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Abstract

The interactions of electromagnetic probes with nuclei are studied. In the first part
of this thesis the relationship between relativistic and nonrelativistic approaches to
nucleon knock-out reactions is investigated. The relativistic amplitudes for the proton
knock-out reactions ( v,p ) and ( e, €p) on nuclei are reduced to the nonrelativistic
forms using an effective Pauli reduction scheme. The reductions are carried out to
second order in the inverse nucleon mass. It is found that the interaction Hamilto-
nians appearing in the nonrelativistic amplitude have significant dependence on the
vector and scalar mean nuclear potentials. These strong medium modifications are
absent in traditional nonmrelativistic calculations. Detailed comparisons show that
these modifications are crucial to understanding the differences between relativistic
and nonrelativistic models. These differences are also examined through reduction of
the relativistic Hamiltonian for the first reaction via the Foldy-Wouthuvsen transfor-
mation. Similar medium modifications are obtained in this case as well. We discuss
the implications of these medium modifications for the consistency of existing non-

relativistic calculations.

In the second part of this thesis, a relativistic model for photoproduction
of n mesons from complex nuclei is developed. The model is used to study the
exclusive reaction A( v.7p )A-1, leading to discrete final states in the residual nucleus.
Inclusive reactions A( 7,7 )X in which the 1 meson is the only detected particle are
also studied. The ingredients of the model are: i) the nucleon wavefunctions are
solutions of the Dirac wave equation with the appropriate scalar and vector strong
potentials, ii) the 7 meson is described by solutions of the Klein-Gordon equation
with appropriate optical potentials, and iii) the interactions between the fields are

introduced through a covariant effective Lagrangian.

The amplitudes are used to calculate the observables for the exclusive and



inclusive reactions on different target nuclei. The energy region where the S;;(1535)
resonance dominates the reaction is specified. This is the best energy region for using
the 1 photoproduction reactions to study the properties of the above resonance in the
nuclear medium. The region of phase space where the reaction has its largest cross
section is also determined. Comparison with the existing nonrelativistic calculations
is carried out. Detailed comparison of the inclusive reactions with the available data
show that, in the energy regions studied, the quasifree n production is the main

contributing process to inclusive n photoproduction reactions.
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Chapter 1

Introduction

Since the beginning of nuclear physics, when existence of the atomic nucleus was
deduced by Rutherford from the famous experiments of a-particle scattering on a
gold foil up to deep inelastic scattering experiments at Stanford by Friedman et al.
revealing the structure of nucleons, the electromagnetic probes have always playved
a central role in the study of nuclear and subnuclear structures. The special role
of the electromagnetic interaction in unravelling the microstructure of the world is
due to the fact that (i) its properties as a classical field as well as the nature of its
interaction with the constituents of nuclei ( nucleons ) are well known. and (ii) the
electromagnetic interaction is weak enough to allow the probe to interact uniformlyv
throughout the whole volume of the probed system, and to permit the use of lowest
order perturbative treatment, resulting in simple and unique interpretations of ex-
perimental results. However, this weakness constitutes also a disadvantage: the cross
sections for photoproduction and electron scattering are considerably smaller than

for pure hadronic reactions.

A relativistic field theory describing a system of nucleons and mesons was
introduced by Walecka. This quantum hadrodynamic model (QHD) starts from a
relativistic phenomenological Lagrangian including nucleons and mesons. When it is
applied to infinite nuclear matter, the meson fields are repiaced with their expectation
values. This replacement results in a simplified Lagrangian, the so called relativistic

mean field theory (RMFT) Lagrangian [1, 2].

In addition to providing an excellent description of bulk properties of nuclear



matter, RMFT has proven to be a very powerful tool for an effective microscopic
study of the ground state properties of nuclei [1, 2]. It provides a unified description
of the binding energy and deformation properties of nuclei and also has been used
recently in a study of superheavy nuclei [3]. There are many successful relativistic
phenomenological reaction models based on the RMFT, describing electromagnetic as
well as hadronic interactions with nuclei. These are found to provide better descrip-

tions of the observables, especially spin observables, than other models. [4, 3, 6, 7].

The connections of the RMFT to the effective chiral theory, derived from the
fundamental theory of quantum chromodynamic, has been studied by many authors.
The relation of the SU(2) x SU(2) chiral Lagrangian describing the strong interaction
of the pions and nucleons to the RMFT is discussed by Gelmini et al. [8]. These
authors show that the four nucleon terms of the chiral Lagrangian produce the same
results for bulk nuclear matter as those of the Walecka mean field model. Brown
and Rho obtained the parameters of the Walecka model from the chiral Lagrangian
in mean field using the BR (Brown and Rho) scaling [9]. The RMFT model is
also used to study chiral phase transitions [10] and chiral symmetry restoration of
hadrons [11]. Aiming to merge the quantum hadrodynamics model of Walecka to
effective field theory, Furnstahl et al. [12] introduced a chiral effective Lagrangian for
nuclei. The success of the RMFT and reproduction of its results by effective theories
of quantum chromodynamic encourages us to use the prescription provided by this
model for the dynamics of the nucleons within the nuclear matter. The relativistic
nuclear wavefunctions, in our approach to a variety of reactions, are solutions of the
Dirac equation with the strong potentials derived from RMFT. These potentials for a
spherical nucleus are just two functions S(r) and V(r) which transforms like mass and
energy of the nucleon. respectively, and are called strong scalar and time-like vector

potentials {13, 14].



In the first part of this thesis we study proton knock-out reactions using in-
cident photon and electron beams. The interactions of the electromagnetic probes
with the hadrons are described through the manifestly covariant and gauge invariant

relativistic interaction Lagrangians [13].

The relativistic approach has been applied recently to the study of the knock-
out mechanism for photonuclear reactions{4, 5]. The calculations result in favorable
agreement with data in situations where the direct knock-out mechanism is expected
to dominate. Recent nonrelativistic calculations based on more sophisticated nuclear
wavefunctions have also had encouraging successes[16]. In view of these developments
it 1s important to clarify the differences between the relativistic and nonrelativistic
approaches. In particular we wish to investigate whether these approaches predict
essentially the same cross sections and if so, would they lead to the same spectroscopic

information? In addition, will this be the case for the spin-dependent observables?

In the nonrelativistic approach; the interaction terms are obtained from the
Foldy-Wouthuysen reduction of the relativistic interaction Hamiltonian for free nu-
cleons [17, 18], and the interacting nucleons are described via the Schrédinger wave-
functions. These wavefunctions and the above reduced interaction Hamiltonian are
used to calculate the transition amplitude for the reaction [16, 19]. The success of
the relativistic approach in providing better description of the spin observables than
the above approach. is mainly due to the use of the Dirac wave functions for the
states of the interacting nucleon. The Dirac equation is originally constructed for
spin half particles, whereas for the Schrédinger equation, the spin-orbit interaction

term is added manually.

In chapter II we start from the relativistic amplitude for A( v, p)4 — 1 re-
actions and use two different nonrelativistic reduction schemes, namely Pauli and

Foldy-Wouthuysen reduction schemes, to derive the nonrelativistic amplitude of the



reaction. The nucleons in the reduced amplitude are described by Schrédinger-like
wavefunctions. We will compare results of the reduced nonrelativistic models to the
results of the relativistic one. A comparison of the two reduction schemes is also

given.

It is noteworthy to comment on the main differences between photon and
electron reactions or real and virtual photon processes. For real photons one has a
fixed relation between energy and momentum transfer { @ = «? ), whereas for the
exchange of a virtual photon in electron scattering the four momentum is space-like
(#* > w? ) allowing an independent variation of energy and momentum. Real photons
have only transverse polarizations whereas virtual photons have both transverse and

longitudinal polarizations, allowing the charge density to contribute.

The quasifree electron scattering reactions are among the simple reactions
that involve interactions of virtual photons with nuclei. An interesting aspect of the
quasifree electron scattering reactions is their capability of providing information on
the behavior of nuclear wavefunctions in different regions of momentum transfer to
the recoil nucleus. The relativistic and nonrelativistic model calculations for quasifree
electron scattering show some differences in descriptions of the observables and also
the deduced spectroscopic factors [20, 21, 22, 23]. Considering the above differences.
the study of the application of the relativistic and nonrelativistic approaches to the
quasifree electron scattering is also of interest. This investigation is carried out in
chapter III. In this chapter we apply the Pauli reduction scheme to the (e, e'p ) reac-
tion on nuclei and obtain an expansion of the relativistic amplitude which involves the
two component Schrodinger-like wavefunctions. Then we show how one can recover
a nonrelativistic amplitude from this expansion. We also study the role of the nu-
clear medium in the convergence of the expansion and the nonrelativistic amplitude
above and point out the main differences between the relativistic and nonrelativistic

approaches for this reaction.



In the second part of this thesis we apply the relativistic approach to the

photoproduction of 7 mesons from complex nuclei.

The physics of the  meson has attracted considerable attention in recent vears.
The photo- and hadroproduction of n mesons off nucleons and nuclei at threshold is
large. The #°-n mixing is able to provide information on the mass difference of the
up and down quarks. Unlike the pion whose S-wave scattering length is small and
negative, the scattering length of 7 mesons is large and positive [24]. This large
and attractive 7-nucleon scattering length motivated the search for 7-nucleus bound
states, the so called 7-mesic nuclei. Liu et al. [25] were the first to suggest the
possible existence of such states. Their last publication in this regard concluded that.
for medium and heavy nuclei ( A > 12 ), 7 meson bound states are possible. but
the widths of these states are larger than the difference between the energy levels
[26]. Several authors have continued this theoretical investigation for different nuclei.
Search for light n-mesic nuclei ( A < 4 ) brought the lower limit for the mass number
of a nucleus capable of binding an 7 meson, down to two. i.e. for nuclei with A > 2
there may exist quasi 7 bound states. However, the widths of the bound states are
small only for 3He [27]. The one experiment performed so far aimed at searching of

n-mesic nuclei, reported negative results [28].

The 7 meson is a spin and isospin zero meson, so it can only couple nucleons
to their isospin % resonances. Moreover there is a spin and isospin half resonance
( 511(1333) ), close to the threshold of n meson production, which decays ~50% of
time to an 7 meson and a nucleon. By contrast the S;;(1650) which has similar
structure has only a decay rate of ~ 1.5% to the n meson nucleon channel. This
puzzle is still unsolved and presents a challenge to quark model descriptions of these
resonances. Due to this selectivity, photoproduction of 77 mesons off nuclei is a valuable
means to study the propagation and possible modification of the nucleon resonances.

especially S;,(15353), inside the nuclear medium.
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The short life time of the 7 meson ( 5 x 10719 second ) excludes the possibility
of having a practical 7 beam for scattering experiments from nuclei or other particles.
Thus the study of the interaction of this meson with nuclear matter is restricted to its
final state interactions. Photoproduction of n mesons off nuclei is the best candidate
for such study ( the electroproduction of the 7 meson is somewhat more complicated
by comparison as it involves an off shell photon ). The 7 meson can also be produced
using hadronic beams. Photoproduction has the advantage that one of the vertices
being electromagnetic whereas for the reactions involving hadronic probes, we have
to deal with two hadronic vertices. However, the cross sections for latter reactions
are larger than those of the former ones. Photoproduction of 7 mesons on nuclei can

also be used to investigate photoproduction of 7 mesons on neutrons.

Recently Lee et al. have studied the photoproduction of n meson from complex
nuclei and developed a quasifree DWA model for the reaction [29]. They used nonrel-
ativistic Schrodinger wavefunctions to describe the bound and continuum nucleon and
the Klein-Gordon wavefunction for the 1 meson. The elementary photoproduction
used in this calculation is based on the use of the coupled channel isobar model for
contributions from the resonances, whereas contributions of the Born and vector me-
son terms are calculated from the effective Lagrangian of reference [30]. Even though
their model includes only contributions from the quasifree production to the reac-
tion, these authors find good agreement with the experimental data of the inclusive

reaction using a specific set of n optical potentials.

In chapter IV of this thesis we start from an effective interaction Lagrangian
introduced in reference [30] and develop a relativistic model for describing photo-
production of n mesons form complex nuclei. Interacting nucleons and mesons are
described by solutions of the Dirac and Klein-Gordon equations, respectively. After a
general introduction of the model, we develop a model for exclusive photoproduction

of n meson off different target nuclei. The contributions of each nucleon resonance.



as well as the other diagrams, to the reaction, are discussed. The effects of the final
state interactions of the outgoing particles with the residual nucleus are taken into
account through the use of optical potentials. The sensitivity of the observables of
the reaction, such as differential cross section and photon asymmetry, to the use of
different potentials is studied.

Starting from the amplitude for exclusive n photoproduction, we obtain an
amplitude for the inclusive photoproduction of 7 meson from complex nuclei. This is
discussed in chapter V. The results of this model for plane wave as well as distorted
wave calculations for two nuclear targets are compared with the data of the recent
experiment performed at MAMI [31]. We also compare the results of our model with
the work of Lee et al. [29].

In summary the thesis is organized as follows. The study of the Pauli and
Foldy-Wouthuysen reductions of the relativistic amplitude for ( v, p ) reactions on
nuclei is given in chapter II. In chapter III we investigate the Pauli reduction of the
relativistic amplitude for ( e, €'p ) reactions on nuclei. We develop an exclusive model
for photoproduction of n mesons form complex nuclei in chapter I\ and extend the
model for inclusive reactions in chapter V. Chapter VI is devoted to further discussions

and our conclusions.
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Chapter 2

Nonrelativistic Reduction of The Relativistic

Amplitude for ( 7, p ) Reaction on Nuclei !

Introduction

The interaction of electromagnetic probes with nuclei is valuable in investigating the
nuclear matter properties. The interaction is known and its relative weakness permits
the probe to interact almost uniformly through the entire nucleus; first order pertur-
bation theory should then provide an adequate description of the process. Among
these processes. the interaction of real photons with nuclei has the advantage of giv-
ing information about the high momentum behavior of nucleons inside the nucleus.
The simple knock-out mechanism for the photonuclear reactions has been able to

reproduce the experimental data qualitatively [1].

In the present study we concentrate on photonuclear reactions of the type
A( 7. p)A-1 in which an incident photon is absorbed by the target nucleus then as a
result a proton is ejected to the continuum state and the residual nucleus is left in a
definite final state. There are two different approaches to calculate the observables for
reactions of this type; 1) relativistic calculations in which the bound and continuum
nucleons are described by Dirac wavefunctions while the nuclear current is written
in the usual relativistic form[l, 2], and 2) nonrelativistic calculations based on the

use of Schrodinger wavefunctions to describe the bound and continuum nucleons. In

1A letter and an abbreviated version of this chapter are published in Phys. Lett. B326 (1994)
9 and Nucl. Phys. A 593 (1995) 377.
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the latter case the nuclear current is obtained through a Foldy-Wouthuysen (F\V')
transformation of the relativistic Hamiltonian describing the interaction of a photon

with a free nucleon (3, 4].

The results obtained from the relativistic calculations were found to be in
better agreement with experimental data than those of nonrelativistic distorted wave

Born approximation (DWBA) calculations [2].

Our goal in this chapter is to clarify the main differences between the relativis-
tic and nonrelativistic calculations. We obtain the nonrelativistic amplitude from the
relativistic distorted wave S-matrix through two different reduction schemes. The first
of these is the Pauli reduction in which the relativistic S-matrix of the (v, p) reaction
is expressed in a form that involves Schrodinger-like wavefunctions and an effective
interaction Hamiltonian. This Hamiltonian is expanded in powers of 1/ (E + M).
where M is the nucleon mass and E is its total energy. The first order terms in
this expansion, in the limit £ — M, reproduce the form of the usual nonrelativistic
amplitude. A characteristic feature of the higher order terms is the dependence of
the interaction Hamiltonian on the nuclear vector and scalar potentials. The qual-
itative features of a similar two component reduction of the Dirac wavefunction for
several generic vertices. in the presence of the nuclear interactions, has been discussed
by Cooper et al. [5]. The emphasis in our present discussion is to present a more

quantitative analysis for the case of (v, p) reactions.

The second approach is based on the use of the Foldy-Wouthuysen transfor-
mation. The relativistic knock-out amplitude is written for a model case in which the
initial bound and final continuum nucleons are described by a single Dirac Hamilto-
nian with real vector and scalar potentials. Through the FW reduction we are able to
write a nonrelativistic limit of the amplitude to various orders in the inverse nucleon

mass. Again we find that the interaction Hamiltonian is dependent on the strong

12



nuclear potentials.

We will show that the first order nonrelativistic amplitudes obtained in both
reduction schemes lead to results which are different from those of the correspond-
ing relativistic calculations. Inclusion of the higher order corrections improves the
nonrelativistic calculations only if the medium corrections ( i.e. terms which involve

strong potentials ) are considered.

We begin section 2.1 by calculating the relativistic S-matrix describing the
direct knock-out contribution to (v,p) reactions on nuclei. In addition we provide
some discussion of the Dirac equation containing strong scalar and vector potentials.
In section 2.2 we discuss the formal aspects of the Pauli reduction scheme and show
how the relativistic S-matrix of the (-y, p) reaction is reduced to an expansion in the
inverse nucleon mass. We then show results of detailed calculations and discuss the
implications of the presence of the nuclear potentials in the interaction Hamiltonian.
In section 2.3 we discuss the FW transformation of a relativistic Hamiltonian describ-
ing a particle interacting with electromagnetic and strong nuclear fields, and we find
the corresponding nonrelativistic amplitude to second order in the inverse nucleon
mass. We discuss differences between the interaction Hamiltonians obtained through
the Pauli and FW reduction schemes. The section closes with a comparison of ob-
servables calculated at different orders, and again discusses the implications of the
presence of the nuclear potentials in the FW interaction Hamiltonian. Section 2.4 is

devoted to conclusions.

2.1 Relativistic Direct Knock-out Mechanism

In an exclusive A (y, p) A—1 reactions, the incident photon is absorbed by the nucleus

and then as a result a proton is knocked out, leaving the residual nucleus in a definite
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Figure 2.1: The Feynman diagram of the direct knock-out mechanism for the
A( 7,p )A — 1 reaction. The incident photon with momentum k is absorbed by
a proton inside nucleus A and as a result the proton is ejected leaving the residual
nucleus in a discrete final state.

final state. The assumption of the Direct knock-out model is that the incident photon
is absorbed by a single bound proton which then is ejected into the continuum state.
The initial bound proton is described in terms of the independent-particle shell model
in which the proton moves in a potential that is the average result of its interactions
with all the other nucleons, otherwise the core is essentially a spectator in the reaction.
Whereas for the outgoing proton final state interactions of proton with the residual

nuclei are included. Figure (2.1) shows the corresponding Feynman diagram of the

reaction.

The relativistic distorted wave amplitude (S-matrix) for the reaction (v.p) on
a target nucleus in the angular momentum state |J;M;) leading to a residual nuclear

state [Jy M) is obtained in first order in the interaction Hamiltonian as [1]
—i [11Y2r A2
o0 = el
(27)" 2w Ec
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1/2
x Y (J5, e My, Mp|J;, M) [SJ.'JJ(JB)]
JaeMp

x [F5 (2) Hom (2) 15005 (2) 'z, (2.1)

where E¢ is the energy of the final state continuum proton and M is its mass. The
energy of the incident photon is w. The Dirac spinors ¥, m, () and ¥, () describe
the bound nucleon with angular momentum Jp and projection Mg, and the contin-
uum nucleon with spin projection sy, respectively. The Clebsch-Gordan coefficient
in equation (2.1) couples the bound proton to the residual nucleus, and S J:J; is the
spectroscopic factor. The electromagnetic interaction Hamiltonian is

20" F,,(z). (2.2)

Hem (z) = ef(2) + 5557

The 4-vector potential describing the photon is written as
Af (z) = fe™r, (2.3)

where € = (0, cos¢, sin€, 0) is the polarization 4-vector and £ is the corresponding po-
larization angle of the photon, allowing us to choose between two linear polarization
states. In writing the polarization vector this way we have made a definite choice of
gauge and z-axis; namely, the Coulomb gauge and the z-axis is taken along the direc-
tion of the photon momentum. Therefore the photon 4-momentum always has only
two nonzero components i.e k4 = (E,.0,0,k,). We thus have two linear polarization
states: { = 0° with polarization along the x-axis and £ = 90° with polarization along

the y-axis.

The second term in the interaction Hamiltonian (2.2) is an anomalous magnetic
moment term with x = 1.79 for the proton. The tensor o*” is related to the usual

Dirac gamma matrices through

i
o =" 7, (2.4)
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and the electromagnetic field tensor F,,, is

Fu =3,A, - 3,A,. (2.5)

The Dirac spinors in equation (2.1) are solutions of a Dirac equation of the

form
{a-p+B[M+5(r)]+V(n}v(z) =Ey(z), (2.6)
where we adopt the standard representation of the 4 x 4 Dirac matrices {a;} and
B [6]. The potentials S(r) and V (r) are the scalar and time-like vector potentials
respectively. These potentials are originally derived from the mean field Lagrangian.
including nucleons, ¢, and w mesons as degrees of freedom [7]. In actual distorted
wave calculations, the outgoing proton is described by a solution of the Dirac equation
above, in which the scalar potential S(r) and vector potential V' (r) are complex
functions. The parameters for these potentials are determined from analyses of proton
elastic scattering on nuclei [8]. For the bound nucleon, Dirac-Hartree potentials are
used [9]. Detailed discussions of the Dirac equations pertaining to both bound and

continuum nucleons can be found in references |1, 9].

The standard nonrelativistic amplitude for the reaction (7,p) involves the
use of Schrodinger wavefunctions to describe the initial and final nucleons. In the
Pauli reduction scheme, discussed in the next section, the amplitude can be cast
in a nonrelativistic form involving wavef:nctions that are solutions of an equation
similar to the standard Schrédinger equation. The central and spin-orbit potentials
appearing in these equations are themselves functions of the Dirac scalar and vector
potentials. This equation is called the Schrédinger-like wave equation and will be

discussed in the rest of this section.

We write the Dirac spinors in terms of upper and lower components u and ¢

b (z) = ["(r)} ,

¢(z) (2.1)
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when this is substituted into equation (2.6), we get two coupled equations
M+S(r)—E-V(r)]u(z)+eo-pt(z) = 0
o-pu(z)-[M+S(r)+E-V (r)t(z) = 0. (2.8)

From the second equation we can write the lower component ¢ in terms of the upper

component u as

o-p
14 = . .
@ =grmrso v @ (29)
Thus the Dirac spinors can be written in terms of their upper components in the form

1
¥(z)= o-p u(z). (2.10)
M+E+S(r)-V(r)
The upper component u (z) of the Dirac spinor can be related to a Schrédinger-like

wavefunction ¥se, () by [10]

u(z) = D? (r) ¥sen (2) , (2.11)

and the function D (r) depends on the Dirac potentials as

_E+M+5(r)=V(r) _ s(r)
b(r) = E+M TE+ M

(2.12)

Note that for large r the nuclear potentials vanish and D(r) reduces to one, so
the asymptotic behavior of the upper component of the Dirac wavefunction and
the Schrédinger-like wavefunction are the same. The Schrédinger-like wavefunction

Wsch () is the solution of the Schrédinger-like equation [10]

2
{—QVTI F+Uient (1) + Uo (1) o - L} Useh = (E — M) ¥gep. (2.13)

The central and spin-orbit potentials are functions of the Dirac potentials as well as

the energy of the proton, and are written explicitly as

. 1 sl lsll 3312
Ueent (1) = E‘M+m{8d—s—r—§?+2?}. (2.19)
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and

1 §(r)

Veo T 2Mrs(r)

: (2.15)

In addition to the function s(r) defined in equation (2.12), we have defined a function

involving the difference between the nucleon’s mass and energy
dir)=M-E+S(r)+V(r). (2.16)

For the bound state the “nonrelativistic” equation (2.13) provides a better description
of spin orbit splitting in nuclei than the usual nonrelativistic calculations [9], and
similarly for the continuum nucleon the wavefunction obtained from this equation

gives an improved description of nucleon-nucleus elastic scattering data [8].

2.2 Effective Pauli Reduction

In the effective Pauli reduction scheme the relativistic distorted wave S-matrix is
rewritten in terms of the above mentioned Schrédinger-like wave functions. In doing
this, one finds that the interaction terms appear in an effective interaction Hamilto-
nian. The latter may be expanded in powers of ﬁ The various orders can then
be related, in the proper limit, to the nonrelativistic form of the amplitudes. As we

show below there are, however, important differences between these and the usual

nonrelativistic amplitudes.

2.2.1 Formalism

Beginning with the amplitude of equation (2.1), we write the integral in terms of

Schrodinger-like wave functions using equations (2.10) and (2.11). This allows us to
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write

. 12 ¢ prq1/2
= Goplal B

@r)* 2wl LEc
x 3= (Jr, Ja: My, Mgl Je, M) [S1,0,(J5)]

JaMp

X / ‘I’gg,)s, (z) HLS (2) Wsen 1505 (2) dz, (2.17)

1/2

where the Schrédinger-like wavefunctions Wscy sz 4, (z) and W1 s, (z) describe the

bound and continuum nucleons, respectively ,and the effective interaction Hamilto-

nian H{f is
eff _ 1/2 o-p 0
Hi™ = Dco(r) [1 M+ Ec+ Sc(r)—Ve (r)] ¥ Hem(2)
1
X o-p Dy*(r). (2.18)

M+ Eg+Sg(r)—Vg(r)
where the labels B and C refer to the bound and continuum nucleons. The interaction
Hamiltonian Hff f can be expanded in powers of ﬁ ( E is the energy of either bound

or continuum nucleons) and written in the form:
HY =Y + H® ¢ ... (2.19)

The first and second order contributions are given by

(1) _ ex ( 1 1 ) ]
H; a? "V xal- M+E-TaM1E,)AP
+ z’e( 1 - ! )a-Ax _ea-Vx[A]
M+E: M<+Ep P eI ¥Ec
HY= - £ to. Wi [A].*.ZM Qs(r)
2 | 231 M+ Ep
+ [Qg(r) rc2ww] o- A.\/I-i-EB
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e o- Aoc-p
- EQC(T)[zu” Vx A+

o-po- A
M+ Ec-
o-

+ eqri—{Qcn) - 3Qs() + gz} o - A, (2.20)

where we have written

_ Sx(r) - Vx(")'

Qx(r)= %Y, (2.21)

The notation O[f]--- in the interaction Hamiltonians of equation (2.20) means that
operator O acts only on function f. The appearance of the Dirac potentials, through
the Q functions, in the expression for H (2) in (2.20) delineates the modification of
the effective photon interaction due to the presence of the nuclear medium. This
modification appears in the terms of second and higher order in the inverse of nucleon
mass ( more precisely the inverse of ( E+M ) ). We will investigate the significance

of this medium effect in the following section.

Using the interaction Hamiltonians (2.20) in equation (2.17) along with the

nonrelativistic wavefunctions, the amplitude can be cast in a nonrelativistic form as
- [ 1712 1/2
G la0] X s My Maldi, M) [S1,0,(75)]

JeiMp

S}
/‘I’sch.s, (z) Hl (z) seh sprMp (z)d? (2.22)

where i refers to the highest order of the inverse of the nucleon mass in the interaction

Hamiltonian which is used in the nonrelativistic amplitude, i.e.
Y HY (2.23)
=1

and (1) indicates the order of 57 that appears in interaction Hamiltonian H{". The
amplitude (2.22), with H{"? = H{" in the limit Eg, Ec — M is equivalent to the

standard nonrelativistic transition amplitude [11] except that the Schrodinger-like
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wavefunctions are used instead of the usual nonrelativistic Schrodinger wavefunc-
tions. The amplitude obtained this way will be referred to here as the first order

nonrelativistic amplitude.

The Schrodinger-like wavefunctions describing the bound nucleon can be writ-

ten as
Usen8(2) = €™ F8 f1 (r)VIE 121, (), (2.24)
while for the continuum nucleon we write

: L M8y 2
\I’gch,C(I) = 4me'fe! i Ly 7 (ky)
LMJ

X(L) 1/2; M- Sf’ Sfl‘] ""[)fLJ(r)yg{;y(QL (2'25)
where
Vitps(Q) = J(L.1/2:M ~ p, plJ, MY Q) - (2.26)
m
It should be emphasized here that, in order to have a standard nonrelativistic ampli-
tude, the wavefunctions introduced in equations (2.24) and (2.25) have nonrelativistic
normalization, i.e. the factor ‘/%*-;‘T" which comes from the Dirac spinor describing
the outgoing nucleon has been set equal to one (thus a bound state wavefunction is
normalized to one and the plane wave limit of the nucleon wavefunction is of the form
Wsehs,(2) = e~**x}’,). In addition the factor & which comes from the Dirac field

expansion is set equal to one ( see equation (2.1)).

Using equations (2.3), (2.24) and (2.25) after evaluating the angular integration

the first order amplitude can be written as

—ie [ 1112 1/2
s = ] T (e My Mol M) [S1,,(75)]
JeMp
x86(Ec — Ep —w) 3_ (=i)*E(2 +1)

ILJu
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x { (L,1/2; My +2u — S;, 57 | J, Mp + 2u)Y 15251 ()

KW w
* [(2M MY E; ) hrarsCirars

1
—(2pcos§ —isiné§) (M+ Ec T M+ EB)

Ma,u Ma#‘ )
LJLs La+1.l.L La-l,l.L

+ Y (L,1/2;Mp —v—~5;,S; | J, Mg ~ V)YLMB-”_S!(’CI)
v==+1

x[(1+1)+2v(1-1)]
M+Ec  M+Ep P\M+E: M+E;

HMepw pMe,—uw _ pMp—u Vcosf'*'lsmf
L LB [ Lg+1l.L — La—l.l \/5 ’

(2.27)

, i Mp.uv My pv Mpu.v Mp.p - S
where Iy1 1, ClLsrgr Protiie Proie. Hr iy, and Hp 2% involve radial in-

tegrals and Clebsch-Gordan coefficients. These functions are defined in Appendix

2.A. The corresponding expression for the amplitude to second order in Eﬁ has the

following form
—ie [ 1712 1/2
5@ _;_ [T > (g, d: My, MplJi, M;) [S1.5,(J5)]
nd JeMp
x§(Ec — Eg —w) Y_ (—i)*L (20 + 1)
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2.2.2 Observables for ( v, p ) Reaction

Observables for the ( v, p ) reaction are calculated from the S-matrix in the usual way
( see Appendix 2.B for more details ). To simplify the final expressions we introduce
the function Zg' . (6) which is related to the S-matrix element S; as follows

R — 1 1/2
Sho= =(sz] X U Tai My, Maldi M) [S1es,(s)]
T 2w IaMs

x6(Ec — Ep — w)Zg/ »,(8). (2.29)

1/2

By comparing equations (2.27) and (2.29) we find that for the first order amplitude

(¢ =1), the new function can be written as
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As can be seen from (2.30) Z.(s'if),.flg (8) depends on the polarization of the incident
photon §. spin projection of the bound nucleon Mjp, spin projection of the outgoing
nucleon Sy, and the direction of the outgoing nucleon 8. The resultant unpolarized

cross section for the (v, p ) is

do(") 4rapEc ()¢
= Zsp, 12 - 2.31
1 " (2Jp + L)hep, s,é;,, (P 231)
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The photon asymmetry can be obtained from the cross sections for specific photon

polarizations. We use the following convention [12]

dol _ dglid
i an dan
A96) = Za—zw (2.32)

v T L
where the symbols || and L refer to the cases where the polarization of the incident
photon is parallel ( £ = 0° ) and perpendicular ( £ = 90° ) to the scattering plane
respectively.

2.2.3 Results of the Effective Pauli Reduction

In the previous subsection we illustrated how the effective Pauli reduction of the rel-
ativistic amplitude for the knock-out contribution to (7, p) reactions is performed to
get an expansion in powers of ﬁ The successive terms in this expansion can be
reduced, in the appropriate limits, to forms that are equivalent to the amplitudes
used in nonrelativistic calculations. This allows us to carry out quantitative compar-
isons between the relativistic and nonrelativistic calculations. The appropriate limits
referred to above include: i) setting the nucleon total energy equal to its rest mass.
i) turning off the nuclear potentials in the second-order interaction Hamiltonian. iii)
taking proper account of wavefunction normalizations. This comparison will be car-
ried out for the differential cross section as well as the photon asymmetry at a wide

range of intermediate photon energies and for three different targets.

We shall compare the following four types of calculations:
a) Full relativistic calculations using the amplitude given by equation
(2.1). In the figures that follow these calculations are represented by solid

curves and denoted “Relativistic”. For these calculations the relativistic

(7.p) code of Lotz has been used [13].
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b) First order nonrelativistic calculations. These calculations are obtained
using the amplitude S(f-) of equation (2.27). Note that in the limit Ep
and Ec — M, the interaction Hamiltonian takes on a simplified form.
These calculations essentially represent the standard nonrelativistic cal-
culations. Comparison of these results with the relativistic calculations
gives the essence of the difference between the two approaches. These cal-
culations are denoted “Pauli N.R. (First order)” in the figures. discussed
in this subsection and are represented by the dotted curves.

c) The third type of calculation represents a nonrelativistic calculation
carried out to second order in the inverse nucleon mass. This calculation
then includes the interaction Hamiltonian H}z), but with the nuclear vec-
tor and scalar potentials set equal to zero in this Hamiltonian. This inter-
action will then relate to the limit in which the photon is interacting with
a free nucleon. Our intention here is to clarify how much improvement in
the nonrelativistic calculations can be obtained by including second order
effects. We shall show that the effects are not substantial. These results
are shown by the dot-dashed curves in figures presented in this subsection
and are labelled “Pauli N.R. (First + Second)”. We shall refer to these
calculations in the text as “medium-uncorrected” calculations to signify
the fact that they pertain to the limit in which the nuclear potentials are
set to zero in the interaction Hamiltonian H}”.

d) The fourth type of calculation represents a nonrelativistic calculation
using the full expression for H}z) , 1.e with the effect of the nuclear medium
(through the presence of the potentials) taken into account. These calcula-
tions are shown by the dashed curves in figures presented in this subsection
and are labelled “Pauli N.R. (First + Full Second)”. They will be referred

to as “medium-corrected’ nonrelativistic calculations in the following text.



The essence of the present comparison is to show the significance of these

medium effects.

Since our aim in this chapter is to compare the two theoretical models, namely
relativistic and nonrelativistic, for the knock-out contribution to (v, p) reactions, we
compare the resulting observables with data just for few cases. We refer the reader to
the work of Lotz and Sherif [1] for more details on the comparison of the results of the
relativistic model with experiment. For the cases in which the data are presented, the
“spectroscopic”factor is found by fitting the relativistic cross section (solid curve) to
the data and other curves are multiplied by the same factor. In the rest of the calcu-
lated cross sections given in this chapter the spectroscopic factor takes its maximum
allowable value of (2Jp + 1) for both the relativistic and nonrelativistic calculations.
The bound state wavefunctions used in the calculations reported in this section are

generated using the Dirac-Hartree potentials of Horowitz and Serot [9].

0 (v, p ) 1*N Reaction

Figure (2.2) shows the calculated observables for the %0 ( v, p ) 3.V reaction at a
photon energy E., = 60 MeV. The residual nucleus is left in its ground state which
is a spin % state with odd parity. The final state Woods Saxon optical potentials are
taken from reference [1]. The cross section data are those of Findlay and Owens [14].
The spectroscopic factor S = 0.908 is found from fitting the relativistic cross section
to the data. All the cross section curves, in this figure, are multiplied by this factor.
Cross section curves are shown in part a) of the figure. Note the large differences
between the first order nonrelativistic ( dotted curve ) and the relativistic calculations
( solid curve ). Nonrelativistic calculations lie below the relativistic calculations at

all scattering angles.
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Medium-uncorrected second order calculations improve the nonrelativistic cal-
culations (dot-dashed curve)somewhat, but still there are noticeable difference be-
tween the nonrelativistic and the relativistic calculations. Medium-corrected second
order calculations ( dashed curve ), on the other hand, bring the nonrelativistic cal-

culations in close agreement with the relativistic ones.

Photon asymmetry calculations (Fig. 2.2-b) also show noticeable differences
between the first order nonrelativistic and the relativistic calculations. These differ-
ences are more pronounced at backward angles where the nonrelativistic calculations
are significantly higher than the relativistic calculations. Medium-uncorrected sec-
ond order calculations move the nonrelativistic calculations even further away from
the relativistic calculations, whereas the medium-corrected second order calculations
bring the nonrelativistic calculations toward close agreement with the relativistic cal-
culations. Note the large change in the second order nonrelativistic calculations. at

backward angles, due to the inclusion of the nuclear medium effects.

Figure (2.3) shows similar comparisons for the reaction at a higher incident
photon energy, E, = 100 MeV. The final state Woods Saxon optical potentials are
taken from reference [13]. The cross section curves are shown in part a). Here we
find large differences between the first order nonrelativistic and the relativistic cal-
culations. Unlike the preceding case ( i.e E, = 60 MeV ) where the nonrelativistic
calculations were below the relativistic ones at all scattering angles. here at for-
ward angles the nonrelativistic calculations are almost an order of magnitude larger
than the relativistic calculations, while at backward angles the nonrelativistic calcu-
lations are roughly two orders of magnitude smaller than the relativistic calculations.
Medium-uncorrected second order calculations improve the nonrelativistic calcula-
tions slightly only at forward angles. Medium-corrected second order calculations. on
the other hand, produce large changes in the nonrelativistic calculations. Note the

large change in the magnitude for both small and large scattering angles which brings
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Figure 2.2: Differential cross section a), and photon asymmetrv b) for the reaction
1%0(v, p)!®N at E; = 60 MeV. The final state Woods Saxon optical potentials are
taken from reference [13]. The cross section data are those of Findlay and Owens [14].
Solid curve - full relativistic calculations. Dotted curve - nonrelativistic calculations
using the first order Hamiltonian H}l) of equation (2.20). Dot-dashed curve - second
order nonrelativistic calculations (neglecting the nuclear potentials in H}z) of equation
(2.20)). These are referred to as medium-uncorrected second order calculations in
the text. Dashed curve - second order nonrelativistic calculations using the full H}Q).
These are referred to as medium-corrected second order calculations.
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the nonrelativistic calculations into close agreement with the results of the relativistic

model.

Calculations of photon asymmetry shown in Fig. (2.3-b) also exhibit notice-
able differences between the first order nonrelativistic and relativistic calculations.
These two calculations have different shapes and magnitudes especially for scatter-
ing angles greater than 40°. Medium-uncorrected second order calculations modify
the nonrelativistic calculations slightly in magnitude while Medium-corrected second
order calculations result in noticeable changes in the shape and magnitude of the
nonrelativistic calculations. These changes are such that at forward angles the non-
relativistic calculations now overlap the relativistic calculations and these calculations

are much closer in shape and magnitude at backward angles.

Figure (2.4) shows the same comparison as figure (2.2) at a photon energy of
E, =196 MeV. The final state optical potentials are those of reference [15] and the
data are those of Turley et.al [16]. The spectroscopic factor § = 1 is determined by
matching the relativistic calculations to the data. The cross section curves of Fig.
(2.4-a) show that the first order nonrelativistic calculations differ from the relativistic
calculations in both shape and magnitude. The nonrelativistic calculations are above
the relativistic calculations at forward angles and fall below the relativistic calcula-
tions at backward angles. Medium-uncorrected second order calculations just improve
the nonrelativistic calculations at forward angles. Using the medium-corrected second
order calculations brings the nonrelativistic calculations in close agreement with the

relativistic calculations.

The photon asymmetry calculations ( Fig. 2.4-b ) also show measurable
differences between the first order nonrelativistic and the relativistic calculations.
Medium-uncorrected second order calculations improve the nonrelativistic results

slightly at forward angles by increasing the magnitude of the asymmetry at these
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Figure 2.3: Differential cross section (a), and photon asymmetry (b) for the reaction
of Fig. 2.2 but with E, = 100 MeV. Curves labelled as in Fig. 2.2.
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angles. Medium-corrected second order calculations produce approximately the same

shape and magnitude as those of the relativistic curve at all scattering angles.

Figure (2.5) shows the same comparisons for the reaction at a higher incident
photon energy, E, = 312 MeV. The final state global optical potentials are taken
from Cooper et al. [8]. Figure (2.5-a) shows that the cross section obtained from the
first order nonrelativistic calculations has both shape and magnitude different from
the results of the relativistic calculations. The nonrelativistic calculations lie above
the relativistic calculations for angles smaller than 40°, whereas for other scattering
angles the nonrelativistic calculations lie below the relativistic calculations by as much
as an order of magnitude. Medium-uncorrected second order calculations lie closer to
the relativistic calculations only at forward angles. Medium-corrected second order
calculations, on the other hand, are much closer to the results of the relativistic

calculations.

Calculations of the photon asymmetries of Fig.(2.5-b) show that the first order
nonrelativistic results differ from the relativistic calculations in both shape and mag-
nitude. Medium-uncorrected second order calculations improve the nonrelativistic
calculations slightly at forward angles but the overall shape stays the same as that
of the first order. Medium-corrected second order calculations modify the shape and
magnitude of the nonrelativistic calculations at all scattering angles. It might not be
clear visually that these changes bring the nonrelativistic calculations into noticeably
better agreement with the relativistic ones, however a chi-squared comparison does
indeed show that the medium-corrected second order calculations are closer to the
relativistic calculations than medium-uncorrected second order calculations. The im-
portant point here is that there are large differences in the calculations when medium

corrections are taken into account.

From the results presented for the 0 ( v, p ) 15 reaction we find that the
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standard nonrelativistic calculations ( first and second order calculations ignoring the
effect of the nuclear medium in the interaction Hamiltonian ) are different from the
relativistic calculations. Inclusion of the medium effects, through nuclear potentials,
to the interaction Hamiltonian brings the nonrelativistic results close to the results
of the relativistic model.

9Cq( v, p K Reaction

Figure (2.6) shows the calculated observables for the “°Ca( v, p )3 K reaction, leading
to the ground state of the residual nucleus. The shell model configuration suggests
the proton is removed from a ldg, single particle state. The incident photon energy is
E, = 131 MeV and the final state continuum wavefunction is obtained using optical

potentials from Cooper et al [8].

The cross section calculations (Fig.2.6-a) show that the first order nonrelativis-
tic calculations and relativistic calculations are different in both shape and magnitude.
The nonrelativistic calculations lie above the relativistic calculations at scattering an-
gles less than 140° and then fall below the relativistic calculations at large backward
angles. Medium-uncorrected second order calculations improve the nonrelativistic
calculations slightly but still the nonrelativistic calculations have different shape and

magnitude from the relativistic calculations .

Medium-corrected second order calculations bring the nonrelativistic calcula-
tions in close agreement with the relativistic calculations at most of the scattering
angles. At large scattering angles the medium-corrected nonrelativistic calculations

produce the same shape as the relativistic curve but are larger in magnitude.

Photon asymmetry calculations (Fig. 2.6-b) show that the first order non-
relativistic calculations have measurable differences from the relativistic calculations.

Medium-uncorrected second order calculations improve the nonrelativistic calculation
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Figure 2.4: Differential cross section (a), and photon asymmetry (b) for the reaction
of Fig. 2.2 but with E, = 196 MeV. The data are those of Turley et.al [16] Curves
labelled as in Fig. 2.2.
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Figure 2.5: Differential cross section (a), and photon asymmetry (b) for the reaction
of Fig. 2.2 but with E, = 312 MeV. Curves labelled as in Fig. 2.2.
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slightly only at forward angles. The medium-corrected second order calculations are
closer to the relativistic calculations, for forward angles of 60° and larger than about

145°.

Figure (2.7) shows the same comparison as Fig. (2.6) but at a higher incident
photon energy, E, = 201 MeV. The final state optical potentials of Cooper et al. []
are used. Nonrelativistic calculations based on the use of the first order and medium-
uncorrected second order interaction terms produce results that are far from those of
the relativistic calculations. On the other hand the medium-corrected second order
calculations lead to a shape similar to that of the relativistic model. In addition at
most scattering angles the results of the medium-corrected second order calculations

are very close to those of the relativistic calculations

28 pp( v, p )**'Ti Reaction

Figure (2.8) shows the calculated observables of the 28Pb( v, p )27T reaction at
an incident photon energy E, = 150 MeV". The final state is assumed to be a 3s 3
hole state. The outgoing proton wavefunction is generated using the optical poten-
tials of Cooper et al [8]. The cross section calculations of Fig.(2.8-a) show that
the first order nonrelativistic calculations and the relativistic calculations are dif-
ferent. Note the large differences between these two calculations at forward angles.
Medium-uncorrected second order calculations improve the nonrelativistic calcula-
tions somewhat at these forward as well as at backward angles. Medium-corrected
second order calculations, on the other hand, overlap the relativistic calculations at

most of the scattering angles.

The photon asymmetry calculations of Fig.(2.8-b) show that the relativistic
and first order nonrelativistic calculations produce different results. The nonrelativis-

tic calculations result in a bell-shaped curve whereas the relativistic calculations are
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Figure 2.6: Differential cross section ( a ) and photon asymmetry ( b ) for the reaction
“Ca( 7, p )¥K at E, = 151MeV. curves labeled the same as figure (2.2).
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not as smooth and are shifted to forward angles. Medium-uncorrected second order
calculations improve the nonrelativistic calculations only at forward scattering angles.
Medium-corrected second order calculations produce a curve with the same shape as
the relativistic calculations. Note the changes due to the effect of the medium on the

calculations specially at backward angles.

Figure ( 2.9 ) shows the same comparison as Fig. ( 2.8 ) for a higher photon
energy, E, = 257 MeV. The qualitative features of calculated cross sections (Fig.2.9-
a) are similar to those of fig.(2.8-a).

The photon asymmetry calculations of Fig.(2.9-b) show large differences be-
tween the relativistic and first order nonrelativistic calculations at backward scatter-
ing angles. Medium-uncorrected second order calculations improve the nonrelativistic
calculations slightly. Medium-corrected calculations result in a large change in the
nonrelativistic calculations. It is interesting that this change is toward the agreement

with the relativistic calculations.

From these examples one can see that the first order nonrelativistic calcula-
tions are different from relativistic calculations. Attempts to improve the situation
through the inclusion of the second order terms in which the presence of the nuclear
potentials is neglected (as would normally be done in typical nonrelativistic calcula-
tions) are bound to fail in bringing the results close to the relativistic calculations.
We have seen that medium-corrected second order calculations (i.e those that include
the effects of the nuclear potentials on the interaction Hamiltonian) are much closer.
We remind the reader that these potentials are absent in interaction terms of the
usual nonrelativistic calculations even when higher order relativistic corrections are
included [11]. This medium modification is the important ingredient that is missing in
ordinary nonrelativistic calculations. It is this medium modification that is responsi-

ble for many of the differences between the two tvpes of calculations. In the following
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section we show that the same conclusions can be reached through a procedure based

on the Foldy-Wouthuysen transformation.
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2.3 Foldy-Wouthuysen Transformation

The Pauli nonrelativistic reduction discussed in section 2.2 is different from the non-
relativistic reduction model that is commonly used in the literature to obtain the
nonrelativistic expression for the amplitude [6, 17]. Many authors construct a non-
relativistic model of photons interacting with nuclei by performing a FW transfor-
mation [18] on the relativistic Hamiltonian which involves the electromagnetic inter-
action with a free nucleon. The resulting nonrelativistic interaction Hamiltonian is
then sandwiched between Schrédinger wavefunctions describing the initial and final
nuclear states [17, 11]. In this section we perform a FW transformation on the rela-
tivistic Hamiltonian of a photon interacting with a nucleon in the presence of strong
scalar and vector potentials. Similar to the effective Pauli reduction scheme studied
in the previous section, we hope the study of the FW reduction also sheds more light

on the role of the nuclear medium in the relativistic approach.

In the preceding discussion of the Pauli reduction scheme, our starting point
was the distorted wave amplitude of equation (2.1). A feature of this amplitude for
practical calculations is the use of complex vector and scalar potentials to describe the
interaction of the outgoing nucleon with the residual nucleus. Moreover in the usual
DWBA amplitude the initial and final states of the nucleon are described by different
Hamiltonians. Since the FW transformation requires the use of only one Hamiltonian
describing the whole system. it is impossible to use this reduction scheme directly for
the DWBA amplitudes. We must therefore work with a model amplitude in which
the bound and continuum state potentials are the same and real. It is known that
such model amplitudes are inferior in their description of the data in comparison to
the distorted wave amplitudes. It must be noted however that the purpose of the
present investigation is not aimed at fitting data; rather we are interested in features

that differentiate between the relativistic and nonrelativistic calculations. For this
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purpose the restricted model amplitude used here is quite appropriate.

2.3.1 Spin ; Particle Interacting with Strong and Electro-

magnetic Potentials

We first summarize the FW transformation for the case in which a Dirac particle inter-
acts with a general field following the procedure as given in reference [6]. The results
will then be applied to the case in which a nucleon interacts with an electromagnetic
field while under the additional influence of strong vector and scalar potentials. The

Dirac equation is written in the general form
i0,v () =Hv¢ (z), (2.33)

where the relativistic Hamiltonian H can be written in terms of even and odd oper-

ators as
H=3M+£E+0. (2.34)

The odd operator O connects the upper component of the Dirac spinor to the lower
component while the even operator £ can only connect either upper or lower compo-
nents. The reduction procedure involves a unitary transformation on the wavefunction

and the Hamiltonian as
v— e =Up H-H =UHU, (2.35)

and the unitary operator U is constructed such that all the odd operators are removed,
to the desired order, from the transformed Hamiltonian. In the case of free particle
one can find the exact form of operator I'. On the other hand for a particle interacting
with a general field one has to perform successive transformations to remove the odd

terms form the Hamiltonian order by order.
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Now we perform the FW transformation on the relativistic Hamiltonian (2.34)
following the procedure given by Bjorken and Drell [6]. After three successive trans-

formations we find

' = 3] B op2__t :
H = §M+E+5-0 8W[ﬁc),co]
1 4 e
~5i72 0:[0.€] - 550 (2.36)

( For simplicity the transformed Hamiltonian is denoted H', this is in fact the same
as the Hamiltonian H" in reference [6] ), This result applies to any pair of even
and odd operators. We are interested here in a transformed Hamiltonian containing
terms which are even up to second order in the inverse of the nucleon mass so we will

eventually drop the last term in equation (2.36).

The relativistic Hamiltonian for a nucleon interacting with an external elec-
tromagnetic field while under the influence of the strong vector and scalar nuclear

potentials, can be written as

exK

= - { .,\, 4 t
H=o-m+8[M+S(r)]+V(r)+

30" F,,. (2.37)

where ® = p —eA. The above Hamiltonian, with the use of Coulomb gauge. can be

written in terms of the electric and magnetic fields E and B as

H:a-w+5[M+5(r)]+t’(r)+%(7-E+i2- B). (2.38)

where we have defined

¥ =8c. (2.39)

We rewrite the Hamiltonian (2.38) in terms of even and odd operators as in equation

(2.34). In this case the even and odd operators are

£ = ﬂS(r)+V(r)—-2-%2- B. (2.40)
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and
O = a-%+—nn.E. (2.41)

These even and odd operators are used in equation (2.36) in order to get the FW
transformed Hamiltonian for a nucleon interacting with electromagnetic and strong
potentials. The resulting Hamiltonian to second order in the inverse of the nucleon
mass is a 4 X 4 block diagonal matrix

H = [ i 0 } : (2.42)

0 H

The upper left element of this matrix ( Hj; ) corresponds to the transformed Hamil-
tonian for positive energy solutions of the Dirac equation. For the nonrelativistic

limit we will use this part of the Hamiltonian which we write as
Hh = Hy + Hj. (2.43)

where Hj involves strong potentials whereas H; carries both strong and electromag-
netic interactions: we will treat the latter as a perturbation on the former. H, can

be written to second order in 1/M as

2
H = 2+ M+50)+Vv(@)

2M
- - V(e L
_-2—1\14—2 {S('r)p2 +p[S(r)]-p+ p’ [V(rl+ Sl } . (2.44)
The interaction Hamiltonian is written in orders of 1/M as
H = HY+H? +..., (2.43)

where for the first and second orders we have

M = _fa.p--E .
H;/"' = MAp 2M(1+fc)a (V xA),
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H? = %(14-2;:){':. V x[A]-2ic- Axp}
o { 25(r)A -p +2A - pS(r) +25(r)o - V x [A]

+o- Ax V [V(r) - S(r)]

- (V(r) - S(r)) oV x[A] } (2.46)
where as before the notation O [f] - - - means that operator O operates only on function
f. From equation ( 2.46 ) we can see the first order part is not effected by the presence
of the nuclear potentials. On the other hand the second order interaction Hamiltonian
H}m shows dependence on the vector and scalar potentials and their derivatives. Note
the appearance of the difference between vector and scalar potentials as well as the
their derivative in the two last terms of equation ( 2.46 ). Recall that the strong
vector and scalar potentials have opposite sign. Now to calculate the F\V amplitude
we need the nonrelativistic wavefunctions. The calculations of these wavefunctions

are given in the following subsection.

2.3.2 Schrodinger-like wavefunctions

The wavefunctions describing either the bound or continuum nucleons are obtained

by solving the equation
Hy¥(r) = EY(r), (2.47)

where Hp is the Hamiltonian (2.44) containing terms to second order in 1 /M. and E
is the total energy of the nucleon. Note that Hy contains a first derivative term which

can be eliminated using the transformation
i
Wscn(r) = Diw(r)¥(r), (2.48)

where Dew =1 — %IJ With this choice of Dy, the two functions ¥(r) and Usan(r)

have the same asymptotic form. After this transformation the wave equation (2.47)
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takes the form of the Schrodinger-like equation (2.13). The central and spin-orbit

potentials in the present case are
V() = 5= {507 +V(r) + s S +V'(r)
+ o 570 + v}

+(E-M){1__1m}
+—L Dew() 1 Dy(r) 1 ( 'rw("))z'

" 2Mr Dew(r) * 4M Dew(r)  8M \ Dew(r)
1 1, ,
Un() = prery {—gam 1)~ V) (2.49)

Having found the nonrelativistic effective interaction Hamiltonian and the Schrédinger-
like wave equation for the initial and final nucleons, we are able to construct the
nonrelativistic amplitude with all its ingredients are derived consistently from FW
reduction scheme. The nonrelativistic amplitude for the knock-out contribution to
the (7.p) reaction at the desired order of 1/M takes the same form as given in equa-
tion (2.22). Note however that the second order amplitude obtained through the F1V
scheme involves wavefunctions which are solutions of equation (2.47). As we have
seen above, this equation does not have the form of the usual Schrédinger wave equa-
tion because it contains a first order derivative of the wavefunction. To be consistent
with the usual nonrelativistic formalism we rewrite the second order amplitude in
terms of the Schrédinger-like wavefunctions W (r) introduced in equation (2.48).

This requires that the interaction Hamiltonian be modified to
-1
H; = Dy Hi Dl (2.50)

With this modification the first order terms in the interaction Hamiltonian will remain

the same as H}” in (2.46), while the second order terms in the interaction Hamiltonian
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become

HY = S—a"M—2»(1+2K){a- V x[A]-20- AxV }

-Z% { 2kS(r)o- V x[Al+0- Ax V[V(r) - S(r)]

—(V(r)-S(r))a- v x[A]}. (2.51)

The calculations of the amplitudes proceed in the same manner discussed in section
2.2. In particular the amplitude has the same form as that of equation (2.22), but
now the interaction Hamiltonian H}” is given by equation ( 2.46 ) and interaction
Hamiltonian Hf2) is that of equation (2.51) while the wavefunctions are solutions
of a Schrodinger-like equation using the central and spin-orbit potentials of equation
(2.49). Note that at first order the FW formalism does not produce an acceptable nu-
cleon wavefunction since there is only a central potential and no spin-orbit potential.

see equation (2.44).

2.3.3 Differences Between the FW and Pauli Reduction Schemes

The Pauli reduction scheme begins with the relativistic distorted wave amplitude in
which the initial and final nucleons are described by Dirac wavefunctions. These are
solutions of the Dirac wave equation (2.6) with different strong potentials for bound
and continuum nucleons. The Pauli reduction procedure results in an expansion for
the amplitude which involve Schrodinger-like wavefunctions. These wavefunctions are
solutions of the Schrodinger-like equation (2.13) with central and spin-orbit potentials

which in turn. are functions of the Dirac potentials S(r) and V'(r).

The FW amplitude is constructed from the interaction Hamiltonian H} along
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with the same Schrodinger-like wavefunctions for the initial bound and final contin-
uum nucleons. Due to the unrealistic wavefunction used to describe the continuum
nucleon, the FW calculations provide only a toy model which will be used to study

the differences between the relativistic and nonrelativistic calculations.

The above statements refer to one basic difference between the two schemes.
Unlike the Pauli reduction in which the wavefunctions describing nucleons are the
same in all the calculations of different orders, the FW transformation involves nucleon
wavefunctions that are changed in each order of calculation due to the contribution
of different terms to the wave equation. Differences between these two reduction
formalisms in the free nucleon limit have been studied by Fearing et al. [19]. They
find that for the interaction of a real photon with a free particle at first order in
the coupling constant the FW and Pauli reductions produce the same nonrelativistic

interaction Hamiltonian.

We now discuss the differences between the Hamiltonians appearing in the
two reduction schemes. In order to make instructive comparisons between the Pauli
and FW Hamiltonians we need to simplify the Hamiltonians obtained through the
Pauli reduction scheme of section 2.2. First the potentials describing the initial and
final nucleons are taken to be the same. In addition, the energies of the bound
and continuum nucleons are replaced by the nucleon mass in the Pauli interaction
Hamiltonians. In this limit the first order terms in the FW and Pauli interaction
Hamiltonians are exactly the same. Differences will appear in terms of order T}z‘ and
higher. The difference between the interaction terms of the two schemes up to second

order, with the above modifications of HFauli js

H[F\\' _ ;’auli - 8;/(‘;2 {0’ . (v XA ) - 20 - (A xV )}
ex 3¢
—aE SO +Vnle- (VxA)}. (2:52)

In the special case describing the interaction of a photon with a free nucleon, i.e in the

49



limit when the strong potentials S(r) and V() are set equal to zero. equation (2.52)
agrees with the results of Fearing et al. [19]. Detailed calculations show that the
first term on the right hand side of equation (2.52) is very small for photon energies
less than a few hundred MeV, but becomes more important at higher energies. The
second term involves the sum of scalar and vector potentials. At the origin the sum
of these potentials is about -100 MeV ( the potentials are of opposite sign ). Since
this gets divided by the square of the nucleon mass, it turns out that the second term
on the right hand side of the above equation also makes only a small contribution to
the transition amplitude. Thus the differences between the FW and Pauli interaction
Hamiltonians (in the limit imposed ) appear to be small if we restrict ourselves to

second order in the inverse nucleon mass.

In Appendix 2.C we give some details concerning the differences found between
the potentials which generate the wavefunctions used in both schemes. Here we give
a short outline. If we set -5;{7'1 = ——% ( the scalar potential inside the nucleus is ~ 300
MeV' ) in the denominator of the spin-orbit terms, the Pauli spin-orbit potential (2.15)
is approximately twice as large as the F\W spin-orbit (2.49) potential. The leading

terms in both central potentials are

R

UEY = 2[S()+V(r)

cent

pPauli o -§-[S(r)+V(r)]. (2.33)

and difference between the FW and Pauli central potential is

3
32A13

The differences appear in terms of order T}T and higher. Figure (2.10) shows the

- 1 .,
Ushy — Ul = —‘Sms *(ry -

[S'(r) = V'(r)]? (2.54)
central and spin-orbit potentials derived in both schemes for a bound proton in 60. In
agreement with our analytic expressions for the leading terms in the central potentials
i.e equation (2.53), Fig. ( 2.10-a ) shows that the F\V central potential is deeper than

the Pauli central potential.



Fig. ( 2.10-b ) shows relative size of the spin-orbit potentials in the two
schemes. Note that as indicated above, the Pauli spin-orbit potential is approximately
two times larger than the FW spin-orbit potential at the center and surface of the

nucleus.

The bound state wavefunctions for a proton with quantum numbers Lz = 1
, Jg = 1/2, bound to %0, are shown in (2.11). Fig. (2.11-a ) shows that the F\\"
wavefunction is larger than the Pauli wavefunction at short distances. This is because
the FW central potential is deeper than the Pauli potential in the interior region and

hence the wavefunction is shifted more towards the interior of the nucleus.

The FW wavefunction leads to a binding energy of ~ 13 MeV for the afore-
mentioned state. This is larger than the one found from Pauli wavefunctions (i.e
~ 9 MeV). This difference is mostly also due to the differences between the central
potentials derived in the two schemes. Fig. (2.11-b ) presents the wavefunctions as
a function of momentum transfer. We should stress that in the range of momentum
transfer covered by (. p) reactions at intermediate energies. these two wavefunctions
are considerably different. The momentum transfer region studied by (-y. p) reactions

for photon energies between 196 — 312 Mev is shown by the arrow in Fig. (2.11-b ).
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and FW schemes for a bound proton in 60.
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2.3.4 Results of the FW Reduction

In this section we compare the theoretical results of the relativistic approach with
those of the nonrelativistic amplitudes obtained through FW reduction. The results
are shown for three different incident photon energies. As in the Pauli discussion of
section 2.2.3 we present three different types of nonrelativistic calculations, namely:
first order, medium-uncorrected second order and medium-corrected second order.
Recall that in the first order nonrelativistic calculations the wavefunctions are solu-
tions of equation (2.47), ignoring all the second order terms in Hy (equation (2.44))
except for the spin-orbit potential. The spin-orbit potential is borrowed from the
second order and used with the first order terms to get nucleon wavefunctions which

are at least marginally realistic.

In the second order calculations the wavefunctions are obtained from equation
(2.47) with all the first and second order terms in Hy included. The Hartree potentials
used in all calculations (relativistic and nonrelativistic) are from reference [9]. The
graphs discussed in this section are labeled as in the Pauli discussion of section 2.2.3

except for an obvious change of notation.

Figure (2.12) shows the calculated observables for the %0 (v,p) 13\ reaction
for a photon of energy E, = 100 MeV. Figure (2.12-a) shows the cross sections. At
small angles the first order nonrelativistic calculations ( dotted curve ) are about an
order of magnitude lower than the relativistic calculations ( solid curve ), while for
large angles the first order calculations lie above the relativistic calculations. Medium-
uncorrected second order calculations ( dot-dashed curve; labelled First + Second )
show substantial increase in the magnitude of the cross sections at small scattering
angles as well as some change in the shape of the resulting curve. Medium-corrected
second order calculations ( dashed curve; labelled First + Full Second ) produce a

noticeable change in the cross sections at backward angles.



The photon asymmetry calculations of Fig. (2.12-b) also show noticeable dif-
ferences between the first order nonrelativistic and relativistic calculations at back-
ward angles. Medium-uncorrected second order calculations produce a change in the
magnitude and the shape of the asymmetry for scattering angles greater than 80°.
Medium-corrected second order calculations produce a shift towards larger angles

resulting in a qualitatively similar shape to that of the relativistic calculations.

Figure (2.13) shows the observables for the same reaction as Fig. (2.12) but
the photon energy in this case is E, = 196 MeV. The cross section results are shown
in Fig. (2.13-a), where we note that the first order nonrelativistic calculations are
generally lower than the relativistic calculations by one to two orders of magnitude.
They also fail to reproduce the dip near mid-angles. Second order calculations lead to
a drastic change in the cross section with large differences due to medium corrections
at both forward and backward angles. Medium-corrected second order calculations are
in noticeably closer agreement with relativistic calculations compared to the medium-

uncorrected ones.

Similar features are observed for the photon asymmetry calculations (Fig.
(2.13-b)). Here again we notice large differences between the relativistic and first-
order nonrelativistic calculations. Large differences also exist between medium-corrected
and medium-uncorrected calculations. The level of agreement between the second or-
der medium-corrected calculations and the relativistic calculations is not the same as

observed in the case of cross sections.

The calculations shown in Fig. (2.14) for a photon energy of E, = 312 \eV\-

show essentially the same qualitative features.

One characteristic that emerges from the above discussion is that the full
second order calculations (medium-corrected calculations) in the FW scheme are not

as close to the relativistic results as in the Pauli reduction case at the same photon



energy. This brings out an essential difference between the Pauli and F\V calculations:
The wavefunctions in the Pauli formalism remain the same while different orders of the
amplitude result solely from the expansion of the interaction Hamiltonian. The FW
calculations, on the other hand, involve an expansion affecting both the wavefunctions
and the interaction Hamiltonian simultaneously. This difference is at the root of the
different convergence properties of the two approaches. We find that in most cases.
by second order the Pauli expansion is quite close to the fully relativistic calculations.
provided medium corrections are taken into account. In the FW scheme the level of
agreement at the corresponding order is inferior, indicating that the convergence in

this scheme is much slower than in the Pauli case.
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2.4 Conclusions

We have described two different nonrelativistic reduction schemes of the relativistic
amplitude for the knock-out contribution to (v, p) reactions. These reductions allow
us to carry out controlled comparisons between the relativistic and nonrelativistic
calculations of the reaction observables. In the Pauli formalism the relativistic S
matrix is written in terms of nonrelativistic two-component wavefunctions and an
effective interaction Hamiltonian. The effective Hamiltonian is expanded in powers
of 1/ (E + M), where M is the nucleon mass and E is its total energy. In the limit
E — M, the first order interaction terms are exactly the same as those appearing in
the usual nonrelativistic amplitude. The nonrelativistic wavefunctions in this scheme
are solutions of the Schrodinger-like wave equation (2.13). Detailed comparisons
between the relativistic and first-order nonrelativistic predictions for the differential
cross sections and photon asymmetries show large differences between the two types
of calculations. The inclusion of terms to second order in 1/M in the interaction
Hamiltonian, where medium corrections effected by the nuclear potentials are left out.
does not lead to any substantial improvement in the agreement between the relativistic
and nonrelativistic calculations. On the other hand the expansion scheme shows
explicit dependence, in the second order terms, on the nuclear potentials. When these
medium corrections are taken into account the nonrelativistic calculations converge
close to the relativistic results. This indicates that the essential difference between
the relativistic and traditional nonrelativistic amplitudes. is the absence in the latter
of the medium modification of the interaction Hamiltonian as a consequence of the

presence of the strong vector and scalar potentials.

These conclusions are further supported through an analysis based on the
Foldy-Wouthuysen transformation of the relativistic Hamiltonian describing a pho-

ton interacting with a nucleon embedded in the nuclear medium. The nonrelativistic
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wavefunctions for the bound and continuum nucleons are solutions of the wave equa-
tion obtained as a result of the transformation. The scheme leads to a nonrelativistic
amplitude calculated to the desired order in 1/M. We use these amplitudes to carry
out comparisons between relativistic and nonrelativistic calculations in the manner
described above for the Pauli scheme. We find that the medium modifications in
the second order calculations are important and their inclusion leads in general to
better agreement with the relativistic calculations. However the convergence is not
as efficient at this order as in the Pauli case. The reasons for this can be understood
in terms of the formal differences between the structure of the nonrelativistic am-
plitude obtained using this transformation as compared to the Pauli reduction case.
The wavefunctions obtained through the FW reduction are different at each order
in 1/M, in contrast to the Pauli wavefunctions which are unchanged for all orders
(recall that in the Pauli reduction only the interaction Hamiltonian is expanded).

The nuclear wave equations, produced in third and higher order calculations of
FW scheme, involve complicated functions of the nucleon momentum such that it is
most likely impossible to write these equations in the form of Schrédinger equations
and solve them. On the other hand a consistent transformation requires the use
the effective interaction Hamiltonian and the nuclear wavefunctions obtained at each
order for calculation of the reaction amplitude. The complexity of the wave equations
at higher orders in the FW transformation scheme prevents a consistent use of this

scheme to reduce the relativistic distorted amplitude for photonuclear reactions.

The basic result of the present work is that standard nonrelativistic calcula-
tions of the knock-out amplitude do not properly take into account the strong medium
modifications of the interaction Hamiltonian. We have clarified this point through
a comparison based on nonrelativistic reduction of the relativistic amplitude using

both the Pauli and Foldy-Wouthuysen reduction schemes.
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Appendix 2.A Radial and Angular Integrals

In this appendix we give the explicit form of the functions involving Clebsch-Gordan

coefficients and radial integrals which are introduced in the amplitude of equations
(2.27) and (2.28).

LiraLs

Mp.p,v

PL3+IIL =

‘."IB Wi
PLB -1.LL

°
CI,L,J,LB

i

(L&, 150,01 L,0) [ r¥dr fa(r)jiCkyr) fra(r),

Lg+1
2L +1
xX(Lg+L1:Mp+p—v,0| L, Mg +p—v)(L,1;0,0| Lg+1,0)
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where the radial functions are

— w . 15()=V(r) )
Q(r) = {w (1+M+E'c+2 MTE, ) (2:59)

he Se(r) = Ve(r) | 15(r) = V(r)
t U FE, (1 TTM+YE. 2 M+E )}f"(r)

— y [18(r) = V(r)
Qui(r) = {QM (2 M+E. )

(1S

M+ E, oM+ E)
. _ 1 1 1S8(r) =V(r)
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Appendix 2.B Observables

In this appendix we calculate the cross section for the resultant non-relativistic am-
plitudes obtained through the nonrelativistic reduction of the relativistic amplitude

for ( 7, p ). We will start from the S-matrix given in equation (2.29) for ( 7. p )

reaction
: —ie [ 1112 1/2
Sio= =[] X rTe My, Mol M) [ 10,
Totewl s
Let us first square the S-matrix
; 2J;+1 2 -
| Sk = S5l6(Ec ~ Es —w)FS—; 1| B @ P (238)
where we have used the following
" (g dg: My Mp|J;. AL)? (2.59)
.‘IB..'-[I
= D (=1 T My, =M | Jg.—Mpg)*
Mp. My
2J; +1
- AJp—My) edi T 1
LT T
To calculate the 2 term we will follow Bjorken and Drell [6]
r inL(E; - E))
76(Ep — E) = [ dteEr-Eor = 9583 Er — Ei) 2.60
216(E; E,):»/zzzdte O Ty (2.60)
so for the large but finite T we have
in* Z(E; — E;
a8y - B = 422 2E = F) _ pp (2.61)

(Ef — Ei)?
Integration of f(E;) over the range Ef = —oo — oo results in 2z7T. So we can

identify the following relation

[276(E; — E:))? = [276(0)]2x6(Ef — E:) = 2xT6(E; — E;). (2.62)
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The transition rate can be found by dividing the square of the S-matrix to T (reaction
time)

2J; +1

S'x 2
= B~ B - SIS UL 2, 0F . o)

T

To find the transition rate per incoming photon we divide the transition rate (2.63)

by flux of incident photons

c 1

G = G (264)

‘IN‘IC

where the last expression is in natural unit and factor W comes from the convention

of the normalization of the photon field. Thus

Tl —Ep~w)S=) s5—=I" : 2.
JincT 47&6(EC Es W)SW % 2Jg +1 I Zslv»'"la (0) l (2.635)

Now by integrating (2.65) over the phase space we have

1S5 1? 12 2J; + 1
= 4= - - 2.
[ Fhod 4 Q.Zua S - [ 8(Ec — Eg - ) (2.66)

2. g 2
XS | Z4f 14, (8) * PEEAD.

where we have used of E2 = M2 + p? or EdE = pdp. The cross section for the
unpolarized incident photon and if the polarization of the knocked-out nucleon is not
measured, is found by averaging over initial, and summing over final polarization
states. Finally the non-relativistic cross section for the ( . p ) reaction is found as

dot dwapEc -
— . 2-6(
dQ ~ (275 + 1)hep, ,zu: p | 250 (2:60)

Relativistic cross section for the ( 7. p ) reaction is given in reference [1].
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Appendix 2.C Nucleon Wavefunctions

One basic difference between the Pauli and FW schemes, as considered in the present
work, is that the nuclear wavefunctions in the Pauli scheme are the same for all orders
in the expansion whereas in the FW scheme the wavefunctions change at every order.
We compare here the wavefunctions of the Pauli scheme with the wavefunctions used
in second order calculations of the FW scheme. In both reduction schemes the wave

equation can be written in the form

2
2pl_v[‘p3ch + {Ucent + UsoU . L} \I’Sch = (E - -'w)‘I’Sch- (2.68)

We first consider the spin orbit potentials, from equation (2.49) for the FW scheme.
We have

FW 1 1(S(r)=V'(r)
EW __ :
U, = YEr [ n S‘J . (2.69)

We modify the denominator of [, in Pauli reduction (2.15) by setting E — M and

assuming the same magnitude for the strong scalar and vector potentials, so [Pauli

becomes
Pauli 1 1[8(r)=Vv(r)
rPauli _ - 2 705
Lso 4‘1‘421. l: 1 + g&;) . (2. 0)

If we set %1"-’ = —% in the denominator of the square brackets in the above equations.
we find that the Pauli spin-orbit potential is approximately twice as large as the F\W
spin-orbit potential. Note that if the nucleon mass were much larger than the depth

of the scalar potential, these two spin-orbit potentials would be the same.

From equation (2.49), the central potential obtained in the FW transformation

can be written as

FW —
Ucent (1) =

T)ni,—(r) {s0)+V0)+ 3 [5r) + Vi)
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1 U4 1
+ "0+ v}

+(E - M) {1 - ml(—r)}

1 Diw(r) . 1 Diw(r) 1 [Diw(r)\? _
3Mr Dew(r) * 131 Dewlr) ~ 331 (Dx(r)) (2.71)

From equation (2.14), we write the central potential in Pauli reduction as

(M -E)®  S*r)-Vr)
oM T oM
1 S'(r) = V'(r)
T2MrE+ M+ S(r) - V(r)
1 S"(r)=V"(r)
TAME+M+S(r) - V(r)
3 [S"(r) = V'(r))®
SME+M +S(r) - V()]

If we set the nucleon energy equal to the nucleon mass for the sake of comparison

+

UPauli(r) = S(r)+-1‘E—/;V(r)-

cent

(2.72)

with the FW central potential we will have

vz = 15+ vl [ 2]

1 S'(ry=V'(r) 1 S"(r)-V"(r)
T2Mr2M + S(r) - V(r)  4M2M + S(r) = V(r)
3 __[S(n)-v(n)?

. 2.73)
8M [2‘/\,[ + S(r) - V(T‘)]2 (2.73)
It may be interesting to note the leading terms in both central potentials
. i — ‘/’
cEi ) = [+ v 14+ 200
| 2M
TFW [ 1
Ueene (1) = [S(r) + V()] - (2.74)
Lt T
These lead to similar modifications of the central potentials
S(r)-v(r)] . 2
[1 ATV =3
1 3
gl =¥ o3 (2.75)
[1 - %,4] 4
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The leading terms in both the FW and Pauli central potentials are then S(r)+ 17(r).
along with some constant factor. We can simplify the situation even more if we make
the approximation that the potential depths are much smaller than the nucleon mass
and then the central potential for both Pauli and FW wave equations can be written

as

UL (r) = S(r)+v<r)-4—.1 S -V

—=[5"(r) = V"(r)] + [S'(r) = V'(r))?.

8M2 32 M 3

UEW(r) = S(r)+V(r)

cent

\/I2 [S’(r V‘"]

-3 W oS ) -Vl -3 w aps o). (2.76)

The difference between the FW and Pauli central potentials is then

FW *Pauli
Lcent (1’) - Lceiltl ' (T‘)

=5%(r) - == 32»13 [S'(r) — V'(r))? (2.77)

Therefore in the limit that the scalar and vector potentials are much smaller than
the nucleon mass and if the total energy of the nucleon is replaced by its mass ( the
latter limit is imposed only in Pauli interaction Hamiltonian ), then to order 1 JAM?

there is no difference between the two potentials.
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Chapter 3

Nonrelativistic Reduction of The ( e, ¢'p ) Reaction

on Nuclei !

Introduction

The quasifree process ( e,€'p ) has been used extensively to study proton hole states
in nuclei and to determine single particle spectroscopic factors [1]. This reaction is
advantageous because the electromagnetic interaction with the nucleon is known: the
relative weakness of the interaction permits an exploration of the entire volume of the
nucleus. The diagrams with the exchange of only one photon between the electron and
proton are expected to be enough to describe the process. Moreover the coincidence
measurements of the ( e,€’p ) reaction can provide detailed information about the

single particle structure of the nucleus over a wide range of momentum transfer.

The ( e,e'p ) reaction has been studied both nonrelativistically [1, 2] and
relativistically [3, 4, 5]. Both analyses begin with a Lagrangian which allows for the
interaction of the photon with both electrons and protons. Nonrelativistic analyses
involve the reduction of the free electron-proton interaction to a form involving two-
component spinors for the nucleon. This results in a Hamiltonian which is expanded
in powers of 1/M where M is the nucleon mass [2, 6]. The resulting interaction
Hamiltonian is then used together with Schrodinger wavefunctions describing the

nucleons in order to form the nuclear current. Relativistic analyses are based on

1A short version of this chapter is published in Phys. Rev. C 51 (1995) 2044.
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the Feynman diagram for one-photon exchange between the projectile electron and
a proton which is imbedded in the nucleus ( see figure (3.1) ). The electrons and
nucleons are all described relativistically as spin 1/2 objects via the Dirac equation

containing appropriate potentials (3, 4, 5.

A long-standing problem in quasifree electron scattering has been that the
spectroscopic factors extracted from nonrelativistic analyses fall widely below the ex-
pected sum rules. Spectroscopic factors which are found on the basis of the relativistic
approach are generally larger than those found via the nonrelativistic approach. There

are other discrepancies between the results of these approaches [3, 5].

Several groups have attempted to understand the underlying differences be-
tween these two approaches. This mainly involved looking at the sensitivity of
quasifree electron scattering calculations to different optical potentials and renor-
malizations of the wavefunction of the outgoing proton |7, 8, 9]. This concentration
on optical potentials was largely a result of the improvement in the description of

proton elastic scattering observables in the framework of Dirac phenomenology.

Boffi et al. [7] followed a prescription in which the nonrelativistic continuum
wavefunction was multiplied by a factor {1+ [S(r) =V (r)]/(E + M)}'"?. where
S (r) is the Dirac scalar potential and V (r) is the vector potential. This modification
essentially changes the two-component Schrédinger wavefunction into the upper com-
ponent of the Dirac wavefunction. No other changes were made in the nonrelativistic
calculations. They find that extracted occupation probabilities are larger than those
obtained from the unmodified nonrelativistic analysis. The analysis of Udias et al.
(8] replaces the nonrelativistic bound state wavefunction with the upper component
of a Dirac wave function, and the nonrelativistic continuum wavefunction is modified
by factors of the same shape as the factor used by Boffi et al. The continuum wave-

function in this case is generated from Schrodinger-equivalent potentials [10]. The



nuclear current operators are obtained in the standard way by expansion to order
1/M?*. Their "nonrelativistic” calculations then involve nonrelativistic nuclear cur-
rent operators surrounded by the upper components of Dirac wavefunctions. With
these choices little difference is found between the relativistic and "nonrelativistic”
calculations. These authors also performed a “standard” nonrelativistic calculation
in which instead of the Schrédinger-equivalent potentials the usual nonrelativistic
potentials were used to obtain the wavefunction of the knocked-out proton. Their
conclusion is that differences in observed cross sections are due to the choice of op-
tical potential. Jin and Onley [9] have presented a model which can take either
relativistic or nonrelativistic optical potentials while keeping other aspects of the cal-
culation the same. They find that different optical potentials can change the results
by as much as 14%.

These results demonstrated the variability of the results associated with possi-
ble models for final state interactions. However, the issue is clouded by the occasional
use of upper components of Dirac wavefunctions in a nonrelativistic calculation. \We
believe that the essential difference between relativistic and nonrelativistic approaches
are not just in the changes in the optical potentials; these are usually phenomeno-
logical and equivalent potentials can always be found. Rather the essential difference
is in the appearance of the nuclear potentials in the nuclear current operators when
the relativistic amplitude is reduced to a nonrelativistic form. Such medium effects

on the nuclear currents are absent in the standard nonrelativistic calculations.

In this chapter we study the differences between the relativistic and nonrela-
tivistic approaches in calculating the amplitude for the ( e, €p ) reaction. We do this
through an effective Pauli reduction of the relativistic transition amplitude, along the
same lines discussed in section 2.2 of chapter 2 for the ( v,p ) reaction. An expan-
sion of the amplitude in powers of (E + M)™" allows us to recover a nonrelativistic

limit, which matches the standard nonrelativistic calculations. with the difference

=~
(1]



that optical potentials used to generate the distorted waves are equivalent, in the
elastic channel, to those used in the relativistic calculations. We compare the two
approaches and thus explain why they can still give different values for the extracted

spectroscopic factors, even when equivalent optical potentials are used.

We introduce the relativistic amplitude for quasifree electron scattering in
section 3.1. Section 3.2 outlines the Pauli reduction of the amplitude and some of its
relevant features. In section 3.3 we compare our nonrelativistic calculations with and
without nuclear potentials in the nuclear current operators, to the results of the fully

relativistic calculations. Our conclusions are given in section 3.4.

3.1 Relativistic Amplitude for ( ¢, €¢'p ) Reactions

In an A( e, ep JA — 1 reaction the incident electron interacts with the target nucleus
A and as a result a proton is knocked out of the nucleus. This proton is detected
in coincidence with the scattered electron. The quasifree prescription of the reaction
assumes the virtual photon is absorbed only by a single bound proton, then as a
result the proton is ejected into the continuum state. The initial and final states of
the interacting nucleon are described by single particle wavefunctions. We consider
the one photon exchange model for the ( e,e'p ) process [3], in which a photon is
exchanged between the incident electron and a target proton. The Feynman diagram

describing this reaction is depicted in figure (3.1).

In this chapter we are interested in the differences between the relativistic and
nonrelativistic treatment of the hadronic part of the ( e,€'p ) reaction amplitude.
In the course of this discussion we do not include the Coulomb interaction in the
leptonic part of the S-matrix. The present study does not impact the treatment of the

electron motion which is treated in the same fashion ( relativistically ) for relativistic



Figure 3.1: The Feynman diagram for A( e,€'p )A — 1 reaction

and nonrelativistic calculations. The Coulomb distortions for the electrons are only

important for heavier nuclei and at any rate they do not affect the present discussion.

The relativistic model for A( e,e’p )A ~ 1 starts from a gauge invariant La-
grangian for electrons and protons interacting with photons. Appropriate Fock space
calculations over the fields involved in the reaction lead in the first order to the S-
matrix associated with figure (3.1) [11]. The relativistic expression for the S-matrix

describing the quasifree electron scattering process ( e, €'p ) is obtained as [3]

_iez M m2 1/2
i 7 5 ; * 1 VLf, e ."‘",‘
S (2x)17/2 [ECE!Ei] JBZMB (Jr. Jg; My, Mp|J;. M;)
l-/2 -1q- (I-y)
xS Io)] " [ e dydtq Tl g Th(a). (3.1)

where J¥ and Jj are electron and nuclear currents respectively, the Clebsch-Gordan
coefficient couples the bound proton to the residual nucleus, and Ss.0,(Jp) is the
spectroscopic factor. M is the nucleon mass, E¢ is the energy of the outgoing proton.

and E; and Ey are the energy of the initial and final electrons. respectively. The
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integration over d*q is associated with the propagator of the exchanged photon. The

electron current is given by
T (y) = ¥., (¥) "ve: (v) (3.2)

where ¥.; and ¢,, are the initial and final Dirac spinors for electrons. The electron
wavefunctions are taken to be free Dirac spinors and the integration at the electron
vertex can then be done analytically. This also allows the momentum integration for
the photon propagator to be done, leaving one four-dimensional integration at the

nucleon vertex. The nuclear current is similarly given by
I% (2) = Yy, (2) fhvns (2), (3.3)

where the Dirac wavefunctions ¥, (z) and ¢y, (z) describe the initial and final pro-
tons, respectively. For the distorted wave Born approximation (DWBA) calculations.
the final state interaction of the proton with residual nucleus is included by using a
Dirac distorted wave for the final state nucleon. The nuclear current operator Jj&in

equation (3.2) is the choice cc2 discussed by de Forest [12]

- 2\ UCF2(Q) v
i =F() "+ + 37 (3.4)

The matrix ¢** is formed from the Dirac y-matrices, and is introduced in the previous
chapter. Fj(¢?) and F; (g?) are the Dirac and Pauli form factors, respectively. These

form factors are related to the electric and magnetic form factors as follows [13]

(@) = w[ £ (¢) - 76w ()
(¢ K—Tl—-—._j (G () - Ge (d%)] . (3.3)

where the electric Gg (¢?) and magnetic Gy (¢?) form factors for proton obey the

following conditions

Gg(0) = 1
G5 (0) = 1+k,=2.79284. (3.6)
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These form factors are parameterized as follows [13]
1

%) - togr

1+
Gy ((12) = '(1—_%, (3.7)

where the cut-off energy of M) = 840 MeV is used. The variable q is the four-

momentum carried by the exchanged photon.

As mentioned earlier the integration over coordinates at the electron vertex,
in the S-matrix of equation (3.1), can be done analytically. This vields a Dirac §-
function giving energy and momentum conservation at the vertex so ¢ = k§ — k%. The
resulting é-function fixes the momentum of the intermediate photon so the integration
over that momentum is done trivially. The integration over the time coordinate at
the nucleon vertex can then be done to yield a é-function providing overall energy

conservation. The S-matrix can then be cast in the form

—ie? 1 [ M m? ]1’2
Sqp o= —— < 0(Ec+ Ef— Eg — E;
/2 _ s
x 3 (Jp.Jo: My, Mpl|Je, M) [S1.0,(JB)] " ZMe, (3.8)

JB."[B
where Z¥Ms is a function of the initial and final spin projections, momenta. etc.

vev;

Specifically we have at this point
Z5te = €5,,, [ % 0l (kp, @) Tatip,s1p () exp (i - ). (3.9)

where v; and vy are the spin projections of the incoming and outgoing electrons
respectively, while Mp and p are the spin projections of the bound and continuum

protons. The 4 x 4 matrix operating on the nucleon spinors is

Fa=1 [Fl (92) Yo + %)'O’auqy . (3.10)
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The four-vector which comes from the electron vertex is

o [E, +m.E; + m,] 1/2
Cupui 2m, 2m,
" 1
0 -
X (1/2, vg| [1, -EfTT{l] 27| ok |I11/2:v). (3.11)
E;+m,

and this depends on the energies and momenta of the initial and final electrons as
well as their spin projections. The integration in equation (3.9) is over the nucleon
vertex and in the plane wave limit can be written as the Fourier transform of the
bound state wavefunction. When the appropriate factors of % and c are included, the
relativistic expression for the triple differential cross section is related to Z{,‘!":,’iﬂ by

( see Appendix 3.C for more details )
3o _ 2 a [(m,cz)2 Me pye pr]

dd0dE, — (2r)he| (g0  mie
Sr.0.(J,
5 J:0,( B)I ZI,,,;»VI‘_BI{ (3.12)
JeMppvyv; 2Jp +1

Where a is electromagnetic coupling constant. The cross section for quasifree electron
scattering in the plane wave impulse approximation can be written in a factorized
form as the product of three parts [12, 2|: a kinematic factor, the cross section for
the elementary process e + p — € + p', which is evaluated off-shell, and finally a
function of the energy and momentum of the nucleon inside the nucleus referred to as
the spectral function. The spectral function and factorization are discussed in detail
in Appendix 3.D. In the following we will discuss results of the calculations of the
spectral function, proton polarization and an asymmetry parameter. The spectral
function is obtained from the cross section given above by dividing by a kinematic
factor and the cross section ( :Tc, | free ) for the elementary process for e +p — e + D-
We write (12, 2J:

Lo

S (pm) = —Zedflcdbe (3.13)
Ecpc &

free
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where Ec and pc are the energy and momentum of the final state proton. and p,,
is the missing momentum, i.e. the momentum of the bound nucleon in the initial
state. On the basis of the quasifree assumption of the reaction one is able to assign
a momentum to the bound nucleon which is the negative of the momentum of the
recoil nucleus. The free cross section is calculated using the nucleon current operator
of equation (3.4), and is evaluated using the kinematics of the quasifree process. The
energy and momentum of the initial proton in quasifree reactions does not follow the
energy momentum relation of a free nucleon, so is off-shell. Note that the experimental
data are always divided by the elementary cross section ccl of de Forest [12], while we
use the nuclear current operator which leads to his cross section cc2, throughout this
chapter. We are not concerned with detailed comparison with experimental data in
this work, so we retain a consistent approach by using the same form for the current
operator in the calculation of the quasifree S-matrix and the elementary process.
The polarization of the final state proton is given by ( details are given in
Appendix 3.C )
p o o B Estau Z20 [Z020] 314

)3 ZﬂMa 2
Mpuvyy; veyg

We also define an asymmetry parameter in the missing momentum which is calculated

from the differential cross sections of equation (3.12) as

- dsd(pm > 0) - d%q (pm < 0)
~ @ (pm > 0) + d37 (pm < 0)°

A (Pm) (3.15)

This asymmetry is similar to the parameter defined by Bianconi, Boffi and Kharzeev

[14].
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3.2 Pauli Reduction

We now perform an effective Pauli reduction, as discussed in the preceding chapter.
on the hadronic part of the amplitude (3.9). The electrons continue to be treated
relativistically throughout. Consider the nuclear current of equation (3.3) above.

Using equation (3.4) one can write:

7(0) = B, ) [B2 (2) v+ ZE o iy ). 10

As is shown in the preceding chapter the Dirac spinors may be written in terms

of a Schrédinger-like wavefunction ¥, as
1
by = a-p Di¥s., (3.17)
M+E+S(r)-V(r)

where

E+M+S(r)-V(r)
E+ M ’

where two-component wavefunction ¥ is a solution of the Schrédinger-like equa-

D(r)= (3.18)

tion derived in chapter II. The functions S(r) and V (r) are the scalar and vector
potentials, respectively, for either the bound or final state nucleons. The energy of

the nucleon is E, and the associated momentum operator is p.

The relativistic nuclear current of equation (3.16) can, with the help of equa-

tion (3.17), be written in the form

o= gt 1/2 g-p
¢ Ysanc) Den(r) [1’ M +Ec+ 5S¢ (r)—VC(r)]
: :
x 1° [Fir* + Fagpzoal (3.19)
r 1
X o-p Di?(r) § Usens.
M +Ep+Sp(r)—Vg(r)
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We now perform an expansion of the object between braces in equation (3.19). The
usual representation of the Dirac 7-matrices is used [13] to write the 4 x 4 operators in
terms of 2 x 2 Pauli matrices. The radial function D'/2(r) from equation (3.18) and
the factor [E + M + S(r) =V (r)]™" coming from both the bound and continuum
wavefunctions are then expanded in powers of (E + M)™. This procedure leads to a

sum of reduced nuclear current operators for each of the contributing orders:
J# (2) = T o () [ + 747 + 57 + -] Csanp (2). (3.20)

The reduced current operators can be written in terms of time-like and space-like

components as

= eR,
. eF
0 _ Qcls _Qc+Q23 o-p o-p
7= eF‘[ 4 8§ < M+E.M+Es
+ GKFQ[U-Q o-p o-p d-q]
2M | M+ Eg M+ Eeq
j(0)= 0,
(1) iexky [a' o-p o-p a']
J E R Al Fy oyl v oryn b
«(2) _ texFy eF1Qc¢ [a o-p o-p d]
m= i Qe+ Qclox g+ == | oo M+ Ec
eFy [a cr-p o-p a]
* 2 T E, T B 9®
ocooc-p o-po
eFl[ BM+EB+M+ECQC]
exFaq, [a o-p o-po
+ 2M (M+Egp M+E:]’ (3.21)
where we have defined
_ Sx(r) = Vx(r) o
() == ¥ar (3.22)

and the labels B and C refer to the bound and continuum states, respectively. Note
the dependence of the nuclear current operators on the Dirac vector and scalar po-

tentials ( through the functions Qx ). This dependence appears in all orders of the
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reduction scheme. Thus as we go to a description in terms of the Schrédinger-like
wavefunctions for the nucleon, the currents undergo a medium modification affected

via the nuclear potential. This point is central to the present work.

Using the current operators from equation (3.21) up to first order in (E + M)™!
in the S-matrix (3.1), we find that for the ( e,€’'p ) reaction the S-matrix to first order
in (E + M)™! reduces to

—ie2 [ Mm? ]2
(2m)17/2 [ECEfE']

x 3 (Jr, Ja: My, M| J;, M) [Sy.1,(T))]
JeMp

S(l:)

1/2

L dty & e~ (z~y) t

/ Tayaq—mr—— C+i e ‘I’sch,c(l')

{2 WA (?) [1+3@c+es)
~Je(y)- [IKF2 (qz) 0 a q

(C A=Y .
+Fl (q ) (-"I'*'EB + .,‘/[_{__ EC \I’Sch.B (I) . (3-3)

We have written this equation in a form in which the integrations over the electron
coordinate and the intermediate photon momentum have not been done. The ex-
pansion method does not depend on the plane wave approximation for the electrons.
and electron distortions could be included if desired. The S-matrix to second or-
der in (E + M)™! is similarly found by including the second-order nuclear current as
well. We shall discuss the traditional nonrelativistic limit of the amplitude in sub-
section 3.2.2; but will concentrate in the following subsection on clarifying the role
of the nuclear potentials in the convergence properties of the Pauli expansion of the

S-matrix.
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3.2.1 Convergence of the Expansion

In this subsection we discuss the convergence of the expansion obtained above to
the fully relativistic calculation. In these convergence calculations, all of the factors
in the expansion are the original relativistic ones. This is not yet equivalent to a
standard nonrelativistic calculation! These nonrelativistic calculations are discussed

in the next subsection.

The calculations of the relativistic S-matrix require knowledge of the Dirac
wavefunctions for the bound and continuum states. For the bound state Hartree
bound state wavefunctions are used [16]. The continuum wavefunctions for the
knocked-out proton are obtained using the energy and A dependent optical potential
of Cooper et al. [17]. We restrict our discussion to the case where the momentum
of the knocked-out proton p is parallel to the momentum transfer q. This choice of
the kinematics is called parallel kinematics and discussed in Appendix 3.A. In the
diagrams referred to in the following discussion the curves are labelled according to
which order in (E + M)~ the amplitude is calculated. and whether or not the Dirac
potentials are included in the nuclear current operators: i) dotted curve - first order
in (E + M)™! without nuclear potentials, we refer to these calculations as medium-
uncorrected first order in the text: ii) dashed curve - first order including nuclear
potentials which will be referred to as medium-corrected first order in text: iii) dot-
dashed curve - second order without nuclear potentials, we refer to these calculations
as medium-uncorrected second order in text: iv) dot-dot-dashed curve - second order
including nuclear potentials which will be referred to as medium corrected second
order; v) solid curve - fully relativistic calculation. In doing these comparisons we
are attempting to clarify the convergence of the expansion and the role of the medium
correction ( the nuclear potentials that appear in the nuclear currents ) in the rate

of convergence of this expansion. The relativistic calculations are obtained using the



relativistic code of Johansson [18]. Figure (3.2) shows observables as a function of
missing momentum for the reaction %0( e,ée’p >N leading to the ground state of
15N, (3.2-a) is the spectral function while (3.2-b) is the proton polarization. The
ground state of the residual nucleus, 3N, is assumed to be a lp% hole state, i.e it has
spin 1/2 and negative parity. The energy of the incident electron is 456 MeV, and the
kinetic energy of the detected proton is fixed at 90 MeV with parallel kinematics. The
relativistic calculations of the spectral function are fitted to the peak of the data [19];
the resulting "spectroscopic factor” is then used in all the other calculations for that
particular state. ( We adopt this simple fitting procedure because our main concern
here is comparison between the different calculations, rather than a judicious deter-
mination of the spectroscopic factors. ) Note that the medium-corrected calculations
converge rapidly toward the fully relativistic results in this case. with the curve for
the second order calculations being very close to the relativistic results over the range
of momentum transfers shown. In calculating the spectral function. the inclusion of
the medium correction to the first order interaction terms brings the results closer to
the fully relativistic calculation than the medium-uncorrected second order. It must
be stressed that the inclusion of the medium correction brings the results close to
the fully relativistic results, while the medium-uncorrected calculations are quite far
from the relativistic results and do not show a strong indication for convergence to

the relativistic result.

Figure (3.3) shows the spectral function and proton polarization for the reac-
tion on the 2P target. The residual nucleus 27T} is in an excited state with spin
3/2 and positive parity which is assumed to be a 2d§ single particle state. The energy
of the incident electron is 412 MeV, and the kinetic energy of the detected proton is
fixed at 100 MeV with parallel kinematics. The data are those of Lapikas [19]. The
spectral functions of figure (3.3-a) show that the medium-uncorrected first and sec-

ond order calculations are far from the relativistic calculations. Including the effect
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of the medium in the second order calculations brings them close to the results of the
relativistic calculations. Note that the medium-corrected first order calculations are

closer to the relativistic calculations than medium-uncorrected second order.

Proton polarization calculations of figure (3.3-b) show that the inclusion of the
medium correction in the reduced amplitudes produces large changes in the results.
Note the suppression of the second order calculations due to medium correction, in the
low missing momentum region, which brings the calculations closer to the relativistic
ones. We have seen the same feature when the residual 20777 is left in the 3s 1 ground
state. The calculations of the reduced amplitude for heavy targets such as 22 Pb do
not converge as fast as for the case of lighter targets. This is, however, because the
radial integrals appearing in the expansion involve nuclear potentials, so for heavy
nuclei these provide terms with larger contributions and slow down the convergence

of the expansion.

The above results are of course expected on simple mathematical grounds.
The essential point however, is to shed light on the role of the appearance of the
potentials (medium correction) in the nuclear currents. We have seen no evidence
that expansions that are based on free vertices ( i.e. no nuclear potentials ). will
converge to the fully relativistic results, even if calculations are done to higher orders
in the inverse of the nucleon mass [2]. This will have implications for the comparisons

with the standard nonrelativistic calculations, which we discuss next.
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Figure 3.2: Observables for the reaction 1%0( e, €'p )'3N, .. The energy of the incident
electron is 456 MeV, and the kinetic energy of the detected proton is fixed at 90 Me\”
with parallel kinematics. Hartree bound state wavefunctions are used [16] and the
proton optical potentials are from [17]. The data are from reference [19]. (a) spectral
function and (b) proton polarization. Curves are labelled according to their order in
(E+ M)™" and whether or not the medium corrections ( through Dirac potentials
) are included in the nuclear current operators: dotted curve — medium-uncorrected
first order in (E + M)~!; dashed curve ~ medium-corrected first order; dot-dashed
curve - medium-uncorrected second order; dot-dot-dashed curve — medium-corrected
second order; solid curve - fully relativistic calculations.
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3.2.2 The Nonrelativistic Limit

The expansion of the S-matrix in powers of (E + M)™! discussed above does not quite
yield the amplitudes used in standard nonrelativistic calculations. Some care must be
taken at this point in the discussion to differentiate between the correct nonrelativistic
limit, and the standard operator used in nonrelativistic calculations. There are three
more steps that must be followed in order to obtain the proper nonrelativistic limit

from the relativistic amplitude:

i) The bound state wavefunction must be normalized to unity. In the
expansion obtained above, the Dirac bound state wave function is nor-
malized to unity and the related Schrédinger-equivalent wavefunction is
not. In the nonrelativistic calculations it is the Schrédinger-equivalent
wave function that must be normalized.

ii) The continuum wavefunction must be normalized correctly. The factors
arising from the Dirac field and the normalization of the Dirac wave func-
tion result in a factor of (E + M) /2E being set equal to one to obtain
the nonrelativistic expression for the cross section, ( this is equivalent to
multiplying the right-hand-side of equation (3.12) by the inverse of this
factor ).

iii) Finally, to obtain nonrelativistic expressions for the nuclear current
operators from the relativistic expressions of equation (3.21), the nucleon
energies ( both continuum end bound ) are set equal to the nucleon mass.

te. E— M.

It is important to note that these changes still have not yielded the standard nonrel-
ativistic amplitudes because the nuclear current operators at this stage contain the
effects of the nuclear medium, through the Dirac potentials, explicitly. This is an

essential difference between the relativistic and nonrelativistic approaches, and the
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presence of these potentials can lead to large differences in the observables obtained
via relativistic and nonrelativistic approaches. In order to obtain the usual nonrela-
tivistic expression, the effects of the nuclear medium ( i.e Dirac potentials ) must be
removed from the nuclear current operators. When this is done, the nonrelativistic
equivalent of the S-matrix of equation (3.23) yields the usual first order nonrelativis-
tic transition amplitude used by many authors [2, 6]. When terms to second order
are included in the nonrelativistic S-matrix, and in the limit of no medium correc-
tion, there are some differences between our expression and the usual nonrelativistic
second order S-matrix, which is obtained via a Foldy-Wouthuysen transformation of
the interaction between electrons and free nucleons [2]. Fearing, Poulis and Scherer
[20] have compared Foldy-Wouthuysen and Pauli reductions of a Dirac Hamiltonian
containing a generic potential with harmonic time dependence. They found that dif-
ferences do occur beyond first order in 1/M. Detailed calculations show that these
differences between the Pauli and Foldy-Wouthuysen reductions are small when the
medium corrections are ignored in the nuclear current operators. This seems the only
consistent way to compare the operators since we use two different Hamiltonians for

the Pauli calculations.

We discuss below the effects that the medium corrections of the nonrelativistic

current operators have on calculated observables.

3.3 Results of nonrelativistic Calculations

We now make comparisons between relativistic and nonrelativistic calculations based
on the discussions presented above. In figure (3.4) we show results for the reaction
on an %0 target with the same kinematics as in figure (3.2). Figure (3.4-a) shows
the spectral function while (3.4-b) shows the proton polarization. The nonrelativistic

calculations show the same effects due to the inclusion of the nuclear potentials in
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the interaction operators that we saw in the corresponding convergence calculations
of figure (3.2). Medium-uncorrected first and second order calculations ( dotted and
dot-dashed curves respectively ) yield very similar results. This is generally true in the
cases we have considered; going from first to second order in 1/M does little to move
the results in the direction of the relativistic calculations. For the medium-corrected
calculations, a somewhat larger change is noticeable in going from first order to second
order calculations, particularly at larger values of missing momentum ( see figure 3.4-
b ). Note that the nonrelativistic calculations for the spectral function converge to
a lower ( i.e. below the relativistic calculation ) value than the simple expansion in
powers of (E + M)™" as found in figure (3.2). This is because of the normalization
of the Schrédinger-equivalent bound state wavefunction to unity ( this results in the
nonrelativistic expansion converging at a point which is not the relativistic one).
Spin observables are not affected by changes in overall normalization, so the proton
polarization calculations shown in figure (3.4-b) are very similar to those shown in
figure (3.2-b), with slight differences coming from the replacement E — M in the

nonrelativistic nuclear current operators.

Figure (3.5) emphasizes the behavior of the spectral function for the high miss-
ing momentum region of figure (3.4-a), with the missing momentum in the range 1350
MeV/c to 300 MeV/c. In this region the medium-uncorrected first and second order
calculations lie above the relativistic calculations, while the inclusion of potentials
in first and second order ( i.e medium-corrected ) moves the results to lie below the
relativistic results. Note that the the relativistic calculations were fitted to the data
in the low missing momentum region, but still do rather well for high missing mo-
menta. Medium-uncorrected calculations diverge from the relativistic calculations as
the magnitude of the missing momentum is increased. On the other hand, medium-

corrected calculations remain close to the relativistic results over a wide range of
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missing momenta. Note that we are only including terms to second order in the in-
verse mass. We have also done similar calculations for the same target but leaving
the residual nucleus in an excited state ( >N is left in a 1pj/» hole state ). as well as
using different targets, namely *°Ca and %Zr, with the residual nucleus left in both
ground and excited states ( for the excited states the residual nuclei 3°K and 89Y are
left in the even parity 1/2 and odd parity 5/2 states, respectively. Shell model assigns

2s17 and 1f5/, for these states. ) These calculations show the same behavior as those

shown in figure (3.4).

Figure (3.6) shows similar calculations to those of figure (3.4) but for a 295 Pp
target. The residual nucleus ?*’T! is left in an even parity 3 state which is taken to be
the 2d§ hole state. The kinematic conditions are those of figure (3.3). The spectral
functions of figure (3.6-a) show significant changes when the effects of the nuclear
medium are included in nonrelativistic calculations. Medium-corrected calculations

lie blow the medium-uncorrected calculations in the entire missing momentum range
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considered. In the large positive missing momentum region these differences are more
pronounced; medium-corrected calculations are roughly one order of magnitude lower

than the medium-uncorrected calculations.

The proton polarizations (figure 3.6-b) show the same behavior as those of
figure (3.3-b) except for small differences in the nonrelativistic calculations here due
to the replacement £ — M in the nuclear current operators. The same feature as
results presented in figure (3.6) is seen for the results of the calculations of the reaction

when the recoil nucleus is left in the ground state.

Figure (3.7) shows the calculations of the spectral function and proton polar-
ization for the same reaction discussed in figure (3.4). In the present case, the energy
of the incident electron is 2000 MeV, and the kinetic energy of the detected proton is
fixed at 400 MeV. The larger energies allow for a much larger range of missing mo-
menta than considered previously. Note that the medium-uncorrected first and second
order calculations of the spectral function differ from the relativistic calculations by
up to an order of magnitude for large missing momenta, while medium-corrected cal-
culations are much closer to the fully relativistic results. In addition we see that for
low missing momenta the convergence point is lower than the relativistic ( see insert ).
The ( 7v,p ) reaction, studied in the previous chapter, shows behavior consistent with
these observations for ( e,€'p ) at high missing momentum. The momentum transfer
in the ( 7,p ) reaction is generally in the range 400 MeV/c to 600 MeV'/c so these two

reactions can both probe this part of the single particle bound state wavefunction.

Proton polarization results are shown in figure (3.7-b). In the region of large
missing momentum there are large differences between the medium-corrected and
medium-uncorrected calculations. The medium corrected first and second order cal-
culations yield results close in magnitude and shape to the results of the fully relativis-

tic calculations. Note in particular, that in the region of the minimum and maximum



in the relativistic calculations close to p,, = —400M eV/c and p,, = 400MeV/c re-
spectively, the medium-uncorrected calculations do not reproduce the shape of the
relativistic calculations at all. The effects of the medium (nuclear potentials) must be
included in the nuclear current operators in order to get close to the relativistic re-
sults. In particular a measurement of the proton polarization near p,, = —400M. eV/c
provides a clear opportunity to differentiate between relativistic and nonrelativistic
models. Note the cross section for the reaction at this missing momentum is very

small. reaction.
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Calculations of the asymmetry parameter of equation (3.13), for small values
of angular momentum L of the bound nucleon ( L < 2 ), vield similar results for all the
options under discussion whether fully relativistic; or nonrelativistic first or second
order, with or without medium correction to the nuclear current operator. When
the angular momentum of the bound nucleon is increased, the differences between
these calculations of the asymmetry become larger, as is evident in figure (3.8). The
asymmetry is calculated for a %Zr target, with the residual state in *Y assumed
tobeal fg proton hole. The incident electron has an energy of 461 MeV, and the
kinetic energy of the detected proton is fixed at 100 MeV. In this case the differences

are particularly apparent for missing momenta in the neighborhood of 20 MeV/c.
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3.4 Conclusions

In order to clarify the differences arising from relativistic and nonrelativistic descrip-
tions of quasifree electron scattering [3, 5|, we have discussed an expansion of the
S-matrix for the reaction ( e,€p ) in powers of (E + M)~ through the effective
Pauli scheme. The resulting S-matrix depends on Schrodinger-like wave functions
for the bound and continuum nucleons, and nuclear current operators which contain
the strong Dirac potentials at the different orders. When the Dirac potentials are
included in the nuclear current operators, the series essentially converges to the fully
relativistic results at second order for light- to medium-mass nuclei. When the po-
tentials are not included in the nuclear currents, the calculations can be far from
the relativistic results particularly for larger missing momenta. This indicates the
importance of the role played by the nuclear potentials in the modification of the
currents. The convergence slows down when reactions on heavy targets like 2% Pp are
considered. This is largely due to the effect of the size of the nucleus on the rate of

convergence of the expansion.

These points were further studied in setting up a comparison between relativis-
tic and nonrelativistic calculations. A proper nonrelativistic calculation is obtained
through several steps: normalization of the bound Schrédinger-like wavefunction to
unity, proper normalization of the continuum Schrédinger-like wavefunction. and set-
ting £ = M in the nuclear current operators. An additional step of removing the
Dirac potentials from the resulting nuclear current operators vields the standard non-
relativistic amplitude. This results in a consistent and fair comparison between the
relativistic and nonrelativistic calculations. The potentials used for the bound and
continuum protons yield both the relativistic and nonrelativistic wavefunctions, with
normalizations handled appropriately. This eliminates any discrepancy between the

results coming from the use of different potentials.

100



The nonrelativistic calculations we have shown for first and second order nu-
clear current operators without potentials give the same results that a standard non-
relativistic calculation would give if provided with the Schrddinger equivalent wave-
functions derived from the Dirac equation.

Inclusion of the nuclear potentials in the nonrelativistic nuclear current opera-
tor results in a large change in the calculated observables. In particular, calculations
of the spectral function and final proton polarization using second order nuclear cur-
rent operators, to a large extent, can reproduce the magnitude and shape of the fully
relativistic calculations. This is true even at large missing momenta where the non-
relativistic calculations without potentials in the nuclear current operators yield very
different results than the fully relativistic calculations. The polarization of the final
proton is particularly sensitive to differences in the calculations, and measurements
of this observable at large missing momenta could assist in the choice between the

relativistic and nonrelativistic approaches.

We have also calculated the asymmetry defined in the text for the different
orders, with and without potentials, and found that in cases in which the angular
momentum of the bound nucleon is less than 2, there are no noticeable differences
between these calculations and the fully relativistic ones. When the orbital angular
momentum of the bound nucleon is greater than 2, differences between these cal-
culations do appear. This observable thus will be useful in differentiating between
relativistic and nonrelativistic models only for nuclear states with large orbital angu-

lar momentum.

Other groups have examined the sensitivity of the models to changes in the
optical potentials and modifications of the wavefunctions [7, 8, 9], and have found
sensitivities at the level of 15%. However, the essential differences between the rela-

tivistic and nonrelativistic approaches do not lie in modifications of the wavefunctions.
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The essential difference comes from the appearance of the nuclear potentials in the
nuclear current operators, as a result of the reduction of the relativistic amplitude.
We emphasize that these nuclear medium effects, characteristic of the present model,
will not appear through a nonrelativistic impulse description of the process. They are,

however, inherent in the relativistic description.
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Appendix 3.A Kinematics

In this appendix we will calculate all the kinematic variables, needed for the calcu-
lations of the A(e, €/p)A — 1 reaction, in terms of the four-momentum of the initial
electron, four-momentum of outgoing proton , angles of final electron, and missing

momentum of initial proton. It is useful to introduce the following variables,
ki: incident electron four-momentum in the laboratory frame
ks: outgoing electron four-momentum in the laboratory frame
pr: target four-momentum in the laboratory frame
Pr: recoil nucleus four-momentum in the laboratory frame
q : intermediate photon four-momentum ( so called momentum transfer ).
ps: ejected nucleon four-momentum in the laboratorv frame
pi: struck nucleon ( in the nucleus ) four-momentum in the laboratory frame
( it is also called missing momentum ).

In the DWIA, the residual nucleus is a spectator and its momentum is un-

changed. while the reaction proceeds on the struck nucleon, so
PT =P:i+Pr (3.24)
The 4-momentum conservation vields
ki + pr = ks + ps + pr. (3.25)

From this equation we can write the corresponding equations for energies and mo-

menta of the particles as
E{ + Mr=E;+Ef + Eg

Pr=ki—ki~p;=q-p,. (3.26)
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Note for our case p; = 0. We also have
P:=ps—4q (3.27)
from (3.24) and (3.27) we can write
q=pr+ps (3.28)
We have the following relation between mass of the target and recoil nucleus
Mp = My — Mp + Ep, (3.29)

where E'g is the binding energy of the initial proton. Having defined these quantities.

we now introduce the parallel kinematics used in calculations of the (e, €/p) reaction.

Parallel Kinematics

In the parallel kinematics. the momentum of the final proton p s is parallel to the
momentum transfer q and |py| is fixed (i.e Ep is fixed). There are two values of Pr
for each p, which we assign the positive (negative ) value to pj through the condition
la| > [Pyl (lgl < |psl). Distribution in pp is obtained by varving the transformed

momentum q (moving the detectors for the two outgoing particles ) [21].

For these kinematic conditions the kinetic energy of the incident electron and
the energy of the outgoing proton are given and we want to find the distribution of

the observable quantities over the recoil momentum p ry SO We have

;:Ef-i-.-"/IT—ER‘E;

Er =Pk + Mg

¢° = E{ - ES (3.30)
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The angle between the incident and final electron can be found as

(3.31)

We assume that the reaction is co-plane, i.e ¢, = 0. The angle between q and the

incident electron is obtained as

k; — kscosf,
7 .

cosf, = (3.32)

This is the same as 8, the polar angle for the outgoing proton. For the recoil nucleus

fr =6, Op=T for ppr>0

brp=7—8, or = 0° for pRr<0 (3.33)



Appendix 3.B Current Operators

In this appendix we start from equation (3.19) and obtain the reduced current used

in nonrelativistic calculations. Let us rewrite the nuclear current of (3.19) as

oc-p ]
M+ Ec + Sc(r) - Ve (r)

J* = Wy q DE*(r) [1,

X 7 Fn +F2'2—MU” qu] (3.34)
{ 1

X o-p D*(r)} @snp.
..-'VI + Eg + Ss (7‘) 7 (1’)

The corresponding equation for the zero component of the nuclear current above is

o-p
"M+ Ec+Sc(r) = Ve (r)

J° = Wk, .{ DY (r) [1

X [FI+F22"I ‘Q]
1
DY
X o-p (r) ¢ Useh.m

M +Ep+Sp(r)—Vp(r)

The effective Pauli reduction is performed on the object between the braces
of the above equation. This involves expanding both DV2(r) from equation (3.33)
and the factor [E + M + S (r) =V (r)]™" in powers of (E + M)}, where E and M/

are the energy and mass of the proton respectively.

This procedure leads to an expansion of the zero component of the reduced

nuclear current operators as
I (@) = W (2) [y + 3y + 3y + -] Usens (2) (3.36)
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The time components of the reduced current operators up to second order in ‘l, are.

]?o) = eFy
eF1

iy= —- [Qc + Q4]
jo = QCQB_Q%+Q852+ o-p o-p
2 8 M+ EcM+Eg
Eanaqa'p o-p o-q -
+ M+E;, ~ M+ Ee (8.37)
The space components of the nuclear current equation (3.34) are
P 1/2 o-p
7= Yhacy D) [1’ M+Ec+Sc(r)-Ve (r)J
X [Fla + Fzé—‘-j-" o q,,] (3.38)
1
X o-p DF?(r)} senp

M+ Eg+Sg(r)—Vg(r)
Expanding both D!/2(r) from equation (3.38) and the factor [E+M+S(r)=Vv ()]t
in powers of (E + M)™! as before, the following expansion is found for the space com-

ponents of the nuclear current

J(2) = Chanc () [0y +dcr) + ez + - - | Csen.s (x) (3.39)

where the space components of the reduced current operators up to second order in

inverse of the nucleon mass are,

o = 0

. texkFy o-p oD o']

Jo = 2M o xg+ek ['\‘[ +Ep M+Ec-

. texFs eFiQp [o o-p o-po
o = aaf Qe+ Qcloxa+ == | o o+ T

+

eFL[U’G'p+a-pcr]Q
2 (M+Eg M+E;]“8
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ocoo-p o-po
- 1:'[ ]
s TE, Y MM+ ELOC
eKngo[a o-p o-po ’
2M IM+Ep M+Ec (3.40)
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Appendix 3.C Observables

Cross section

The cross section for ( e, €'p ) reaction can be found along the same procedure as we

used for the ( 7, p ) reaction in Appendix 2.B, with the following modifications:

1) the incident electron current is

% _ P

where vf. pi. and E? are velocity, momentum, and energy of the incident electron

respectively.

2) the phase space integral is
Sri 21
/ I+I"j__d3ppd3pee (3.42)

where Sy; is S-matrix for the ( e, €p ) reaction and T is the reaction time and Dp- De

are momenta of the outgoing proton and electron, respectively.

Proton Polarization

Let us first define a normalized density matrix for the proton as

Mg 7=p’M
p””, = ZU]II.‘.“IB Zg!u'-az;,;‘lli B (3 43)
5 ’ .
Eu,u;y.-tlg IZ#!V:B 2
The elements of this density matrix are arranged as follow

[ET

[ p% p'zl_'% J . (3.44)
Pty P-i-y

‘The proton polarization in the y direction is then
ipy_

P-4-4 ""’—%%J
= ey —opy)- (3.45)

—ip;

N
[~ ]

P, = Tr<p0'y>=Tr[
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Using equation (3.43) for p we can rewrite the proton polarization P, as

irp =--iMp —-iMg =1Arfp
P = iZu,u.-Mg Z}!”i ZV{"? - Z”]%'i ZV;V;
y =

M,
Ev,v.-y.Ma lz""!"-s l2

Mg ~—iMp
2Im Eu!u;Mg ng”i ZV]”?

M,
vev;uMp vevi
<., |ZeMe)2
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Appendix 3.D Factorization of The PWIA Cross section

The impulse approximation for the (e, €'p) reaction allows us to assume that the
total momentum transfer is absorbed by the knocked-out nucleon. Conservation of 4-
momentum in the reaction along with the above assumption lead to the determination
of the energy and momentum of the nucleon within the nucleus. Thus from the
coincidence measurement of the (e, €'p) reaction we are able to obtain the combined
energy and momentum distribution of the nucleon, the so called spectral function.

inside the nucleus.

In this appendix we show that, in the limit of the plane wave approximation
(PWIA), the cross section of the (e. €'p) reaction can be factorized to the cross
section of the elementary reaction multiplied by a kinematic factor, and a function of

the momentum of the initial bound proton called the spectral function.

Starting from the relativistic Lagrangian describing interaction of photons with

electrons and protons. one can find the S-matrix for the the (e. ¢p) reaction as [11]
Sp = € [d'za'y < fIN{[B(E)(D)] A% @) AW G0 10} >

(3.47)

where the field operators v, and v describe the proton and electron. respectively. and
AV refers to the normal ordering of the field operators. —iA%(z)A®(y) is the photon

propagator. and initial state of the system can be specified as
|i >= bf (kf)|o35 > (3.48)

where b} (k{) creates an electron (charge -e) with momentum k¢ and spin projection
Y. l,o"'}f" > is the initial nuclear state of the target nucleus with angular momentum

J; and projection M;. The final state is described as

|f >= b, (k5)bL(Kkp)l03) > (3.49)
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where b} ,(Kk%) creates an electron (charge -e) with momentum k% and spin projection
vs. bi(kpy) creates a proton (charge +e) with momentum k,. |6}/ > describes the

residual nucleus with angular quantum number J; and projection M.

Let us first perform the Fock space calculations for the electron fields. Matrix

elements of the electron fields are written as
< e N[Bewelle: >=< 0fb,, (k5N (z)6()]BL, (K5[0 >, (3.50)

with the following expansion for the electron fields

6@ = oty o2

[ba(k)us (k. ) + di (K)o, (k, 2)]

U(z) = (27)77 2 / d3k‘/%n_;

b} (k)a,(k, z) + d, (k)T (k. 1)]. (3.51)

X

X

where u, and v, are plane wave solutions of the Dirac wave equation for positive
and negative energy states, respectively. and d and d' are annihilation and creation
operators for the particles with negative energy or antiparticles with positive energy.
The Fock space calculations for the electron fields result in the following expression

< O, (KNG @B DI0 >= (2) 5L

ki kg

a,,(kf. x)uy, (kf, r). (3.52)

and the Fock space calculations for the nucleons give

. 4l or T A 1 . d - . .
< 03, Ibw (K'p) N 5p(y) ()] 635 >= B> / Pk < 67 bu(k;)|S >
n "

MI\M_ . _
X“E;‘l -Epfu,,,(kp, Y)uu(ky. y). (3.33)

where super index * indicates that the initial bound particle is off shell. Using the

results of the above Fock space calculations along with the usual form of the photon
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propagator, the S-matrix. after the integration over variable r. takes the following

form,

S = —ie? ! \J me MPM."ﬂ !

(2r)S\| E;Es Ep E; 1% q?

X Z/dskd‘ye_iqvﬁu’(kp: y)'mup(k;, y) < é;i’lbu(k;)lﬁ." >, (3.54)
M

where we have defined the electronic part of the matrix elements 8;‘,3! v 8

Ef+mE;+m 1 k 1 1 »
gfru& = JV : < §Vfl (1 %&)7073 ( ) I§V,' >. (3.33)

2m 2m ok
E;+M

In the PW limit, the impuls approximation of the reaction assigns a momentum for
the initial bound nucleon, so the momentum integration in the S-matrix is removed.

We rewrite the S-matrix as
Sfi = Gy M. M;, 1)Ga( M. M, viv;) (3.36)
I3
where

GiUMp. M pr) = <05 bk}l >

By

E$Ef Ep E- "¥1"ig?
Z/d“ye_iq-yﬁu’(kpvy)‘/ﬂuu(k;-y) (3.97)
u

P . 9 1 mg Mp M~ 3 1
Gz(ll,ll.UfVi) = -l€ (23)6\'

X

Now the transition probability |Sy;|? takes the following form

lsfi|2 = 2{ Z Gl(-"’[f7°\'lts#)G;(-"If'"‘[vﬂ)

}l.ﬁ M !.."! £

x Y Gz(#',u,VfVi)Gz*(#',ﬁ~VfVi)}
By

(3.38)



Defining the spectral function S (p) as

S0 = T, . Cr(My, Mo, 1)GY(My, M )
= SICT b
J

(3.59)

where CY are reduced matrix elements and do not depend on x. The result

on the second line of equation (3.59) follows from the method introduced in reference

[1]. We can write the spectral function as

S(P) = z: Gl(Mf1M7#)GI(Mf’M1ﬁ)

Mg, M;

1
= Z [Gl (."[f, ;“rf,‘, 1/2)'2 = -2- E lGl(.'\/If. .‘/[, u)|2

M ! ,.'W.' M,.M; W

(3.60)

The transition amplitude can be written in terms of the spectral function and the

matrix elements of the elementary reaction as

1Siil? = S Y [Gal's povpi)?
By

The differential cross section is defined as

ISsl® 1 5 4
do = —————d°p, d°p"
T Jinc pP pf

Having done the integration over phase space and using
[ s = [ a0, p, Eopt ESdE,dE;

we can write the cross section as follows

3o e e|G2(#,s/-lvaUi)l2 1
W; = S(P)PpEpprf T Jinc

Comparing with the cross section for the free reaction we find

d3c do
W = S(p) ppEpﬁlfree
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Chapter 4

Photoproduction of 7 Mesons from Complex
Nuclei

I) Exclusive Reactions

Introduction

1 meson production reactions explore a rich domain of phenomena at the interface
of nuclear and particle physics. In the past photoproduction of the 7 meson has
been confined to proton targets. The advent of high-duty-cycle electron accelerators
at MAINZ, BATES and CEBAF. has opened up novel possibilities of performing
production experiments on complex nuclei. Some results have been reported recently

and there are several experiments underway [1].

The possible existence of a bound 7 meson-nucleus system ( 7-mesic nuclei )
has been studied by several authors. Liu et al, in a recent publication in this regard.
conclude that for medium and heavy nuclei ( A > 12 ) such bound states exist. but
their widths are larger than the spacing between energy levels [2]. Rakityansky et al.
[3] studied the formations of light 7-mesic nuclei ( A < 4) and found that for nuclei
with A > 2, there may exist quasi n bound states, but the widths of the bound states
are small only for ;‘,He. One can also find some information on the subject of n-mesic
nuclei in references [4, 5]. The study of this new type of nuclear matter has generated

an interest in the interaction and production of 7 mesons on nuclei.



Analysis of the early experiments on the photoproduction of  mesons reveal
an interesting selectivity. The isoscalar 7 meson can couple onlyto I = % nucleon
resonances. At energies near the threshold of 7 production, there is a significant
preference for intermediate excitation of the S;;(1535) resonance. This resonance
decays ~ 50% of the time to an 77 meson and a nucleon whereas the 511(1630) which
has similar structure has only a decay rate of ~ 1.5% to the 71 meson nucleon channel.
This puzzle is still unsolved and presents a challenge to quark models dealing with

the structure of these resonances.

The selectivity mentioned above makes 7 meson photoproduction reactions a
suitable tool for learning more about the Sy;(1535) resonance. In addition to the study
of the final state interactions of the 7 mesons with nuclei, the reaction on nuclei can

be a means of studying the propagation of nucleon resonances in the nuclear medium.

The elementary reaction ¥ + p — 17 + p has been the subject of several
studies. Benmerrouche et al. [6] developed an effective Lagrangian approach to
study this reaction. Contributions from nucleon resonances, t-channel vector meson
as well as the nucleon Born diagrams are included. Calculations were performed at
the tree level and included eight free parameters, coupling of 7] mesons to nucleons.
four parameters for spin 1 resonances and three parameters for spin 3 resonance.
The 511(1535) was found to be the dominant contributor to the reaction at energies
close to the threshold. In addition they concluded that there is no preference in using
pseudoscalar ( PS ) or pseudovector ( PV ) coupling in introducing the interaction
of 77 meson with nucleon and nucleon resonances. They also found an estimate close
to the quark models prediction for the quantity I",% Ay ( T, is the decay width of the

resonance to the 7 meson and nucleon channel and A4 3 is the helicity amplitude of

the electromagnetic excitation of the resonance ) for the S511(1533) resonance.

The approach followed by Bennhold et al. [7, 8] for n photoproduction on the

118



nucleon is based on a coupled channel isobar model, in which the reaction is related
to(v, ), (= n)and ( 1, n) reactions. They include three resonances which
are thought to make the major contributions to the reaction, namely, S511(1333).
Dy3(1520) and Py;(1440). The resonances are parameterized based on the a Breit-
Wigner-type parameterization with the masses and coupling constants of the reso-
nances obtained by fitting the experimental data up to photon laboratory energy of
2 GeV. Each contributing partial wave is parameterized in terms of six parameters
for the hadronic vertex. These are determined from a fit to the data of the reactions
T+ N -7+ N, 77 +p—=n+nadnr+N = x#+ 7 + N. The
five parameters of the electromagnetic vertices are adjusted to reproduce the pion
photoproduction multipoles E¢, E; and M;. The authors studied the effects of the
7NN coupling on the cross section for n photoproduction on protons and found that
the PS coupling of this vertex results in curves which are closer to the experimental

data, for partial and total cross sections, than those for PV coupling.

The authors employed this elementary amplitude to calculate the coherent
and incoherent photoproduction of n mesons from nuclei. Theyv found the highest
cross section for coherent production on nuclei ( A> 4 ) to be associated with ‘He
targets and in this case is dominated by D;3(1520) resonance. On the other hand all
of their cross sections for incoherent production are dominated by S51:(1535). Note
that in the coherent photoproduction of 77 mesons from nuclei, all the nucleons inside
of the nuclear target contribute to the reaction. On the other hand for incoherent
photoproduction of 7 mesons only nucleons that satisfv the selection rule for the

angular momentum of the transition can contribute to the reaction.

Tiator et al. [9] extended the work of reference (7] by including Born diagram
as well as p and w exchange diagrams. These added diagrams are calculated using
effective Lagrangians. The parameters and the coupling constants for the nucleon

resonance part of the model are fixed and those of the vector mesons are obtained
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from available sources. The model can be used to investigate the nNN vertex. These
authors found that, for the nNN vertex, both PS coupling with a strength of 0.1 and
PV of a strength of 0.6, fit the experimental data of the total cross section equally well.
On the other hand the differential cross section as well as the recoil polarization data
favor the PS coupling. The resulting elementary amplitudes were subsequently used
to calculate the PWIA amplitude of the photoproduction reaction on light nuclei such
as D, 2H, *H and “He. The largest cross sections were found to occur for productions

on the trinucleon system.

The elementary amplitude above was also used by Lee et al. [10] to calculate
the DWA amplitude for the photoproduction of 7 mesons on heavier nuclei such as
'2C and *°Ca. They performed exclusive as well as inclusive reaction calculations on
these targets. In this model the initial bound nucleon is described by a Harmonic
oscillator wavefunction and final state interactions of the detected outgoing particles
with the recoil nucleus are introduced through optical potentials. Two different op-
tical potentials were used for 7 mesons. Comparisons with the experimental data of
inclusive reaction appear to favor one of these sets. The authors found that the pho-
ton asymmetry is insensitive to the final state interactions of the outgoing particles

as well as the size of the target nucleus.

Carrasco calculated the inclusive photoproduction of n mesons from nuclei
using the effective Lagrangian approach [11]. The reaction is assumed to proceed
through the formation of 511(1535) nucleon resonance onlyv. The calculations were
carried out using local density approximation, with Pauli blocking and Fermi motions
taken into account. The final state interactions of the n meson with the residual
nucleus were accounted for via a Monte Carlo program. The author showed that the
total cross section experiences a large suppression due medium modifications ( Fermi
sea effects and the modifications of the S;;(1535) resonance parameters ) and the

final state interaction of the  meson. These effects are less for the differential Cross
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section than the total cross section. Another finding is that the total cross section

grows like A%% (‘A is the atomic number of the target nucleus ).

A model for n photoproduction from complex nuclei was introduced by Hom-
bach et al. [12]. The final state interaction of n meson is obtained using coupled
channel Boltzmann-Uehling-Ulenbeck formalism. They found the mass dependence
of the total cross section to be A}. A recent calculation for the photoproduction
of n meson off the deuteron on the basis of the effective Lagrangian is presented in

reference [13].

n meson production in proton proton collisions is studied in reference [14].
There has also been many studies using hadron ( proton and pion ) beams for n

production [15, 16, 17).

In this chapter we develop a relativistic model for the ( 7. np ) reaction
on nuclei leading to residual nuclei with definite spins and parities. The effective
Lagrangian of reference [6] is used for the interactions between fields. The nuclear
wavefunctions are solutions of the Dirac equation with the strong scalar and vector
potentials obtained from the relativistic mean field theory of Walecka [18, 19]. In the
next section we derive the amplitude of the A( v, 7p )A~1 reaction and then use
it to calculate the observables for the reaction. The results of our calculations are

presented in section 2 and our conclusions are given in section 3.

4.1 The Reaction A( v, 7p JA-1

The model for the ( v, np ) reaction on nuclei has the incident photon interacting with
a bound proton through some process denoted by the blob in figure (4.1). A proton
and an n meson are produced. The diagrams contributing to the blob of figure (4.1).

at the tree level, are shown in figure (4.2). The Born diagrams ( s- and u-channels
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Figure 4.1: The Feynman diagram for an A( v, 7p )A— 1 reaction, the incident photon
with momentum k is absorbed by a proton inside nucleus A and as a result the proton
and 7 meson are ejected out of the target.

of the nucleon propagator ) are figures 4.2a) and 4.2b): the t-channel vector meson
diagram is shown in figure 4.2c), figures 4.2d) and 4.2¢) are the nucleon resonance

poles.

The starting point in the present approach is a relativistic Lagrangian for
a system of photons, nucleons and mesons from which one obtains the transition
amplitude for the A( v, 7p JA~1 reaction. The amplitude then is used to calculate

the observables for the reaction.

4.1.1 Model Lagrangian

We write the total Lagrangian of a system of photons, mesons and nucleons as

L = LypT+£L,+L,
+£7).’V.-V + c-,NN + L-mV + c-yNV + Cq;’\'ﬂ + £‘7.-VR (41)
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d) e)

Figure 4.2: The contributing Feynman diagrams to A( v, 7p )A — 1 reaction. a ) and
b) are the s- and u-channel Born diagram respectively, c) the t-channel vector meson
diagram, d) and e) are the s- and u-channel nucleon resonance poles.
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where the subindices of v, 7, V, N and R stand for photon,  meson, vector meson.
nucleon and nucleon resonances, respectively. The dynamics of the nucleons within
the nuclear matter is studied on the basis of the relativistic mean field theory of
Walecka. This theory starts from a phenomenological renormalizable Lagrangian
describing a system of nucleons and different types of meson, namely scalar, vector
and isovector mesons. When it is applied to infinite nuclear matter, at the mean
field limit ( LypfpT ), only scalar meson ( o ) and neutral vector mesons ( p and w )

survive.

—. 1 N1
LMFT = Y@ - 957700 — 9.7°Vo — (M — g,6,)]w

1 50,1 5.5 1
—?ﬁﬁ+§mﬁg+?ﬁ% (4.2)

where ¥ and ¢, are nucleon and scalar meson fields, respectively. The time-like com-
ponent of the vector and neutral isovector field are shown by V; and by, respectively.
M. m,, m, and m, are the corresponding masses of the nucleon , scalar, vector and
isovector field, respectively. The by field vanishes when this Lagrangian is used for
the ground state of nuclear matter. Then this mean field theory Lagrangian is used
to derive the Dirac equation with the scalar and vector potential [20]. This mean
field theory has been applied successfully to the description of bulk properties of
nuclear matter, and has proven to be a very powerful tool for an effective micro-
scopic study of the ground state properties of nuclei [18, 19]. It provides a unified
description of the binding energy and deformation properties of nuclei and is also used
recently in the study of super heavy nuclei [21]. There are many successful relativistic
phenomenological reaction models based on this mean field theory, describing elec-
tromagnetic as well as hadronic interactions with nuclei. These are found to provide
better descriptions of the observables, especially spin observables, than other models.

[22, 23, 24, 23].

The wave equation for 77 meson is obtained under the assumption that only its
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interaction with nucleons through the formation of nucleon resonances is important.

The corresponding Lagrangian can be written as
1
L= Lo+ Lowr = 5 (8un(x) #n(z) — mln? () + Lynr, (4.3)
where 7 is the 7 meson field.

Photons are described by the following Lagrangian

L, = ~1Fu(@) F* (), (4.4)

and the electromagnetic field tensor F,, is written in terms of the electromagnetic

field A, as
Fu(z) = ,A,(z) — 8,A,(z)- (4.5)

We adopt the pseudoscalar form for the n meson-nucleon states coupling. The inter-
action Lagrangians involving the nucleon and spin % resonances can be cast in the

following forms [6]:

Loxy = — igquyswm
— €Ky —
Lovy = — evy,A% — ﬁw“”wl-‘,,,,.
Lvxy — getywV* - fyi[-'u’:o,,,,ww",
GAV
Lvm= e FoVioy,
™ 4m, "7
£r];\'R = — ig,,NREI’Rn + h.c.
ek _
Loxp= — mRF” vF,, + h.c.,
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where
for S;; resonances =1 and [* = ;0%

for P;; resonances =~ and ['# = g#* (4.6)

and «, is the anomalous magnetic moment of the proton, Kf and My are the anoma-
lous magnetic moment and the mass of the nucleon ( proton ) resonance, respectively.

The tensor V,,,(z) is related to the vector meson field Vi by
Vi(z) = 3.V, (z) — 8,V,(z) (4.7)

The interaction of photons and 7 mesons with the spin % ( D13(1520) ) resonance are

introduced through the following Lagrangians.

Lovn= fr"r-'l""ﬁ“e,,,,(zmwa"n +he.
n
tekl R
Llyp= - 5% I’* R0, (Y)nwF +he.
2 ech & “\5. A7 A
c-,_l\.'g = ‘_R“G;.w('x JOLNF"* + h.c., (4.8)

412
where R¥ is the field associated with the D13(1520) resonance. The two anomalous

magnetic moments x; and k% are used for two different electromagnetic interaction

vertices introduced for this resonance, and

1 .
6. (V) = Guw + [—5(1 +4V) + V] “Yu Yo
V = X\Y,Z2 (4.9)

The parameter X, Y and Z, often referred to as off shell parameters, are obtained by

fitting the experimental data for the elementary reaction. In addition to the S 11(1335)
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Table 1: Summery of the properties of the baryon resonances included in our model.
J* is the spin parity, L is the relative angular momentum related to =N scattering
state. The Subscripts I and J for the L values ( third column ) represent the isospin
and total angular momentum assigned to the resonance, respectively. I is the total
width of the resonance.

Resonance | J* | Lysp; | Mass(MeV) | [(MeV)
N*(1440) | 1/27 | Py 1440 350
N*(1520) [ 3/27 | Dy 1520 120
N*(1535) | 1/27 | Su 1535 150
N*(1650) | 1/27 | Sy 1650 150
N*¥(1710) | 1/27 | Py, 1710 100

resonance, we also include four other resonances. Table 1 gives some of the properties

of the 5 resonances used in the present calculations.

The authors of reference [6], through fits to existing data. provided several
sets of values for the parameters and observables related to the coupling constants of
the effective interaction Lagrangians of (4.6, 4.8). We copy in table 2 the values in
the second column of table V' of the above reference, which are the ones used in our
present calculations. The parameters of table V are for a PS coupling which is the
form we used here. The off-shell parameters o, 3 and & given in table 2 are related

to the X. Y and Z introduced in equation (4.8), as
a=1+42Z, 3=1+4y. 6=1+2X (4.10)

The parameters A, are the helicity amplitudes and are related to the formation of

the resonances through the absorption of photons by nucleons.



Table 2: Couplings obtained by fitting the data for 5 photoproduction [6]. The cutoff
parameter A% = 1.2 GeV? is used for the vector meson vertex. The off shell parameter
at strong vertex is fixed to a=-1. The helicity amplitudes are in units of 10~3 GeV —1/2
and the quantities |/T,,A; are multiplied by 1000.

[J'I‘_,,x41/2]${l 26.2 [ﬁAl/zlpllx -0.08 [JP_"A]'ﬂ]Dm -0.2

[A1/2] s | 956 [Al/g]Ph 04 | [Ay) . |93

WEstinlg, | 70 | [VFotunl | 29 | [Y/Foon], | o3

[A12], | 1809 [,41,2]% 16.7 | [4sp 70.4

n 4.1 3 0.9 ; 1.0

4.1.2 Reaction Amplitude

At the tree-level the S-matrix for the A( 7. np )A-1 reaction is [26]
1 .
Spe= =5 [ < fIT [Line () Lone (W] i > 2ty (4.11)

where [ > and |f > are the initial and final states of the system respectively. The
T in front of the square bracket denotes the time ordered product of the operators
within the bracket. We shall illustrate, below. the derivation of the S-matrix for
one of the contributing diagrams of figure (4.2), namely the S;; diagram. The same

procedure can be used to derive the S-matrix for the other diagrams.

The S-matrix for the S;; resonance diagram is written as
Sf= -/< AT [Lonr(x) Lonr (y)] i > d*zdy. (4.12)

The amplitude (4.11) for each contributing diagram contains the product of the cor-

responding interaction Lagrangians twice. So in writing the S-matrix (4.12) for the
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511 resonance, the factor % appearing in equation (4.12) is dropped. After introducing

L,nr and L,ng from equation (4.6) into the above expression one gets
[ < AT [(R@) wowF* @) v ()

~% (z) 150, F* (z) R(z))
x (BWRGNW)-RG@)nW)]li >drtay®.  (4.13)

ieKtgnnr

SR _ _TpIu¥R
fi 2(M + Mp)

Using Wick’s theorem [26], the contributing terms in the reaction above are

Sfi= —-2-% / < fIN [5(3)n(3) R(¥) R(2)150, F* () ¥ (z)

+0 (2) 150 F* (z) R(z) R(@)Y (4) 1 (v)] li > dztdy®.  (4.14)

Note that the application of the Wick rotation has replaced the time ordering of the
the field with the normal ordering ( i.e T[- - -]— N[---] ) The initial state |{ > contains
a photon and a target nucleus with A nucleons. The latter is regarded as made up of

a core and a valance nucleon. We write

li>= o (k) 3 (J.Jp: M. Mp|J;, M)

JagMpJ

1/2 g _
X [85:0;(T8)] bl paryl03 > (4.15)

where bI_, (k,) is the creation operator for a photon with momentum k, and polariza-
tion s,, bSBMB creates a bound nucleon with angular momentum quantum numbers

Jp and Mp bound to the core [¢} > and S is the corresponding spectroscopic factor.

The final state |f >, composed of an n meson, a nucleon and the residual
nucleus, is written as

|f >= af, (k,) b}, (k) [0} >, (4.16)

where a'(k,) creates an  meson with momentum kn and bi(k,) is the creation oper-

ator for a nucleon with spin s; and momentum k,. The pseudoscalar field ( 7 meson

) is written in second quantized form as
1 d3k

n(z) = a7 | e [at () (k, 2) + a(k)pq (k. )] . (4.17)
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where a(k) annihilates an 7 meson with the corresponding wavefunction Znlk. r).

The electromagnetic field is written in second quantized form as

#@ = GmLe [ grgm et rdme], )

where a!(k) is the creation operator for a photon with momentum k and polarization

r. The second quantized form of the nucleon field operator ¥(z) is

1/2
W= L[ ot (a) [b0ute, )+ dii (k)
+ Z[bn“n(-"-') + dlva(z)] (4.19)

where b,(k) is the destruction operator for a nucleon with spin s and momentum k.
and u,(k,z) is the corresponding space-time continuum wave function. The creation
operator d(k) creates an antinucleon with spin s and momentum k. vs(k,x) is the
corresponding space-time continuum wave function. For bound nucleons we have b,
destroying a bound nucleon with quantum numbers denoted by n while di creates a
bound antinucleon with quantum numbers n. The corresponding space-time wave-
functions are u,(r) and v,(r). The Fock space calculations for the fields involved in
the interaction result in following

1 1 _
(27)2/3 (QE',)1/2‘P (kq.x).

< Olap(k,)n(z)[0 >=

2 Ly
(@ )2F 2B

< 0|F**(z)al(k,)[0 >= (4.20)

where [0 > is the vacuum state of the corresponding fields. E, and E,, are energies of
the photon and n meson respectively. The above result for the electromagnetic tensor
is obtained using the radiation gauge. The Fock space calculations for the nucleon

fields give

< SN @ >= o

E Z (T, Jo: My, M|, Me)V STy (kp, y) g 115 (2), (4.21)
P JgMp
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where M and E,; are the mass and energy of the nucleon respectively. We use the
plane wave approximation for the resonance propagator (see Appendix 4.E for more

details). In this approximation the propagator for a spin % resonance assumes the

simple form
RoRw) = iske-y) = s G-y, (4.22)

where SE(z — y) is the Feynman propagator of the nucleon resonance with the mass
Mg and four momentum kg. Putting the results of the Fock space calculations into
the S-matrix of the equation (4.14), the S-matrix for the S;; resonance diagram can

be cast in the following form

SR e M1 1 12
I T (22" \E,2E, 2E,

1/2
X 3 (g5 My Mpl|Je, M) [S.,(J)]

JpMpg

x / d 2O )T s, Uy ary ()i (x)e 7, (4.23)

where I's,, is a 4x4 matrix operator and contains combinations of the Dirac ~ matri-
ces, polarization of the interacting photon, mass and four momentum of the propagat-
ing resonance. The explicit form of this operator along with those of other diagrams

are given below.

The structure of the total S-matrix is the same as S }'} of equation (4.23) except
for I's;, which must be replaced by a sum representing contributions from all the
diagrams included in the model. We have obtained the following operators for the

diagrams included in our calculations:

e s+ M, e+ M
rpﬂm.m = gnNNTYO ( laklé e +¢. l/ j\[? 5) .

” _ GnNNEKp K + .+ M
Do = 258000 (v ettt p e e,
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where k2 is the local momentum of the bound nucleon and

ky = ky+kp, ke = ky — ky, ky =k, — k.. (4.25)

To calculate the amplitude of equation (4.23) one can use either plane waves or

distorted waves to describe the outgoing particles. In the plane wave approximation
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the final state interactions of the outgoing nucleon and 7-meson, with the recoil
nucleus, are ignored. The respective wavefunctions have the form

E+M ([ 1 ik
'pp(kp,z) = W( )e kr Xs;v

ok,
E+M

Pn(z) = e ™= (4.26)

Therefore in the plane wave approximation ( PWA ) the S-matrix can be written as
P ( M1 1

fi (2x) 2\ E, 2E, 2E,

x 3 (Jy, Jo: My. Mp|J;, M;) [SJ.-J,(JB)]

JB;WB

x / Bzl (k,)eFrTlg W, v (2), (4.27)

1/2
) 6(Ep +wy, — E, - w,)

1/2

where k... is the momentum of the recoil nucleus. Equation (4.27) shows that the
PWA S-matrix is made up of terms proportional to the Fourier transform of the
components of the bound state wavefunction. Note that in this reaction we have
control over the kinematics and hence a desirable region of the momentum transfer
can be selected. If the interaction terms are well known, one can use this reaction to
find the behavior of the bound state wavefunction in different regions of momentum

transfer.

The rest of this section is devoted to derivation of the distorted wave approx-

imation ( DWA ) S-matrix.

The continuum nucleon wavefunction with incoming boundary conditions is

written as

- E+-lw 1/2 i o— 2 e T !
o' @) = x|SR S M D)
- LM

X(L,1/2; M — sg,s¢|J. M) [ frs(r), io- Fgrs(r)] (4.28)

where Y}{ ,, is introduced in the chapter 2. The above distorted wavefunction is a

solution of the Dirac equation with the vector and scalar optical potentials obtained
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from comparison with proton-nucleus elastic scattering data. More details of the Dirac
proton wavefunctions can be found in the previous chapters and reference [27]. The n
meson wavefunction is a solution of the Klein-Gordon equation with an appropriate
optical potential for the 7-nucleus system. It is expanded in partial waves as
@alknx) =am 3= ibrug, (kar) Yy (ka)Ye " (Q) (429)
Lo M,
In Appendix 4.D we give more information about the 7 wavefunction and potentials

used 1n our calculations.

The bound state wavefunction is a solution of a Dirac equation containing
strong vector and scalar potentials. We write the four-component wavefunction in
terms of upper and lower components as

Vypug(T) = e7EB [ . fs(r) } y}z"l,ys(ﬂ). (4.30)

—igg(r)o -t
Lp, Jp and Mp are the orbital . total and z-component of the total angular momentum
of the bound nucleon. The photon momentum defines the z-axis so the photon wave

can be expanded as

eTT = TRty iy/4=(2 + 1)ji(k,r)Y2(Q).
7

(4.31)

Substituting the above expressions into the amplitude of equation (4.23). one gets

the DWA S-matrix as

e(E,+ M\
Spo= —(=2 5 ~Ep-
f ﬁ(EPE'@) (E, + E; ~ Ep — E,)
1/2
x 3 (Jp, Io: My, M| Ji, M;) [S,4,(J5))]
JeMpg
x Y ibtba2L, + 1)1
LIL,L,
M-s; (3 » (1 - 1
xSV (k) [¥20 (k,)] (L,E;./Ll—sf,sflJ,.M)
MM,
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(4.32)

where we have k = (L — J)(2J + 1) and L' = 2J — L. The radial integrals are given
by

RepkxgLyL,] = / CLs (r) Bugats (1) vr, (kyr) ji. (Kor) r2dr, (4.33)

and C (r) is either upper- or lower-component radial function for the ejected proton
while B (r) is corresponding bound state wavefunction. The angular integrals are also

given as follows

K, Kpg Lq t A
A L gl =[(yM T8 o, Yo (YR (2)dD.  (4.34)
, [M My 1 } [ 8h2s) TV s, Vi () Y2, (@)

The matrix operators [';; are the elements of the 4x4 I’ matrix operator

Fn T _
= . (4.33)
Fa1 T

The DWA amplitude (4.32) is then used to calculate the observables of the reaction.
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4.1.3 Observables

It is useful to define a function of the initial and final spin projections Z;j,s by

rewriting the amplitude of equation (4.32) in the form

_e(E+M
= ”(EpEﬂEv
x Y (Jg,Jp; My, Mg|J;, M)

JagMpg

X [81:4,(JB)

1/2
) §(E, + E, — Ep — E,)

1/2 _,
1"z, (4.36)

The triple differential cross section is related to Z;{, by

ddo 8aw | E, + M2
= kpc knc
d0,d0,dE, = e | E,
1 S1,4,(JB) | sy 2
X = > |Zets
JeMps € 2Jg+1 "tMe

(4.37)

where R is a recoil factor ( of the same form as that for A(e. €p)A — 1 reaction in

chapter 3 )

E k. k
R=l+—"( — —XCos(4,) — =2Cos (6 )) .
Er k’l n kﬂ np
(1.38)
and E, is the energy of the residual nucleus.
The photon asymmetry for linearly polarized incident photons is
_doy—do,
- dO’" +do,’ (4.39)

where doy and do, are the cross section for specified polarizations of the incident

photon, namely parallel and perpendicular to the plane of the reaction.
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4.2 Results of the A( v, np JA—1 Reactions

Let us address two important issues regarding this reaction before discussing the
results of our model. The first of these is: what is the desirable kinematic situation
that maximizes the cross section for each incident photon energy? This task is very
important because of the generally low cross sections for the reaction. The second
point, related to the basic motivation for studying this reaction i.e. shedding more
light on the behavior of the S;(1535) resonance within the nuclear medium, has to
do with exploring the energy region where this resonance diagram is the dominant
contributer to the reaction. We will accomplish these two tasks using the plane wave

S-matrix (4.27) for a number of target nuclei.

Recall in our plane wave calculations outgoing proton and 7 meson are de-
scribed by plane waves. The bound nucleon is described by a solution of the Dirac
equation involving relativistic scalar and vector Hartree potentials of reference [28].
We used the maximum value for the spectroscopic factor ( i.e 2J5 + 1; Jg is the
total angular momentum of the interacting bound proton ) for all the calculations

presented in this chapter.

Figure (4.3) shows the calculated cross section for the ( v. 7p ) reaction on
'2C target nuclei leading to the ground state of !B which is a 1ps/2 hole state. The
incident photon energy is 750 MeV and the azimuthal angles of the outgoing proton
and n meson are fixed at 180° and 0°, respectively. Each three dimensional graph
shows the calculations for a specific polar angle of the 7 meson. The polar angle of
the outgoing proton is represented by the y-axis. The x-axis represents the kinetic

energy of the n meson.

The calculations are performed for four different polar angles of the n meson

and cover the polar angles of the outgoing protons from 0° to 90°. These results



indicate that, for this photon energy, the cross section reaches its maximum value
when both of the outgoing particles ( i.e. 7 meson and proton ) have polar angle near

30°.

Now let us investigate the dependence on the incident photon energy in an
effort to locate the region where the contributions due to S;; resonance are dominant.
We fixed the angles of the outgoing particles at the values suggested by the above
search, namely 6, = 30°, ¢, = 0° and 6, = 30°, ¢, = 180°, then varied the energy
of the incident photon from near threshold to the energy where contributions from
the S;;(1533) diagrams are comparable to the contributions from all other diagrams.
Results of these calculations are illustrated in figure (4.4): dotted curves are the
contribution of the S;;(1535) diagrams while the contributions due to the rest of
the diagrams are represented by solid curves. Note the varving scale for the cross
section axes. Figure (4.4) shows that the S;;(1535) resonance dominates the cross
section from threshold up to a photon energy of 1100 Mev. The cross section is small
at energies near threshold and increases with increasing photon energy reaching its
largest values in the photon energy range 800-950 MeV'. At energies higher than 950

MeV', cross section of the S;;(1535) resonance decreases as photon energy increases.

We suggest the photon energy region of 700-800 MeV as the best energy region
to study the behavior of the S;;(1535) resonance within the nuclear matter. In this
energy region, not only does the S;; dominate the cross section but also the magnitude

of the cross section is relatively high.

We also use the plane wave S-matrix to look at the relative contributions of
different diagrams. Figure (4.5) shows the results of these calculations for the same
reaction, with the outgoing particles having the same angles as those of figure (4.4).
The cross section arising from the S;;(1535) pole diagrams, shown by the long-dashed

curve, is clearly the dominant contribution. The second largest contribution is form
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2c(y,np)liB
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Figure 4.3: The cross section for the 2C( v, np )!!B,,. reaction for the regions of the
phase space where the reaction has significant yield.
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Figure 4.5: Contributions of different diagrams to cross section of the 12C( v.7p )!! B,,
reaction at photon energies of 750 MeV.

the proton poles; this is depicted by the double dash-double dotted curve. The results
of the calculations using D;3(1520) resonance and vector mesons poles are shown by
dot-dot-dashed and dot-dash-dashed curves, respectively. The other diagrams ( i.e.
P11(1440), $,:(1650), P;;(1710) ) do not make significant contributions to the reaction
at this energy. The solid curve is the result of the plane wave calculation including
contributions of all the diagrams considered in our reaction model. These results once

again assure us that the main contributer in this energy region is $11(1533) resonance.

We include the final state interactions of the outgoing particles with the recoil
nucleus in our distorted wave calculations. Appropriate optical potentials are used
in the calculation of the wavefunctions of the outgoing proton and 7 meson. In all
the distorted wave calculation presented here the global optical potentials of Cooper
et.al [29] have been used to calculate the Dirac distorted wavefunctions describing
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outgoing proton. For the outgoing n meson we use the Klein-Gordon wave equation

together with the optical potentials of references [10, 30].

We discuss below the results of these distorted wave calculations of the ( 7,

np ) reaction on three different nuclear targets, namely !2C, 60 and 4°Ca.

4.2.1 The 2C( v, np )!'B Reaction

Figure (4.6) shows the calculated observables for the 12C( v, np )!1B reaction with a
photon energy of E, = 750 MeV. The residual nucleus is in an odd parity 1pg/» hole
state. The energy dependent Global optical potential of Cooper et al. [29], and the
optical potential DW1 of reference [10] are used for outgoing proton and 7 meson,

respectively.

Figure (4.6-a) compares the plane wave calculations of the cross section with
those including the final state interactions of one or both of the outgoing particles

with the residual nucleus.

The short dashed curve shows the suppression due to the final state interaction
of the outgoing proton with the residual nucleus. This suppression is more evident at
higher 7 energies because the energy of the outgoing proton is smaller and hence its
chance for absorption is higher. This same qualitative behavior holds for the 7 meson
distortion ( dashed curve ); the suppression is skewed towards smaller n energies,
again because the meson gets absorbed more readily at low energies. The dotted
curve is the calculated cross section when distortion effects are included for both of
the outgoing particles. Inclusion of both final state interactions leads to a suppression
of the cross section by about a factor of ~ 0.6 relative to the plane wave calculations

and produces a curve which is flat in the 7 kinetic energy region of 50-140 MeV'.

Figure (4.6-b) shows the photon asymmetry for the above reaction. Curve



labels are the same as in part a) of the figure. Plane wave calculations (solid curve)
produce a flat curve for the photon asymmetry varying from 0.1 to 0.13. Distortion
of outgoing 7 meson affects the shape and magnitude of the photon asymmetry only
slightly, lowering its magnitude at small n energies and pushing it up at high 7
energies. Inclusion of the final state interactions of the outgoing proton results in
significant changes in asymmetry. When both final state interactions are included.
the resulting curve ( dotted curve ) has characteristics close to the case when only

the proton is distorted.

Figure (4.7) shows the effects of the different 7 optical potentials on the cal-
culated observables. The curves of figure (4.7) are obtained with the same bound
and continuum proton potentials while different optical potentials are used for the
outgoing 1 meson. The five different potentials used are: the DW1 and DW?2 of Lee
et al. [10], the potential of Chiang et al. [30] with three choices for the real part of
the Sy, self energy, namely ReZx- = (p/po)Vy- and Vy.=350, 0, -50 MeV ( p and p0

are the nuclear density for finite and infinite nuclear medium, respectively )-

Calculated cross sections using the above potentials have similar shapes, except
for the case Vy.=50 MeV of the latter reference whose corresponding curve has a
slightly different shape. However, the magnitude of the cross section obtained with

the DW1 potential is larger than the others.

Calculations with the optical potential of reference [30], with non-vanishing
values for the real part of the S;; potential ( dashed and dotted curves ). produce
results which have roughly the same magnitude as those obtained with the use of
potential DW2. On the other hand the cross sections obtained with the use of these
two last potentials have different shape than the others. They approximately reflect
relative to the 7 kinetic energy of 100 MeV by changing the sign of the real value of
the 511 potential. We can make the following comments regarding to the final state
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Figure 4.6: Differential cross section (a), and photon asymmetry (b) for the reaction
2C(y, 7p)"'B at E, = 750 MeV. The Hartree potentials of reference [28] are used in
calculation of the bound state wavefunction. The final state energy dependent global
optical potentials are taken from reference[29]. The n optical potential is the DW1
potential of Lee et al. [10]. Solid curve - plane wave calculations. Long dashed curve -
calculations include only final state interactions of the 7 meson ( 7 Distorted ). Short
dashed curve - calculations include only final state interactions of outgoing proton
( Proton Distorted ). Dotted curve - both n and proton waves are distorted ( Full
DW ).
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interactions of the n meson with the residual nucleus. First, our results show the
final state interactions have large effects on the calculated cross sections. Second, the
different optical potentials produce different results; there can be as much as ~ 35%

variation in the results.

The DW calculations for photon asymmetry with different optical potentials
for the outgoing 7 meson are shown in figure (4.7-b). All of the optical potentials
produce approximately the same shape and magnitude for the photon asymmetry.
The asymmetry therefore, at least at this energy, is not particularly sensitive to the

different choices of the final state interactions of 7 mesons.

Figure (4.8) shows the effects of the different proton optical potentials on
the calculated observables of the 2C( v, np )!B reaction with the same kinematics
as those of figure (4.6). In all the calculations presented in this figure the optical
potential DW1 of reference [10] is used for the final state interaction of the 7 meson
with the residual nucleus. Since the same bound state potentials ( Hartree ) are
used throughout, the differences between these curves come only from the effects
of different optical potentials for the outgoing proton. The four potentials used for
distortion of the outgoing nucleon are from reference [29]. The first of these is obtained
from a fit to the proton elastic scattering data on 2C from 29-1040 MeV. The last
three potentials result from three different A and energy dependent ( A is the mass
number of the target nucleus ) fits to scattering data on several nuclei from '2C up

to 2%Pb, in the proton energy range 21-1040 MeV.

Results obtained using the energy dependent global optical potential ( solid
curve, labelled as Energy Dep. ), are slightly higher than those for the other potentials,

otherwise all potentials produce the same shape for the cross sections.

Figure (4.8-b) shows the effect of the different proton optical potentials on
the calculated photon asymmetry. The calculations based on different proton optical
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Figure 4.7: Differential cross section (a), and photon asymmetry (b) for the same
reaction as figure (4.6). The final state optical potentials for the proton and the
bound state potentials are fixed. Curves are shown for different choices of n optical
potentials: Solid curve - DW calculations using DW1 of reference [10]. Long dashed
curve - DW calculations using DW2 of reference [10]. DW calculations using the
optical potential of reference [30] with the real part of the S;; self energy set to 50
MeV (short dashed curve), 0 Mev ( dotted curve) and -50 MeV ( dash-dotted curve).

146



potentials lead to curves with the same shape. The use of the A and energy depen-
dent optical potentials results in curves slightly lower than the curve for the energy
dependent potential, in the 7 kinetic energy region of 10-100 MeV.

The sensitivity of the results to the bound state potentials was evaluated
by performing calculations, with the same ingredients, but for two different binding
potentials. The kinematics and the optical potentials of the outgoing particles are the
same as those of figure (4.6). In one of these calculations we used relativistic scalar
and vector potentials of Woods Saxon shape [31] to calculate the Dirac bound state
wavefunction ( dashed curve ). Figure (4.9-a) presents the results of this calculation
along with those obtained using Hartree potentials ( solid curve ). Comparison of
these curves indicates the level of the sensitivity of our model calculations to the bound
state potentials. This comparison shows that the Hartree Bound state potentials lead
to some enhancement in the calculated cross sections of (~ 10%). On the other hand
the photon asymmetry calculations appear to be insensitive to different choices of the
bound state potentials; the solid and dashed curves of figure (4.9-b) overlap in all the

n energy range shown in this figure.

In addition to the kinematic set discussed above, we also calculated the ob-
servables of the reaction for another set of angles for the outgoing particles. The
motivation for choosing this new set is to compare the results of our model with

those of the nonrelativistic model of Lee et al. [10].

Figure (4.10) shows the results of the calculation of the ( ¥. np ) reaction
on the same target nucleus and the same incident photon energy as those of figure
(4.6). but with the directions of outgoing particles fixed at 6, = 20°, &, = 0° and
6p = 15°, ¢, = 180°. In all the relativistic distorted wave calculations presented in
this figure we have used the energy dependent global optical potential of Cooper et al.
[29] for the outgoing proton, and DW1 optical potential of reference [10] for n meson.
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Figure 4.8: Differential cross section (a), and photon asymmetry (b) for the same
reaction as in figure (4.6) The final state optical potential for the 7 meson is the
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potential of reference [29].
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The Hartree binding potential is used to calculate the bound state wave function. We
have also plotted the results of the plane wave calculations of Lee et al. [10]. Figure
(4.10-a) shows the cross section and figure (4.10-b) the resulting photon asymmetry.
Results of the relativistic plane wave and distorted wave calculations are shown by

solid ( labelled as Rel. PW ) and dotted curves ( labelled as Rel. DW ), respectively.

The nonrelativistic plane wave calculations of Lee et al. are depicted by short
dashed curve ( labelled as Nonrel. PW ( Lee et al. )). Comparison of the solid
and short dashed curves indicates that both relativistic and nonrelativistic calcula-
tions produce curves with similar shape, but nonrelativistic calculations lie above the
relativistic ones up to 7 energy of ~120 MeV. Compared to the relativistic calcula-
tions, the nonrelativistic calculations have the first peak shifted slightly toward higher

energies and the second peak moved toward lower 7 energies.

We have also performed the relativistic plane wave calculations with the lower
components of the bound and continuum nuclear wavefunctions set to zero. As we
know. working with the upper component only is not equivalent to the nonrelativistic
calculations ( see chapters I and III ). This discussion is meant to assess the role of the
lower components of the nucleon wavefunctions on the observables. The results for the
cross section are very close to those of the full relativistic calculations at all n energies
( long dashed curves, labelled as Upper PW ), except in the region of first peak. We
note that in the low 7 energy region the proton acquires higher energies. therefore
the effects of the lower components of the wavefunctions are somewhat enhanced.
Note also that the elimination of the lower components brings the relativistic and

nonrelativistic calculations slightly closer.

The effects of the final state interactions of the outgoing particles on the cross
sections at the kinematics chosen here are slightly less than those for the kinematics

of figure (4.6). Note that the distorted cross sections in figure (4.6) can only reach
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~ % of their plane wave values, whereas at the first peak region in this figure the

distorted wave calculations reach ~ % of the relativistic plane wave values.

The plane wave relativistic and nonrelativistic calculations of the photon asym-
metry yield two different results. The relativistic calculations produce a flat curve
with small positive values, whereas nonrelativistic calculations result in a curve with
large negative values, depending on the 7 energy. Moreover as stated in reference [10].
the final state interactions do not have any significant effect on the asymmetry in non-
relativistic calculations. On the other hand the relativistic calculations are affected
by the inclusion of the final state interaction ( compare solid and dotted curves )-
The asymmetry is shifted down when the contributions of the lower components of

the nuclear wavefunctions are removed.

Let us before discussing the results of our calculations for other target nuclei.
see if the inclusion of the final state interactions of the outgoing particles preserves the
dominance of the $,;(1535) contribution to the reaction in the energy range suggested
in figure (4.4). Figure (4.11) shows the results of our DWA for two calculations as
explained below. The nuclear target, the photon energy, directions of the detected
particles and the potentials are the same as figure (4.6). In the first calculation. it is
assumed that reaction is taking place only through S;;(1533) resonance ( solid curve.
labelled as S;;), whereas the second calculation includes the contributions of all the
diagrams considered in our model but those of Sy,( 1335) resonance ( dashed curve.
labelled as Rest). These results indicate that the S;;(1535) resonance. as in the plane
wave calculations (4.4), is the dominant contributor to the reaction in the distorted

wave limit.
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Figure 4.10: Differential cross section (a), and photon asymmetry (b) for the same
reaction as figure (4.6). Curves are labelled as: Solid curve - relativistic PW calcu-
lations. Long dashed curve - PW calculations with the use of only upper component
of the nuclear wavefunctions. Short dashed curve - nonrelativistic PW calculations
of Lee et al. [10]. Dotted curve - relativistic DW calculations.
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Figure 4.11: Differential cross section for the same reaction as figure (4.6). Curves
are labelled as: Solid curve - DW calculations using only S;;(1533) diagrams. labelled
as Si;. Long dashed curve - DW calculations using all the diagrams but those of
S11(1533) resonance, labelled as Rest.

4.2.2 The °O( v, np )*N Reaction

We study the photoproduction of 7 meson on another target leading to different hole

state from that of the 2C.

Figure (4.12) shows the results of the calculations for the ( 7. 7p ) reaction on
a '°0 target leading to the ground state of >N ( an odd parity 1p, /2 hole state ). The
Hartree potential of reference [28] is used to calculate the bound state wavefunctions.
The final state interactions of the outgoing proton and n meson are calculated using
the energy dependent global optical potential of reference [29] and the DW1 optical
potential of reference [10], respectively. The energy of the incident photon and the

angels of the outgoing particles are the same as in figure (4.6)

Cross section curves show behavior similar to the 2C case ( i.e figure(4.6) ).

except that cross section is slightly suppressed for the 60 target.
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On the other hand the resulting photon asymmetries for this target. behave
differently form those of the !2C target. The distorted wave calculations here peak at
lower 7 energies, whereas for the '2C target the peak is at higher energies. Moreover
asymmetries for this target have larger magnitudes. Since we are comparing the
results of the reaction on the nucleons with two different states, these differences

indicate that the asymmetry is nuclear state dependent.
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Figure 4.12: Differential cross section (a), and photon asymmetry (b) for the reaction
10(v, np)'®N at E, = 750 MeV. The Hartree potential of reference [28] is used
in calculation of the bound state wavefunction. The final state energy dependent
global optical potentials are taken from reference[29]. The 7 optical potential is the
DW1 potential of Lee et al. [10]. Solid curve - plane wave calculations. Long dashed
curve - calculations include only final state interactions of the 7 meson with nuclei
( 7 Distorted ). Short dashed curve - calculations include only final state interactions
of outgoing proton ( Proton Distorted ). Dotted curve - both  and proton waves are
distorted ( DW ).
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4.2.3 The “Ca( v, 7p )**K Reaction

We have also used our relativistic model for calculations of the reaction on *Ca target
leading to ground and excited states of 39K nucleus. Similar investigations as for the
12C target, searching for the energy region as well as angles of the outgoing parti-
cles which maximize the cross section and preserve the dominance of the 511(1333)
resonance, are performed for this target. This study confirmed in the same result
obtained for the !2C target.

Figure (4.13) shows the results of our calculations for the 4°Ca( v, np )%K
reaction. The residual nucleus is left in its ground state ( an even parity 1ds/2 hole
state ) and the incident photon energy is 750 MeV. The angles of the outgoing par-
ticles are fixed at 6, = 30°, ¢, = 0°. 6, = 30°.and ¢, = 180°. The bound state
Hartree potential is from reference [28]. The energy dependent global optical poten-
tial of reference [29] and the DW1 optical potential of reference [10] are used for final

interactions of outgoing proton and 7 meson. respectively.

The calculated cross sections of figure (4.13-a) show curves with different
shapes from those of the two targets studied previously. The plane wave calculations
produce a curve which is peaked at two energy regions. The final state interactions
of the outgoing particles suppresses the cross section more for the ¥°Ca target. Again
this is likely due to the larger distance that outgoing particles must travel inside the
nuclear matter before leaving the nucleus. When considering the distortion for one
of the outgoing particles, the effect of the energy of the outgoing particles on the
suppression of the cross section is more pronounced for this target (compare the long-

and short-dashed curves of this figure with those of figures (4.6, 4.12).

As for the other two targets, the results of the photon asymmetry calculations
are sensitive to the final state interactions of the outgoing particles. This is in contrast

to the predictions of the nonrelativistic model for the reaction. Comparing with the
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results of the calculations on the '2C and 160 targets, shapes and magnitudes of
the asymmetries are different. For example the asymmetry for the DW calculations
peaks at lower 7 energies, but unlike that of the 180 target which reduces smoothly by

increasing the 7 energy, here the results show sharper changes in variation of energy.

We have also used our model amplitude to calculate the observable of the
reaction on a *°Ca target leading to an odd parity 1ps/; hole state of the recoil

nucleus ¥K. The results are shown in figure (4.14).

The curves in this figure have the same features as in figure (4.10), except that
the differences in the magnitude of the relativistic and nonrelativistic cross sections
are larger. Also the effects of the final state interactions are more prominent for the

present case.

Notice that the corresponding curves in figures (4.10-b) and (4.14-b) have
approximately the same shapes. These similarities and the assumption that reaction
is taking place on the same nuclear state for both calculations, support our earlier

statement on the state dependency of the asymmetry.

We have also studied the sensitivity of the results to different nuclear binding
and continuum potentials, for the ®0 and “°Ca targets. The results were similar to

those discussed earlier for the 12C target.
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Figure 4.13: Differential cross section (a), and photon asymmetry (b) for the reaction
“Ca(y. 1p)*K at E, = 750 MeV. The Hartree potential of reference [28] is used in
the calculation of the bound state wavefunction. The final state energy dependent
global optical potentials are taken from reference[29]. The 7 optical potential is the
DW1 potential of Lee et al. [10]. Solid curve - plane wave calculations. Long dashed
curve - calculations include only final state interactions of the n meson with nuclei
( 7 Distorted ). Short dashed curve - calculations include only final state interactions
of outgoing proton ( Proton Distorted ). Dotted curve - both n and proton waves are

distorted ( DW )
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4.3 Conclusions

A relativistic model for quasifree A( v, np )A-1 reaction, on the basis of a gauge and
Lorentz invariant Lagrangian involving nucleons and meson fields, is constructed. The
ingredients of the model are: i) the nucleon wavefunctions are solutions of the Dirac
wave equation with appropriate scalar and vector strong potentials obtained from a
relativistic mean field theory, ii) The 1 meson is described by solutions of the Klein-
Gordon equation with the appropriate optical potentials, and iii) the interactions
between the fields are introduced through a covariant effective Lagrangian. This
model is used to calculate the cross section and photon asymmetry, for different

target nuclei.

The energy region where the S;;(1535) resonance dominates the reaction is
specified. This is the best energy region for using the n photoproduction reactions
to study the properties of the above resonance in the nuclear medium. We have also
searched for a geometry of the outgoing particles where the cross section reaches its
maximum for a given incident photon energy. This investigation results in a choice
of the angles of the outgoing particles that vield differential cross sections up to 20
nb for some targets. It was shown that within the photon energy region from near
threshold up to 1.1 GeV, the S;;(1535) resonance dominates the reaction. The other
diagrams which have significant contributions are proton, D;3 resonance and vector

meson poles ( however their sum is really small ).

The final state interactions of the outgoing particles are included through
distortion of their wavefunctions using the appropriate optical potentials. The cross
sections experience large suppression due to these final state interactions. Several n
optical potentials were tested and lead to different results for the cross section ( up
to ~ 35% ) as well as photon asymmetry . On the other hand our model is much less

sensitive to different choices of the potentials for the bound and continuum proton.
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The uncertainty in 7 optical potentials makes it difficult to make final predictions for
the cross sections. More theoretical work on the final state interactions of the 7 is

required.

Calculations were carried out using the same kinematics as those in the recent
nonrelativistic calculations of Lee et.al [10]. Results of our calculations for the cross
section have shapes close to those of nonrelativistic calculations but the magnitudes
of our results are somewhat smaller. In contrast the photon asymmetries predicted
by two models differ significantly. The nonrelativistic model gives large asymmetry
in the PW limit, which is insensitive tho the final state interactions of the outgoing
particles. Our PW predictions for asymmetry are small and the asymmetries are

strongly affected by the final state interactions of the outgoing particles.

The next steps to improve the model at the tree level approximation are:
removing the plane wave approximation used for the propagators by performing finite

range calculations, and including the medium modifications of the propagators.

There is need for experimental data for exclusive reactions on nuclei ( currently
non-existed ) especially spin observables that could shed more light on the differences

between the relativistic and nonrelativistic models.
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Appendix 4.A Kinematics

In our model for photoproduction of  meson from nuclei, direction of the incoming
photon defines the z-axis. We define a reaction plane formed of momenta of incoming
photon k, and outgoing n meson k,.

The y-axis is normal to this plane and its direction is along the k., x k, vector.

Figure (4.15) depicts the direction of the initial and final particles as well as the choice

of axes used in the present calculation.

In the rest of this appendix we will calculate the kinematic quantities required
for a situation in which the energies of the incoming photon and the outgoing meson
as well as the direction of the outgoing detected particles are given. Let us start with

writing the four vectors for incident photon and target nucleus in the lab frame as

ko= (k, 0 0 k)

7

where Mr is mass of the target nucleus is related to the mass of the recoil nucleus

."\«I,- as
M, =My - M+ Ejp, (4.41)

and M and Ep are the mass and binding energy of the initial bound nucleon. Con-

servation of the four vector of the initial and final momenta is written as
T+k =ki + kb + k2. (4.42)
This equation can be rewritten as two scalar and vector equation as follows

Mr+E, = E,+E,+E,
k, = k,+k, +k.. (4.43)
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Figure 4.15: The kinematics for the n photo production from nuclei. The xz plane
is the reaction plane and momentum of the incoming photon defines the z axis. Di-
rection of  meson and outgoing proton and recoil nucleus are shown by 7, P and R,
respectively.

Solving these equations for the energy of the outgoing proton results in

ae+6,/a? — 4M(e? ~ 62)

P= (e — 62) (4.44)
where variables a. § and € are defined as follows
a = € —M?+M?— k2~ k2 + 2kyk,cos (6,,)
6 = kycos(8,,) — kycos(6,,)
€ = Mr+E,—-En (4.45)

Having obtained the proton energy, we can find all the other kinematic quantities

required in the calculation of the reaction amplitude and observables.
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Appendix 4.B The y+p — 75+ p Reaction

In this appendix we discuss an effective Lagrangian approach proposed by Ben-
mouroushe et al. [6] These authors used this Lagrangian to investigate the n me-
son production on the nucleon. Recently Arenhével et al. applied this Lagrangian
to calculate the n photo production from deuteron. The Lagrangian of reference [6]
was also used by the authors of reference [9] to calculate the Born and vector meson

exchange diagrams of their 7 photo production model.

Starting from effective Lagrangian proposed in reference [6}

Loxy = — iggdysvm
-— [ o]
AC.,_.\.'.,\- = - ew'y,‘.»‘l“w - 4—“’;-‘6;'0’""?,/)17”‘,.
- oy wlVE — I e
Lvxy = — guy,0V¥ — T 2otV
e/\v -
Lym= e\ FoVioy,
4m, *
C,,.\'R = - l'g,,NREI‘RT] + h.c.
Coxn= — =2 __Rrwp, +he
ke 2(Mp + M) ad o
where
for S resonances =1 and ['*” = y50#*
for P;; resonances =495 and I'*¥ = g#¥ (4.46)

Where fields and coupling constants are the same as those introduced in the chapter.
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The interaction of photons and 7 mesons with the N*(1520) resonance are introduced

through the following Lagrangians,

Lonp = f;'nNRTZ"&u(Z s¥3 n+ h.c.,
n

erct
C}{NR = -%ﬁ?“o“v(y)'Yxkam\ + h.C.,

L2yp= fvﬁﬁ“ow(X)aANF"* +he, (4.47)

where

1 ,
a;w(V) = Gu + [_5(1 + 4V) + I’J YuTvs
V = X.Y.Z (4.48)

and off-shell parameters X, Y and Z are expressed in terms of a, 3 and 6 in equation
(4.10). Using standard procedure [26]. the S-matrix for the photoproduction of n
mesons on the proton is derived. Diagrams included in this calculation are depicted
in figure (4.16). The Born diagrams are figures 4.16a) and 4.16b): the t-channel
vector meson diagram is shown in figure 4.16c), figures 4.16d) and 4.16e) are the
resonance poles. In addition to the S;;(1535) resonance this calculation includes the
other four resonances whose characteristics are given in table (1). Coupling constants

of above Lagrangian are calculated using the parameters listed in the table 2.

We illustrate the main steps of the derivation for the free reaction S-matrix for
contribution due to Sy; resonance ( diagrams 4.16d) and 4.16e) ). The second order

amplitude is expressed in terms of the effective Lagrangian as
1 .
Sfi = —§/< flT [Cing (1') cin! (y)] ll > d4.'l'd4y (4.49)

where |/ > and |f > are the initial and final states of the system respectively. After

introducing £,xr and £L,yg from equation (4.48) into the above expression for the
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Figure 4.16: The Feynman diagrams for an p( v.7)p reaction, the incident photon
with momentum k is absorbed by proton and then as a result an 7 meson produced.

169



S-matrix, we get

. ]
Sk= - sureiry | <M (R@s0uF* @y (@)

~%(z) 150 F* (z) R(z))
x (#W)RW @) - R@)¥)1)]li > dzdy. (4.50)

Using the Wick theorem, the contributing terms for the reaction on a nucleon are

Sf = —% [ < 1IN [B@)n @) R@) B()rs0u P> () v ()

+9(2) 1500 F* (2) R(z) RN (9) 0 (v)] i > dzdy.  (4.51)
The initial state contains a photon and a proton

li>= b (k,)5L.(k)I0 >. (4.52)

where b}‘.r (k,) is the creation operator for a photon with momentum k. and polar-

ization s,, and b;f“,(kp) creates a nucleon with momentum k, and spin component
Hi-

The final state |f > contains an 7 meson and a nucleon and is written as
|f >= a} (k) b} (k,)[0 >, (4.53)

where a!(k) creates an 7 meson with momentum k and bL ,(k) is the creation operator
for a nucleon with spin ¢y and momentum k. The pseudo scalar field (  meson ) is

written in second quantized form as

1 5 &k

The electromagnetic field is written in second quantized form as

[af(k)e"c ® +a(k)e*=|. (4.54)

A¥(z) = 3/22 / BET )1 7 X [0 (K)e™* +al(k)e*?],  (4.33)
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where a!(k,) and a.(k,) are the creation and annihilation operator for a photon with

momentum k, and polarization r. The second quantized form of the nucleon field

operator ¥(z) is

W)= ¥ / (2”)3 - ( & ) (), (k. 2) + di(K)ua(k,2)]  (4.56)

where b,(k) is the destruction operator for a nucleon with spin s and momentum k,
and u,(k, z) is the corresponding space-time continuum wave function. The creation
operator d(k) creates an anti nucleon with spin s and momentum k, vs(k,z) is the
corresponding space-time continuum wave function. The Fock space calculations for
the fields involved in the interaction result in following

- 1 1 otkg-z
< Ola,(kq)n(z)|0 >= (2723 (2E,)172°  °

2 1 7 —tk, -z
e T,
@V 2,y

< 0|F*(z)al(k,)|0 >= (4.57)

where E, and E, are energy of the photon and n meson respectively. Notice that
the latter result is obtained in the radiation gauge. The result of the Fock space

calculation for the nucleon fields is

< Olbw(kw)-’v['.‘gp(y)ﬂ’p(x)]lbf.-(kp.-)[O = (2‘:]':’)3
M

x‘/.E_Efu,,!(kp,,y)u,‘,(kp‘ . T), (4.38)

and

2M AL TR
E;+M

Ei+M [ 1 R | )
Uy (kp;, T) = ( ) e'*ri I 5’”i >. (4.59)

M, E; and E; are mass and energy of the initial and final nucleon respectively. Put ting
the results of the Fock space calculations into the S-matrix of equation (4.31) , the

S-matrix for the $}; resonance diagram can be cast in the following form

1 A2
R
S5

: = (27)2 4EIEE E le,s (460)
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where we have defined the amplitude zM ; as follow

kR _ €9k (K + Mg E. + MR) _ .
1Mf’ - M'*'MRuf( 7#¢’+ ##’" Mlzz u;, (4.61)
The following expression is used for the propagator of the spin 1 5 resonance.
B(y) = iSF(r—v) = 3 I+M -y
R(z)R(y) - lsﬂ(x y) = (271')4 d‘ p2 M?2 +l€ . (4°62)

where M and p are the mass and four momentum of the propagating resonance
respectively. The same steps can be applied in the calculation of other diagrams
which result in S-matrices with the structure of (4.60) and different iM ;s as listed

below.

. e _ ¥s + M .+ M
1 MpizegﬂNNuf Y5 kf M2‘¢p+¢py w27o Uy,

. egnNN s+ M K.+ M
1 “M};‘!‘ = —,,ITI-K—Euf 7 : - ‘) v r +¥ ¢' ‘/1270 ui’

511 _ €gnNRK k + .WR K.+ Mg
Me' = 1rs w,z"f( 2t et | v

= e (e )
zM}’;’ _ _ieA.,goe"UM fktzep_kf,giié i
M= = TR by,

o+ Mg
(%k"oy,.(Z)L*—M—’;P" us (Y )a(KEE: — eB2)

+ (Y Ve~ SR P, 2k )
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(2)
i 2MBs = Elnie g

4m M2
Mg

« (10k3 002V B P0oa XK — ) (k)

+ (ko }, ulX)RER - BB SE j‘j’;zwo 2}k s,

1 1 2
W o By BRY _ AVER] — %
P -(g“ 37 2Mahk odlall 3M§kk)’ (4.63)
where
ks=ky+ky, ke=k,—~k, and k, =k, —k,. (4.64)

We have used the S-matrix, including contributions of all diagrams, and standard
procedure, for example from reference [32], and calculated the cross section for the
1 photoproduction off nucleon. We obtained the following expression for the cross

section.

(4.65)

do__(hef k(B4 M)E+M) s

9 6427 E,EE; (1+ %) (1 +2) wame
Figure (4.17) shows the observables for the photoproduction of 7 meson from proton.
Curves in figure (4.17-a) represent the differential cross sections for two energies (29
MeV ( solid curve ) and 753 MeV ( dashed curve ). These results are almost uniform
in all the angles because of dominance of the S;; resonance in this energy region.
Calculations for the total cross section are shown in figure (4.17-b). This curve shows
that the total cross section peaks at photon energy of 800 MeV and decreases as

photon energy approaches higher values.
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Figure 4.17: a) Differential cross section, b) total cross section for the 7 photopro-
duction on the proton. Coupling constants are those of table 2 of this chapter and
table V of reference [6].
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Appendix 4.C Observables

In this appendix we will relate the eta photoproduction amplitude (4.37) to the ob-
servables discussed in the chapter, namely cross section and photon asymmetry. Let

us rewrite the amplitude of (4.37) as

_ e Ep‘i‘M 1/2
Spp = ;(EPE'IE“{) 5(Ep + E; ~ Ep E,)
X 3 (Jy,Je; My, M| J;, M)
JaMp
/2,
X [S10,T8)] " Zeles (4.66)

The first step to calculate these observables is squaring the above amplitude to find
the transition probability.
-6_2. ( Ep + .‘/[

Spl? = =P
ISyl 72\ E,E,E,

) (6(E, + E, — Eg — E,)]?

2
1/2
X{ > (Jf,JB;.Mf,:"IBIJ:’,-M:’)[SJ.-J,(JB)] }

JgMp

X | Zglysl” (4.67)

The differential cross section is related to the transition probability above as

12
do= Y lMd:’p,,d:’pl, (4.68)

Li!_u_l_l TJinc
Using the following relation between the delta function and its square from [32]

T
[6(E, + E, — Eg - E,)]* = 5-9(Ep + E, — Ep - E,), (4.69)

and the following identity for the Clebsch-Gordan coefficients

2Ji+1 _
M'Z;{! (Jr, o My, M| Ji, Mi)(Jy, Tp; My, M| J:, M;) = 57, 10087 O0a sy (4.70)
The triple differential cross section can be cast in the following form
d3o _ 8am[E,+ M2
dQ,dQ,dE, ~— ke E,

] kpc kye
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L Ssu;(JB)

712 Ml
RJaMnayf 2Jg+1 B

(4.71)

where we have used Jia: = g5y for the incident photon current and the recoil factor

R is given by

R=14+=2 gr (1 - kﬁcos(o,,) - ,’: —£cos (0,,,)) )

(4.72)

and E, is the energy of the recoil nucleus. The photon asymmetry for linearly polar-

ized incident photons is defined as

_ dO'" —dG’_L

- doy +do, (4.73)

where doy( do ) is the cross section with the incident photon polarization parallel

( perpendicular ) to the scattering plane.
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Appendix 4.D Wavefunction of The  Meson

The n nucleus interaction is dominated by formation of $11(1535) nucleon resonance.
We include the final state interactions of the n meson and residual nucleus through
an optical potential which is based on the contribution of the above channel [30].
We have also used the two optical potentials introduced in reference [10]. These
last two potentials include contributions from two other resonances ( D;3(1520) and

P1;:(1410) ).
The 7 meson is described by solutions of the Klein-Gordon equation
[V2+Kk2+V (r)]o(r)=0 (4.74)
where
V(r) = 2wV (r), (4.73)

w Is the 17 meson energy. We expand the n wavefunction in terms of the partial waves

as

o(r)=dx y_ itvr (N Y () ¥7¥ (k,) (4.76)
LM

Putting the above expansion into equation (4.74) and using the following relation

V= o - (4.77)

the Klein-Gordon equation reduces to the following radial equation

1 92 L(L+1 _
;ﬁ("vz) - (—rz-—)vL + (k2 + V(r)) vy =0. (4.78)

Using the transformation vy (r) = y‘—r"-)-, the radial equation (4.78) can be cast in a

form of the Schrédinger equation for which we have a solving technique.

Py [L(L+1)

a2 = t+f (r)] yr =0, (4.79)

177



where

f(r)y=-i§ +V(r) (4.80)

Equation (4.79) is solved numerically for each partial wave of the distorted wavefunc-

tion.

178



Appendix 4.E Approximation of The Propagators

‘The DWA S-matrix for the eta photoproduction on nuclei involves eight fold inte-
grals over the vertices involving the propagating particles as well as the partial wave
expansions for the outgoing particles. Therefore we are confronting a complicated
numerical calculation. We try to overcome this problem by using an approximation
for the propagators which is exact in the the plane wave limit. Our aim is to illus-
trate this approximation in this appendix for a s-channel diagram; extensions to other

channels are straightforward.

Let us consider the reaction 1 + 2 — 3 + 4 in which two particles 1 and 2
collide to form a fermion, this fermion propagates and decays to two particles 3 and

4. This process is depicted in figure (4.18).
The S-matrix for the above diagram is
Spe= 4 [ dizd'ye; () 63 () ¥ () (4)6r (¥) 01 (v): (4.81)

where A is a kinematic coefficient. The contraction of the fermion field results in the

Fevnman propagator

- . ] + M —ik(z—
U(r)¥(y) =iSp(z—y)= (2;)4/d4kk25M2+iee k(z-y) (4.82)

If we assume that particles 3 and 4 are described by plane waves ( in the present

case these particles are the outgoing proton and eta meson ). we are able to do the

integration over variable z as
/ dize==b-k) = (27) § (k — ks — ky). (4.83)

This relation restricts the 4-momentum of the propagating particle to the sum of the
outgoing momenta. Using the § function we can do the integration over momentum

to find

% "Hﬁ +M
(k3 + kq)* — M2

Spi = iA [ 2z ()01 () eirihotio, (4.84)
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Figure 4.18: The S-channel diagram for a half integer spin particle propagator.

We obtain the same results for the S-matrix if we take the propagator to be

% +My+ M
(k3 + kq)? — M?2

Sr(z—y) = 6 (z—y) (4.83)

In our DWA calculations we use the expression given in (4.85) for the propagators of
fermions in the s-channel. Following similar arguments one finds the corresponding

simplified forms for other channels.
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Chapter 5

Photoproduction of 7 Mesons from Complex
Nuclei

IT) Inclusive Reactions

Introduction

One of the current issues in intermediate energy physics is the modification of barvon
properties in the nuclear medium. The nucleon resonances mainly decay to nucleons
and mesons. Therefore reactions involving the production of mesons from nuclei are
suitable tools for studying these modifications. Among these the photoproduction
reactions are preferable. The relative weakness of the electromagnetic interaction
allows photons to interact with nucleons uniformly through the entire volume of the
nucleus. The amplitudes obtained on the basis of first order perturbation theory

should be able to describe the reactions well.

n mesons display certain selectivity in their interactions with nucleons. Be-
cause the 7 meson is a spin and isospin zero particle, its coupling to nucleons can
lead to the formation of only isospin -% baryon resonances. In addition to the study of
nucleon resonances, photoproduction of 7 meson can be used to investigate the final
state interactions of this meson with nuclei which is also of theoretical interest. The
large attractive ( ~ 0.6 fm ) scattering length of 7-N system, lead to speculations
about the existence of n-nucleus bound states ( 7-mesic nuclei ) [1]. Photonuclear

reactions also can be used to investigate this new type of nuclear matter. Lebedev et
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al. [2] used this reaction to study the formation of }C and %O n-mesic nuclei.

Exclusive n photoproduction reactions off nuclei are capable of providing de-
tailed information on the propagation of nucleon resonances inside nuclei, as well as
on the final state interactions of the n mesons. They suffer, however, from the dis-
advantage of their cross section being low. The experimental investigations of such
reactions are difficult at this time. For inclusive reactions, on the other hand, the
contributions of each nucleon add incoherently, so the cross sections are large com-
pared to the exclusive ones. One can use these reactions to study the nuclear medium
modifications of the nucleon resonances as well as the interaction of the 7 meson with

nuclei.

As noted in the preceeding chapter, Lee et al. [3] have studied exclusive as
well as inclusive photoproduction of 1 mesons form complex nuclei such as !2C and
40Ca. The initial bound nucleons are described by harmonic oscillator wavefunctions
and final state interactions of the detected particles with the recoil nucleus are intro-
duced through optical potentials. Two different optical potentials are used for the n
meson. Comparison of the results with the experimental data of the inclusive reaction
shows that one of the potentials produces results that are closer to the data [3]. A
calculation for the inclusive photoproduction of the 7 meson from nuclei, based on
an effective Lagrangian approach has been developed by Carrasco [4]- In this model
the reaction takes place only through the formation of the 511(1535) resonance. In
addition to a local density approximation, Pauli blocking and Fermi motion are taken
into account. The final state interactions of the n meson with the residual nucleus
are calculated using a Monte Carlo program. This author shows that the total cross
section experiences large suppression due to medium effects ( Fermi sea effects and
the modifications of the S1;(15335) resonance parameters ) and the final state interac-
tions of the 7 meson. These effects are less for the differential cross section than the

total cross section. Another finding of this work is that the total cross section grows
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as A% (A is the atomic number of the target nucleus ).

Chen et al. [5] calculated the double differential cross section for the inclusive
photoproduction of 77 mesons from !2C target. They include only the quasifree process
and assume that the 7 is produced through the formation of the S;;(1535) resonance.
Starting with the elementary interaction on the proton these authors obtained a value
for the helicity amplitude Al for the S1; resonance which is in close agreement with
quark model calculations. Their calculations for the double differential inclusive cross
sections on !2C target predict a maximum ( 0.15 ub/MeV Sr ) at 5 kinetic energy of
~100 MeV. Recently a model for n photoproduction introduced by Hombach et al.
[6], the final states interactions of n meson are obtained using the coupled channel
Boltzmann-Uehling-Ulenbeck formalism. The total cross sections calculated in this

model also show a mass dependence of the form A¥.

Recently the photoproduction of 7 mesons from complex nuclei, such as 2C,
0Ca, 93Nb and °Pb. has been measured at MAMI. The data for the inclusive reac-
tion are reported in [7]. This experiment confirmed the predictions of the theoretical

models for the relation between the total cross sections and target mass ( A$ ).

In this chapter we develop an inclusive model for the photoproduction of n
mesons from complex nuclei along the lines developed in the preceeding chapter. In
the inclusive reaction, a photon interacts with a nucleous leading to the production
of an n meson. This meson is the only detected particle and there is no restriction or
information about the final nucleus. Our inclusive model includes only contributions
form the quasifree channel and is thus restricted to the one hole excitations of the

recoil nucleus.

In section 3.1 we describe the model calculation for the inclusive reactions: the
results of our calculations for two target nuclei are given in section 5.2. Section 5.3

is devoted to discussions and conclusions.
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5.1 Reaction Model

We start from the S-matrix, derived in the previous chapter ( see equation 4.23 ), for

exclusive 7 photoproduction from complex nuclei

g, __e (M1 1\”
T T (2n)?\E,2E, 2E,
x ¥ (Jp, i My, Mg Je, M;) [S14,(J5)]

JaMp
x / VN @) ITW 1 a1, ()5 (2)e 07, (5.1)

1/2

where all the ingredients and definitions in this equation have been given in the
previous chapter. As mentioned above, the 7 meson is the only detected particle
in the inclusive reaction; this necessitates that the above exclusive S-matrix must
undergo some modifications. In plane wave calculations of the reaction we use the
plane wave amplitude of the exclusive reaction and then, as it is explained below.

integrate the cross section over the variables of the undetected particles.

We also carry out distorted wave calculations for the reaction. In these only
the n wavefunction is distorted; the proton continues to be described by plane waves.
The justification for this is as follows: an inclusive reaction implies inclusion of all
possible states of the nuclear system that are not observed. That inclusion negates
the necessity for using imaginary potentials. The real part of the proton optical
potentials causes a change in the momentum of the outgoing protons. The effect of
these changes on the production of 7 mesons will be minimized as we integrate over
all proton directions. The reader should be reminded however, that in the present

model only the quasifree production of 7 mesons is taken into account.

With the use of plane waves for the continuum proton and a partial wave

expansion for the outgoing meson, the S-matrix of equation (5.1) can be cast in the
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following form

_ efE,+M\'?
x Y (J5,Jp; My, M| Ji, M;)
JeMp
1/2 .
XS0, 0)] " 22k, 52)

where

Ze = X iY@ Y (K)
LoMyLoM,

{ <324y | (T o E ) v @ v @) | 93, >

X / ridrjr, (qr) vi, (7) fa (r)

o-kp,
+i <3y | (Mh+ 2 TR ) Vit @2 () 930, >

E,+M
x [ redris, (ar) v, (1) g5 (7)) (53)

The parameters in the expression above are explained in the previous chapter except
for those with subindex q; these arise from the following expansion
ebhy)s = givs = 4z 3 il (gr) Y M@y i) (5.4)
LoM,
The elements of the operator ['7 of (5.3) can be written in terms of a scalar S and a
vector A as follow

7Ky ——ELTT. = ST+ A-0=5I + (=)Ao (5.3)

rT
TE M-

where I is a 2x2 unit matrix. After putting the above expressions for the matrix
elements of I'7 in the S-matrix (5.2), the angular integrals of the types given below
appear in the S-matrix.
M, yM
< y;u Y, ()Y,," ()Y L .LJB >
yM M -4 | ! -
< )7;%% [ Y, ()Y, (Q)o™*| ZZB%JB >. (5.6)
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The results of these angular integrals are given in Appendix 5.A. The cross section for
the reaction is obtained through some modifications to that of the exclusive reaction as

described below. The cross section for an exclusive reaction with the above amplitude

is found to be ( see Appendix 4.C )

ddo _ Sar[E,+ M ke ok
d0,d0,dE, ~ he | E, |Prctn
1 S5u,(JB)
X= S 2
R ,BMEME 275 + 1

where R is the recoil factor introduced in the previous chapter.

Recall that in the inclusive reaction the 7 meson is the only detected particle.
Therefore to obtain an expression for the inclusive differential cross section. which is
dependent only on the energy of the n meson, we have to integrate the differential
cross section (5.7) over the variables of the continuum proton as well as the angles
of the n meson. These integrations are performed numerically as follows. First we
take advantage of the symmetry in the dependence on the azimuthal angle 0, and
replace the integration over this angle by a simple multiplication of the result at the
end by a factor of 27. Integration over proton azimuthal angle is performed using a
simple mid point method. For the proton and 7 meson’s polar angles the Gaussian
method is applied. The number of mesh points for each integration is varied until
convergence is achieved. Good convergence ( less than 1% difference ) is obtained for
10 and 20 mesh points for azimuthal and polar angles, respectively. The inclusivity of
the reaction requires that contributions from all the nucleons inside the target nucleus
be taken into account. In the calculation of the photoproduction form neutrons. the
relative factor %, between cross sections of n production off neutron and proton, is

used. This factor is obtained experimentally [8] and is confirmed theoretically as well
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[9]-
We also calculated the total cross section of the inclusive 7 photoproduction off
target nuclei by numerically integrating the differential cross section, obtained using

the above procedure, over the 7 energy.

5.2 Results

In all the results presented in this section the Hartree potentials of reference [10]
are used for calculations of the bound state nucleon wave functions. The maximum
values of spectroscopic factors are used for all the nucleons involved in the reaction.
Data are those of the experiment performed at MAMI [7]. Figure (5.1) shows the
calculated cross section of the inclusive n photoproduction on a !2C target. Curves in
figure (5.1-a) are the differential cross sections of the above reaction with an incident
photon energy of 750 MeV and those in figure (5.1-b) are for a photon energy of 778.5
MeV. With the exception of the data point at 7 energy of 90 MeV in figure (3.1-b).
the results of the plane wave calculations at both photon energies produce curves
with the same shapes as the data ( solid curve, labelled as Plane Wave )- Note the

data and plane wave calculations peak at the same 7 energy.

The final state interactions of 77 meson are included using the optical potentials
of reference [3]. The distorted wave calculations with the use of the optical potential
DW1 of the above reference result in the long dashed curves ( labelled as Distorted
Wave (DW1) ). These curves have roughly the same shape as the data but the

calculated cross sections are lower than the data by a factor of ~ §

To study the sensitivity of the model calculations to the application of different
potentials, we have also performed a distorted wave calculation, at a photon energy
of 750 MeV, using the DW?2 optical potential of reference [3]- This calculation results
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in the short-dashed curve ( labelled as Distorted Wave (DW2) ) in figure (5.1-a). In
this case we find even more suppression of the cross section than the DW1 potential

( i.e. long-dashed curve of this figure ).

The total cross section of the inclusive 7 photoproduction on a nuclear target
is obtained by numerical integration of the differential cross section over the 7 energy.
For example for the reaction on !2C target the total cross section for photon energies
of 750 and 778.5 MeV are calculated by integrating the differential cross sections
presented in figure (5.1) over the 7 energy.

Figure (5.2) compares the results of our calculations for the total cross section
of the reaction on '2C with the data of reference [7]. The results of the plane wave
calculations are shown by the solid curve: these are below the experimental data at
energies near threshold and lie above the data at higher photon energies. Due to
the large amount of cpu time needed for the distorted wave calculations, we have
produced the total cross section only at two photon energies, namely 750 and 778.5
MeV ( cross point ). As was the case for the differential cross section. the total cross

section is also lower than the experimental data bv a factor of ~ §

We have also used the present model to calculate the observables for the re-
action on a %Ca target. Results of the calculations for the differential cross section
are illustrated in figure (5.3). Figure (5.3-a) shows the results for an incident photon
energy of 750 MeV while the curves in figure (5.3-b) are for photons with a higher
energy, 778.5 MeV. The bound state potential is that of Horowitz et al. [10]. The
optical potentials for the 7 meson as well as the data are from the same sources as
figure (5.1). Plane wave calculations ( solid curves ) for this target show the same
features as for 1?C target i.e produce curves with the same shapes as the data but
magnitudes are somewhat larger. The differences in the magnitudes of the distorted

wave calculations and the data are smaller for this targets than those of 2C. The
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Figure 5.1: Differential cross section of the 2C( v,7)X reaction at photon energy of
a) 750 MeV.and b) 778.5 MeV. The Hartree binding potential of reference [10] is used
in the calculation of the Dirac bound state wave function. The n optical potentials
DW1 and DW?2 of Lee et al. are used [3]. Solid curve - plane wave calculations. Long
dashed curve - distorted wave calculations using DW1 optical potential and short
dashed curve - distorted wave calculations using DW2 optical potential. Data are
those of reference [7].
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Figure 5.2: Total cross section of the 12C( v,7)X reaction as a function of photon

energy. The binding potential for the nucleon and the 7 optical potentials DW1 are

from the same references as figure (5.1). The solid curve is plane wave calculation

and the cross points are distorted wave calculations. Data are those of reference [7].

shapes of the distorted wave calculations, however, are different from the data. The
distorted wave calculations lie below the data at low 7 energies. At higher 7 energies
they come close to data for one photon energy ( 750 MeV ) and move above the data

for other one ( 778.5 MeV ).

Figure (5.4) shows the results of the calculations for the total cross section.
Curves are labelled as in figure (5.2). Due to limitation of the cpu time the dis-
torted wave calculations are performed only for two energies of the incident photon.
Comparing the results presented in this figure with those for !2C. the plane wave
calculations for this target show larger differences with the data at higher photon
energies. This can be understood in terms of the larger size of this target relative to
12C. Distorted calculations for both targets are blow the data. We do not have enough
distorted wave calculations results to be able to make a statement about the shape of

the total cross sections. We comment here on two points regarding the discrepancy
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Figure 5.3: Differential cross section of the “*Ca( v,7)X reaction at photon energy
of a) 750 MeV and at photon energy of b) 778.5 MeV. Potentials and the data are
from same references as those of figure (5.1). Curves are labelled as in figure (3.1).
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Figure 5.4: Total cross section of the “°Ca( v, 7)X reaction as a function of photon
energy. The nucleon binding potential as well as the 5 optical potential DW1 are as
of figure (5.1). Curves are labelled as in figure (5.2). Data are those of reference [7].

between the data and our calculations. First, as we mentioned before. our inclusive
model includes only contributions from the quasifree process. Second. we saw in the
previous chapter that. using five different optical potentials for the 7 meson vielded
five different results for the exclusive reaction. There are large uncertainties in the
amount of suppression due to the final state interaction of the n meson. Therefore we
believe the discrepancy between the data and our distorted calculations are mainly
due to the neglect of contributions from mechanisms other than the quasifree reaction

and the lack of a reliable optical potential for the 7 meson.

Comparison of the results of the present model with those of nonrelativistic
model Lee et al.  [3] shows that their results are larger and in better agreement
with the available experimental data. Hombach et al.have calculated the total cross
sections for inclusive reaction [6]. These authors also obtained larger results than
those of our model. For example their results for the calculations including final state

interactions and the medium modification of the propagating resonance is as large as
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the results of the plane wave calculations of this model.

5.3 Conclusions

Starting from the amplitude for an exclusive photoproduction of 7 mesons from com-
plex nuclei, a model calculation for the inclusive reaction is developed. The inclusive
model includes only the quasifree process and is thus restricted to single hole excita-
tions of the residual nuclei. The cross sections for the inclusive reactions are obtained
from the amplitude of the exclusive reactions using the following steps; i) removing
the final state interactions for the outgoing nucleon, ii) integrating the cross sections
over all the unmeasured variables, and finally iii) including the contributions from all

the nucleons inside of the nuclear targets.

The model shows large sensitivity to the use of different optical potentials for
the outgoing n meson { results can change by up to 50% by choosing different optical
potentials for n meson ). The model uses one set of parameters for the effective
Lagrangian. There are in fact different sets that reproduce the data of the elementary
reactions and an investigation on the sensitivity of the present model to the use of

different sets of parameters is needed. This will be studied in the near feature.

The present results indicate that quasifree processes are the main contributer
to the inclusive photoproduction reactions but comparison with the available data

seems to suggest possible contributions from other mechanisms.
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Appendix 5.A Angular Integrals

In this appendix we give the results of the analytical calculations for the angular

integrals of equation (5.6).
<YLY @Y @1y, >
~V+Jp+Mo+My—sy 1/2 J
) JoloioLs 7
4 —§f MB
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Chapter 6

Conclusions

Two different approaches are commonly used for describing the amplitudes for the
interactions of the electromagnetic probes with complex nuclei. The first of these.
which has been standard in the field of nuclear physics for a long time, is based on
nonrelativistic quantum mechanics. This nonrelativistic approach uses Schrodinger
wavefunctions to describe the nucleons involved in the reaction. The interaction terms
are obtained via Foldy-Wouthuysen transformation of the relativistic Hamiltonian of

the interaction of the probe with a free nucleon.

The second approach developed only recently, is based on and uses the prin-
ciples of relativistic quantum mechanics and quantum field theorv. In particular,
this approach is closely connected with the development of the relativistic mean field
theory of Walecka. The bound and continuum nucleons are described by Dirac wave-
functions while the interaction Hamiltonians are written in Lorentz covariant forms.
There are some differences in the predictions of these two approaches for observables
of the above reactions. To understand the source of these differences we have carried

out detailed comparisons between these approaches.

We have described the effective Pauli reduction scheme of the relativistic am-
plitude for the knock-out contribution to (v, p) and (e, €'p) reactions. The reduction
allows us to carry out comparisons between the relativistic and nonrelativistic calcula-
tions of the reaction observables. In this formalism the relativistic S-matrix is written
in terms of nonrelativistic two-component wavefunctions and an effective interaction

Hamiltonian involving strong potentials. The effective Hamiltonian is expanded in
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powers of 1/ (E + M), where M is the nucleon mass and E is its total energy. In the
limit E — M and ignoring the strong potentials, the first order interaction terms are
exactly the same as those appearing in the usual nonrelativistic amplitudes. The non-
relativistic wavefunctions appearing in the amplitude are solutions of Schrodinger-like
wave equations. Detailed comparisons between the relativistic and first-order nonrel-
ativistic predictions for the observables show large differences between the two types
of calculations. The shape and magnitude of the calculated cross sections are different
and these differences are more pronounced in the spin observables. We stress that for
the quasifree electron scattering reactions the strong potentials appear even in the
first order interaction terms and improve the nonrelativistic calculations significantly.
The inclusion of terms to second order in 1/M in the interaction Hamiltonian. with-
out the nuclear medium corrections, does not lead to any substantial improvement
in the agreement between the relativistic and nonrelativistic calculations. There is
no indication that the medium uncorrected nonrelativistic calculations are coming
toward agreement with the relativistic ones. When the medium corrections are taken
into account the nonrelativistic calculations converge close to the relativistic results.
This indicates that the essential difference between the relativistic and traditional
nonrelativistic amplitudes is the absence in the latter of medium modifications of the
interaction Hamiltonian as a consequence of the presence of the strong vector and

scalar potentials.

These conclusions are further supported through an analysis based on the
Foldy-Wouthuysen transformation of the relativistic Hamiltonian describing a pho-
ton interacting with a nucleon embedded in the nuclear medium. The nonrelativistic
wavefunctions for the bound and continuum nucleons are solutions of the wave equa-
tion obtained as a result of the transformation. The scheme leads to a nonrelativistic
amplitude calculated to the desired order in 1/M. We use these amplitudes to carry

out comparisons between relativistic and nonrelativistic calculations in the same way
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described above for the Pauli scheme. We find that the medium modifications in
the second order calculations are important and their inclusion leads in general to
better agreement with the relativistic calculations. However the convergence is not
as efficient at this order as in the Pauli case. The reasons for this can be understood
in terms of the formal differences between the structure of the nonrelativistic ampli-
tudes obtained using this transformation as compared to the Pauli reduction case.
The wavefunctions obtained through the FW reduction are different at each order
in 1/M, in contrast to the Pauli wavefunctions which are unchanged for all orders
(recall that in the Pauli reduction only the interaction Hamiltonian is expanded).

‘The basic result of this part of thesis is that standard nonrelativistic calcu-
lations of the knock-out amplitudes do not properly take into account the strong
medium modifications of the interaction Hamiltonian. We have clarified this point
through a comparison based on nonrelativistic reduction of the relativistic amplitudes
for two reactions involving interactions of real and virtual photons with nuclei, using

both the Pauli and Foldy-Wouthuysen reduction schemes.

In the second part of this thesis a model for photoproduction of 1 mesons
from complex nuclei is developed. Based on what has been learnt in the first part
of this thesis, a relativistic approach is adopted. The nucleon wavefunctions are
solutions of the Dirac equation. The 7 meson is described by solutions of the Klein-
Gordon equation. The interactions between fields are introduced through a relativistic
effective Lagrangian which has been used by Benmerrouche et.al ( reference [6] in
chapter IV ) in the study of the elementary photoproduction reaction. The model
includes the production of the 7 meson through formation of four spin % and one spin
% resonances, nucleon Born and t-channel vector meson diagrams. The model is used
to study the quasifree ( v, 17p ) reactions on nuclear targets leading to discrete final

states in the residual nuclei.
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We have specified the energy region in which the reaction is mainly taking
place through the formation of S;,(1535) resonance. The kinematical region in which
photoproduction cross section reaches its maximum value in the neighborhood of the
reaction threshold is also identified. This is of experimental interest because of the

low cross section for this reaction.

Comparison of contributions due to different diagrams has shown that within
the photon energy region from near threshold up to 1.1 GeV, the $11(1535) resonance
dominates the reaction. The other diagrams which have detectable individual contri-
butions are proton, D;3 resonance and vector meson poles ( however the sum of these

contributions is very small ).

The final state interactions of the outgoing particles are included through
distortion of their wavefunctions using appropriate optical potentials. The inclusion
of the final state interactions affects both the cross sections and photon asymmetries.
It results in large suppression of the cross sections and changes in the shape and
magnitude of the asymmetries. The sensitivity of results to changes in the potentials.
both for the nucleons and 7 meson, is studied. This study showed that results are
strongly sensitive to n optical potentials; for several potentials which were tested,
differences of up to ~ 35% are observed in the resulting cross sections as well as
photon asymmetries . On the other hand the results are much less sensitive to different

choices of the potentials for the bound and continuum protons.

Comparison of the results of the present model with those of the nonrelativistic
model calculations were carried out using the same kinematics as those in the recent
work of Lee et.al ( see reference {10] in chapter IV ). Results of the relativistic calcula-
tions for the cross section have shapes close to those of nonrelativistic calculations but
the magnitudes of our results are somewhat smaller. In contrast the photon asym-

metries predicted by the two models differ significantly. The nonrelativistic plane
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wave calculations give large asymmetries which appear to be insensitive to the final
state interactions of the outgoing particles. The relativistic model, on the other hand,
predicts asymmetries which are small by comparison and which are strongly affected
by the final state interactions of the outgoing particles.

There is need for experimental data for exclusive reactions on nuclei ( currently
non-existent ), especially for the spin observables. These data can shed more light on

the differences between the relativistic and nonrelativistic models.

The model is also used to calculate the cross sections for the inclusive photo-
production reactions in which only the outgoing 1 meson is detected. The present
inclusive calculations include only contributions from the quasifree process and are
thus restricted to single hole excitations of the residual nuclei. The calculations show
large sensitivity of the inclusive cross sections to the use of different optical poten-
tials for the outgoing n meson ( results can change by up to ~ 50% by choosing
different optical potentials ). The model uses one set of parameters for the effective
Lagrangian. Comparison of the results of the model for the inclusive reaction with
the available experimental data indicates that quasifree processes are the main con-
tributers to the inclusive photoproduction reactions, and seems to suggest possible

contributions from other mechanisms.

In making the above statement it is assumed that the coupling constants as
well as the 1 optical potentials used in the present calculations are reliable. There are
in fact different sets of coupling constants that reproduce the data of the elementary
reactions and an investigation of the sensitivity of the present model to the use of dif-
ferent sets of parameters is suggested. The uncertainty in the 7 optical potential calls
for more theoretical work on the final state interactions of the 7 meson with nuclei.
The next steps towards improving the present model at the tree level approximation

are: removing the plane wave approximation used for the propagator by performing
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finite range calculations, and including the medium modifications of the propagators.
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