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Abstract

Mechanism design is concerned with finding combinations of mechanical el-
ements that will perform a specified task. Optimization seeks the solutions
to a problem which realize a maximum pay-off. Applying optimization to
mechanical design finds the best solutions for design tasks.

Genetic Algorithms (GAs) are a broad class of search techniques based
on the process of natural selection. A simple GA is used to find optimal
solutions for mechanism design tasks.

An introduction to the GA is followed by performance testing of the algo-
rithm. General guidelines for its use are explored and a method for assessing
algorithm performance is tested. The GA is applied to two mechanism design
tasks where it is shown that the definition of the objective function and the
choice of input parameters is very important.

The ability of the GA to find global optimal solutions to problems with
complex solution spaces is demonstrated. Methods to gauge the success of

the method and recommendations for further applications are presented.
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Chapter 1

Introduction

1.1 Document contents

Mechanism design and optimization are two classical scientific problem areas
that have intrigued scientists and researchers for ages. Optimization has
been a concern from the times of ancient Roman engineers building complex
aquaduct systems to modern-day engineers studying things such as vehicle
ride safety. Whether the goal is to achieve a consistently accurate duct grade
for smooth water transport or come up with a new tire pattern and suspension
geometry to maximize vehicle stability, optimization is a powerful tool. It
can yield a better design than what already exists while providing insight to
how complex problems are most efficiently addressed.

Like optimization, mechanism design is, and has been, prevalent in the
sciences for ages. Coming up with new combinations of bodies, constraints
and forcing methods has been the catalyst for a large amount of scientific
development. Combining optimization and mechanism design is a natural
task, almost certainly considered when Archimedes was building the first
known water screws until the present day. Whether the optimization method
is trial and error or computer-aided logic, the task is the same: to realize the
set of parameters that describe the mechanical system which best performs
the specified task.



The intent of this study is to determine the applicability of using a sim-
ple Genetic Algorithm for mechanical design optimization tasks. A simple
Genetic Algorithm is a variant of a class of search and optimization methods
collectively known as Genetic search. All Genetic search techniques are based
on modeling the process of natural selection in a population of individuals.
Each individual is a potential solution to the problem; as the population ma-
tures and becomes stronger, better solutions to the problem are discovered.
An introduction to the Genetic Algorithm (GA) is presented in Chapter 2,
The Genetic Algorithm. After defining the basic nomenclature used, this
chapter steps through a simple example of a GA.

To understand the importance of the settings, or parameters, that the
GA uses, Chapter 3, Performance Testing attempts to find sets of input
parameters that result in efficient algorithm performance. Sets of these pa-
rameter values that result in consistently successful searches will be used as
guidelines for further experiments. A detailed look at the works of two other
researchers who have used the GA for similar problems is then considered,
focusing on the sets of parameters that they reported as being optimal ones.

Chapter 4, Four bar linkage path generation synthesis using the GA details
using the GA to find the dimensions of four bar linkages for path generation
tasks. The four bar linkage geometry needed to guide a point through dif-
ferent sets of specified locations in a plane with a minimum of tracking error
is sought. The effect of the GA input parameters, the objective function
specification and the design task complexity on algorithm performance is
considered.

Understanding some of the traits of the algorithm, such as the input pa-
rameters required and ways to formulate meaningful objective functions, the
algorithm can then be applied to a 'real’ design task. Chapter 5, Mechanical
prosthesis design using the GA details using the GA to design a simple pros-
thetic knee joint mechanism. A set of parameter values is found which yields
knee movements similar to that of human knee movements. The model com-
plexity is then heightened and a new set of parameters yielding more life-like



movement in the model is found.

Conclusions and Recommendations for using the GA as a design tool for
mechanical design problems are presented in Chapter 6. The strengths and
weaknesses of the technique are examined and recommendations for using it

and future work are presented.



Chapter 2

The Genetic Algorithm

2.1 Chapter Glossary
o GA - Genetic Algorithm
e SGA - Simple Genetic Algorithm
e F' - Individual fitness

¢ g - Function value at some point g(z)

n - Population size

P.rossover - Crossover probability

Prutation - Mutation probability

[ - Binary string length
o [, - Length of binary sub-string n

¢ - Variable discretization value



2.2 Introduction

The Genetic Algorithm (GA) is a simplistic numerical simulation of a natural
population evolving over time. In the context of an optimization problem,
each individual of the population represents a solution to the problem. The
population is subject to operators that are similar to natural evolutionary
processes. In particular, each solution has a fitness value, the solutions are
combined together in a reproductive-like process and stronger solutions con-
tribute more offspring. GAs come in many shapes and forms; the most basic,
the Simple Genetic Algorithm (SGA), will be considered here.

The SGA (Goldberg, 1989a) uses a binary string representation of an
individual, a fixed population size, fixed point parameter mapping and simple
crossover and mutation. The SGA is a powerful optimization tool, able to
find high quality solutions in vast, nonlinear solution spaces. In order to
describe it, several important terms must first be defined. The following
sections will define what an individual is, what the population is and what
are the operators employed to transform one population into the next.

2.2.1 The Individual

An individual of the GA is a possible solution to the problem considered.
Each individual, therefore, must contain information that describes the unique
properties of the individual. For example, if a GA were used to search for
a beer having the lightest color and the smallest alcohol percentage in a
collection of beers of the world, then an individual may have two important
traits that need to be represented: its color and its alcohol percentage. What
follows is a discussion of this.

The Genetic Algorithm works with a population of individuals, each is
coded to represent its distinguishing characteristics. The SGA uses a binary
string coding such as 1001011010 to describe the individual, where, for exam-
ple, the first 5 bits describe one distinctive trait and the remaining 5 describe
another distinctive trait.



Therefore the individual is completely described by a binary sequence
such as 1001011010 that can be decoded to yield its identifying characteris-
tics, or parameters. If individuals are described by many characteristics, then
the binary substrings representing each characteristic, or trait, are combined
to form the overall identifying binary string of the individual.

To illustrate this, an example using beers of the world will be considered.
If a population represents beers of the world (perhaps the beer with the
lightest color and lowest alcohol content is being searched for), then each
individual contains a description of a particular beer. If we identify beers
based solely on their color and alcohol percentage, then the binary string
identifying an individual would be composed of the binary string representing
the color followed by the binary string representing the alcohol percentage.
Each substring within the total string represents a parameter value such as
7%, or ‘light brown’. In order to translate between the binary representations
and the actual parameter values, a few things must be known, or specified,
about each parameter.

Each substring must have fixed upper and lower limits for the parameter
value. Knowing these limits and the number of bits that represent each
parameter, it is easy to translate from binary string representation to the
real value. Hence if the color descriptor of the beer individual is represented
using a 5 bit string describing parameter values from light golden to dark
brown, then the color of any beer could be one of 2° = 32 shades of brown,
where the substring 00000 is light golden in color and the substring 11111 is
dark brown. Figure 2.1 shows a schematic of this color scale representation.

Individuals are formed by simply concatenating the descriptors’ sub-
strings. Therefore with the beers of the world example, if the second de-
scriptor represents alcohol percentage using 5 bits with limits of 0% to 8%,
then we could break down two sample beers of the world as shown in Ta-
ble 2.1. The Asahi, being light in color and high in alcohol percentage, has
an alcohol substring with many high order bits set and a color substring



Light Dark
Golden Brown

000CO 4= - 11111
Color

Figure 2.1: The color scale for ‘beers of the world’ with substring represen-
tation using 5 bits.

Name Color Alcohol%
(binary representation) (substring) (substring)
Asahi Super Dry Pale golden %
(0001011101) (00010) (11101)
Newcastle Brown Chestnut brown 4%
(1110000110) (11100) (00110)

Table 2.1: The binary representation of two ‘beers of the world’.

with few high order bits set. The binary string representing the Newcastle
Brown beer is quite different, being a dark, low-alcohol percentage beer; the
substring representing color has many high order bits set while the substring
representing alcohol does not.

In this manner, the identifying characteristics of each individual are dis-
cretized to fit our classification scheme. The unique binary string depicting
our solution is one of two pieces of information that the GA knows about
each individual. The other is the fitness of the individual, or how well the
solution performs on a specified test.

The notion of fitness is central to the workings of the GA. Each individual
has an associated fitness level that indicates how good of a solution it is to the
problem at hand. Individuals having different binary string representations
perform differently on the fitness tests. Those individuals with desirable
traits score well on the tests and are assigned high fitness values. Those not
having desirable traits perform poorly on the fitness tests and are assigned

low fitness scores.



In the context of our beers of the world example, the fitness of a beer
could be based simply on a taster’s preference. If, for example, if the judging
panel was populated with young Canadian beer drinkers accustomed to light,
crisp beers with medium to high alcohol content, the Japanese beer, Asahi
Super Dry, would likely score higher than the British beer, Newcastle Brown.
The higher score for the Asahi beer would be due to its high alcohol content
and light color, which is similar to a typical Canadian beer. The British beer,
having a low alcohol content and dark color would likely score lower due to
its unfamiliar characteristics.

In summary, the GA knows two things about each individual. The first
is its genetic makeup; with the SGA this is a string of binary digits. The
second is the fitness associated with the individual’s genetic makeup. These
are the only two pieces of information that the GA knows and requires of an
individual. The collection of individuals, the population, is considered next.

2.2.2 The Population

The population has several important properties that are considered through-
out the operation of the GA. The population is simply the collection of n
individuals at any point in the run of the GA. The first population is gen-
erated randomly, then, as new generations are formed from old generations,
the makeup of the population changes. In particular, the individuals in a
population in one generation (parents) are used to produce the individuals
(children) in the next generation in a manner that generally increases the
overall fitness of the new population.

The population is the object that the GA deals with on a broad scale.
The GA produces new, stronger solutions to a problem by selecting the better
solutions in one population to produce many offspring for the next popula-
tion. The maximum fitness individual in the population can be found, as
can the minimum and average fitness individuals. The individuals selected
to produce subsequent generations mix genetic material (ie: bits of their
bit strings), yielding children having the good and bad qualities of the par-

8



Figure 2.2: Sample roulette wheel for a population of six individuals. Indi-
vidual 2 has very high fitness with respect to the others, individual 4 has
very poor fitness.

ents. As this process occurs, a population of individuals with optimal fitness
emerges having near-homogeneous genetic makeup. When this occurs, the
average fitness of the population is very similar to the highest fitness in the
population - this signals that the population has converged.

2.2.3 The Operators

The GA uses two main operators as it produces new generations: selection
and reproduction. Selection dictates which individuals are chosen to pro-
duce offspring, reproduction determines how children are formed from the
individuals selected as parents.

Selection determines which individuals of a given population will be cho-
sen to produce offspring. This is done probabilistically based on the individ-
ual’s fitness level. Individuals with high fitness are given a greater probability
of being selected to produce offspring. Conversely those with low fitness are
given smaller probabilities of being selected to produce offspring. Concep-
tually this can done by setting up a roulette wheel, where the size of each
individual’s slot is determined by its fitness. A population of n individuals
results in n slots on the wheel and the wheel is spun n times to select n
‘parents’.

Figure 2.2 illustrates this procedure for a population size of six individuals



Parent 1 Parent 2

% % 10011010 11101100

Child 1 \ Child 2

L
10001100 11111010

Figure 2.3: Crossing parents to produce children. This recombines the ge-
netic material of the parents in a new manner.

(n = 6). The individuals, labeled 1 to 6, have fitness levels corresponding
to the proportion of the roulette wheel that they claim. Hence individual 2
has very high fitness and individual 4 has very low fitness. In the general
case, individuals with average fitness would be allotted 1/n of the wheel’s
circumference, hence if the wheel is spun n times, they are expected to be
selected, on average, once.

Having selected the members of the previous population that will be
parents, offspring are produced by randomly pairing members of the selected
group. Children are formed as either perfect copies of, or combinations of,
the parent’s genetic material. To do this each set of parents has their genetic
material crossed over with some probability. Crossover splits the parent
strings at the same random location into a head and a tail, as shown in
Figure 2.3. The first child is composed of the head of parent 1 and the tail
of parent 2. Its sibling is created from the tail of parent 1 and the head of
parent 2. This combining of genetic material produces new solutions to the
problem having the good and bad traits of each parent. If crossover is not
performed then the children are simply exact copies of the parents.

The final means for introducing new genetic material into future popula-
tions is by mutation. As each bit is copied from parent to child, there is a

10



small probability that that bit will mutate. With the binary representation
of an individual in the SGA, mutation involves simply flipping the bit from
either one to zero or vice versa. This serves to introduce new genetic ma-
terial in a completely random manner, thereby exploring new regions of the
solution space that may not be found using crossover alone.

2.3 A simple worked example

To illustrate the detailed workings of the SGA, a simple one variable opti-
mization problem will be considered. The parameter z will be sought that
results in the largest value g(z) for the function

g9(z) = (1 — z) * | sin(5.17z)| (2.1)

in the search interval O < z < 1. This function, shown graphically in Fig-
ure 2.4, was chosen due to its many local maxima and abrupt changes within
the solution space.

The abrupt shape of this test function was chosen purposely as traditional
gradient based optimization methods would have difficulty finding the global
optimum of this function if not given an appropriate initial guess for z. The
GA’s robust search method will be illustrated by examining its performance
for a number of generations. Performance here means equating fitness with
the function value as we are searching for the value of z which gives the
highest function value. The global optimum for this function in the specified
range is located at z = 0.094, having a value of g, = 0.904. The average
value of the function in the solution space is ggyy = 0.318.

This section will consider first how to set up the GA in terms of input
parameters and the variable discretization. How to generate an initial pop-
ulation will then be considered, followed by the generation of subsequent
populations. An analysis of the population average and maximum fitness
will then be done for increasing generations, highlighting convergence of the
algorithm.

11
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Figure 2.4: The rectified decaying sine wave test function.

2.3.1 Setting up the problem: specifics

The GA requires specification of several input parameters; all affect the
searching performance of the GA. The values used for this simple problem
are summarized in Table 2.2. With the exception of population size, these
values are typical of those found in the literature (see Goldberg (1989a) or
Mitchell (1998) for more details).

The population size of n = 10 was chosen to be deliberately small for

String Length () 6
Population Size (n) 10

P crossover 65%

P, mutation 10%
Maximum Generations 40
Convergence Criteria Fayg > 0.98F 52

Table 2.2: GA input parameters.
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demonstration purposes. The crossover probability of 65% is typical and
means that approximately two-thirds of all children are produced by com-
bining the genetic material of parents and the other one-third are exact copies
of their parents. The mutation probability of 1% is also typical, meaning that
approximately every one hundredth bit transferred from a parent to a child
is mutated. The convergence criteria means that new generations are formed
until the population average fitness, Fg,4, is more than 98% of the maximum
fitness, Fr,qz, ever found in a population. In other words, new generations
are formed until the GA has pushed all of the individuals into one or more
very good regions of the solution space. A limit of 40 is set on the num-
ber of generations allowed for convergence to occur. Runs of the GA that
haven’t met the convergence criteria within 40 generations are considered
non-converged and are terminated.

The individual string length is set at [ = 6, hence the variable z being
searched is discretized into 2% = 64 levels, the string 000000 representing
z = 0 and the string 111111 representing £ = 1. This separates the discrete
values of z by steps of size §, where

1-0
T6d-1

= 0.0159.

2.3.2 The initial population

Having specified all of the input parameters required by the GA, an initial
population can now be generated. This first population is generated by
assigning random values to each bit position of each individual. The process
of generating random bit values can be thought of as tossing a fair coin,
heads meaning 1, tails meaning 0. In this manner the initial population
should contain a rich selection of the solution space, providing an unbiased
grounds from which to begin searching.

Producing an initial population (called generation 0) for the example
problem having 10 individuals yields the population listed in Table 2.3 and
shown graphically in Figure 2.5. The table shows the bit string for each indi-

13



1.0 1
0.9 4
0.8 1

Fitness

0.7 4

06 -

05 A

04 4 Generation 0

03 4 _— — °£"’;"_ —
a2 Y /

o1 4

ao
00

Figure 2.5: The initial population (generation 0).

X

1.0

Bit Parameter Fitness Number of
Individual String Value F; Fi/ Foug Copies
1 010000 0.0317 0.4713 1.7 2
2 111010 0.3651 0.2686 0.97 1
3 011011 0.8571 0.1310 0.47 1
4 001110 0.4444 0.4115 1.48 1
5 001001 0.5714 0.1159 0.42 0
6 011011 0.8571 0.1310 0.47 0
7 100110 0.3968 0.0431 0.16 0
8 011110 0.4762 0.5102 1.84 3
9 110001 0.5556 0.2240 0.81 0
10 010000 0.0317 0.4713 1.7 2

Table 2.3: The initial population (generation 0).
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Amount

Position (6 = 0.0159) Bit Value
0 20 % § 0 0
1 2L % § 1 0.0317
2 22 x4 1 0.0635
3 ARY) 0 0
4 24 x4 1 0.2540
5 2% x & 1 0.5079

Sum = z = 0.8571

Table 2.4: Decoding the third individual of the initial population, 011011, to
find its decoded parameter value.

vidual of the initial population, along with its decoded parameter (z) value,
its fitness (F(z)) value and its relative (F(z)/Fyyg) fitness and the number
of copies that this individual contributes of itself to the next population.
Figure 2.5 shows each individual as a solid dot on top of the fitness function,
g9(z).

In order to assess the fitness of an individual, the decoded parameter
value corresponding to each binary string must be calculated. This process
is shown in Table 2.4 for individual 3 of the initial population, having a string
of 011011. The contribution of each bit position is summed to arrive at a final
parameter value. The amount that each bit position! contributes to the sum
is based on its place, where the first bit position represents the value 2°x4, the
second 2! x§ and the nth 2"~ x§. Hence the string for individual 3 is decoded
to the parameter value (2! +22+42%+2°%) x § = 54 x§ = 0.8571. The fitness of
the individual is then determined using the fitness function of Equation 2.1,
hence z = 0.8571 results in a fitness value of F(0.8571) = F; = 0.1310. A
similar procedure is used to assign fitness values to all remaining members

of the population.

INote that the bit order convention used here differs from the norm, the lowest order
bit being the leftmost bit in the string. This unusual convention is used simply because
this was the scheme used in the computer coding of the GA.
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Inspecting generation 0 shows a random sampling of the middle of the
search region and two pairs of identical individuals (1 and 10, 3 and 6) located
at the extents of the domain. The population fitness values range from a low
of Frin = 0.0431 to a high of Fi,,; = 0.5102, the average fitness value being
Fong = 0.2778. Comparing the population average fitness to the analytical
function average value, gq,y = 0.3179, indicates that this population is, on
the whole, weak. If a sufficiently large group of individuals was selected
randomly over the search domain, it would be expected that their average
fitness would be very near gs,y. This below-average population is therefore
a good point from which to begin in order to illustrate the searching power
of the GA.

2.3.3 Evolving a new population

The first evolved population (generation 1) must now be produced from the
initial population (generation 0). The sequence of steps needed to create a
new population is outlined as follows:

1. Generate a roulette wheel based on the relative fitness values of the
individuals in the previous population.

2. For a population of size n, spin the roulette wheel n times to select n
individuals for the mating pool.

3. Randomly pair individuals of the mating pool, ensuring that members
of the pool only mate once.

4. Produce offspring through crossover and mutation.
5. Evaluate the fitness of each member in the new population.

This process will now be considered for the example problem.

16



Roulette wheel selection

A roulette wheel must be assembled based on the fitness levels of each indi-
vidual in the population. Knowing the fitness of any individual, F;, and the
sum of the population fitness scores, >, F;, the amount of the circumfer-
ence, C;, of the roulette wheel allotted to one individual is

F;

=1 Fi

=1

Ci = X C, (2.2)

where C = 27 R is the circumference of the circle. In this manner individuals
with average fitness are allotted % of the roulette wheel.

Setting the wheel up in this manner, the probability of a random spin
selecting a given individual is directly proportional to the fitness of the in-
dividual. Those individuals with higher fitness values encompass a greater
portion of the wheel and hence have a greater probability of contributing
more offspring to the next population, while those with lower fitness values
probabilistically contribute fewer offspring. The relative fitness value of each
individual, F;/Fy.,, is therefore an indicator of the number of copies that
the individual is expected to contribute to the following population. Those
individuals having average fitness, or a relative fitness of 1, are expected to
contribute exactly one copy of themselves to the next generation.

Selection into the mating pool

Having setup the roulette wheel, selection can now be performed by spinning
the wheel n times to generate a mating pool. This mating pool contains
all the parent strings that are used to generate the next population through
crossover and mutation. The last column in Table 2.3 shows the number
of times that each individual of the initial population was selected into the
mating pool needed to produce generation 1. Individuals selected more than
once appear as exact copies in the mating pool.

Comparing the number of times that each individual of generation 0 was
selected to its relative fitness value illustrates the biased random nature of the
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Bit Fitness  F;/ Cross

# String Value F; F,,g Copies Parents Point Mutation
1 011000 0.0952 0.9038 1.85 2 3,10 3 No
2 010011 0.7937 0.0294 0.06 0 3,10 3 No
3 011010 0.3492 0.4148 0.85 0 1,2 2 No
4 110000 0.0476 0.6579 1.35 1 1,2 2 No
5 010000 0.0317 04713 0.96 2 1,8 5 No
6 011110 0.4762 0.5102 1.04 1 1,8 5 No
7 010000 0.0317 0.4713 0.96 1 10,8 0 No
8 011110 0.4762 0.5102 1.04 1 10,8 0 No
9 001110 0.4444 04115 0.84 1 4,8 2 No
10 011110 0.4762 0.5102 1.04 1 4.8 2 No
Favg =
0.4891

Table 2.5: The first evolved population (generation 1).

GA. Individual 7, having a relative fitness value of 0.17, was not selected at
all, while individual 1, with a 1.70 relative fitness, has contributed 2 offspring
to the next generation. On the whole, individuals with large relative fitness
values contribute many copies to the mating pool while those with small

values contribute few if any.

Pairing individuals and mating

The members of the mating pool are now paired randomly and mated, involv-
ing crossover and mutation. If crossover occurs during mating, the two parent
strings are split at the same random location into head and tail sections and
the two parts swapped between individuals to create two children having a
mixture of the genetic makeup of the parents. If crossover does not occur,
the children are exact copies of the two parents. As each bit is copied from
parent to child, there is a small probability of mutation occurring. Mutation
is performed by simply flipping a one to a zero or vice versa.

This pairing of mates, crossover and mutation results in generation 1,
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Figure 2.6: The first generation.

shown in Table 2.5 and Figure 2.6. This table includes all the data of Ta-
ble 2.3 and includes the indices of the parents (from generation 0, shown
in Table 2.3) that produced each individual. As well, the bit position at
which crossover occurs (0 indicates no crossover occurring) and whether or
not mutation occurs is shown.

Considering two individuals of this new population, individuals 1 and 2, it
can be seen that members 3 and 10 of generation 0 were the parents, they were
crossed over at bit location 3 and no mutation occurred while producing the
children. Thus the two solutions to the problem known as individuals 3 and
10 of generation 0, both being rather poor solutions (F3 = 0.1310 and Fjy =
0.4713), were combined to produce a near-optimal and a very poor solution
in the following population (F; = 0.9038 and F, = 0.0294). Considering
the ‘number of copies’ column in Table 2.5, individual 1 of generation 1
then contributes 2 offspring to the mating pool for the next population while
individual 2 doesn’t contribute any copies to the next. This represents a
somewhat typical example of the GA combining genetic material in new
ways to concurrently find better solutions to the problem and eliminate poor
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ones.

Analyzing generation 1 shows a marked improvement in the population
fitness. The population average fitness has increased from 0.2778 to 0.4891.
The fitness of the strongest individual has significantly increased from Fg
= 0.5102 in the initial population to F; = 0.9038 in the first generation.
Scanning the bit string column of Table 2.5 shows that three individuals are
identical, having about average fitness. The generation process has therefore
increased the overall population fitness and found a very strong solution to
the problem. This strong individual subsequently contributes two copies (see
the ‘Copies’ column of Table 2.5) to the mating pool for the next generation.
Repeating the generation process has again shown the manner in which the
GA combines solutions to explore regions of higher fitness and avoids areas

of low fitness.

2.3.4 More generations - continuing on

Additional generations are produced in the same fashion until the conver-
gence criteria is fulfilled or the maximum number of generations is reached.
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Figures 2.7, 2.8 and 2.9 present generations 2, 3 and 4, respectively, showing
how the population average fitness steadily increases with further genera-
tions. These plots also show how the number of distinct individuals in the
population decreases. Figure 2.7 shows only five plotted solution locations,
meaning that the other five individuals of generation 2 are exact copies of
one of the plotted locations. The following generation, generation 3, has
only four distinct locations while generation 4 has just two. The increasing
homogeneity of the population’s genetic makeup signals convergence of the
algorithm.

The final, converged, population, generation 5, is shown in Figure 2.10.
All of the individuals have the same genetic makeup, describing one loca-
tion in the search region having the best fitness ever found in the search.
The convergence criteria, Fpyg > 0.98 * Fpoz, is therefore satisfied and the
algorithm is stopped. The individual having z = 0.0952, yielding a fitness
value of Fo_pg9s2 = 0.9038, is therefore the best solution to the problem.
Note that this is not the same as the analytical function maximum value of
Jmaz = 0.9041 when z = 0.0940, as the search variable discretization does

22



not allow for representing this z-value exactly.

2.3.5 Example comments

A peculiar characteristic of the GA search process should be evident from this
example. The best solution to the problem was found as early as generation
1, yet the algorithm continued to search for better sclutions to the problem,
not terminating until all (or, in a more practical problem nearly all) of the
individuals had this same genetic makeup. At the time of finding the best
solution to the problem, the population average fitness of generation 1 was
only F,,, = 0.4891; the convergence criteria had not been fulfilled so the
algorithm continued searching for new solutions. This seeming redundancy
highlights one of the unique searching abilities of the GA; as there is no
way to determine that this is in fact the best solution in the space, the GA
continues to search until the convergence criteria is met. It is this process
that may find many additional near-optimal solutions in the space, yielding
a best solution and several other very good alternatives.

Convergence occurred in this simple example problem, however, this is
not always the case. With an optimal set of input parameters (population
size, crossover and mutation probabilities) and a reasonably posed problem,
convergence on the optimal solution can be expected with some regularity. It
is also possible for the GA to converge on a sub-optimal solution (one of the
lower peaks in Figure 2.4) in the solution space if the region around the opti-
mal solution is never explored by the algorithm. Alternatively, the algorithm
may not converge, stopping only when the maximum number of generations
has been reached. It is due to these scenarios that the GA is seldom run just
once and the best solution of that run taken as the global optimum solution.
The GA should be run several times until completion, where completion is
either convergence or reaching the maximum number of generations. Consis-
tent convergence to one or more regions in the search space determines the
optimal solution and possibly several very good solutions.
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Chapter 3

GA performance testing and
applications

3.1 Chapter Glossary
e [ - Binary substring length.
e L - Total binary string length.
e n - Population size.
e P_ .5 - Crossover probability.

® P,utation - Mutation probability.

24



3.2 Introduction and Background

The basics of the GA, particularly the nomenclature and the general con-
cepts, have been considered. One area left unaddressed in the previous
chapter is the effect of the input parameters (population size, crossover and
mutation probabilities, overall string length, etc.) on the performance of
the algorithm. How certain can one be that a large enough population is
being used, or the crossover probability is high enough? This chapter will
attempt to address the relationship between the input parameters, particu-
larly the population size, crossover probability and mutation probability, on
the algorithm’s ability to find good solutions to the problems at hand.

Using the simple example problem of the previous chapter, the effect
of altering each of the population size, crossover probability and mutation
probability will be related to the algorithm’s search performance. The search
performance will be gauged on the algorithm’s ability to find global optimal
solutions in a single run. The experiments will assume that the input pa-
rameters affect algorithm performance independently, not taking into account
interactions between the input parameters. This is likely not the case, but
it is a logical first step towards considering performance factors.

Having generated data for this particular problem, the work of two other
authors will be considered. Both have used the GA for optimizing mechanical
systems similar to the current work. The perceived strengths and weaknesses
of their works will be considered. Of particular interest are the GA input
parameters that they’ve used.

3.3 Performance testing

The input parameters greatly influence the performance of the GA. Detailed
studies can be found in the literature relating the input parameter values
to algorithm performance. Some published results offer guidelines for ap-
propriate input parameters (Goldberg, 1989b). Few clear trends, however,

25



String Length ({) 7
Population Size (n) 24

F, cross 65%

F, mutation 001%
Maximum Generations 80
Convergence Criteria Foug > 0.98F 14z

Table 3.1: The ’baseline’ GA input parameters for the one variable optimiza-
tion experiment.

are evident (Grefenstette, 1986). For this reason, the influence of the input
parameters on general algorithm performance will be examined in the hope
that trends can be found to serve as a guide in future problem formulations.
The effects of varying the individual string length, population size, crossover
probability and mutation probability will be compared with the probability
of consistently finding the optimal solutions. The previous one variable opti-
mization problem will serve as the test bed. A set of parameters that should
yield good results was specified based or recommendations given in Goldberg
(1989a). The parameters were then tweaked by trial and error testing to en-
sure consistency for this particular problem. Table 3.1 shows these baseline
input parameters.

3.3.1 Individual string length

Each variable to be optimized is represented as a sequence of binary num-
bers. For problems having many variables, the individual is represented as
one string composed of smaller substrings associated with each variable, as
presented in Table 2.1 of Chapter 2. Together with the limits specified for
each variable, the substring length determines the variable increment. Larger
substrings yield more possible values for each variable, resulting in a finer
variable discretization and hence a larger search space.

Given a string composed of m variables each of substring length [, the
total string length is L = [ x m. The substrings don’t have to be of equal
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length, so one could substring could represent a parameter having two possi-
ble values (I = 1) and another could represent a substring having 256 possible
values (I = 8). A total string length of L means that the number of potential
solutions in the search space is 2 = 2™*!. Hence an experiment having 4 bits
per variable and just one variable is searching through a region of 2}*4 = 16
possible solutions. A similar experiment having 4 bits per variable and two
variables ’sees’ a landscape composed of 22%¢ = 256 possible solutions. The
substring length for each variable therefore directly influences the size of the
solution space.

Both the number of variables and the substring length are generally spec-
ified by the problem definition. For a general design problem there are a col-
lection of candidate factors, or design variables, that can be considered. Each
design variable must have an upper and lower bound specified. The substring
length for each variable is chosen to realize a suitable variable discretization,
hence the number of variables and the substring length are not considered to
be variables that can be changed to affect algorithm performance. Rather,
they are part of the problem specification and must be understood.

3.3.2 Population size

Population size greatly affects GA search performance. The population must
be large enough to adequately search the solution space, while not hindering
the progress of the algorithm. Populations that are too small do not sample
a large enough portion of the solution space, tending to converge on sub-
optimal solutions. Populations that are too large hinder the mating of high
fitness individuals required to produce higher quality offspring. As a result,
these populations converge very slowly and are therefore computationally
expensive.

The present study uses a ’baseline’ population size of 24 that yields good
performance. This was found by simple experimentation. To study the popu-
lation size effects, experiments will be run with population having from 10 to
60 individuals in 2 individual increments. For each size the algorithm will be
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Figure 3.1: Algorithm performance versus population size. Using P.,s =
65%, Pmutation = 0.01%.

run until completion 100 times. Those runs converging to the known global
optimum solution will be considered successful. Those hitting the maximum
number of generations or converging to a local maximum are considered fail-
ures. It is expected that the probability of convergence versus population
size will peak and then tail off in the chosen range.

Results of the population size variation experiment are shown graphically
in Figure 3.1. The number of times that the algorithm converged to the global
optimum solution out of 100 runs is considered to be the probability of the
algorithm converging to the global optimum in a single run. As expected,
increasing the population size increases the probability of converging on the
global best solution to a point, then falls off. Populations of between 34 to
44 individuals yield the best probability (91% to 95%) of converging on the
optimal solution in a single run. Population sizes as small as 20 individ-
uals have a high probability (83%) too, for fewer function evaluations per
generation required.
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This simple test doesn’t show a dramatic effect of population size on
algorithm performance. It does indicate that increasing population size until
a point steadily increases search performance. After this point algorithm
performance drops off. The best conclusion is that the algorithm shouldn’t
be run just once to find solutions. In practice the GA should be run several
times, the optimal solution being the best individual found in all of the runs.
A wise strategy might therefore be to run the GA several times with a slightly
smaller population size.

3.3.3 Crossover probability, P. s

Crossover probability determines how often genetic material is broken up and
recombined when parents mate to produce children. Crossover explores new
portions of the solution space by producing new combinations of existing
genetic material.

The effect of crossover on the children being produced is dependent on
the similarity of the parents’ strings. Swapping the heads and tails of two
identical parents produces two identical children. This means that two dis-
similar yet strong individuals do not necessarily produce strong offspring.
Similarly, two poor quality individuals could produce high quality offspring.
In mature populations, strong individuals are likely to be combined with one
another, thereby dominating the genetic makeup of future populations. Like
population size, few guidelines exist for specifying crossover probability.

To gauge the effect of P.,ss on algorithm performance, P.,,s will be
varied from 0.0 to 1.0 in increments of 0.05. For each value, the algorithm
will be run until completion 100 times. As with the population size tests,
those runs converging on the optimal solution within the maximum number
of generations are considered successful, all others are failures.

It is expected that some crossover is needed as a GA with no crossover
can produce (and thereby explore) new solutions to the problem by muta-
tion alone. Thus, except for the occasional mutation, the algorithm is left to
repeatedly select mates from a population identical to the initial population,
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possibly converging on the best individual of this population by slowly ex-
cluding all of the others having lower fitness from being selected as mates. A
crossover probability of 1.0 means that all unions between mates produce off-
spring by comnbining the parents’ genetic material. This means that no direct
copies of indlividuals get passed to successive generations, hence strong indi-
viduals only retain their superior makeup if they’re combined with identical
martes.

Figure 3.2 graphs the results of the P.,, variation test. As in the pre-
vious experiment, the number of times that the algorithm converged to the
global optimum solution out of 100 runs is considered the probability of the
algorithm converging to the global optimum in a single run. Surprisingly, a
significant trend is not evident with different values of Peross-

The probability of converging on the optimal solution in a single run of
the GA ranged from 74% (where P,.,5s = 0%) to 93% (where Peoss = 60%).
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This experiment indicates that running the GA with no crossover isn’t too
bad of an idea, yielding success about three-quarters of the time. This result
is interesting, but doubtful: a rate of 0% couldn’t possibly yield an aggressive
search likely required to explore new territories in a real problem. Its probable
that the test was too simple, having few local maxima and a large population
with respect to the search space.

The results indicate that the value of P, does affect algorithm per-
formance. The slightly higher performance scores around the 60% mark
reinforce, but don’t prove, the notion that a moderate crossover rate yields

acceptable performance.

3.3.4 Mutation probability, P,utation

Mutation probability determines how often genetic material is randomly dis-
turbed when parents produce offspring. This process explores new areas of
the solution space in a purely random manner. The effect of mutation on an
individual is dependent on where the mutation occurs in the individual’s bit
string: mutation in higher order bits of the individual’s substrings can sig-
nificantly change the individual’s fitness. Mutation in less significant order
bits may not change fitness significantly.

The standard references (Goldberg, 1989a) note that some mutation is re-
quired to promote exploration of new solution regions, yet too much mutation
becomes disruptive, hampering algorithm convergence. Values of P, :46i0n
from 0.01% to 2% are typical (Roston and Sturges, 1996; Kim, 1995; Segla
et al., 1998). The mutation study will therefore alter P,ytation from 0% to
2% in 0.1% increments.

Figure 3.3 plots the P, tation variation test. As in the other experiments,
the number of times that the algorithm converged to the global optimum
solution out of 100 runs is considered the probability of the algorithm con-
verging to the global optimum in a single run. Like the crossover probability
experiment, discerning trends is difficult. The probability of converging on
the global optimal solution in a single run of the GA ranged from 66% with
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no mutation to 92% with a 0.8% mutation rate.

As with the crossover probability rate tests, this experiment shows that
there is a variance of algorithm performance with the mutation rate. A small
mutation rate, slightly less than 1%, appears wise from this simple test.

3.4 Mechanical design applications

This section will consider previous applications of the GA to solving a partic-
ular type of mechanical design problem known as path generation synthesis.
Path generation synthesis problems involve finding the appropriate mech-
anism dimensions such that a point on one of the links of the mechanism
passes through several prescribed locations. In both of the works considered
the GA is being used to find the optimal combination of link lengths of a
four bar linkage such that a point on the coupler link of the four bar passes
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Figure 3.4: Four bar linkage with fixed pivots A,, B,, moving pivots A, B
and precision point P. Points P; are specified points, E, is tracking error for
second prescribed point.

through the set of target points with a minimum tracking error. A typical
four bar linkage and its coupler curve is shown in Figure 3.4, plotted over
a set of prescribed target points. The shortest distance, e;, between each
target point and the coupler curve is known as the tracking error for the ith
point.

3.4.1 Path generation synthesis - Roston and Sturges

Roston and Sturges (1996) investigated using the GA as an optimization tool
in the design of planar four bar linkages passing through prescribed point sets
with a minimum tracking error. They considered only those mechanisms that
were of Grashof type, or those four bars in which one link could be driven
through a complete revolution. The goal of the experiment was to find an
appropriate objective function for the GA to minimize that would result in
high quality GA solutions representing those mechanisms that pass through
a specified point set with a low tolerance.
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Number of specified points
Specified points
formed by: 3ora 5 8 1lor24
Four-bar mechanism | / v v
Involute Curve vV VvV X
Straight Line v X X v

Table 3.2: The experiments and the number of points for each experiment
from Roston and Sturges (1996).

A series of design tests was performed using the GA. The dimensions
uniquely specifying a four bar linkage comprised the set of variables to be
optimized as the number of prescribed target points ranged from 3 to 24.
These prescribed points were taken from three sources: four bar linkages with
known geometry in the solution space, an involute curve and a straight line.
Table 3.2 specifies the experiments performed for each source of prescribed
points, a \/ meaning the curve source - number of precision points set was
tested, a X meaning it wasn’t.

A simple GA was used that employed the concepts of elitzsm and popula-
tion decimation. Elitism entails simply copying several of the best individuals
from the previous generation to the next generation. This ensures that the
best individuals are always present in future populations, promoting search
in the best areas found. The population decimation method creates a much
larger initial random population than the working population size. From this
large initial pool of random individuals, the top n are chosen to create the
first population, where n is the working population size. In this manner a
larger portion of the solution space is initially examined and only the fittest
individuals are selected to the first population.

The GA input parameters for this experiment are shown in Table 3.3.
These input parameters were chosen not according to a specific methodol-
ogy, but based on recommendations in Goldberg (1989a). The space being
searched by this experiment was massive, each of the nine input parameters
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Substring length () 16
Number of parameters (m) 9

Total string length (L) 16 x9=144
Population size (n) 200

Peeross 50%

P, mutation 1-0%
Number of elitists / generation 10
Maximum generations 150
Convergence criteria 150 generations

Table 3.3: The GA input parameters used in Roston and Sturges (1996).

being represented by 16 bits for an overall string length of 144 bits. The
search therefore considered 216%9 = 2% —= 2.23 x 10%3 possible distinct so-
lutions. In relation to this large string length and hence search space, the
population size of 200 is quite small.

The input length variables were limited to the range 0.0 to 10.0 units; the
input angular variables ranged from 0.0 to 27 radians. This yielded a very
fine length input discretization of

10-0

units per increment and a similarly fine angular input discretization of

2r -0

radians per increment. No convergence criteria utilizing population fitness
values was employed; the GA was always run for 150 generations, the best
individuals found in any generation being the possible solutions to the prob-

lem.
Roston and Sturges’ fitness function was of the form
_[1/C e<C
f—g{ 1/e; e>C (3.1)
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where e; is the tracking error associated with the ith member in the set of
m prescribed points. The constant C is a factor that is dynamically reduced
“once a user-specified number of mechanisms satisfy f; = (m)/C”. This
fitness function correctly rewards high fitness scores for those mechanisms
whose paths pass near to the prescribed point set and poor scores to those
that do not. The dynamic reduction of the factor C limits the amount that
a single good tracking error in the set influences the fitness assessment. This
function therefore correctly rewards the highest fitness scores to solutions
having small tracking errors throughout the prescribed point set and not at
just a single location. This will be considered further.

Roston and Sturges found that the experiments having few prescribed
points (five or less) led to many different solutions exhibiting small tracking
errors. Very few of those solutions found, however, resembled the known
mechanism used to generate the input point set or had paths resembling that
of the known solution. As the number of points prescribed was increased,
the good solutions found still did not resemble the known input solution,
but the generated curves looked more similar to the input data curves. This
behaviour seems reasonable as few prescribed points impose fewer constraints
on the design problem. It was therefore found that to find mechanisms
having paths that are similar to the known input curve, many points must
be specified thereby constraining the design problem.

The quality of the solutions found was measured in terms of the maximum
path tracking error for a solution. Maximum tracking errors ranged from
0.01 to 0.31 units. In terms of the length scale discretization, 6, = 0.0001526,
these tracking errors are quite large. Comparing the tracking error to the
maximum possible value of each length variable (lengthmq., = 10) indicates
that the mechanisms found had tracking errors comprising from 0.1% to 3.1%
of the input variable maximum.

Roston and Sturges’ study highlights the feasibility of the GA as a tool
for designing path generating mechanisms. As no study was undertaken to
validate the GA input parameters, future studies should be concerned with
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finding a set of input parameters that yields consistent results when tested
using several known solutions. This would ensure that the input parameters
yielded optimal or near optimal search performance, and thereby validate
the results found in real design task experiments.

Though no results were presented, Roston and Sturges maintain that
the fitness function used in their study promotes convergence of the GA
to global solutions. Formulating a fitness function based on the inverse of
the summation of the tracking errors or the summation of the inverses of the
tracking errors leads to local convergence. The use of a dynamically changing
factor ensures that a single close prescribed point does not dominate the
individual fitness assessment.

The investigators note that a method is needed to quantify the ability
of the mechanism in satisfying the design task. In order to compare two
mechanisms, A and B, on two different design tasks (prescribed point sets),
a method is needed for assigning a score to a mechanism that takes into
account the path tracking errors, the overall mechanism size and the in-
put variable discretization. Comparing the tracking error to the sum of the
mechanisms’ link lengths, the input variable discretization or the maximum
distance between prescribed points are possible ways to yield a normalized
measure of the solution quality.

3.4.2 Path generation synthesis - Kim

As in Roston and Sturges (1996), Kim (1995) investigated using a genetic
algorithm as a tool for designing planar four bar linkages. Kim combined a
simple GA with a gradient based local search technique, deeming the combi-
nation a hybrid GA. The purpose of Kim'’s study was to find a method that
was relatively fast and could obtain highly accurate solutions for determin-
ing the geometry of four bar linkages passing nearly through sets of specified
precision points. Only the design of Grashof four bar linkages, or those four
bars in which one link can be driven through a complete revolution, were

considered.
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Kim performed two main experiments. The first experiment attempted
to find an optimal set of GA input parameters that would result in global
optimum solutions to several known problems in a minimum number of func-
tion evaluations. This hybrid GA with optimal input parameters was then
compared to a random search method combined with the same local gradient
based search technique. The second test used the hybrid GA to find optimal
linkage lengths of path generating four bar linkages. Four path generation
design tasks with known solutions were tested.

Kim’s hybrid GA used a local gradient based search technique to explore
the regions represented by the top k£ best individuals of each population in
the GA. The local search method was initialized with each of these top &
solutions and run until completion. The result of this search represented the
best solution in the vicinity of each of the top individuals. If this solution
did not have a path tracking error less than a specified amount, the GA
individual that provided the starting point was thrown out of the population.
It was theorized that removing all of these sub optimal individuals eliminated
potential sources of local convergence for the GA, thereby increasing the
chance of finding the global optimum solution. If the solution found by
the local search technique had a path tracking error less than the specified
amount, this individual was deemed an excellent solution to the problem and
the hybrid GA searching process was ended.

The simple GA component of Kim’s hybrid scheme used a roulette wheel
selection method, one point crossover and simple mutation. The GA input
parameters for these experiments are shown in Table 3.4. As in Roston and
Sturges (1996), nine variables completely specifying a four bar linkage were
being optimized by the hybrid GA. The limits on the design variables and the
resulting input variable discretization are shown in Table 3.5. The substrings
representing each variable were of equal length and were varied from 6 to 10
bits per parameter. The size of the region being searched therefore ranged
from 26%% = 1.80 x 106 to 219%® = 1.24 x 10?7 possible solutions. Goldberg’s
theoretical estimate (Goldberg, 1989b) calls for a population size of approxi-
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Substring length () 6 — 10

Number of parameters (m) 9

Total string length (L) (6 > 10) x9=54— 90
Population size (n) 100

F, cross 60%

P, mutation 7%

Maximum generations 150
Convergence criteria Solution with >- e; < 0.001

Table 3.4: The GA input parameters used in Kim.

Input Variable Range Discretization (6 bits — 10 bits)
Base point location, A, -2.0—=2.0 0.0635 — 0.0039
Link lengths, [; 0.01 —» 2.0 0.0316 — 0.0019
Location of P on coupler —2.0 — 2.0 0.0635 — 0.0039

Table 3.5: The variable limits and resulting discretizations for Kim’s path
generation synthesis experiments.

mately 4300 when an overall string length of 54 is used. While successful GA
searches have used far smaller population sizes than Goldberg’s theoretical
estimate, a population of 100 seems small for such large individual strings.
Kim did not define a fitness based convergence criteria for search termi-
nation. Instead, the hybrid GA was run until a single individual was found
that had a sufficiently small tracking error (this will be discussed shortly) or
the GA had undergone the maximum of 150 generations. This means that
Kim’s hybrid GA searched for a single best solution to the problem. Using
some form of convergence criteria based on population fitness values means
that the GA terminates when several high fitness solutions have been found
for the problem. While it may seem redundant to continue searching after a
high quality solution has been found, other, different, high quality solutions
may be subsequently found. This could potentially result in several excellent
solutions being found for the problem, giving the mechanism designer several
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alternative designs from which to choose a best one.

The limits placed on each variable are shown in Table 3.5. Shown also is
the resulting discretization for each variable when the variable substrings are
represented as bit strings of lengths 6 and 10. This yielded an input variable
discretization ranging from 0.0316 to 0.0635 for a 6 bit string to 0.0019 to
0.0039 for a 10 bit string.

The fitness function used to assess an individual was of the form

m
= e, (3.2)
i=0
where e; is the tracking error between a prescribed point and its associated
closest curve point. This simple summation of point tracking errors yields a
low score for mechanisms passing nearly through all of the prescribed points
and a high score for those mechanisms that generate coupler curves that do
not pass through the prescribed points. The method used to transform small
tracking error summations to high fitness values is unclear; Kim refers to
those individuals that pass nearly through the prescribed locations as having
both high fitness and a small tracking error summation, yet no relationship
is presented that relates small errors to high fitness values.

Kim’s performance testing experiments were built upon varying the other
GA input parameters with respect to mutation probability, Phutation. It Was
found that ”in some range of mutation probability (between 0.2% and 0.8%),
other parameters do not have an effect on the algorithm’s performance”.
This result is not unexpected; in an earlier study Grefenstette (1986) asserts
that ”"mutation rates above 5% are generally harmful to algorithm perfor-
mance and rates greater than 10% yield GA performance approaching that
of random search, regardless of other parameter settings”. Due to the high
mutation rates considered, no trends can be seen in the variation of other
parameters with respect to the algorithm’s searching performance. It is inter-
esting to note that for Kim’s subsequent design experiments that a mutation

rate of 0.07% was used.
Results of the comparison between the hybrid GA and the hybrid ran-
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dom search showed that the hybrid GA found the best solutions to known
problems in approximately half of the function evaluations required by the
hybrid random search. Both hybrid search methods were run on the same
problem, that of finding the correct geometry of a known four bar linkage
producing a coupler curve passing through a set of design points. The pre-
scribed point set consisted of nine points taken at random locations from the
known solution’s coupler curve. The hybrid GA, finding the optimal solu-
tion in approximately half of the function evaluations, was shown to be the
superior search method.

Kim’s design problems were taken from Wampler et al. (1992). Wampler
showed that for the problem of nine prescribed points for a four bar linkage
to pass through, there are generically 1442 non-degenerate solutions along
with their Roberts cognates, for a total of 4326 distinct mechanisms. Most
of these 1442 solutions, however, have complex link lengths. Those solutions
representing actual physical mechanisms were mostly subject to branch (the
mechanism must be disassembled then reassembled at some point in its range
of mobility) or order (the mechanism does not pass through the point set in
the prescribed order) defects.

Wampler considered four problems having nine prescribed points. The
first problem was found to have 21 possible physical solutions, few of which
did not have branch or order defects. Wampler identified several of these
that did not have branch or order defects. Wampler’s second problem had 45
physical solutions, all having branch or order defects. This problem therefore
is physically impossible to solve. The third problem of Wampler had 64
physical solutions, only one of which did not have branch or order defects.
The last problem of Wampler, problem 4, had nine points taken from an
ellipse for a total of 120 possible mechanisms. It is unclear how many of
these 120 mechanisms did not have branch or order defects.

Kim’s results were in agreement with the results of Wampler’s experi-
ments. Kim found proper solutions matching those of Wampler in 15 of 25
runs of the GA for problem 1. Problem 2 didn’t yield any solutions having
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acceptable tracking errors, as expected. Kim found the single solution to
problem 3 in each of 50 runs of the GA. Problem 4 did not produce very
good results; Kim found possible solutions to the problem in 6 of 25 runs of
the GA. Based on these results, Kim was able to show that the hybrid GA
could be used to find highly accurate solutions in a very large, highly non
linear solution space.

As noted in Roston and Sturges (1996), using the sum of the individual
tracking errors as the basis of a fitness function tends to promote local con-
vergence in the simple GA. The local search component of Kim'’s hybrid GA
theoretically eliminates these sources of premature convergence and Kim’s
high accuracy solutions seem to support this. It would be interesting, how-
ever, to test the hybrid GA scheme on the same experiments using a fitness
function that exhibits better global search capabilities when implemented in
the simple GA alone.

The population size used by Kim was small, being far less than what is
suggested by Goldberg (1989b). While Goldberg’s estimate for population
size in terms of string length is so high that it’s impractical, Kim makes no
mention of a criteria for choosing population size. Ir most GA implementa-
tions, a suitable population size is one that consistently yields the optimal
solution to a known problem that is similar to the problem to be tested.

Kim’s convergence criteria, while economical in terms of the number of
function evaluations performed, finds a single solution per run to the prob-
lem. A more common population fitness based convergence criteria may
yield several good solutions to the problem by not terminating upon finding
the first successful solution. This would let the designer choose from several
possible solutions to the problem.

3.5 GA Conclusions

In order to realize optimal solutions using the GA, a proper input parameter
set must be used. An appropriate set of input parameters can be identified
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as a set that yields consistent optimal results on a known problem similar to
the experimental problem. Therefore if a set of input parameters results in
the GA consistently yielding a small number of high quality solutions, one
of which is the known global best solution, then this is the input parameter
set that should be used for further searching on similar problems. Values of
P 0ss between 50% and 90% are typical; mutation rates less than 2% have
been shown to yield good results with the previous P....s range.

Probably the most important parameter, population size, is often the
most difficult to specify. Too small a population and the GA will tend to
converge on local solutions, too large and many generations will be required
to refine a population so that it converges on a global best solution. For a
given string length, the GA should be run repeatedly until completion using
progressively larger population sizes until one is found that repeatably finds
global optimal solutions. When an appropriate input parameter set has been
found the GA should be run several times on each experiment. If the GA
finds a high quality solution several times throughout the rums, it can be
assumed that this is the global optimal solution.

Great care must be taken in formulating a fitness function to ensure that
the function represents the quantity that the designer wishes to maximize.
In both of the path generation studies, the goal was to find a mechanism
having the smallest tracking error passing near to a set of prescribed target
points. Both investigators used a fitness function based on the summation of
the tracking errors. Roston and Sturges identified that either summing the
reciprocals of the errors or taking the reciprocal of the error sum promoted
convergence on suboptimal solutions. Kim used a sum of the tracking errors
as his fitness function, using a local search technique to find suboptimal so-
lutions and remove them from the population. Both studies could perhaps
bhave avoided these problems by basing their fitness functions on the largest
tracking error in the set of errors. This would mean that the best solutions
identified by the GA would have the smallest tracking errors, both at the
individual points and the sum of these individual errors. Hence several dif-
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ferent fitness functions should be tested for a given problem to see if similar
solutions are found with each one.



Chapter 4

Four bar linkage path
generation synthesis using the

GA

4.1 Chapter Glossary
e a - x- position of P in coupler’s body fixed coordinate system.
e b - y- position of P in coupler’s body fixed coordinate system.
e c - length of follower link.
e P; - a discrete path point generated by a solution.
e T; - a prescribed point.
e m - the number of prescribed points.
e n - the population size.
e ( - the closest continuous path point to a prescribed point.

e L. - the closest distance between a continuous curve and a prescribed

point.
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L. 4 - the closest distance between a discrete path point and a prescribed
point.

e; - the tracking error of prescribed point ¢ with respect to the curve.
E - the set of tracking errors e;.

Maz(E) - the maximum tracking error in the set E.
€maz - = Maz(FE).

Ao, B, - the four bar linkage fixed pivot point locations
A, B - the four bar linkage moving pivot point locations
P - the precision point on the four bar linkage

Prossover - the crossover probability for the GA
Prutation - the mutation probability for the GA

0 - the GA input variable increment

Objective - the quantity to be minimized by the GA.

Fitness - the GA-scaled objective value.
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4.2 Introduction and Background

A mechanism is defined (Mallik et al. (1994)) as a collection of rigid bodies
that move with definite relative motion so as to transfer motion from a source
to an output. Mechanisms can be broadly classified as open or closed loop,
each link or body of a closed loop mechanism being connected to at least
two other links. The simplest closed loop mechanism is the planar four bar
linkage, shown in Figure 4.1. It is composed of four rigid bodies (bars) and
four revolute joints, forming a closed loop kinematic chain. This class of
mechanism has been used to solve numerous design tasks due to its many
variations and simplicity.

Figure 4.2 shows some typical applications of four bar linkages that can
be broadly categorized based on their kinematic tasks (Sandor and Erdman
(1984)). Four bar linkages intended to transfer an input motion to an output
motion are referred to as function generators. Those whose primary task
is to guide a fixed point on one of the links along a path are termed path
generators. Motion generators differ from path generators in that a rigid
body is guided through several locations in the plane. The present study will
be concerned primarily with the design of path generating mechanisms.

Planar four bar mechanisms can be further classified according to their
range of movement. Those mechanisms in which the shortest link can make
a complete revolution with respect to all of the other links are said to be of
Grashof type. Grashof types satisfy the condition

s+l<p+gq (4.1)

where s,l,p, g are the shortest, longest and other two link lengths, respec-
tively. Proof of the Grashof criteria and further details are found in Mallik
et al. (1994). The four Grashof types and their naming conventions are
shown in Figure 4.3. All of these mechanisms can accept a rotating input.
Figure 4.4 shows a crank-rocker mechanism passing through four pre-
scribed locations. Designing four bar mechanisms that pass through a set
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Figure 4.1: The four bar linkage. Link 2 is the crank, link 4 is the follower
and link 3 is the coupler. Link 1 is the grounded body that connects the
moving links at ground points Ag and By. P is the path tracer point.

of specified points is known as path generation synthesis. The mechanism is
sought whose geometry is such that the design point will pass through the
given precision point set in the proper order.

Path generation synthesis can be performed using exact or approximate
techniques. Exact synthesis methods attempt to find the mechanism whose
path passes perfectly through the prescribed precision points. Exact meth-
ods can be implemented graphically or analytically (Sandor and Erdman
(1984), Mallik et al. (1994)) and are limited to, save for very special cases,
a maximum of five specified precision points.

Approximate synthesis methods try to determine the mechanisms whose
paths pass within some tolerance of the prescribed precision point set. Ap-
proximate methods are therefore a form of optimization problem where a
minimum tracking error is the quantity being sought. The number of pre-
cision points that can be prescribed for approximate synthesis methods is
theoretically infinite, being limited practically by the path error tolerance.
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Figure 4.2: Four bars and their kinematic tasks: (a) path generation (b)
motion generation and (c) function generation.
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s+2<p+q
{b) Double-crank

(Full rotation
of the coupler
link is possible)
s+2<p+q
{c) Rocker-crank {d) Grashof Rocker-rocker

Figure 4.3: The four Grashof types. The shortest link of each mechanism is
capable of undergoing a complete revolution (taken from Sandor and Erdman
(1984))
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Figure 4.4: A four bar linkage passing through four prescribed locations. The
design point, P, on this mechanism passes through the prescribed point set
with zero tracking error.

4.3 Problem definition

Path generation synthesis attempts to find a mechanism which generates a
path passing through several prescribed points. If some tolerance is allowable
in the path then the design task can be approached using a numerical opti-
mization technique. This amounts to a multi-variable optimization problem
where the variables to be optimized represent the mechanism geometry and
the quantity to be minimized is the path tracking error.

Any numerical optimization technique requires, at minimum, an objec-
tive function to minimize or maximize. This mathematical representation of
solution quality awards high scores to those solutions having desirable char-
acteristics and low scores to those having poor characteristics. Most design
objectives can be expressed in a variety of mathematical forms, some depict
better reflections of the desired optimization criteria than others. As we seek
the mechanisms that trace paths passing as close to the precision point set
as possible, it is clear that the prescribed point set tracking errors repre-
sent the quantities to be minimized. An appropriate mathematical depiction
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therefore must be found.

Having specified a mathematical representation of the desirable solutions’
qualities, proper inputs are needed for the GA which is used to solve this op-
timization problem. Once a set of input parameters are found for a GA
searching a certain sized landscape, these inputs typically yield acceptable
performance on different problems having similar search scales. This prob-
lem independence is an attractive quality, yet care must be taken to ensure
that a chosen input parameter set truly does result regularly in finding opti-
mal solutions. In particular, a suitable population size must be used. Small
populations typically have difficulty finding optimal solutions and large pop-
ulations take many generations to converge, thereby prolonging the search
times.

As in analytical four bar design methods, it is expected that the number
of points specified in the path generation problem influences the possibility
of finding an excellent solution. Problems having few prescribed points will
likely have many solutions in the search space. As more precision points place
more constraints on the design problem, the number of possible mechanisms
in the search space satisfying the design criteria decreases. The effect of the
number and arrangement of prescribed points will be considered.

Once the GA has converged on a solution to the problem, a method is
needed to assess the quality of this solution in terms of the problem defini-
tion. Often the designer has a maximum acceptable path tracking error in
mind when the problem is formulated. If this is not the case, it may be useful
to specify the path tracking error in terms of a typical link in the mechanism.
For example, a mechanism having a maximum path tracking error of 0.01
units may be a good solution when the mechanism’s smallest link length is
10 units. This may not be such a good solution when the smallest link is 0.1
units long. The designer can assess the solution quality by comparing the
tracking error of the best found solution to the input variable increments,
prescribed point spacing and/or mechanism dimensions. A criteria is needed
to normalize the path tracking error in terms of one or more of these quanti-
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Figure 4.5: Variables a,b and c size the follower link and locate point P on
the coupler link.

ties, thereby enabling some form of comparison between solution quality for
different problems.

4.4 Method

All problems considered here involve finding the appropriate geometry of a
four bar linkage that will result in a coupler path passing nearly through the
prescribed point set. We will consider only three variables of the four bar
linkage in our optimization problem. Shown in Figure 4.5, the variables a,
b, c size the follower link B,B and locate the path tracer P on the coupler
link. The location of the fixed points A, and B, and the length of the driver
and coupler are assumed given.

All of the mechanisms considered in this study will be Grashof crank-
rocker types; the follower link length variable limits do not allow for any
other four bar linkage type. The positions of the coupler and follower links
are found using the Newton-Raphson iterative root finding technique (Ap-
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pendix A) as the crank is driven through a complete revolution in 1° incre-
ments.

In order to gauge the solution quality, the notion of ‘good’ and ‘excellent’
solutions will be defined in terms of the finest input variable increment.
This is logical as the designer has knowledge of, and control over, the input
parameters and their discretizations. Those solutions having a maximum
tracking error, Ep,z, less than the finest input increment, § (where 6§ =
(10 — 2)/(2% — 1) = 0.0314 for the input variable with bounds 2 and 10
that is discretized into 256 levels), are deemed ’excellent’ solutions. Those
having E,. less than double (26 = 2 x (10 — 2)/(28 — 1) = 0.0628) the
finest input increment are deemed ’good’. The final experiments will examine
parameterizing the maximum tracking error in terms of other problem specific
quantities.

4.4.1 Finding appropriate GA inputs

In order to effectively search the solution space, an appropriate GA input
parameter set must be used. Due to the high problem independence of the
GA search performance with respect to the input parameter set, a parameter
set that works well on one search will generally work well on others having
similarly sized landscapes. As found previously (section 2.3), an appropriate
population size appears to be the most important factor in achieving suc-
cessful search performance. We will consider only variations in population
size as it was shown earlier that a high P..,,, rate and a small P,,,s4¢i0n rate
yield good search performance.

In order to test the searching effectiveness of a particular population size,
the GA will be run several times with different population sizes on a problem
having a known solution contained in the search space. The number of times
that the algorithm converges to.the known best solution over several runs of
the GA will be considered the indicator of the input parameter set suitability.

The known solution for these tests will have many prescribed points. This
is done in order to place many constraints on the problem, thereby minimizing
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Figure 4.6: Sixteen prescribed points (hollow circles), taken from the path
generated by the four bar linkage having a = 15.0, b = 4.4 and ¢ = 16.0.

the number of possible excellent solutions within the search space. A set of
16 target points, shown in Figure 4.6, was chosen arbitrarily from the path
of the known mechanism having @ = 15.0, b = 4.4 and ¢ = 16.0 to be the
prescribed point set.

The GA input parameters are shown in Table 4.1. The search variable
limits and the resulting variable discretizations are shown in Table 4.2. Each
variable will be represented by 8 bits per variable, hence there are 256 possible
values for each including the upper and lower limits. The population size is
varied from 60 to 200 individuals in increments of 20. The GA is run until
completion for each population size 20 times. A run is completed when
the convergence criteria has been met - in this case the population average
fitness is greater than or equal to 98% of the maximum fitness individual ever
found - or the maximum number of generations has elapsed. The number of
times that the GA finds the known or similar high quality solution is used to
calculate the probability of finding a high quality solution in one run of the
GA.
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Parameter Value

Population Size 60 — 200

F Crossover 65%

P, Mutation 0-8%
Bits/Parameter 8

Maximum Generations | 200

Convergence Criteria 0.98 X Frpz < Faug

Table 4.1: GA inputs.

Parameter Lower limit Upper limit é

a 10 20 .0392
b 2 10 .0314
c 12 20 .0314

Table 4.2: Input variable limits.

4.4.2 Objective function formulation

The mathematical representation, or objective function, of the quantity to be
minimized must assign high scores to those mechanisms having paths passing
near to the prescribed points and low scores to those not passing near the
prescribed points. This means that the tracking error from each prescribed
point to the coupler curve must first be found. This set of tracking errors is
then used to calculate an objective function value.

Calculating path tracking error

Given a set of discrete locations for the path of P on the coupler of an
arbitrary mechanism and m prescribed point locations, the path tracking
error, e;, must be calculated for each prescribed point. Coupler paths not
passing exactly through the precision points must be assigned a tracking
error value. Those paths passing perfectly through the defined set must be
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Figure 4.7: Calculating the true path tracking error.

assigned tracking errors of zero. Each precision point will have one or more!
associated closest points within the coupler point set. A sequential traverse
of the path yields the closest discrete path point for each precision point.

Figure 4.7 shows a set of three discrete path points, P,_,3, on a continuous
curve and a single prescribed point (precision point), 7;. Assuming that the
data points are closely spaced along the curve, a crude estimate of the path
tracking error is simply the distance from the closest discrete path point to
the precision point, the distance L.y The true path tracking error can be
found when an extension of the unit normal vector to the curve, 7, passes
through the precision point. This point on the curve, Q, is the closest to the
precision point and the distance L. is the true tracking error of the continuous
curve with respect to the precision point.

To calculate L., the discrete path points would have to be fitted with

'Note that a minimum separation distance from a precision point may be shared by
two or more path points.
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Figure 4.8: Approximating the path tracking error using a circle fit.

differentiable functions in terms of z and y using an interpolation scheme.
The interpolated curve could then be traversed incrementally in the region of
the closest discrete path point, until a point Q is found at which an extension
of 77 passes through T}, thereby defining L..

While this method would yield a highly accurate estimation of the true
path tracking error, it is computationally intensive. A less rigorous method
is used by Kim (1995) to estimate the path tracking error. Kim fits a circle
(see Appendix B) to the three discrete path points represented by the closest
point and its adjacent points. Knowing the location of the circle center, C,
an estimate of the path tracking error, L., can be found by constructing
Figure 4.8.

The equation

L.=Lcr—R (4.2)

estimates the path tracking error in terms of the known circle radius R and
the distance, Lcr, from the circle center C to the prescribed point T;. In
what follows the path tracking error for point T; is defined to be e;, where
e; = L. is a positive number.

The closest discrete point distance, L.4 of Figure 4.7, will be compared to
Kim’s estimate of the true tracking error, L. of Figure 4.8, by comparing the
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calculated tracking error magnitude of points on the continuous curve that do
not appear in the discrete point path set. For the known solution geometry
(a = 15.0, b = 4.4 and ¢ = 16.0), the crank link will be driven through a
complete revolution in 0.5° increments. From this set of discrete points, three
that are not present in the set found using a 1° crank link driving increment
will be chosen as prescribed points. As these points are on the continuous
curve produced by the path tracer point P, it is expected that they will be
assigned negligible error magnitudes if they are used as prescribed points for
the coarser (1°) driving increment.

Transforming tracking error into fitness score

Having calculated the set of tracking errors E, where E = (ey, €q, ..., e,) form
prescribed points, a method is needed to transform E into an fitness function
value. The GA requires that better solutions to the problem receive higher
fitness values, hence a solution with low tracking errors for each precision
point should receive a high fitness score and a solution having large tracking
errors should receive a low fitness score.

A simple fitness relationship can be found by taking the reciprocal of the
sum of the tracking errors:

Fitness = (i e;)7t. (4.3)

i=1
This scheme, while correctly assigning high fitness to mechanisms having
small tracking errors, was found to be unsuitable by Roston and Sturges
(1996), as it tends to promote local convergence of the GA. The downfall of
this method is illustrated by the two possible solutions to the problem shown
in Table 4.3. Solutions Z and W are two possible solutions to a problem
having three specified precision points and hence three associated precision
point tracking errors, e;_,3. Shown as well are the maximum tracking error
for each mechanism and the sum of the mechanism’s tracking errors.
Using the fitness function of Equation 4.3, solutions Z and W receive
the same fitness score. Z and W, however, attempt to solve the problem in
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Individual e; es e3s Maz(E) Ze;
Z 0.33 0.33 0.33 0.33 0.99
w 099 0.0 0.0 0.99 0.99

Table 4.3: Different Solutions, Same Ye;. Three precision points, two candi-
date solutions.

vastly different manners; Z attempts to minimize the tracking error at each
prescribed point while W goes perfectly through two points and takes all of
the performance ‘hit’ on one prescribed point. These two solutions represent
two competing strategies, and hence two competing genetic makeups, for
solving the path error minimization problem. As the GA cannot distinguish
the better genetic makeup, convergence problems arise. As in Roston and
Sturges (1996) preliminary results in the current study showed that this
fitness relationship tends to promote convergence to local maxima.

A relationship having better global search performance is presented by
Roston and Sturges (1996) for minimizing the sum of the tracking errors
- theirs was a dynamic fitness function that tightened error tolerance with
better solutions in the population. Kim (1995) similarly based his fitness
function on minimizing the sum of the path tracking errors. In the current
study we will consider minimizing not the sum, but the maximum tracking
error in the set, as this is the criteria on which the solution will later be
judged (i.e: “The mechanism passes through the prescribed locations with a
maximum tracking error of 0.025.”). Our fitness function formulation:

1

1+ Maz(E) (44)

Fitness =

not only relieves any ambiguity as to the quantity being minimized, it clearly
represents our design goal to find the mechanism with the smallest path

tracking error.
Figure 4.9 plots this relationship between the maximum path tracking
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Figure 4.9: The fitness function: transforming Maz(FE) into a fitness value.

error and assigned fitness. A variation of Equation 4.4,

1

Fitness = ,
v1+ Maz(E)

having a lesser rate of decay for most of the error range is shown as well. It
is theorized that the more gradual transition from low to high fitness scores
of Equation 4.5 promotes exploration of a greater number of sub-optimal

(4.5)

regions as members of these regions garner higher fitness scores. This wider
search is expected to have a better possibility of finding the global optimal
solution within the search region.

In order to compare the searching ability of the two fitness functions, the
16 prescribed point experiment will be run repeatedly with each function.
The GA inputs and search variable ranges of Section 3.3.1, together with the
optimal population size found in that section, will be used. The GA will be
run 50 times using each fitness function formulation; the number of times out
of 50 that the algorithm converges on the known solution or a similarly high
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quality solution will be interpreted as the probability of finding an excellent
solution in one run of the GA with that fitness formulation.

4.4.3 Problem design complexity tests

Having specified the GA parameters needed for successful searches for a given
problem and search landscape size, we wish to investigate the effect of the
complexity of the design task on search performance. That is, how does
the number and arrangement of specified points affect the probability of the
algorithm finding the known solution. As greater numbers of specified points
place more constraints on the design task, it is reasonable to assume that the
number of potential solutions contained within the search space is reduced.
We wish to observe the effect this has on the probability of finding the known
solution in a single run of the GA.

To test this, we perform design tasks on two different arrangements each of
point sets having 4, 8 and 16 prescribed points. The point sets are generated
from the known mechanism geometry of Section 3.3.1. Both a closely spaced
point scheme and a widely spaced point scheme are selected arbitrarily for
each of the 4, 8 and 16 prescribed point tests, for a total of 6 different
prescribed point arrangements. The two different point spacing schemes for
each number of precision points are considered in order to gauge the effect of
point spacing as well as number on algorithm search ability. The prescribed
point sets are shown in Figure 4.10. Using the best input parameter set
of Section 3.3.1 and the best objective function of Section 3.3.2, the GA
is run until completion 50 times on each point set. The number of times
the algorithm finds an excellent solution to the problem will be used to
approximate the probability of the algorithm finding an excellent solution in

a single run.

62



- 10 E 10 .
[ )
[ ]
[ - [
- S Cs °
° [
L 0 - 1]
. [ ®
L5 -
F-10 F-10
L o 5 10 15 20 (i} 5 10 15 20
L L 1 1] L X 1 1 L 1
(a) (b)
L 10 L 10
N e o - ° .
[ I [ ]
- S L ]
L ° - S * °
b .
L o -G
r . o
[ J
- 5 - -5
L [ ]
--t0 --10
0 5 18 15 20 0 5 10 15 20
S 1 o 1 b L 1 i 1 1
(c} {d)
10 - 10
e ° .
. °
- 5 \ -5 .
[ J
\ g
L o -0
‘ o o
L o ®
- 5 -5
-
10 [ -10
I S JU SO g 5 9 5 0@
(e} in

Figure 4.10: The experimental point sets. Schemes a, c and e are closely
spaced points, b, d and f are relatively evenly spaced points.
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Figure 4.11: Probability of finding good and excellent solutions in one run
of the GA for increasing population size.

4.5 Results

4.5.1 Appropriate GA inputs

Figure 4.11 shows the results from running the GA 50 times on each popu-
lation size for the problem shown in Figure 4.6, having 16 specified points.
As expected, the probability of finding both good and excellent solutions in
a single run of the GA on the 16 point problem increases with population
size. Population sizes less than 120 have a less than 50% chance of finding
an excellent solution in a single run of the GA. Those having less than 100
individuals can be expected to find a good solution in a single run only 60%
of the time and an excellent solution only 30% of the time.

The results of Figure 4.11 emphasize two main points that must be con-
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sidered when searching with the GA:

1. Finding globally optimal or near-optimal solutions is not a certainty
with a single run of the GA. Even with optimal input parameters the
GA will occasionally not find the global maximum, hence several runs
to completion should be performed and the best results kept.

2. Small population sizes yield many near-optimal solutions. In order to
find the global optimal solution(s) in the search space, large population
sizes are often required.

With larger population sizes comes not only increased success probability,
but also many more function evaluations.

Figure 4.12 shows the average number of generations required for the GA
to converge on a solution for each population size. Not unexpectedly, larger
population sizes require more generations to converge as more individuals
have to be coerced into resembling the best found solution. The number
of potential fitness function evaluations in the course of a GA run increases
substantially with population size as well; not only does the GA require more
generations to converge with larger populations, but the larger population
sizes equate to more function evaluations per generations as well.

The question arises as to what is the best population size strategy. Should
the GA be run several times until completion with a small population size, or
just a few times using a very large population size? In order to compare the
probability of finding the known optimal solution with different population
sizes and numbers of GA runs, we will define the probability of success,
Pgyccess, as the probability of finding the global optimal solution at least
once in several runs of the GA for a given population size. Knowing the
probability of finding an excellent solution, Pgscetient, in a single run for a
given population size, we can estimate the probability of success as

PSuccess =1- (1 - PE:z:cellent)k (46)
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Figure 4.12: Average number of generations before GA convergence as pop-
ulation size is increased.

where k is the number of experiments, or runs, performed. Hence if we run
the GA twice with a population size of 160 (where Pgceitens = 62%), we will
have a probability of

Psyecess = 1 — (1 — 0.62)* = 0.856,

or 85.6%, of finding an excellent solution at least once in the 2 runs.

In order to compare the searching ability of the different population sizes,
we need to calculate the number of runs, and hence function evaluations, re-
quired to attain a desired success probability. Specifying Psyccess = 99%, the
number of runs for each population size to attain this level can be calculated
using Equation 4.6 with the probability of finding an excellent solution for
that run (Figure 4.11). For example, knowing that Pgyeeiene = 26% for a
population size of 60, the number of runs required to achieve a 99% chance
of finding an excellent solution is predicted by:

0.99 =1 — (1 —0.26)F.
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Figure 4.13: Number of GA runs required for each population size to achieve
Psuccess > 99%.

Solving, we find that & = 15.29, hence 16 runs of the GA with a population
size of 60 are required to have a 99% chance of finding the global optimal
solution at least once. Figure 4.13 shows the number of runs required for
each populaticn size.

Knowing the number of runs required, we can estimate the number of
function evaluations needed to attain Psyccess = 99% by multiplying the num-
ber of runs by the average generations per run and the number of individuals
in the population. This is an upper limit? on the number of function evalu-
ations required for each population size as we are assuming that n function
evaluations occur for each generation of a population of size n. Figure 4.14
shows this upper limit on the number of function evaluations required to
obtain our desired Psyccess fOr each population size.

Figure 4.14 indicates that the strategy requiring the fewest function eval-

2In practice, problems having more lengthy function evaluations would store each eval-
uated solution in memory, calculating all explored input variable combinations just once.
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Figure 4.14: Number of function evaluations required for each population
size to achieve Psyccess > 99%.

uations (44,160) is to run a population size of 60 individuals 16 times (Fig-
ure 4.13) and select the best individual from the best of each run. The pop-
ulation size of 100 was the second best strategy, requiring 55,200 function
evaluations, which corresponds to 8 runs of the GA. The larger population
sizes required only 4 to 5 runs to attain this performance level, yet due to
their large sizes required more function evaluations and hence longer search
times. It seems that a computationally efficient approach is to run a smaller
population size many times and select the best individual from the best solu-
tion of each run. The population sizes predicted by Goldberg (1989a) are far
larger; this is because his analysis was looking for an optimal population size
for finding global optimums within a single run while the present analysis
considers that there is the possibility of doing several runs.
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Index Location
1 (18.12276, 3.339924)
2 (14.31492, 7.309055)
3 (13.01194, 4.628347)

Table 4.4: Three prescribed point locations chosen from the set generated
using a crank link driving increment of 0.5°.

Item  Closest Discrete (L) Circle Approximation (L)

ey 7.312 x 102 1.500 x 10~7

€ 6.749 x 1072 2.995 x 1076

es 2.368 x 107! 3.905 x 10°°
Fitness 1.899 2.000

Table 4.5: Tracking errors (e;3) assigned to each prescribed point and so-
lution fitness based on L. (distance to closest discrete path point) and L.
(circle fit approximation) measures.

4.5.2 Objective function formulation

Path tracking error calculation

The coordinates of the three points chosen from the discrete path point set
generated by driving the crank link in 0.5° increments are shown in Table 4.4.
Superimposing these three points on the set formed by using a driving crank
increment of 1° yields Figure 4.15(a). An exploded view of the square region
in the figure, including two of the three points, is shown in Figure 4.15(b).

We can now consider the effect of defining our path tracking error for each
prescribed point as the distance to the closest discrete path point, L.q4, as well
as the distance L, as predicted by Kim'’s circle fit approximation to the curve.
Table 4.5 shows the tracking error magnitude for each of the three chosen
prescribed points using both the L.; and L. measures. Equation 4.5 Shown
as well are the fitness scores assigned to the mechanism (using Equation 4.5)
having the known geometry based on these three points.
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Figure 4.15: (a): Locations of three points (hollow circles) taken from the
coupler curve generated with a driving crank increment of 0.5°. (b): An
exploded view of the square region of (a). Small circles are discrete points
generated using a crank driving increment of 1°, crosses represent prescribed
points 2 and 3 taken from the path of the same mechanism using a 0.5°

increment.
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Fitness Function Perceltent Pyooa Average Generations
Equation 4.4 33 66 116
Equation 4.5 37 70 99

Table 4.6: Tracking error to fitness relationships.

Knowing that both the prescribed point set and the path point set were
produced by identical mechanisms but with different driving crank incre-
ments, we would hope that the tracking errors assigned to each prescribed
point for each method would be negligible. As Table 4.5 shows, the scores cal-
culated using the circle fit approximation correctly assign negligible tracking
errors to the prescribed points, while the scores calculated using the closest
discrete point distances do not.

The largest tracking error in the set (e3 = 0.2368) calculated using the dis-
crete point distances is far greater than the limit required for a good solution
(26 = 0.0628). Hence when using the closest discrete path point approxima-
tion, even those mechanisms having the exact geometry may be erroneously
assigned large path tracking errors. Kim’s circle fit approximation, however,
predicts accurate path tracking errors for the chosen driving crank increment

(1°).
Tracking error to fitness score function

Table 4.6 shows the results of running the GA 100 times on our 16 pre-
scribed point problem using both the tracking error to fitness relations of
Equations 4.4 and 4.5. Equation 4.5 shows slightly better performance, hav-
ing a higher probability of finding both excellent and good solutions in a
single run. Additionally, the average number of generations required for the
runs using this function is lower than for the one given by Equation 4.4.
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Scheme  Pecetient Pyood Average Generations

4A 74 94 42
4B 38 78 37
8A 62 92 65
8B 42 94 42
16A 60 92 33
16B 54 38 86

Table 4.7: Problem complexity results.

4.5.3 Design complexity tests

Results of the design complexity tests are shown in Table 4.7, where, in the
first column the numeral represents the number of specified points and the
letter is the spacing scheme (A = closely spaced, B = widely spaced). For
each experiment the probability of finding good and excellent solutions in a
single run of the GA is shown along with the average number of generations
required for GA convergence.

The point spacing scheme results show great variation in the probability
of finding good and excellent solutions. Considering the closely spaced (A)
schemes, it becomes less probable to find an excellent solution as the number
of prescribed points is increased. The B (widely spaced) schemes show the
opposite trend: it is more likely that an excellent solution will be found when
more points are prescribed. Clearly there is an interdependence between the
number and spacing of the prescribed points and the probability of finding
an excellent solution in a single run of the GA.

For a given number of specified points, the closely spaced scheme exper-
iments were more likely to find an excellent solution. The average number
of generations required for each experiment to converge on a solution shows
little variation, except for the 16B and 8A experiments. These required sev-
eral more generations to converge than the others. This could be due to
the presence of several near-optimal solutions for these prescribed point sets.
The 16A experiment appears to be the opposite, requiring few generations,
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on average, to converge on a solution. This is most likely due to the fact that
the 16A point set is approximated by a small portion of the solution space,
hence there are few good solutions to choose between.

4.6 Conclusions

‘This chapter has shown some of the merits and downfalls of using the GA as
a design tool for this class of problem. The main aspects considered while
using the GA to design four bar linkages for path generation tasks, were:

o finding appropriate GA input values,
e formulating an objective function, and
e design complexity considerations.

The GA appears to be a feasible design tool for this class of problem,
provided that a proper population size and number of GA runs is used, an
objective function is formulated that is meaningful to the design goals and
the designer is sensitive to design complexity considerations.

In all of the experiments it is apparent that several runs until completion
of the GA are required to find global optimal solutions. In particular, the
population size parameter has a significant impact on the probability of the
algorithm finding global optimal or near optimal solutions. A single run of
the GA with a reasonably large population has a good chance of finding
near optimal solutions. To further increase the probability of finding global
optimal solutions, the algorithm should be run several times until completion.
A computationally efficient method appears to be to use a smaller population
size and several runs of the algorithm until completion.

Formulating an objective function is certainly one of the most critical
aspects of using the GA in such a design task. This is truly a case of 'what
goes in, comes out’ as an objective function definition not representative of
the desired design will typically yield undesired solutions. The GA’s ability
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to find solutions which satisfy the objective often yields unexpected solutions
to the design task. In the present study the addition of the circle fit approxi-
mation when calculating the path tracking error was significant: without the
approximation it was shown that those paths running through the prescribed
points could incorrectly be assigned non-negligible error values.

The complexity and 'shape’ of the design space is a consideration for likely
all numerical optimization methods. It is prudent for the designer to make
themselves aware of the variations in the search landscape. Fortunately, if the
GA is run several times on a problem, the frequency and locations of maxima
found can offer some insight as to what can be expected of the landscape.
How large a portion of the design space good solutions occupy is a constant
concern for nearly all optimization methods; finding a needle in a hay stack is
a hard job for any search technique. The algorithm performance is therefore
bounded in a manner by the nature of the solution space.

This chapter provides important insight into applying the GA to a typical
design task. In the following chapter these findings will be applied to aid in
using the GA for other design tasks.



Chapter 5

Mechanical prosthesis design
using the GA

5.1 Chapter Glossary

L, - Length of the stance leg (m).

e L, - Length of the swing leg thigh (m).

e L3 - Length of the swing leg shank (m).

e m; - Mass of the ith segment (kg).

e [; - Mass moment of inertia of the ¢th segment about its center of mass.
e [ - Knee joint flexion angle (degrees).

o K,gsist - Knee joint assist spring coefficient (Nm/radian).

® Cigsist - Knee joint assist damper coefficient (Nms/radian).

® Kiocr - Knee joint locker spring coefficient (Nm/radian).

® Cloct - Knee joint locker d;.mper coefficient (Nms/radian).

® Biock - Knee joint lock active range (degrees).
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® Baamper - Knee joint assist damper active range (degrees).

® My, - Applied hip flexor moment (Nm).

5.2 Introduction and Background

Having gained a better understanding of what parameter values are required
for successful search using the GA, the first of two ‘real-world’ design prob-
lems will be considered. This chapter will focus on designing a purely me-
chanical above the knee prosthetic leg. The goal is to find the parameters
for a chosen mechanism type which result in the most natural looking swing
phase of human gait when using the prosthesis. The mechanism design prob-
lem reduces to a dimensional synthesis task for the chosen mechanism.

The goal is to explore the feasibility of designing a purely mechanical
prosthetic knee joint that exhibits natural looking gait. Current prosthetic
limbs available for people with mid-thigh amputations range from the basic
(simple wooden legs) to the exotic (dedicated microprocessors controlling
mini-machinery). Costs for these prostheses range similarly, starting low
and rapidly increasing.

The purpose of this experiment is to illustrate using the GA as a design
method. This particular application seems suitable to explore the power of
the GA as it will be shown that the solution space is very complex and the
best choice of function to be optimized is somewhat uncertain.

Similar optimization applications can be found in the gait analysis lit-
erature (Davy and Audu, 1987) as researchers have used advanced search
techniques to predict such things as the optimal control signals sent to mus-
cles in the lower limb during human gait. The current study is a departure
from the published works in that a global search technique, the GA, is used
as the design method. It will be shown that the GA finds optimal parameters
for the simple knee joint model; this is justification for using the method to
optimize more complex designs involving more design variables.
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A simple dynamic model of human gait in the swing phase of locomotion
is used. The knee joint will be mechanically controlled by spring and damper
elements. It is the properties of these elements that will be sought, using the
GA to yield a design having natural looking swing.

5.3 Method

Two models for the knee joint design experiment will be combined: a gait
model that simulates the dynamics of a real person walking and a knee joint
model that is the mechanism to be designed. The knee joint model will affect
the motion of the gait model, hence it is the best parameter set of the knee
Jjoint model that we seek to yield the most natural looking swing in the gait

model.

5.3.1 The gait model

Our gait model will be a planar three degree of freedom (3DOF) model
considering only the swing phase of human gait. Swing phase is defined as the
single support period of human gait, or the period from when one foot leaves
the ground to subsequent touch-down, or heel-strike. We will use a model
similar to that used by Mochon and McMahon (1980), composed of three rigid
links connected by revolute joints to a fixed ground. Figure 5.1 shows the
stance leg, L;, the swing thigh, L,, and the swing shank, or lower leg, L3;. The
system orientation for any time is defined by three independent generalized
coordinates ¢;, ¢2 and ¢; which are the angles of each link measured with
respect to a fixed vertical reference frame. The angle § is the knee flexion
angle of the swing leg - this will be of primary concern in our analysis.
Data for the segment properties have been taken from Gaitlab (Vaughn
et al., 1992). Gaitlab presents data for a healthy male subject; the file
‘Man.seg’ fully specifies the Ieng:th, mass, mass moment of inertia and center
of mass for each segment of our model. The values reported for the shank
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Figure 5.1: Three bar ballistic walker. Link L, is the stance leg, L, is the
swing thigh and Lj is the swing shank.
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Variable Gaitlab Model

&1 3.563  3.563
b2 6.11 6.11
b3 5.47 5.47
b1 -1.65 -2

bo 1.94 1.94
b3 -1.72 -1.72

Table 5.1: Initial conditions as reported in Gaitlab and as used.

and foot of the male subject were combined to yield a composite segment
representing the lower limb of our model.

The model is a ballistic one, in that the only externally applied force on
the system is due to gravity. The equations of motion of this 3DOF planar
system are:

[1){¢} + [M]{¢*} + {G} = {0}, (5.1)

where the coefficients of [I],[M] and {G} are presented in Appendix C. Given
a set of initial conditions on {¢} and {¢}, Equation 5.1 can be integrated
numerically to find the subsequent position, velocity and acceleration of each
body in the system from time ¢ = t;pe—o5f t0 time t = tneer—strike-

Values for both the initial conditions and the time of swing were based
on Gaitlab data for the healthy male subject. Table 5.1 presents the initial
conditions used in the simulation and those presented by Gaitlab. The ve-
locity of the stance leg of our model had to be increased slightly to ensure
that the model did not fall backwards, otherwise the initial conditions are
identical to the real data presented for the male subject. The time of swing,
or the time that is spent in the single support phase of gait, was held fixed
for all of our simulations at f,,in; = 0.5 seconds, or a slow walking speed.
The performance of the model at other walking speeds was not considered.
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Figure 5.2: Knee joint connecting links 2 and 3. 3 is the knee flexion angle,
k and c are the spring and damper constants.

5.3.2 The knee joint model

The swing leg knee joint will be altered as shown in Figure 5.2. We have
added to the revolute joint two ‘assist’ elements: a rotational spring and a
rotational damper. The rotational spring is unstretched when the knee is fully
extended (8 = O degrees) and opposes knee flexion (8 > 0 degrees), forcing
the knee joint to extend. The damper opposes the spring reaction in the knee
flexion range 8 > Baamper- This element is active in one direction only, when
B <0 degrees/second, or when the knee is extending. A bumper, needed
to prevent hyperextension (8 < 0) of the model’s knee joint, is represented
as a spring and damper combination, having parameter values of K| ;.- and
Clocker, that is active when 8 < Biocker- These four elements make up the knee
joint model. The motion of the gait model through swing phase is influenced
by the knee joint model, hence it is the properties of these elements that we
will search to find the mechanism having the most natural looking gait.

We will consider three variables specifying the assist spring constant,
Kagsise, the assist damper constant, C,geiqe, and the assist damper cutoff
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value, Buagmper, to be varied to find the mechanism having the most natural
looking gait. We will hold the locking mechanism properties constant, having
values of Ki,cker = 140 Nm/radian, Cicrer = 8 Nms/radian and Biocrer =
3 degrees, determined by simple experimentation to give a natural locking
appearance. As detailed in the following section, we will base our assessment
of solution quality on the difference between a solution’s knee flexion curve,
the plot of the swing leg knee flexion angle with respect to time throughout
swing phase, and that of a reference knee flexion curve.

To test our search method and determine optimal GA search parameters,
we will first search for a known mechanism in the solution space. The knee
flexion curve of our known mechanism, having parameter values K,z =
-1 Nm/radian, C,s:5: = 1 Nms/radian and B,ssis: = 13 degrees, as well as
that for our gait model having no assist elements, is shown in Figure 5.3.
It is evident that the knee model changes the dynamics of the gait model
considerably, based on the knee element properties.

Our initial experiments will therefore search for the set of K gsist, Cassist
and Biemper that yield a knee flexion curve most closely resembling that of
our known mechanism. By varying the GA input parameters such as the
population size, we can determine appropriate inputs required for the GA to
successfully search this size of a solution space. These inputs will then be
used to search for the mechanism parameters yielding a knee flexion curve

most closely resembling that of real human gait.

5.3.3 Setting up the GA

When using the GA, finding both a proper objective function to minimize
or maximize and a set of GA input parameters that will result in successful
search performance is essential. The objective function must relate the de-
sirable qualities of a good problem solution to a quantity that reflects how
good a particular solution is. Therefore an objective function must yield
high scores for those solutions that exhibit most of the desirable qualities
and small scores for those that do not.
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Figure 5.3: Knee flexion curves for the known solution having K g0 = -1
Nm/radian, C,esi¢ = 1 Nms/radian and Bueeit = 13 degrees and the gait
model having only a locker mechanism and no assist elements.
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We will define our indicator of natural looking gait based on the similarity
of the model’s knee flexion curve, that of 8 with respect to time, to that of
the real human data that our gait model mass quantities are taken from. The
objective function will be based on the root mean square (RMS) difference
between the reference knee flexion curve and that of the current solution at
each time step. The reference and tested solution will be compared in the
time interval from O to 0.5 seconds at 0.002 second increments. This time
increment is the numerical integration step size.

The RMS tracking error, epprs, for a particular solution will then be
turned into a fitness score using one of two methods. The first is to simply
take the reciprocal of the RMS tracking error as the fitness score, hence

Fitness = 1/epus- (5.2)

An alternate method is to use the tracking error to fitness formulation of the

previous chapter, ie:

Fitness = 1/v/1+ erpums- (5.3)
Both methods will be examined to see if there is any difference in algorithm

performance.

The population size of the GA is dependent on the size of the space
being searched. A too small population size will often lead to convergence
to suboptimal local maxima. Population sizes that are too large will lead to
excessive generations required for convergence. The crossover and mutation
rates exhibit similar traits - there are optimal settings for each. As in the
previous chapter, a medium crossover rate (65%) and a mid to high mutation
rate (0.8%) will be used as it was shown that this is a good strategy. We will
rely on the problem independent nature of the GA by finding a population
size that consistently finds the known solution contained within the solution
space to then search for the parameters that yield the best solution on the
real problem.

The known solution to search for has parameters as shown in Table 5.2.
The negative sign convention on the spring stiffness parameter is due to the
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Parameter Value
Kagsist -1 Nm/radian
Coassist 1 Nms/radian
Bdamper 13 degrees

Table 5.2: The known leg joint solution parameters.

Parameter Lower Limit Upper Limit
Kssist 0 Nm/radian -5 Nm/radian
Cassist 0 Nms/radian 5 Nms/radian
Bdamper 0 degrees 20 degrees

Table 5.3: Search variable ranges.

sign convention for the knee joint angle used. This means that for some
knee angle flexion, the spring is in compression, generating a force which
tries to extend the lower limb. The knee flexion graph for this mechanism is
shown in Figure 5.3. Limits on the search variables are shown in Table 5.3.
Knee flexion graphs of two mechanisms having extreme values of the search
variables are shown in Figure 5.4, giving a crude indicator of the possible
mechanism knee flexion curves contained within the solution space being
searched.

In order to compare the quality of solutions found in a run of the GA,
a high quality solution needs to be specified in the context of this protlem.
As the quantity to be minimized is the RMS tracking error between the two
curves, this value will be the basis of the comparison. The RMS tracking error
between the two curves, egars, will be compared to the finest input variable
increment, 4, in the Byamper variable. Those solutions having egyrs < 6 will
be considered ‘excellent’. Shown in Table 5.4 are the RMS tracking errors for
the known solution, the closest solution representable by the GA, and two
variants of the latter; one having each parameter value one increment larger
than the closest, the other having each parameter one increment less.

The population size experiments will be performed by running the GA 20
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Figure 5.4: Knee flexion curve extents. Shown are curves for mechanisms
having a heavy spring and no damping (K ssise = -5 Nm/radian, Cgesise =
0 Nms/radian) and heavy damping and no spring (Kgsse = 0 Nm/radian,
Cassist = 5 Nms/radian and f,si5: = 20 degrees).

(a) (b) (c) (d)
Parameter Known Value Closest GA Variantl Variant2
Kaveist (Nm/radian) 1 1 0.0804 -1.0196
Cassist (Nms/radian) 1 1 1.0196 0.9804
Baamper (degrees) 13 13.0196 13.0980 12.9412
erms (degrees) 0.0 0.0 0.0798 0.0740

Table 5.4: Solution parameters and RMS tracking errors for (a) the known
solution, (b) the closest discrete GA representation and (c) and (d), two

variants with parameters close to those of (b).
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times each with populations ranging from 40 to 160 individuals in steps of
20. The number of runs that the GA finds the known solution, or a similar
high quality variant, will be interpreted as the probability of success for a
single run with that population size. The population size with the highest
probability of finding the known solution will then be used to search for the
parameter set yielding a knee flexion curve most resembling that of human
gait.

5.3.4 Searching for the parameter set yielding natural
looking gait

Having determined an optimal population size and the most suitable fitness
function in the previous experiment, the parameter set resulting in a knee
flexion angle most similar to that of natural gait will be sought. Figure 5.5
shows the knee flexion angle graph taken from the ‘Man.ang’ file found in
Gaitlab. This data represents the natural knee flexion curve for the gait of a
normal man upon which the three link model mass and geometric properties
are based.

The Gaitlab data file presents, among many other things, knee flexion
data for the entire gait cycle. As we are concerned only with swing phase
of gait, we have taken data points starting from the point of toe-off, ¢,s.
Toe-off, identified as the point at which the force plate data showed a zero
load for the swing leg, occurred at t,5s = 0.82s. The time of heel strike was
undefined for the data set as only one force plate was used per foot. The
period of swing phase was defined by our model; a period of ¢sying = 0.40s
typically was needed before heelstrike occurred. This is typical of reported
swing period times (Mochon and McMahon, 1980). It was decided to use
Gaitlab data for a period of 0.5 seconds in order to include the knee-locking
behaviour evident in the 0.1 seconds of the knee angle plot. This is perhaps
not a good assumption as the knee angle behaviour in this time period is
likely due in part to heel strike occurring. Regardless of the assumption
validity, it does make for a more difficult target to attain, so the data taken
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from Gaitlab will be for a total of 0.5 seconds. The reference data set is
therefore made up of the knee flexion angle data reported in the Gaitlab
data file from time ¢ = 0.82s to time ¢ = 1.32s in 0.02 second time steps.

5.4 Results

5.4.1 GA fitness function and population size required
GA fitness functions

It was found that the form of the fitness function greatly affected the algo-
rithm performance with respect to the algorithm converging on a solution.
Interpreting fitness as simply the reciprocal of the RMS tracking error pro-
duced populations of solutions where the difference between the best and
worst individuals is dramatic. This resulted in unsatisfactory algorithm per-
formance; the algorithm often failed to converge on a solution, hence Equa-
tion 5.2 was deemed unacceptable. Equation 5.3, having an upper bound on
the good individuals’ fitness scores was therefore determined to be the best
strategy.

It was also found that if the quantity to be minimized was not the RMS
tracking error, but the largest absolute tracking error in the set, the GA
did not find acceptable solutions. When attempting to minimize the largest
absolute tracking error, those solutions having many small deviations from
the reference curve would be awarded high fitness, while those following the
general trend of the reference curve, yet deviating significantly in one small
region were penalized heavily. As the goal is to find a joint configuration that
looks most natural, it makes sense that the solution should have the same
general pattern as that of natural gait.

Population size required

Table 5.5 shows the results of the population size tests. Shown are the number
of times, of a total 20 runs per population size, that the algorithm found the
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Population Size 40 60 80 100 120 140 160
# Success 5 11 11 16 15 17 19

Table 5.5: Population size test results. Number of runs, of a maximum 20
that found a best solution ever having an ‘excellent’ tracking error score.

equivalent of the known solution, or an ‘excellent’ solution to our problem.
As expected, there seems to exist a minimum population size required for
successful searches. Population sizes of 100 or greater were found to yield
the best results for this size of search space. This was not surprising as the
search space for the present problem is the same size as for the problem of the
previous chapter (2PerametersxBits/Parameter — 93x8 — 224) where it was found
that a population size of 100 or greater was required. Using a population
size less than 100 individuals often resulted in the algorithm converging on
non-optimal, or local maxima, solutions.

5.4.2 Search results for natural looking joint design

Figure 5.6 shows the best solution found after running the GA 10 times on
the real joint design problem. This joint, having parameters Kg4:5¢ = -0.6471
Nm/radian, Cygsise = 1.2549 Nms/radian, Biamper = 0.825 degrees resulted
in an RMS tracking error of 18.564 degrees. Again, the negative sign on the
spring rate is a result of the knee flexion angle sign convention. While the
general trend of the best solution is similar to that of natural gait, our model
does not attain the same peak knee flexion as that of real gait and the region
around heel strike (¢ > 0.45s) differs significantly.

As is often the case in GA searches, other high quality solutions having
different parameters values were found. Table 5.6 lists a few of the high
quality variants found, showing the solution parameters and resulting RMS
tracking error for each. '

The difference in peak knee flexion is reasonable as our model is purely
ballistic, assuming that no muscles act throughout swing phase. In real-
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Figure 5.6: Best solution found for the three variable search test having
parameters K, qs: = -0.6471 Nm/radian, C,sist = 1.2549 Nms/radian and
Baamper = 0.825 degrees for an RMS tracking error of 18.56 degrees. Shown
as well is Gaitlab data from a real human.

Vi Va Vs
Koesist -0.6863 -0.6275 -0.5882
Coesist  1.3137 12353  1.1961
Baamper 1.295  0.705  0.120
erms 18.57 18.61  18.69

Table 5.6: High quality variant solutions V;, V2 and V3 found for the three
variable search.
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ity, there is muscle activity that affects the motion of the leg during swing.
Considering EMG data traces presented in Gaitlab, it can be seen that a hip
flexor muscle group, the illiopsoas group, is active in the early phase of swing.
As hip flexion generally results in knee flexion, it is natural to think that the
addition of a hip flexor element in our model could improve the early phase
of the knee flexion curve.

In a similar fashion, a modified knee locking mechanism might result
in the model and reference graphs looking more similar in the region before
heelstrike. If we include into our search space some of the variables describing
the knee locking mechanism (one of the Kiscrer, Clocker OF Biocker Variables, or a
combination of the same) then we could let the GA search for the parameters
of the knee locker that result in the most realistic looking gait.

5.5 Model modifications

Based on the observations from the general trends of our reference and best-
found knee flexion curves, we will alter our model by including a simple hip
flexor element. This element is intended to mimic the role of the illiopsoas
muscle group in early swing phase. Descriptions of sophisticated mathemati-
cal muscle models that take into account nervous signal activation dynamics,
muscle connection locations and tissue properties can be found in the liter-
ature (Yamaguchi and Zajac, 1990). For the sake of concentrating on the
problem as a design method, we will depict our hip flexor model simply as
an applied moment to the swing thigh, L., for the duration ¢ < 0.1s. The ‘on
time’ was chosen based on the approximate activity range shown in Gaitlab
for the illiopsoas muscle group.

Holding the activation time constant, we will let the GA search for the
optimal magnitude of the moment that results in the the most normal looking
swing. This hip flexor moment, Mp;,, will be of constant magnitude through-
out the activation range and be in the range of INm < My, < 6Nm. The
lower bound was chosen as it barely affects the motion of the model while
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the upper bound visibly affects the motion of the model. Upon finding an
optimal value of hip torque, one could try to correlate this back to reality
using data from Gaitlab.

In order to get a more realistic knee flexion curve in late swing, we will
consider the knee locker mechanism activation angle, Biscter, as an additional
variable in our GA search. The knee locker spring and damper constants,
Kiocker and Cipcker, Will be held constant while the activation angle will be
allowed to vary through the range 1 < Biocker < 11.

5.5.1 Results

The addition of two variables increases the size of our search landscape from
23%8 = 224 possible solutions to 25%8 = 240 possible solutions. The popula-
tion size required for successful GA increases with increasing solution space
size. In a similar fashion to that of Section 4.3.1, the population size for the
five variable problem was increased incrementally and the problem was run
repeatedly until a population size was found that would consistently con-
verge on high quality solutions. It was found that a population size of 240
individuals was sufficient for consistent convergence.

The knee flexion graph from the best design found in the five variable
search is shown in Figure 5.7. The best solution found had parameter values
of Kgssist = -1.6667 Nm/radian, Cyssise = 1.4902 Nms/radian, Busmper =
11.14 degrees, Mpip = 5.8627 Nm and Biocrer = 6.96 degrees for an RMS
tracking error of 13.42 degrees. Comparing this solution to that found in
our three variable experiment, we have decreased our tracking error score
by approximately 28%, a significant amount. Visual comparison of the knee
flexion curves shown in Figures 5.6 and 5.7 reveals that the five variable
solution yields a more natural looking knee flexion curve, especially in the
later stages of the swing phase. Hence if the amputee can maintain a constant
hip torque of about 5.86 Nm for the first 0.1 seconds of swing phase, a limb
having these parameters would yield a near-natural looking swing. This
seems reasonable, as Winter (1990) reports peak hip torque values in excess
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Figure 5.7: Best solution found for the five variable search test. Solid line
is the best solution found having parameters K,gsis¢ = -1.6667 Nm/radian,
Classist = 1.4902 Nms/radian, Buamper = 11.14 degrees, Mp;p, = 5.8627 Nm and
Blocker = 6.96 degrees for an RMS tracking error of 13.42 degrees. Filled
circles represent real data taken from Gaitlab.

of 20Nm for a patient who has undergone a total hip replacement.

5.6 Conclusions

This chapter considered using the GA as a tool in a complex mechanism
design task, particularly that of designing a purely mechanical above the
knee prosthetic limb knee joint that exhibits natural looking motion in the
swing phase of gait. The design aspect consisted of finding the constants for
a rotary spring and damper attached to the swing knee joints and the active
range of the damper element that resulted in a knee flexion curve similar to
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that of natural gait as observed in a real healthy male subject.
It was found that in order to realize ‘convergence’ with the GA, thereby
indicating that a successful search has been performed, at least two items

need careful consideration:

e An appropriate fitness function is required. By ‘appropriate’ it is im-
plied that the quantities to be minimized/maximized are properly rep-
resented as mathematical equations.

e A population size is used that is large enough to consistently find the
optimal solution set in the design space. In order to gauge consistency
it is very useful to run the GA several times using different population

sizes for a known problem.
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Chapter 6

Conclusions and
Recommendations

This thesis considers using the Genetic Algorithm as a tool for mechani-
cal design tasks. Using appropriate fitness functions, the design tasks were
formulated as optimization problems which the GA was used to solve.

The behaviour of the GA was first analyzed by considering different op-
erating parameters. Varying the population size, crossover probability and
mutation probability while monitoring the algorithm performance indicated
suitable values for these input parameters to use in subsequent tests.

Using these parameter value guidelines, a real’ example problem was
considered that involved dimensional synthesis of a four bar mechanism for
path generation tasks. Experimenting with different fitness function forms
indicated the importance of formulating a fitness function that is indicative of
the design task. It was shown that results can differ significantly depending
on the fitness function formulation, often producing results which satisfy the
objective function but don’t satisfy the design task for other reasons.

The technique was then applied to another design task, that of designing a
purely mechanical prosthetic knee joint. The objective function formulation
considerations of the previous éxperiment were noted and optimal designs
were found. In order to realize better results, the experiments were performed
again with more of the model parameters considered to be design variables.
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This increased the size of the solution space to be searched by the GA, and,
with appropriate GA parameters, a better design was found in the larger
design space. This was a successful example of starting with a small problem
and adding complexity bit by bit to eventually solve a complex problem.

The GA is a suitable tool for mechanism design tasks, typically yielding
optimal solutions when appropriate input parameters are used for a given
design space. While reporting optimal solutions, the algorithm provides ex-
cellent insight whether or not the chosen objective function describes the
design task. Objective function definitions not representing the design task
are rapidly exposed, typically yielding mechanisms with obvious shortcom-
ings.

In order to realize success using the GA, it was found that a population
with enough individuals was required to effectively sample the solution space.
The GA was relatively insensitive to local maxima, typically similar solutions
were found for the design tasks when the GA was run several times on the
task. The results of the optimization are only as good as the representation
of the objective function for the design task. Several runs of the GA are
required to increase the probability of finding the global optimum solution.
A single run of the GA is not a wise approach.

The GA is computationally intensive, evaluating many solutions in the
design space in a single run. As a population matures, many of the indi-
viduals have the same genetic makeup. It doesn’t make sense to re-evaluate
previously found individuals, so a means to store the results is a necessity if
the objective function evaluations are expensive. Using a hash table structure
is an efficient means of doing this and should be part of any GA.

Given an arbitrary design task, this GA design approach can be nearly
a ‘black box’: an objective function, a set of design variables and the inputs
for GA are all that is required. Assuming that a designer is familiar with
their objective and has determined their design variables, the only thing left
to specify is the input parameter set for the GA. No exact rules have been
defined in this thesis for determining what the GA inputs should be. A
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methodology similar to that used in Section 4.4.1, however, can be utilized
to determine approximate input parameters.

As determining the input parameters for a given design space size and
complexity is the most difficult aspect of using the GA, future work might
include trying to come up with general formulas for determining the pop-
ulation size and probabilities required. Alternatively a means of adjusting
the GA parameters throughout a simulation to react to population charac-
teristics would be helpful. A GA that could adjust its own parameters to
maximize search performance would be a big step towards having a ‘black
box’ design method. This would enable designers considering large, complex
solution spaces to use the GA as a design tool, avoiding much of the initial
tuning runs required for a particular problem.
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Appendix A

Finding four bar linkage
position using the Newton
Raphson root finding technique

A method is needed to find the mechanism configuration of a four bar link-
age as its crank arm is driven through a complete revolution. The planar
four bar linkage, as shown in Figure A.1, is a 1 Degree of Freedom (1DOF)
mechanical system. Only 1 independent generalized coordinate is needed to
uniquely specify the system configuration at any point. If this coordinate
(the crank angle, ¢, for this mechanism) is specified and it corresponds to a
possible physical configuration of the mechanism, a mathematically determi-
nate system should describe the physical system.

Having specified the value of the single independent coordinate, the ori-
entation of the system should be fully defined. In order to find the coupler
and follower link angles (8 and 8), the kinematic constraint equations for the
system must be written in terms of the generalized coordinate. In the gen-
eral case this results in a system of n constraint equations written in terms
of the n unknowns. The kinematic constraint equations for this system can
be written as the x- and y- coniponents of the loop closure equation for the

four bar:

u = u(fB,0) = Lycos(¢) + Lacos(B) + Lzcos(f) — Base, =0, (A.1)
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I Base,

Figure A.1: Planar four bar linkage. Dimensions given as L, L2, L3, Base,
and Base,. Orientation specified by ¢ - § and 8 are computed.

and
v = v(B,8) = Lysin(¢) + Lasin(B) + Lasin(f) — Base, = 0. (A.2)

Specifying the crank angle ¢ yields a system of two equations and two un-
knowns, non-linear in terms of the unknowns 8 and 6. If a physical solution
exists at a given crank angle, then this system should be mathematically
determinate.

Due to the nonlinearity in the system, an analytical solution for the two
unknowns may not be found. For this reason a numerical solution technique
is employed to solve the system of equations. The Newton Raphson numerical
root finding technique will be used to refine initial guesses for the 5 and 6
values at each crank angle.

The Newton Raphson technique can be found in most introductory nu-
merical analysis textbooks (Chapra and Canale (1988), Press et al. (1988))
but is included here for completeness. The 1st order Taylor series approxi-

mation of a function of one variable, z, at a point is:
f(zin1) = f(z:) + /(@) (Tiv1 — 23)- (A.3)
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If the function intersects the x-axis at the next step, ie: f(z:+1) = 0, this
equation can be rewritten as the equality:

£z o
f '(l'i)

Equation A.4 provides a means to refine a root estimate: given a guess for
a root value (z;) and the function and first derivative values at this point, a
better estimate is predicted with this information.

This process of improving on the root estimates is shown graphically in
Figure A.1. Root values should become progressively closer to the true root
value. The accuracy of a root value is determined by evaluating the function
at that point. If the following conditions are met:

Tip1 = T; —

e The new root estimate is changing slowly (z;4; — z; < €., where ¢, is
an estimate difference tolerance).

e The new function value is less than some error tolerance (| f(zi+1)] < €,
where €y is the amount the function value may deviate from zero.

Then z;.; is taken to be a root of the function.

The loop closure equations (Equ. A.1 and A.2), are a system of two un-
knowns and two equations. Following a similar process the Newton-Raphson
method is derived for a system of two unknowns (5 and #) and two equations

(u(B,6) and v(B,8)) to yield:

w8 .98
,3’ _‘3,_ t 98 t 360 (A5)
1T M7 Bu; dup - Buy Ovs :
o8 99 ~ 96 OB
and
w3y - ui
Oiv1 = 6: + 9u; Jv; _ Bu; O * (A.6)

o8 90 ~ 90 9B
Rewriting the loop closure equations in the form of Equations A.5 and
A.6 therefore provides an estimate for new B and 6 values given an initial
guess for each. Initial guesses for the 8 and 6 angles at each crank angle can
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f(x)

Figure A.2: Graphical representation of Newton Raphson root finding tech-
nique.

be conveniently set to the angles at the previous crank angle: assuming that
the mechanism configuration changes smoothly and the crank angle step size
is small enough, in practice this is a valid method for finding the new crank
angles.
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Appendix B

Finding the circle defined by
three points in a plane

Three points in a plane specify a unique circle, save for the special case where
the three points lie in a straight line. The center of this circle is located at
the intersection point of the perpendicular bisectors of two lines that join
successive specified points. This is shown graphically in Figure B.1.

Specified points P1, P2 and P3 are on the circumference of the circle.
The successive joining lines [; and /> connect points P1 and P2 and P2 and
P3, respectively. The midpoints, Mid(1) and Mid(2), of the two joining
lines are found by the equations:

P()z + P(+1)s

Mid(i), = d (B.1)
Mid(i), = Z@v+ 5 G+ 1)y (B.2)

where P(i). is the x-component of the ith point and 7 is a point index.
Lines [; and [, have slopes m; and m,, respectively, found by the equation:

. PGE+1), — P(E),

M G+ 1), — P(). (B-3)

The slope of a perpendicular bisector line is the negative reciprocal of the
reference line /;. Knowing the slope of the line and the location of a point on
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Figure B.1: Finding the unique circle that passes through three points in a
plane.
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the line, the equation of each perpendicular bisector line is found as:
y — Mid(i), = ~—(z ~ Mid(i).). (B4)

Finding the equations of [,; and /,, in this fashion allows one to solve for the
location of the intersecting x by equating the common y-values. This results
in an equation for = of the form:

_Ys—un — A(zy + z2) + B(zs + z3)
= 2B — 24 (B-5)

which can then be substituted into Equation B.4 to find the y coordinate of
the circle center.

Using this technique, a circle is fitted to three points along an arbitrary
curve. If an approximation is required for the smallest distance that another
point lies off of the curve, an efficient approximation to this distance can
then be determined by first calculating the distance from the outlying point
to the circle center point, then finding the difference knowing the constructed
circle’s radius.
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Appendix C

Equations of motion for a three
link pendulum

The equations of motion for a three link planar pendulum system having
three moving bodies and three revolute joints was found using Newton’s 2nd
Law, (F = m@). A three link pendulum is shown in a deformed position in
Figure C.1. In terms of the pendulum’s three coordinates, ¢;, 2 and ¢3, the
equations of motion are written as:

[1{¢} + (M]{#°} + {G} = {0} (C.1)
where:

] =
I + L3 (B + ma + m3) L1La(52 + m3)cos(¢y — ¢2) LiLa(F2)cos(¢s — ¢1)

L1L2(2 + m3)cos(y — ¢2) I + L3(32 + m3) LaLs(%5*)cos(43 — ¢2)
L1 L3(%5*)cos(¢s — ¢1) LoL3(3*)cos(¢3 — ¢2) I+ Tk
(C.2)
and:
[M] =
0 Ly1Lo(%2 + ma)sin(¢r — ¢2)  L1La(%)sin(dr — ¢a)
—LyLo(B2 + ma)sin(¢pr — ¢2) 0 —LyL3( 52 )sin(¢3 — ¢2)
—L1 L3(%)sin(é1 — ¢3) LoL3(%2)sin(¢3 — ¢2) 0
(C.3)
and:
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Figure C.1: Three link pendulum. Angular coordinates are measured from
Cartesian reference frame.

106



Gl =
gLising (Gt + mz + m3)
gL2sing2(72 + ma3) (C4)
gLzsingz(5*)
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