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Abstract
In the mining and petroleum industries, subsurface resources are modeled using data sets ob-

tained from widely spaced drilling. It is crucial to optimize the use of available information from

these data sets while reducing the amount required to adequately assess risks and uncertainties. Typ-

ically, these data sets include spatially correlated categorical and continuous variables. Geostatistics

is commonly applied to model these types of spatial variables.

Categorical variables are modeled first to establish stationary domains for continuous variables

like ore grades and, therefore, are essential for the accurate modeling of continuous variables. Tech-

niques such as object-based models (Lantuéjoul, 2002), sequential indicator simulation (A. G. Jour-

nel & Alabert, 1990), multiple-point statistics (S. Strebelle, 2002), truncated Gaussian and pluri-

Gaussian simulation (Armstrong et al., 2011; Matheron et al., 1987), and hierarchical truncated

pluri-Gaussian simulation (D. Silva, 2018) have been developed to model and characterize geological

uncertainties. Modern approaches in multivariate modeling of continuous variables include principal

component analysis (PCA) for dimension reduction and decorrelation. Suro (1988) applied PCA to

decorrelate indicators and used kriging, followed by a back transformation, to derive the conditional

cumulative distribution function.

This research aims to obtain a greater understanding of the characteristics of categorical indicator

variables. Studying the characteristics of categorical indicator variograms led to the demonstration

that the nugget effect must be zero. Additionally, correlograms are shown to be a robust alternative

in the presence of clustered data. This work also compares multiple-point statistics-based (MPS)

conditional probabilities to variogram-based simple kriging (SK), ordinary kriging (OK), simple

cokriging (SCK), and standardized ordinary cokriging (SOCK) estimates to evaluate which kriging

variant comes closest to the benchmark MPS probabilities. SOCK stands out among the kriging

variants when compared to the MPS probabilities. Subsequently, SOCK and OK estimates are

compared to reference (training images) for several different cases. The difference in the root mean

squared error (RMSE) gives a very small advantage to the SOCK method.

The research work of this thesis also led to the implementation of a method to mitigate extreme

weights that result from indefinite or ill-conditioned matrices in linear systems of equations. The

method consists of inflating the diagonal of the left-hand side covariance matrix by a small constant.

As the constant increases, all weights converge to 1
n , where n is the number of weights. This

technique shows that the extreme weights are mitigated but does not significantly alter the overall

estimation across an entire grid.
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Abstract

Lastly, this thesis applies principal component analysis to decorrelate categorical indicator vari-

ables and estimate each of the decorrelated components independently. The technique reduces the

dimension by K − 1, where K is the number of categories, because the last variable is explained

through a linear combination of the other variables. However, the estimation of the independent

components and their subsequent transformation back to the original values proves to be less ef-

fective than ordinary kriging. This could be explained by the mixing of spatial structure when

transforming to principal components. The ranges of the principal components’ variograms account

for the ranges of all the categories’ indicator variograms.
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Chapter 1

Introduction
This chapter presents an overview of the problem that drives the research topic of this thesis,

accompanied by a literature review. Additionally, the thesis statement and the contributions, and

the outline of the thesis are presented. Section 1.1 offers an overview of geostatistical methods to

model categorical and continuous variables. A literature review is presented in Section 1.2. Section

1.3 introduces the thesis statement and contributions. Section 1.4 presents an outline of the thesis,

providing a brief summary of each chapter.

1.1 Problem motivation

Since its conception by Matheron (1962), geostatistics aims to model spatially correlated vari-

ables. The cost associated in acquiring samples, both in mining and petroleum industry, leads to

relatively few samples. According to Rossi and Deutsch (2013), less than one billionth of the explored

mass is sampled before mining. In the petroleum industry, there are even fewer samples according

to Chilès and Delfiner (2012). Therefore, taking maximum advantage of the information contained

in the sampled data and, perhaps, reducing the number of data to achieve a good understanding

of risk and uncertainty is crucial (D. Silva, 2018). It is essential to understand the behavior of the

samples to get a good prediction of the rock properties at unsampled locations.

Geostatistics deals with characteristics and properties of the sample data (e.g. mean and cor-

relation) to simulate or estimate a model of the rock properties. Simulation generates multiple

realizations of equally probable numerical models (Goovaerts, 1997). The models honor the values

observed at the samples locations and reproduce the spatial characteristics observed in the data.

Simulation allows assessment of risk and uncertainty.

Geologic variables are divided into two main types: categorical or continuous. Categorical

variables are discrete variables defined by a name or label, such as rock types or facies, whereas

continuous variables are quantifiable, such as porosity or grade. Categorical variables are modeled

first, then continuous variables are modeled within each category. Categorical variables have the

critical role of establishing volumes within which the continuous variables are considered stationary

(C. V. Deutsch, 2006; Pyrcz & Deutsch, 2014; Rossi & Deutsch, 2013). Hence, it is essential to

carefully model categorical variables to ensure accurate modeling of continuous variables.

According to Rossi and Deutsch (2013), the distribution of continuous variables is primarily

governed by the stationary domains defined by categorical variables. Numerous techniques exist

for the modeling of categorical variables. These methodologies are divided into stochastic and

1



1. Introduction

deterministic. An explicit deterministic approach creates a model by interpreting geologic variables

in cross sections and extending the interpretations to three-dimensional (3-D) models. Deterministic

geologic models lack a measure of uncertainty, thus, they cannot be used for characterization of risk

(Rossi & Deutsch, 2013).

Stochastic techniques are divided into object based and cell based approaches. The object based

method replicates morphological patterns like channels in fluvial system. Matching observed data

is challenging. Geological events often disrupt the original morphology, resulting in structures that

may no longer resemble the original objects (D. Silva, 2018). Cell based techniques can match the

data easily.

Among the cell based techniques, multiple point statistics (MPS) stands out as the methodology

with the greatest capability of reproducing non-linear features. MPS relies on the use of a reference

model known as a training image (TI).

Indicator-based techniques assign an indicator to each categorical geological variable. The in-

dicators can be kriged with multiple indicator kriging (MIK) or simulated in a sequential manner.

Indicator kriging calculates the probability of the geologic variable being present. Conditional sim-

ulation provides a probabilistic model of the geologic variable (Rossi & Deutsch, 2013). Sequential

indicator simulation (SIS) and hierarchical truncated pluri-Gaussian (HTPG) simulation are exam-

ples of that method.

An assumption of multivariate Gaussianity and the linear model of coregionalization (LMC) is

used when working with multivariate modeling of continuous variables. After univariate transforma-

tions of the variables, they are assumed to be multivariate Gaussian, but this is not always correct for

geologic variables R. M. Barnett (2015). Poor reproduction of multivariate relationships may occur

by incorrectly assuming Gaussianity. Therefore, advances have been made in the multivariate mod-

eling of continuous variables such as principal component analysis (PCA) (Davis, 1987; Hotelling,

1933); minimum/maximum auto-correlation factors (MAF) (Desbarats & Dimitrakopoulos, 2000),

projection pursuit multivariate transformation (PPMT) (R. M. Barnett, Manchuk, & Deutsch, 2014;

Friedman, 1987) to overcome the limitations of the traditional methods.

Truncated Gaussian simulation (TGS) was introduced by Matheron et al. (1987) using only

one Gaussian variable. Galli et al. (1994) generalized the method to truncated pluri-Gaussian

simulation (TPGS) for more than one Gaussian variable. Emery and Cornejo (2010) introduced

the use of truncated Gaussian simulation for modeling multivariate categorical variables applying

LMC to co-simulate the latent variables. For multivariate categorical variables modeling, the most

recent and advanced technique was achieved by the work of D. Silva (2018) and the development

of the hierarchical truncated pluri-Gaussian technique. Part of this thesis focus on exploring the

indicator based approach to see its capability in estimating categorical variables using a linear

model of coregionalization. The thesis also analyzes the characteristics of indicator variograms and

covariances. Additionally, the thesis develops a regularization technique to mitigate the presence of
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extreme weights. Moreover, the thesis studies the decorrelation of the indicators through PCA and

the independent estimation of the components.

1.2 Literature review

Geostatical methods rely on statistical models that are based on random function (RF) theory.

These techniques model the uncertainty at unsampled locations. In the 1960’s, Matheron (1971) de-

veloped the theory of regionalized variables, which integrates probability theory, employing random

variables (RVs) and random functions (RFs) to address spatial challenges in modelling subsurface

resources. A RV refers to a variable with values determined stochastically by a probabilistic mech-

anism (Isaaks & Srivastava, 1989). RFs, on the other hand, comprise sets of RVs defined within a

specifc domain. The roots of geostatistics is also attributed to the groundbreaking work of D. G.

Krige in the Witwatersrand gold fields in South Africa in the 1950s when the challenge of estimating

grades arised (Krige, 1951). Matheron (1962) offered theoretical support for the unbiased estimation

of mineral resources known as Kriging.

Kriging is known as a Best Linear Unbiased Estimator (BLUE) method in spatial statistics as

it enables accurate predictions of unknown locations based on nearby data. Matheron (1963) was

the first author to publish about kriging. The concept of a RV was developed by Matheron (1971)

and forms the foundation of geostatistics.

According to Agresti (2002), there are three main groups in which categorical variables are

classified: nominal, ordinal and interval. Nominal variables have no intrinsic ordering of categories.

Ordinal variables exhibit a natural ordering, yet the distances between categories are unspecified.

Interval variables are both ordered and possess defined numerical distances between categories. Cate-

gorical variables may also be binary (dichotomous) or consist of multiple categories (polychotomous).

Geological domains are usually delineated by multiple categories of ordinal and nominal types.

For instance, ordinal categories in geology can include sedimentary sequences shaped by depositional

environments and domains characterized, for example, by degrees of alteration and weathering.

Nominal variables, on the other hand, lack distinct genetic shapes or could have been altered by

events such as fractures and intrusions.

Pyrcz and Deutsch (2014); Rossi and Deutsch (2013) state that in the mining industry, cat-

egorical variables are mainly used to represent stationary domains; and within the stationary do-

mains, continuous variables like grades are either estimated or simulated using geostatistical methods.

There are two main ways of modeling these domains: deterministc and stochastic. Deterministic

methods incorporate the parametric wireframing technique (Bezier, 1974), interpolation of volume

functions (Cowan et al., 2003), and signed distance functions (McLennan & Deutsch, 2006). These

approaches do not account for uncertainty and do not reproduce small scale variability (D. A. Silva,

2015). Numerous stochastic methods for modeling categorical variable have been developed and are
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reviewed.

A. G. Journel (1983) proposed the application of indicators in geostatistics for the non-parametric

prediction of spatial distributions. Indicators are a useful approach in cases when modeling variables

with high coefficient of variation and long-tailed distributions for continuous variables. When mod-

eling continuous variables, binning of the data is a requirement and that leads to information loss.

However, this does not applies to categorical variables, which naturally possess binned distributions.

The estimation is performed with indicator kriging (IK), and the spatial variability of the indicator

variable is through the indicator variogram. This theory is reviewed in Chapter 2.

The indicator formalism is also the base for indicator conditional simulation (C. V. Deutsch, 2006;

A. Journel & Isaaks, 1984). Sequential indicator simulation (SIS) (Alabert, 1987; C. V. Deutsch,

2006) is a Monte Carlo simulation technique implemented with sequential steps likewise the sequen-

tial Gaussina simulation. The local conditional distribution are non-parametrically estimated using

the indicator kriging framework. SIS is well-suited for simulating binary categorical variables, and

accommodates multiple categories by employing multiple binary indicator transformations. While

SIS simulations generally replicate category proportions and their spatial distribution, they may

not consistently reproduce category orderings, particularly in sparsely sampled areas. Consequently,

the technique is well-suited for nominal categorical variables (D. Silva, 2018). Also, SIS realizations

frequently exhibit exaggerated short-scale variability, leading to noisy categorical models. More-

over, categories with lower proportions tend to be undersampled, while those with higher propor-

tions are oversampled, causing a disparity in global proportion statistics. One solution to address

these challenges is the implementation of the maximum a posteriori selection (MAPS) technique

(C. V. Deutsch, 1998). The limitation of cleaning the realizations include the potential of hiding

the true short scale-variability and the necessity for users to define parameters arbitrarily to ensure

reproduction of the conditioning data C. V. Deutsch (1998).

Multiple point statistics is another method for categorical variables modeling that does not rely

on variograms. MPS considers relations among multiple points simultaneously, offering an alter-

native to traditional kriging-based methods that rely on two point statistics. MPS was initially

proposed by A. Journel and Alabert (1989) and was then used in simulation by C. V. Deutsch

(1992), Guardiano and Srivastava (1993), S. B. Strebelle (2000), Lyster (2009), and others. Unlike

conventional geostatistics, MPS bypasses the explicit definition of a RF. MPS can generate cate-

gorical models that capture complex nonlinear in mineral deposits (Guardiano & Srivastava, 1993;

A. G. Journel, 2004). The method relies on the principle of single normal equations (SNE). Single

normal equation simulation (SNESIM) serves as a streamlined MPS algorithm initially introduced

by (Guardiano & Srivastava, 1993). S. Strebelle (2002) offers a comprehensive examination of the

progression of these MPS algorithms and introduces an efficient non-iterative algorithm (SNESIM).

In MPS, the spatial heterogeneity is deduced from a training image. The TI is seen as a

rasterized illustration of the categories being analyzed (Boucher, 2009) and serves as the prior
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model of spatial structure (A. Journel & Zhang, 2006). Also, a TI is a facies or rock type model

that is exhaustively populated by the the categories of interest (Boisvert, Pyrcz, & Deutsch, 2007;

C. V. Deutsch, 1992). Utilizing a dataset as a training image ensures the geological realism of

MPS. Nonetheless, obtaining a fully representative dataset (TI) of the deposit of interest is often

challenging. MPS-based techniques enable conditioning, yet they remain computationally intensive,

particularly regarding memory demands. Furthermore, a key challenge in utilizing MPS is the

need for a training image that precisely reflects the characteristics and statistics of the domain of

interest. Employing a representative training image is crucial for generating realistic realizations

that faithfully capture the studied phenomena (Boisvert et al., 2007; A. Journel & Zhang, 2006).

Truncated Gaussian simulation (TGS), introduced by Matheron et al. (1987), offers an alterna-

tive for simulating categorical variables. This method operates on the assumption that categorical

variables emerge from truncating an underlying latent continuous variable. The latent variable is

a realization of a Gaussian random function (GRF), and the truncation rule governs the ordering

and proportion of each category. Galli et al. (1994) proposed the truncated pluri-Gaussian simula-

tion (TPGS), which is an extension of the TGS, to employ an arbitrary number of GRFs as latent

variables. This extension enables the simulation of more intricate structures of categories, includ-

ing ordinal categorical variables such as alteration zones in lateritic nickel or depositional layers in

petroleum reservoirs. TPGS aims to replicate categorical proportion, two-point spatial correlation,

and transition probabilities.

The truncation rule, also known as the lithotype rule, plays a crucial role in the TPGS ap-

proach by regulating the interactions, transitions, and proportions among categories. Typically, the

definition of truncation rules relies on transition probabilities observed in data and the conceptual

geological model (Mariethoz, Renard, Cornaton, & Jaquet, 2009). The practical implementation of

TPGS is frequently constrained to incorporating no more than three Gaussian latent variables. This

limitation was primarily due to the prevailing method of defining truncation rules through trun-

cation masks. D. Silva (2018) addresses this constraint by introducing the hierarchical truncated

pluri-Gaussian (HTPG) approach. HTPG employs a tree structure to truncate Gaussian latent vari-

ables, making it easier to define based on geological expertise. This methodology enables the use of

any number of latent variables to model any number of categories, thereby it increases the potential

of the truncated Gaussian method (D. Silva, 2018). Moreover, the HTPG framework developed by

D. Silva (2018) also accommodates the modeling of multiple categorical variables. This is achieved

by enabling correlations among the latent Gaussian variables that define each categorical variable.

This enhancement optimizes the utilization of available information by avoiding the consolidation

of multiple categorical variables into a single set. HTPG is, perhaps, the most advance method for

modeling categorical variables up to date.

Significant progress has been achieved in multivariate modeling of continuous variables in re-

cent years. These modern apporaches are based on multivariate transformations such as principal
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component analysis (PCA). PCA was first introduced by Hotelling (1933) and Pearson (1901) and

serves as a method for dimension reduction and decorrelation. It transforms a correlated multivari-

ate distribution into orthogonal linear combinations of the original variables. PCA proves valuable

in geostatistical modeling for two primary reasons:

1. Multivariate data, comprising several correlated geological variables, are decorrelated by PCA,

making them uncorrelated. This allows for independent geostatistical modeling of the decor-

related variables, followed by PCA back-transformation to restore the original correlation to

the modeled variables (R. M. Barnett, 2017).

2. PCA can be employed for dimension reduction within this framework. Independent geosta-

tistical modeling proceeds using a subset of the decorrelated variables, and the PCA back-

transformation provides models for all original variables (R. M. Barnett, 2017).

Suro (1988) applied kriging the principal component of the original indicator variables for con-

tinuous variables. Suro (1988) was able to infer the conditional cumulative distribution function

(CDF) by kriging the principal components and then applying a back transformation.

The primary objective of this thesis is to investigate the potential of cokriging with collocated

data in situations where an exhaustive secondary dataset is not available by using the full informa-

tion of covariance and cross-covariance between the indicator variables. Additionally, this research

will explore the decorrelation of indicator variables to assess the impact of estimating the compo-

nents independently. To achieve this goal, the thesis will examine the characteristics of categorical

indicator variables. It will compare the performance of Multiple Point Statistics (MPS), indica-

tor cokriging, and indicator ordinary kriging for categorical variables. Furthermore, the thesis will

present a regularization method to avoid extreme weights when applying cokriging. Finally, it will

explore the use of Principal Component Analysis (PCA) for indicators to decorrelate categorical

indicators and estimate the components independently.

1.3 Thesis statement and contribution

This thesis aims to advance the geostatistical modeling of categorical variables and, consequently,

improve resource estimation by: a) thoroughly investigating the characteristics of categorical variable

indicators to gain a deeper understanding of them; b) assessing the potential of utilizing the full

information of covariance and cross-covariances for estimation through cokriging; and c) exploring

the potential of decorrelating the indicator variables and estimating them independently. The main

contributions of this thesis are as follows:

1. While analyzing the characteristics of the indicator variogram for categorical variables a demon-

stration is presented showing that the nugget effect is zero. The correlogram is shown to be

more robust than the variogram.
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2. Although indicator ordinary kriging gives optimal estimates of categorical variables, there are

circumstances where the use of the full information of covariance and cross-covariance will

improve the estimates through standardized ordinary cokriging.

3. The systems of equations involved in cokriging of categorical variables could lead to system that

are close to being non-positive definite. Therefore, the systems can produce extreme solutions

weights that could lead to unacceptable estimates. A regularization method is presented in

this thesis that mitigates the presence of extreme weights.

4. Lastly, the decorrelation method of PCA was applied to the indicator of categories to decor-

relate and independently estimate them. The original estimates are obtained after a back-

transformation. Although, being a curious method because of the dimension reduction, the

estimates are not better than indicator ordinary kriging.

The insights obtained from this thesis contribute to a greater understanding of categorical vari-

able indicators. An outline of the thesis is presented in the following section.

1.4 Thesis outline

The next chapter presents the necessary theoretical background of the subjects discussed in this

thesis. It includes a summary of the theory of the geostatistical methods for modelling categorical

variables that are part of this thesis. The chapter explains the indicator formalism, indicator kriging,

standardized oridinary cokriging and MPS. Additionaly, it includes the theory behind PCA.

The third chapter describes the characteristics of the spatial correlation of the categorical indica-

tors. It analyzes the variogram, covariance and cross-covariance of the indicator categorical variable.

Moreover, it analyzes the behavior of the variogram and correlogram in presence of clustered data.

The fourth chapter compares MPS, indicator ordinary kriging, and standardized ordinary cok-

riging. These comparisons were done with several different TI’s and a summary of the results is

presented. The cases where standardized ordinary cokriging outperforms indicator ordinary kriging

are presented too.

The fifth chapter describes the regularization method for cases where cokriging systems produce

extreme solution weights. The regularization of the cokriging systems mitigates the presence of

extreme weights. Locally, the estimates are improved, although it did not make a significant impact

globally.

The sixth chapter presents the idea of decorrelating categorical indicator variables. The decor-

relation is done through PCA. There is an interesting dimension reduction as the last principal

component always have zero variance. The components are kriged independently and then back-

transformed to the original unit. This was done on a synthetic case and the results are presented.
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The seventh chapter provides the concluding remarks. This chapter summarizes the results and

contributions. Chapter 7 also outlines the limitations of the thesis and suggests future work.
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Chapter 2

Theoretical Background
This thesis involves the modeling of categorical variables. This chapter presents the theoretical

background of the concepts involved. Section 2.1 explains the concept of stationarity. Section 2.2

describes the indicator formalism, including the mean and variance of an indicator variable. Section

2.3 reviews the concepts of the variogram, covariance, cross variograms, and cross covariances of

indicators. Section 2.4 presents both simple and ordinary indicator kriging. Simple cokriging and

standardized ordinary cokriging are discussed in Section 2.4. Section 2.5 reviews the theory of MPS,

and Section 2.6 describes the theory of PCA.

2.1 Stationarity

The concept of stationarity involves the pooling of data for subsequent geostatistical assessment.

As stationarity is not a hypothesis, it cannot be tested (Pyrcz & Deutsch, 2014). Once more data

is available, or when the geostatistical analysis has started, the decision of stationarity may be

reconsidered. For categorical variables, the importance of trend modeling increases significantly,

particularly in the field of earth sciences, where categories are almost always non-stationary.

2.2 Indicator formalism

Consider K distinct categories. These categories are mutually exclusive, meaning only one

category can be present at any given location. Additionally, they are exhaustive; one of the categories

must be present at all locations. The categorical variable is represented by a series of K indicator

variables within a domain A where u indicates a location (C. V. Deutsch, 2006; A. G. Journel, 1983):

ik(u) =

 1, if category k prevails at location u

0, otherwise
, k = 1, . . . ,K (2.1)

A. G. Journel (1983) states that indicators describe the probability of a specific category k being

present at a location. In other words, when the indicator is 1, the category is present, and when it

is 0, the category is absent; see Figure 2.1 retrieved from Mizuno and Deutsch (2022).

While hard measurements are encoded as binary values 0s or 1s, soft or imprecise measurements

are encoded as continuous probabilities between 0 and 1. Geostatistical inference is performed using

indicator data and includes declustering to ensure representative proportions and variography to

analyze the spatial continuity of each of the K indicator variables (C. V. Deutsch, 2006).
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Figure 2.1: Facies description and their respective indicators. Retrived from Mizuno and Deutsch (2022)

The expected value (mean) of an indicator variable is the proportion of that variable, see Equa-

tion 2.2 :

E
{
Ik
}
= pk (2.2)

The variance, also known as the second moment, of an indicator is another crucial parameter.

The variance demonstrates the variability of an indicator variable and is also dependent on the

proportion. Therefore, the variance is defined as Equation 2.3:

Var
{
Ik(u)

}
= E

[(
Ik(u)− pk

)2]
Var

{
Ik(u)

}
= E

{
Ik(u)2

}
− [E

{
Ik
}
]2

Var
{
Ik(u)

}
= pk − p2k

Var
{
Ik(u)

}
= pk

(
1− pk

)
(2.3)

Where E
{
Ik(u)2

}
is the expected value of the squared indicator, which is equal to pk, since the

square of a variable that is only 0 or 1 is the same as the variable itself. The estimation is usually

performed by kriging, thus the term indicator kriging (IK).

2.3 Indicator variogram and covariance

Two-point statistics, such as variogram and covariance, are used to understand the spatial

behavior of the indicator variable. The indicator variogram is used to characterize the spatial

heterogeneity of the indicator variable. Spatial statistics play a crucial role in defining uncertainty

and heterogeneity. The experimental variogram for category k separated by a lag vector h is derived

from the indicators (C. V. Deutsch & Journel, 1997), see Equation 2.4:

2γk(h) = E
{[

Ik(u)− Ik(u+ h)
]2}

, k = 1, . . . ,K (2.4)
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In the direct indicator variogram for category k, only the average transition from category k to

any other category between two locations are taken into account. The cross indicator variogram

between categories k and k′ is defined as Equation 2.5:

2γkk′(h) = E
{[

Ik(u)− Ik(u+ h)
] [
Ik′(u)− Ik′(u+ h)

]}
k′ ̸= k k, k′ = 1, 2, . . . ,K (2.5)

The covariance of an indicator variable at two spatial locations separated by a lag vector h is

defined as Equation 2.6:

Ck(h) = E
{
Ik(u) · Ik(u+ h)

}
− E

{
Ik(u)

}
· E

{
Ik(u+ h)

}
k = 1, 2, . . . ,K (2.6)

In geostatistics, the indicator covariance is usually calculated through its relationship with the

indicator variogram when stationary. The relationship is given by Equation 2.7:

Ck(h) = Ck(0)− γk(h), k = 1, 2, . . . ,K (2.7)

where Ck(0) is the covariance at lag zero or the variance.

The indicator cross covariance between categories k and k′ is defined as Equation 2.8:

Ckk′(h) = E[Ik(u) · Ik′(u+ h)]− E{Ik(u)} · E{Ik′(u+ h)} k′ ̸= k k, k′ = 1, 2, . . . ,K (2.8)

The modeling of experimental indicator variograms is carried out using valid models like spher-

ical and exponential. These models are employed to construct the kriging systems necessary for

estimating the indicator variable at the model nodes. A separate kriging system is solved for each

category at every location. The Gaussian variogram model is not compatible with indicator random

functions, even if the criteria of positive definiteness is satisfied (Armstrong, 1992; Christakos, 1984).

2.4 Indicator kriging

Explicit random function models for indicators are not available. Kriging is used to estimate

local conditional probability distributions. The optimal choice of kriging is influenced by the decision

of stationarity and the utilization of secondary information (Mizuno & Deutsch, 2022). Simple

kriging (SK), ordinary kriging (OK), simple cokriging, and standardized ordinary cokriging are

reviewed.

2.4.1 Simple kriging

SK calculates the probability for each category using the conditioning data and a declustered

global mean. The estimator is defined as Equation 2.9:

i∗SK(u; k)− pk =
n∑

α=1
λSK
α (u; k) ·

[
i
(
uα; k

)
− pk

]
, k = 1, 2, . . . ,K (2.9)

where λSK
α are the weights calculated from the simple kriging systems of equations for each location

and category.
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2.4.2 Ordinary kriging

In ordinary kriging, the sum of the weights is constrained to equal one, ensuring that the global

mean is not weighted and all the weight is allocated to the sample data. The estimator is defined

as Equation 2.10:

i∗OK(u; k) =
n∑

α=1
λOK
α (u; k) · i

(
uα; k

)
(2.10)

where λOK
α are the weights calculated from the ordinary kriging systems of equations for each

location and category.

2.4.3 Simple cokriging

The estimator for simple cokriging closely resemble that of simple kriging but it incorporates

both the direct and cross covariances. The estimator is defined as Equation 2.11:

i∗SCK(u0; k0)− pk0 =
K∑

k=1

n∑
α=1

λSCK
α (u0; k0; k)

[
i
(
uα; k

)
− pk

]
(2.11)

Where i∗SCK(u0; k0) is the simple cokriging estimate of the indicator variable at location u0 for

category k0; pk is the proportion of category k. The double summation runs over all categories (k

from 1 to K) and all sample locations (α from 1 to n). λSCK
α (u0; k0; k) are the simple cokriging

weights. i
(
uα; k

)
is the indicator value at location uα for category k.

2.4.4 Standardized ordinary cokriging

A commonly preferred method, the standardized ordinary cokriging, involves creating new sec-

ondary variables that share the same mean (proportion) as the primary variable. This method

imposes a constraint where all the weights must sum to one (Rossi & Deutsch, 2013). The estimator

is defined as Equation 2.12:

i∗SOCK
(
u0; k0

)
− pk0√

pk0

(
1− pk0

) =
K∑

k=1

n∑
α=1

λSOCK
α

(
u0; k0; k

) i (uα; k
)
− pk√

pk
(
1− pk

) (2.12)

Where
∑K

K=1
∑n

α=1 λ
SOCK
α

(
u0; k0; k

)
= 1; k0 = 1, . . . ,K, is the category being estimated and

k represents the indicator of the data. i∗SOCK(u0;k0)−pk0√
pk0(1−pk0)

represents the standardized estimated value

for category k0 at location u0. λSOCK
α

(
u0; k0; k

)
are the weights assigned to each data point for each

category in the cokriging system. i
(
uα; k

)
represents the observed value of the indicator variable

for category k at location uα.
√
pk

(
1− pk

)
is the standard deviation of the indicator variable for

category k.

Kriging may result in negative weights being assigned to data that are screened by nearer samples.

Typically, this aids in local extrapolation and enhances estimation accuracy. However, occasionally,

based on the variogram and the arrangement of local data, this can result in negative estimates for
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indicators. A standard practice in such scenarios is to adjust negative estimates to zero and then

rescale the remaining estimates by their sum (C. V. Deutsch, 2006).

2.5 Multiple point statistics

Unlike conventional geostatistics, multiple point statistics does not depend on the explicit

definition of a random function. It instead extracts the required multivariate distributions from

training images. This approach sets it apart from traditional geostatistics, which relies on two point

statistics via a covariance or variogram model (Hu & Chugunova, 2008). The advantage of MPS lies

in its applicability across diverse geological settings, provided there is a TI that accurately represents

the geological heterogeneity.

MPS derives the conditional probability directly from a TI that captures the geological and

geometric characteristics of the desired physical property. Instead of formulating a random function

model, the primary task lies in developing an authentic TI. The essence of MPS is the process of

deducing the conditional distribution from a TI (Guardiano & Srivastava, 1993; Hu & Chugunova,

2008).

Analyzing the relative frequencies in a dataset enables the estimation of probabilities for multiple

point events. However, it is crucial to acknowledge that accurate calculation of these frequencies,

and thus reliable inference, is only possible when there is an adequate number of repetitions of an

event (Ortiz & Deutsch, 2004).

Consider a TI where three facies are present: blue, white, and red, see Figure 2.2. Also, consider

an event configuration of three sample data and an unknown location (Figure 2.3). The configuration

setting is:

• Sample 1 (red) is +3 grid units northing and -1 easting.

• Sample 2 (blue) is +3 grid units easting.

• Sample 3 (blue) is -2 units northing.

To determine what facies will be estimated at the unknown location, Bayes Law is recalled to

calculate the conditional probabilities, see Equations 2.13:

f(0 = blue | 1 = red, 2 = blue , 3 = blue ) = f(0 = blue , 1 = red, 2 = blue , 3 = blue )
f(1 = red , 2 = blue , 3 = blue )

f(0 = white | 1 = red, 2 = blue , 3 = blue ) = f(0 = white, 1 = red, 2 = blue , 3 = blue )
f(1 = red , 2 = blue , 3 = blue )

f(0 = red | 1 = red, 2 = blue , 3 = blue ) = f(0 = red , 1 = red , 2 = blue , 3 = blue )
f(1 = red , 2 = blue , 3 = blue )

(2.13)

In Equations 2.13, the four-variate joint probabilities (numerators) and the marginal probabili-

ties (denominators) must be deduced from the training image (TI). These probabilities are acquired

by scanning the TI and directly computing the necessary probabilities, see Figure 2.4.
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Figure 2.2: TI example.

Figure 2.3: Samples configuration.

Figure 2.4: TI scanning to obtain probabilities. The image on the right is moving +1 on x axis.

Figure 2.4 illustrates an example of scanning a gridded TI for a particular arrangement of

samples, recording the findings, and computing the required probabilities. A challenge with MPS

is that the combination of configurations becomes unmanageable with the expansion of the number

of categories and grid nodes.

In the given example, after calculating the conditional probabilities using Bayes’ Law, the results

are as follows:

f(0 = blue | 1 = red, 2 = blue , 3 = blue ) = 0.014068
0.021985

= 0.640

f(0 = white | 1 = red, 2 = blue , 3 = blue ) = 0.007380
0.021985

= 0.336

f(0 = red | 1 = red, 2 = blue , 3 = blue ) = 0.000537
0.021985

= 0.024

(2.14)
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Note that the sum of these probabilities is equal to one, within a round-off error. The probability of

encountering white is higher than red, reflecting the greater proportion of white in the TI. However,

problems may arise if the data configuration is not reliably sampled in the TI.

2.6 Principal component analysis (PCA)

PCA is an algebraic method used to transform one vector into another. In two-dimensional

(2-D), PCA can be viewed as an axis rotation, where the rotation angle is selected to maximize the

spread of the first transformed variable along the first axis and minimize the spread of the second

transformed variable along the second axis while making the correlation equal to zero along the

rotated axes.

Consider K indicator variables I1, . . . , IK that will be estimated. The conditioning data is

represented by a matrix I: iα,k, α = 1, . . . , n, k = 1, . . . ,K, where n is the number of samples.

Variables must be standardized to have a mean of zero and a variance of one, as this facilitates the

interpretation of the PCA results. Therefore, the standardization of the indicators is done before

PCA transformation, see Equation 2.15:

Y : yα,k =

(
iα,k − pk

)
σk

, for α = 1, . . . , n, k =, 1, . . . ,K (2.15)

where pk is the proportion of Ik, σ2
k is the variance of Ik, and σk is the standard deviation. Every

standardized variable Yk has mean of zero and variance of one. PCA centers on the covariance

matrix Σ of the standardized data:

Σ : Ck,k′ = 1
n

n∑
α=1

yα,k · yα,k′ , for k, k′ = 1, . . . ,K (2.16)

The values in Σ characterize the multivariate system of the Y data regarding linear variability

and interdependence. Ck,k are the diagonal elements and represent the variance of each Yk. The

off-diagonal elements Ck,k′ , k ̸= k′, show the covariance between Yk and Yk′ . Given that each Yk

has a variance of one, these covariances are equivalent to correlations.

The PCA tranform starts with the spectral decomposition (Equation 2.17) of the covariance

matrix (Σ) at h = 0 resulting in the eigenvector matrix V with elements vk,k′ where k, k′ = 1, . . . ,K

and the diagonal eigenvalue matrix D with elements dk,k where k = 1, . . . ,K:

Σ = VDVT (2.17)

The PCA transformation is then executed by multiplying the matrix Y with matrix V, see

Equation 2.18:

P = YV (2.18)

This process rotates the multivariate data, ensuring that the resulting principal components in
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2. Theoretical Background

P are uncorrelated. By multiplying P with the transpose of V, the data rotates back to its original

form in Y, providing the back transformation, see Equation 2.19.

Y = PVT (2.19)

The eigenvector matrix can be viewed as a rotational matrix that establishes a new basis, trans-

forming the correlated data into an orthogonal form. The product of Y1, . . . , YK with the kth column

of V yields the Pk principal component. Therefore, each principal component is essentially a linear

combination of the original variables, clarifying the term of linear combination.

Each dk,k value in the matrix corresponds to the variance Pk, and it also indicates the amount

of variability that Pk accounts for in the Y1, . . . , YK multivariate system. To specify the percentage

of variability that Pk explains in Y1, . . . , YK is determined as dk,k/
∑K

k′=1 dk′,k′ · 100. The first

component P1 accounts for the highest amount of variability, followed by P2 for the second highest,

and so on (R. M. Barnett, 2017).

In this chapter, a theoretical foundation relevant to this thesis is presented. The concept of

stationarity was introduced then the indicator formalism was explained. Additionally, the chapter

discusses variograms and covariance, including both cross variogram and cross covariance. There is

also a review of indicator kriging methods that are involved in this dissertation. The chapter showed

a section on MPS theory, accompanied by a brief example, and concluded with an explanation of

the principles underlying PCA transforms.
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Chapter 3

Characteristics of Categorical Indicator
Variogram/Covariance

This chapter presents the characteristics of categorical indicator variogram and covariance

functions. Section 3.1 explains the link between variograms and geometry. Section 3.2 describes

the sill and range of a variogram. Section 3.3 demonstrates that the nugget effect for a categorical

indicator variogram must be zero. Section 3.4 deduces a non-stationary relationship between the

variogram and covariance. Section 3.5 suggests a method for variogram modeling in cases with

clustered samples. Finally, Section 3.6 compares the variogram with the correlogram to determine

which experimental measure is more robust in various scenarios.

3.1 Link to geometry

The variogram is crucial in geostatistics for modeling spatial relationships. The spherical and

exponential models are the most commonly used due to their conditional negative definiteness which

ensures a positive definite covariance matrix. These models are essential for understanding how

spatial correlation changes with a certain vector lag (h), a key aspect in predicting unobserved

locations based on known data. However these traditional models sometimaes struggle with complex

geological data. According to C. V. Deutsch and Journel (1997), linear combinations of spherical

and exponential models are valid functions and effective for modeling a wide range of variograms.

Despite this, there remain scenarios where even these combined models fail to capture the complexity

of the spatial relationships.

Geometric variograms offer a solution for situations where traditional variogram models are

insufficient. These variogrmas focus on the geometric properties of spatial features. The key is

their foundation in the autocorrelation function of geometric objects. This function measures the

similarity of a shape with itself when displaced by a certain vector lag (h) (Pyrcz & Deutsch, 2006).

The function is defined as the volume of the intersection Kv(h) of the object V with itself scaled by

the object’s volume Kv(0), see Equation 3.1.

γ(h) = 1− Kv(h)
Kv(0)

(3.1)

By normalizing this intersection volume by the object’s total volume, a variogram that correctly

represents the spatial structure and continuity of the feature is obtained.

The spherical model, sph(h) = 1.5
(

h
a

)
− 0.5

(
h
a

)3
( for h ≤ a; 1 for h > a); where a is the

range, describes the spatial dependence of a variable, assuming that the function has a spherical
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3. Characteristics of Categorical Indicator Variogram/Covariance

shape. This model is often used for isotropic and homogeneous data, such as geological formations.

It can also be defined in terms of the volume intersection between two spheres separated by a lag

vector h (Equation 3.2) (Serra, 1967).

γ(h) = 1− volume(h)int
volumetotal

(3.2)

Constructing a variogram model based on an elementary geologic shape, such as spheres, does

not automatically ensure that kriged or simulated models will replicate those exact shapes. For

instance, when spheres are randomly embedded within a matrix, the resulting function will not have

a spherical shape. It will depend on the proportion of spheres present in the matrix (p1 = 1 − p0)

where p0 is the proportion of indicator 0 falling outside the sphere. 1− p0 = p1; p1 is the proportion

of indicator 1 falling inside the sphere. The resulting indicator variogram model relates to the

spherical model but is not the same as the spherical variogram (Pyrcz & Deutsch, 2006):

γ(h) = p0

(
1− p

sph(h)
0

)
(3.3)

Equation 3.3 can account for any geometric variogram in the exponent (Pyrcz & Deutsch, 2006).

3.1.1 Sill and range

The indicator variogram γ(h, k), where k =, 1, . . . ,K are the categories’ indicators, represents

the probability of transitioning from inside a region A at location u to outside of A at point u+ h,

with the transition occurring over the extent of the separation vector h. When the separation lag

vector h is very large, the indicator variables I(u + h; k) and I(u; k) become independent. This

means the probability of transitioning becomes the product of the probability of u being in A and

the probability of u + h not being in A, which is equal to p(1 − p) and is the sill; where p is the

proportion of indicator inside A. The maximum sill is reached when p = 0.5, the sill is 0.25.

The range of the indicator variogram represents the distance at which the variogram reaches

the sill (variance) value. In other words, the range is the lag distance at which the variogram value

reaches the sill. Beyond this distance and without a trend, this value remains constant. The range

depends on the proportion of spheres in the matrix because it determines how much data falls within

and outside the spheres. With p being high (high proportion of spheres), there are fewer transitions

between one category to another, thus, the range of the indicator variogram would be larger. This

happens because the category changes over a larger distance, so transitions are less, even at small

distances, making the range larger. The opposite is true, when there are more transitions between

categories, the variogram range will be smaller.

3.1.2 Nugget effect

The behavior of a categorical indicator variogram at the origin (when lag distance h = 0) is an

important characteristic to consider when interpreting the results of a variogram analysis. At the
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3. Characteristics of Categorical Indicator Variogram/Covariance

origin, the two locations being considered are the same, and transitions should not exist; thus, the

variogram at the origin (Nugget Effect) must be set to zero.

Consider a large string of size L where intervals of category 1 of length l are distributed over

the string. The length l is above the minimum discretization lag of the variogram; also consider lags

of size b and 2b that are smaller than the minimum discretization lag. For size b lag, there are two

transitions per interval, while for size 2b, there are four transitions per interval. The number of lags

when using 2b is one less than that when using b, therefore Nlag2b = N lagb − 1, see Figure 3.1.

Figure 3.1: String of size L where intervals of category 1 of length l are distributed over the string.
Variogram of b and 2b and the intercept c.

Analyzing Figure 3.1 we can calculate the slope of the variogram by:

slope = γ2b − γb
b

(3.4)

Thus, the intercept (c) of that line is:

c = γb −
(
γ2b − γb

)
b

b = 2γb − γ2b (3.5)

The variogram can be obtained by the number of transitions divided by 2 times the number of lags.

Therefore, the variogram for b is:

γb =
2Nint

2Nlagb

(3.6)

and the variogram for 2b is:

γ2b =
4Nint
2Nlag2b

= 2Nint
Nlagb

− 1
(3.7)

Substituting γb and γ2b in the intercept (c), the equation would give c = 2Nint
Nlag

− 2Nint
Nlag−1 . When the
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3. Characteristics of Categorical Indicator Variogram/Covariance

number of lags is very large, the intercept tends to 0:

lim
Nlag→∞

c = 0 (3.8)

As the number of lags for a lag of size b increases for the same total distance L, it means that

the size b decreases. Therefore it means that as Nlag → ∞, b → 0. Thus the limit of the intercept c

when b → 0:

lim
b→0

c = 0 (3.9)

Therefore, at the origin, the nugget effect for a categorical indicator variogram is zero. This

conceptualization aligns with the understanding that indicators have linear increments. As such,

only linear models like spherical and exponential are applicable. Gaussian variogram models cannot

be applied to categorical indicator variables. The size of the facies intervals should be large relative

to the block size or discretization interval, which supports the reasoning that the nugget effect on

the categorical indicator variograms should be zero. When the intervals are considerably smaller

than the block size, this leads to mixing of categories within each block, and treating the variable

as categorical becomes invalid (Mizuno & Deutsch, 2022). Figure 3.2 illustrates the behavior at the

origin of a standardized variogram (γs).

Figure 3.2: Variograms with tangents plotted at the origin, demonstrating that at the origin, the variogram
increases linearly, and the slope varies depending on the proportion

At the origin, the variogram increases linearly, the nugget effect is zero, and the slope’s inclination

varies with the proportion, as shown in Figure 3.2.
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3.2 Variogram - Covariance relationship

Consider a binary case (0;1) and a particular lag (h). There are only four possible outcomes

that a pair of indicators could satisfy: the probability of being a pair of 1’s (P11), a pair of 0’s (P00),

a pair of 1 and 0 (P10), or a pair of 0 and 1 (P01). Thus, the bivariate distribution is fully defined

by P11, P00, P10, and P01. This is illustrated in Figure 3.3.

Figure 3.3: Quadrants illustrating the probabilities of indicator pair combinations at lag h.

Given this understanding, the variogram and covariance are calculated as follows:

2γ(h; 1) = P10 + P01 (3.10)

C(h; 1) = P11 − P 2
1 (3.11)

where 2γ(h; 1) is the variogram at lag h for category 1. P10 represents the probability of the

category being 1 at location u and 0 at location u + h, contributing to the spatial variability.

P01 represents the probability of the category being 0 at location u and 1 at location u + h, also

contributing to the spatial variability. C(h; 1) is the covariance at lag h for category 1. P11 is the

probability of both points, separated by the lag h, being in category 1 simultaneously. It represents

the joint occurrence of category 1 at both locations. P1, is the probability of the condition (category

1) occurring at any random location. The term P 2
1 is the probability of finding category 1 at both

locations independently, assuming the occurrences at the two locations are unrelated (product of

individual probabilities).

For the indicator 0, the variogram remains identical to that for indicator 1, and the covariance

is given by:

C(h; 0) = P00 − P 2
0 (3.12)
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this follows the same explanation given for C(h; 1) but now for category 0.

The sum of the probabilities for the four possible pairings equals 1:

P00 + P11 + P10 + P01 = 1 (3.13)

We also establish the following relationships:

P10 + P11 = P1 = P01 + P11 (3.14)

P10 + P00 = P0 = P01 + P00 (3.15)

These equations are predicated on the assumption of stationarity. Under conditions of stationarity,

there is a direct relationship between the variogram and covariance, expressed as γ = σ2−C where σ2

is the variance. However, this relationship does not hold in practical scenarios involving categorical

indicators, as the extent of the domain over which stationarity is assumed remains undefined.

In the case of non-stationarity, the variogram is derived using the same equation as in the

stationary case, Equation (3.10). The covariances for indicators 1 and 0 are calculated as follows:

C(h; 1) = P11 − (P11 + P10)(P11 + P01) (3.16)

C(h; 0) = P00 − (P00 + P10)(P00 + P01) (3.17)

where, (P11 + P10)(P11 + P01) represents the non-stationary means for indicator 1 at locations

u and u+ h, respectively. This is because these terms sum up the probabilities of finding category

1 at the two respective locations. (P00 +P10)(P00 +P01) are the non-stationary means for indicator

0 at locations u and u + h, respectively. Expanding both C(h; 1) and C(h; 0), and applying the

relationships established in Equations 3.13, 3.14, and 3.15, we obtain the following results:

C(h; 1) = P11P00 − P10P01 (3.18)

C(h; 0) = P11P00 − P10P01 (3.19)

Therefore, if non-stationary mean values are utilized, the relationship C(h; 1) = C(h; 0) emerges.

As these are equivalent, we can consider them simply as C(h). From this, we can rearrange the

terms in the covariance equation and isolate both P01 and P10:

P01 = P00P11 − C(h)
P10

(3.20)

P10 = P00P11 − C(h)
P01

(3.21)

Substituting P01 and P10 into Equation 3.10, we obtain:

2γI(h) =
P00P11 − C(h)

P10
+ P00P11 − C(h)

P01
(3.22)

This equation establishes a relationship between the variogram and covariance in a non-stationary

context where an assumption of stationarity does not hold.
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3.3 Cluster of data and variogram model

Calculating a stable experimental variogram for an indicator can be complex, particularly when

faced with preferential sampling. It is common for a larger number of samples to be gathered in

areas of interest, leading to data clustering. This clustering can cause the short-range variogram

values to be non-representative of the overall spatial continuity. Consider the synthetic data case

presented in Figure 3.4.

Figure 3.4: Location map of the synthetic data case.

The sampling in this data creates a cluster of samples near the southeastern corner, illustrating

the preferential sampling often seen in high-interest areas, as shown in Figure 3.5.

Figure 3.5: Sampling of synthetic data illustrating a cluster of samples.

First, let us verify the equality CI(h; 1) = CI(h; 0) derived in Section 3.2, according to Equa-
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tions 3.18 and 3.19. This verification is presented in Figure 3.6.

Figure 3.6: Covariance comparison showing CI(h; 1) = CI(h; 0).

Next, the variogram is calculated using the non-stationary relationship deduced in Equation 3.22

and it is shown in Figure 3.7.

Figure 3.7: Variogram calculated using the non-stationary relationship with covariance.

The non-stationary relationship is verified for category 1. Note the initial variogram points in

Figure 3.7, resulting from the sample clustering in the southeastern area. As indicated in Equa-

tion 3.10, 2γI(h; 1) = P10 + P01, the variogram at these short lags is zero due to the absence of

category transitions. This applies when analyzing the variogram for category 0 as well.

In cases exhibiting this behavior, the modeling should account for a zero nugget effect and a

linear increase at the origin, thus disregarding these non-representative points.

Figure 3.8: Variogram model with a zero nugget effect and linear increase at the origin, excluding non-
representative points caused by sample clustering.
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The practical approach involves ignoring these non-representative points when fitting a vari-

ogram model. The points to be ignored are the ones that in short lags distances are not following

the linear increment at the origin, departing from the nugget effect equal to zero. As it is seen in

Figure 3.8, the points ignored are the two points between 0 and 10 lag units.

Starting with a flatter slope to match the points between 0 and 10 lag units and then transitioning

to a steeper slope might appear to be a better fit; however, this is invalid, as demonstrated in Figure

3.9. The sketch provided illustrates such an invalid variogram model.

Figure 3.9: Sketch of an invalid variogram fit.

The red line represnts an increase in slope, which is counter-intuitive. The variogram should be

steeper at the origin to indicate the possibility of a categorical variable changing abruptly over short

distances. Moreover, a slope that becomes steeper away from the origin may violate the Triangular

Inequality Principle, as set out by Matheron (1989), and is described in Equation 3.23:

γ
(
h1+ h2

)
≤ γ

(
h1

)
+ γ

(
h2

)
(3.23)

In cases where non-representative points are present, the model should ensure that the initial

slope is steeper than any subsequent slopes, and that the nugget effect is set to zero.

3.4 Correlogram

The correlation relative to the lag distance h is derived by standardizing the covariance C(h).

The expression ’one minus the correlation’ resembles a variogram and is termed the correlogram

(Bai & Deutsch, 2020). The correlogram γCorr(h) is defined as in Equation 3.24 (C. V. Deutsch &

Journel, 1997):

γCorr(h) = 1− C(h)
σI(u)σI(u+h)

(3.24)
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where σI(u) and σI(u+h) represent the standard deviations of the indicator values at locations u

and u+h, respectively. The term σI(u)σI(u+h) is the product of these standard deviations, used to

standardize the covariance.

A study was conducted to analyze and compare the behaviors of the variogram and correlogram

across various scenarios, with the aim of determining which experimental measure demonstrates

more stability. The first scenario is illustrated in Figure 3.10.

Figure 3.10: First scenario with drillholes every 50m and category 0 concentrated in the center.

This scenario includes drillholes spaced every 50 meters, with the region of interest, category 0,

located in the center. The variogram and correlogram for this scenario are shown in Figure 3.11.

Figure 3.11: Variogram and correlogram for the first scenario.

This setup serves as a benchmark for subsequent scenarios. In the second scenario, a smaller

search window is applied, as seen in Figure 3.12. The variogram and correlogram results with this

smaller search window are presented in Figure 3.13.

Figure 3.12: Second scenario with a smaller search window.
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Figure 3.13: Comparative variograms and correlograms of the first and second scenarios.

The correlogram is observed to be more stable than the variogram, showing less fluctuation

across both scenarios.

In the third scenario, additional drillholes are placed in the area of interest (category 0), creating

a preferential sampling scenario, as depicted in Figure 3.14. The variogram and correlogram for this

scenario are displayed in Figure 3.15.

Figure 3.14: Third scenario emphasizing preferential sampling.

Figure 3.15 demonstrates that the correlogram remains more stable even in this third scenario.

Therefore, in cases of categorical data with preferential sampling, the correlogram may offer a more

robust analytical option as it showed to be more stable than the variogram throughout different

scenarios. For instance, in the third scenario, the correlogram was practically identical to that of

the first scenario.
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Figure 3.15: Variograms and Correlograms comparing the first and third scenarios.

This chapter explored the characteristics of categorical indicator variograms and covariance. It

explained the relationship between variograms and geometry. A review of the variogram’s sill and

range was presented. A key focus was on demonstrating why the nugget effect for a categorical

indicator variogram must be 0 and should have linear increments. The chapter also presented the

deduction of a non-stationary relationship between variograms and covariance and provided insights

into variogram modeling in the presence of clustered samples. Moreover, the chapter offered a

comparative analysis between the variogram and correlogram, assessing their robustness in various

scenarios.
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Chapter 4

Comparison Between Multiple Point
Statistics and Kriging Algorithms

This chapter presents a study comparing multiple point statistics (MPS) conditional probabilities

to different kriging algorithms. The kriging methods are Simple Kriging (SK), simple cokriging

(SCK), ordinary kriging (OK), and standardized ordinary cokriging (SOCK). The MPS probability

results are used as a benchmark for the study as this method considers the most information. The

results from the kriging algorithms are compared to the MPS results. The mean squared error

(MSE), coefficient of determination (R2), and correlation (ρ) metrics are used to establish what

methodology gets the best estimates. Section 4.1 covers the methodology of an initial study with

and the results of the first case. Sections 4.2, and 4.3 present the second and third case with their

results for the initial study. Subsequently, the cases are tested for an entire grid. The methodology

for the whole grid is presented in Section 4.4, and the cases, including one where the variograms

and cross variograms are fitted with the very large linear module of corregionalization method (VL-

LMC), are shown in Sections 4.5, 4.6, and 4.7. Section 4.8 analyzes the results of OK and SOCK

against the reference. Section 4.8 extends the comparison of OK and SOCK estimates against the

reference for images from the Data Validation Project by Mokdad, Binakaj, and Boisvert (2022) and

summarizes the results.

4.1 Case 1

The study consists in getting the MPS conditional probabilities for one hundred different sam-

ple configurations. Subsequently, for the same sample configurations, SK, SCK, OK and SOCK

estimates are calculated. The covariances and cross covariances required for the kriging algorithms

are calculated directly from the training images (TI). Cross plots comparing the MPS probabilities

to each of the kriging algorithms are plotted. MSE and R2 are calculated for each case. The study

is conducted using three different TI’s.

Figure 4.1 represents the TI used in the first case, which is obtained from the Center for Com-

putational Geostatistics (CCG) TI libray. Blue represents facies 1, orange indicates facies 2 and

green is facies 3.
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Figure 4.1: Case 1 - TI.

MPS probabilities are calculated and saved for one hundred different sample configurations. The

sample configurations are randomly selected from the possible combinations, up to a limit of 50 lag

units of distance, without repetition. Covariances and cross covariances are obtained by scanning

the TI, and they are used to calculate the weights and estimates for the kriging algorithms. The

results are presented in Figure 4.2, which displays cross plots of the kriging estimates against the

MPS probabilities for the three categories. The results are also tabulated and shown in Table 4.1.

This table summarizes the results obtained for the first case, showing the MSE, R2, and ρ for each

kriging algorithm’s estimates compared to the MPS probabilities.
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(a) Simple Kriging results

(b) Simple Cokriging results

(c) Ordinary Kriging results

(d) Standardized Ordinary Cokriging results

Figure 4.2: Comparison of Kriging methods in Case 1, showing cross plots versus MPS probabilities across
three categories.

31



4. Comparison Between Multiple Point Statistics and Kriging Algorithms

Table 4.1: Case 1 - Comparison of MSE, R2, and ρ for each Kriging algorithm and each category.

Facies 1 SK SCK OK SOCK
MSE 0.028 0.109 0.036 0.007
R2 0.603 0.342 0.741 0.854
ρ 0.777 0.585 0.861 0.924
Facies 2 SK SCK OK SOCK
MSE 0.042 0.078 0.093 0.020
R2 0.097 0.178 0.141 0.113
ρ 0.311 0.422 0.375 0.336
Facies 3 SK SCK OK SOCK
MSE 0.021 0.059 0.042 0.011
R2 0.521 0.285 0.580 0.722
ρ 0.722 0.534 0.762 0.850

Between SK and SCK, the former demonstrates better overall performance. SCK often adjusts

many estimates to 0 due to issues with order relations. In comparison, OK performs better overall

than both SK and SCK, but it also shows order relation issues. The best overall performance

is observed in the SOCK method. Specifically, for facies 1, the R2 value is 0.854, a significant

improvement over the second-best performer, OK, which has an R2 value of 0.741. The MSE values

for the SOCK algorithm are also lower compared to other methods.

4.2 Case 2

In a second case, the same methodology is applied using a TI created by the FLUVSIM.exe

program, a fluvial object-based algorithm form GSLIB. This TI will be referred as TI2 and it is

shown in Figure 4.3.
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Figure 4.3: Case 2 - TI2.

Like the first case, MPS probabilities are computed and saved for one hundred different sample

configurations. TI2 is scanned to calculate the covariances and cross covariances that are used

to obtain the kriging estimates. The cross plots for each kriging estimate and each category are

displayed in Figure 4.4. The results for the second case are tabulated (Table 4.2), summarizing the

MSE, R2, and ρ values for each kriging algorithm’s estimates compared to the MPS probabilities.
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(a) Simple Kriging results for Case 2

(b) Simple Cokriging results for Case 2

(c) Ordinary Kriging results for Case 2

(d) Standardized Ordinary Cokriging results for Case 2

Figure 4.4: Comparison of Kriging methods in Case 2, showing cross plots versus MPS probabilities across
three categories.
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Table 4.2: Case 2 - Comparison of MSE, R2, and ρ for each Kriging algorithm and each category.

Facies 1 SK SCK OK SOCK
MSE 0.054 0.208 0.003 0.014
R2 0.544 0.147 0.718 0.860
ρ 0.737 0.383 0.847 0.928
Facies 2 SK SCK OK SOCK
MSE 0.052 0.126 0.055 0.010
R2 0.532 0.269 0.58 0.921
ρ 0.729 0.519 0.761 0.959
Facies 3 SK SCK OK SOCK
MSE 0.042 0.076 0.117 0.013
R2 0.029 0.01 0.029 0.174
ρ 0.171 0.101 0.17 0.417

In this case, similar to the previous one, SK outperforms SCK, though both exhibit weaker

performance compared to MPS. SCK continues to face numerous issues with order relations. OK

surpasses both SK and SCK but also demonstrates challenges with order relations. Notably, the

best performance is observed in the SOCK algorithm. This method shows a significant improvement

in the R2 values, with R2 for facies 1 and 2 reaching 0.86 and 0.921, respectively. While the results

for facies 3 are not as impressive due to its smaller global proportion, an improvement is still evident

when utilizing the SOCK algorithm.

4.3 Case 3

A third case is presented to check and validate whether SOCK is getting the best estimates

compared to MPS. Figure 4.5 shows the third case TI which will be reffered as TI3 for simplicity.

Figure 4.5: Case 3 - TI3.

Like in the previous examples, blue represents facies 1, orange indicates facies 2, and green
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represents facies 3. The image is scanned for a hundred different sample configurations. Sample

configurations are randomly chosen from available combinations, with a maximum of 50 lag units

of distance and no repetitions. MPS probabilities are calculated and saved. Covariances and cross

covariances are also calculated by scanning the image. The cross plots for each kriging method and

each category are presented in Figure 4.6. Table 4.3 summarizes the MSE, R2, and ρ values for each

method in this third case.

(a) Simple Kriging results for Case 3

(b) Simple Cokriging results for Case 3

(c) Ordinary Kriging results for Case 3

(d) Standardized Ordinary Cokriging results for Case 3

Figure 4.6: Comparison of kriging methods in Case 3, showing cross plots versus MPS probabilities across
three categories.
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.

Table 4.3: Case 3 - Comparison of MSE, R2, and ρ for each Kriging algorithm and each category.

Facies 1 SK SCK OK SOCK
MSE 0.020 0.185 0.021 0.001
R2 0.604 0.015 0.790 0.965
ρ 0.777 0.124 0.889 0.982
Facies 2 SK SCK OK SOCK
MSE 0.017 0.087 0.044 0.004
R2 0.397 0.122 0.527 0.691
ρ 0.630 0.350 0.726 0.831
Facies 3 SK SCK OK SOCK
MSE 0.015 0.087 0.035 0.002
R2 0.590 0.133 0.724 0.955
ρ 0.768 0.365 0.851 0.977

As in previous cases, SK shows better results than SCK, yet both fall short in performance

compared to MPS. SCK continues to struggle with order relation issues. In contrast, OK surpasses

both SK and SCK in performance but is not free from order relation issues. However, the best

method is SOCK, which significantly exceeds other approaches, as indicated by its R2 values for

facies 1, 2, and 3 being 0.982, 0.691, and 0.955, respectively. Overall, when assessed against MPS,

which is believed to get the most accurate probabilities, SOCK is the kriging algorithm with estimates

most closely aligning with those of MPS.

4.4 Grid study

Observing the strong performance of the SOCK method in comparison with MPS, the study

was extended to analyze performances across an entire grid. Due to their less effective results, SK

and SCK were excluded from this further analysis, focusing only on OK and SOCK. The study will

compare each method’s estimates against the MPS probabilities. This includes a scenario where the

covariances and cross covariances were fitted using the very large linear model of coregionalization

(LMC) through the vl_lmc.exe program from GSLIB. To determine which method performs better,

the mean squared error (MSE), R2, and correlation (ρ) values will be used. Subsequently, the OK

and SOCK estimates will be compared to the actual Training Image (TI) to assess their performance.

When compared to the TI, the indicator cross validation is used to analyze the performance, and

the B value will be the metric used. B represents the difference between the average predicted

probability when the true value is 1 and the probability when the true is 0 and it is defined in

Equation 4.1.

B = 1∑N
n=1 nik=1

N∑
n=1

K∑
k=1

pk,ik=1 −
1∑N

n=1 nik=0

N∑
n=1

K∑
k=1

pk,ik=0 (4.1)
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Where K represents the total number of categories, while N denotes the number of locations. The

term nik refers to the specific locations where the indicator ik holds a value of either 1 or 0. The

probability of category k being present when ik is 1 or 0 is denoted as pk, ik. Higher B values

indicate more accurate predictions regarding the presence or absence of a category (C. V. Deutsch,

2010; J. L. Deutsch & Deutsch, 2012).

4.5 Case 1 - Grid Study

Figure 4.7 shows the samples, represented as dots, used for calculating the estimates and the

filled portion represents the estimation area. Note that a buffer is left to avoid edge effects.

Figure 4.7: Case 1 grid study - Samples represented by dots and estimation grid represented by the filled
portion of the TI.

The image is scanned and the MPS probabilities are calculated and saved, the covariances and

cross covariances needed for OK and SOCK are also calculated when scanning the image. The

results for each of the methods and categories is presented in Figure 4.8. Table 4.4 summarizes

the MSE, R2, and ρ values of the estimates obtained for OK and SOCK compared to the MPS

probabilities.
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(a) Ordinary Kriging results for Case 1 grid study

(b) Standardized Ordinary Cokriging results for Case 1 grid study

Figure 4.8: Comparison of OK and SOCK methods in Case 1 grid study, showing cross-validation plots
versus MPS probabilities across three categories.

Table 4.4: Comparison of MSE, R2, and ρ for each kriging algorithm and each category.

Facies 1 OK SOCK
MSE 0.012 0.012
R2 0.690 0.710
ρ 0.690 0.830

Facies 2 OK SOCK
MSE 0.022 0.017
R2 0.240 0.390
ρ 0.660 0.700

Facies 3 OK SOCK
MSE 0.020 0.012
R2 0.580 0.720
ρ 0.680 0.830

Compared to MPS probabilities, SOCK estimates outperform those of OK. The MSE and R2

values show that SOCK estimates are closer to the MPS probabilities. A second case is presented.
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4.6 Case 2 - Grid Study

Figure 4.9 displays the dots representing the samples used for generating the estimates, with the

shaded area indicating the region of estimation for this second case. A boundary buffer is maintained

around the area to mitigate edge effects.

Figure 4.9: Case 2 grid study - Samples represented by dots and estimation grid represented by the filled
portion of the TI.

The image for Case 2 is scanned and the MPS probabilities are computed and stored. At the

same time, the necessary covariances and cross-covariances for OK and SOCK are derived from the

same scanning procedure. The cross-validation plots for each method and category are presented in

Figure 4.10. Table 4.4 is a summary of MSE, R2, and ρ metrics, detailing the performance of OK

and SOCK relative to the MPS outcomes for Case 2.
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(a) Ordinary Kriging results for Case 2 grid study

(b) Standardized Ordinary Cokriging results for Case 2 grid study

Figure 4.10: Comparison of OK and SOCK methods in Case 2 grid study, showing cross-validation plots
versus MPS probabilities across three categories.

Table 4.5: Case 2 - Comparison of MSE, R2, and ρ for each kriging algorithm and each category

Facies 1 OK SOCK
MSE 0.010 0.005
R2 0.830 0.910
ρ 0.900 0.950

Facies 2 OK SOCK
MSE 0.014 0.006
R2 0.520 0.770
ρ 0.820 0.860

Facies 3 OK SOCK
MSE 0.008 0.005
R2 0.770 0.880
ρ 0.750 0.960

In Case 2, in relation to MPS probabilities, SOCK estimates outperform the ones from OK, as

indicated by the lower MSE and higher R2 values, highlighting greater alignment with MPS proba-

bilities. These two cases show that when compared to MPS, SOCK outperforms OK. The next step

is to fit the variograms and cross variograms with the very large linear model of corregionalization.
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4.7 Very Large Linear Model of Coregionalization (VL-LMC) to fit

variograms and cross variograms

Despite having modern approaches for decorrelation or even intrinsic models of coregionalization,

the LMC continues to be useful and mathematically tractable. However, the challenge with the LMC

lies in modeling K categories, as it requires fitting K · (K−1)/2 cross variograms and K variogrmas

in a way that ensures joint positive definiteness. The difficulty in fitting is aggravated when only

one to four nested structures are used (R. Barnett & Deutsch, 2018). Those reasons motivated the

authors R. Barnett and Deutsch (2018) to propose the very large LMC (VL-LMC). This approach

starts by independently fitting the K direct variograms, with no constraints on their shape, direction

and range. The LMC is then fit using the combination of all the nested structure found in these K

variograms models. For instance, if each variogram model are done with three nested structures, the

LMC employs K ·3 nested structures. This method ensure a reasonable fit for the direct variograms

and enhances the fitting of cross variograms, as the extra nested structures offer increased flexibility

in the model (R. Barnett & Deutsch, 2018). This method was used to fit the variograms and cross

variograms of the first case, represented by Figure 4.1, and the fit is shown in Figure 4.11.

Figure 4.11: Variograms and cross variograms of first case fitted by the VL-LMC method.

In Figure 4.11 the diagonal plots represent the direct variograms models while the off-diagonal

plots are the cross variograms models. Red indicates the major direction while black is the minor

direction.

Like the previous cases, OK and SOCK estimates are calculated and compared to the MPS

probabilities. The goal here is to evaluate if by fitting an LMC the results of SOCK will still

outperform the ones from OK when compared to MPS. This assessment is important, as it is

challenging to obtain a representative TI from which to directly extract the necessary covariances
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and cross covariances. Figure 4.12 display the cross-validation plots of the methods’ estimates

compared to MPS probabilities. Table 4.6 summarizes the results of OK and SOCK when fitted

with the VL-LMC approach.

(a) Case 1 - OK results.

(b) Case 1 - SOCK results with variograms and cross variograms fitted with the VL-LMC method.

Figure 4.12: Comparison of kriging methods in Case 1, showing Ordinary Kriging and Standardized
Ordinary Cokriging results with variogram fittings.

Table 4.6: Case 1 - Comparison of MSE, R2, and ρ for OK, SOCK (TI based) and for when variograms
and cross variograms are fitted with VL-LMC for the SOCK algorithm

Facies 1 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
MSE 0.010 0.012 0.006
R2 0.830 0.710 0.830
ρ 0.900 0.830 0.850

Facies 2 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
MSE 0.014 0.017 0.010
R2 0.520 0.390 0.650
ρ 0.820 0.700 0.770

Facies 3 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
MSE 0.008 0.012 0.008
R2 0.770 0.720 0.830
ρ 0.750 0.830 0.880

Note that overall the SOCK method still performs better than OK, as demonstrated by the

higher R2 and lower MSE values. Next, the study involves validating the methods by comparing

their estimates to the actual training image, which serves as the reference.
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4.8 Comparison of OK and SOCK against the reference

This section will demonstrate how the OK and SOCK estimates compared against the training

image itself. Indicator cross validations are plotted and the B metric (Equation 4.1) is analyzed to

check what method is performing better. The results are presented.

4.8.1 Case 1

Let us first analyze the results for the first case represented by Figure 4.1. The indicator cross

validation plot for the OK and SOCK estimates against the reference is shown in Figure 4.13. Table

4.7 tabulates the B values results for the methods.

(a) Case 1 - OK comparison against reference.

(b) Case 1 - SOCK comparison against reference.

(c) Case 1 - SOCK fitted with VL-LMC comparison against reference.

Figure 4.13: Comparative analysis of advanced kriging methods for Case 1, including OK, SOCK, and
SOCK fitted with VL-LMC against the reference dataset.
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Table 4.7: Case 1 against reference - Comparison of B values for each method and category

Facies 1 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
B 0.24 0.26 0.24

Facies 2 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
B 0.11 0.10 0.10

Facies 3 OK SOCK (TI based) SOCK (Fitted with VL-LMC)
B 0.16 0.23 0.19

Note that in this case the B value is overall better for the SOCK estimates, indicating that for

the first case the SOCK method outperforms OK when compared against the reference. The SOCK

method, when fitted with the VL-LMC, also slightly outperforms OK.

4.8.2 Case 2

The second case training image is represented by Figure 4.3. The cross validation plot comparing

OK and SOCK estimates with the actual data (refrence) is presented in Figure 4.14. Table 4.8

summarizes the B values for each method and category.

(a) Case 2 - OK comparison against reference.

(b) Case 2 - SOCK comparison against reference.

Figure 4.14: Comparative analysis of kriging methods for Case 2, showing the indicator cross validation
plots for OK and SOCK estimates against the reference.

45



4. Comparison Between Multiple Point Statistics and Kriging Algorithms

Table 4.8: Case 2 against reference - Comparison of B values for each method and category

Facies 1 OK SOCK
B 0.64 0.66

Facies 2 OK SOCK
B 0.75 0.76

Facies 3 OK SOCK
B 0.49 0.50

Again, the B value is slightly better for the SOCK estimates, showing that for this case the

SOCK method slightly outperforms OK when compared against the reference.

4.8.3 Case 3

For the third case, the image used is represented by Figure 4.5. The cross validation plots

showing OK and SOCK estimates against the reference is presented in Figure 4.15. Table 4.9

summarizes the B values for each method and category.

(a) Case 3 - OK comparison against reference.

(b) Case 3 - SOCK comparison against reference.

Figure 4.15: Comparative analysis of kriging methods for Case 3, showing the indicator cross validation
plots for OK and SOCK estimates against the reference.
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Table 4.9: Case 3 against reference - Comparison of B values for each method and category

Facies 1 OK SOCK
B 0.30 0.24

Facies 2 OK SOCK
B 0.15 0.11

Facies 3 OK SOCK
B 0.26 0.21

Note that in this particular case, the B values overall indicate better performance for the OK

estimates compared to SOCK. Consequently, while OK outperforms SOCK in the third case, per-

formance results vary between the two methods across different scenarios. To further explore these

variations, this study extends to include an analysis of all the Data Validation project images from

CCG (Mokdad et al., 2022). The 114 images from the project are transformed into categorical vari-

ables (three categories). After conducting OK and SOCK estimations for each image, the differences

in root mean squared error (RMSE) are assessed. A summary of the difference in RMSE presented

in Figure 4.16

Figure 4.16: Results of the difference in RMSE between OK and SOCK.

Note that for over 80 cases there is a small advantage in using the SOCK method. Although

being a small advantage, for those cases SOCK outperforms OK. The four best cases are shown in

Figure 4.17 while the four worst cases are presented in Figure 4.18.
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Figure 4.17: The four best cases when using the Data Validation project images.

Figure 4.18: The four worst cases when using the Data Validation project images.

Note that SOCK tends to perform better when the short scale variability is high, like the images

in Figure 4.17 shows. OK estimates get better results when there is more structure as shown in

Figure 4.18.

4.9 Chapter Summary

This chapter explored a study comparing multiple point statistics (MPS) conditional probabili-

ties to various kriging algorithms, including Simple Kriging (SK), simple cokriging (SCK), ordinary

kriging (OK), and standardized ordinary cokriging (SOCK). MPS probabilities served as a bench-

mark, given their presumed accuracy in estimating better results. The performance of each kriging

method was evaluated against these MPS results using mean squared error (MSE), R2, and correla-

tion (ρ) metrics to determine which methodology yielded the most accurate estimates. The chapter

described the methodology and presented findings across three distinct cases (Sections 4.1, 4.2, and

4.3), followed by an analysis of the entire grid (Section 4.4), including one case using the very large

48



4. Comparison Between Multiple Point Statistics and Kriging Algorithms

linear model of coregionalization method (VL-LMC). In Section 4.8, a critical assessment of OK and

SOCK methods against the actual training images was undertaken, extending further to include

all images from the Data Validation Project by Mokdad et al. (2022). A summary of the chapter

results is presented:

• SK and SCK do not show good results due to issues with order relations.

• SOCK shows good result when applied to small examples (Sections 4.1, 4.2, 4.3).

• SOCK with VL-LMC performs almost as well as image-based methods, as shown in Section

4.8.1.

• When analyzing images from the Data Validation Project, OK performs about as well as SOCK.

The difference in RMSE gives a very small advantage to SOCK, but it is not significant.
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Chapter 5

A Regularization Technique to Mitigate
Extreme Weights

This chapter presents a method to stabilize weights from unstable linear systems of kriging

equations. In geostatistics, linear systems of equations emerge when applying kriging and its variants.

These systems arise during simulation or when estimating geological variables at unknown grid

locations. As a result, these equations can appear thousands to millions of times, depending on the

number of grid nodes (Manchuk & Deutsch, 2008). A key requirement for these systems is positive

definiteness, which is not always guaranteed as the systems can be indefinite or ill-conditioned.

The presence of an indefinite system, indicated by any negative eigenvalues, leads to unacceptable

results and extreme weight values (Manchuk & Deutsch, 2008). Chilès and Delfiner (2012) note

that weights exceeding one can produce distorted estimates. In this chapter, we analyze the impact

of system regularization in standardized ordinary cokriging (SOCK) for categorical variables to

mitigate the risk of extreme weights. This regularization involves inflating the left-hand side (LHS)

matrix diagonal to ensure it is positive definite and to correct weight anomalies. When performing

cokriging, matrix sizes can increase rapidly; for instance, in the presence of three different categories

and five samples to estimate at an unsampled location, the LHS matrix will have a size of 15x15.

Section 5.1 explains the weights regularization technique. Section 5.2 shows a case in which the

regularization technique is applied. Section 5.3 assesses the impact this method has on an entire

grid estimation.

5.1 Weights Regularization in SOCK

The regularization technique consists of inflating the diagonal elements of the LHS covariance

matrix of the system of equations. In matrix format, the SOCK system of equations are expressed

as Equation 5.1. 

C11 C12 · · · C1n 1

C21 C22 · · · C2n 1
...

... . . . ...
...

Cn1 Cn2 · · · Cnn 1

1T 1T · · · 1T 0





λ1

λ2
...

λn

µ


=



c1
c2
...

cn
1


(5.1)

Where Cij is the covariance matrix between the known data points; λi is a vector of weights to be

solved for; ci is the vector containing covariances between the known data points and the unknown
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location, and µ is the Lagrange multiplier.

To implement the regularization, each diagonal element (Cii) of the LHS covariance matrix is

increased by ϵ, a small positive constant. This is represented in Equation 5.2.

C′
ii = Cii + ϵI (5.2)

Where C′
ii is the regularized diagonal elements of the LHS covariance matrix; ϵ is a small positive

constant, and I is the identity matrix of the same dimension as C. Thus, the regularized SOCK

system is expressed in matrix format as shown in Equation 5.3.

C′
11 C12 · · · C1n 1

C21 C′
22 · · · C2n 1

...
... . . . ...

...

Cn1 Cn2 · · · C′
nn 1

1T 1T · · · 1T 0





λ1

λ2
...

λn

µ


=



c1
c2
...

cn
1


(5.3)

In the standardized ordinary cokriging (SOCK) model, it is required that all primary and sec-

ondary data weights sum to one. Mathematically, this is expressed as:
K∑

k=1

n∑
α=1

λSOCK
α

(
u0; k0; k

)
= 1 (5.4)

where k0 is the category being estimated, k represents the indicator of the data, and u0 is the

unknown location.

As part of regularization, these weights are adjusted such that as the regularization parameter

ϵ increases, each weight λi approaches an equal share, represented by 1
n where n is the total number

of weights.

To demonstrate convergence to 1
n , consider the function h(λ1, . . . , λn, µ) which is formulated to

include a Lagrange multiplier µ to enforce the constraint that the sum of the weights equals one:

h
(
λ1, . . . , λn, µ

)
=

n∑
i=1

λ2
i + µ

1−
n∑

i=1
λi

 (5.5)

The term
∑n

i=1 λ
2
i is the objective function being minimized. Minimizing this term tends to

push the weights λi towards zero, as the square of a smaller numbers is even smaller, promoting a

distribution of weights that avoids extreme values. The term µ
(
1−

∑n
i=1 λi

)
is where the Lagrange

multiplier µ appears. Here, µ is a scalar that adjusts to satisfy the constraint
∑n

i=1 λi = 1. The

expression 1−
∑n

i=1 λi represents the deviation from the constraint (it should be zero if the constraint

is met).

When optimizing h, values for λi and µ are found such that h is minimized. To find the

minimum, the partial derivatives of h with respect to each weight λi and the Lagrange multiplier µ
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are computed. The partial derivative with respect to each λi:
∂h

∂λi
= 2λi − µ = 0 for i = 1, . . . , n

λi =
µ

2
∀i

(5.6)

The partial derivative with respect to the Lagrange multiplier µ:

∂h

∂µ
= 1−

n∑
i=1

λi = 0 (5.7)

Since all λi are equal to µ
2 :

1−
n∑

i=1

µ

2
= 0 (5.8)

Now, summing up λi = µ
2 for all i:

n∑
i=1

µ

2
= 1

nµ

2
= 1

µ = 2
n

(5.9)

Substituting back, we find that each weight:

λi =
µ

2
= 1

n
∀i (5.10)

The demonstration presented above does not incorporate the regularization constant ϵ. The

regularization parameter can be included for the quadratic term
∑n

i=1 λ
2
i as follows:

h
(
λ1, . . . , λn, µ

)
= ϵ

n∑
i=1

λ2
i + µ

1−
n∑

i=1
λi

 (5.11)

With the incorporation of ϵ, a similar derivation process with respect to λi follows:
∂h

∂λi
= 2ϵλi − µ = 0 for i = 1, . . . , n

λi =
µ

2ϵ
∀i

(5.12)

And with respect to µ:
∂h

∂µ
= 1−

n∑
i=1

λi = 0 (5.13)

Since now all λi are equal to µ
2ϵ :

1−
n∑

i=1

µ

2ϵ
= 0 (5.14)
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Now, summing up λi = µ
2ϵ for all i:

n∑
i=1

µ

2ϵ
= 1

nµ

2ϵ
= 1

µ = 2ϵ
n

(5.15)

Finally, substituting the value of µ back into the equation for λi:

λi =
µ

2ϵ
=

2ϵ
n

2ϵ
= 1

n
(5.16)

This shows that each weight λi converges to 1
n , uniformly distributing the weights among all

n data points. The parameter ϵ controls the regularization and an analysis is necessary to find

an optimal ϵ value. This regularization helps stabilize the solution by avoiding extreme values in

weights. This approach is validated through a practical example, confirming that the regularization

effectively achieves the mitigation of extreme weights under the constraints of the SOCK method.

A case is presented to demonstrate the regularization technique.

5.2 Case - Regularization

Figure 5.1 displays the TI used for this case where the regularization method is applied.

Figure 5.1: TI used for the regularization case.

Regular samples are taken from the TI as shown in Figure 5.2.
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Figure 5.2: Samples taken form TI used in the regularization case.

The SOCK algorithm is executed, and when a system of equations proves to be unstable because

the left-hand side (LHS) covariance matrix is not positive definite, the matrix is extracted and

analyzed to observe how the weights decrease when a regularization technique is applied (see Figure

5.3).

Figure 5.3: Weights behaviour as ϵ increases.

Note that as ϵ increases, the weights converge to 1
n , as expected (see Equation 5.10). SOCK is

executed for a hundred different locations on the grid with various ϵ values to assess the impact on

the RMSE, given that the reference is known. The result is displayed in Figure 5.4.
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Figure 5.4: RMSE behaviour as ϵ increases for all categories.

Note that although it occurs on a small scale, the RMSE initially decreases, thus improving

the estimation. As the weights approach 1
n , the RMSE increases, which degrades the estimation;

this behavior is expected because all the weights become the same. Ideally, a calibrated value for

ϵ should be chosen based on the behavior plots of both the RMSE (Figure 5.4) and the weights

(Figure 5.3). It is observed that this optimal point occurs for a small ϵ value. For instance, SOCK

is executed using ϵ = 0 (without regularization) and then it is executed with ϵ = 0.01, see Table 5.1.

Table 5.1: Example of extreme weight being mitigated after applying ϵ = 0.01.

ϵ = 0 ϵ = 0.01
Max. weight (λ) 12.708 0.830

The table shows that the regularization mitigates the extreme weight bringing it down to 0.830

from 12.708 when ϵ = 0.01 is applied to inflate the diagonal elements of the LHS covariance matrix.

5.3 Impact When Estimating on a Grid

The regularization is able to mitigate extreme weights, this section analyzes whether or not this

mitigation has an impact when estimating over the entire grid. SOCK is executed for the entire grid

without regularization and then with regularization and an ϵ = 0.01.
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(a) Indicator cross validation for ϵ = 0.

(b) Indicator cross validation for ϵ = 0.01.

Figure 5.5: Comparison of indicator cross validation for (a) ϵ = 0 and (b) ϵ = 0.01.

Figure 5.5 shows that after applying the majority rule, the final estimate does not change. This

occurs because the RMSE difference shown in Figure 5.4 is not enough to significantly change the

final estimation. It also demonstrates that, even in the presence of extreme weights, SOCK still

performs well in estimation.

Table 5.2: Table showing the difference in mean and maximum values between estimation with ϵ = 0.01
and ϵ = 0.

Facies 1 Facies 2 Facies 3
mean 0.000016 -0.000042 0.000022
max 0.351991 0.255687 0.109902

Table 5.2 shows the difference in mean and maximum values between estimations with ϵ = 0.01

and ϵ = 0. Note that the mean difference is insignificant for all three categories, indicating that

the final estimation remains unchanged after applying the majority rule. However, examining the

maximum difference value reveals that, while regularization impacts the estimate locally, it is not

substantial enough to change the final grid estimate.

Table 5.3 shows the weights for a location in the grid applying regularization (ϵ = 0.01) and

without applying it when estimating Facies 2.
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Table 5.3: Table showing the difference in weights for one location in the grid with (ϵ = 0.01) and without
regularization for Facies 2 estimation. The yellow highlights represent the biggest differences in weight.

Weights - Regularization Weights - No Regularization Difference
Facies 2 wt 0 -0.095 -0.280 -0.185
Facies 2 wt 1 0.325 0.152 -0.173
Facies 2 wt 2 -0.037 -0.165 -0.129
Facies 2 wt 3 -0.053 0.096 0.149
Facies 2 wt 4 0.270 0.414 0.144
Facies 2 wt 5 -0.022 0.081 0.103
Facies 2 wt 6 0.003 4.631 4.628
Facies 2 wt 7 0.188 4.615 4.427
Facies 2 wt 8 0.011 3.224 3.213
Facies 2 wt 9 0.029 -1.146 -1.174
Facies 2 wt 10 0.154 -0.971 -1.124
Facies 2 wt 11 0.021 -0.795 -0.815
Facies 2 wt 12 0.091 -3.327 -3.419
Facies 2 wt 13 0.070 -3.202 -3.272
Facies 2 wt 14 0.046 -2.328 -2.373

Figure 5.6: Samples configuration for the example shown in Table 5.3

Note that with regularization, extreme weights are mitigated, and the constraint of summing

to one is maintained. The highlighted lines in Table 5.3 show the largest differences in weights; for

instance, there are cases where the difference is greater than four. Figure 5.6 shows the configuration

for the example presented in Table 5.3, where the red cross represents the estimated location and

the larger dots represent the five closest samples.
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5.4 Chapter Summary

This chapter implemented a method for regularizing weights in linear systems of equations,

which are frequently encountered in geostatistics, particularly in applications involving kriging and

its variants. These systems are crucial for simulations and for estimating geological variables at

unknown grid locations, appearing numerous times based on the number of grid nodes. The chapter

discussed the importance of ensuring positive definiteness in these systems to avoid the consequences

of indefinite or ill-conditioned matrices, such as extreme weight values. Section 5.1 explained the

technique for regularizing weights. Section 5.2 presented a case study where the regularization

technique was applied. Section 5.3 evaluated the impact of this method on the estimation of an entire

grid. To summarize, this chapter demonstrated that inflating the diagonal of the LHS covariance

matrix served as a regularization technique to mitigate extreme weights. Additionally, it showed that

as the regularization constant (ϵ) increased, all weights converged to 1
n . An analysis to determine

the optimal ϵ value was conducted using both the RMSE and weights behavior charts as ϵ increased.

The application of this technique revealed that while extreme weights were mitigated, it did not alter

the overall estimation across an entire grid significantly. This illustrated that kriging performed well

even in cases where extreme weights were present.

58



Chapter 6

Principal Component Analysis for
Categorical Indicators

This chapter introduces the Principal Component Analysis (PCA) technique to decorrelate cat-

egorical indicators variables and then model each component independently. Section 6.1 introduces

the decorrelation tecnique that is going to be applied in a case. Section 6.2 presents a case where

the indicators are decorrelated through principal component analysis and independently estimated.

Section 6.3 covers a second case and a brief summary of what is covered in this chapter and the

results obtained.

6.1 Decorrelation - principal component analysis (PCA)

The PCA transform is used in geostatitics to decorrelate multiple variables. Subsequently,

the principal components are modeled independently and the back-transformation reestablishes the

original correlation to the modeled variables. Suro (1988) used PCA to decorrelate indicators of

continuous variables, this study presents cases where PCA is used to decorrelate indicators of cat-

egorical variables. Standardization of the indicators (Y) is done prior to the PCA transformation

(Equation 6.1).

Y : yα,k =

(
iα,k − pk

)
σk

, for α = 1, . . . , n, k =, 1, . . . ,K (6.1)

PCA focuses on the covariance matrix Σ of the standardized data (Equation 6.2). The elements

of the covariance matrix describe the linear dependence within the multivariate system of the stan-

dardized data.

Σ : Ck,k′ = 1
n

n∑
α=1

yα,k · yα,k′ , for k, k′ = 1, . . . ,K (6.2)

The PCA transform begins with the spectral decomposition of the covariance matrix Σ, which

results in the eigenvector matrix V and a diagonal eigenvalue matrix D (Equation 6.3).

Σ = VDVT (6.3)

The PCA transformation is executed by multiplying the standardized data matrix Y with the

eigenvector matrix V which rotates the multivariate data and decorrelates the principal components

in P (Equation ??).

P = YV (6.4)

To back transform the data to the standardized form, P is multiplied by the transpose of V (Equation
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6.5).

Y = PVT (6.5)

Each principal component is a linear combination of the original variables. Two cases are presented

where PCA is executed to decorrelate categorical indicator variables and model the independent

components subsequently.

6.2 Case 1 - PCA for Categorical Indicators

For this case, the TI represented by Figure 6.1 is used. Samples are obtained and Figure 6.2

displays them.

Figure 6.1: TI used for PCA Case 1.

Figure 6.2: Samples obtained from the TI used for the PCA Case 1.

The first step is to standardize the indicators. Table 6.1 shows the statistics of the standardized

indicator values.
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Table 6.1: Case 1 - Statistics of standardized indicators values

Facies 1 Facies 2 Facies 3
count 2400.000 2400.000 2400.000
mean 0.000 0.000 0.000
std 1.000 1.000 1.000
min -0.517 -1.083 -0.576
25% -0.517 -1.083 -0.576
50% -0.517 0.923 -0.576
75% -0.517 0.923 -0.576
max 1.935 0.923 1.736

Note that since indicators are binary (0 or 1) variables, the standardized values of each category

indicator remain binary, represented by the maximum and minimum values in Table 6.1. When

standardized, indicators remain binary but are dispersed depending on the proportion of each cat-

egory (yα,k = (iα,k−pk)√
pk(1−pk)

) because the standard deviation is proportion-dependent. The lower the

proportion, the more dispersed these values are. For instance, Facies 1 has the lowest proportion,

so its binary values are more dispersed.

Table 6.2: Case 1 - Correlation matrix of the standardized indicators.

Facies 1 Facies 2 Facies 3
Facies 1 1.000 -0.560 -0.298
Facies 2 -0.560 1.000 -0.624
Facies 3 -0.298 -0.624 1.000

As the standardized covariance equals correlation, the correlation matrix is calculated and shown

in Table 6.2. The PCA transformation focuses on this matrix, and the next step involves performing

its spectral decomposition. The eigenvector matrix obtained from the decomposition is displayed in

Table 6.3.

Table 6.3: Case 1 - Eigenvector matrix.

PC1 PC2 PC3
0.3914 -0.7552 0.5258
-0.7646 0.0510 0.6424
0.5120 0.6535 0.5575

The eigenvector matrix serves as the rotation matrix, as its coefficients rotate the variables to

the basis of the standardized matrix. The diagonal eigenvalue matrix is presented in Table 6.4.

Table 6.4: Case 1 - Diagonal eigenvalue matrix.

PC1 PC2 PC3
1.7046 0.0000 0.0000
0.0000 1.2954 0.0000
0.0000 0.0000 0.0000
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The diagonal eigenvalue matrix explains the relative variability that each variable contributes

to the multivariate system. Note that the third principal component does not contribute to the

system’s variability; therefore, the multivariate system is explained only by the first and second

components. The lack of variability in the third component is due to the fact that the indicators are

linearly related. For instance, category 3 can be explained by a combination of categories 1 and 2:

I(u; 3) = 1−
∑2

k=1 i(u; k), since
∑K

k=1 i(u; k) = 1, where K is the number of categories. Since there

is no variability in the third component, the estimation can proceed with one fewer variable, resulting

in dimension reduction when using the PCA transformation for categorical indicators. Figure 6.3

shows the uncorrelated principal components.

Figure 6.3: Case 1 - Uncorrelated principal components.

Figure 6.4 displays the principal components in three dimensions, more clearly illustrating the

lack of variability in the third component.
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Figure 6.4: Case 1 - Principal components in three dimension, illustrating the lack of variability of the
third component.

The triangular plane in Figure 6.4 represents the possible outcomes for the estimation. Enforcing

that the estimates fall inside the triangular plane will mitigate the order relation problem that kriging

might cause. As the dimension is reduced, variogram modeling and estimation are performed for

the first and second principal components.

63



6. Principal Component Analysis for Categorical Indicators

(a) Case 1 - Principal component 1 (PC1) ex-
perimental and modeled variograms.

(b) Case 1 - Principal component 2 (PC2) ex-
perimental and modeled variograms.

(c) Case 1 - Facies 1 experimental and modeled
variograms.

(d) Case 1 - Facies 2 experimental and modeled
variograms.

(e) Case 1 -Facies 3 experimental and modeled
variograms.

Figure 6.5: Case 1 - Experimental and modeled variograms of principal components 1 (a) and 2 (b); and
experimental and modeled variograms of indicators of Facies 1 (c), 2 (d) and 3 (e).

Figure 6.5 displays the experimental and modeled variograms for principal components 1 and

2, as well as for each facies indicator. The dots represent the experimental values, and the lines

represent the fitted models. The color red indicates the major direction, while black denotes the

minor direction. Observe how the major direction of the variogram of the principal components has a

longer range than the indicator variograms, which implies that the spatial structure is mixed after the

PCA transformation. Additionally, note that the variogram points are less correlated for principal

component 1 (PC1) compared to principal component 2 (PC2) and the indicator variograms. The

estimations for principal components 1 and 2 are performed independently using ordinary kriging.
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Figure 6.6: Case 1 - Estimates of principal components 1 and 2.

Figure 6.6 presents the estimates for principal components 1 and 2. Note that not all estimates

fall within the triangular plane. Those outside the triangular plane are adjusted to the nearest

side of the triangle to mitigate order relation issues. The back transformation is then executed by

multiplying the principal component estimates by the transpose of the eigenvector matrix. Since

this transformation converts the values back to a standardized form, they must be reverted to their

original form.
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(a) Case 1 - Cross validation against the reference when estimating with ordinary kriging .

(b) Case 1 - Cross validation against the reference when using PCA and estimating the components indepen-
dently with ordinary kriging.

Figure 6.7: Case 1 - Cross validations of (a) estimating with ordinary kriging; and (b) decorrelating
through PCA and independently estimating the components.

Table 6.5: Case 1 - Table comparing B values of OK estimates and the estimates from the PCA workflow.

Facies 1 OK PCA workflow
B 0.29 0.20

Facies 2 OK PCA workflow
B 0.13 0.10

Facies 3 OK PCA workflow
B 0.22 0.15

Figure 6.7 shows the indicator cross-validation plots for OK estimates as well as for the estimates

using the PCA workflow. Table 6.5 summarizes the B values for each method. The B value

indicates that the PCA workflow does not outperform the ordinary kriging algorithm. Therefore,

although it is useful for dimension reduction and variable decorrelation, the estimation accuracy of

the PCA workflow is poor. PC1 represents most of the variability of the multivariate system, but its

variogram points are less correlated compared to PC2 and the indicator variograms. Additionally,

the variograms’ ranges for PC1 and PC2 account for the ranges of the three indicator variograms,

implying that the spatial structure mixes during the PCA transformation. These factors could
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explain why the PCA workflow is less accurate than ordinary kriging. A second case is also presented.

6.3 Case 2 - PCA

The TI used for Case 2 is displayed in Figure 6.8. Samples are taken, and they are shown in

Figure 6.9.

Figure 6.8: TI used in Case 2.

Figure 6.9: Samples taken from TI used in Case 2.

Initially, the indicators are standardized to facilitate the interpretation of the PCA results. Table

6.6 summarizes the statistics of the standardized indicators.
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Table 6.6: Case 2 - Statistics of standardized indicators values

Facies 1 Facies 2 Facies 3
count 2400.000 2400.000 2400.000
mean 0.000 0.000 0.000
std 1.000 1.000 1.000
min -0.791 -0.875 -0.471
25% -0.791 -0.875 -0.471
50% -0.791 -0.875 -0.471
75% 1.264 1.143 -0.471
max 1.264 1.143 2.125

Because indicators are binary variables, the standardized variables are also binary and are

represented by the minimum and maximum values in Table 6.6.

Table 6.7: Case 2 - Correlation matrix of the standardized indicators.

Facies 1 Facies 2 Facies 3
Facies 1 1.000 -0.692 -0.372
Facies 2 -0.692 1.000 -0.412
Facies 3 -0.372 -0.412 1.000

The correlation matrix is calculated and represented in Table 6.7. The spectral decomposition of

this matrix is performed, resulting in the eigenvector matrix (Table 6.8) and the diagonal eigenvalue

matrix (Table 6.9).

Table 6.8: Case 2 - Eigenvector matrix.

PC1 PC2 PC3
-0.6890 -0.3872 0.6127
0.7224 -0.2980 0.6240
-0.0590 0.8725 0.4850

Table 6.9: Case 2 - Diagonal eigenvalue matrix.

PC1 PC2 PC3
1.6941 0.0000 0.0000
0.0000 1.3059 0.0000
0.0000 0.0000 0.0000

The eigenvector serves as a rotation matrix, as its coefficients rotate the variables to the basis

of the standardized matrix. The diagonal eigenvalue matrix explains the contribution of each com-

ponent to the total variability of the system. Note that the third principal component contributes

nothing to the system’s variability because the third variable can be explained through a linear

combination of the other two variables. The multivariate system is explained solely by the first and

second principal components. The estimation uses just these first two components, demonstrating
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that dimension reduction occurs when using PCA for categorical variables. The variables are now

uncorrelated, as displayed in Figure 6.10.

Figure 6.10: Case 2 - Uncorrelated principal components.

Figure 6.11 displays the principal components in three dimension, showing the lack of variability

on the third component.

Figure 6.11: Case 2 - Principal components in three dimension, illustrating the lack of variability of the
third principal component.
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The shaded triangular plane in Figure 6.11 represents the possible outcomes for the estimates.

Forcing the estimates to fall within this plane ensures mitigation of the order relation issues that

kriging might cause. Due to the dimension reduction, variograms are calculated and modeled only

for the first and second principal components.

(a) Case 2 - Principal component 1 (PC1) ex-
perimental and modeled variograms.

(b) Case 2 - Principal component 2 (PC2) ex-
perimental and modeled variograms.

(c) Case 2 - Facies 1 experimental and modeled
variograms.

(d) Case 2 - Facies 2 experimental and modeled
variograms.

(e) Case 2 -Facies 3 experimental and modeled
variograms.

Figure 6.12: Case 2 - Experimental and modeled variograms of principal components 1 (a) and 2 (b); and
experimental and modeled variograms of indicators of Facies 1 (c), 2 (d) and 3 (e).

Figure 6.12 shows the experimental and modeled variograms for principal components 1 and

2, along with the variograms for each facies indicator. The dots represent the experimental values,

and the lines represent the fitted models. The color red indicates the major direction, while black

denotes the minor direction. Again, notice that the variograms of the principal components have

a longer range than the indicator variograms, and that PC1 variogram points are less correlated
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than the other variograms. This implies that the spatial structure becomes mixed after the PCA

transformation. The estimations for principal components 1 and 2 are done independently using

ordinary kriging.

Figure 6.13: Case 2 - Estimates of principal components 1 and 2.

Figure 6.13 shows the scatter plots of the first and second principal components. Note that

not all estimates fall inside the triangular plane. Estimates outside the plane have been adjusted

to the nearest side of the triangle to mitigate order relation issues. The back transformation to

standardized values is executed by multiplying the estimates by the transpose of the eigenvector

matrix. Since this back transformation converts the values to a standardized format, they must be

converted back to their original values.
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(a) Case 2 - Cross validation against the reference when estimating with ordinary kriging .

(b) Cross validation against the reference when using PCA and estimating the components independently with
ordinary kriging.

Figure 6.14: Case 2 - Cross validations of (a) estimating with ordinary kriging; and (b) decorrelating
through PCA and independently estimating the components.

Table 6.10: Case 2 - Comparison of B values of OK estimates and the estimates from the PCA workflow.

Facies 1 OK PCA workflow
B 0.30 0.25

Facies 2 OK PCA workflow
B 0.15 0.14

Facies 3 OK PCA workflow
B 0.26 0.23

Figure 6.14 displays the indicator cross-validation plots for OK estimates and for those calculated

using the PCA workflow for Case 2. Table 6.10 details the B values for each method. Similar to

Case 1, the B value indicates that the PCA workflow does not outperform the ordinary kriging

method due to the spatial structure mixing when doing the PCA transformation. Thus, while the

PCA workflow is useful for reducing dimensions and decorrelating variables, its estimation accuracy

remains low.
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6.4 Chapter Summary

This chapter introduced the PCA technique for decorrelating indicator variables and independently

estimating each decorrelated component. The technique is interesting because it reduces the dimen-

sions by K − 1, where K represents the number of categorical variables involved. By ensuring that

the estimates remain within the triangular plane, this approach successfully addresses the order

relation issues often associated with kriging. However, despite these benefits, the estimation of the

independent components and their subsequent transformation back to the original values proved to

be less effective than ordinary kriging. This was demonstrated by the B values in the presented

cases, showing that although PCA reduces complexity in data relationships by decorrelating the

variables, it may not improve estimation accuracy. When the original variables are transformed

using PCA, there is mixing in the spatial structure, as seen in Figures 6.5 and 6.12, where the

variogram ranges of the two principal components account for the variogram ranges of the three

category indicators. Additionally, PC1, which represents most of the variability of the multivariate

system, has its variogram points less correlated than the other variograms. This can lead to poor

estimates, as seen in the PCA workflow.
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Chapter 7

Conclusion
This chapter reviews the research motivation (Section 7.1), the contributions of this thesis (Sec-

tion 7.2), the limitations of the thesis (Section 7.3), and suggests future work for advancing the

modeling of categorical variables.

7.1 Motivation

Categorical variables are modeled first as they establish volumes in which the continuous vari-

ables are considered stationary. Therefore, categorical modeling is crucial in geostatistical work-

flows and can significantly influence subsequent stages of resource estimation. This thesis explores

an indicator-based approach to assess the capability of estimating categorical variables using co-

variances and cross-covariances through a linear model of coregionalization. The characteristics of

indicator variograms and covariances are also examined, including an explanation of why the nugget

effect for a categorical indicator variogram must be zero. Additionally, the thesis implements a

regularization technique to mitigate extreme weights arising from unstable linear systems in kriging

equations. Moreover, principal component analysis is used to decorrelate the indicators and esti-

mate the components independently. The thesis aims to enhance understanding of indicators for

categorical variables, as this would improve the modeling of categorical variables and, consequently,

resource estimation.

7.2 Contributions summary

Throughout the development of this thesis, the characteristics of categorical indicator variograms

and covariances are studied. The study demonstrates that the nugget effect for categorical indicator

variograms must be zero and includes a proof of this assertion. A non-stationary relationship between

the variogram and covariance is derived as part of this study. The robustness of models for different

scenarios, including clusters of data, is also analyzed. The analysis shows that the correlogram is a

robust alternative compared to the variogram for indicators of categories.

An extensive comparative study of multiple-point statistics (MPS) based conditional probabil-

ities against a range of kriging algorithms, including simple kriging (SK), simple cokriging (SCK),

ordinary kriging (OK), and standardized ordinary cokriging (SOCK) is conducted. The MPS prob-

abilities are used as a benchmark as they consider the most information. The study considers small

example, and the performance of each kriging method is assessed using metrics such as mean squared

error (MSE), coefficient of determination (R2), and correlation (ρ). Subsequently, the study was

74



7. Conclusion

applied to entire grids and compared against the reference, including a case where a very large linear

model of coregionalization was used. Moreover, the study was extended to include images from the

Data Validation Project by Mokdad et al. (2022). The results and contributions from this study are

summarized:

• SK and SCK had issues with order relations and did not perform well.

• SOCK provided positive results when applied to small examples.

• SOCK with VL-LMC performs almost as well as MPS methods.

• When analyzing images from the Data Validation Project, OK performs about as well as

SOCK. The difference in RMSE gives a small advantage to SOCK.

A technique to regularize weights from unstable linear systems of kriging equations by inflating

the diagonal of the left-hand side covariance matrix with a constant ϵ is implemented. Because the

weights in standardized ordinary cokriging are constrained to sum to one, as the constant ϵ increases,

the weights converge to 1
n , where n represents the number of data points. The application of the

technique shows that while extreme weights are mitigated, it does not change the overall estimation

of an entire grid. This demonstrates that kriging performs well even in the presence of extreme

weights.

Lastly, this thesis decorrelates the categorical indicator variables through principal component

analysis and estimates the components independently. An interesting observation noted during the

decorrelation of the indicator variables is the reduction in dimension to K − 1, where K is the

number of categories. This dimension reduction occurs because the last principal component has

no variance. For cases with three categories presented in this thesis, the decorrelated principal

components form a triangular 2-D plane. Enforcing the estimates to fall within the valid region

of this plane ensures there are no issues with order relations. However, despite the dimension

reduction and the addressed order relation issues, the estimation of the independent components

and their subsequent back transformation to original values proved to be less effective than ordinary

kriging. This could be explained by the mixing of spatial structure when the indicator variables are

transformed into principal components, which consequently results in poorer estimates through the

PCA workflow.

7.3 Limitations and future work

The work presented in this thesis is primarily image-based, and the methods have not been tested

on real-case datasets. Therefore, the study could be extended to real-case scenarios. Additionally,

the cases shown in this thesis include only three categories. Thus, the study could be expanded to

encompass more categories. An interesting extension of this study is the possibility of applying it
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to multiple categories; for example, it could include lithology, mineralization, and alteration. This

would allow for the exploration of cross-relationships between different categories.

Regarding the regularization technique, the analysis shows an impact on the estimation locally,

but not sufficient to change the final grid estimates. Therefore, a study could be done to analyze

the importance of correcting estimates locally as it might be valuable to know the actual value of

locally correcting estimates.

There is a need to mention the importance of other categorical modeling methods. Until the

hierarchical truncated pluri-Gaussian method was developed by D. Silva and Deutsch (2019), the

approach for numerical modeling of categorical variables was to either combine the variables or to

model them independently. The collocated joint relationships between categories are not reproduced

when modeling them independently. The categorical multivariate approach through the hierarchical

truncated pluri-Gaussian method improves the reproduction of multivariate relationships between

the variables (D. Silva & Deutsch, 2019). D. Silva and Deutsch (2019) did not account for the spatial

cross-correlation; therefore, the inclusion of cross-correlation is another topic of future research for

the simultaneous multivariate categorical modeling as it contains information about the spatial

configuration between categories.

The MPS method was developed to simulate complex geological models based on a training

image while having the flexibility to honor conditioning data. It works by taking patterns from

a single image and integrating them with actual data from specific locations, like wells. However,

one of the challenges with MPS is that it has difficulty recreating complex, nonlinear patterns in

geological models. This is partly due to the restriction to small training patterns and computational

limitations, which compromise the representation of larger-scale features. Additionally, MPS does

not fully capture the variability and uncertainty of geological inference because it often assumes

stationarity, relies on repetitive patterns from training images, and treats patterns as independent

and with the same statistical properties. These simplified assumptions can lead to incomplete or

biased representations of geological variability and uncertainty. Recent advances in deep machine

learning techniques show that the generative adversarial networks (GANs) method outperforms MPS

in generating more geologically realistic models constrained by well data. Because of its potential

and the ability to be conditioned by numerous well measurements, researching GANs for modeling

categorical variables is valuable.
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