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Abstract

This thesis deals with two problems on multiscale methods for elliptic equations. One is to 

discuss super-convergent techniques in multiscale methods. The other one is to deal with a 

class of nonlinear multiscale problems based on the theory of upper and lower solutions.

For many problems of fundamental and practical importance in science and engineering, 

which have multiple-scale solutions, it is well known that the calculation of numerical 

methods for these problems is very huge, even by using some multi-scale methods. 

So, it is necessary for us to find an efficient method to deal with them. In this 

thesis, superconvergent techniques are used in existing multi-scale methods to reduce the 

calculation. Furthermore, by comprehensive analysis, the order of the error estimates 

between the numerical approximation and the exact solution is verified to be improved 

reasonably.

At present, for some nonlinear problems with microstructure, there are many papers, 

based on the multiscale expansion and homogenization theory, to deal with them. But 

there is no systemic method to solve all of nonlinear partial differential equations since for 

different nonlinear problems, the multiscale expansion is different and some parameters 

are also different, which lead to the process of homogenization also being different. In this 

thesis, a systematic method based on the theory of upper and lower solution is provided. 

It can deal with a class of nonlinear problems just as that in solving linear problems. 

In addition, in the last part, numerical computations are also presented to support our 

theoretical analysis.
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Chapter 1 

Introduction

1.1 Sobolev Space

In this section, we provide some definitions of Sobolev space (see [1]) and state some 

important and useful theorems, which, for simplicity, are not proved in this thesis.

Set fl to be an open set in Rn, and T its boundary. Assume that 1(0.) is a linear space 

constructed by infinitely differentiable functions with compact support set in O, and

1(0) =  M  : ¥> e  /(#* )} .

Set I '(0 )  to be the dual space of I(O). If /  is a local Lebesgue integrable function, then 

the distribution associated with it is

< /> < £ > — /  f(x)tp(x)dx, Vip € 1(0).
Jn

Let Z" be the n times positive integer space, a  = (<*i, Q2 , a „ )  € Z", moreover define
n

|q| =  oti, then, for any u e  I '(0 ), define dnu e  I '(0 )  by
i=l

< dnu,ip >= (—1 )^  < u ,d nip >, 'iip € 1(0).

Set 1^(0 ) to be the p-times Lebesgue integrable space with norm

IMIo,p =  ( [  \u\pdx)1/p,
Jn

then for m  £ N , p e  R, 1 <  p < a, define the Sobolev space

=  {v\v € Lp(0), dPv € U ( 0), V|a| <  m}

1
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Sec. 1.2 Finite Element Method 2

with norm

IML,p,o =  ( lla “u llo,P,n)1/p. P < °°>
|a |< m

||w ||m ,oo,n =  s u p  | |d a i i | |0,oo,n, p = oo.
\a\<m

For the space FFm,p(0), define

\u\m,p,n =  ( X] ll5“u llo,p,n)1/p> p <  o o .
\a\ =m

M m ,oo.fi -  s u p  | |9 “ u||o,oo,n, P =  oo.
|o|=TO

If p = 2, the Sobolev space W m'2 is written as H m(Cl).

Theorem 1.1.1 (Imbedding Theorem) (see [1]) I fn  = 2, we have

I I H k p .n  <  C 'lM IU + i.n  P  €  [1, oo ),

IM Ilm ,oo.fi — C 'IM IIm +l.p.fi p  ~> 2.

Set Th be regular partition of Cl with elements e with size he, and define h := m ax/ie,
e€Th

then we have

Theorem 1.1.2 (Trace Theorem) (see [1])

I M M U - i .a f i  <  \Wow\\m-i/2,dn <  C |M ||m ,n>  

where C is independent o f  Cl. Especially, fo r  any e € T},, we have

I k H i m - l .d e  <  lk o ^ ||m - l/2 ,a e  <

1.2 Finite Element Method

Let Pk be the space of polynomials with degree no more than k. We define the finite 

element space to be ([4])

Vh : = { v € H ^ ( D ) :  v\e € P f e )  M e E T h},
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Sec. 1.2 Finite Element Method 3

then for any v G Vh, we have that

IM L ,p ,n  < Chl~m+n{1/p- 1/g)\\v\\l>q>n,

where e and Th are defined in section 1.1.

In addition, we also have (see [4])

\U ~  uIp\m,q,Q < Chk+1~m\u\k+l,q,Q,

where is the p-interpolation ofu , 0 < m < f c  +  l , l < f c < p .

In the following part, some important theorems are presented.

Theorem 1.2.1 (Lax-Milgram Theorem) (see [4], [2]) Let V  be a Hilbert space, a(u, v ) 

a bounded bilinear function in V, F(v) a bounded linear function in V. I f  there exists a 

constant a  > 0 such that

a(u,u) > a |M |2, Vu G V, 

then, there exists a unique u € V ,  such that

a(u,v)  — F(v),  Vi> G V,

moreover,

M l  < a
where ||.F|| is the norm o f F.

Theorem 1.2.2 (Poincare-Friedrichs inequality) (see [4]) There exists a constant c, 

independent o f LI, such that

IMIo <  C\u\ 1 , Vu G Hq(LI).

Theorem 1.2.3 (Cea Theorem )  (see [4]) I fV  is a Hilbert space, Vh is a linear subspace

in V, and u G V, Uh G 14 are the solutions o f the following equations, respectively

a(u,v) — F(v), Vv G V,

a(uh,v) =  F(v), V v e V h,
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Sec. 1.3 Multiscale problems 4

where the bilinear Junction a and the Junction F  satisfy the conditions o f Lax-Milgram 

theorem. Then there exists a constant C independent ofVh, such that

||« ~  Uh\\ < C  inf ||u -  v/i||.Vh€Vh

Theorem 1.2.4 (Strang Theorem) (see [4]) I f V  and 14 are Hilbert spaces, and u G V, 

Uh G 14. with Uh the solution o f the following problem

ah(uh, v) =  F(v),  Vu € 14,

where F  is a linear function in 14, Q-h is a bilinear function in 14 +  V. Set || • |U to be the 

norm in 14 +  V, and assume that there exists M  and a  > 0, such that

ah{u,u) > a\\u\\2h Vu € 14,

ah(u,v) < M\\u\\h ■ |M 4 Vu,u G 14 +  V,

then there exists constant C, dependent on M, and a, such that

||« -  Uhllh < C{ inf ||u -  VfcHfc +  sup
VhSYh 0^wh€Vh ll^hlU

1.3 Multiscale problems

Let C R n be an open bounded set, we introduce a differential operator A e (see [3]). 

Assume that A £ oscillates with period e. Define

Y  =  n"=0]o ,y }° [c f ln.

Let a,ij, i , j  — 1 , 2 , n,  satisfy

aij(y) £ R> aij '■ Y  — periodic, G L°°(Rn),

aij{y)£i£j — a  >  0,

where a  is a constant and the Einstein notation is used. Also, consider do, such that

do G L°° (/?"), oq : Y  — periodic,
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Sec. 1.3 Multiscale problems 5

a-o(y) >  a0 > 0.

Then, we set the operator A e to be given by

where e is a small positive parameter.

In the following part, we consider

f A c(u£) =  / ,  in Cl,
\  u£ = 0 on r  =  dCl

From homogenization theory (see [3]), we have an elliptic operator A 0, such that uE —► u 

where u is the solution of the following equation

( A°u = f ,  in Cl,
\  u = 0 o n T  K >

Then, A 0 is the homogenization operator of A e, and (1.2) is the homogenized equation. 

Let V  be a closed set in H 1(fi),

H^Sl)  C V  C H 1 (Cl).

For any u, v G Ff1(0), define

e f  \  [  e /  \  ®u i  f  e jcr(u,u) = / alAx) -— ■7— d x +  / a%uvdx,
Jn 3 dx jdx i  Jn

where

a£ij(x) =  a ^ x / e ) ,  a£(x) =  ao(x/e).

Then it can be proved that

aE(v,v) > m m (a,a0)||u ||^ i(n), Vu G H l (Cl),

with bilinear variational form

f ac(ue,v) = ( f , v )  V v e H l (Cl),
\  ue G V, U ^

where

(/>*>) =  [  fvdx,  f e L 2(Cl). 
Jn
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Sec. 1.4 Asymptotic Expansion 6

1.4 Asymptotic Expansion

For any function 4>(x, y ) , x  € Q,y € R n that is Y -periodic in the Y -direction, we denote 

<p{x, xje)  by <$>(x, y), i.e.: y =  x/s.

In order to find ue{x), we expand ue{x) as follows (see [3])

ue(x) — u0(x,x/e)  + £Ui(x,x/e) +  £2u2{x, x / e ) +  ..., (1.4)

where uj(x, y) is Y -periodic in the y-direction.

The main idea of this method is to substitute (1.4) into the original equation to determine 

the coefficient of e. Equating to the order of e on the both sides of the equation, then we 

can obtain differential equations to be satisfied by the n*.

In this method, we look on x, y as independent parameter. Then, the operator -£r-

becomes Based on this idea, A £ can be denoted as

A £ = e~2A \ +  £~1A 2 +  eA3 +  higher order terms, (1.5)

where

a 9  \ t  \  d  9  r t  \  9  la ,  =

A 9  r /  n 9  l

By (1.4) and (1.5), equation (1.1) become

AiUo — 0, (1.6)

j4]Ui +  A 2 U0  =  0, (1.7)

A 1 U2  +  A 2 U1 +  A3U0 =  / ,  ( 1 -8 )

and

A 1 U3  +  A 2 U2  +  A 3 U1 =  0 ,... (1.9)

In the following part, we will derive the homogenized operator g from (1 .6), (1.7) and (1.8).
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Sec. 1.4 Asymptotic Expansion 7

If

we see that

F{y)dy =  0, 

/  -  F, in Y,
I  4> '■ Y  — periordic, 

has a unique solution.

Set

W ( Y )  = {<p\<peH1{Y), (p- .Y-per iodic) .

For ip, let

{F,ip)y =  J  F{y)ip{y)dy,

then (1.11) becomes

{
From (1.10), we have

e W(y),
ai(<p,ip) = {F,ip)y, V ip e W (y ) .

W*(Y) = W ( Y ) / R ,

Moreover ip —> (F, ip)y = (F, ip +  c)y, Vc G .R is also linear form in IF*.

The process is as follows:

a) Solve (1.6)

From (1.10), (1.11), if x  is a parameter, then the unique solution of (1.6) is u0 = 

That is

u0{x,y) =  u{x),

b) Solve (1.7)

From (1.14), (1.7) can be reduced to

a  r 9 (  m duM u ,  =

Let N i  =  Ni(y)  be the solution of the following equation

f AiN  
\  N i  :

N j = A lVj = - - ^ a ^ y ) ,  
Y  — periodic.

(1.10)

( 1.11)

(1.12)

(1.13)

const.

(1.14)

(1.15)

(1.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.4 Asymptotic Expansion 8

Since f y  A\t)jdy = 0, from (1.10) and (1.11), we know that exists. Then the solution of 

equation (1.15) is
du

ui{x,y) = - N :>(y) —  {x) + ui{x), (1.17)

c) Solve (1.8)

Consider equation (1.8), where u2 is unknown, x  is aparameter, from (1.10) and (1.11) 

we have that if

J  (A2ui +  A 3uQ)dy = J ^ f d y =  \Y\ f ,  (1.18)

then u2 exists. Equation (1.18) is the homogenized equation we are looking for.

Since

SYMUldy = ̂  lYa‘k{y)W/V'
from(1.17), we can derive that

jYMU'dy =
then (1.18) turns into

“ M ' / y  <%  “  ^ W J dy]^  +  W \lJy °°iy)dV]U “  f - ° ' 19)

Then we can draw the conclusion that the principle of calculating the homogenized operator 

q is as follows

(1) Solve (1.16) in unit cell.

(2) Obtain A 0 by (1.19).
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Chapter 2

Superconvergent Techniques in 
Multiscale Methods

2.1 Introduction

Early papers (such as [1], [4], [6]) concentrated on multi-scale methods mainly based 

on the theory of asymptotic expansion and homogenization. Later, various different but 

related multi-scale methods were proposed, including multigrid numerical homogenization 

method ([18], [19], [27], [28]), the multiscale finite element method (MsFEM) ([21], 

[22], [16]), the heterogeneous multiscale method (HMM) ([11], [12], [13], [14]), finite 

element method based on the Residual-Free Bubble method ([7], [17], [20], [23]), wavelet 

homogenization method ([9]) and so on. Each of these methods has its own advantage in 

some special fields. As we know, the multi-grid method as a classical multi-scale technique 

achieves optimal efficiency by relaxing the errors at different scales on different grids. It 

can give an accurate approximation to the detailed solution of fine scale problems. HMM 

is a specific strategy to compute the macro-scale behavior of the system with a standard 

macro-scale scheme in which the missing micro-scale data can be evaluated concurrently 

by using the micro-scale model. It can deal with many multi-scale problems efficiently 

even for problems whose period is unknown. MsFEM can obtain large scale solutions 

accurately and efficiently without resolving the small scale details. The main idea of it is 

to, in each element, construct finite element base functions which can capture the small 

scale information. Such small-scale information is then brought to the large scales through 

the coupling of the global stiffness matrix.

10
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Sec. 2.1 Introduction 11

Although the methods above are very efficient to deal with some practical problems, 

sometimes the cost is still huge. For example, in order to simulate elliptic problems with 

non-uniformly oscillating coefficients by HMM, at least one unit cell in each element 

will be calculated to obtain the homogenized equation and grasp the information of 

microstructure, which involves many calculations if the number of elements is large. For 

some cases in which the domain and the solution are smooth enough, it is necessary for 

us to find a more efficient method or technique to reduce the needed calculation. It is 

known that, see [8], a fast technique, post-processing algorithm, has been used to analyze 

a multiscale method, which is based on asymptotic expansion. But in [8], the authors just 

analyzed elliptic problems with uniformly highly oscillatory coefficients. In practice, there 

are many multiscale problems with non-uniformly oscillating coefficients, and by using the 

post processing technique directly, it is impossible to improve the order of the error estimate 

of the whole domain if one just uses the linear interpolation in the unit cells, which have 

been simulated. For instance, under the conditions above, the error estimate of HMM for 

the i f 1-broken norm is just 0(H) .  If we use a high order interpolation technique, then 

the number of the unit cells involved in the calculation will increase greatly in HMM. So, 

it is very important to reduce the number of unit cells needed. In this chapter, we show 

that it is not necessary to choose at least one unit cell in each element for the calculation. 

We just simulate unit cells on a new mesh, which is different from the partition of the 

whole domain. The size of the former is much bigger than that of the latter. This idea 

is different from that used in HMM and some other multiscale methods. Then, by using 

high order interpolation technique for the solved unit cells, we successfully reduce the 

computational effort. Moreover, we can use the superconvergence technique to deal with 

the numerical solution of homogenized equation to improve its accuracy. Based on these 

ideas, some improved error estimates are given. In this chapter, we just investigate the 

superconvergent techniques in the homogenized equations presented in [4] and [13]. In 

fact, superconvergent technique can also be applied to some other multiscale methods. 

In addition, in this chapter, we just discuss elliptic problems. For parabolic multiscale 

problems with suitable conditions, the superconvergent technique is also valid.

In the past forty years, superconvergence for finite element methods has been an active
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research field in numerical analysis. Early papers concentrated on superconvergence at 

isolated points (see [10] et a l ). Later various type of superconvergent recoveries were 

established, either in the strict sense or in an approximate way (see [2], [3], [29], [30], [31], 

[32], [33], [24], [26] et a l). In this chapter, we just want to give a framework to demonstrate 

that superconvergent technique suited to multi-scale methods and can improve the accuracy 

efficiently. Thus, we only employ certain postprocessing techniques proposed in [24], 

[26], to improve the existing approximation accuracy. In fact, some other superconvergent 

techniques, such as the Zienkiewicz-Zhu superconvergent Patch Recovery^ZZ-SPR), can 

also be used to improve the order of error estimates of multi-scale methods . In future 

work, for some special cases in multi-scale methods, we plan to investigate ZZ-SPR or 

some other superconvergent techniques.

The outline of this chapter is as follows. In the next section, we introduce the model 

problem and provide two similar homogenized equations. Moreover, the error estimate 

between the exact solution of the original problem and the asymptotic expansion of order 

one is presented, and the estimates

ll“ e — u illi,£> ^  CVeWUoh^D

| k £ ~  <  (C 7 i* j |u 0 ||i,.D +  \/e ||U o||3,oo,£>),

are obtained.

Based on this result, we present the principal results of this chapter in section 3. The error 

estimate between the exact solution and the numerical solution of the first order multiscale 

solution corrected by postprocessing, is shown to be

| | t i e —  U £ | | l ,Z )  <  C ' ( ' \ / e | |U o | |3 , o o , £ >  +  / l fc | | u o | | l , i ?  +  ^ m | | u o | | m + i , Z j ) ,

and

l l « e - ^ l | l , t >0 ^  C , ( v ^ | | t t o | | 3 , o o 1.D i +  ^ fe| l u o | | l , . D 1

+ / f P+1||u.o||p+2,£>i +  ||5o — Up\\-SiDl).

In section 4 the superconvergent technique is extended to HMM and some useful error 

estimates are given. Moreover, from the analysis of the orders of the error estimates, we
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Sec. 2.2 A model problem and its homogenized equations 13

observe that the accuracy of the approximation is reasonably improved. In the last section, 

we discuss briefly some possible future work.

2.2 A model problem and its homogenized equations

Once again, we adopt the standard notation W m’p(D) for Sobolev spaces on D with norm 

|| • ||m ,p,D and semi-norm | • \m<p,D', W™'p =  {u  G W m’p(D) : u>\qd =  0} and denote 

W m’2(D) {W™’2(D)) by H m(D) (H™(D)) with norm || ■ \\mtD and semi-norm | • \mtD. In 

addition, c or C  denotes a positive constant independent of the sizes of the finite elements 

and micro-structure size e.

Consider the model problem:

r -V - (A (x ,f )V ii‘) =  /(x )  i n D
\  Uc\dD — 0 ’ V ' l)

where D is a bounded convex domain in R 2 with a Lipschitz boundary dD  (for simplicity, 

we only discuss the model problem in R 2, in fact, the conclusions can be extended to R d 

(d > 2), e is a small positive number,

A {x , Y ) = ( a" f y .V d2 i{x ,Y )  a22{ x , Y ) )

such that A  is symmetric and

ctiti < { a ^ Y X & l  < V & ^ e R 2, i , j  = 1,2. (2.2)

Moreover, a i j ( x , Y ) , f  G L°°(D) are all Q-periodic in Y , where Y  — x/e, Q = 

(0,1) x (0,1).

We first introduce more notation. Let my{v) be the integral average of v on Q:

m Y (v) =  "j~rr [  v d Y  — [  v d Y  Vu G L 2(Q),
Ivl Jq Jq

where Q = (0,1) x (0,1) is a unit cell which is the referred domain of the micro-structure

Qt in D, and |Q| is the area of Q.

Then, the homogenized bilinear equation of (2.1) reduces to finding I7o(:e) G Hq(D) 

such that (see [4])

A0(U0,v) = ( f , v)  V u g  H ^ D ) ,  (2.3)
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Sec. 2.2 A model problem and its homogenized equations 14

where A 0 is defined by

A q(v , u ) =  (AVv,  Vu) ,  V v , u  E ffo(D), (2.4)

with

(2.5)

and N 1 is the periodic solution of the equation:

Tfir(aik(x,Y) d N -  ~ ^ 7 Qu(x >y ) in Q, f  N 3d Y  = 0. oYi oYk oYi J q
(2 .6)

For (2.6), we just want to obtain the solution N 3( x , Y ) in the Y -direction. But, 

unfortunately, there are two variables x, Y  in this equation. So, it is very difficult to 

directly simulate the solution by any numerical method since the coefficient matrix of any 

numerical scheme is not a constant matrix, but a matrix with parameter x. In order to solve 

this difficulty, many papers firstly gave a partition of the whole domain, then calculated

(2.6) on some fixed points of the given mesh and finally derived a homogenized equation 

in the same partition. For instance, in ([11]), ([15]), ([13]), cell problems are solved at each 

quadrature point of every element. Similarly, in some other papers, the vertexes of each 

element are chosen as centers of unit cells in order to solve (2.6). For these examples, we 

note that the number of unit cells calculated in the whole domain is 0 ( n 2) if the number 

of elements in one direction of the partition is n. So, it is obvious that the total calculation 

expended on the unit cells is huge if n  is very big. In order to reduce the calculation on unit 

cells, in this chapter, we use /V-interpolation technique for the obtained unit cells in a new 

mesh, which is not necessary the same as the partition of homogenized equation. That is: 

perhaps we use two different meshes to simulate the multi-scale problems. The bigger one 

is for unit cells and the other one is for the homogenized equation. This idea is different 

from those we have mentioned above. Under the same accuracy as the method in ([11]), 

from the following Theorem 2.2.1, it is shown that the required number of the unit cells is 

just 0 ( n ) if  we use /^-interpolation. So, it is obvious that we can reduce the calculation of 

unit cells.
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Sec. 2.2 A model problem and its homogenized equations 15

Theorem 2.2.1 Let p{x) be a function satisfying p 6 W k+1’°°(D), and let the Pk- 

interpolation o f  p(x) be denoted by Ukp{x), then it can be shown that (see [1]),

M i \ TT ( Ml -  /  0 ( H k+1- s~s) for 6 > 0, i f  k =  1,
||p{x) n fcp(x)||S)00 |  o ( H k+1~s) if k > 2. (s =  0,1)  ̂ ^

Let Th be a regular partition of D  with elements e with size he, and define h := max he.e€Th
Let Pk be the space of polynomials with degree no more than k. Then, from Theorem 2.2.1, 

we have

| | ^ ( x , y ) - n fĉ ' (x n>y ) | | li0O< c / i fc, j  =  i , 2, k >  2, (2.8)

where xn is chosen point of Th-

In addition, set Th to be another regular partition of D  with elements K  with size h^,  

and define H  := max his. We define the finite element space to be
K € T H

X h  ■= {v € Hq(D) : v\K E P\{K)  VATgTh}.

From (2.8), the homogenized bilinear equation (2.3) can be turned into

I a(x)VUo ■ Vvdx  — /  f v dx  
J D JD

where a(x) =  (a^(x)), and

dfj(x)\K = m Y ^ a y (x ,y )  - n fĉ ( x n iy ) ) ,  (2.9)

For any v , u  G X h , define the bilinear form:

= (210) 

Then the homogenized numerical solution is to obtain Uh G X h  such that

A H{UB ,v) = ( f , v) ,  V v e X H. (2.11)

Remark 2.2.1 Our main interest is the numerical approximation to (2.1). Therefore, we 

assume that the theoretical solution is reasonably regular fo r  the estimates that follow 

to apply. In particular, it is convenient for our presentation to assume N j (x ,Y)  G 

W k+1’°°(D x Q) 0=12), (k > 2).
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Sec. 2.2 A model problem and its homogenized equations 16

In the following, we give the important error estimates of this part.

Theorem 2.2.2 Let ue(x) be the solution o f the equation (2.1), let U0 be the solution o f 

(2.3), and
, . rkdU0

u\ = u0 +  eui = U0 + eN —— .
dxk

Assume that D is a smooth domain, a,ij(x,Y) £ W 1'°°{D) and f  £ L 2(D). Then (See 

[10]),

\W  ~  m il,#  ^  (2.12)

Remark 2.2.2 From Theorem 2.2.2, it is easy to see that

r\r T
||^€ — t̂ ollo.z? < IKe _  u illo,n +  < C '\/e ||tro||3,oo,n. (2.13)o xk

Assume that So is the exact solution of the following equation:

a(uo,v) := I  ( a(x)Vuo ■ V v  Jdx = /  fvdx,  Vv £ H q(D). (2.14)
K € T H J k ^  J  J d

Let N°ho be the numerical solution of N j (x0, Y ) in Y -direction, where x 0 is a fixed point. 

It is known that the contribution of the error estimate \\Nj — N Jho ||i,£) is very small relative 

to the error estimates of this part and can be neglected. So, the error || N* — N[o ||1vd is not 

considered in the following part.

Next, we will give the error estimation between u0 and So- First, we present some useful 

lemmas.

Lemma 2.2.1 Assume that N f x ,  Y)  is the solution o f (2.6), satisfying N f x ,  Y)  £ 

W k+1'°°(D) (k > 2). Let Aij(x) and aij(x) be as defined in (2.5), and (2.9), respectively. 

Then, we have

\\Aij(x) -  5 i j ( x ) ||0)OO,z) <  Chk. (2.15)

Proof: From Theorem 2.2.1, it follows that there exists a positive constant C, such that

max ||AP(x,y) -  n fĉ ( * Bly)||o,oo,ir < | |^ ‘(xB>y ) -  n fĉ (x ,y ) ||o ,00,15 < Chk.
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Sec. 2.2 A model problem and its homogenized equations 17 

Using Minkowski’s Integral Inequality, a direct calculation gives,

Lemma 2.2.2 Assume that A q(u, v) is defined as in (2.4) and satisfies the inf-sup 

condition. Then for sufficiently small h, we have: a(u,v) also satisfies the inf-sup 

condition, that is, there exists a positive constant c, such that

Proof: By using lemma 2.2.1, it can be easily shown that for all u ,v  € H q{D),

|Ao(u,v) - a ( u , v )|

=  ^ 2  \A o(u,v) - a ( u , v ) \ K
K € T h

max ||m y(aifc— (N3{x ,Y)  -  n kN J{xn, y ) ) ) ||0,oo,.R:
K€Th OYk

< max mydloifc— (NJ(x ,Y )  -  UkN^Xn,  y ) ) | | 0,oo,ir)
KSTh Oik

Q

< max m y(||oifc||o,oo,K ■ ^ r r l |N J(x, Y )  ~  HkN3(xn, F ) ||0,oo,jr)K€Th OYk
< Chk.

So, (2.15) is shown.

□

< C,̂ l|V u ||o I/r||Vw||o^
KerH

Then, for any v G H q (D) we have

OjtveHl
(2.17)

A q(u , v ) satisfies inf-sup condition, that is, there exists a constant C > 0, such that

(2.18)
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Sec. 2.2 A model problem and its homogenized equations 18

Combining the above inequalities (2.17) and (2.18), we obtain that for sufficiently small h, 

there exists a positive constant c, such that

sup > (C -  C7ifc)|M |llD > c|M|i,x>.
0 IMk-D

Then, this lemma is proved.

□

Based on the Lemma 2.2.1 and Lemma 2.2.2, we give an error estimate as follows.

Theorem 2.2.3 Assume that the conditions o f Lemma 2.2.2 are satisfied, u0 is the solution 

o f the homogenized equation (2.3) anduo is the exact solution o f  (2.14), then for sufficiently 

small h, we have

IK  — ri0||i,£> ^  C^ll^olli.D (2-19)

Proof: From Lemma 2.2.1 and Lemma 2.2.2, for sufficiently small h, we have

n ~ i, ^  \a(u0 - u 0,v)\
q |«o-«o ||i,r>  < sup -----— ---------

o itveHl llulli,r>

| f K(A(x) — a(x))Vuo • V v d x |
< ^ 2  sup

<
K e T H ° ^ v e H o IIv  II 1, /f

E  a ‘ ll”«lli.jr
K € T h 

\k\= chk\\Uo\\l,D

From the inequality above, we obtain that there exists a positive constant C, such that

I K  -  ^o||i,n  <  C7ifc|K lli,i>

This theorem is proved.

□

Rem ark 2.2.3 I f  all conditions in Theorem 2.2.3 are valid, then for sufficiently small h, 

from Remark 2.2.2 and Theorem 2.2.3, it is easy to see that

IKe — 'U'ollo.z? <  ||« £ —u 0||o,z? +  I K  —u o||o,r> ^  (C,^fe|luo ||i,n  +  \/e||uo||3,oo,D)I (2.20)
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Sec. 2.3 Superconvergent techniques in multi-scale method 19

where
fy~~"

u\ = u0 + enkw ( x n, Y ) ^ .
O X j

(2 .22)

2.3 Superconvergent techniques in multi-scale method

By the standard theory of finite element method and the Nitsche technique, it is very easy 

to obtain the following theorem.

Theorem 2.3.1 Let Uh be the numerical solution o f problem (2.11), and u0 be the exact 

solution o f the equation (2.14). Then,

From Theorem 2.3.1, the error estimate between the exact solution of (2.14) and its 

numerical approximation has been obtained. In the following, postprocessing techniques in 

[24], [26] are used to improve the accuracy of multiscale method. In this part, for simplicity, 

we just give the superconvergent error estimate on a rectangular mesh. In fact, it can be 

extended successfully to triangular mesh.

Firstly, construct a postprocessing interpolation operator 11!^, such that (see [24], [25],

I K  — U h \ [ 1,D <  C H ^ U q \ \ 2,Di (2.23)

IK  — ^ ||o ,D  < C H 2\\u0\\2,D-

[26]):

1) Combining four neighboring elements into a big element, e =  (J?=1 eu such that

n ^ o > G Qm(e), Vo; G C(e) (2.24)

where Qm is bi-Pm polynomial space.

2)

l |n s j,w -w ||i <  0 < r  <  m, 1 =  0,1; (2.25)
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3)

linSHli < C M ,  V v e v B (D),  1 =  0 , 1, (2.26)

where V H(D) is finite element space.

4 )

(2.27)

where u 1 €  V H is the finite element interpolation of to.

In the following, the result of superconvergence in the whole domain is obtained based 

on the theory of high order interpolation operators.

Theorem 2.3.2 (see [25]) Let uq be the exact solution o f  the equation (2.14), Uh , u1 be 

the finite element solution andfinite element interpolation o/uq, respectively, and satisfy:

where Tl™H satisfies (2.24), (2.25), (2.26) and(2.27).

It is often more useful and/or necessary to give some superconvergent error estimates in 

local subdomains.

Theorem 2.3.3 (See [26]) Let u0 be the exact solution o f the equation (2.14), Up , up 

be the finite element solution and finite element interpolation ofuo, respectively, D0 C C  

Di C C  D. Ifuo is smooth enough and the mesh in Di is almost uniform, then,

where p is the order o f  the finite element polynomial space, s is any non-negtive integer, 

and

\\Uh  ~  u1^  < C H a+1 'HuolU+i, a > p ,  m >  a, 1 = 0,1

where p is the order o f  the finite element polynomial space. Then,

||n %jUH -  uoh < C H Q+1~l ||5„||m+i,

IIUB -  u 'H liA , <  C ' ( ^ + 1 ||u 0 ||P+2,Ol +  ||5o  -  ^ | | - S,jDi);

IIu? -  ^ | | liOO)D0 <  C {H ^\ l n f T | A| | i2o l U 2,oo.D1 +  | |5o -  U? | | _ , A )

A = {
1, i f  p  =  1
0, i f  p >  2.
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By using the postprocessing interpolation operator, we have 

Theorem 2.3.4 (See [26]) Under the conditions o f Theorem 2.3.3, then

I ln & V "  -  20111,Do <  C (tfP+1||uo||p+2>Di +  ||5o  -  U p\\-s>Dl)] 

llnTh'U* -  Uq||\,oo,Do < C (H P+1\ ln i? |A||S0||p+2,oo,Z)l +  ||uo -  U ? \U Dl).

In the following, we retrieve the microscopic information in the whole domain from 

n 2 hU h  and give the most important results of this part.

Assume that
dv

R(v) = v  + eUkW ( x n, ¥ )  —  , (2.28)

Define

tZV =  R{IV?h Uh )\k . (2.29)

Theorem 2.3.5 Let ue be the solution o f (2.1), ue be given by (2.29). Assume that all 

conditions o f  Theorem 2.3.1 are valid. Then,

Ilu<: — < C'(Ve||'no||3,oo,£> +  hfc||uo||i,£i +  i?m||u0||m+i,£)). (2.30)

Proof: Note that on each element K ,

g  =  g n ^  +  ( A  +  e± )n  kN>{x„ , Y ) - ± . u ? Hv H

+eUkN j (xn, Y )  ■ - ^ L - n Z HUH. (2.31)

Furthermore,

du\ dun , d  d  , , dun ■. ,  d 2Un

e £ ~ d  + l te Z  + ‘  ( l " ’ Y)4  + <232)

It follows from (2.31) and (2.32) that

+ enkN j (xn,Y )  ■ ^ ^ ( n ?HUH -  5o).
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From Theorem 2.3.2, we can obtain that

||V (^  -  s ; ) | |0,x> < C\\V{T^HUH - u f ) \ \ ^ D + Ce\\u0\\2tD 

< C H m\\u4m+hD + C 4 u Q\\2,D.

Moreover,

IÎ 4 — u ll|o,£> <  C\\n%HUH — U0||o,D +  C'e||uo||ilJD 

< C H m+l\\^ \\m+1,D + Ci\\u0\\hD.

From the inequalities above, it follows that

ll“* — u llll,£> ^  C,f fm||uo||m+l,Z) +  Ce||uo||2,£>-

Combining with (2.21), it is easy to obtain (2.30). This proves Theorem 2.3.5.

□

Rem ark 2.3.1 In applications, the superconvergent error estimate in a local domain is 

sometimes more important. By the same method used in proving Theorem 2.3.5 and from 

Theorem 2.3.4, it follows that

where, vl — .

2.4 Superconvergent technique for HMM

In this section, the superconvergent technique will be successfully used in the HMM to 

reduce its calculations. First, let’s recall that the HMM scheme is as follows (see [15]). 

Consider the classical problem

11  ̂— <  C'(-\/e||uo||3loo,D1 +  ^Ikolli.Di

+ t f p+1||2o||P+2„D1 +  p o  -  U ?\\-s,Dl), (2.33)

f  - V  ■ (a£(: 
\  uc(x) =  0

(ac(x)Vue(x)) =  f ( x )  in  D  C lZd,
on x  € dD. (2.34)
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In this part, a conventional P*. finite element method on a triangulation 7 #  of element 

size H  is chosen and we just consider the case d — 2. Let A h be defined as

A h (V, V) = Y ,  \K \ E  • ^ V ) { x t), (2.35)
K€Th Xl£K

where X; and wi are the quadrature points and weights in K , K  £ 7# . In the absence of 

explicit knowledge of A h ( x ) ,  let

( W  • A h V V ) ( xi) =  ^  [  Vu,*(x) • ae(x)Vufdx, (2.36)
5 ■//«(*!)

where /a(xi) =  xi + SI, I  — [0, l]2. Here 5 is chosen such that ae restricted to h{x{) gives 

an accurate enough representation of the local variations of ae, while v\(x) is the solution 

of the problem:
- V  • (ae(x)Vuf(x)) =  0 in  h{x{), 
vf(x) — Vi{x) on dls(xi),{

where Vi is the linear approximation of V  at xi. 

Then, the HMM solution uh £ X H is defined by

A h {uh , V)  =  (/, V),  V V  £ X H. (2.38)

For problem (2.37), set wf(x) — vf(x) — VJ(x), then we have

{
—V • (ae(x)Vu;f(x)) — V ■ (ae(x)VVi(x)) in Is(xi), 
wf(x)  =  0 on dls(xi), (2.39)

Since VVj(x) is constant, if Af -(x) satisfy:

{
- V  • (ae(x)V7V|(x)) -  ^ ( a ^ ) ( x ) ,  in Is(x), 
iVJ(x) =  0 on dls(x),

where Is(x) =  x  +  51, then

wf(x) = N ] ( x ) ^ ^ - .

It follows that

uf(x) =  Vi(x) + N ] ( x ) ^ j &  (2.41)

Let Th, h be defined as in section 2. Assume that N^(x) £ W k+1'°°(D), then from Theorem 

2.2.1, we have

\\N]{x) -  UkN](x)\\hoo < Chk, j  =  1,2, k >  2. (2.42)
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Set

A h (V, V)  =  Y ,  \R \ E  • A h V V ) ( xi), (2.43)
K€Th X; eK

where

( W  ■ -4j*W )(xi) =  -Jt [  V5?(x) • ae(x)Vuf(x)dx, (2.44)
■>/*(*,)

and

t?(x) =  V (̂x) +  n fci v ; ( x ) ^ ^ .  (2.45)

Then, the revised HMM solution Uh £ X h is defined by

A h (Uh , V) = ( /, V), V V G  X H. (2.46)

Theorem 2.4.1 Let A h and A h be defined by (2.36) and (2.44), respectively. Then, we 

have

max || A h -  A h || <  Chk. (2.47)x i€K

Proof: From inequalities (2.41), (2.42) and (2.45), it is easy to obtain that

l|Vuf(x) -  V5f(x)||oA(lI) <  Chfc||V ^(x)||o ,/4(ll).

So, from (2.36) and (2.44), it follows that 

|' V W i x i ^ A s  -  A h ) V V ( xi)\

=  f ( ^ wi ix ) ' a,e(x)Vvf(x) — Vwf(x)  ■ a€(x)Vwf(x) )dx|
6 Jh{Xl) \  )

=  I Id f  (V w !(x ) ~  v ™f(x) ) ' ae(x)(Vvi(x) -  Vvf (x) )dx  
6 Jh{x,)

+ ;4  [  (Viof(x) -  Vfiif(x)) • ae(x)Vvel (x)dx

[  Vw\{x)  ■ ae(x)(Vv(e(x) — Vv\{x))dx |
6 Jltixi)

< C ( h 2k\ \VW(xt) ||o,j,(*,)||W (xj)||o ,/,(*,) +  ^ l|V W (x l)||o,/,(.l)||V5f||o,/,(*,)

+ h fc 11 Vulf (xj) 110,/4 (x,) 11V VJ (x) 110i j{ (x,) ̂

< C hk\\V W (x,) ||o,/,(*,)IIVV(x,)||o,/,(*,)•

The inequality above give the desired result (2.47).
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□

The homogenized equation of (2.34) is (see [15]):

{
-  V • (A(x)VU(x))  = f ( x )  in  D c  lZd, 
U (x) =  0 on x  € dD.

where A(x)  is the homogenized coefficient.

Lemma 2.4.1 Let

e(HMM) =  max ||-4.(xj) — A h (xi) ||,xt€K

then fo r  the periodic homogenization problems (see [15]),

,TTW„ v  ^ f C5, i f  6 is an inteqer m ultiple o f  e, „
e HM M  <  ’ . J . u , t  (2.49)[ C{e/o + d), i j  d is not an integer m ultiple o f e.

Theorem 2.4.2 Assume that ue is the exact solution o f the problem (2.34), t/0 is the exact 

solution o f  equation (2.48), Uq is the exact solution o f (2.46) with the space X h  replaced 

by Hq. Moreover, set ae(x) — a(x, x/e). Then we have

IK  -  UoWo'D < c ( y / i  + hk + e(HMM)), (2.50)

||ue -  u\\\hD < C(V~e + hk + e(HMM)), (2.51)

where u\ = UQ + UkN ^ ^ .

Proof: From (2.47) and (2.49), it follows that

max K (x j)  -  .Aj/(xi)|| ^  C{hk +  e(HMM)). (2.52)xi€K

In view of (2.44), (2.48) and (2.52), we have

c\\U0 - U 0\\liD\\W\\liD < \A(U0 - U 0,W)\

= \A(U0, W)  -  A(U0,W)\

= \A(U0, W ) -  ( A -  A h )(Uq, W ) -  A„(U0, W)\

= \ ( f , W ) - ( A - A H)(U0, W ) - ( f , W ) \

= \ ( A - A h )(Uq,W)\

< C ( h k +  e(HMM))||C7o||i,£>||W’||i,D-
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So,

\\Uo ~ Uo\\i,D < c(hk +  e(HMM))||t/o||i,D

Hence,

IK -  U0\\oiD < ||u6 -  U0\\o:D +  \\Uo -  Uo\Wd < C{Se + hk +  e(HMM)).

In addition, if ae(x) =  a(x, x/e),  then we have N!j(x) = eNj (x).

So, we can obtain,

<  l |c 'o - a 0||1,D +  | | w - ^ - n t j v ; ^ | | 1,D

<  Wh -  'Mh ii + I '(jv ; -  n ^ v ; ) | “ lli,D +  l|n * ,v ; ■ ~{iJ„ -  £f0)]|llD
< C (\/i + hk +  e(HMM)).

Then this theorem is proved.

□

As theorem 2.3.1, we can have

Theorem 2.4.3 Let Uh be the numerical solution o f problem (2.46), and u0 be the exact 

solution o f the equation (2.46) with X h replaced by H q(D). Then (see [1]),

||«o -  Uh \\i ,d < CH \\uoh,D, (2.53)

IK  “  Uh \\o,D <  C'i/’2 ||uo||2,L>-

Next, superconvergent techniques are applied to HMM to improve its accuracy.

Firstly, define a postprocessing interpolation operator H™H that satisfies all the conditions 

(2.24), (2.25), (2.26) and (2.27). Then the result of superconvergence in the whole domain 

follows

Theorem 2.4.4 (see [25]) Let So be the exact solution o f equation (2.46) with X h replaced 

by Hq{D), and Uh , u1 be the finite element solution andfinite element interpolation ofuo, 

respectively, assumed to satisfy:

\\UH - u 1^  < C H a+1~l\\u0\\m+1, a > p, m >  a, 1 = 0,1,
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where p is the order o f  the finite element polynomial space. Then,

||n?hUh -  u o ||i <  CHa+1~l\\uo\\m+i.

Concurrently, we have some superconvergent error estimates in local domains.

Theorem 2.4.5 (See [26]) Let Uq be the exact solution o f equation (2.46) with X h  

replaced by Hq(D),  and Up, be the finite element solution and finite element 

interpolation ofuo,  respectively, Dq CC Dy CC D. I f u ^ i s  smooth enough and the 

mesh in D \ is almost uniform, then,

IIu*  -  u^Do < C(H^\\uQ\\p+2<Dl +  ||«o -  Up\\-SiDiy,

IIu »  -  uJ||li0O,Do <  C ( i P +11 l n / f |A||5o||P+2,oo,Cl +  ||«o -  Up ||—a,Z>3.)5

where p is the order o f finite element polynomial space, s is any non-negtive integer, and

x f 1, i f  P = 1
\  0, i f  p >  2.

By using the postprocessing interpolation operator, we have 

Theorem 2.4.6 (See [26]) Under the condition o f Theorem 2.4.5, then

P ?h U? -  5 o | | i ,a ,  <  C ( ^ + 1 ||5 0 ||p+2,d1 +  ||5o  -  U” \\-s>Dl)]

lin?Hl U * -  uo||i,oo,A> <  C ( i/p+1| l n ^ |A||u0 ||p+2,oo,z)l +  ||5o -  U ?\\-.,Dl).

In the following, we retrieve the microscopic information in the whole domain from 

II2 hU h  and give the most important results of this part.

Assume that
r\

R(v) =  v +  IlkN j ( x ) - ^ ,  (2.54)

Define

u?\k  =  R{^2h Uh )\k - (2-55)

Theorem 2.4.7 Let u€ be the solution o f (2.34), uc be given by (2.55). Assume that all

conditions o f  Theorem 2.4.3 are valid. Then,

||ne — u^Ii .d <  C^-v/ellwolkoo.D +  frfcH«o||i,r> +  ■ff’n ||wo||m+i,r»)- (2.56)
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Proof: Note that on each element K ,

£  -

+ n ^ ( l ) ' a ^ n ”* y -  (2-57)
Furthermore,

S = t +£ w £ +w £ ! /  ( 2 -5 8 )

It follows from (2.57) and (2.58) that

£ (b‘ - 5 >) =  £ < ns' c,' , “ 5°) + £ n,iA'i ( i ) ' £ ( n s ' c;' ' “ So) 

+ n * « J ( x )  ■ g ^ fr .(nm uit -  SW- 

From Theorem 2.4.4 and N f f x )  = 0(e),  it follows that

||V(ue - u e1)||0,z> < C\\V(n?HUH -uo)\\0tD + Ce\\Zoh,D 

< C H m\\u0\\m+l!D + Ce\\u0\\2,D.

Moreover,

l|“ * — uillo,u < C\\U^h Uh -  u0 ||o,z) +  Ce||uo||i,t> 

< C H m+1 ||u0||m+1)I) +  Ce||5o||i,D.

From the inequalities above, it follows that

—  u l l l l , i )  ^  C H m \\uo\\m+i<D +  Ce\\uQ^2,D- 

Combining with (2.51), it is easy to obtain (2.56). This proves Theorem 2.4.7.

□

Remark 2.4.1 In some cases, the superconvergent error estimate in a local domain is 

more important. By the same method as in Theorem 2.4.7 and from Theorem 2.4.6, it 

follows that

||ue — r^Hi.Oo ^  CX-v/elluolkocvDi +  ^fc|luo||i,r>i

+H p+1\\u0\\p+2 ,d1 + P o  — Up\\-SiDl), (2.59)

where, IT =  n
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2.5 Discussion

In this chapter, we have discussed superconvergent techniques in multi-scale methods, 

especially in HMM. For simplicity, we assumed that the conditions of the model problems 

are smooth enough to derive the reasonable error estimates. In practical problems, some of 

these conditions can’t be satisfied. But we can still use this method by some other retrieving 

techniques, such as error expansion and defect correction. In the future work, we plan to 

do some research on its application in practical problems.
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Chapter 3

A Multiscale Method for Semi Linear 
Elliptic Equations

3.1 Introduction

It is well known that nonlinear problems with microstructure occur in many scientific 

and engineering applications. These include: material science, porous media, turbulent 

transport in high Reynolds number flows, etc. These problems are characterized by a 

great number of spatial and time scales, consequently it is difficult to simulate the solution 

numerically using standard finite element methods. In recent years, approaches for solving 

nonlinear equations by multiscale finite element methods or multiscale finite volume 

methods based on the homogenization method have been studied extensively, see [2], [3],

[4], [5], [6 ], [7], etc. In these papers, the first step is to find an efficient homogenization 

of the original problem. It is know that it is difficult to find the homogenization equation 

for complex nonlinear systems. Furthermore, for different problems, the homogenization 

equations are different. In this paper, we present an efficient multiscale finite element 

method, based on the theory of upper and lower solutions, which reduces the solution of 

the original nonlinear problems to that of a finite calculable number of linear equations, 

thus bypassing the difficulties of dealing with the nonlinear case. Furthermore the method 

can be used to find, for example, positive solution for problems that also admit the zero 

solution. We point out that not all nonlinear problems can be treated in this manner. In 

particular, we implicitly deal with nonlinearities that are sublinear at infinity to ensure the 

existence of the upper/lower solution.

34
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Finally, we explicitly consider, for simplicity of presentation, only the situation where 

the first order corrector is connected in the e-approximation. This means that we only need 

to calculate the solution N j once. We comment that not all constants can be estimated, but 

this is no worse that the situation when homogenization is applied to linear problems, since 

as mentioned above the number of nonlinear problems can be estimated.

The outline of this paper is as follows. In the next section, we introduce the model 

problem and recall the basic theory of upper and lower solutions. In section 3, a multiscale 

method based on the method of upper and lower solutions is provided, and the error 

estimate between the exact solution and the asymptotic expansion of order one is presented. 

Based on the results provided in section 3, we present the principal results of this paper 

in section 4: the error estimates between the exact solution and the approximation of 

multiscale method are provided. Some numerical examples demonstrating our theoretical 

results are shown in Section 5. In the last section, we discuss briefly some possible 

extensions of the completion presented.

3.2 A semi linear model and the method of upper and 
lower solutions

In this paper, assume that D  is a convex bounded domain with Lipschitz continuous 

boundary. Moreover, we adopt the standard notation: W m'p(D) for Sobolev spaces on

and denote W m'2{D) (W™'2{D)) by H m(D) with norm || • ||mjo and semi-norm

| • |mi£>. In addition, c or C  denotes a positive constant independent of the sizes of the finite 

elements and micro-structure size e.

Consider the nonlinear multiscale model:

D with norm || ■ ||m,P,£> and semi-norm | ■ |m ,p,D- Set W™'p =  {a; € W m,p(D) : u>\dD = 0}

f —L eue + c(x/e)v 
\  u € \dD —  0

where U  is a symmetric operator given by:

—L eue + c(x/e)ue = f ( x ,  u£) in D
(3.1)

(3.2)
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We assume that IS is uniformly elliptic in D,  that is: <%(*) satisfies:

C & 6  <  <  C U u  i , j  =  l , 2 , . . . n ,  (3 .3)

where the Einstein notation has been used.

To simplify the technical details, we assume that D, a^,  c, f  are smooth and c > 0. The 

results hold in more general situation with obvious changes, for example: the conditions 

on /  need only be postulated in the order interval determined by the upper/lower solution, 

c could be negative (depending on the least eigenvalue of — IS with Dirichlet conditions), 

etc. We point out that all equations are to be understood in the usual work sense, and denote 

by B(-,  •) the quadratic form associated with the left hand side of (3.1).

We then recall, based on results of [9] and elsewhere:

Definition 3.2.1 A Junction u e  Ca(D) f) Hj(D)  is called an upper solution o f (3.1) i f

j  - L eu  +  c(x/e)u > f ( x ,  u) in D  
I  u\dD > 0 ’

similarly, a function u € Ca( D) f ) Hj ( D)  is a lower solution i f  it satisfies the reverse 

inequalities in (3.4).

We also observe that if u < u, we can construct solutions u, u of (3.1) (with possibly 

u — u) by considering the pointwise monotone limit of the process to the linear problems:

J  —I S u ^  +  c(x/e)uik) = / ( x ,u ^ -1)) in  D
1 (fc) i n ’
[  u i  \dD =  0

with uf*  chosen to be either u or u. In the former case, ( u, in the latter f u.

Since we need only consider /(x ,£ (x )) with £(x) in the order interval between u, u, 

we assume without loss of generality that /  satisfies a global Lipschitz condition in u with 

constant Kf .  Henceforth, we only explicitly consider the case of =  u (The often 

possibilities is treated identically), and by the solution vl of (3.1) we shall choose uc = u 

in the case of multiple solutions. It is important in the sequel to estimate ue — uik  ̂ in terms 

of k, u, u, D  and the coefficients of (3.1), but not e. We then have
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Theorem 3.2.1 Let ue solve (3.1), and solve (3.5), we then have:

l|ue - u i fc)||0,i>< l l « - 2 | |0lx>, (3-6)

and
|U,£ _ „ ( fc)|| K f y/2 ( K f \ k 1\ \u-u\ \o tD
11“  u e  I I —  / — ■ , n — r — r  I \  J / \  1 (3-7)ymin(Co, Ai) \ * \  J V AiC0

where Co is the ellipticity constant o f atj and Ai is the least eigenvalue o f the Dirichlet 

problem fo r  —L e +  c(x/e).

Proof: Observe that

B(ue -  u ? \u *  -  u<*>) =  ( /(x ,u £) -  -  «<*>). (3.8)

From the Poincare Min-Max Principle, we obtain

Ax||ue -  u f||o ,D  <  || f ( x , u ‘) -  / ( x ,u ^ -1))||o,r> <  K f \\u< -  u ^ U o ,/? .  (3.9)

Thus, ^

ll“ £ -  “ efc)llo,r> < 11“ '  -  “ llo,£> < ||« -  «||o,c- (3.10)

In the some way,

B( u€ -  u f \ v 5  -  u f ]) > Co|ue -

and,

B („ . _  „(»,„< _  „<*>, > min(° ° ’A l)ii„- -  „<‘)|i;iD.

Moreover,

\ B { u * - u ? \ u < - u ^ ) \  <
VM'-'O

^ ll/ll r pr i..e _,(fc—l-)i<  /Y-77-V Co\U ~U l >\i'D
V AiOo

< ; \ JB(u€ — u{k 1\ u c — u{k ^).
VA^Co 

So,
y mm(Ca,A1) ||u, _  ^  £  - A L | | u* -  ^ - ^ N o .c
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Thus

min(Co,Ai)||i|, _ u(t)||i .c  £  V -S llo .D .

Then result follows.

□

We observe that all the terms on the right hand side of (3.6) and (3.7) can be explicitly 

estimated, and they are independent of e. The shortcoming is that we require K f  < Ai
(k)for a meaning result. Note also that since u€, u\ are uniformly bounded in A; by the 

upper/lower solution, then u^  —> ut in i7 (D ) for any p and thus in Ca(D) for some small 

a > 0, independent of e. However, the value of a  and the constants now appear difficult to 

estimate explicitly.

3.3 A Multiscale Method Based on Upper and Lower 
Solutions

By the usual linear homogenization approach, we set in (3.5):
+OQ

fc =  0 ,1 ,2 ,... (3.11)
1=0

with Y  = f ,  treated formally as an independent variable. We thus obtain, neglecting terms 

of order e or higher,

—L€ +  c(—) =  e 2A\  +  e 1A 2  +  e°A.3 , (3.12)

with

*  -  ~ w h ( Y ) w } ’

A> = - l h {Y)t } +c(Y)-
By classic results, the linear equation:

J  —U u  + c{x/e)u> — g(x) in D
mi - n  ’ (3-13>dD  — U
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is then approximated by u  — u>0 +  euii with uiy — N k^  and N k, u>o are respectively 

solutions of:

S 5< - < n n a P >  -  ~ w ^ Y )  (314)

with N j periodic, f Q N j dY = 0, and:

{
+  m r(c)wb =  s ( s )  in  D  (315)

WO | dD —  0

with
d N \

an = m Y [aij + aik —— ). (3.16)
c'r'fe

We recall that if G L°°(Q) (this can be ensured by suitable assumptions on aik, and 

in particular, is easy to obtain in one dimension), then

| |w  — ^ | |i , jD  <  C 2 \ /e | |w o ||2 ,2 ,D-

Furthermore, note that both iVJ and the coefficients on the left hand side of (3.15) are 

independent of g(x).  It follows from the assumed smoothness of the coefficients that

||wo||2,2,D <  C3 ||<?||2 ,.D-

In summary, we have

l|w ~  w||i,d <  Ciy/e\\g\\2,D- (3-17)

The constant C4 appears difficult to estimate. It depends, in particular, on the shape of D. 

Note that (3.17) implies:

||w — wo||o,£> < Csy/e\\g\\2tD- (3-18)

by the assumption on iV-7, u 0.

Assume now that u, the supersolution, can be expanded as Uq°\x) +  e u f \ x , e )  with 

error of order y/l. Observe that this will be the case if /  is sublinear since u can be chosen 

to be a large positive constant. Note also that the subsolution does not play a role (except 

for estimates (3.6), (3.7)) in this calculation. Consider the sequence of linear problems:

, ( - L £ +  c(f)^vW = f ( x , v i k~1)) in D  ̂ ^  ^

h vW\8D = 0
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where (x ) =  (x), denotes the solution of the homogenized equation for (3.19)

if k > 1. We estimate the difference between and the solution of (3.5) as follows:

Theorem 3.3.1

\ \u(k) - v ^ \ \ hD <  C M k V~t,

fo r  some constants C and M  independent o f k, e.

Proof: We have

I I ^ - ^ I I i . d  <  C K f W u ^ - v t ^ l k D

< +  (3.20)

Now

| |U (D _  w( i ) | | liD  <  C K f W u ®  -  u»)||o.z> <  M K j y / e ,

| |u (fc_1) -  Uofc_1) llo,D <  Cy/e,

with C  independent of k  by (3.18) and the properties of / .  Put Zk = \\u ^  — H^d. Then 

(3.20) becomes

Zk < CKf{zk~i +  C>/e}

or

Zk < F {z k- 1  +  \/i}

with F  independent of k, e and z\ <  F  fe .

The result follows by induction.

□

3.4 Error estimate for the multi-scale finite element 
method

Let Th be a regular partition of D  with elements K  with size h x , and define h max hx-K€Th
Let Pk be the space of polynomials with degree no more than k. We define the finite 

element space to be

X h := {v €  flJ(D) : v\K 6 P i (K) V K e T h}.
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Let 6 Xh  be the linear finite element solution of the following equation,

M U $ , v )  = ( f ( x , u t \ v ) ,  V v e X h .  (3.21)

where A 0(-, •) denotes the form associated with the homogenized equation (3.15) and with 

=  (vQ° )̂h- We estimate the difference between U^l  and Vgk\  the solution of the 

homogenized equation for (3.19). We have

M v P )  = f { x , v {0k~1)) 

and defining r to be the solution of

-do(r) =  f ( x , v {k~1]) “  f ( x >u $ h 1))

yields

Ao(vok) ~ r )  = 

where A 0 is the homogenized operator of (3.19).

Thus

ll^ofc) -  r ~  £ ® U >  < Ch\\v{k) -  r \ \ 2,D <  Ch.

Due, once again, to the uniform boundedness of / .  We then obtain

U k) -  t ®  < C h  + K f W v ^  -  U ^ W w .

This estimate is identical inform to (3.19) with h replacing yfk, and we obtain

ll^fc) -  Cf0(Slli.x? <  C M kh.

Assume that
dv

R(v)  = v + e W ( x /e )  —  , (3.22)

where, for simplicity, we assume 7VJ has been calculated exactly.

Define

u W \ k  =  R ( U $ ) \ k . (3.23)

We observe that is discontinuous across the element face. Let a broken i f 1-norm be 

given by:

H k)\H,D = ( ] T  ||Vu<*>
\ K € T h

We then have the following theorem which is the main result of this section,
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Theorem 3.4.1 Assume that ue is the exact solution o f (3.1), is defined by (3.23), then

( S^ J ) ( § ) M J £ = ^ + W + f c ). (3.24)

with C, M  independent o f  e, h, k.

Proof:

\\ue -  5<fc)||H,D <  I K  -  U(fc)| | l ,D  +  \\u{k) -  V(fc)t!l,£> +  \\v{k) -  t f t l . D  +  ||^ lfc) -  u[k)\\HtD. 

We need only estimate ||vjfc* — u^\\h ,d -  We have

||v{fc) -  u^ \ \ h ,k  < C'lkofe) ~  ^oSlli,* +  C e d l ^ l b .K  +  \\U $\\2,K)

< C M kh + Ce.

□

3.5 A Numerical example

In this section, we illustrate with a numerical example, the accuracy of the proposed multi­

scale method for solving the semi linear problem (3.1). Let now D — [0,1] and recall 

Q =  [0,1] is the unit cell. Consider the nonlinear problem given by:

{
- ( ® ( f ) « ') ' +  «  =  l  +  I &  (0 ,1 ), (325)
u =  0, at x = 0, x = 1.

where
(x \ a ( - )  =

e 2 +  s m ( j ) '

For this case, the solutions, obtained by the standard linear finite element method based 

on upper and lower solutions, are looked on as the exact solutions, which is used to compare 

with the numerical solutions obtained by the multi-scale method. That is, we use the finite 

element method with the mesh h0 *C e to simulate the following problems:

\  ~ (a ( f  )(«<*>)')' +  »<« =  1 +  •"  (0.1). , ,  263
\  „<*> =  0, at I  =  0. x =  1. ( )

It is easy to check that f (u)  is Lipschitz continuous and a(^) satisfies (3.3). So, we can 

use the multi-scale method provided in this paper to solve (3.25). Let N  be the number of
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elements in the x-direction and M  be the number of elements in ^-direction in each unit 

cell, where £ =  x/e. Thus the mesh size in the whole domain is H  = 1/N.  For all of the 

following cases, let M  =  100. Then the convergence of this method is as follows.

case Ms-FEM FEM error
N e k N k e llo,n ||e||i,z?

case 1 30 0.004 7 5000 9 0.001580 0.147568
case 1 60 0.004 7 5000 9 0.001657 0.144240
case 1 120 0.004 7 5000 9 0.001677 0.143634

Table 1. Convergence for Ms-FEM under the condition e i f  1.

case Ms-FEM FEM error
N e k N k 1 e  0 ,D rate

case 2 30 0.02 7 5000 9 0.002591
case 2 30 0.01 7 5000 9 0.001961 0.40
case 2 30 0.005 7 5000 9 0.001533 0.36

Table 2. Convergence for Ms-FEM under the condition e <C i f  1. 

In the pictures, case 2 for e =  0.02 is given.
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In Tables 1-2 above, Ms-FEM denotes the multi-scale finite element method of this 

paper. Moreover, let e — ue — u(k\  and is as defined in Section 4. From the results 

of these two tables, we observe that in case 1 the difference of the error estimates under 

L2-norm is not big as H  become smaller, and so is it under /i^-norm. This phenomena 

demonstrates that the most important contributor in the error estimates of (3.24) is the term 

i/e, not the term hk. That is, the term of hk goes to zero quickly under a suitable condition 

as k become bigger. In table 2, H  is fixed, the order of the error estimate is around |  as e 

become smaller. It proves that this rate is consistent with the order estimate of e in (3.24). 

In the following part, some pictures about the numerical results are given.

3.6 Discussion

In this chapter, we mainly discuss the multiscale method for the semi linear problems. In 

future work, we will try to apply this method to some nonlinear problems although it is 

difficult to give the error estimate for these problems.
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Chapter 4 

Conclusion

In this thesis, we mainly discuss superconvergent techniques in multiscale methods and a 

multiscale method for semi linear elliptic equations.

In Chapter 2, we successfully use superconvergent techniques to improve the efficiency 

of some multiscale methods. Moreover, we put forward a method that the points on which 

unit cells calculated are not related to the mesh of homogenized equations. So, we can 

greatly reduce the number of the unit cells needed to calculate in the practical problems. In 

addition, in this chapter, we just use a general superconvergent technique to multiscale 

method. In fact, for many practical problems, we can use different superconvergent 

techniques according to the conditions of the problems.

In Chapter 3, a multiscale method for semi linear elliptic equations is discussed. In 

this chapter, we try to find another efficient method to solve semi linear and nonlinear 

problems. That is, the first step of it is to find an iteration process to approximation the 

exact solution of the original problems based on the upper and lower solution. The second 

step is to retrieve the detailed information of unit cells. This method is same as that of 

linear problems after using iteration process. So, in this chapter, we don’t need to find the 

nonlinear asymptotic series of the original problems. Moreover, for this method, it can be 

used to some nonlinear parabolic problems under some suitable conditions.

From above, we can draw a conclusion that by the technique in Chapter 2 or the method 

in Chapter 3, some practical problems can be solved more efficiently than in the past.
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