.’ National Library Bibliothéque nationalé ‘
! of Canada - du Canada .
—LLanadian Theses Serviée Services des théses canadiennes .
Ottawa, Canada)
K1A ON4 . .
’ * Jl‘

CANADIAN THES_;'ES

.

NOTICE

The quality of this microfiche is heavily dependent upon the

quality of the origin'al thesis submitted for microfilming. Every

" effort has been made to ensure the highest quality of reproduc-
tion possible. o

If pages are missing, contact the university which granted thé
degree.

Some pages may have indistinct print especiatly if the original
pages were typed with a poor typewriter ribbon or if the univer-
sity sent us’an inferior photocopy.

P

Previously copyrighted materials (journal articles, published
tests, etc) are not filmed. ‘

Reproduétiom in part of this film is governed by the
Canadian Copyright Act, RS.C. 1970, c¢. C-30.

s
»

- THIS DISSERTAFION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339(r.86/06)

THESES CANADIENNES

-

AVIS
La qualité de cette microfiche dépend grandement de la qualité .

de la thése soumise au microfilmage. Nous gvons tout fait pour’
assurer ‘une qualité supérieure de reproduction

S'il manque des pages, veuillez communiquer avec l'univer-
sité qui a conféré le grade

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont é1¢é daclylographiées
a l'aide d'un ruban usé ou si l'umiversité nous a fait parvenir
une photocopie de qualité intérieure®

Les documents qui font déja I'objet d'un droit & auteur (articles
de revue, examens publiés, elc) ne sont pas microfilmés

{
La reproduction, méme partielle, de ce microfilm est soumise
4 |a Loi canadienne sur le droit d'auteur, SRC 1970, ¢ C-30.

. LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS'L'’AVONS REGUE - ¥

~ Canadid

. - .
THE UNIVERSITY OF ALBERTA

LRRL(k) GRAMMARS:

A.LEFT TO RIGHT PARSING TECHNIQUE WITH
'

REDUCED LOOKAHEADS
.~ -Zi:::> -_—— . by ’
RAHMAN NOZOHOOR-FARSHI

‘ -A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

f’ DEPARTMENT OF COMPUTING SCIENCE
~ ¢ g

® '~ EDMONTON,ALBERTA

FALL 1986

Permission has been granted
toe the National t+hrary of
Canada to microfi]lm this
thesis and.- to lend or sell
copie's of the film.

The author (copyright ownegr)
has reserved wother
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

’

L'autorisation a 2t& accordée
ad la Biblioth&que nationale
du Canada 'de microfilmer
cette thd@se ‘et de préter ou
de vendre des exemplairgs du
film.

L'auteur (titulaire du droit
d'auteur) se rR{serve les
autres droits de publication:
ni la th&ge ni de longs
extraits de _celle-c1 ne
doivent @8tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

ISBN @-315-32461-9

. \

4

'YEAR THIS DEGREE GRANTED: 1986 a

. scientific research purposes only.

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Rahman Nozohoor-Farshi
TITLE OF THESIS: LRRL(k) Grammars: A Left to Right Parsing

. Technique with Reduced Lookaheads

: >
DEGREE: Doctor of Philosophy Yo

Permission is hereby ‘granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce single copies Qf this thesis

and to lg?d or sell such copies for private, scholarly or

>

-

The author reserves other publicatlon rights,” and

neither the thesis ncr extensive extracts from it may be

‘printed or otherwise reproducedeithout the author's written

" permission.

z ‘ﬁiAgROLWOﬁ;ZLSL

© 8 6 6 8 6 0 00 0 0 5 20 S IO S L e s

£§tudent s S1gnature)

Permanent address.

1950 Cedar Village Cres. #402
North Vancouver, B.C. V7J 3M5 .

‘Dpte: October 10th, 1986

THE UNIVERSITY OF ALBERTA = b

o

FACULTY OF GRADUATE STUDIES AND RESEARCH
. . .

LI Y

The undérsigned cgrtify that they have read, _and
recommend fg the Faculty of Graduate Studies and Research
for acéeptance,'a thesis entitled LRRL(kQ,Qram£a§s: A Left

-to Righ} Parsing Technique with Reduced Lookaheads submitted
by Rahmanv Nozohoor-Farshi in partial fulfilment oJf the

requirements for the degree of Doctor of Philosophy.

.‘ L ‘ '..\%'.'.'...:/uzm/-”

- Supervisor

’ \ fxf e A //2)/14/5(}

ooooooooooooooooooooo
oooooooooooooooooooooo

' " ABSTRACT

'Since the emergence of Marcus' parser, the Al community
has shown a growing interest in .deterministic parsing of
(subsets of) natural languages. However, thesé parsers are
generally described in an informal and intuitive manner, and.
the grammar for.the lanquage is embedded in the code for a
parser. LRﬁL(k) contex;-free grammars ‘are defined to

-——

formalize such parsers.

The parsers for these grammars employ ‘qon-terminél as
vell as terminal symbols .in a generalized lookahead
strategy. For a fixed)value of the-parametér k, it is. shown
that this class of grammars is ﬁhe“largest known class that
generalizes the concepts of LR(k) parsing while retaining
the decidability of the membership problem of an arbitrary

context-free grammar in the class.

The LRRL grammars, when augmented with attributes or
features, generate a class of languages that _rncludes the
subsets of English which are parsable- by a Marcus type
parser. Thus introduction of LRRL grammars provides a
capability for automatic generation of Marcus style paréers
from a context-free Qnderlying grammar plus the information
about the feature set, their propagation and matching rules,

and a limited number of transformation rules. WK

iv

—-—

LRRL(k) grammars not only have & gignificant impact on
r?atural language processing, but they also ﬁlve manxg
interesting applic$tions in design apd implementatxon of
programming languages. In pérticuqu, thgy are very usgful

in production of one-pass compile‘rs and robust error r
. A . .

correction methods. :

/
\
- AN \

aclt

N A

« ACKNOWLEGEMENTS

to express my sincerg thanks to Dr. Len

chubert ‘me computational linquistics, and for
sdpervising this thesis. His advice and his encouragement

have been invaluable to me,

1 would like to thank Dr. Paul Sorenson for his helpful

'suggestions and his careful reading of the thesis.

L

I also would like to thank the other members of my
supervisory committee, Drs. Jeff Pelletier, Matthew Dryer and

Robert Reckhow for their interest in my work.

Finally, I would 1like to ~ express my deepest
appreciation to my family. Without their support and
understanding, my efforts would not fave been equal to this
task. - |

s : ' .
This research has received financial support from the

Natural Sciences and Engineering Research Council of Canada

Operating Grant A8818.

vi

,A”S
SRR
, A1) '
Chapter N A Page
|

1 INTRODURTION ..euveeresineennrnnaneonaenensonsanaaees 1
1.1 Motivation e
1.2 An overview of thasythesis: 6

2 BACKGROUNDccccecceccesscscesssassnasnanae 10
2.1 Complex okaheads in the Marcus parser FERTRE 10
2.2 Marcus parsingee.een e erses e e 425

2.2.1 bpe tion of the Marcus parser 25
. 2.2.2 Some conclusions about the Marcus parser .. 37
2.3 Previous generalizations of LRI(k) gramma;s e 41h
2.3.1 LR-regular grammarsﬁ43
2.3.2 LR(k,t), LR(k,=) and FSPA(k) grammars46'
2.3.3 Some conclusion§ about the LR—regulaf,
LR(k,t), LR(k,®) anH'FSPA(k).gramma:s 55
2.4 COVEIS tuvenrennenneeneeneesnestoneeneennn. ... 60
2.5 ConclusSionieeecronsens P X
_

3 DEVELOPMENT OF LRRL(k) GRAMMARSccoc0uenen « 65
;3.1 Preliminary definitionscoeeeueuenn gy 65
3?§~ Basic LRRL{(k) grammars S e ceessse.. 68

3;2.1 Rationale for the' choice of lookaheads 70
3.2.2 Characteristic parsing automata approach to

vii

L

LRRL qr...m.r. 6 0 0 0 ® 00 00 006000 002 0 00000008 00

3.2.3 The states Of CPSMcocvvvupencscnnns
3.2.4 Closure oporitioh B
3J2.5 Construction of @ CFSMecvvvveecrensns
3.2.6 Post optinizition Of 8 CPSM ..viecaceennes
‘.3.2}7 DeriQation of a parse tablecc0ec00eee
. 3.2.8 Optimized parse tableccn0vnes
3.2.9 Parsing algorithm teetcesescsesaenn
3.2.10 Correctnéss of the algorithms:
.3.2.11 Type 11 basic LRRL(k) grammars coes
Qi IMPL-ICATIONS OF LRRL(k) PAﬁS'ING
| 4.1 Unambiguity and.linear parsability;.f...
4.2 Problem with parsing Some left ;ecﬁrsive and
selt-embédding CONSLIUCES ...eoenerenn. e eaeae
4.3 A Secpnd iook,at the LRRL(k) grammars e,
4.3.1 ‘Redﬁced contexts grammar\and reduced
contexts Janguageccccco0n0 0 ..
~8.3.2 LRRL(k) decision set of a grammar
4.3.3 Recursive definition of LRRL(k) grammars
4.4 Complexity of LRRLﬁR) teSting ...veeessesroans
4.5 Informal compifison with alternative parsing
\ techniQUESsiveeveenncnnnnns M eea et
e 4.5.1 Comparison with Lﬁ(k,w) PArSers
U ‘.5.2 Comparison with Earley's parser
'\:f‘ji;.§}3 Comparison vith backtracking parsers

viii

98

105
108
115

127

- o

i
!

4.5.4 ‘Compari:::/,lth pnrallol parsers;) 197
4.5.5 Comparistn with an oracle model72 201
’ N -) "

5 GBNBRALIZAT‘QH-}\ LRRL(k) grammars ...y......... 203

6

5.1 The BLRRL(kNgr T8 cevevecrconeanennscsess 208
5.2 The MLRRL(K) QramMarsccscssp00000s00 207
5.3 The GLRRL(k) grammtarsccc00c00000000... 208
5.3.1 GLRRL(k) parsers with unbounded buffer .. 211
5.3.2 \GLRRL(k) parsers with bounded butfer ceee 235

5.3.3 Properties of GLRRL(k) grammars 252
5.4 Subclasses of LRRL(k) grammars: 261
5.4.1 Marcus pars#ble MP(k) grammars .:... 261
5.4.2 Simple LRRL(k) grammars N 271
5.4,3 LALR analogues of LRRL(k) grammars 272
’575 LRRL(k) grammars with ¢-rules ceeeeae. 272

5.5.1 Closure operation in the presence of
e-rules 00000 it 275

5.5.2 Construction of CFSM for grammars with

5.6 Conclusioncceoeees e e s se e s et onece s 286

TOW&RDS ATTRIBUTED LRRL(k) PARSINGcc000. 291

6.1 Background et eeessesesaaaesesenene e 292

. 6.1.1 Attributed grammsts PP e ee.. 293

6.1.2 Extended attribute grammars 295

6.2 Attribute qrammars and LRRL parsing 300
' 5}

6.2.2 Attribute flov and evaluation in LRRL

' .

6.2.% Methods for evaluation of attributes 301

6.2.1.1 Tree vwalk evaluatorsccocceesseee 303
6.2.1.2 On the fly evalgators 305

6.2.1.3 D.AG .v.lu.tor.‘.............O... 306
-

»

gflmrS R R R EE R N N I A A A S B S A S RS N) 30..

6.2.2.1 Scheme 1: A subclass of L attributed
grammars LR R EERE R RRAE UL 309
6.2.2.2 Scheme 2: Dependency on, the
attributes of right siblings 315
6.2.2.3 Scheme 3: Dependency on the Q‘tribut;

es of fully reduced right contexts .. 315

6.3 Attribute-directed parsing eeeeseenaaeenaaa. 316
6,4 Semantic disambig!&tion with the use of wait

and see policyccc0e0ecenee cereteenanns 320

6.5 Syntactic orr?rs FePAIr ..veverecocennans vevs 323

6.6 Transformations in the Maréus parser 328

6.7 Concluysion ceesecscasee ceceeiesrensrens 330

7 CONCLUSIONS e, et eieeie.. 332

7.7 In SUMMATLY... .occecee cesceens cteaecsenanes t.. 332

7.2 Contributions of the research cee.. 333

7.3 Future researchcceeeeesoveaasnas PEREREE 338

RE?BRENCBS ¢ 600 000000 0 9t ® e 0 60 e 0000000 341

/b

; , » T .
APERNDIX - .‘*—’—‘—,ff',/ﬂr s)

& sggzoxt-troonois of the language acdepted. by

' s 'y
mrcu. mr..r .&................."...'........l.
-

I.1° Purther elaboration of the parser operations

and assusption of a bounded BULEEE ...cuveoens
- i.z Simplified parseroc' i iiveciiinrinans
1.2.1 Prohibition of featuresoieeuececes
1.2.2 Non-accessibility of the parse tree
‘1.2.3 AtOMIC ACLIONSivvreconrnasosasonss con
1.3 Simulation of ' the gimplified parser ceeen
1.4 Simulation of the general parSer
1.4.1 Nogg;tomic actions ceesssunnas oo
1.4.2 'Accessiii}}{§/;t-descendants of current
aétigyznoae and current cycéic node
1.4.3 Acc;;mOQation of featurescc000000

1.9 Conclusions ...

xi

sy

82
354
354
385
357
3s8
363
363

- -

LIST OF FIGURES TN

Figure .- : Page

-

a

-

ZJ" Parse tree of impgrative Sentence J.....iiiceseong RS

2.2 Parse tree of yes/no question sefftence 12

.

~ 2.3 Fragment of Pascal program ettt e AB.
: \\2.4 Forward referencing goto e tieiees . 19
2.5 Attach®ng PP to a noun e 20
2.6 “Attaching PP tOo VP i tirineeeoanneennssnnns : 22
2.7 Parse tree of andbn R R e eeeaen .. 59
2.8 Parse tree of an(db)n e e e e .. 59
3.1 Reduced right CONtEXES ..t.eeereeenreranooonnsanans 67
3.? Comparison of parsing stra£%gies ...:.....:.{..... 73
3.3 Parsing and éerivation tree of a*dbad’b? ..0..... 114

3.4 Parsing of the sentence a*dbad?b?® by the type II

Parser 2.7/5;. e [T 136
4.1 Parse tree of ;bbbe R AR Ceterenensecas - 143
4.2 The reduced context AbBCEccvvivreuneinnnn 144
4.3 Sentence AbBCE € L(G,)=R(Gs) .evvrvurnnrinenrnnnns 145
4.4 Parse trees of four sentences 4An L{(G,)v.n 195
4.5 The multilink structure for MLR parser..... 199
4.6 Parsing a?*dbad’b? in‘oracle model ... iceriecionne 202\

—~— 5.1 Lookaheads in GLRRL PArSingeeeeececeneneanss 210
5.2 Parsing.of the sentence ana’na’na’m 226

5.3 Parse tree of ana’nNa®Na’M ...veeeesocesoocasenoss 227

xii

. /
5.4 5 Parse tree of ana’na’na’méL(H,) S X K
. /

5.

Y

-5

5

.6

.10

Parsing of the sentence é&na’na’na’m€L(H,) 234
) .

Parsing of the sentenqé ana‘na’na’m€L(H,) 250
Parse tree of ana’nafna’méL(H,)c.cvuvn.n. 251
o/ _
Inclusion of gramqﬁr classes ... ittt 259
Parsing of the sghtence - T 285
Parse tree of the sentence "af" ..n.............. 285
State 4 of the CFSM for G, e 3™
S
\
-~
¢ ’
N -
\
)
¥
L

xiii

LIST OF DIAGRAMS

Diagram : ’ ‘ Page
2.1 Marcus parsing of the sentence aadbbaddbb 32
3.1 The CFSM for Gccc... ceeeen et .. 86
3,2 The CFSM for G, ...ieeieereosons feee st s e e s ceee 90

3.3 The optimized.CFsM for G, b SR Ceeee e 95
3.4 The type I1 CESM FOT Gy tvvvrunreeenmnnsocennns 132
4.1 LR(2)-CFSM for Go +vvvverneernnnennnns ceesean ceun 15;:5
4.2 LRRL(2)-CFSM for G, e e e, 154
—4-3—&+ and {ts LR(2)-CFSM0cuvnnn ceeresecneeaas 157

4.4 G, and its LR(2)-CFSM et cee.. 158
4.5 G, and its-LR(é3—CFSM P £-3°
" 4.6 G, and its LR(2)-CFSMctvvivnenennanncnessss 160
4.7 *r'l-c'ieterministic Finite S..tate kachine‘with ’
pot‘:ential transitiouns Ceeeeseaeieeas eee e ee. 174
4.8 A fragment of deterministic LRRL(2)-CFSM 186
5.1 GLRRL(1)-CFSM for grammar H,ccc0.. e 221
5.2 GLRRL(1)-CFSM for grammar H, ’229
/i

5.3 GLRRL(1)-CFSM fOr grammar H, «c.eeeoeeeenceennee.s 244

5.4 LRRL(1)-CFSM for a grammar with e¢-rules 281

V4 -

xiv

. LIST OF TABLES

- Page

‘i \
Comparison of parsing strategies Bt . e
First gparse .table for G, oot .

- ¥’
Second parse table_for Gi vveennn,

Optimized parse table for G, vviviiiiiiiin.
Optimized type Il parse table for G,
LR(0) parse table with multiple entries
GLRRL(1) parse table £Or Hy veuureenenn. e
GLRRL(1) parse table for Hi o' et e,
GLRRL(1) parse table for H,c.ivuuiiunnnenenn

Parse table for an LRRL(1!) grammar with e¢-ryles

102
104
108
135
199
225
232
249

284

LIST OF DEFINITIONS

Définition' ‘ Page
’

LR-reqular grammars et eiarenaaanns S PO X
Phrase langu&ge ceaseceas REREE ceresssseseassansesaes &7
Qk(k,t) item ";.......;....:.L..}...... 48

Vai\d LR(k,t) item for a stringccoeeveenrareccas. 49
LR(k;t) grammars;..................... 54
Right coverciceeeececnenes teesanrrnesse A 2
Prefixes of a string}............\.......;;..... 66
Bounded cONCAtENALIiON +.vvveneeeenceonnsonsacsracsasnes 66
Relative prefixes .ve.vecioncsecaeskSB.
Prefix free set - Min ...\ c.eiieienencnnncanns vessssees 66
Reduced right contextcvc0enn;..;.. 66
Fully reduced right CONEEXt «.veeeeeeeeeoencnneasaanss . 675’
Type 1 basic LRRL(k) grammars - characteristic pafsing
.agﬁomata approach ...;..........:...................Q.. 84
Valid LRRL(K) itemseoeeee.s P B 1
Type II basic LRRL(k) g;;mgars-....a.................. 131
Reduced contexts language ;Bd Grammar ..cesccesesssess 144
LR(k) grammars with no end-marker ceretssaas cee. 162
LRRL (k) decision Set Of a8 Qrammarcecevecenocenes 163
Type 1 baﬁic LRRL(k) grammars - recursive definition . 166

Exhibition of a conflict ...c.eeeeeeccccnsssansse eerees 172

Exhibition of unresolvable conflictcccoevveeecees 177

b avi

GLRRL(k) grammars - unbounded buffer 279

GLRRL(k) grammars - bounded buffer : 243"

e-free concateNationcveeecreeronsseencnnoseansssss 278

k-bounded e-ffee concatenation cecssesessancssses 274

C"sepal'ability 5 5 05 0000000090 0000 PBL eSO 287

Déefinite event languagesceveeeeons e eresecenes . 287

v
'
. |
!
-
)
. ohtoy :
2 2 —
N Pd Pl
’ b v . &,
: !
RN LIRS S
R4 -
< .
[] \
%
.
]

,\\\\ xvii

CHAPTER 1
INTRODUCTION

1.1 Motivatioh

L 4 Recent years have wftneésed a shift in the interest of
the Ai community in linguistic computation fromfparéers that
capture the competence model of language to those that deal
with a more practical performance model. A notable reséarch
~area has been deterministic parsing of natural languages,
advocated by M.P. Marcus [Marc 75,76,78,80] and
enthusiastically explored by others among them R.C. "Berwick
[Bewe 82, Berw 83), E. Charniak [Char 83), K.W. Church

[Chur 80], G.D. Ritchie [Ritc 83) and G. Sampson [Samp §4].

The value of such a linear parsing technique is evident
when applied as a 'first attempt' for syntactic recognition
in a general language procesging systém. Initially a
deterministic parser can be employed to parse the input
sentence and when it becomes appérent that the parsing is
beyond the capability of the deterministic parser, the task
can be passed to a more powerful but expensive parser. Also,
it has been argued that in situations Swhere ‘parsing of

erroneous sentences 1is desired, a deterministic parser is

the most appropriate choice [Cﬁér 83].

- The parser developed by Marcus incorporated some
: intereséing design features but the /iack ‘;t formalism (n
describing .the mechanism made i(/aifficult to see exactly
what class of languages can be parsed by his technique; The
parser emplogs ﬁon-terminal as well as terminal symbols as
lookaheads to resolve 1local ambiguities. It combines
top-down prediction with bottom-up tecogni;ion. The parser
has two data structures: a pushdown stack which holds the
constructs yet to bei completed, and a finite size buffer
which‘holds the lookahead symbols,>Rfu;ndow is defined on
the buffer -and an, operatién *attentioﬁﬁshiit" moves the‘
window on the buffer. This allows qon-terminals to be
parsed, to be put 17 the buffer and then to act as
lookaheads. In fact this technique implements the "wait and
see policy" of the Marcus parser, that is, the analysis of a
constituent may be delayed until some neighbouring

constructs are parsed.

The grammar is given in the form of packets of rules.
Each rule consists of a pattern and an action. The packets
of rules are activated and dpacfivated as the parse of the
input sentence proceeds. The patterns in the active packets
are tompared against fhe top node. of the stack and the
content of the buffer. Upon a match, the corresponding
action rule is invoked,. fesylting in a new state of the

parser.

V// _ 3

As mentioned, in this type of parser, the grammar for

A .

the language is embedded in the rules which direct theé
’ v

parsing. Viewed in another way,- the rules are a set of

procedureé written 1in the very high level language PIDGIN,

that can be interpreted by PARSIFAL.

From a theoretical point of view, such a parsing method

suffers from at least three shortcomings:

e The 1language accepted by the parser is not well defined.
Marcus relies on examples to show what kinds of sentences

can be parsed by his parser.

e Given an arbitrary language, it is not obvious how to
determine whether the method can be used to parse the-

language and how to build a parser.

e Verification of the correctness and the completeness of
these parsers is unmanageable. A clo®e scrutiny of the
Marcus parser reveals that there is a context-free phrase
structure grammar hidden 1in the packets of rules. The
grammar is also augmented with features or attributes as
- they are better known in formal languages. Furthermore, some
limited transformational capability is added to the grammar.
Therefore the parsing strategy, in general, may be viewed as
a modification of the Floyd-Evans Productions
[Floy 61, AhUl 72a), in the sense that it provides a
specification of a parsing algorithm for a certain language

~—

with a finive state control influencing decisions.

oof of the correctness of these parsers should rely on

of program verification methods.

thesis formally ‘dgtines a family of classes of
context;free grammars; denoted-by LRRL grammars ' (left to
right parsable grammars withl reduced lookaheads), and
provides automatic generation of (precompiled) fable-driven
parsers for deterministic parsing of these grammars. [.KRRL
_grammars when augmented with attributes will generate a
class of languages that 1includes the subsets of English

which are parsable by a Marcus type parser.

a8

The generatdr accepts a context-free grammar possibly
augmented with attributes as input and produces a parsing
table if the grammar satisfies certain conditions. Apart
from attributes, the syntacfic recognition of such languages
as exemplified by the Marcus parser requires more parsing
power than that the family of LR(k) parsers provide.
Consequently, sohe generaliza;ion of LR(k) pagsers is called
for. The generalized parser ta%es a more complex right
context or lookahead into consideration when deciding to

reduce a phrase.

During this research, it was noted that Berwick

’
[Berw 81] believed that the Marcus parser is some
generalization of LR(k) parsers. In 1983, Berwick [Berw 83]

independently observed that the stripped dowh version of the

L\ '
Marcus parser ‘may be formally charaeterizod by Szymanski's
R(k,tf grammars [Szym 73, SzWi 76). It will be shown that

Berwick's conjecture in principle is untrue.'

~ One _may pause here to observe that a generalization of
LR(k) grammars - implicitly indicates a bottom-up parsing
method, but the Marcus parser is not strictly a bottom-up
parser. In fact it proceeds in a top-down manner and when
need arises . it continues in a bottom-up fashion. However,
the, use of top-down prediction in such a parser does not
affect its basic bottom-up completion of constructs. In fact
the inclusion of grammars accepted by Marcus type parsers in
the more general class of LRRL(k) grammars is analogous to
the inclusion of LL(k) grammars in the class of LR(k)
grammars. And, a subclass of LRRL gqrammars that can be

’ \
handled in a mixed strategy simila”to that of the Marcus

parser .will be deiiﬁdd.

Although the introauction of LRRL grammars is
influenced by the Marcus pargé‘, this research 1is not
confined to the formalization of th&t parser. In the course
of this thesis, theoretical aspects of these grammars will

be investigated. As a method of parsing synthetic and
' Recently Berwick [Berw 84) remarked that Williams' bounded
context parsable BCP(m,n) grammars [Will 75, SzWi 76) are
adequate to formalize the Marcus parser. However, it is
:sivial to show that BCP grammars are unsuitable for such a
purpose. A BCP-parser ignores the information obtainable
from the left context (except the last m symbols). Whereas- .-
in the Marcus parser, the use of that information is the
compelling reason for deployment of the packeting mechanism.
In fact there are numerous simple LR(k) grammars that are
not BCP, but are parsed by the Marcus parser.

natural languages, their impact on the general theory of
language‘denign / implementation will be discussed. The
application of the method to such areas of programming
languages as compiler construction, resolution of overloaded
symbols ‘n polymorphic languages and error correction

(repair) will be demonstrated.

As for computational linguistics, this research
introduccé a formal method for automatic generation of
poQ;rtul deterministic parserd that supersede the Mafcps
par8er. It shduld be emphasised that no attempt is made here
to build a new parser for natural language processiaé. in
vhi&h, by adding ad-hoc devices one tries to capture as many \"\
linguistic facts‘ and princibles as possible. Rather, this
research provides a tool to investigate what subsets of a
natural language can be parsed in this particular
deterministic fashion. Of course, such a subset will be
defined by a context-free base grammar Ehat is augmented

with attributes. As case studies, Marcus parsing» and
:Gazdar-style context-free ﬁarsing (Gazd 82j could be

.

investigated.

»
1.2 An overview of the thesis \
‘Chapter 2 examines the objectives of a Marcus-type
parser in employing complex lookaheads. It is shown that
these objectives and indéed Marcus' parser cannot be

described in terms of the LR technigque or existing

SRIR WiF:. Wi U T

generalizations of it, Some approaches aré also rejected

because of inherently undecidable problems in them.

The remainder of th; thesis can be considered as two
parts. Chapters 3, ¢ and 5 are concornod solely with
contcxt-free' grammars. Chapter 6 ' deals with the
context-sensitivity of langhqqes in the form of attributed
grammars. Chapter 3 dcscribos‘vthe development. of the
simp{est class of grammers in the LRRL family, i.e., basic
type 1 grammars. The definit'ion of these grammars Elosely
follows the objectives of the Marcus parser in a purely
bottom-up parsing technique. Aiso in this chapter, basic
type 11 qgrammars which are slightly more general than the

¢’

previous class are described.

Chapter ¢ is devoted to the properties of the basic
LRRL(k) grammars -and the implications of LRRL parsing. The
idea behind the LRRL grammars. is presented in a more

abstract form in this, chapter. A polynomial time algorithm

—

for LRRL(k) testing is also developed in Chgpter 4, {

Chapter 5§ ’c9nsid!rs the generaliiations of _ pasic
LRRL(k) grammars. It is shovn that the GﬁRRL grammars, i.e.,
the most general class of grammars in the LRRL family, with
a suitable parameter, properly include LR(k,t) grammars.
Thus, thi; thesis" proposes the largest known class of
context-free grammars that generalizes the concepts of LR(k)

- parsing vhile retaining the property that for a fixed

parameter the membership problem in the class is still

7

~

)
decidable. Subclasses ot,gho LRRL grumua}s such as Marcus

parsable grandars{ and also LRRL grammars with ¢-rules are

dficussed in this chapter.

) ,Thb order in ghe prcsontatibu of the context-frée LRRL
qrammaii”irouthy follovs the ‘'almost standard' way of
introducing grammar classes found in [AhUl 72a), i.e.,
development, implications and generalization, However, it
liso reflects the history of tkc progress of this research,
st;rting with rather simple grammars and intJ}tivo methods
and leading to more abstraction in Chapter ¢ aﬁé
gener8lizations in Chapter 5. Probably, if one has started
‘with the abstract recursive detinition wpich is.nov given in

Chapter 4, then the report would have been shorter.

A\]

Chapter 6 examines some strategiés for/” parsing
attributed LRRL grammars. Th

. ghapter &hds wv\th the
applications of the wait a see policy in the presence of

attribytes’ to such areas As owerload resolution and

TS,
v//»‘”\\

Chapter 7 concludes . the tkesis by outlining the

t

repairing of syntactic

L}
contributions of the research and srqgestions for future

study. ot

|

Finally, Appendix 1 formally proves that the string set
accepted by Marcus' parser amounts “b a coftext-free
language. This provides a justification for assuming a

R. . . . ‘
context-free uqderlyxng grammar 1n automatic generation of

-Marcus-type parsers.

CHAPTER 2 &

(‘ BACKGROUND

In this <chapter, the reason for having complex
looken;le‘ in deterministic parsing of igﬁh languages,
inclu~. ng Jeterministic subsets of natural languages, 1is
discussed. The Marcus parser will be used to illustrate the

#point. Section 2.2 will describe Marcus' parser in some
detail. Then, the evolution of more-forhal research relevént
to this topic, i.e;, existing‘methods of generalizing LR(k)
parsers will be studied in Section 2.3, Finally in Section
2.4, the 1inappropriateness of the cover' theory as‘ a
practical means for replacing the lookahead strategy in this

kind of parsing will be discussed.

2.1 Complex lookaheads in the Marcus parser

L]
Marcus [Marc 80)], 1in describing his determinism

hypothesis, rightly pointed 'out that most of the nafural
language parsers operate by simulating non—determiaighgc
machines, either by using backtracking or by
pééudo-parallélism. However, he claimed ghat there are
subsets of English excluding garden paths that can be parsed

in a deterministic way with limited backtracking that uses

é
10

1M

lookaheads of a more complex nature than mere lexicalgw,rds. :

by

To illustrate the point, consider one .of his early

examples:

Sentence 1: Have the students who missed the exam take the

make up today.

Sentence 2: Have the students who missed .the exam taken the

make up today?

N
NN

(mlss1ng you)

v have. //////\\\\\\>
the students who take the make up
missed the exam today
Fig. 2.1

Parse tree of imperative sentence

In the sentence 1 "have" is the main verb of an imperétive
sentence, while in the sentence 2 it serves as an auxiliary

of the main verb "taken". The structure of the imperative
2!

12

sentence may be given by the parse tree in Figure 2.1, while

the structure of the question sentence is shown by Figure

~

o 2'20
S
AUX . NP vpP
have the students who taken the make up
missed the exam _ today
Fig. 2.2

Parse tree of yes/no question sentence

v

khe first seven words of both dentences are identical,
and on the surface it seems.necessary to use some sort of
non-deterministic process to analyze the sehtenceg, since “
the first <clue, 1i.e., the ‘:fm of "take", could appear
arbitrarily far inﬁo the sentence. However if the analysis
of "have" is delayed until the intervening noun phrase is
parsed, then the reduced phrasés "(the students who
missed the exam] take” and "[the s?idents who missed the

NP .
exam) taken”, acting as lookaheads, can uniquely determine

the role of "have". It may be observed that no traditional
deterministic left to right parsef such as LR(k) could
handle this situation, since lookahead phrases in general

can be arbitrary long strings of terminals.

\ 13

k g '
An example similar to Marcus' "wait and see policy" was

also given by Aho and Ullman [AhUl.- 72a,p486], where’ they

considered the grammar G:

X :
S - CABDb | O0OaBec

B +B 1| 1 .

L(G) is the regular'set 0al*(b+c), but G is not LR. Howevef,
one can parse G bottom-up if one defers the. decision” of
whether. a *is a bhrase in a sentential form until the last
inﬁnrksymbolnis scanned. That is to say an input string' of
the torm Oal can be reduced to OaB independently of whether
it is followed'by b or ¢. In the former case , OaBb is first
reduced to OABb and then to S. In the latter case, OaBc. is
reduced directly to S. Of course, they do not give any
characterization of such grammars or any formal algorithm
for parsing them.)
Situations like the above example normally do not occur
in context-free description of programming languages.
Language désigners are wusually careful to come up with
constructs that can be described in a context-free grammar
which 1is, parsable by well known methods such as LR(1),
though one might cite at 1least two occurrences in fhe
context-f?ge‘ syntax of Ada [Ledg 81] where lookaheads of
more than one symbol are required [Weth 81). However, if a

. . > . .
compiler designer wants his parser to achieve more than just

parsing of context-free syntax of correct programs, then

14

methods like LR(k) are ha;dly adequate for his qul,

The following three examples, “elated to ﬁ‘frror
correction and context-sensitive syntax, illustran);the

point.

\A » | |
' ample 1 { error correction]:

A very common error in Pascal, made particularly by
people who switch back and forth from other languages, is
that they leave out the parentheses around relational

expressions. Thus, one often sees the following incorrect

usage:
&

IF A=B OR C=D THEN ...
]

The problem is due to Pascal's unconventional operator
precedence lgvels. In particular, relational operators are
applied last. Therefore A=B OR C is parsed as A=[B OR d].
Furthér, relational operators do not associate, so A=B=C is
syntactically incorrect as is A=B OR C=D which parses as

A=[B OR C]=D.

It is very desirable to have a Pascal parser that
corrects such a common mistake. But any LR-based error
corrector par;er (using insertion/deletfon recovery methods)
either will delete =D, or will insert a THEN after C
resulting in a cascade of new errors. In any case if Bor C(C
is not boolean, an additional confugsing type error also will

be generated in the semantic routines. Some compilers, e.g.,

N

—

15

Berkeley's Pascal, try to replace the second = with a +,

with no success at repairing the error. by

. EBrror produétions can be added to the Pascal
specification to handle this case satisfactorily. However,
the resulting grammar cannot be parsed with an LR(k) pérser.
When a parser théf can postpone some reductions reaches OR,
it will have fhe option of either reducing [M=B] as a
~relational _expression, or shifting OR as part of
expression|B Ok ...]. If the reduction [A=B] is deferred,
then the parser will be able to resolve the confiict upon
seeing =D, and in this case the . statement will be
satisfactorily repaifed. Notice that C could be a compound
expression or a _qualified yariable, so no LR-based parser

" can handle this situation.

Some LR-based parsers in Pascal compilers add error
p;oductions that associate relational operators. However
their capability is 1limited to signaling’an error. By the
time,they‘have discovered’fhe error it is too late to undo

the parsing, but they can continue with an incorrect parse.
Example I1 [context-sensitive syntax] :

Consider ‘the type declaration seqtion in Pascal
programs. Niklaus Wirth, in reporting Pascal [JeWi 74],
never suggested that the deélaratién of a type used in
defining ag;iher type must lexically precede the lagter. 1f

such -a position is taken by compilers, it must be considered,

16
as a modification to the .Pascal definition by éomplier
writers, specially the first few implementors of the
language. An honest implementation of a language should
fol{?w the language definition precisely, which here would
mean that any type declaration 1in the current block is
visibley in the whole block [WeSH 77]. Almost~a11 Pascal
implementgtions deviate froﬁ this original rule, and
recently SO with the blessing of ‘’gtandardization'
[Ledg 84]i‘put, when it comes to the ‘'chicken and eqq’
problem of declaring a pair of a dynamic data type and a

pointér type to it , they do violate their own modified

r.
Ny

rule. In declaring:
Type -
Pointer = * Node;

Node = Record

Fieldl : Typel;

L : Pointer
s

¢ ,

they allow erencing. In Ada, the issue of forward

referencing is Qﬁately a%?ressed by means of ihcomplete
definitions ([Ichb 79}f\4ﬂn one may assume that Péscal,
although it was designed and meant to be one-pass
compilable, allowed forward referencing in type declarations

without int¥oducing additional notation [WeSH 77]. Actually,

‘Wirth could have taken the same approach as Ada, as he does

17

go in the case of forwa{d procedures. The incomplete
declaration of procédures ‘were' needed t¢ ‘make Pascal
one-pass.compilable. Anyhoy, the above exception allowed in
so-called 'standard;P;scal' alone suffices in the following

arqument,

Considering the segment of a Pascal program depicted in
Figure 2.3, one realizes that any ohe-paés compiler would be
at a loss at the st;tement'(1)¢ i.e., in deciding whether
"Node" is the typé’defined in the procedure "p" ‘or the one
declared at the next statement in th\\procedure "Q". Vgry
few compilers simplistically take the' wrong choice (i.e.,
the type in "P") which would lead to a bizarre error later
on in the program. But most qthers come to the correct
decision by a special symbol table mechanism, or by very
ad-hoc means in the semantic action routines. The use of
ad-hoc and expensive routines, in which the parser does not
play a part, has prohibited the extension of forward
referencing ' to other <constructed data typ?s. Notice that
programmers favoufing a top-down design approach wogld“have

welcomed such an extensiop.

Some people incorrectly regard the agove- scoping
problem as a semantic one. Regardless of being syntax or
semantics, wi¥it really is needed is that the syntax-directed
compiler should sense the potential 1local 'ambiguity in
statement (1), and defer its analysis until the remaining

part of the declaration section is fully parsed. Issues such

. 18

as this one may be viewed as due to faulty language design.
But, they can also be viewed as due to-a deficiency of
current parsers, or more acéa?ately, due to inadequacies in
the combination of grammars, parser generators and parsing
algorithms that are used in construction of compilers, in

dealing with situations like this.

LY
[4

Procedure P;
Type .
Node = Record .
Fieldl : real;
- Field2 : integer
T end;

Procedure Q;
Type
v Polnter = tNode; (1)
Node = Record
Field : boolean;
Link : Pointer
end;

end: (* of proc Q *)

enaE'(* of proc P *)

Fig. 2.3
Fragment of Pascal program

.

. ™ 19

+

Another example of the "wait and see” polichmay ps
observed in the realm of FORTRAN or some sort of Dblock
structured FORTRAN. Considér the ?ituation depicted in
Figure 2.4, Assuming that there is noglébel declaration, but
only label definitions, there 1is an ambiguity in the

statement m goto n as to which statement n refers to. The

resolution does not come about till the end of outer block.

Block 1 : .
n
Block 2
m goto n
n ...
‘ Fig. 2.4
- Forward referencing goto

Any one-pass compiler, or any language editor will need a
parser with a capability of deferring the analysis of the
role of constructs such as "goto ﬁ"i&dn order to process the
program texts smoothly.

[}
In fact a one-pass compiler for any language with the

'goto' feature, needs to postpone the code generation for
forward referencing 'goto' statements. Currently available

compilers solve the problem by ad-hoc backpatching methods

20

tha:\ involve expensive bookkeeping. In a one-pasi compiler
that uses a parser with deferral éapability such deferrels
can be handled automatically by the parser at #6 extra cost,
provided that the reTerring staterents 4o not lie in deeply

nested constructs,

The last example almost touched on semantic analysis,
but not quite so since the discussion of code generation and
similar activities only concerned the interfaces between
context-free parsing and semantic routines. The following

example will clarify the role of such interfaces.

Example 111 [semantic directed parsing]:

-

In computational linguistics, the notion of semantic
parsing 1is apt to suggest the works of Roger Schank and his
associates, in which, loosely speaking, syntactic analysis
has a lesser role (if any) in language processing. However,
semantic directed parsing in programming languages has a
different 1implication; namely, the context-free parsing
process is allowed to be influenced by semantic analysis,
formally, by tge means of attributes that may‘convey totally

semantic information.

Returning to natural language,. a favourite example of
~ambiguous sentences among computational linguists is the

following:

I saw a man with a pa/tr' of blnoculars.

21

The sbove sentence is not only syritactically but aité
semantically ambiguous. Th§ phrase "with i pair of
binoculars” can be taken as a 'propositlonal phtll!u that
‘modifies they NP "a man” or the VP "sav a man” as illustrated

in the figures 2.5 and.2.6.

A

AN
1A
A

man with a pair of binoculars

Fig. 2.5
Attaching PP to a noun

However there are examples of such constructs that their

semantics make them unambiguous, e.g.,

1. I saw a bird with a pair of binoculars.
2. I saw a bird with a pair of ugly legs.

A

22

/\. -
AN

r . vpP

\ NP with a pair of binoculars
o
saw a man
Fig. 2.6

Attaching PP to VP

The context-free gramm&r describing these sentences is
ambigquous. An LR-type parser would have a conflict *at the
word "with" whether'to reduce the rule: NP +-Q N, or to
coétinue with parsing of the rufé:"ﬂ~~ﬂf%? by shifting the
word "with”. On the other hand a Marcus-type parser could
delay the decision until the PP is completely parsed. Then
upon having done some semantic analysis, the parser can
decide whether the PP is a part of VP or a part of N. Such a
process can be achieved by means of some form‘ot feature or

attribute propagation and compatibility testing.

23

Deterministic-barsing of ambiguous grammars [AhJU 75]
in which priorities are assigned to some rules, may be
~viewed as a very restrictive case of attribute directed
parsing. It is assymed that priorities are const@bt
attributes .that.are associated with the productions. A prime
example of thisﬁﬁ;éﬂs?aue is the use of LR(1) parseroin‘the

Algol 60 and Pascal's "dangling else" problem. The syntax of

Pascal describes the "if statement" as:

If~stat ~ IF Condition THEN Statement
If-stat - IF Condition THEN Statement ELSE Statement.

To enforce the association of the ELSE Statment with the

second IF in the following statement:
IF Condition THEN IF Condition THEN Statement ELSE Statement

i.e., to disambiguate the otherwise ambiguous grammar
(egquivalently right iﬁsociétion in natural langquage), a
higher priority is assigned to the second rule or the shift _

operation in the relevant state of the LR(1) parser.
L T

Notice that this sort‘pé capability of LR(1) parsers is
very li‘ited and cannot be wused 1in the previous example
since the prepositional phrase can be arbigrarily long. As a
matter of interest, the "dangling else" éroblem- can be
solved by the use of "open" and "close" statements in an

unambiguous LR(1) grammar without relying on priorities.

24

A proposal related to fht.usé of priorities is the work
of Shieber 1in natural lahguage parsing [Shie 83). “In
designing a parser based on LALR(I)‘parser, he uses priori
syntactic prefef nceg, e.g., right association aﬁd minimal
attac‘:hmenit, t‘disambiguate sentences by a shift-reduce

" parsing technique. For example in’the sentence:

Joe took the book that I bought for Mary.

his barser would attach the PP for Mary to the VP that

‘dominates the verb bought gathéf than associating it with

u(he first vérb. However, Schubert [Schu 84] ~shows many
problems with priori syntactic preferences, Qﬁgﬁh indicates
that such a scheme, by itself, cannot be used to obtain a‘
correct analysis of every sentence. Schubert arqgues iﬁ
favour of a system of syntactic, semantic and. pragmatic
pfeferehce§ tradg-offs 3n a4 multiple-path parser. Iﬁ a
single-path parnser based on the LR(1) parsers, such;-)
interactions between syntactic and semantic components
cannot take place unless they only.deal with the information
relating to the left context of a decision point. In Marcus
parsing or in LRRL parsing, this sort of interactions could
invofse the 1information about the right context of an
ambivalent point. Thus LRRL parsing achieves the goal of

,

preferences trade-offs in a limited form by delaying parsing

gecisions in a single-path parser.

Semantic directed or attribute directed parsing with
LRRL grammars will be discussed in Chapter 6. The advantages

of such- a technique 7in resolving overloaded functions and

o

operators in Ada-like languages will be illustrated.

2.2 Marcus Parsing

~

In this s;ction, more details and a working example ' of
the Marcus parser will be discussed. Then, from the point of
view of the theory of parsing, some important results
obtainéd from the study of the Marcus parser will be

outlined.

2.2.1 Operation of the Marcus parser

in

The data structures us the Marcus parser were

outlined in section 1.1, following describes the
operation of the parser and shows an example grammar written

in PIDGIN.
The Marcus parser has three basic operations: ~

(1) Attach: attachéds a constituent 1in the buffer to the
current active node (stack top). It 1is analogous to the

shift operation in a shift-reduce parser.

(2) Create (push): creates a new active node, i.e., when the
parser decides that the first constituent(s) in the buffer
begin a new higher constituent, a new qode of the specified
type 1is created and pushed.on the stack. However the create
operation has a second mode in which the newly created node

—~—

is first attached to the old active node, ana\tSéﬁbpushed on

26

the stack. Marcus indicates this by use of "attach a new
node of 'type' to active node" 1in the g . mar rules.
Following Riﬁchie [Ritc 83], a shorter notation™cattach' is
used here for this second mode. One might éee the create
operation analogous to the predict operation in a
shift-reduce pafEE?. \

(3) Drop (pop): pops th top node of the stack (CAN).

However if .this node is not attached to a higher level node,
it will be dropped in the \{i:st position of the window
defined on the buffer.

¢

Marcus uses different notations, namély "drop" and
"drop into‘buffer", in the grammar to indicate the effect of
drop operations: This suggests that-a grammar writer must be
aware of "the attachment of the current active node. This
thesis adheres to his provision about differentiating
between thése two modes of drop operations. However, it
seems that there is no need for such a provision since
PARSIFAL (the grammar interp;;ter) can take care of that by
.inserting an unattached node info the buffer, and the
grammar can test the contents of the buffer to se; if such

insertion has, taken place. The drop operation is similar to

a reduction operation in other parsers.
N .

p : . o :
The three basic operations plus "attention shift" and
"restore buffer" (forward and backward window movements on
the buffer) are sufficient for parsing some context-free

grammars. In addition to these, the Marcus parser has

27
"label" operatfons that assign features to the nodes.
Features will be dealt with in Chapter 6. Attention shifts

are discussed in a detailed manner in Appendix I.- .
Now consider the context-free grammar G,:

S' =S

5 +d

S A S B-

A -a e | —
A »a $§

B -+b

In terms of Joshi's tree adjoining grammars [Josh 81], the
language generated by G, can be characterized by the TAG

G,=(I,A) where the set of initial trees I={a} and the set of

auxiliary trees A={8,,B:} and

S , 3 A

/‘\ /' \

B and B.= a

s | /

b A

a = H B“=

Q,
o —

N\

Q— n—Wn

B
I
b

In tree adjoining grammars a leaf nonterminal node in a tree
can ;e replaced by a subtree having the same nonterm;nal as
its root and no nonﬁerminal leaf (e.g., the S-leaf in B8,
above can be replaced by «). An interior nonterminal can be

replaced by a subtree having the same symbol as root and the

unigque nonterminal leaf (e.g., the A-node in B, above can be

»

28

replaced by B8,; in this replacement the a-daughter of the
A-node in B, becomes the daughter of the A-leaf in 8,). The
set of trees with no nonterminal nodes represent 'sehtences

generated; by the grammar. Such a representation may

sometimes show more clearly the context of each construct.

. The following gives a Marcus-style parser for L(G,),
" i.e., a graﬁmar G, w;iften iq a bIDGIN-like language that
can be interpreted by PARSIFAL. The symbols inside square
bfackets refer to fhe contents of buffer positions, except
{CAN=] which indicates the current active hode. The grammar

has no attention shift rules.
G,:

Packet 1 : Initial rule.

[a or d] create S’; activate 2.

Packet 2 : Create and attach an S node.

[true] deactivate 2; céttach S; activate 3 and 6.

Eie_t 3 : S-parsing. '
[d] attach first; deactivate 3; activate 7.

[a) cattach A; activate 4.

[Sb]| attach first; deactivate 3; cattach B; ~

activate 5.

Packet 4 : A-parsidg.

[a] attach first; create S; actlivate 3.

29

[Sb] dnop‘CAN.'
[Sa or Sd .} attach flrst: drop CAN; deact ivate 3;
activate 2.

packet 5 : B-parsing.

o

['b | attach first; drop CAN; activate 7.

Packet

lon

'+ Completion of an attached § node.
[true | drop CAN; activate 8.

(with priority p.< default priority)

[ES]

:'Cdmpletion of an unattached S node.
’ L]

[true) drop CAN into buffer.

Packet

(with priority p,<p.)

Packet

¢ B-prediction.
[CAN=S} | b) deactivate 8; cattach B; activate 5.
[CAN=S’ | [empty | "Parse is finished". |

In the Marcus parser active packets are aséociated with
the active node, that is, when a new node is created, some
packets will usually be activated as well. When the node is
no longer on top of the stack these packets become inactive.
Unless a p;éket is deactivated explicitly this association
remains with the node. So when a node on the stack becomes
the active node again as afresﬁlt of 'pop' operations, ris

associated packets will be reactivated. However there are

.
%

30

also explicit operations for deactivation and reactivation
~°f packets (by means of ‘'deactivate' and 'activate'
commands). When a ndmberyof packets are active, the pattern
segments.oﬁ the rules in these packets are compared with the
current active node and contents of the wvirtual buffer (the
window). Then .the action segment of a rule with the highest
priorily' that matches is executed. The parse fails when no
rule in the active packets caﬁ be matched (or 1in certain

cases when no packet remains active). .

No attempt will be made here to show formally the

equivalence of G, and G,, since there 1is no formal
" characterization of Marcus-style parsers yet. ;owever one
may, by going through exahples, convince oneself that the
parser given in PIDGIN parses L(G,). Such an example is
illustrated in detail at end of this section. At this stage,
any‘proof of the context-freé‘%rémmar parsed by G, must rely

on some form“of program verification techniques. The proof

will be specific to this example grammar.

The position taken in_ this ;hgsis is that given a
grammar in PIDGIN (perhaps*with somexrexample sentences as
Marcus does),¢one can hardly determine exactly what language
is parsed by the parser. What one needs 1is an exact
definition of the wunderlying base context-free phrase
structuée grammar, plus a precise definition of the feafure
set (including feature propagation and matching rules) and

transformational”tules. In the example grammar, without

KR

knowledge of the original Context-free grammar G,, the

language described by G, is almost anybody's guess.

¢
I

Example:

The diagram 2.1 illustrates the parsing of the sentence
aadbaddbb ¢ L(G,) by the parser described by G,. The symbols
inside the boxes are on the stack, and those inside the
circies are already attached to a higher level symbol on the
stack. The numbers above each stack node are the packeté
associated with that node. G, uses a buffer of size 2 shown

on the right.

Active Packets Stagk Buffer-Remainder
i - 2] adbaddbb
2
2 M (2_]adbaddbb
C 3,6 - .
3,6 & [2a) dbaddbb
3,6 &
: QMY - [33) dbaddbb
3,6 4 3
3) (23] baddbb
@)
3,6 4 3 4 :
4 STHSHA] (A [2d] baddbb
d |
3,6 4 3 4 3 .
3 (S —sH—A] (8] [S] [db]addbb
© ®
3,6 4 3 ! 7
7 (S' S] SHA [b)addbb
a @ @
| 3,6 4 3 4) .
4 S+—& E@addbb
| @ . @ d
3,6 4 3
3 EMa addbb
@ A d)

Diag. 2.1
Marcus parsing of .the sentence aadbaddbb

32

2,6

3,6

33

(Ba] ddbb

[Sa]ddbb
@ @ ®

(2] ddbb

2,6

3,6

6,8

a, a, (d
6 6,8
(S| S]
a, a; (S
@

(d)bb

-

(d)bb

ma

(B)b

B)b

3¢

Q

L 3

"Parse is finished."

as

This example shows the power of the m’;pofﬂidr xn'~

employing completed subtrees as 1ook|hoads. Thp grindar G,

is not LR(k) for any fixed k. Any a can be}?}duced to an A

Lt e

via production A - & or can be considered as a first symbol

in production A <+ aS (i.e., 8 reduce/shift conflict in LR

n n :
parser). For example, in the sentence a db , the initial' n-

a’s must be reduced to A's, while this is not the cage in
n n [.
the Senfcnce a (db) . However, in the first case a is

followed by an Sb, and in the latter by an Sd or an Sa. By

fostponinq the parsing decisions about the cc>mpl.e.on ‘

A's, Marcus' parser is able to *duce the corr !t p&rs

A

s>

This seemingly unbounded (arbxtratily large) amount of
lookahead “in terms of terminal symbols in a éeterministic
parser has confused some people; e.g., G.R. Sampson
[samp 83) was led to make an incorrect analogy to flexible

binoculars. What Marcus fails to assert clearly is, this:

though = an arbitrary number of terminals may be consumed

before deciding about the }irst undecided point in parsing,
the whole terminal lookahead string is deterministically
reduced in a recursive manner to a limited number of
nonterminals. Also, some of the confusion comes from the
fact that Marcus heavily relies on intuition to justify the
deterministic nature of’ the language that his' parser
handles. Appendix I confirms the determinism of the language

parsed by this parg&er in a formal way.

N\

, . P 37

‘It will be shown later that the gtammar G, is also not

LR(k,t) [Szym 73].

. 2.2.2 Some conclusions about the Marcus parser

[

»

From the perspective of formal parsihg theory, the
following observaticns about the Marcus parser may be
‘highlighted. A plus sign indicates a~positive point, and a
minus a negative attribute. Unmarked statemenﬁ; are points
of theoretical interest that reflect neitherﬁfavourably nor

unfavourably on Marcus' parser. A

el 4#”:“

L . 5

(1) + Marcus establishes, perhaps for thg.f;:sp_tymb;<that

- o ,‘ N Sy
more complex lookaheads, including “nonterminals, have a
K . D e

practical use in parsing. . e

, § .,

rg

(2) + By using the above strategy he has been able to show
that a significant subsetﬂ of English and probably other
A ’) P ' e
natural languages ca&n be parsed -in a determig?étic fashion.
v . C T I

(3) Marcus made a reqq;k that the accounts of psychological
aﬁdilinguistic phenomé;;mqgékgibed in his thesis‘ were not
Qis Woriginal objectivg} y?he parser was originally
‘constructed to demonstrate g'éémputational point about the
parsability of natural lanéuage; However, he later realized
that the behaviour of his parser describ%s such phénomena.
More specifically, Marcus asserts that his.L?etermini;m

hypothesis is consistent with the psychological claim that

'all sentences which . people can parse: without conscious

2o

&u | | 38

difficulty can be parsed strictly deterministically'. He
arques that only those sentences that violate many of the
constraints that Chomsky introduced in the mid-seventies,
cannot be parsed by his method, e.g., garden path sentefkes.
The reader sh;uld be reminded that thereA is> a controversy
among '‘computational linguists (e.g. see [Bris 83]) as to the
validity of this claim. The research reported here 1is not

concerned with such psycholinguisti roblems. Nevertheless,

the basis it provides for (automatic /" generation of

Marcus-tyfe parsers should be\ Qf interest to people
attempting to verify Marcus' claihs.

(4) The Marcus parser does not handle such constructs as
_comparatives or conjunctions. No explanation as to the

difficulty of parsing these constructs is given,

(5) Marcus' parser operates in linear time, but no formal

analysis is provided for this complexity.

(6) - Marcus' parser is partially top-down and it cannot

handle some LR(k) grammars. For example, consider the LR(O&Q

M
grammar G:

-

S -A A +ch A sa ;)

(LN]

é +B - B +CB B”»b
with any 9§ﬁite buff;?;'Marcus"p%%gé?'will be flooded with
c's, before it can decid;\to put an 4 node or a B no@e on
the stack. Therefore, being partlélly top-down greatly
curtails the parsing power c¢f the Marcus parser. If

constructed purely bottom-up, it would have enjoyed broader

+

39

coverage. In the Marcus parser yjncomplete nodes are put on
the stack, while in a bottom/éihpérser completed nodes that’
seek a parent reside on the stack. No explanation 1is given
for this choice in the Marcus parser. However, one may argue
that due to the right branching nature of English econstructs
this is a more economical choice in terms-of memory usage.
But surely this is not a universal rule. A second reason may
be that .in this 'scheme ‘some features can be propagated
easily from dominating nodes, such as tﬁeﬁ@gé& cy;lic node,

N .

down to lower constructs.

®»

(7) - As mentioned earlier tot¥)5% %% formalism entails

several serious disadvantages amoiTgs

AY
«

e It is not obvious exactly what language (which subset
bf English) is describ?d by the outlined grammar,
because the grammar itself 'is .in fact the parsing
algorithm, This‘ kind of procedural approach to a
language theory also found in the works of some other:
Al researchers such as Winograd [Wino 72] makes
obtaining anyu clear conclusion about the theory

impossible.

[3
s,, e The deterministic behaviour of the parser, which 1is .

"o

explained . in an intuitive manner, 1is_ not quite

k4

convincing. (e.g., see Brisco [Bris 83] and Sampson

[(Samp 83].) i C et
® ‘w’ o

) ’ N s
® The lack of formalism makes it very hard tééﬁ.tenmide

40

]

whether a given language can be parsed in this style

(’} *)
and if so, how to construct a parser. *,

* The absence of formalism prohibits any analysis as to
‘ ’t‘ .
the correctness and completeness or the complexity of

the parser to be carried out.

e Without a formalism, no parser of this type can be
automatically generated. Anyone that wishes to write
such a parhd or modify an exiSting one must do so
manually, ﬂth considerable . time consumption. The
writer must be aware of all the working details of the
parser and must consider all the rule packets in ordef
to modify a single rule. The advantéges‘of an automatic

“parser generator are beyond any doubt-. Anyj!tudent in

an introductory graduate

el compiler course that
uses a YACC-like system [John 75] for parser geﬁeration
in a substantial compiler projeét' would acknowledge
that he has got a good working compiler without a gréat
deal knowledge of fbe/parsing theory. One of the goals
of this research is to show that with a good formalism,

Marcus-style parSers can in fact be generatéd

automatiéallf.

Having demonstrated tﬁat the LR (k) paréers are
inadequate 1in handling certain languages like the one in
Marcus parsing, the next two sections will examine two
?

) L
e 4

PO

alternatives. Section 2.3 ibﬁea&igates the existing

41

generalizations of the LR(k) methods, in particular the
LR(k,t) method [Szym 73] which was suggested by Berwick
[Berw 83]) as a way of formalizing the Marcus parser. Section

-

2.4 will discuss the cover theory.

‘>

2.3 Previous generalizations of LR(k) gramm&fs

Since the introducfion of the two prominent classes of
grammars with deterministic parsers, i.e., LL(k) and LR(k),
according to a bibliography compiled by A. Nijholt
[Nijh 83), over a thousand valuable research reporté

relating to the area have appeared in the literature in the;

number of states in an LR(k) parser and the weakness ok

LL(k) parsers, many researchers have attempted to fill in.

the gap between these two classes. One such class is the
left corner gramﬁars introduced by Rosenkrantz and Lewis
[RoLe 70]. However, much effort has been put into
optimization of LR(k) parsers, such as the works of Aho and
Ullman [AhUl 72b, 73bl}, Demers [Deme 75), Pager
[Page 77a, 77b) and Soisalon-Soininen [Ssois 80, 82). Also
some .-research in sparse relatio&s [HuSU 77} has contributed
to the efficiency of LR(k) parser gconstruction. Spector
[Spec 81] and Anctona [AnDG 82] have discussed the efficient
construction of LR(k) parsers with partial -expansion of

lookahead strings.,

|
}
|

past figfeen years. Due to the exponential nature of the"

y

A\

42

Such optimizations in terms of space and speed of
construction, combined with the availability'of cheap large
memories, not only made the LR(k) parsers the most popular
parsers, but also suggest that parsers for a more general
class than ﬁR(k), with a reasonable amount of overhead in

terms of the number of states, are feasible and practical.

Several authors haye attempted to extend the concepts
of LR(k) parsing to /grammars other than LR(k). Madsen
[Makr 76], Lalonde [Lalo 77, 739], Celentano [Cele 81) and
Chapman ([Chap 84] have déveloped LRrbased parsers for

extended context-free or regular rigﬂt part grammars. These
~are -the grammars that use regqular exbressizns in the right

.

hand side of productions. The extended LR(k) grammars, which
are very similar to syntax charés, often provide a clearer
and more natural way to describe the syntax of programming
languages than pure BNF notation. But the power of these
grammars is no greater than that of LR(k) grammars since
there is a straightforward transformation of them into LR(k)

grammars.

There are two classes of context~fre% grammars, which
are the focus of discussion herein, namely LR-regular and
LR(k,t) grammars (with‘thé inclusion of LR(k,®) and FSPA (k)
grammars) that truly generalize the concepts of LR(k)
parsing. The parsers for these grammars, in deciding to,
reduce a questionable phrase, much like parsers for LR(k)

grammars, consider the whole left context. But unlike‘them,

-

43

their right context lookahead is not limited to k terminal

symbols.

" rhe following subsections discuss these classes. in
o »

detail.

2.3.1 LR4regu1ar grammars

EACREE

!.' LR-reqgular gqrammars were defined by K. Culik and
R. Cghen PBUCO 73]. Basically, 1in LR;regular grammars
arbitrarily long terminél lookahead is allowed before making
a parsing decision, provided that the lookahead information
can ‘be represented by a finite number of regular sets. To
illustrate the intuition behind such- grémmars, one may
consider 5 fragment of the grammar given in [CuCo 73]. In a
programming language which has set data types in addition to

simple' types, the syntax of a relation in an "IF relation

THEN..." statement can be given as:

"relation” + "arith exp"” = "arith exp" |
‘"set exp" = “set exp"
"arith exp; + "arith exp” + "arith term” |
"arith exp" - "arith term”" |
"arith term"
"arith term" + "arith term; * "arith primary" |
farith primary”
"arith primary" =+ ("arith exp") | identifier | constant

"set exp" + "set exp" + "set term" | "set term"

‘ (o 44

"set term" | - "set term" s "set factor" | "set factor"
"set factor" + "set factor" =*"set primary" |
"set primary"

"set primary" - -+ ("set exp") | identifier | constant .

There is a local ambiguity in parsing of relations, that |is
; ,
an 1identifier starting a relation can be reduced to either

"set primary" or "apith primary". The problem can be stated

>

in a better way in the more recent terminology of

polymorphic languages, that is to say '#+' et and '='

functions and possibly identifiers are overloaded. The only

thing that differentiates set relations from arithmetic

reg:tions is the relation signs '=' and '=', Tthefpre the

lookahead information can be given by two regular sets

x x P
(r-{=}) =T and (T-{=}) =T , where T is the set of terminal

[

symbols. More formally, the LR-regulér grammars can be

defined in the following way.

Definition 1:
N\
x
Let #={R ,...,R } denote a partition of T into a
1 n
&finite number of disjoint sets R . # is called a regular
* i
partition of T if all sets R are regular. If two strings «x
i
A
and y belong to the same set R then x=y(mod 7).
1

Definition 2: .
' *
Let '#={R ,...,R } be'any regular partition of T . A
1 n
context-free grammar G=(N,T,P,S) 1is called LR(7r) if given

45

any two rightmost derivations of the form

x
S mebq, A, Y, = a, v ¥,

rm rm

* ' .
S mmra, A, ¥y, = a, Y Y,

rm rm

where y,, y. and y, are terminal strings and y,=y,(mod =)

then it may be concluded that A,=A,, a,=a, and y,=y,.
Definition 3:

A context-free grammar G is called LR-reqular if G 1is

LR(n) for some regular partition = of T .

Clearly every LR(k) grammar is LR-regular with respect
* *

to the'regulér partition # ={ {u },..., {u}, wT ,..., wT
} where w , 1sism, are allkthe t;rminal st:ings1of léngthmk,
and u , 11siSn, are all the terminal strings of length less
than kt including thekempty string. It can be shown that the
~inclusion of LR(k) grammars in LR-regular grammars is a

proper one,
el

The parsing algorithm for a LR(m) grammar essentially
involves a right to left prescan of the input sentence that
decides at any input symbol which regular set R the
; i
remainder of input belongs to.

The <criterion for LR-regular grammars can effectively

be reduced to the regular separability of two deterministic

context-free languages as stated below.

7

Regular separability: Two languages L, and L, are said to be

46

reqularly separable if and only if there exists a reqular

set R such that L, « Rand L, N R = Q.

L ¢
The regular separabilitf of two deterministic languages
and thus the membership proflem of an arbitrary contéxt-freé
grammar in the class of LR-regular érammars, remained as
open question at the time when the LR-regular grammars were

defined. Later it was shown that the problem is undecidable.

2.3.2 LR{(k,t), LR(k,>) and FSPA(k) grammars

LR(k,tf grammars were originally proposed
in his landmark paper on parsing of LR grammars
[Knut 65], énd later developed byv
[ifym 73,SzWi 76). Essentially the LR(k,t) par technique
is a non-canonical extension of the LR(k) technique, ih
‘which instead of the reduction of the handle (the leftmost
phrase) of a right sentential form, if is required that at
least one of the t (a fixed number) leftmost phrases in any
sentential form can be reduced. In other words, a grammar G
is not LR(k,t) if in parsing of an input sentence the
decision about reduction of t or more questionable phrases
in a sentential form needs to be delayed. The reduction
decision 1is reached by examining the whole left context and
k symbols to the right of a phrase in a sentential form.
This technique 1lends 1itself to construction of a finite

number of sets of k right bounded regular parsing patterns

and thus a finite state-automaton can be used in parsing of

47

such grammars.

The LR(k,») grammars [Szym 73) may be viewed as the
ultimate generalization of LR(k) grammars, in which it is
required that'ak.lifst on; phrase in any sentential form can
be reduced. Unfortunately éhe resulting parsing patterns in
this technique, in general, are non-regular context-free
sets and thus no finite automaton may be-used to. guide the

parsing of such grammars.

’

The FSPA(k) (or FPRAP(k)) grammars [Szym 73,SzWi 76]
are those LR(k,») grammars that yield regular parsing
patterns that are k bounded on the right. Thus such grammars
have a finite state parsing automaton which -uses k symbols

of lookahead.

In order to give a moreé formal algorithm for parsing of
LR(k,t) grammars, and thus a formal definition of them, the

following preliminaries are needed.
Definition 1: Phrase language

Let G=(N,T,P,S) be a context-free rammar and let

R={R|X € N} and B={] |1<i<|P|} be sets of new symbols. The
i
phrase language of G, PL(G) is defined by the grammar:

G=(R,NuTuB,P,S) where

P={R+X ,...,X] |X+x ,...,X is the i th production of P}
1 n i 1 n ‘
i i

48

{R~Y ,;..,Ygggq X is the i th production of P,
1 neer t
Y =X i

]]

or * for 1sjsn and at least one Y =X },
J 1))

Definition 2: Bracket erasing mapping

¥ *
Bracket erasing mapping m: (NuTuB) -+ (NuT) is defined

by *

Xm if a=Xy and X € NuT
f a=Xy and X € B

if a=e¢

m(a) =

~ 3

Note that m(PL(G)u{S})=SF(G), i.e., the set of sentential

forms of G.

The LR(k,t) parsing algorithm which uses a stack and a
bounded buffer of size kt is basiF on iigging phragés in
sentential forms. The phrase finding algorithm in turn is
based on computation of wvalid LR(k,t) items as explained

below,
Definition 3: LR(k,t) item

An LR(k,t) item is an ordered pair (y,h) such that
*

y€(NuTuB) and contains at least k occurrences of symbols in

NuT and h is an integer such that Oshst.

Lo
x,

&

i

Definition 4: Valid LR(k,t) item for a string

An item (B Y ... Y y, h) is a valid LR(k,t) item for

11 k k :]
the string X ...X Y ...Y (vhere B €B and X , Y are
1 n 1 k i * j i s
elements of NuT) iff there exist & €(NuT) , a ,...,a €B
i n
such that
1) aX ...0a XB8Y ... BY y® €¢PL(G).
11 nni 1 k k
2) |a ...a |=h.
1 n Cw

3) y® contains no complete phrases.

4) y contains at most kt symbols to the right of the

rightmost bracket. ¢
-]

»

~f1; can be shown tlhtggae set of all valid LR(k,t) items

P lvai‘n ram&aﬁ'ﬂ Qﬂd fg:\d vp#ns and t \i\\ a

tiﬂlge B‘tv ,! "
= E. . . » 2. B & . .
Algotxth- 1 COmgpﬂﬁia uf V‘* (X ..3% Y ...Y) the set of
l‘t d“ g)k At 1 N 1 k ’
valxﬁ 1gems for str1ng x’.& X’Y es Y .

?

s ‘ ‘:;.K t n 1) k

It Ls assumed bhat lnput sentences for the parser will

Sbe appendeﬂ by“t ‘on each,side.

: } L k+1 Kk ‘
- ?f h=0 set V;={($§ S] § , 0)] otherwise
" .‘ * 0
'(x ‘o’io ox Y ':o .Y)o
k,t 1 nit., k=i
Set ‘0,-{(B 2 ... 2 vy, h+|la|) | there exists a:
11 k k

laX B 2 ...8'Z vy, h)¢ev }.

; X Kk 1

Repeat ;. gb

| add (8 z Q..B a) vy',h) to Vv, ®ich that
11 k11 . y

LA . . 5

] ‘ : ' e ' .

S0

(ﬂz ...Bzy,h) (vl
11 k k

and Z “a is the i th production in P 1
k i
and y'=first kt symbols of m(y).
. .
Until no more items can be added. : v

4) Set V (X ...XY ...Y)=

k,t 1 n v k .
(B2 . €82 y,N)EV, | 2 =Y ,...,2 =Y }.
11 k k 1 1 k k
5) If any item ends in a § but has fewer than kt symbols

of right context append $'s ‘;ﬁl;he 1tem wuntil there are

*&, Vi s-, g
either k $'s or kt Sy ols{&' the right context after tﬂ! d
rightmost bracket. *

4

' ”
Algorithm 2: phrase finding for LR(k,t) grammars.

,) k s k
Let the input string be ¢=X S\ X €8 (NuT) $§ (i.e., a

1 "‘mr,] '

sentential form) . N
1) Set n=0.
2) Compute S=V (X ...X).
k,t 1 n+k
<5
3) If s=e, then halt because ¢ f SF(g).
| !
. . ’ . . I3
4) If all items in S share]_ as a common initial symbol

t 1
then halt, indicating that reduction of the i-th production

should be applied at position n of ¢.

5) 1f some item in S contains no brackets, then halt, G is

not LR(k,t).

6) If some item (a,h) in S has h2t then halt, G 1is not

+

/
R

’

51

LR(k,t).

7) If n+k=m, then halt, G is not LR(k,t).
e : : .

J

8) ‘Se? n=n+1.and go to step 2.

.
,x o

~ . o
It can beé shown that the number of valid item sets. 1is
finite. One may observe that a determinfstic finite

. automaton can be constructed in which each state represents

a valid item set. The final states correspond to those sets

which indicate a reduction. The constructed automaton takes

N

a sentential form as an input and finds a reducible phrase
in it. In fact Szymanski [Sgym 73] uses such an automaton L&
C\ the informal development of LR(k,t) parser and remarks that
" To test whether (a grammar) G is LR(k,t) or not, simply
éompute the transitions for all possible spates and see if
any state containing ‘an item whose count is equal to t or
‘which contains ».0° brackets is accessible.”

szym,73,page’100]. - -

° ?
As noted, Szyﬁsﬁsti§does not provide a formal algorithm
for generation of a parsing automaton. However, Algoritﬁm i3
given here is designed for such a purpose. The construction
of a phrase findiqg automaton is along lines similar to the
characteristic parsing approach for LR (k) parsers
(GeHa 77a, 77b, Hedil 81], and thus provides a formal

def ynition of LR(k,t) grammars in terms of construction of a

characteristic finite state machine,

,'. | .

Algorithm 3: Construction of phrase finding automata for

.

LR(k,t) grammars.

Given a context-free grammar G=(N,T,P,S) this algorithm
decides whether G is LR(k,t) for fixed numbers k and t. The
algorithm will produce a phrase findingﬁautomaton if the

answer is positive,

(1) Build the initial state s,:
. - k+1 k
Let the basis of s, be {($ - S],$,0)}.

LU

(2) Repeat /
For a hon—final‘state sAQhose successors are no: yet .
determined do
-) Begin
If every item in s has the same bracket]. as-
its first symbol 1 .
Then s is a final state indicating tHe reduction of
the ith produétion.
Elseif there 2:ists an item (y,h) such that vy
contains no brackets or h=t . .
Then G is not LR(k,t): exit.
Else
Begin _
(a)- Close state s: r
Repeat
For every item gggihe form

(8 XB }'ﬁ Y ... Y y,h) in s
0 112 k k

2

i)

53

. T/

(where B €B) and

production Y =a in P add item
k i A
(BXBY BN ...8a] y',h)
.0 11 2 k i1 -
to s (i& it is not izifé already), where

y'=first kt symbéls/ £ m(y).
Until no more item a‘p;be added to s.*

(b)- Generate successors of s:
S k
For each string Y. Y ...Y €(NuT)
’ 1 2 k
create a state s' (successor of state s

é
under lookahead string Y Y ...Y)
- 1 2 k
with basis items

~{(BYBY ...BY y,h+|B |) |
- 0 1 1@ 2 kk =~ 0
: (BXBYBY ... Y v,h) in s}
0- 1122 k k .
-I1f a stdte s" with the same basis

A

already exists,
Théh merge s' with s" fi,
end
fi
end .

until no more states can be added.

'ﬁﬁ)‘Conclude G is LR(k,t).

bAlgorithm "3 ‘terminates. So, a definition for LR(k,t)

grammafs can be given in the following way.

A

R 54

Definition 5: LR(k,t) grammars. e

~
A context-free grammar is LR(k,t) if and snly Af a

phrase finding automaton for it can be constructed:according

A
to the algorithm 3.

&

The parsing algoritﬁm for LR(k,») grammars (which uses

two stacks) is similar to LR(k,t) except that there is no!:

" bound on the number of brackets bypassed, and no bound op

the length of right context in the items. Therefore a valid

item for a. string X ...X Y ...Y defined in the following

1 n 1 k
vay. :
Definition 6: LR(k,») valid item. o
An item B Y ...B Y yis wvalid for X ...X Y ...Y iff
A1 "k k % i 1 n1 - k
there exist a ,...,a € B such that A "
10 n .
1) e X /,.a XBY ...8 Yy € PL(G). \
1.1 nn 11 k k

2) y contains no complete phrases.

Note that in the cdmputation of Vv (X ...XY ...Y) in
' k,e 1 n 1 -k
step (3) y' would be taken to be m(y) rather than the, first

S
kt symbols of it as it was the case in the LR(k,t)

algorithm. But in the presence of left recursive rules in

the grammar; to insure the termination of the algorithm one

needs to represept- such m(y)"as a regular expression (in

L4

Szymanski's desctiption of the algorithm such steps are not

formalized).

One dhy‘observe‘that the number of valid LR(k,») item

‘ L * .
sets is not necessarily finite. In terms of the construction
‘ PR .

am

55

of an automaton (characteristic machine) or generatidn‘of a
parser, thig méans that there may indeed not bé such a
finite automaton. 'In‘ fact Szymanski [Szym 73,page 56]
remarks that "Let us now attempt to’génerate,; parser (for
an LR(1,») grammar). We will do this by genefating a PFA
(phrase finding automaton) with a potentiglly infinite

~

number of states."
. -'.‘

As seen, LR(k,=) grammars in general do not yield
automatic table driven parsers. FSPA(k) grammars are the set
of those LR(k,~) grammars that yield a finite number of item

‘sets. . — o

The iffterion fér LR(k,=) grammars with a fixed k is
shown to be'ééuivalent to detérmining the null “intersection
of LR(k) languages, "wMich is an undecidable problem
[Szym 73,SzWi 76]. For FSPA(k) grammars with a fixed k, the
criterion effectively can be * reduced to the ;egulér
srparability of two deterministic context-free languages

3

(Szym 73, SzWi 76). ' . C

2.3.3 Some conclusions about the LR-regular, LR(k,t),LR(k,=)

and FSPA(k) grammars

From the study of the grammar classes considered in the
previous two sections, the’ foliowing conclusions may be

drawn. ®

\ | g.::}," o | '56. @

® (1) Consider a grammar G that is L§ t) LR&X =) or °
; -
FSPA(k) and a string in the phrase language of.-G, say

=B a] Ba] ..Ba] B

11, i, 2 i, i, mi 1 m+

* *
such that B ,a €(NuT) for 1<jsm, B € (NuTuB) and a
SRS m+ 1 iy
is the right hand” side' of some production in P. Let the

corresponding sentential form be @'=m(Q)=ya y' " where

lm
y=Ba Ba ...B and y'=m(B). Suppose a is the phrase
1 i, 21, m m+1 im

that the phrase f1nd1ng algorithm decides on its reduction.

Obviously a ,...,a - are the 3bypassed phrases, and in
1 [1“ -
particular mst if G is a LR(k,t) grammar. Let y" be the

first k symbois of «y'. ya #y" in which # matches null
im
string is a parsing pattern for the reduction of the

production: A° <a .

lm lam N

In case of LR(k,t) and FSPA(k) grammars such a pattern
is accepted by a finite aytomaton, i.e., the colleetion of
parsing patterns for redﬁction of a production is a regular
set. In LR(k,») grammars, the sets of parsing patterné aré
in general context-free languages. The set of parsing 3 ;
patterns og.i‘ grammar constitutes a parsing scheme for the "

grammar.

Parsing patterns such as above which are k bounded on

right of # allow linear parsing - with 1épited
bgcktracking. 'when ‘a phrase 1is reduced, one needs to

backtrack only ,k symbols /to continue with the parsing

- L] -
process. . .

~

‘ _ 57

e (2) Although all\ﬁhe grammar classes discqued in
this section are linéar parsable, there is no fin?ﬁééstate
phrase finding automaton fonJLR(k,f) grammérs. The fact that
the constant factor in parsing of* these grammars is so large

makes them unattractive for practical 'purposes.

U] (3).Ef£icient table driven parsers can be constructed

for LR-regular, LR(k,t) and FSPA(k) grammars.,

»

° (4).,A' serious problem with LR(k,=), FSPA(K) an!<:>(5
LR-regular grammars is that the prqblem of membership of an
arbitr;ry context-free grammar in these 31a$ses is
undecidable; The mémbership problem for the class of LR(k,=)
gramm;rs is reducible to determining whether intersection of

‘two LR(k) languages (deterministic languages) is empty.

]

For the FSPA(k) and LR-regular grammars, the problem
can be reduced to the Eg;ular separability of two
deterministic languages.‘ Regqular separability was posed by

. Culik and Cohen {CuCo 73] and Szyﬁaﬁ!ki [Szym 73] as an open
“problem. Héwever it seems that W. Ogden in a 1971

unpublished memorandum proved - that the problem is

Aundecidabi;‘”Lf;»gﬁssﬁof the proot can be found in [SzWi 76]

and.[Hgnl j; A Et;d;§é7$ahoyb' that an instance of the

. hé;ﬁiig¢ii$ iabé'reducea'io'the'regular separability
" brorich. o

w') .. L f_.'. . vo
o Problems similar to Othe above ones led H. Hunt

[Hunt 82] to regark that "any attemgt“{é g"efalizepr or LR
. . SN .

58

parsing technique through the use of more complex right
context must yield a grammar class with an undecidable
membership problem”. In the light of LR(k,t) grammars as
well as LRRL(k) grammars, which use rather complex

lookaheads, such remarks seem unwarranted.

Notice that for any free pardmeter k or t the
membership problem for the class of LR(k,t)'is undecidable

as it is for the.LR(k) grammars.

S

e (5) The above undecidable problems theoretically
prohibit automatic generation of parsers for theée ‘classes
except LR(k,t). ~Any attempt qﬁé generate paF%ers for
LR-regular grammars must rely on some heuristics that may
fail. For -FSPA(k), it must depend on an algpﬁithm whose

termination is not guaranteed.

e (6) The class of LR(k,t) grammars does not include
 al1 context-free grammars that‘are parsable by a Marcus-type
parser. The grammar G, :

s' =S |
'g_ S -d : f
| S +ASB S
A -a’
A ~aS coe
B -b "
discussed in conjunction with the Marcus parser is not

i . 2
LR(k,t) for any finite numbers k and t. It_can}be spbvn that

the cofistruction algorithm 3 fails for this grammar with any

.

59

k and t. For given k and t, L(G,) includes sentences with
S n . .
prefix a where n>k+t. In such sentences t initial a's have

different interpretations' depending on the other parts of
the sentences. For example consider the two sentences:' ¥

. \ 9
n n ' n n .
(1) a db , n>k+t (11) a (db) , n>k+t

In (I) all t initial a's must be reduced to A's, while 1in
(I1) none of them is a phrase (Figures 2.7 and 2.8).
Therefore an LR(k,t) parser will néed to delay reduction of
more than t possible phrases in parsing of a sentence with a

n
prefix a , n>k+t, and thus G, is not LR\k,t) for any given k

and t.
"o 3
S S ‘
I T
A B A S B
| |] | |
a) b a S d b
@1 A B A" S+ B
o i 11|
L% a S b a S d b
’% v L] .
S s
ST ///T\\\
A S B A S B
| | | | | |
a_ d ~E 8 a d b
Fig. 2.7 Fig. 2.8
n n n n

Parse tree of a db Parse tree of a (db)

60

In fact, LR(k,t) parsers put a limit t on the number of
delayed decisions at any time during the parsing. The basic
LRRL(k) parser proposed in this research depending on the
grammar will qllow an unbounded number of decisions to be
delayed. The basic class of LRRL(k) gramma@s that fbrmally

.chafacterize Marcus style parsers has a non-empty
intersection with the class of LR(k,t) grammars, but neither

includes the other,

Several variaéions of - LRRL(k) grammars will be
discussed in 'this thesis. One variation, the <class of
generalized LRRL(k) grammars, 1includes LR(k',t) grammars
(E'tSk), and thus is proposed as the largest known class of’
non-canonical bottom-up parsable grammars that retains the

decidability of membership in the class. a

2.4 cOvers

The theory of covers deals with similarity relations
among grammars. Intuitively, a cover is a homomorphism from
tﬁe 'set of parse trees of a grammar G to the set of parse
trees of another grammar G'. Let G,=(N,,T,,P,,S,) and

t 4 L

G,=(N,,T,,P,,S,) be context-free grammars, and f,c<T,xP, and
x %

f.<T,xP, be parse relations. A cover homomorphism generai}y
is a surjective homomorphism h: f, +f, and is defined by two
homomorphisms o: Tt *T: and §: PT *P: such that (w,x) € f,
implies (q(w),&(x)) € £, [Nijh QO]; Among different forms of

covers, right and left covers are of interest in parsing.

Definition:

Let G,=(N,,T,P,,S,) and.G,=(N,,T,P,,S,) be context-free

grammars. G, right covers G, if there exists a homomorphism
. s " [
§: P, »P, such that

n * 5(m)
(a) if S,mm» w, where w € T , then S,=w w, and
. G,,rm G,,rm
L
(b) for all derivations ®, such that S,== w, where
* G,,rm
w €T,
Ot ”|
there exists a derivation #,. such that §, == w and
G,,rm

6(m,)=m,.

Note that in this definition o is an identity. Left covers

can be defined in.a similar way.

Suppose for a grammar G there is a simpler grammar G',
say LR(k), that right covers G. One might parse the input
according to G' and then find the corresponding parse tree
in G. Notice that in programming lénguaées one necessarily
transforms the original grammar to, say some LR(k) cover, if
the original is not already in that form. Usually, the
parsing is only conducted in the transformed grammar even
though the analysis may not correspond to a natural one as
it is given in the original grammar. Addition of hooks in
compiler construction also may be considered to constitute a

cover for the original grammar.

¥

62

Although finddn§ of covers from gpec&al classes of
grammars, say LR(1), }or'certain deterministic grammars, say
LR(k) grammars, is relatively easy, determining existence of
a cover from special classes, say LR(k) or LL(k), for an
arbitrary context-free grammar is undecidable [Hunt 82, 84].
On the basis of this undecidable problem, in addition to the
following. reasons, it appears that covers do not provide(;

practical means for avoiding complex lookahead mechanisms.

e (1) Even assuming that for a grammar G. an LR(k) right
cover exists, determining the parse tree in the original
grammar from the parse tree in the cover grammar is still a

tedious and complex process.

o (2) Generglly one has to parse the whole input sentence
before the correct parse in the original grammar can be
determined. That 1is to say ‘pomputatiog of 8(x,) cannot
proceed sequentially as pre%{kés of =, become available.
Therefore the method is not suitable for a one-pass compiler

or translator unless one is content with the analysis being

carried out only in the cover grammar.

e (3) Parsing in natural languages- repeatedly interacts
with semantic and pragmatic components ofla general ianguage
processing system. Such interaction may direct the parsing
or decide on unacceptability of an input on semantic and
pragmatic grounds. Semantic rules are often closely.
associated with the original grammar defining the syntax,

e.g., in [Gazd 82] and [ScPe 82], Thus &ne needs to provide

v
& [SE' N

4 - 5’1’[' -
; \, ~ 63

. ‘ ‘ o
syntactic analysis according to the ariginal grammar.
Computational linguists are in general reluctant to opt for

a cover grammar that arbitrarilx'digtorts thé natural form

L 4
of the original grammar [Schu 83]. <o .

L

1

2.5 Conclusion PR

..7 ', 'n
This chapter has introduced the notion of ‘complex'

lookaheads in the context of Marcus persfhg.llt was noted
that despite the growing interest in’ é:rqus"ﬁdeteEminism
hypothesis, it is almost impossible Ate‘ draw’ ﬁﬂéelear
conclusion about his theory. The major reason« for tﬁie is
the procedural approach that he has taken fot definlng th?

]
language. Not only does the presence of parsxng’notxons such

as create, drop, etc. in a PIDGIN gremmar make it dxfflcult

lbb‘L
to determine exactly what subset of English is- pq;sed‘by the

grammar, but in the absence of formaliém it is‘also very

hard to determine whether a given arbltrary language can be

o

parsed in this style. As an alternative, it ~wvas suggested
that the languages parsed by Marcps-type parsé;s shouié be
described in a declarative form by using context-free
grammars plus the extension of feature assignment rules.
- Appendix I formally proves the context-freeness of the
langua;es thatvare accepted by Marcus-type parsers, and thus

prdvides a justification for the above suggestion.

It was shown that the_centext—free grammars parsable by

\\i;:rcus' mechaﬁism cannot bé handled by the LR(k) parsers.

' 4

4
"

»

‘ ‘ . 64
’

Furthefmo}ek cover grammars and existing generalizations of
LR(k)'gr;m‘gri were discussed and shbwn to be unsuitable to;
formalizing the concepts of Marcus parsing. Specifically;
BervicK's conjccturg regarding LR(k,t) grammars was proven
to be inadequate. Another proposal by Berwick, with espect
to BCP(m,n) qgrammars, is also rejected in [Nozo 86]).
Therefore, it seems desirable that one should search for a
new class of grammars which could provide a formal fraﬁework

for Marcus' parser. The remainder of this thesis is devoted

to the development of such>grammars.

Chapters 3 through 5 deal with context-free grammars,

or if one wishes the cSntext—free component of a language.
/

Chapter 6 considers' the context-sensitive aspects of a

language primatrily in the form of attributed grammars.

X S charTer 3

DEVELOPMENT OF LRRL(k) GRAMMARS
% o
%, RN ’ .

LRRL (k) parsing b;cha ly is a det%rminisgic
-) . s \ N .
non-canonical * hottom-up kparsing a}echniqpe-' fhich “is’
influenced by tﬁz, "wait and see" policy of the- Marcus
parser. LRRL(k) grammars denote a family of grammar classes
that are parsed Jeft to right with k reduced Jookaheads

according to the Ebove technique. The difference between

these classes lies in the nature of lookaheads that ghey

R
employ. 'Rshghly, the - cféss withimore 'Xgmplex' logkaheads ‘
inc)ﬁdes the clas; with ‘'simpler' lookaheads. {n this °
chapter the baézz‘.LRRL(k) grammars with%pt e~r;les are“
]”ydiscugigd.’%or convenience, sometimes these g;Zﬁmars will be

‘referred to only aS>LRRL(k) grammars without the_modisiérs.1

 ﬁpetai1s about other classes will he given in Chapter 5.

’/ » Y
3,0 Preliminary definitions

. All the terminology follows that of .LR(k) parsing as
p » ‘ - ' .) ' ' ' ¢
given in [phUl 72a, 73a] with the exception of followirng

» .) . ‘ ' ‘ .
additions or modjfitat\ons. In all of the definitions,ponly(r\

- , - . .
~ e-free redué;g pteyt-free grammars are .considered. Thus,

L3

for brevity,_the*prého@ﬁfiefs are dropp;a from here on.

4

65

- 66
1] "-

Assume G=(N,T,P,S) *is a context;-free grammar and V=NuT.

’ . . N

Definition .1; Prefixes of a string

* st .
,‘., ot c’ \F.." PF,,(a) is, the strmg of f1rst k symbols in
a if 14('2!(&h‘q(wlse PF (a)sa. T ’
Definition 2: Bounded concatenation-“ ‘ »
- ‘ » *
Let V, and V, be subsets of V ., The k-bounded

concatenation of V, with VvV, is

3

V,+ Vy={w | fora€V,;B€V,; w=PF (af)}.) -
k k .

! Defini.tio‘t: 3: Relative 'prefixes , e ' N
"" . d - : % 4
) Let. V, and V, be subsets of V . The set o}ﬁpelative

prefixes of Vv, and V, 1s defined to be

V,NV,=v,0V,={u | (w€V, and wa€V,) or (w€v, Qnd wBEV)}, {

Definition 4: Prefix free set .

R Ny . ¢

. 7 * N
Let U be a subset of V . The prefix free set. of Ul‘r

~

M1n(U) is defined to be . . >,
+ : 3 : .
Mlnxu)gu U ={u| o€y and fot;'no k<{w|,” BF (w)eu}"s
k\
Debnxtxon 5 f!qd"c,gd”rxght context : .
n‘ v‘*k ‘% k: \s ,

- . L\ S :§70
- A k @boL‘%é ued,‘;f@xt Jontext of (a prefxx of) a

L
phrase Yn ’zﬁe’}r teee ‘i"s' a seq%nce of k nodes to the

| .mmechate rlght of (the prefg of) the phrase such that none
of them c&n_\i_na_ges any‘ other, and the sequgnce contéxn; no

complete .phras'e. Formally, let. S—-» aAy—’aB.B,y be a

[

- 2 . -

A 15

L Y

. ' 67
. ®

v

derivation in G. P?‘?B;y) is a ‘k symbol reduced right
- k

context for B, if 1t does not contald’a complete phrase.
. _
Definition 6: Fully reduced right context

. ‘ \ ' ”;/

The k-symbol fully reduced right context of (a prefix

of) a phrase in a parse tree is the sequencd™of k nodes to"
the immediate r{ght of (the prefix of) the phrase which are

daughters of the nodes dominating (the prefix of) the

_phrase. In other words these are the k eymbols that low

(the gﬁefix of) the phrase in the leftmost derivation'of th® , -
| : i T e «
tree. More formally, let S=+ xAy==sxB8,8,y be a leftmost
Im <
derivation “4n G.” PF (B,y) is the k- symbol fully reduced

right context ot B.. / ;j> .)

-

. , -
N J : @
Ae” Be \r\o\ F Ge- e He

. ’ * w
P . ? B
A . ’ /‘ : ” : Flg k 1 ' -.‘
/N/ » Reduced right conteXts o

T o
As S%;n, the fully reduced context is the topmost

3y
reduced’ conﬁaxt and thus domxnates any sequence of k

subtrees’ to %e 1mmed1ate right of (the prefix of) t};e

68

A rr&; kg

-

[}

phrase. For example in Figure 3.1, "CDE", "CFG" and ."CDH"

are three-symbol reduced right contexts for "AB". Whyile,

"CDE" is the three-symbol fully reduced right context of

&4

" "
y N

LN

3:2 B\gﬁié LRRL(k) érammars 7 L. " ’ l"‘
= " A basic&RRL‘(‘k) parser employs ;k-symbol fully reduced N
right contexts .or lookaheads in making parsing decisions.
Tﬁls geneéalized lookah;ad policy implies that when a
questionable'_héndle in a right gentential form 1s reached,
the‘. deq‘ifsion to reduce it or né; may be reached vby parsing ‘
ahead a seément of the input that can be reduced to a
relevant fully reduced right éonprt of length k; éor

~example, in parsing a sentence in L(G,), ‘where G".a is the

gfammar given in Chapter 2; ' K . g
’ [
- .
(1) s~ 4d A .
(2) S+ A.S B F 4
(3) A+ a
. (4) £ » a s .

(5) B+ b1

A

after seeing the initigl & therevis a shift-reduce conflict

as to whether one should reduce it according to she rule

(3), or continue with the r »-(4). Howevér Ehe 2-sy_tilbol
"f'L;lly reduced context.for reducﬁé?&n_ is ?B, and for the shift
operation is SS, which indié'ate's a pos.sii>lé' resolution of
conflict if one can parse }:he . lookaheads. Therefqre or}e'

postpones the reduction of this questiénable phrase @nd) B

-)
. \
4 . o))

6%

two new aux111ary productxons SUBGOAL-RED(3) » SB ;:d
SUBGOAL SHIFT + SS, and continues with the pafsing of these
new constructs. Upon completion of one of these productions'
one‘ will be abi: to rdelve the tonflicting situation.
Furthermore, the ‘same policy may be applied to the gars1ng’
of. lookahead é“Onfexts themselves. This feature of LRR‘k)
par51ng, i.e., the recursive appl1cat1on of -the method to
the lp"hheal information, is the Qne‘that differentiates
this methoa from any .other. The_ method is recursively
applied whenever €he need 'arises,' i.e., at ’/alent\, points
5itr1ng pars1ng' If one 2lﬂays 1ns1sted on p8rsing lookahead §
.1nformat1on beforen regyzfgg a‘ handle, then the cesulb}pg
’mevhod would have been 1ess péﬁerfel (paradoxically; it
would have enjoyed?ﬁore power in error detection because of
! early recogn1t1on ofp errors): However the corresponding
class of grammars -would have had a éleaner defiinition in
terms of a §pec1al fozm of non-canonical dertva€1on;. 4&

: .
—

| Note that the lookahead scheme doeeisetieilovene to
exemiqe any remaining segment of{)ﬁe inpuf that is not 'a

pa:t' d? the lookahgad édnté*t. The parsed context is‘ﬁut in, g
‘a buffer of size k, and. no reexamination of the .seémeht d;j"

‘}he input senténce:- %hat“ gas ,been -reduéed to this right
context is carried out. In addiﬁ%on, tie r}gﬂt ‘context which
is k symbols. or’ Ies; does not contain a complete phrase,
i.e., the symbols in;tye,righ; eontext do hot;parlicipate in
any future ;educffoes’iﬁvelving ehly these symbolifkggther,

L

they- participate. only in reductions} involving the

e
‘ “.70'
[

%

, o, ,
questionable phrase or its dominators when the reduction of

.

this phrase .is concluded, or in.the reduction of a phrase

prefix was in question and its dominators. Szymanski

3, page 52) also makes a rgmark pn duch a tully
. (W

d context: ' C . B '

3 v
The important thing to notice is that if the decision

- ‘ L

Q to reduce a phrase mustq'be'pogtponed, then iamust be
9
..‘ -
the case that in the cortesponding sentential forms

with all phrases to thewright of the place in question
reduced, the first k " chéracters of fully“ reduced
context tell us what decision to make . "

But, neitHer informal intuition ebout Lg(k,t) parsihg’ nor .

Cits formal algorithm-copforms; ith the above remarks.
- . . I * W . P . .
T 1 . .
- 3.2.1 Rationale for the choice of lookaheads
.. »

! It seems to be a plaus1b1e linguistic assumption to

base the reductlon dec1s1on on the fully reduced context or

the .nodes 1in the parse tree that c-command the current

construct. Roughly speaking, ﬁt //xﬁeory
[Jabk 77 BeWe 82], node A‘c-commands (cong ent commands)
h ﬂode B if and only if the 1mmeaxate stor of “A is an

- %

ancestor of B. There are grounds for sqch an assumption:

. (1) There is precedence° .

t.ac LR(k) parsers use the entire left context in a
» : - ' o '
. fuldy reduced fd#@."‘ s E 3

o "1,b 1"t-c9mmand is successfully used in natural

y

71

v ' ,‘ : \:'
lané%es in ;uch areas as bmdmgs, e.g. binding of

. 4
pronouns by qu‘gnhers [B'eWe 82].

Inh (1. a) only lefgé

the right bz‘anchmg of Bﬁq&uh, the rlodqt !tl!-t c-'cgamod ;1rhe
¢ 4% .? ",

_ .current node are normally On 1ts }bet éide‘.g Howew!‘f this

cannot be a un1versa1 rule. I't one dec1des to parse
‘ ‘R
_"Bnglish ", i.e., English sentences in which ‘the order of

words js reversed, then g-command has to deal with the” right

. context. This hypothetical' case is not so much beyond
¢ L]

v

'reelity in. some languages in which, the order of words ip 3
tence &an be freely excha.nged. Also in a sentence ‘

"He could not win the election,” the president thought..."

.when doing surface analysis only (i.g: when no
. f

|

onoun b1nd1ng has - to

*formatxons are conwreg,*p{
P Y

lodw tor c- command in the ngh cont'ext.)

L]

(2) Most importantly, if the curarent phrase can be reduced

on the basis of k nbdes that’ @Y dominated by some nodes« of
the fully reduced right’ ‘xt, then surely the d/?ismn

Aca‘% also be tegched on the basis of k fully reduced context .

. . Oy .
Stating it differéntly, if a reduction desision cannot be

made ‘using the k fully reduced right context, the'ri'uo\ £

context .lookahead of sjze k will resolve the conflict.:

"

ntext i ,sn‘spdered In (ﬂ& due to‘r:

¢

L4

.’

Oth“érw_ise, it can be concluded that .the language - under

consideration is not context-free. '

" The crucial question inl'parsing is Wwhether the ‘right
contj.vext can be parsed without'looking‘beyond the segment of

’
,

: .;__ v - . ’

’”“*" ' . 72

. _“ - " . 4 .
{nput that is derived from it. Allowing unres

. , , ¢)
% lookahead beyond this segment results in undecxdablg » -
. .3 . . ‘0 ;
problems similar to those in LR(k,=) and -+ LR-regu ar "

1~

»
grammars. The requirement of parsabxhty of the 1ookahea¢"\‘

-

context’ is a constraint one has to live with in the" ba.-n‘b"*
- #a *1‘30‘ ’
e LRRL(k) grammars.’ In fact, it w1l‘lwge shqwrthat thcre};"

ay e »
some subtle LR(k)J grammars that are not in the basic LRRL(kw
class for t,.hei'v. samé- k. Relaxing the condition in a ve};-"fl

A

restrictive way will prov1de a new class ELRRL(%)‘ t"f‘)
€. ,
' .

o~
1nclude§ all the LR(k) grammars with the same lg-.-" M "

‘ .
. P ‘@ % .
-~ . ‘ . "'A‘ 'ﬁ ‘o ¥ ‘ []

Figure 3.2 toJether w1th Table. 3.1 pare Aome Manq .

cd

st'rateg1es against each other and the.basm LRRL technique

.q ¢
in terms of thé amount of 1nput stream read \hen th " _parser
- N \o .) “ ‘.
dec1des on th'eo recogn1t~1on of a production X *lz ceeX ,OE"
. . f 1 n -

‘the grammar falls within the corresponding class of the - .
. \» PP ” . .
. parser. The ameunt of ,éxtra storage besides the usual

. &

\ push-down stack is aMgo given.

Sy . L
, ¢
It is assumed that the.length of the terminal strihg to

the right of X to be greater than k.

s ’ ' "'
' Fig. 3.2
Comparison of ,parging strategies

grammar| input read complete subtrees type of
'sldss constructed storage
LL(k) 1PF (xr” L ,e..,L buffer of
44:‘ k . 1 m . ?
LC(k) 1x,PF (x'T) L ,...,L ,X "
k T m 1 '
LR(k) | IxPF (r) L, ..U % ,w. % | "
k) m 1 n
Ly [) ““i .
LR(k,t)| 1lxz Z where z |L ,,.E,L ,X ,...,X |buffer ot
' . 1. m 1 n
is a prefix of |[Z ,...,2\ ksdskt size kt
r s.t. it is (Z ,...,2 may or
R AR 2 |
reduced to 4 not equal tof’
A Y trees and Y ,...,Y .
) 1 Kk
ksdskt,)
| ks|z|<|r|
'LR(k, =) q vhere z L ,ee L X L0000, XK s\tack
I) 1 m. n
'is a prefix of t‘\::.'z k&ds|r|
1 . S ,
r s.t. it is |2 ,...,2 ma§ or
1 "k '
. » - \ . v
reduced to 8 +may not be equal to)
trees and.’ Y /...,Y .
: J k
ksd<|r|, o '
. ks|z|$|r| ’
* LR- 1xr L ,...,L ,X ,...,X stack
lregular) 1 m 1 n
Basic lxy L ,...;.L ,X ,...,X |buffer of
LRRL (k) 1 m 1 ‘n|
: Y ,...,Y size k
s 1 k
) Tabl® 3.1

Comparison of parsing strategies

74

75

[

3.2.2 Characteristic parsing automata approach "to LRRL

grammars

The lﬁproach to LR theory based on characteristic

- A
parsing automata, wherein a class of grammars is defined by
‘construction of finite automata, has been in use*since the

early development of LR parsers, though only in a

o

semi-formal way. Recently, the approach was completely
, by v

formalized as a framework for defining the class of LR

h grammars . (GeHa 77a,77b, Heil 81). It is interesting to note

fthag certain’%lassqs of ﬂﬁygrammars, e.g., LALR(k) grammars,

" cantonly be..defiged: in. terms of characteristic parsing.
Szymanski [Szym 73] has also used the 'methodology in the

form of phrase finding automata.

’ ' ‘) ~

The ba;sfng algorithm for, an@: defigition of LRRL(k)
grammars are based on . constructjon of é{:haracteristic
Finite State Machine. A CFSM is rather similar to the
deterministic finite'éutém!&on that is'used in LR(k) parsing

for recognition of viable psefixes.AHowever, there are three

-

major differenqgs:

-~

{ . ¢, . - L
(¢ (1) The nature of lookaheads. :The lookaheads are fully

\ reduced symbols as opposed to bare terminals in LR(k)

parsing. “ s

) -

? Introduction of. auxiliary productions. -
)

Partitioning of stateg vhich tonceals conflfcting items.
e

Though the lookahead are k symbol long, the decision for
transition from one stpte oranother is hgsed on one symbql

a . : . \

l‘“ L 76

B : ¢

-

rather than k‘symbols: Such a Strategylis also advocated by
some . authors for gg}}cient constructién of full LR(k)

parsers [Spec 81, AnDG 82].
!

The information extracted from this machine is ih"

tabulated form that jacts as the finjte control for the
4

parsing algorithm, ‘ ' ‘ _
. ¢ o ' '
The followmg sectwns will descnbe an algonthm- tﬁ'
. 8
the construction of a 9haracter1st1c fimite state machxne
»

for a grammar that is parsable bp.the basic LRRL(k) scheme. ,

. ! - L S
' - . e SR N

3.2.3 The states of CFSM
Much as in LR(k)'parsing; each state consists of one Sr

more items or gonfigurations of the form A *a.B,L; where L
" is a setvof 1oJﬁ§hEad\§trings at most k symbols long. Unlike
LR(k) items, lookahead strinés may.contain non-terminéls as

. well ng berminal symbols. When ina quacies arise as a

result ot reduce peduce or reduce ;hift con&$1cts-1n a state

of- CFSM, n brder tof enable -%bej.pcsef to pogtpone 1ts

dec1sion~‘%1-,x3F waaf atems‘
'A*aX'ﬂLfH',_ _]1temA-oaxﬁL
1 . L
in the predecessor ‘state)) led Next 8 ‘new se; of
. e R E . ‘) /
items S ' of p ?j, , the'lk form

SUBGOAL-RED(p) +.7, (¢} / SUBGOAL-SHIFT +.5,{c) is added to

the te, and then the closure of the new non-concealed
sis is. obtained. Thus in this way an inadequate state is

partitioned into 'concealed and non-concealed items. The’
A

«
. N

. .‘

. . ‘ .77
symbol SU D(p) inditates the conflicting reduction of
the prod p in@he state, and the symbol SUBGOAL-SHIFT

shows §

theoo. item¢ are obtained Erom the relevant loéggnggdaciii

that are associated with conflicting items, Note that such

icting shift operation. The right «hand side of
;) .

new items are added only vhen the lookaheads for each
reduction opefétion are different from the lookaheads for
any other reduction or srift- opef;tioﬁ. The productions

SUBGOAL-RED(p) +y and SUBGOAL-SHIFT, +6 will be called
. . . ! t ¥] . .
auxiliary productions, '

..

AS ouﬁ&jned in the above, an inadequate state consists

P

6f‘ a set of concealed and a set of non- concealed items. The

.

concealed itefls are retained in thé.ktate 80 that the parser
.can take tbe appropriate aetion when it backtracks to this
state after pasrsing the 1lookaheads. Consequently the
succhzsor states of a given state are g;ilt with ;espéct'to

: i

the tvo sets separately. Hence, existence of a global

. . ,
boolean variable FLAG is assumed that directs the parser as -

o
\

to éhich successor state to proceed. The successor state of

i L o on . ' oA - NPT C o
th§ 'nOHtconcohied’het is obtained yrider %he Fbﬂﬁ'valge orr,

whxle the successor state of the concealed set is given'

under the FLAG galue ON. Notice that in the latter case-only
those items 1ndxcat1ng a shjft operation are taken into

consideration.

One may pause here to observe that:

(1) Such a’scheme is not the unique way to produce a CPSM
. . < a .(i -

B
e -

-

L 78

» .
P 1

for a grommar that is parsable by the ou;linéd method. . In

fact, it will be shown later that-a CPSM can be constructed
vithout use of a flay 'variable by*ia slightly different
method. . | ¢ .
. (2) The scheme described above not ;Lly indicates the
_resolution in favour of a reaucfionhat ;fconflictind point,
but also is capable of showing} resolut;ons in favour of
shift operations by means of SUBGOAL-SHIFT prodBctions. It
will be shown shortly that the driver routino4 SO to speak
the wuseY, through the parse tabl’ will be aware of those
shxft operations that are in conflxct with Isome reduction
operatxons. One may -do away with that,,b§ concealing o#ly$
those items that indicate a reduction in an 1nad¢qdate
state, In such a method, whxcﬁ‘defznes a dxfterent claqs of
grammars from ohe present one, the handle of a- sentqntlal
form' can be found if its rig?t context could Se'parge?{ -
) _ ' -
Tperefore,‘tho presont o}ass of grammars can[\bé ‘named
as type -1 ‘basic™ LRRL(k) 6rammirs Type 19 ba;xc grammars
that follow frém the second scheme: 'will ~b3 Qescrlbed in
. Section 332.11. o ‘ N ' :
] '.' 7 .) . L e
3.2.4 Closure operation .

] . . - .x
. ! (' -. ’ * -
. . {‘J

- ‘ -

Recall that ®ach item has the form A *;.BhL; where L is
. ’ . . . F 14
the set'of 1ookaheads.:To close the noﬂ-concealed b;afs of a

o

‘state one takes ‘the lookaheads into account. The follovlng

algorxthm is used for thxs opetatxon. T o,‘l‘ -

, 370

An importaht factor ié this ' simulation has been the

assumption that the buf fer in a Marcus style parser is
'

bounded. It is unlikely that all parsers with unbounded
buffers written in this style can be simulated by
determinist i pushdown ?utomata. However, this does not mean
that some Marcﬁs—type pafsers that use an unbounded buffer
in. a ‘constrained way- are not equivalent to pushdown'
automata. Shipman and Marcus [ShMa 75] consider a model of
Marcus' parser in which the active node stack.and buffer are
combined to. give a single data structure that holds both
complete and incomplete subtrees. The original ‘stack nodes
and their lookaheads alternately reside on this structure.
Letting an unlimited number of completeé constructs and bare
terminals resiae on the new structure 1is equivalent to
having an unbounded bufféf in the origiﬁal model. Given the-
restriction that attachmenté and drops are always limited to
the k+1 rightmost nodes of this data structure, it s
possible t& show that a‘ parser in this hodel with an
unbounded buffer still can be simulated with an ‘ordinary
pushdown automaton. ' (T equivalent condition in the
original model is to restrict the window to the k rightmost

elements of the buffer. However simulation of the single

structure parser is much more straightforward.)

Close(s: Set‘ot items)
Repeat - |
o For an item A *a.BB}L in s; B € N
and fo? all B »y € P
add item B »+.y,L'={B8}+ L to s
if there is no item B 5.7,L“ in s;
else replace the latter with 4
B *.y;Min(L;uL") , \ ;

Until no change can be made in the set of items s. <~

~

3.2.5 Construction of a CFSM

Let G=(N,T,P,S) be a (reduced ¢-free) context-free‘
grammar. Algorithm A decides whether the grammar G-is basic
LRRL(k) for the {ixed _number k, i.e.} whether it can Sé
parsed with k fully reduced lookaheads and a buffer of size
k. The algorithm will produce a CFSM if the answer is

positive,

Algorithm A :

AN

(1) Add GOAL symbol to N and production ;

,,f\\‘\O:ZGOAL +S to P.

<,

(2) Build the initial state sg&
Let the basis bf s, be { (GOAL -.S,{$}) je'

and its concealed set be Q.

Close non-concealed ‘basis of s,.

— 80
. v
» Let the set of states of CFSM, Q={s,}.
(3) Repeat ‘ . -

For a state t whose successors are noﬁ yet detérmined
build its successor states'unde? all applicable
symbol X and FLAG values (OFF, ON) as described
"below. ‘ |

(a)- Construction of a successor state s for the

’
given state t under symbol X and FLAG=OFF:

(i) If there is n?;non-concealeg item of ;he form
(A +a.XB,L) in t, then t has no successor
under symbol X and FLAG=OFF. ’

Else
let basis of s=0.
' For each non-concealed

item (A »«.XB8,L) in t add

(A +aX.B,L) to the basis of s.

(ii) Check for inadequacy in the basis of s:

If there are items of the form

), I : A »a X.8,L;
3 o3 3 3 3
j=1,...,m and B'¢< ¢ g
]
and
Lo

I_: A. »+a X.,L ;
J]] J
J=m+1,oo-,n

where m21 and n>m

(i.e. shift-reduce/reduce-reduce conflict’s)

or

Am=0 and n>1

(i

Then

[

.e. only reduce-reduce conflicts)

let the shift lookaheads of s be

SHL(s)=Min v

T

m .
({8 1+ L).
=1 j ok 3j -

]
f L.QSHL(S) =@ for j=m+1,...,n

J
(i.e. possible shift-reduction

resolution) and

L NL =@ for i,j=m+1,...,n ,i#j

. 1) j

(i.e. possible resolution of reduce-

reduce conflicts)

Then

conceal - the original conflicting basis

items*1 ,...,I , and add new
1 n
non-concealed basis, i.e,

For j=m+1,...,n

add SUBGOAL-RED(p) ~.v,{¢]

to s for all y ¢ g.;

where p is the prgduction A “a X.
Also add S%BGOAL—SHIFT .y, {e} go sJ

for all y € SHL(s).

Else

conclude the grammar is not basic

81

82

N A

.LRRL(k) and exit.

(iii) Close the non-concealed. basis of s.

(iv)

Add state s to Q if there is no state t'

in @ with the same items as s, or with

items which match those of s apart from ihe.
lookahead sets, and for lobkahéad\sei L'

in t"it is true that L'=Min(LuL'5 and
L'=LNL', where L is the corresponqang
lookahead set in s. .

(i.e., each 0'€L' is a prefix of some o€L

and each o€L has a prefix o' in L'.

This latter condition is introduced as a means

of optimization that reduces lengths of

- netessary lookaheads.)

Otherwise let t' be the successor of t.

(b)- Construction of a successor state s' for the

given state t under symbol X and FLAG=ON

(i) 1f thsre is no coneeéled item of the forﬁ:
A *a.’Xﬁ}. in t,
Then state t™“has no successor under symbol
X and FLAG value ON.

Else K g .- s

_ | | . 83
‘ | N
" iet'non-conc aled basis of s; be 0.

For each concealed item (A -+a.XB8,L).

,in t add (A aX.B,i) to the basii of s'.

! L4 ’
i
t

(i) =(iv) Repeat stéps (ii),(iii) and (iv) 6f

ggrt (a) for state s'.

Until no more state can be added to Q.

(4) Conclude that the grammar is basic LRRL(k).

Note:
The repeat statement of the step (3) can be implemented with
the aid of a stack or a queue.

A

Theoremu3.1

[S
The CFSM construction algorithm A terminates. f—

Proof: The proof is based on the finiteness of the number of
the items. This gives an upper bound pn the number of states
that can be generated. First, one should note :hat each
state is uniquely characterized p§ its original basis.
Whether this basi§ is concealed or not is ,immaterial.
Secondly, the dot apﬁears after the first symBol in the

right hand side of the core of a bas%;c item (with _the

exception of the infkial item in s,). For®counting purposes,

&+

’ \ 84
one could consider an item like (A +a.B,L) as a set of items
((A~~a}ﬁ,a)|o€Ll. The nuymber of distinct items (A'*a.B,o),
vhere . A€V and A |a|zf, is

k k+1 ‘
m,=(|G|-|P|)(1+|V]|+...+|V])<(k+1) |G| , and the number of

distinct items (A #a.B,¢), vhere A is some subgoal symbol
2 k 2 k+i

and fal21, is m=(|P{+D(|V[+2|V] +...+k|V])<k |G| .
: m
Thus, the number of states is less than 2 , vwhere
. 2 k+1
m=(k+1) |G| . 0
Definition 1 - —
) e

'A context-free grammar G=(N,T,P,S) |is type 1 basic
LRRL(k) iff a CFSM for it can be constructed according to

the aigorithm A,
Corollary 3.1

It is decidable-whether an arBitrary (reduced c-free)

- context-free grammar is LRRL(k) for a fixed number k.
P ,

It is obvious that the question of whether an arbitrary
context-free grammar is LRRL for some k is undecidable (as

in the case of LR grammars).

Example 1:
Consider grammar G which is not LR(k) for any k.

A BD
“A' CD
d |

' aa

+b

o~~~ T~ —~
N WN -
N i St S

(6) B ~a B e
(7) C =c)

(8) C »a C

(9) D ~d N : T

The following ' diagram is a CFSM for § with k=1, i.e. G i\q};t\’

LRRL(1). Notice that G is also LR(1,2)(and LR-regular.
/

/

- —

State 0

's +.A'CD, {$)

GOAL ~+.S,{$}
S +.ABD,{$}

A +.a,{B}
A' -+.a,{C}

State 1

GOAL +S.

-A.BD,{$}
+.b, {D}
+.aB, {D}

™ wwn

State 3

<A'.CD,{$}
+.c,{D}
+.aC,{D}

aO0Own -

State ¢

Concealed items:

|11

\
|

S,OFF
A ,OFF

1

—

A' ,OFF —3

a,OFF

B,OFF
b, OFF
a,OFF

C,OFF
c,OFF
a,OFF

A +a.,{B}

A' =a.,{C]

Non-concealed items: .

SUBGOAL-RED(3) ~+.B, {¢} — B,OFF.

SUBGOAL-RED(4) ~+.C, {¢} . C,OFF

B *ob,{‘] —— b'OFF
B +.aB,{¢} . a,OFF

C ».c,{e} c,OFF

Cc +.aC,{e}

State 5
D +.4,{$} — d,0FF
. N ﬂiag. 3.1
- . Tbe CFSM for G

——

—_—11
—_—12
——13
—_ 14
—_—15

—_— 16
—_—17

86

State 6

State 7
B -a.B, {D} —— B,OFF ——» 18
B -.b,{D} —— b,OFF —13
B +.aB, {D} :::] a,OFF
Steat
tate B @
S »*A'C.D,{$} —— D,OFF ——=»19
D »-.4,{$)} — 4,0FF ——>»17
/[
(™ State 9
C =c.,{D}

s

Stat{’10

c =a.C,{D} | —— C,OFF —=20
C *.c,{?}) N —— ¢,OFF —=15
C ».aC,t{D :J a,OFF

State 11

SUBGOAL-RED(3) =B.,{¢}

iy !

State 12

| SUBGOAL-RED(4) -C.,{¢}

State 13

.

B +*b.,{e€}

State 14

NOOwwOm
o~

A et A e A A
S

State 15

C +c.,{¢}

|

‘

S +ABD.,{$}

l

State 17

*d-,{Sl

l

|

State 18

l

B +aB., (D]

State 19

S +A'CD.,{$}

\

State 20

C -+acC.,{D}

~ State 21

B =+aB.,{¢}_

State 22

C +aC.,{¢}

B,OFF
c,orr
b,OFF
a,OFF

c,OFF

——l @ |
— 2

p—

v =

leafplo 23 | | - \\/’// ‘

Cons{der grammar G, of Chapter 2:

(1) § -4 ')I
(2) S A S B .

(3) A a2 R

(4) A -a S

(5) B #+b : ' - -

]

The following ‘di::::>"ohovs the CFSM for G, constructed
according to the algoffthm A with k=2, Therefore the grammar
"is:- LRRL(2), however earlier 2it was proved that_it is not
LR(k,t) for aﬁy finite k and t. It is also believed that G,

is not LR-regulaf.

. State O

GOAL +.§,($]

s +.4, (s

S +.A8B,($)

A <.8,{SB}

A +.aS,(SB}
State 1

GOAL ‘Soo(‘} l

State 2

State 3

<A.SB,({$}
-.d, {B$]}
+.ASB, {B$)
+.8,{SB}
+.aS,{SB}

P r¥unnnn

State ¢

Concealed items:

A +a.,{SB}
A +a.S,{SB}

Non-concealed items:

/
SUBGOAL-RED(3) <+.SB,{¢}
SUBGOAL-SHIPT +.SS,{¢}
+.4,{8B,Ss} A
+.ASB,{B,S}
+.a,{sSB}
+.85,{SB}

>Fruunn

State 5

o
5,000 —1¢
A,OPFF ——3

—S ,OF F——p»5

4,0PP——»6
———A , OFF———»7
a,0FF——=4

—S,0FF——>9

—d ,OFF +>10
———A ,OFF——=11

: a,OFF

—8B,0FF——=12
———b,OFF——=13

———

Diag. 3.2

The CFSM for G,

90

A

\
State 6

. State 7 : :r"' !

S <A.SB,{B$} . ——S,0PF—4—= 14

S *.d{%inl ~-—f-d‘orr-———>15

S +.ASB, {BB] . e\, OFPF—2 16

A +.a,{SBY 8,0PF—s ¢
State 8

State 9

B
S
S

*.b,gti
-.d
.. gB:{tl

A +.a,{sB}
A ~.aS,{5B}

SUBGOAL-RED(3) +S.B,{} ————B,OFF———-Il7
SUBGOAL-SHIPT +S.S,{]

—S ,OF F——= 18
——>b,0FF——=19
d,0FF +20
' ——A ,OFF——21
-——-3,0FF——=4¢

Séate_10

S -d.,{B,S} .

\'.
. \

State 13
B +b.,{$}

l

State 11
S <A.SB, {B,S] ———S,OFF——s22
s -.4,{BB,BS!} 4d,0rr 20
S +.ASB, {BB,BS} ——A,OPP——=21
A »+.3,{SB} a,OFF >4
A ».aS,{SB} .-

State 12

=G -~

S +ASB.,{$}

l

v 0"'.

State 14
S +AS.B,{BS$}, ——B) OFF——23
B +.b, {B$) — b, OFF——19
State 15 '
-m_j
S +d.,{BB} -
'—7 A
. State 16 -
S +A.SB, {BB) — S,OFF——»24
s ».d,{B?} — 3,0FF—»20
S +.ASB, {BB} A, OFF
A *.a,{éB} - :::]
A +.,as,{sB} a,OFF——¢
State 17

SUBGOAL-RED(3) =+SB.,{¢}

State 18

SUBGOAL-SHIFT -SS., {¢} S

State 19 ‘r*’//

B +b.,{¢}

State 20

¥

S +d.,{¢}

State 21

Y

»A.SB,{¢} —S , OFF———»25
*.dééB% } ~—qd,0FF——20 -
2.A B A ,OFF
-’.a,{éB} :] e

+.,aS, {SB} » a,OFF >4

E 2

>»r nnun |

State

22

+A%.B,{B,S}
+.b,{B,S}

State

23

+ASB., [B$]

#

State

24

+AS.B, {BB)
2.b,{BB}

State

25

State

26

+ASB., {B,S]

State

27

»ASB., {BB}

State

28

+ASB.,{¢}

/
A
/

A—B,OFF—26"
A——b,0OFF——19

——B,0FF——27
—b,0FF———»19

[B,OFF——=28

——b,0OFF——19

93

94
3.2.6 Post optimization of a CFSM

The output of the algorithm A in some cases, e.g., the
CFSM produced for the grammar G, (example 2), is virtually
more than what is needed to parse the g‘.mmar. By a suitable
‘algorithm based on the intuition mentioned in the step’
(3)-a-(iv) of the algorithm A, one may collapse the ‘states
with' longer .. lookahead strings onto the states with shorter
lookahead sziings; That is to say a state like

- ’ -
{({A +a .B ,L)|i=1,...,n} gan be collapsed on a state like

i io1i
{(A =+« .8 ,L')]i=1,...,n}, provided that
i i 1 i

L' ={o' |j=1,...,m} and L ={0' o li=1,...,m and
i ij ' i i3 131

l=1,...,m }, or briefly, L' =Min(L vL') and L' . is a
~ ij Rt i i) i

prefix set of L, i.e., L' =LNL' , for i=1,...,n. Such post

i i

optimization in no way changes the behaviour of the parser.
The rationale behind this éollapsing opfimization is that if
‘shorter?%ookahead strings are adeguate %p one state, then
they :,Ff‘ sufficient in the other state too. In the example
2, states 2,6,10 and 15 are collapsed on the state 20 giving
new' state 2. Similarly states {3,7,11,16}; {13} .and
{12,23,26,27} are collapsed on states 21,19 and 28

respectively resulting in the new states 3,9 and 8. The

optimized CFSM is given in the next diagram. - |

State 0

GOAL ~.S,{$]
s ».d,{$}

S +.ASB,{$}
A -+.a,{sB}

A ~.aS,{sSB}

°

State 1

GOAL +S.,{$]

S&ate 2

S *d.,{c}

State 3

+A.SB, {e}
+.d,{B]

+.ASB, {B}
+.a,{sB}
+.aS, {SB}

>runnn

State 4

.Concealed items:

A »a.,{SBl}
A -+a.S,{SB}

Non-goncealed items:

SUBGOAL-RED(3) +.SB,{¢]
SUBGOAL-SHIFT =+.SS,{¢}

+.d,{B,S}
+.ASB, {B,S}
+.,a,{sSB}
».as, {SB}

>runn

State 5

S 2AS.B,{¢}
B +.b,{e}

Diag. 3.3

—S,0FF———1
-+——d,OFF ——>2
—A ,OFF———3
a,OFF——4

——S ,0FF——5
———q43,0FF——2

] v A,OFF
P

a,OFF -4

—S,0N —=6
— S, 0FF——»7

—3,0FF——»2
————A ,OFF——3

a,OFF
-] _

——B,0FF——8
——b,0FF—9§

The optimized CFSM for G,

.

95

96

- State 6

A +aS.,{SB} , | .

State 7

SUBGOAL-RED(3) -+S.B,{¢} ——2B,0FF—10
SUBGOAL-SHIFT +S5.S5,{¢} - ——S,0FF———=11

+.b,{e} ——b,OFF—=9

+.d,{c} ——q3,0FF—2

+.ASB, {¢} ‘ A,OFF——3 ’
+.a,{SB} ' a,OFF——>§

+.as,{SB} ' .]

Prunnw

State 8

*
S ~+ASB.,{¢}
*

State 9

B »b.,{¢}

State 10

SUBGOAL-RED(3) +SB.,{¢€}

State 11

' ' “|

SUBGOAL-SHIFT +SS.,{¢}

" Further to the previous optimization, fiﬁéla states
1,2,6,8,9,10 and 11 which indicate a 'reduction of a
production may be removed from the CFSM, lgaving the CFSM
with only 5 transient states. gimifar optimization regarding
the final states (inessential states!) also can be found in

LR parsers [Sois 82].

A second kind of optimization in the form of

identification of states may be applied. Namely, one could

8]

93

I'4

collapse state s={(A *a B L)} onto state
i
s'={(A »a« .8 ,L')} where L' -Mln(L L') for 1-1,...,|s|,
S1 i i i i i
i.e., an item like (A +a.B,{X,X,}) may be collapsed on item

like (A =a.B,{X,,Y,}).

~ All the outlined optimizations do not <c¢hange the
character of the parsing mechanism or.the class of grammars,
except the last,6ptimization.technique may —end up with a
poor error detecting power, 1i.e., errors may be detected
later than with CFSM that has no optimization of this kind.
Such post optimizations could be embodiqp in the algorithm A

with some elaboration of the algorithm,

A totally different merge optimization may also be

carried out in the algorithm A, that is states
1

si{(A. 4a'.ﬂ L)|i=1,...,n} and
i i
s'={(A -a B L'){i=1,...,n} can. be merggd together giving
i i 1
state ={ (A .8 ,L")| ¢-1 ,..,n} whete L" -M1n(L uL')
i 1 1 =i~ o et i i i

.prov1ded that there is no confl}ct kﬁ,r}ookaheads of s"

“ >
. .

i.e.,
({B }+ L"')'Q ({8 }+ L")=p fori,j=1,...,n and i#j. Such
i ki j k 3

mergings will require an elaborate use of back pointers \o
backtrack to an ancestor state if merqing of . the ancestor
states results in conflicts in the successor states. B

Such a method is similar in nature to‘thg construction
of LALR(k) parsers from LR(k) parsers. However, one may end

up in a state with conflicting items such that adding

auxiliary productions will not do any good since the

*

. ' ’ ‘ 98

lookaheads cannot be parsed. This latter IoSﬁimization may
also be included in the algorithm A in a way fhat is similar
to the construction of an LALR(k) parser which is derived
from LR(0)-CFSM. The corresponding class of brémmars with
this optimization will be more restrictive ‘than LRRL(k)
class as in this kina of parsing I;;l contexts are collapsed

together. These grammarg will be analogous to LALR(k)

‘grammars in canonical parsing.

3.2.7 Derivation of a parse table from the CFSM

The derivation of a parse table can be included in the
’ &
construction of the CFSM, i.e. the algorithm A. However for

clarity, here it has been given as a separate algorithm.

By observing the. construction algorithm, it can be
concluded that the non-concealed set of itéms.in a CFSM
state consists of either:

(a) one or more items of the form A -+a.X8,L

or

(b) a single item of the form A -+a.,L.

The case in (a) indicates a shift-goto operation on the FLAG
value OFF and the appropriate input symbol X. The latter
Jcase (b) indicates the reduction of the production A -~a ypon
‘any' input symbol and FLAG value OFF, except for the final
state £:[GOAL +S.,{$}] where the input is required to be a
$. Notice that in other reduction states b;;ides f, testing

whether the input symbol is dominated by a symbol Y such

99.

' .

that Y=PF,(0) for o€Ls{c¢} would have given an advantage of

early error detection in the parser,

In the case of a concealed t of items, only conceqled
items of the form A fu.XB,L 'wi}l determine a shift-goto
operation on the appropriate input symbol X and FLAvaalue
ON. The reduction operations indicated by a concealed item .
such as A‘*a.,L are handled@ in a special way without
referring to the state containing the concealgd item as

described below,

Observe that the states of the CFSM will not contain
any ifem of the form SUBGOAL—REQ(b) *a.,L where p itgelf is
an auxiliayy production. So when é re@ué%ion‘of an auxiliary
production say, SUBGOAL-RED(p) #*a in a state s under the
FLAG value OFF, 'is encountered, the reduétion of the
original production‘ p at an earlier state s' will
gytoma;ically be concluded. The reduction of auxiliary
péoductions cause their right hand sides, i.e., the parsed

lOokahead contexts to be transferred to the buffer.
Algorithm 31:

¥

Computes i parée table from a given CFSM.

For i:=0,...,|f|-1 do with state s .

for every symbol X€(Vu{$}) do '

(1) 1¢ the‘étate S contains a single nonconcealed /
item A *a.,i : j

Then

/

-~ 100
" Case A member of ‘
{GOAL}: If X=$ Then'figLE(s.,X,OFF):-<reduce 0>
(i.e., accept thelinput sentence.)
N-{GOAL}: fABDE(Q_,x,OFF):-<reduce p> where
"p:A*ut | ' f

(for optimization and early error
detection one may test if X is reachable

from the first symbols in L.)

{SUBMGOAL-SHIFT}: (i.e., when the single item is of

the form SUBGOAL-SHIFT -a.,{¢}.)
TABLE(s ,X,OFF):=<transfer |a|,ON>
(i.e., ;ransfer |a|symbols from top of
the stack to the buffer and switch FLAG
to ON. For optimization of the parse
table one needs only to consider

éymbols X€(Tu{$}).)

{SUBGOAL-RED(p)[j=1,...,|P|}:

end case.

Else

]
(i.e., when the single item is of the
form SUBGOAL-RED(p) -*w.,{¢}.)

TABLE(s ,X,0FF):=<transfer |a|,reduce p>
i
(i.e., transfer |a| symbols from the top

of the stack to the buffer and then

reduce production p.)

(i.e., when the state s contains one or more

1

non-concealed items A +a.B8,L.)

101

If the successor state of s- under FLAG value
1

OFF and symbol X is s
')
Then TABLE(S';x,OFF):-<shi£t,goto s >,

1

.]
I1f the state s contains concealed items and its
i
successor under symbol X and FLAG value ON is state s'

j
{ O ABLE(s ,X,ON):=<shift OFF,goto s' >.

) ok - i »
i®i .e., shift, switch FLAG to OFF and goto state s .)

]

L

All the undefined entries are assumed to indicate the

rejection of the input sentence.

The parse table can be represented as a three
dimensional array for fast accegsing. However to optimize
the memory usage if may be kept as a collection of lists of
non-null (i.e. defined) entries; one list for each state or
one list for each symbol. Further in practice, the parse
table entries can be encoded. Also note that FLAG values can
be omitted from the table entries, provided that one-sets
FLAG to OFF after every shift operation, and switches it to
ON —on a transfer operation but not on a combined

»

transfer-reduce operation. o

Example:

The following gives the parse table obtained from the

optimized CFSM for the grammar G,.

v ') 102
‘ \

3 ‘ Symbols\
t tA‘
t * .
e
s a b d S A B $
0 ;Z' 82 s 83
1 r0
2 r r! rl rl -rt r1 r
3 s4 52 s5 s3
N
4 sé 82 s7 s3
§6 OFF

5 s9 s8
6 ré4 réd ré4 ;4 r4 ré r4
7 s4 s9 s2 s11 s3 s10
8 r2 r2 r2 | r2 // r2‘ r2 r2
S 5’ r5 f rS r5 r5 r5 rS
10] t2 r3 t2 r3 t2 r3 t2. r3 t2 r3 t2 r3 t2 r3

v .
11} t2 ON | t2 ON | t2 ON | t2 ON-| t2 ON | t2 ON | t2 ON

™~

Note: The first line in each entry refers to the
corresponding value under the FLAG value OFF and
second line to the value under the FLAG value ON,

Table 3.2
First parse table for G,

103

-

As indicated the algorithm B1 does not take advanhtage
of early error detection. If one vishes, one can do so by
testing whether the input symbol is r;achablo from the first
symbols_.of the look‘ahead strings in the states with a
redgction item of the form A <a.,L where Lo{c]}. I}n the
stat‘es with single reduction item A =+a.,{c¢} the input symbol
must be element of Tu{$}. Such a scheme will decrease the

4

number of non-null entries in the parse table, FPFor example

the previous table will be reduced to Tablgys.3.

[B BN BN]

104

o

} >
}
J
. Symbols
1
a b d S A B 8
sé 82 . . s 83
r0
ri r - r e r1
s4 \ s2 85 83
s4. 82 87 83 N
. 86 “OFF
| -89 ‘ s8
r4 r4d ré ré
sé s9 82 v _s11 s} 810
r2 r2 . r2 r2
rS r5 rS rS
t2 r3 | t2 r3 | t2 r3 ' t2 r3
t2 ON | t2 ON | t2 ON t2_ON 1=
7 Y
Table 3.3

Second parse table for G,

108
3.2.8 Optimized parse tables ‘//f“

In the construction of the Crsnyit vas mentioned that. ’
if one does not wish to have errors detected as early as
possible, ‘then final states except: f:(GOAL +S.,{$}) can be
omitted and replaced wvith an indication that corresgondinq

productions are to be reduced. Algorithm B2 gives an

,optimized table according to the above' scheme. It is

imporian: to note that parsing algorithas‘vhich use the
optimized\parse tables are slightly different from those

that employ unoptimized tables. .

Y

The optimizéd tables assume.that shifting of the input
symbol onto the stack always takes place before Yy
reductiqn or goto action., Therefore the entries in the table"
are of uthe forms: goto '‘n, goto n-OFF, reduce n, reduce

n-OFF, transfer n-reduce m, transfe% n-ON or transfer

n-reduce m-OFF.

Algorithm B2 R

Computes an optimized S;;;e table from a given CFSM,

/

Some errors may not be detected/ at the earliest possible
moment during the pars g\¢9;ocess, i.e., a 'number of
reductions might take place before discovering that the next

input symbol is erroneous. <
. i
\

For i:=0,...,|R]|-1 do

If s consists of a single reductin item
i '
of the form A +a.,L

106

Then

1f s =[GOAL +S.,{$}]

i
Then TABLE(s ,$,0FF):=<reduce 0>

i
fi;

Else :
' ‘4

For FLAG-value:=OFF,ON do

For every XtV do

‘ . 4 ™
1f s has a successor s under

i R j

symbol X and FLAG-value

Then J .

1f s contains a single reduction
]
item A -<a.,L

ﬁ\vThen
éase A member of
s {GOAL}: TABLE(s ,X,FLAG-value):=<goto s >.
e 5

i
(N-{GOAL}):
TABLE(s ,X,FLAG-value):=

i
'1f FLAG-value=OFF Then <reduce p>

Else <reduce p,OFF>
fi; where p: A ~a.

-

{SUBGOAL-SHIFT}:
‘ (i.e.,‘when‘the single item
of s is of the form
SUBG%AL-SHIFT saX.,{e}.)
TAgE%(s,,X!FLAG—value):=
1

<transfer |aX|,ON>.

{SUBGOAL-RED(p.|j=1,...,|P|}:
]

(i.e., when the single item
of s is of the form

)
SUBGOAL-RED(p) =a.X,{c}.)

107

. 24

—

|aX|,reduce p> Else

y

obtained

P
. TABLE(S.,X,FLAG-value):=
{ ‘o If FLAGivalue = OFF Then
L <transfer
<transfer |aX|,reduce p,OFF>
fi.
end case.
Else
TABLE(S',X,FLAG—value):=
If FiAG—value=OFF Then <goto S' >
| Else <goto s ,OFF>
fi, J
i
fi
end do A
end do
fi
end do. P
Table 3.4 is the optimized parse table for G,

aécording to the algorithm B2.

108

Symbols
States
a b<: d S A B 5
"0 g4 *\\:: gt g3
1 ‘ 2 ‘ r0
3 g4 ril g5 g3
4 g4 ri g7 g3
r4 OFF
5 r5 r2
7 g4 rS ril t2 ON g3 t2 r3
Table 3.4

Optimized parse table for G,

3.2.9 Parsing aigorithm

The parsing algorithm varies according to the kind of
parse table that it wuses. The following 1is a parsing

N P
algorithm that employs an optimized parse table.

_ Algorithm C:

There are three data structures in addition to the
parse table. Two parallel stacks; SS: Pérser states stack
and PS: Parsed symbols stack or parse stack. The states
stack is used to store the past states of the parser, while

. 8
the parse stack holds those nodes that are seeking a parent.

B 109

In LR theory, these stacks are combined together but in
practicalrcases they are usually treated as two separate
stacks. There i;~ a buffer of size k that écts as a finite
depth stack. The scanner routiAe obtains the next symbol
from the input sentence. The ihput routine provides the hext.

input symbol to the parser either from the buffer if it 1is

not empty or else by invoking the scanner routine.

Variaﬁles:
PS: Stack of symbols;
SS: Stack of state numbers;
Buffer: Stack of size k of symbols;
FLAG: (OFF,ON)
Current symbol: Symbol;
Current state: Sfate number;
p: Production number;

s: State number;

d}nitialize:
FLAG:=0OFF;

- PS:=0; V
§S:=0; ﬁk
Push (0) on SS;
Buffer:=0;

Current symbol:= input();
Loop:
| Current state:= Top(SS);

Push (Current symbol) on. PS;

110

13 =

TABLE(Current state,Curreent symbol,FLAG) has
the pattern <goto s> | ‘
Then

Push (s) on SS; Current symbol:= input();

e ‘
1

Elseif
TABLE(Current state,Current symbol,FLAG) has
the pattern <goto s,OFF> 5 '

Then |
Push (s) on SS; Current symbol:= input();

FLAG:= OFF;. |

Elseif
TMLE (Current state, Current symbol, FLAG) has
the pattern <reduce p>

Then
1f p=0 Then accept; exit Loop;

Else Pop IaI-A-states from SS;

Pop |a| symbols from PS (i.e. reduce p) \
wvhere a is thé‘right hand side of the
production p;

‘Current symbol:= left hand side of production p;
fi

Elseif
TABLE(Surrent state,Current symbol,FLAG) has
the pattern <reduce p,OFF>

Then SN

Pop |a}|-1 states from SS;

Pop |a| symbols from PS; (i.e. reduce p).
" where a is the right hand side of the prodyct{on P;
Current symbol:= left hand side symbol offp: '
FLAG:=0OFF; ; T
Elseif _ ‘ i:}_
.
TABLE(Current state,Current symbol,FLAG) has
Q\\ the pattern <transfer 1, ON>
Then. . '
For i:=1,...,1 do Push(Pop{(PS)) on Buffer;
(i.e., transfer ; top elements of the parse
stack to the buffer.)
Pop 1-1 states from SS;
FLAé:=ON;
Curfent symbol:= Input();
q&seif | -
TABLE(Current state,Current symbol,FLAG) has
the pattern <transfer 1, reduce p>
Then
For i:=1,...,1 do Push(Pop(PS)) on Buffer;
Pop |a|+1-1 states from SS;
Pop |a| symbols from PS; (i.e. reduce p.)
where a is the right hand side of the production p;
Current symbol:= left hand side symbol of p;
~ Elseif |
TABLE(Current state,Current symbol,FLiG) has
the pattern <#ransféf 1, reduce.p, OFF>
Then

112

For i:=1,...,1 do Pd%h(?op(PS)) on Buffer;

Pop |a|+1-1 states &rom SS;

Pop |a| symbols from PS; (i.e reduce Q.)

vhere a is thé r.h.s. of p; . .
Current symbol:w l.h.s. of the productioﬁ P;
FLAG;-OFF;.
Else

(i.e., when TABLE(Current state,Current symbol,FLAG) is

null.) R
reject the input sentence; exit loop;

fi 3

end Loop;

Routine Input():Symbol;
1f Buffer # @ Then return(Pop(Buffer))
Else return(Scanner);

end Input.

Routine Scanner():Symbol;

If remainder of input sentence # @ Then

return(CAR (remainder)); remainder:=CDR(remainder);
Else reject the input sentence; exit;

end Scanner.

Example:

The following 1illustrates parsing of the sentence

aadbaddbb {?g L(G). The derivation tree of the sentence is

113

also shown in the next figure,

State

-
[ad
»
O
x

~ = - - 0~
WWWWd bbb o NG~

- W W™ m WM W W W W W W W W W W W W W W= w
. wm w wm W e W W w oW

NN NNSNSNSNSNNANNNWLWwWwe e e

—WWWWWw bbb d
oo,

[=RejejofofofofofofolooRoNoloeNoloNelolaaaoleYoNeNo Yol oo]
- - - - - - - - - -~ - - - - - - - - - - - - - - - - -

Parse

stack

a
aa
aad
aas
aasSb
aasSB
alA
alAsS
aASB
as
aSa
aSad
asSas
aSasd
aSasSs
aSaSsS
aSA
aSAS
aSAShb
aSASB
ass
as

‘A
AS
ASb
ASB
S

- W -
NS

- - -
o,

Current
symbol
reduce 1
reduce 5)
transfer 2,reduce 3

reduce 2

reduce 1

reduce 1
transfer 2,0N
reduce 4,0FF

reduce 5
reduce 2
transfer 2,0N
reduce 4,0FF

reduce 5
reduce 2

ANDOVN>NNoOonNr> NN N> >oOonLD O)

reduce 0: accept

I
d b a
|

Fig 3.3

114

Flag Buff Rem. of

o
]

2 3 3 2 2 3 3 3 3 3 3 3'%] |

[N TR N TR I 7, TN 7 YOO T N N WO 72 1 7» J TN N Y TN TN NN SN - - I 7. T TN O N NN IO BN |

Parsing and derivation tree of a?dbad’b?

input

aadbaddbb$
adbaddbb$
dbaddbbs
baddbb$
baddbb$ y
addbbs
addbb$
addbbs
addbb$
addbbs
addbb$
ddbbs
dbbs$

dbbs$

bb$

bb$

bbs$

bbs

bb$

bs

b$

b$

b$

b$

b$

{ &

115

3.2.10 Correctness of the algorithms

. \
This section will prove that algorithms A through C

correctly parse a grammar G which is LRRL(k). To prove the
correctness of the construction algorithm A, intuitively it
suffices to show that given a string X ...X (v., which is a
prefix of some sentential form in SF(é), i? one reaches the
state s of the CFSM, then all the next moves 1indicated by
this state are legitimate. Moreéver, if there 1is a
legitimate next move, it is included 1in the state s. In
order to give a formal proof, one needs to introduce the
concept of valid LRRL(k) items. Here again, items will be
considered to “be of the form (A +a.B,0), where o is a string
(as it was the case in the proof of the theorem 3.1). 1In

fact, (A -2¢.B8,L) should be considered as a short notation

for {(A +a.B,0)|0€L}.

Definition:-Valid LRRL(k) items for X ...X
1 n

Suppose there exists a derivation:
*

GOAL$=>X ...X Ay==>X ...X ay'
o 1 m 1 m :
such that y does not contain a complete phrase of G and

X ...X a=X ...X (not excluding a=¢ and n=m), i.e.,
r;writTng 1of 2 produces the rightmost phrase 1in the
sentential form X ...X ay'. Either

(v fy'i12ly], i.ej,‘y’TBy and A +aB. Then (A =a.B,0), where
0 is some prefix of Y with lo|sk, or
(SUBGOAL-SHIFT =2a'.B',¢), where a' is a suffix a and B' is a

prefix of By with |a'B'|Sk, 1is a valid LRRL(k) item for

X ...X .
1 n
Or * &)
(2) |y'|<]vy}, i.e., A =a', where a'=X A . is a
m+ 1 m+j-¢v
prefix of a and m+jsn, Th&n
’
(SUBGOAL-RED(A =a') =X ...X .B',¢), where B' is a prefix
m+j n
of y' and | X ...X B'|sk, or
m+j n
(SUBGOAL-SHIFT =X ...X .p',¢), where i>j, is a valiad
, m+i n
LRRL(k) item for X ...X .
1 n

A valid item (A +a.8,0) for X ...X is.called a valid

, 1 n

non-auxiliary item for X .,.X if AEN, Otherwise, it is a
' 1t n

valid auxiliary item. If ate (i.e., a includes X), then the

n
item is a valid (original) basis item.

Theorem 3.2:

If state s is a successor of the initial state s, under

the string X ...X , then all the items in s are valid for
1 n

X ...X .

1 n

—

Proof: The proof is by induction on n. However, one first
should note ‘that the validity of all the items in a state

follows from the validity of the ogiginal basis items in
\

that state. Suppose a basis item (A Qﬁ ...X .B,0) is valid
: m+3j '
for X ...X . Then either

n
1 n)

..'\
(1) it is a non-auxiliary ites “i.e., there exists a

derivation
GOAL"X ' .x Ay’x e o Qx LN] .x ﬁy
1 m 1 m n
such that y does not contain a complete phrase, o is a

. 117

prefix of vy E;3:3-1. Now, if as a result of conflict in the

state, an item of th® form (SUBGOAL-RED(A =X ...X) =.0,¢)
m+3j n
(when pB=¢), or (SUBGOAL-SHIFT +.0',c¢) (where o' is a prefix

of Bo) is added to the state, then the new item will be

valid for X ...X . ' '
1 n ¢ 4

Or (2) it is an auxilipry item, %i.e., A is some subgoal

symbol and there exists a derivgkion
*
GOAL$-X LI .x ay”x . o".x L) .x Y !
1 m . m n
o=¢ and B is a prefix of y'., Again, if as a result of

conflict in the state, the item (SUBGOAL-SHIFT =».8,¢) is

added to the state, this item will be valid for X ...X .
1 n

Furthermore, suppose an item (A +a.Bf,0) is wvalid for

X ...X , i.e., there exists a derivation
1 n]

GOAL$mr-X ...X CysseX ,..X a'y')
1 m 1 m .)
such that Y does not contain a complete phrase,

X ... a'=X ...X , a is a suffix of «' and BBo is a prefix
1 m 1 n

of y'. Then, if as a result of closuré operation the item

(B ».B,,0'), where o' is a prefix of pBo with |o'|sk, |is

added to the state, this new item will be valid for X ...X , -

1 n
because there is a derivation
¥ S
GOAL$wut-X ., .X CymerX ,..X a'y'=X ...X By "=—eX ,..X BB,By"
1 m 1 m 1 n 1 n

and rewriting of B +8, produces the rightmost phrase in the

sentential form. &

Thus, validity of the added auxiliary items and those
items that are produced as the result of closing operation,

follows from the validity of the original basis items. Now,

118

the inductive proot can be stated.

for n=0, state ‘s, contains (GOAL ~.S,$) vhich‘ is
trivially valid tor ¢. All the othér-items in that state are
introduced by closure operation on this item. Therefore' all
the items in s, are valid fol. Suppose the inducﬁion '

hypothosis.il true for X ...X and the state t predecessor
1 n-1
of s. Since the basis items of s are obtained from valid

items (A +a.X B,0) for X ...X in t, by shifting .the dot
n 1 n-1 '
to the right of X , these items are valid for X ...X .
n 1 n
Moreover, any other item that is added to s, either due to

conflict in s or due to closure operation, is valid for

X ...Xx . O
1 n

Theorem 3.3:

Let gtate s be a successor of the initial state s,

under the string X ...X . The following statements are true.
1 n ‘
(1) 1f there exists a derivation
* _
GOAL$mr-X ,, . X AymeX ...X X o Xy,
1 m 1 m m+) n
such that y does not contain a complete phrase of G, then

(i)- if y'=By (i.e., |y'|2]|y| and A =X ...X- B) then s

m+1 n
includes a valid basis item (for X ...X) either of the
1 n
form (A =X ...X .B,0); where o is some prefix of y
m+1 n .
and |o|sk, or of the form (SUBGOAL =X ...X .B',€),
m+3j n

where B' is a prefix of By,

(ii)- else (i.e., when |y'|<|y| and A +X ...X
_ m+1 m+j-1
with m+jsn), s contains a valid basis item (for

X ...X) either of the form
1 n

a,
'Y

119

(SUBGOAL-RED(A +X ...X) *X ...X .B,(), where B
m+ 1 m+j-1 m+) n
is a prefix of ', or of the form
(SUBGOAL-SHIFT <X ...X .B,¢), vhere i>j.
m+1i n
(2) If 8 is not a final state and there exists a derivation
L . N
GCOAL$m=sX ...X Ay=mdX ...X By
1 n 1 ' n

such that y does not include a complete phrase, then s

-

includes a valid non-basis item for X ...X of the form
1 n)
(A +.8,0), Bhere o is a prefix of y with |o|sk.

Proof: The proof is by induction on n., For n=0, s, contains
(GOAL ~.S,$), and by closure operation includes any valid
non-basis item for «¢. Thus (1) and (2) are vacuously true

for 8, and ¢. Suppose- (1) and (2) are true for state t,
predgzessor of s, and X ...X . To show that the induction
hypothesis is true for sIand ;-]..x , a proof may be carriedv.
out in two steps for (1) and (;)I "

Step 1: Suppose there exists a derivation
. *

GOAL$wteXX Ay=meX ,...X ...X y'
1 m 1 m- n
such that y does not contain a complete phrase. Consider two

cases:
case (i): ly'|2ly|l, i.e., y'=By. Two subcases "may be

distinguished.
p :

U -

Case (i-1): m+1=n, i.e., A =X B.'Sincef t is not a final

n
state, by the truth of (2) for t and X ...X , t must
1 n-1t .
contain a valid non-basis item (A +.X 8,0) for X ...X ,
n 1 n-1
where o is a prefix of y. Therefore s includes the valid

basis item (A +X ,8,0).
n «
Case(i-2): m+1<n, i.e.,

T . 120

Y

A +X ...X X f. Since t is not a final state, by the
m+1 n-1n ’ ‘
truth of (1), t contains a valid basis item for X-...X ,
' 1 n-1
either of the form (A =X }f..x .X B,0), where o 1is . a
m+ -1 n .
prefix of Y, or of the form

(SUBGOAL-SHIFT =X I 4 .X B',¢), where B' is a prefix of
m+) ~n-1 n .
By and j>1. .Now, 1if there 1is no conflict in t or s is

successor of t under flag value ON, then s must inclyde
s 0
(A =X oo o X X .B,0) or
m+ 1 n-1n = : ' .
(SUBGOAL-SHIFT =X “ee X .B',¢). Else, there was a
m+j n-1 n '
conflict and s is the successor of t under £lag value OFF,

.

then'an item (SUBGOAL-SHIFT -+.X B",¢), where B" is B' or a
n

prefix of Bo, must have been added to t. So, s includes

valid basis item (SUBGOAL-SHIFT -+X .B8",¢) for X ...X
n 1 n

Therefore (1) is true for s and X ...X when |y'|>]|y].
. 1 n
Case (ii): |y|'<|y|, i.e., A 9X ...X , (m+jsn). Again
' . : m+ 1 m+3j-1
two subcases may be distinguished.

Case (ii-1): m+j<n. Since t is not a final state, by the

truth of (1)(case 1ii) éfqr t and X ...X , it contains a
- 1 n-1 |
valid basis item for X ...X , either of the form
1) n-1
(SQpGOAL-RED(A =X oo X) +X _...K X B,¢) or
m+ 1 m+3j-1 m+ n-1 n
(SUBGOAL-SHIFT =X R ¢ .X Bee), where B'is a prefix of
m+i ‘n-1 n
y' -*«and‘i>j. If there is no conflict 1in t or s is the

successor of t under flag value ON, then s includes the

valid basis item

(SUBGOAL-RED(A -X R) =X ...X X .B,¢€) or
m+ 1 m+3j-1 m+j n-1n

(SUBGOAL-SHIFT -X ...x X .B,¢) for x ...X . Else, there
m+1i -1

n n
is a conflsctJ::/;)and s is the successor of t under flag

121

value OFF, then the item (SUBGOAL-SHIFT -+.X B,¢) is added to

n
t. So s includes the valid basis item

(SUBGOAL-SHIFT =X .B8,¢). ' i
n
Case (ii-2): m+j=n. Since't is not a final state, by the

truth of (1) (case i) for t and X ...X
1 n-1

, t contains a

valid basis i for X ...X , either of the form
1 n-1 N
(A =X R 4 ., X B), or of - ‘the form
m+1 n-1 ., n . ,
(SUBGOAL-SHIFT -X R ¢ .X B,e¢), where B is a. prefix. y'
m+1i n-1 n

and i>1, 1£f”it was of the first form, since t is not a final

state the item (SUBGOAL-RED{A -X ...X) +.X B,¢) s
. ‘ m+ 1 n-1 n
added to t. Then, if ‘s is the successor of t under flag

1 .
&alue OFF, it includes: the valid — basis item
N f .

(SUBGOAL-RED(A =X R ¢) »X .B,¢). Otherwise (when the
- m+ 1 n-1 n '
item in t is of the second form), if there is no conflict in ®

t or s 1is the successor of t under flag valueyON} then s
contains the valid basis item

(SUBGOAL-SHIFT +X° ...X X .B,¢). Else, there is a
o m+1 n-1n
conflict in t and s is the successor of t under flag value

OFF. Then item (SUBGOAL-SHIFT ».X B,¢) is added to t. So, s
n
includes the valid basis item (SUBGOAL-SHIFT +X .B8,¢) for.

n
x..-x.

1 n

.

%Lerefore, (1) is true for s and X ...X when |y'|<|¥y]l.

1 n
Step 2: Suppose there exists a derivation
¥ ’
GOALS$=—>% ...X Ay==X ...X By
) ' 1 n 1 n g
suchi®* that y does not contain a complete phrase of G. Let

D=D -D B, ..., D -D B =AB (possibly m=0) be the
m m-1 m 1 01 1

productions that are used in rewriting of sentential form to

122

introduce A such that
* *
GOAL$=me-X ., .X Dy ==X ...X Ay,
1 n m 1 n ‘ -
and Dy does not contain a complete phrase of G. Let C be
m :
the non-terminal that by rewriting it, the rightmost phrase

in X ...X Dy 1is introduced, i.e.,
1% n m
GOAL$=>X ...X Cy =X ,,.X ...X'Dy .
o1 j m+t 1 j n m '
If the right hand side of the C-production includes D, i.e.,

C +X ...X DB , then by step 1 (case i) and the fact that
‘ j+1 n m+1
s is no' a final state, this state includes a valid basis

item = of the form (C »Xx ...Xx .DB ,0) or
j+1 ' n m+ 1
(SUBGOAL-SHIFT =X ...X .DB',¢), where i>1, Otherwise,
j+i n
C »X ...X , where isn. Then by step 1 (case ii), s includes
Ty €S
an item of the form (subgoal »a.DB',¢), where a is a suffix

of X & and subgoa is either SUBGOAL-SHIFT or
i+1 n -
SUBGOALTRED(C *X_...X.). Thus,
j i
‘item with dot to the left of D. Now, by closure operation ',
’

any case s 1includes an

contains non-basis items (D ».D B ,o),...,
m-1m m
(D ». »A8 ,0) and (A =».8,0). Therefore (2) 1s true for
1 1 1 4 g
non-final state s and string X ...X . [0
i 1 n

~

Theorems 3.2 and 3.3 insure that given the string

X ...X , if one reaches the state s of the CFSM, then this
1 n :
string must be a prefix of some sentential form in SF(G).

Furthermore, if X ...X X D ¢ is a sentential form in
1 n n+l n+m
SF(G) and s is a successor of s, under X ...X . Then, by
i n
considering the derivation
* *) ‘
GOAL$==+X ...X Ay=>X ...X y'=>X ...X X ...X §,where vy
1 j 1 n 1 n n+1 n+m
does not contain a complete phrase, one concludes that

8, -

. - - o 123

either . (1) s 1is a final state implying reduction of the

production A #X ...X or the right context for a deferred
J+1 n :
decision, or (2) s is a transient state contajning a valid
’ e,)
item with dot to the left of X , i.e., a val@*’ next move
. « .

, n+1 ,@
on this symbol. Therefore the result of combining theorems

3.2 and 3.3 can be stated as:

Corollary 3.2: The construction algorithm A is correct.
N

One may note that there is a selective subset of
sententia%‘ forms that have prefixes under which thére is-a
successor state of s, 1in CFSM. 6bvi¢usly, ‘this subset
includes all the sentences in L(G) and any sentential form
which is produced by the 'parsing algorithm C. In LR(k)
parsing, this selective set includes the right sententia{
forqz, and their prefixes under which there is:- a successor

state are the viable prefixes.

Algorithms B1 #nd B2 only reproduce the igformation
contained in a CFSM; in a tabular form, Therefgﬁe their
correctness is trivial. So, the correctness of thel/ parsing

*
algorithm is stated next.

Theorem 3.4:

Given a valid LRRL(k)-CFSM for G, Algorithm C correctly

parses all and only the sentences in L(G).
, ,

Proof:° The correctness of the reductions made by the
A

algorithm is gquaranteed by the construction algorithm.

124

Therefore to prove ﬁhat sentences in L(G) are patsed
correctly, ig suffices to show that:

(i) Given a sentence in L(G), Algorithm C finds a phrasé in
it and reduces this phrase. .

(ii) Having made a reduction, there is a valid next move.

~(iii) The algorithm terminates.

(i)-

Suppose a ...a $ is a sentence in L(G)$. Algorithm C by
1 i ,
scanning an initial segment of the input, say a ...a ,
& 1 n
reaches a final state. Three cases are possible.

(1) It reduces an original phrase of G, say A #a ...a . In

i n
this way the sentential form a ...a Aa ...a $ will Dbe
1 i-1 n+1 m

produced.
(2) 1t recognizes the right context of a phrése, say
A -a ...a, where n—ksj<n.> After storing the 1lookahead .
stri;g ianufﬁer, the algorithm reduces this phrase. In this
case the sentential forma ...a Aa ee.@ ...a $ will be
1 i-1 3+1 n m

obtained.

‘(3)> It recognizes the right context for a deferred shift
operation at én earlier symbol say a , where n-k<j<n, In
this case the algorithm retracts to thé symboi a and by
switching the flag to ON takes a different path. Jl:.‘.lentually
thg algorithm will find a phrase, because there is no state

in which a shift beyond $§ symbol is possible.

(ii)-

125

o

Suppose the algorithm decides to reduce the phrase

X ...X in the sentential form X ...X ...X ...X §$ to the
i j ' 1 i j m
non-terminal A. In doing so, it will pop X ...X off the
: 3
symbol stack. Also, a number of states will be dropped from

r
the state stack, such that state s, where X was just

. isf
shifted, 6;comes the top node on the stack. Since state s is
not a final state and there exists a derivation
*
GOAL$=>X ...X Ay=>X ...X X ...X y=>
1 i-1 o i-1 i j
X ...X X ...X X R S
_ 1 i-1 1 J j*i m
(where y does not contain a complete phrase), state s must
contain a valid item for X ...X in which the dot -‘appears
. 1 i-1 :
to the left of symbol A. Therefore there is a valid next

move on A in the form of a shift operation.

N

(iii)-

To show the termination of the algorithm in‘ a finite
number of steps, one should note that a segment of a
sentgntial form can be reduced only a finite number of £imes
by itself. This is true by the unambiguity of the grammar, a
.property of LRRL(k) grammars which is to be proved in
Chapter 4, that rules out existence of chain productions in
the grammar. So, if the segment X ...X s first reduced .
D, then D 1is reduced to D ,...,land % is reduced to D ,

1 1 2 m-1 L m
there can be no repetition of symbols in D ...D , and thus
mS|N|. Therefore, after a finite number10f rgductions the
"length of the sentential form is-reduced at least by one,

and eventually the sentential form will be reduced-to S$.

|

126

To see that Algorithm C rejects those inputs-ﬁiich are

not valid sentences in L(G)$, consider the ,string
* .

a ...ab...b$€ T, "in which a ...a is the longest
1 n 1 m 1 n '

correct prefix., By the assumption b is the first erroneous

‘ 1
symbol in the input, and there does not extst a derivation
* .

GOAL$m=s a ...a b 6. Let X ...X be the string ,that is
A 1 n 1 i '

produced by reductions on a ...a such that no more

. » . 1 n-- - .

reductions on it by the algorithm are possible. At this

point, the algorithm reaches a non-final state sgwhich is a
successor of the state s, under the string X ...X . This
state does not contain a valid item according to1 whiéh the
symbol b can be shifted. Otherwise, there is a derivation:
'GOAI1$-:=’X ...X'Ay==>x ...X Db 1'=:>a ...aby',

, 1 j 1 i1 1 n 1 .
(where y does not contain a come}ete phrase, and jsi), which
contradicts the assumption. Therefore, there 1is no wvalid
next m&Qe on b in the state s and the algorithm rejects the
input. 0 1

Now the results of the theorems 3.2 to 3.4 can be

summed up in the following corollary.
Corollary 3.3

Algorithms A through C correctly parse a grammar G if

and only if it is LRRL(k).

LA TN 127
b

3.2.11 Type 11 basic LRRL(k) grammars

, The development of the type I basic LRRL(k) grammars
closely followed the design philosophy of Marcus' parser in
a purely bottom-up parsing technique. In Marcus parsing,
wvhen a shift operation (i.e. an attachment) is deferred, and
after parsing the right context it was discovered that this
operation was appropriate, the parser rettactsﬁ to the
deferref shift point. This is in line with the general view
in that parser that the role of a construct is determined by
" three constructs to its right. Furthermore, Marcus' parser
is partially top-down and most of the time it creates a
parent node before having a complete set of its daughters
availablé. Therefore, if there is a reduce-shift conflict on
‘productions A -»¢ and A +aB after attaching a to'the parent
node A, it continues with the parsing of the lookaheads
without attaching any “new node to A. If the right context
resolves the cénflict in favour of the longer produétion,

the parser backtracks to tf® first symbol of B and continues

with the attachment of nodes to the parent node A:;

As was seen, the parsers for the type I LRRL(k)
grammars, like the Marcus parser, backtrack over the reduced
right context to a poirnt where a shift operation was in
question. However, despite some early semantic checking
advantages, one may argue that for syntactic recognition
such backtracking in a hottom-up parser is unnecessary. In

fact, it introduces some inefficiency in the parsing

128

algorithm. This point was mentioned in the beginning of
Section 3.2, and it was observed that a CFSM can be
constructed without the uSe of FLAG variable and

SUBGOAL-SHIFT auxiliary productions.

The following algorithm describes ﬁhe construction of a
CFSM according to above scheme. In this scgeme, the final
states correspond to the recognition of either original
rules or the right contexts for them. The resulting class of
grammars will be called type I1I (basic) LRRL(k) grammars and
they Qill be shown are siightly more general than type I
grammars,

.

Algorithm A-I1:

(1) Add GOAL symbol to N and prodmction

0: GOAL +S . to P.

(2) Build the initial state s,:
Let the basis of s, be { (GOAL *.Sn}) }.
Close the basis of s,. ¢

Let the set of states of CFSM, Q={s,}.

(3) Repeat 7

For a state t whose successors are not yet
determined build its successor states under

all applicable symbol X.

’ 129

Construction of a successor state s for the

given state t under symbol X:

{
4

(i) 1f there is no item of the form
(A »a.XB8,L) in t, then t has no syccessor
under symbol X.
Else \
let basis of s=0.
For each item (A -+a.XB8,L) in t add
(A +aX.B8,L) to the basis of s.
(ii) Check for inadequacy in the basis of s:
1f there are items of the form
I.:.A *a.x-B vL.;
-3 3 3 3
j=1,...,m and B.#e
]
and
I': A *a.x.,L';
5 IS B]
j=m+1,...,n
"where m21 and n>m
(i.e. shift-reduce/reduce-reduce conflicts)
or
m=0 and n>1

(i.e. only reduce-reduce conflicts)

Then

let the shift lookaheads of s be
m
SHL(s)=Min v ({g 1+ L).
)=) k)
If L_QSHL(S) =@ for j=m+1!,...,n
]

130

(i.e. possible shift-reduction resolution)

and
L NL =@ for i,j=m+1,...,n ,i#]j
i j
(i.e. possible resolution of reduce-reduce
conflicts) |
Then
conceal (delete) the conflicting basis
items I ,ees,1 and
m+1 n
add new basis items corresponding
to their lookaheads, i.e.,
For j=m+1l,...,n
delete I : A =a X.,L and
J J) p|
add SUBGOAL-RED(p) -.v,{e}
)
tos for all y ¢ L ;

]
where p is the production A -+a X.
]]]
Else

conclude the grammar is not type II

Wyasic LRRL(k) and exit.

(iii) Close thggbaais of s.
4 v
Lo e

(PR
(iv) Add statzlg to 8 if there is no state t'
in @ with the same items as s, or with
items which match those of s apart from the
lookahead sets, and for lookahead set L'
in t' it is true that L'=Min(LuL') and

L'=LNL', where L is the corresponding

N

lookahead set in s,

Otherwise -let t' be the successor of t.

Until no more state can be added to 1.

(4) Conclude that the grammar is t¢pe 11 basic LRRL(k).

Definition A-11I

A context-free gqrammar G=(N,T,P,S) 1is type Il basic
LRRL(k) iff a CFSM for it can be constructed according to

the algorithm A-I1,

The following diagram shows the CFSM for G, constructed
according to the algorithm A-I1 with k=2, after collapsing

optimizations of first and second kinds are applied to it.

N

v

State 0

GOAL ».S,{$]
S -.d,{s]

S +.ASB,{$]
A +.a,{SB}

A +.aS,{SB]}

+ 1
>2
*>3
>4

‘D r»an

State 1

S

GOAL ~S.,{$}

. State 2

S +d.,{$}

State i

<+A.SB,{$}
-.d,{B$}
+.ASB, {BS$}
+.a,{SB}
+.aS,{sB}

rPrunnnwn

State 4

UBGOAL-RED(
+a.S,{SB}
.d4,{B,S}

¢

S
A
S
S
A
A

2 T

.a,{SB}
.aS, {sB}

.ASB, {B,S}

3) +.SB,{¢}

Stat

e 5

B +.b,{$}

S *AS.Bw

——B—9
—b—=s10

L

State 6

S -d.,{B,SB}

——

Diag. 3.4

The type II CFSM for G,

132

State 7

+A.SB, {B,SB}
+.d4,{BB,BS}
.ASB, {BB,BS}
.a'{SB}

.aS, {SB}

P rnnunnm
PO

State 8

SUBGOAL-RED(3) =S.B,{¢}
SUBGOAL-RED(4) ~.SB,{ ¢}
+.b,{c}

-.d, {B}

+.ASB, {B}

+.a,{sSB}

+.as, {SB}

rPrunnnw

State 9

et —

S +ASB.,{$}

e ————

State 10) _
. o iﬁ'x
B »b.,{¢} .'
, State 11

S +»AS.B,{B,SB}
B ».b,{B,SB}

State 12

SUBGOAL-RED(3) -SB.,{¢}

State 13

SUBGOAL-RED(#) -S.B,{¢]*
B +.b,{¢}

State 14

R

S +ASB.,{B,SB}

——B—=14

——b———e10

——B——15
——b—10

-h

State 15

T

SUBGOAL-RED(4) +SB.,{¢}

134

135

.

Table constructi%@ and parsing algorithm for type II
grammars are similar to those in type I grammars, except
that no flag variable and backtracking to a bypassed
questionable shift point are involved here. Table 3.5 is the
parse table obtained from the CFSM in Diagram 3.4 by
omitting thé final states except s,. Figuré 3.4 illustrates
the parsing of’ the“sentence aadbaddbb€éG,, when G, |is

considered as a type 11 basic LRRL(2) grammar.

Symbols
States a 'b. d S : A ’. B $
eg4 ri gl g3
1 &) ;L r0
3 g4 rt 95! g7
4| ga ri ¢ g7 o '
5 r5 r2
7| g4 r g1 g7
8 g4 r5 ril gi3 q7 t2 r3
11 rb5 r2
13 rS = t2 ré
Table 3.5 '

Optimized parse table for G,

State
stack

WOOODOOMOOOOOOOOOAO O) JJ &bk

W W W W W W W W W W W W W W W W ™ W WY W W W
- ® W W WM WM W N W N W™ e~

[Y e Sy S Y T S R T TR T R S S S
ISR N FCIY PN S N I W I R I
- %W
(S8,

[e¥eoleolofololololoNoRoRola e aoloNo oo loolololojleNo N No N Ry

Clearly the class of type
includes

show the

G 1s

- w0~

- ™

L}

Parse
.stqck

a

aa

aad
aa$
aasSb
aaSB
ahA

aAS
aASB
as

aSa
aSad
aSa$s
aSaSd
aSaS$s
aSaSSb
aSaSSB
asSA
aSAS
aSASB
aSsS
aSSb
aSSB

A

AS

ASB
S
reduce

a oo ™

@ 0 m oo

- wm w w0~
-~ 0w ow

—r o
www

T T R A N Y)
— b

wWww~ ~

Parsing of the sentence aadbaddbb

Current
symbol
reduce 1
reduce 5
transfer 2,reduce 3
reduce 2
reduce 1 S
d.
reduce 1 8
b
reduce 5 , - B
transfer 2,re¢& : A
— S
- B
reduce Z S
- b
reduce 5 " B
transfer 2, e A
‘S B
B
reduce 2 S
s - -
0: accept
Fig 3.4

by the type II parser

the type

S =Ac
S -=aBm
S -—+aDn

IT basic

AP NDUPWONAD D)

LRRL (k)

136

Buff Remainder
of input

- aadbaddbb$
- adbaddbb$
- dbaddbb$

- baddbb$

- baddbb#$ -
- addbb$

- addbb$
addbb$

B addbbs

- addbb$

- addbbs

- ddbb$

- dbb$

- dbb$

- bb$

- bb$

- b$

- bs.

bs .

B b$

grammars

I gramma}s for the same parameter k. To

inclusion is a proper one, consider the grammar G:

A ~a
B »b
D -b

+

8

not type I basic LRRL(1). After seeing the terminal

b1

.
PRt

L‘*ﬂg,,

137

symbol 'a' there is a conflict whether it should be reduced
to 'A' or one should continue with shifting symbols. So,
three auxiliary productions) SUBGOAL—REQéA +a) -=c,
SUBGOAL-SHIFT =B and SUBGOAL-SHIFT =D will be added; However
the last two of these productions cannot be recognized from
each other since both 'B' and 'D' derive a “b', One may note

that G is type II LRRL(1) and also it is type I LRRL(2).

\

CHAPTER 4

IMPLICATIONS OF LRRL(k) PARSING

.

The firﬁt two sections of this chapter deal with some
of the pwoperties of the LRRL(k) grammars. Section 4.3
presents a novel methodology that leads to a recursive
definition of LRRL(k) grammars. Section 4.4 develops a
polynomial time algorithm for LRRL(k) tésting. Finally, in
Section 4.5, some informal comparisonsr are made Ewtween

LRRL(Kk) parsing and some of the existing alternative

techniques.

¥)
4.1 Unambiguity and linear parsability

From the previous chapter one may have observed that a
CFSM provides a finite collection of parsing patterns fér an
LRRL(k) gramﬁar in the form of reqular sets. In fact, it
will be shown shortly that these sets are obtained‘by taking
the concatenation, union and closure of the left pargs of
the parsing patterns for a finite number of LR(k) grammars.
The following two theorems are the immediate results of the
existence of regular parsing patterns for a grammar

[Szym 73]). However, here a direct proof is given.

138

139

Theorem 4.1:)

If a context-free grammar G is LRRL(k), then it |is

unambiguous.

Proof for type 11 grammars: Suppose otherwise, 1i.e., there

exists a sentence x in L(6) with two different derivation
trees T, and T,. Let A={(%¢,,%,)} be the set of pairs of the
séntential férms in T, and T, such that &,=¢,. Such a set{is
non-empty since (x,x)€A, Let (&,,%,) be an element of A such

that &, and ¢, do not contain a common phrase, i.e.,

%
S$=>y A y A ...A ¥ $ =y a YA ...A y . $=>_,
11 2 2 m m+1 112 2 m m+1

=>y a y @& ...A Yy $ =y aya ...ay $=0,
112 2 m m+1 1122 m m+1
and .
*
S$¢=+6 B § B ...B § $ =+5 B 656 B ...B S $ad |
112 2 n n+l 1 12 2 n n+1

=5 B 6 8 ...B b $ =56 B 6B ...B 6 $=0,=0,
112 2 n n+ 11 2 2 n n+1

where y 's and 6 's do not contain complete phrases. Without
i j
loss of generality assume |y |<|8 |. and let & =8y a
m+1 n+1 n+1 m+1
The CFSM for G cannot decide on reduction of any A or B
1]
phrase. Two cases are possible. Either before shifting the

last symbol of a one reaches a state where there is a
m

conflict and no more lookaheads are allo%fd, i.e., one of
the lookahead sets is {e} in that state, or the CFSM hés a
state s which is the successor of the initial state s, under
the string y a y a ...a . This state would contain the item

11 2.2 m

(A =a .,y), where y is a prefix of y $. Also, the state s
m m m+1 '

140"

should include another item either of the form (B -8 .,y'),

n o n

when 6=¢, or of the form (SUBGOAL-RED(B =+8) «+b6.y",¢), when
. - n n

s#¢, where y' and y" are some prefixes of y §. Now, the

m+ 1.
lookahead string for one of these items is a prefix of the

lookahead for the other item. Therefore there is a conflict
in state s that cannot be resolwed by reduced lookaheads.

Thus G ig ‘not LRRL(k) in either case, contradicting the

1

assumption,

[N

The ,v proof for type I basic LRRL(k) grammars is
immediate from the above, since type 'l grammars are a subset

of type 11 grammars. (O
Theorem 4.2:
LRRL (k) grammars are parsed in linear time and space.

Proof:The time complexity of the algorithm C can be analyzed
in terms of the number of shift opera;ions. In the proof'of
the termination of the algorithm it was noted that aftef at .
most |N| reductions the length of the sentential form is
reduced at least by one. Therefore, the number of re?uétions
is less than or equal to |N|n, where n is the length of the
input sentence. For each reduction, the symbols oﬁ the right
hand side ”of the production are ppshed on the stack. Also,
at most k lookaheads will be pushed on stack if a right
coﬁtext was necessary to reach for the reduction decision.

These lookaheads then are transferred to the buffer.

Therefore the number of shift operations for each reduction

X 141

is at most c=l+k, where 1 is the length of the largest right
) R
hand side in the grammar. Thus the time compl&xﬁty of the

parsing algorithm for type II1 grammars is O(c|N|h). For the

! :
type 1 grammars, however for esch shift operation at most k
additional symbols, i.e., right context, may be pushed on
the stack which later are transferred to “the buffer,

Therefore, the time complexity of the parsing algorithm C

for these grammars is O(ck|N|n).

The linear space is obvious from the fact that the size

~of the stack plus‘the buf fer never grows to more than n+k. (]

4.2 Problem with parsing some left recursive and

self-embedding constructs

The LRRL(k) parsers cannot handle those cases where
reductions of a number of left recursi or self-embedding
constructs are in conflict at a questﬁon:1le point. The CFSQ
construction will fail for such grammars. Intuitively, any
finite number of reduced lookaheads still will shield the

necessary context for the reduction of the proper construct.

An example is the grammar G:

S #*A b -.§ »B ¢
A -~a A A D
B -a B B D
D -d

S

where any number of D's will shield the necessary

information (i.e., b or ¢) for reducing the initial a to é

or B. (Alternatively, by using the approach outlined in the

142

next sectfon, one can show that G € D(G,k)=the LRRL(K)
decision set of G, is not LR(k) for any k). LR(k,t) grammars
also suffer from the same disadvantage. LR(k,») grammars,
since they c;n lookahead up to the right end of an input
sentence, are able to parse some left recursive or
self-embedding constructs that their parse cannot be given

by an LR(k,t) or LRRL(k) parser. An example grammar is G':

S +*A Db S »B ¢
A -»a A *A D'
B -+a B »B D"
D' -d D" =4

which is also LR-regular,

The above problem may be takeén as an argument that the
Marcus parser cannot handle coordinated constructs. That is
only true if the coordinated constructs are given by left
recursiQe rules, and different coordinated constructs can

compete for reduction at the same time.

4.3 A second look at the LRRL(k) gramm“

In this section the reduced contexts ianguago of a
grammar and the grammar that generates this language are
introduced. It is shown that using these devices one can
develop a new methoddlogy that allows classes of
context-free grammars to be defined recursively. In fact the
approach can be considered as a'one that spearheads a new

direction in the theory of formal languages.

143

4¢.3.1 Reduced contexts grammar and reduced contexts language

Consider a grammar G, say

o0
mm

(@]

L2 T T T A

TEOOPIPOVN
O OO D W

and the parse tree of a sentence in L(G,) say abbbe (Figure

S
A///////////l\\\\\\\\\\\
—

E
I I |
’ a b C e
— |
b C
| A 4
b
Fig., 4.1

Parse tree of abbbe

Sﬁppose one is interested to know what is the fully reduced
(left and right) context ofva terminal node in the sentence
say the secon% b. Such a reduced context can be shown by the
leaf nodes of the tree in ngure 4.2. The reduced contexts
for other symbols in the sentence abbbe are: aCE, ADbCE,
AbbbE and ACe. Generally the reduced contexts for symbols in
L(G,) are given by:

x x 3
R= {aCE,aCF,Ab bCE,Bb bCF,Ab BE,Ab bF,ACe,BCE}.

.

144

—One may observe that the role of a terminal symbol is
determined by the symbols to .its left and two symbols to the
right of it in the set R, and in fact it is so because G, is
LRRL(2). The following formalizes such a set R.

x

b
N h
b C
Fig. 4.2

The reduced context AbbCE

Definition: RedMuced contexts language and grammar

Let G=(N,T,P,S) be a context-free grammar. The . reduced
contexts language of G is R(G)=L(G), where @ (N, TuNuT,P,$)
and N={A|A € N}, T={a] a € T} and

Pe{A X ...X ...X | A +X ...X ...X € P and 1sisn}. G will
1 i n 1 i n
be called the reduced contexts grammar of G.

Example: -
The following shows the G, for The grammaf Ge.

~A
<A
~A
+B
+B
+B
-2
-2

+b

O P URURUR U U U
OO OO
S]] D) M

V)

145
¢ <b C)
¢ +b ¢ .
Y 1 r
P ot
e

Figure 4.3 §llﬂs a sentence in L(G,)=R(G,) and the

corresponding parse tree.

A/ \
b/
. / \c

b

E

— O——

g

Fig. 4.3 .
nce AbLCE € L(G,)=R(G,)

-

Suppose G=(N,T,P,S) 1is context-free grammar and G 1is
its reduced contexts grammar. One can observe that the set
of right sentential forms of G is the same as the set of its
left sentential forms and is equal o SF(G)f‘This is evident
from the fact that G is a linear grammar by definition, and
thus every sentential form in SF(6) has at most one
non-terminal symbol in N. Now, by considering the set of

sentential forms of G the following theorems may be stated.
Theorem 4.3:

aXB is a sentential form of G if and only if there
')

exists y € T such that B==ey and aXy is a right sentential

146

form of G. '

&
Proof: Suppose aXf is a sentential form in SF&), i.e.,

there exists a derivation

~

Sampqg A f werg a A f B =, 6 =aa...a XB ...B 8,
6 1116 122126 G 12 n n 2 1
where a a ...a =a and 8 ...B8 B =B. Consider the productions
12 n n 2 1
S+aABfB, A #ap,..., and A +a X in G corresponding
1 11 1 2 2 n-1 n_n X
to the productions § »a A 8, A +a AB ,..., and
1 11 1 2 22
A +a X8 in G. There exists a rightmost derivation
n-1 n n
* s
St g A f = ogAy= qgaAfy == aaldAyy .
G,rm 1 1 1G,rm 1 1 iG,rm 1 2 2 2 V G,rm 1 2 2 2 1
*
-— L, = aa ...0 XB ...y Yy w=> aa ...0 Xy ...¥Y Y
G, rm G,rm 1 2 n n 2 16, rm Y 2¢ - -A—n - 2 1

~k,e., aXy, where y-y ooy y , 1s a right sentehitial in

KEG) ..., S
A }’i‘? N‘::: % ‘N %
ER. ¥ \W\S
. -“; Silkfl!éla 1'£f'g,8y 10'% rgg& sententxal form in “SF(G)

$he§ aiﬁr wh!rg
sggtentxak tLom \

1 .
_form of y in G, is a

4, - A

"!'hgoun 4. 42

B “a-i}_ is,,.,h' gentential form of § :f and only if there
) . .
exists y €T sguch that e==y and yXB is a left sentential
fo?m 6f”G. |

3

e g o sl AR

Proof: is similar to the proof of Theorem 4.3.

Theorem 4.5: @
4 {

If G is unambiguous then G is too.

Proof: Suppose otherwise, i.e., G is ambigquous. Then there
must exist derivations
*

Semntry Ay =iy @ Xa Y and oo
¢ 1+ 26 11 22

*
Sumnt-§ BS wmme- 5 B XB 6 =y a Ra vy ,
G 1 26 11 22 11 22
| © . _ -
where y Ay #6 BS . Let y be a terminal string that can be
1 2 1 2
derived from a y in G. Then there exist rightmost
2 2
derivations £,
; RN
* L0 ,
Sount y AZwmms .y a —ﬂ?“&y a Xy and- ‘ g
G,rm 1 G,rm 11 m 11 :
. :

Semt- § Bwome § B X wa 6 B Xy=y a Xy
G, rm. 1 4§,rm 11 2 G,rm 11 11

in G, implying that there are two different derivations of

the right sentential form y a §y< Thus, G is ambiquous which

11 ——
contradicts the assumption. [J '

.

e
Vi

Suppose a grammar G is unambiquous. Then the role of a
"dashed"” symbol in a sentential form of G can be determined
by the symbols on its both sides. However, it was noted
earlier that the 1left context %n? only two symbols on the
right of a dashed symbol in the graiﬁar G, are sufficient to
determ}ne iti role. For example,’ in aCE two symbols CE
indicate that a is to be reduced to A. Similarly in AbCE, bC
must be reduced to a €, but in ABE, b should be reduced to a

€. More formally one could say that the grammar G, is LR(2),

148

)

3 and this is so because G, is LRRL(2). The following theorem
3 R .

proves this fact for the general case.
v

Theorem 4.6: , ' o . P
2 ') \

If G is an LRRL(k) grammar then the grammar G is LR(k).

"Pfoof: Suppose G is not LR(k). Then there exist derivations

x ,)
§—__-_—.> y-Ay =y aXy and -
G,rm 1 2G,rm 1 2

* .
§=> & B => & a'XB6 =y aXBs ,

G,rm 1 2G,rm 1 2 1 2

such that PF (y)=PF (B8). That is there is an inadequate
k2 k2 ~]
state in constructing an LR(k)-CFSM for G with conflicting

items [A +aX.,PF (y)] and [B #a'X.8, PF (8§)]. Thereforey
k 2 - k2
in constructing an LRRL(k)-CFSM for G there is an inadequate

state (the successor of the initjal state under: the string

y aX, a viable prefix of a right seffential form), with‘
L;RL(k) items (A +aX.,PF (y)) and (B »a'X.8,PF (&)) such,
"that PF (y)Nn(B+ PF ?#g? With this conditionkprivailing,
the conf%ici in tk stgte cannot* be resolved:‘%hus G is not

9

LRRL(k), which icts the assumption. O

-

4.3.2 LRRL(k) deécision set of a grammar

In .the previous section it. was noted that G, is an
LR(2) grammar. Now consider the LR(2)-CFSM for G, depicted
in Diagram 4.}: and an incomplete LRRL(2)-CFSM for the
grammar G, (Diag. 4.2) in which auxiliary productions are

not processed further (i.e., ignore the states with dotted

149
»

Sgundaries). In the LR(k)-CFSM, states 5,9 and 14 are LR(0)
inadequate. However LR(2) lookaheads ‘resolve the conflicts
in these states. Notice that the 1lookaheads .in the
conflicting states of LRRL(2)-CFSM (states 3,5 and 7) are
the same as the résolving LR(2) 1lookaheads in the LR(0)’
inadequate states of the LR(2)-CFSM for'GO, though in the

[.
latter the symbols are considered to be terminals.

Next coﬁsider the grammars G,, G, and G, where
G =(Nu{s'},T,P ,S'),) P,=Py{S' =CE,S' +CF},
P:=Pu{S' ;E,S'14CE} and P,sPu{S' -F,S' =CF}. These grammars
are obtained for each LR(0) minadequate state of the
LR(Z)?CFSM of G..by augmenting the grammar G, by proéuétions
S' +a, where a is an LR(2) lookahead string in that , state
and S'‘ is a new start symbol;.The reduced form of these

4

grammars are:

G,: 2t ol G,:

S' 2CE . S' <E S' »F
S' =CF S' +CE S' +CF *
C -+b C -b ¢ -b

C -bC C ~bC -C »+bC

E -e E -e F »f

F »f

-

Other productions, i.e., S »ACE | BCF, A +a, and B -a are

deleted since they are useless.

Furthermore, consider the reduced contexts grammars of

G, 1i=1,2,3 namely G,, G, and G, ané’LR(Z)-CFSM's for these
i .
grammars which are shown in diagrams 4.3, 4.4 and 4.5. -One

* can observe that the lookahetégzin LR(0) inadequate states
»

-

150

-——

of these three CFSM's are equivalent to ;Ehose in
LRRL(2)-CFSM when the first 'set of auxiliary items are
expanded (Diaé 4.2). In avfashion that G,, G, and G, were
constructed, one can coqstruct grammérs G., Gs and G, frqm
the the above lookaheads. It turns out that G,=G., G.=G, and

G. is given by the following productions.

G.: “ ! | 4

S' B : -

S' oF -
S' 4CE |

S' CF

C -b

C -bC

E ~e X
F +f \ .

-~

The reduced contexts grammar of G, is the grammar G,.

Dxagram 4.6 shows G, with its LR(Z) CFSM. Qpea may observe
L}
that constructlng a grammar from the LR(0) inadequate state

3 of this CFSM will rasult in a grammar G.,=G,. Therefore

intuitively one sees that there are five grammars

G ., t=0,...,4 that are LR(2), and the LR(2) condition on
i ‘ ‘
these grammars is equivalent to the LRRL(2) condition gn G,.

TP U URUN U U

State 1

»A.CE,Q

State 2

OO U

+A.CE,Q
+A.CE,0Q
-.b,{E}
~.bC, {E}
-.bC, {E}

.

State 3

un

+B.CF,0Q

State 4

Qﬂﬁlﬁ!(ﬂl(ﬂl

+B.CF,0

+B.CF,0
+:b, {F}

=+.bC,{F}
+.bC, {F}

State

o P

4.
-

5
E}
F}

[« Y X

» {C
, {C

-
—_— A
- R

——— B —

a ———

CE — reduce
CF -+ reduce
' Diag 4.1

_LR(2)-CFSM for G,

—_—

*> W

O © 3

11

12
13
14

15

o >0

-a

-a

151

»b.C, {F}

State 6

§ +AC.E,Q —~——E——> reduce
State 7

§ -AC.E,Q ——E—— reduce
State 8

€ -AC.E,0Q ——E——= reduce

E +.e,0 e——— reduce
State 9

¢ -+b.,{E]} — E—» Yeduce

¢ »b.c,{E} -CE > 16
State 10

¢ +b.C,{E} |——C— 17

¢ ».b,{E} * |—DB— 9

¢ ».bC,{E} b

¢ +.bC.) |

) -~

State 11

§ -BC.F,0Q — F— ¥ reduce
State 12

§ »BC.F,0 ——F———» reduce.
State 13

§ +BC.F,0 F > reduce

F +-f,0 —ft———» reduce
State 14

¢ -+b.,{F} ——F———+ reduce

¢ CF——> 18

[7,1

chUn

w» (77

T

»

152

+ACE

+ACE
e

e

-+BCF

State 15

(elellg el

»b.C, {F}
+.b,{F}

+.bC, {F}

+.bC, {F}

State 16

+bC., {E}

State 17

)

-»bC., {E}

State 18

(@]

+bC., {F}

State 19

(@]l

+bC., {F}

— R —

— F—»

—_— e

reduce C

reduce C

reduce ¢

.‘)

reduce C

163

LRRL(2) CFSM for G

State 0 i
S +.ACE,{¢]) . ——A,OFF— |
S +.BCF,{¢} —B,OFF— 2 ‘
A +.a,{CE} a,OFF > 3 .
B ~.a,{CF]} '
State 1 ¢
S +A.CE,{¢} ——C ,OFPi—> 4§
Cc ».b,{E} —b,OFF— 5
C ".bC,{E}
State 2
S +B.CF,{¢} — C,OFF— 6
C ».b,{F} ——b,0FF——» 7
C ».bC,{F} v
State 3
Concealed items:
A ~a.,{CE}
B +a.,{CF}
Nonconcealed items: .
: SUBGOAL-RED(3) +.CE,{¢}:----C,OFF---» 8
: SUBGOAL-RED(4) +.CF,{¢}: o
: C ».b,{E,F} :----b,0FF---» 9
: C ».bC,{E,F} :
L ® & 0 & & 5 & 8 0 & B 0" g b 8 0 J
State ¢
S »AC.E,{¢} ——E,0PF—— reduce S -+ACE
E ».e,{¢e} e,OFF — reduce E -e

Diag. 4.2
LRRL(2)-CFSM for G,

154

State 5

Concealed items:

C »b.,{E}
C »b.C,{E}

Nonconcealed items:
SUBGOAL-RED(5) =.E,{¢}

————-‘

155

————C ON —— reduce C -»b(C,OFF

----E,OFF---stransfer!,reduce C -b

: SUBGOAL-SHIFT -».CE,{¢}’':----C, OFF-—-» 10
H C -.obl{E} '-_-] OFF
: C ».bC,{E} (a--
L...‘..i.‘... L]OOOJ
State 6
S #*BC.F,{¢} ——F,OFF——+ reduce S =BCF
F».£;{c} ——f ,OFF—— reduge F ~f
State 7
Concealed ﬁtems:
C -b.,{F}
C -b.C,{F} —C,ON —— reduce C +bC,OFF

e *s oo e —e—————————

[~ oe se eo oo —

Nonconcealed items:
SUBGOAL-RED(5) +.F,{¢}
SUBGOAL-SHIFT ~+.CF,{¢}

C ».b,{F}
Cc ».bC,{F}

State 8

SUBGOAL RED(3) ~C.E,

E ».e,{e}
F ».f,{¢}

}

LR S R V)

oo oo o

---F, OFF---btransfer1,reduce C -+b

---(g OFF---» 11 ;
---4 b,0FF .

-— -

. M : R .
{e}:---E,OFF---»transfer2,reduce A =a

SUBGOAL-RED(4) -C.F, {c}:---F,OFF---»transfekZ,reduce B -a

:---e,0FF---» reduce E -e

J

:=--f ,OFF---» reduce F ~f

e se se se —

r— e oo oo

r
L

[e oo —

o oo

State 9
"Concealed items
C ~»b.,{E,F}
C +b.C,{E,F}
Non-concealed items
SUBGOAL-RED(5) =+.E,{¢}
SUBGOAL-RED(5) -+.F,{¢}
SUBGOAL-SHIFT -+.CE,{¢}
SUBGOAL-SHIFT =.CF,{¢}

.E +.e,{¢]}

F ».f,{¢}
c ».b,{E,F}
C ».bC,{E,F}

State 10
SUBGOAL- SHIFT aC. E {e }
E ».e,{¢}
.) Staté 1;')
SUBGOAL-SHIFT -C.F,{¢ i
F ».f X}

® 000 0 st 0 s

)
e o

State 12
SUBGOAL-SHIFT ~+C.E,{¢]}
SUBGOAL-SHIFT ~C.F,{ ¢}
E »+.e, {e}

156

1

----C,ON ---» reduce C -+bC,OFF

E,OFF---»transfer!

e ,reduce C Ab .
:~---F,OFF---»transfer1,reduce G/ -+b
:----C,OFF---» 12

:----e,OFF-~--» reduce E -e
:----f,OFF---» reduce F ~f & ¥
:---7 b,OFF .
0]

d

:----E,OFF---» transfer 2, ON
:----e,0FF--~» reduce E -e

] ‘

t----F,OFF---» transfer 2, ON
t----f ,OFF---» reduce F ~f

d

:1----E,OFF---» transfer 2, ON
:----F,OFF---» transfer 2, ON
1----e ,0FF---» reduce E -e

----- f ,OFF---» reduce F ~f

G,: o
§* +CE §' +CE §' -CF
& ocF C4b € =iC
C -+bC E -e F -t
CFSM for G,:
State 0
S' +.CE,0Q ——C— 1
$' ».Cr,0
§' ».CE,Q —_—C— 2
§' +.CF,0 _
C -.b,{E,F} —_—b—— 3
C »+.bC,{E,F}
¢ ».bC,{E,F} |—b—=> 4
« State 1
§' +C.E,0 ——E—— reduce |
S' -C,F,0 —_—F redgce 3
State 2
§' +C.E,0 ——E—— reduce 2
S' -C.F,0 ——F——= reduce 4
E +.e,0 e——» reduce 8
F +.t,0 — ft——» reduce 9
Sﬁate 3
¢ +b.,{E,F} |——E,F—— reduce
¢ »b.c,{E,F} |———CE,CF——= 5
)
State 4
¢ »b.C,{E,F} |—C— reduce 7
C ».b,{E,F} —b—— 3
¢ ».bC,{E,F} b
¢ ».b¢,{E,F} -
State 5
¢ »bc.,{E,F} E,F > reduce 6

Diag. 4.3

G, and its LR(2)-

CFSM

157

G,:

§' -E §' +CE §' CE
¢ -b ¢ ¢ ¢ -+bC
E -~e

CFSM for G,:

State O
§' +.E,Q ———E——> reducé
g' f‘.cg,@ “__C—_. 1
§' VICE0 |t 2
E +.e,0 e—— reduce
¢ »-.b;{E} ~——b——s 3
¢ ».bC,{E} »
¢ -.b¢,(E} — b 4
State |
§' -C.E,0 ——E——» reduce
/State 2
§' +C.E,0 ~——E— reduce
E ».e,0 e—— reduce
State 3
¢ »b.,{E]} —E—» reduée
¢ »b.c,{E} ~——CE———» 5§

+b.C, {E} ————C——— reduce
-—b——» 3

+.bc, {E} b
AbCL (B} |-

ellalede
4
o
—
m
Nt

(@Y
¢
o
@]
—
m

——E~———= reduce

i Diag. 4.4
G, and.its LR(2)-CFSM

158

G,:)
S' oF §' +CF §' <CF
¢ +b ¢ -+bC ¢ bt
F f
CFSM for G,:
State 0
§' +.F,0 ~———F——= reduce !
§' +.¢r,0 —_—— 1
' +.ct,0 —C— 2
F~.t,0 ——f———= reduce 7
¢ +.b, {F} —b—= 3
¢ +.bC,{F} :
¢ ».bC,{F} ——h——— 4
State 1
§' +C.F,0 ——F——» reduce 2
State 2
§' +C.F,0 ——F—— reduce 3
F-.t,0 —ft——» reduce 7
State 3
C »b.,{F} ——F———= reduce 4’
¢ »b.C,{F} —CF—» 5
State 4 R
_ - . ~ -
C »b.C,{P]} ——C——>qreduce 6
C -’1?'{5{‘} ___b-—_——’ 3
¢ -.bC,{F} b
¢ +ibC{F} |
State 5
¢ »bC.,{F} ——F——— reduce 5
i Diag. 4.5
G, and its LR(2)-CFSM

——

159

LA § \ u . Yesers A
. . '
. g

. CY ' ' y .
A [o
& s . \\" A“U - vy mﬁ‘
Ve . -\ : .
S B N $:&F &' +(E
§' +CB v, §'VsLF §' acF X
¢ -b IR o) - o o ¢
E we F -t ’
CFSM for G,:
State 0 . ,' 4
§' -.2,0 —fF———» reduce ™
§' -.F,0 —:_?—-' reduce 2
s' *CCEIQ ———e 1
§' ~.CE,Q —L— 2
§' -.CF,0
sv ":CF,Q) . A
E ~.e,0 e——» reduce 10
F-.1,0 ——f——» reduce .
¢ +.b,{E,F} |[—©Db—=3
¢ ».bC,{E,F} . ‘ ,
¢ +.b¢,{E,F} |—b—s 4 T ¥
R
State 1 :)’
X]
§' +C.B,0 ~——E——» reduce 3 . ,
§' +C.F,0 ———F—— reduce 5 AR
. ,
State 2 : AT
,, » I
§' -+C.E,Q ——E——» reduce 4 o
§' -+C.F,0 ——F——= reduce 6 ' ‘
@ +.e,0 e——> reduce ‘ s ¥
F +.t,0 ———f——» reduce 11 o
State 3 ‘ « 1
¢ +b.,{E,F} E,F > reduce 7
¢ -b.c,{E,F} |—=CE,CF—» 5§ .
Diag. 4.6

G. and its LR(2)-CFsSM

160

State 4

oo le lp

<b.¢,{E,F}
.b, {E,F]
.bC,{E,F}

4

*°0y 3

.b¢,{E,F}

Stite 5

-bC.,{E,F}

-y

‘.

—~—0——» reduce 9

——b—> 3
- -
E,F » reduce 8

1

/, | " ' 162

In the preceding discussion, the LRRL(k) grammars were
not .augmentegAuth agpemal end marker symbol "$". Nor ~did
the LR(k) grammars have a ".$k"-~ end-marker, whn;h is
éuStomary to append to the right end of input sentences. So

ong might s that this section con51dered grammars with no
- k

end-markers. Too ' many ‘authors are sloppy about'the $

augmentation of (kk{ ammars. Some authors leave out the
k
$ end {1arker in~the de.::xmn of LR(k) grammars. 40thers

1
L]

justify 1its presence by arguing that it ens.ures that there
.

is always a K-symbol lockahead available to the pa,rser. It
[: . ‘
can be shown that the presence of special end-markers has

more ram1f1ca\:1ons than supplying the necesséry a'mount of

lookahead. wlthout end-marker symbols, a sl1ghtly d1£fere;\t .

: |
N '
1)

defini'tiorr of LR(k) condition can be iven in the fcllowxﬂ!

way. L 4

. Definition: (k) grammar with no end-marker :
- R - “"‘1,.

‘ - . . - . f * . .

™ A context-free grammar G=(N,T,P,S) is LR(k) with no

end-marker iff the three conditions: o .. 2

! .
-

*
(1) S==>an===’an :) .
!/ rm rm.
¥ '
(2) S==>a'By=>afz
" orm £m ,

¢3) {PF (x)}N{PF (2)} # ¢ , .
k k o e

igply. that aAz=qa’ By.

. : i i - - | ‘ k
;It.j@’ obvious that when a grammar is aaogmented with § ,

' e A . ' :
the con‘d‘itiy: ' - (3) ‘% degenerates to

\

v | . 163

PF (x)=PF (z) same as-the one in the tradition definition,
k k . _ "k . ‘
Thus a grammar is LR(k) if its § “-,augment:ad .form is LR(k)

withh no end-marker. One can easily observe tuhat the LR‘(k,u}*'

grammars with no end-markers defined here, htaveethe property

[4

Of gen?at.\ng languages that are prefix free and closed

.

.urlgrt lﬂlca’?enatlon, whxch is 'not. .trtue of the LR(k)

grammars. Note that .1n the prev1ous example only G, and G,

‘can be augmented w1th end-markers. One Cannot augment

w.‘G'_/,'1=1,...‘,4 or their respective reduced contexts grammars
GT, because they generate only some segments of sentences in
'L(G) or assqmmg dashes are omltted, some segments of
sentential forms in SF(G,). The remainer of this sect?is

concegned with ‘only LR(k) grammars 'with no end-ma ets.l

. L 8 . .
Hencefort', the term“will be used without theéost modifier. -
;) 3 , .

. Now the forma_lizat'ioh -of the~‘_observation’s on the
example grammar can be be provided’ by the foliowing

definition and theorem. The formalism is only' for the type I

M »

basic LRRL(k) gramm}rs. The type 11 grammars can be treated

A o .
similarly. : R © *)
A
L] .
i Definition: LRRL(k) decxsxon set of. a gramm&r
‘i ~ . g -J)
Le§t‘ G.a(N TP, S) a context-\free grammar and k a

‘pogsatxve “$n *i 'ﬁaé‘ LRRL(k) dec151on set of G.; D(G/k) is

M T

a set f g?maf;? tiefﬁed recurswely as follows:
4 .

(1) -:G the . g,d\rced contexts grammgr of G, is an element of

" D(G,, k), i -

(2) Fox[e'qﬁmmar Gt D(G.',k)%, if s is #n LR(0) inadequate

f) 164

state in its LR(k)-CFSM (i.e., a state with multiple reduce™
items or reduce and shift items), and G' i!’the-grammar such
that G'=(§S'}UN,T,P',ST) . ' where

P'=Pu{S' »a| @ is a dookahead string in s}, then the reduced
» ~ ‘

contexts grammar of G', i.e., G' is an element of D{(G,, k).

It can be shown that D(G.,k) is a Pinite set and its
S R AABREERR A ARRA NS :
cardipality is bounded by 2 L]

Theérem 4.7:

A context—frée grammar G is ‘LRRL({k) wi;g/na\szf:rarker
1ff every. grammar D 1n b(G,k) the decision set of ;ﬁ“”is;ﬁ
. . o - 3 . ‘/"/
LR(k) N 1 !
, .

Proof: The proof is essentially the same as the theorem 4.6
» > .

with the, difference that instead of prefixes of right

sentential forms of G,'prefixes of non-canonical sentential

forms _are to be' used. Let {6 ,G ,...,é.y.be a subset of

4 12 n o
D(G,k) such that the sequence of grammars G ,G ,..., and G
1 2 n
are obtalned by conépaer1ng an "LR(0) 1nadequate state in the
-«

LR(k)- CFSM's of 6,6 ,..., and 6 . Suppose G 1s LRRL(k)
Y : n-1
with no . end-marker al& without loss of generahty assume

G, G ,ee., and G "are LR(k)‘grammars but 6 is_not. Then
n-1 ’ n -
under some viable pre§1x of G.say vy a- X =6 a* X - there is a
‘n. nnn n n n
trq’p1t1on from the £P1t1al state of the LR(k)-CFSM oq GL to

a s;aQe s&& s -~with confllct1ng "items [A -2« X .,y] and
. . Y nn N
(B *mﬁﬁ B ,y'] for some A,B,y and y' such that
hn n ~ . : »
PF ﬁQ-PF (B v'). Therefore there must be a state s' in the

;)

165
. '® ‘
LRRL(k)-CFSM of G with conflicting items (A -+« X.,y) and
- : n °
(B »a' X.B ,v'),” vhich is a successor of the initial state
n n .
under some .string ya« X,y a X ...y a X y a X, such
i 000111 n-1n-1n-1nnn
that Yy a X, y «a X ,..., and vy a X are viable
cooo0 111) ; n-1 n-1 n-1
Prefixes of G, G ,..., and G respectively. Thus G is not
o 1 . n-1 : .
LRRL(k), which contradié?% the assumption. . o

4 : '
- .

Conversely, suppose every grammar in D(G,k},sis LR(k)
but™ G is r LRRL(k) with no end—marke:.'lf they, e s’ iqg
the LRRL(Kk

SM of G 1is inadequate, then. by a similar +

method one can show that some state s in the LR(k)-CFSM of

-

one the grammars jin D(G,k) is inadequate. (J

"The above theorem provides a second definition for the

u ‘ : : '
LRRL(¥) grammars. Let G be an LRRL(k) grammar with no

~

end-marker and D(G,k)={G,6,G } its decision set, then’

1 m
it is obvjous that the grammars' G ,....6 , *i.e., those
p : t .m ¥
grammars that G ,...,G are their reduced contéxts grammars,

1 . m —
are LRRL(k) grammars too with no ‘end-marker. In fact if

P

G,...,G nsm are those grammars that are obtained by,
-1 n ' .

“ A : e = A
consijdering the LR(0) inadequate states of G, then one gan

say that G is LRRL{(k) with no end-marker if and if G ,
: : i

»> . \ . ’ ‘
1<i<n, are LRRL(k) grammars with no marker.

)

. o L
4.3.3 Recursive definition of LRRL(k) gfinmars

The results of Sectioﬁi%&§;2 can be puttinto a more
rigorous form by supplying a recursiQe,definition of LRRL(k)

grammars in terms of derivations. ’ .

g . ' E
. -

[

s,

[

]

o . N e

Definition A'-1:

‘A context-free grammar G=(N,T,P,S) is type I ®basic

'LRRL(k) with no end-marker if and only if

.or

\)

(a) G is LR(0)

- . N
S N .

‘(b) the foll’owing three conditions together imply

cohditi_on-'h- Y ¥
% . ‘ ° '
¢
(1) S==> aAx==s qfx=> yX ‘
.rm rm rm :

g a mpightmost der1vat10n witth corregponding leftmost

den‘ivatlon : : -
x K

Sems zAy=f ZBYE=>'yX. | ‘ iy "
lIm . 1lm m ﬂ s v
(2) There exxgt r1ghtnpst! demvatlons o form

%—-» a A X 1-» h% x'=‘ aﬁB,x ===>yx

Y

rm rm.
with correspondxng leftmost derivations
* X
Smmt'z A" r—‘»z BiB.y'=2BB.y ==eyx"
lm ~lm *

and the set dequal to
‘b

{PF (B.y')|B.y' appears _in such leftmost qeriv_ations}.
‘ /

(.3) {PF (y)]}NL#® or the gfammar S N

. k. : o -
~ G'=(Nu{S'},T,P',S') where

CB

P'=Py{S' =00 € Min(Lu{PF (1’}) . ‘ {

is not type I basic LRRL(J() with no end marker.
’ 1

o

() ama’, BBi=f (B.%) and A=A . 4

for all a',B.B8, and A' in (2). e

\
- Ll v

o 167
Definition A'-2: ,d ‘

. Vs
¥

A contéxt-free grammar G=(N,T,P,S) 1is type I basic

LRRL(k) =~ if and only it $-augmented grammar

>

G'=(Nu{GOAL}, {$}uT,Pu{GOAL +S$},GOAL) 1s a type 1 basic

(k) grammar with no end-marker, ‘ ‘"

”

el

&%

A similar definition for type Il1 grammars' can be
provided with a slight change in the grammar G'f of the
Y condition (3). . '

* . : "‘)7-
. o

The above recursive definition A'-1 relies on_a number

of grammars to be LRRL(k) (with no end-marker). On the
¢

surface there is no bound on the depth of recursion.- g,

However, it (was shown earlier that only a finite wumber of
grammars are involved in this recursion, i.e., gtammars 6

and Gg4,...,G ° such thaJ'Lhe1r respective reduced contexts,
1 m
' grammars G and G ,1<ism, are the members "of the decision
, S ’
set D(G,k). Then one may perceive a circular decision

problem here, that is to say the LRRL(k) condition on any

-

grammar in the set {¢,6 ,...,G } may ¢ircularly depend on
’ 1 m -
the same condition. But, previously it was indicated that

such 4a decision is reduc1ble to tes ng wnuthem’ya/h of the

grammars in the dec1szon set D(G,x)={G ...,C } is LR(k).

.- -~

It is in this sense, th » phe‘”belxevé% the work
" ’ . . s e . .
reported here ‘introduces a new methodology in which grammars

are recursively defined. Such definitions are valid when the
JLS . , ,

decision problem can be reduced to testing of a finite

v [_" L * B . - ’ "]

4

“would be a set of LL grammars? R A
; ' 4 .

. "“ L ao '

@ : S '
. . O 168

“number of predicates such that their truth does not

circularly depend on each othex‘ The method could be carried

_over’ at‘ otherg grammar classes such as LR(k) and LC(k). The

recurswe defxnn’&on of LR(’() grammars will depegd on
decxslon set a&at cw;s,,of _."a f1n1teﬁomber of F:

grammars S1m11ar1y *l:he. decimon set"t,or ﬂ:n <LC (k) grammar '
o “"W u,

v
]

As a concluding remark, one may notice that the issue
discussed in .this subsection is very similar to -the
definition of recursive data types in programming languages

which “itself seems to be inadequately addressed in tk.

' litera‘thre.

. 2

4.4 Complexity of LRRL(k) testmg ‘~

“'

e .Analyzing th ﬁp]‘r“\ the algontﬁms is an

integral aspect of this Tesearch. Nevertheless, frem the
theoretical point of viey, t:he?:e is an 1mportant special
1ssue that shoAld be” lodf? at very carefully The issue is
the complexity of LRRL(K‘st:mg In order to /\ystalllze
the proble@ some historic background as to the LR'(k) testxng T

h
o . o &
is useful . . N

It is well known that the LR(k) parsers tan'a

number of states which is exponent1a1 in the size of tﬁe

grammars that they parse. For any flxed value of kd:here ‘'wag
4k+4 o

. an 0(|G]) polynomial algorithm implicit in the original

- 169

paper of Knuth on the LR(k) gramma {Knut 65], but for many
years people somehow were carried ewey,by Practitioners‘ who
developed generators for LR(k) parsers. They assumed that

the way to test whether a particular grammar $s LR(k) 1\ 30

try to construct an LR(k) parser, or in other adsfan

LR(k)-CFSM for that grammar, and thus they beheved ﬂat‘

r‘~ ‘0.

LR(k) testing 1is exponent1al in the sne of grammac,’

wor’st case. Even the most respeéted bogh%n ’the | theorg, ofm‘i
Ay oA e ?'& ‘)
garsmg by Aho and Ullman gave the exponential algorith

the testmg "of ' LR(k) cendition [AhUl 72a,p 91].
practice is still widespread among the programmmg lap

people 'I‘hey usually run their’ grammar throu;bv a" Y)t ;’ikc o

*
. L '¢ .

L]
parser generator to test whether it ‘1.}((1),," m theqcase' .
of YACC, LALR(1)., '~ : . SRR ;
| RO !

Eventually Hunt', Szymansk1 and U\lman 1".a br1111ant '

2k+2 ‘ k+2 -
joint work obtamed O(IGI) and O(|G| Palgonthns-}!tdr

LR(k) testing with fixed- value of k [HuSU 74, 75] Theg
showed that the:r result carries over'to LL(k) SLR(k) and"
~Lc(k) grammars.\.However they left the determxn"mg of the
complexity of LALR(k) testing as an open problem. One might
heve " expected to. learn \ s.omet':hing from - them about the
comblex_ity of LR(k,t) t/efeting, since these grammars. were

developed by one the authors himself, but strangely enough

they omitted the LR(k,t) grammars from the discussion.
~ .
»

Sippu, ~ Soisalon-Soininen and Ukkonen [SiSU 83]

discygsed the complexity of LALR(k) testing. They contend

/)

. 170

that testing for the LALR(k) condition is based on the

LALR(k) parser constf tion because the LALR(kK) propetty is

essent1ally given in terms of the LALR(k) CF%‘iconst{uctxon.

So for fixed Kk, they conclude that the problem is

PSPACE-Complete.

| “ the surface onsh Q'\t think that the LRRL‘(k))estmg
is exponential in the *&jize of grammar since similar to
LALR(k) gram.brs the Lﬁ!{(k) property or1g1na11y is given in
the form of CFSM construction. On the other hand if one
considers the altetnatﬁye detinition, then to test a grammar

G for the LRRL(k) cond1t1on, one needs to test each grammar

in its decision set D(G,k) {6,6,,...,6 1} is LR(k) However
m .

..

each G is successively obtained from ‘other members of-

i
D(G,k) by actually constructing CFSM's for. these- members

RN .
which img}jes an exporentfal algorithm. Furthermore the
' VX
cardinality of D(G,k) at the worst case is O(2).
'iuqh observations . in addit} o he fact thateno

polynomial tj lgor1thm is rep ted’for LR(k,t) testing 1n
the litei*ﬁure, and ‘the fact that some prominent formal
gramﬁarians such as Soisalon-Soininen are content to ‘accept
the exponentdal'CFSM consttuétion for LALR(k) testing, which
on the surface may seem to be a simpler test than LRRL(k),
may soon diminish one's hope for obtaining a polyﬁomial
algorithm for the LRRL(k) testing. However, a cansiderable

effort has been vested in finding such algorithms in this

research, and one is presented in _tﬁgi following. The

% .

171

algorithm given here is for the type Il basic LRRL(k)
grammars. It is very simple and can be easily ported to type
I ‘and all the generalized grammars (except the GLRRL(k)

grammars with bounded buffer) that are to be defined in

Chapter 5 of this thesis. Nevertheless, because of a certain

counting proglem it cannot be applied to Szymanski's LR(k,t)
‘ﬁfammars. It . 1s important to“hote that such polynbmial

' . -4 .
algorithms only test the properties - for the co:pespondlng
. Fi o
classes and do not generate a paFSer.
. . BEY .
The - algorithm is based on constricting the

non- determ1n15t1c 9efsion of {Pe CFSM for a grammar. Let
’ ~ <
G=(N,T, P S) be. a contgxt-free grammar. Add production

GOAL 45 to P and lqug=NuTu{$} Consider a non-deterministic

e ~
f1n1te state machine with 'potential' ¢-arcs M=(Q,V,5,g.,90)

where

) 8

V= The set of input symbols.

Q= f'e set of states of the form [A +a.B,0) where either
. * .
A »af is a production in P' and o€V with |o|sk, or
—

[N

AaSUBGOAL RED(p), p 1is - a proéuction in P, o=¢ and af is a

.- +\ . .
string in V with’ leng’h less than or equa} to k. *‘
q.= The 1n1tfal state [GOAL ~.5,%]. "\

Q -
§= The transition mapp1nql£rom OX{(Vu{e}) into 2 1is \defined

in the following way.
(1) 6([A +a.X8,0),8)={[A +aX.B,0]}.

(2) 6([Al*a.XB,a],c)={[x +.y,B+ 0)| X +y is a production in
o ko, .

P}.

?

(3) Also theré are 'potential’ transitions on empty string

) - 172

of the form 8([A »a.,0),c)={[SUBGOAL-RED(p) +.0,¢]}, where p

is the production A =»a in P. If after reading a string

*

y=y'a, one reaches to a state qg,=[A “a.,0]). then a
transition from state Q, tO q,=[SUBGOAL-RED(A =a) =.0,¢]
over the, potential e-arc is possible iff q, exhibits a
confli:!’ with some state g, with respect to the string y as
detined below. It should be clear that if the chain from gq.
-to q, (which is travereed by reading y) "includes any
potential e¢-arc then the tail state of that arc must exhibit
a conflict with some other stﬁte with respect to a prefix of

p v that is read thus far.

' N . .

1 -
Definitiog: lxhibitibumof a conflict
! ﬁ 'y

YL ket-qealA a.,0) and q.=[B +a'.B,0'] be two states such

that (A +a.)#(B +a'.B8). The states q, and q, exhibit a
A > . .

cenflict with respect to a string y€vV iff the two states

can be reached simultaneously o: rea¢ihg'the string vy.
\ ' b4
Explained in terms of deterq;n1st1c CR§M construction,
ttans1t10ns of the type (1) represent shift moves., Type (2)
transitions correspond Cﬁ the closihg of the states in CFSM
whereas type (3) bra¢s1ﬁlons represent possible addition of

-auxiliary it@ms when there is a ‘shift-reduce/reduce-reduce’

L Py - ~.
L]

A ambiguity in a state.

The set of final states for the purpose of this"

b o .

?discussion is irrelevant, and it is assumed to be the empty

e . -
set . . 3

2N
P
?-.

One ﬁay observe thato the non-determiﬁistié machine
corresponds to a 'quasi’' linear right rqular gramma? :Qith
some potentiaiﬁ$pgoductioﬁs. Sfmilar obser@.tions vere also
made by some authors specially Heilbrunner [Heil 81]

I3

regarding the n&n&deterministic parsing automata for LR(k)

s
grammars, in which they have called the corresponding
grammar, an item grammas. However, one should note that an
item grammar for an LR(k) gramqgg\éoes not have ,potential
productions and is‘a regular grammar in the true sense,

: ' B % ‘:' . | !
Example: : . L
- Q
- - P
. . ¢
Diagram 4.7 -shows' the non-det?rministic finite state
machine for the grammar G_anaﬁki1, where G is: ’ ,
: . ' . . g .
' > ‘ e ﬁ.‘ ‘b"‘«
(1) S A B e
(2) s »a C ¢ .
(3) A ~a . <
(4) A »b -
“ (5) B +b
(6). C =b .
Ay v

Broken arrows represent potential 'transitions‘ on - null

-

stringa.
,\g

- . - -
? . r * *
. !) . o 4

A 174

S—— 1
Yoo ————a—2, 3
—---e----»4
—-—(—p——-‘ﬁ,7 g
- _/
3 S ».aCf,$ a——8 .
4 | SUBGOAL-RED(0) +.$,¢ . t——$—9
— - -B—s 10
S -s '.AQBeps\ ¢) —-‘_’(—A'—'11
6 »m‘.a,B a—12
L e > - ‘ . .
7 | A-+.b,B | —b—s13 .
) ' ’
C—>14,
8- | S -a.tf,$ —e¢—15
9 SUBGOAL-RFD(O) +$.,¢ , ' '

. . Diag. 4.7)
* ", Non-deterministic Fihit4 Statez..- 4
Machine with Potertial trahsitldﬁs" 3

-

10°

11

13

14

15

16

17

18

19

20

21

s '.Anoe,’ ’ -—-—t—'—:—;—-—.16.
o .
B ~.b,e . —b—a17
)
A +a.,B —---¢=---»18
;‘ L d ‘ .
A +b.,B |——¢—=19
P - ! !
— :
I S +aC.f,$ ——f—»20
[.4
c ».b,f —b—a21
£ / S
Y PR A
S +ABe.,$ N /;; ’f22
B +b.,e --=-¢-~--»23
< B——>24 /
SUBGOAL-RED(3) -+.B, ¢ — =25
. <l
- B——>26 ’
SUBGOAL-RED(4) +.B, ¢ ——¢—>25
[\I
. /
S +aCf.,$ / R —— - '
- . ‘ Tx |] .\
C +b.;f T |eeme---v28

178

22

23

24

25

26

27

28

29

30

31

32

33

SUBGOAL-

RED(1) ~:$,¢

SUBGOAL-

RED(5) -+.e,¢

SUBGOAL-

RED(3) =B.,¢
B *.b,c'“
SUBGOAL-RED(4) =B.,«

SUBGOAL-

:
!
"

RED(2)

SUBGOAL-

RED(6) ~».f,¢

SUBGOAL-

RED(1) =§.,¢

SUBGOAL-

RED(5) ~e.,c¢

B »b., ¢

SUBGOAL-

RED(2) 48, ¢

w

: ,,]-5‘\

SUB&OAL-

RED(6) ~f..c¢

A

—$—>29

e—30

——b—31

$—32

——f—>33

176

177

' B ,
The conditidn fpr a grammar to be non-LRRL(k) is that

two siates exhibit a conflict which cannot be resolved with

the use of ‘lookaheads. v L -
{
‘Definition: Exhibition og unresolvable conflict R

. JIf two statés\q,slA +a.,0) and q,=[B +a'.B,y] in which

’
/ conflict (with respect to some string), then they exhibit an

(fa}g{ﬁ+ vy})#p anQ ~(A=B=SUBGOAL-RED(p) and a=a"') e{pibit a
k

unresolvable conflict.

For example, in Diag. 4.7 the states 21 and 51 (i.e.,
[c »b.,f]) and [B *b;,el)’can be reached simultaneously by
reading the string' ab. Since {g}Q{<}={<}#¢ the two states
exhibit an unresolvable conflict, and therefore -G is not

LRRL(1).

Geaerally simpler grammar problems (e.qg., LR(k)

| _testing)-caﬁ be solved by computing a binary relation R2<QXQ
on the states of such a non-deterministic machine, that
represents mutual or simultaneous reachability of pairs of
estates after readingb some string in V*. One can check
whether there 1is a pair (q,q')€R2 that exhibit a conflict
which cannot be resolged by the means of 1lookaheads.
However, for harder problems such as LR(k,t) and LRRL(k)
testing,.such a binary relation cannot be computed unle8s
with the aid of a ternary relation R3<QXQXQ which represents
simultaneous'reach§bility‘;f triples of state5 after reading
~some 'string. To see the reason, consider the three states

s ’
s

[N

178

q.~[A'*afib]. q:=[A +a.,y) and q,=[B +a'.,1], and suppose

théyfare simultaneodgly reachable after reading some stfing..
Clearly,. it q!=[SUBGOAL-RED(A =a) =.0,¢) ; and
q;=[SUBGOAL-RED(A +a) =.y,¢] are the successors of q, and Q.

under the potential ¢-arcs then (g),gi) must be in R2.

However, {(q ,q)| for all i,j¥{1,2,3}}=R2 doés not imﬁly
(g),qi)€ER2 2533 the above condition under vhich
c—trénsitions over the potentigl arcs are possible), but
(d.,9.,9:)€R3 implies (q},q; €R3 and consequently
(q:}q;)€R2.-\ By now one may have realized that the
computation of R3 is not possible without the use of R4, and
of R4 without the use of R5 and so én, ;nd ultimately one
needs to computé Rn, where nz_Zklvll, i.e., a computation

much more cogtly than det;:ginistic CFSM construction.
However, for ﬁhe purpose of LRRL (k) testing; only
computation of a binary relation R2<cR2 with the aid of a
ternary relation R3CR3 which itself can-- be computed
Qirectly, is sufficign}. R3 does not. compute triple
simultaneous ‘ reachabiliiy - of ,ﬂguch states as
q.=[SUBGOAL-RED(p) +.0,,¢], q.=[SUBGOAL-RED(p) +.0,,¢] and
q,=ISUBGOA£—RED(£7“*.o,,<], i.e., the triple (q.,q.:,q,)fR3,
and consequently triple simultaneous ré;chability of some
states that follow these states will not be known .
Thé%efore, some pairs of states such as
t,=[SUBGOAL-RED(p') ~.y,,e) and t,=[SUBGOAL-RED(p') +.y,,¢]

vhich are simultaneously reachable from the former states

will not be in R2 (i.e., (t,,t,)€R2 but not (t,,t,)€R2).

. ' 179
- ,

Let {Q ,Q,...,Q }] be "a pqrtition of Q such that
Q.-{[A. *a..?vl; A *a?lgl the itﬁ producfipn_ in P} and.
QT :1[séscoxn-nén(';') *.1,<]|y€V‘}, for-‘{;o,...,|P|—1,
aéslgl be thg'sef of all those states indicating a shift
move.z%gl rela;ipn R3 is giveh‘by the algorithm 1 which uses
_p stack of triples of states. The rel;tion R2 is éimply

{(q,,q9:)](q.,q.,q.)€ER3}.

o
[

Algorithm 1: Computation of R3. : -
Let ST:SK be a stack ofvtriples of states.
. Routine ADD(Q,,Q:,Q:);)
If (q.,q,,q,)lR3 then
R3:=R3v{(q.,q.,9:)}; .
" PUSH (q.,9.,9,) on the STACK
end.
1. siACK:-o; -
R3:-(§,,q.,q.), where g, is(the.initial state.
2. While STACK is not empty
"begin
— POP (Q.,,q9.,q.) off the QTACK;
2.1 Process the type (1) transitions: .
1f q,=[A *a,.XB,,0,) and ' z
q.=(B »a,.XB,,0,] and . |
q,-[é a,.X8,,0,]
then ADD(q),q:,q;), where : x
{qi}=8(q,,X), {q)}=b(q,,X) and {qil}=é(q,,X).

~ 2 . . : -~ \

end if.

L]

2.2 Process Botﬁzl (i.e., closure) c¢-transitions:

2.2.1 For all t€6(g,,¢) where . N
th§ transition is.a!closure transition
Apb(t,qqu,).

2.2.2 For all t€8(q,,«) where _ _
the transition is a closure transition
APD(qQ.,t,q,)."

2.2.3 For all t€d(q,,c¢) where

| the transition is a closure transition _ : \’
) ADD(q, ,qQ.,t).
2.3 7 Process potential e¢-transitions:
I1f mot all of the q,,q. and q} belong
,(G/:he same Q then o
begin ,1 . K -
For i=1,3: |

Let t := potential successor of g if

i . i [
there exists one, otherwise g \\\
1 . ~

For i=1,3
! For j=1,3
ADD (t ,t ,t). H
1 i 3
~end. . :
\ . ' - "{

‘l’ .
The following theorem shows that the computation of R2

is-sufficyfnt for detecting the non-LRRL(k) property of a

grammar. P {

., . : : : : , 181

Theorem ¢.8: .
LA . s »

g

There is a surjective mapping t*f;om R2 onto R2 such
“that if (q.,q.)€R2 exhibits an wfresolvablé conflict tﬁeh
7((q..,q.))=(q},q:) €R2 also exhibits =~ an. unresolvable
contlict.‘ ’
" . v
Proof: First it is cleatvthat the algorithm 1 computes the
simultaneous triple réachability of those states that the
paths from g, to thgse states do not s}multaneJ:;ly traverse
potential ¢-arcs with tail states that have. common cores.
Secondly suppose the end-marker '$§' is Treplaced with k
- symbols, say sk. With a careful consideration, one can see
that the dual ‘or triple reachability of those states with
e;dctly k symbol lookaheads does require computation of R3
or R2. Consider a situation in which the 'states
é.-[A sa.,0,), qa.=[A *a.,0.], qQ,=[A »a.,0,] and
q.=[A' *7,a.7%,0,] are simqltanepuély reachable from the
states s.=[2, »7r,.A7},77), = s,=[2, =r,.A7},71],
s,=[2, »7,.Ar},7]] and s.=[A' »r,.ar!,0,]) (where
o =PF (r't") for i=1,2,3) by reading the string a. Algorithm
1i‘do:s 1n;t compute the triple reachability of the dtates
q!=[SUBGOAL-RED(p) +.0,,¢], gi=[SUBGOAL-RED(p) +.0,,¢] and
q:=[SUBGOAL-RED(p) *;a;,e] where p is the production A -a.
Now suppose the three states [B, +8,.8i,v.], [B: =8..8i,v.]
and (B, *B,.B;,y,]“are simuitaneously reachable from q;, q;
and q;, i.e., Biy' is dominated by o for i=1,2 and 3. If
i i

|f_|-k for 1i=1,2 and 3 then one can see that these states
: i

oA

are also simultaneously ’: achable via the s

si=lz, sr.auri,et), 0 osidlz) eraaury, i)
~s;-[z,~*r,A.r;,r?]3/Tﬂere£ore the 51§orithm 1 computes th
triple reachapiI{;y of the formef,gtates anyway. The dugl
reachayility/gf the two states with k%bympol lookaheads /is
“—_;Eaii;r. Thus, for such states =((r,s))=(r,s). Note that {the
algorithﬁ computes the dual reachability of any pair chogen
from qi, qi and qf? 80 t((q:,q:)-(c',qi) for i,j=1,2 and 3.

s .

Now suppose the state ‘re¢m[¥, *u,.Bu!,u’),

»

. one of the lu¥u"| is less thap ki are simulg:?eously,

11 . N
reachable from q!, q; and qi.|In this case it cannot be

r,=[Y, *u,.Bu;,;fj and r,=[B' +u,.Bu),u),. where at least

argued that the triple reachability of these states can be

computed through the states /s: s; and /). Therefore the

~triple reachability of these states and in turn the triple
’ l";'[B "B-r“;ﬂ')‘] and

reachébility of- ri=[B +B8.,ulu’
ri=[B' +u,B.u3,u%], and co%sequentiy the dual reachabilfty'
of £7=[SUBGOAL-RED(p') +.uluT,c] and
r:-[SUBGOAL—RéD(p') +.u3u3,¢], wvhere p' is the prodd&tion
B +8, - may not be detected by thq;;lgorithm 1. Note that the

dual reachability of any pair froy {r,,r,,r,} and also any

‘pair from {r!,r},r}} is comﬁﬁigd by the algorithm, and sdch
‘pairs are mapped on themselves. Now suppose that -
t,=[C, »a,.a},a?] and t,=[C, *a,.a},a]) are reachable from
r?\and r;. If botQ C, and C, are elements of N, i.e., C,al
and C,a)} are dominated by uiu? and uiu", respect'ivei?, then

" the simultaneous reachability of t, and ‘t, could be

183

concluded from - the simultaneous - reachability of
(Y, *s,B.u},u’h and (¥, =u,B.u},u?). Thus (t,,t,) is mapped
on itself. Othervwise, if one or both of C, and C, is the
auxiliary symbol SU OAL-RED(p'), i.e., avai=uiu? and at=c /

_then there are corresponding states to

d:d§'uiu7
')
e same C

t,/t, that exh s. For instance,

if C,=SUBGOAL-RED(p') then (t,,t,) be mapped on (t},t,),
wvhere depending on whether |a,|<|ul]|, ti=[Y, 4u.§a.i.,u7]
and u.u"=al, or t!=[SUBGOAL-RED(Y, +x,Bu!) *i,.a!,c] and
u'a,=a,. Cleatly, if (t,,t.) exhibits an unresolvable

conflict then (t',,t,) does so too.

Furthermore, the same kind of mapping applies to the
successors of [SUBGOAL-RED(C, +a.a}) +.a%,e] and
[SUBGOAL-RED(C, +a,a}) +.a},e] if C,=C, and a,a}=a,a}. O

\

The above | theorem shows that computing triple
reachaﬁqiity of states up to the point of first f?énSiE}ons
over similar potential c-Qrcs guarantees the simultaneous
transitions into\the states with lookaheads short:r than k
symbols. Afterwérds, for any pair of paéhs that traQerse
alike potential ¢-arcs there is a pair of paths that do not
go through similar potential e-arcs, and if the fir#tﬁpair
detect qﬁ unresolvable cogflict then so do the second pair.
As an example consider the fragment of a deterministic
LRRL(2)-CFSM that 1is depicted in Diagram 4.8. In _the

non-determ?njstic version of the CFSM, the conflicting

states qg=[M -+n.,¢] and q'=[M +n.,e¢] are simultaneously

184

reachable through two pdirs of pathss

(1)s

1.'[z +a.,AM] [SUBGOAL-RED(Z <a) =.AM, <) [A +.a,M) [A +a., M)
(SUBGOAL-RED(A *a):M,cl (M ».n,c] [M =n.,c]

11. (2 +a.,AN) [SUBGOAL-RED(Z =+a) -+.AN,c] [A +.a,N]

(A +a.,N] [suB L-RBD(A‘*a),M,clle ».n,¢) [N »n,,c])

(2): Gq’

1. [2 +a.,AM] [SUBGOAL-RED(Z +a).AM,]

[SUBGOAL-RED(Z =a)AM,e] [M ~.n,c] [M =n.,c]

11, (2 +a.,AN]) [SUB&OAL-RED(Z +a) AN, ¢]

[SUBGOAL-RED(Z +a)A.N,e] [N +.n,¢] [N =n.,e].

However, the algorjthm 1 can only detect the dual
reachability of these states only thriough the second pair of
paths. Nevertheless this ié sufficient for detecting the

unresolvable conflict.

Fimi arly, the algorithm cannot detect the simultaneous
reach;bill of the states ' [M »m,,] and
[SUBGOAL-RED(A =a) -m.,e¢] through the paths: .
I. [z *a.,AM]([SUBGOAL-RED(Z +a) +.AM,c] [A +.a,M] [A +a. M]
[SUBGOAL-RED(A +a) +.M,e] (M +.m,c] [M »m.,c)

11. (2 +a.,Am] [SUBGOAL-RED(Z +a) +.Am,c} [A +.a,m]

(A +a.,m] [SUBGOAL-RED(A -+a) -+.m,e¢] [SUBGOAL-RED(A -m.,c].
However, corresponding to these states, there are two states
(M -»m.,¢]) aﬁd [(SUBGOAL-RED(Z +a) =+Am.,e¢] such that théir
simultaneous reaéhability is detected by the algorithm

through the paths:
I. [2 #a.,AM] [SUBGOAL-RED(Z -+a) ~.AM,]

188

&y

(SUBGOAL-RED(2Z <a) ““a.M,c] (M +.m,c] [M +n.,¢])

11, (2 *«.,Anf (SUDGOAL-RED(Z =+a) +.Am,c)

(SUBGOAL-RED(Z +a) <A.m,c] [SUBGOAL-RED(Z +a).<Am.,c],
“which agaip is adequate té“show th§ non-LRRL(2) property of

gyhe grammar.

\

Note -that the method of testing ngon here would not
work for the LR(k) grammars. For example, "for the first
pair of states, q ;\a q', there would be tvo numbers
indicating the numbcr of bypassed phrases. If these numbers
are h and h' for the first paxr of paths, then they are h-1

and h'-1 for the second pair of paths.

186

-

STATE 8! —
. y Concealed item:

- 7 4-.,(AM AN, Am, BC}

Non- concoalod,itonsz

42 <a'.by,{y'} —D—, ...
SUBGOAL-RED(Z <+a)_
SUDGOAL-RID(Z +a)
'SUBGOAL-RED(2: +a)
SUBGOM~RED(Z ~a)
A +.0,{NN,n)

B +.ab,{C} !

-

$& & & &
>

- AFZE

iy, iy sutn, gy

M A AM
I {I
® . [
e ~

.~

SU’GOAL-R!D(Z “a) *A.
SUBGOAL'RBD(Z “a) <A.
SUDGOAL RED(Z <a) =A.
M-+.m,{c]} '

M +.n,{c) . ——g 5
N ».n,{c}) '

STATE s2

szX

el el § §

-

STATE 83

Concealed item:

A “a., {"0Nom}

Non-concealed items:

B +a.b,{C} —_——...

SUBGOAL-RED(A -+a) -~.M,
SUBGOAL-RED(A =+a) =+.N,{¢

SUBGOAL-RED(A -+a) -.m, {

M-.m, {c}

M -+.n,{e¢
N ».n,{¢}

} —_—N——, .,
¢} — 8 6

n———s85

STATE sé i
\ SUBGOAL-RED(Z ~a) -Am., {c}
M -+m.,{c}

STATE s5 ‘ \ /
L) M +n.,{¢e}

STATE sé6 -
SUBGOAL-RED(A =a) -»m:, {¢}
M -m.,{c}

- Diag. ¢.8 .
A fragment of deterministic LRRL(2)-CPSM

‘i

1 [
\ 187
. * ' .
Now the algorithm for (type 11 basic) LRRL(k) toutinﬁ

tor a il;od*t can ‘stated as follows,
Algorithm 2: LRRL(k) testing | /

1. éonltrucf the non-deterainistic version of CPSM.
2. Compute R} and obtain R2 from it.
3, Check thst none of the pairs (q,Qq') in R2 exhibit an

unrclolvablo'contlict.

The computation of R3 for the non-deterministic machine

of the sxample grammar, (shown in Diag. 4.7), shows that the

. pairs co,o),(z',s),(s,:n\uz,a),(13,15),(25,15) vand (31,21)

"LRRL(1).

(among many others) belong to R2, with the last pair
exhibiting an unresolvable conflict. Therefore, the;

algorithm 2 concludes that the example grageer is not

v

r

The next theorem considers the complexity of LRRL(k)
. R

testing. »
Theorem 4.9:

The non-LRRL(k) condition of a grammar G, with a fixed

‘k, can be tested .in P-space, and non-deterministically in

k+2 : 3k+4
time O(|G|) and Geterministically in time O(|G|).

Proof: In the non-deterministic machine M, the number of
‘ - —

states of the form [A +a.B8,0), vhere A is a non-tarminal

symbol, is less than - or equal to
‘ k N33
IG|(1+]|V]|+...+|V|] <(k+1)|G|] ° . The number of states of the

3 e . ' v

| 108
L

torm ISUBGOAL(p) +a i,cl is st " most

ket :
|P|(2|V|‘...*(k¢l)|v|:)<k(k01)|6| . Thcroto he tothl
+

number of states of M io‘/pis than (k*l) IG| . Tho nulbcrl

of transitions of the: typcl (ll and (3) :F most is oqull to

nunbcr - of the statos, and thus id less than

ke . N .
ﬂ(~’) j{@l* . Por each state there are at most B4

trdnsitions of the type (2). Therefore, the size of b %,

T 2 k+2 :

bounded by _(k+1) |G| , and the size of M, i.e.,
2 k+2 k+1

IM|=|Q|+]8|<(k+1) (|G| +|G|). - Th%s, the

non-deterministic machine M can be constructed in time
k2 ‘
o(IM]), i.e., time O(|G]|). So trivially, the non-LRRL(k)

ébpdition can be tested non-deterministitally in time
k+2
o(|G|).

)

construct the

»r

For a deterministic test, one needs o

relation R3 according to the algdrithm 4, v;ich is the
dominating factor. R3 can be stored as a |Q|X|Q|X|Q] bit
map, Qnd the closure successors for each state can be
listed. Bach triple (q.,q9..9,) will be pushed on the STACK
at most once. Therefore, the total time spent for insggtion
is 0(|Q|) or O(|G|3k*3l<\7pe total time spent in statements

2.1 and 2.3, i.e., time for processing shift and potential

) ¢—ttansitions is proportional to the size of R3, which |is

. - 3k+3 : .
O(IGI). The total time spent in stafement 2.2.1
3
proceps;ng closure transitions is proportional to |Q]| |P|,
3k+4

i.e., is 0(]G|). Similarly, times spent in stePd2.2.2

3k+4
and 2.2.3 are 0(|G| -). Therefore, a deterministic test at
: 3k+4
the vorst case can be carried out in time O(|G|).

f ' 189
From the size of M and the size of R3, it is trivial to
see that both non-deterministic and deterministic tesys can

.

be carried out in polynomial space in the size of G. O

A

In practice, one can consider a stack of subsets of Q
of the forms {q.}, {q.,q.} amd {q.,q9.,9.} instead of the’
stack - of ordgféd‘.t"bles.‘ Although, such optimizqfion
considerably contributes to the‘éfficignCY of the testisg
algorithm, it does ™ot however change the order of the

Eomplexity.

From the diagnostics poiht of view, the algorithm 1
does not provide as much information as one wishes. Unlike "
deterministic CFSM construction, the algorithm 1 does not
give the conflicting situations that involve more than two
items, and does not provide thédpaths from the initial state
' to the coﬁtli;ting items. Moreover, getiziijy it is not
expected tha; the dgterministic CFSM for a real.grammar to
have an exponential'number_of states iﬁ térms of the size of
the grammar. An approximate evidence for tﬂi; ii/ghe size of
Lﬁ(k) parsers for programming-languages‘ and the size of
Marcus' parser fo; a determiniétﬁc subset ‘of néturél
language. (It is unlikely that wifh no-automatic generator,

Marcus' parser would have been built'by trial and error

process if its size was exponential.)

'Tberefoge, one may consider the purpose of this section
is' as one going through an exercise to pfové that LRRL(k)

testing is not an intrimsically exponential problem, which

190
/
otherwise should have been left as open problem /1n the
border region between the problems in P and thd class of
NP-Complete proglems. Still, it remains an open g%oblem (and
from author's point of view it is doubt ful) pﬁat the upper
bound for the complexity of LRRL(k) testing G | be sharpened

by any method similar to the one givew’in [Husu 75] for

7
2

LR(k) testing. '

4.5 Informal comparisons with‘alternative parsing methods
r ' ’ '

So far, it has'been shown that the LRRL(k) grammars are
not included in the c{ass of,ZR(k) or the class of LR(k,t)
‘grammars for apy finite t. Alss, it has been established
that the class of Bounded Context Parsable BCP(m,n) grammars
doés not contain all the LRRL(k) grammars [Nozo B86]. The

LRRL(2) grammar G,:

s +»d o ~ -
S =+ A S a

S +BSbD

A+ a -

B~ a

clearly shows that the LRRL(k) grammars are not LR-regular.’
Since in G,, the parsing patterns for the reduction of the

- nth 'a', ‘from the beg1nn1ng of a sentence, to an 'A' or to &

n-1 * X n-1
'B' are - given N\ by (A B) aga d(a,b) a(a,b) and
n-1 * * n-1
(A,B) a#a d(a,b) b(a,b) . Theréfore, the right *contexts
¢

for the’ reduction of the productions A #a and B -+a cannot be

described in terms of a finite set of disjoint regular .

191

expressions.

The LRRL(k) grammars are included 1in the clags of
FSPA (k) grammars. The efficiency and the storage
Arequirements-of the‘\LRRL(k) and FSPA(k) parsers for ‘.F
particular grammar ‘are the same. However, in Chapter 2, it
was discussed that the membership problem for the FSPA(k)
grammars is undecidable, and thus without a reservation, oné
cannot set out to pufld'a phrase finding automaton for an
arbitrary grammar ;écq9rding to the EEPA-schemeq since the
construction“ié,;d;»guaranteed to terminate.

-t . :
Marcus' parser, being partially top-down, cannot handle

a grammar like‘ﬁz. However, in the case of grammars like G,
of Chapte;/‘z which can be handled both by a Marcus-style
parser (written in PIDGIN),.and by an LRRL(k) parser, it

would be interesting to compare the two parsers.
. ._", N PR
The parsing -control thanTsm‘ for the Marcus-style

parser 1is described by the PIDGIN grammar of Chapter 2. For
the LRRL(k) parser, it can be given by the optimized Table
3.4 of Chapter 3 which requires much less storage. The size
‘of the stack\:Zus the buffer is the same for both parsers.

Apart from ose, in the case of Marcus-style parser the

~. .
interpreter PARSIFAL must be resident in the main memory,

vhile in the <case of LRRL(k) parsijponly the code for the
algorithm C which is a very small program must be in the

main memory. From the ‘examples showing parsing of the

sentence &*dbad’b’, one can see that the number of steps for

Py

' o 192

the two parsers are roughly equal, and is linear in the size
éf ineyt sentence. For eaéhistgp however, the L%RL(k) parser
negds to access a single entry in the parse table (a memoty
location with an. indirect address, if théltable stored as an
array), while 1in the case of Marcus-style par;er, PARSIFAL
has to interpret all the rules in the active paa}ets. Thus
the constant factor for lthe Marcus-style parser is much
higher, and the parser considerably is sdower. Therefore,
for better efficiency Méqcus' parser needs a PIDGIN compiler

to compile PIDGIN grammars into executable codes, rather

than interpreting them by PARSIFAL. But still it would not

be as efficient as an LRRL(k) parser.

Lastly, the major factor that differentiates the two
parsers is that the LRRL(k) parser is obtained automatically
with no effort by simply runﬁing the context-free grammar
through the parser generator. While, a considerable amount

of trial and error is required to produce a PIDGIN grammar.

By the foregoing discussion, it becomes apparent\ that/

in parsing grammars 1like G, or G,, the real alternatives

‘that should be compared against the LRRL parsers, in terms

of their efficiencies, are LR(k,»), Earley's, backtracking-

and parallel parsers. :

4.5.1 Comparison with LR(k,=) parsers

pemma——

An LR(k,») parser runs in a number of steps linearly

proportional to the length of an input sentence. However,

193

each step'rq uire‘ compdfhtion of a ‘set of LR(k,») items

vhich is g;h'hly) equal to building a CFSM state in the
construction of an LRRL(k) parser. Therefore, the constahg
factor. in the time complgxi;y is very large. Iohéérms 6f‘
storage ;equirements; it employs a stack of sets of ifems
which 'is very unattractive in comparison with the same size
stack of pairs Af a state nﬁmbef and a symbdl tﬁat LRRL
parsers use. Therefore, bnq can cqnclhde that an LRRL(k)

paf;er for a patticulgtwgrammar is much more efficient‘ than

¢

an LR(k,») parser for fE‘ same grammar.

}owever,kthe éoverage of the LR(k,») parsers are much
broader and in fact they can parse some nogjdeterhinistic
unambiguous grammars. On other hand: beca&éé\\\pf ‘thé
undecidable membe:shiﬁ one would not know fhat an agbitrayy

grammar can be parsed insthat fashion.

.

4.5.2 Comparison with Earley's parser
a

- Earley's parser [Earl 70{ and variations of it by
Valiant fVali'7§], and Graham, Harrison and Ruzzo [GrHR 80]
are the most efficient general context-free parsing
algorighms. Ea;ley's algorithm requires O(n*) time and 0(n?)
space at the worst case for‘ parsing embiguous gramm;rs
(where n ., is thg length of input seétence). Unambiguous
grammars require O(n?) time. The two variations run in
subcubic time. The CKY (Cocke-Kasami-Younger) algorithm

[Youn 67] can be considered as the top-down version of

. . 194
')

Earleyxs algorithm that only handles the grammars ngen in

Chomsky normal form.

\ .
Earley's parser builds a list of n states for an input

of size n. Each state is a coliection of items and unlike
LRRL(k) and LR(k,=) they-cannot be popped from the stack as
Ythe parse proceeds. Thergfore, even in terms <of -average
| number of stack 'nodés the algorithm'is quite expensivs.
‘Although for finite sfate grammars such as LRRL(k), it can
'be shown that the list of states can be constructed in O(n)
‘ time, still there is a substantial overhead in that thg

algorithm manipulates the list{as it proceeds.

TQerefore, one can ¢onclude that it' would be very

inefficient to parbe an LRRL(k) grammar with’ Earley'

algorithm, .
)
4.5.3-Comparison with backtracking parsers- S TR T e
- .. & “.I -’ -

The recursive-descent and ATN (Augmented lTran;itiéﬁ
Networks) parsers may be the most popular ones.among the
parsers with unlimited backtracking, with the latter Xaving
the capability to handle the non- context-free features of a
language. In order to compare LRRL parsers with %hese
methods, .it wbuld be constructive to consider the four
sentences in L(G,) and their syntax trees hepicted in Figure

4.4.

195

Q

2n
a d(bdb)

Iv.

AR
/.Ts\ s
NN\
./a
VARV
o N_/
AN

Fig. ¢.4

196

From the example sentences, it 1is obvious that a

2n
recursive-descent parser will backtrack 2 times to the
. 2n-1 ,
2n-th 'a' in a sentence, 2 times to the (2n-1)th

'a',...,and twice to the first 'a'. An:ATN parser can do
better if HOLD registers are used intelligently. If the
parser recogniies'that a segmen‘ of input sentence is parsed
successfully in one way, then it can hold the parsed
construct in a special register and thgs will not need to
" reparse the segment in the sade way. 'Fof example, in the
grammar G,, a 'd' ‘can only be reduced to an 'S', and
cohsequently when a segment of the input parsed as»fA§Bt7the

dominating 'S' can be held in a register. S
o] .

Writing of recursive-descent parsers is very easy, (the
feature that makes them popular), specially in programming
languages such as PROLOG and SNOBOL. In these languages,
roughly 1listing of*wproductions is the only thing that one
needs and tﬁbﬁbulk of‘work is 'paésed to the programming
laﬁguage system. Such parsers extensively backtrack, and use

of them for LRRL(k) grammars must be considered disastrous,

The bottom-up backtracking parsers, e.g., the one that
is based on an LR(k) table with multiple entries, generallf—
do better-than top-down recursive®descent parsers. -However,
their performance in the case of LRRL(k) grammars like G, is

not any better than recursive-descent parsers.

|
J \

.) . 197
4.5.4 Comparison with parallel parsers ;//

Parallel ~pafsing, strangely enough, has become to
denote two different concepts in parsging (approximating MISD
and MIMD concepts in multiprocessor environments).’The first
is that when a parser encounters an ambiguous decision point
with n Ehoices, it branches into n processes each getting a

—copy of the stack, and following a different- parsing path.
Therefore, in the examplg\senf@ncés, by the time that mth °
©om

'a' ig reached there would be 2 processes manipulating the

same num&fk of stacks.

In the second meaning, the input segment is partitioned
into segments, and -n processes,v usually running on n
processors, each get a segment of input. Essenfially there
are two ca;ogéries of these parsers. In one which is

| developed by Fischer [Fisc 75), each parser on encountering

an ambivalent point - follows multipie‘ paths in
pseudo-parallel, i.e, manipulates multiple ‘stacks.' In the,

second " kind introduced by Mickunas and Schell [MéSc 78],

each parser on encountering an ambiguous decision point

transfers . the content of its stack to the left neighbouring

process.

-

Parallel parsers in the Qecond,sense can be constructed
for variety of grammar classes, and as one can see from
Fischer's model, each parser in this method can behave like
a parallel parser in the f;rst' sense,. However, thé

\effitiency of these ﬁarsers are in doubt. In the worst case,

L R

198

each of fhe n parél{e% parsers in the first category may
follow more than h.f‘ths oﬁ 1/n length of the input. Thus,
if the graﬁmar is li'~ rly par;able on a single processor,
‘the multiprocessor

ﬁrocessor\ In the secad category, "all the input may be

passed to th 1~t) processor while tﬂ"o&hcr n-1

processors s; idle. Cof 'QJHickey and Katcoff [CoHK 82] in
an analytical study show that the speedup in such parsers is
not related to the‘class of grammars, but depends on the
éharacteristics of individual syntax trees such as their
heights. Nevertheless, it should be mentioned ﬁhat the work
of Mickunas and “Schell in producing parallel scanners is
qQuite remarkable and greatly contributes to the efficiency
of the scanning phase, ;hich is the slowest phase in

compilers, in a gnultiprocessor environment.

The MLR parser recently éeveloped by Tomita
[Tomi 84,85] is an interesting parallel parser in the first
sense. The MLR parser is based on an LR(0) parse table with
multiple entries. Such a table for the grammar G, 1is given
by Table 4.1, The MLR parser initially starté as single
process. As soon as it reaches to a state with n different\
actions, the process 1is split 1into n processes.that are
executed 1individually 1in parallel. However, they are
synchronizéd in a way that they always look at the saﬁe
input symbol. If the system finds that two or morevpro€;sses
are in the same state, these prodesses will be combined’

Therefore, the number of processes at any given time is

199

bounded by the number of staéﬁo in the parse table. Instead
of multiple stacks there is a multilinked structure as shown
iﬁ Pigure 4.5 for the example grammar.\ This structure in
fact combines the coﬁmon segments of the traditional
- multiple stacks. Thi; combining mccbanism guarantees that no
part of an inputfsontonco is parsed more than once in the

same manner.,

Symbols
States a b d S A B
p g3,r3 rt g1 g2 Grammar G,:
(0) GOAL =S
1 5 r0 (1) s -a
(2) S A S B
2 | g3,r3 r1 g4 g2 (3) A =23
. (4) A #a S
3 | g3,r3 r1 ré | g2 (5) B #b
4 rS r2
Table ¢.1
LR(0) parse table with multiple entries ,’
‘ -
A 2— A2 A2 — ...

/ \ q

ol .
, Yoo \ I

N
‘ /
t a,3d a,3 a,3—..
.) .
Fig. 4.5

The multilink structure for MLR parser

200

»

Thaugh 3bmita'| approach {is an attfictivc one, from
softwvare engineering point of view it does seem to have
problems. Combining independent processes into a single one
Zis not an easy task, Furthermore, complexity of such
combining, i.e., synchronizing and management of
parcnt-child relstionship of ngClll.l. and managemeny of
the shared dG¥a is not dealt with and simply relegated to
some entity which is only referred to as 'the system'. One
may easily see that if the algorithm is to be run on a
multiprocessor system the' cost of overhead in terms of
communication, i.e., Sgrcrete complexity, is prohigitive. On
the othér hand, if it is_implemipted on a single processor,
then it«is only Ear(ey's algorithm in disguise, wvith the
exception that the i&ems,l without their initial state
numbers, are g{ven in‘precompiled.form. Note that Earley's
algorithm also does not parse a segment of input Qére than

once in the same manner.

L

Again the LRRL (k) parsers in éomparison with the MLR
parser will do much bett;r. Iénoring all the difficulties
with processes managemerft, bf the time one reaches tﬁe ath
‘a' in the éxample sentences, 2m processes will be created
in the MLR parser. The two most recent processes will be
active and the others will be in wait mgde. A multilink
structure 6f the size 2m nodes will created. While, the
LRRL(k) parser will have only a stack of m nodes; However,
it should be reminded that the MLR parser is a general

purpose parser.

r}o&

A%
N,

Al

¢.5.5 Comparison with an oracle model

Perhaps the most interesting ;ompotison will be a one
-éainst an oracle model based on LR parsers. In this model
it is assumed that vhan the parser nqncﬁos an ambiguous
gyint, i.e., a state with multiple aczioniw the oracle will
choose the correct .ction; Piqure 4.3 shovs ehgs_thi oracle
model parses the sentence a'd?ad'b'(L%G.) in 22 sgeps (i.e.,
one more ‘than. the number of nodes in the parse tree). It
took 28 steps for the type 1 basic LRRL(2) parser to barse
the same sentence (rig, " 3.3, of Chapter 3). In fact if a
sentence'confains m number of a';, then the LRRL(2) parser
vill take 2m more steps than the bracle'hodel to parse
sentence. This is true because the ;'; are the ‘ambiéuous
elements in the grammar G,. To resolve the role of each 'a’,
the'LRRLiz) parser transfers its two fully reduced right
context to the buffer, which later are shittgd back onto the

stack contributing two more steps in parsing time.

In terms of storage requirenents,loge observes tha; the
LRRL(2) parse table (Table 3.4) is only marginally (i.e.,
one extra row) larger than the parse table in the oracle

model (Table 4.1).

State
stack

NNV
- ® - .
L X W

- W W w =

- -
-ee *

ﬁﬁ;NNNNquw

® W W W™ W W™ W W W W W W W W W W W "W W ™™
- P v e ® w w e e w o=

OO0 O0OO0OOO0OO0OO0DOO0OO0COOO0OOO0OOO0OO0O0O0O |
T NN NNNDODNONNNNMDNOLDWWWWWWW

Parse
atack

a
aa
alA

-~ 8Ad
aAs
aASh -
aAsh
as
A
 Aa
Aad
AasS
AA

- AAd
AAS
AASDH
AASB
AS
ASb
ASB
S

reduée 0: accept

Parsing a’dbad’b?

reduce
reduce
roduéc
redute
reduce

reduce

reduce

reduce

reduce
reduce

redyce
reduce

[B, X

- & -

NOY NS

SeonooLnoouuoa>nod "('.UWD-)..]

-~

Fig. ¢.6

in oracle model

Remainder
of input

aadbaddbbs
adbaddbbs
dbaddbbs
dbaddbbs
baddbbs
baddbbs
addbbs
sddbb#'
adabdbbs
addbb$
ddbbs
dbb$

dbb$

CHAPTER-5

» GENERALIZATIONS OF LRRL(k) GRAMMARS

2

4 :Cﬁapters 3 and 4 dealt yith devgiopment and, properties
of two types of ba;ic LRRL grammars. The pregént chapter -is
- concerned with the generalizations -of these grammars. In
addition, the subclasses of LRRL:grammars and the grammars
w{th c—rples are also discussed in this chapter. The chgg:ig

concludes with a detailed examination of Hunt's statement

regarding the generalized forms of LR grammars.

\

The difference between the EWOLtypes of basic grammars
is thgt.thevparsérs for the;g¥?e 1 grammars backt;ack to a
delayed decision point regardless of whether it is a
redﬁcfion or a shift operation. The parsers for the type 1I1I

grammars only backtrack to a deferred reduction point. The

¢

type f~§rammars‘are included in the type II grammars. The
generalizations can be considered equally for the type I or
the type II grammérs{ preserving the fundamental difference
between the two types in Eerms‘ef backtracking and inclusion
of ﬁhe type I in the type II grammars. However, in this
chapter only “the generalizations of-the type Il grammars

‘will be considered. W

’

203

o 204
~ Although the <class of basic LRRL (k) grammaré is both ,
intuitively and formally interésting, there are #two pointg\

thét'may'b§'¢onsidered afrpitfalls for these grammars:

(ig The class of basic LRRL(k) grammars with a fixed k

does not fnclude the clasg of £R(k) grammars with the

same k. | | |

(ii) The class of basic LRRL(k) grammars with a f;xed k

is not inclgie?)-4gl» class of basic LRRL(k+1), but in
¢ +

the class v bosic Jéﬁb(j).
j=k+1

i

-

However, the two probléms can be easily remedied in the form
of modified LRRﬁ(k) grammars. Sections 5.1 and 5.2 deal with
the ,ELRRL (k) and MLRRL (k) grammar$ that overcome these
probléms. Section 5.3 describes the GLRRL(k) grammars that

include tHé LR(k,t) grammars as a proper’ subset. ‘

The subclasses of the LRRL grammérs are considered in
Section 5.34/\Finally, Section 5.5 deals with the LRRL

grammars with e-productions.

L]

5.1 The EL‘RL(R) grammars

7y
I

Most of the LR(k) grammars fall within the class of the
basic LRRL{k) grammars for the same k. However, despite‘
overwhelming generality of the latter grammars, there are

~some subtle LR(k) grammars that are not basic LRRL(k) for

the same k or are not basic LRRL(k) for any value of k. An

205
example is the grammar G,:

S+ABm|AB n | A C@g

A »a A' ~a

B +b B' -»b C ~c

G, is’LR(1) but not LRRL(1). However it is LRRL(2). On the
other hand the LR(1) grammar G,:
S A B ﬁ | B m A-C | AC g “+a C -a

is not LRﬁL(k) for any k. When the initial 'a' in the input
séntence is encountered, the decision to reduce jt to 'B' or
'c’ fpiies on the parsability ofAthé right context. The
right cdntext for 'B' is 'm'. However for any k, 'Ck_]B' and
,'Ck' are right contexts for the reduction to 'C', and these
two strings cannot be recognized from each other since they

derive the same terminal string. The problem of course lies

in the insisfence that the right context be parsable.

It is desirable to combine properties of the basié
LRRL(k) parsing with thése of LR(k), to obtain a new class
of ELRRL(k): Extended ERRL(R) gram&ars. Thg class of
ELRRL(k) grammars will include all the LR(k) grammars with -

the same k. ' ‘

To achlieve this goal, the step (3-ii) of the CFSM
construction algorithm A-II (Section 3.2.11) is modified sé
that it first checks to see if a resolution can be made only
by looking ahead at the terminal 'symbols in the input

sentence as it is illustrated below.

206

For i:=m+1,...,n let

1 ={ FIRST (o0)| ofL }.
i k i
1={ FIRST (o0)| o€SHL(s)}.
RST)
IF :

1 N1=0 for i=m+1,...,n
i
and
1M =0 for i,j=m+1,...,n, i#j
i3 !
Then
“donflicts in the state can be resolved just by looking
ahead at the few terminal symbols in the remainder w
of i‘t sentence. Or equally,

Add iWems SUBGOAL-RED(p) =+.x,{c}

for all x(l., for i=m+1j.;.,n:

conceal_theléonflicting reduction :::ﬁ3;$5

for i=m+1,...,n, and proceed to stépw(B—i;i).

Else .

Perform step (3-ii) as before. g4
To ob n a rather‘d%orma} definition for type 1 ELRRL
grammars, one oﬁly needs to change ﬁhe condition (a) of the
definition A'-1 in Section 4.3.3 to read "(ag G is LR(k)".
The derivations oriented definition of the (type I11) ELRRL
grammars (i.e., the ohes that are discussed here) can be

obtained by changing the same condition in an equivalent

definition for type 1I basic grammars.

207

5.2 The MLRRL(k) grammars
‘ y

Suppose a grammar G is basic LRRL(k) gut. not basic

LRRL (k') Afor some k'>k. The implication is that when an

LRRL(k')-CFSM for G is constructed, conflicts in some states

will not be resoivable. But, if@nhe considers an auxiliary

item such As SUBGOAL-RED(p) +.a,{e} in the LRRL((T“GFSM,
i .

- there would ° be corresponhing . auxiliary items

Ll

{ SUBGOAL-RED(p) =+.a8 ,{c}| j=1,...,m }. in_ the
LRRL (k')-CFSM. S;nce G:| is LRRL(k) there exisés a state in .
LRRL (k')-CFSM such ‘that its basis consists of items
SUBGOAL-RED(p) *a.B_,{ei, j=1,...,m. - However, further

‘ i j .
expansions of B 's may 'w‘ end up in resolvable states. To

remedy this siguation, one can modify the CFSM coﬁstructiqn
algorithm A-I1 in such a way that states with Dbasis
consisting of only,auxiliary.itéms SUBGOAL-RED(p) ~a.B ,{¢},
j=1,...,m to be.considered as final states and onlg |a|
symbols (instead of usual |ef | symbols) be transferred onto

the buffer. The modified algorithm defines the MLRRL(K):

Modified LRRL(k) grammars.

L4

Clearly, the class of MLRRL(k+1) grammars includes
- MLRRL(k) grammars, and the class of basic LRRL(k) grammars
is contained in the MLRRL(k) class. Obviously, one may
combine properties of the LB(k) grammars with these of the
MLRRL(k) grammars obtaining a new class of EMLRRL (k) :

Extended Modified LRRL(k) graﬁha?s.

208

5.3 The GLRRL(k) grammars

The lookahead policy uéed in basic LRRL(k) grémmars may
be viewed as the opposite éxtreme to the one employed in
LR(k) grammars. In LR(k) parsing the lowest level of nodes
i.e., terminals are used ﬁs lookaheads, while in basic
LRRL(k) parsers X highest level of no;ies tﬁat follow the
current construct, (A.e., the fully reducéd right context),
act as lookaheads. The ELRRL(k) or EMLRRL(k) techniques
combine the two policies. An immediate Question arises here
is that whether reductions can be bgsed on some
 intérﬁediate-1eve1 nodes of the right contexts, i.e., the
decision for the reduction of a questionable phrase can be
reaghed before'the complete parse of the k-symbol fully
reduced right context is obtained. The answer is positi;e
;Bd indeed séveral variety of grémmar classes with decidable
memberships can be defineé' in this fashion. However, it
seems_alway; there are two deci;i;ns to be made in such
definitions. One is the.size of buffer, i.e., the numbeg of
nodes that'aré parsed before the deferred reduction of the
first questionable phrase is made. Obviously, all these
nodes are descendents of the k fuily reduceg right context

‘of the qpestionable phrase. The size of the buffer could be
taken to.Be k as before, or some other number greater than
k, (ewg., a multiple pf k), or even aB~unbounded buffer can
bé used. The second is whether one should choose to leave

some of the phrases in the lookahead string unreduced before

returning to the questionable phrase. In fact, this has to

.-

209

do with the sequencing of reductions, that is, if at a point
one realize;,that~more than one phrase in the sentential
form can be reduced then which phrase should be reduced
first. It seems that Szymaﬁski has g&so encountered the
pfoblem of such an orderin§ which‘canr%b used profitably by

a parser, and he has suggested it as a further research in

{szym 73,p 169]. The LR(k,t) parsers in the way they are

constructed reduce the leftmost phrase first.
' e
Here, two classes of parsers will be considered. The

parsers in the first class employ 'unbounded buffers, and
parsers ih the second class ﬁse finite size buffers. The
lookahead policy adopted is the use of at most k términal
symbols or at most k symbols reduced right context at
"arbitrary level, with the exception that the last phrase (if
any) in the lookahead string may be left unreduced if it
cannot be reduced without the use of some lookaheads. The
scheme may ’be illustrated better by wausing Figure 5.1:
Subpose at some stage 1in parsing, the reduction of the
phrase X ...X to the non-terminal X becomes questidnable,
and one p;oceegs to parse the k-symbol fully reduced right

context for this reduction, i.e., A ...A . It may be that by

, 1 k
the time the parse 'of B is obtained, it becomes apparent
m _
that the reduction of X ...X to X was appropriate. In

. 1 t
generalized LRRL parsing, one is allowed to back up to the

deferred reduction point if msk. Otherwise;'one'continues
with the parsing of right context, obtaining higher level

nodes until one reaches a staté“'n which the number of nodes

ite ’Q,‘é '

210

that lie to the right of the qguestionable phrase is less

than or egual to k, or ends up with the complete parse of

the string A ...A . In addltlbn, if B ...B is a phrase
1 k n+i m

that can be teduced to some non-terminal B w;thout us1ng any

lookahedds, that reduction is made before backtracking to

reduce the X-phrase. {This reduction contributes to the

efficiency of the parser since fewer nodes are put in ihe

buffer. In LR(k,t) parsi;g such phrases are left unreduced
before backing up. ’
A . A
,/,’ ﬁ\\ k
/ \\ : -/ \\\ J \‘-4

-x. .o\ / \

cees X cee
ng /E\ ch AN . 1{__g_-3

Fig 5.1
Lookaheads in GLRRL parsing
The difference between the two classes is that with an
unbounded buffer the lookahead policy is applied recursively
with no reservations at any ambivalent point in parsing the
lookahead context itself. In th -del with bounded buffer,
the policy is applied recursive y .. -g as the number \of
nodes vhich should be d § the buffer while

backtracking to .the first phrase does not

exceed a certain limit n. e, the policy used in
basic LRRL ‘parsing, (i.e., parsing of fully reduced
contexf), is employed. Note that at this stage, i.e., while
parsing the iast fully reduced context, the parser forgets

the surpassing of the above 'limit, and the whole policy

211

recursively starts all over again. However, the parser will
not backtrack to this point until it obtains the complete
parse of the fully reduced context, yhich at most és. 3
Symbols. Thus, when. the parser backtracks to the first
quegtionable phrase there would be at most n+;°nodes in the
buffer. The lookahead policy in the bounded buffer case may
be better understood by considering that the accumulated
backtrackings over the nodes which are not fully reduced

: . 2
contexts never exceeds n symbols.

e

'The derived classes of grammars in these methods will
be denoted By GLRRL(k): Generalized LRRL(k) gr?mmars with
unbounded and bounded buffers respectively. It will be shown
that these grammérs with unbounded buffers, and with a
suitable size boundéd buffers ptoperly include:Szymanski's
LR(k',t)'grammars for k=k't, and thus they provide the most
powerful class of grammars that are based on LR parsing
concepts while they are known to retain the decidability of

the memberéhip problem in the class.

The development of a CFSM for these classes is slightly
more involved than that of the basic LRRL(k) grammars and is

described in the followfng subsections.

5.3.1 GLRRL(k) parser with unbounded buffer

The items used in the construction of a GLRRL(k)-CF8M,
in addition to the usual core and lookahead segments, have

two tags that carry extra information. Thus each item is »pf

212

»

the form (A =a.8,L,[p,m]). The tag p is an element of
{-,0,1,...,|P|}, and m€{-,0,1,...,k}. Furthermore, for an
item either both tags are numbers, or both are '-' (which in
this case, both tags can be removed. However, for sake of
clarity they are retained in the algorithm and the examples
that follow). When p=i (a number), it indicates that the
last phrase whose reduction was postponed, is the ith
production in the grammar. In other words, an item not only
indicates a partial parse of the current construct, it may
"also show in the context of what suspected phrase whose
reduction 1is deferred, the current constrﬁct occurs. When m
is a numbe:, it indicates the number of nodes that 1lie
between the last questionablé phrase and the current point,
i.e., the number of symbols that are on the top of the stack
above the last suspected phrase. Clearly, during parsing of
a sentence, if one reaches to a state that all the itemé in
that state have the same tags [p,m], then the reduction of
the last questfonable phrase at m states back via the
production p becomes evident. In three situations both tags
are '-', (1) When no phrase 1is bypassed. (2) When the
current construct occurs in more than one context, i.e.,
when in more than one way one can say what phrase has been
bypassed 1iast. (In terms of a multiple path ﬁarser this
simply means that the current construct is on more than one
path). (3) When the current construct 1lies more than k
symbols far from the last bypassed phrase, i.e., when the

number of nodes on the top of the stack above the last

‘i
4

Ty

213

questionable phrase is more than k. One may note that by
this time, it may become apparent that the current construct
is in unigue context and thus one can decide ’about the
reduction of the last bypassed phrase. But, since the number
of nodes that one needs to backtrack over them is more then
k, these nodes do not really constitute a k-symbol lookahead
_for the questionable phrase. However, one may see that a
‘;oré general class of érammirs (with table driven parsers

"and decidable mémbership) can defined that way (i.e., Dby
allowing backtrackings over more than Kk symgols). " The
parsing :lgorithm for such grammars will require O(n?) time.
Therefore, those grammars will not préserve an important
‘property of the LR(k) grammars, i.e., the linear
parsability, and are not pursued further in this thesis.
Further,'it id crucial to observe that in such a casek the
tag m cannot be- used, and. special devices like use of
special symbols that are pushed on the stack after the
questionable phrases, or pointersA should be considered.
These will enable the parsing algofithm to backtrack over a

correct number of nodes.

Note that in GLRRL(k) items, there is ;only one
auxiliary symbolk SUBGOAL instead of |P|+1 SUBGOAL-R’E(p)
symbols. Because - in the auxiliary item
(SUBGOAL *q.B,{c},[p,lal]), the tag p serves the same
purpose as '(p)' does in an auxiliary basic LRRL(k) item.
Furthermore, since an auxiliary item does not have more than

k symbols on the right hand side (i.e., |aB|<k), it never

@) 214

N\

-

<

loses its tags by shifting the dot to the right end.

The following algorithms describe the closure of a set
of GLRRL(k) items and construction of a GLRRL(k)-CFSM, for

the case where an unbounded buffer to be used.
Y

Close (3: Set of GLRRL(k) items) /

Repeat
For an:item (A +a.B8,L,[p,m)) in s and BEN
and for all B #y in P
let 1,:=(B ».y,L',[p,m]) where L'-{BETA}+ L;
if.there is an item I,=(B -».y,L",[(p',m"'] ?n s
then if p'=p and m=m' then
’reﬁlace I, by (B ».y,Min(L'uL"),[p,m])
else replace I, by (B =+.y,Min(L'uL"),(-,-])
else add I, to s;

Until no change can be made in the set of items s.
Algorithm 5.1: Construction of GLRRL(k) CFSM - unbounded
buffer

" (1) Add GOAL symbol to N and produEEion

0: GOAL =S to P.

(2) Build the initial state s,: o

Let the basis of s, be { (GOAL -».S,{$},[-,-]) }.

Close the basis of s,.

218

Let the set of states of CPSM, Q={s,}.

.(3) Repeat
For a non-final state t whose successors are not

yet determined build its'succouaor states under

all applicable symbols X,

Constructid‘ of a successor state s for the

given state t under i}-bol X:

(i) 1f there is no item of the form
(A »a.X8,L,[p,m)) in t, then t has no successor
under symbol X.
Else

let basis of s=0Q,

For each item (A +4.X8,L,[p,m]) in t -

' If p#'-' and m<k then add the item

(A +aX.8,L,[p,m+1)) to the basis of s

. else add the item
(A +aX.8,L,[-,-]) to the basis of s,

|

(i1) Check if s is a final state:

If s contains a single item of the form
(A +aX.,L,[p,m']) then it is a final state;
(I1f A€EN, then s indicates the reduction of

A +aX, else, i.e.,, when A=SUBGOAL, s

216

-

indicgtcl the reduction of the production p -
at m' states back;f
label s as a final state and go to step (V).
If all. itemg. in 8 are of the form
(A *aX.B_,L_,[p,M']l
j-%,...,njang p*'-' then s is a‘final state;
(s indicates the reduction of the production p
at m' states back.) »
label s as a final state and proceed
to step (v). \
o

(iii) Check for inadequacy in the basis of s:

If there are items of the form |

I : (A sax.8,L.,(p,m1),L

3 3 3 3 3 3
j=1,...,n, and B}¢¢
]

- and
I.: (A =+a X.,L ,[p ,m],
3 I3 i3 3
J'n|+1'¢(olnl

vhere n,21 and n,>n,
. ’ %

R Lo

(i.e., shift-reduce/reduce-reduce conflicts)
or

n,=0 and n,>1

(i.e., only reduce-reduce conflicts)

Then

let the shift lookaheads of s be

1
sN,
SHL(s)=Min v ({g }+ L).
If L NSHL(s)} =@ for j=n,+1;...,n,

e

J .
(i.e., possible shift-reduction

resolution)
and
L NnL =@ for i,j=n,+1,..1_,nz yi#3

1]
(i.e., possible resolution of

) OIS o
reduce-reduce conflicts)
Then
Check if resolution can be made by
by looking at the terminal symbols:
Let 1={FIRST (y)|y€SHL(s)}.
. k
For j=n,+1,...,n,; let
1 ={FIRST (y)|y€L }.
]]
If l.Ql=¢ for j=n,+t1,...,n, and
1Nl =p for i,j=n,+1,...,n,, i#j
: T |
/ then

for j=n,+1,...,n,
& -
© “for all xEl.

add (SUBGgAL +.x,{e},[p',0])
to s, where p' is.the pgodubtion
A" sa X. -
.elsg | J. ’
for j=ﬁ.+J,...,n,
for all yEL_
add (SUBG%AL +.v,{e},[p',0])

J
to s, where p' is the production
]

217

218

A -a X.

: i)
' Conceal (delete) the conflicting basis

items I - ,...,I' S |

n,+1 n,
for j=n,+1,...,n,
delete I : (A *J_X.,L Jdp .m 1.
]] ‘] J]

Else

conclude the grammar is not GLRRL(k)
parsable wi%h an unbounded buffer,
and exit. ' ’,

-

-

Q (iv) Close éxe basis of s.

.

(v) Add state s to @ if there is no state t'
in Q with the same items as s, or with
’items which match those of s apart from the
lookahead sets, ahd for‘lookahega séE L'
in t' it is true that L'=Min(LuL') and
L'=LNAL', where L is the corresponding
lookahead set in s.

Otherwise let t' be the successor of t.
, :

®

Until no more.state can be added to Q.

e

3 .
(4) Conclude that the grammar is GLRRL(k) with an

unbounded buffer.

219

Theorem 5.1 .

Y
Y

The construction algorithm 5.1 terminates.

Proof: The proof is similar to Theorem 4.4. The domains of p
and m tégs are finite sets. Thus, the number of GLRRL(k)
items is finite, which in turn implies that the number of

W

states that can be genérated ig finite. O
Definition:

A (reduced ¢-free) context-free grammar G=(N,T,P,S) is

GLRRL{k) with unbounded ffer iff a CFSM for G .can be

constructed according to the| above algorithm.
Corollary 5f3:.

1t is decidable whethen; an arbitrary context-free
grammar is GLRRL(k) for a fixed number k and an unlimited
§ize 5uff§r: |
1" The following,example considers a GLRRL (k) gta@mar with

an unbounded buffer.

f

Example 1:

Let H, be a context-free grammar with the following
| productions.
(1) S = ABM (7) ¢~ EC

o

(2) S » B M (8) C + n

. ' 220

(3) A~AC (9) E » a

(4) A+ C (1) M-+DM |
(5) B+ EB (11) M » m -
(6) B » n (12) D + a

The grammar H, is n>t basic LRRL(k) for any k. The first 'n’
in a sentence éan be reduced either to a 'C' or to a 'B'.
- The fuily reduced context for the reduction B #n is M$.
However; for any value of k, Ck—]B and Ck are fully reduced
ucontexts for the reduction C 1ﬁ:0These two string cannot be
recognized from each other, because both derive the terminal
string (afn)k. It is also easy to see that H, is not LR(k,t)
for any finite,' t. Diagram 5.1 shows a GLRRL(1)-CFSM
fort N, constructed according to the algorithm 5.1, and Table
5\1 i?“éhe corresponding parse table., Figure 5.2 illustrates

the parsing of a sentence in L(H,). The parse tree of the

sentence is shown in Figure 5.3.

Explained intuitively, the role of each 'n' in a

sentence becomes apparent when it is immediately followed by
: *

another 'n' or by an.'m', or when the 'a' that follows it,

is reduced to an 'E'. or a 'D'. Injturn, the role of each 'a’

appearing after the first 'n' in a sentence becomes obvious
when it is immediately followed by an 'n' or 'm', . or when

the 'a' to its right is reduced to an 'E' or a 'D'.

J
¢

221

—_—S—e
— A2
—eB—3

& s
| ———)
a—»7

—Cc—>4

—N——6
a——=7

—=__9
- F———5

—D—=11
M1 2
a——13

—~—M—>10

—B—>14
n——6
a——=7

—C—15

o

VununcacmmoO UK

<t T TtTTtTTTTTT

S

GOAL ~S. l'{s}l[-l-]

EBl{M}I[—'—]
nr{M}r[_:_]-
ECI{BIC}'[_I_]
nl{B'C}I[_I—]
aI{BIC}r[-'—]

S -’A.BM,{sL[";‘]
A »A.C,{B,C},[-,-]

B ~»

A »+C.,{B,C},[-,-]

r_]
-]

7

ol
[..

}

C
}

C

ni{M'}r[-r-]
%é?
aI{BIC}I[—I-]

EB, {M},{-,-]

EC

E.C,{B,C},[","]
n,

E'BI{M}I[—I-]

r.3

iag. 5.1

D .
GLRRL(I)-égSM for grammar H,

STATE 0

STATE 1

STATE 2

STATE 3

STATE 4

STATE 5

222

E~——m21

n——»22
a——»23

—PM24
—D——a11

—m—>12
~——a—>13

STATE 6

]
1
1 \
]
'
| e
1 OOO
t - & =
I \O o ~—
N | et S St ~— - ~—] .
' t . o arn -~ ~ o 1 | ™ -~ -~ ~e
— e} A OF OO e o -~ - |} —rs]] [B e Lo | -
]l 1] WW W O O OO0 [} [s -~ -~ ~ 1 [
N st | v \D 0D 0D s S et —) s~ - - 1 s~ ~
E -t o o St \ Dt D=t OO ~ - ——]) — [—-—] — et |]
Qe | 2RO —— St b d -~ el (&) - Y e Y s
at'C.uoo}'}r}llc (@] W a e - _— p— g - - -
ertron o] T 1T T Wren W Wrataeas o - vt Y ey m o A WY A -
XM — W W~ W M m -~ A X, -t (o) — s A o
Mo | 3] 1] 1] S S st L b e - - - A '
7] \I'_AAAM af ~Q ~ ~ =~ - e F = = . . S O~ -~ -
L+ 1 O0O0CAEMKCRCc®m . mA 8w 8] = ‘AE® .
QD ECEC it OO © » o o o o o o o o o o P 2] Q ¢ (=1
-t T I MMOMT T T TS T T T + L O A 1T * L B O +
@V 1 DDD . !
AV I VVEZTa@MmoOoOAR ¢3] nxxA L3 wv EXEEN =
~N ~ o - o~
. r~ o (o)) — - —
]] 1] (1] 4] 3]
(3 £ e E (5] B
< < < <, < <
£ E E = e E
w0)] . 7] %} v w

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

STATE

13

I

D "a.,{M}'[-o-]

|

14
B #EB.,{M},[-,-]

-
-

15
C +EC. rq{BvC}'[-r-]

16+
SUBGOAL -M.,{e},[6,1]

17

SUBGOAL *B.,{c} {8, 1]

i

18
SUBGOAL =C.,{e¢},[8,1]

19
| M sD.M,{€},[6,1]

20

M *m'r{¢}1[6'1]

‘Note that the reduction of M »m is given

preference over the reduction of B »n at
one state back by the parsing algorithm,
State 30 has the similar property.

21 -
B #E.B,{¢},[8,1]
C *E.C,{¢},[8 2]

22 - - L

B »n.,{e},[8,1]
c fn.,{c},[8,1]

223

STATE

STATE

. STATE

STATE

STATE

STATE

STATE

 STATE

23

24
25
26
27
28

29

30

Deleted items:

First set:

D +a.,{M},[6,1]

E "ail{BlC}rlev 1k]

Second set:

D »a.,{M},[12,1)
E *a.,(B.C].IBJ
SUBGOAL
SUBGOAL
SUBGOAL
M -+.DM,

o~
a—~— -
O X
> a \DFEI\O™ e
D= O N 2 ~snsanman
O~~~ NMmM " m

O~
SOOI O O

O s [—] et ed O > -

[N

o omoms
- s s~ O~

Pty i

O T IR I A
DM raam M ran

.~ et M e N e 3
)= = s vn e e
—— . i

—)~

O~

1m0 NowwX

L

S “ABM.,{‘]’;[':'—]

—

M "DM-,{s}i[-l.’]

| e

- SUBGOAL =M., {c},[12,1)

s

SUBGOAL -+B.,{¢},[9,1]

SUBGOAL +C.,{e},[9,1)

o
e

~

M +D.M,{e},[12,1]

Mom, (e}, 12,1

STATE 31

B-’E.B,{(}'[9'1]
c #E.C,{c¢},[9,1] .
L
STATE 32 — . —
B"noyif}rlgrl]
C‘.n', }I[gl
States
. o 1 2 3 5 6 8 1 23
Symbols "
a r9 r8 r12 r9 g23 ri2 ‘r12 g23
m rii r11 r11t rl1 ri i
n gé g6 g6 t1,r8 t1,r9
A g2
B g3 g8 rS ﬁ1,r8 t1,r9
i
C ré r3 r7 t1,r8 t1,r9
D g1 t1,06 g11 g1l t1,r12
E g5 g5 g5 ti,r8 t1,r9
M r2 t1,r6 r1
S gl
8 r0
Table 5.1

GL?RL(1) parsing table for H,

225

State

stack

0"

0

0,5

0,5,6

0,5,6,23
0,5,6,23,23
0,5,6,23,23
0,5,6,23

0,5,6

0,5

0

0,2

0,2,5

0,2,5,5

0,2,5,5,6
0,2,5,5,6,23
0,2,5,5,6,23,23
0,2,5,5,6,23,23,23
0,2,5,5,6,23,23,23
0,2,5,5,6,23,23
0,2,5,5,6,23
0,2,5,5,6
0,2,5,5

0,2,5

0,2

0,2

0,2,5

0,2,5,5 ,
0,2,5,5,5
0.1215751516.
0,2,5,5,5,6,23
0,2,5,5,5,6,23,23
0,2,5,5,5,6,23,23
0,2,5,5,5,6,23,23
0,2,5,5,5,6,23
0,2,5,5,5,6
0,2,5,5,5

0,2,5,5

0,2,5

0,2,8

0,2,8,11
0,2,8,11, 1
0,2,8,11,11
0,2,8,11

0,2,8

0,1

0

Ny

N

Symbol
stack

a r9
E

En
Ena
Enaa
Enaan
EnaE
EnE t1,
EC r?
C r4
A

AE

AEE

AEEn
AEEna
AEEnaa
AEEnaaa
AEEnaaan
AEEnaaE
AEEnaE
AEEnE
AEEC

AEC

AC

A

AE

AEE

AEEE
AEEEn
AEEEna
AEEEnaa
AEEEnaam
AEEEnaaM
AEEEnaD
AEEENnD
AEEEB
AEEB

AEB

AB

ABD

ABDD
ABDDM
ABDM

ABM

S

r0: accept

t1,
t1,

Fig. 5.2

Curfont
symbol

r9
rS
r8

t1,r9
tt,r9
t1,r9
t1,r8
r7)
r?
r3

rti
t1,r12
tl1,c12
ti1,ré6
rS

rS

rS

ri10
ri0
rt

AN OUWEWUOUITI O I@MEME>OOOHNENMEI P IEE>OOEMEI Y DM@

En
EEn
EEn
EEn
En

EEn
EEEn
EEEn
EEEn
EEEn
EEn

DDM
DDM
DDM’
DDM

Parsing of the sentence ana’na’na’m

226

Remainder

anaanaaanaam$
naanaaanaam$
naanaaanaam$
aanaaanaam$
ahaaanaam$
naaanaam$
aaanaam$
aaanaam$
aaanaam$
aaanaam$
aaanaam$
‘aaanaam$
aaanaam$
aaanaam$
aaanaam$
aanaam$
anaam$

naams$

aam$

aam$

aam$

aam$

-aam$

aam$
aam$
aam$
aams
aam$
aam$
aam$
am$

m$

| AP AP AN N

227

Example 1 demonstrated a kind of grammar that needs
unlimited length buffer. The maximum number of nodes that
are deposited in the buffer is one more than the maximum
number of intervening a's that lie between two n's in a
sentence. Obviously, this number could be arbitrarily large.
On the other hand, Example 2 shows a grammar that doél not

need an unbounded buffer.

A/\M

N\ \ I\

—_— o —uw

C E B M
/ I\ I\ I\
C E C\ E ?\ D M
| I
E\\C E C E B
| || ||
a n a a 'n a a a n a a m
Fig. 5.3 < o

Parse tree of ana’na’na‘’m

Y
T

r" .
Example 2: '(:;X ¢
G

Consider the . grammar H, that generates the same

language as H,, but with different set of productions:

(1) S *ABM (6) C » N
(2) s »B M (7) N > aN
(3) A»AC ’ _ (8) N =+ n
(4) A - C (9) M » a M
(5) B » N (10) M » m

228
0

Diagram 5.2 shows the GLRRL(i)-CPSM for H, generated by the
algorithm 5.1, The corresponding parse table appears in
Table 5.2.

229

—~——B——s8
n——»7

—_—C——9
——N—»5

— e e g g— g

——.
B
=19

<@

-]

,C},[',-]
Brc)r[-
{B'ch}:[-'—]

BIC'M}l[-I-]

MEOU «~ « -2 =
CMCOZZOC

<t T TTTTCT®
mSSAABCNN

GOAL +S.,{$},{-,-]
S +A.BM,{$},[-,-]
A ‘C'I{BIC}II-I-]
B +N.,{M},[-,-]

o *N-'{BpC}'[-'-]

Deleted items:

Loun X amn X o]

[eNeoNe]
- - -
OO
[y Y)
- - -y []
e, iy, ey) =4 = oy O P

VVZIZXIMOZZ

STATE 0
STATE !
STATE 2
STATE 3
STATE 4
STATE 5

Diag. 5.2
GLRRL(1)-CFSM for grammar H,

230

STATE &

N +a.N, {a,c,n; f = ~——N—s20
N +.aN,{B,C M -, a
. N +on, £8,C,M),{-,0] -
Ne———=7
STATE 7 ::—_: .
N "no,{B'C!M}I[:'-] * .
J STATE 8
S "AB.M,{’},[‘,'] —_—Me21
M ~+.aM,{$},[-,-) —_—r——
LRERUNERS — 12
.]
9 .
|EA "AC.,{B,C)'[-:-]
STATE 10 %
S +BM.,{$},[-,-) i'
‘ .
STATE 11 e . ;,
. M *a.h,}t%,{- -% —_—M—e22
M +.aM, $:,(-,- ’ a
M +om, {$),0~,") —
. —_——e12
STATE 12 I
TN
SUBGOAL ~M.;{¢%,[5,1)
-'m_-
SUBGOAL +B.,{c},[6,1]
SUBGOAL ~C.,{c},[6,1]

STATE

sTATE

STATE

ST%?E
STATE
STATE
STATE
éTATE
?TATF

sTATE

16

A7

18

°
L
21
22
23
24

25

231

(I
M *a.M,f\gp[5.1] \d _—_—M__h_’23 hd
N »a.N,{e},[6,1]) ——N——»24
M -.aM,{¢},[5,1] a———=25
M -+.m,{c},[5,1]) —_—m—26
N +.aN,{e},[6,1]
N ».n,{e¢},[6,1] n——»27
M *m.;{(}-'[5,1]

R

B/oN., {€},[6,1] |
c N.,{e¢},[6,1]
N »n.,{e},[6,1]
N +aN.,{B,C,M},[-,-] ' A
'S +ABM., {$}5[-,-]
M -+aM.,{$},[-,-]

M vab. (e}, (-]

_J

N *aN'r{i}r[_r—]

-

NV

*aOMr{ I-r-]
~a {§%§T-r—]

2. ,IIE}I[—I-]
+.m,{e},[-,-]
*~aNl{(}r[_r_]
*onr{(}r{—l_]

ZZXIXZZ

-

.

STATE 26

STATE 27

‘Symbols
a

m

>

X .0 o

(7.}

M oom.,{e},[-,-]
-
N =»n.,{e},[-,-]
States

0 1 2 3 5 6 8 1 16 25
g6 g6 gl11 gié6 g6 gi11 gli1 g25 g25

r10 r10 ri0 r10 r10 riO
r8 r8 er8 r8 r8 r8-
92 |
g3‘ §8 t1,ré6
ré r3 t1,ré

b r2 ti,rb r1 r9 rS r9
g5 §5 | t1,r6 r7 r7 r7
gl
r0
Table 5.2
GLRRL(1) parse table for .H,

232

-

233

The Parse tree of the example sentence ana*na’na’m is
shown in Figure 5.4, and the' trace of the pérser is
illustrated in Figure 5.5. As one can observe each sequence
of a's followed b} an n independent of its right context is
reducedxfo an N, However, for the reduction of an N to a B
or a C one rfeeds to obtain the parse of the one-symbol
:éduced right context which is either an -M/'or an N. The
grammar"H, is not basic LRRL(k) for the same reason as given
for the grammar H,. Neverthel§;5 the parser for H, uses only

a8 bounded buffer. This 1is true because H, is an LR(f,Z)'

grammar,

[+]

Fig. 5.4
g Parse tree of ana’na’na’*m€L(H,)

State Symbol Current
stack stack symbol
0 - a
0,6 a n
0,6 an red 8 N
. 0,6 aN red 7 - N
w0, 5 N a
§&§2,5,16 Na a
54“6,5,16 25 Naa n
v %0,5,16,25 ‘Naan red 8 N
0,5,16,25 NaaN red 7 N
0,5,16 NaN red 7 N
0,5 NN trans 1 red 6 C
0 C red 4 A
0,2 A N
0,2,5 AN a
0,2,5,16 ANa a
0,2,5,16,25 ANaa da
0,2,5,16,25,25 ANaaa St
0,2,5,16,25,25 ANaaan red 8 *
.0,2,5,16,25,25 ANaaaN red 7 - N
0,2,5,16,25 ANaaN red 7 N
0,2,5,16 ANaN red 7 N
0,2,5 ANN trans 1 red 6 C
0,2 . AC red 3 A
0,2 " A N
0,2,5 AN a
0,2,5,16 / ANa a
0,2,5,16,25 ANaa m
0,2,5,16,25 ANaam red 10 M
0,2,5,16,25 ANaaM red 9 M
0,2,5,16 ANaM ,red 9 M
0,2,5 ANM trans 1 red 5 B
0,2,8 AB. - M
0,2,8 ABM red 1 S
0,1 " S ‘ $
0 reduce 0: accept
Fig 5.5

Buff-

I ZZ

Parsing the sentence ana’na’na’m€L(H, »

- 234

Remainder

anaanaaanaam$
naanaaanaam$
aanaaanaam$
aanaaanaam$
aanaaanaam$
anaaanaam$
naaanaam$
aaanaam$
aaanaams
aaanaams
aaanaam$
aaanaam$
aaanaam$
aaanaams$
aanaam$
anaam$

naam$

aam$

aam$

aam$

‘aam$

/

aam$
aam$
aam$
aam$
am$
m$

| 4% NN

i ' 235

5.3.2 GLRRL(k) grammars with bounded buffer

The grammar H, showed that not all the parsers produced
by the algorithm 5.1 use unlimited numbef of buffer cells.
In general, one.can test whether a GLRRL(k) parser will wuse
more than a given number 1 cells of the buffer. The tesf'can
be carried out by adding extra information to the items of a
CFSM. However, a more-intereéging'option is to try to alter
the algorithm in a way that ensures the resulting parser
does not 6§e more than a certain nuﬁber of butfer cells,
even where the originai algorithm produces a parser that
uses a buffer unlimited in size. Such a goal can be achieved
_in few different ways. The method described here is
essentially the one that was outlined in the beginning_df
Section S.i%? In this met&fdv one employs the GLRRL(kb

\

lookahead pojicy (i.e., "reduced contexts at arbitrarf\
levels) as long' as the number of nodes, over which a A
backtracking takes place in order to reduce the first
bypassed phrase, does not exceed a. limit n. At this point,
if there is a local ambiguity, that would be resolved by the
ELRRL(k) lookahead policy. The latter Qolicy ensures that no
more than k terminal symbols or fully redyced nodes will
reside ‘in" the buffer when one backtracks to ﬁhis point.
Therefore, at the time the first bypassed phrase is reduced,
the total number of nodes in the buffer will not exceed n+k.
However, the interesting feature of this. scheme is that th;

method itself can be used recursively to parse the last

k-symbol fully reduced context.

236

A simple way to implement this limitation is to
translate it into the number of bypassed questionable
phrases in a sentential form. 1In GLRRL(k) parsing} if m
qguestionable phrases in a sentential form are bypassed, then
at most,km nodes will be accumulated in the buffer during
the bhcking»up to the first questionable phrase. Therefore,
., in the new algorithm, if one chooseg n to be kt-k, theﬁ the
lookaheads that resolve the decision about the reduction of
the t-th questionable phrase must be k-symbol fully reduced
right context (or k-symbol terminal lookahead) ratherréhan
k-symbol reduced right context at an ‘arbitrary level.
However, for any questionable phrase after the tbth one,
except the jt-th questionable phrases (j>1), the GLéRL(k)

lookahead policy - may be used. As one can see, such a

Q

strategy periodically enforces the lookaheads accumulated in

the buffer to be reduced to at most k-node fully reduced

contexts.

The corresbonding class of grammars that can be parsed
in this fashion are called GLRRL(k) grammars with bounded
buffer of size kt. Obviously, these grammars are a proper

subclass of the .GLRRL(k) grammars with unbounded buffer.

The items used in the construction of a CFSM for a
GLRRL (k) parser with a bounded buffer, are essentially the
same as the ones that are employed in the unbounded buffer
case. The differencés are that here an auxiliary item can

have a numeric p-tag while its m-tag is '-'. However, any

G

o 237

other item that'is qb;ained through the closure of such an
auxiliary lifgm has 1its p-tag set‘to 't Furthermoré, a
third tag q€{0,1,...,t} reﬁresenting thé number of bypassed
ghrases is added to the items. Consequently, the clogure

algorithm in this case is slightly different ahd is given
. »
below,.
L)

Close (s: Set of GLRRL(k) items) - Bounded buffer case

£y

* Repeat . -

For an item (A -+a.BB,L,[p,m,g)) in s and BEN

“

and for all B »y inh P
' let L'={B}+ L;
If m='-" t;en let p'='-"' else let p'=p;
If g=t then let q'=0 else let q'=q;
let I,:=(B ».y,L',[p',mq']l);
if there is an item I,=(B +.y,L",[p",m',q"] in s
then let r=max(q',q");
if p"=p' and m'=m then
replace I, b} (B ».y,Min(L'uL"),[p',m,r]))
else réplace 1, by (B ».y,Min(L'vL"),[-,-,r])"
else add I, to s; |

Until no change can be made in the set of items s.
Lo

The following describes the algorithm for generating a
CFSM in the bounded buffer case. Starred segments show the

primary differences with the algorithm 5.1,

° 238

Algorithm 5.2: Construction of GLRRL(k) CFSM - bounded
" buffer

(1) Add GOAL symbol to N and production

0: GOAL =S to P.

-

®
(2) Build the initial state s,: .

Let the basis of s, be { (GOAL ~+.s,{$},[-,-,0]) }.
Close the basis of s,. v

Let the set of states of CFSM, Q={s,}.

t

(3) Repeat

For a non-final state t whose successors are no

yet determined build its successor states under
] .

)
Construction of a successor state s for the

given state t under symbol X:

all applicable symbols X.

(i) If there is no item of the form
(A +a.X8,L,[p,m,g)) in t, then t has no
succeigr under symbol X.
Else
let basis of s=0.
For each item (A +a.X8,L,[(p,m,q)) in t
(=) - If m is a number < k then add the item

(A *ax;B,L,[p,m+1,q]) to the basis of s

239
else
(x) if A=SUBGOAL then adad
(A »eX.8,L,[p,-,q))

else add (A »aX.g,L,[-,-,q])

\\ to the basis of s,
(ii) Check if s is a final state:

If s'éontains a single item of the form

(A #aX.,L,[p,m',q)) then it is a final state;
(If A€N, then s indicates the reduction of

A -aX, else, i.e., when A=SUBGOAL, s
indicates the reduction of the production p
(%) " at |aX| states back.)

label s as a final state and go to step (v).

If all items in s are of the form

(A +a%.p L ,[p,m',ql) a4
23 J]
j=1,...,n and m'#'-

1

then s is a final state;-
(s indicates the reduction of the production
p at m' states back.)

label s as a final state and prbceed to

step (v).
-
(iii) Check for inadequacy in the basis of s:
If there are items of the form

12 (A 2a X.8,L,0pm.,qg 1)
)] J DR J 3 3

240

j=1,...,n, and Blit

and :

I : (A = X.,L ,[p.,m,q),
' jgn.*1?...?n, /J > -
where n,21 and n,>n,

(i.é.; shift-reduce/reduce-reduce conflictsf
or ‘

n,=0 and n,>1

(i.e., only reduce-reduce conflicts)

Then

let the shift lookaheads of s be

n|0
SHL(s)=Min v ({g 1+ L).
i=1] k]
1f L‘QSHL(S) =@ for j=n,+1,...,n,

J
(i.e., possible shift-reduction

resolution)
and .
L_QL_ao for i,j=n,+1,...,n, ,i%j
(;.e?, possible resolution of
reduce-reduce conflicts)
Then
Check if resolution can be made by
looking at the terminal symbols:
Let 1={FIRST (y)|y€SHL(s)}.
For j=n.+1,.%.,n, let
1_={51R5Tk(y)|yEL_}.

) J
I1f 1 Nl=¢ for j=n,+1,...,n, and
]

241

1Nl =¢ for i,j=n,+1,...,n,, iwj
then1 ! ’
for j=n,+1,...,n,
for all x€1 .
Let q'=q s |
(%)) If q'=t then“et m'="'-"
else let m'=0;
add (SUBGOAL =.x,{¢},[p' ,m',q"'])
to s, where p' is the pgoduction
A._ -*a_x.)
else ? !
for j=n,+1,...,n,
for all yGL'
(t) Let q'-q.21;
If q'=t ghen let m'="'-"
else let m'=0;
add (SUBGOAL =+.y,{¢},[p',m",q"])

]
to s, where p' is the

.]

production A -+a X.

)]
Conceal (delete) the conflicting basis
items I RS /
n,+1 n, |
for j=n,+1,...,n, \
delete I : (A. *a_x.,L_,[p‘,m.,q_]).
]] D)]]) 3

Else

conclude the grammar is not GLRRL(k)

parsable with a bounded buffer,
i

“ e 242
and exit.

gy

(iv) Close the basis of s.

(v) Add state s to 8 if there is no state t'
in § with the same items as s, or with
items which matcg those of s apart from the
lookahead sets, and for lookahead set L;
in t' it is true that L'=Min(LuL.)

and L'<LNL', where L is the corresponding

)

lookahead set in s,

Otherwise let t' be th cessor of t,

»

Until no.more state can be added to Q.

3

(4) Conclude that the grammar is GLRRL(k) with a

bounded buffer,. : “

Theorem 5.2:

The construction algorithm 5.2 terminates.

» .
Proof:Is similar to Theorem 5.1, with the addition that the

domain of the g-tag is also a f1n1te set.

g

© 243

. ¥ .
Definitions ®

4

A (reduced c-free) context-free grammar G=(N,T,P,S) is
\“J 4
GL‘RL(k) with a buffer of size kt iff a CFSM for it can be

constructed according to the above algorithm.
Corollary 5.2

1t is decidable whether an arbitrary context-free
grammar is GLRRL(k) for a fixed number k and a buffer of

size kt.

Example 3:

b3
P23

Consider the grammar H, tbat again generateé‘ the same

language as H. and H, b\;b-wm;, the producAon“

(1) s+ABM M«(vifét&i'i - ,,“5,

W o '9;'3; i ¥ al B
(2) s+ B * w48 K o T

é“-_&és TN e w .
(3) A{\A c RR9S Y A |
(4) ABgy ‘*110) n*‘i&ou
5) BoNg O (II)M-"

& BRI M

(6) C + N (1,2')‘30 v g o

B

b s
W L ol K

v
<

Diagram 5.3 11L4styaies the GnRRL(1) CFSM, with a buffer of

‘o

nznqd by' applying the algorithm 5.2 to the
ST
grammar H,. Thed§ EQespondxng parse table is shown in Table
5.3, $ o

&

¥

1t
& 25

size kt=2, ob

X.

244

—B
—c
N

Jo

%\\
“}-
6
. 7
— —a—»8

—_—M—
—D——12
—_——— 13

a——= 14

STATE 0

o ~—
L e o™
— — - — ~— -0
O O — | - o -0 (o | - —
aDr 0O O =1 . - O - O =~ —— o
] -) wr e | -] - |~~~ ~r— O O r—r— -
- - el O sl O - [} «sO ! = |, O -~ OO0 [
[] -t | - o a . s =] -} - o S - [] - = -
(SR | [V N B L | [} | et) | B WL | - =] []]
et | et s o - - —r & St F o, - [SR —
P Y Y Y | -~ «F — —pa— - X ——t | | -
e al)it) S o ek ® I N & R N S -t bk r—
—— e al) =)) -~ S o e) D - ,_—p— o~ (@]
avr] srem o} orm - s ran @) arn L X o Yo -
W) s M E M- x . coe F M~ M 2 s Lt 4 ¥, m
e X v st atre [7,] E v med e - et S
tAEQ ~ ~ =« -« 4 MY ~ «Z =~ « Mm . o -~
<M COZZ c o s e ZZMC o * g a .
= © & ¢ o o o o o o o | L o o o s 0 T m o Q
<tT*TrELTTTTET nAv ttT T+t T+ttt T
m.SSAABCNNB O NCMOZZMNK nEXEA <
6 ~N ™ <
h r
n = e %
& | Ee £
< < L = [
€= & B £
[7] w bl 7, v

Diag. 5.3
GLRRL(1)-CFSM for grammar H,

245

o

—N——24
n——=8
a——»7

:::JE

1]
s 1]
1]

[eNoNo]

N O O = N —
e d bl T N Y Y P T Py ey
}}}Oﬂ - '.Irﬁ “ O &~ 0~
v ww soodo ~do

S D N0 DO \D O
MBC ot b S Cd > el
. @ Pt - - - - g, L -~
Q 1 T WeAmmemranrta W e
— W R W W wZ
'{{{{ L e od
Y S
DmaNNEna

Lo S A S A S S
EX@muzzm

BGOAL
L
L

SUBGOA

--__-____-___-JL-__-_____-
SUBGOA

B -’N'I{M}I _0_10] .
c »N.,{B,C},[-,-,0]

Deleted it

{{‘(5 « a a W\ & «

,{B,C,M.},[',',O]

N *°vnl{BrCIM}I [_I_IO]

E _"a'{N}I[-I-IO]

&

N »n.,{B,C,M}, [-,-,0]

N "E;‘N"'{B'C'M}l[—l-lol
N - .EN

E "a-p{N}l[—:-'O]

STATE 5

[}

&o,

o
¥
~

'STATE 11

STATE 4
STATE |7
» ST;}EJB
STATE 9

-«

STATE 1

4

e

saC.,{B,C},[-,-,0]

S -BM, ,'{s}l[-l_lol

STATE

STATE
STATE

STATE

STATE

STATE
STATE

STATE

STATE

12

13

14

15

16

17

18

19

20

\,uSUBGOAL +.M,

M -m.,{$},(-,-,0]

D *a'r{M}:[-I_IO]

SUBGOAL -M.,{¢},[5,1,1]

AN

SUBGOAL -B.,{¢},[6,1,1]

SUBGOAL ~C.,{¢},[6,1,1]

M 4D.Mz{(}![51111]

g

¥
*

"M oom.,{e},[5,1,1)

Deleted items:
First set:

D *a.,{M},[5,1,}]
E *a.,{N},[5:1,1]
Second set:

D =#a.,{M},[12,1
E -»a.,{N},[6,1,

—_
—

, SUBGOAL =N
"M +.DM, {

€
M
€
N

‘s
4

{

- W Neiw W wpr e

€
M - { }
D\ +%a, {M}
N - N €
N - ,{ }
E ».a,{N}

'
.
L]
.
.

a——»14

246

£9)

STATE 21

(
STATE 22

¥

- STATE 23

STATE 24
STATE éS
STATE 26
STATE 27

STATE 28

STATE 29

STATE 30

N »E.N,{¢},[6,1,1]

'l

N »n.,{e},[6,1,1]

b4

N’?"’EN.,{B,CIM}i[-I-IO]p

S "AéM'-:{ﬂ,["";él

M "DM.,{‘}'[-I—IO]

m
SUBGOAL M., {¢},[¥2,1,2]

KIS -

'@WSUBGOAL ~N., (e}, [9,1,2]

—aeg

9

SETTE
d DM’ r’ r
‘*.m,{c?,[' -
+.a,{M},[-,-

UXXX

0]
,0]

0]
0]

P A

M "m-,{f}r[-r-rol

—

-

——M—-—s34

—°
— 30
a——> 14

247

STATE

STATE

STATE
STATE
STATE
STATE
STATE

SYATE

STATE 3% f

31

32

33

34

35

36

§ - s

37

.4

38

Deleted items:
D "a-l{M}r[,-i-lol
E *a,Or{N}r[_'Trol

* SUBGOAL -.M,{¢},[12,0,1] —M—>35
SUBGOAL -+.N,{¢},[(9,0,1] ~———N-Z——» 36
M +-.DM,{e},[12,0,1] —D—»37
M +.m,{e},[12,0,1] . |——m—»38
D +.a,{M},[12,0,1] a——»20
N +.EN,{¢},[9,0,1] ——E——39
N ».n,{e},[(9,0,1] n——-40,
E +.a,{N},[9,0,1]
‘N +s.n,§g§,E—, .o% —N— =41
N “.EN,{e},[-,-,0 N E « 7
N "-n,{f}r[-o 10] ﬁ
E +.,a,{N},[-,-,0] n——»33
* . a——8
N "n'o'{f'}r[-l—rol
M -’DMOI{(}I‘[-I-IO]'
- .>‘.\.L .

SUBGOAL +M.,{e},[12,1, 1

v =
. k] .

~

' SUBGOAL »N.,{¢},[9,1,1)

-

M +D.M,{e},[12,1,1]

M -’m'l{(}l[12"1l1],

1

L
-

N »*E.N,{e},[9,1,1) ~

”

-~

248 .

\

249

STATE 40 ommmm————
N =+n.,{e},[9,1,1]
“‘
STATE 41 . s -
.N +EN.,{¢},[-,-,0]
N
' States
0 1 2 .3 5 6 9 12 20 29 31 32
Symbols
. @ |r9 r9|r12| g20 |r9jri12|r12| q31 ri2| g20 r9 . luwe
m r11| rt11 r11jrcil} r11 Jri R} ri1
n |r8 r8 r8 r8 r8 _ r8 r8
A |g2
B |g3 g9 t1,r6].
C |rd r3 t1,ré6 o~
o
D gr2|t1,rs| |&12|g12| 929 [g29{t1,r12
E |g6 g6| . |t1,r6[g6]| g32 < t1,r9 |qg32
M r2 |t1,rS r1 |c10(t?,r12|c10ft1, 12
N (g5 g5 t1,ré6lr? t1,r9 t1,r9 r?
[4
S |qg1
$ r0|
N Table 5.3 _

GLRRL(1) parse table for H,

The trace of the parser when analyzing the example
sentence ana’na’na’m is shown in Figure 5.6. The parse tree

of the sentence is depicted in Figure 5.7. A

-

0O O0COQOOOOO0OOOOOOOOODOOOOOOODDOOOODDODOOODODODOOOOO

State
stack

NNNDN
OO0

-

-
www
—_

20,32
, 20,32

COO0OOODO0OOO0OODOOO

- W W ™M wW W W W ™| W W=

NAaONnaONnnANnnono o

- wmTwm W W W -

N
o

N
o

20,31
20,31, 20
20,31, 20
20,31,20
20,31
20,32
20,32,32
20,32, 32
20,32

AT ond

- W W W W w wW e, w w0

N
(=]

w W W W™ W W™ ™| W WM W W e W W W

oo od

NN
coo
ww

- w ™ W W w o=
NN
oo
N W
O -

e X R RL RS R RS R RS K- Y-

Ny K
R

wfl e m % % ®» = ® ™ ®wW W W W W W W W N W W W W AW W W N W WY,

<

L R L R L L A

- =

Symbol
stack

a

E

En
EN

N

Na
Naa
Naan

" NaaN

NaE
NaEN
NaN
NE

c

A .

AE
AEN
AN .
ANa
ANaa
ANaaa
ANaaan
ANaaaN
ANaaE
ANRE
ANaEE
ANaEEN
ANaEN
ANaN
ANE
AC

A

AE
AEN
AN
ANa
ANaa
ANaam
ANaaM
ANaD
ANabM
ANaM
AND

f;éauce 0: aéqept

b

trans 1,

trans 1,
trans 1,

Current
symbol

red 9

red 8
red 7

red 8
trans 1, red 9

red 7
trans 1,
trans 1,

red 4

red 9
red 6

red 7

- red B
trans 1,
trdans 1,

red 9
red 9

red 7

red 7
trans 1,
trans 1,

red 3

red 9
red 6

red 7

red

£ P

red 10
red 12
red 5

red 10
- red 1

ANZIIZIUWUZTZUTES O ZZO>ONZZZEOHOMZIN0O0ZZOP>OANZZMZI00 ZZ3 mo

% 250
. . .

;h\\
Buff- Remaigfer.v,
er : RS

- anaanaaatmam$ -
- naanaaana:ms
- naanaaana@m$*
- ‘aanaaanaam$’
- aanaaanaam$
- aanaaanaam$
- anaaanaam$
- naaanaam$
- aaanaam$ _

- aaanaam$
N aaanaam$
- aaanaams$
- aaanaam$
N aaanaams$
aaanaam$
aaanaam$
N aaanaam$
- aaahaam$
- - aaanaam$,
- aanaam$
- anaam$

- naams$

- aam$

- aam$

N aam$
aam$

N aam$

- aam$

- aam$

- aam$

N aam$

aam$
“aam$
N aam$
- aam$
- aam$
- am$-

- o

Fig. 5.6

X
v A A AN

251 .

One may observe that as soon as two symbols accumulate
in the buffer, the parser starts to reduce them. In pérsing
the sentence, the decision for the reduction of an 'N' to a
'C' or a 'B' is reached by examining the next.'E' or 'D'
symbol that follows it in the sentential form. These s?mbols
- are only reduced contexts, (not fully reduced ones), for tﬁe
decision. In turn, tﬁe decision for the reduction of every
. second 'a', in a sgquencé of 'a's appearing after the first
'n' in the sentence, to an 'E' or 'D' is based, on its
reduced right coﬁtext, i.e., the nekt 'E' or 'D'. The
decision for the reduction of others is reached by ‘having

the fully reduced right context, i.e., the next 'N' or 'M'.

W

S

‘A/%
A/é’ N
| | 1™
C N E N M
| IN I I
N E N E N D M

- I I I ™~ o
E N E N E N D M
|| L} - |
a n a a n a a a n a a m
Fxg 5.7

’

Parse tree of ana’ na;na mfﬂ,

'»Tp is mpg:tant to' noté — ded buffer "parser'

L&

.;tdf the qrammar H,, much li;nﬂo{e unbounded buffer parser

“'fér H,, pbstp s an unlimxted number of r!ﬂuctrons of the

C'a' symbgis appear1ng in a sentence after the tzrst,}n'aq
. i %,”

L. % .
L T

I's

252

.+ Thus, neither H, nor H, is an LR(k,t) grammar for any finite

.

*

k and t. Furthermore, the grammar H,, similar to H,, is not

a basic LRRL(k) grammar for any finite k. Because, for any
k k=1 .

“Nfixed 'k, "C " and "C B" are fully reduced right contexts

4 for the redugtion of an 'N' to a 'C', These two different

contexts cannot be parsed completely for the reason that
both derive the same non-terminal string "Nk".

Lastly, an 'interesﬁing phenomenon is that a parser
generated by the algorithm 5.1 for the grammar H, will usé
an unlimiféd number of buffer cell;. Because the grammar is
not LR(k,t), the parser will deposit arbitrary numbers of
E's and D's in the buffer, and the parsing algorithm does

not have any mechanism to enforce it to clean up theWbuffer

'by reducing the nodes in the buffer. On the other hand, one

should note the algorithm 5.1 is a more pévefful scheme than
the algorithm 5.2. Applying the algorithm 5.2 to the grammar

H, will result in a failure.

5.3.3 Properties of GLRRL(k) grammars

The GLRRL (k) érammars retain most of the properties of

the basic LRRL(k) dtammars.

Decidable membershi;}‘ln the twd previous sections it was
shown that the membership problem for the class of GLRRL(k)
grémmars} for fixed k, both in bounded and unbounded buffer
cases is decidable,. Furthermore, for the case of unbou:ded

buffer, one can easily develop a polynomial time . algorithm

253

(similar to the one given in Section 4.4) for GLRRL(k)
testing, which details of it are not given in this thesis.
However, it seems that the method developed in Section 4.4
is not applicable in tﬁe boundeé buffer éase.:The reason for
this is the counting of bypassed questignable phrases, which
also denies the application of the metﬁzd to the LR(k,t)
grammars. Therefore, the exponential time CFSM construction

algorithm 5.2 remains the best algorithm yet for the

GLRRL(k) testing with bounded buffer.

Unambiguity and linear parsability: Similar to the- basié
LRRL(k) grammars, one can show that GLRRL(k) grammars are
- unampiguous. The linear complexity of the parsing algorithm
follows from the fact that at the worst case for the
reduétion of each p?rase k lookaheads will be deposited in
the buffer. These nodes are pushed back on the stack in the
future accounting for k additignal shift operations.'The two
properties are also immedia€2~=fr5m the fact that a CFSM

provides a set of reqular parsing patterns for a GLRRL(k)

grammar.

Fd

In additioq tigghe above properties, the GLRRL grammars
properly includeﬁ@tye LR(k,t) grammars. By definition, the
GLRRL (k) gramm%fs%%ith bounded buffer are trivially included
in the clasg;'of GLRRL(k) grammars with unbounded buffer.
Failure of thé algorithm 5.2 on the grammar H, shows that
this‘ inclusion 1is a proper ore® Lemna 5.1btogether with

Theorem 5.3 ascertain the inclusion of the LR(k,t) grammars

254

-

in the class of GLRRL grammars with bounded buffer.

Lemma 5.1:;

The number of nodes that could be accumulated in the

buffer of an LR(k,t) parser never exceeds kt.

Proof: Suppose an LR(k,t) parser 1in* parsing an input
* k

sentence x€T $§ reaches to a configuration:

e
Stack Buffer Remainder

aX ...X a ...a x'
1 m’) k

and finds that X ...X may be reduced to the non-terminal
1 m
symbol X, put the terminal lookahead string a ...a in the
" 1 k
buffer does not provide sufficient right context for such a

reduction. That is X ...X becomes the first questionable
. 1 m '

phrase that 1its reduction should be postponed. The parser

moves forward and redutes some phrases, and then backs up to

the X-phrase while depositing the reduced phrases in the

buffer as shown by fhe following configquration:

Stack. Buffer Remainder
rl
aX ...X Yy ...Y ...Y 4 x"
1 m 1 k n-k+1 n
where Y ...Y 1is a terminal string and x" is the unseen®
n-k+1 n

part of the sentence. Since the parser has moved forward

beyond the segment of input that is derived from Y ...Y , it
1 k
means that at least one of these nodes dominated a

E 4

255

questionable phrase whose reduction®could not have been
inferred by looking at some prefix of the terminal string
FIRST (Y ...Y). (For a maximum effect in the value of n,
k k+1 2k
one can suppose that the questionable phrase was the
Y -phrase or some rightmast descendant of it). Similirly,
k
,one can argue that every Kk node. after Y , except
k

L]
Y | ...Y ', must have dominated at leasy one
n-2k+1 n-k
questionable phrase. Since the number of bypassed reductions
Vinciuding the reduction of X-phrase could have not exceeded

t-1, thus nskt. O

+Theorem 5.3: -

An LR(k,t) gradmar can be parsed by an GLRRL(kt) parser

with a buffer of size kt?,

Proof: The lookahead_policy that decides the reductions of
the first t-1 bypassed phrases in GLRRL(k) parsing with
Sounded buffer is the same as the one employed in LR(k,t)
parsing. Except, if § ...Y 1is the lookahead that decides
the reduction of X ...X 1to t:e nonterminal X, and Y .Y

itself 1is a phras; tha? can be reduced to a nontermln;l sa;
Y thhout referr1ng to any symbol to the right of Y , then
reductxon of the Y-phrase and probably 1ts dom1natots takes
place before backing up to the X-phrase. Th1s partly is due
the fact that LRRL parsers examine the }ookaheads one at a
time, and become aware of those reductions. Secondly, such

reductions are given priority over the reduction of X-phrase

in the CFSM construction. The lookahead policy for the t-th

‘ 256

phrase could as well be k terminal symbols, which always is
so in an LR(k,t) parser, Therefore,’one may observe that if
an LR(k,t) qgrammar G 1is such that in barsing L(G) by the
LR(k,t) parser; the contents of the buffer are always some
descendants of the k-symbol fully reduced right context of
the first bypassed phrase, then the grammar G can be parsed
by an GLRRL(kf parser vith a buffer of size kt (e.g., the
grammar H, in Section 5.3.1). However, this is not true in
general. The contents of the bufferfcould be the first kt
symbols of the fully reduced right context of the first
bypassed phrase, or some descendants of them. Therefore, it
can be concluded that in order to parse an LR(k,t) grammar
by the GLRRL method, a GLRRL(kt) parser with a buffer of

size kt? is sufficient. [

In conjunction with the above theorem, one can show
that when the algoritnm 5.2, with fixed parameters kt and t,
is applied to an LR(k,t) grammar, the q-taqj,;ill be-
incre‘mented at most to t and will never be 'reini?ialized to
zero. Furthermore, an LR(k,t) grammar will not'ptilize all
the kt? cells of the GLRRL(kt) parser. Only, at most kt

cells will be used.

o .
Now by considering the above theorem, the following

corollary may be stated.

Corollary 5.3: ‘ SR

The class of GLRRL(k) grammars with bounded buffer of

size kt properly include the class of LR(k/t,t) grammars.

S
L4

Proof: The inclusion is immediate from Theorem 5:JV.£t§is
proper becausb‘SOﬁi GLRRL(k) grammars witjp bounded buffer
like H, are net LR(k',t') for any finite values of k' and

t'. 0

Ignoring all the peculiarities of differént classes,
one may intuitively state that in the construction of‘ an® &
LR(k,t) phrase finding automaton, two mechanisms prevents ;
generating of an unlimited number of states. One is "the‘
Iimitation on the length of the lookahead strings associated
with the items, and the_ogher igs the limit on the number tbf
bypassed phrases. In the construction of a GLRRL(Kk) CF§Q
with unbounded buffer, only one mechanism, i.e., the 1limit .
on the size of lookahead strings (associafed with the items) -
achieves the same goal. While in bounded buffer case the
number of bypassed phrases is counted, but the arithmetic in
fact is modulo t. One may even resemble the last method to a
system that implements Szymanski's LR(k,t) method in a
periodic fashion. Lastly, one may observe that if one sets
out. to construct-a phrase finding automaton according to the

LR(k,») scheme, there is no mechanism to prevent one from

generating infinite number of states.

258

[5

Perhaps a remark Ai? in plice here. The class of
GLRRL(k) grammars with gounded butfer devezoped in this
chapter i§ not the ohly way faia perhaps is not even the
best way) to define a subclass ;f GLRRL(k) grammars that use
limited number of buffer celle. In fact it is not guaranteed
that a GLRRL(k) parser with a buffer of size kt will fully
utilize its:sbuffer. However, the implementation reported
here 1is the simplest one and it easily shows the inclusion
of the LR(k,t)‘grammar; in the corresponding bounded-buffer

GLRRL grammars.

It is iqurtant to note. that none of the modifications
disaussed here affects the basic characteristics of the LRRL
grammars, spécially the decidability of ¢the membership
prpblem. Furthermore, apart from use of pnbounded buffeés by
séme GLRRL parsers, all the parsers 'aeveloped‘ in this
researqh' retain the basic advantages of the LR parsers,
i.e., automatic generation, table drivability and linear
complexity. Indeed a casual user wh?.obtains one 6(these

parsers through automatic generation may not even notice
. P~

@

Figure 5.8 gives a lattice diagram of inclusion of

that his/her grammar was ndt LR(k).

different classes ‘of grammars ‘so far dg’tugsed in this

thesis for given values of k and t. Those in bold characters-

- \

are proposed in this research. - -

{
'L _;7,’}

oy o | 259

/

.
S
Undecidable - " #SPA(k) ?
 membership "
"""" e 2ttt Mty Attt
Decidable.- s, TN
membership u GLRRL (k) \\
' unbounded buffer k\\ ’
DR : -
GLRRL (k™
/////////’bounded buffer
v . s
EMLRRL (k) ?
’ ' \ |) |
MLRRL (k) ELRRL (k)
besic LRRL(K) - '| | . LR(k/t,t)
» type I1 :
basic LRRL(k)
type I - :
y
g 4
] " o _
» S ‘. Fig. 5.8 | -
~P£~ o Inclusion of grgmmar classes,
. b. -

{ -~ L4
—

oL : R
. . v | i _ .

- . . N \\/
4’ ‘. ‘ "- 260

4 -

» Turning to the language space, one can show that alll“'.'v
the parsers with bounded buffers, i.e,, basic Lkﬁt@(k),
ELRRL(k), MLRRL(k), EMLRRL(k) (which have buffers of size k)
and GLRRL_(k) patsers with buffer of size kt, accept only
deterministic context ';ree 1 gl@ges 'I‘h1s can be proven by
simulating the parser by;; a rmfhlétxc pushdbwn automaton..:
with stack symbols con51st1n§‘ of pa1rs of a .parser state and
contents of buffer. A" similar proof is given for the harcus
parser in Appendix .I. On the' other hand ELRRL(k), EMLRRL(k)

-

and bounded-buffer GLRRL(k) grammars include LR(k) grammars.
¥ o

'Thus * the classes of 'ELRRL, EMLRRL and bounded-buffer GLRRL

.lang'uages are the same and are equal to the class of

determmlstzc _) context-frge languages. However, the -
- éﬂoductxpn of fn’bounded -buf fe¥ GLRRL(k) Yrammars has led

‘to an interesting open problem in the language space‘.“
Ob\}ioqsly ,/ unbounded GLRRL languaged include the"

. B
deterministic context-free 1languages. But, it is not known .

whether this incl¥sion _is a propes .ope, or it is an

equivalence.»The unbounded buffer {n fact yields a two—stack
P

e
par—ser. Generally, determ1n15t1c two stack parsers may ,hxde

: the non- determmlst'n Qf a context- free languag“e For exampfe,
] Voo " \ . -
: _LR(k oo) FSPA(k) LR-regular - and BCP(m n) parsers are

cap‘abl“e "to. handle some nop -
n 2n am'm

languages such as L= {a bé ca ' :b‘. N

B ‘qgmugst ic gontext-free
L mm -

Olu{a. ¥.da b |m, nZO}

Y ’ "\i- % I y
It seems unplaus1b1e‘&mt a’mﬂéuﬁﬁed buffel: -GLRRL (k)

' parser can be sxm\T.[ated by g 'smgle . s%ek pushdown

automaton. On the .other h ere does not seem to be a ‘¢

-.‘

e | . : 261

- basic LRRL(k) grammars thd

»

. S
counter example for the equivalence. Therefore, the
. | ‘ " .
following question is not answered in this résearch and

remains-open. .
Open problem:

. Is the class of unbounded-buffer A GLRRL languages
“equivalept to the class of deterministic -context-free"

languages?

A similar problem regarding a Marcus-type parser with

‘unbounded buffer is also discussed in Appendix I.

P

-
5.4 Subclasses 6f LRRL(k) grammars

‘

In this section three subclasges of LRRL grammars are
Ty . i .

. 4
discussed.

&

5.4.1 Marcus parable MP(k) g;éhmars 1 s

>

For each class 6f LRRL §rammarsb<?; is possi%le to
define a subclags of them tﬁat can be .handled' by a
Marcus-type parser 1in a partially top—dgwn méa‘sr. Since a
Marcus-style pérser backtracks to a post;ongd shift (i.e.
“attachment) ‘po}pt, these .?fammaré in@eéﬁ fneeq);to be

subclasses of type ‘% "LRRL Mrammars 'Qn each cgse. As an

example case, the followi con;iﬁers a subclass of type 1

ana;cus-type parser for them

s

exists.

\

) * . 262
. .

In order to characterize these grammars, one needs ton
deéopple thé parse tree construgtion mgcﬁ;nism of the Marcus
parsef from its finite state control mechanism that is used
for the recognition of the productions in the grammar. In
consﬁrutting a CFSM for these grammars two kindg of
ambivalent situations must be conside;ed;ﬁyFirst 'is . a
éituation in which more than one nonterhinal éymb;l appear

. . . - : -

on ,the left hand sideg. of the basis items in a state.

Marcus' parser, due to its top-d.;nafi\re, requires that on
¢

'entry. to a state, the nbnterminél symbol on the left hand

sides of the basis items to be unique. In this way the next

construct is predicted and the corresponding node could be
- .
created. Thus, if a state t conta1ns items (A ~ Ca L) and
: &

(B ».C8,L") ihen its succdssor under the symbol C would be

inadequate. However, if ({Cal}+ L)Q({CB}+ L')-o then the

i O
Qaconflict . may be resolved:- by-'parsing ‘ahead the k-symbol

lookahgad. "In thls.51;uatxon the state t will have three

different successors .under ¢ the symbol C\\ﬁ/aer the FLAG
value OFF, the successor state s, will contain basis .items
{(SUBGOA\L -PRED(A) ~C.y,{e})|Cy€({Ca}+ LI} ' . and
{(SUBGOAL- PRED(B) +C. 8§, {e}HCGE({CB}*‘kL)}1. Th1s new form of

K
aux111ary productions, i. e., SUBGOAL PRED(X) +r, indicateés a

-deferred p;edlctlon of the nonterminal X. gqUpon cofipletion

one, -of these auxiliary productions the lookaheads, i,g., the

right hand side of the ’auxiliary productioﬂ{}? 11 be

deposited in the buffer and the prediction of the

nonterminal X at k states back will be signaled Sy setting

N

-

° . D
the FLAG to a new value Pred-X. Therefore, in this scheme
the FLAG variable besides the previous OFF and ON values
could take any of the |[N| new values. Pred-X where XEN, In

the above situation, the state s, the successor of t wunder

‘the FLAG value Pred-A and the symbol C w&l contain the

basis 1.: (A +C.a,L), and the state"®, the successor of t

under the FLAG value Pred-B and th‘ symbol C wxll include A

the basis item (B -C.B8,L'). Note that predicting of a new
nohterminal can also be in co’nflict with a shift operation

on a longer basis 1tem (i. e.,.vuth a minimal attachment), as

it 1s d’evt vnth in the followlng aljonthm. . .

4he se!pnd k1h§of confh\cts’ that may e£r1s; in the
states of a CFSM, are t:e reduce- sh!ft con I1cts This is
the situation in whlch‘ two items (A -vaa:,L) and (A" »a B L')
appear 1n the same stat‘\To resolve §bis kind of - cog‘fllct
the scheme used in the type I basic LRRDM grammars will be
employed That is aux1l1ary items -
{(SUBGOAL- RED(p) ».y,{e}l)|yeEL, and p is the prdduction A =a}
and {(SUBGOAL-SHIFT -.o,.{<}|a€({B}f L‘)} will - be added to
the ’.state (provided that the lookahe:ds indicate a pos‘sible
tesolution ‘of the redu'ce)-shift conflict), -and l:he or'i.ginal

[4 . . ' - »

conflicting ite‘rs’/wili be concealed.

Algorithm 5. % describes’the ’const“r‘UCtion of a CFSM’in

this fashion. The resulting grammars in thlS method will be

»

fully reduced lookaheads.

263 .

T

1y

‘denoted by basic MP(k), i, e., Marcus parsable with. k- symbol ‘

T
.

-

Algorithm 5.3:

i Y Y - 26e

v

] v

: , 4
The following algorithm decides if a given grammar is

_ o '
partially top-down parsable with k-symbol fully reduced

lookaheads. The a jthm will produce a CFSM if the answer

is posxtiv&_ ‘ ﬁ;tl
(1) Add GOAL : Y

: i
i+ GOAL 4S

% |and productidn

-

Eu11d the initial state si,:) -
"Let the basis of s, be { (GOAL +.5,{8]) }
and its-.concealed set be Q.
Close non-concealed bpsig of s,.,

Let ‘set of states of CFSM, Q={s,}.. |
) % . . .
] w ¢ e Y b ‘."" - "‘""'

(34 Repeat !

) N
For a state t whose successors are not yet determined .

build its successor states under all app11cab1e symbol

X and FLAG values (OFF ON,Pred-Y; YEN) as described

.below.

' (a)- Construction of -a .successor ‘state .5 for the -
gi‘v‘en state t under symbol X and }-‘LAG-OFF: . .,_r._@.
¢

(i) 1f there is no non-concealed item of the form

v

(A =»a. xﬁ L) in g, then t has notsuccessor

under symbolax and FLAG=OFF , ‘;gf. | T

S e

~

LT

*

Elge
. "“Check $or ptedict—wedxct and predict- Shlf’

conflicts: o N

I1f all non- aux111ary and. nquconcealed items
in t with an X t@: xhe rxgﬁt of :;:';f
the form (A ~a. JXB L) S ’f
for]'==1‘,...n }J' J “#, ;'

4then there is no predict-predict or predict-
s,h'if.t conflict, and thus let basis of s be
(€A aX.B JL)[§=1,...,n};
Check 'forjrecjlu?:e-shift conflicts in
" the"is of s':'
“If there ”at:e items of the form - ’
1 ¢ A -vax.B\,L :

3 i3
J-2,-¢u,n and B+

and “)

I ¢ A -'ax.,p H :
1 1 ?

where n22 C i
. -A‘
then o . 4
' let the shift lookaheads’ of s'
: n

SHL(S)ﬂMln v ({8 1+ L).
- j=2 % j _k j
If L nSHL(s)=¢ d
1 .
(i,e. p0551b1e" shift-reduction
@, . resolution) ¥ '

then B

conceal the original conflicting basis

‘ :) i"t‘ii's I FAC) 'I [‘nd add new
R n :

. 265,

- g

#¥"% ‘non-concealed basis, i.e.

s

344 (SUBGOAL-RED(p) +.y,{c})
| 1

o « to s for all y € L ;
. . _ 1

- - , vhere p1 is thé production A -aX.

A A Also add (SUBGOAL-SHIFT =».y,{¢}) to's

fof”all y € SHL(s). A

.“nElse 4

PR c@hcludé“%be dradhar is Row . >

- ba51c MP (k) and»exxt.)
. a ' 4
Else (i.e., when there-1s a predict-predict or

predict-shift' conflict in f.) .
Let SHL(t) ={ (X8)+ L g
)
such that (A *a.x.,L 3,
i o3
is an item in t and. a#c} . .
Let PL(B)= {(xp)+ L
. i k i3 -~
" such that (B 4<§B L)

i ij i3
is an item in t} :

. (If’jfr all i,j ahd 35 TN
' SHL(t) +PL(B)=p ¥ -

(i.e., possigle resolution of '
predict-shift conflict;)
and
- PL(B) *PL(B')=b o
(i.ef, po§§igle resolution of
\b;edict4p:edict conflicts)
then
//Cod?eai all the items

*,
vy

r .
. 6
\
-
N
.. v . "
. .

"

. . 267

(A »a.X8) !’:
“J -
in state ¢, where a#t

Let the basis of s=
. { (SUBGOAL-SHIFT -ox.'y,{é‘mxyE'suL(t‘)}
and for ,all i, and XGG‘B ;
add the item
(SUBGOAL PRED(B) -X.$, ﬁ])
8§ i
‘to s.
lse
. * " . .
conclude the gramnmar ie®not basig
MP(k) and exit.
(ii) Close the non-concealed basis of s.
\
(iii) Add state s to @ if rifere is go state t'
in @ with the same itéms as's” or withl

items which mat#h those of s apart from the

lookahead sets, and for lookahead set L'.
o) : . Ve
in t' it is true that{L'=Min(LuL") and

L'+LNL', where L is the corresponding
lookahead set in s.

. , -,
(i.e., each 0'€L' is a prefix of some o€L

7

.,and each o€L has a prefix o' in L',

This latter condition ‘isvintroduced as a
means of optimization that reduces lengths
of necessary loakaheads.)

~AOt:horwisevlét:rt:' be the successor of t.

LY

268

.

(b)- Q"struction of, a successor state s for the given

C.
" state 't undet symbol X and FLAG=ON :
‘l

(i) 1f there 1#¥ N6 concealed item of the form b g

A-'aXBLlnt | »

)
-

then state t has no successor under symbol!(

and FLAG value ON, ¢
Else ' .
\

let non-concealed basis of s be ® v f/a\

—

For each concealed item (A -+a. xp %) .
in t. add (A ~aX. B L) to the {baéswof s.
Check for shift- reduce conflicts in s
as in part' (a) and add any necessary

SUBGOAL-RED a’SURGOAL‘SHI FT .auxiliary

. A
items. , .

- .;/\\
JER— ”

(ii)-(iii) Repeat steps (ii) gng,(iii) of
\ part (a) for state s. ?

“
L]

s-l,
N
[
.

(c)~ Construction of a successor state s for the given

state t under symbol X and FLAG=Pred-A:

(i) 1f state t had a predict-predict or

predjct-shift conflicts under the symbol X,
L Y

-_’?"“ ' - o 269

then t has successors under symbo] X and

some FLAG values other than On and OFF,
@ . In this case the basis of s is
{(A +X.8 ,L)} such that each

J 7, g& . .)

(A -.X8 ,L) is a ¢ flicting item in
t oredicting A as the next construct.)
After obtaining the basis, check for shift-

reduce confliots and add any necessary

SUBGOAL-RﬁD‘or SUBGOAL-SHIFT auxiliary *;ems

'Et (a).)
o) . . [. .

-

*# P) ‘t. E ; . e .
(ii)-(iii) Repeat the stéps (i$) and (iii) of
Y - : . ..
part' (aJ)- fOT ~“Srate W, A
Until no more state can be added to'Q. v)
e . | |
o | , | o \
o~ ¢ .
(4) Conclude that the grammar is basic MP{k). o N
R

AThQ CFSM"”ior a ‘gramma;, oMained 'gg' ;ppiying ghe '
. A : .
algorithm 5.3, cﬁn act as a finite state control mechanism
both for a botfom-up‘ parser and for a partially top-down
: ;ne. In the bottom-up parser, as before, the complétéé'right
hand siﬁes of the aux@liary prbductions are dep?sited in the
buffer, and therefore one does need morg‘ €h9i a k-cell

buffer. In the partially top-down pars,r,‘/fhe original

, 270
\ * ‘ D ‘

nonterminal symbols that were predictgq;put their. dau‘htorl
are not yet completely parsed reside on the stack. This
scheme is applicable to the MP(k) grammars, because "of the-
uniqueneg$ of the ériginal nontermf&gia symbol that may
appear on the left hand side of the basis items in a state.
In this method, shifffgg of a symbol is treated as the

attachment to its parent. i

' on the other hand, au*ili;fy nonbé;mingls such as ¢ .
“§UBGOAL-PRED(X) or SUBGOAL%RED(p) do ngt , have a
;chyresponding node on the ‘tack. Insté?d,;q'aqh symbol\ \
appearing on the right hapd side of an auxiliafy'ptgghétion,
. updh completion of its parse is deposite,d}in the buffer-.. *

Therefore, in general the number of buffer cells. could be

unlimjted, However, one can consider .a more restricted

-

subclass of these‘brammars that use limited size buffers.

-

This can be achieved by associating(a\gag 1 with the items
. / ™
of the CPSM. The 1-tag will indicate the number of occupied
cells in the buffer upon~reaching'the’s§ate. |
' N : LNy

One should also noté ‘that on trénsfetring a pode iﬁtg v

L

ghe buffer, a po1nter (which: 1n,§act’de£1nes‘9 wx' ‘itg
., be moved one cell forward tg;¢ﬂ' VR '
2 '\auxxlxary product1on the poﬁpter"> ‘
' 'thz left a number of cells ébuql to the size Of

"hand side of the auxiliary ptoductlon. R ﬂf.

&
L 4

» One may observe that in this method a node

]

corresponding to th€ current construct is created wvhen its’

T M

: ’ "’U‘m‘
. o i

first daughter or some fully r

$
-y

available. This scheme |is

‘¢ Y ’ 4
mw

ghi'ﬂfoﬁtex£>;hgcome;'
milar to.Marcus' pafser
except that Marcus' parser ca Greage some dominators
ican be bniquely dotormil;ﬂ

§ present parser byﬂ:ﬂglxzi

e the closure graph of tHe items in each state.

of the current construct if

This'feature can be added to

In this section, only the logkaheéd policy of the basic
"LRRL grammars (i.e., the compl;te parsing of the fully"
feduqed contexts), ‘was applied in a partially 'top-d;wn \
parser; Orfe ‘can construct siqiiar pgrse;sjgﬁat employhe
ELRRL,* MLRRL or‘ GLRRL lookahead pdligies (i.e., an
incomp¥ete parse of the ful“ teductd contexts). A parser
“based on GLRRL lookah&ad pol;cy wvould parse the grammar G,

of Chapter '2, exactly in the ' same manner ‘thatlpxhc

Marcus—stylé parser described by the PIDGIN grammar G, does,

P] :
Fe. . 3)@

5.4.2 Simple LRRL(k) grammars Ny . ' X’
- : . N -

_ Similar to SLR(k) grammars [Dere 71], the. simple
, A :
LRRLfk) grammars may be defined by employing non-exact

lookaheadg ‘3n thxs scheme, assoc1ated Vlth each item, there$
»:’,‘,A s~ 5l) &, .L'»'"
S is a numbet "1k thht Jndxcates the number of lodkaheads‘"

L S

allowable for that fteg. When an inadequacy arises in & -
state of LR(0)=CFSM, <lookaheads are obtained by computing

RED-NBXT - gets, where RED-NEXT (S)={$}, and for a
non-tetminal. A, RED-NEXT (A)-u({ﬂ}t RED-NEXT (B)i_such that
Q’AZ € p‘ N L o

e’ 4 »
b _ - 272

RBD-NBxTI(A) is the set of k symbol strinqt that can -

4

)

appear next to the right of A in the "“set of leftmost
sentential forms. When two items A -+a.,n and B *a.ﬁ,m'%re in
conflict, new items of the forms SUBGOAL-RED(p) - .94,0;

o(RED-NB!T (A) and SUBGOAL-SHIFT ~.0 ,0; o€{B}+ RED- NEKT (B)
k

k
vill be added to the inadequate state, provided that they

indicate a possible resolution, ‘; 14

« »

"Similar grammars were also introduced in {Szym 73) and

again discussed in [Tai 79) for k=1,

5.4.3 LALR analogues of LRRL(k) grammars

f . —

Discbissed in the optimization of CFSM_construction' was ’
a class of LRRL 'qrammars -analogous to LALR grammars vrere

states with sxmxlar items and non-conflicting lookphead/sets

. /

may be merged. ’ - /

/’/, | |
The CFSM for these grammars either can be.:un§tructéd

from a cerresponding LRRL (k) -CFSM by mérging thea7ta%esvith

. ') . o
common core segments., Or, 1t - can be construcdted from an .

LR(0)-CFSM by establ{shing pPropagate links: as i LALR(K) -

_grammars.

' ’
. d .

5.5 .LRRL(k) grammars with ¢-rules : |)
, . o - .. e ‘ Lo
So far, it was assumed that all the context-free

grammars under consideration. in .this thdsis are ¢-£ree, .

-

" e-rules “ctan be inhcorporated ‘into LRRL(k) granmars in two

-

~ 273

different hays.'One approach is similar to the LR(k,t)
grammars, in which no distinction is made regarding the
lookahéads that may derive nuli string. In this approach, a
right context may shrink away to null string, giyfﬁg
asgélutely no additional information for making parsing
dec¥sions. LR(k,t) parsers that employ this strategy, also
suffer from a _certain anogaly in that they - parse somer

grammars with e¢-rules which technically are nog LR(k,t)

[Szym 73, p167].

In the second approach, which is adopted here, one
takes into cénsideration only those lookaheads that do— not
derive null strings. A nonterminél symbol A that derives
both non-null strings and ;, will be represented by A in the
lookahead strings. In the subseqﬁent manipulations A would
. be prohibited to’derive a null string. Therefore, 'given a
context-free grammar G=(N,T,P,S), one needs to subcategorize
the nonterminal symbols N inﬁo N,, N, and ﬁ,, where
N,= The set of nonterminals that do not derive a null
string.

N,= The set of nonterminagls that derive both non-null and

null strings. Th%wjgéiinces of these nonterminals that yield
11

non-null strings e denoted by N,.
. 5 »
N,= The set of nonterminals that only derive null strings.

Such a .categorization can be obtained by a straightforward

o | 1

iterajive algorithm,

]

274

®

> ' .
The following prtliminary definitions will be needed in
[-~

« the pfesentation of algorithms for these grammars.

’

e

s

§ : -
pefinition:c-free concatenation
!) . .
Let a=X ...X be a string such that none of X in it
L N n Lo i
derives a null string. Then c-free concatenation of a symbol

X with a is ‘ \

Xa If XEN,uT
c-free cat (X,a)=| Ra If XEN,
a If XEN,

.

-

¢-free concatenation “of a&string B=Y ...Y with string « is
\
N Y

1 m

t

recursively defined by:

c-free cat(B,a)=c-free cat(Y ,e-free cat(Y ...Y ,a)).
1 2 m

Defini}ion: k-bounded ¢-free concatenation of two sets

Let L, be set of strings and L, a set of strings of
non-null deriving symbols. The k-bounded c-free
concatenation of L, with L, defined as:

L.t L,={PF (e-free cat(B,a))|B€L, and afL,}.
k K

#

Definition: k-symbol ¢-free fully reduced right context

The k-symbol c—;:Le fully reduced right context of a
phrase in a parse tree consists of the k non-null derivtng
nodes that follow the phrase in the leftmost derivation of
thie tree. Thus these. ngSes dominate any seguence of k
subtrees to the immediate right of thé phraée that have

nonfnull frsptiqrs‘(i.e;, a k-symbol e-free reduced righg

Y

275

A _
context of the phrase).

.
/

; The following suﬁsﬁctions present!ﬁbe clogure and CFSM
construction algorithmg for the type 11 ‘basicn LRR%(kY
grammars in thepfesence’ofxgﬁproductions. The parsers for
these grammars employ- k-symbol ¢-free fully reduced right
contexts in making parsing dqciSions. Similar algorithﬁs can

be developed for the other classes of LRRL grammars.

: S
5.5.1 Closure operation in the ;::;ane of e¢-rules

Recall that a nonterminal symbol A may be shown as A in
an item. In closing a state, one should be aware that such
symbols are not supposed to derive a null string. The .

following algorithm handles such a provision.

Add(1: item, s: set of items)
Suppose I=(B -+.y,L). If there i1s an item
I'=(B *.y,L;)ih s, then replace 1' by
I"=(B ».y,L"), wherejL“=Min(LuLf).)
Elsé let s=su{l}. . h

e
-

Close(s: set of items)
Repeat
For an item A -»a:XB8,L in s
If X is a nonterminal symbol B in N then

for all B +y €P .
Add((B ».v,{B}x L),s).
. k
Else

276 -

If X is a nonterminal B in N, then
for all‘B +y fn P

such that y#e and nyt

1f y=X ...X and at least

one o£1x.'snis in N,uT

then Addt(ﬁ +.v,{B}t L),s).
Else for each izl,..?,n

v

. _ \
Add((B.».X ...X ...X ,{B8}t L),s).
1 i n k

.

-

>
Untf\ gl change can be made in set of items s.

5.5.2 Construction of CFSM for grammars with ¢-rules

-Let G=(N,T,P,S) be a reduced context-free gramm;r. Let
(N,,N,,N,) be the partitioning of N as described above. The
following algorithm decides Qhether G is type II basic
LRBLSE)vfor fixed number k. The algorithm produces a CFSM if

the answer is positive. * _— .

Algorithm 5.4:

515 Add GOAL symbol to N and production - 3
0: GOAL =S to P. z _ ¢

(2) Build the initial state ;.:'
| | Let, éy = { (GOAL =+.5,{$}) }. -
@/105 (se). ’ R

Let the set of states of CFSM, Q={s,}.

. v 277

(3) Repeat ~
' For a state t whose successors are not yet
determineq build its successor states under
all applicable &mbol X.

(
Construction of a successor state s for the

given state t under gymbol X:

(i) Let s=0. ' v
'For ;ach item (A -+a.XB8,L) in t add .
d - (A »aX.8,L) to s.
///f Furthermore if X is a nenterminal B in N,

then for each item (A -+a.BB,L)

in t, also add (A +aB.B,L) to s.

(ii) Close(s). : [\\

~

(iii) Check for inadequacy in s:
I1f there are items of the form

I :A *a BB ,L;)
J 3 31 33 3
I=1,...,m \

\\ and

I1 : A =a .,L;

3] J] =
J=m+1"aoo'n

where m21 and n>m , ~~

(i.e. shift-reduce/reduce-reduce conflicts)

278

or
m=0 and n>1
(i.e. only reduce-reduce conflicts)

Then “ ’

iet the shift lookaheads of s be
. m
SHL(s)=Min v B ({8 }+ L).
S J=1) l k]
" (Note the resemblance to ¢-free FIRST

k
in LR(k) grammars.).

If.;:bSHL(s) =@ for j=m+1....,n

(g.e. possible shift-reduction
resolution)

and

for i,j=m+1,...,n ,irj,

items' I and I are the same _
when th; dasheg over the symbols are
ignored or L AL =0 -

li.e. possib%e gesolution of
reduce-reduce-conflicfs. Note
that twotftems (A +a.,L) and

(A %a.,L') are assumed not to

pose a conflict.)

Then
conceal the conflicting items in s:
I ,ees,1 and add new items

m+1 n
corresponding to their lookaheads, i.e.,

L 279

~——

For j=m+1,...,n

N .
add SUBGOAL-RED(p) -.y,{c}
)
. to s for all y €L ;
, where p is the production A =+a . |
J . -) IS N
Goto step (ii). : /
s Elge : : \

\9
{]

conclude the grammar is not type II |

-y ;
{

basic LRRL(k) and exit.
Else, i:e., when there\is no con‘fliéting
items in s, proceed to step (iv).
[e
(iv) Add state s to R if there is no state t"
in Q with the.same items as‘s, or with
items which match those of s apart froﬁ the
lookahead sets, and for lookahead set L'
in t' it is true thatiL'-Min(LuL') and
L'=LNL', where L is the corresponding
lookahead set in s. -

Otherwise let t' be the successor of t.

Until no more state can be ;Bded'to Q..
' - /

(¢) Conclude that the grammar is type 11 basic LRRL(k)\

\
Q
The parsing algorithm for these grammars is- exactly the

same as the one used for the grammars with no e-productions.

280

Thus the parsing‘algoritﬁm is not repeated here and gnly an

example will 5; presented.

Example:
Let G1 gxt-free with productions:
(1) S = A . (8)
(2) S +BD (9) E '+ ¢
(3) A+ a (10) F » ¢
(4) B - a (11) M+ m
© sy c-EF (12) M » «
(6) C + ¢ (13) N = n
(7) D~ MN

In the above grammar nonterminals C,M and E derive both null
and non-null strings. Diagram 5.4 shows a type 1II basic
LRRL(1)-CFSM for G constructed by the algorithm 5.4. The

corresﬁdhding parse table is shown by Table 5.4.

STATE 0

STATE 1

STATE 2

STAFE 3

GOAL -+.S5,{$}
S +.AC,{$}
s -.BD,{$)
A ~.a,{¢, 8}
B +.a,{D}

GOAL ~»S.,{$}

S sA.C,{$}

C ~.EF,48]
Concealed item
First iteration:
C +¢.,{$]

Concealed item \
First iteration: |
E %¢.,{F} ‘
SUBGOAL-RED(6) ~.$
SUBGOAL-RED(9) ~».F
F ».f,{¢}

Concealed item

First iteration:

M +¢., {N}
SUBGOAL-RED(12) +.N,{¢}
N ».n,{e}

Diag. 5.4

LRRL(1)-CFSM for a grammar with e-rules

—C—»5

——E—6

e——7

———N———= 14
n———»15

281

STATE ¢

STATE

STATE

STATE

STATE

STATE

STATE

10

-

Cdncealed items
Pirst iteration:
A +a.,{C,$)

B *.oo{D}‘ .
SUBGOAL-RED(3) ~.¢, {]
SUBGOAL-RED(3) =+.$,{¢]
SUBGOAL-RED(4) -+.D,{ ¢}
¢ -.er,{c) .

E +.e,(F]

- e o - A W G e dn b R G W W e T e Ee W

Concéaled item
Second itQ{ation:
E +¢.,{P} ~

Concealed item

Second iteration:

M +¢.,{N]}

SUBGOAL-RED(9) -».F,{c¢} .
SUBGOAL-RED(d2) =».N,{¢}
P -.f,{c}

N ».n,{e}

l

|

S +AC.,{$]
\
L\
C <E.F,{$}
F -.£,{$}
w

E <e.,{P]}

SUBGOAL-RED(6) ~%.,{¢}

SUBGOAL-RED(9) -F.,{¢}.

F »f.,{¢} » 3

]

—L——=16

—_— 17
——D——=18

e f et 1 9

—M—e20
—_—mn—e13

—F—s21
—f——=10

282

STATE

STATE

STATE
STATE
STATE
STATE
STAT?
STATE

STATE

STATE

8TATE

STATE

1"

12

13

14

15

16

17

18

19

20

21

22

I S +BD.,{$)

M -m.,{N}

SUBGOAL-RED(12) -=N.,{c}

H

N +n.,{c}

SUBGOAL-RED(3) -C.,{c}

SUBGOAL-RED(3) *$.,{¢}

SUBGOAL-RED(4) -+D.,{¢]}

C #EF.,{$]

D +MN.,{$]

STATE 23
¢ -er.,{d] I
STATE 24 |
D -MN.,{c] ' l ;

— ' \ States
0 1 2 3 4 6 12 19 20

Symbols

a |gé

e r8 r8

£ | r10 ri0 r10 r10

m ri rii

n r13 r'3 r13 r13

A |g2 \

.B |g3 ’ "

C rl

¢ r1 tl,r3)

D r2 tl,ré

E g8 g19

B t1,r9 t1,r9 (rS rS's

M ‘ g2 g20

N tt,r12 t1,ri2 r? r?

S |91

$ r0 |t1,r6 t1,r3

* Production 5' is C <EF.

Table 5.4
Parse table for an LRRL(1) a grammar with ¢-rules

&

. r{ 1.}
Figure 5.9 illustrates parsing o:-?:f;—‘::gsgacﬁ at ¢
L(G). The corrolppndinq//gnrco tre ‘ epicted in rigurc,
5.10. g SRR -
 State ‘ Symbol Current lu!tl Remainder .
\ctack .o stack symbol or
- - - - af$
o - . a - s
0,4 a f - $ (/
. af red 10 F - s
0,4 . aFf trans 1, red 9 E F $
0,4,19 atE F - $
0,4,19 aEF red 5' ¢ $
0,4 al trans 1, red 3 A p $
0,2 A ¢ - $
0,2 AC red S - $ -
0,1 S $ - -
\0 reduce 0: actCept . .

rig. 5.9 ‘
Parsing of the sentence "af" -

e ’

-

3
A’// \\C

L 7\
E F

I |

3 a € £
Fig.. 5.10

Parse tree of the sentence "af"

The grammar G was chosen in Example.® to show the
handling of ¢-productions in a genéral way with a finite
langua;e. However, a more interesting example of LRR)
grammars is the grammar H given in [Szym 73, p167) and shown'
here. This grammar technically is not LR(k,t). Nevertheless,

the way LR(k,t) parsers are constructed enables them to

286

hapdle this grammar.

H: b ‘ v
L

S + A a S~+Bb"

A-+dAE A~ dE

B-+dBE B-dE N

E -+ ¢ ‘ ,‘

5.6 Conclusion

This section concludes the discussion of context-free
syntax of languages. Chapters 3 through 5 introduced new
}lasses of unambiguous context-free grammars that in.parsing
them, one employs ﬁdre-fcomplex iookahead; than one is
. . .
allowed in LR pafsing. It was ghownﬁth 5 many of thesg-
clasées properly»iéclude LR(k) grammars, and they provide a
basis for constructing Marcus type parsers. Furthermore,
introduction of LRRL(k) grammars and previou% /éfistence of
LR(k,t) grammars put a question mark against what Hunt.has

<

cancluded in 1982 [Hunt 82].

The concept of reéular sggfrability was stated in
‘Section 2.3.1. Hunt, in dealing with decidability of grammar
problems such as cover probleﬁs, generalizes this concept to
C-separability of two ianguages, where. C is an arbitrary
class .of languages [Hunt 82]. C-separability can be defiﬁed

in the following way. : "

Definition: C-separability ,' /

Let G and H be grammars in a class I', and C¢§§ a class
of languages. L(G) and L(H) are said to be queparable if’

and only if there exists a language S€C such rhat L(G)cS and
;/v
v ;z'-

L(H)NS=9.
S its said to be a C-ervelope for L(93 [Nijh 80]).

A special emphasis has been put on definite event
separability. The class of definite event languages is
L .

defined as follows.

Definition: Definite evant languages

<

A language L is said to be definite event if and only
! . *

if there exists a finite alphébet z and\ finite sets F,cZ
- * *

and F,cZ such that L=F,L wF,.

One can easily observe that the delinite event
separability of two arbitrarf.languages is undecidable, In
fact the LR(k) condition, for some k, for an arbitrary
context-free érammar is equivalent to this problem. The
following is a general-theorem that considers undecidabie

relations between pairs of grammars.

Theorem 5.4 (Hunt 1982):

\

4 " |3
gft ' be a class of grammars. Let p, and p, be binary

relations on I' defined by

(1) G ,ﬁ. H if and only if the languages L{(G) and L(H) are

288

definite event separable.

(2) G p, H if and only if the intersection of the languages

\

L(G) and L(H) is a context-free language.

Lét p be an;r binary relation-on ' between p, and p,;, i.e..
for all G,H € ', if G p, H then G p H, and if G p H then

G ‘p, H. Then it is undecidable, for grammars G and H in T,

whether G p H.

From the above <theorem, Hunt has concluded that
°
N . : 7 .
generalizing the,concepts of LR parsing techniques must

produce a class of grammars yith an undecidable membership

- ~ _ .
problem. One mai‘observe that the relations between the

t 4
grammars in the theorem are given 1in terms of some

relatioéships bétWeen the languages that these grammars
generate. Intuitively, the relevance of the theorem to
various parsing techniques 1is that at a point where
reduction of a phrase aif' in question, the two sets of
terminal lookaheads that pravide sufficient right context:
for the correct decision are two context-free languages L

and L . In order to make a correct decision these languagzz
must nge separatable. In the case of LR(k) parsing, the

-~ lookahead l&&?uages are finite, however problems arise when

these languages are not finite. For example, in LR-regular
parsing the lookaheads for reduction are the set of all
possible terminal strings than can #llow the phrase in the
sentence. The criteria used for definitions of LR-regular
and FSPA(1) grammars require that L and L to be regular

(yes no
separable. While, the criteria for LR(1,») grammars implies

— y

289

that L and L to. have empty intersection. A condition
yes no
which can be verified if one was able to sshow that 1in

general L NL is a context-free language.
yes no '

One may see that shifting of attention from grammars to.
relations on languages, through finding envelopes for them,
inevitably leads to undecidable problems. In LRRL(®)
parsing, although the lookagead'langques may be infinite,
but the conditions are stated in terms of the grammar that
generates them, By introduaing the auxiliary items in a
state of the CFSM, one may assume that a grammar G with
the start symbol" SUBGOAL-RED(Phrasé) is defiz:g thate
generates L . Similarly, a grammar G with a competing

~ yes no
SUBGOAL symbol as its start sxmbol geqerates Lno. However,
in LRRL(k) scheme only one grammar that generates
L(G JUL(G) is introduced. The LRRL(k) criteria requires

yes no
that the latter grammar to be LRRL(k) with no end-marker. .

Thus if one wishes to describe the criterion for any
class of LRRL(k) grammars, with a fixed k, as a relation r
between G and G , then the relation 7 can be stated ast

yes no : k
- Let H=(N.,TL!Pj,S.) and J=(N,,T,,P,,S,) be context-free
'grammars. H 7 J if and only if the grammar
G=(N,uN,u{s}, T.ET,, P,uP,u{S +S,, S ~»S,}, S) has an:

LRRL(k)-CFSM with no end-marker.

Clearly, Ht J implies that L(H)NL(J)=¢. However, the
k

relation neither implies nor is implied by the relation
k

290

4 -

p, of Th‘eorein 5.4.

CHAPTER 6 g

TOWARDS ATTRIBUTED LRRL(k) PARSING

~This chapter is mainly concerned with attributed
~ .

'3 -

grammars, or if one wishes the context-sensitivity of a
language. Rather than giving a complete algorithm for
parsing general attributed grammars, special topics afe
discussed separately. In fact, the content of this chgptét
may be considered as a groundgwork for further research on a
general deterministic attriSuted parsing technique. Among
the issues discusged are evaluation of attributes in
attributed LRRL(k) érammars,-attribuie directed:parsiqg, Qnd
semantic disambiguation by means of the ’wqitr;aﬁd ngg:\
_policy. A}éo, applications of LﬁRL and &fﬁg%?ﬁifﬁ?ﬁgk&b,
parsers in syntactic error correction, and bind}ngf.éf %%hby.

L

traces in Marcus-type parsers are discussed in this chapter.

<

291

\ : 292

Attribute grammars were -devised by Knuth [Knut 68).

6.1 Backgéound

Affix grammars, that are formally related tb attribute
grammars, were introduced in an implementation of Aigol 68
by Koster [Kost 71). Attribute grammars are currently
assumed to the the most promisirg tools available in design
of -compiler writing systems. They are clean extensions of
context-free gra‘lars that are suitable for ﬂeséfibing the
context-sensitive syntax of programming languages (sometimes
called the static semantics), e.g., scope of identifiers,
and semantics of those languages. It. has been: reporté%
[watt 77] that Koster has used affixes in generating natural

language as far back as 1965. o

The definition of attribute grammars varies with
different authors [Knut 68], [Boch 76), [Kast 80], [Tien 80]
and [JaPo 81], and in terms of the fine details of
definition, no generally accepted standard definition seems
to have emergegd yet. The basic 1idea is to augment each
symbol of a context-free grammar with a set of attributes,
and associate a set of semantic rules or evaluation rules
with each production of the grammar. These rules evaluate
the value of each attribute of a symbol in the derivation
tree of a sentence. The definition adopted in this thesis is
"similar to the one given in [Kast 80] whig% appears to be

more complete than others.

293

—_—

6.1.1 Attributed grammars

An Attribute grammar (or attributed ‘grammar) AG . is
defined by S‘tuplé AG=(G,A,D,F,C). G=(N,T,P,S) is a reduced
context-free grammar., P is the set of syntactic rules. Each

syntactic rule p¢P has the form p: X <X ...X ,/ n 20. X
' - ¢ ‘ 0 . 1 n i
denotes an occurrence of a symbol of N for i=0 and V=NyT for

i>0., In the following, X will denote an occurrence of
) 1 ' 1} .
symbo} X in such a rule p. A is a set of attributes. Each

attribute is associated to exactly one symbol X€V. A 1is the
- X
set of attributes associted to X. The elements of A are
1K

denoted by X.a, X.b,... Qnd A=y- A, and A NA #0 impiiesw\;

XEV X X Y ,
X=Y, A is partitioned into two disjoint sets AI and AS, the

inherited and the synthesized attributes. A=AIuAS and

ASNAI=Q). Hence each A is partitioned into two subsets Al
X X
and AS . (Consider a symbol X and a phrase p derived from X.
. x , |
Each inheritpd attribute lof X 1is supposed to convey

information - about the contk¥xt of p, and each synthesized
attribute of X is supposed to c¢nvey information about p

itself.) For each occurrence X of a symbol X in a rule p
i
there is an attribute occurrence X .a for all attribute
n i
a€a . A =y v X .a is the set of all _attribute
X p i=0 a€A i
occurrences in p. With attribyte X.a, a fixed domain

DOM(X.a) is associated. The values defined for attribute
occurrences are taken from the domain of the attributes,
i.e., DOM(X .a)=DOM(X.a) for X =X. D is the set

i 1
{DOM(a) |a€A}.

{

” 294

Furthermore, forA each syntactic rule p° the set of
defining (or defined) attribute occurrences is taken to be
DEF ={X .a|(i=0 aﬁd a€Aal) or (i>9_and a€AS)} and applied
occgrre;ces is APP ={X .a|(i=0 and atAS) or (i>0 and a€Al)}.
Applied attributep océurrences are evaluated from defined
occurrences by set of F .semantic functions assqciated to a
rule ptP, and F=u F .pEach semantic function is assumed to
be in normal fo$;? pl.e., it ‘defines the value of an
attribute occurrence in p depending on k20 attribute
0ccurrenbes in p: f€F and |

P
f c x DOM(b EDEF) *DOM(a(APP) for k20.
=0 j P P

Note that in [Kast 80) applied and defining occurrences
are used in opposite place of each other, but consensus
‘among authors seems to be that these terms should be used as

given in the preceding paragraph.

C is a set of semantic conditions, one associated to

each rule

c ¢ X DOM(a €A) » {true,bfalse}l. -
p j=1 j p Y,

A sentence s€L(G) is a sentence in L(AG) if and only if for
each application of a rule p in the derivation of s the
values of the corresponding attribute occurrences meet the

condition C .
p

. 29%

In 1983, wWatt

extended attribute djgllhmars. EAG's are intended to preserve

; ies of attribute grammars, but at

,‘z oncise and readable and like van

LKEQQ enerative. The basic 1dea behind

EAG is to allow attribute expressions rather than just

attribute occurrences. Moreover the restriction that each

attribute occurrence must be in only one defining position

is relaxed. These relaxations’allow all relationship among

the attributes jin each syntactic rule to be expressed

implicitly, so that explicit evaluation rules and

constraints become unnecessary: The following gives the
N

definition of an ext‘nded attribute grammar.

»

An extended attribute grammar is a 5-tuple
EAG=(D,V,S,A,P) where D=(D,,D,,...,f,,f,,...) is an
algebraic structure with domains D,,D,,... and partial
functions f,,f,,... operating on Cartesian products qf these
domains. Each object in each of these domains is called an
attribute. V is thé vocabulary of grammar, a finite set of
symbols which 1is partitioned into the non-terminals N ang
terminal vocabulary T. Associated with each symbol in V is a
fixed number of attribute positions. Each attribute position
has a fixed domain choséﬁ from D, and _is classified as

either inherited or synthesized. A symbol A with n inherited

and m synthesized positions is written as A4...%t.... S, 8
n m

296

of N, is the distihﬁuished non-terminal of G, i.e.,

symbol. A is a finite iolle!tion of attriPutc
variables. Each variable has s fixed domain chosen from D.
An attribute expression is one of the following:

(a) a constant attribute or

(b) an attribute variable or

(c) a function application f(e ,...,e) where e ,...,e are
1 n 1. n
attribute expressions and f is an appropriate (partial)

function chosen from D.

Let X be any symbol in V and let X have k attribute

positions, whose domains are D ,...,D respectively., If
a ,...,a are attribuées in 1the ;omains D,...,D
r;specti:ely, then <X+a +.,..+a > 1is an attributedlsymbol?
Each + stands for either 1 or f,kprefixing an inherited or

synthesized position as the case may be,.

If e ,...,e are attribute expregsions whose ranges are
1 k
included in D ,...,D then <X+e +...+e > is an attributed
1 k . 1 k
symbol form,

Y
P is a finite set of production rule forms each .of the

form: i
' r ...F o

! 0 1 m

F ,F ,..MPFP are attributed symbol forms, F being
0 1 m .
nqn*yerminal form,

+F

The language éznerated by EAG is defined as follows.

Let F »fF ,..F be a rule., Take an attribute variable x
0 1 m

297
which occurg in this rule, select any attribute a for «x 16
the domain of a2 and systematically substitute a/for X
throughout the rule. Repeat such substitution wuntil no
variéﬁle remains. Then evaluate all the attribute
expressions provided all of them have defined values., This
yields & production rule: !

A -& I
1 m

A ...A is the direct production of attributed non-terminal

1 m

A. A production of A'is either
t

(a) a direct ﬁrbduction of A or .

(b) the seguence of attributed - symbols obtained by
replacing, in some production of A, some attributed
non-terffinal A' by a direct production of A'.

A terminal production of A is a production of A which
consists ertirely of attributed terminals. A sentence of EAG

is a terminal production of S. The language generated by EAG

is the set of such sentences.

The following examples describe some EAG's along with

their equivalent attribute grammars.

Example 1: Agsignment statement in an Algol 68-like language

.

The left hand side of each assignment must be an
identifiar of the mode ref (MODE), where MODE is the mode of
the right hand side. Each identifier must be ~declared and
its mode is determined by its declaration. ENV is used for
the set of declarations in the following rules. The EAG is

given by the rules: ~

(1)

(2)

(1)

(2)

J29s

<Assignment +ENV> <
<Id0nt§tior +ENV tref(MODE)> := <lx§rossion +ENV ¢tMODE>
<l1dentifier+ENV ¢ENV(NAME]> -+ <Name tNAME>

EqQuivalently, an attribute grammar can be given by:

v

<Assignment +ENV> -
<ldentifier +ENV! tMODE1> := <Expression Iiﬁvz *MODE2>
‘evaluate ENV1 « ENV ’
evaluate ENV2 « ENV
" where MODE1 = ref (MODE2)
<ldentifier +ENV tMODE> *liName tNAME>

evaluate MODE « ENV{NAME]

Example 2: Declaration and use of variables

can

t

Declaration and use of variables in a simple language

be modeled by the following EAG. The constraints are

that every variable used must be declared and no variable

declare? twice,

EAG rules:

(1)

(2)
(3)

(4)
(5)

<Program ¢C!1 and C2> -+ —_—

<Declarations #SET #C1> <Statements +SET #C2>
<Declarations *{NAME] ttrue> -+ dec <Var *tNAME>
<Declarations tSETu{NAME} tC and NAMEfSET> -
<Declarations #SET #C> dec <Var tNAME>
<Statements'+SET tNAME€SET> -+ use <Var tNAME>

<Statements +SET ¢C and NAME€SET> -~

(1)

(2)

(3)

(4)

(S)

equivalent AG's,

o 299

<Statements +SET *C> use <VartNAME>

The following.

<Program tCORRECT> -

<Declarations

evaluate
evaluate
<Declarations
evaluate
evaluate
<Declarations
<Qeclafations
evaluate

“
evaluate

»

is an equivelent AG:

tSET $§1> <Statements +SET2 *tC2>

'CORRECT « C1 and C2) '

SET2 « SBT! -
tSET #C> -+ dec <Var tNAME>

SET +« {NAME} g

C « true |

tSET1 #C1> =
tSET2 tC2> dec <Var *NAME>
SET! ¢« SET2u{NAME}

C1 « C2 and NAMEfSET2 e

<Sta£;ments +SET #C> +» use <Var *NAME>

evaluate

<Statements +SET!

C « NAMEESET

tC1> -

<Statements +SET2 tC2>» use £§:r *NAME>

evaluate

evaluate

It is seen

In fact,

SET2 +« SETI

g yu{(\fzm

N

Cl « C2

in the above ex;wples that EAG's have

this 1is true for all extended

grammars, and an equivalent AG can be genetaied

attribute
automatically [waMa 83]. {
The purpose of including EAG'S in this thesis is tha

they provide a better means in terms of parsing discussions,

Q

300

v and in the remainder of this chapter AG and EAG will be used

interchangeably.

6.2 Attribute grammars and LRRL parsing

When a context-free grammar, in particular an LRRL (k)

¢

grammar is augmehfed ‘ witﬁ attributes, the following
guestions must be addressed.)
1. How the attributes will be evaluated and in what
order. ' ,)
2. 1f the evaluation of attributes to be meshed with a
particular parsing method (i.e., on'the fly evaluation
of attributes) .then what kind of attribute propagation
is harmonious with the parsing melhod; How the parser
is to be augmented fq;cpmpute as many’attributes as
possible dd:ing the parsing pﬁase.
3, How one takes advantage of attributes in parsing,
i,e., attribute-directed parsing.
4. How a pa;§¢r3evaluator;can cope with such phenomena
as local semantic ambiquity, e.g., lexical ambiguity,

multiple word meaning in natural languages or

overloaded symbols in Ada-like languages.

Much‘ of work has been directed towards (1) and (2),
e.g., [Lers 74], [Jawa 75], ﬁg,ch 76], [Watt 77],K[POJ; 781,
[Kast 80] and [Pohl’&é] among others. Little work has been
done on (3) [watt 80) and [JéMa 80), and work reported on

(4) in the attribute grammarian circles is very little,

(R 301

thoﬁ%h natural lanquage processing experts have shown a
greater intérest in this area. ¥
~

6.2.1 Mﬁghods for evaluation of attributes

{

The semantic rules givenL in .attribute grammars are
intended to evaluate the attributes of each node in the
derivation tree of a sentence. An attribute grammar is said
. to be well definer < the attributes associated with
nonterminals at any “«w-=- of any derivation tree can be
evaluated using the semantic rules for the productions which
make up the tﬁee: Each semantic rule of a production
indicates a dependency among the attribute occurrences of a
pro8uction, that is if a=f(b ,...,b.), then a is dependent
on b ,...sb , and must be ev;luatedm after b ,..;,b are
eval&ated. mThis order qf . evaluation is reb;esenteg by'av
directed graph. A dependency graph for a production consists
of. a node for each attribute occurrence in the production
and an arc from a to b iff evaluation of b depends on a. A
dependency network of a derivétion tree 1is obtained by
piecing together the dependency graphs associated with
individual &roductions. An attribute gramma; is well defined
iff nokdependency network of a derivation tree of the
grammar has an oriented cycle [Knut=68]. Circularity impiies
that there is no order in which all the attributes can be
evaluated. Jazayeri [JaOR 75] has shown that tlie problem of

deciding for non-circularity condition intrinsically has

exponential complexity. In the remainder of this thesis it

302

is assumed that attribute grammars unfer consideration are
well defined (non-circular). »

b Y

More than a decade of research has produced a variety
gf attribute evaluators for non-circular AG's. Given an
attribute grammar ,fgr a language, an evaluator is an
algorithm which can evaluate all the attributes of any
sentence in the language. If the attribute grammar defines
the language in terms of another language, the evaluator is
a translator (or a compiler.if the target language 1is some
machine language). An eValuator-generator is an algorithm
thacv given ian attributé grammar as input, produces an
evaluator for it. In the words of Jazayeri [JaPo 81], an
evaluator-generator éheoretically may be considered to be &
complete compiler writing. system, although in practice it
would probgbly be a part of it. A number of research works
have been directea in the area of complier'writing sysfems,
notably Helsinki HLP system [RSST 78f and Karlsruhe GAG
system [KaHZ 82]. Presently, the latter system is available

as a commercial product.

——

Eséentialgy the evaluators may be divided into three
categories: |
1. Tree walk evaluators. \
2. 'On the fly' evaluators.

3. DAG evaluators-

303

6.2.1.1 Tree walk evaluators

Several classes of attribute Waluators are based on a
number of passes over the derivation tree. These evaluators

- assume that a sfhtax.tree has been created and labeled with
inherited attribute of the startv symbol and synthesized
attributes of the terminal symbols. The evaluator traverses
the syntax tree in some order, until all the attributes are
®valuated. Among this class of evaluators are m-pass and
1-pass left to right evaluators of Bochmann [Boch 76].

m-pass evaluators use m depth first, left to right traverse

of tg"syntax tree to evaluate the attributes. Right to left

N

An attribute grammar that allows \;;;Tuation of

evaluators can be defined similarly.

attributes to be carried out.in one leﬁt to right pass over

the syntax tree are termed L-attributed grammars. Basically

in an L-attributed grammar, for each production the

following conditiong are satisfied:

. .

(1) Qﬂhch inherited attribute of a right hand side symbol

depends only on the inherited attributes of the 1left hand

side symbol and arbitrary attributes of the symbols to the

left of the symbol.

(ii) Each synthesized attribute of the LHS symbol depends
- only on the inherited attributes “f that symbol and

arbitrary attributes of the RHS symbols. .
\\\Efearly such an attribute dependency allows evaluation to be

carried out in one lef:’;o right depth first traversal.

- 304

The m-alternating pass evaluators defined by Jazaferi
and Walter [JaWwa 75) employ m alternating?left—right and
right-left passes over the syntax tree to evaluate all the
attributes.

e

S-attribufed grammers,'which“ban be considered as a
subclass of L-attributed grammars, have ohly synthesized
attributes. Thus, a one pass over the ‘syntax tree in a
bottom-up fashion suffices to evaluate all thejattributes in

.

these grammars.

The classes ef tree-walk evaluators discussed above are'
known as the pass-orienﬁed evaluators. In all of these
evaluators the ordc,k‘of evaluatioh is fixed by the
constructor, independently of any particular syntax tree.
Jazayeri's alternating ~method éqn‘be considered to be the

most general strategy among the pass-oriented evaluators.

By contrast, there are some evaluation methods in\which
the evaluation order is dependent on the particular syntax
tree. These are general enough to accept any non-circular
attribute grammar. Ordered attribute grammars (Kast 80] may
~be regarded as the most general subclass of well-defined
attribute a?hmmars that can be evaluated in this fashion. An
attributed grammar is ordered if fof each symbol, a partial
order over its associated attributes can be given such that
in” any context of the symb&i; the attrib%Fes are evaluated

in an order which includes that partial order. Kastens

[Kast 80) shows that it is decidable whether an attribute

305

grammar is ordered. The time needed for that decision and
for the computation of the order depends polynomially on the
size of grammar. It can be shown that for ‘pass-oriented
grammars such an order exists. The evaluator computes
visit-sequences for each node in the syntax tree from the
attribute dependencies given by an ordered a;t?ibute-
grammar. They déscribe the cont?ol floh of an algorithm for
attriSute evaluation. The éomputation’of visit-sequences may
be combined with a parser. This method is used in GAG: the

‘Karlsruhe compiler generator [KaHz 82].

6.2.1.2 On the fly evaluators

Most often computational linguists are satisfied with
bdild&ng a syntax iree for the input sentence and having Vit
decorated with features or attributes afterwards. On the
other hafd many compiler writers, specially one-pass
compiler producers have resisted the idea of constructing
parse trees. Parse trees for programs are usually large, and
each node of a tree usually has several attributes.
Therefore, a serious problem in evalua;ion is storage space,
Oon the fly evaluatbrs that evaluate attributes in
conjunction with a parse rather than after it, solve the
storage problem by throwing away the attribute values after
they are no longer needed. Only the attfibhte values of the
'left context that are needéd in the evaluation are kept on a
stack. One could observe that if the underlying context-free

grammar in an L-attributed grammar is LL(k), then atfributg

306

o —

evaluation can be meshed with LL-pérsing producing a
subclass of L-attributed grammars, namely LL(k) L-attributed
grammars. Simila:ly, attribute evaluation in an S-attributed
grammar can be carried out in éonjunctiOn with LR(k) parsing
if the unaerlying grammar is LR(k). This latter subclass ' of
S-attributed grammars are called LR(k) S-attributed
grammars. These two classes of attribute grammars are

/

considered to be good simple models of one-pass
]

syntax-directed translators.

6.2.1.3 DAG evaluators

As was gpen; LR(k) parsing is suitable for S-attributed
grammars, ana inherited att;ibutes create problem with LRkk).
parsing as they cannot'be evaluated on the fly as .§§rse of
the input sentence proceeds. Even in less complex affix
~grammafs, inhefitqd affixes cause problem [Watt 77]. To cope
with this problem, DAG evaluators were proposed in [LeRS 74]

and developed by 0.L. Madsen [Mads 80].

The basic idea 1in DAG evaluators is that they do not
store the parse tree at all, instead known attributes, i.e.,
those that can be evaluated during the parse, are computed
on the fly. For unknown attributes an expression DAG i§
~created during .the’ parsing. This has at most one node for
each attribute of a node of the parse tree. Let a be an
attribute of some node of the parse tree.lThen there is an

i
expression ex(a ,...,a) giviﬁg»%he value of a in terms of
1 n

-
) 307

I

the attributes of the other nodes. Node a in the DAG will be
labeled with ex and there will be an ordered sequence of

arcs from a to a ,.;.,a . This graph will be acyclic for any
1 n '

parse tree, since the attributed grammar is assumed to be
. 4 b

non-circular. After thg parse is finished unknown attributes
can be evaluated in one-pass depth first traversal of the

DAG.

Recently, Pohlmann [Pokl 83) has presented a method for

LR parsing of affix grammars that handles inherited affixes. .

Essentially Pohlmann's method establishes a pointer to an
entry on-the parse stack where an inherited affix of current
node can be found. Since affix grammars are a special case
of the attribute grammars which only involve copy rules',
this mechanism’;orks for L-affixed grammars. However; the
method cannot be extended to L-attributed grammafs_ in

general.

Watt [Watt 77) also introduced a method for LR parsing

of affix grammars which invo.ve: mapping of AG rules into
context-free productions, tbt led head grammar, for
the given affix grammar. It gp -~ -~~v- that Watt's method

is weaker than Pohlmann's. = .en affix grammar built

around an LR(k) skeleton not n y transmits the LR(k)

property to its head grammar.

' One could consider affix grammars as extended attribute
grammars in which every attribute expression is either a -
constant attribute or an attribute variable.

308
6.2.2 Attribute flow and evaluation in LRRL grammars:

1f an arbitrary flow of attributés is allowed in an
LRRL qgrammar, then for the evaluation of attributes prqbably
one eeds to use a post-parsing evaluator. So, iﬁ% prbblem

in this case is not any different from the evaluation of

‘attributes in general context-free grammars. However, it is
believed that a combination of Kastens' ordered attributed
grammars [Kast 80) and storage management method of Jazayeri
[JaPo 81) will produce a more general and space efficient
evaluatoré. ’

But, a main thrust of LRRL parsers like any other
deterministic parser is to avoid building of parse trees.
Therefore, it is of interest t%~ investigate’ whgt sort of
attributes can be evaluatpd in conjunction wit® LRRL

parsing. Obviously, S-attributed grammars, i.e., those with
only synthesized attributes, do not pose any difficulty in
LRRL parsing. So the question 1is oﬁiy concerned with

inherited attributes.

¢

Knuth [Knut 68] rightly observed that "the synthesized
attributes alone are in principle sufficient to define any
function of a derivation tree". However, "the importgnce of
inherited attributes 1is that they arise naturéily in
practice”. There are languages for which restriction of
‘attributés to synthesized ones "leads to a very awkward and
unnatural definition of semantics". Therefore, it is

attempted here to extend the on the fly evaluations, at

309

\
least in a limited form, to some inherited attributes during

LRRL parsing. The followings are some possibilities:

6.2.2.1 Scheme 1: A subclass of L-attributed grammars

The scheme described below handles a special class of
L-attributed grammars in which the inheFited attributes are
classified as 'known' during the parsing process. First the
scheme is considered in conjunction with LR parsing. Then,
modification of the method which\makes it applicable to LRRL
parsing is discussed.‘In the following, it will be assumed

.

that a grammar is given in the extended attributed form. In

this way, the issue of explicit constraints can be avoided.

From the remarks of Kndth, it is rather obvious that in
an L-attributed grammar, the inherited attributes of a
symbol are functions of the synthesized attributes of its
left context and the inherited attributes of the start
symbol (if it is allowedvto carry one). Thus, on entry to a
state of LR parser, say s with the basis
{1 :(A +a .B B ,L)|i=1,...,m}, the inherited attributes of

i i i 111
each B are potentially available on the stack.

i
1f one assumes that all the attributes of a« are
attached to its symbols on the parse stack (or equivale;tly,
_they may reside on a separate semantic stack), and the
inherited attributgslof A are known (later it will be

, i
described where these might be). Then, under the following

condition the inherited attributes of each

)

310

o
N

B can be computed. The required condition is that no B =B
i i 3
for irj. Or, given that B ,...,B =B, IA(B) can be
1 [} 1 -~
described by a unique expression in terms of the attributes

of A 's and a 'Ss.
i i

Furthermore, suppose that a condition is imposed on the
grammar such that when the closure of the basis of s |is
‘obtained, for every symbol C that appears in an item like
(C ».y,L), its inherited attributes can be given as a unique
élosed expression in terms of the attributes‘of A 's and
a 's, i:1,...,m. (Note that C may be derived .ft;m‘ two
'd;fferent B 's and can be predicted from the same B on
different de;ivation paths). Then, by a simple deductionlone
can prove the availability of the inherited attributes of

any symbol during LR parsing.

In the preseﬁce of left recursive rules like C +Cy, the
above condition requires that if f 1is a -function that

computes the inherited attributes of the right hand side C,

-

i.e., the attributed rule is Csat...> »<Cif(a)t...>, then f

must be an identity function or copy rule.

Notice that in the state s, for all i and j, a« in the
. ' i
basis 1is a suffix of a or vice versa. Therefore, oﬁ‘Lonly

_ p|
needs to access the attributes of 1longest a and the
i
inherited attributes of A ,i=1,...,m. Since at the entry
-1
into the state s, no actual node would be created for any of

the A 's, the set of inherited attributes of A 's may be
i i
attached to state s on the state stack. These and the

~ 3N

attributes of a's will be called the defining or known
attributes at ent:y to the state 8.

In order to use the above scheme in LRRL parsing, .one
of two possible modifigations could be considered. The
simpler one 1is that on entry to a state ; with coﬁflicting
items, the lookahead symbols do not inherit any attribute
value from the questionable phfases or their dominators) In
the more general scheme, tbe inherited .attributes of
lookaheads may depend on the attributes of the questionable
phrases, but it is required that they are given as unique

expressions in terms of the known attributes of the state s,

The following is a simple example that illustrates this .

’

scheme.

Example:

Consider the LRRL(2) grammar G, examined in the earlier

~

chapters. .
G,:

(0) s' =+ s

(1) s » 4

(2) s -+ ASB
(3) A » a
(4) S » a s

(S5) B

4

b

)
Suppose for each d in a sentence of L(G,), one wishes to

compute the number of d's seen so far when scanning from the

X

312

left end of thﬁ.sontcnce. The following extended attribute
grammar is suitable for this purpose. In the EAG, every
construct that derives a "d" has an inherited attribute that
gives the number of d's seen before parsing' of the
construct. A ssynthesized attriﬁrtc provides the number of
the d's after parse of the construct.
EAG:

(0) <S' 40 tNo> =+ <S 40 tNo>

(1) <S «No tNo+1> =+ d

(2) <S 4No #No2> =+ <A 4No tNol> <S iNol tNo2> B

(3) <A «No tNo> =+ a

(4) <A +No tNo1> =+ a <S iNo tNo1>

(8) B+ b

The state 4 of the CFSM for G, (Diag. 3.2 of Section
3.2.5) is depicted‘in‘Figure 6.1. One may _observe that on
entry to th‘s state, the 1inherited attribute of the LHS
symbol in the concealed items is available from the previous
stases. Thus, AsNo is classified as a known attribute of the
state 4. Furthermore, the inherited attributes of lookaheads
can be expressed uniquely as the identity functions of this
attribuée(Therefore, it suffices to consider two auxiliary
attributed rules:

(Aux 1) <SUBGOAL-RED(3) +No> =+ <S iNo tNol!> B

(Aux 2) <SUBGOAL-SHIFT iNo> -+ <S iNo *tNol1> <S iNol tNo2>

vhere SUBGOAL-RED(3):No=SUBGOAL-SHIFT:No is equal to AsNo,

i.e., the known attribute of the state 4, at each entry to

- 313

this state. Note that the inherited attributes of symbols on
the LHS of the items obtained by the closure operation ar;
also available and are equal to the above “wmttribute.
Therefore, every attributed can be comput ed during the LRRL

-

parsing of a sentence in L(G,).

State 4
. L
[Concealed items:
A -+a,.,{sB} ‘
A +a.S,{sB} ~——S,0ON ——»8
Non-concealed items:
“SUBGOAL-RED(3) -.SB, {¢} ———S,OFF——=9
SUBGOAL-SHIFT - S, { ¢}
sv "-d,{B,S} -—d,OFF——’jo
S -‘.AS?,{?,S} ——A ,OFF—— 11
A -+.a8,{SB a,OFF
A +.aS,{sB} :::]
Fig. 6.1 ¢

State 4 of the CFSM for G,

To establish that an inherited attribute is uniquely
expressible in terms of the known attributes of a state, a
number of expressiOn'DiG's with the attribute in question as
their source' node could be created. The sink node oT'theeguf
VDAG'S are the known attributes in the state, The attribute
could be classified as known (i.e., it could be computed on
the fly) if all the DAG's express the same function. Note
that use of the DAG's in this approach is different from
their use in DAG evaluators. Here, the bAG's are created in»

CFSM construction ¢time in order to determine whether an

attribute is computable on the fly. In DAG evaluators, the

e

e

314

.

DAG's are created at parsing time and they are used’ﬁor the

evaluation of unknown attributes by 'a post-parse mechanism.

-

The approach—-outlined here can be considered as a
generalization of Pohlmann's method [Pohl 83) for handling
of affixes in LR parsing. The scheme is alsa influenced by
EWatt 801, and basically the intuitive methods that are used
in hand-written semantic routines for c¢ompiler constructiong

in which formal attributes are not used.

The method does not recognize the.maximal set of known
of attribﬁtes which th;o?etically is possible., With the
exception of copy rules (i.e., identity functions), the DAG
approach does not usé any semantics of the functions. A

maximal set can be identified if one exploits the properties

of the evaluation functions, such as their commutativity, or

the - commutativity of compositions of the functions.

Nevertheless, the method solves some subtle problems

regarding inherited attribut%§ in bottom-up parsing, without

“intrdducing global attributes which are much .criticized by

Raiha and other designers of Helsinki system. For example,
by using ‘this scheme symbgl table information in'prograninq
languages, and discourse {nformatidn in natural language can
be passed to lower constrﬁcts ifforg creating their parent

nodes in a bottom-up parser.

. . . “

315

6.2.2.2 Scheme 2: Dependency on the attributes of. right

)
!
H

siblings

Suppose an inherited attribute of a node A depends on
the synthesized attributes of its right and left siblings in
the higher construct, ané the value | this attribute is not
propagated down to the subtree of A beyond its immediate
successors. Naturally, the attributes of the left sibiings
of A will be available on the parse stack. If the reduction
of A is in qQuestion in an inadequate state and its right
siblings are includéd in the corresponding lookaheaq‘set,
then(after the right context 1s parsed by the LRRL
algo;}tﬁm, the attributes of phe-right siblings will also
become available on tﬁe»buffer, and one can use them in the
computation of the inherited attributes of A. |

Otherwise, in the absence pf local syntactic ambiguity,
still one might enforce £he "qa;t and‘ see policf"
vo'! ntarily to obtain the parse of the right siblings and
thu.. the value of their synthesized attributes.
6.2.2.3 Scheme 3: Dependency on ,the attributes of fully

reduced right contexts ¥

A general form of the scheme 2 can be also considered.
In this scheme, the 1inherited attributes of a node A may
depend“%n a unique way on the attributes of its k-symbol
fully reduced context. Here again, one could proceed to

parse the lookaheads before reducing the current construct

bl
[

‘will benefit the evaluator in

. o | 316

and evaluating its attributes. For asserting that the

attributes of A can be expressed uniquely in terms of the

‘attributes of its lookaheads, the .DAG technique may be used

-~

here too.

The applicationshof these schemes will be shown in the
next sections. In brief, Section 6.2.2 has proposed two
attribute evaluators. One is a post-parse method based on
the combination of Kastens' ordered grammars and Jazayeri's

space management method. Kastens' method -by computing visit

- sequences for the nodes at the parse time will contribute to

the time efficiency of the evaluator. While, Jazayeri's

.

method in which lifetime of

he attributes are analyzed,
(much like live variable analysi¥s in optimizing compilers),
erms of storage use by

discarding unwanted attribute values.

The second is an on the fly evdaluator which computes
the known attributes during the parsing phase. .Obviously, in

a generaljattributed grammar, if some of the inherited

1lhtributes cannot be evaluated by this technique alone, then
RS .

one may resort to partial DAG evaluation,

6.3 Attribute-directed parsing
Sometimes the context-free description of a language is
such that either the context-free grammar is ambiguous, or

some local cofflict cannot be resolved by means of limited

. . 317

syntactic context. However, the semantic information present
at the time may resolve the syntactic émbiguity. Canside; a
fragment of the context:i:eE‘\grammar given in the Pascal
report [JeWi 74],.for the syntax of~?a§gdi.

Actual parameter -+ Expression

Actual Parameter'* Variable 4

Expression - Simple expression

Simple expression -+ Term

Term -+ Factor

Factor - Variable

When parsing the actual parameters, a variable can be

reduced directl! an actual parameter, or can be reduced
finst to a f or, term, simple expression and then
exprefsion and fi‘ally to actual parameter. Therefore, the
contextr}ree grammar 1is ambiguous. In fact, reducing a VAR
parameter to an expression is‘ incorrect, while VALUE

parameters first should be reduced to expressions.

An unambiguous attributed grammar can be given for the
above situation by the following: | '
<Actual parameter +ENV J4PARM> - <é(p ession +ENV *TYPE>
where is-value(PARM) and 2
| TYPE=type (PARM)
<Actual parameter +ENV 4PARM> -+ <Variable :E;b *TYPE>
' where is-var (PARM) aqﬁ

TYPE=type (PARM)

<Expression +ENV #TYPE> - <Simple expression +ENV ¢TYPE>
’ '

318

<Term +ENV #TYPE> + <Factor +ENV *TYPE>

<Factor +ENV tTYPE> -+ <Variablé'¢ENv *+TYPE>

Similar situations also arise in the context-free syntax of
Ada [(Ledg 81], where the non-terminal NAME is most

troublesome symbol [Weth 81].

The LRRL parsing algorithms could be modified to let
the attributes 1influence the parsing de&isions iﬁ such
situations. In an inadequate state of the CFSM say s with'
items (A, *a...,L.) and (A, »aA&,L,) amd.known attributes
{a ,...,a }, one would allow these attributes to decide on
wh;ch. prgduction to be reduced. The set of known attributes
may include fhe attributes of right context. Thus . even if
L,NL,#0, i.é., .when the underlying context-free grammar is
not LRRL (the reduced righp context syntactically does not
indicate a resolution), one would parsé head the right
context if its attributes could resolve the conflict in the
state s. Such a scheme also was indicated in Example III of
Section 2.1, in which the conflict 1is between two items:"
(A, »a.B,{c}) and (A, =a.,{B}). Though the conflict cannot

\

be resolved on a syntactic basis, it is resolvable on the"

basis of the attribute values of the reduced lookahead B.

In"order to incorporate the attributes 1in parsing
decisions, one needs to introduce the no;ion of predicates
on the known attributes of the states of the CFSM.

' .

Correspondingly, the entries of the parse table where

decisions are based on the attributes, instead of being a

- 319

single action pattern w!ll have a SELECT clause in the form

of:

SELECT
- P(a,...,a) = <Action 1>
1 1 n ’

/
TABLE(state,symbol, {flagl})= cee

o { P (8 ,...,8a) = <Action m-1>
' “m-1 1 n
/// Otherwise =+ <Action m>

end SELECT

<

‘ where P ,...,P are predicates on the known attributes o(
thg st;te, a§;1 <Akction 1> is the.action pattern that the
parser proceed§ according to it when ‘the predicate P is
true. Obviously, either one should " have the prediéates
mutually exclusive, or the predicates can be ordered in a
way- such that the parser takes the action corresponding to

‘the first predicate which is true.
’

The attribute-directed parsing in conjunction with LRRL
grammars seems to be the most general scheme that formally
has been proposed. Because in LRRL parsing the parse of the
right context is possible, makes this scheme superior to
other. methods such as rule splitting [Watt BO) suggested in
conjunction with LR parsing. The method \is also readily

applicable in error correction situations.

Notice that the above scheme 1is capable of handling

unambiguous attributed grammars that their wunderlying

Al
context-free grammar is not LRRL or even not unambiguous.

320

Attribute-directed parsing clearly demonstrates the
superiority of the on the fly evaluators in practical
situations. Without such evaluation methods deterministic

attributed parsing would not be possible.

6.4 Semantic disambiguation with the use of wait and see

policy

In some languages it happens that some of the terminal
vocabulary do not carry a single value for one or more of
their synthesized attributes. Similarly, an attribute of a
nonterminal may be such that it cannot be computed uniquely
in terms of its defining attributes, that is when the
relation £ from defining attributes to applied att;;butes is
not a function but a one—to-ﬁany relation. However, ft'may
be the case that a constraint involving the syntax or the
attributes of right context will determine the value of the
attribute uniquely. In such cases, if one wishes not to
cariy around or propagéte the multiple values or postpone
the attribute evaluation to a post-parsing process, then one
c0uld‘ simply impose the parsing of 1lookahead strings
voluntarily, though syniactically there may be no ﬁeéd to do
so. More formally, in a state s of the CFSM with only a
single reduction item (A %a.,L), if attributes of A cannot
be determined wniquely, then one proceeds to parse the

lookahead strings, i.g., items of the form

SUBGOAL-RED(p) -+.y,{c}; vy€L would be added to the state,

g -

, 121

provided that lookaheads can be parsed in LRRL manner. To
accommodate such a scheme in an LRRL parser, a bredicate P -
will be introduced in the state s and the corresponding
parse table entry will be of tﬁe form:

-

SELECT '

TABLE(state,symbol,{flag})=| P =+ <reduce A =a >
Otherwise - <goto s'>
end SELECT

where predicate P determines if attributes of A are uniquely
valued. s' will be the successor state of s under the symbol

when reduction is delayed.

The followings are few examples in which such & method

could be employed.
Example 1:

Consider the two sentences: : P
(1) Theﬂish is swimming in the tank,
(2) The fish are swimming in the tank.
To assign a singular/plural feature or att?ute to the noun
fish, one needs to parse the verb phrase before reduction of

)

the noun phrase in a deterministic parser.

Example 2:

An important application c¢f the method arises in
conjunction with the semantic disambiguation of overloaded

symbols in polymorphic programming languages. Ada allows

r

322

overloading of subprograms and enumeration literals
[Ichb 79]. When an overloaded identifier appears at a given
point of the text, the identifier itself does not provide
énough information to determine a unique meaning. In such
cases contextual information must be wused to select the
unigque meaning. Thus, in a single module two subprograms
with the same designator or identifier may be defined
provided that parémeters and result types provide enough
information for unique identification. For example, the two
procedures: | “
(1) Procedure P(A: in integer; B: out boolean)
is
begin/
¢ o \
end P;
and
(2) Procedure P(A: in integer; B: out real)
is
begin

end P;

can be defined in the samé?scope. At the time of procedure
call, the only thing that differentiates the procedure (1)
from (2) is the type of actual parameters. In LRRL parsing
of Ada, 1in order to obtain the unigue meaning of P, one
postpones the reduction of a rule like:

Procname -+ Identifier, so that its right context is parsed

323

first. The right context, i.e., the actual parameter 1list
» . (‘

provides enough information to disambiguate the meaning of

p'

It is interesting to note that since the introduction

-

of Ada, a number of papers appeared on the subject of

overloaded resolution algorit

s. The algorithm originally

of fered by the Ada languag sign)team [Ichb 79] suggested

an indefinite number of pass over the syntax tree.

Subsequent algorithms reduced number of passes to four,
three and two. Finally, Bak ke 82] suggested a one-pass

algorithm over the syntax tree for overload resolution in

Ada.

All the above solutions assumed exfstence of éi parse
tree or at least a partial one in the form of expression
tree. However, the one-pass deterministic algorithm
suggested here ldoes not rely on the existence of a parse
tree. Moreover, unlike the previous algorithms, it rarely
would propagate multiple values for attributes because of

the advantage of the parsing of the lookaheads.

6.5 Syntactic errors repair 1

Basically in compiler writting, two methods are used
for repairing of syntactic errors. One is by introducing
error productions in the grammar that specifies ‘the syntax

of the langudge. Usually, the error productions are added to

»

324

the grammar to guarantee the correct treatment of a rather
common ‘error. Specially, when other correction methods fail,
because errors are discovered too late. An example of this
kind was considered in Section 2.1. A considerable care is
required in this meth&d to ensure that the grémmar is still

parsable after the addition of error productions.

In the secoﬁd method, which is known as least-di;tance
or least-cost technique, one trieg by a series of
insertions, deletions and replacements of terminal symbols
to correct the input sentence. Since there is usually more
than one possible repair for any error, a cost is associated
with any repair operation such as insertion. A cost function
(in the simplest case accumulated cost of single operations)
gquides the algprithm' in chosing the least-cost repair. A
Bumber of error-correction algorithms are defined 1in this
way, e.q., [PeDe 78}, ([Tai 78], MrHJ 79], [FiMQ 80],
[MaFi 82) and ([SiSo 83]. Most of these. algorithms are

L]

incorporated into the LR or LL parsers. _ ~
P

LR
It could be well arqued that LRRL p&iﬁ}hg provides a
more robust technique with both of the above schemes. As it
was noted in Section 2.1 a grammar augmented with error
productions not always is parsable by an LR method. While,
LRRL methods because of their generality give more freedom

to the designer of a error-corrector parser in adding error

productions.

’ | 328

fhe corrections in the least-cost methods based on LL
or LR parsers are usually local. ih.chosing the best repair
only the prefix of sentence, i.e., the left context, and the
next terminal input that éignals the érror are taken into
consideration. Tai [Tai 78], Mauney and Fischer [MaFi 82)
consider k terminal symbols of the remainder in their
algorithms, but still their methods are considered locally
least-cost. Pennello and DeRemer [PeDe 78] discuss a forward
move aléorithm for LR error récovery in which corrections
are made by considering some nonterminal lookaheads.
However, in theit‘ method parsing of the right context is
independent of the left context. Also, the action of such

algorithms may be limited by the presence of a second error

in the input,

The globally least-cost methods are very expensive and
require O(nf) time [AhPe 72). Thus genera{ly, use of some
right context which allows regionally least-cost repairs is
very desirable. Such a method can be considered as a middle
ground between 1locally and globally least-cost methods.
However, implementation of forward moves and restarting of
the parser in LR methods have not been without problems and
difficulties [SeSo 83). In the following, it will be shown
that the LRRL methods can be used as regionally least-cost
error-corrector parsers with a great advantage. Similar to
[FiMQ 8017, only insert-correctable errors will be
illustrated. Deletions and replacements (i.e., combinations -

of a deletion followed by an insertion) can be handled in a

326

like manner.

In an LRRL parser, a k-symbol reduced right context can
be used to contribute in making the .best repair. One may
observe that the problem of forward moves for LR grammar is
readily solved by the LRRL technique. In fact, the method is
such that the sugges;ed correction in some.cases is unique
and behaves as good as a global correction method. For the
purpose of illustration, consider the two Pascal program

fragments: , <
®
(V) ... ; A:=sB ClI,J,...]1+D;
(2). ... ; A:=sB C[I,J,...):=D; ... -

An LR-based éarser upon reading C would indicate an error.
The appropriate repairs are insertion of an operator, e.g.,
a plus in the first fragment and a semi-colon in the second.
However, a locally “léast-cost method would repair both
fragments in the same way, resulting a cascade of new errors
in one of the fragments. But, aq'.’RL parser would delay the
correcti1lLand parse ahead the reduced context (i.e., either
an expreSsion or a statement) and would choose the best
repair. More formally and without loss of generality,
suppose that there are only two items in a state s that have
terminal symbols next to the right of dot, i.e.,
(A %a,.aa,,L,) and [B +8,.bB8,,L,]). The legal moves of the
parser in this state includes shift operation on terminals

'a' and 'b'. If one desires to repair erroneous input at

327

this state by inserting an 'a' or a 'b', then one can add
auxiliary items {([SUBGOAL(Insert a) -+.y,{c¢}])|y€({a,}*+ L)}

.. 3
and {[SUBGOAL(Insert b) =.0,{e}])| o€({B,}+ L,)} to the state
Kk

s. If ({a,}* L,)N({B,+ L.)=0 and the lopkaheads are parsable

- - k k '
by the LRRL(k) method, °then this policy would lead to a
ﬂ‘juniQUe repair, Otherwise, one can associate a cost factor

with each auxiliary item, and when two auxiliary items

xhibit a conflict the tis could be broken in favour of the
em with the least césf. Notice that introguction of
goal sy%bols such as SUBCOAL(Insert a) does not add a new
mechanism to the & RRL parsing. In fact, SUBGOAL(Insert a).
can be considered as SUBGOAL-RED(Nonterminal-a *ﬁi'~where

Nonterminal-a #¢ is the error production in Aho and. Péferson

model [AhPe 72) indicatinga missing terminal symbol 'a’.

The scheme described abové considers only the syntactic
structure of the reduced lookaheads 1in choosing the best
repair. Ob%iously the method can be used secursively to
repair additional errors that may lie ahead in the

* .
lookaheads. However, there are cases in which a good repair
cannot be made without wusing the semantios of © the
lookaheads. In such cases, one needs to employ an attributed
LRRL parser, or at least combine error correction with
attribute;directed parsing as discussed in Section 6.3.

Consider the followin two fragments from Pascal programs.

(1) A:=B F(X); (2) A:=B P(X);
' ~

Suppose F is declared as a function, but P as a procedure.

A b

328

Thus, in the first fragment inse{tion of an opetator is a
suitable repair, while in the second fragment insertion of a ¢
semi-colon is more Tappropriate. However, an LRRL parser
égnnot differentiate the procedure call from the function
application in tﬁe presence of error, unless it refers to
the, type of the "identifiers. %uch a scheme in which
attributes resolve syntactic ambiguities was discussed in

Section 6.3.

6.6 Transformations in the Marcus parser

So far, this thesis has ignored the transformation;k
capabiiity of the Marcus parser, and nothing hésfﬁéégi
mentioned about the way the transformationalgruleé will befﬂff
handled in LRRL parsing. Fortunétely, transformagions in the
~ Marcus parser are very limited. In fact the par;ér carries
out a SUPfacé structure analysis, and the transformational
rules either involve traces or interchaﬁging of «..constructs

Ve LT ' :
at a rule level. ' - Lt X
Yy " S

Basically, the trace Eheory in transformational
grammars -deals with diéplacement (movemenﬁg?ofgfgﬁftruéts in
an utterance. At the pomgt where a construct‘};~ missing (a
gap), a trace whicijzs a non-terminal node,that‘§e¥ives null
string is added. When the actual displaced d&nstfuir (a
filler) 1is foeund, a pointer to that construct is placed in

- 4

the trace. In this way, one obtains a deep structure of the

sentente that can be used for semantic analysis.

{

-handled while the constructs are on thgltop of tﬁp parse |

329

O

&
LN oo .
Traces tan be consi¥red as null deriving nonterminals

that_‘have an attribute with pointer values, and thus they
can be easily handled by an attributed LRRL parser. Marcus
[Marc B80)] handles the ' traces similarly with the use of
special features named registers. A similar strategy may be
employed to handle the slash categories in Gazdar-style

context-free grammars [Gazd 82, ScPe 82] when they are

parsed by an LRRL parser.

In addition to the traces that are used to handle long

distance transformations such as wh-questions and
’ @
topicalizations, the Marcus parser has explicit rules “for

&

inversion of short distance transformations. For exampie, an
auxiliary-inversion rule is used to interchange the
auxiliary and NP in yes/no questions. In a sentence like:

| Has John scheduled the meeting?

after recognition of the auxiliary "has" and the noun phrase
!
v :

"John"; the order of two constructs are changed (by

attaching NP first) so that the auxiliary appears next to

the main verb "scheduled".

In the Marcus parser such inversion takes place in the

buffer. However in LRRL parsers normally they would .bé

. . L
stack. If one wishes to - incorporate -this inv@rsion

»

explicitly into the CFSM, it can-be dong\fy adding- a new

state with an e-transition, 1i.e., new action pattern?

<interchange stack[il,stack[j]; goto s> will be added to the

i

330

parse table, where s would be the successor state of the

current state with an ¢-transition,

6.7 Conclusion

N This chabter has raised some of the issues regarding
the attributes and attributed LRRL(k) parsing. It was shown
that . attributed LRRL(k) parsers could allow some
non-S-attributed grammars to be parséd hby this technique.

The idea of semantic-directed parsing is extended to include.

s ' &

®

the attfributes of the right contexts. The attrigh

influenced decisions are, embedded in the parse tabl
&

discussed. A sahenme, which wuses DAG's at the parser
generation time, is propoéed for on themfly;evaluation of
attribbtes that enables one to handle some ' inherited
attributes durihg the parsing phase. However, there is a lot
of” room for the improvement of the scheme. By wusing the
- "emantics of the evaluation functions and a rigorous use of
fixpoint theory, one can enhancé the scheme in a way that

identifies a maximal set of known attributes that can be

evaluated during the parse.

Though @ comblete algorithm for generation of
attributed LRRL parsers 1is not pfesented here, one can
implement such an algorithm 1in a more ambitious general

language érocessing system that generates =translators for

1o
e

KR

different languages.'Apart from the issues discussed in this
chapter, other applications of attributed LRRL(k) parser
such as backpatching 1in one-pass compilers for simple

programming languages, and use of wait and see policy in

T

'f;gz,p.rogramming languages editors could be studied.

%
L)

CHAPTER 7

CONCLUSIONS

A

7.1 In summary...
t

This thesis has defined a family of classes of
unambiguous context-free grammars that can be considered as
non-canonical extensions of LR(k) grammars. The new family
of grammars differ from the LR(k,t) grammars which were
-originally suggested by Knuth and subsequently develeped by
Szy*&hsbi. It is shown that the most general class in this

- family pﬁgperly includes the LR(k,t) grammars. The LRRL(k)
grammars provide a formalfﬁ;ramework for the procedurally
defined Marcus parser, and thus a capability for automatic
generation of such parsers. éontrary to Berwick's
conjecture, this research shows that Marcus-style parsers in
principle cannot be characterized sy LR(k,t) grammars. 1In
contrast to Hunt's belief, it is shown that LR(k) parsing
concepts could be generalized to deal with considerably

complex . lookaheads, while fetaining the decidability of the

membership in the generalized class.

The LRRL(k) grammars when augmented with attributes
should have a significant impact on natural language

processing, and the design and implementation of programming

332

72 333

languages. It is hoped that this dissertation would help to
establish parsing through the use of complex lookaheads as a

viable technique. /

7.2 Contributions of the research

‘The major contributions of this research may be listed

as the followings:

(1) It provides a generalization of LR(k) parsing in the
fo;m of LRRL(k) parsers. LRRL(k) parsers employ non-terminal
as well as terminal symbols in a generalized lookahead
policy. Tﬁe recursive parsability of the lookahead
information by the method itself makes this method distinct
from any other LR-based parser. Depending on the grammar,
LRRL (k) p;rsers may postpone an unbounded number of parsing
decisions, while in LR(k,t) parsers this number is limited

to t.

(2) The theoretical issues concerning the LRRL(k) are

studied and in particular it is shown that:

® The parsing algorithm is linear in the size of input
S)
sentence, and unlike LR-regular grammars no prescan of

input sentence is required.

® Unlike LR-regular, FSPA(k) and LR(k,>) grammars, the
membership preblem for LRRL(k) grammars (with a fixed

k) is decidable.

0 ‘ A 334

In LR—regulér grammars, properties are given in
terms of the language of the lookaheads. Similarly, in
a diSCUssibn by Hunt, certain undecidable conditions
are defined on languages that lead to a belief that . a
generalization of LR(k) parsing, in whigh some
arbitrary part of the repainder of a sentence is
analyzed before making a pa%sing decision, must yield a
g;ammar class with undecidable membership problem. In
LRRL (k) pars’ conditiér:;s‘are stated in terms of the
grammar that generates .these terminal 'segments, In
fact, one may argue that dealing with properties of
languages in general, and arbitrarily length lookahead
terminal strings in particular (without a «close
consideration of their syntactic structures) often
leads to undecidable problems. While retaining the
structure of the lookaheads, one migh; consider 'almost
any property' on their grammar short of unambiguity or
any other condition .that is equivalent to it.
Consequently, a generalization of LRRL grammars, namely
GLRRL grammars, was defined in this research., For a
fixed value of parameter k, {t was shown that this
-.ass of 6rammars is the largest proposed classr‘;hat
jeneralizes the concepts of LR(k) parsing while it

still leaves the membership problem decidable.

The LR(k,=) and FSPA(k) . properties 1lead to
undecidable situations because no restrictions are put

on the forward move of the parser to the right of a

335

questionable phrase. In LRRL(k) parsing, only .the
subtrees which are the descendants of the k fully
reduced right context of a bypassed phra#e are
examined.

e The LRRL(k) property (except GLRRL(k) with bounded
) 0
buffer) can be tested by a polynomial time algorithm in

the size of input grammar.

(3) This research, apparently for the first time, embarks on
the idea éf recursive definitions of grammar classes. It is
) shown that such recursive definition§ under«,certain_
conditions are valid and they do not lead into circular

'+ decision problems.

\j B .

The notion of reduced context language of a grammar and
its generating grammar are introduced t&\ provide such
definitions,

\

(4) The introduction of LRRL(k) grammars makes it possible
to increase the power of deterministic precompiled table
driven parsers to the cases where traditionally a

backtracking method with non-finite buffering of input, or

parallel process‘; of multiple paths is used.

(5) The type of the string set accepted by Marcus' parser .is
investigated, and it 1is shown this language can be
recognized by a -deﬁerministic pushdown automaton. This
confirms the determinism of the language parsed by the above

parser, and justifies assuming of a context-free underlying

336
grammar in automatic generation of Marcus-type parsers.

In building a Marcus-style parser, one can assume
éither a context-free or a context-sensitive grammar (as a
base grammar) which one feels 1is naturally suitable for

'descr?;\ng the surface structures. However, if one‘chooses a
context-senéitive grammar then one needs to make sure that
it only generates a context-free language. It is proposed
that for automatic generation a context-free grammar be used
for describing the surface structures. The grammar could be
augmented with syntactic features (e.g., person, tense,
etc.) much 1like attributed grammars 1in compiler wr}ting
systehs. An additional aanntage with this scheme 1is that
semantic a;tributes such.as logical translations may also be

added to the nodes without an extra effort.

(6) The LRRL(k) grammars provide. a formalization of the
Marcus parser. Thus the concepts in that parser can be given

formally in the shape of a context-free base grammar.

The goal of this research in formalizing Marcus' parser
is two fold. First, it provides a more viable basis for
Marcus parsing in terms of the traditional parsing theory.
Second, it supplies a tool for automatic generation of
Marcﬁs-style parsers., The easily obtained parsers facilitate

investigating determinism hypotheses in natural languages.

(7) A few schemes for parsing attributed LRRL(k) grammars

are suggested. It 1is shown that some inherited attributes

337

can be evaluated on the fly during a bottom-up parse. The
applications of the attributed LRRL(k) parsing in such areas
like semantic-directed parsing and semantic disambiguation

are aemonstrated.

(8) It is shown that some form of wait and see policy in
parsing provides more flexibility in design and
implementation of programming languages. It is argued that
some features of programming languages are modified or
sacrificed to make them conform to the traditional LR(k) or

LL(k) parsers.

K The LRRL(k) parsers can easily be used to handle many

features of one-pass compilers in an efficient way. Among
[4

-

them are simple backpatchings (e.g., code generation for
forward referencing goto's in simple languages like Basic)
and resolution of overloaded symbols in Ada-like languages
that traditionally are accommodated in such compilers by
means of ad-hoc or expensive routines. An attributed LRRL (k)
grammar could be wused to induce such actions on the

automatically generated compiler at no extra cost.

(9) The wuse of LRRL method as a syntactic error corrector
parser is discussed. It is shown that both 1in cases where
adding of error productions violate LR condition, and as a
regionally least-cost error corrector, LRRL parsing provides

a very robust technique.

338

7.3 Future research

It may be noted that an attempt was made here to cover
nearly all the aspects of LRRL(k) grammars iy one project.
The reported research encompasses both the theoretical

issues pertaining to LRRL(k) grammars,, and the matters that

arise in relation with their pﬁictical applications.
However, there are two loose ends in this‘ thesis that
require further research.*One is the type of languages for
whicﬁ GLRRL(k) grammars with unbounded buffer exist. The
question was left as an open problem in Section 5.3.3. The
other is concerned with fhe enhancements to the schemes
described in the ;ections 6.2.2.1-6.2.2.3. In Section 6.7 it

was suggested that methods could be improved to identify a

maximal set of attributes that can be evaluated on the fly.

Furthermore, there are few areas that research in them
would complement the present thesis. Investigating a lattice
of relations on context-free languages-and a general theory
of predictors for context-free grammars [Tai 80)] are such
problems. In the simplest canonical form, the concept of
predictors formalizes the heuristic idea of important
terminal symbols in context-free grammars (e.g., the
reserved words in programming languages). It is believed
that LRRL techniques can be used to contribute toward a
general theory that considers non-canonical and phrase level

predictors.

) " 339

It is also possible to develop an incremental LRRL
parser constructor. Given a p&ihe t‘gzo Lorresponding to a
grammar and a set of rules to be xﬁserted into or deleted
from the grammar, such a method modifies the parse table in

a way that corresponds to the new grammar,

An interesting problem 1is to "investigate a set of
ggneralized, phrase structure rules (Gazd 82, ScPe 82) for a
subset of natural language that can be supported by an
attributed LRRL parser. Generators for LRRL parsers similar
to YACC [John 75]) or LINGUIST-86 [Fgil*82) can be written
very easily to support such‘- esearch. However, a
disadvantage with those systems and majority of pthers is
that they .do not support any language as an interface
between the user and the system for exchange of linguistic
information. A good exception is the embedding of ALADIN (A
Language for Attributed Definitions) in the GAG System
[KaHZ 82] which has contributed to the success ofsthat
system. Nevertheless the GAG system and ALADIN are intended
for the use of compiler construction community. Therefore,
to facilitate the investigation of linguistic p;oblems__such
as above one, the need for a higher level programming
lgnguage for processing linguistic information is very
apparent. Shieber [Shie 84] discusses the design of such a
language, i.e., PATR-II. Pereira -and Shieber [PeSh 84}

ptovide the denotational semantics of the language.

. . -

" 340
’ o

It is believed that the design and implementation of a
general programming language based on attributed grammars
thgt can be“used as a tool in compiler writiné and natural
language problems would be an ambitious but very fruitful
project. Hehner and Silverberg [HeSi 83) have suggested use
of attributed grammars as a high-level programming languag;;

A preliminary study in [PaKo 86)] shows possible use of such

a language as a knowledge engineering tool.

REFERENCES

\
[AhJU 75]) A.V. Aho, S.C. Johnson and J.D. Ullman.
Deterministic parsing of ambiguous grammars.
CACM, vol. 18, no. 8, pp. 441-452. 1975,

[AhPe 72] AgV. Aho and T.G. Peterson. A minimum distance
error correcting parsing for context-free
languages. SIAM Journal of Computing, vol. 1,
no. 4, pp. 305-312., December 1972,

"[ARUl 72a) A.V. Aho and J.D. Ullman. The Theory Parsxng,
Translation, and Compiling, Vol. & hn
Prentice Hall, Englewood Cliffs, N . lﬂ]Z

[AhULl 72b) A.V. Aho and J.D. Ullman. Optimi%
grammars. Journal of Computer and
Sciences, vol. b, pp. 573-602. 1972.

of LR(k)
em

[th1*13d] A.V. Aho and J.D. UlMman. The Theory of Parsing,
s Translation, and Compiling, Vol. 1I1: Compiling.
Prentice Hall, Englewood Cliffs, N.J. 1973

[AhUl 73b] A.V. Aho and J.D. Ullman. A fechnique for g\\
speeding up LR(k) parser. SIAM Jjournal of
Computing, vol. 2, pp. 106-127. 1973.

(AnDG 82) M. Ancona, G. Dodero and V. Gianuzzi. Building
collections of LR(k) items with partial
expansion of lookahead strings. ACM Sigplan
Notices, vol. 17, no. 5, pp. 24-28. 1982.

(Bake 82] T.P. Baker. A one- pass algorithm for overload
resolution in Ada. ACM Transactions on @
Programming Languages and Systems, vol 4, no. 4y
pp. 601-614, Oct. 1982.

’

[Berw 81)] R.C. Berwick. Computational complexity and
lexical functional: grammars. Proceedings of the
19th Meeting of the Association for Computational
Linguistics, pp. 7-12. Stanford University, CA.
1981,

v [Berw 83] R.C. Berwick. A deterministic parser with broader
: coverage. I1JCAI 83, Proceedings of the 8th
International Joint Conference on Artificial

K73

%) 342

Intelligengh, pp. 710-712. August 1983,

[Berw t@] R.C. Berwick. Bounded context parsing and easy
’ earnability. Proceedings of COLING 84, 10th
‘ International Conference on Computat1onal
. Linguistics, P 20-23. Stanford University, CA.
July 1984, .

(Bewe 82] R.C. Berwick and Wexler. Parsing efficiency,
binding, and c- coﬂaand Proceedings of the First
West Coast Comference on Formal Linguistics, ed.
- D.P, Flickinger, M. Macken and N. Wiegard,
pp. 29-34. Stanford University. January 1982,

‘ [Bo®h 76] G.V. Bochmann. Semantic evaluation from left to
. right. CACM, vol. 19, no. 2. February 1976.

(Bris €3) E.J. Briscoe. Determinism and its 1mp1ementat1on
in .PARSIFAL, Automatic Natural Language Parsing,
ed. K. Spark Jones and Y. Wilks, Ellis Horwood,
Ch1chester, England. 1983. =~

[Cele B81] A, Celentano. An LR parsing technique for
extended context-free grammars. Computer
Languagng vol, 6, pp. 95-107. 1981,

(Chap 84] N.P. Chapman. LALR(1,1) parser generation for
regular right part grammars. Acta Informatica,
vol., 21, pp. 29-45. 1984. :)

[char 83] E. Charniak, A parser with something for every
one. Parsing Natural Language, ed. M. King,
- pp. 117-149. Academic Press, London. 1983.

(Chur 80) K.w. Church, On memory limitations in natural
language process1ng MIT 1980. ReprBduced by -~
Indiana University Linguistic Cly®. January 1982.-

[CoHK 82] J. Cohen, T, Hickey and J. Katco¥f. Upper bounds
‘ for speedup in parallel parsing. JACM, vol. 29,

ﬂ;s?no 2, pp. 408-428. April 1982,

[CuCo 7 K. Culik II and R. Cohen. LR-regular grammars:
§7an extension of LR(k) grammars. Journal of
Computer and System Sciences, vol. 7, pp. 66-96..

\ _ 1973.

[Deme 75] A.J. Demers., Elimination of single productions
s and merging non-terminal symbols of LR(1)
grammars. Computer Languages, vol. 1,
pp. 105-119, 4975,

[Dere 71]) F.L. DeRemers. Simple LR(k) grammars.
CACM, vol. 14, pp. 453-460. 1971.

. ‘ 343

' v

[Earl 707 J. y. An efficient context-free. pars1ng
algorithm. CACM, vel. 13, no. 2, pp. 94-102.
February 1970. . ‘

[Farr 82] R. Farrow. Linguist-86: Yet another translator
writing system based on attributed grammars.
Proceedings of the Sigplan' 82 Symposium on
Compiler Construction, Boston, MA. ACM Sigplan
Notices, vol. 17, no. 6, pp. 160-171, June 1982.

[FiMQ 80] C.N. Fischer, D.R. Milton and S.B. Quiring.
Efficient LL(1) error correction and recovery
using only insertions. Acta Informatica, vol. 13,
no. 2, pp. 141-154, 1980.

[Fisc 75] C.N. Fischer. On parsing context-free languages
in parallel environments. Ph.D. thesis,
Department of Computer Science, Cornell
University. 1975,

(Floy 61] R.W. Floyd. A descriptive- language for»symbolﬁc
, manipulations. JACM, vol. 8, no. 4. 1961.

[Gazd 82] G. Gazdar. Phrase strucfﬁte grammar. The Nature
' of Syntactic Representation, ed. P. Jacobson and
G.K. Pullum, pp. 131-186. Reidel. 1982. ‘

[GeHa 77a] M.M. Geller and M.A. Harrison. Characteristic
: parsing: a framework for producing compact
deterministic parsers, I, Journal of Computer and
§ystena$ciences,‘vol. 14, pp. 265-317. 1977,

[GeHa 77b] M.M. Geller and M.A. Harrison., Characteristic

N parsing: a framework for producing compact
deterministic parsers, II1: Journal of Computer
and System Sciences, vol. 14, pp. 318-343, 1977.

[GrHJ 79] S.L. Graham, C.B. Haley and W.N. Joy.
Practical LR error recovery., Prqogeeding. of the
Sigplan Symposium on Compiler Construction,
. Denvor, Collorado, ACM Sigplan Notices, vol. 14,
" no. 8, pp. 168-175, August 1979,

[GrHR 80) S.L.‘Graham, M.A. Harrison and W.L. Ruzzo.
- - 'An improved context-free recognizer. ACM -
+Transactions on Programming Languages and
Systems, vol. 2, no. 3, pp. 415-462. July 1980.

3

[Heil 81} 2 Hexlbrunner. A parsing automata approach
to LR theory. Theoretical Computer 5c1ence,
vol. 15, pp. 117-157. 1981,

JL
40s 2

*[HeSi 83)] E.C. Hehner and B.A. Silverberg. L

4 ’ . ’

W : 344

Programming with grammars: an exercise in
methodology-directed language design. The

(Computer Journal, vol. 26, no. 3, pp. 277-281,
1983. '

[Hunt 82) H.B. Hunt, III. On the decidability of grammar

problems. JACM, vol. 29, no. 2, pp. 428-447.
- Apcil 1982, ‘

[Hunt 84] H.B. Hunt, IIl1. Terminating Turing machine
computations and the complexity and/or
decidability of correspondence problems, ‘
grammars and program schemes. JACM, vol. 31, _
no, 2, pp. 229-318. April 1984. -

[HuSU 74)] H.B. Hunt, III, T.G. Szymanski and J.D. Ullman..
Operations on sparse relations and efficient
algorithms for grammar problems. Conference
Record of IEEE 15th Annual Symp. on Sw1tch1ng
and Automata. Theory, PP. 127—132. 1974.

[HuSU 75)] H.B. Hunt, III, T.G. Szymanski and J.D. Ullman.
: On the complexity of LR(k) testing. CACM,
vol. 18, no. 12, pp. 707-716. December 1975.

[HuSU 77] H.B. Hunt, IlI, T.§. Szyménski and J.D. Ullman..
Operatiions on sparse relations. CACM, vol. 20,
pp. 171-176. 1977. ‘ '

-

, t
[I1chb 7§$~ J.D. Ichbiah et al. Rationale for the degsign of
v Ada programm1ng language. ACM Sigplan N;tlces,
vol, no. 6, part B. June’ 1979
[Jack 77] R.'Jackendoff. X SyntaX: A Study of Phrase
Structugfs. MIT Press, Cambridge, MA. :1977.
[JaOR 75] M. Jazayeri, W.F, Ogden and W.C. Rounds.
. " The intrinsically exponential complexity of
‘the gircularity problem for attribute grammars.
‘ \‘CACM, vol, 18, no. 12; pp. 697-706. Dec. 1975.
N »
[JaPo 81] M. Jazayeri and D. Pozefsky. Space-efficient
- storage management in an attribute grammar
evaluator. ACM Transactions on Programming
Languages’'and Systems, vol. 3, no. &,
pp. 388-404. October 1981.

[Jawa 75] M. Jazayeri and K.G. Walter. Alternating semantic
evaluators. Proceedings of the ACM 75 Annual
‘ Caonference, pp. '230-234, 1975, .
[JeWwi 74) K. Jensen and N. Wirth, Pascal User Manual and
Report, second edition. Springer-Verlag,
g New York. 1974. :

® -

¢

345

[John 75] §S.C. Johnson. YACC: yet another
- compiler-compiler. Technical Report 32, Bell
Laboratories, Murray Hill, N.J. 1975, Also
, - reproduced in Unix Programmer's Manual, vol. 2.
[JoMa 80)] N.D. Jones and M. Madsen. Attribute-influenced
LR parsing. Proceedings of the Workshop on
Semantic-Directed Compiler Generation, Aarhus,
Denmark, January 1980. Lecture Notes in Computer
Science, no.-94, ed. N.D, Jones. Sringer-Verlag.
1980. . -

{Josh 81] A.K. Joshi. Factoring recursion and dependencies.
‘ ' 21st Conference on Computational L1nguxst1cs.
. 1981,

L
[KaHZ 82] U. Kastens, B. Hutt and E. Zimmermann.
GAG: A Practical Compiler Generator. Lecture
Notes in Computer Science, no. 141,
Springer-Verlag. 1982,

[Kast 80] U. Kastens. Ordered attributed grammars. -Acta
. Informatica, vol. 13, pp. 229-256. 1980,

[Knut 65] D.E. Knuth. On the translation of languages from
. left to right. Information and Control, vol. 8,
pp. 607-639. 1965.

[Knut 68] D.E. Knuth. Semantics ef-context-free languages.
Mathematical Systems Theory, vol. 2, no. 2,
pp 127-145, 1968.

[Kost 71] C.H.A. Koster. Affix grammars.
Algol 68 Implementation, ed. J.E. Peck,
pp. 95-109. North-Holland, Amsterdam. 1971,
5 ;

[Lalo 77] W.R. Lalonde. Regular right part grammars and
‘ their parsers. CACM, vol. 20, pp. 731-741. 1977,

{La) ,7!& W.R. Lalonde. Constructing LR parsers for reqular
e right part grammars. Acta Informatica, vol. 11,
pp' 177_1930 1979.

[Ledg 81] H. Ledgard. Ada: Introduction and Ada Reference
+ Manual. Sringer- Verlag, New York. 1981,

)
[Ledqg 84¥F ﬁ Ledgard. American Pascal Standard.
’ Spr1nger Verlag, New York. 1984.

[LeRS 74] P.M. Lewis, D.J. Rosenkrantz and R.E. Stearns,
, Attributed translations. Journal of Computer and
System Sciences, vol. 9, pp. 279-307. 1974.

[Mads-BO]

[MaFi

[ﬁaKr

[Marc

[Marc

[Marc

[Marc

[MiSc
[Nijh
[Nijh

[Nozo

82]

76)

75)

76]

78]

80)

78]

80)

83]

86]'

346

O.L. Madsen, On defining semantics by means of
attribute grammars. Proceedings of the Workshop -
on Semantic-Directed Compiler Generation, Aarhus,
Denmark, January 80. Lecture Notes in Computer
Science, no. 94, ed. N.D. Jones. Springer-
Verlag. 1980.

J. Mauney and C.N, Fischer. A forward moye
algorithm for LL and LR parsers. Proceedings of
the Sigplan' 82 Symposium on Compiler ,
Construction, Boston, MA., ACM Sigplan Notices,
vol. 17, no. &, pp. 79-87. June 1882,

O.L. Madsen and B.B. Kristensen. LR-parsing of
extended context-free grammars. Acta Informatica,
vol. 7, pp. 61-73. 1976.

M.P. Marcus. Diagnosis as a notion of grammaDB
Theoretical Issues in Natural Language
Processing, ed. R. Schank and B. Nash-Weber,
pp. 6-10. 1975,

M.P. Marcus. A design for a parser for English.
Proceedings of ACM Annual Conference, pp. 62-68.
1976. -

M.P. Marcus. A compugdtional account of some
constraints on langgage. Theore§ical Issues in
Natural Language Processing-2, pp. 236-246.
University of Illinois, Urbana~Champion. July
1978. Also appeared in Elements of iscourse
Understanding, ed. A.K. Joshi, B.L. Webber and
I.A. Sag. Cambridge University Press, Cambridge.
1981, ;

M. Marcus. A Theory of Syntactic Recognition
for Natural Language. MIT Press, Cambridge, MA.

1980,
M.D. Mickunas and R.M, Schell.\zarallel

. compilation in myltiprocessor environment.

Proceedings of ACM Annual €onference,
pp. 241-246. 1978:

A. Nijholt. Context-Free Grammars, Covers, Normal

" Forms and Parsing. Lecture Notes in Computer

Science, no. 93. Springer-Verlag. 1980.

A, Nijholt. Deterministic Top-Down’and Bottom-Up
Parsing: Historical Notes and Bibliographiéds.
Mathematical Centre, Amsterdam. 1983,

R. Nozohoor-Farshi. d! formalizations Qf Marcus'
parser. To appear in Proceedings of COLING 86,
: -) i

*

[Page

[Page

[PaKo

[PeDe

[PeSh

[Pohl

[PoJda

[Ritc

77a]
77b]

86)

78]

84)

83)

78]

83]

701

.....

¥
N 347
‘2, A
A e
LR :va
11th International Conference on Computgsbonali
Linguistics. University of Bonn, West Gécmmny.
August 1986.) A
D. Pager. A practical general method for
constructing LR(k) parser. Acta Informatica,
vol. 7, pp. 249-268. 1977.

D. Pager. Eliminating unit productions from LR
parsers. Acta Informat1ca, vol. 9, pp. 31-59.
1977.

G. Papakonstant1nou and J. Kontos, Knowledge
representation with attribute grammars. The .
Computer Journal, vol. 29, no. 3, pp. 241-245, -
1986. ’

T.J. Pennello and F. DeRemer. A forward move
algorithm for LR error recovery. Conference
Record of the Fifth Annual ACM Symposium on:
Principles of Programming Languages,: “pPp 241-254.
Tucson, Arizona. 1978,

F.C.N. Pereira and S.M. Shieber. The semantics

of grammar formalisms seen as computer languages.
Proceedings of COLING 84, 10th International
Conference on Computat1ona1 Linguistics,

pp. 123-129, Stanford University, CA. July 1984.

W. Pohlmann. LR parsing for affix grammars. Acta
Informatica, vol. 20, pp. 283-300. 1983.

D. Pozefsky and M. Jazayeri. A family of pass-
oriented attribute grammar evaluators.
Proceeding of ACM 78 Annual Conference,

pp. 261-270. 1978.

G.D. Ritchie. The implementation of a PIDGIN
interpreter. Automatic Natural Language Parsing,
ed. k. Spark Jones and Y. Wilks, pp. 69-80.
Ellis horwood, Ch1c|ﬁ.ter, England. 1983.

D.J. Rosenkrantz and P.M, Lewis, II,
Deterministic left corner parsing. Conference
Record of the IEEE 11th Annual Symp. on
Switching and Automata Theory, pp. 139-152.

i, M. Saarinen, E. Soisalonz SO1n1nen
‘ T1ehar1. The compiler. wr1t1ng system HLP

'-(HE'SJnkx language pracessor). Technical Report

A-1978-2, Department of Computer Science,
Unxvers1ty of ﬁels1nk1, Finland. March 1978.

L4

*
v

348

(samp 83) G.R. Sampson. Deterministic parsing. Parsing
Natural Language, ed. M. King, pp. 91-116.
Academic Press. 1983.

~

[Schu 831 L.K. Schubert. Private discussion. 1983,

[Schu 84] L.K. Schubert. On parsing preferences. Proceeding
of COLING 84, 10th International Conference on
omputational Linguistics, pp. 247-250. Stanford
ﬁniversity, CA. July 1984.

[ScPe 82] L.K. Schubert and F.J. Pelletier. From English to
logic: context-free computation of 'conventional'
logic translation. American Journal of
Computational Linguistics, vol. 8, no. 1,
pp. 26-44. January-March 1982,

(Shie 83) S.M. Shieber. Sentence disambiguation by a v
shift-reduce pars1ng technique. Proceedlng of the
21st Annual Meeting of the Association for
Computational Linguistics, pp. 113-118. NMIT, MA.
June 1983.

[Shie B84] S.M. Shieber. The design of a computer language
for linguistic information. Proceedings of
COLING 84, 10th International Conference on
Computaﬁidnal Linguistics, pp. 362-366. Stahford
University, CA. July 1984. ‘

‘D.w. Shipman and M.P. Marcus. ‘Towards minimal

data structures for deterministic parsing.
IJCAI 79, Advanced Papers of the 6th
International Joint Conference on Artificial
Intelligence, pp. 815-817. 1979

(ShMa 79]

[Ssiso 83) S. Sippu and E. Soisalon-Soininen. A syntax-error
handling technigue and its experimental analysis.
ACM Transactions on Programming Languages and
Systems, vol. 5, no. 4, pp. 656-679. Oct. 1983.

[sisu 83) S. Sippu, E. Soisalon-Soininen and E. Ukkonen.
The complexity of LALR(k) testing. JACM,, vol. 30,
., no. 2, pp. 259-270. Ap;il-1983. '

fre: space optimizing
productions from LR
L, 14, pp. 157-174.

[Sois B0) E. Soisalon-Soininepi
* effect of elimipatiffe
o parsers. Acta Info 8
”4%3 1980 , &

[Sois 32] E So1salon Soxk1nf‘ uessentlal error entr1es

' an heir use in LR parser optimization. ACM

actions op Programming Languag%s and -

Systems,.vol 4, no. 2. April 1982.

5
2

[Spec 81)

[Szwi 76]

[szym 73] |

[Tai 78]

[Tai 80)

[Tien 80)

349

D. Spector. Full LR(1) parser generation. ACM
Sigplan Notices, vol. 16, no. B8, pp. 58-66.
August 1981, ‘

T.G. Szymanski and J.H. Williams. Non-canonical
extensions of bottom-up parsing techniques,
SiAM Journal of Computing, vol. 5, no. 2.

June 1976.

T.G. Szymanski. Generalized bottom-up parsing,
Ph.D. thesis, Cornell University. 1973.

K-C. Tai. Syntactic error correction in
programming languages., IEEE Transactions on
Software Engineering, vol. SE-4, no. 5,

pp. 414-425. September 1978.

K-C. Tai. Non-canonical SLR(1) grammars. ACM
Transactions on Programm1ng Languages and
Systems, vol. 1, pp. 295-320. 1979,

K;C. Tai. Predictors of context-free grammars.
‘SIAM Journal of Computing, vol. 9, no. 3,
PP. 653-664. August 1980.

M, T1enar1. On the definition of attr1bua!
grammar. Proceedings of the Workshop on
Semantic-Directed Compiler Generation, Aarhus,
Denmark, January 80. Lecture Notes in Computer
Sc1ence, no. 94, ed. N.D. Jones.
Springer-Verlag. 1980.

M. Tomita. LR parsers for natural languages.
Proceedings of COLING 84, 10th International
Conference on Computational Linguistics,

pPp. 354-357. Stanford University, CA. July 1984.

M. Tomita. An efficient context-free parsing
algorithm for natural languages. I1JCAI 85,
Proceedings of the 9th International Jo1nt
Conference on Artificial Intelligence,

pp. 756-764. University of California,

Los Angeles, CA, 1985,

L. Valiaﬁiw General context-free recognition in
less than cubic time. Journal of Computer and
System Sciences, vol. 10, pp. 308-315. 1975,

D.A. Walters, Deterministic context-sensitive
languages. .Information and Control, vol. 17,
pp. 14-61. 1970.

D.A. Watt and O.L. Madsen. Extended attribute
grammars. The Computer Journal, vol. 26, no. 2,

[Watt

(Watt

[WeSH

[Weth
[Hp%&

[Wino

[Youn

77)

80]

77])

81]

75])

72]

67}

350

pp. 142-153.+ 1983,

D.A. Watt. The parsing problem for affix
grammars. Acta Informatica, vol. 8, pp. 1-20.
1977.

D.A. Watt. Rule splifting and attribute-

directed pars1ng. Proceedings of the wOrkshop .
on Semantic-Directed Compiler Generat1on, Aarhus,
Denmark, January 80. Lecture Notes in Computer
Science, no. 94, ed. N.D. Jones. Springer-Verlag.
1980.

J. Welsh, W.J. Sneeringer and C.A.R. Hoare.
Ambiguities*and insecurities in Pascal.
Software- Practice and Experience, vol. 7,
pp. 685-696. 1977

C.S. Wetherell. Problems with the Ada reference
grammar. ACM Sigplan Notices, vol. 16, no. 9,
pp. 90-104. Sept. 1981.

J.H, Williams. Bounded context parsable grammars.

Information and Conmtrol, vol. 28, pp. 314-334.
1975.

T. Winograd. Understanding Natural Language.
Academic .Press, New York. 1972,

D.H. Younger. Recognition and parsing of
context-free languages in time n’, Information
and Control, vol. 10&gpp. 189-208. 1967.

. 3

APPENDIX I

L4

Context-freeness of the language accepted

by Marcus' parser

while Marcus does not use phrase structure rules as
base gtammar in his parser, he points out some
correspondence between the use of a base rule and the way
packets are activated to parse a construct [Marc. 80].
Charniak [Char 83) has also assumed some phrase structure
base grammar in a’‘partial reimplementation gf Marcus' parser
that handles some ungrammatical situations. However, neither
has suggested a type for such a grammar or the language
accepted by Marcus' parser. In this appendix, it 1is shown
that the set of sentences accepted by a Marcus type parser
is a context-free lanqguage. This provides a justification
for assuming a context-free underlying grammar in in

. . ' o
automatic generation of such parsers.

The. proof for context-freeness of the string set is
based on simulating a simplified version of the parser by a
pushdown automaton. Then some modificaiioné of the PDA are’
suggested 1in order to ascertain that Marcus' parser,
regardless of the structures it puts on the input sentences,

accepts a context-free set of sentences. Furthermore, since

351

L4 352

the resulting PDA 1is a determinist‘b one, it confirms the

determinism of the language parsed by this parser.

1.1 Further elaboration of the parser operation and

assumption of a bounded bulter.

-

’

The basic operations of Marcus' parser were d¥scussed
in Section 2.2.1. Here, "attention shift" operations and the

role of the buffer are examined further.

An "attention shift" operation moves a window of size
k=3 to a given position on a buffer of size b=5. This occurs
in parsing of some NP's, in'pa}ticular when a buffer node
other than' the first indicates start of an NP. "Restore
buffer” restores the window to its previous position before

the last "attention shift".
[4

Marcus suggests that the movements of the window can be
achieved by employing a stack of displacements from the
beginning of the bufferﬁ and in general he-suggests that the
buffer could be unbounded on the right. But in practice, he
notes that he has not found a need for more than five cells,
and PARSIFAL does not use austack to implement the window or

virtual buffer.

A comment regarding an infinite buffer is in place
here. An unbounded buffer will give a parser with two
stacks.’ Generally, such parsers characterize

context-sensitive languages and are equivalent to linear

353

bounded automata. They have also been used for parsing some
context-free languages. In this role they may hfde the
non-determinism of a context-free language by storing an
unbounded number of lookaheads. Furthermore, basing parsing
decisions on the whole left contexts and k lookaheads in
them,.has often ;esulted in defining a class of context-free
(context-sensitive) grammars with wundecidable membership.
LR-regular, LR(k,=) and FSPA(k) are such classes. The class
of GLRRL(k) grammars with unbounded buffer (defined in
Chapter 5) seems to be the known exception in this category
that has decidable membership. However, it is not known
whether these grammars generate only the deterministic

context-free languages.

The class of BCP(m,n), bounded ccntext _parsable
grammars, 1is another «class of contéxt-ftee grammars for
which deterministic -wo-stack parsers exist and .yet the
membership in the class 1is decidable [Will 7%L’In thesge
grammars at least one phrase 1in any sentent'hi/ forn is
recognized by m symbols to the left of the phrase and n
symbols to its right. Naturally, }he parsers for these
grammars forget the left context except the last m symbol of
it. Thus, the BCP grammars are not considered to be in éhe
above cateéﬁf}. In fact, they are a proper subclass of

FSPA(n) grammars that do not include LR grammars. They also

generate some non-deterministic languages.

K ’\' P ’ ‘il v p‘ ' 3
. \/ N S
‘,1 i - R v) 354
4 ’ '
walter [(Walt 70) considers ‘kontext-sensitive grammars
with deterministic two-stack parses and shows the
undecidability of the membership problem for the class of

such grammars,
Q*

In this appendix, it will be assumed tjat the buffer in
a Marcus style parser can only be of a finite size b (e.g.,
b=S in Marcus' parser). The limitation on the size of the
buffer has an important consequence. It allows a préof for
the centext-ffeeness of the language to be given in terms of
a PDA. However, one should note that Marcus style parsers.
with unbounded buffer, similar to GLRRL parsers, can still

be constructed for languages that are known “to be

context-free.

1.2 Simplified parser '

A few restrictions on Marcus' parser will prove to be
convenient in outlining a proof for context-freeness of the

language accepted by it, , ?

1.2.1 Prohibition of features

Marcus allows syntactic rnodes to have featureS
containing the grammatical properties of the constituents
that they ;?present. For implementation purposes, the type
of a node is also considered as a feature. However, here a

distinction will be made between this feature and others.

)

355

The type of a node and node itself will bé‘sonsidered to’

convey the same concept (i:e:, a non-terminal symbol). Any

other feature is disallowed,

In Marcus' parser, ;he binding of traces is also
implémented through the use of feé%ures. A trace is a null
deriving non;terminal (e.g., an NP) that has a feature named
register pointing to another node, i.,e., the binding of the
trace. At the outset‘it must be stressed that Marcus' parser
outputs the annotated surface structure of an utterance and
traces are intended to be used by the semantic component to
recover the _underlying predicate/argument structure of the

utterance. (In this respect Marcus' parser differs from
i

parsing of deep structures in classical'transformationalf

}
Qpammars, where fillers are supposed to be shifted from ofe

place to another in a sentence. Thus Marcus' parser is more
in line‘iith current linguistic theories and the treatéent
of the traces are very similar to that in Gazdar's
.comtext-free approach). Therefore one ,could put aside the
issue of trace registers without affectin? any ar%Ement that
deals with the str;ngs éccepted by the i'rserr i.e,,
frontiers of surface structures. However, the features will
be reintroduced in the generalized form OfgﬁéDA for the
completéness of the simulation.

1.2.2 Non-accessibility of the parse tree

Bl
¥

e -

"'

v

A\l

Ny - 356

4

qi;hough most of the 1n£orma;/?n about the left context
packeting mechanism in

is captured through use
. ‘

Marcus' parser; he nevertheless allows limited access to the
.. - .)

nodes of the partial parse tree (besides the current active

node) in the;,actiona pagts of'}he grammar rules. In some

:rules, after the initial pattern ﬁatches, conditional

‘

clauses test for some property of the R\rse\;ree. These
tests are 11m1ted to the -left - daughters Qf current

active node and the last cyci&c Qode {NP or S} on théhstack

“and its dom1nants. It is plau51b1e to eliminate tree

v

accessibility entirely through;-addlng new packets and/or
. _
simple flags. 1In the 51mp11f1ed pgrser, access to the

partial parse tree is disallowed. However, by modifying the

stack sxgho}s of the PDA, it will beiShown\ later that the

proof of context-freeness carries over to the general par;;r

(that teets limited nodes of parseztree).

Combination of éhceséf to partial tree and packeting

mechanism degrades’the quality of error detection in Marcus'

-

parsev. The segple grammar given in [Marc' 80] seems to be

LS

~ very relaxed in detectﬁng errors 1n the 1nput sentence. The

{hles of any g1ven ‘packet are spread throughout the llst{ng.

LY L)

Because of‘“this ana‘the use of priorities it is difficult to

. | I3 . ' ' » ‘) I3 .
pinpoint 'a situation’where the parser accepts 'an erroneous
- [4 ’ IE " ' - ! "
sentence.. But a thorbugh test of an 1mplementat1on of the
v " o . 4 .
sample grammar would most likely re;lal that some errors are

1 .

.not detetted. For example, thqre seem to be s1tuat1ons vhere

¢

%l a noﬁe A eap have tu.o descendents B andy€. After pa\rsmg and

~ .

357

Wattachment of B, a packet apparently could remain actxve

which upbn erroneous input could trigger parsxng and

attachment of a second B rode.

\ . s
1.2.3 Atom1c ac nons ~, g v o . t
../ ﬁ‘", x . '\ “.l

Action segments in Mafus' grammar ruies may contaxn a
series of basic operations. To simplify the sxmu1a¥1on it
is _assumed that in the s1mp11£1ed parser actions are atomic.

Breakdown "of a compound ‘action into atomic actions can be
]

.achieved by keeping 'the.-first operation in the original ryle
and introducing new singleton packets containing a default
pattern and a remaining Qperation in the action part. These -

. .8 .
. 1€‘Fa?kets wi llasﬁtce851vely dea§tivate themselves and activate

‘ the next packet much like "run <rule> next"s in PIDGIN. The

last p:;i;t will ~activate the first if the original rule:

.) .] ?
leaves e packet still active. Therefore in the simplified

parser action sedkents are one the follgytng forms:

(1) ActiQate packets?; [deactivate packets2]. - »

’

' (5) Deactivate packets1° [activate packets2w

X

. R)
, .(3) .Attach ith; [deactnvabe packets1] lactijate packets2].
(4) [Deactivate packebs1]- create node, actlvate packetsZ\

(5) [Deactivate packets1] caﬁia‘ ﬁbdé“ ictlvate packets2.
o
(6) Drop, [dqact1vate packe*t:sb.]"e Iad!1u:¢gg§acket52]

(7‘) Drop into buffer° Q_qeacﬁva/;e‘" pﬂcketsl], A [ac}ivate

paCket52] b R . » : o ?;

(8) Attention shift (to ith cell); [deactivate Racketst];g

358

i

—[aétivate packets2]. y

(9) Restore buffer; [deactivate packetsi]; [deactivate

packéfszl.

AT &

Note that forward attention shift has no explicit
command in Marcus; "rules. An "AS" prefix in the name of a
rule implies the operation. Backward window .mové ﬁas ’anf
explicit command "restore “buffer". The square‘brackets/in
the above fofmé-indicate oﬁtionaljparté.‘Feature ?ssignment
operatﬁyns are ignored for the obvious reason.

1.3 Simulation, of the ;?hplified parser

-

Given a gimplified parser, oneican construct a PDA that’ -
recognizes the ‘éame string §eR"that is accepted by the
paréer. Roughly, the states of this PDA ake’symbolizedAby
the contents of the parser'sbbuffer, and its stack symbols
are ordered pairs consisting of a non-térmihal‘symﬁol (i.e.,
a stack sym%ol of the parser) and €~ se£ of rpackets

associated with that symbol. ~

A
Let N be the set of non-terminal’sprol;?‘snd Z .be the
set of terminal symbols of th;: pafsér. Al§o, let S,, a
dist}nct elementﬁ%f Nﬂ‘denotevihe‘fgp S hodé,;i.e:;wthe root
of a parse tree. On; maﬂ'%ls; assgge that a fin3l packg} is
added to the grammar. When the pérsind 3of a sentence is

Q}}\

i 3 ﬂ. .
completéd, the activation %ihxs packet will cause the root

. &g .
node S, to be dropped intd tfa buffer, rather than -being

%o

¢ | 359

left on the stack. Furthermore, let P denote the set of all
v P . ‘ - .
_packets of rules, and 2 the powerset of P, and let

P,P.;P,,... be elements of 2P. n
.When a set of packets P is active, the pattern segments
of the rules in these packéts are compare@ witﬁythe current
active node and contents of thg virtual buffer~(the windaw).
Thé? the action segmeht o&;a rule with highest priority that
matches is 0¥ecﬁt_ed. In effect t'gperé_tion. of the parser
‘can pe‘ characterized by a paftial function M from active
packetsy current actiwe node and contents of the window into
.atomic‘actions, i.e.,

P (1) (k)
M: 2 XN XV -+ ACTIONS he

" (k) 0 1 Kk _
where V=NuI, V =V +V +,,.+V and ACTIJONS is the set of

A I
atomic actions (1)-(9) discussed in the previous section.

The folloyinb ‘constructs a PDA Az{Q,Z,F,&,d.,z,Jf}

é

which is equivalent to the simplified parser. . -
r = tﬁx set of input symbols of A, is_ the set of terminal

symbols in .the simplified parser. = .

' = the set of stack gymbols. {X,P], where XEN 1is a
. .) ’ < . ¥
non-terminal symbol of the parser and P is a set of packets.

Q = the set of states of the PDA, each oﬂﬁ&ﬁﬂ form .
<P, ,P,;,buffer>, where P, and P, are sets of packets, 1In
general P, and P, are empty sets except for those states

that‘tepresent'dropping of a current active node .in the

«

° . ‘ 360

parser. P, is the set of packets to be activated explicitly
after tﬁe drop operation, and P, is the set of those packets

that are deactivated. "buffer" 1is a string in the set
(1) -(n)" (b-n) ‘
(| V) |V , where 0sn<b-k. The last vertical bar in

}

"buffer" denotes the position of the currentwindow in the
N . - .

parser .\d those on the 1left 1indicate former window

positions. r. &

. e e A
g.'= the initial state = <¢,9,|c¢>. (
& °)

f = the figal state = <¢,¢,'f$,>, This stagte correspbnds to

~

thes pu'tcge of an activation of the® final packet in the

Sa

. - ’ 5. a
parsd. Inethis wb% i.e,, by dropping the 8, fode into the
¥) ». L .
buffer, one ‘can show the acceptanae 50‘1'\”‘ a sentence
] . , .
simultaneously by empty stack and by final state.
' . . - “‘ ¥ »

' . .
Z, = the start symbol = [S,,P,], where’P gfgnitial packets},

e.g., {SS-Start, C-Pool} in Marcus' parser.

‘5= the move furction of the PDA, defined in +the following

13

' way:

-

Let P denote a set of active packets, X an acti}e’ node

., WW.WW,. 1<k, ‘%he content of_a 'window. Let
12 1 i

. and

alW W .,.W B bela string (representingm . the buffer) such
12 A : ‘ ‘
that: T ‘ -
(1) (b-k) /) = .] o
a€(] V) and BtV where Length{(a'W'W ...W B)<b, and «'
' . 12 1 ’

is the string a in which vertical bar® &re erased.

Non-¢-moves:
-The non-e-moves of the PDA A cori'ésp'Ond'to bringing the
.‘ ' i ——————— »

»

~

» : 361

“input tokens into the buffer for examination by the parser.

. . X A ‘ .
In .Marcus' parser input tokens come to the atteation of

e T

parser as they are needed. Therefore, one can assume that

when a rule tests theh‘ciontents of 1 cells in the window and

i

.3

there are fewe

%

be broughf

the buffer, terminal symbols ~will
buffet. More 5pecifica11y: if .

-M(P XW LW)y ined value (i.e., P contains a
R ¥
t with a rule thqt has pattern segment [X)[w]...[w 1),
: 3

L

2.8,a|W ...W>W L[XPl)= (<g,8,a|W ...WW >, [X,P])
RN PR L 17 3! :
fqr all a, and for j=0,...,1-1 and W €z, ¢
. . . j+1 .
c-moves: S _ o

By e-moves, Ahe PDA mimics the actidbns of the p&rser on
successé ” matches. Thus the 6—function or'e input

cOrrespon 1ng to each individbal atomlc act1on is determ1ned

!

adebrdlng to one of the followlng cases. -
. Cases (1) & (2): [

If - M(P,X,W W .,..W)=activate P,; deactivate P, (or
_ 1 2 1 '
‘deactivate P,; activate P,), then

$(<p,0,a|W Wo...W B>, X, P])=
12 1

(<¢ ¢ a|W W ...W B> [X (PuP,)-P,]) for all a and B
12 , .
. Case (3): 4
If’M(P,x,w W ...W ...W.)= attach ith (normally i iiﬁiéif'
2 i1 ~ -
deactivate P,; activate P,, then
6(<¢p¢'a|w co’w .oo B> ([x P])= -
1 i
f (<p,9, a|W ...W . W ..W B> [x,(pup) P,]) for all a,B.
1. i-1 i+} 1 o RN
Cases (4) and (5):- B T K

oo

8@

L

a and

)
.A,glx -

2.4

. ‘ 362

T M

1f M(P,X,W ...W)= deactivate P,; create/cattach ¥; aativate

, LA GY
Pll ' . 4} .
\ o e 4
then -,
' - ‘1 h
6(-<¢,0,¢Iw o W B>'(,'[X'P])= “".

2 i XY
Y . ; ‘ -g?! .

(<¢,¢,¢|w '...'w B>’ [x,p-Pgl[Y’P;]) fot all' d ’g "pc ' ¢ 3

1 1 o o e o
Case (6): ' . . « » o)?\ i
1f M(Ph& e. W)= dro.p, deactivate P., activate P,, th eh

"1 01
§(<p,|W ... W B> ¢,[X,P])= {<P,,P,,a|W ...W B>,¢) for all
s &1 1 1 1 .
,"ar@ furthermore

8(<P,,P,,a|W ...W B>, ¢,[Y,P'])=
l L

» : 1 . ‘

(<p,9, a|W. w ﬁ> (v,(Pp'uvP,)-P,]) for all a«a and B, and
P 1 .

P'€£ , YEN, The la move éorresponds to the deactivation

of the packets P, and activation of the pacKets “P, that

4

follaw the dropping of a current active node.

.)
L

Case (7): N : R “" .

I1f M(pP,X, w ce W)=dropv1nto butfer deactivate P,; activate

1 .
P, (where 1<k) then ’ Y
" ®l<o,0,a|W ...W B>, ¢,[X,P])= (<P,,P,,a|XW ...W ANgg) for all
e S 1 4 1 ° lm
a.and B, and furthermore . _\,‘ ~
8(<P:,P,,a|XW ... W B>, ¢,[Y,P'])=
, ST _
(<p,0,0|XW .. W 8>, [Y,(P'uP,)-P&) for all « and B8, and for
P 1 "1 L) : ~
all P'€2 and YEN. ‘
case (8): . g;s .
1f M(P,x,,w'..‘,.w oW)= shift attention to th . cell;
1 i 1

¥

deactivate P,; activate P,, then

s(<p,0,a|W ...W ... p> ¢, [X,P])=

i A
(<o, 9,a|W ...|W ...W B> [x, (PuP,)-P,]) for all a and 8.
) 1.. i . . “ .

":», R : .
*~°{‘1 } ‘ . -

Case (9):) .
If M(P,X,W .,.W)=' restore buffer; deactivate P,; activate
P, . P

."
then"ﬁ

6($¢'9'0| |a,|ww...w B>"'[X'P])'
1 1

+

(<9,0,a,|a,W ... W B>, [X,(PvP,)-P,]) for all a,,a, and B

no yertical bar.

.) Y !
* such that a, contains e
. e . . . B ,* » Ly "j‘i‘rx'; I o ,0‘ i "/ 'J . B

*

-

ok

® Novw from the construction. of the PDA, it,is obvious
that A accepts those strings of terminals that are parsed

successfully by - the simplified parser. The reader ﬁhy ngté

-~ -

that the value of § is undefined for the cases 'in vhic

M(X,P,W ...W) has multiple values. This accounts for theQ
11 o :

fact that Marcus' parser behaves in a detefministic wa;.
Furthfrmofé, many, - of the states of A are unreachable. Tﬁis
is due to the way 'in which the PDA was constructed b}
coqsidefingr aétivation of 211 subsets of P with any active .

- -

‘ node and any lookahea&\ﬁindow._ ' S
| . ‘ LY
OO0 ¢

I.4 Simulation of the general parser

It is possible to lift the restrigtions on the
§implifiedf parser by modifying the PDA. The following
.sectjoné.descr;be how MaEcus' parser gan'be simuléted_ by a-
.generalized form of the PDA. -
1.4.1 Nbﬁhatohiq actiéaj”\ a" N - l e {~ .

rs

]
po

1 Y | 364

The behaviour of the Marcus pars’vith non-atomic
. * \
actions an‘be described in terms of MEM , a sequence of

compositions *of - M, which in turn can be specified by & a
% :

sequence in & . " \

1.4.2 Accessibility of descendants of current aGtive node, .

ce "

and current cyclic node » qu?.

What parts of the partial pérse tree are accessible in
Mafcus' parser seems to be a moot point.’ Mamgus' statement
in this regard [Marc 80] does not help to clarify the
situation. He ptates "the parsér can modify or directly
examine exactly two nodes in the active node stack... the
current active node and S or NP node c%osest to the bottom
of stack... called the dominasing" cyclic node... or...

current cyclic node... The parser is also free to examine

" the descendants of these iuo‘nodes..;, although the parge

cannot modify them. It does this by specifying the ' exact”

path to the descerdant it wishes fo examine." °

The problemv}s that whether by descendants of these two
nodes, one means Ehe immediate daughgérs or descendaats at
arbitrary levels., It seems plausible that accgssibility of
imﬁediate descendants i;‘sufficient. To explore this idea,
one needs to examine the reagon behin bartial tree accesses,
in 'Marcus’ parser. It could be argued that tree
accessibility serves two purposes: '

(1) Examining what daughters are attached to the current

v

\

, N : 365

active node considerably reduces the nmumber of packet rules

one needs to vrite,

) .) 0
(2) Exami‘hng the cggreht cyclic node and its daughters
.serves the purpose of binding tracqe. Since transformations

are applied in each igansformational cycle to a single‘

LA B ! - .
cyclic node, it seems unnecessary to ‘examine descendants of

¥

-

a cyclic node at -arbitrarily lower levels, ’
' L

If Marcus' parser indeed accesses only‘qhe immediate
daughters (a brief examination of the aahple grammar does
. Vo \

not seem to contradict this),, then the aécessibléxpax5 of

S

the a parse tree can be represented by a pair of‘ﬂhoges and
their daughters. Moreover, the set of cghgh,.gairs of
height-oné trees are ;znite in a grammar, Furfhermore, if
one extends the access to. the descendants of these two nodes’
down to a finite f{ked depth“'hiqh, in fact seems to have a
supporting evidenge from X theory éné‘C-command), oqs will
'sti?l Pe able to.represent the accessible parts—of—.parse
trees with a finite set of finjte gequences of fixed height

L)

trees. \ ?
L

A second interpretation 6f'Marcus' gtatq'enflis'that
descendants of the current cyclic node and ;ﬁrrent active
node at arbitrarily 1lower levels are accessible to the
pérser. However, in the presence of non-cyclic recursive
constructs, the notion of vgiving an exact ’peth to 4

¥ 4

descendant of the current active or <furrent cyclic node

would not make a‘eense; in fact one can argue that in such a
L

-

366

situation parsing cannot be achieved through & finite number
of rule packets. The reader is reminded here th#t PIDGIN

(unlike most programming languages) does not have iterative

or recursive constructs to‘test the conditjons that are

-

needed -under the latter interpretation.

L J

.

Thus, a meanidgful assumption in the second case is to
consider every recursive pode to be ‘cyclic, and to limit

’

accessibility to the subtree dominated by the current cyclic

node in whic"-es are pruned at the lower cyclic nodes..
Jn general, | may 'also- inélude cyclic nodés at fixed

HQ?Ursion deptﬁs, but again branéies of a cyéi&c node beyond
that must be pruned. *1n, . this sennes, .one 'ends up with a
finite number_of finite sequences (hereafter called forests)
of fihite trées representing .the accessible segments of
partial parse trees. The infoermation Bescribing a earti;l‘

parse ,tree is in the form of alforest, rather than a single

. \
tree, because some nodes may not .yet be attached ‘Eo a

P . ¢ .
dominating node. P ;
. ‘ L)

The conclusion is that at each stage)of7 parsing the
accessible soqvent of a parse @tree, ?egardless of how
- : ' L TN P]
Marcus' statemefit' is to be interpreted, can be represented
B \

by a finite forest. In the PDA simulating the general

" parser, the set of stack symbols I' would be the set 8f those

finite forests, wh4re in addition each.node is paired with

its associated packets. The states of this'PDQ; will' be of

-

the form <X,P,,P,,buffer>. The last thrjf elements are. the

167

o
same as before., The first entry is usuﬁhly ¢ except cthat
under the first/second interpretation when the current
active/cyclic node is dropped, this elemept 1is changed to
that ngde. For example, under the assumpoion that the pair
of hcigﬁt—one trees rooted'_g; current cyclic node and
current active node is accessible to the parser, the
definition of & function would inclyde the following

3

statement among others: . -

~1f M(P,X,W ...W ,Y)= drop, deact1vate P,; actxvate P,(where
e A l/\ .Y

" trees rooted at X and y represent current’ actxv‘ and CUrrent

.
. o

+

cyclic nodes), then : S
J 4) . ' .
. .M
8(<e,0,0,a|W ...W B>, ¢, [(Y,P'),(X,P)])=
too A A -
. : P
(<x,9,¢¢},a|w ...W B>,¢) for all a and B8, and for all P'€2 ,
1 €
Furthermore, 5(<X,P,,P,,alW ...W 8>, g,[(Y;P'3,(Z,P")])-
’ 1 1 4 oA A
- e X
(<e,p,0,a|WW 8>, [(Y,P'),(2,(P"vP,)-P,)]) for all
T 1 A A B
‘ p - e X) /
(z,P")ENX2 such that z has'X as a daughter. “Q

This mechanism is devised to convey - feature

. ‘. et
o 10T,

. the h1gher level when th‘ﬁia§6:~

4

More spec1£1cally, there wox:lf .

asSoc1ated with each symbol.,

xs.d pﬁ#d i

AY

_' symbol

hen- the node X

associated features would be copied to thet

appearing in the state of the PDA (via first &-move). The '

second &-move allowj{;D.po-featutes to be copied from the X
symbol in the state#o the X node dominated by the node 2.

i d,"./.

o8

s

, £
f[: 368
. s
1.4.3 Accommodation of featuteg: |
The features used in s' parser are syntactic in
: o

nature and have finite 8§, Therefore the set of

attributed symbols in thél*pa;ser constitute a finite set.

o

Hence - syntactic features can be accommodated - in the
construction of the PDA by allowing complex non-terminal

symbols, i.e., attributed symbols' instead of simple ones.

Feature assignments can be simulated by replating Ehe

top stack symbol in the PDA. For example, undér the prevjous

* .

assumpwmion that ‘two height-one trees rooted at current

active _pode and current cyclic node are ’'accessible to the

parser, the definigion of’Q? function will include the

.

following statement: - \ o

If M(P,X:A,W ...W.Y:B)= assi?n feagures - A'- 'to currert
A 1 1 A >

active node;*aesign features B' t® 'current cyclic node;

" deactivate P,; activat%~P, (where-A,A',B and B' are sets of

s ’
features), then

L d
[4

.. 6<ﬂé¢,o,¢,a|w ...W B>, ¢, [(Y:B,P'),(X:A,P)])=

| -t A’ A
f"‘ ?’1’ :
"(<<,¢ o alW W 4 NY BuB' P'), (x AoA', (PuP,)-P,)])
1
L A

for gll a and B, and P'€2 .

Now, by lifting all three restrictions introduced on
the simplified parser, it is possible to conclude that

Marcus parse; can be simulated by a pushdown automaton, and

\

X e .
g thus *tccfﬁts a context-free set of strings. Morédover, since

. C, | \ 169

" this pushdépn automaton is a deterministic . one, ‘the
4

®
determinism of the language par(&d by Marcus' mechanism is ‘

confirmed.

v

It is easy to obtain (through a st;ndard procedure) an
LR(!) grammar\ describing the language accepted by the
generalized PDA. Although this grammar will be equivalent ko
Marcus' PIDGIN grammar (minus any semantic consfdeg;tions),
and it will be a right cover for any underlying surface
grammar which may be assumed in constructing ‘the Marcus
- parser, it will suffer from being an uLnatural description

of the language. Not only may the resulting structures be

. el
hardly . usable by any reasonable semantic/pragmatics

component, but also parsing would be inefficient because of
the huge numbér of non-terminals«and productions. - !
: - ;

1.5 Conclusions

i N
It was shown that the information examined*or modified

/

during Mercus parsing (i.e., segments of paryial parse
. - ‘ " . B
trees, contents of the buffer and active patkets) for a

PIDGIN grammar is a finite set. By encoding this informption *

~in ‘the stack \symbols and the .states of a deterministic

pushdown‘ahtomaton, o?e can show that thg refulging PDA is

equivalent .to the Marcus parser. Iﬁ'fhis way, one pr?ves~
’ {

that the surface sentences accepted by thi} parser is a

context-free set.

