692 -2.07925** 3.200089 0.088369 

 10  s38324682  97.7 97.7 1.727635* 5.932168 0.163814 -0.20809 0.146953 0.004058 

 11 ss66537563 119.4 119.4 2.48161** 18.60755 0.51384 -0.67182* 0.695529 0.019207 

 17 ss38336166 3.9 5.4 4.905766** 24.77541 0.684163 0.89785** 1.921397 0.053059 

 18 ss28451881 47.8 48.8 5.968099** 9.440276 0.260689 -0.09725 0.177081 0.00489 

 21 ss38324150  41.1 41.1 2.128162** 4.703248 0.129878 0.964664** 1.094409 0.030222 

 27 ss38323377 52.7 53.2 7.042886** 16.91988 0.467235 0.087114 0.886824 0.024489 

 28 ss63187445 40.4 40.9 -7.90167** 5.669515 0.156561 -0.13108 0.120681 0.003333 

 29 ss38324305  50.9 50.9 1.842868** 11.48407 0.317128 -1.62852** 7.424599 0.205027 

CWT 1 ss38323939 6.6 7.1 45.31756** 85.67125 0.406983 0.070339 0.289814 0.001377 

 1 ss64321934 46 47.5 38.4511** 33.06813 0.157091 0.035153 0.136392 0.000648 

 1 ss38322907 126.2 126.3 15.19338** 71.03872 0.337471 11.7534** 5.68023 0.026984 

 2 ss38325754 100.2 101.2 33.87194** 93.28745 0.443163 -0.2665 1.004664 0.004773 

 4 ss65316398 61.8 61.8 30.1484** 128.812 0.611924 -0.71237 4.791699 0.022763 

 5 ss38329047 87.5 87.5 -26.4392** 58.0479 0.275757 -0.14379 0.678612 0.003224 

 6 ss38324097 25.2 26.2 -15.248** 145.3761 0.690611 -2.23824* 13.67425 0.06496 

 6 ss38331322 40.2 41.2 20.35768** 104.685 0.497308 0.124066 0.819323 0.003892 

 15 ss38322121 65.2 65.4 8.958383** 119.4488 0.567443 -9.3519** 85.69356 0.407089 

 18 ss38326834 54.4 63.5 -15.3892** 67.32804 0.319843 -0.02062 0.152405 0.000724 

 20 ss62627427 23.1 23.1 -6.38117* 49.34899 0.234433 0.124831 0.359937 0.00171 

AVE_BF 1 ss66538078 8.7 9.7 5.222085** 4.449362 0.724472 -0.10383 0.04791 0.007801 
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 2 - 3.8 6.3 3.780179** 3.558645 0.57944 -0.00778 0.002634 0.000429 

 2 ss38329575 50.5 50.5 2.741385** 2.703839 0.440256 0.018891 0.031437 0.005119 

 2 ss66538147 81.4 81.4 2.190087** 2.046697 0.333256 -2.34374** 0.537463 0.087513 

 2 ss38328442 82 82 3.057647** 2.540139 0.413601 -2.33199** 1.415059 0.230408 

 2 ss38326398 110.1 110.6 4.04706** 3.018803 0.49154 -0.07683 0.047106 0.00767 

 3 ss38334140 75.5 75.5 -2.50142** 0.916666 0.149257 -0.00147 0.001988 0.000324 

 4 ss65316398 61.8 61.8 -0.54325* 0.929354 0.151323 2.364506** 0.304369 0.049559 

 5 ss66538279 26 26.5 3.093421** 3.810941 0.620521 0.20695* 0.378912 0.061697 

 5 ss38324636 120 120.5 -2.1548** 1.427198 0.232385 -0.00808 0.003364 0.000548 

 6 ss66537977 47 47.5 -2.57651** 3.101924 0.505074 0.307248* 0.643303 0.104747 

 7 ss38322516 138 138.5 2.384511** 0.626151 0.101954 -2.11235** 0.274854 0.044753 

 8 ss38324279 48 48 3.543809** 2.890571 0.47066 0.006534 0.003167 0.000516 

 15 ss38337040 42.5 42.5 -2.13588** 2.926075 0.476441 0.042482 0.022859 0.003722 

 15 ss38324125 101.6 101.6 -2.27799** 2.478188 0.403514 0.056499 0.092462 0.015055 

 17 ss38324651 68.1 68.6 -2.71937** 3.83301 0.624114 -0.03072 0.057028 0.009286 

 27 ss38323377 52.7 53.2 1.261289** 2.165834 0.352654 0.352041* 0.493387 0.080336 

 29 ss38334851 39.7 40.2 1.623587** 1.068216 0.173933 0.033975 0.024043 0.003915 

GRDFAT 1 ss66538078 8.7 8.7 2.199819** 3.482738 0.433617 -0.20826 0.161952 0.020164 

 1 ss66537739 153.4 153.4 0.564805* 2.94132 0.366208 1.721013** 0.718082 0.089405 

 3 ss38323208 55.1 55.1 -3.5904** 1.418022 0.17655 -0.03707 0.029972 0.003732 

 3 ss66537665 74.8 74.8 2.269403** 5.366011 0.668093 -0.09762 0.108228 0.013475 

 3 ss38322790 86.4 86.4 -4.16324** 3.175825 0.395405 -0.0239 0.025897 0.003224 

 3 ss38322909 102.2 103.2 4.337599** 9.016525 1.122599 0.28758* 0.638947 0.079552 

 4 ss38322669 43.9 44.4 2.265128** 12.87426 1.602905 1.302307** 1.167235 0.145326 

 6 ss38324338 29 29 2.44325** 1.19653 0.148974 -0.00406 0.003711 0.000462 

 7 ss38329588 8.5 8.5 -1.04526* 1.849271 0.230243 0.009685 0.00218 0.000271 

 7 ss38322119 65.1 65.1 -1.32351* 2.997434 0.373194 -0.02513 0.008143 0.001014 

 7 ss38322165 128.9 128.9 -1.03979* 1.891305 0.235476 -0.01508 0.003806 0.000474 

 10 ss38324682 97.7 97.7 3.507917** 4.051382 0.504416 -0.00264 0.001594 0.000198 

 12 ss38324078 97.6 97.6 -1.38412** 2.673927 0.332916 -0.02716 0.005591 0.000696 

 13 ss38323604 47.6 47.6 1.55333** 2.748287 0.342174 0.050905 0.065861 0.0082 

 15 ss38335183 62.7 63.7 1.410945** 1.572938 0.195838 -0.00784 0.002898 0.000361 

 21 ss38324150 41.1 41.1 -1.48812* 3.310087 0.412121 -0.44969* 0.664785 0.082769 

 27 ss38323377 52.7 53.2 2.15846** 2.274377 0.283171 0.127554 0.254926 0.031739 

CREA 1 ss66538078 8.7 8.7 -3.52652* 11.33277 0.720463 -1.17313* 1.887775 0.120012 

 1 ss64321934 46 46 2.012048* 9.365202 0.595378 -1.17741** 3.603705 0.2291 

 1 ss64843848 114.7 116.7 8.901336** 10.34501 0.657668 -0.00559 0.047202 0.003001 

 3 ss66537570 97.6 97.6 -2.4123** 8.665988 0.550927 2.032069** 4.022834 0.255745 

 4 ss66538016 28.8 28.8 3.284013** 6.560794 0.417092 0.172037 0.211867 0.013469 

 4 ss38324841 89.8 89.8 -4.50864** 7.715414 0.490495 -0.00682 0.020734 0.001318 
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 5 ss38339563 52.6 52.6 -5.14261** 21.20243 1.347912 0.098617 0.09602 0.006104 

 5 ss38340495 68.9 68.9 -3.04184** 13.74748 0.873975 -1.50756** 1.814524 0.115356 

 5 ss38340471 85.9 85.9 3.271999** 10.01697 0.636813 0.100229 0.128974 0.008199 

 6 ss38322890 142.3 141.3 -3.85268** 7.817151 0.496963 -0.04051 0.052288 0.003324 

 8 ss38322842 114.9 114.9 2.348765** 5.314423 0.337856 -0.09016 0.143262 0.009108 

 10 ss65561641 98.3 98.3 1.704489* 4.031658 0.256306 -0.00691 0.004333 0.000275 

 11 ss66537939 37.9 37.9 -4.96218** 11.56746 0.735383 -0.01717 0.012757 0.000811 

 12 ss66537619 59.7 59.7 -1.48516* 5.992838 0.380985 -2.46262** 1.379781 0.087717 

 14 ss66538042 23 23 -3.17905** 10.84976 0.689757 -0.0022 0.000139 8.82E-06 

 14 ss66537607 87.5 87.5 1.184183* 8.089053 0.514249 2.529127** 2.050299 0.130345 

 14 ss38328773 93.4 93.4 2.857982** 4.574746 0.290832 -3.23078** 1.912925 0.121611 

 15 ss38324125 101.6 101.6 2.078857* 4.630056 0.294349 0.019566 0.014955 0.000951 

 20 45114461 42.7 41.7 -2.63698** 10.39449 0.660814 -1.79065** 1.630074 0.103629 

 22 11039315 14.2 13.2 5.152899** 8.788324 0.558704 0.034748 0.031981 0.002033 

LMY 1 ss38324800 17.9 19.4 0.464921* 0.619015 0.307451 -0.52467* 5.386238 2.675221 

 1 ss38322126 145.9 145.9 1.421462** 2.263531 1.124244 -0.03006 0.053656 0.02665 

 2 - 3.8 5.8 -1.87755** 4.840333 2.404082 -0.02329 0.039935 0.019835 

 3 ss38336860 99.6 99.6 -1.92641** 4.391512 2.181163 -0.05835 0.073366 0.036439 

 4 ss38324841 89.8 89.8 -1.23756* 5.438191 2.701024 -1.04778** 1.046433 0.519739 

 7 ss66537587 91.1 91.1 3.109444** 3.004424 1.492228 0.010252 0.004421 0.002196 

 11 ss38322573 117.4 117.4 0.785062* 1.308198 0.649752 0.072359 0.071571 0.035548 

 14 ss66537607 87.5 87.5 1.534523** 1.203715 0.597858 -0.00679 0.002888 0.001435 

 15 ss38332148 24.3 24.3 -1.36446** 1.902147 0.944753 -0.02032 0.012025 0.005973 

 20 ss61522292 17.8 17.8 -2.82367** 0.991966 0.492687 -0.00372 0.002271 0.001128 

 20 ss38324910 53.7 53.7 0.949393* 2.227142 1.10617 0.441982** 0.372137 0.184832 

 27 ss38323589 51.9 51.9 -1.36502** 2.531956 1.257564 -0.16677* 0.208361 0.103488 

 28 ss63187445 40.4 40.4 -1.75018** 2.453928 1.21881 -0.0072 0.007124 0.003538 

CMAR 1 ss66538078 8.7 8.7 0.071225* 0.016343 0.537535 -0.25315** 0.010144 0.333642 

 1 - 151.1 151.1 -0.25041** 0.04163 1.369217 -0.03091 0.004195 0.13797 

 2 ss66538017 53.5 53.5 -0.30755** 0.070423 2.316216 -0.00109 7.04E-05 0.002317 

 2 ss38332354 57.1 57.1 -0.21453** 0.068693 2.259327 -0.00058 5.99E-05 0.00197 

 2 ss38325760 73.7 73.7 0.198427** 0.03782 1.243892 0.005661 0.000556 0.018284 

 3 ss38331439 3.8 6.8 0.092449* 0.027742 0.912425 0.038534* 0.005748 0.189063 

 3 ss66538221 92.8 92.8 0.2887** 0.146932 4.832631 0.119731** 0.017705 0.582326 

 4 ss66538094 19.7 22.7 0.520736** 0.016894 0.555655 0.002847 0.00029 0.009526 

 6 ss38327022 29.7 29.7 0.282886** 0.065735 2.162022 0.001564 0.000281 0.009227 

 8 ss38323808 29.3 29.3 0.310738** 0.05375 1.767849 0.012362 0.001469 0.048311 

 9 ss38335346 106.2 106.2 0.134731* 0.02966 0.975519 -0.00332 0.000621 0.020415 

 10 ss38322538 54.5 54.5 -0.25228** 0.059303 1.950476 -0.00157 0.000306 0.01006 

 11 ss66538272 116.1 116.1 -0.18302** 0.032688 1.075117 0.000457 0.000109 0.003591 
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 28 ss38323528 58.2 58.2 -0.07634* 0.019424 0.638858 -0.0609* 0.006342 0.208606 

 29 ss63270688 26.6 29.6 0.215406** 0.038872 1.278523 -0.00074 6.04E-05 0.001987 

YGRADE 1 ss38335051 97.9 97.9 -0.19353* 0.064941 0.338743 -0.00087 4.90E-06 2.56E-05 

 1 ss38323849 129 129 -0.6688** 0.354363 1.848427 0.13205** 0.037958 0.197995 

 1 ss38333732 155.1 155.1 0.678434** 0.127495 0.665039 -0.02457 0.002203 0.01149 

 2  s38322486  37 37 0.188445* 0.065858 0.343529 3.30E-05 1.76E-05 9.19E-05 

 2 ss38322399 43.2 43.7 -0.65188** 0.074567 0.388958 -0.00269 0.000385 0.002008 

 3 ss65658800 48.4 48.4 -0.24681** 0.059181 0.308702 0.324017** 0.005412 0.028232 

 4 ss66538006 116.3 116.3 -0.61299** 0.139768 0.729059 0.001776 0.000153 0.000798 

 5 ss38340496 70.2 70.2 0.592795** 0.086934 0.453465 0.00308 0.000641 0.003344 

 7 ss38323732 9.6 9.6 -0.17664* 0.057559 0.300237 -0.0034 0.000793 0.004137 

 7 ss38322165 128.9 128.9 -0.29835** 0.065775 0.343097 -0.01351 0.002879 0.015015 

 9 ss38329347 14.8 14.8 -0.41236** 0.060944 0.317895 -0.00027 2.67E-05 0.000139 

 9 ss38324745 90.7 90.7 0.213855** 0.053778 0.280518 0.000692 4.73E-05 0.000247 

 11 ss28452549 15.5 15 0.66996** 0.195121 1.017792 0.004153 0.001633 0.008516 

 16 ss38333246 67.3 66.3 0.459534** 0.050904 0.265524 0.000121 4.74E-06 2.47E-05 

 19 ss38323711 102.5 102.5 0.283487** 0.075604 0.394363 0.007628 0.00084 0.004383 

 20 ss38324607 55.5 55.5 -0.4435** 0.091127 0.475335 -0.02761 0.004991 0.026033 

 25 ss61487242 5.2 5.2 -0.37003** 0.024726 0.128976 0.000185 1.28E-06 6.65E-06 

 28  s38331569  2.7 2.7 -0.36143** 0.05452 0.284389 -0.05135* 0.004759 0.024824 

  28 ss38335007 38.6 39.1 0.545905** 0.053694 0.280079 0.002913 0.000212 0.001107 
y
National Center for Biotechnology Information (NCBI) ID for SNP associated with putative QTL; 

x
SNP location on the chromosome; 

w
Additive variance; 

v
Proportion of additive variance on the phenotypic variance (%); 

u
Dominace variance; 

t
Proportion of dominance 

variance on the phenotypic variance (%); MEAN_UBF = mean ultrasound backfat; UBF = ultrasound backfat; MEAN_UMAR = mean 

ultrasound marbling; UMAR = ultrasound marbling; ADG_UREA = average daily gain ultrasound ribeye area; MEAN_UREA = mean 

ultrasound ribeye area; UREA = ultrasound ribeye area. CWT = carcass weight; AVE_BF = average backfat; GRDFAT = carcass grade 

fat; CREA = carcass ribeye area; LMY = lean meat yield; CMAR = carcass marbling; YGRDAE = carcass yield grade; *P  < 0.05; **P 

< 0.01 
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Table 4.3: Summary of genes associated with SNPs that are located under or near the QTL regions for 

ultrasound and carcass merit traits  

Trait BTA SNP Position (bp) 

Function 

class Gene name Gene description 

MEAN_UBF 1 ss64321934 41793196 nearest 

gene 

ARL6 Bos taurus ADP-ribosylation factor-like 

6 (ARL6), mRNA 

 2 ss38333790 31773763 nearest 

gene 

CSRNP3 Bos taurus cysteine-serine-rich nuclear 

protein 3 (CSRNP3), mRNA 

 3 - 71628105 intron ZZZ3 Bos taurus zinc finger, ZZ-type 

containing 3 (ZZZ3), mRNA 

 3 ss38333713 93417390 nearest 

gene 

JUN Bos taurus jun oncogene (JUN), mRNA 

 4 ss38334500 93149174 nearest 

gene 

GPR37 Bos taurus G protein-coupled receptor 

37 (endothelin receptor type B-like) 

(GPR37), mRNA 

 5 ss38323069 88228164 nearest 

gene 

MRPS35 Bos taurus mitochondrial ribosomal 

protein S35 (MRPS35), nuclear gene 

encoding mitochondrial protein, mRNA 

 7 ss66538273 32070334 nearest 

gene 

HSD17B4 Bos taurus hydroxysteroid (17-beta) 

dehydrogenase 4 (HSD17B4), mRNA 

 8 ss66538273 23426537 nearest 

gene 

IFNT Bos taurus interferon-tau 3g (IFNT), 

mRNA 

 9 ss66538150 223081 intron RNGTT Bos taurus RNA guanylyltransferase and 

5'-phosphatase (RNGTT), mRNA 

 11 ss38326296 94892677 nearest 

gene 

MGC151949 Bos taurus similar to glycoprotein 

galactosyltransferase alpha 1, 3 

(MGC151949), mRNA 

 13 ss38333252 43470740 nearest 

gene 

UCN3 Bos taurus urocortin 3 (stresscopin) 

(UCN3), mRNA 

 14 ss66537607 62424259 nearest 

gene 

POLR2K Bos taurus polymerase (RNA) II (DNA 

directed) polypeptide K, 7.0kDa 

(POLR2K), mRNA 

 15 ss38337040 32194742 intron C15H11orf63 Bos taurus chromosome 11 open reading 

frame 63 ortholog (C15H11orf63), 

mRNA 

 18 ss38337298 47861332 nearest 

gene 

MAP4K1 Bos taurus mitogen-activated protein 

kinase 1 (MAP4K1), mRNA 

 27 ss38323230 37434175 nearest 

gene 

IDO1 Bos taurus indoleamine 2,3-dioxygenase 

1 (IDO1), mRNA 

 28 ss63187445 27699906 nearest 

gene 

C28H10orf104 Bos taurus chromosome 10 open reading 

frame 104 ortholog (C28H10orf104), 

mRNA 

UBF 1 ss38322907 110568327 exon MFSD1 Bos taurus major facilitator superfamily 

domain containing 1 (MFSD1), mRNA 

 2 ss66538237 49512651 intron KIF5C Bos taurus kinesin family member 5C 

(KIF5C), mRNA 

 2 ss38322921 127508328 nearest 

gene 

MATN1 Bos taurus matrilin 1, cartilage matrix 

protein (MATN1), mRNA 

 3 ss38336741 9220807 exon NDUFS2 Bos taurus NADH dehydrogenase 

(ubiquinone) Fe-S protein 2, 49kDa 

(NADH-coenzyme Q reductase) 

(NDUFS2), nuclear gene encoding 

mitochondrial protein, mRNA 
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 3 ss66537844 38549270 nearest 

gene 

MGC139448 Bos taurus hypothetical protein 

LOC787473 (MGC139448), mRNA 

 3 ss38333136 90945586 intron NFIA Bos taurus nuclear factor I/A (NFIA), 

mRNA 

 4 ss38324841 91217499 nearest 

gene 

GPR85 Bos taurus G protein-coupled receptor 

85 (GPR85), mRNA 

 5 ss38324813 17272101 nearest 

gene 

SLC6A15  Bos taurus solute carrier family 6 

(neutral amino acid transporter), member 

15 (SLC6A15), mRNA 

 5 ss38326905  37022996 nearest 

gene 

SLC38A2 Bos taurus solute carrier family 38, 

member 2 (SLC38A2), mRNA 

 5 ss38323313 67701052 intron ANKS1B Bos taurus ankyrin repeat and sterile 

alpha motif domain containing 1B 

(ANKS1B), mRNA 

 6 ss38326151 40981871 nearest 

gene 

MIR218-1 Bos taurus microRNA mir-218-1 

(MIR218-1), microRNA 

 6 ss38323786 59787612 intron CASP6 Bos taurus caspase 6, apoptosis-related 

cysteine peptidase (CASP6), mRNA 

 7 ss38323611 65978304 nearest 

gene 

MRPL22 Bos taurus mitochondrial ribosomal 

protein L22 (MRPL22), nuclear gene 

encoding mitochondrial protein, mRNA 

 13 ss38324702 25009332 nearest 

gene 

ENKUR Bos taurus enkurin, TRPC channel 

interacting protein (ENKUR), mRNA 

 14 ss38332167 32510677 nearest 

gene 

CRH Bos taurus corticotropin releasing 

hormone (CRH), mRNA 

 19 ss66538043 12005510 nearest 

gene 

CA4 Bos taurus carbonic anhydrase IV 

(CA4), mRNA 

 19 ss66538209 48639831 nearest 

gene 

METTL2B Bos taurus methyltransferase like 2B 

(METTL2B), mRNA 

 20 ss38324910 51402608 nearest 

gene 

CDH10 Bos taurus cadherin 10, type 2 (T2-

cadherin) (CDH10), mRNA 

 21 - 19103797 intron MRPL46 Bos taurus mitochondrial ribosomal 

protein L46 (MRPL46), nuclear gene 

encoding mitochondrial protein, mRNA 

 22 ss38329030 41649041 intron FHIT Bos taurus fragile histidine triad gene 

(FHIT), mRNA 

MEAN_UMAR 1 ss38323846 35152843 nearest 

gene 

VGLL3 Bos taurus vestigial like 3 (Drosophila) 

(VGLL3), mRNA 

 1 ss38334998 68666549 intron SEC22A Bos taurus SEC22 vesicle trafficking 

protein homolog A (S. cerevisiae) 

(SEC22A), mRNA 

 1 ss38324135 148863139 intron LSS Bos taurus lanosterol synthase (2,3-

oxidosqualene-lanosterol cyclase) (LSS), 

mRNA 

 2 ss65205558 18824550 nearest 

gene 

PLEKHA3 Bos taurus pleckstrin homology domain 

containing, family A (phosphoinositide 

binding specific) member 3 

(PLEKHA3), mRNA 

 2 ss66538027 83412865 exon STAT1 Bos taurus signal transducer and 

activator of transcription 1, 91kDa 

(STAT1), mRNA 

 3 ss38333136 90945586 intron NFIA Bos taurus nuclear factor I/A (NFIA), 

mRNA 
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 4 ss38327339 104925374 nearest 

gene 

PTN Bos taurus pleiotrophin (PTN), mRNA 

 5 ss66538279 14827654 nearest 

gene 

CCDC59 Bos taurus coiled-coil domain 

containing 59 (CCDC59), mRNA 

 5 ss38333117 118990366 nearest 

gene 

SGSM3 Bos taurus small G protein signaling 

modulator 3 (SGSM3), mRNA 

 6 ss66538247 46289361 nearest 

gene 

PI4K2B Bos taurus phosphatidylinositol 4-kinase 

type 2 beta (PI4K2B), mRNA 

 7 ss66537587 70880939 nearest 

gene 

IL12B Bos taurus interleukin 12B (natural killer 

cell stimulatory factor 2, cytotoxic 

lymphocyte maturation factor 2, p40) 

(IL12B), mRNA 

 8 ss38328464 107840541 intron PRPF4 Bos taurus PRP4 pre-mRNA processing 

factor 4 homolog (yeast) (PRPF4), 

mRNA 

 9 ss38335346 100858875 nearest 

gene 

AGPAT4 Bos taurus 1-acylglycerol-3-phosphate 

O-acyltransferase 4 (lysophosphatidic 

acid acyltransferase, delta) (AGPAT4), 

mRNA. 

 10 ss38324440 67485298 nearest 

gene 

DDHD1 Bos taurus DDHD domain containing 1 

(DDHD1), mRNA 

 11 ss66537563 101475357 nearest 

gene 

GARNL3 Bos taurus GTPase activating 

Rap/RanGAP domain-like 3 (GARNL3), 

mRNA. 

 14 ss38323901 17289087 nearest 

gene 

HAS2 Bos taurus hyaluronan synthase 2 

(HAS2), mRNA 

 14 ss66537607 62424259 nearest 

gene 

POLR2K Bos taurus polymerase (RNA) II (DNA 

directed) polypeptide K, 7.0kDa 

(POLR2K), mRNA 

 15 ss66538055 28170828 exon VPS11 Bos taurus vacuolar protein sorting 11 

homolog (S. cerevisiae) (VPS11), 

mRNA 

 15 ss38328343 43366680 intron LMO1 Bos taurus LIM domain only 1 

(rhombotin 1) (LMO1), mRNA 

 19 ss38334236  32341595 nearest 

gene 

HS3ST3A1 Bos taurus heparan sulfate 

(glucosamine) 3-O-sulfotransferase 3A1 

(HS3ST3A1), mRNA 

 21 ss38324150 18130029 nearest 

gene 

MRPL46 Bos taurus mitochondrial ribosomal 

protein L46 (MRPL46), nuclear gene 

encoding mitochondrial protein, mRNA 

 27 ss38335669 1051 nearest 

gene 

CLN8 Bos taurus ceroid-lipofuscinosis, 

neuronal 8 (epilepsy, progressive with 

mental retardation) (CLN8), mRNA 

UMAR 1 ss38322512 68338491 

nearest 

gene DIRC2 

Bos taurus disrupted in renal carcinoma 

2 (DIRC2), mRNA 

 2 ss38333790 31773763 

nearest 

gene CSRNP3 

Bos taurus cysteine-serine-rich nuclear 

protein 3 (CSRNP3), mRNA 

 3 ss38333136 90945586 intron NFIA 

Bos taurus nuclear factor I/A (NFIA), 

mRNA 

 3 ss66537544 116468662 

nearest 

gene OSCP1 

Bos taurus organic solute carrier partner 

1 (OSCP1), mRNA 

 5 ss38340495 53242603 

nearest 

gene GNS 

Bos taurus glucosamine (N-acetyl)-6-

sulfatase (GNS), mRNA 
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 5 ss38323692 65557646 

nearest 

gene NEDD1 

Bos taurus neural precursor cell 

expressed, developmentally down-

regulated 1 (NEDD1), mRNA 

 6 ss66537977 47210709 

nearest 

gene RBPJ 

Bos taurus recombination signal binding 

protein for immunoglobulin kappa J 

region (RBPJ), mRNA 

 10 ss38328787 12645355 

nearest 

gene MIR2290 

Bos taurus microRNA mir-2290 

(MIR2290), microRNA 

 11 ss66538251 34760383 intron NRXN1 Bos taurus neurexin 1 (NRXN1), mRNA 

 11 ss38326296 94892677 

nearest 

gene MGC151949 

Bos taurus similar to glycoprotein 

galactosyltransferase alpha 1, 3 

(MGC151949), mRNA 

 13 ss66537669 19145474 

nearest 

gene ITGB1 

Bos taurus integrin, beta 1 (fibronectin 

receptor, beta polypeptide, antigen CD29 

includes MDF2, MSK12) (ITGB1), 

mRNA 

 15 ss38327992 65208287 exon PDHX 

Bos taurus pyruvate dehydrogenase 

complex, component X (PDHX), nuclear 

gene encoding mitochondrial protein, 

mRNA 

 27 ss38335669 1051 

nearest 

gene CLN8 

Bos taurus ceroid-lipofuscinosis, 

neuronal 8 (epilepsy, progressive with 

mental retardation) (CLN8), mRNA 

 28 ss38323528 42698889 

nearest 

gene LRRC18 

Bos taurus leucine rich repeat containing 

18 (LRRC18), mRNA 

ADG_UREA 1 ss38322907 110568327 exon MFSD1 Bos taurus major facilitator superfamily 

domain containing 1 (MFSD1), mRNA. 

 1 ss38333732 153517286 nearest 

gene 

KCNJ15 Bos taurus potassium inwardly-

rectifying channel, subfamily J, member 

15 (KCNJ15), mRNA 

 2 ss61484221 112999439 nearest 

gene 

EPHA4 Bos taurus EPH receptor A4 (EPHA4), 

mRNA 

 3 ss38331439 2653219 intron POGK Bos taurus pogo transposable element 

with KRAB domain (POGK), mRNA 

 3 - 71628105 intron ZZZ3 Bos taurus zinc finger, ZZ-type 

containing 3 (ZZZ3), mRNA 

 5 ss38339200 33347924 nearest 

gene 

MCRS1 Bos taurus microspherule protein 1 

(MCRS1), mRNA 

 8 ss38325262 65569795 intron TMOD1 Bos taurus tropomodulin 1 (TMOD1), 

mRNA 

 8 ss38336907 114064723 intron DBC1 Bos taurus deleted in bladder cancer 1 

(DBC1), mRNA 

 9 ss38322600 19430616 nearest 

gene 

SH3BGRL2 Bos taurus SH3 domain binding 

glutamic acid-rich protein like 2 

(SH3BGRL2), mRNA 

 10 ss38329478 100255297 nearest 

gene 

GPR65 Bos taurus G protein-coupled receptor 

65 (GPR65), mRNA 

MEAN_UREA 1 ss38334998 68666549 intron SEC22A Bos taurus SEC22 vesicle trafficking 

protein homolog A (S. cerevisiae) 

(SEC22A), mRNA 

 2 ss38322523 32909404 nearest 

gene 

GRB14 Bos taurus growth factor receptor-bound 

protein 14 (GRB14), mRNA 

 3 ss38331439 2653219 intron POGK Bos taurus pogo transposable element 
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with KRAB domain (POGK), mRNA 

 3 ss38322909  100811876 nearest 

gene 

ORC1L Bos taurus origin recognition complex, 

subunit 1-like (yeast) (ORC1L), mRNA 

 3 ss66537544 116468662 nearest 

gene 

OSCP1 Bos taurus organic solute carrier partner 

1 (OSCP1), mRNA 

 4  s66538094  5657544 nearest 

gene 

IKZF1 Bos taurus IKAROS family zinc finger 1 

(Ikaros) (IKZF1), mRNA 

 5 ss38339297 12328921 nearest 

gene 

LIN7A Bos taurus lin-7 homolog A (C. elegans) 

(LIN7A), mRNA 

 8 ss38326154 39821138 nearest 

gene 

GLDC Bos taurus glycine dehydrogenase 

(decarboxylating) (GLDC), nuclear gene 

encoding mitochondrial protein, mRNA 

 10 ss38334832 96074573 nearest 

gene 

TSHR Bos taurus thyroid stimulating hormone 

receptor (TSHR), mRNA 

UREA 1 ss66537759 24785995 nearest 

grne 

RBM11 Bos taurus RNA binding motif protein 

11 (RBM11), mRNA 

 3 ss38324942 1071569 intron GPR161 Bos taurus G protein-coupled receptor 

161 (GPR161), mRNA 

 5 ss38323767 93343336 nearest 

grne 

SOX5 Bos taurus SRY (sex determining region 

Y)-box 5 (SOX5), mRNA 

 6 - 92061352 exon CXCL2 Bos taurus chemokine (C-X-C motif) 

ligand 2 (CXCL2), mRNA 

 7 ss38335142  106483290 nearest 

grne 

LOC538782 Bos taurus hypothetical LOC538782 

(LOC538782), mRNA 

 9 ss38335346 100858875 nearest 

grne 

AGPAT4 Bos taurus 1-acylglycerol-3-phosphate 

O-acyltransferase 4 (lysophosphatidic 

acid acyltransferase, delta) (AGPAT4), 

mRNA 

 10  s38324682  82562803 nearest 

grne 

CCDC127 Bos taurus coiled-coil domain 

containing 127 (CCDC127), mRNA 

 11 ss66537563 101475357 nearest 

grne 

GARNL3 Bos taurus GTPase activating 

Rap/RanGAP domain-like 3 (GARNL3), 

mRNA 

 17 ss38336166 4055580 nearest 

grne 

SFRP2 Bos taurus secreted frizzled-related 

protein 2 (SFRP2), mRNA 

 18 ss28451881 47966036 exon ACTN4 Bos taurus actinin, alpha 4 (ACTN4), 

mRNA 

 21 ss38324150  18130029 nearest 

grne 

MRPL46 Bos taurus mitochondrial ribosomal 

protein L46 (MRPL46), nuclear gene 

encoding mitochondrial protein, mRNA 

 27 ss38323377 33601535 nearest 

grne 

KCNU1 Bos taurus potassium channel, subfamily 

U, member 1 (KCNU1), mRNA 

 28 ss63187445 27699906 nearest 

grne 

C28H10orf104 Bos taurus chromosome 10 open reading 

frame 104 ortholog (C28H10orf104), 

mRNA 

 29 ss38324305  37418951 nearest 

grne 

TMEM45B Bos taurus transmembrane protein 45B 

(TMEM45B), mRNA 

CWT 1 ss38323939 3083543 nearest 

gene 

SOD1 Bos taurus superoxide dismutase 1, 

soluble (SOD1), mRNA 

 1 ss64321934 41793196 nearest 

gene 

ARL6 Bos taurus ADP-ribosylation factor-like 

6 (ARL6), mRNA 

 1 ss38322907 110568327 exon MFSD1 Bos taurus major facilitator superfamily 

domain containing 1 (MFSD1), mRNA 



 

110 
 

 2 ss38325754 138454433 nearest 

gene 

ALDH4A1 Bos taurus aldehyde dehydrogenase 4 

family, member A1 (ALDH4A1), 

nuclear gene encoding mitochondrial 

protein, mRNA. 

 4 ss65316398 63399865 intron EEPD1 Bos taurus 

endonuclease/exonuclease/phosphatase 

family domain containing 1 (EEPD1), 

mRNA. 

 5 ss38329047 79222461 intron RASD2 Bos taurus RASD family, member 2 

(RASD2), mRNA 

 6 ss38324097 26486541 intron MAPKSP1 Bos taurus MAPK scaffold protein 1 

(MAPKSP1), mRNA 

 6 ss38331322 43264686 nearest 

gene 

PPARGC1A Bos taurus peroxisome proliferator-

activated receptor gamma, coactivator 1 

alpha (PPARGC1A), mRNA 

 15 ss38322121 51746916 nearest 

gene 

PDE2A Bos taurus phosphodiesterase 2A, 

cGMP-stimulated (PDE2A), transcript 

variant 2, non-coding RNA 

 18 

ss38326834 55488400 

nearest 

gene HRC 

Bos taurus histidine rich calcium binding 

protein (HRC), mRNA 

 20 ss62627427 19510164 nearest 

gene 

NDUFAF2  Bos taurus NADH dehydrogenase 

(ubiquinone) 1 alpha subcomplex, 

assembly factor 2 (NDUFAF2), nuclear 

gene encoding mitochondrial protein, 

mRNA 

AVE_BF 1 ss66538078 6350258 Nearest 

gene 

CCT8 Bos taurus chaperonin containing TCP1, 

subunit 8 (theta) (CCT8), mRNA 

 2 - 6420614 Intron MGC128040 Bos taurus hypothetical protein 

MGC128040 (MGC128040), mRNA 

 2 ss38329575 25285472 Nearest 

gene 

DLX1 Bos taurus distal-less homeobox 1 

(DLX1), mRNA 

 2 ss66538147 78410203 Nearest 

gene 

MK167IP Bos taurus MKI67 (FHA domain) 

interacting nucleolar phosphoprotein 

(MKI67IP), mRNA 

 2 ss38328442 80814630 Nearest 

gene 

GYPC Bos taurus glycophorin C (Gerbich 

blood group) (GYPC), mRNA 

 2 ss38326398 90632 Exon PID1 Bos taurus phosphotyrosine interaction 

domain containing 1 (PID1), mRNA 

 3 ss38334140 68058861 Nearest 

gene 

LPHN2 Bos taurus latrophilin 2 (LPHN2), 

mRNA 

 4 ss65316398 63399865 Intron EEPD1 Bos taurus 

endonuclease/exonuclease/phosphatase 

family domain containing 1 (EEPD1), 

mRNA 

 5 ss66538279 14827654 Nearest 

gene 

CCDC Bos taurus coiled-coil domain 

containing 59 (CCDC59), mRNA 

 5 ss38324636 118682287 Nearest 

gene 

PRR5 Bos taurus proline rich 5 (renal) (PRR5), 

mRNA 

 6 ss66537977 47210709 Nearest 

gene 

RBPJ Bos taurus recombination signal binding 

protein for immunoglobulin kappa J 

region (RBPJ), mRNA 

 7 ss38322516 110964595 Nearest 

gene 

PJA2 Bos taurus praja ring finger 2 (PJA2), 

mRNA 
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 8 ss38324279 45507466 Nearest 

gene 

DMRT1 Bos taurus doublesex and mab-3 related 

transcription factor 1 (DMRT1), mRNA 

 15 ss38337040 32194742 Intron C15H11orf63 Bos taurus chromosome 11 open reading 

frame 63 ortholog (C15H11orf63), 

mRNA 

 15 ss38324125 74993659 Intron TSPAN18 Bos taurus tetraspanin 18 (TSPAN18), 

mRNA 

 17 ss38324651 57681272 Nearest 

gene 

MYL2 Bos taurus myosin, light chain 2, 

regulatory, cardiac, slow (MYL2), 

mRNA 

 27 ss38323377 33601535 Nearest 

gene 

KCNU1 Bos taurus potassium channel, subfamily 

U, member 1 (KCNU1), mRNA 

 29 ss38334851 29741733 Nearest 

gene 

NRGN Bos taurus neurogranin (protein kinase C 

substrate, RC3) (NRGN), mRNA 

GRDFAT 1 ss66538078 6350258 nearest 

gene 

CCT8 Bos taurus chaperonin containing TCP1, 

subunit 8 (theta) (CCT8), mRNA 

 1 ss66537739 152127697 nearest 

gene 

CHAF1B Bos taurus chromatin assembly factor 1, 

subunit B (p60) (CHAF1B), mRNA 

 3 ss38323208 40201985 nearest 

gene 

PRMT6 Bos taurus protein arginine 

methyltransferase 6 (PRMT6), mRNA 

 3 ss66537665 68644513 nearest 

gene 

LPHN2 Bos taurus latrophilin 2 (LPHN2), 

mRNA 

 3 ss38322790 72583513 nearest 

gene 

PIGK Bos taurus phosphatidylinositol glycan 

anchor biosynthesis, class K (PIGK), 

mRNA 

 3 ss38322909 100811876 nearest 

gene 

GPX7 Bos taurus glutathione peroxidase 7 

(GPX7), mRNA 

 4 ss38322669 54568493 intron TFEC Bos taurus transcription factor EC 

(TFEC), mRNA 

 6 ss38324338 31937563 intron PDLIM5 Bos taurus PDZ and LIM domain 5 

(PDLIM5), mRNA 

 7 ss38329588 4820181 exon LSM4 Bos taurus LSM4 homolog, U6 small 

nuclear RNA associated (S. cerevisiae) 

(LSM4), mRNA 

 7 ss38322119 52832106 nearest 

gene 

SPRY4 Bos taurus sprouty homolog 4 

(Drosophila) (SPRY4), mRNA 

 7 ss38322165 92996601 nearest 

gene 

ARRDC3 Bos taurus arrestin domain containing 3 

(ARRDC3), mRNA 

 10 ss38324682 82562803 nearest 

gene 

ZFP36L1 Bos taurus zinc finger protein 36, C3H 

type-like 1 (ZFP36L1), mRNA 

 12 ss38324078 78069273 nearest 

gene 

LOC513822 Bos taurus similar to RIKEN cDNA 

4832428D23 (LOC513822), mRNA 

 13 ss38323604 43109972 intron ABHD12 Bos taurus abhydrolase domain 

containing 12 (ABHD12), mRNA 

 15 ss38335183 45244386 nearest 

gene 

MRPL17 Bos taurus mitochondrial ribosomal 

protein L17 (MRPL17), nuclear gene 

encoding mitochondrial protein, mRNA 

 21 ss38324150 18130029 nearest 

gene 

MRPL46 Bos taurus mitochondrial ribosomal 

protein L46 (MRPL46), nuclear gene 

encoding mitochondrial protein, mRNA 

 27 ss38323377 33601535 nearest 

gene 

KCNU1 Bos taurus potassium channel, subfamily 

U, member 1 (KCNU1), mRNA 

CREA 1 ss66538078 6350258 nearest CCT8 Bos taurus chaperonin containing TCP1, 
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gene subunit 8 (theta) (CCT8), mRNA 

 1 ss64321934 41793196 nearest 

gene 

ARL6 Bos taurus ADP-ribosylation factor-like 

6 (ARL6), mRNA 

 1 ss64843848 100876223 nearest 

gene 

MIR551B Bos taurus microRNA mir-551b 

(MIR551B), microRNA 

 3 ss66537570 96195939 nearest 

gene 

PPAP2B Bos taurus phosphatidic acid 

phosphatase type 2B (PPAP2B), mRNA 

 4 ss66538016 22890326 nearest 

gene 

ETV1 Bos taurus ets variant 1 (ETV1), mRNA 

 4 ss38324841 91217499 nearest 

gene 

SPAM1 Bos taurus sperm adhesion molecule 1 

(PH-20 hyaluronidase, zona pellucida 

binding) (SPAM1), mRNA 

 5 ss38339563 37728419 nearest 

gene 

SLC38A2 Bos taurus solute carrier family 38, 

member 2 (SLC38A2), mRNA 

 5 ss38340495 53242603 nearest 

gene 

GNS Bos taurus glucosamine (N-acetyl)-6-

sulfatase (GNS), mRNA 

 5 ss38340471 66531514 nearest 

gene 

MIR135A-2 Bos taurus microRNA mir-135a-2 

(MIR135A-2), microRNA 

 6 

ss38322890 78854889 

nearest 

gene LPHN3 

Bos taurus latrophilin 3 (LPHN3), 

mRNA 

 8 ss38322842 103345581 nearest 

gene 

ACTL7B Bos taurus actin-like 7B (ACTL7B), 

mRNA 

 10 ss65561641 39918066 intron STMN2 Bos taurus stathmin-like 2 (STMN2), 

mRNA 

 11 ss66537939 19734848 nearest 

gene 

CCDC75 Bos taurus coiled-coil domain 

containing 75 (CCDC75), mRNA 

 12 ss66537619 49365732 nearest 

gene 

KLF5 Bos taurus Kruppel-like factor 5 

(intestinal) (KLF5), mRNA 

 14 ss66538042 11955276 nearest 

gene 

MYC Bos taurus v-myc myelocytomatosis 

viral oncogene homolog (avian) (MYC), 

mRNA 

 14 ss66537607 62424259 nearest 

gene 

POLR2K Bos taurus polymerase (RNA) II (DNA 

directed) polypeptide K, 7.0kDa 

(POLR2K), mRNA 

 14 ss38328773 65438173 intron PGCP Bos taurus plasma glutamate 

carboxypeptidase (PGCP), mRNA 

 15 ss38324125 74993659 intron TSPAN18 Bos taurus tetraspanin 18 (TSPAN18), 

mRNA 

 20 

ss38328796 45114461 

nearest 

gene CDH6 

Bos taurus cadherin 6, type 2, K-

cadherin (fetal kidney) (CDH6), mRNA 

 22 

ss38326759 11039315 intron ITGA9 

Bos taurus integrin, alpha 9 (ITGA9), 

mRNA 

LMY 1 ss38324800 20870762 nearest 

gene 

MIRLET7C Bos taurus microRNA let-7c 

(MIRLET7C), microRNA 

 1 ss38322126 145384804 nearest 

gene 

TFF3 Bos taurus trefoil factor 3 (intestinal) 

(TFF3), mRNA 

 2 - 6420614 intron MGC128040 Bos taurus hypothetical protein 

MGC128040 (MGC128040), mRNA 

 3 ss38336860 97403450 nearest 

gene 

DHCR24 Bos taurus 24-dehydrocholesterol 

reductase (DHCR24), mRNA 

 4 ss38324841 91217499 nearest 

gene 

SPAM1 Bos taurus sperm adhesion molecule 1 

(PH-20 hyaluronidase, zona pellucida 

binding) (SPAM1), mRNA 
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 7 ss66537587 70880939 nearest 

gene 

IL12B Bos taurus interleukin 12B (natural killer 

cell stimulatory factor 2, cytotoxic 

lymphocyte maturation factor 2, p40) 

(IL12B), mRNA 

 11 ss38322573 97060575 nearest 

gene 

PDCL Bos taurus phosducin-like (PDCL), 

mRNA 

 14 ss66537607 62424259 nearest 

gene 

POLR2K Bos taurus polymerase (RNA) II (DNA 

directed) polypeptide K, 7.0kDa 

(POLR2K), mRNA 

 15 ss38332148 20509763 nearest 

gene 

HSPB2 Bos taurus heat shock 27kDa protein 2 

(HSPB2), mRNA 

 20 ss61522292 13255633 nearest 

gene 

CD180 Bos taurus CD180 molecule (CD180), 

mRNA 

 20 ss38324910 51402608 nearest 

gene 

CDH10 Bos taurus cadherin 10, type 2 (T2-

cadherin) (CDH10), mRNA 

 27 ss38323589 33170067 nearest 

gene 

KCNU1 Bos taurus potassium channel, subfamily 

U, member 1 (KCNU1), mRNA 

 28 ss63187445 27699906 nearest 

gene 

DDIT4 Bos taurus DNA-damage-inducible 

transcript 4 (DDIT4), mRNA 

CMAR 1 ss66538078 6350258 nearest 

gene 

CCT8 Bos taurus chaperonin containing TCP1, 

subunit 8 (theta) (CCT8), mRNA 

 1 - 150099856 nearest 

gene 

CBR1 Bos taurus carbonyl reductase 1 (CBR1), 

mRNA 

 2 ss66538017 35431781 intron FAP Bos taurus fibroblast activation protein, 

alpha (FAP), mRNA 

 2 ss38332354 40439268 intron GALNT5 Bos taurus UDP-N-acetyl-alpha-D-

galactosamine:polypeptide N-

acetylgalactosaminyltransferase 5 

(GalNAc-T5) (GALNT5), mRNA 

 2 ss38325760 68003253 nearest 

gene 

LYPD1 Bos taurus LY6/PLAUR domain 

containing 1 (LYPD1), mRNA 

 3 ss38331439 2653219 intron POGK Bos taurus pogo transposable element 

with KRAB domain (POGK), mRNA 

 3 ss66538221 84018286 nearest 

gene 

SLC35D1 Bos taurus solute carrier family 35 

(UDP-glucuronic acid/UDP-N-

acetylgalactosamine dual transporter), 

member D1 (SLC35D1), mRNA 

 4 ss66538094 5657544 nearest 

gene 

IKZF1 Bos taurus IKAROS family zinc finger 1 

(Ikaros) (IKZF1), mRNA 

 6 ss38327022 23882877 intron NFKB1 Bos taurus nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 1 

(NFKB1), mRNA 

 8 ss38323808 25568605 nearest 

gene 

MIR491 Bos taurus microRNA mir-491 

(MIR491), microRNA 

 9 ss38335346 100858875 nearest 

gene 

AGPAT4 Bos taurus 1-acylglycerol-3-phosphate 

O-acyltransferase 4 (lysophosphatidic 

acid acyltransferase, delta) (AGPAT4), 

mRNA 

 10 ss38322538 38481568 nearest 

gene 

CCNDBP1 Bos taurus cyclin D-type binding-protein 

1 (CCNDBP1), mRNA 

 11 ss66538272 95382206 nearest 

gene 

GGTA1 Bos taurus alpha-galactosyltransferase 1 

(glycoprotein) (GGTA1), mRNA 

 28 ss38323528 42698889 nearest 

gene 

LRRC18 Bos taurus leucine rich repeat containing 

18 (LRRC18), mRNA 
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 29 ss63270688 21244296 intron MGC157332 Bos taurus hypothetical protein 

LOC785165 (MGC157332), mRNA 

YGRADE 1 ss38335051 84397541 nearest 

gene 

MAGEF1 Bos taurus melanoma antigen family F, 

1 (MAGEF1), mRNA 

 1 ss38323849 35153193 nearest 

gene 

CHMP2B Bos taurus chromatin modifying protein 

2B (CHMP2B), mRNA 

 1 ss38333732 153517286 nearest 

gene 

KCNJ15 Bos taurus potassium inwardly-

rectifying channel, subfamily J, member 

15 (KCNJ15), mRNA 

 2  s38322486  17854127 intron ZNF385B Bos taurus zinc finger protein 385B 

(ZNF385B), mRNA 

 2 ss38322399 21841024 nearest 

gene 

KIAA1715 Bos taurus KIAA1715 (KIAA1715), 

mRNA 

 3 ss65658800 36338392 exon GSTM3 Bos taurus glutathione S-transferase mu 

3 (brain) (GSTM3), mRNA 

 4 ss66538006 115386317 nearest 

gene 

PDIA4 Bos taurus protein disulfide isomerase 

family A, member 4 (PDIA4), mRNA 

 5 ss38340496 52145848 nearest 

gene 

TMBIM4 Bos taurus transmembrane BAX 

inhibitor motif containing 4 (TMBIM4), 

mRNA 

 7 ss38323732 7215131 nearest 

gene 

AP1M1  Bos taurus adaptor-related protein 

complex 1, mu 1 subunit (AP1M1), 

mRNA. 

 7 ss38322165 92996601 nearest 

gene 

ARRDC3 Bos taurus arrestin domain containing 3 

(ARRDC3), mRNA 

 9 ss38329347 11932336 nearest 

gene 

OOEP Bos taurus oocyte expressed protein 

homolog (dog) (OOEP), mRNA 

 9 ss38324745 86636705 nearest 

gene 

EPM2A Bos taurus epilepsy, progressive 

myoclonus type 2A, Lafora disease 

(laforin) (EPM2A), mRNA 

 11 ss28452549 2676384 nearest 

gene 

CIAO1 Bos taurus cytosolic iron-sulfur protein 

assembly 1 (CIAO1), mRNA 

 16 ss38333246 60858370 nearest 

gene 

GLUL  Bos taurus glutamate-ammonia ligase 

(GLUL), mRNA 

 19 ss38323711 56560923 nearest 

gene 

MGAT5B Bos taurus mannosyl (alpha-1,6-)-

glycoprotein beta-1,6-N-acetyl-

glucosaminyltransferase, isozyme B 

(MGAT5B), mRNA 

 20 ss38324607 56587444 nearest 

gene 

CDH18 Bos taurus cadherin 18, type 2 (CDH18), 

mRNA 

 25 ss61487242 1413336 nearest 

gene 

TPSB1 Bos taurus tryptase beta 1 (TPSB1), 

mRNA 

 28  s38331569  4150241 nearest 

gene 

C28H1orf57 Bos taurus chromosome 1 open reading 

frame 57 ortholog (C28H1orf57), 

mRNA 

  28 ss38335007 27364335 exon PSAP Bos taurus prosaposin (PSAP), mRNA 

MEAN_UBF = mean ultrasound backfat; UBF = ultrasound backfat; MEAN_UMAR = mean ultrasound marbling; 

UMAR = ultrasound marbling; ADG_UREA = average daily gain ultrasound ribeye area; MEAN_UREA = mean 

ultrasound ribeye area; UREA = ultrasound ribeye area. CWT = carcass weight; AVE_BF = average backfat; GRDFAT = 

carcass grade fat; CREA = carcass ribeye area; LMY = lean meat yield; CMAR = carcass marbling; YGRDAE = carcass 

yield grade. 
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Figure 4.1: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for mean 

ultrasound backfat (MEAN_UBF) QTL. 

 

 
Figure 4.2: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for 

ultrasound backfat (UBF) QTL. 
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Figure 4.3: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 
equivalent to α=0.05 and α=0.01 plotted against the genome location for 
mean ultrasound marbling (MEAN_UMAR) QTL. 
 

 

Figure 4.4: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for 

ultrasound marbling (UMAR) QTL. 
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Figure 4.5: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for average 

daily gain ultrasound ribeye area (ADG_UREA) QTL. 

 

 
Figure 4.6: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for mean 

ultrasound ribeye area (MEAN_UREA) QTL. 
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Figure 4.7: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for 

ultrasound ribeye area (UREA) QTL. 

 

 

 
Figure 4.8: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for carcass 

weight (CWT) QTL.  
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Figure 4.9: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for average 

backfat (AVE_BF) QTL.   

 

 

 
Figure 4.10: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for carcass 

grade fat (GRDFAT) QTL.   
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Figure 4.11: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for carcass 

ribeye area (CREA) QTL.   

 

 

 

 
 

Figure 4.12: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for lean 

meat yield (LMY) QTL.   
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Figure 4.13: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for carcass 

marbling (CMAR) QTL.   
 

 

 

 
Figure 4.14: The percentiles intervals of 2.5% - 97.5% and 0.5% - 99.5% 

equivalent to α=0.05 and α=0.01 plotted against the genome location for carcass 

yield grade (YGRADE) QTL. 
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Figure 4.15: Genome-wide distribution of additive effect of QTL for mean 

ultrasound backfat (MEAN_UBF). 

 

 
Figure 4.16: Genome-wide distribution of additive effect of QTL for ultrasound 

backfat (UBF). 
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Figure 4.17: Genome-wide distribution of additive effect of QTL for mean 

ultrasound marbling (MEAN_UMAR). 

 

 

 
Figure 4.18: Genome-wide distribution of additive effect of QTL for ultrasound 

marbling (UMAR). 
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Figure 4.19: Genome-wide distribution of additive effect of QTL for average 

daily gain ultrasound ribeye area (ADG_UREA). 
 

 

 
Figure 4.20: Genome-wide distribution of additive effect of QTL for mean 

ultrasound ribeye area (MEAN_UREA). 
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Figure 4.21: Genome-wide distribution of additive effect of QTL for ultrasound 

ribeye area (UREA). 
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Figure 4.22: Genome-wide distribution of additive effect of QTL for carcass 

weight (CWT). 

 

 

 

Figure 4.23: Genome-wide distribution of additive effect of QTL for carcass 

average backfat (AVE_BF). 
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Figure 4.24: Genome-wide distribution of additive effect of QTL for carcass 

grade fat (GRDFAT). 

 

 
Figure 4.25: Genome-wide distribution of additive effect of QTL for carcass 

ribeye area (CREA). 
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Figure 4.26: Genome-wide distribution of additive effect of QTL for lean meat 

yield (LMY). 
 

 
Figure 4.27: Genome-wide distribution of additive effect of QTL for carcass 

marbling (CMAR). 
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Figure 4.28: Genome-wide distribution of additive effect of QTL for carcass yield 

grade (YGRADE). 
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5. General Discussions and Future Research  

 

5.1. General Discussions 

Although significant genetic improvement in livestock has been achieved 

through selection of animals based on observable phenotypes without knowing 

the number and identities of genes affecting the trait, the phenotype-based 

selection has not been efficient for traits that have a low heritability, for traits that 

are difficult and expensive to measures, for traits that can only be measured at a 

later stage of animal reproduction cycle, and for traits that can only be observed in 

one sex (Dekkers and Hospital, 2002).  Recent developments in molecular 

genetics and statistical methodologies have provided opportunities to make 

optimal use of molecular and phenotypic information in the selection process. The 

use of molecular genetics eliminates some of the limitations encountered in 

traditional phenotypic selection. The genetic markers will benefit the beef 

industry to improve the rate of genetic gain for traits that are mentioned above 

including carcass merit traits because MAS enables the evaluation of genetic 

merit values and selection for animals carrying beneficial alleles before the 

selection decision has to be made.  

A considerable number of QTL has been reported in beef cattle (Cattle 

QTLdb 2003). However, most of the QTL mapping studies in beef cattle were 

carried out using a limited number of parental chromosomes sampled through 

selected sires, hence these QTL represent just a small proportion of the QTL that 

are contributing to the variation of carcass traits within a population (McClure et 
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al. 2010). Therefore, there are still large numbers of QTL for carcass traits that 

need to be identified in beef cattle. This study was conducted to fine map and 

detect QTL regions in the whole genome for ultrasound and carcass merit traits in 

beef cattle using a denser SNP marker set through three approaches, namely QTL 

interval regression mapping, single SNP association analyses under the identified 

QTL regions by the interval mapping, and Bayesian shrinkage QTL analyses. In a 

previous study the QTL were identified in large chromosome intervals ranged 

from 4 to 24 cM due to the relatively low density of genetic markers that was used 

in the analysis (Li et al. 2006). Fine mapping is required to increase the resolution 

of the identified QTL to be more useful for further practical applications of MAS 

and molecular procedures such as positional candidate gene research which 

requires a finer resolution within 1 to 2 cM (Darvasi et al. 1993; Kneeland et al. 

2004). This study uses a denser panel of genetic markers of a total of 4592 SNP 

markers that are distributed on the whole bovine genome. In this thesis, the results 

of interval regression mapping was presented in Chapter 3 and the resolution of 

the identified QTL positions were fine mapped into small intervals ranged from 

0.6 to 11 cM. The SNP markers within these QTL regions were further analysed 

through single marker regression and twenty two SNP markers were found to 

have significant associations with 3 ultrasound and 4 carcass merit traits. 

However, interval mapping and single marker regression approaches may result in 

high incidences of false positive due to multiple testing because they analyze one 

position of the genome or marker at a time. Also the effects of QTL could be 
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overestimated since each QTL or SNP marker was analyzed independently 

without fully adjusting of other QTL on the entire genome.  

    In order to verify the identified QTL regions using the interval regression 

mapping method, the Bayesian shrinkage estimation (Wang et al. 2005) was 

performed for the QTL detection with the same data set in Chapter 4. The 

Bayesian shrinkage estimation uses 1207 informative SNP markers with LD (r
2
) 

<0.2 to avoid redundant marker information and to evaluate all QTL in the 

genome simultaneously in a single model that adjusts for the effects of other 

QTLs in the entire genome. As such, it overcomes major limitations associated 

with the interval mapping and single marker association analyses.  It was found 

that the proportion of phenotypic variance accounted by total QTL variance 

estimated by Bayesian shrinkage analysis were relatively small and ranged from 

0.1 to 4.8% in comparison to the interval mapping of 6.1 to 11.7%. In addition 

more QTL with smaller effects were detected by the Bayesian the shrinkage 

analysis. The distributions of QTL effects identified by Bayesian shrinkage 

approach have shown that a very small proportion of the identified QTL have 

moderate or large effects and the majority of the identified QTL have small 

effects. All the results indicate that Bayesian the shrinkage analysis is more robust 

to identify QTL with small effects and to provide a more reasonable estimation of 

QTL variance. The current results suggest further that the Bayesian shrinkage 

analysis should be considered to assess the QTL effects by fitting all markers on 

the entire genome in a single model simultaneously.  
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The use of 4592 SNPs in the interval mapping and 1207 SNPs in the 

Bayesian analysis could not capture all existing linkage disequilibrium that exist 

between SNP markers and the QTL on the bovine genome. Furthermore, not all 

QTL intervals were fine mapped into small enough intervals with the current 

number of SNP markers used. Therefore, more high density SNP markers are 

needed for further refining these QTL to be more useful for other studies aimed to 

identify causative mutations. Now that the BovineSNP50 chip has become 

available (Matukumali et al. 2009), it will provide a powerful tool for further  

identifying and fine mapping QTL regions for QTN search and for the application 

of MAS or/and genomic selection.   

Nevertheless the current QTL and SNPs that associated with ultrasound and 

carcass traits provide good reference points for further analyses that could be used 

to identify polymorphic SNPs that regulate variations of carcass traits. Also, the 

genes that harbor SNPs associated with traits are useful candidates that could 

facilitate functional annotation of the bovine genome and promote further 

functional and comparative genomics studies of carcass merit traits genes in beef 

cattle. It is important that these QTL and SNP effects be confirmed and validated 

in other beef cattle populations with different genetic background before they can 

be applied to marker assisted selection.   

 

5.2. Future Research 

The QTL that have been mapped in the current study have led to the 

detection of SNPs that were associated with ultrasound and carcass merit traits as 
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well as the genes in which these SNPs were located.  This information could be 

used to identify polymorphic SNP variants within the genes that regulate variation 

of carcass traits in beef cattle. This can be achieved through positional candidate 

gene analysis to identify causative mutations on the trait variations.  Moreover, 

further research is encouraged to identify the QTL using higher denser SNP 

marker panels and to confirm the QTL using different cattle populations in 

different environments for the effective application of marker-assisted selection or 

genomic selection. Alternatively, the use of more advanced QTL mapping 

methods such as Bayesian-type methods, which can handle multiple markers of 

entire genome and provides more accurate estimates of QTL parameters should be 

emphasized for QTL detection. 
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