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Abstract 

Soil is a critical component of global biogeochemical cycles, and there is an increasing need for 

cost effective tools to measure soil carbon stocks and determine soil nitrogen contents. 

Reflectance spectroscopy can deliver large volumes of soil carbon data, with potential 

applications for understanding soil carbon distribution and assessing reclaimed soils.  

Reflectance spectra in the SWIR range were collected on a range of soil samples, including intact 

cores, using a SisuROCK automated hyperspectral imaging system in a laboratory setting. 

Samples were also analyzed for soil organic carbon and total nitrogen concentrations by dry 

combustion to prepare a training data set to use as inputs for predictive models.  Predictive 

models were built using continuous wavelet processing along with Cubist and Bayesian 

Regularized Neural Net models. Overall, soil organic carbon was more aggregated in 

Chernozemic soils and in B and C horizons compared to A horizons. Nitrogen in turn showed 

more aggregation for all soil types and horizons compared to soil organic carbon. Additionally, 

crop rotations were revealed to influence both the concentration and distribution of carbon and 

nitrogen. Continuous forage rotations were found to have the highest soil organic carbon (SOC) 

and total nitrogen (TN) contents compared to an agro-ecological rotation for only the top 3 and 

4 cm, respectively. These two rotations had comparable concentrations for both parameters for 

the rest of the topsoil, which was greater than the concentration of SOC and TN in a continuous 

grain rotation to depths of approximately 12 cm. Increases in both SOC and TN were associated 

with increased spatial aggregation at fine spatial scales. Reflectance spectroscopy data was also 
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found to be valuable for reclaimed soil assessments using a Cubist statistical model. The root 

mean square error (RMSE), R2, and ratio of performance to deviation (RPD) values for SOC 

were 0.60%, 0.80, and 2.2, respectively. The TN model results were 0.05%, 0.81 and 2.5, and pH 

model results were 0.44, 0.69 and 1.8. In addition to a reflectance spectroscopy system, a simple 

two-band reflectance sensor was also evaluated for use assessing reclaimed soils. This two-band 

sensor could only be used for general qualitative comparisons amongst soil zones. Specifically, 

to identify areas with statistically significant differences in organic matter, cation exchange 

capacity and water content. This system could be used to map out zones with significant soil 

variation as part of reclamation monitoring, and then used to guide laboratory analytical 

sampling. Overall, these results indicate that reflectance-based sensing tools can be used to 

successfully measure soil properties and support the assessment of reclaimed soils. 
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1. Introduction 

1.1. Soil Carbon 

Soil carbon is a critical component of the global carbon cycle as soil contains 4.5 times the 

amount of carbon present in biomass (Jobbágy and Jackson, 2000). Soil carbon is a critical part of 

global biogeochemical cycles and climate change, because soils can act as a source or sink for 

carbon. Quantifying soil carbon is essential for understanding how much carbon will be 

released from areas where soils will become a source for carbon and to understand how much 

carbon can be stored in soils acting as carbon sinks.  There is a need for more cost-effective 

methods to quantitatively measure and characterize soil carbon. The increasing need for soil 

data has been referred to as a soil data crisis (McBratney et al., 2006). Reflectance spectroscopy 

has the potential to solve this crisis as it is a rapid and non-destructive analysis that can be 

utilized both in the laboratory and in the field. There is extensive literature on the use of 

reflectance spectroscopy to quantify soil carbon in other regions of the world (Bartholomeus et 

al., 2008; Ben-Dor and Banin, 1990, 1995; Chang et al., 2001; Ge et al., 2014; Gomez et al., 2008b; 

McBratney et al., 2006; McCarty et al., 2002; Rossel et al., 2010) and inorganic carbon has been 

measured using reflectance spectroscopy since 1990 (Ben-Dor and Banin, 1990). While some 

work has been done analyzing soil carbon with reflectance spectroscopy in Canada (Martin et 

al., 2002; Xie et al., 2011), the literature is not as extensive and improved results can be obtained 

using machine learning as compared to the partial least squares regression models used in 

previous Canadian studies (Doetterl et al., 2013; Rossel et al., 2010).  
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There is a large global demand for more rapid and cost-effective soil data analysis solutions 

due to industrial oil and gas activities. Alberta alone has approximately 470,000 well sites that 

will require reclamation (Alberta Energy Regulator, 2016a), more than 39,000 oil and gas 

facilities that require regular environmental monitoring (Alberta Energy Regulator, 2016b; 

Government of Alberta, 2009), and has experienced 17,605 pipeline leaks between 1990 and 2012 

(Alberta Energy Regulator, 2013). Construction of these facilities is associated with soil 

disturbance and degradation in soil quality, particularly a loss of soil organic carbon 

(Hammermeister et al., 2003). This project is focused on developing reflectance spectroscopy 

methods to quantify and characterize natural soil organic carbon in soil. Measuring soil carbon 

stocks is critical for understanding the effects of climate change on soil and to quantify the 

impacts of industrial disturbance on soil.  Soil data are needed to effectively manage soils, and 

reflectance spectroscopy will improve upon current methodologies by providing faster and 

cheaper data.  

 

1.2. Reflectance Spectroscopy 

Soil is a three-phase system that consists of solid, liquid and gaseous components. The solid 

portions of soil consist of both mineral and organic components in varying concentrations. The 

main components of interest to soil scientists that are spectrally active between 350 nm and 2500 

nm (which includes visible light to shortwave infrared light) are: iron oxides, organic matter, 

water, clays, and carbonates (Figure 1-1). Fundamentally, reflectance spectroscopy is due to 
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covalent bonds preferentially absorbing different wavelengths of light. Specifically, many 

parameters of interest to soil scientists (i.e. Organic Carbon, Nitrogen, Carbonates, Clay 

Minerals) will have fundamental absorptions in the infrared portion of the electromagnetic 

spectrum. Overtones of these fundamental absorptions then occur within the near-infrared (750-

1000 nm) and the short-wave infrared (1000-2500 nm) portion of the electromagnetic spectrum.  

Figure 1-1. Example soil spectrum and illustration of locations where spectral properties 

associated with different soil properties and structural water can be observed (Ben-Dor et al., 

2008). 

 

 

Increases in soil organic matter are associated with decreases in the reflectance 

throughout the visible light region due to wide conduction bands associated with organic 

matter (St. Luce et al., 2014). This has long been quantitatively observed in Soil Science, with the 

colour of topsoil used to infer soil organic matter content and to classify soil (Soil Classification 
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Working Group, 1998).  Increases in organic matter content is associated with an overall 

decrease in near infrared (NIR) and shortwave infrared reflectance (SWIR) regions (St. Luce et 

al., 2014), along with specific absorption features in these regions. These specific absorption 

features are due to the absorbance of specific wavelengths of light by different covalent bonds.  

Organic matter absorption features in the SWIR region are overtones of the fundamental 

vibrations that occur within the infrared regions (Klavarioti et al., 2014). An overtone is the 

absorption feature that results when a molecule transitions from the ground state to a second or 

higher excited state. The fundamental absorption feature, by comparison, results from the 

transition from the ground state to the first excited state.  

There are many organic matter spectral features compared to mineral components, such 

as clay, because soil organic matter is compositionally diverse. Soil organic matter has a variety 

of different types of chemical bonds, and as decomposition proceeds the structure of the organic 

molecules becomes increasingly amorphous (Schaumann, 2006), which shifts the position of 

different absorption features.  

Soil organic matter has a variety of covalent bonds present, and these bonds have different 

specific absorption features (Table 1-1Error! Reference source not found.).  

• Aromatic carbon has a distinct absorption feature at 1650 nm, with weaker signatures at 

1100 and 825 nm (Rossel et al., 2010).  

• Phenolic compounds have a separate absorption feature at 1961 nm due to the C-OH 

bonds in phenols that are absent in other types of aromatic carbon.  
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• Alkyl carbon has an asymmetric-symmetric doublet that is centered near 1706 and 1754 

nm, associated with alkyl C-H bonds, and four additional weaker features at lower 

wavelengths are observable. 

• Aliphatic compounds have a distinct absorption feature at 2275 nm and a weaker feature 

at 1706 nm due to the C-H bonds.  

• Methyl groups have a wide range of absorption features ranging from 2307-2469 nm and 

1730-1852 nm. This variance in methyl group feature locations is likely due to the wide 

range of methyl group configurations in organic matter. Methyl groups can be found in 

several different organic molecules and can be attached to different types of elements 

and carbon bonds. This leads to the wide variance in where methyl spectral features 

occur.  

• The C=O bond leads to absorption features at 1930 nm and 1449 nm in carboxylic acids 

and at 2033 and 1524 nm in amides. The shift in position of the absorption feature can be 

attributed to the nitrogen molecule bonded to the carbon in amides that is not present in 

carboxylic acids. 

• Amines have bonds at 2060 nm and 1500 nm due to the N-H bonds present in these 

molecules, and weaker overtones at 1000 nm and 751 nm.  

• Polysaccharides and carbohydrates have distinct absorption features at 2137 nm and 

2381 nm, respectively. Both compounds are present in fresh organic matter and have 

low mean residence times in soil and are largely absent in degraded organic matter 

(Hoyos-Santillan et al., 2015).  
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Table 1-1. Visible, Near-Infrared and Short-Wave Infrared (VIS-NIR) wavelength responses for 

key soil properties along with their associated fundamental infrared absorption locations 

(Rossel et al., 2010). 

Inorganic Constituents  

Soil constituent Vis-NIR  

Wavelength  

Response (nm) 

Fundamental 

(cm-1) 

vis-NIR Mode 

Goethite  434, 480, 650, 920  Electronic Transitions 

Haematite 404, 444, 529, 650, 884  Electronic Transitions 

Water 1915 

1455 

1380,  

1135 

940 

v1 O-H: 3278 

v2 H-O-H: 1645 

v3 O-H: 3848 

ν2 + ν3 

2ν2 + ν3 

ν1 + ν3 

ν1 + ν2 + ν3 

2ν1 + ν3 

Hydroxyl 1400 

930 

700 

v1 O-H: 3575 2ν1 

3ν1 

4ν1 

Kaolin doublet 1395 

1415 

2160 

2208 

ν1a O–H 3695 cm-1 

ν1b O–H 3620 cm-1 

δ Al–OH 915 cm-1 

2ν1a 

2ν1b 

ν1a+δ 

ν1b+δ 

Smectite 2206 

2230 

ν1 O–H 3620 cm-1 

δa Al–OH 915 cm-1 

δb AlFe–OH 885 cm-1 

ν1+δa 

ν1+δb 

Illite 2206, 

2340 

2450 

ν1 O–H 3620 cm-1 ν1+δ 

 

Poorly defined 

Carbonate 2336 ν3 CO−3 2 1415 cm-1 3ν3 
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Organic Constituents  

Soil constituent Vis-NIR  

Wavelength  

Response (nm) 

Fundamental 

(cm-1) 

vis-NIR Mode 

Aromatics 1650 

1100 

825 ν1 C–H 3030 cm-1 

2ν1 

3ν1 

4v1 

Amine 2060 

1500 

1000 

751 

δΝ–H 1610 cm-1 

ν1 N–H 3330 cm-1 

ν1+δ 

2ν1 

3ν1 

4ν1 

Alkyl asymmetric-

symmetric doublet 

1706 

 

1754 

1138 

1170 

853  

877 

ν3 C–H 2930 cm-1 

 

ν1 C–H 2850 cm-1 

2ν3 

 

2ν1 

3ν3 

3ν1 

4ν3 

4ν1 

Carboxylic acids 1930 

1449 

ν1 C=O 1725 cm-1 3ν1 

4ν1 

Amides 2033 

1524 

ν1 C=O 1640 cm-1 3ν1 

4ν1 

Aliphatics 2275 

1706 

ν1 C–H 1465 cm-1 3ν1 

4ν1 

Methyls 2307-2469 

1730-1852 

ν1 C–H 1445–1350 

cm-1 

3ν1 

4ν1 

Phenolics 1961 ν1 C–OH 1275 cm-1 4ν1 

Polysaccharides 2137 ν1 C–O 1170 cm-1 4ν1 

Carbohydrates 2381 ν1 C–O 1050 cm-1 4ν1 

 

 

Reflectance spectroscopy has primarily focused on point spectroscopy systems. Most 

research regarding the use of reflectance spectroscopy to analyze soil has taken in place in 

Israel, Europe, Australia and the United States (i.e. Ben-Dor and Banin, 1995; Chang and Laird, 

2002; Viscarra Rossel and Lark, 2009; Doetterl et al., 2013). Work regarding soil analysis with 
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reflectance spectroscopy in Canada has been fairly limited, with studies in Manitoba, Ontario 

and Quebec (Martin et al., 2002; St. Luce et al., 2014; Xie et al., 2011). The Canadian studies have 

used partial least squared regression, rather then newer machine learning methods such as 

CUBIST models (Kuhn et al., 2014). Machine learning models have outperformed partial least 

squared regression in other regions, and evaluating their performance on Canadian soils, 

particularly the Canadian Prairies, has not been done.  Additionally, Canada has relatively high 

carbon soils compared to the regions where most of this research has taken place. Evaluating 

the performance of these models on high carbon Canadian soils, and testing if the signal 

saturates under high carbon soil conditions requires investigation.  

Spectral pre-processing of near infrared reflectance spectroscopy (NIRS) spectra for soil 

has typically focused on methods such as standard normal variates, multiplicative scatter 

corrections, and Savitksy-Golay smoothing. Wavelet transform signal processing has been used 

in other fields, such as geology, and has been shown to improve reflectance spectroscopy results 

(Rivard et al., 2008). The use of continuous wavelet signal processing has been very limited in 

soil spectroscopy research, with a couple examples of discrete wavelets being used (Rossel et al., 

2010; Viscarra Rossel and Lark, 2009). Wavelet transforms can be continuous or discrete. The 

advantage of continuous wavelet transforms is that they are directly comparable to the original 

spectrum, which facilitates manual feature selection prior to machine learning. The use of 

wavelets transforms on soil spectra generally has been very limited, particularly continuous 

wavelets, and part of the goal of this research is to investigate their use on spectra from 

Canadian soils with machine learning models.  
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Imaging spectroscopy applications for soil have focused on airborne and spaceborne 

platforms (Chabrillat et al., 2002; Gomez et al., 2008b) rather than at the soil sample or soil 

profile scale. The extensive research regarding soil chemometrics has focused on point 

spectroscopy. The application of imaging spectroscopy at the soil profile scale has not been 

extensively investigated. A study was conducted in Germany (Steffens and Buddenbaum, 2013), 

with a spectral range of 400 to 990 nm and no wavelet processing of the data. The short wave 

infrared range was not investigated, where most organic matter features are located (Rossel et 

al., 2010). There are no examples of imaging spectroscopy applications at the soil sample or 

profile scale in Canada.  

The objectives of this research were therefore to investigate the following: 

1. To determine if shortwave infrared imaging spectroscopy could be used to measure soil 

organic carbon and total nitrogen on intact and unground samples in the laboratory for 

a variety of Canadian soil samples. Further, to use the imaging spectroscopy results to 

characterize the spatial distribution of SOC and TN at the soil aggregate scale, and 

determine if the distribution of SOC and TN varies based on soil type and horizon at 

fine spatial scales. 

2. To identify at what depth changes could be detected in SOC and TN using imaging 

spectroscopy. Specifically, following the use of different crop rotations, and if these 

changes in SOC and TN were associated with a change in the spatial distribution of 

these parameters at the same fine spatial scales.  
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3. To determine if reflectance spectroscopy data collected in the field with a drill-rig 

mounted spectroscopy system could be used to measure SOC, TN and pH as part of 

reclamation assessments.  

4. To investigate if a simple two-band reflectance sensor could be used to generate 

quantitative SOC results or support reclamation assessments by successfully identifying 

different zones of soil organic matter content in reclaimed soil.  
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2. High Resolution Measurement of Soil Organic Carbon and Total Nitrogen with 

Laboratory Imaging Spectroscopy 

2.1. Abstract 

Soil is a critical component of global biogeochemical cycles, and there is an increasing need for 

cost effective tools to measure soil carbon stocks and determine soil nitrogen contents. 

Reflectance spectroscopy can deliver large volumes of soil carbon data. However, as soil carbon 

concentrations can be spatially heterogeneous, imaging spectroscopy presents the best potential 

to provide high resolution measurements and accurately characterize soil carbon heterogeneity. 

For this study, discrete, intact and unground soil samples were collected and analyzed using a 

SisuROCK automated hyperspectral imaging system in a laboratory setting, focused on the 

shortwave infrared portion of the electromagnetic spectrum.  Samples were also analyzed for 

soil organic carbon and total nitrogen concentrations by dry combustion to prepare a training 

data set. Predictive models were built using continuous wavelet processing along with partial 

least squares regression and CUBIST models. Spatial variation of carbon and nitrogen was 

determined using Moran’s i and comparisons of spatial variations among soil types and 

horizons were made using a spatial generalized least squares model. Overall, soil organic 

carbon was more aggregated in Chernozemic soils and in B and C horizons compared to A 

horizons. Nitrogen in turn showed more aggregation for all soil types and horizons compared 

to soil organic carbon. Results indicated that imaging spectroscopy can be successfully used to 
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measure and characterize the spatial variability of soil carbon and nitrogen at the soil aggregate 

scale. 

 

Graphical Abstract 
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Highlights 

• Continuous wavelets with CUBIST models produce accurate soil predictive models. 

• Imaging spectroscopy can provide high spatial resolution soil C and N measurements 

• Imaging spectroscopy can quantify fine scale spatial clustering in soil C and N 

• B and C horizon carbon showed more spatial aggregation than A horizon carbon 

• Soil N was more spatially aggregated than soil C 

 

Keywords 

Imaging spectroscopy; carbon; nitrogen; spatial statistics  
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2.2. Introduction 

Soil organic carbon (SOC) is a critical component of the global carbon cycle as soil contains 

4.5 times the amount of carbon present in aboveground biomass (Jobbágy and Jackson, 2000), 

and soils can act as a source or sink for carbon. Quantifying SOC is essential for understanding 

how much carbon will be released from areas where soils will become a source for carbon and 

to understand how much carbon can be stored in soils acting as carbon sinks.  In addition to 

SOC, nitrogen plays an essential role in biogeochemical cycles with nitrogen limitation 

widespread in terrestrial ecosystems (Vitousek and Howarth, 1991). There is a need for more 

rapid and cost-effective methods to quantitatively measure and characterize SOC and total 

nitrogen (TN). The increasing need for soil data has been referred to as a soil data crisis 

(McBratney et al., 2006). 

Reflectance spectroscopy has the potential to solve this crisis, as it is a rapid and non-

destructive analysis that can be utilized both in the laboratory and in the field. There is an 

extensive literature on the use of point measurement reflectance spectroscopy in many regions 

of the world to quantify SOC  (Bartholomeus et al., 2008; Ben-Dor and Banin, 1990, 1995; Chang 

et al., 2001; Ge et al., 2014; Gomez et al., 2008b; McBratney et al., 2006; McCarty et al., 2002; 

Rossel et al., 2010) and total nitrogen (TN) (Chang et al., 2001; Chang and Laird, 2002; Morellos 

et al., 2016; St. Luce et al., 2014). While some work has been done analyzing SOC and TN with 

point reflectance spectroscopy in Canada (Martin et al., 2002; Xie et al., 2011), the literature is 

not as extensive.  
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Previous research has established that machine learning models can outperform partial least 

squares regression when used to build predictive models to measure soil properties from 

reflectance spectra (Doetterl et al., 2013; Nawar et al., 2016; Rossel and Behrens, 2010; Sorenson 

et al., 2017). Additionally, an alternative signal processing method, continuous wavelet 

transforms, has improved results derived from the analysis of reflectance spectra compared to 

conventional signal processing techniques such as Savitsky-Golay smoothing, derivatives and 

multiplicative scatter correction (Rossel et al., 2010; Viscarra Rossel and Lark, 2009). Combining 

wavelet analysis with machine learning models has been successful in producing SOC and TN 

predictive models for point spectroscopy systems with Canadian soils (Sorenson et al., 2017).  

Imaging spectroscopy has the advantage over point measurements of providing high 

resolution continuous spatial measurements. Imaging spectroscopy studies in soil science have 

tended to focus on airborne or space borne applications (Gomez et al., 2008b, 2012; Melendez-

Pastor et al., 2010; Ouerghemmi et al., 2011) as compared to measurements at the soil sample or 

profile scale where higher spatial resolutions can be achieved (e.g.; less than 1 mm per pixel). 

These studies have mapped different soil properties using imaging spectroscopy including: 

clay, sand, silt, SOC, and inorganic carbon content. Imaging spectroscopy can also be utilized at 

the laboratory scale to measure variation within samples, as well as to obtain high vertical 

resolution data. Lastly, laboratory imaging spectroscopy has been used to characterize the 

spatial variability of SOC and TN for a soil profile in Germany (Steffens and Buddenbaum, 
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2013). There are no studies using imaging spectroscopy systems to measure SOC and TN in 

Canada, specifically using wavelet analysis to analyze intact and unground samples. 

Soil organic matter varies spatially both horizontally and vertically, and conventional 

analytical methods have limited ability to measure SOC and TN in fine spatial resolution. 

Reflectance spectroscopy has been shown to be a valuable tool to measure SOC in high vertical 

spatial resolution (Doetterl et al., 2013). High vertical resolution measurements can illustrate 

how SOC changes with depth depending on, for instance, the underlying parent material, and 

how these changes may be affected by distinct parent materials. Approximately 50% of SOC is 

contained below 20 cm in boreal forest soils and 59% is below 20 cm in croplands (Jobbágy and 

Jackson, 2000).  Subsoil organic matter corresponds to a substantial proportion of the global soil 

carbon pool, and its characterization is essential for accurate soil carbon budgets. Other work 

has found that approximately 63% of SOC and 64% of TN are contained below 30 cm (Wang et 

al., 2017). For these reasons, tools that can accurately and cost effectively measure SOC at depth 

are very valuable for developing soil carbon budgets.  

As imaging spectroscopy contains spatial as well as spectral information, the spatial 

variability of several distinct soil attributes can be analyzed at a variety of spatial scales. 

Imaging spectroscopy has not been used to characterize the soil aggregate scale spatial structure 

of SOC and TN in Canadian soils, and to determine how spatial structure in SOC and TN may 

vary between soil types and horizons.  Canadian soils tend to be distinct from other regions that 

have been a focus of reflectance spectroscopy research in that they have relatively high organic 
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carbon contents, can be frequently water saturated and are relatively young due to recent 

glaciation. Based on the success of point spectra to measure SOC and TN, and the success of 

imaging spectroscopy to measure soil and geological properties, the first objective of this study 

was to determine if shortwave infrared imaging spectroscopy could be used to measure SOC 

and TN on intact and unground samples in the laboratory for a variety of Canadian soil 

samples. The second objective was to use the imaging spectroscopy results to characterize the 

spatial distribution of SOC and TN at the soil aggregate scale, and determine if the distribution 

of SOC and TN varies based on soil type and horizon at fine spatial scales. 

 

2.3. Materials and Methods 

Sample collection and preparation 

A total of 370 soil samples was collected in Alberta and Saskatchewan, Canada in August 

and September 2015 and May 2016 (Table 2-1). To capture a range of soil samples common 

across the Canadian Prairies, samples were collected from the main soil orders that occur in this 

region: Chernozems, Gleysols and Luvisols (Table 2-1).  In total, 121 Chernozemic samples (58 

A horizon samples, 48 B horizon samples and 17 C horizon samples), 137 Gleysolic samples (47 

A horizons samples, 36 B horizon samples and 54 C horizon sample) and 96 Luvisolic samples 

(36 A horizon samples, 33 B horizon samples, and 27 C horizon samples) were collected. 

Additionally, 16 Brunisolic samples (5 A horizon samples, 5 B horizon samples, and 6 C horizon 

samples) were collected as they were encountered opportunistically during soil sampling.  Less 
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Brunisolic samples were collected because the focus of the study was to collect samples from 

Luvisolic, Chernozemic and Gleysolic soils. The Brunisols were encountered during sampling 

for the Luvisolic samples where glaciofluvial inclusions were present within a predominantly 

glacial till landscape. 

Samples were collected from catenas with forested vegetation or from arable cropland. 

Catenas with forested vegetation consisted of Luvisols or Brunisols at upper slope positions 

depending on soil texture, and Gleysols in lower slope positions. Catenas from arable croplands 

consisted of either Luvisols or Chernozems, depending on latitude, with Gleysols in lower slope 

positions. Samples were collected to 1.0 m at each sampling location in 2015. A soil pit was dug 

to 30 cm and one sample was collected from each horizon to 30 cm. A Dutch auger was then 

used to collect samples from 30 cm to 1.0 m in 10 cm increments. An additional 120 A and 80 B 

horizon samples were collected in May 2016 to obtain more data with SOC concentrations 

above one percent. These samples were collected from soil pits dug to 30 cm. All samples were 

air dried prior to oven drying. Samples were oven dried at 105°C until reaching a stable weight 

to ensure that moisture had been removed. Samples were then placed as intact aggregates and 

unground into polypropylene chip trays for spectral analysis.  

 

Spectral Measurements 

Spectral data were collected using a SisuROCK automated hyperspectral imaging system 

developed by Spectral Imaging (Specim) Ltd., Finland. The SisuROCK collects data with two 
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high-resolution spectral cameras. The first spectral camera collects reflectance data in the visible 

near-infrared light range (VNIR; 400-1000 nm). The second camera collects reflectance data in 

the shortwave infrared range (SWIR; 1000-2500 nm). The SWIR data were used for this study as 

SOC and TN are primarily spectrally active in this range (Rossel et al., 2010), and automated 

feature selection using all bands only selected bands from the SWIR region. Data in the SWIR 

range were collected in 256 spectral bands with a spectral resolution of 10 nm and a spatial 

resolution of 0.2 mm. Quartz halogen lamps provided the SWIR illumination to each sample 

and the measured light spectrum for each pixel was converted to reflectance via normalization 

to the average light spectrum from a Spectralon® panel. 

 

Laboratory Analyses 

Prior to analysis for SOC and TN, samples were ground with a Retsch MM200 ball mill 

grinder. Samples were then analyzed for SOC and TN by dry combustion on a Costech ECS 

4010 Elemental Analyzer (EA) equipped with a thermocouple detector (Costech Analytical 

Technologies Inc., Valencia, USA). As none of the A and B horizon sampless would contain 

carbonates, samples were not pretreated for carbonate removal. Samples were tested with dilute 

hydrochloric acid to confirm carbonates were not present in the samples.  In total 201 samples 

were analyzed for SOC and TN. Only 197 samples were used for the TN model development as 

four samples had TN values below detection limits.  
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Development of carbon and nitrogen predictive models 

Processing of spectral data 

To generate predictive models, soil laboratory analyses of SOC and TN were compared to 

the spectral signature of 201 samples using all available soil particle pixels in the ENVI Software 

Platform (Harris Geospatial Solutions, Melbourne, USA). The shortwave infrared spectrum of 

each sample was calculated by taking the average of each soil particle pixel for a given sample. 

The average spectra were then processed using continuous wavelet transforms (CWT) (e.g.; 

(Rivard et al., 2008; Scafutto et al., 2016; Tappert et al., 2015) using the wmtsa package in R 

(Percival et al., 2016), to reduce the influence of non-compositional effects such as varying 

particle size on the analysis.  The CWT outputs were calculated using an eight scale second 

order Gaussian transform. Scales 2, 3 and 4 were then summed used for the model development 

(Figure 2-1).    
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Figure 2-1. Example shortwave infrared spectral signature and the sum of wavelet scales 2, 3, 

and 4 from a second order Gaussian Wavelet Transform. The sample is a Chernozemic Ah 

horizon containing 35.8 g kg-1 of soil organic carbon and 3.1 g kg-1 of total nitrogen. The upper 

plot is the unprocessed spectrum and the lower plot is the plot of the wavelet coefficients. The 

red lines indicate the spectral bands used for prediction of soil organic carbon. The blue lines 

indicate the spectral bands used for prediction of total nitrogen.  

 

 

Model Development 

Predictive models were developed by training the spectral data with SOC and TN data sets. 

Models were developed using the caret package (Kuhn et al., 2016) in R (R Core Team, 2018). A 

Cubist model (Kuhn et al., 2014) was used to develop SOC and TN predictive models as 

previous work has identified that the Cubist model can successfully be used with spectral data 

(Doetterl et al., 2013; Minasny and McBratney, 2008; Rossel et al., 2010). Partial least squares 
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regression (PLSR) models (Mevik et al., 2015) were also run for comparison, as PLSR models 

have been the standard modelling tool for developing chemometric models with soil spectral 

data (e.g. Chang et al., 2001; Gomez et al., 2008). Details on both Cubist and PLSR models are 

available in Kuhn and Johnson (2013). Spectra were spectrally subset prior to development of 

the predictive models. Initially, the spectra were subset to spectral regions known to have SOC 

related spectral features for the SOC model and regions known to have organic nitrogen related 

features for the TN model (Rossel et al., 2010). Features were then further sub selected using the 

feature selection routine in the multivariate adaptive regression splines (MARS) model as per 

the methodology in Rossel and Behrens (2010). Only features selected by the MARS model were 

included in the CUBIST and PLSR model development using the caret package. The spectral 

bands used for model development are provided in Table 2-2Error! Reference source not f

ound.. All models were run with the default values defined by the caret package, which were 

then automatically optimized using leave-one-out cross-validations. The minimal root mean 

square error (RMSE) was used as the optimization criterion. The Cubist model was optimized in 

terms of the number of committees and neighbors in the model, and the PLSR model was 

optimized in terms of the number of latent variables used.  

To evaluate the performance of the models on an independent dataset, a second analysis 

was performed where 24 samples were withheld from the training dataset. Samples from one 

field containing Chernozemic soils and another field containing Luvisolic soils were removed 

from the training dataset and used as an independent test data set. This approach was to ensure 
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that the training data came from a spatially distinct area compared to the validation data. 

Predictive models for carbon and nitrogen were built using the Cubist model in R (Kuhn et al., 

2014). The spectral bands included in the model were those identified during the cross-

validation step and the model was built with 10 committees and 5 neighbors, as this was the 

optimal number identified during cross-validation model tuning.  

Model Evaluation 

Model accuracy was evaluated with the RMSE, R2 and the ratio of performance to deviation 

(RPD), which is the ratio of the standard deviation to the RMSE.  Generally, models with RPD 

values greater than 2 indicate it can be used accurately for prediction. Models with RPD values 

between 1.4 and 2 are satisfactory but could use improvement and models with values less than 

1.4 have no predictive capability (Chang et al., 2001).  

Carbon and nitrogen image maps 

Image Processing 

Three processing steps took place prior to predicting SOC and TN for each pixel of the 

sample images. The hyperspectral images were first processed with a 3 x 3 median filter for 

noise reduction. Following smoothing, a sequential maximum angle convex cone (SMACC) 

endmember analysis was conducted on each image to select image endmembers in ENVI 

(Harris Geospatial, Melbourne, USA). Spectral angle mapper analysis was then conducted to 

classify each image to the endmembers selected by the SMACC process. The resulting 

classification image was used to create a mask to remove the tray and heavily shaded areas 
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from the image prior to further processing. The masked image was then imported into R (R 

Core Team, 2018), where each pixel was processed using an eight scale second order Gaussian 

transform, and scales 2, 3 and 4 were then summed. Lastly the resulting wavelets coefficients 

were analyzed using the CUBIST model generated during the statistical model development to 

create the SOC and TN concentration images.  

 

Spatial Analysis 

 To investigate the within sample spatial distribution of SOC and TN, Moran’s i values 

were calculated for each sample using the raster package in R (Hijmans, 2016).  Following the 

generation of the predicted SOC and TN images, Moran’s i values were calculated for each soil 

sample for both SOC and TN. Moran’s i provides a measure of spatial autocorrelation, with a 

value of 1 indicating perfect aggregation, values of -1 indicating a regular spatial distribution 

and a value of 0 indicating a random spatial distribution.  

 Following calculation of within sample Moran’s i values for SOC and TN, a spatial 

generalized least squares (GLS) model was run to determine if there was a difference between 

horizons or soil orders regarding the distribution of SOC and TN using the nlme package in R 

(Pinheiro et al., 2016) . Data were analyzed at the order level because of insufficient replication 

at the soil subgroup level. Additionally, soil horizon and order interactions were not assessed as 

the GLS equations were not solvable since the GLS fit was singular due to insufficient degrees 

of freedom for the interaction tests.  The underlying concept behind a spatial GLS model is that 
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residual spatial patterns can be used as a surrogate for unmeasured variables (McIntire and 

Fajardo, 2009). Results from the spatial GLS model further indicate if a relationship between 

factors is present after removing unwanted variables by including location as a correlation 

structure in the GLS model (Sorenson et al., 2017).  A significant intercept indicates that 

unaccounted for variables are affecting dependent variables. The parameter estimate indicates 

the direction and magnitude of the relationship.  

 

2.4. Results and Discussion 

Predictive models 

SOC concentrations in the samples used in this study ranged from 0.9 to 75.9 g kg-1 and total 

TN concentrations varied from 0.1 to 7.59 g kg-1 (Table 2-1).  The Cubist model produced a more 

accurate predictive model compared to PLSR for SOC (Table 2-2) with the Cubist model 

producing a predictive model with an R2 of 0.93, an RMSE of 4.92 g kg-1, and an RPD of 3.79 

(Table 2-2, Figure 2-2). By comparison, the PLSR model had an R2 of 0.74, an RMSE of 9.51, and 

an RPD of 1.96 (Table 2-2). The Cubist model also produced a more accurate predictive model 

for TN with an R2 of 0.90, and RMSE of 0.53 g kg-1 and an RPD of 3.20 (Table 2-2, Figure 2-2). 

The PLSR model had an R2 of 0.78, an RMSE of 0.80 g kg-1 and an RPD of 2.13 (Table 2-2). 

Regarding its performance on the independent validation data, the Cubist model produced a 

more accurate predictive model for TN compared to SOC. The SOC predictive model had an R2 
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of 0.85, an RMSE of 6.34 g kg-1 and an RPD value of 2.64 (Figure 2-3). The TN predictive model 

had an R2 of 0.89, an RMSE of 0.51 g kg-1 and an RPD value of 3.11. 
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Table 2-1. Soil taxonomic classification and properties for the samples used to build predictive 

models. 

Soil Classification 

(Canadian) (Soil 

Classification 

Working Group, 

1998) 

Soil 

Classification 

(WRB) 

(IUSS Working 

Group WRB, 

2014) 

Horizon Number of 

Samples 

Soil 

Organic 

Carbon 

(g kg-1) 

Total 

Nitrogen 

(g kg-1) 

Orthic Gray Luvisol Albic Luvisol A 5 4.8 – 16.4 

 

0.6 – 1.3 

B 10 2.4 – 7.6 0.4 – 0.9 

C 10 2.3 – 6.2 0.2 – 0.6 

Dark Gray Luvisol Albic Luvisol A 28 2.7 – 26.3 0.4 – 2.3 

Gleyed Dark Gray 

Luvisol 

Gleyed Luvisol A 3 4.4 – 20.1 0.5 – 1.7 

B 3 3.2 – 9.0 0.4 – 0.6 

Humic Luvic 

Gleysol 

Planosol A 4 4.5 – 43.3 1.7 – 3.4 

B 5 4.4 – 29.8 0.7 – 2.2 

C 1 22.9  

Orthic Luvic 

Gleysol 

Planosol A 2 2.9 – 5.0 0.5 – 0.6 

B 5 1.9 – 6.5 0.4 – 0.9 

C 5 2.1 – 6.2 0.3 – 0.9 

Eutric Brunisol Eutric Cambisol A 5 5.8 – 37.1 0.5 – 2.0 

B 2 2.9 – 3.7 0.3 – 0.4 

C 4 0.9 – 2.1 0.1 – 0.2 

Gleyed Black 

Chernozem 

Gleyic 

Chernozem 

A 1 35.2  3.1 

B 3 8.2 – 19.8 0.5 – 0.6 

Orthic Black 

Chernozem 

Chernozem A 51 11.2 – 64.2 1.0 – 6.3 

B 4 11.2 – 31.9 0.8 – 1.2 

Rego Black 

Chernozem 

Chernozem A 3 29 – 52.6 2.7 – 5.0 

Orthic Gleysol Eutric Gleysol B 1 7.1 0.5 

C 5 3.5 – 8.4 0.3 – 0.5 

Orthic Humic 

Gleysol 

Mollic Gleysol A 29 9.2 – 75.9 0.8 – 7.6 

B 1 0.61 0.6 

C 2 2.5 – 3.2 0.4 

Rego Gleysol Gleysol C 3 6.8 – 20.2 0.6 – 2.0 

Rego Humic 

Gleysol 

Mollic Gleysol A 6 55.6 – 75.6 5.2 – 7.4 
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Table 2-2. Cross-validation results for all soil samples soil organic carbon (SOC) and total 

nitrogen (TN) using reflectance spectroscopy data. Model results are based on the root mean 

square error (RMSE), R, and Ratio of Performance to Deviation (RPD) obtained during a leave-

one-out cross-validation. The spectral bands used for model development are the band center 

wavelengths in nm. 

 

  

Model Cross-Validation Results 

RMSEcv R2cv RPD 

Carbon - Partial 

Least Squares 

Regression 

9.51 g kg-1 0.74 1.96 

Carbon - Cubist 4.92 g kg-1 0.93 3.79 

Nitrogen -  Partial 

Least Squares 

Regression 

0.80 g kg-1 0.78 2.13 

Nitrogen -  Cubist 0.53 g kg-1 0.90 3.20 

SOC Bands (nm) 1093, 2312, 2374, 1874, 2355, 1917, 1930, 2493, 2262, 1867 

TN Bands (nm) 2043, 1010, 985, 991, 1484, 2024, 2011, 2062, 2087, 1490 
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Figure 2-2. Cross-validated predicted versus observed (a) soil organic carbon (SOC) content (g 

kg-1), (b) total nitrogen as produced by the Cubist model. The model was developed using 201 

samples which were analyzed for SOC, and 196 samples analyzed for TN. The solid line 

indicates the 1:1 line to illustrate deviations between predicted and measured data. 

(a) 
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(b) 
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Figure 2-3. Independent validation dataset predicted versus observed (a) soil organic carbon 

(SOC) content (g kg-1), (b) total nitrogen as produced by the Cubist model. The model was 

developed using 183 samples, and validated using 24 samples, which were analyzed for SOC 

and for TN. The solid 1:1 line illustrates deviations between predicted and measured data. 

 

(a) 
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(b) 
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Previous work in Canada has obtained accurate PLSR prediction models, with RMSE values 

of 1.75 g kg-1 and an RPD of 4.03 for SOC and an RMSE value of 0.12 g kg-1 and RPD value of 

4.12 for TN (Xie et al., 2011). It is important to note that these samples were all from a single soil 

type, and that samples were ground and homogenized, which is likely the reason for the more 

accurate predictive models compared to the models developed in the current study that focus 

on unground soil samples from multiple soil types. Results from a study using PLSR to predict 

SOC in Manitoba, Canada was less successful with an RMSE value of 3.45 g kg-1 and an RPD 

value of 1.97. A TN predictive model could not be successfully built due to errors associated 

with the calibration data (Martin et al., 2002). Spectra from that study were obtained from 

homogenized soil in the laboratory. A more recent laboratory spectroscopy study in Canada 

using processed and homogenized samples was able to obtain RPD values of 3.70 for SOC and 

3.83 for TN using PLSR (St. Luce et al., 2014). 

Our results are comparable to results from research in Belgium where soil cores were 

scanned directly with a point spectrometer, and the Cubist model produced a more accurate 

predictive model compared to PLSR with an RMSE of 1.3 g kg-1 and an RPD of 3.7 (Doetterl et 

al., 2013). The Belgian study differed from our study in that a point spectrometer was used as 

compared to an imaging system, and wavelet analysis was not used to pre-process the data. 

Morellos et al. (2016) also found that Cubist models produced more accurate predictive models 

compared to PLSR models when analyzing minimally processed soil samples with a point 

spectrometer for both SOC and TN.  Subsetting the spectra using a feature selection process has 
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been reported to improve prediction results, and reduce the likelihood of overfitting. Feature 

selection using MARS, prior to analysis improved results of both MARS and artificial neural 

network (ANN) SOC prediction models in previous studies (Rossel et al., 2010). This process 

was confirmed to improve results in the current study using imaging spectroscopy data, and 

with the additional step of an initial manual feature selection step to limit the spectra available 

for feature selection to regions that are known to contain absorption features related to organic 

matter carbon bonds.    

The predictive models produced in the current study has higher predictive capability than 

another study in Alberta using field spectroscopy. Using CWT analysis and a cubist model, 

SOC predictive models were produced with RMSE values of 6.0 g kg-1 and an RPD of 2.2 for 

SOC and 0.5 g kg-1 and an RPD value of 2.5 for TN (Sorenson et al., 2017); spectra from that 

study were collected under field conditions, and the spectrometer used only collected to 2200 

nm. Important spectral features for SOC were identified as being above 2200 nm in the current 

study (Table 2-2Error! Reference source not found.), which could explain the poorer model p

erformance obtained in (Sorenson et al., 2017). 

 

Spatial Analysis 

An advantage of using imaging spectroscopy as opposed to point measurements is the 

ability to achieve finer spatial resolution. In this study, data were collected at a resolution of 0.2 

mm.  Following development with training data sets, the predictive models were applied to 
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images to produce SOC and TN measurements for each pixel (Figure 2-4). Imaging 

spectroscopy allows the characterization of SOC and TN vertical changes within soil profiles 

and can accurately display their spatial variability. Samples from deeper positions in the profile 

have clear distinct inclusions of SOC and TN and their concentrations are not uniform. This 

within sample variation is also apparent in the topsoil samples (Figure 2-4).  The spatial 

distribution of SOC within aggregates varied among horizons and soil types, with TN being 

universally more aggregated than SOC (Table 2-3). Results of the spatial analysis are illustrated 

on Figure 2-4. While the subsoil samples show patches of SOC and TN, the TN patches are 

larger than the SOC patches for each sample.  
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Figure 2-4. Total nitrogen (TN) and soil organic carbon (SOC) concentrations as predicted by a 

CUBIST model following wavelet transformation of the spectrum for each pixel. The image on 

the right is the true colour image generated from the hyperspectral imaging system. The label 

before the horizon indicates the sample location ID. The middle image is the log transformed 

SOC measurements ranging from 0 to 70 g kg-1 for each sample. The image on the left is the log 

transformed TN concentrations ranging from 0 to 7 g kg-1. Samples in each image include: (a) 

Ahe, Ae and Bt horizons were collected from three different Dark Gray Luvisols used for crop 

production, (b) Orthic Black Chernozem developed on glaciolacustrine sediments used for crop 

production, (c) Orthic Gray Luvisol development on glacial till sediments under boreal forest 

vegetation. 

 

(a) 
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(b) 
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(c)
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Brunisolic soils had a similar level of SOC aggregation compared to Chernozemic soil 

samples (Table 2-4). SOC in Gleysolic and Luvisolic soil samples was less aggregated, with the 

Luvisols having the least aggregated SOC; in these soils, SOC in both B and C horizons was 

more aggregated than in topsoil samples (Table 2-4). Visually, these patterns were illustrated in 

Figure 2-4, where little heterogeneity in the topsoil SOC is visible. Significantly more patchiness 

was visible in the distribution of SOC in the subsoil samples. Additionally, the Bm horizon in 

particular (13-30 cm depth in the Chernozemic sample in Figure 2-4b)  had a higher number of 

low SOC patches (Figure 2-4).  

Table 2-3. Average Moran’s i values for soil organic carbon (SOC) and total nitrogen (TN) for 

each of the four soil orders included in this study, for all 370 samples analyzed using the 

SisuROCK automated hyperspectral imaging system. Moran’s i was calculated on each soil 

sample to evaluate the relative aggregation of SOC and TN. A value of 1 indicated complete 

aggregation, a value of -1 indicates a completely regular spatial distribution and a value of 0 

indicated random spatial distribution. 

Soil Order Horizon SOC TN 

Brunisol A 0.37 0.54 

B 0.46 0.66 

C 0.36 0.55 

Chernozem A 0.40 0.49 

B 0.33 0.47 

C 0.25 0.40 

Gleysol A 0.33 0.45 

B 0.36 0.46 

C 0.33 0.43 

Luvisol A 0.29 0.41 

B 0.32 0.44 

C 0.36 0.51 
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Table 2-4. Spatial generalized least squares model parameter estimates and p-values. 

Comparisons are relative to the intercept term, which is the Chernozem samples for the soil 

order comparisons and the A horizons for the soil horizon comparisons. The magnitude of the 

parameter estimate indicated the direction of the effect. A positive value is associated with 

higher Moran’s i values, and a negative value is associated with lower Moran’s i values relative 

to the default cases in the intercept term. Results are from all 370 samples analyzed using the 

SisuROCK automated hyperspectral imaging system. 

Parameter SOC TN 

Parameter 

Estimate 

P-Value Parameter 

Estimate 

P-value 

Intercept  0.27 0.06 0.13 0.40 

Order – Brunisol 0.14 0.79 0.32 0.53 

Order – Gleysol -0.39 0.06 -0.20 0.34 

Order – Luvisol -0.65 0.01 -0.44 0.07 

Soil – B Horizons 0.38 0.02 0.35 0.09 

Soil – C Horizons 0.44 0.02 0.20 0.41 
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Given the low concentration of SOC in the C horizons, and considering that C horizons have 

limited pedogenesis, a possible explanation for the aggregated C horizon SOC could be due to 

heterogeneous and limited roots at depth, leaving limited amounts of aggregated SOC residues. 

Most common boreal tree species are known to produce vertical roots as an adaptation to 

different boreal conditions (Strong and La Roi, 1983). For example, aspen are known to grow 

taproots to access deep water resources and white spruce grow oblique lateral roots for 

mechanical support (Strong and La Roi, 1983).   

Differences in SOC distribution among soil orders can be attributed to different pedogenic 

processes. Chernozemic soils developed under grassland conditions, whereas Gleysolic and 

Luvisolic soils developed under woody vegetation. Grasslands have a greater proportion of 

SOC at lower depths due to greater carbon inputs from root turnover (Jobbágy and Jackson, 

2000), and deep-rooting grasses could explain the more regular SOC distribution at depth in 

Chernozemic soil samples. On the other hand, the higher degree of SOC aggregation in 

Chernozemic A horizons can be attributed to the higher biological activity typically observed in 

these soils compared to Luvisolic A horizons. This SOC aggregation is likely linked to the 

important role organic matter plays in soil aggregate formation. Organic matter has been 

observed to relatively rapidly become mineral associated and a part of soil aggregates in 

Chernozemic soils (Jastrow, 1996). 

Interestingly, spatial relationships for TN were somewhat different from those observed for 

SOC (Tables 2-3 and 2-4). While TN was consistently more aggregated than SOC (Figure 2-4), 
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differences among soil orders and horizons were less apparent (Table 2-4). Luvisolic soil 

samples showed a weakly established (p=0.07) decrease in TN aggregation compared to other 

soil orders. Additionally, B horizons had a weakly established increase in TN aggregation 

compared to A horizons. The C horizons did not show an increase in aggregation compared to 

A horizons (Table 2-4). The TN aggregation was visible in each of the subsoil samples in Figure 

2-4, with large patches of low TN concentrations in each subsoil sample.  

While most of soil nitrogen occurs in association with carbon in soil organic matter, results 

from this study indicated that their distribution was not uniform, and that TN was more 

aggregated than SOC at the aggregate scale. Possible explanations for the increased TN 

aggregation could be linked to plant activity and uptake or due to differences in the extent of 

soil organic matter decomposition. Nitrogen limitation is widespread across many ecosystems, 

including boreal forests (LeBauer and Treseder, 2008). Therefore, biological activity may be part 

of a positive feedback loop where concentrated activity around areas of higher nitrogen leads to 

increased aggregation as nitrogen is alternately mineralized and immobilized. Alternatively, 

carbon to nitrogen ratios decrease as decomposition proceeds (Berg, 2000), and the ratio of 

microbially-derived nitrogen compounds compared to plant-derived compounds increases 

(Bingham and Cotrufo, 2016). Fine scale variation in factors such as water availability and litter 

inputs influences soil organic matter decomposition, and therefore the relative concentration of 

nitrogen, which may explain the increased aggregation of TN observed in our study. Further 
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work where these factors are controlled is needed to investigate their potential influence on TN 

aggregation in the profile.  

  

2.5. Conclusions 

Results from this study demonstrate the importance of imaging spectroscopy as a valuable 

tool for investigating SOC and TN patterns at the aggregate scale. The high resolution of 

measurements (<1 mm) enabled spatial patterns in the distribution SOC and TN to become 

visible, with TN being observed to be significantly more aggregated than SOC. These fine 

spatial scale relationships were found to be linked to larger spatial scale variation in soil type, 

which was likely due to distinct pedogenic processes. To build on this study, future work is 

needed to test this methodology on intact soil cores as compared to discrete samples to obtain 

high resolution SOC inventories of whole soil profiles.  

 

Acknowledgements 

We would like to acknowledge the National Science and Engineering Council (NSERC) for 

providing financial support for this project with a Discovery Grant to Sylvie Quideau (RGPIN-

2014-04693).   



47 

 

2.6. References 

Alberta Energy Regulator, 2016. Statistical Reports [WWW Document]. URL 

https://www.aer.ca/data-and-publications/statistical-reports (accessed 5.18.16). 

Alberta Energy Regulator, 2011. Directive for Monitoring the Impact of Sulphur Dust on Soils. 

Edmonton, Alberta. 

Anderson, D., Cerkowniak, D., 2010. Soil Formation in the Canadian Prairie Region. Prairie 

Soils Crop. 3, 57–64. 

Bartholomeus, H.M., Schaepman, M.E., Kooistra, L., Stevens, A., Hoogmoed, W.B., Spaargaren, 

O.S.P., 2008. Spectral reflectance based indices for soil organic carbon quantification. 

Geoderma. https://doi.org/10.1016/j.geoderma.2008.01.010 

Ben-Dor, E., Banin, A., 1995. Near-Infrared Analysis as a Rapid Method to Simultaneously 

Evaluate Several Soil Properties. Soil Sci. Soc. Am. J. 

https://doi.org/10.2136/sssaj1995.03615995005900020014x 

Ben-Dor, E., Banin, A., 1990. Near-infrared reflectance analysis of carbonate concentration in 

soils. Appl. Spectrosc. https://doi.org/10.1366/0003702904086821 

Berg, B., 2000. Litter decomposition and organic matter turnover in northern forest soils. For. 

Ecol. Manage. 133, 13–22. https://doi.org/http://dx.doi.org/10.1016/S0378-1127(99)00294-7 

Bingham, A.H., Cotrufo, M.F., 2016. Organic nitrogen storage in mineral soil: Implications for 

policy and management. Sci. Total Environ. 551–552, 116–126. 

https://doi.org/10.1016/j.scitotenv.2016.02.020 

Blake, L., Goulding, K.W.T., 2002. Effects of atmospheric deposition, soil pH and acidification 

on heavy metal contents in soils and vegetation of semi-natural ecosystems at 

Rothamsted Experimental Station, UK. Plant Soil. 

https://doi.org/10.1023/A:1015731530498 

Bremner, J.M., 1996. Nitrogen - Total, in: Sparks, D.L., Page, A.., Helmke, P.A., Loeppert, R.H., 

Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil 

Analysis Part 3—Chemical Methods. Madison, WI, pp. 1085–1123. 

Chang, C.-W., Laird, D.A., 2002. NEAR-INFRARED REFLECTANCE SPECTROSCOPIC 

ANALYSIS OF SOIL C AND N. Soil Sci. https://doi.org/10.1097/00010694-200202000-

00003 

Chang, C.-W., Laird, D.A., Mausbach, M.J., Hurburgh, C.R., 2001. Near-Infrared Reflectance 

Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. 

Soc. Am. J. https://doi.org/10.2136/sssaj2001.652480x 



48 

 

Dessureault-Rompré, J., Zebarth, B.J., Burton, D.L., Georgallas, A., 2015. Predicting soil nitrogen 

supply from soil properties. Can. J. Soil Sci. https://doi.org/10.4141/cjss-2014-057 

Doetterl, S., Stevens, A., Van Oost, K., van Wesemael, B., 2013. Soil Organic Carbon Assessment 

at High Vertical Resolution using Closed-Tube Sampling and Vis-NIR Spectroscopy. Soil 

Sci. Soc. Am. J. https://doi.org/10.2136/sssaj2012.0410n 

Ge, Y., Morgan, C.L.S., Ackerson, J.P., 2014. VisNIR spectra of dried ground soils predict 

properties of soils scanned moist and intact. Geoderma. 

https://doi.org/10.1016/j.geoderma.2014.01.011 

Gomez, C., Lagacherie, P., Coulouma, G., 2012. Regional predictions of eight common soil 

properties and their spatial structures from hyperspectral Vis-NIR data. Geoderma. 

https://doi.org/10.1016/j.geoderma.2012.05.023 

Gomez, C., Lagacherie, P., Coulouma, G., 2008a. Continuum removal versus PLSR method for 

clay and calcium carbonate content estimation from laboratory and airborne 

hyperspectral measurements. Geoderma. https://doi.org/10.1016/j.geoderma.2008.09.016 

Gomez, C., Viscarra Rossel, R.A., McBratney, A.B., 2008b. Soil organic carbon prediction by 

hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. 

Geoderma. https://doi.org/10.1016/j.geoderma.2008.06.011 

He, Y., Huang, M., García, A., Hernández, A., Song, H., 2007. Prediction of soil macronutrients 

content using near-infrared spectroscopy. Comput. Electron. Agric. 

https://doi.org/10.1016/j.compag.2007.03.011 

Hijmans, R.J., 2016. raster: Geographic Data Analysis and Modeling. 

Indorante, S.J., Jansen, I.J., Boast, C.W., 1981. Surface mining and reclamation : Initial changes in 

soil character. J. Soil Water Conserv. 36, 347–351. 

IUSS Working Group WRB, 2014. World reference base for soil resources 2014. International soil 

classification system for naming soils and creating legends for soil maps, World Soil 

Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902 

Jastrow, J.D., 1996. PIk soo38-0717(!spo159-x SOIL AGGREGATE FORMATION AND THE 

ACCRUAL OF PARTICULATE AND MINERAL-ASSOCIATED ORGANIC MATTER. 

Soil Biol. Biochem 28, 665–676. 

Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation 

to climate and vegetation. Ecol. Appl. https://doi.org/10.1890/1051-

0761(2000)010[0423:TVDOSO]2.0.CO;2 

Karatzoglou, A., Smola, A., Hornik, K., Seileis, A., 2004. kernlab - An S4 Package for Kernal 

Methods in R. J. Stat. Softw. 11, 1–20. 

Kinoshita, R., Moebius-Clune, B.N., van Es, H.M., Hively, W.D., Bilgilis, A.V., 2012. Strategies 

for Soil Quality Assessment Using Visible and Near-Infrared Reflectance Spectroscopy 



49 

 

in a Western Kenya Chronosequence. Soil Sci. Soc. Am. J. 

https://doi.org/10.2136/sssaj2011.0307 

Kuhn, M., Johnson, K., n.d. Applied Predictive Modeling. 

Kuhn, M., Weston, S., Keefer, C., Coulter, N., 2014. Cubist: Rule- and Instance-Based Regression 

Modeling. 

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., 

Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., 

Candan, C., 2016. caret: Classification and Regression Training. 

Lagacherie, P., Baret, F., Feret, J.B., Madeira Netto, J., Robbez-Masson, J.M., 2008. Estimation of 

soil clay and calcium carbonate using laboratory, field and airborne hyperspectral 

measurements. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2007.06.014 

LeBauer, D.S., Treseder, K.K., 2008. Nitrogen limitation of net primary productivity in terrestrial 

ecosystems is globally distributed. Ecology 89, 371–379. https://doi.org/10.1890/06-2057.1 

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2, 18–22. 

Martin, P.D., Malley, D.F., Manning, G., Fuller, L., 2002. Determination of soil organic carbon 

and nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil Sci. 

https://doi.org/10.4141/S01-054 

McBratney, A.B., Minasny, B., Viscarra Rossel, R., 2006. Spectral soil analysis and inference 

systems: A powerful combination for solving the soil data crisis. Geoderma. 

https://doi.org/10.1016/j.geoderma.2006.03.051 

McCarty, G.W., Reeves, J.B., Reeves, V.B., Follett, R.F., Kimble, J.M., 2002. Mid-Infrared and 

Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement. Soil Sci. 

Soc. Am. J. 66, 640. https://doi.org/10.2136/sssaj2002.0640 

McIntire, E.J.B., Fajardo, A., 2009. Beyond description: the active and effective way to infer 

processes from spatial patterns 90, 46–56. 

McLean, E.O., 1982. Soil pH and Lime Requirement, in: Page, A.., Miller, R.H., Keeney, D.R. 

(Eds.), Methods of Soil Analysis Part 2, Chemical and Microbiological Properties. 

Madison, WI, pp. 199–225. 

Melendez-Pastor, I., Navarro-Pedreño, J., Koch, M., Gómez, I., 2010. Applying imaging 

spectroscopy techniques to map saline soils with ASTER images. Geoderma. 

https://doi.org/10.1016/j.geoderma.2010.02.015 

Mevik, B.H., Wehrens, R., Liland, K.H., 2015. pls: Partial Least Squares and Principal 

Component Regression. 

Milborrow, S., 2016. earth: Multivariate Adaptive Regression Splines. 



50 

 

Minasny, B., McBratney,  a B., Pichon, L., Sun, W., Short, M.G., 2009. Evaluating near infrared 

spectroscopy for field prediction of soil properties. Aust. J. Soil Res. 47, 664–673. 

https://doi.org/Doi 10.1071/Sr09005 

Minasny, B., McBratney, A.B., 2008. Regression rules as a tool for predicting soil properties from 

infrared reflectance spectroscopy. Chemom. Intell. Lab. Syst. 

https://doi.org/10.1016/j.chemolab.2008.06.003 

Morellos, A., Pantazi, X.-E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., 

Wiebensohn, J., Bill, R., Mouazen, A.M., 2016. Machine learning based prediction of soil 

total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. 

Biosyst. Eng. https://doi.org/10.1016/j.biosystemseng.2016.04.018 

Nawar, S., Buddenbaum, H., Hill, J., Kozak, J., Mouazen, A.M., 2016. Estimating the soil clay 

content and organic matter by means of different calibration methods of vis-NIR diffuse 

reflectance spectroscopy. Soil Tillage Res. https://doi.org/10.1016/j.still.2015.07.021 

Nelson, D.W., Sommers, L.E., 1996. Total Carbon, Organic Carbon, and Organic Matter, in: 

Sparks, D.L., Page, A.., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., 

Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis Part 3—Chemical 

Methods. Soil Science Society of America, Madison, WI, pp. 961–1011. 

Ouerghemmi, W., Gomez, C., Naceur, S., Lagacherie, P., 2011. Applying blind source separation 

on hyperspectral data for clay content estimation over partially vegetated surfaces. 

Geoderma. https://doi.org/10.1016/j.geoderma.2011.04.019 

Percival, D.B., Walden, A.T., William, A., Percival, D., Constantine, M.W., 2016. Wavelet 

Methods for Time Series Analysis. 

Pinheiro, J., Bates, D., Debroy, S., Sarkar, D., R Core Team, 2016. _nlme: Linear and Nonliner 

Mixed Effects Models_. 

R Core Team, 2018. R: A language and environment for statistical computing. 

Reeves, D.W., 1997. The role of soil organic matter in maintaining soil quality in continuous 

cropping systems. soil& Tillage Res. Soil Tillage Res. Reeues/Soil Tillage Res. 43, 131–

167. 

Rivard, B., Feng, J., Gallie, A., Sanchez-Azofeifa, A., 2008. Continuous wavelets for the 

improved use of spectral libraries and hyperspectral data. Remote Sens. Environ. 

https://doi.org/10.1016/j.rse.2008.01.016 

Roger, J.M., Chauchard, F., Bellon-Maurel, V., 2003. EPO-PLS external parameter 

orthogonalisation of PLS application to temperature-independent measurement of sugar 

content of intact fruits. Chemom. Intell. Lab. Syst. 66, 191–204. 

https://doi.org/10.1016/S0169-7439(03)00051-0 



51 

 

Rossel, R.A.A.V., Behrens, T., Viscarra Rossel, R.A., Behrens, T., 2010. Using data mining to 

model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54. 

https://doi.org/10.1016/j.geoderma.2009.12.025 

Scafutto, R.D.P.M., de Souza Filho, C.R., Rivard, B., 2016. Characterization of mineral substrates 

impregnated with crude oils using proximal infrared hyperspectral imaging. Remote 

Sens. Environ. https://doi.org/10.1016/j.rse.2016.03.033 

Shrestha, R.K., Lal, R., 2007. Soil Carbon and Nitrogen in 28-Year-Old Land Uses in Reclaimed 

Coal Mine Soils of Ohio. J. Environ. Qual. https://doi.org/10.2134/jeq2007.0071 

Soil Classification Working Group, 1998. The Canadian System of Soil Classification. Can. Syst. 

Soil Classif. 3rd ed. Agric. Agri-Food Canada Publ. 1646 187. 

Sorenson, P.T., MacKenzie, M.D., Quideau, S.A., Landhausser, S.M., 2017. Can spatial patterns 

be used to investigate aboveground-belowground links in reclaimed forests? Ecol. Eng. 

104, 57–66. https://doi.org/10.1016/j.ecoleng.2017.04.002 

Sorenson, P.T., Quideau, S.A., MacKenzie, M.D., Landhäusser, S.M., Oh, S.W., 2011. Forest floor 

development and biochemical properties in reconstructed boreal forest soils. Appl. Soil 

Ecol. https://doi.org/10.1016/j.apsoil.2011.06.006 

Sorenson, P.T., Small, C., Tappert, M.C., Quideau, S.A., Drozdowski, B., Underwood, A., Janz, 

A., 2017. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using 

field reflectance spectroscopy. Can. J. Soil Sci. https://doi.org/10.1139/cjss-2016-0116 

St. Luce, M., Ziadi, N., Zebarth, B.J., Grant, C.A., Tremblay, G.F., Gregorich, E.G., 2014. Rapid 

determination of soil organic matter quality indicators using visible near infrared 

reflectance spectroscopy. Geoderma. https://doi.org/10.1016/j.geoderma.2014.05.023 

Steffens, M., Buddenbaum, H., 2013. Laboratory imaging spectroscopy of a stagnic Luvisol 

profile - High resolution soil characterisation, classification and mapping of elemental 

concentrations. Geoderma. https://doi.org/10.1016/j.geoderma.2012.11.011 

Strong, W.L., La Roi, G.H., 1983. Root-system morphology of common boreal forest trees in 

Alberta, Canada. Can. J. For. Res. 13, 1164–1173. 

Tappert, M.C., Rivard, B., Fulop, A., Rogge, D., Feng, J., Tappert, R., Stalder, R., 2015. 

Characterizing kimberlite dilution by crustal rocks at the Snap Lake diamond mine 

(Northwest Territories, Canada) using SWIR (1.90-2.36 μm) and LWIR (8.1-11.1 μm) 

hyperspectral imagery collected from drill core. Econ. Geol. 

https://doi.org/10.2113/econgeo.110.6.1375 

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics, Fourth. ed. Springer, New York. 

Viscarra Rossel, R.A., Lark, R.M., 2009. Improved analysis and modelling of soil diffuse 

reflectance spectra using wavelets. Eur. J. Soil Sci. https://doi.org/10.1111/j.1365-

2389.2009.01121.x 



52 

 

Vitousek, P.M., Howarth, R.W., 1991. Nitrogen Limitation on Land and in the Sea : How Can It 

Occur ? Nitrogen limitation on land and in the sea : How can it occur ? 13, 87–115. 

https://doi.org/10.1007/BF00002772 

Wang, S., Zhuang, Q., Wang, Q., Jin, X., Han, C., 2017. Mapping stocks of soil organic carbon 

and soil total nitrogen in Liaoning Province of China. Geoderma. 

https://doi.org/10.1016/j.geoderma.2017.05.048 

Xie, H.T., Yang, X.M., Drury, C.F., Yang, J.Y., Zhang, X.D., 2011. Predicting soil organic carbon 

and total nitrogen using mid- and near-infrared spectra for Brookston clay loam soil in 

Southwestern Ontario, Canada. Can. J. Soil Sci. https://doi.org/10.4141/cjss10029 

  



53 

 

3. Distribution Mapping of Soil Profile Carbon and Nitrogen With Laboratory 

Imaging Spectroscopy  

3.1. Abstract 

Conversion of arable cropland to forage crops has been proposed as a potential method to 

increase soil organic carbon (SOC) stocks to sequester carbon and improve soil quality. In this 

study, intact soil cores were collected from long-term boreal forest soil research plots 

established in 1980 consisting of: a mixed arable crop and forage agroecological rotation (AE), 

continuous forage (CF), and continuous grain (CG) rotations. These cores were analyzed using a 

SisuROCK automated hyperspectral imaging system in a laboratory setting collecting 

shortwave infrared reflectance data. Samples were then analyzed for SOC and total nitrogen 

(TN) contents by dry combustion to prepare a training data set. Predictive models were 

successfully built for SOC and TN using a combination of wavelet analysis and Bayesian 

Regularized Neural Nets.  The CF rotation was found to have the highest SOC and TN contents 

compared to AE rotation for only the top 3 and 4 cm, respectively. These two rotations had 

comparable contents for both parameters for the rest of the topsoil, which was greater than the 

SOC and TN contents in the CG rotation to depths of approximately 12 cm. Increases in both 

SOC and TN were associated with increased spatial aggregation at fine spatial scales. These 

results indicate that adding forages to rotations in boreal forest soils increases SOC and TN, 

however these changes were concentrated in the surface depths. 
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3.2. Introduction 

Soil Organic Carbon (SOC) and nitrogen both play essential roles in terrestrial ecosystems. 

The amount of carbon in the form of SOC is 4.5 times that of biomass (Jobbágy and Jackson, 

2000). Additionally, nitrogen plays an important role as nitrogen limitation is widespread in 

terrestrial ecosystems (Vitousek and Howarth, 1991), and it can be an important limitation on 

ecosystem productivity. The management of SOC has global implications and has become an 

important public policy priority. Increasing soil carbon sequestration with soil management has 

been proposed as a strategy to offset potentially 5 to 15 percent of global fossil fuel emissions 

(Lal, 2004). As a result, the influence of land use and management on carbon stocks has been an 

increasing research focus.  

A range of land use changes have been documented to increase SOC. One strategy that has 

been proposed is the conversion of land from arable cropping to forage crop production (Guo 

and Gifford, 2002).  Rates of SOC accumulation following conversion to forages vary widely 

depending on vegetation, soil conditions and management history (Post and Kwon, 2000). The 

maximum rates of SOC accumulation occur during the early perennial vegetation aggrading 

stage, with average SOC accumulation rates of 0.332 g C m-2 yr-1 observed (Post and Kwon, 

2000).  The incorporation of a range of management practices associated with forage production 

such as improved grazing, fertilization, increased proportion of legumes, and improved grass 

species and conversion from cultivation has led to C accumulation rates of 0.105 to more than 1 

Mg C ha-1 yr-1 (Post and Kwon, 2000).  
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The conversion of land from arable crops to pasture has been documented to influence total 

nitrogen (TN) in addition to SOC. The cultivation of soil with perennial grasses has been shown 

to lead to a clear decline in TN (Malhi et al., 2003). The decline is particularly present in the  

low-density organic matter fraction that is not complexed with the soil mineral matrix  which is 

of particular significance as it is the main source of readily mineralizable organic nitrogen in the 

soil (Malhi et al., 2003). Previous work at the same study plots as those in this study have found 

that rotation with a mix of forages and arable crops lead to a similar increase in TN  as 

continuous forages when compared to continuous arable cropping (Ross et al., 2008).  

 Reflectance spectroscopy is increasingly maturing as a tool for SOC and TN 

measurement (i.e. Chang et al., 2001; McBratney et al., 2006; Nocita et al., 2015; Viscarra Rossel 

et al., 2006), and imaging spectroscopy presents opportunities to measure soil properties at 

spatial scales previously thought impossible (Hobley et al., 2018; Sorenson et al., 2018; Steffens 

and Buddenbaum, 2013). Laboratory imaging spectroscopy has been used to measure the 

quantity and spatial distribution of SOC and TN at the soil aggregate scale with soil samples 

collected in the Canadian Prairies (Sorenson et al., 2018). Additionally, emergence of new data 

processing methods has improved the accuracy of soil information retrieved from reflectance 

spectra. Specifically, the combination of wavelet analysis and machine learning models have 

produced more accurate results compared to conventional reflectance spectroscopy analysis 

methods such as Savitsky-Golay smoothing, derivatives and multiplicative scatter correction 

(Rossel et al., 2010; Sorenson et al., 2017; Sorenson et al., 2018; Viscarra Rossel and Lark, 2009).  
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Laboratory imaging spectroscopy has been used to estimate SOC and TN in an intact soil profile 

(Steffens and Buddenbaum, 2013), and to identify regions of SOC enrichment in the subsoil of 

intact soil cores (Hobley et al., 2018). However, it has not yet been used to characterize effects of 

land use change on SOC and TN at fine spatial scales in the soil profile and to identify 

specifically where changes in the profile are present.  

 The objectives of this study were to investigate the use of laboratory imaging 

spectroscopy for measuring SOC and TN at fine spatial scales throughout intact soil profiles 

that had experienced different land management practices. While previous work has 

investigated changes in soil properties due to conversion to forage crops, the tools used in these 

studies did not allow for investigation of where changes occurred in the soil profile at fine 

spatial scales. This study was focused on identifying at what depths changes could be detected 

in SOC and TN, and if these changes in SOC and TN were associated with a change in the 

spatial distribution of these parameters at the same fine spatial scales.  

3.3. Materials and Methods 

Sample collection and preparation 

A total of 200 soil samples were collected from the University of Alberta Hendrigan Plots 

near Breton, Alberta, Canada (53.08N, 114.44W) in May 2018, and from selected unfertilized 

plots from the 5-year rotation of the Breton Classical Plots. The soil at these plots developed on 

glacial till parent material under boreal forest vegetation. The long-term research plots were 

established in 1929, and the Hendrigan Plots were established in 1980. The Classical Plots were 
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established due to concerns at the time with cultivating Gray Luvisols, particularly their low A 

horizon carbon contents and high B horizon clay contents relative to the Chernozemic soils 

cultivated in the Canadian Prairies at the time (Dyck et al., 2012).   

The Hendrigan plots consist of three cropping system treatments: (i) continuous perennial 

grass-legume forage (CF), (ii) a continuous grain system planted with barley or triticale (CG), 

and (iii) an agroecological 8-year rotation (AER), with a rotation of barley-barley-faba beans-

barley-hay-hay-hay-hay. The Classical Plots host a 2-year wheat-fallow rotation and a 5-year 

cereal-forage rotation with various fertility treatments (Dyck et al. 2012) are a wheat-oats-

barley-hay-hay rotation – sampling was for this work was limited to the 5-year rotation.  A 

detailed description of the three Hendrigan treatments and their management is available in 

Ross et al. (2008). Annual precipitation averages 547 mm with a mean annual temperature of 

2.1°C. The soil consists of an Orthic Gray Luvisol (Albic Luvisol in WRB, and Typic Cryoboralf 

in USDA Soil Taxonomy System). One intact soil core was collected per treatment for the three 

Hendigran Plots (15 cores) and 6 cores from the classical plots, for a total of 21 cores. All cores 

were collected with Giddings Soil Coring Equipment (Giddings Machine Company Inc.) to a 

depth of one meter.   

Spectral Measurements 

Spectral data were collected using a SisuROCK automated hyperspectral imaging system 

developed by Spectral Imaging (Specim) Ltd., Finland. The SisuROCK collects data with two 

high-resolution spectral cameras. The first spectral camera collects reflectance data in the visible 
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near-infrared light range (VNIR; 400-1000 nm). The second camera collects reflectance data in 

the shortwave infrared range (SWIR; 1000-2500 nm). The SWIR data were used for this study as 

SOC, TN and Clay are primarily spectrally active in this range (Rossel et al., 2010), and 

automated feature selection using all bands only selected bands from the SWIR region. Data in 

the SWIR range were collected in 256 spectral bands with a spectral resolution of 10 nm and a 

spatial resolution of 0.2 mm. Quartz halogen lamps provided the SWIR illumination to each 

sample and the measured light spectrum for each pixel was converted to reflectance via 

normalization to the average light spectrum from a Spectralon® panel. The acquisition time for 

each core took place in less than a minute. 

Laboratory Analysis 

Prior to analysis for SOC and TN, 1 cm thick samples collected from the soil cores were 

ground with a Retsch MM200 ball mill grinder. Samples were then analyzed for SOC and TN by 

dry combustion on a Costech ECS 4010 Elemental Analyzer (EA) equipped with a thermocouple 

detector (Costech Analytical Technologies Inc., Valencia, USA). As none of the samples were 

from horizons that would contain carbonates, samples were not pretreated for carbonate 

removal. Samples were tested with dilute hydrochloric acid to confirm carbonates were not 

present in the samples.  In total 200 samples were analyzed for SOC and TN.  

All clay content analyses were performed using a Beckman Coulter LS 13 320 Laser 

Diffraction Particle Size Analyzer. Samples were first lightly ground with a mortar and pestle to 

break up large aggregates. Approximately 0.5 g of soil sample was then placed in a pyrex test 



59 

 

tube along with 2 ml of ten percent sodium hexametaphosphate and 10 ml of deionized water. 

The sample was sonicated for 60 seconds in the tube and then added to the aqueous liquid 

module well. The sample was sonicated for an additional 60 seconds in the well, soil particle 

size measurements were taken for 60 seconds and averaged for 93 fraction sizes. The clay 

content was then determined by summing the percentages for fraction sizes below 2 µm. 

Processing of Spectral Data 

To generate the predictive models, laboratory analysis of SOC, TN and clay for the 200 

samples we compared to the spectra of each sample obtained from the average of all pixels 

within the image of the 1 cm soil interval in the ENVI Software Platform (Harris Geospatial 

Solutions, Melbourne, USA). The average spectra were then processed using continuous 

wavelet transforms (CWT) (e.g.; (Rivard et al., 2008; Scafutto et al., 2016; Tappert et al., 2015) 

using the wmtsa package in R (Percival et al., 2016), to reduce the influence of non-

compositional effects such as varying particle size on the analysis.  The CWT outputs were 

calculated using an eight scale, second order Gaussian transform. Scales 2, 3 and 4 were then 

summed and used for the model development (Error! Reference source not found.).    

Model Development 

Three predictive models were developed using the spectral data and their corresponding 

SOC, TN or clay data set. Models were developed using R (R Core Team, 2018). Seventy five 

percent of the dataset or 150 samples were used in the training data set. The remaining fifty 
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samples were selected to be in the test data set. The test data set was subset using the Kennard-

Stone Algorithm in the prospectr package in R (Stevens and Ramirez-Lopez, 2013). Data was 

selected for training and testing datasets based on Mahalanobis distances.  

A Bayesian regularized neural net (BRNN) model (Rodriguez and Gianola, 2016) was used 

to develop the SOC, TN and clay content predictive models. Spectra were spectrally subset 

prior to development of the predictive models. All spectral features were selected using the 

feature selection routine in the multivariate adaptive regression splines (MARS) model 

(Milborrow, 2018). Eleven features were selected for the SOC model, 14 features for the TN 

model and the twenty most important features selected by the MARS model for clay were used. 

These features were then used to build the BRNN model. The spectral features used for model 

development are illustrated in Figure 3-1. The BRNN models were developed with 5 neurons as 

this minimized the validation data set root-mean-square-error (RMSE). 
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Figure 3-1.  Example shortwave infrared spectral signature. The sample is an Ahe horizon 

containing 5.9% soil organic carbon, 0.46% total nitrogen and 11% clay. The red lines on the 

upper plot indicate the spectral bands used for prediction of soil organic carbon. The orange 

lines on the middle plot indicate the spectral bands used for prediction of total nitrogen. The 

blue lines on the lower plot indicated the spectral bands used for prediction of clay content 

 

 

Model Evaluation 
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Model accuracy was evaluated with the RMSE, R2 and the ratio of performance to 

deviation (RPD), which is the ratio of the standard deviation to the RMSE.  Generally, models 

with RPD values greater than 2 can be used accurately for prediction. Models with RPD values 

between 1.4 and 2 are satisfactory but could use improvement and models with values less than 

1.4 have no predictive capability (Chang et al., 2001). 

Carbon and Nitrogen Image Maps 

Image Processing 

Three processing steps took place prior to predicting SOC and TN for each pixel of the 

sample images. The hyperspectral images were first processed with a 3 x 3 median filter for 

spatial noise reduction. Following smoothing, a mask was created to remove the tray from the 

image prior to further processing. As the tray material has reflectance values peaking within the 

first 10 bands, contrary to the soil spectra, pixels with peak reflectance values in the first 10 

bands were masked.  The mask was created in R (R Core Team, 2018) using the raster package 

(Hijmans, 2017). Each pixel was then processed using an eight scale second order Gaussian 

transform, and wavelet scales 2, 3 and 4 were then summed. Lastly, the resulting wavelets 

coefficients were analyzed using the BRNN model generated during the statistical model 

development to estimate the SOC, TN and Clay content of each pixel in the images.  

Spatial Analysis 

The spatial distribution of SOC and TN was investigated by calculating Moran’s i values 

each in a series of depth intervals for each soil core using the raster package in R (Hijmans, 
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2017). The spatial distribution of clay content was not investigated as it was expected to be 

influenced by pedogenesis and not recent additions of carbon. The depth intervals 

corresponded to approximately 3 cm, as the width of the images on along the x-axis was 

approximately 3 cm. This depth interval was selected such that the Moran’s i calculations 

would be conducted on a roughly square image. Moran’s i provides a measure of spatial 

autocorrelation, with a value of 1 indicating perfect aggregation, value of -1 indicating a regular 

spatial distribution and a value of 0 indicating a random spatial distribution. Additionally, the 

scale of spatial structure was determined by fitting a spherical semivariogram model and 

calculating the range for each depth interval using the geoR package in R (Ribeiro and Diggle, 

2016). 

Following the calculation of Moran’s i values for SOC and TN, a spatial generalized least 

squares (GLS) model was run for each depth interval to determine if there was a difference 

between crop rotations in terms of SOC, TN, Moran’s i for SOC and TN, the carbon to nitrogen 

ratio. All spatial GLS models were performed using the nlme package in R (Pinheiro et al., 

2016). Analyses were performed separately for each depth interval so that depth where 

significant treatment effects occurred to could be identified. The underlying concept behind a 

spatial GLS model is that residual spatial patterns can be used as a surrogate for unmeasured 

variables (McIntire and Fajardo, 2009). Results from the spatial GLS model further indicate if a 

relationship between factors is present after removing unwanted variables by including location 

as a correlation structure in the GLS model (Sorenson et al., 2017).  A significant intercept 
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indicates that unaccounted for variables are affecting dependent variables. The parameter 

estimate indicates the direction and magnitude of the relationship.  

3.4. Results 

Models were successfully built for all three soil parameters, and model accuracy was 

determined based on the results of the independent validation data set. The BRNN model for 

SOC produced an R2 value of 0.94, a RMSE of 0.14% and an RPD value of 4.28 (Figure 3-2a). 

Results for the TN model had an R2 value of 0.88, an RMSE of 0.02% and an RPD value of 2.94 

(Figure 3-2b). The clay model had an R2 of 0.80, an RMSE of 2.70% and an RPD value of 2.23 

(Figure 3-2c). Based on RPD threshold of 2, models for all three parameters can be considered 

accurate for prediction.   
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Figure 3-2. Independent validation dataset predicted versus observed (a) soil organic carbon 

(SOC) content (g kg-1), (b) total nitrogen, and (c) clay content as produced by the Bayesian 

Regularized Neural Net model. The model was developed using 150 samples, and validated 

using 50 samples, which were analyzed for SOC, TN, and Clay Content. The solid 1:1 line 

illustrates deviations between predicted and measured data.    

(a) 
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(b) 
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(c) 

 

The concentrations of SOC varied significantly amongst rotations in the topsoil and subsoil. 

The highest SOC concentrations were in the CF rotation, with an average SOC content of 2.3% 

(Table 3-1), followed by the AE rotation with an average SOC content of 2.2%. The CG and 

Classical rotations had SOC contents of 1.6% and 1.4%, respectively. The AE rotation and CF 

rotation had significantly more SOC than the CG and classical rotations (p-values <0.01).  No 

differences in the subsoil SOC were detected with SOC concentrations of 0.4% in all rotations 

(Table 3-1).  Based on these concentrations the total mass of SOC in the soil profile to 1 m on a 

megagrams per hectare (Mg ha-1) basis ranged from a maximum of 120 Mg ha-1 in the CF 
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rotation and 119 Mg ha-1 in the agro-ecological rotation, to 98 Mg ha-1 in the CG rotation and 91 

Mg ha-1 in the classical rotation (Table 3-1).  The overall gain in SOC stocks was 29 Mg ha-1 for 

the CF and AE rotations compared to the CG rotation. This increase equates to a 22% increase in 

SOC stocks.  

Table 3-1. Summary of mean and standard deviation laboratory soil parameter values for each 

rotation.  

Rotation Horizon Soil 

Organic 

Carbon 

(%) 

Total 

Nitrogen 

(%) 

Clay 

Content 

(%) 

Bulk 

Density 

(g cm-3) 

Horizon 

Depth 

(cm) 

Carbon 

(Mg 

ha-1) 

Nitrogen 

(Mg ha-1) 

Agro-

ecological 

A 

Horizon 

2.2 ± 1.2 0.22 ± 

0.10 

21 ± 5 1.4 ± 0.1 21 ± 4 65 ± 0.5 6.5 ± 2.9 

B and C 

Horizon 

0.4 ± 0.2 0.05 ± 

0.03 

30 ± 6 1.7 ± 0.2 79 ± 4 54 ± 0.2 6.7 ± 4.0 

Continuous 

Forage 

A 

Horizon 

2.3 ± 1.8 0.22 ± 

0.13 

21 ± 5 1.2 ± 0.4 25 ± 3 69 ± 2.2 6.6 ± 3.9 

B and C 

Horizon 

0.4 ± 0.2 0.06 ± 

0.04 

32 ± 7 1.7 ± 0.2 75 ± 3 51 ± 0.1 7.7 ± 5.1  

Continuous 

Grain 

A 

Horizon 

1.6 ± 0.7 0.18 ± 

0.07 

22 ± 4 1.4 ± 0.2 20 ± 2 44 ± 0.3 5.0 ± 2.0 

A 

Horizon 

0.4 ± 0.3 0.06 ± 

0.03 

30 ± 6 1.7 ± 0.3 80 ± 2 54 ± 0.2 8.2 ± 4.1 

Classical B and C 

Horizon 

1.4 ± 0.7 0.15 ± 0.6 23 ± 4 1.4 ± 0.1 18 ± 4 35 ± 0.3 4.5 ± 0.8 

A 

Horizon 

0.4 ± 0.3 0.06 ± 

0.03 

29 ± 6 1.7 ± 0.2 82 ± 4 56 ± 0.2 8.4 ± 4.1 

 

The imaging spectroscopy results illustrate that fine scale variance in SOC, TN and clay 

content is apparent in these soils. These soils have patches of higher SOC and TN concentration, 

particularly in the lower parts of the topsoil (Figure 3-3). Small isolated patches of elevated SOC 

and TN are clearly apparent in the subsoil as well.  Additionally, the CF treatment clearly has a 



69 

 

more discontinuous A/B horizon boundary compared to the other treatments. These results also 

highlight both the lower clay content of the A horizon in these soils and that the subsoil has 

clear pockets of higher clay content, and heterogeneity of clay content at fine spatial scales. 

Figure 3-3. True Colour (RGB), soil organic carbon (SOC), nitrogen (TN), and clay contents as 

predicted by a Bayesian Regularized Neural Net model following wavelet transformation of the 

spectrum for each pixel for (a) a continuous grain profile, (b) a continuous forage profile and (c) 

an agro-ecological profile. The image on the left is the true colour image generated from the 

hyperspectral imaging system. The second image from the left is the predicted per pixel SOC, 

the third image from the left is the predicted per pixel TN concentration and the image on the 

right is the predicted per pixel clay content.  Adjacent to each soil map is a color table for the 

corresponding soil parameter. 
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 Each of the four treatments had a clear decreasing SOC content with depth that stabilized at 

concentrations near 0.4% in the subsoil (Figure 3-4). A similar trend was observable between TN 

and depth. The carbon to nitrogen ratio also showed a similar trend, however higher variance is 

observable in the subsoil compared to SOC and TN (Figure 3-4). The CF treatment did showed a 

continuous decrease in C:N content with depths, compared to the initial increase followed by a 

decrease observed in the other treatments (Figure 3-4). The clay content showed a gently 

sloping increase in clay content with depth in the A horizon. The clay content then increased 

sharply near the horizon boundary between the A and B horizons. This increase in clay content 

with the B horizon is consistent with Luvisolic soils, which are characterized by clay 

translocation from the topsoil to the subsoil.  
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Figure 3-4. Average depth profiles for soil organic carbon,  nitrogen, carbon to nitrogen ratio, 

and clay content for each rotation: agro-ecological, continuous forage, continuous grain, and 

classical rotations. Measurements were obtained for approximately 1300 distinct depth 

intervals. Locally weighted scatterplot smoothing was used for plotting the line on each plot 

with a span of 0.1, equal to a 10 percent smoothing span. Depth profiles were created by 

averaging the values from each core by treatment. 
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SOC was found to be more aggregated in the topsoil for the AE, CF and CG rotations 

(Figure 3-5). However, no clear SOC spatial aggregation trend was present in the classical 

rotation. The SOC aggregation showed a decreasing trend with depth to a depth of 

approximately 50 cm. A slight increase in SOC spatial aggregation was then observable from 50 

cm to 100 cm.  This trend was most pronounced in the AE rotation. The AE, CF and CG 

rotations also showed a decrease in spatial aggregation of TN with depth (Figure 3-5). The 

increasing trend with depth after 50 cm present with SOC was not visible with TN.  TN spatial 

aggregation was slightly lower in all rotations compared to SOC except for the CF rotation, 

which had similar Moran’s i values for SOC and TN. The scale of spatial aggregation of SOC 

ranged from 1.3 cm to 2.4 cm, nitrogen ranged from 2.2 to 3.0 cm, and clay from 1.6 to 3.2 cm 

(Table 3-2). There were no significant differences amongst treatments.  The average standard 

deviation for SOC Moran’s i values was 0.07 for topsoil and 0.06 for subsoil. For nitrogen, the 

average Moran’s i value standard deviation were 0.11 for topsoil and 0.07 for subsoil.  
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Figure 3-5. Soil organic carbon (SOC) and Total Nitrogen (TN) Moran’s I values indicating the 

spatial aggregation of SOC and TN for each of the four rotations. A value of 1 indicates 

complete spatial aggregation, and a value of -1 indicates completely regularly distributed. 

Locally weighted scatterplot smoothing was used for plotting the line on each plot with a span 

of 0.1, equal to a 10 percent smoothing span. 
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Table 3-2. Semivariogram range mean and standard deviation values for soil organic carbon, 

total nitrogen and clay content for each rotation. The semivariogram range indicates the 

distance where points are spatially independent from each other, and is related to the scale of 

spatial aggregation of the soil properties of interest. There were no significant differences across 

treatments or horizon. 

Rotation Horizon Soil Organic 

Carbon (cm) 

Total Nitrogen 

(cm) 

Clay Content (cm) 

Agro-ecological A Horizon 2.1 ± 0.7 2.2 ± 0.9 3.2 ± 0.9 

B and C 

Horizon 

1.8 ± 0.5 2.6 ± 0.3 1.8 ± 0.5 

Continuous 

Forage 

A Horizon 1.9 ± 0.8 2.7 ± 1.3 2.9 ± 0.5 

B and C 

Horizon 

2.3 ± 0.4 2.5 ± 0.3 1.6 ± 0.4 

Continuous 

Grain 

A Horizon 1.3 ± 0.9 3.0 ± 0.2 2.6 ± 0.6 

B and C 

Horizon 

1.7 ± 0.5 2.9 ± 0.2 1.8 ± 0.6 

Classical A Horizon 2.4 ± 1.2 2.4 ± 0.7 2.0 ± 0.7 

B and C 

Horizon 

2.1 ± 0.4 2.6 ± 0.3 2.0 ± 0.2 

 

While on average the AE and CF rotations had similar topsoil SOC concentrations, the CF 

rotation had significantly more SOC in the top 3.5 cm compared to the AE rotation (Figure 3-6; 

Table 3-3). The AE and CF rotations had significantly more SOC than the CG and Classical 

rotations to depths of 11.9 cm and 15.5 cm, respectively. The depth of the rotation effects was 

slightly deeper for TN compared to SOC. The CF rotation had significantly more TN than the 

AE rotation to a depth of 4.4 cm (Figure 3-6; Table 3-3). The CG and Classical rotations had 

significantly less TN to depths of 12.1 and 16.1 cm, respectively.  The depth of any rotation 

effects on the carbon to nitrogen ratio were less compared to SOC and TN (Figure 3-6; Table 3-

3). The CF rotation had a significantly higher carbon to nitrogen ratio to a depth of 2.5 cm, and 
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the CG and Classical rotations had significantly lower carbon to nitrogen rations to depths of 

5.5 and 4.1 cm, respectively.  
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Figure 3-6. Soil Organic Carbon (SOC), Total Nitrogen (TN), Carbon to Nitrogen Ratio, SOC 

Moran’s i, and TN Moran’s i plots. Each plot shows data for the agro-ecological (AE), 

continuous forage (CF), continuous grain (CG), and classical treatments. Plots are provided for 

a depth of 0 to 25 cm as consistent change in soil parameters occurred within this depth range. 
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Table 3-3. Spatial generalized least squares model parameter estimates and p-values. 

Comparisons are relative to the intercept term in the model, which is the agro-ecological 

rotation. The magnitude of the parameter estimates indicates the direction of the effect. A 

positive value is associated with higher values relative to the intercept, and a negative value is 

associated with lower values relative to the default cases in the intercept term.  The Parameter 

Estimate and P-values are the average for all the of the GLM models that were run separately 

for each depth from the surface to the depth where the rotation effect was no longer significant 

(alpha = 0.05). Where the depth of effect is NA, the Parameter Estimate and p-values are the 

average of all depth intervals. 

Parameter SOC TN 

Depth 

of Effect 

(cm) 

Parameter 

Estimate 

P-Value Depth of 

Effect 

(cm) 

Parameter 

Estimate 

P-value 

Continuous  

Forage 

3.5 1.5 <0.01 4.4 1.1 <0.01 

Continuous  

Grain 

11.9 -1.1 0.02 12.1 -1.1 0.02 

Classical  15.5 -1.4 0.01 16.1 -1.5 0.01 

 Carbon 

 Moran’s i 

Nitrogen  

Moran’s i 

C:N 

Depth 

of 

Effect 

(cm) 

Parameter 

Estimate 

P-

Value 

Depth 

of 

Effect 

(cm) 

Parameter 

Estimate 

P-

Value 

Depth 

of 

Effect 

(cm) 

Parameter 

Estimate 

P-

Value 

Continuous  

Forage 

NA 0.1 0.5 3.4 1.9 <0.01 2.5 1.4 0.01 

Continuous  

Grain 

3.4 -1.9 <0.01 NA -0.1 0.5 5.5 -1.5 0.01 

Classical  9.8 -1.1 0.04 NA 0.1 0.4 4.1 -1.0 0.03 
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The increased SOC content in the first 3.5 cm for the CF rotation compared to the AE 

rotation was not associated with a difference in the spatial aggregation of SOC (Figure 3-6; 

Table 3-3). However, both rotations had significantly more spatially aggregated SOC 

concentrations than the CG and Classical rotations. SOC was more aggregated in the first 3.4 cm 

compared to the CG rotation and the first 9.8 cm compared to the Classical rotation. A different 

trend was observed when comparing the spatial aggregation of TN by rotation (Figure 3-6; 

Table 3-3). The CF rotation had more spatially aggregated TN than the other rotations for the 

first 3.4 cm. No difference in the spatial aggregation of TN was detected among the AE, CG and 

Classical rotations.  

3.5. Discussion 

Previous work on the three rotations sampled in this work observed increases in SOC and 

TN with time (Wanit et al., 1994). More recent work on the Hendrigan Plots focused on TN 

found that the AE rotation had higher TN compared to the CF rotation (Ross et al., 2008). The 

Ross et al. (2008) study involved collecting either two discrete samples per plot or one 

composite sample per plot taken from 0-15 cm and 15-30 cm.  This study did not find a 

significant difference between the two rotations based on average TN contents in the topsoil. 

However, the CF rotation did have significantly more TN in the top 4.1 cm compared to the AE 

rotation based on our data. The difference in results can be attributed to the finer spatial 

resolution data that was collected within our study, which enabled differences to be detected 

that were obscured with coarser spatial resolutions. Given the limited number of samples taken 
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from each plot in this study and the study done by Ross et al. (2008) it is possible the differences 

in results could be due to lateral spatial variation within the treatment plots.  

The increased SOC and TN in the top 3-4 cm in the CF rotation was not associated with an 

overall increase in SOC stocks. Both rotations had a similar increase in total SOC stocks of 22 

percent compared to the CG rotation. This is lower, but comparable, to other studies that have 

investigated the influence of conversion of cultivated lands to forages. On average an increase 

of SOC stocks of 39.2% have been observed (Conant et al., 2017). The lower change in this study 

may be attributable to the sharp increase in clay content and bulk density in the subsoil. Fibrous 

grass roots have been found to be inhibited in high clay content soils with bulk densities similar 

to those in this study (Chen and Weil, 2010).  

 The addition of SOC was largely in the topsoil, and the addition of SOC to the soil 

profile was associated with increased spatial aggregation of SOC.  Of note in this study is that 

the CF treatment was not tilled, and the AE and CG rotations are tilled to a depth of 10 cm 

every five years (AE) or annually (CG) to incorporate manure and fertilizers. This management 

difference could explain the different trends in C:N ratios with depth between the CF rotation 

and other treatments (Figure 4). Other studies have found that the majority of SOC increases 

due to management changes occur at or near the surface. A study looking at the interaction 

between fertilization and no-till versus mouldboard plowing found only detectable differences 

in top 20 cm, and not when looking at profile to 60 cm (Poirier et al., 2009). Luo et al. (2010), in a 

meta-analysis of 69 studies, found that, on average, adoption of no till increased SOC 
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accumulation in the surface 30 cm. When depths greater than 40 cm were considered, the total 

SOC content was almost stable. Other work has found that the magnitude of SOC changes with 

management is depth-dependent (Conant et al., 2017), with an average increase of 23% in the 

surface 20 cm, and 12% lower in soil profiles. Overall the results are comparable in this study, 

with high spatial resolution measurements identifying increases in SOC to depths of 11 cm or 15 

cm for the AE and CF treatments, depending on the conventional management practice.   

The addition of TN to the soil was also largely concentrated in the topsoil, with the same 

pattern as with SOC, and an increase in TN was associated with increased spatial aggregation of 

TN.  Previous work looking at the spatial aggregation of TN found on average TN more 

aggregated than SOC (Sorenson et al., 2018). However, that was not observed in this study, 

which may be because a narrower range of soil types were investigated. The increase in TN 

being higher in the topsoil compared to the subsoil is consistent with other studies. Research in 

Saskatchewan, Canada found that soil cultivation led to decreases in SOC and TN, particularly 

in the light fraction. These effects were strongest in the top 5 cm compared to deeper depth 

intervals (Malhi et al., 2003). Contrary to the findings in this study, a study in Northwest China 

did not find increased TN after conversion from annual crops to alfalfa, but did find an increase 

in particulate organic matter nitrogen (Su, 2007). However, that study was conducted four years 

after conversion to alfalfa, which may have been insufficient time for increases in TN to be 

detectable.  
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The results from this study indicate that the AE and CF rotations lead to similar 

increases in SOC compared to continuous grain or cereal-forage rotations.. The CF rotation was 

not associated with additional gains in SOC (Table 3-3) over the entire topsoil on average, with 

the CF rotation only having higher SOC concentrations in the top 3 cm.  These increases in SOC 

were concentrated in the topsoil, and particularly in the shallower depths of the topsoil (Figure 

3-4) and changes in SOC were not detectable deeper in the soil profile. It is possible that 

additions of SOC deeper in the profile may be occurring, however those additions could be 

leading to microbial stimulation and a loss of older stabilized carbon (Fontaine et al., 2007). The 

mechanisms associated with priming effects, namely either microbial nitrogen mining or 

stochiometric decomposition effects, has been observed in controlled laboratory studies (Chen 

et al., 2014).  Other research has found mixed results regarding priming following the addition 

of fresh organic matter, with the need for priming effects to explain decomposition rates being 

highly dependant on the type of decomposition model being used (Cardinael et al., 2015). 

However, the high bulk density of the subsoil in these soils is likely reducing root penetration 

(Chen and Weil, 2010), and therefore the addition of SOC to the subsoil.  

Overall, the results of this study indicate that SOC and TN have increased throughout 

the topsoil in the CF and AE plots compared to the CG and the unfertilized classical treatments. 

These increases were limited to the topsoil, likely due to the high bulk density and clay content 

of the subsoil characteristic of the Luvisolic soils of the study area. This does highlight the 

importance of soil type in terms of where SOC changes can be expected to occur following a 
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management change. Finally, while the CF rotation did have more SOC and TN in the top 3 to 4 

cm compared to the AE rotation, these changes were not enough to lead to a change in the 

concentration of these parameters throughout the topsoil. Based on these results, the SOC and 

TN benefits from forages can likely be gained by introducing them into a rotation and there 

appears to be limited additional benefit from converting land permanently to forage crops in 

these soils. 

3.6. Conclusions 

Imaging spectroscopy is a valuable tool for investigating the fine spatial scale distribution of 

SOC and TN in the soil profile. Based on the imaging spectroscopy results from this study, SOC 

and TN are increased due to increasing frequency of forage crops in rotations. These gains are 

concentrated in the topsoil, and within the shallower depths of the topsoil. These results have 

important management implications, because if the majority of the additional SOC is 

concentrated in the topsoil, it may be more susceptible to loss if management practices are 

reversed. Disturbance of the topsoil will affect where most of the SOC gains have occurred, and 

reintroduction of management practices such as frequent tilling could quickly lead to a loss of 

the accumulated SOC in these soils.  
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4. Monitoring organic carbon, total nitrogen and pH for field reclaimed soils 

using reflectance spectroscopy 

4.1. Abstract 

Assessing the success of soil reclamation programs can be costly and time consuming due to the 

cost of traditional soil analytical techniques. One cost-effective tool that has been successfully 

used to efficiently analyze a range of soil parameters is reflectance spectroscopy. We used 

reflectance data to analyze natural and reclaimed soils in the field, examining three key soil 

parameters: soil organic carbon (SOC), total nitrogen (TN), and soil pH. Continuous wavelet 

transforms combined with machine learning models were used to predict these parameters. 

Based on the root mean square error (RMSE), R2 value and the Ratio of Performance to 

Deviation (RPD), the Cubist model produced the most accurate models for SOC, TN, and pH. 

The RMSE, R2, and RPD values for SOC were 0.60%, 0.80, and 2.2, respectively. The TN model 

results were 0.05%, 0.81 and 2.5, and pH model results were 0.44, 0.69 and 1.8. Overall, the 

optimal model can be used to predict SOC and TN accurately, and improvements in the pH 

model are needed as pH values less than 6.5 were consistently overpredicted.  

 

Key Words: Reflectance Spectroscopy; Reclamation; Carbon; Nitrogen 
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4.2. Introduction 

Conventional methodologies for assessing soils before and after disturbance are time 

consuming and costly requiring large volumes of samples to be sent to a commercial laboratory 

for analytical measurement. There is a need for technologies that can provide accurate data in a 

more timely and cost-effective manner. In Alberta, the energy industry alone is responsible for 

soil disturbance associated with 470,000 wellsites, 39,000 other oil and gas facilities and 24 open 

pit coat mines (Alberta Energy Regulator, 2016b). In addition to the facility footprint, there is 

additional soil disturbance due to borrow pits, transmission lines, pipelines and access roads 

that are associated with these facilities.  

Evaluating the success of soil reconstruction and reclamation requires measuring key soil 

parameters. Three soil parameters of particular relevance are soil organic carbon (SOC), total 

nitrogen (TN) and soil pH, that affect a number of key functions (i.e., nutrient cycling, plant 

productivity, soil structure development) important for the development of sites undergoing 

reclamation (Blake and Goulding, 2002; Dessureault-Rompré et al., 2015; Reeves, 1997). 

Research conducted on reclaimed mine topsoil in the Athabasca Oil Sands Region has shown 

that SOC and TN can change in response to disturbance and reclamation. SOC and TN have 

been shown to increase with time, following reclamation due to development of the forest floor 

(Sorenson et al., 2011). Similar findings were observed in agricultural mine soils, reclaimed 

forests, pasture and hay land uses which tend to have lower SOC content relative to 

undisturbed soils (Indorante et al., 1981; Shrestha and Lal, 2007). Soil pH can also be affected by 
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soil disturbance. For example, in the Canadian prairies, soils underlain by carbonate rich parent 

material, which are admixed with overlying topsoil during a disturbance, can lead to an 

elevated soil pH (Anderson and Cerkowniak, 2010). Furthermore, in locations such as Alberta, 

where sulfur dust is a common by-product of the desulfurization of oil and natural gas, low pH 

can also result from the addition of elemental sulfur to soil or as a result of industrial emissions 

of sulfur dioxide (Alberta Energy Regulator, 2011).  

Unfortunately, obtaining laboratory data for SOC, TN, and pH can be costly and time 

consuming, which can serve as a barrier to reclamation and monitoring programs. More 

affordable options include using field systems to collect reflectance spectroscopy data in a rapid 

and non-destructive manner. Reflectance spectroscopy has been used to predict SOC, TN and 

pH in a number of studies (Bartholomeus et al., 2008; Ben-Dor and Banin, 1995; Chang et al., 

2001; Ge et al., 2014; Gomez et al., 2008b; McBratney et al., 2006; Rossel et al., 2010). SOC has 

been measured with error rates as low as 1.5 g/kg on dried intact soil cores and on samples 

ranging from 0.1% to 10.4% TOC (Doetterl et al., 2013; McCarty et al., 2002). While work 

conducted in the Canadian provinces of Manitoba and Ontario has successfully shown that 

reflectance spectroscopy can be used to predict SOC and TN (Martin et al., 2002; Xie et al., 2011), 

there is a lack of information on the use of reflectance spectroscopy on Canadian soils and more 

specifically, Alberta soils. 

The processing of soil spectral data has focused on using partial least squares regressions 

(e.g. Gomez et al. 2008a, 2008b; Xie et al. 2011; Kinoshita et al. 2012) and using signal processing 
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techniques such as Savitsky-Golay smoothing, derivatives, and multiplicative scatter correction 

(e.g. He et al. 2007; Minasny et al. 2009; Doetterl et al. 2013; Nawar et al. 2016). Recently, two 

data processing techniques have been applied to spectral data and have improved the accuracy 

of model predictions. Machine learning tools have been successfully applied to spectral data 

and generated more accurate predictions than partial least squares regression models. 

Specifically, multivariate adaptive regression splines, support vector machines, and CUBIST 

models have tended to produce the most accurate predictions (Doetterl et al., 2013; Nawar et al., 

2016; Rossel et al., 2010). Additionally, the application of an alternative signal processing 

method, the wavelet transform, has improved the use of spectral soil data to accurately predict 

different soil properties (Rossel et al., 2010; Viscarra Rossel and Lark, 2009). Wavelet analyses 

can be discrete or continuous, while the continuous wavelet transform can be highly redundant, 

it is directly comparable to the original spectra and therefore manual inspection of the wavelet 

results is easier (Rivard et al., 2008). Detailed information about the application of the 

continuous wavelet transform to spectral data is available in Rivard et al. (2008). 

Overall, the main objective of this research was to determine if reflectance spectroscopy  

data collected in the field with a drill-rig mounted spectroscopy system cosuld be used to 

measure SOC, TN and pH. Specifically, this study focused on using machine learning models, 

which have been applied to soils in other regions (Doetterl et al., 2013; Rossel et al., 2010), along 

with wavelet transforms, and determining if they can be successfully applied to reflectance 

spectroscopy data from Canadian soils.   
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4.3. Materials and Methods 

Studied Soils 

 Sampling locations were selected to include a range of soil types, with variations in SOC, 

TN and pH.  Samples were collected from natural reference locations and from two common 

land disturbances in Alberta. Soil samples were collected from agricultural soils, reclaimed oil 

and gas wellsites, and reclaimed coal mines at seven sites across central and southern Alberta, 

Canada; 144 were collected from agricultural soil and 104 were collected from reclaimed soils 

(Figure 4-1). Agricultural soil samples were collected at a set of permanent agricultural plots 

established in 1929 that investigate farming practices near Breton, Alberta; at two separate 

locations near Vegreville, Alberta; and, at two locations near Taber, Alberta. Reclaimed soils 

were collected from two reclaimed coal mines, one near Paintearth, Alberta and the other near 

Edmonton, Alberta.  The remaining soil samples were collected from reclaimed oil and gas 

wellsites located near Vegreville and Taber, Alberta.  
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Figure 4-1. Location of study sites sampled using the Veris ® spectrophotometer P4000 probe in 

Alberta, Canada. Source: North American State Province Boundaries from Esri, TomTom. 

 

Spectral Measurements 

Spectral measurements were collected in-situ using a P4000 drill rig mounted spectrometer 

(Veris® Technologies, Salina, Kansas). The P4000 contact probe has a sapphire window and an 

integrated light source. Detectors for the P4000 include a 3648 element Toshiba TCD1304AP 
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Linear CCD Array and a 256 element InGaAs Linear Image Sensor G9206-02. The P4000 has a 

response range of 350-2200 nm, 384 wavelength bands and a spectral resolution of 8 nm. 

Reflectance values were calculated by adjusting the soil radiance based on the radiance 

measurement of a black and a white reference panel provided for regular calibration of the 

P4000.  Reference readings were taken when initializing the equipment and then every ten 

minutes using the integrated light source. Spectral measurements were collected every 0.15 m 

continuously throughout each borehole. Each borehole was completed to 1 meter below ground 

surface. Samples for the training datasets were collected from discrete 15 or 30 cm increments 

from the borehole at 3 or 4 sample locations. Samples were collected from A, B and C horizons 

in the profile. If samples were collected from a 30 cm interval, the two spectra were averaged for 

that training data point. If spectra collected at a borehole did not have a corresponding lab data 

point, then it was not included in the analysis.  

Laboratory Analyses 

Laboratory analyses were run on samples collected from the boreholes to generate a training 

data set. Soil samples were oven dried and then ground with a ball mill prior to laboratory 

analysis. Total carbon and TN were determined by dry combustion according to the methods 

described in Nelson and Sommers (1996) and Bremner (1996).  Samples were analyzed for total 

carbon and nitrogen on a Elementar Vario Max CNS Analyzer (Elementar Americas Inc., Mt. 

Laurel, NJ). Soil samples were analyzed for pH according to the saturated paste method 
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(McLean, 1982). In total, 248 samples were analyzed for total carbon (TC), 164 samples were run 

for TN, and 232 samples were analyzed for pH.  

Statistical Analysis 

Data Processing 

The analysis focused on two spectral ranges: (1) 700 nm and 950 nm, and (2) 1097 nm 

and 2183 nm. These spectral ranges were selected as the near infrared (NIR) and shortwave 

infrared (SWIR) regions have spectral features associated with organic carbon. Data were 

trimmed at the end of the NIR and the beginning of the SWIR region due to a low signal to 

noise ratio associated with detector switch between the NIR and SWIR regions. The end of the 

SWIR region was also removed due to noise associated with being at the edge of the detector 

range. Each band in both of these wavelength ranges was used in the model development.  Each 

spectrum was processed using continuous wavelet transforms (CWT) (e.g., Rivard et al., 2008; 

Tappert et al., 2015; Scafutto et al., 2016) using the wmtsa package in R (Percival et al., 2016). 

The CWT outputs were calculated for each spectral range using an eight scale second order 

Gaussian transform. Between 700 and 950 nm, scale four was deemed to best capture the 

spectral absorption features relating to composition and used to develop the statistical model, 

and between 1097 and 2183 nm, scale two was selected (Figure 4-2).  
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Figure 4-2. Example shortwave infrared spectral signature and Scale 2 Wavelet for an Ah 

horizon sample collected near Vegreville, Alberta. Scale 2 Wavelet is a second order Gaussian 

Wavelet Transform. The sample contains 4.14% soil organic carbon, 0.36% total nitrogen and 

has a pH of 6.6. 
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Model Development 

The spectral data was calibrated against SOC, TN and soil pH calibration data sets. All 

model development was conducted using the caret package (Kuhn et al., 2016) in R (R Core 

Team, 2018), with models previously used to predict soil parameters using spectroscopic data 

(Doetterl et al., 2013; Minasny and McBratney, 2008; Rossel et al., 2010). Models included in the 

analysis are: Multivariate Adaptive Regression Splines (Milborrow, 2016), Artificial Neural 

Networks (Venables and Ripley, 2002), Radial Basis Support Vector Machines (Karatzoglou et 

al., 2004), Partial Least Squares Regression (Mevik et al., 2015), Random Forests (Liaw and 

Wiener, 2002), and Cubist models (Kuhn et al., 2014). All models were initially run with the 

default values defined by the caret package, with the final model parameters automatically 

selected by the caret package during model training (Kuhn et al., 2016). Model parameters are 

automatically selected by the caret package during a leave-one-out cross-validation, with the 

model parameters producing the smallest root mean square error (RMSE) of cross-validation 

being selected.  

Model Evaluation 

Model accuracy was evaluated based on the RMSE, R2, and ratio of performance to 

deviation (RPD). The RPD value is the ratio of the standard deviation to the RMSE. Generally, 

RPD values greater than 2 indicate that a model can be accurately used for prediction, values 

between 1.4 and 2 are satisfactory, but improvement would be valuable, and values less than 1.4 

indicate the model has no prediction capability (Chang et al., 2001). The best model calibration 
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was determined based on the model that minimized the RMSE value. Models were created 

using the combined reclaimed and natural soil data. The cross-validation results for the natural 

and reclaimed sites were separated to investigate how well the model performed in both 

contexts.  

4.4. Results 

Soil Organic Carbon (SOC) 

SOC concentrations ranged from 0.25% to 6.14% with an average concentration of 1.93% in 

the natural background soils (Table 4-1).  SOC concentrations in the reclaimed soils ranged from 

0.43% to 4.40% and had an average concentration of 1.63% (Table 4-1). The Cubist model 

produced the lowest RMSE value (0.60%) (Figure 4-3a), followed by the random forest model 

(0.62%), multivariate adaptive regression splines (0.66%), support vector machines (0.67%), 

partial least squares regression (0.90%) and finally the artificial neural nets (1.56%) model (Table 

4-2).  The RPD values for the Cubist (2.2), random forest (2.1), multivariate adaptive regression 

splines (2.0) and support vector machines (2.0) models indicate that these models can accurately 

be used for prediction. The partial least squares regression (1.5) produced satisfactory RPD 

values, whereas the artificial neural nets (0.9) model produced results that cannot be used for 

accurate prediction of SOC. 
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Table 4-1. Soil organic carbon (SOC), total nitrogen (TN) and soil pH statistics for natural and 

reclaimed soils analyzed in this study. A total of 248 samples were analyzed for SOC, 164 

samples for TN and 232 samples for soil pH. 

Property 
Natural Reclaimed 

Mean Range Std. Dev Mean Range Std. Dev 

Soil Organic 

Carbon (%) 
1.93 0.25-6.14 1.49 1.63 0.43-4.40 1.06 

Total Nitrogen 

(%) 
0.21 0.04-0.54 0.13 0.15 0.04-0.40 0.10 

pH 7.1 5.1-8.6 0.80 7.7 5.6-8.5 0.68 

 

Table 4-2. Cross-validation results for Soil Organic Carbon prediction using reflectance 

spectroscopy data. Model results are evaluated based on the root mean square error (RMSE), 

R2, and the Ratio of Performance to Deviation (RPD). 

Model Cross-Validation Results 

RMSE R2 RPD 

Multivariate 

Adaptive Regression 

Splines 

0.66 0.76 2.0 

Artificial Neural Nets 1.56 0.01 0.9 

Support Vector 

Machines 
0.67 0.75 2.0 

Partial Least Squares 

Regression 
0.90 0.54 1.5 

Random Forest 0.62 0.78 2.1 

Cubist 0.60 0.80 2.2 
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Soil Nitrogen 

Soil nitrogen concentrations ranged from 0.04% to 0.54% in the natural background soils 

and from 0.43% to 0.40% in the reclaimed soils (Table 4-1). Natural background soils on average 

contained 0.21% TN and the reclaimed soils had an average TN content of 0.15% (Table 4-3).  

The Cubist model produced the lowest RMSE value (0.05%) (Figure 4-3b), followed by 

multivariate adaptive regression splines (0.06%), random forest (0.06%), support vector 

machines (0.06%), partial least squares regression (0.07%), and artificial neural nets model 

(0.12%). The RPD values for the Cubist (2.5), multivariate adaptive regression splines (2.1), 

random forest (2.1) and support vector machines (2.1) models indicate that they can accurately 

be used for prediction. The partial least squares regression (1.8) model was found to satisfactory 

based on the RPD value. However, the artificial neural nets (1.0) model did not accurately 

predict TN. 
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Table 4-3. Cross-validation results for Total Nitrogen prediction using reflectance spectroscopy 

data. Model results are evaluated based on the root mean square error (RMSE), R2, and the 

Ratio of Performance to Deviation (RPD). 

Model Cross-Validation Results 

RMSE R2 RPD 

Multivariate 

Adaptive Regression 

Splines 

0.06 0.75 2.1 

Artificial Neural Nets 0.12 0.20 1.0 

Support Vector 

Machines 
0.06 0.78 2.1 

Partial Least Squares 

Regression 
0.07 0.67 1.8 

Random Forest 0.06 0.78 2.1 

Cubist 0.05 0.81 2.5 
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Soil pH 

Soil pH in the natural background soils ranged from 5.1 to 8.6, with an average pH of 7.1 

(Table 4-1). The pH in the reclaimed soils ranged from 5.6 to 8.5 with an average pH of 7.7. The 

Cubist model produced the lowest RMSE value (0.44) (Figure 4-3c), followed by random forest 

(0.47) and support vector machines model (0.51). Multivariate adaptive regression splines were 

next (0.54), followed by partial least squares regression (0.68) and artificial neural networks 

(6.39). No model had an RPD value above 2.0. The cubist (1.8), random forest (1.7), support 

vector machines (1.6) and multivariate adaptive regression splines models (1.5) had RPD values 

greater than 1.4 indicating that they could satisfactorily be used for prediction. The partial least 

squares regression (1.2) and artificial neural nets (0.1) models could not be successfully used for 

prediction of soil pH.   
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Table 4-4. Cross-validation results for soil pH prediction using reflectance spectroscopy data. 

Model results are evaluated based on the root mean square error (RMSE), R2, and the Ratio of 

Performance to Deviation (RPD). 

Model Cross-Validation Results 

RMSE R2 RPD 

Multivariate 

Adaptive Regression 

Splines 

0.54 0.58 1.5 

Artificial Neural Nets 6.39 0.01 0.1 

Support Vector 

Machines 
0.51 0.60 1.6 

Partial Least Squares 

Regression 
0.68 0.31 1.2 

Random Forest 0.47 0.67 1.7 

Cubist 0.44 0.69 1.8 
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Prediction accuracy for natural and reclaimed soils 

The accuracy of the model predictions varied slightly between the natural background and 

reclaimed soils for SOC, TN and pH values (Table 4-5).  While the RMSE value for natural soil 

carbon (0.60) was slightly higher than the RMSE value for reclaimed soil carbon (0.59), the 

predicative capability for carbon on natural soils was slightly higher when compared to 

reclaimed soils.  The same pattern was also observed for nitrogen. Soil pH model results for 

reclaimed soils had a lower RMSE value and a higher RPD compared to the natural soils. 

Table 4-5. Cross-validation results from the CUBIST model for samples collected from natural 

and reclaimed soils. Model results are evaluated based on the root mean square error (RMSE), 

R2, and the Ratio of Performance to Deviation (RPD). 

Parameter CUBIST Model Cross-Validation Results 

RMSE R2 RPD 

Natural Soil Carbon 0.60 0.84 2.5 

Reclaimed Soil 

Carbon 
0.59 0.70 1.8 

Natural Soil Nitrogen 0.06 0.82 2.3 

Reclaimed Soil 

Nitrogen 
0.05 0.76 2.0 

Natural Soil pH 0.48 0.62 1.6 

Reclaimed Soil pH 0.39 0.68 1.8 
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Figure 4-3. Cross-validated predicted versus observed soil values for (a) soil organic carbon, (b) 

total nitrogen, and (c) soil pH for both natural and reclaimed soils as produced by the Cubist 

model. The solid line indicates the 1:1 line to illustrate deviations between predicted and 

measured data. 

(a) 
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(b) 

 

(c) 
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4.5. Discussion 

Overall, our results indicate that there is potential for using field spectroscopy to monitor 

reclaimed soil properties. Specifically, our models could be used to predict SOC and TN 

concentrations from field collected spectra based on the criteria outlined in Chang et al. (2001). 

For soil pH, the model is adequate for prediction at pH values above 6.5, but improvements are 

required to accurately predict lower pH values as there was consistent over prediction of pH at 

values less than 6.5 (Figure 4-3c). The pH model may be improved by using a spectrometer that 

collects spectral data to 2500 nm, as key carbonate features are found near 2336 nm (Ben-Dor 

and Banin, 1990). 

For our study, model results were comparable for natural and reclaimed soils for TN and 

soil pH (Table 4-5). The reclaimed SOC samples had a lower RPD value than the natural 

samples, and the success of the model on reclaimed soil samples could use improvement. 

Modelling results can likely be improved by obtaining more data from reclaimed sites at SOC 

concentrations above 4 percent, as the reclaimed samples had less data at these concentrations. 

The results of the Cubist models for predicting SOC and TN under field conditions were 

satisfactory and compared favourably to results from studies using dried and homogenized soil 

samples in the laboratory (Chang et al., 2001; Martin et al., 2002; Xie et al., 2011).  Our results 

compare favourably to a study in Australia that used a portable spectrometer to measure SOC 

contents in the field, as we were able to obtain a RPD value of 2.2 compared to 1.92 in the study 

in Australia (Gomez et al., 2008b). An important point about predictive modelling of reflectance 
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spectroscopy data is that a model developed with more homogenous training data sets tend to 

be more accurate with lower RMSE values, but also less transferable to new sites. Therefore, it is 

important to consider the RPD value when assessing results and not just the RMSE. Overall, this 

study using a drilling rig mounted spectrophotometer probe had comparable results to other 

laboratory and field spectroscopy studies.  

Additional work is needed to investigate methods that improve modelling results using 

field collected spectra. Variation in soil moisture in the field can have a substantial effect on 

overall reflectance. Other researchers have successful used external parameter 

orthogolonization (EPO) to correct spectra based on soil moisture variation (Minasny et al., 

2009). Initially developed to remove the effects of temperature when analyzing fruit for sugar 

contents with reflectance spectroscopy (Roger et al., 2003), EPO corrects the spectra based on 

spectral areas affected by soil moisture and then projects the spectra orthogonal to the soil 

moisture variation (Minasny et al., 2009). Further work is needed to compare results using low 

scale wavelets and EPO corrections to remove the effects of soil moisture from reflectance 

spectra. Modelling results may also be improved by using a detector that allows data collection 

up to 2500 nm, as SOC has important spectral features between 2200 and 2500 nm (Rossel et al., 

2010).  

 Improving the system to simultaneously measure carbonates, salinity and bulk density 

would increase the benefit of these tools through the dual measurement of soil chemical and 

physical parameters in the field. The measurement of carbonates using reflectance spectroscopy 
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is well established (Ben-Dor and Banin, 1990; Gomez et al., 2012; Lagacherie et al., 2008), and 

does not represent a significant technical challenge. This parameter could help inform 

reclamation practitioners of admixing, since the presence of carbonate-rich material from parent 

materials is common in reconstructed soils in the Canadian Prairies (Anderson and 

Cerkowniak, 2010). The Veris ® P4000 Spectrophotometer Probe has dipole EC contacts and a 

load cell force sensor integrated into the probe, suitable for measuring soil bulk density. 

Determining how accurately dipole EC contacts and load cell force sensors can also be used to 

measure soil salinity and bulk density in situ is necessary before deploying this system for 

reclamation monitoring.  
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5. Assessment of reclaimed soils by unsupervised clustering of proximal sensor 

data  

5.1. Abstract 

The application of soil proximal sensors on reclaimed sites presents a novel method for 

assessing the quality of reclaimed landscapes; improving assessment reliability, information 

management, and environmental assurance. One proximal sensing system that could be used to 

provide high spatial resolution measurements of soil parameters is an on-the-go optical sensor 

that collects data at two wavelengths: 660 nm and 940 nm. Proximal soil sensing data were 

collected at 27 sites, where organic matter, cation exchange capacity and soil water content were 

collected from 221 soil samples from 0 to 15 cm. The proximal soil sensor data were then 

automatically clustered using a combination of self-organizing maps and random uniform 

forests. Overall, the proximal sensor data combined with this data analysis approach created 

maps with either three or four soil zones. On average, soil zones had statistically significant 

differences in organic matter, cation exchange capacity and water content. This system could be 

used to map out zones with significant soil variation as part of reclamation monitoring, and 

then used to guide laboratory analytical sampling. Future work should focus on development 

of on-the-go reflectance spectroscopy systems to provide quantitative soil data with high spatial 

resolution.  
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5.2. Introduction 

 Evaluation and assessment of disturbed soils is required for ensuring soil quality for 

both environmental management and reclamation. The energy industry in Alberta is 

responsible for soil disturbance at over 470 000 wellsites, 39 000 other oil and gas facilities and 

24 open pit coal mines (Alberta Energy Regulator, 2016b). These primary facilities have 

additional soil disturbances because of associated development activities such as borrow pits, 

transmission lines and access roads. As per the regulatory requirements in Alberta, all sites and 

associated facilities must be eventually reclaimed and restored to a state of equivalent land 

capability (Government of Alberta, 2010). Heightened expectations from stakeholder groups 

and the public, regarding the need for more timely and comprehensive information on the 

status of provincial reclamation activities, is pressuring the government and industry to pursue 

new technologies and applications for acquiring information on the status of reclaimed sites. 

 A potential solution to the need for more timely and spatially comprehensive 

information is the use of soil proximal sensors. The potential of reflectance spectroscopy to 

measure key soil parameters such as organic carbon and total nitrogen has been extensively 

investigated  within the broader context of soil analysis (i.e. Ben-Dor and Banin 1995; Chang et 

al. 2001; Chang and Laird 2002; Rossel and Behrens 2010; Sorenson et al. 2018) and more 

specifically for reclamation monitoring (P.T. Sorenson et al., 2017).  Additionally, simpler lower 

cost two-band reflectance sensors have been explored for potential use in precision agriculture 
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for mapping changes in soil organic matter contents at high spatial resolutions (Kweon et al., 

2013; Piikki et al., 2016).  

Determining soil organic carbon is part of wellsite reclamation assessment procedures in 

Alberta (Alberta Environment, 2010). Previous work in Alberta has identified that wellsite 

construction can be associated with a decrease in soil organic carbon and overall changes in soil 

properties (Hammermeister et al., 2003). Soil bulk density has been found to be higher on a 

number of reclaimed wellsites, which in turn affects infiltration and soil water content 

(Hammermeister et al., 2003).  Soil reclamation strategies on oil and gas wellsites often focus on 

increasing soil porosity and water holding capacity (McConkey et al., 2012). Cation exchange 

capacity (CEC) is closely related to organic matter content in soil, and both parameters are 

closely tied to soil fertility (Parfitt et al., 1995). Therefore, all three of these parameters can be 

affected by construction activities, and the ability to detect changes in these parameters is 

important for monitoring if a site is moving toward reclamation success.  

 Soil proximal sensing generates large volumes of data, which necessitates the 

development of techniques to process this information into a format that facilitates decision 

making. While building site-specific calibration models with two-band optical reflectance 

sensors has met some degree of success, universal calibration equations have not been 

successfully developed so far (Kweon et al., 2013). Rather than quantitative analysis, two-band 

reflectance data could potentially be used for qualitative measurements using unsupervised 

machine learning tools. One such technique for unsupervised data analysis and dimensionality 
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reduction is self-organizing maps (Wehrens and Buydens, 2007). Self-organizing maps are 

similar to multi-dimensional scaling, but rather than trying to preserve relative distance 

between points, self-organizing maps focus on preserving the topology of the data structure, 

and concentrate more on mapping similarity rather than dissimilarity (Wehrens and Buydens, 

2007). Self-organizing maps have been used successfully to solve other challenges associated 

with complex soil data analysis, such as the assessment of soil biological quality (Mele and 

Crowley, 2008). 

 The main objective of this research was to determine if proximal sensing data collected 

with a two-band reflectance sensor with bands in the red and near-infrared could be used to 

map relative differences in key soil attributes. While the spectral features for organic matter and 

water are strongest in the short-wave infrared region, some features are present in near infrared 

region and increases in both properties decrease overall reflectance (Rossel et al., 2010). 

Specifically, this study focused on combining two unsupervised machine learning methods, 

self-organizing maps and random uniform forests, to classify soil proximal sensing data. The 

overall goal of this research is to validate automated spatial zoning of soil data to support 

reclamation assessments.   

  

5.3. Materials and Methods 

Studied Soils 
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Sampling locations included 27 sites (Table 5-1) at locations ranging from southeast of 

Calgary, Alberta to south of Lethbridge, Alberta (Figure 5-1). All sites contained disturbed and 

undisturbed soils as they consisted of reclaimed oil and gas wellsites, with the center of each 

assessed area consisting of the wellsite. An area surrounding the wellsite, which included 

undisturbed agriculture soils, was also included in the assessment area. At each site, 5 to 10 

samples were collected for laboratory analyses. In total, 221 samples were collected from the 27 

sites. Each site has samples collected from disturbed and undisturbed soils.  

 

Table 5-1. Mean values of soil and site characteristics, with  the range of values observed across 

all sites indicated in parentheses. 

Sites Organic 

matter 

content 

(%) 

Cation 

exchange 

capacity 

(meq/100g) 

Gravimetric 

water content 

(%) 

Area (ha) 

 

Slope 

(%) 

Topographic 

Position 

Index 

27 
4.54 (2.28 – 
8.27) 

27.9 (1.24 – 
71.76) 18  (8 – 29) 

14.4 (7.8 

– 27) 

2 (0 – 8) 0 (0.67 – 

0.68) 
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igure 5-1. Location of study sites sampled using the Veris ® Optic Mapper in Alberta, 

Canada. Research site locations are indicated with the red triangles. Source: © 2018 Google 

Imagery. 
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Proximal sensing data 

Proximal soil sensing data were acquired using the Veris Technologies OpticMapper®, 

which consists of a two-band reflectance sensor along with a GPS unit to collect location and 

elevation data. Reflectance data were collected by the sensor in two bands, within the red 

portion of the electromagnetic spectrum from 650 nm to 670 nm and within the near infrared 

region from 930 nm to 950 nm. A fluted coulter on the optic mapper cuts through crop residues 

and opens a slot in the soil where measurements take place. All measurements take place on the 

surface of the exposed soil in the slot. Data were collected in northeast to southwest passes 

spaced 10 m across the site. Calibration checks for the instrument were performed as per 

manufacturer specifications. Light and dark reference panels were used to check sensor 

performance prior to data collection and sensor response was in accordance to manufacturer 

specifications for each site prior to data collection. 

Laboratory Analyses 

Each of the 221 soil samples collected was analyzed for organic matter content and for CEC; 

179 of the samples were additionally analyzed for gravimetric water content.  Gravimetric 

water content was analyzed rather than volumetric water content, as previous reflectance 

spectroscopy research has demonstrated that gravimetric water content can be more accurately 

measured than volumetric water content with reflectance-based measurement methods (Ji et al., 

2016). Samples were collected the same day the proximal sensor measurements were taken. All 

soil samples were collected from a depth of 0 to 15 cm to correspond to the range of the optical 
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measurements that were collected, based on the depth of the furrow created by the fluted 

coulter. Organic matter content was determined by the loss on ignition method described in 

Nelson and Sommers (1996). CEC was quantified using the methods described in Hendershot et 

al. (2008), and gravimetric water content was determined using the method described in Topp 

et al. (2008). 

Statistical Analysis 

Data Processing 

All data processing was performed using R (R Core Team, 2018). The raw reflectance 

data and elevation point data were converted to rasters using the inverse distance weighting 

function in the gstat package of R (Pebesma, 2004). The reflectance and elevation data were then 

smoothed using a 3x3 focal median window to reduce noise using the raster package in R 

(Hijmans, 2016).  Following smoothing, the ratio of near infrared to red reflectance was 

calculated. Slope and topographic position index values were calculated from the elevation data 

using the terrain function in the raster package of R (Hijmans, 2016). 

Model Development 

For each site, a raster stack was created with a raster for each of the following 

parameters: red reflectance, near infrared reflectance, ratio of red to near infrared reflectance, 

elevation, slope, and topographic position index. The raster stack was first processed using a 

self-organizing map with the kohonen package in R (Wehrens and Buydens, 2007). A 10 by 10 

hexagonal grid topology was specified for the self organizing map. Following initial clustering 
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of the data into the self organizing map grid, final clustering into a smaller number of clusters 

was performed using an unsupervised random uniform forest in R (Ciss, 2015).  The advantage 

of this analysis is that it can be used for unsupervised clustering of data. Additionally, random 

uniform forests will identify the optimal number of clusters for the data without user 

specification of cluster numbers.  

Random uniform forests uses a multiple step approach to perform the unsupervised 

clustering. The random uniform forest first grows a forest of decision trees using random 

subsampling and random cut points according to a continuous uniform distribution, followed 

by multidimensional scaling and clustering with either k-means or hierarchical clustering (Ciss, 

2015). In this study the hierarchical clustering step was used, and the optimal number of 

clusters was automatically selected based on where the maximum lagged difference in cluster 

heights occurred. The unsupervised clustering using random forests was performed on the self-

organizing map grid cell codes, leading to a final cluster number for each grid cell and each 

associated raster cell in each grid cell. An example of the clustering results from a site are 

illustrated in Figure 5-2.  
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Figure 5-2. Results from the self organizing map and random uniform forest. The map on the 

left illustrates the results from the self organizing map. The image on the right illustrates the 

results of the random uniform forest clustering of the self organizing map results. The black 

polygon within each image illustrates the approximated area disturbed by construction 

activities.  

 

Model Evaluation 

Model performance was evaluated on the unsupervised classification results using a 

linear mixed effects model with the nlme package in R (Pinheiro et al., 2016). For each site, the 

cluster that each laboratory analytical sample was collected from was determined. The clusters 

were then relabelled from lowest to highest to correspond to the highest to lowest organic 

matter concentrations, CEC or gravimetric water content as the specific number sequence is 

randomized during the classification process. This step was necessary to allow for the 

comparison of relative effect differences among clusters across all sites. Organic matter, CEC 
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and gravimetric water content data were then scaled by subtracting the mean and dividing by 

standard deviation. This transformation permitted comparison between sites regardless of the 

differences in magnitude across sites. Mean centered data were then compiled and analyzed 

using a linear mixed effects model with site as random factor. The data were normally 

distributed and showed homogeneity of variance. Linear mixed effects models were run for 

organic matter, CEC, and gravimetric water content to test if significant differences were 

present among clusters.  

 

5.4. Results and Discussion 

The clustering exercise yielded three clusters for most sites (Table 5-2), with 26 of 27 sites 

including three clusters and only one site clustering into four clusters. The average cluster size 

was 2.40 ha compared to an average site size of 14.40 ha (Table 5-1). Soil organic matter values 

ranged from 2.28 to 8.27 percent with an average value of 4.54 percent. Overall, there was a 

significant difference among clusters in terms of their organic matter content (Overall F-value = 

22.33, p value of <0.01). Additionally, each cluster had significant differences in organic matter 

content relative to all other clusters (Table 5-3). The greatest differences in organic matter 

content was between clusters one and two, with cluster three only having slightly more organic 

matter compared to cluster two (Figure 5-3a). On average, organic matter contents in cluster one 

were 0.52 standard deviations below the mean, while cluster two included organic matter 

contents 0.15 standard deviations above the mean and cluster three included organic matter 
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contents 0.46 standard deviations also above the mean. For the one site with four clusters 

(cluster four) organic matter contents were 1.13 standard deviations above the mean.  

 

Table 5-2. Cluster numbers at each site and average cluster sizes. 

Number of 

clusters 

Number of sites Average cluster 

size (ha) 

Minimum 

cluster size (ha) 

Maximum 

cluster size (ha) 

3 26 2.4 0.02 9.4 

4 1 1.5 0.44 2.7 

  

Table 5-3. Results from the linear mixed effects model examining if significant differences exist 

between organic matter content, cation exchange capacity and gravimetric water content across 

clusters. 

Cluster Parameter 

estimate 

t-Value p-value 

Organic matter 

Intercept -0.52 -5.76 <0.01 

2 0.68 5.67 <0.01 

3 1.07 6.53 <0.01 

4 1.95 4.46 <0.01 

Cation exchange capacity 

Intercept -0.31 -2.87 <0.01 

2 0.47 2.99 <0.01 

3 0.88 4.22 <0.01 

4 1.01 1.86 0.08 

Gravimetric water content 

Intercept -0.44 -5.76 <0.01 

2 0.62 6.28 <0.01 

3 1.08 8.00 <0.01 

4 1.49 4.12 <0.01 
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The CEC ranged from 1.24 to 71.76 meq/100g with an average value of 27.90 meq/100g 

across all sites (Table 5-1). The average gravimetric water content was 18 percent with values 

ranging from 8 to 29 percent.  There was a significant difference among clusters in terms of CEC 

(F-value = 7.29 p-value<0.01) and gravimetric water content (F-value = 28.60, p-value<0.01). 

There were significant differences amongst all clusters for both parameters, with the exception 

of cluster four for CEC, which was not significantly different from cluster three (Table 5-3). On 

average cluster one had CEC values 0.31 standard deviations below the mean, CEC values for 

cluster two were 0.16 standard deviations above the mean and for cluster three 0.57 standard 

deviations above the mean (Figure 5-3b). For gravimetric water content, cluster one had average 

values 0.04 standard deviations below the mean, cluster two had average values at the mean, 

and cluster three had average values 0.25 standard deviations above the mean (Figure 5-3c).  
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Figure 5-3. Results for each unsupervised cluster across all study sites for (a) organic matter 

content, (b) cation exchange capacity and (c) soil moisture content. Values have been scaled and 

centered around the mean for each site to allow comparisons across sites with different 

magnitudes of soil values. No distribution can be provided for class 4 as only one site had four 

classes after the unsupervised cluster analysis. The circles indicate values that are 1.5 times the 

interquartile range above the third quartile or below the first quartile. 

 

(a) 
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(b) 

 

(c) 
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Previous work investigating the same sensors as the ones used in this study had been 

successful in building site-specific calibration models (Kweon et al., 2013; Piikki et al., 2016).  

However, calibration models that generalized to new areas could not be built in either of these 

two studies. In this present study, site-specific calibration models could not be successfully built 

for any of the analyzed soil parameters. Specifically, Piikki et al. (2016) used the optic mapper 

sensor with portable x-ray fluorescence and electromagnetic induction to build site-specific 

calibrations for total carbon. However, predictions for new sites were poor for total carbon,  and 

soil texture could not be modelled with any accuracy. Kweon et al. (2013) concluded that field 

specific calibrations are possible and sufficiently accurate based on leave-one-out cross 

validation results. However, they could not develop a universal calibration model. While a 

quantitative model could not be developed in our study either, our results indicated that an 

unsupervised classification approach can be used to successfully classify a reclaimed area into 

zones with different organic matter, CEC and moisture contents based on soil reflectance data 

from two distinct bands along with elevation data. A possible explanation for why a 

quantitative model could not be built for this study is that 30-40 samples were collected from 

each site in Piikki et al. (2016), and with more data collected from each site a site-specific 

calibration model may have been possible with this study. Additionally, compared to the 

Kweon et al. (2013) study, the average standard deviation in organic matter was higher in this 
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study, likely due to the presence of disturbed soils. More calibration samples are needed to 

build an accurate calibration model for these sites.  

 It is important to note that while results from the current study demonstrate that 

proximal sensor data can be used to automatically zone soil with different parameters, the 

methodological approach used does not provide any information on the direction or magnitude 

of difference among classes. Alternative sensor arrangements have been used by other 

researchers to quantitively measure soil organic carbon and other soil parameters under field 

conditions. Viscarra Rossel et al. (2017) successfully used reflectance spectroscopy and gamma 

ray attenuation to measure soil organic stocks from soil cores collected in the field. Reflectance 

spectroscopy has been combined with x-ray fluorescence  to successfully take multi-parameter 

measurements of soil (Duda et al., 2017). Additionally, field reflectance spectroscopy has been 

used under similar site conditions to successfully measure soil organic carbon and nitrogen, but 

not soil pH (Sorenson et al., 2017).  

 Construction activities have been documented to lower soil organic matter content and 

increase bulk density (Hammermeister et al., 2003). These changes in turn influence both the 

porosity of the soil along with the CEC, which is closely linked to organic matter content (Parfitt 

et al., 1995). Overall, these results show that two band reflectance measurements, along with 

elevation data, have a role to play for monitoring soil reclamation when combined with the 

appropriate data analysis techniques. While quantitative models could not be successfully built 

using the sensors in this study, automated clustering of the data allowed the identification of 
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zones with different organic matter, CEC and water contents (Table 5-3). In practice, follow-up 

investigations would be required for quantitative determination of soil organic matter, CEC and 

water content for each soil zone. This analysis could consist of either collecting samples for 

conventional laboratory analysis, or by collecting further point data using a higher spectral 

resolution reflectance spectroscopy system (P.T. Sorenson et al., 2017).  

 Ultimately, while there is value in qualitatively delineating reclaimed soils into zones to 

identify variance in key soil characteristics, quantitative measurements would be an 

improvement. Rather than using two reflectance bands, high resolution visible light near 

infrared reflectance spectroscopy could be utilized to provide quantitative measurements. Soil 

organic carbon, CEC and water content have all been shown to be successfully measurable 

using reflectance spectroscopy (Soriano-Disla et al., 2014). Point spectroscopy has been used on 

some of these sites to measure soil carbon quantitatively in-field as well (P.T. Sorenson et al., 

2017).  

5.5. Conclusion 

 The results of this study indicate that broad-band reflectance data combined with 

unsupervised classification approaches can be used to qualitatively and automatically map a 

field into soil zones with differences in organic matter, CEC and water contents. However, more 

site-specific data than were collected in this study or alterative types sensors are needed to 

quantitatively map soil organic matter content. Future work should focus on integrating 

reflectance spectroscopy sensors, rather than on two-band reflectance sensors, into a hardware 
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configuration similar to the Optic Mapper® to provide high spatial resolution quantitative 

measurements of soil parameters for reclamation monitoring. 
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6. Summary 

6.1. Objectives 

The objectives of this research were to investigate the following: 

1. To determine if shortwave infrared imaging spectroscopy could be used to measure soil 

organic carbon and total nitrogen on intact and unground samples in the laboratory for 

a variety of Canadian soil samples. Further, to use the imaging spectroscopy results to 

characterize the spatial distribution of SOC and TN at the soil aggregate scale, and 

determine if the distribution of SOC and TN varies based on soil type and horizon at 

fine spatial scales. 

2. To identify at what depth changes could be detected in SOC and TN using imaging 

spectroscopy. Specifically, following the use of different crop rotations, and if these 

changes in SOC and TN were associated with a change in the spatial distribution of 

these parameters at the same fine spatial scales.  

3. To determine if reflectance spectroscopy data collected in the field with a drill-rig 

mounted spectroscopy system could be used to measure SOC, TN and pH as part of 

reclamation assessments.  

4. To investigate if a simple two-band reflectance sensor could be used to generate 

quantitative SOC results or support reclamation assessments by successfully identifying 

different zones of soil organic matter content in reclaimed soil.  
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6.2. High Resolution Soil Organic Carbon and Nitrogen Measurement 

Imaging spectroscopy presents novel opportunities to determine the concentration of C and 

N, and the spatial distribution of these parameters at fine spatial scales. Using shortwave 

infrared imaging spectroscopy aggregation in soil organic C and N at fine scales is observable. 

Differences amongst horizons and soil orders are observable in terms of the aggregation of both 

C and N. This work indicates that imaging spectroscopy has an important role to play in 

investigating soil parameter relationships at fine scales due to the ability to collect data non-

destructively at a sub centimeter scale. 

By utilizing imaging spectroscopy, this work enabled detailed investigation of the spatial 

aggregation of SOC and TN at fine spatial scales. Specifically, TN was significantly more 

aggregated that SOC and Chernozemic soils had more aggregated SOC compared to Luvisols 

and Gleysols. The key novel contribution of this work was to illustrate that imaging 

spectroscopy can be used to measure SOC and TN in Canadian soils, and that the spatial 

relationships in these parameters can be investigated at spatial scales not possible using 

conventional techniques.  

 

6.3. Soil carbon Distribution After Introducing Forages to Cultivated Boreal Forest 

Soils 



143 

 

Gray Luvisolic soils converted to arable crop production present unique challenges 

compared to the cultivation of Chernozemic soils. The organic matter rich LFH layer begins to 

decompose following cultivation, leading to a loss in organic matter, and the high clay Bt 

horizon presents a potential barrier for deep root penetration. The introduction of forages into 

crop rotation clearly leads to an increase in soil organic carbon in the topsoil. However, the Bt 

horizon appears to limit the additions of carbon to the subsoil following the introduction of 

forages. An important consideration from these results is that any loss of topsoil due to erosion 

or management change will likely lead to losses of any gained carbon and it will not be stored 

deeper in the horizon where it is less sensitive to management change.  

Additionally, the conversion of land to permanent forages leads to an increase in carbon in 

the top 2 to 3 cm of soil, but not an increase on average throughout the full profile compared to 

introducing forages into a rotation that also includes grains and pulses. These results indicate 

that the majority of soil carbon storage benefits can likely be obtained from including forages in 

rotation, and the additional benefit of complete forage conversion is limited. This is 

advantageous for producers as a rotation that includes forages will have economic advantages 

and flexibility in most cases compared to a complete forage conversion. 

 While there has been previous investigation of these soil parameters at these research 

plots, imaging spectroscopy represented a novel way to investigate SOC and TN and the 

influence of rotation on these parameters. The fine spatial resolution data obtainable with 

imaging spectroscopy enabled an understanding of the precise depth of influence of treatment 
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effects on SOC and TN and effects on the spatial structure of these parameters throughout the 

soil profile.  

 

6.4. Reflectance Spectroscopy to Support Reclamation Assessments 

Reflectance spectroscopy presents a technological solution that makes quantitative 

assessment of soil parameters for reclamation assessment possible. However, a few key 

considerations need to be taken into account. First is the spectral resolution and range of the 

spectrometer. While key organic matter features are found below 2200 nm, a spectrometer that 

includes up to 2500 nm has clear advantages as key carbon bonds are present near 2275 nm and 

throughout the 2300 to 2500 nm range. Second, systems that can collect a high number of 

spatially referenced data points are valuable. That said, for quantitative measurements a full 

continuous spectrum that includes the entire shortwave infrared region of the electromagnetic 

spectra is desirable. This type of system allows for quantitative measurements, and the ability to 

use tools such as wavelet analysis to remove non-compositional effects from the spectra. Both of 

these factors are not possible using a simple two-band reflectance sensor.  

Overall, this work indicated that sensor data can be used to reliably collect soil parameter 

data in the field to support quantitative reclamation assessments. Also, even simple two-band 

reflectance sensors can identify zones with varying concentrations of key soil parameters, when 

combined with appropriate data analysis methods. However, for truly quantitative results a 

spectroscopy system is needed, and ideally one that collects to 2500 nm. 
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6.5. Recommendations for Future Research 

Further work is still needed to follow up the work investigating soil property changes 

following the introduction of forages into crop rotations. Increases in SOC and TN were 

restricted to the A horizon and shallow B horizon depths in the soils that were investigated. 

These soils were Luvisolic soils characterized by a Bt horizon with high clay content and bulk 

density values. The depth of influence of forage crops on SOC contents could be much deeper in 

Chernozemic soils that have a consistent clay content throughout the profile. Imaging 

spectroscopy has an important role to play in this investigation to identify the precise depth of 

influence. Imaging spectroscopy also will enable the investigation of the level of spatial 

aggregation of the SOC and how much the SOC is associated with clay, both of which provide 

valuable insight into the stability of SOC additions throughout the profile.  

This work has shown that reflectance spectroscopy can be used to successfully measure SOC 

and TN in reclaimed soils. Further research is needed to investigate the use of reflectance 

spectroscopy to measure petroleum hydrocarbon concentrations in soil in Western Canada. 

There is are over 400,000 wellsites in Alberta that will need to be reclaimed. Reflectance 

spectroscopy tools deployed in the field can reduce costs by preventing over-remediation of 

sites and reducing equipment standby time. Research is needed to determine the optimal data 

the viability and optimal data processing techniques for field measurement of petroleum 

hydrocarbons with reflectance spectroscopy.  



146 

 

Reflectance spectroscopy and imaging spectroscopy are maturing as soil sensing 

technologies. Recent advances in both the hardware and data processing techniques now make 

it possible to rapidly and non-destructively collect orders of magnitude more soil data 

compared to conventional wet chemistry techniques. By reducing the cost to collect large 

volumes of data, these tools will play an important role in improving soil management and 

conservation.  
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