s

AR

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zesb Road, Ann Arbor MI 43106-1346 USA
313/761-4700 800/521-0600

University of Alberta

DISTRIBUTED QUERY SCHEDULING IN THE CONTEXT OF DIOM: AN EXPERIMENT

by

Kirill Richine ‘ c ’

)

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 1997

E*E National Library
of Canada
Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Cttawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése a1a

disposition des personnes intéressées.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni

the thesis nor substantial extracts la thése ni des extraits substantiels de
from it may be printed or otherwise celle-ci ne doivent €tre Imprimeés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.

[Le]

Canada

.

0-612-21204-1

T

University of Alberta

Library Release Form

Name of Author: Kirill Richine
Title of Thesis: Distributed Query Scheduling in The Context of DIOM: An Experiment
Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Kirill Richine

59 Sierra Vista Circle
Calgary, Alberta
Canada, T3H 3A4

-y

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitled Distributed Query Scheduling in The Context of
DIOM: An Experiment submitted by Richine Kirill V. in partial fulfillment of the requirements
for the degree of Master of Science.

Dr. X. Li

Abstract

One of the key issues for query processing in distributed open environments is the query scheduling
problem. Given a user query, after we know that there are n sources that are relevant to the answer
of this query, the first issue we need to address is how to decompose the query into n subqueries,
each targeting at one single source. The second issue is how to synchronize these n subqueries in
the presence of inter-site joins. The third issue is how to package and assemble the results from n
information sources according to the original query posed by the user.

In this thesis, we discuss the first two issues in the context of DIOM, a distributed and inter-
operable query mediation system [12]. Our main contribution is the systematic development of the
two-tier distributed query scheduling framework that produces the relatively best query schedule
according to the given combination of cost parameters, including the total query response time, the
local query processing cost, and the communication cost. Our main focus is on queries that con-
tain inter-site joins. The first tier is called the heuristic-driven query processing, which produces a
heuristic-based optimal schedule. The second tier is referred to as the cost-driven query processing,
which generates a cost-based optimal schedule. We implement a subset of our query scheduling
algorithms in Java accessible from any Java-compliant GUI viewer such as Netscape 3.0. The URL
for the demo is ugweb.cs.ualberta.ca/ diom/query/EQ.htnl. The most interesting features of
our Java implementation is the functionality to allow users to trace the query scheduling process

through trace program interface and the trace logs.

———n -

Contents

1 Introduction

1.1 Thesis MOtIVAEION . « o o o o o o v it e e e e e e e e e
1.1.1 Query Optimization in Relational Database Systems
1.1.2 Query Optimization in Distributed Database Systems
1.1.3 Open Interoperable Database Systems

1.2 Scope and Organization of The Thesist

DIOM Architecture

9.1 Overview of the Information Mediation Architecture

9.9 The DIOM Distributed Query Scheduling Framework
991 AnOverviewofthe Main Steps oot
9.2.2 An Application Scenario: The Airline Reservation Example

Distributed Query Scheduling

3.1 Global Optimization Criteriao oo v v i
3.9 Two-Phase Reduction Approach to Distributed Query Processing
3.3 Heuristic-Based Optimization« . oo v v v
3.31 MoOIVAtION -« v v v o e e i e e e e e e e e e e
3.3.2 Heuristics Based on Semantic Rewriting
3.3.3 Heuristics Based on Semantic Rewriting and Estimated Cost
3.4 Cost-Based Optimization oot
3.4.1 Statistics Required for Cost Estimation
3.4.2 Cardinality Estimation of Basic Algebraic Operators
3.4.3 Cardinality for Number and Date Datatypes (Arithmetic)
3.4.4 Cardinality for Character and String Datatypes
3.5 Cost Estimation for Inter-site Single-Operator Queries
3.5.1 Single Union Inter-Site Queryo it
3.5.2 SingleJoin Query Example e
3.5.3 Cost Functions for Inter-site Queries oo

System Analysis, Design, and Implementation Issues

41 System Requirements Amalysis
4.1.1 Analysis of Non-Functional Requirements-
4.1.2 Functional System Requirementsot va o

42 System Architecture Designo
491 Architecture OVEIVIEW . - o v i v v ittt e
422 UIP COMPONENES - - « « o v v e v e oo o mn s n s s ss s seesmm e
423 TOP COMPODENLS - « « < o v v ve e o v ee s e e e
424 DQP Components« «coovvvunaaan e
425 Maintenance and Diagnostic Components Specification

43 Code Implementation Design . . . -« . . oot i i
4.3.1 Java Programming Language: a Brief Overview

4.32 Distributed Query Scheduling Utility Software Package in Java

4.4 Implementation Remarks
441 Generality . . o o v v s i e e e e e e e
4.49 Software Extension and Further Development

45 User INterface . . o v v v i v v e e e e e e e e e e e e e e e e e e
451 Query Entry FormScreen
452 Query Manager SCTeEn« o v vt vttt e e e
453 CommonGUIComponentso v eccieunnennnnnn.

4.6 Query Processing Demonstration Experiments.o oo oo
4.6.1 Demonstration of Heuristic Processors
4.6.2 Demonstration of Cost Processoro i c i

5 Related Work and Conclusion

5.1 Overviewof Related Work oot
5.1.1 Query OptimizationinSystem R
5.1.2 Query ProcessinginSDD-1
5.1.3 Query Processing in a Multidatabase System
5.2 Summary and Contribution of The Thesis
5.2.1 Project Statistics oL D e e e e e e e e
5.3 Commentson Future Improvementot ae oo
Bibliography

A DQS Code Implementation

List of Figures

1-1 DIOM research subdivisions. Highlights show focus of this research.

9-1 The cooperation architecture of network of mediators.
9.2 The DIOM system architecture: anexample
2.3 The DIOM meta mediator architecture e e e e e e e
9.4 The distributed query scheduling frameworkin DIOM
2.5 Entity-Relationship Diagram of Airline Reservation domainmodel.
2.6 Query Decomposition Step.
9.7 The final result of the Airline Reservation domain query..

3-1 Two-phase query processing technique, a diagram.
3-2 Example of rebalancing the query tree with three-way join.
3-3 Example of semantic incompleteness.l
3-4 An example of database statistics required for cost estimation.
3-5 Object version of the relational schema.ocveenn
3-6 File system version of the relational schema.o
3-7 Graphical representation of probability problem Z=A4+C..
3-8 Probability function p(z) of random variable Z = A + Coo ot e e
3- Restrictions of Various Substring Operations. vveeon e
3-10 The query eXample. oo v v vttt e
3-11 The query tree resulted from query decomposition and routing.
3-12 Three possible site distributions for the single union query case: (a) - result is expected

at site 1, (b) - at site 2, and (c) —atsite 3.
3-13 The single join query example.l
3-14 Three possible site distributions for the single join query case: (a) — result is expected

at site 1, (b) - at site 2, and (c) —atsited.
3-15 The single join and union query example. a e
3-16 Layouts of costs for the first site distributions.c...

4-1 Architecture Flow Diagram of The DIOM Query Scheduling Utility Application.

42 Detailed Requirements Analysis Diagram for Query Manager Object.
4-3 Drawable abstract class and draw method overriding
44 Tree Processor Crassification. . - - . . . v v oo oo i i o e s
4-5 Moving the Join Group below the Union, an example.
4-6 Class Hierarchy of Distributed Query Scheduling Utility software: Implementation in

4-7 Query Entry FormScreent
4-8 ROULEr SCIEEN - -« « o v o o e e e oo v e n e e st e e e s aaeaa s oo s
4-9 Query Tree Screen displaying decomposition tree for query in Figure 4-7.
4-10 Query Tree Screen displaying the result of applying Move Selections Down heuristic

to the decomposition tree shown in Figure 4-9.
4-11 Cost Processor Panel Screen . . - .« . o o v vttt i i e
4-12 Log View Window SCreen oo ottt e

15

35
38

39
44
45

30
51
55
63
65

69
71
72
73

74
74

-

4-13 Parameter Edit Window Screen with Unit Local Cost parameters.

4-14 Parameter Edit Window Screen displaying Unit Local Cost parameters after user update. 7

4-15 Parameter Edit Window Screen displaying Source Statistics parameters.
4-16 Query Decomposition Tree for query shown in Figure 4-7, which corresponds to the
Router results shown in Figure 4-8.o oottt
4-17 Screen showing the log information of Move Joins Down heuristic processor when it
decided not to movethe joindown. ool
4-18 Screen showing the result of applying Move Joins Down heuristic corresponding to
decomposition tree shown in Figure 4-9.o
4-19 Screen showing the log information of Move Joins Down heuristic processor when it
decided tomove the join down. v v o vt c it
4-20 Comparison of cost information for the Union node. . ..t i e

5-1 Time and Resources Used in The Project.o

85

List of Tables

3.1 Formulae for computing selectivity factors of query predicates.
3.9 Formulae for computing selectivity factors of combinations of predicates.
3-3 Formulae for computing selectivity factors for predicated defined over numerical at-

ETEDULES. © o v o e

Chapter 1

Introduction

1.1 Thesis Motivation

Over the last few years there has been a drastic increase in exchange of electronic information.
The Internet connection as well as the browsing tools, originally designed for specialized needs of
scientific community, have become an expected component of an average computer system. More
and more information, previously accessible only via conventional means, become available through
the world-wide-web. For example, many service requests, ranging from booking an airplane ticket
and making a hotel reservation half-way across the world to career planning and banking, can now be
done from one’s home computer connected to the world-wide networks called Internet. The amount
and diversity of the information available on-line is astounding. One can spend days just browsing
and still not be able to even keep up with the megabytes of the new Internet resources that Lecome
available every day.

On the one hand, the sheer amount and diversity of the available information have increased
the opportunities to get the most authentic and complete information on any topic of our interest.
On the other hand, our ability to obtain only the relevant information among the large collection of
available resources is limited by the time we can afford to spend surfing on the Internet.

A variety of search engines available on the world-wide web as well as some Internet search utilities
try to address this problem. However, most of the search engines and utilities available today use
keyword-based search - the user supplies a set of keywords that he or she thinks are specific to the
information being sought. The keyword-based search uses partial string matching techniques and
typically selects the repositories that match the keyword in their title or some content description
fields.

Needless to say, this type of search is quite primitive. It is not sufficient for most of the structured
information sources because it can not provide adequate support for sophisticated queries such as
those that require inter-site joins. For example, if we are interested in purchasing a Toyota car of
1997 model, what we would like to do first is to look into the consumer reviews for such car sales.
Very often, we can find the car reviews from the consumers’ service information sources or local AAA
offices, but need to obtain information about the 1997 car model and current sale price from car
dealers. Thus, inter-site joins are required. There are two key difficulties in processing inter-site joins
in distributed open environments such as Internet: (1) Given a user query and a growing collection
of information sources, how to reduce the search space of answering a query to those information
sources that are relevant to the query answer; and (2) given a set of relevant information sources,
how to find a relatively efficient query execution schedule (plan) that has the quickest response time
and/or the lowest total processing cost. This thesis will address the second issue by providing a
theoretical analysis of the two-tier query scheduling architecture, and by applying and extending
the heuristic-based and the cost-based query optimization techniques used in relational database
management systems [18] and in distributed database systems [1, 5, 16].

1.1.1 Query Optimization in Relational Database Systems

In a centralized relational database system, given a query, there are a variety of methods for com-
puting the answer. Each way of expressing the query “suggests” a strategy for finding the answer.
However, we do not expect the users to write their queries in a way that suggests the most efficient
strategy. Thus, it becomes the responsibility of the system to transform the query as entered by the
user into an equivalent query which can be computed more efficiently. This “optimizing” or, more
accurately, improving of the strategy for processing a query is called query optimization. There
is a close analogy between code optimization by a compiler and query optimization by a database
system.

Query optimization is an important issue in any database system since the difference between a
good strategy and a bad strategy is often substantial, and may be several orders of magnitude.

Before query processing can begin, the system must translate the query into a usable form. A
language like SQL is suitable for human use, but not suited to be the system’s internal representation
of a querv. A more useful internal representation is the one based on the relational algebra, which
indicates the order of evaluating operations. The first action the relational system must take on
a query is to translate it into its internal form. This translation process is similar to the work
performed by the parser of a compiler. In generating the internal form of the query, the parser
replaces all references to the view name with the relational algebra expression in order to compute
the view.

Once the query has been translated into an internal relational algebra form, the optimization
process begins. The first phase of the optimization is done at the relational algebra level. Since for
a given query, there are many equivalent and yet correct algebraic expressions in terms of algebraic
rewriting rules. An attempt is made to find an expression that is equivalent to the given expression
but more efficient to execute. The second phase involves the selection of a detailed strategy for
processing the query. A choice must be made as to exactly how the query will be executed. The.
specific indices to use must be chosen. The order in which tuples are processed must be determined.
The final choice of a strategy is based primarily on the number of disk accesses required.

1.1.2 Query Optimization in Distributed Database Systems

The query processing problem in distributed database systems is more difficult than in centralized
ones, because a larger number of parameters affect the performance of distributed queries. The
role of a distributed query processor is to map a high-level query on a distributed database (ie., 2
database whose fragments may be stored in different physical locations) into a sequence of database
operations on relational fragments. Then each database query operation on relational fragments in
one location is translated to bear on local data. Finally the set of query operations must be extended
with communication operations and optimized with respect to a cost function which typically refers
to computing resources such as disk 1/0s, CPUs, and communication networks.

Due to the critical role of communication parameter in the distributed query processing cost,
relational algebra is augmented by operations such as semijoins for exchanging data between sites
to reduce communication cost. In addition to the choice of ordering relational algebra operations,
the distributed query processor must also select the best sites to process data, and possibly the way
data should be transformed. This increases the solution space from which to choose the distributed
execution strategy, making distributed query processing significantly more sophisticated. For a
concrete introduction of distributed query processing, readers may refer to Ozsu and Valduriez’s
book [16].

1.1.3 Open Interoperable Database Systems

Over the last two decades, there have been many research publications in the field of distributed
databases and federated databases.

Traditional distributed database systems have a dedicated central site that keeps the schema of
the database, including the fragmentation and location information schemas. This site coordinates

the processing of all query requests coming from the users of the distributed database. The query
is distributed among the local databases according to the fragmentation schema.

Federated database system differs from traditional distributed database systems in the sense
that the component databases, of which the federated system consists, are autonomous, that is,
they perform irrespective of whether they have been included into the federation. At the same
time, the schema of all the comporents is still maintained at federation level. In other words, if a
source database exercises its autonomy by changing its schema information, the federation’s schema
becomes inconsistent until either the source uploads the necessary schema updates to the federation
or the federation downloads them.

The federated approach requires the source to send information to all the federations of which
the source is a member whenever there is a change at the source. On the other hand, the federated
database server must be ready to process the updates at all times, irrespective of whether they
are relevant to the current task of the server. Both of the above conditions may become a serious
predicament to a database’s performance and extensibility.

Quite differently, in an open and interoperable system, such as the DIOM, a project for building
scalable and extensible query mediation services [7, 21], DIOM server does not create and maintain
an integrated view schema of all the sources’ schemas. In contrast, it allows the consumers to
request services through the domain-specific mediator. The interconnection of consumers to the
relevant information producers is established dynamically at the query processing stage. Every
information source registered with DIOM must have a wrapper set up, which acts as a DIOM agent
to the information source.

The main difference between distributed or federated database systems and open interoperable
database systems is the open world assumption. The distributed database systems and the federated
database systems [19] are based on the closed-world assumption, whereas in open environments such
as Internet, the information sources available on-line are changing in numbers, volume, contents and
query capabilities dynamically. The distributed query scheduling system must not only deal with the
selection of the best sites to process data, but also the dynamic increase of the solution space from
which to choose the distributed execution schedule, due to the rapid growing number of information
sources available on-line. Furthermore the statistic information that is accessible in distributed
database systems may not be available in open environments due to the autonomy of individual
information sources.

Thus the effectiveness of the distributed query scheduling is measured in terms of (1) the reduc-
tion in the number of candidate plans that are enumerated, (2) the discovery of a query execution
schedule that is relatively efficient with respect to either the total cost that will be incurred in
processing the query (i.e., the sum of all times incurred in processing the operations of the query
at various sites and in inter-site communication), or the response time of the query (i.e., the time
elapsed for executing the query) or a weighted combination of cost components. Since operations
can be executed in paraliel at different sites, the response time of a query may be significantly less
than its total cost. For more detail see Chapter 3 of this thesis.

1.2 Scope and Organization of The Thesis

This thesis presents the design and implementation of 2 DIOM Distributed Query Scheduling pro-
totype, namely DQS utility. The theoretical model and the architecture for query scheduling are
developed based on the previous result of the DIOM [14, 12] project. This prototype illustrates the
ability to automate the query scheduling process and the ability to allow experienced users to tune
the query performance by adjusting the unit costs, the statistics information, and the number of
sources accessed to answer the query.

The main contribution of this thesis project is the systematic development and implementation of
the two-tier distributed query scheduling framework that produces the relatively best query schedule
according to the given combination of various cost parameters, including the total query response
time, the local query processing cost, and the communication cost. Our main focus is on queries
that contain inter-site joins. The first tier is called heuristic-driven query processing, which produces

Front End (User Interface) System

Metadata Mapagement and
Distributed Catalog Services

Distributed Query Mediation Services

Query Result Assembly

Heterogencity Management
Distributed Access Services

(wrappers)

Legend

[areas of DIOM

areas of DIOM addressed by this thesis

areas of DIOM for which only GUI comporents
have been impleimented in this thesis

Figure 1-1: DIOM research subdivisions. Highlights show focus of this research.

a heuristic-based optimal schedule. The second tier is referred to as cost-driven query processing,
which generates a cost-based optimal schedule. We implement a subset of our query scheduling
algorithms in Java accessible from any Java-compliant GUI viewer such as Netscape 3.0. The most
interesting features of our Java implementation is the functionality to allow users to trace the query
scheduling process through trace program interface and the trace logs.

More concretely, the design and implementation of the DQS prototype system addresses the
following issues:

o The design of a set of heuristics-driven query optimization strategies and the implementation of
a subset of the proposed heuristics for obtaining a relatively optimal algebraic query expression.

o The design and implementation of the cost functions for realization of cost-driven query opti-
mization in DIOM, which provides a weighted combination of the three key cost parameters
that affect the distributed query processing performance: (1) the total cost of local processing
incurred by all information sources involved in query execution, (2) the total communication
cost of transferring the intermediate results of query execution among the sources, and (3) the
total response time cost, which is the maximum combiration of local and communication costs
incurred at query execution.

e The implementation of interactive interface programs that allow experienced users to trace the
query scheduling process and to tune the query processing performance by dynamically incor-
porating the changes in the unit cost involved in a query and the local statistic information.

o The methods for computing the intermediate query results as well as the strategies for selection
of the best sites to process inter-site joins or inter-site unions so that the total cost is minimized.

Figure 1-1 shows the major areas of research for the DIOM project. The highlighted boxes
represent the areas that the DQS prototype attempts to address.

The DQS prototype chooses to implement the user interface as a Java-based WWW application.
The main technologies used in the prototype implementation of the DQS utility include Java for the
main modules of the DQS and Oraperl, SQL/Plus, and Oracle DBMS for accessing statistics such
as unit cost information and local statistics for the lower-level query scheduling process as well as
the heuristics used for the DIOM high-level query scheduling process.

The remainder of this thesis is organized as follows: Chapter 2 presents an overview of the
DIOM system architecture, and guery mediation approach. A running example is used to illustrate
the DIOM query mediation framework and the theme of this thesis project. Chapter 3 describes the
two-tier approach we propose to handle the distributed query scheduling issue. The first part of this
Chapter contains the detailed description of the proposed heuristic-based query processing meth-
ods, and the second part covers the intrinsics of cost-based query scheduling. Chapter 4 describes
the object-oriented analysis, design and implementation issues of the Distributed Query Scheduling
(DQS) Utility software package that has been developed to demonstrate the viability of the query
scheduling algorithm proposed in Chapter 3. Chapter 5 concludes the thesis with a brief overview of
the state of the art research, and a summary of the contributions of the DQS prototype, the issues
addressed by the DQS prototype implementation, and a discussion of possible future improvement.

e e it

Chapter 2

DIOM Architecture

The Distributed Interoperable Object Model (DIOM) [12, 14] introduced the approach that explicitly
defines the interfaces of an information consumer and an information producer, matching them
dynamically to achieve interoperability in heterogeneous information systems with growing number
of autonomous data sources as components. Although the DIOM interoperable architecture and its
adaptive query mediation framework has been extensively covered in [10, 12, 14], to make this thesis
self-contained, in this chapter we present a brief overview of the fundamental points of the DIOM
project. Our attention is more concentrated on the parts of the DIOM previous research that are
directly related to the investigation of the distributed query processing and optimization in DIOM.

2.1 Overview of the Information Mediation Architecture

In DIOM we view an advanced distributed information system as a dynamic interconnection be-
tween information consumers and information producers, instead of just functioning as a static data
delivery system. Two issues that arise immediately are: (1) heterogeneity of information producers’
data sources and information consumers’ query requests, and (2) scalability of distributed query
services in the presence of a growing number of information sources and the evolving requirements
of both information producers and information consumers.

To deal with both the heterogeneity issues and the exponential growth of the available infor-
mation, scalability and extensibility become very critical. DIOM proposes two independent but
complementary strategies for achieving better scalability and higher extensibility in the develop-
ment of distributed and interoperable query services:

e Use an incremental approach to construction and organization of information access through
a network of domain-specific application mediators; and support the dynamic linking of medi-
ators to heterogeneous information sources via repository-specific wrappers (see Figure 2-1).

o Provide a collection of facilities to allow information consumers to specify their queries in terms
of how they would like their query results be received and represented, rather than relying on
a global integrated view of all the participating information sources.

The first strategy guarantees a seamless incorporation of new information sources into the DICM
system. The second strategy allows the distributed query services to be developed as source-
independent middleware services which establish the interconnection between consumers and a vari-
ety of information producers’ sources at the query processing time. As a result, the addition of any
new sources into the system only requires each new source to have a DIOM wrapper installed. The
DIOM services can dynamically capture the newly available information sources and incorporate
them into the distributed query scheduling process.

Figure 2-2 shows a concrete example network of information mediators collaborating through the
DIOM mediator network architecture.

Distributed Object/Query
Services
7 Meta -

. Mediator
;__‘_r_./

[}

]
Info. Info. Info. Info.
Source Source Source Source

Figure 2-1: The cooperation architecture of network of mediators

Medistors/Brokers ’ Wrappers Informstion Sources

Technical
Report
Mediator

m:lml Biblio.bib file
ry

= | Vrapecr

Publisher DB

il il

Tt [

Mediator

Bookstore DB

Airline DB

Travel Agent DB

Figure 2-2: The DIOM system architecture: an example

-1

GuI | Tt T T—I ——————————————————
(Query/Browser)] | r
9. <1 Distributed Interoperable Obj Interface
e.g. Wosaic | : a)féﬁt; ject Manager é Repository
[- DIOM-IDL Compiler | 3| InfoSoumc
~ DIOM-IQL. 8| Camlog
CLIENTS : ! ~ Distribuied Qe Services 2| Manager
| I - Runtiroe Superviser = -
| : ‘Object Linking & Embodding Services _§_ Repositoty
a
| ————— e — e —
- — Intemet -
T
Repository Repository Repository Resource
Wrapper ‘Wrapper Wrapper SERVERS Wrapper
SUN/SPARC 10 SON/SPARC 20 IBM RS6000 .
..... Mediator/
Deta Data | Data Information
pository P Repository Broker
(ORACLZ 6.0) (rile Server) (SYBASE 4.0)

Figure 2-3: The DIOM meta mediator architecture

This network includes simple wrapper-based mediators such as a wrapper to BookStore data
repository which only provides information about and access to the BookStore repository. This
wrapper-based mediator is in turn used to construct a BookSale mediator. The BookSale mediator
is again used to build both a document inquiry mediator and a travel plan mediator. This recursive
construction and organization of information access have the following important features.

o The individual mediators can be independently built and maintained. Each specialized medi-
ator represents a customized personal view of an information consumer over the large amount
of information accessible from the growing number of information sources.

o These mediators can be generated automatically or semi-automatically by using the DIOM
IDL/IQL interface specification language and the associated incremental compilation tech-
niques. These features also make the DIOM architecture scale well to the large and growing
number of information sources and to the varying information customization needs from diverse

information consumers.
To build a network of specialized information mediators, an architecture for 2 single mediator

(or so called meta mediator) is needed. Such meta mediator can be instantiated to build multiple
specialized mediators. They are responsible for the following functions in DIOM system:

1. provide a uniform interface description language;
9. create a suite of interface composition meta operations;

3. provide the query processing services that are customizable and can be utilized by a number
of application-specific mediators to facilitate the access to multiple heterogeneous information
sources.

A typical DIOM mediator has a two-tier architecture and it offers services at both the medi-
ator level and the wrapper level. Figure 2-3 illustrates the mediator object server, whose main
responsibility is to provide the following services:

1. the coordination and information exchange between information consumer’s domain usage

model and the relevant information source models,

9. the distributed metadata library of mediated metadata and the correspondence to the metadata
of information source models, and

3. the maintenance of the metadata catalog in the presence of changes or upon the arrival of new
information sources.

gt

Mediators in DIOM are application-specific. Each mediator consists of a consumer’s domain
model and many information producer’s source models and are described in terms of the DIOM in-
terface definition language (DIOM IDL) [13]. The consumer’s domain model specifies the querying
interests of the consumer and the preferred query result represeniation. The producer’s source mod-
els describe the information sources in terms of DIOM internal object representation generated by
the DIOM interface manager. The consumer’s domain model and the information producer’s source
models constitute the general knowledge of a mediator and are used to determine how a consumer’s
information request is processed. The main task of the mediator sub-system is to utilize the meta-
data provided by both information consumers ard information producers for efficient processing of
distributed queries.

Each wrapper serves one information source. Wrappers are software modules that need to be
built around the existing source in order to make it available to the network of mediators — this
will turn the system into a DIOM local agent responsible for accessing that information source and
obtaining the required data for answering the query. The main task of a wrapper is to control and
facilitate external access to the information repositories by using the local metadata maintained in
the implementation repository and the wrapper functions. Services provided by a wrapper include:

o translating a subquery in consumer’s query expression into an, information producer’s query
language expression,

e submitting the translated subquery to the target information source, and

o packaging the result of a subquery obtained from the source in terms of the objects under-
standable by the corresponding mediator.

Building a wrapper around the existing system turns the local system into a cooperative database

agent.
The information sources at the bottom of the diagram in Figure 2-3 may be one of the following
types of sources:

well structured: such as relational or object-oriented database management systems,
semi-structured: such as HTML files, bibliographical record files, other text-based records, or
nonstructured: such as technical papers or reports, ascii files, a collection of raw image files, etc.

Each information source is autonomous — it may make changes without approval from the mediators.
If, however, an information source makes a change in its export schema, including logical structure,
naming, or semantic constraints, then it must notify the DIOM object server.

2.2 The DIOM Distributed Query Scheduling Framework
2.2.1 An Overview of the Main Steps

The main task of a distributed query mediation manager is to coordinate the communication and
distribution of the processing of information consumer’s query requests among the root mediator
and its component mediators or wrappers (recall Figure 2-1).

[14] has proposed the general procedure of a distributed query scheduling process in DIOM. It
primarily consists of the following steps to process a user query submitted to the DIOM server:

1. query routing,

2. query decomposition,

3. parallel access plan generation,

4. subquery translation and execution, and

. query result assembly.

(1]

[P

Information Consumer’s
llil. Domaia Usege Model Mediator Metadata
Catalog Manager
1QL Fiaformation Producers 8
Source Data Models

Information Sources

Figure 2-4: The distributed query scheduling framework in DIOM

Figure 2-4 presents 2 sketch of how a query is processed inside of the DIOM system.

Query routing is the first step. The main task of query routing is to select relevant information
sources from available ones for answering the query. This is done by mapping the domain model
terminology to the source model terminology, by eliminating null queries, which return empty results,
and by transforming ambiguous queries into semantic-clean queries. Consumers’ query profiles and
producers’ data source profiles play an important role in establishing the interconnection between a
consumer’s query request and the relevant information sources.

The second step is called Query decomposition. It is done by decomposing a user query expressed
in terms of the DIOM interface query language (IDL) into a group of subqueries, each targeted at
a single data source.

The third step is Parallel query planning where optimization of distributed query takes place.
The goal of generating a parallel access plan for a group of subqueries is to find a relatively optimal
schedule that makes use of the parallel processing potentials and the useful execution dependencies
between subqueries, resulting from built-in heuristics, to minimize the overall response time and
reduce the total query processing cost. This is the main focus and contribution of the research and
implementation project reported in this thesis.

Since the problem of optimization is NP-complete [9, 20], to achieve feasible query optimization
as well as to enhance the effect of the knowledge the user possesses about the idiosyncrasies of
the system, heuristic search for solution is performed initially, followed by a full cost-based search
in thus reduced solution space. The purpose of applying the heuristics is to restrict the solution
search space for optimization at the early stage of optimization. However, it is not the purpose of the
heuristics-based optimization to finalize the search. The intention is to restrict it well enough so that
the cost-based search is feasible in the new solution space, e.g., it leaves three or four alternatives.

Given a query request, there are often more than one way to reduce the search space of the
query, even with applying heuristics such as proposed in [14]. For instance, one of the possible
tactics in reducing the solution space is to discard the query execution plans that are obviously
non-optimal, thus leaving only the promising plan candidates. This includes discarding certain non-
optimal orders of execution of query operators. [14] gives an example of such tactics that when two
query operators, with strict and non-strict selections, need to be ordered, the priority is given to the
strict one, which has greater selectivity than the non-strict, e.g., = operator is more selective than
> operator, therefore query operators that have the former should be executed first to reduce the
size of the solution space at early stages of query execution.

The next step is called Subguery translation and erecution. The translation process basically

10

i

Ticket Order

[+

Legend
H many-to-on¢ relationship
P4 many-to-many relationship

Figure 2-5: Entity—Relationship Diagram of Airline Reservation domain model.

converts each subquery expressed in the interface query language into the corresponding informa-
tion producer’s query language expression, and adds the necessary join conditions required by the
information source system.

After submitting the subqueries, the DIOM query server is responsible for (1) packaging each
individual subquery result into a DIOM object (done at wrapper level) and (2) assembling results
of the subqueries in terms of the consumers’ original query statement (done at mediator level). The
semantic attachment operations and the consumers’ query profiles are the main techniques that we
use for resolving semantics heterogeneity implied in the query results. This step is referred to as
Query result packaging and assembly.

2.2.2 An Application Scenario: The Airline Reservation Example

In this thesis we use an application scenario taken from an Airline Reservation application domain.
Figure 2-5 presents an entity-relationship diagram of this domain model. Each box in this diagram
represents a class of objects. For instance, objects of class Customer are related to objects of class
Travel Agency with a many-to-many relationship. In other words, a travel agency has a database of
many customers, and each customer may use many travel agencies.

Consider a sample query in the Airline Reservation domain:

find all available reservation information about all customers who flew to a destination
in Europe with Capadian Airlines International last year.

A DIOM customer may issue this query using the interface query language (IQL). The main advan-
tages of using IQL are that the customer need not be aware of the many different naming conventions
and terminology used in the underlying information sources nor does the customer need to specify
the join conditions. For a detailed definition of IQL, see [12]. The above query can be expressed in
IQL as follows:

SELECT =

FROM Customer, Flight, Ticket Order

WHERE Flight->destination CONTAINS ’Europe’ AND
Flight->date BETWEEN *01-JAN-96° AND ’31-DEC-96’ AND
Flight->airline = ’Canadian Airlines International’

As was described in section 2.2.1, DIOM query processing consists of five main steps. We
illustrate these steps using the sample query in the Airline Reservation application.

11

Target: 1. dr90003 o o
Flight.destination
G Elishtdate

i) Flight.canier
Flight.destination
Elightdate
Flight.carrier M flight
ight_no
N ' /-\IJ
flight_no N customer_id
M 3 . dro0001 Flight dr90003.Flight
customer_i Flight 3:90003.Customer dr90003.Ticket_Order
Customer Ticket_Order
(a) {b)

Figure 2-6: Query Decomposition Step.

2.2.2.1 Query Routing

To answer each query in Aérline Reservation domain, the potential number of sources may be huge.
There may be many airlines and travel agencies registered with DIOM server. Since query routing
algorithms are not the theme of this thesis, for simplicity in this example we assume that the DIOM
mediator identifies the following information repositories to answer the given query:

o dr90003 information repository, registered with DIOM as Europa Travel travel agency on-line
database, contains objects of type Customer, Flight, Ticket Order;

e dr90001 information repository, registered with DIOM as Canadian Airlines International
on-line reservation system, contains objects of type Flight;

The original query posed by the DIOM user then needs to be decomposed into subqueries which are
against each of these two repositories. The following IQL is the result of query routing:

TARGET dr90001, dr90003

SELECT *

FROM Customer, Flight, Ticket Order

WHERE Flight->destination CONTAINS ’Europe’ ARD
Flight->date BETWEEN ’01-JAN-96’ AND ’31-DEC-96’ AND
Flight->airline = ’Canadian Airlines International’

2.2.2.2 Query Decomposition

The query decomposer takes the IQL query represented in the tree structure as shown in Figure 2-
6(a), and generates the query decomposition tree shown in Figure 2-6(b), which takes into account
the results of query routing. It basically decomposes the leaf nodes of the query tree in Figure 2-6(a)
by associating the sources specified in the TARGET clause.

The query tree contains the necessary information for obtaining the result of the query but it
does not provide the concrete query execution plan.

2.2.2.3 Parallel Plan Generation

The next step of query processing is the generation of query execution plan, a concrete set of
instructions to be sent to each of the information sources participating in the query. As pointed out
in [12, 14}, to generate an efficient query execution plan, two problems need to be solved:

o the query processor must find the most optimal (efficient) order in which the query operators
are executed, and

o ecach of the query operators need to be assigned to a site where it can be executed.

12

o TR
Cost Optimizer

() 4
B
CUSTOmEr.Cust_no = customer.cust_nc =
ticket tickst.cust_no

5
flightfight_no =
ticketfight_no

dr30003.ticke!

£
E
flight.fight_date >
‘01-JAN-96°
tlightfight_date <
“31-DEC-96°

flightcarrier = flightcarrier =
‘Canadiandirlinesinternational’ ‘CanadianAirlinesinternational’
dr20001.fligh (drsoooa.fliqh';) v
[< p— > |

| Show Cost Ltog]|Source Stats] [Unit Local Costs| | Unit Communication Costs]| Cost Weights|

Query Cost Estimator Done
Cancel L << Start IL < Previous J r Next> “ Finish>>

Figure 2-7: The final result of the Airline Reservation domain query.

We formally address these problems in detail in Chapter 3. In Chapter 4, we provide an experimen-
tal design of the DIOM Query Scheduling Utility that implements the query scheduling algorithm
proposed in Chapter 3. Figure 2-7 shows the final result of the cost-based query scheduling obtained
by the DIOM Query Scheduling Utility. Each node in the query tree shown there has been assigned
to the site where it can be executed.

2.2.2.4 Subquery Translation and Execution

Once the query execution plan is generated, subqueries are issued to each information repository
that participates in the plan. These subqueries are still expressed in DIOM IQL and therefore need
to be translated by the wrappers and executed by the individual repositories. The issue of subquery
translation and execution is beyond the scope of this thesis and is covered in detail in [10, 12, 14].

2.2.2.5 Query Result Assembly

The results of each individual subquery need to be assembled and presented to the user. The specifics
of query result assembly are also beyond the scope of this thesis.

In this chapter we have covered the main steps of query processing in DIOM and presented the
application domain that we use throughout the rest of the thesis. The purpose is to present the
general picture, in which our work takes place. The remaining chapters present a concrete solution
for the query scheduling component in the context of this general picture.

13

Chapter 3

Distributed Query Scheduling

3.1 Global Optimization Criteria

Traditionally, the distributed database query optimization was primarily aimed at reducing the
communication cost. Little attention has been paid to other costs incurred at query execution in
a distributed environment such as the local processing cost as well as the cost associated with the
response time.

However, due to drastic advancements in network communication speeds and bandwidth, these
other costs have become as significant factors as the communication costs.

Moreover, to cater to the needs of various database users, it is desirable to provide a flexi-
ble framework for query optimization, which allows to plug in efficient components of query cost
estimation on demand, thereby providing the user-driven and customizable query optimization.

In general, the cost of query execution consists of three independent factors: communication
cost, local processing cost, and total response time cost. They may be combined additively into a
generic goal formula shown in Equation 3.1.

o
Cost=ac.-Ct+agp-L+a:-R= AT. [L |, where (3.1
R

e C is the total amount of communications over the network spanning the distributed database
expressed in time units;

o L is the total amount of local query processing, also expressed in time units;
¢ R is the total response time of the query.

The coefficients associated with each of these components are the indicators of the desired opti-
mization profile. They can be controlled by the user of the database by setting the profile via the
components of vector AT. For example, if the user’s primary concern in finding an optimal query
execution plan is the response time, then AT issetto (0 0 1). Vector AT ={0.3 0 0.7) would
be specified by a user who is also concerned with keeping the communication cost low, allocating
30% of the total cost to it and 70% to the response time.

The general cost estimation formula 3.1 serves as the goal function of the optimization process.
As was pointed out in chapter 2, the problem of query optimization is NP-complete, therefore direct
application of this goal function is not feasible since the number of possible solutions is far too great
even for queries of average complexity.

In this chapter we propose a scheduling technique that reduces the solution space prior to cost
estimation thus reducing the expense of query processing itself, we call it two-phase reduction.

14

SRR

Query Decomposition

!

Legend:

processing module
processing result

Figure 3-1: Two-phase query processing technique, a diagram.

3.2 Two-Phase Reduction Approach to Distributed Query
Processing

A sketch of the proposed query scheduling architecture is shown in Figure 3-1. The first processing
phase is based on the heuristic query processing and optimization techniques. This phase is covered
in detail in section 3.3. The second processing phase is the cost estimation and access plan scheduling,.
Section 3.4 covers this phase in detail.

3.3 Heuristic-Based Optimization

In the last section we have mentioned the two-phase reduction approach to query processing. The
cost-based phase is responsible for computing costs of various possible scenarios for query execution.
In particular, a main manipuliating factor that affects cost of a query execution plan is the site
assignment of the binary operators of the query. At the same time the query execution plan may
also be affected by changing the order of the relational operators, as long as the expression resulting
from query rewriting is equivalent to the original query. In this section we will consider, in detail, the
possibilities of heuristic-based optimization that involves the use of query rewriting rules to generate
the “optimal” query expression that is equivalent to the original query.

SELECT flight origin, flight.destination, flight.date, carrier.name, order.purchase_date

FROM flight. carrier, order
WHERE order.flight# = flight flight# AND Right Order
flight carrier# = carrier.carrierst AND Flight # Order #
flightorigin = "Edmonton” AND Carrier # Customer #
flightdate > $today + 30 AND Origin Flight #
order.purchase_date < Stoday‘- 10AND Carrier Destintion: | Purchase Daie
carrier.HQcountry = *Canada Carrier # Flight Date
Camtier Nase
@ Carrier HQ Address
Carrier HQ City
Carrier HQ Country

»
"

/’4\ . >3
Order Hight Order/\Carﬁer C{\Oﬂiﬂ
(b)

Figure 3-2: Example of rebalancing the query tree with three-way join.

3.3.1 Motivation

Consider a case in which three relations are joined. The three-way join is often presented in terms
of two binary joins. The question then is, which two relations must be joined first.

A common tactic that is used in most state of the art research in query optimization, not only
in distributed but also in centralized databases is to perform join on the relations which do not have
any comman attribuies last. It is simply because their join is identical to the operation of Cartesian

product.
Another common tactic is to reduce the size of the query result at the earliest stage of query

processing. This leads to 2 heuristics that the join producing the smallest result should be performed

earliest in the query execution plan.
The impact of the above two heuristic rules on the cost of query processing can be very significant.
Let us consider an example shown in Figure 3-2(a). The given query asks to

select flight, carrier, and order information for all flights originating in Edmonton that
were booked more than ten days ago, will fly in more than a month, and will be performed
by a Canadian carrier company.

Figure 3-2(b) shows the possible permutations of the two joins of the query tree. In fact, there are
three choices in this query optimization task:

1. to join Order with Flight first, followed by joining the result of OrderXFlight with Carrier;

2. to join Order and Carrier first followed by joining the result with Flight;

3. to join Flight and Carrier first followed by joining the result with Order;

Assume the following statistics are available or can be gathered about these three relations:
| Order | Flight | Carrier

carddomain 10,000 { 1,000 100
widthgomain [ytes) 4 4 2
cardretation 6,000 700 20
cardpiight 500 700 N/A
cardcarriers N/A 15 20

16

e

From the schema description in Figure 3-2(a) we see that Order and Carrier do not have any
common attributes, therefore join between them is equivalent to Cartesian product. The size of a
Cartesian product is equal to the product of the sizes of its two inputs, therefore the second choice
does not reduce the result at all, which means that this choice is not beneficial in terms of cost. The
size of the intermediate result would be (4 x 6,000) x (2 x 20) = 960, 000 [bytes].

On the other hand, the first choice yields the size of the intermediate result to be 6,000 x
700/700 x (4 +4) = 48,000, and the third, 700 x 20/20 x {4 +2) = 4,200. Thus based on the
second heuristic rule, the third scenario is chosen because its reduction power is at least ten times
greater than that of the first choice, which, in turn, is greater than that of the third choice. Note
that this analysis is based on heuristic rules, not on the actual computation of the cost. It is on the
assumption that the intermediate result will probably have to be moved that we make the reduction
power the most crucial in our decision, which in most cases is true.

In the following two sections we will discuss some of the heuristic rewriting rules that we anticipate
to be valuable in reducing the search space in the distributed environment of DIOM. Before we start
our semantic rewriting rules we below present a number of common heuristics that are used in DIOM
to limit the search space for the query processor:

Heuristic 3.1 (Common Heuristics)

(a) moving relational selection and projection operators down the query tree to reduce the expected
size of the intermediate result of the query [5, 9, 20];

(b) considering only such join orderings that do not result in Cartesian product between relations [18];
(c) performing the joins whose estimated result is smaller before the joins that are expected to have
larger intermediate result [1].

3.3.2 Heuristics Based on Semantic Rewriting

According to [14], the query expression passed to the query optimizer after query decomposition and
routing phase includes all relevant database sources that were selected to answer the query.

The first semantic-based rewriting rule is to eliminate the sources that do not contain join
attributes required in the query.

For the keyword-based scenarios of information retrieval, which presently dominate the con-
sumers’ world-wide information systems, missing/absence of join attributes is not detrimental since
queries do not involve inter-site information processing. The missing attributes are retrieved as
empty fields, and the consumer understands that this type of information is not available at this
source.

However, when a query involves inter-site joins of the objects or relations, the join attributes
may play a crucial role in answering the query.

Let us consider an example in which we will show how such knowledge can effectively reduce the
number of sources involved in the query and therefore the complexity of cost-based query optimiza-
tion. Consider query:

find origin, destination, and date of all flights that have been booked on date pd and that
fly before date fd,

whose algebraic representation is shown in the top part of Figure 3-3. The bottom part of the figure
provides the schema information of the Flight and Order objects.

Although the schemas are different, the information covered by them is relevant to the query,
therefore a DIOM query router will select the following three source databases to answer the query:

Travel Agent database, which is primarily concerned with customers and their relationship to
flights;

Airline database, whose concern is on plane and flight-related information;

Airport database, focusing on departure schedule and plane types (because it has to service the
planes).

T o] ([><] (Flight, Order)))
Flight_Crigin Hight_Date <= fd Flight# *
Flight_Destination Purchase_Date = pd

Flight_Date
nilght Order
U U
Airportflight Airline flight Tvavel Agentorder Airline.order
Travel Agent flight
3 “Aidine | Frigae
gﬂ"; | Ordert | Carrier_Name
Dsﬁ;atiap: -Type# ' Da.te‘
Order_Info Origin
Airll'ux Cod Purchase_Date Destination
Weekly,_Schedule Purchase_Location Artival_Date
Cuﬂ'cm:sums Payment_Method

Figure 3-3: Example of semantic incompleteness.

As seen from Figure 3-3, the Order information in the airline database does not contain any
means of joining it with Flight information, assume the airline is not involved with ticket-order
information. Therefore the required join between Flight and Order is not possible for the source
at Airline database, thus whether the Airline database takes part in the query assembly does not
affect the final result of the query. Intuitively, we can stipulate that in a multilevel query tree the
same observation holds for all sources and all levels of binary operators that require selection by a
certain attribute that must be present in the source. If a source relation, an object class, or a file
selected by the mediator does not provide all of the attributes required for all binary operators, we
would exclude the participation of that source in the query answer. This is performed by the query
router.

For instance in the example of Figure 3-3 attributes Flight_ Date and Purchase_Date are required
for selection operation. Each source’s wrapper would try to provide this attribute in some form, be
it direct mapping of Travel Agent’s Date attribute, or creating a method for Airline database that
would draw the flight date. As a result the query optimizer looks up the corresponding wrappers
and discards the ones that fail to provide the necessary information for this operator.

On the other hand, projection operation. which results from SELECT clause in S@QL-like queries,
semantically does not require presence of the attribute. Quite reasonably, a record may still be
part of the result even if some of its fields are missing. Therefore we would allow the projected
attributes to appear as blank fields in the query result. Looking back at Figure 3-3, Flight_Origin
and Flight_Destination would appear missing on the information originating at Airline database unless
its wrapper could fill in the blanks.

3.3.3 Heuristics Based on Semantic Rewriting and Estimated Cost

As most research results in query optimization indicate, the task of finding the absolute best query
plan is a combinatorial problem in general. Our task in this section is to come up with several
heuristic rules that would cut down the amount of search to be done during the query processing
and to produce nearly, or almost, optimal plans, for the cases which in our opinion will be the most
common in the DIOM environment. We will consider two examples.

It is widely accepted that the query optimization strategy in centralized database systems is

18

to perform the most expensive and least effective operators last in the query. In other words, the
goal is to reduce the size of the result as early as possible, for which we will put the most reducing
operators first and the least last. What are the operators that are the least effective in terms of
reducing the result? The most notoriously known one is Cartesian product between two relations.
Indeed, the output size of this operator is the product of sizes of the operands. Another one is the
binary union operator. It results in a relation or object extent that is at least the size of the largest
of the operands. And, finally, join operator falls into this category.

All three operators are expensive, and require certain preprocessing of the operands to achieve
some performance improvements. For example, by properly ordering the operands or the execution
sequence of these operators, we may still obtain performance improvement.

We observe that both union and Cartesian product should always be performed at the site where
the result is expected — see section 3.5.1 on page 32 — because the communication cost of transferring
the result is greater than the communication cost of transferring any one of the operands. However,
the union is still 2 better reducer than Cartesian product because I(U{(Q:, @;)) < {{Q:)+1(Q;) while
1(x(Q:,Q;)) = 1(Q:) x U(Q;), (see page 36 for definition of /(Q)). The latter amount is greater
except for empty Q; or Q;. Therefore, it would be more beneficial to perform Cartesian product
after the union, except for the cases when one or both of the operands is empty. Thus,

Heuristic 3.2 (Union & Cartesian Product)

(a) Given a subguery of type U(...(U(Q1,Q2),---,@n)), the total cost of its execution is invariant
to the order in which the unions are performed.

(b) Given a subguery of type x(...(x(Q1,Q2),--.,@n)), the total cost of its execution is minimum
if size(Q1) < size(Q2) < -+ < size(Qn)-

(c) Given a subguery x(U(Qi,Q;),Qx), the cost of it is less than the cost of its permutation
U(x (@, Qi) x(Qs, Qx)-

Consider an example query:

perform Cartesian product of flight and order, i.e., find all the possible flight-order
combinations

Assume that to answer this query three sources have been selected, two of which contain flight
objects, and the third contains order objects. Then the query decomposition expression is as follows:

x(U(flight,, flights), order).
Based on heuristic 3.2, the following expression is equivalent but less beneficial:
U(x(flighty,order), x(flighta, order)).

The situation with join is more complex. The problem is that in most cases it is impossible to
predict exactly the extent of the join result, only approximate estimation may be obtained. Therefore
in some cases it may be more beneficial to interchange union and join, while in others it is not.

Due to the nature of DIOM system, the query trees produced by decomposition and routing
stages are most likely to have unions at the bottom of the tree, closer to the leaf nodes. In some
cases these unions will encompass many information sources. The following rewriting rule can be
applied to produce an equivalent query expression by moving join before union:

M (U(Q11, Q12), @2) = U(X (Q11, Q2), X (Q12, Q2)).

Apparently, the number of join operations increases twice with each union-join order exchange. To
justify this increase, the expected performance gain must be greater than the additional cost of the
extra join operator. There are two factors that may be used to estimate the required performance
gain.

First, the join itself has to be a good reducer.

19

Heuristic 3.3 (Good Reducer)
Given a subguery ¥ (U(Q11, - - - @1r), U(Q21, - . - Q2m)), it is beneficial to rewrite it into
U (@11, Q21), - - -, X (Q1n, Q2m)) if the ezpected size of join result is smaller than any of its inputs.

Consider an example query:

select all ticket order and flight information about all ticket orders that were made on the
same day as the flight for which they were booked was to depart.

Assume the same three sources have been selected, two with flight objects, and one with order
objects. The query decomposition expression for this query is

Ujlight.daze:order.date (Mjlight# (U(.ﬂightl) ﬂighiz), Order))-

1t is beneficial to rewrite this expression into

O flight date=order.date (U(Myiighe (Flighty, order),Mpiigh (flights, order)))

because the ioin operator may substantially reduce the size of the query result. More concretely,
if the extent of order is very small, the join result is small and the new expression is accepted.
Otherwise, if the estimated size of the join result is large, the old expression is kept.

Second, the interchange, if done, must result in fewer site accesses, thus,

Heuristic 3.4 (Same Sites)

Given a subquery M (U(Q11,-.-Q1n), U(Q21, ... Q2m)), it is beneficial to interchange join with the
unions if

(n>m)A (i > n/2+1) A (loc{@Q11) = loc(Qa1)) A ... A (loc(Qui) = loc(Q2:)), or if

(m>n)A(F > m/2+ 1) A (loc(Qa1) = loc(Q11)) A A (loc(Q2;) = loc(@15)),

where loc is a function that returns the site location of its argument.

In other words, if the interchange of the join and the union does not lead to an increase in the
number of the inter-site joins, then such interchange is performed, otherwise, the order of operations
is kept unchanged.

Note, however, that Heuristic 3.4 may only be applied to the unions which are immediately
connected to the leaf nodes of the tree because only for these unions the location is known. If a
union is not of this nature, then this heuristic is ignored.

Heuristics 3.3 and 3.4 are targeted at the same rewriting rule. It may so happen that either one
of them will trigger the transformation of the query expression. Thus if one of them triggers the
tranformation that moves a particular join operator down, the second heurisitc does not need to be
applied.

Consider the same query example but assume now that one of the sources of the flight objects

is the same as the source of the order objects (source). Then applying Heuristic 3.4 to the query
decomposition expression X (U(flighty, flights), order1)), we have

O f1ight.dave=order.date (U(Xgiighty (Flights, order1),Npiighess (flights,orders))), where

M {flight, ,order,) is a local join operation on site 1. Thus, by changing the order of join and union,
expression U(X (), ()) is more beneficial becanse the number of inter-site joins has not increased
as a result of rewriting.

In this section we have considered some of the heuristic rules that may be applied to reduce
the search space for the optimal query execution plan. As a result of applying the heuristics the
decomposition trees that are produced from the original query expression may be pruned thereby
reducing the search space in the optimization problem. Usually, however, this reducing does not
lead to a single solution to the problem but provides a number of alternatives. Second phase of
the query optimization is to find an execution plan that is optimal for answering the query, using
cost-based optimization approaches. This is the theme of the next section.

20

P ——

3.4 Cost-Based Optimization

3.4.1 Statistics Required for Cost Estimation

To effectively estimate the cost of query execution it is important to determine the size of the
operands of the query predicates, as well as the size of all the partial results. This problem is
of statistical nature, and therefore requires a statistical model of the database, along with certain
assumptions about the database that make such statistical model justifiable.

In this section we will consider how such statistical model may be put together for threc most
common types of database systems, relational, object-oriented, and a file retrieval system. A running
example is used in this section to illustrate the notions and issues involved.

3.4.1.1 Statistical Model of Relational System

[1] proposes a statistical model for relational databases, according to which the attribute values in
relations are

1. distributed uniformly,

2. statistically independent of the values of other attributes, and i

3. statistically independent of other values of the same attribute.

The following statistics may be used to estimate the size of the relational operands:

Cardinality of domain - fully defined by the type of the attribute. In relational database each
attribute is associated with a domain, for example, if an attribute is of type string with length
n then n unambiguously defines the cardinality of this domain, which is the number of distinct
values the attribute may take, see section 3.4.4;

Width of domain - defines the length of one element of the domain in bytes, for example, a decimal
integer number is 16 bytes long;

Cardinality of relation — the actual number of tuples in the relation. This number may be updated
periodically by a system which supports such statistical information;

Cardinality of relation’s attribute — the number of relation tuples having distinct values in the
given attribute.

The latter statistic requires the existence of an index on the particular attribute. If the attribute
is a primary key then the index on it is implemented as a table, other indexes are implemented as
binary trees, therefore many systems maintain the required information for the indexed attributes.
Most commercial relational database management systems measure and maintain the statistical
information listed above. Figure 3-4 shows ap example of a simple relation of Order-Flight-Customer
and the related statistics.

As stated earlier, the main purpose of having the statistical information about the database is
to estimate the cost of processing a query, which is affected by the size of all the relations that take
part in evaluating the query. For instance, the following query

SELECT *
FROM Order-Flight-Customer
WHERE Flight# = 222 OR Flight# = 221

can be expressed in the relational algebra expression as follows:
E = O prightg =222 or Flightsg=221(Order_Flight_Customer)

To compute the cost of this query expression E, we first compute the cost of the relational select
operator U, then the relational project operator 77 .

Since relation Order-Flight-Customer has cardinality 7, and Flight# has cardinality of 3, and the
estimated selectivity of selection over Order-Flight-Customer with selection condition on Flight#is

2

2/3. the estimated cardinality of Eis 7Tx 2 = 43 = 5.

21

Order-Flight-Customer Assignment
Relation cardinality: 7

Order # Flight # Customer #
0001 222 777 Flight Index
0002 221 012 Customer Index 095 ->0004, 0006
0003 222 7 001 -> 0006 221 > 0002
0004 095 252 012 -> 0002, 0005 222 -> 0001. 0003, 0005, 0007

0005 222 0i2 252 -> 0004

0006 095 001 777 -> 0001, 0003, 0007
0007 222 T]

Onder # A
Domain cardinality: 10000 Customer # i
Domain width: 4 bytes [Domain cardinality: 1000 _ Fligh#
Atribute cadinality: 7 | Domain width: 4 bytes | Domain cardinality: 1000
Auibute cardinality: 4 Don.xam width: 4 bytes
Attribute cardinality: 3

.

Figure 3-4: An example of database statistics required for cost estimation.

3.4.1.2 Statistical Model of Object-Oriented System

Figure 3-5 shows how the relational schema shown in Figure 3-4 may be expressed in an object
schema. Although it is impossible to consider the above two schemas without the context of the
entire database, it is clear that it represents a cross-reference relationship among entities of three
types: customer, flight, and order. Therefore the relations per se are the links between the objects
of these three types, although in a strictly object-oriented implementation these relationships are
represented as objects of a special type. Depending on the constraint of the relationship, a link-object
may be one of one-to-one, one-to-many, or many-to-many types.
The statistics then may be listed as follows,

Class cardinality is based entirely on the intensional definition of the class, e.g., a class of dates
lying in the range of the century has cardinality 36, 500;

Object size is simply the number of bytes an object of a certain class occupies;
Class extent is the number of instances of a certain class in the database;

Object inter-reference extent is the number of instances of link-type objects that reflect relation-
ships of objects of a class with objects of either other classes or the same class.

Although there are similarities between the statistics of the relational schema and the statistics of
the object schema, they are different in several aspects. The domain characteristics are independent
of the schema and therefore are the same as in relational schema. However in object-oriented
approach, the attributes which facilitate entity relationships by means of value-based equality, are
replaced with concrete and unique objects, which relate to other objects in the schema by means
of id-based equality, and the cross-reference relation is not explicitly present in the schema. In
other words, in relational schema, the cardinality of a relation is simply the number of tuples in
the relation, while in object schema, this number defines the complexity of the relationship between
the objects of two classes. For example, the complexity of relationship between Order and Customer
objects is defined by the number of all possible links that connect them, as shown in Figure 3-4.

Generally, for a many-to-many relationship between objects of class A and objects of class B, let
Cardap denote the cardinality of this relationship, let card(Linka,p) denote the number of links

22

S y—

Customer 012 Customer 252

Order 0006

*Flight 222 *Flight 095 5__ *Flight 095

Order 0602 *Customer 777 fder 0003 *Customer 252 fder 0005 *Customer 001

*Flight 221 *Flight 222 *“Flight 222 *Flight 222

#Customer 012 \ “Customer 777 N\ *Cuswomeror2 *Customer 777
N

Order 0001

Flight 222 Flight 095

Figure 3-5: Object version of the relational schema.

an object 7 of class A has with objects of class B, and let n4 denote the cardinality of class A, then

71,4—1
Cardap= Y card(Linka,p). (3:2)

=0

The formula is true for any of the three types of entity relationships. For instance, Flight-0rder
relationship has inter-reference extent 7 since there are a total of 7 connections between the Flight
and Order objects. In the example of Figure 3-4 the Order is the primary key of the relation. In
terms of object-oriented schema, the objects of class Order have many-to-one relationships with
objects of both Flight and Customer.

Given an attribute A of class C, the cardinality of A is estimated by the cardinality of C.

3.4.1.3 Statistical Model of File System

File-based information storage and retrieval systems do not implement the notion of logical entity
relationships. All information stored in files is in record form where records are in some way delimited
and possibly have distinct record fields that allow to distinguish between various attributes of the
information stored in them. However, such storage and retrieval systems do not allow for the records
in these files to relate to the information in other files, or at least not at the logical level. Every
record exhaustively contains all the possible information that can be inferred from such system.

Moreover, the tools to define, manipulate, and query the data in the file systems are very closely
coupled with the particular storage system, therefore an application accessing the data hides the
intrinsics of query processing on the system level. Query optimization in such systems is very system-
specific and the user generally does not have access to it. The statistics mentioned above are not
available, they are either hidden or are rot used at all.

Therefore it is reasonable to designate the corresponding wrapper responsible for:

o establishing the necessary statistics, or

23

File

Customer 001 ordered 1 seat on flight 095, order 0006
Customer 012 ordered 1 seaton gghx 221, order 0002 Summary
Customer 012 ordered 1 seat on flight 222, order 0005 . . .
Customer 252 ordered 1 seat on flight 095, order 0004 e S0 o hout 3 ™
Customer 777 ordered 3 seats on flight 222, orders 0001, 0003, 0007 File stores information about 7 Ord ez's:

.

Figure 3-6: File system version of the relational schema.

e providing the default statistics based on its experience with relational and/or object-oriented
systems of a similar range.

The left part of Figure 3-6 contains a variant of how the relational schema shown in Figure 3-4
may look in the file storage system. The right part of of Figure 3-6 shows what kind of statistical
information is needed from the file storage system.

3.4.2 Cardinality Estimation of Basic Algebraic Operators

In this section we only consider the following basic algebraic operators: =, IN, OR, AND, NOT, u,
and X. For other operators that are specific to particular datatypes see section 3.4.3.
As stated earlier, the necessary elements of cost-based optimization are,

e the computation of cardinality of the expected result, and
e the computation of the cost of materializing the result.

These factors must be computed for each intermediate step of query processing. Note that the
intermediate cardinality of an intermediate result directly influences the cost of performing the
subsequent operation to which this result is used as an input.

Since all the optimization steps have to be completed before the query execution may start, itis
impossible to know the actual numbers corresponding to the intermediate results of the processing.
It is however possible to estimate these numbers using the statistical information and the model
described in [1, 9, 20].

The cardinality of the query result depends on the selection power of the qualifying clause of
the query. The more the qualifier restricts the result, the greater this selection power is. Generally,
the qualifying clause of the query may consist of multiple conjunct or disjunct predicates, each of
which is characterized by its selection power, so called selectivity factor. One needs to estimate the
selectivity factor of each of such components as well as of their combination to effectively estimate
the cardinality of the query result. System R [18], a research prototype of database management
system DB2, was the first one that used selectivity factors for cost-based query optimization.

In this section we have tried to generalize the formulae for estimating the selectivity factors, and
subdivide them based on their category and the types of their operands. The formulae are given in
tables 3-1 and 3-2 on pages 25 and 26. There,

SF denotes the selectivity factor of the predicate or a combination of predicates,
Icard(A) denotes the cardinality of attribute A,

domain(A) denotes the domain of attribute A,

card(list) denotes the cardinality of list, and

card(Q) denotes the estimated cardinality of the result of query Q.

The computation of most of the selectivity factors involves knowledge of the statistical infor-
mation about the relation, the class of objects, or the file to be accessed, see sections 3.4.1.1
through 3.4.1.3 for discussion on how this information is obtzined.

24

e e r—

Predicate

Selectivity Factor SF

Comment

A = v, where A is the at-
tribute name, v is a value,
v € domain(A)

1

= Teard(A)

The adopted statistical model assumes that
values of A are uniformly distributed in the
domain of A, therefore probability of hitting
the right value is equal to the inverse of the
number of values in A

A # v, where A is an at-
tribute, v is a value within
the range of A

Icard(A) —1

=T card(A)

If v lies within the domain of A and the val-
ues of A are uniformly distributed over its
domain, then the event A # v is complemen-
tary to A = v, therefore its probability is
1-P(A=v)

A; = Aj, where Ai and
Aj; are attributes,
domain(A;) =
domain(A4;)

max{Jcard(A;),lcard(Aj)}

We assume that all values in the attribute
with smaller cardinality have matching values
in the attribute with larger cardinality, which
is a reasonable assumption because the sta-
tistical model assumes uniform distribution
of attribute values from their domain

A IN {list}, where Ais
the attribute name and
{list} = {v1,v2,...} isa
list of values each of which
belongs to the domain of
A

__ card(list)
= Icard(A)

This is analogous to A = vy OR A =v2 OR
..; since the disjuncts are mutually exclu-

sive, the selectivity factors add up, see the

formula for OR operator in the next table

A IN Q4, where A is the
attribute name and Qa is
a subquery over relations
Ro ... Rp— that returns
tuples whose type is the
same as the type of A

card(Qa4)

"I card(R:)

0

The ratio of the subquery cardinality to the
cardinality of all possible subquery answers
is called the selectivity of the subquery. This
selectivity defines the selectivity of the entire
IN operator. Assume the subquery results in
a set of values that is a superset of A4, then
all values in attribute A are matched, the se-
lectivity factor is 1. If subquery Q4 restricts
the domain of 4, then the portion of the re-
sult of Q4 which will match the values in A
will be restricted proportionately. Therefore
SF for this operator is the selectivity factor
of Qa, which is the ratio of the cardinality
of the answer to the cardinality of all possi-
ble answers. This reasoning is extended to
include subqueries that involve multiple rela-
tions and aggregate functions over attribute
A

Table 3-1: Formulae for computing selectivity factors of query predicates.

Boolean Operator

Selectivity Factor SF

Comment

P OR @, where P and Q
are predicates, which have
their selectivity factors SF

SF =
SF(P)+ SF(Q)-
SF(PAQ)

If P and Q are mutually exclusive then
SF(P A Q) = 0 and the selectivity factor of
the operator is the sum of the selectivity fac-
tors of P and Q

P AND @, where Pand @

are predicates, which have

SF = SF(P) » SF(Q/P)

SF(Q/P) is the selectivity factor of predi-
cate Q given that predicate P is true. Gen-
erally, P and @ are not independent, there-

their selectivity factors SF
' fore this selectivity factor is different from
SF(Q) as the result set is already restricted
by P. If P and Q are independent, then
SF(Q/P) = SF(Q). The adopted statisti-
cal model assumes that if P and Q predicates
involve different attributes then they are con-
sidered independent

Let query with P result in a third of the re-
lation’s tuples being selected , then SF(P) =
1/3, consequently query with NOT P will re-
sult in SF(—~P) = 2/3 because query without
any predicate would result in all tuples being

NOT P, where P is a
predicate, and SF(P) is its

selectivity factor SF=1-SF(P)

selected, or SF =1

Table 3-2: Formulae for computing selectivity factors of combinations of predicates.

Table 3-1 does not cover a number of query predicates that are specific to numerical domains.
Operators like <, BETWEEN, high, and low are covered later when we describe the selectivity
factors of numerical datatypes, see section 3.4.3.

It is also important to be able to estimate the cardinality of the results of binary relational
operators, such as union and join. First, let us consider the simpler case with union. The very
rature of the operator suggests that the cardinality of the union result is at least the cardinality of
the largest set participating in the union,

card(V(Q;,Q@;)) = max{card(Q;),card(Q;)}, (3.3)

where Q;,Q; are the operands of the union, and card(S) is the cardinality of set S.

The other statistical parameters, namely domain cardinality, width of domain, and attribute
cardinality, of the result of the union are defined in the same way — the largest relation or class
extent dominates in defining the characteristics of the union result.

[20, 1] give the following rules for computing the cardinality of the join result,

AL _ card(Q;) - card(@Q;)
card(®4 (Q:,Q;)) = max{card(Qi.A),card(JQJ-.A)}’ (34)

where Q;,Q; are the operands of the join, and A is the set of attributes on which the join is
performed, card(Q;.A) is cardinality of the projection of A on relation Q;.

So far, we have considered estimating cardinality of the result of query operators assuming that
the result is final, i.e., that it does not serve as an input to other query operators. However, most
queries will consist of more than one level of query operators, the intermediate results of the operators
at the lower levels will need to be used as input at a higher level, where we will need to repeat the
estimation process applying the selectivity factors corresponding to the operators at this level. As
was mentioned earlier, computation of selectivity factors requires full knowledge of the statistics
about the operands of the query operator. Therefore, one needs to estimate not only the cardinality

26

of the intermediate results but also the other statistics — such as the domain properties of each of
the attributes in the result as well as cardinality of the attribute.
To estimate the attribuie cardinalities we use the approach taken in [22], which presents the
problem in the following way:
Given n records grouped into m blocks (1 < m < n}, each contains n/m records, if k records

(k < n —n/m) are randomly selected from the n records, the expected number of blocks hit by
the selection (blocks with at least one record selected) is

n—-i+l1
k
m- 1—Hi=1 (1—;1("—1“_—1))] .

Let us translate this statement into our query terms. Given a relation R whose cardinality
is card(R) that has attribute A with cardinality Icard(R.A), where 1 < Icard(R.A) < card(R),
each value of A is present in card(R)/Icard(R.A) tuples of the relation, if & tuples, where k <
card(R) — card(R)/Icard(R.A) are randomly selected from R, the expected cardinality of A in the
resulting relation @ is

m- 1—Hf=1ﬂd;"ﬂ], where d =1—1/m, or

card(Q) -d R
leard(Q.4) = Teard(R.A) - |1~] (1"'1card(R.A)c-a (rca(rd)(R)—i+1))

i=1

(3.5)

where card(Q) is the cardinality of the result, card(Q) = k.

In this section we have covered the basics of estimating the cardinality of query predicates and
relational union and join operators. This discussion is generic in the sense that we have not considered
the specifics of arithmetic datatype operands in the predicates or in the relational operators. This
is done in the next section.

3.4.3 Cardinality for Number and Date Datatypes (Arithmetic)

Let us limit our study with decimal integer numbers. For true real numbers the term of cardinality
does not apply since such numbers represent continuous values, for each pair of which there may be
found a number that is between the two. Whereas the machine representation of real numbers is
discrete, all the discussion below may be applied to machine real numbers as well as it is done for
integers.

First, let us define the domain cardinality for the arithmetic datatype. Domain cardinality of a
number is the set of all values that lie within the range of this domain. In the machine representation
the domain of an arithmetic number is defined by the size of the number. For instance, short int is
usually represented by data whose length is one byte, or eight bits, the valid range of this number
lies in [~128,127]. In this case the width of domain is one byte and domain cardinality is 256.

The upper and lower bounds of the range define the high and low values of the range, which in
our case are low(short int) = —128, and high(short int) = 127. In this section we will show that
it is important to know these domain parameters to successfully estimate the selectivity factors of
most query operators defined on operands of arithmetic type.

1t is also beneficial to keep track of the actual high and low values of the attributes or objects
of numerical datatype. Generally, non-numeric datatypes do not define the comparison operators
other than = and #, see Table 3-1. Numerical datatypes allow inequality-based comparisons as well
as all arithmetic operands defined on each particular datatype.

Most query languages, including SQL, query by example, data manipulation languages of file
systems supports this special class of operators. The interface query language of DIOM also supports
them. To effectively evaluate the cost of a query plan that uses these operators one needs to estimate
their selectivity factors.

Let I(domain) and h(domain) denote the low and high values of the domain of a numeric at-
tribute. Also, let I(A) and h(A) denote the actual minimum and maximum values of numeric
attribute A. These type-specific statistics may be collected together with the main statistics about

27

i bW

Predicate

Selectivity Factor SF

Comment

A > v, where Ais a nu-
meric attribute and v is a
numeric value, {(A4) < v <

h(A)—v

SF = R(A) = [(A)

v must be known at optimization time, other-
wise see below. The probability that a value
of A is greater than v is determined by the

h(A) distribution of A, which is uniform. There-
fore the probability is equal to the rectan-
.| gular area bound by the probability density
function and v

See discussion and formulae 3.6 on page 30

A > B, where A and B are

numeric attributes
SF=1/2

A BETWEEN v; AND v, BETWEEN AND operator is a short form of
where A is a numeric at- SF = A > v; AND A < v, therefore the formula
tribute, v;,v2 are values in minrv».h'fal::z[vl.l(A)l for selectivity is a particular case of the com-
the domain of A, v2 > n bination of the inequality operators

Table 3-3: Formulae for computing selectivity factors for predicated defined over numerical at-
tributes.

each of the numeric attribute, they make it possible to estimate cardinalities of results of quantitative
comparison operators, which are listed in Table 3-3.

As seen from the Table, the case of A > B requires special attention. We will address it in the
following discussion. In essence, the problem is to estimate the probability that a random value A is
greater than a random value B, given that they are uniformly distributed in their respective ranges
I(A) < A < h(A) and I(B) < B < h(B). This problem can be stated in a more presentable way by
introducing random variable C = —B, I(C) < C < h(C), thus {(C) = —h(B), and k(C) = -I(B).
Then substituting the new random variable for B, the goal event of A > B may be expressed as
A+ C > 0, thus probability of A > B equals to probability of A+ C > 0.

Based on our statistical model, the probability of a certain predicate being true is the selectivity
factor of this predicate since it represents the portion of all samples of the random variable that
satisfy the predicate, i.e., the percentage of all the tuples that are selected by this predicate. For
instance, probability of 0.5 suggests that half of all tuples in relation will be selected.

To find probability of event A+ C > 0, where A and C are uniformly distributed random
variables, let us introduce a new random variable Z = A+ C and investigate its probability function
denoted as p(z). Figure 3-7 on page 29 presents the problem graphically.

The rectangular area bound by I{A), k(A),{(C), k(C) (dotted lines) represents all possible values
of A and C random variables. Then the thick line marked as a + ¢ = = divides this rectangle into
two subareas one of which corresponds to A+C < z {shaded) and the other to A+C > z. Then the
probability of Z < = is equal to the area corresponding to Z < = divided by the area of the entire
rectangle. Conversely, the probability of Z > = is the ar2a above the thick line divided by the total
area.

The range of = spans five different intervals, sepaated from each other by dashed lines. Let
us consider the probabilities for each of these intervais denoting P(Z < z) as the probability that
random variable Z is less than or equal to value =.

28

e v

h(C) feewe

A+C>z

4,')

A+C<=z

KO) b+

A

p

% 2

'7.4‘4 '743
© ©

Figure 3-7: Graphical representation of probability problem Z = A+ C.

P(Z<z)={

22—h(A)=1(4)=2!(C)

= < 1(4) +1(C)

I(A) +1(C) < = < h(A) +1(C)

i

\

2(h(C)-HC))

1— h{A)+4(C)~2)*
2(h(A)=H(A))(h(C)-HC))”

, h(A) +1(C) € = < I(A) + h(C)
I(A) + h(C) < = < h(A) + h(C)

h(A) + A(C) < =

Knowing the probabilities for these intervals we can determine the probability function p(z) by
finding the derivatives of the above formulae. Note that if h(4) —I(4) > A(C) — I(C) then the
picture will change in that I(A) + 2(C) will be to the right of A(A)+1{C), therefore we use max and
min of these values to preserve generality.

p(z) = 4

'0,

z=((A)+I(C
(A(A)=L(A))(K(C)-1(C))’

1
max(a(4)=-1(4),A(C)-HC)]”

(h(A)+A(C))-z
(h(A)=i(A))(h(C)=1(C))’

\0’

z < I(A) +1(C)
1(4) +1(C) < = < min[l(4) + k(C),1(C) + h(4)]

min[I(4) + h(C), 1{C) + h(A)) < =
= < max[I(4) + k(C),(C) + h(A)]

max[I(A4) -+ k(C),!(C) + h(A)] < = < h(A) + h(C)

h(4) + h(C) < =

The plot of this function is shown in Figure 3-8 on page 30. The area under the trapezoid is
equal to one and represents the probability of random variable Z. Then probability that Z is greater
than zero equals to the area of the positive portion under the trapezoid. Depending on the values
of I{A), k(4),!(C), and k(C), the zero may be in either of the five intervals shown in the figure.

29

1

PTRETeN max(h(AH(A)K(OHO)] [(BAYh(O)-2
A IANECIIC)) (BAIANBO-IT)

Figure 3-8: Probability function p(z) of random variable Z = 4 + C.

After calculating the areas for each of the five cases, we substitute —A(B) for {(C) and —I(B)
for h{C) and arrive at the formulae given in Equation 3.6.

(1, 0 < I(4) — h(B)

(A —-h(B)Y? _
1- Z(R(A)~1(A))(A(B)-1(B)) ’ 1(4) .h(B) <0
0 < min[l(4) — I(B), h(A) — h(B)]

min | AAHA) ABIIE)] L max(1(A)—i(B),h(4)— h(B)] .
SF = [ma.x[h(A)—l](A) RB)=1(B)] min [I(4) - {(B),h(4) = A(B)] £ 0
0 < max{l(A) — I(B), k(A) — h(B)]

__ (h(A)=UB)®
SRR B=TET max [[(A) — [(B), h(4) - h(B)] < 0
0 < h(4) - I(B)

\ 0, h(A)-1(B) <0
(3.6)
Let us, for instance, consider a case when I(A) = !(B) and h(A) = h(B) and apply the formulae
in Equation 3.6. Quite amazingly, all these calculations reduce to a mere 1/2 selectivity factor for
this trivial case, which is quite what we expected. This fact suggests that we should assume the
selectivity factor of 1/2 for the cases when two numerical attributes whose domains are the same
are compared and of which no actual high and low statistics are available.

3.4.4 Cardinality for Character and String Datatypes

For simplicity, let us assume the Oracle Corporation’s definition of datatype representing a string of
variable length?.

Let us consider 2 number of possible operations applicable to objects of this datatype and their
selectivity, i.e., the cardinality of the result of the operation contrasted with that of the initial
cardinality of the operand.

For any string whose maximum length is n characters, each of which can assume one of [values,
the total number of possible strings, including the empty string is given in formula 3.7.

|

n
S=1+l+lg+---+l"=2lf= T

j=0

3.7)

! VARCHAR.

30

[

Substring: a2 ... 2% Substring: %aa ... a%

Figure 3-9: Restrictions of Various Substring Operations.

This equation is illustrated in the left part of Figure 3-9, where _ represents any character that can
be a member of the string, and <> represents the empty string.

Consider the substring restriction operation of the form aa ... a%, where % stands for any
string, including an empty string, a stands for any character defined in the substring, which must
be a legal character for the original string, and the length of the substring is m. The center part of
Figure 3-9 illustrates the resulting set of strings. The cardinality of this set is shown in formula 3.8.

n-m ln—m+1_1
Skaa =141+ 44" "=) F=———n21m20n2n (3.8)
3=0

Consider more general operation — %aa ... a%. The right part of Figure 3-9 illustrates the result,
and 3.9 gives its cardinality.

n—-m
Syeneral = 1+2'l+3'12+"'+(n_m+1)'ln—m = Z(j'*'l)'lj:
=0
n-m n—-m—1 N—m=-2
‘Z” EE DD DR AT SR SN AR ot ZIJ 4 I»m. ZIJ—
j= 3=0 =0 J=0 j=0
ln—m+1_1 ln—m—1+1_1 2 ln—m-2+1_1 —m -1
s i i e e s A e
: (ln-m+1 - 1)+(ln—m+1 _l)+(ln-m+1 _12)+,,_+ (ln—m-}-l _ln—m) _
= -1 -
_(n—m+1)-l"'”‘+1—2?:6"11 _ ((r=m+1)-(1-1)—1)- 1"+ 4] (3.9)
- -1 - {{-1)) '

Consider a query selection operator where user wants to select all flights whose origin starts
with ’Ed’, flight.origin LIKE ’Ed%’. Assume that the domain of £light.origin is a string whose
maximum length is n = 10 characters, and that there are ! = 128 possible character values. Then
the total number of possible strings, according to Equation 3.7, is

128111 10
S="5—~128

31

SELECT customer.name, customer.address
FROM customer Customer
WHERE customer.city != "Edmonton’ AND g:::z:: #Name
customer.country = Customer Addxess
Customer City
Customer Country

Figure 3-10: The query example.

The estimated number of selected strings is computed according to Equation 3.8 as

12891
=~ ~1288
127 8
Then the selectivity factor of £1ight .origin LIKE ’Ed%’ equals
o S _ (128°—1)-127 _ 1
T Seaa 127-(1281-1) © 16384

Stead =

3.5 Cost Estimation for Inter-site Single-Operator Queries

3.5.1 Single Union Inter-Site Query

Most of the previous work in query optimization in distributed databases considers enumeration
of all possible permutations of operators in query expression. Such permutations are done based
on equivalent transformations of unary and binary relational algebraic operations, e.g. [4] gives an
example of enumeration of all possible query plans based on equivalent query transformations. Such
transformations are also called algebraic transformations.

The standard way to approach the problem of choosing the optimal query plan is to have all
equivalent plans resulting from query transformations enumerated, then to eliminate those that are
obviously non-optimal based on some heuristics, to evaluate the cost of each of the remaining plans,
and finally choose the plan with minimal cost among them.

Consider the query example shown in Figure 3-10. The query is expressed in an SQL-like form
and has SELECT, FROM, and WHERE clauses. The relational model is assumed in this example, but the
same example may be given for the object model. Note that the query involves only one relation,
or an object class, customer.

Let us assume that after the query shown in Figure 3-10 has been submitted to the DIOM
query processor, has undergone query routing and query decomposition, two information source
sites registered with DIOM server are selected to answer this query as shown in Figure 3-11(a).

In DIOM, information sources may have heterogeneous representations for the same real world
attributes. For example, class customer requested by the DIOM users may have different data
representation in different information sources. DIOM delays the resolution of heterogeneity issues
at the query packaging and result assembly stage. Therefore, at query optimization stage, we assume
all subqueries are expressed uniformly.

The problem at the cost-based optimization phase is to find an optimal query execution plan
that is most efficient for answering the query. A query execution plan is considered optimal when
the cost associated with its realization is the lowest possible cost among all the plans that realize
the given query. As was pointed out earlier (see section 3.1), the cost of a query plan is a function
of three cost components, Equation 3.1. An optimal query execution plan then would be such that
its cost is the minimum among the costs of all known plans that realize the query. Let us proceed
with the analysis of our example query and try to apply some of the known query processing tactics
to the given query.

A well-known tactic for optimizing SQL-like queries is to apply unary operations such as selection
and projection before binary operations such as join, union whenever possible. This is mainly because

32

R

T

customer.name U
customer.address . /\

ocustomer.city {w "Edmonton” T
customer.country = ‘Canada’ customer.name customer.name
I customer.address * customer.address

U
customer.city != "Edmonton’ customer.city != “Edmonton’
customer.country = "Canada’ customer.country = “Canada®

4, @ % <
1 2
(a) (b)

Figure 3-11: The query tree resulted from query decomposition and routing.

selection operation reduces the size of the operands of binary operations fast, and thus the size of
the binary operation result. Figure 3-11(b) shows the result of applying this heuristic. The unary
operations of selection and projection are moved below the union operation, meaning that in the
resulting query execution plan these operations will be executed before the union. The size of the
input to the union operation will then be reduced by the selectivity factor of each of the selection
and projection operators.

Previous studies in relational DBMS optimization, e.g., [18], have shown that moving the unary
operations in the query tree towards the bottom of the tree is the necessary condition for producing
an optimal query execution plan.

The given expression with unary operations pushed down may still result in a number of execution
plans. The possibility to assign the binary query operators to different sites accounts for this
multiplicity, while the feasibility of each particular placement constrains the number of the execution
plans. For instance, let us assume that both Q; and Q- represent the customer subqueries on two
different information sources, while result R of the query is expected at a remote third site. Then
there are at least three possible realizations of this query tree, three execution plans:

1. placing union at the site of @1,

e materialize Q; at its site, perform selection and projection there;

e materialize Q- at its site, perform selection and projection there, and ship the result to
the first site;

o perform union at the first site, ship the result to the site where result is expected;

2. placing union at the site of @-,
o materialize Q; at its site, perform selection and projection there, and ship the result to
the second site;
e materialize Q. at its site, perform selection and projection there;
e perform union at the second site, ship the result to the site where result is expected;

3. placing union at the result delivery site,

o materialize Q; at its site, perform selection and projection there, and ship the result to
the result site;

o materialize Q- at its site, perform selection and projection there, and ship the result to
the result site;

o perform union at the result site;

33

Thus the following factors are considered to establish all possible execution plans,
o the hypothetical possibility to assign the binary operation to a site;

o the set of all sites that are able to take the binary operation under their capability — such
as the appropriate processing power, temporary disk space, and query and data definition
compatibility;

o the set of sites immediately involved in the current query - all server sites pointed to after the
query routing plus the client site where the result is expected.

The intersection of these sets will yield the tentative workspace where the optimizer will generate
the possible execution plans. For example, the set of sites to be considered in our query optimization
are site one, site two, and the client site to receive the results.

Let us assume that there are no constraints on any of the hypothetical site to take the union.
There are three possible scenarios of query execution for this simple case and the costs associated
with each of these scenarios.

1. Assume the result is expected at site one. The set of sites that will then possibly participate
in query execution is {1,2}. Inclusion of any third-party sites will inevitably increase the
communication costs to move data to and from them, thereby increasing the total execution
cost. In fact, the increase is by at least twice the communication cost required to send the
greater of @y or Q2. Left part of Figure 3-12 graphically shows how query operations are
initially assigned to the two sites.

9. Assume the result is expected at site two. The disposition of sites and operators is exactly
symmetrical to the one for site 1. The right part of Figure 3-12 reflects the situation.

3. Assume the result is expected at a site different from both site 1 and 2. In this case the center
part of Figure 3-12 should be used.

At this point the cost-based optimization should decide which site the union operation should
be assigned to, based on all the costs associated with each of the possible decisions. The optimal
execution plan would be the one which offers the least cost and the fastest response time.

According to Equation 3.1, the three components of the overall cost have to be computed. Then
they are added, each with the assigned weight factor indicating its perceived importance, to form
the overall query execution cost.

The formulae for deriving the component costs for the scenarios shown in Figure 3-12 are given

34

Union is assigned to site 1

Union is assigned 10 site 2

Union is assigned o site2 | Costof moving 7'|:OQ
Costof moving Tl:CQ w site 1 and computing ufnon atsite 1
10 site 2, computing union at site 2, and

10 site 1, computing unioriat site 1, and
moving result of union 10 site 1 moving result of union to site 2

Unionis assigned wsite 1 | Costof moving ﬁOQ

i . L N
Costof moving TTOQ 10 site 2 and computing union at st 2

U U
(@) ®)
Union is assigned to site 3
Cost of moving ﬂ,'OQl . thQz
1o site 3 and computing union atsite 3
Union is assigned to site 2
Cost of moving TLOQ
Urdonis assigned o site 1| 1o site 2, computing urioriat site 2, and

moving result of union to site 3
Costof moving TEOQ 8 &

1o site 1. computing uriorst site 1, snd
moving result of urion to site 3

Figure 3-12: Three possible site distributions for the single union query case: (a) - result is expected
at site 1, (b) — at site 2, and (c) - at site 3.

in Equation 3.10.

C11 = C1(@1) + Cox(

+cean - Z(Qz)
C12 = C1(Q1) + Co2i(@2) +

Q@2)

Q2) + cer2 - 1(Q1) + cean - L{U(Q1, @2))
Cay = C1x(Q1) + C2x(Q2) + cco1 - U{Q2) + cer2 - H{U(Q1, @2))
Coo = C1(Q1) + Cox(Q2) + cc12-1(Q1)
Ca1 = C1x(Q1) + C2u(Q2) + cco1 - 1{Q2) + ccr3 - H{U(Q1, @2))
Csz = C1:(Q1) + Cax(Q2) + cc12 - Q1) + ccoz - {U(Q1, @2))
Ca3 = C14(Q1) + Cox(@2) + cc13 - Q1) + ccas - 1{Q2)

Lij = L(Q1) + L(@2) + cly; - (1(@1) - U(@2)), 1=1,2,3, j=1,2,3

R1.(Q1) = L(Q1) + C1(@1)
R2,(Q2) = L(Q2) + C2u(Q2)

Ry = max{R1:(Q1), Rax(Q2) + cca1 - H{Q2)} + cluy - (1(@1) - U(Q2))

Ri» = max {R1(Q1) + cc12 - Q1) R2u(Q2)} + cluz - (UQ1) - {Q2)) + cca1 - {U(Q1,Q2))

Roy = max {R1:(Q1), Rax(Q2) +ccar-1(Q2)} + cluy - (U(Q1) - UQ2)) + cer2 - H(U(Q1, @2))
Ros = max {R1:(Q1) + cc12 - 1(Q1), Rox(Q2)} + cluz - (U(Q1) - 1(Q2))

Ra; = max {R1x(Q1), Rax(Q2) + cco1 - 1(Q2)} + cluy - (1(Q1) - U(Q2)) + ccr3 - {U(Q1, @2))
Ra» = max {R1x(Q1) + c12 - {Q1), Rou(Q2)} + cluz - (U(Q1) - U(Q@2)) + ceaa - {U(Q1.Q2))

Ras = max {R1+(Q1) + ca1s - [(Q1), Raw(Q2) + ccaz - 1(Q2)} + cluz - (1(Q1) - 1(Q2)) .10
3.10

where

Cim is the total communication cost for the case where the result is expected at site k and the
union is assigned to site m;

Lim is the total local processing cost for the case where the result is expected at site k and the
union is assigned to site m;

Rim is the total response time cost for the case where the result is expected at site k and the union
is assigned to site m;

Ci(Q;) is the communication cost of delivering the result of @; to site ¢ — this cost is necessary to
express the recursive nature of the optimization problem;

L(Q;) is the local processing cost of obtaining the result of subquery Q; - this cost also expresses
the recursive nature of the problem and is the same for all scenarios of the current example;

cci; is the unit communication cost for transferring a unit of data from site 7 to site j;
I(Q;) is the length of the result of operator @;';
clop; is the operator-O P-specific unit cost of local processing at site 2.

Note that response time cost is computed according to possible parallelization of the tasks as a
maximum of the two concurrent sequential subplans executing on one site.

The formulae given in Equation 3.10, on the one hand, provide a general means of computing
the comprehensive cost of each of the possible query plans for the case of two-way inter-site union.
On the other hand, however, these formulae do not give any clue in derivation of plan generating
rules for this query case. To achieve the latter task, one needs to make assumptions concerning the
inter-site communication and local on-site processing, similar to the ones made in 4],

o the cost of communication of one unit of data between any pair of sites in the distributed
system is constant and the same for all sites in the distributed system, or V 7, eci; = cc, and

!Note that I(U(Qi, Q;)) = max(i{Q:), 1{Q;))-

36

e e tmey

e the cost of local query processing for same query operators is proportional to the size of the
operands and the same for all sites in the distributed system, or ¥ i clop; = clop.

These assumptions, in part, are unrealistic for real-life distributed systems. For example, the cost
of communication depends on the current load of the network connection. The same cost increase is
observed for the local processing cost whenever the CPU is on high demand. Ideally, a distributed
query optimizer should provide the flexibility to accommodate the changing system parameters.
However, when the actual cost parameters are not available, it is useful to make these assumptions.

Let us consider a case of three sites and the query plan selection rule given in Equation 3.11,
which follows from the cost formulae of 3.10:

C11<Cr2 Lyy=Lia=1L Ri1 < Rya
Co2 < Co Loo=La=1L Ras < Roy (3.11)
Ca3 < C31,Cs2 L3z = Lai = Laa=L Ra3 < Rz, Ra,

These rule amount to say that it is always beneficial if the union is assigned to the same site as the
site where the result if the query is expected.

Note that max(a,b) > a, max({a,b) > b, and max{a,b} + ¢ = max{a + ¢,b + c}, where c is the
cost of the inter-site moving of the result of the union.

The best query plans for the scenarios of Figure 3-12(a), (b), and (c) are 11, 22, and 33 re-
spectively. In other words, as a rule, for queries that involve two-way binary union, the optimal
execution plan is to perform the union at the site where the result is expected. This observation
may be further used as a heuristic for such queries.

Consider the example query in Figure 3-10. Denote customer subquery at site 1 as @i, and
customer subquery at site 2 as Qa, and assume that the following statistics are true for Q1 and Q2:

card(@:) = 1000 card(Q2) = 5000
Icard(Q;.country) = 12 Icard(Q2.country) = 52
Teard(@Qy.city) = 100 Icard(@s.city) = 1000
Icard(Q;.address) = 1000 Icard(Q2.address) = 4985
Tcard(Q.name) = 991 Icard(Q2.name) = 4993
width(customer.name) = 20 width(customer.address) = 40

Applying the selectivity factors from Tables 3-1,3-2,3-3 obtain,

_ card(Q1)(Icard(Q,.city)—~1) ~
card(TT{O (@1))) = 1card(Q1.Icity)lcard(IQ;.country) ~ 8

[(Q:) = 83 - (width(customer.name) + width(customer.address)) = 4960

_ __cord(@s)(fcard(Qacity)=1) o, g7
card(ﬂ-(o-(Q'J))) - Jc::;(Q(g.:;)x'ty;‘;card(zQ(:.cyountry) ~ 97
1(Q2) = 97 - (width(customer.name) + width(customer.address)) = 5820

HU(Q1,Q2)) = max[l(Q1),1(@2)] = 5820

Then, substituting the values in Equation 3.10 and assuming the unit communication cost to be
one and the unit local cost to be 0.0001 obtain,

Ci1 =5820 Cj»=10780
021 = 11640 ng = 4960
Cs1 = 11640 C32 = 10780 Ca3 = 10780

Li;;=2887 i=1,2,j=12 i=3,j=123
Ry =8707 Ry2 = 13667

Roy = 14527 Roo = 7847
Rz = 14527 Raz = 13667 Raz = 8707

37

SELECT order.purchase_date, flight fligth#. flight.origin, flightdestination R
FROM onrder. flight .]
'WHERE order.purchasc_date > $today - 10 AND

flight flight_date < Stoday + 10 AND > flightt
order flighté = flight flight#
Order
Order #
C # Tcpurchase_datc nﬂigh;#
Flight |Flight# flight# origin
Flight# | Purchase Date o Gdesﬁmt.ion
g::;r# | purchase_date> Stoday - 10 | gt daie > Sioday +10
Destination
Flight Date Q 1 Q 2
Order Flight
(@) ®)

Figure 3-13: The single join query example.

Thus the lowest communication costs of 5820, 4960, and 10780 are observed for the plans Ci,
Ca2, and Css respectively, which correspond to three best plans for each of the three site distributions.
Because of simplicity of this example local processing cost is invariant. The response time cost is
lowest for Ry, Ra2, and Raz plans, which are three optimal plans for each of the distributions.

The total cost of each of the query plans may then be obtained by substituting components C,
L, and R into Equation 3.1 on page 14. The total cost also depends on the user’s perception of
the importance of each of these components, which is defined by the weight factors for each of the
components, see section 3.1.

The assumption we made about the ratio of local processing and communication costs would not
have changed the optimization decision, it would only affect the actual figures. Therefore the rule
obtained given in Equation 3.11 may be used for choosing an optimal plan.

However, since this rule is based on the assumptions of equal unit communication and equal
local processing costs, there may be cases where it will not lead to the minimum cost. For instance,
if local processing at site one is a lot more expensive than on site two, cly, >> cly,. possibly due
to high CPU load averages, then the local processing component may affect the total cost given in
Equation 3.1 in a way that plans with processing on site one will be more expensive than those with
processing on site two. Therefore, applying the rule given in Equation 3.11 will not result in the
best execution plan. In this case the best plans will place the binary union operation on site two.

In short, without the assumptions of equal unit communication cost and equal local operatoz
processing cost the above rule does not hold, and one needs to compute the corresponding cost for
each case, compare them, and select the most optimal query execution plan.

3.5.2 Single Join Query Example
Consider a query containing a single join shown in Figure 3-13(a):

find the date of purchase, flight number, origin, and destination for all flights booked
fewer than 10 days ago and flying within the next 10 days.

The tree corresponding to this query is shown in Figure 3-13(b).

As in the single union example, we will present the possible site distributions for this query
processing task, with the costs associated with each of the scenario. The scenarios and the costs
associated with them are laid out in Figure 3-14.

38

——l

Join at site 1

; Join at site 1
- costof moving result of Q2 from 210 1 - cost of moving result of Q2 from 210 1
- cost of performing join at site 1

Join at site 2 - cost of performing join at site 1
- cost of moving result of Q1 from 1102 - cost of moving join result from 110 2
- cost of performing join at site 2
- cost of moving join result from 2 to 1

Join atsite 2
- costof moving result of Q1 from 1 to 2
- cost of performing join at site 2

Join at site 3

- cost of moving result of Q1 from 110 3
- cost of moving result of Q2 from 2 10 3
Joinatsite2 |-t of performing join at site 3

- cost of moving result of Q1 from 1 02
- cost of performing join at site 2
Jolnatsitel 1= cost of moving result from 210 3

- cost of moving resultof Q2 from 2 to 1
- cost of performing join atsite 1

- cost of moving result from site 1 10 3

X

©)

Figure 3-14: Three possible site distributions for the single join query case: (a) — result is expected
at site 1, (b) - at site 2, and (c) — at site 3.

39

C11 = C1:{Q1) + C2(Q2) + cco1 - [(Q2) '
Cia = C1+{Q1) + Coi(@2) + cc12 - [(Q1) + cea1 - 1(X (Q1, Q2))
Co1 = C1x(@Q1) + C2i(Q2) + cea1 - {Q2) + cc12 - 1{X (Q1, Q2))
Caz = C1(Q1) + C24(Q2) + ccr2 - Q1)

C31 = C1(Q1) + C2:(Q2) + cea1 - 1H{Q2) + cc13 - [(X (Q1, Q2))
Ciz2 = C14(Q1) + C2x(Q2) + ce12 - U{@1) + ceaz - [(X (@1, Q2))
Ca3 = C14(Q1) + C2:(Q2) + cc13 - 1(Q1) + ccas - 1{Q-)

Lij = L(Ql) + L(Q2)+CINJ ° (I(Ql) 'l(Q:-’))’ i= 17233, j = 17213

Rl*(Ql) = L(Ql) + Cl*(Ql)

R2y(Q2) = L(Q2) + Cax(Q2) .

Ry = max {R1.(Q1), Raw(Q@2)+ cco1 -UQ2)} + char - ({{@1) - UQ2))

Riz = max{R1+(Q1) + ce12 - {Q1), Ron(@2)} + choaz - (H(Q1) - H{Q2)) + cea1 - 1(X (Q1, Q2))

Roy = max{R1.(Q1), Rax(@2) +ccar -UQ2)} + clhar - (H{Q1) - H{Q2)) + cc12 - (X (@1, Q2))

Ra» = max {R14(Q1) + cer2 - 1(Q1), Rox(@2)} + clz - (H{Q1) - 1{Q2))

Rz = max{R1.(Q1), Rax(Q2)+ cc21-1(Q2)}+ cls - (1(Q1) - U(Q2)) + ec13 - LM (Q1, Qo))

Rs» = max{R1.(Q1) + cc12 - {(Q1), R2x(Q2)} + cliaz - (1{Q1) - {Q2)) + ccos - 1(X (@1, Q2))

Ras = maz {R1.(Q1) + cc13 - L(Q1), Raw(Q2) + cc23 - 1(Q2)} + elna - (1(Q1) - U(Q2)) 6.12)
3.12

The single join case, unlike the single union, does not present a uniform rule for selecting the
best execution plan. The difference is that the estimated size of the result of join depends not only
on the size of its operands, like in union, but also on the selectivity of the join condition and the
statistical information about the operands. In the worst scenario, when the selectivity is one - every
tuple from the first relation is joined with all tuples from the second relation - the result is Cartesian
product of the operands, whose cardinality is the product of the cardinalities of the operands. In
the best scenario, when the selectivity is approaches zero — only one tuple from each of the input
relations is selected to form the result, whose cardinality is one.

The cost optimizer must estimate the cardinality and attribute cardinality of the result of the
join to make the decision about the best plan. We have covered the computation of these statis-
tical estimates for the join operator in section 3.4.2, Equations 3.4 and 3.5, now let us consider a
concrete example and apply these formulae to the case shown in Figure 3-14(c) on page 39. Let pd
denote purchase_date, fd denote flight_date, f denote flight#, o and d denote origin and destination
respectively, and let the relevant statistical information be the following:

card(@1) = 1000 card(Q2) = 200
Icard(Q:.f) = 100 Teard(Q2.f) = 200
Icard(Qy.pd) = 10 Icard(Qa2.fd) = 20

min(pd) = 1997/01/01 max(pd) = 1997/04/01

min(fd) = 1997/01/01 max(fd) = 1997/12/31
Icard(Qq.0) = 50 Icard(Qa.destination) = 40

width(f) = 4 $today = 1997/03/15

width(pd) = 8 width(fd) = 8

width(o) = 20 width(d) = 20

Let I(S) in this context denote the length of relation S. The length, or size, of a relation is the
product of its width and height, where width is the sum of the domain widths of the attributes of S
and height is the cardinality of S. Based on the selectivity factor for > predicate given in Table 3-3

40

e e A

on page 28, let us first compute the cardinalities of the operands of join:

width (TO(Q1)) = width(pd) + width(f) = 12
card (T0(Qy)) = Serdl@ukmoxlpdi=(Stodey=10) = 917
H(To(Q1)) = 2604

width (T0'(Q2)) = width(f) + width(o) + width(d) = 44
card (O (Qn)) = erélQakimex(/di-(Gofay+iO) = 154
1(To(Q2)) = 6776

To compute the parameters of the join result R we need to compute Icard (70 (Q1-f))

and Icard (7o (Qa.f)), which requires the use of Equation 3.5. To put the probabilistic problem
in our language, 1000 tuples of @, contained 100 different values of flight# attribute, how many
different values of this attribute will be left if 217 tuples are randomly selected from Q. Substituting
these values into Equation 3.5, obtain

217
Icard (TTO (Q1.f)) = 100 [1 - H (l - Tﬁ_(ll%qgl_—zj)] ~ 92

i=1

Analogously for @ we have 200 tuples with 200 different values of flight# and we randomly select
154 tuples. Substituting this into Equation 3.5, obtain

154 1 ‘I
Ieard (TO(Q2.f)) = 200 [1-T] (1 - %1‘3) =154

i=1]

Note that the last result is absolutely predictable because attribute flight# is apparently the primary
key for relation Flight.

Now we are finally ready to compute the parameters of the result of join. Substituting the
parameters computed earlier into Equation 3.4, obtain

width(R) = width(pd) + width(f) + width(o) + width(d) = 52
_ card(ﬂ-U(Q;))-card(ﬂ'U'(Q:)) _ 917154 _
card(R) = max{!card(ﬂ'a(Q,.f)).]card(WO'(Qz.j))} - 154 = 217
I(R) = card(R) - width(R) 11284

At this point all the parameters needed for computation of cost components have been obtained.
Note that we consider the query shown in Figure 3-14(c) where the relations Flight and Order are
located on the separate source sites (Site 7 and Site 2) and the result R of join is expected at the
client site (Site 3). We assume that the source relations are readily available therefore C1.(@1) =
0, Cou(@2) = 0, and L(Q,) = L(Q2) = 0. We also assume that the unit communication and
local processing costs are the same for all sites and communication links in the network, the unit
communication cost is assumed 1, and the unit local processing cost is assumed 0.0001 as in the
single union query example presented earlier. Then, substituting the precomputed parameters into
the formulae for cost components of Equation 3.12, obtain

C3; = 18060 Cz>= 13388 Ca3 = 9380
La; = 1765
R31 = 19825 Rsz = 15653 R33 = 8541

We can see from this example that the lowest cost is achieved by the plan that places the join
operation on the client site, mainly because the result of join has the size that is greater than the
sum of the sizes of its operands, which dominates the communication costs of the two other plans.

However, despite the sheer advantage the third plan shows in this example, we may not possibly
generalize it to the level of universally applicable heuristic. Indeed, if the size of the result of join
were not greater than the sum of the sizes of its operands, then the outcome would be quite different.

41

Let us try to list some observations based on the cost formulae of Equation 3.12 and the assump-
tions we made for this example using the terms of that equation:

1(@2) < U{M (Q1,Q2)) — C11 < Ci2,R1i1 < Rya, C33 < C32,R33< Raz
Q) <l{@1) — Ci11<Cia, Rii<Rp
{@1) <1(®(Q1,Q2)) — Co2< Ca,Ra2 < Ra1, C33 < C31,R33< Ray (3.13)
(@) <l{Q2) — C22<Ca, Raa<Rn -)
HQ1)+1Q2) <IX(Q1,Q2)) — C11<Cr2, C22<Ca, C33<C3,0s

Rj1 < Rya, Ro2< Ray, Raz < Ra, Rz

As in the case of single union, the assumption of equal local processing power among sites leads
to the observation that Vi,j L;; = L. This also leads to a possible reduction in computation - local
query processing cost may be left out of the process of optimization because they just uniformly
offset the total cost, which does not affect the decision of the best execution plan.

In the last two sections we have presented the two simple query cases and used examples to
illustrate the cost-based optimization process. In the next section we extend our discussion to
inter-site queries and give a general formula for estimating the cost of query plans.

3.5.3 Cost Functions for Inter-site Queries
3.5.3.1 General Cost Estimation

As we notice in the previous two sections, the formulae for cost estimation may be generalized in
such a way that the specifics of the binary operator considered are taken out of computation and
are localized in operator-specific factors. Equation 3.14 is a general formula to compute costs of any
binary query operator. The operator-specific information is localized in the following factors

[(OP(Q;,Qj)) - the size of the result of applying operator OP to the results of queries Q;, Q@;;

clop; — the unit cost of local processing to perform operator OP at site i;

C11 = Cr.{Q1) + C2u(@2) + cea1 - 1(Q2)
C12 = C1(@1) + C2u(Q2) + cc12 - Q1) + cea1 - {OP{Qr, @2))

Co1 = C1,(@1) + Cou(@2) + cc1

C31 = C1(Q1) + Cau(Q2) + cc1
Cs2 = C1(@1) + Co(@2) + cc12

-(Q2) + cc12 - {OP(Q1,Q2))
Caa = C14(Q1) + Cou(@2) + ce12 -
-1(Q2) + cc13 - H{OP(Q1, Q2))
-U(Q1) + cco3 - {OP(Q1, Q2))
Caz = C14(Q1) + Cou(@2) + c13 -

(@)

I(@Q1) + ceaz - 1(Q2)

Lij = L(Q1) + L(Q2) + clop; - (H(@1) - 1(Q2)), 1=1,2,3, j=1,2,3

R1.(@1) = L(Q1) + C1.(@1)
R2,(Q2) = L(Q2) + Cox(Q2) (3.14)
Ri1 = max{R1,{Q1), Rax(Qa2)+ccas -1(Q2)} + clop1 - (@) - 1(Q2))
Ri2 = max {R1,(Q1) + cc12 - 1(Q1), Rox(@2)} + clop2 - (1{Q1) - 1(@2))+
+ccar -H{OP(Q1,Q2))
Roy = max {R1.(Q1), R2.(Q2) +cca1 -1{(Q2)} + clop1 - (H(Q1) - U {Q2))+
+eeya - {OP(Q1.Q2))
Rao = max {R1,(Q1) + cc12 - 1(Q1), R2x(Q2)} + clopz - ((Q1) - 1(Q2))
Ra; = max {R1.(Q1), Rau(Q2) +cca1 -1(Q2)} + clop1 - (H{Q1) - 1(Q2))+
+cci3 - H{OP(Q1,Q2))
Rzz = max {R14(Q1) + cc12 - H{Q1), R2(Q2)} + clopa - Q1) - @)+
“+ccas - (OP(Q1,Q2))
Raz = max {R1.(Q1) + cc13 - 1(Q1), Raw(Q2) + cc23 - 1{Q2)} + clopz - (L{Q1) - U(Q2))

42

Sagxems

To illustrate the notation in Equation 3.14 let us use the query decomposition tree shown in
Figure 3-13(b). Suppose the leaf of the tree marked @, is, in fact, a subtree that contains another
binary query operator and its two operands denocted as @11 and Q12. This means that the costs of
obtaining the result of @; at site 1, which are denoted here as C1+(Q1) for communication, L(Q@1)
for local processing, and Ri,(Q:) for response time costs, may not be assumed zero as was done 1n
previously considered examples of union and join cases.

But the overall optimization problem hinges on computing the costs for the alternative query
execution plans and selecting the plan with the lowest cost, therefore the underlying costs must be
computed as well. Suppose now that Q1; is also a subquery that has a binary operator. Then the
computation must propagate until it has reached the leaf nodes of the query decomposition tree.
Each of the levels of the tree represents a subquery whose communication, local processing, and
response time costs need to be computed and the optimal execution plan generated before the query
at the higher level may commence the cost-based optimization.

Equation 3.14 gives the general formulae for computing the costs of the query execution plans at
any level of the decomposition tree. In the following section we explain how the optimal execution
plan may be generated for the decomposition trees that have more than one level of query operators.

3.5.3.2 The Recursive Approach

As indicated earlier, the total cost of a simple subquery depends on the costs of obtaining the inputs
to this subquery. The process of cost optimization starts at the top of the given decomposition
tree, having as a parameter, only the top part of the decomposition tree. If the decomposition tree
is a binary tree, i.e., if each of its operator nodes has two subsequent nodes, then the process of
optimization may be organized as a downward traversal of the entire decomposition tree by the
optimizer. At each step of the traversal the optimizer analyses the leaf nodes of the current subtree.
If one of the nodes is itself a subtree, then the optimizer recursively invokes another optimizer, a
copy of itself, and passes the subtree to it as the optimization task. As soon as all the invoked
optimizers with subtrees have returned, the optimizer may assemble the result and pass it back, one
level up, to the optimizer that invoked it.

Therefore, the search for optimal query plan may start at the top of the decomposed query tree
and then be recursively developed as each branch of the tree presents multiple choices of concrete
query plans.

Then at each step of optimization the algorithm may try to apply the precomputed solutions,
like the ones worked out in the previous two sections thus speeding the process.

To formalize the approach of applying the above optimization recursive decomposition we intro-
duce a predicate D, which stands for decomposable. This predicate applies to each of the operator
nodes of the decomposition tree and indicates whether the node of the tree is a decomposable subtree
or a leaf node that is assigned to the information source. Although a leaf node of the decomposition
tree may itself be a subquery, since it does not involve inter-site query operations, DIOM treats it
as non-decomposable because local query processing is not affected by the query execution plan.

3.5.3.3 An Example
Consider the query shown in Figure 3-15(a):

find names and addresses of all customers living outside Edmonton, Canada, and the
date that they booked a flight ezcept for flight number 238.

It contains two inter-site binary operators. Suppose that DIOM customer objects are present at both
site one and two, and order objects are present on site 1 only. Assume the query decomposition tree
for this query is as shown in Figure 3-15(b), where Q1 and Q2 denote customer subqueries on sites
1 and 2 respectively, and @3 denotes order subquery at site 1.

Let us consider the problem in a top-down manner, starting the optimization process from the
top of the site distribution tree. The top part of the query tree, combined with the given site
distribution represents the problem considered in the previous section.

43

FROM customer, order
‘WHERE customer.city != "Edmonton’ AND
customer.country = ‘Canada’ AND
order flight# = 238 AND thustomcr.name
order.customer# = customer.customer# customer.address
order.purchase_date

SELECT .pame, ddress, order.purchase_date T

Customer
Customer # customer#
Customer Name -
Customer Address

Customer City U
Order Customer Country
Onder #
Customer #
gg:.# Dat ncusmmcr.namc ncusxomer.name o
whase Date customer.address customer.address order.customer#
customer.customer# customer.customer# order.purchase_date
chswmcr.cixy t= "Edmonton’ o customer.city != 'Edmontor” (¥ .
I customer.country = *Canada’ I customer.country = "Canada’ ' orderflight# != 238
Q, Q, Q,
(a) (b)

Figure 3-15: The single join and union query example.

The location of @1, the intermediate result of the union, is not assigned to any site at this stage.
The cost optimizer has to consider all possible placements and work out the one leading to the
minimum overall cost of query execution. The approach we may take that would allow the optimizer
to consider all possible scenarios is a depth-first search based on recursion. First, the optimizer is
called with the task of finding the optimal execution plan for the top node of the decomposition tree.
It should analyze the tree and detect that one of the leaf nodes is a decomposable subquery. Then
the optimizer should suspend its execution and determine whether the decomposable leaf node has
been assigned to a site. If yes, the optimizer should call a copy of itself with new task - to find the
best execution plan for the decomposable subquery. If not, then the optimizer should replicate itself
as many times as there are possible site assignments to this node. Then for each one of them the leaf
node is fixed and the optimizer should call a copy of itself with the corresponding subquery. And so
forth, until the optimizer does not detect any decomposable leaf nodes in the given parameter.

This type of depth-first search is based on recursion and the final result is available when the last
of the initially invoked optimizers returns with its version of the best execution plan and its cost.

Formally speaking, on identifying the binary operator and its inputs, we consider all possible
placements of these inputs on all sites capable of accommodating them. Each of the options thus
results in either a well defined inter-site optimization subproblem, a kind discussed previously, or in
a trivial single-site problem whose cost reduces to computing the local processing cost of the binary
operator in question.

Coming back to our example, consider the initialsite distribution shown in Figure 3-16. customer
objects are present at two different sites, site 1 and site 2, and order objects are all located at site
1. This distribution is one of the possible distributions that may be derived from the decomposition
tree shown in Figure 3-15.

Let us consider the options for the top of the query.

1. Q; is placed at site 1 — we have the following situation,

(a) ™ subquery turns into a single-site optimization task, whose solution is trivially found by
assigning the binary operator to the very site all the components are present at, i.e., site
1 in this case. See formulae below for the detailed cost formulation;

{(b) U subquery is the case when the union result as well as the first input are placed on
site 1, while the second input (result of @;2) is at site 2. This case has been considered

44

[

Placement Options

Qlisatsite] Ql is atsite 2
Join subquery: Join subquery:
- case of single-site join - case 2 of inter-site join
Union subquery: Union subquery:
-~ case 1 for inter-site union - case 2 of inter-site union
T
Site],
ol
g < 2
1
T T
| T
I Site2 l
) 0)
I I o)
l é
Q 11 Q 12 »
Cusfomer Cus\omer Order

Figure 3-16: Layouts of costs for the first site distributions.

previously and is shown in Figure 3-12(a) on page 35;
2. @ is at site 2,

(a) ™ subquery represents the site distribution in which the first input (@1) is placed at site
1, and the second input as well as the result of the join are placed at site 2. The site
distribution is shown in Figure 3-14(b) on page 39;

(b) U subquery is similar to that shown in Figure 3-12(b) on page 35 - the second input and
the result of union are at site 2, while the first input is at site 1.

Let us consider the costs associated with each of the subqueries for both options. Let us denote,
for the purpose of this example, C’ the total communication cost for the scenario when the inter-
mediate result is assigned to site 7. In general, if there is more than one intermediate result whose
placement is not fixed, then the costs will be denoted with subscript Citiz-in where 4; . . .i, are the
respective placements of these intermediate results, and n is the number of them. Equation 3.15
gives the formulae for the costs for the M subquery.

Cl; = C1(Q1) + C1(Q2)
LL = L(Q1) + L(Q2) + clj - (H{@1) - UQ2)), i=1, j=1,2
Ri, = max {C1+(Q1) + L(Q1), C1x(Q2) + L(Q2)} + clar - ({(Q1) - 1(Q2))

C} = Cau(Q1) + Cr(Q2) + ce21 - 1{Q1) (3.15)
C7y = Cou(Q1) + C1x(Q2) + cc12 - 1(Q2) + cca1 - I(X (@1, Q2)))
L = L(@1) + L(Q2) + clj - (1(@1) - U(Q2)), i=1, j=1,2
R}, = max{Co{Q1) + L(Q1) + cca1 - I(Q1), C1x(Q2)+ L(Q2)} + choar - ({(Q1) - U(Q=))
R2, = max{C2x(Q1) + L(Q1), C1:(Q2) + L(Q2) + ccr2 - 1(Q2)} + cca1 - LM (@1, Q=)+

+eba - (1{@1) - 1(Q2))

where

C" is the communication cost for the scenario when @; has been placed on site k, the join result is
expected at site 7, and the join has been assigned to site j;

L{fj — similar to the previous item but for the total local processing cost;

R’F- — same as above but for the total response time cost;

C:+(Q;) is the total communication cost incurred in delivering the result of Q; to site 7. This cost is
either decomposable, in which case it equals to the total subcost of the corresponding scenario
it decomposes to, or, if not decomposable, either is equal to zero ~ for the cases when Q; is
already at site 7, or is equal to the cost of moving, that is, c; -1 (QJ), where k is the site where
@; currently resides;

L(Q;) is the total local processing cost incurred in obtaining the result of @;. This cost is either
decomposable, in which case it equals to the total local processing subcost of the corresponding
scenarios, or, if not decomposable, equals to the cost of local processing at the site where it
currently resides, which means that this cost may be mutually reduced from all cost estima-
tions;

As shown in Equation 3.15, the costs expressed in C1.(Q1), C2.(Q1), and C1,(@2), as well as L(Q1)
and L(Q-) are not explicitly defined. This means that the query processing algorithm, at this stage,
needs to deepen the search into the second layer of the query tree and consider the subqueries whose
roots are @; and @-.

For each of the queries on the second level, we need to disclose the following information:

o whether the query is decomposable into an inter-site optimization task, i.e., whether it is
indeed a root of some subtree or have we reached a leaf node of the tree, and

46

o if the query is in fact decomposable then we need to define a new subquery and consider the
new optimization task, whose solution will be the input to the formulae given in Equation 3.15.

It is here that the recursive nature of the problem is truly revealed. However, being recursive does
not mean that the search necessarily has to reach every leaf node in the query tree. Note the heuristic
rules discovered for the case with union summarized in Equation 3.11 on page 37, as well as for the
case with join given in Equation 3.13 on page 42.

In this chapter we have described the theoretical foundations and the proposed framework for
distributed query processing and optimization. The next chapter is dedicated to the system analysis
and design specifics of our proposed system as well as to the implementation points worth noting.

47

Chapter 4

System Analysis, Design, and
Implementation Issues

In this chapter we will discuss the issues involved in the process of design and implementation of
the DIOM Query Scheduling Utility. As any software system [17], the fundamental steps of this
engineering process require analysis, design, and the actual coding of the software. The task of
implementing the DIOM Query Scheduling Utility can be seen as a demonstration of viability of the
ideas and principles presented in Chapter 3.

The theoretical results obtained and shown in Chapter 3 also serve as the baselines for the
software development covered in this chapter. Thus we omit the technical feasibility study phase of
software engineering and start from system requirements analysis.

4.1 System Requirements Analysis

The success of a sofsware project depends to great extent on how well and thoroughly the require-
reents to the projected software have been analysed. The requirements analysis is a top-down, or
general-to-particular process, in which software requirements are gradually refined and finalized in
some form that is acceptable to the next phase, software design [17].

4.1.1 Analysis of Non-Functional Requirements
4.1.1.1 Portability

Since the current implementation is a component of a greater project, there are certain portability
requirements that need to be fulfilled. The overall DIOM framework implemented in [10] exemplifies
such requirements by using a highly portable html-cgi-oreper! combination of programming environ-
ment. Our goal is to create a value-added software package for distributed query scheduling, which
is portable across platforms, and can be run by the applications via a network connection without
a need for installation or compilation. All the necessary components must be downloadable and
executable, possibly with the use of the necessary application viewing tool that is platform-specific
but ubiquitous enough to be present at most platforms.

We need to provide a graphical user interface, which uses such standard interface components
as control buttons, text components, drawable components, etc. Portability of such interfaces, at
least for major platforms, must be achieved without having to implement separate versions of GUI
for each platform.

4.1.1.2 Extensibility to Add New Heuristics or Cost Parameters

The proposed implementation software is an experiment - it does not cover all aspects of query
processing and optimization. However, it must provide an extensible framework that would allow

48

[—

to add new heuristics and cost processing modules with a reasonable flexibility. It is preferred that
these modules be downloaded dynamically at run time, without the need to recompile the entire
package.

4.1.1.3 Modularity through OO Design and OO Development

To proceed with the analysis process, it is necessary to decide on the method and the model for
the analysis. Object model provides the most flexibility to represent the problem, therefore, in this
implementation we use the object-oriented approach to systems requirements analysis.

The software must be modular and with as much reusability as possible. Of all software en-
gineering techniques available today, object-oriented design and development provides the great-
est opportunity for modularity and reusability. To ensure a good and robust implementation of
the Distributed Query Scheduling software package the object-oriented techniques have been used
throughout the entire course of analysis, design, and development.

4.1.2 Functional System Requirements

To cover the functionality of the Distributed Query Scheduling software utility we use the data flow
diagrams [17] to identify the main components of the system architecture. The diagram representing
the top-level functionality of DIOM Query Scheduling Utility is shown in Figure 4-1.

Each of the entities in the diagram relates to one or more entities in another group, which is
shown with the lines connecting them. The semantics of these connections is defined at the next
stages of the systems analysis, where each of the entities in the diagram is analysed further and the
details are further refined.

The entities of this diagram are grouped according to their relevance to one of the following
categories of operations:

4.1.2.1 User Interface Processing Components (UIP)

The objects of this component are responsible for providing the graphical interface to the user.
This includes the query entry form components, the controls for displaying and updating the query
optimization parameters such as cost weight factors, communication and local processing costs, and
data repository statistical information. Each of the major components of the query processing must
have a display component for showing its result and the log information that would allow the user to
follow the details of the processing at this step. For more details on the user interface components,
see sections 4.2.2 and 4.5.

4.1.2.2 Imput/Output Processing Components (IOP)

The objects of this component are responsible for input and output. Some of the main required
10 components are the query object, objects representing the result of the query routing, objects
representing the query tree, the detailed query plan, and the query execution result. Section 4.2.3
provides the detailed design specification of the components in this group.

4.1.2.3 Distributed Query Processing Components (DQP)

These are the main functional components in this application. The router, decomposer, heuristic,
and cost-based query processors are the main objects in this group of components. They must be
able to communicate with the query manager that organizes their operation and ensures that the
necessary objects are passed to and from the user interface components, and to and from each of
the query processing components. Section 4.2.4 contains the detailed specifications for each of the
distributed query components.

49

Router
GUI

Components

{ Query
{ Tree
{ GUI

5 Components

Query Decomposion 1

Heuristic-Based

Optimization

{ Query Result
1 Assembly

‘

Figure 4-1: Architecture Flow Diagram of The DIOM Query Scheduling Utility Application.

2 neme

Binary Tree of

Legend:
——— Composition Relationship
—31- Many-to-one Relationship
Obgct Class

() Abstract Data Structure

Figure 4-2: Detailed Requirements Analysis Diagram for Query Manager Object.

4.1.2.4 Maintenance and Testing Components

The components that allow the user to test and diagnose all other functional components. This may
include query processing scenarios that test for certain features in the processing components, etc.
The detailed specification of all maintenance and testing components is given in Section 4.2.5

4.2 System Architecture Design

4.2.1 Architecture Overview

Based on the requirements listed in Section 4.1, we generate a top-level object composition layout
for all components of the application. This layout is shown in Figure 4-2.

The links between the objects and abstract data structures represent the composition relation-
ships. For example, the Rouier object contains references to the Query and Router Result Table
objects.

In the following sections we consider, in detail, the design issues of each of the components in
user interface, input/output, and query processing component groups.

-y

4.2.2 UIP Components

This section gives the detailed design specifications for all user interface components of the DIGA
Query Scheduling Utility.

4.2.2.1 Query Entry Form

The Query Entry Form is an object in the user interface object group, and it has the following GUI
components, which are also shown in Figure 4-7:

o The choice boz component for selecting a query posed by the user with respect to an application
domain. On selecting an item in this component, the query form is automatically filled out
with one of the pre-installed queries;

o The TARGET selection tezt field component. This component is optional and may be left blank
by the user. If the user enters the names or uniform resource locators of the information
producers, then the query manager considers only them as the candidates for the relevant
source selection, otherwise it will consider all registered information producers;

o The SELECT tezt field component. This component is for the entry of the select string of the
IQL query. All IQL syntax rules apply;

o The FROM tezt field component. This component is for the entry of the from string of the IQL
query expression. The height of this component is one line and its width must be sufficient to
display a full line of text;

e The WHERE text area component. This component is designed for accepting the user input of
the where string in the IQL query expression. It is a multi-line component since the length
of the string for most user queries may exceed the length of the line. The user must be able
to navigate through the entered text in this component by using the arrow keys as well as
scrollbars;

e The Result Processing Strategy selection checkboz. It is an optional component. If the user
clicks on this box, its state changes, which is indicated by changing color and shape of the
checkbox;

e The GROUP BY tezt field component. This is an optional component. It is designed to take
the user input of the corresponding IQL clause of the query expression. It contains a single
line of text;

o The ORDER BY tert field component. This is an optional component. It is designed to take
the user input of the corresponding IQL clause of the query expression. It contains a single
line of text;

e The Install Query checkbozr component. This is an optional component. It reverses its state
in response to the user button click, which is indicated by changing color and shape of the
checkbox;

e The radio boz group for control of the query processing mode. This group includes two check-
bozes, Run Query, and Ezecute Query. The state of these checkboxes is inter-exclusive, i.e.,
one of them must be checked, and when one is checked then the other one will be unchecked,
which is indicated by changing the color and the shape of the corresponding checkbox;

o The Submit Query button component. This component is designed to respond to user mouse
and keyboard events. The event that happened in the area of this component is caught and
the control is passed to the corresponding event handling method that creates a new query
manager;

e The Reset button component. If an action event happens in the area of this component,
the control is passed to the corresponding event handling method, which clears all the text
components and sets the states of all the checkboxes to the original state;

These components are laid out on the query form panel in the same way as has been designed
in the IQL interface implementation® of [10]. The user can navigate through these components by
either mouse or keyboard events. The focus is programmatically transferred through the components
whenever the user presses the Next Component key, which is assigned to the platform-specific default
navigation key. Otherwise, if the mouse is clicked in the component area, it automatically requests
focus and processes the event.

4,2.2.2 Cost and Statistical Parameter Forms

The parameters required to compute the cost of the query are separated into four groups, Cost
Weight Parameters, Local Unit Cost Parameters, Communication Unit Cost Parameters, and Sta-
tistical Parameters. Their design specifications have been given in Section 4.2.3. This section gives
the design specification of the GUI components that are used to provide the interface to these param-
eters. All three of these parameter groups reuse the same GUI component, which has the following
properties:

e it contains the editable text fields for each parameter, which are laid out on a panel;

e the first row of text fields is reserved for display of the name of the parameter and is not
editable;

o the first column of text fields is reserved for display of the name of the data repositories and
is not editable;

e it contains a user control that allows to update the parameters to the current values of the
displayed parameters;

o the component contains a reference to the data structure of the parameters, a two-dimensional
array of strings, the data from it being read at the time when an event that triggers the display
of this component occurs. ‘

4.2.2.3 Query Manager Control Panel

Query Manager Control Panel is a collection of GUI components that allow the user to control and
observe the query scheduling process. These components are organized as follows:

button panel contains the main controls for navigating through the steps of query processing:

o Cancel button is used for cancellation of the current query processing session and invoking
the Query Manager event handler method handle cancel button that does that;

¢ Start button is designed to set the current state of query manager to the initial state,
trigger the display of the results of this step, and generate a message informing the user
of the action that has been just taken. On completion of these actions, this and Previous
buttons become disabled, Next and Finish buttons become enabled;

o Previous button brings the user one step back and triggers the display of the results of
the previous step, also sending a message about the performed action. Next and Finish
buttons become enabled, and if the new state is the first state, this and Start buttons
become disabled;

1The difference between IQL and Relational SQL is that the join conditions are not required for IQL expressions
at the time when the query is posed. They can be derived by the IQL parser. This topic is beyond the focus of this
thesis. See [12].

e Next button event causes the query manager to advance the current state by one, enable
Previous and Start buttons, and if the new state becomes the last state, disable this and
Finish buttons;

e Finish button event triggers the execution of all remaining steps of query processing and
displaying the results. This and Next buttons become disabled, Start and Previous buttons
become enabled.

display panel contains the components that display the current status and progress of the query
processing. It consists of two graphical components:

o status text field, which provides a method of setting its contents to the programmatically
defined text;

e progress graphical component, which shows an animated sequence of images and provides
methods for starting and stopping the animation programmatically.

4.2.2.4 Router Graphical Component

The result of query routing step is best represented in a table form, where each row of the table
corresponds to a separate information source (see Figure 4-8 on page 72). The detailed design
specification of the router result component is given in Section 4.2.3. For the purpose of display
this component is treated as a two-dimensional array of variable-length strings. The first row of the
array consists of the column headings. Each of the rows is highlighted depending on whether the
corresponding source has been selected by the router automatically, or by the user, manually.

This graphical component contains the following elements:

¢ the main display area, where the visible portion of the router table is displayed. The display
may be shifted horizontally or vertically according to the offset controlled by the scrollbars;

o the scrollbars, which graphically display the current horizontal and vertical offset of the main
display area and react to the user events targeted at them.

This component defines the following methods:

e measure — to properly display multi-line, column-formatted text, the component must know
the height of each line and the width of each column. This measurement requires that the
font parameters are known, therefore it must be called before the display but after the font
information is available.

e handle mouse event — if the coordinates of the mouse event are within the main display area
of this component, this method computes the row number based on these coordinates and
the current offset and highlights the corresponding row of the table. This row is marked as
user-selected so that future screen updates redisplay it properly.

o resize method, which is called whenever the size of this component changes, updates the main
display area, the shape of the scrollbars, and the offset values.

4.2.2.5 Decomposer Graphical Component

The result of the query decomposition step is a collection of query operators organized in a binary
tree data structure. An example of a query tree is shown in Figure 3-2 on page 16. The detailed
design specification of the elements in this data structure is given in Section 4.2.3, and here we list
the design issues related with the proper display of this structure. We assume that each node in
the binary tree contains references to the subnodes, and if there are no subnodes, the corresponding
reference is NIL.

The decomposer graphical component consists of two main elements:

o the main display area, where the visible portion of the tree is displayed. The display may be
shifted horizontally or vertically according to the offset controlled by the scrollbars;

54

o]
flight fight_no = height d
ticket.fight_no height

width width

T
flight flgth_noj heigh
width

Legend:
~ =« Specialization Relationship
LZT Abstract Class
Class

Figure 4-3: Drawable abstract class and draw method overriding

o the scrollbars, which graphically display the current horizontal and vertical offset of the main
display area and react to the user events.

The display of a binary tree, which is not a linear structure, is more complex than the display
of a table. We take into account the following design issues:

1. this component must know the total width and height of the entire tree, which is computed
recursively starting from the root of the tree and ending at its leaf nodes. A query tree node
provides a method of computing these parameters;

2. the tree is drawn in a recursive manner, starting from the root, and ending at the leaf nodes.
If the width of the node being drawn is greater than the total width of this node’s subtrees,
then the subtrees are shifted to be centered under this node, otherwise, this node is shifted to
be centered above the subtrees;

3. links are drawn as lines connecting the center of the bottom edge of this node to the center of
the top of the underlying subtree(s);

4. to actually draw the node, its drawing method is called, with the required coordinates; Each
of the defined node types is a subclass of an abstract Drawable class, it overrides the draw
method. Figure 4-3.

4.2.2.6 Heuristic Processor Graphical Components

Like query decomposer result, the result of each heuristic-based transformation is an instance of
a binary query tree, therefore here we reuse the design specifications of the Decomposer Graphical
Component.

Gt
N

ey

4.2.2.7 Cost Processor Graphical Component

The cost-based query tree processor results in a data structure that may be viewed as an extension
of the decomposition and heuristic-based query trees (see Figure 4-11). Each node in a cost-based
query tree has additional information. The detailed design specification of the cost node is given in
Section 4.2.3. In this section we deal with the user interface-related issues of the cost node design.
We assume that cost node provides the methods for retrieving the extended elements of the node.

This component is an extension of the Decomposer Graphical Component and has all of the design
features of it. In addition, this component has the following design characteristics:

¢ each node, is drawn with the color-coded background that corresponds to the site to which
this node has been assigned. Nodes that have been assigned to the same site use the same
background color. The color value is computed dynamically based on the total number of
distinct sites in the cost query tree.

o handle mouse event method is defined for this component. Whenever the user generates
the mouse event in the display area of this component, this method tries to find the node
corresponding to the mouse coordinates. If the node is found, a dialog window is displayed.
This dialog window contains the detailed cost-related information about this tree node. The
background color of the dialog repeats the background color of the node on the main display
area.

4.2.2.8 Additional Graphical Components

In addition, the following user interface components have been designed to allow expert users to trace
the heuristics used in the query tree transformations and the cost estimation used in the cost-based
optimization (see Figure 4-12 for an example):

Log View Dialog Window Each of the query processors produces the log information that con-
tains the query processing details and is intended for user viewing. This component is designed
to provide a flexible display facility that allows the user to view the log with variable degree
of detail. This component is a subclass of a dialog window, it contains the following GUI
elements:

o the main display text area, where the corresponding log text is displayed. Since the logis a
multi-line variable-width text, the text area provides the horizontal and vertical scrollbars
for controlling the position of the visible portion of the text.

e +, or increase log detail level button, and —, or decrease log detail level button. The action
events in these buttons are handled in such a way that the log detail level is changed and
only the information that has been logged with the level up to the current detail level is
displayed in the main text area. If the maximum or minimum level is reached, the current
value of the log detail overwraps to minimum or maximum respectively.

o CLOSE button is designed to allow the user to dispose of this dialog window and free the
system resources.

Query Result Graphical Component allows the user to see the result of the query execution.
This component reuses the Router Graphical Component design specification since the query
result has the same structure as the query router result, 2 two-dimensional array of strings
that are formatted into columns and rows.

Query Manager Main Display Panel provides the GUI container for each of the main graphical
components of the query manager. The main display panel has the layout that allows the user
to view the contained components one at a time in the same display area. It provides a method
for putting the specified component on top of others and making it visible. The Query Manager
Control Panel button handling methods call this method to make the graphical component of
the corresponding processor visible.

[P

4.2.3 IOP Cecmponents
4.2.3.1 Query "

Query is the object that is instantiated by the Query Entry Form (see Figure 4-7) and passed to the
Query Manager object. It contains all the information about the user query, which includes:

e SELECT, FROM, WHERE IQL clauses, and
o the entire IQL query expression that is formed from the above three clauses;

Query class defines the access methods for each of its components.

4.2.3.2 Cost Pérameters

Cost Parameters consist of the following three groups of parameters:

e Cost Weight Parameters — see Equation 3.1 on page 14 for explanation of this group of pa-
rameters. The parameters of this group are user-defined because they represent the profile of
the user priorities in evaluating the total query cost.

e Local Unit Cost Parameters include the unit costs for each of the query-related operations.
This application considers local unit costs of scan, join, and union.

o Communication Unit Cost Parameters — see Equations 3.10 — 3.15 on pages 36 — 46 for the
explanation of these parameters — are the parameters provided by the information producers
and are collected by DIOM. This parameter is provided for each combination of the information
sources, otherwise, a default unit cost is used.

4.2.3.3 Statistical Parameters

Statistical Parameters contain the statistical information about the class, relation, or attribute ob-
jects that are stored in the information sources registered with DIOM. Only the statistics information
for the information sources selected by query router are included in the Statistical Parameter com-
ponent of the current query (see Figure 4-13. Section 3.4.1 provides a more detailed information
about the nature of these parameters. For the purposes of this application we supply the following
parameters for each of the objects in the source database:

o class name - a string containing the name of the class, relation, or file name;

cardinality — number of objects of this class in the repository;

o width - size of one object, row in the relation, or scannable unit in the file;
o size — the total size of the extent;
o attributes, for each of which the following data is collected:
— attribute name - a string containing the name of the attribute, the column name, or the

field name;

— cardinality - if the objects of this class are indexed by this attribute, it contains the
number of distinct entries in the index;

~ width — the size of one element of this attribute;
— size — the total size of the index;

- type - this is an optional element, which is used in determining whether the following two
elements are valid; it distinguishes between enumerated and non-enumerated datatypes;

— min and mar values — valid only for the enumerated datatypes.

ot
-]

[

4.2.3.4 Router Result

This component is instantiated by the Router query processing component, modified by the Router
Graphical Component, and is passed to the Decomposer query processing component. It consists of
the following elements:

e the table which stores the information about the data repositories and is displayed in Router
Graphical Component. Each column of this table contains the specific type of information
about the source, e.g., source id, its URL, full name, owner, keywords, etc.;

o the one-dimensional array of boolean values that mark the data repositories which have been
selected by the Router;

e the one-dimensional array of boolean values that mark the data repositories which have been
selected by the user through the Router Graphical Component.

We call the one-dimensional boolean array generated by the Router DQP component Router Vector

4.2.3.5 Query Tree Node

This is the main operating component of the Decomposer, and the Heuristic Processors query pro-
cessing components. It consists of the following elements:

o Query operator object — one of the subclasses of Drawable abstract class that implements the
draw method, see Figure 4-3.

o Reference links to parent, left, and right Query Tree Nodes. If this node is the root of the query
tree, then its PARENT link is NIL, if it contains a unary query operator, then its right links is
NIL, and if this is a leaf node, both its left and right links are NIL.

It defines the following methods:

o clone method creates a copy of this object and returns it. As we will see in the design
specifications of Heuristic Processors, Section 4.2.4, quite often we will need to make a copy
of the node to properly process the tree;

e draw method simply calls the draw method of this node’s query operator object;
e width method simply calls the width method of this node’s query operator object;

o totalWidth method is needed to compute the total width of the subtree whose root is this node.
If this is the leaf node, then its width plus the width of the margin is computed, otherwise,
the maximum of this node’s width and the sum of the total Widths of its subnodes;

o totalHeight method computes the total height of the subtree whose root is this node. This
and the previous methods are used in the UIP components that display the query tree, see
Section 4.2.2.

4.2.3.6 Query Tree Cost Node

This component is an extension of the Query Tree Node IOP component. It adds the following
elements to its design specification:

o cost-related elements, total cost, local processing cost, communication cost, and response time
cost; The computation of these parameters is covered in the design specifications of the Cost
Query Processor in Section 4.2.4;

o site information, where the name of the site to which the query operator of this cost node is
assigned;

[——T S

L 2

statistical information of the current subquery result. This information is initialized with the
statistical parameter values that are collected by DIOM from the information repositories.
For non-leaf nodes of the cost query tree this information is computed by the Cost Query
Processor. This information is a set of attributes that are defined in the intermediate query
objects.

The functionality of this component is extended by the following methods:

clone — this method overrides the clone method of the Query Tree Node component, it ensures
deep-level cloning of all the attributes of the current cost node;

get new extent cardinality method is responsible for computing the new cardinality of the
objects that are represented by this tree node. Given the selection operator, this method
computes the statistical selectivity factor based on the attribute information of the attribute
on which the selection is done. The detailed process of statistical parameter estimation is
specified in Section 3.4 of Chapter 3;

update attribute cardinalities method updates the statistical information of all the attributes
of this query tree node. Given are the old and the new extent cardinalities. The computation
is done according to Equation 3.5 on page 27;

get attribute superset method takes two attribute vectors and makes a superset consisting of
all attribute elements of the first attribute vector and the elements of the second attribute
vector not found in the first attribute vector. This type of processing is done by the union
query operator and is covered in detail in Section 4.2.4;

append attribute set method appends the given attribute vector to the end of this node’s
attribute vector. This type of processing is required by the product query operator, which
serves as the basis for the join query operator;

get log information method instantiates a log object that may be passed to the Log View Dialog
Window UIP component. This method is called by the Cost Processor Graphical Component
when the user generates a mouse event that is targeted on this cost node;

4.2.3.7 Additional IOP Components

Log component is used throughout the application by most of the main UIP components to generate

a multi-level detail log information string. This component is then passed to the corresponding
Log View Dialog Window component, which displays it. The format of this component is
defined by the following rules:

e the level of detail is defined by the first character of the log line, this character is not
displayed in the Log View Dialog Window;

o every line of the log information starts with a character that is converted to the number,
and interpreted as the level of detail, if the first character may not be converted into the
number format, then the string is discarded by the Log View Dialog Window;

o the rest of the string of the logged information is indented according to the level of detail,
e.g., the indentation of a line whose detail level is 2 equals to two indentation units. This
rule is optional and is designed only for user convenience.

Selection Object components are derived from the WHERE clause of the IQL expression. Each of

the tokens in the clause represent one selection object. Router DQP component instantiates
them and stores them in the Vector data structure at the time of query parsing. Intensionally,
they are comprised of three elements:

o left argument is an instance of projection object,

o operator is a string representation of the operator taken directly from the WHERE expres-
sion, and

o right argument is an instance of projection object;

Projection Object components are derived from the SELECT clause of the IQL expression. Each
of the tokens in the clause represent one projection object. At the time of parsing the query
Router instantiates the objects of this class and stores them in the Vector. This component
consists of three elements:

e schema is a string representing the name of the schema of the database object, relation,
or file,

e object name is a string containing the name of the object, relation, or file,

o attribute name is 2 string containing the name of the attribute, column, or the field;

Join Object components are derived from the FROM clause of the IQL expression. Each of the
tokens in the clause represent one join object. The Router component instantiates the objects
of this class and stores them in the Vector at the time of query parsing; This component
consists of two elements:

o schema is a string representing the name of the schema of the database object, relation,
or file, and

o object name is a string containing the name of the object, relation, or file

Query Result Table component reuses the specifications of the table component of the Router
Result IOP component.

4.2.4 DQP Components

This section covers the main components of the distributed query processing done in this application.

4.2.4.1 Query Manager

The Query Manager is the main component that coordinates the work of both DQP and UIP
components. A new query manager object is instantiated in the Query Entry Form whenever the
user submits a query. For performance tuning purpose we allow a query to be submitted several
times, and each time, be optimized using different parameters. For each query form we preset the
maximum number of query manager objects that the form can instantiate. This restriction can be
used to set the upper limit on the possible CPU and memory requirements this application can
impose on the system.

Since Query Manager is composed of both DQP and UIP components (see Figure 4-2), its
functionality combines the query processing-related functionality with the GUI-related functionality.
Namely, the Query Manager class both specializes a window class and implements the methods of
the runnable interface. Thus DQP components of the Query Manager are independent of the UIP
components (recall the modularity requirement in Section 4.1.1). In detail, Query Manager object
is composed of the following elements:

o reference to the Query Entry Form that launched this query manager is needed to pass the
status messages to that component;

e reference to the Query IOP component, which is passed from the form at the instantiation;

o ID number of this query manager is used for identification in the messages to the query form
and in the title of this window;

o Router, a Vector of Heuristic Processors, and the Cost Processor DQP components, whose
design specification is given later in this section;

60

Query Manager Control Panel UIP component and all its elements, whose design specifications
are covered in Section 4.2.2;

e Main Display Panel, all UIP components covered in Section 4.2.2 that are used to display the
result of each of the query processing steps, and their containing panels, parameter forms, and
buttons used to activate them;

o Vectorof Log View Dialog Windows that is used to store the references to all currently displayed
log windows. The query manager needs to keep track of these windows so that if the user
cancels the current session, they may be disposed of and the system resources freed;

e current state of the query processor is 2 numeric representation of the current state of this
component, e.g., initial state is zero, the state on completion of query routing is one, etc.

e finish state of the query processor is a numeric representation of the desired state on achieving
which the query manager suspends its execution, e.g., in the tracing mode the finish state is
always greater than the current state by one, while in the run mode the finish state equals to
the maximum number of query processing steps. This parameter is initialized based on the
value of the trace/run radiobox group.

The last two elements are designed to enable and control the multiple sessions of the Query Manager.
Methods of the Query Manager class include

e router process, decomposer process, heuristic optimizer process, and cost optimizer process
methods facilitate communication with the corresponding DQP components. The semantics
of these components will be specified in detail below;

o runis the main processing method that is called whenever the user presses either Next or Finish
buttons in the Query Manager Control Panel UIP component (see Figure 4-8). Based on the
values of the current state and finish state, this method incrementally checks all the states of
the query processing and calls the processing methods that correspond to the states between
the current and the finish state; Since Query Manager implements the runnable interface, this
method must be defined and is called whenever the query manager object is started;

e init is the method that is called at the instantiation time of the query manager object. It
instantiates and lays out all the GUI components’ of the Query Manager;

e handle event method is called whenever an event occurs within the Query Manager window.
Depending on the GUI component the event is targeted to, its handling is delegated to that
component’s handle event method.

The complete code of this component is listed in Appendix A.

4.2.4.2 Router Object

Router DQP component is responsible for query routing step of the distributed query scheduling, it
is instantiated by the Query Manager and contains the following elements:

e query component is passed to the Router by the Query Manager at the time of instantiation;

o Vectors of selection objects, projection objects, and join objects, which represent the result of
query parsing;

e Router Result component, whose specification is given in Section 4.2.3.
This component implements the following methods:

e get new query vectors method parses the query of the router object and makes three new
vectors containing Selection Objects, Projection Objects, and Join Objects components. Query
string parsing is done by separating the string into tokens based on the syntactically valid IQL
separators;

61

o get new router table method is responsible for contacting the DIOM server and obtaining the
list of information producers registered with DIOM dynamically, i.e., each time when the query
is evaluated. The format of the entries in the list is coordinated between the server and this
method at run time of the query, and the list is parsed and stored in the table, which is an
element of the Router Result component specified in Section 4.2.3;

o get new router auto-select vector method scans the router table, tries to match the content
description of each entry with one of the elements in the vector of Join Objects, and produces a
boolean array, in which each element indicates whether the corresponding information producer
has been selected by the router as a relevant information source for the current query;

The complete code of this component is listed in Appendix A.

4.2.4.3 Query Tree Processor Object

This is an abstract component whose main function is to process a binary tree of Query Tree Node.
Query Tree Processor consists of the following elements:

o query tree is the binary tree of Query Tree Node IOP components;

e name is the name of the current tree processor. It is used in the log information and for user
messages;

o logis the Log IOP component.
Query Tree Processor implements the following methods:
e set query tree simply sets the reference to the given query tree;
o get query tree simply returns the reference to this object’s query tree component;
¢ set new log resets the log information;

get log simply returns the Log component of this object;

*

copy method recursively traverses the given tree, and effectively copies each node of the tree
to a new instance.

All subclasses of Query Tree Processor, e.g., Decomposer, Move Selections Heuristic Processor, Move
Joins Heuristic Processor, and Cost Processor, inherit all its components and methods. In addition,
all non-abstract subclasses of Query Tree Processor must implement the following methods:

o get new query iree contains the intrinsics of the current component’s query processing. Given
the query tree, a tree processor object custom-processes it and generates a new query tree;

Figure 4-4 illustrates how the subclasses of Query Tree Processor implement the get new query tree
method. The detailed design specifications of this method for each of its subclasses are given in the
subsequent sections. The complete code of this component is listed in Appendix A.

4.2.4.4 Decomposer Object

Decomposer is responsible for the second step of distributed query processing session in DIOM Query
Scheduling Utility. It has the following components:

e Router, a reference link to this component is necessary to access the Router Result objects;

o Vector of Selection, Projection, and Join, these vectors are needed to store the intermediate
results of decomposition;

The design of its get new query tree method has the following details:

62

[8

(a) Specializations of Tree Processor class

D4 Move Joins
Heuristic Processor
I dr0001 ticket
.0 . O . _' ...moving join below union...
flightcarrier = flight.camrier
| dro001 flight dr0002.flight l
U
X X
O . dro00l.ticket =~ G | dr0001.ticket
flight.carrier = flight.carrier =
dr0o001 flight dr0002 flight

Decomposer
0001 X
r0002 1 drO001.ticket
dr0003
Thight 4r0001 fight dr0002.flight
ticket
creating Scan node...
creating Jeft branch of Union...
.0 . Move Selections
%Lw&%— Heuristic Processor
X
I @dr0001.ticket X
dr0001 flight dr0002 flight 7 S000Lticket

O O
flight.carrier = flight.carrier =
Alr Canada® CAIr)

dro001 flight dr0002.flight

...Irying to move flight.carrier = "Air Canada’...
...this is a value-based selection...

(BO002 3HPRD

...computing cost at node dr0001.ticket...
...computing cost at Union

(b) Implementation of get new query tree method in all the subclasses of Tree Processor

Legend:

= == subclass relationship

[T abstract class

class

Figure 4-4: Tree Processor Classification.

[SRe———

1. create new vectors of Selection, Projection, and Join objects that are based both on the same
vectors of the Router component and on the Router Result. These objects are accessed through
the reference link to the router object; Only those elements from the router vectors are selected
that have supporting entries in the router table. The following rules are observed:

o each of the Join Objects in the Router vector (recall Section 4.2.3 is included if it matches
at least one entry in the router table. For each of the matching table entry the source of
this entry is added to the vector of available sources for that Join Object;

e each of the Selection Objects in the Router vector is included if it is a value-based selection
and if the seiection argument object has been included into the Decomposer’s vector of
Join Objects, otherwise, if it is a join-based selection and both of its arguments are
included;

e each of the Projection Objects in the Router vector is included if the object component of
the projection has been included into the Decomposer’s vector of Join Objects.

2. create the decomposition tree according to the following rules:

e all source-based scans of every Join Object form a subtree with Union as the internal
node and Scan as leaf nodes;

o all of these subtrees are joined together to form the query tree;

o all of the Selection and Projection objects form the unary node group which is put on top
of this tree. The result is assigned to the Query Tree component of the Decomposer.

This constitutes the last preliminary step of the query scheduling. The main processing that gener-
ates the query execution plan is done by the heuristic-based and cost-based query processing.

The current version of DIOM Query Scheduling Utility supports two of the heuristics covered in
Chapter 3, moving selections down and moving joins below unions. Their design specifications are
presented below.

The complete code of this component is listed in Appendix A.

4.2.4.5 Move Selections Heuristic Processor
This component’s get new query tree method has the following design specifications:
1. create a copy of the given query tree and locate all nodes that contain Selection Objects;

2. for each of the found nodes, traverse its subtree recursively performing the following operations
until a leaf node is reached:

e if the child node contains a Union object, create a copy of this Selection Object, put the
original into the left subbranch of the Union, and the copy into the right subbranch of
the Union, recursively traverse each of the subbranches until a leaf node is reached;

o if the child node contains another Selection object or a Projection object, put this node
below it and recursively traverse its subbranch until a leaf node is reached;

« if the child node contains a Join object, and if this is a value-based selection, move it into
the subbranch that contains a Scan of the same objects as this node selects, if neither
subbranch terminates with these scans, leave this Selection object and stop the tree
traversal, otherwise, if this is a join-based selection and neither of the join subbranches
is terminated with a scan of any of the selection arguments, perform the same operations
as for the Union node, else stop the tree traversal.

3. assign the transformed tree to the Query Tree component.

The complete code of this component is listed in Appendix A.

64

Figure 4-5: Moving the Join Group below the Union, an example.

4.2.4.6 Move Joins Heuristic Processor

The purpose of this heuristic is to move the joins below the unions, in the query tree. Chapter 3
provides the theoretical coverage of this heuristic-based processing rule. This component has the
following design specifications of its get new guery tree method:

1. create a copy of the given query tree and locate all nodes that contain Join Objects. If there
are such nodes, analyse the query tree, compute the total number of scan nodes and the total
number of different sources on which these scans are performed. If more than half of all the
scan operations are done at the same sources, then do the processing, otherwise terminate the
processing without modifications to the tree;

2. for each of the found nodes, traverse its subtree recursively performing the following operations
until no more union nodes are found below the node containing a Join Object, if the left child
of this node is not a union, try the right child, otherwise, there are no more Union-containing
nodes below. If it is a union, do the following recursively:

clone the node containing this Join Object, and all the Selection nodes above it, thus
creating a new copy of the join group;

locate the other child node of this Join Object and make a copy of the entire subtree
whose root is that node;

attach the left child of the union as the left child of the original Join Object, and the right
child of the union as the left child of the clone Join Object;

attach the copy of the join’s right subtree as the right child of the clone Join Object;

attach the top of the join group of Join Object as the left, and its clone as the right child
of the Union node;

recursively process these newly formed subtrees;

return the Union node as the new root of this subtree.

This operation is graphically illustrated in Figure 4-5.

3. assign the transformed tree to the Query Tree component.

The complete code of this component is listed in Appendix A.

4.2.4.7 Cost Processor Object

This component is responsible for the final step in distributed query scheduling. It is also the most
complex component since it requires two phases of cost estimation: (1) computation of statistical
parameters for each of the nodes of the query tree and {2) computation of the cost of evaluating

65

S-S

the entire query trees that are considered as potential candidates for the selection of an “optimal®
query schedule. The theoretical model for this step is covered in sections 3.1 and 3.4.

Cost Processor component operates on Query Tree Cost Node, an extension of Query Tree Node
component whose design specifications are covered in Section 4.2.3. The main processing method of
Cost Processor, get new query tree (see bottom right box of Figure 4-4 on page 63), consists of the
following steps:

1. create a copy of the given query tree and locate all nodes that contain Scan, and Projection
objects, including Projections that are part of Selection objects. Get the Statistical Parameters
of each of all sources from which scans are performed in this query. Fill in the missing statistical
information with the default values if any parameter is missing;

2. fill in the statistical information at each of the Query Tree Cost Nodes of the binary tree, the
following rules are observed in computing the statistics:

o if the current node contains a Scan, fill in the statistics directly from the Statistical
Parameters component obtained from the server;

o if the current node contains a Selection, compute the new statistics by using methods
get new extent cardinality and update attribute cardinalities of Statistical Parameter IOP
component;

o if the current node contains a Projection, remove the non-projected attributes and update
the statistics accordingly; ’

e if the current node contains a Union, update the statistics according to method get
attribute superset of Statistical Parameter IOP component, which also applies formula of
Equation 3.3 on page 26;

e if the current node contains a Join, update the statistics according to methods append at-
tribute set of Statistical Parameter IOP component, and applying formula of Equation 3.4
on page 26.

3. by default, the result of the query is required at the client site. We obtain the unit cost
information from Cost Parameters IOP Component. We compute the cost information and
assign a site to each of the nodes in the cost query tree recursively, starting from the root of
the tree, whose preferred result site is client:

e if the current node is a unary node non-leaf node, i.e., it contains either Selection or
Projection, compute the cost information and assign the site of this node’s child, tell the
child that the preferred site of its result is the same as the preferred site of this node’s
result. Then assign this node to the same site as the child is assigned to, compute the
cost components and the total cost. Unary query operator is always performed at the
same site as its child;

o if the current node is a leaf node, i.e., node containing Scan object, just compute the cost
components and the total cost. Scans are always performed at their sites;

e if the current node is a binary node, i.e., it contains either Join or Union, first compute
the costs and assign the sites of each of the subtrees, then compute the total cost for each
of the possible three placement options, as described in Section 3.5.3, Equation 3.14 on
page 42, and choose the minimum option. If the placement resuiting from this option
differs from the current preferred result placement, recompute the costs for each of the
subnodes for the new preferred site. In this case, the binary operator will be performed
at the same site as one of its children’s, therefore the cost changes and the preferred site
for all of this node’s children now becomes the site to which this node has been assigned.

4. assign the transformed tree to the Query Tree component. This result constitutes the detailed
query schedule, where each site has been assigned a defined set of operations.

The complete code of this component is listed in Appendix A.

66

P

4.2.5 Maintenance and Diagnostic Components Specification

To develop bug-free, robust software, there needs to be a facility that allows to test and diagnose
each of its design components. Each of the components of DIOM Query Scheduling Utility has been
equipped with uniform diagnostic and bug detection methods.

One of the approaches used in tackling this problem is to provide the component methods that
allow easy tracing of the component’s elements. For instance, we have designed a method to convert
the contents of a Query Tree Node component into a printable form to allow users to trace the work
performed by one of the Tree Processor components. Another approach used in the design of our
testing package is to provide a set of self-tests for each of the components. These tests check for
exception conditions that are not parts of the main processing the components have been designed
for but which could undermine the correctness of the processing. For instance, a test that checks for
the presence of both children in a binary query tree node ensures that the tree is correctly generated.

Conditional compilation allows the application developer to remove the maintenance and diagnos-
tic components from the production version of the software package, which ensures that performance
is not traded in for correctness of the design.

4.3 Code Implementation Design

Based on the analysis of the system requirements, and the architecture design of the Distributed
Query Scheduling Utility, we chose Java programming language as the coding tool for implementing
our system. In this section we first give a brief overview of the Java language [6], and then discuss
the coding issues that we encountered during the coding phase with Java.

4.3.1 Java Programming Language: a Brief Overview

Originated as a programming language for consumer electronics in 1990, Java’s main goals were
to be small, reliable, and architecture independent. With the advent of the World Wide Web on
the Internet, Java became ideal for programming on the Internet as its original design goals suited
perfectly for it. At present most of the major software companies have shown interest in Java.

Java syntax looks very similar to C and C++ syntax. At the same time, it has fewer syntactical
constructs, which makes the language easier to learn and simpler and more reliable to code.

Java is an object-oriented programming language. This fact imposes the analysis and design
constraints on the application developers. To use the language most effectively, a developer must
adopt the object-oriented approach at both analysis and design phases of software engineering.

Java is a distributed language, it supports applications on networks at various levels of network
connectivity.

To enforce platform independence of Java, its compiler generates a platform-neutral program
code, also known as byte code. This code is executed by the language interpreter, commonly referred
to as Java Virtual Machine. Thus Java is an interpreted programming language.

Java is designed for writing highly reliable or robust programs due to the following three features:

e it is a strongly typed language, it enforces explicit type casts and method declarations;

e it has a highly reliable memory model, e.g., the programmer does not need to worry about
memory deallocation and memory leaks as well as checking array boundaries;

it has a convenient exception handling mechanism that uses the try/catch/finally construct
and allows the programmer to simplify the task of error handling. ’

A compiled Java program car run on any platform that implements the Java Virtual Machine.
This feature originated from the initial language design and was amplified with the development of
the Internet. Also, this feature has found support in the fact that most software developers want
to create software that runs on any platform. Java provides a package called Abstract Windowing
Toolkit (referred to as java.awt), which allows the programmer to develop application user interfaces
that look native on a platform on which they run.

67

At the same time Java is a portable language, i.e., it explicitly defines each of the primitive
datatypes and thus provides full independence of the particular implementation.

There are a number of other attributes of the Java programming language, such as security,
high-performance, multi-threaded functionality, dynamic extensibility, and others. [6] provides a
good reference that explains each of these language attributes in detail.

4.3.2 Distributed Query Scheduling Utility Software Package in Java

Since Java is an object-oriented language, a software package written in this language is a collection
of class definitions, each of which is a specialization of the system built-in classes. Thus all program
units in a Java program form a class hierarchy that is built cn top of the Java’s own class hierarchy.
A collection of the classes that is designed to perform a certain task is usually combined into 2 Java
package.

The Java implementation of the Distributed Query Scheduling Utilityis such a Java package. It is
named (according to the language naming conventions) ca.ualberta.diom.query and can be accessed
using a Java-enabled browser by pointing at URL
http://ugweb.cs.valberta.ca/“diom/query/EQ. html.

Figure 4-6 shows the class hierarchy of this package in the context of class hierarchies of standard
Java packages. The class hierarchy as well as full software documentation in the form of javadoc
html files is also available at URL
http://www.cs.ualberta.ca/ diom/query/html/tree.html. Some of the main classes in this
diagram directly correspond to the design components covered in Section 4.2, e.g. Router class is
the code implementation of the Router DQP component {see Section 4.2.4), while others, such as
Java class Utils implement a collection of utility methods that are being used throughout the DQS
package. Full source code of the entire package is available on-line at URL
http://www.cs.ualberta.ca/“diom/query/sxrc/.

This software package was developed and tested on Solaris platform using Sun JDK version 1.1.
The byte-code has been tested on the following platforms:

e Windows NT v. 3.51, using Netscape Navigator v. 2.01;

e Sun OS v. 4.1.4, using Netscape Navigator v. 3.0.

4.4 Implementation Remarks

4.4.1 Generality

It is worth mentioning that although in the first version of DQS we only use the sample query in
the Flight-Order application, the complete implementation of DQS package, including the Router,
Decomposer, MvSlctnDwn, MvJoinDwn, and Cost classes, is generic. Namely, it can be applied
to any query in any domain application. As long as the relevant information sources are identified,
and the statistical information about their content and capabilities is available, Distributed Query
Scheduling Utility may be used to generate the distributed query execution plan.

4.4.2 Software Extension and Further Development

Object-oriented model provides the best environment for extension and further development of the
software through mechanisms of class specialization and aggregation. Since DQS software package
uses object-oriented approach in its design and coding, such extensions are made easy. For instance,
to add a new heuristic to the package a developer needs to further specialize the Tree Processor class,
likewise, adding a new type of query operation would involve further specialization of the Drawable
class.

Although the current version of the package solves the initial task to provide evidence of viability
of query processing techniques proposed in Chapter 3, there is still room for improvement and

68

———— - = —————— - - - - -

’ v " hY
Vievalang lava.awi

:

1

1

1

)

:

1

t

]

]

:

]

! el Applet

i P‘"‘lﬁ == . RTRTable
! — w——
E TreeCanvas
:

1

1

,

i ‘ ! WindowH Frame

1

1

+(Runnable p 3o ommoeo -

i N T e .

] ;] Il PN, o

! Hl ~ea

! { Object ! -

: .:_,_" TextComponent TextField | |
] ']

; '

: i

' : 1

) 1 1

| N

) 1

: |

) :]

] N 1

] ' T

.)

| }

[}) [

t)]

t ']

; '

] M 1

3 | T

i '

: 4

1 : 1

' 1

1 T

\ J i)

Abstract
:7 Class
C) mmerie

_— extends
““““ implements

Figure 4-6: Class Hierarchy of Distributed Query Scheduling Utility software: Implementation in
Java.

69

extension. Chapter 5 contains a brief outline of the possible further developments of this software
package.

4.5 User Interface

In this section we present, in detail, the user interface of the DIOM Query Scheduling Utility. The
material of this section is targeted at the users of this software package and may also serve as the
user’s manual.

4.5.1 Query Entry Form Screen

The front-end of DIOM Query Scheduling Utility, the query entry form, is shown in Figure 4-7. It
contains the following user controls:

Application Domain choice box is located at the top of the page. It allows the user to enter the
pre-installed queries into the form without having to type. On selecting any of the choices in
that box the corresponding text fields are filled with the query strings;

TARGET text field is the text field where user can enter the name, the id, or the URL of the
information source(s), to which the query is addressed. This field is optional;

SELECT , FROM, and WHERE text components are where the user types the IQL query. The WHERE
text is optional;

Select Result Processing Strategy checkbox is for use of the query result assembly, and currently is
not implemented;

GROUP BY and ORDER BY text fields allow the user to enter the corresponding IQL clauses;
Install this query checkbox is used if the user wants to install the currently posed query;

Run Query and Trace Query radiobox group allows the user to choose the query execution mode. If
the Trace Query is checked, the execution will stop after the first step, routing, is completed,
and its result is displayed, otherwise, all steps are done consecutively and the result of the last
step is displayed. This checkbox only sets the appropriate flag for query manager but it does
not actually start query processing, which is done by Submit button;

Reset button clears all text components of this form and resets all checkboxes to their default state.

Submit Query button submits the currently displayed query to DIOM and launches a new query
scheduling session. A new query manager window titled Query#, where # is the ID number
of the query defined by the Query Manager. Depending on the state of Trace Query box, the
new query manager window displays the result of one of the steps of query scheduling.

This form supports both mouse-driven and keyboard-driven navigation. The user may navigate
through the GUI elements by pressing the TAB key, which, combined with Shift key, reverses the
navigation, and launch the query manager by pressing the Return key.

4.5.2 Query Manager Screen

The query manager screen consists of the following components located at the bottom of each query
manager window:

Cancel button terminates the current query scheduling process and closes the query manager window
and all of its child windows;

<< Start button is enabled at all steps of query scheduling except the first. It brings the query
manager into the first state and displays the router panel (shown in Figure 4-8;

70

[File Edit View Go Bookmarks Optmns Dlrectnry 'Mndow Help

Gl D] I RIS & R ®
Back |iFwwexi|i Home Reload | ie-34:3 1§ Open Print Find oc23

Location: |'http: / fugweb.cs.ualberta.ca/~diom/quer

fWhat’s New?]{What's Cooi?|: Destinations|{Net Search|;People i Software|

DIOM-SQL Expert Query

Application Domain: order-flight ()
[TARGETY
SELECT:

flight.flght_no, ticket.purc_date, flight.fight_orig, flightflght_dest

FROM:

ticket, fligh{

[WHERE]:

ticket.purc_date < SYSDATE AND
flight.flght_date > SYSDATE AND
ticket.flght_no = flight.flght_no

Select Result Processing Strategy: E£Full Outer Join
[Group Byl:

Y

>

[Order Byl

-

-

B install this query?
®Run Query OTrace Query {Submit Query] i Reset]

Applet ca.ualbertadiom.query. EQFonm runn [

Figure 4-7: Query Entry Form Screen

e o e S

Query Router

o e g wiv i N e M Vet D

§ ¢r00010 | Yahoo HTML | httpy//wwwyahoocom/

§ dro0020 | Harvest HTML | bttp//harvest.cs.colorado.edu/

B dro0030 | lycos HTML | Attp//www.lycos.com/

f| dro0310 Jobs Database HTML | &ttp//ugweb.csualberta.ca/~diom
dro0211 | Jobs Database Oracle | http://ugweb.csualberto.ca/~diom

B dro0000 | Air Canada’s Home Page hitp/fwww.aircanada.ca/home.htm!

Show Router Log

Wery Routing Done “ J
{ Cancel J! <« St] ‘ < Pravisus J{ Next> ” Finish >> J
M

Figure 4-8: Router Screen

< Previous button is enabled at all steps of query scheduling except the first. It brings the query
manager into the previous state and displays the result of the corresponding query scheduling
step;

Next > button is enabled at all steps of query scheduling except the last. It brings the query manager
into the next state and displays the result of the corresponding query scheduling step. The
user modifications done at the current and any of the previous steps of query scheduling take
effect, e.g., if the user excludes one of the automatically selected information sources, and then
presses this button, the decomposition step will exclude the source from the new query tree;

Finish >> button is enabled at all steps of query scheduling except the last. It brings the query
manager into the last state and displays the query execution result. The user modifications
done at the current and any of the previous steps of query scheduling take effect;

The status text field is used to display the important user messages concerning the status of the
query manager and its main components;

The progress display component (to the right of status field), when animated, indicates that the
query manager is in action.

An example of query manager screen containing the router panel is shown in Figure 4-8.

4.5.2.1 Router Panel

The router panel displays the result of the query routing step and is also used for user selection
and deselection of information sources, its sample is shown in Figure 4-8. The main part of the
router panel is the scrollable GUI component with the canvas that displays the visible portion of the
router table. Each line in the table corresponds to one information repository currently registered
with DIOM. The user can select or deselect each source by clicking the mouse in the corresponding
line. The automatically selected sources are highlighted with the reversed foreground color, and the
user-selected sources are highlighted with the reversed brighter color in the same palette.

The other component of this panel is Show Router Log button that brings up a Log View Window
that contains the router log. The GUI of the Log View Window is covered in detail in Section 4.5.3.

72

Query Decomposer
ticketright_no =
flightﬂ{g ht_no

=1
flight.flght_date >
SYSDATE

=
ticket.purc_date <
SYSDATE

drao003.ticket i
/\\
i dr90001.flight dr30003.flight
|<m 73
]Show Decomposer Lgl

[Query Decomposition Done

Figure 4-9: Query Tree Screen displaying decomposition tree for query in Figure 4-7.

[Cancel ” << Start

4.5.2.2 Decomposer and Heuristic Processor Panels

A sample of Decomposer/Heuristic Processor Panels is shown in Figure 4-9. This panel consists of
the following GUI components:

main display area displays the visible portion of the query tree. By resizing the window or manip-
ulating the scrollbars the user may view the entire tree;

Another Heuristic button is present on the Heuristic Processor Panel and is used to display the query
trees corresponding to each of the heuristic processors installed in the package; The name of
the ID number of the current heuristic is displayed in the status text field of the query manager;

Show * Log button brings up a Log View Window that contains the log of the current processor,
where * can be one of Router, Decomposer, Heuristic, or Cost. The GUI of the Log View Window
is covered in detail in Section 4.5.3. A sample log for the Move Joins Heuristic Processor is
shown in Figure 4-12.

If the total height or width of the tree is less than the height or width of the visible area, the user
can use the scrollbars to see the desired are of the tree, or resize the query manager window to see
the entire tree. QOtherwise the tree is centered horizontally and top-adjusted vertically in the display

area.

Figure 4-9 on page 73 displays the lower part of the resulting query tree from query decomposition.
Figure 4-10 on page 74 displays the lower part of the result tree at heuristic-driven query optimization
phase by applying heuristic Move Selections Down.

4.5.2.3 Cost Processor Panel

The Cost Processor Panel is shown in Figure 4-11 on page 74. This panel consists of the following
GUI components:

main display area displays the visible portion of the cost query tree (see section 4.2.3) where each
rode is highlighted with a site-specific color. Mouse click in the highlighted area of a node
brings up a Log View Window that contains the site and cost-related information about this
node and the detailed statistical information of the objects at this node and their attributes;

3

s i o SR

Heuristic Optimizer

|1
flig htfllg ht_no

B
ticket.flght_no=
flight.fllght_no

B
ticket.pur¢c_date < ,/)\
SYS?ATE B B
flightflght_date > flight.flght_date >
dr30003.ticket SYSDATE SYSDATE
dr30001.flight dr80003.flight

lAnother Heurlsticlishow Heuristic ng]

) ' Heurlistic 0 Move Selections Down

[Cancal ” << Start " < Previous ” Next> Jl Finish >>

Figure 4-10: Query Tree Screen displaying the result of applying Move Selections Down heuristic to
the decomposition tree showr in Figure 4-9.

Figure 4-11: Cost Processor Panel Screen

of Heuristic

f| Move Selections Down Log Information
i Creating a copy of the query tree
§|Searching for Sigma Nodes
Found Sigma Nodes
ticket.flght_no = flight.flght_no
flightflght_date > SYSDATE
3 ticket.purc_date < SYSDATE
HiStarting to move each of the found Sigma Nodes
: Moving node ticket.purc_date < SYSDATE
Trying to move below foin
This is a value selection condition
Moving to left subbranch of Join
Trying to move below Scan dr30003.ticket
Not moving below Scan dr30003.ticket
Moving node flight.flght_date > SYSDATE
Trying to move below Join
This is a value selection condition
Moving to right subbranch of Join
Trying to move below Union
Duplicating and moving below Union
Trying to move below Scan drao001.flight
Not moving below Scan dr30001.flight
Trying to move below Scan dr80003.flight
Not moving below Scan dr90003.flight
Moving node ticket.flght_no = flight.flght_no
Trying to move below Join
This is a join condition
Not moving below Join
§i Heuristic complete

| -«

Jd

Log Level

=N [

Close

Figure 4-12: Log View Window Screen

Show Log button button brings up a Log View Window that contains the log of the cost processor;

Source Stats button, Unit Local Costs button, Unit Communication Costs button, and Cost Weights
button each bring up a Parameter Edit Window filled with statistical parameters, unit local
cost parameters, unit communication cost parameters, and cost weights parameters respec-
tively. If the user updates the parameters and reruns the Cost Processor, then the new query
tree will reflect the update. The GUI components of the Log View Window and the Parameter
Edit Window are covered in detail in Section 4.5.3. An example of the Parameter Edit Window
with unit local cost parameters is shown in Figure 4-13.

4.5.3 Common GUI Components
4.5.3.1 Log View Window

An example of Log View Window is shown in Figure 4-12 on page 75. It displays the log of Move
Selections Heuristic Processor The log shown in Figure 4-12 illustrates how the first heuristic Move
Selections Down is applied to the query tree shown in Figure 4-9 on page 73. It results in the query
tree shown in Figure 4-10 on page T4.

-1
[+1)

e e S

ID Scan Cost l Union Cost “ Join Cost

Idraoo00 i0.01 | i0.01
idr80001 10.01 ! .01 | 0.01

[dra0002 .01 0.01 {l0.01
1dr30003 10.01 0.0 il10.01

Figure 4-13: Parameter Edit Window Screen with Unit Local Cost parameters.

Scan Cost I Unlion Cost !' jaln Cost

[drs0000 l i0.01 10 01 ro 01

idr90001 "10.01 H .01 i0.01

90002 {[o.01 J 0.01 0.01
{90003 {fio.01 0.01

Figure 4-14: Parameter Edit Window Screen displaying Unit Local Cost parameters after user up-
date.

The main component of this window is the scrollable text area that displays the multi-line log
information. In the bottom of the window is the control panel that contains the following buttons:

e + and — buttons allow to change the level of log detail. Figure 4-10 shows the full log, with
maximum log level. The user can change the appearance of the log by pressing on one of these
buttons;

o Close button disposes of this window and frees the system resources.

4.5.3.2 Parameter Edit Window

Figures 4-13 through 4-15 show examples of Cost Parameter Edit Window. The main area of this
window is a collection of text fields where the user may modify the cost parameters, e.g. Figure 4-14
shows how the parameter window looks after the user updates one of the Unit Local Cost parameters.
See the change of unit local processing cost at dr90003 from 0.01 to 1.0. Similar change operation
may apply to statistical information shown in Figure 4-15 on page 77. Each cost parameter edit
window also contains an Update button that copies the parameters from the window to the current
query manager. The query manager will automatically incorporate the updated parameters into the
cost processor component if the user repeats the query cost evaluation step.

[] Class Cardinallty j| Component }| Type Cardinality || width Minlmum Maximum
10rs0001 iflight 200 xarr_no int o B 055 K03
1drs0001 iflight 200 Ficht_date date o W 01-JAN=~1397 ||131-DEC-193]
1drg0001 flight 200 fight_dest i Bo 20 1 i
1drs0001 iflight 200 Hlght_no iint oo B 1001 200
idrs0001 iflight 200 Fight_orlg i k0 20 i 1
1dr80003 Ticket 1000 ust_no iint 750 B 022 890
1drs0003 fticket 1000 Hfigth_no iint fto0 B 085 1222
14rS0003 ticket 11000 pure_date date jio 116 01-1aN=-1997 {li16-APR-189;
14r90003 fticket 1000 Zckt_no iint Jro00 B 0001 11000
1dre0003 Kustomer 100 Xust_no fint hoo B 001 1100
18re0003 Kustomer 100 Xust_name i =8 20 1

Figure 4-15: Parameter Edit Window Screen displaying Source Statistics parameters.

4.6 Query Processing Demonstration Experiments

This section provides two case examples that show the DIOM Query Scheduling Utility in action.
The first example shows how the ove Jzins Heuristic Processor decides to apply the heuristic
based on the changed query tree, ard the second example shows how the Cost Processor assigns the
query operators to different sites based on the changed statistical and cost parameters.

4.6.1 Demonstration of Heuristic Processors

Consider the running example query in the Flight-Ticket-Order Domain (see Figure 4-7 on page 71).
The router selects three information sources as relevant to this query (see Figure 4-8). The decom-
poser step results in 2 query decomposition tree with four scan nodes, two of which are done at site
dr90003 (Figure 4-16).

The Move Joins Heuristic Processor takes this tree as an input and decides not to move the join
down. This decision was based on the Heuristic 3.4 given on page 20. The Move Joins Heuristic
Processor provides the user with the log information shown in Figure 4-17, which explains how this
decision was made.

The Move Joins Heuristic Processor locates all the scan nodes present in the tree and identifies
the information source associated with each of the scan nodes. For each information source, it counts
the number of scan nodes that are assigned to it. If fewer than half of all scans are done at the same
source, it will decide not to move the join nodes, thus leaving the tree unchanged.

Now, let us try to see if this heuristic will work on a slightly modified tree. Return to the router
panel, deselect source dr90002 by clicking the pointing device on its line in the router table, and run
the heuristic processors again by using Next button. Note that the decomposition tree has changed
and now the decomposition tree does not include the scan node at dr90002 site (see Figure 4-9 on
page 73). The Move Joins Heuristic Processor has now produced a query tree with the join operators
moved below the union (see Figure 4-18 on page 79). The new log of this processor is shown in
Figure 4-19 on page 79.

4.6.2 Demonstration of Cost Processor

Execute the Cost Processor step for the modified query tree in the last example (see Figure 4-18 on
page 79). Note that the scheduler assigns all three binary operators, i.e., two joins and one union in

-1
-1

Query Decomposer

flight.flght_date >
SYSDATE

E
ticketpurc_date <
SYSDATE
dr90003.tickst U

M
1] dr30003.flight
/\
dr30001.flight dr30002.flight

lshow Decomposer ng]

I Query Decomposition Done 1D

I [einse>> |3

Figure 4-16: Query Decomposition Tree for query shown in Figure 4-7, which corresponds to the
Router results shown in Figure 4-8.

Cancel Jf << Start < Previous

Move Joins Down Log Information
§| Checking the conditions for Heuristic
: Checking all S¢an nodes

Source dr30003 is used in 2 Scans
Source dr30001 is used in 1 Scans
Source dr30002 is used in 1 Scans
The number of scans is 4
The number of sources is 3
Fewer than half of all Scans are done at the same source
§{Decided not to move joins down
No changes to the tree

Log Level

=1

Close

Figure 4-17: Screen showing the log information of Move Joins Down heuristic processor when it
decided not to move the join down.

Heuristic Optimizer

{1
flightfllght_no

ticketfl?tho = ticketfl ?tho =
flight.flgtho flightflgtho

ticketpurc_date < flightflght_date > ticketpurc_date < flightfight_date >
SYSDATE SYSDATE SYSDATE SYSDATE

dr80003.ticket dr80001.flight dr80003.tickst dr80003.flight !
1d

Ianother HeurlstchlShow Heuristic Lg]

' Heuristic 1 Move Joins Down " |

]

Figure 4-18: Screen showing the result of applying Move Joins Down heuristic corresponding to
decomposition tree shown in Figure 4-9.

Cancel

<< Start < Previous ” Next > " Finish >>

(I EECHE

| Move Joins Down Log Information
f|Checking the conditions for Heuristic

Checking all Scan nodes
Source dr90003 is used in 2 Scans
Source dr90001 s used in 1 Scans
The number of scans is 3
: The number of sources Is 2
Decided to move joins down
Found 1 Join Nodes
Trying to move each of the found Join Nodes
Trying to move Join Group ticket.flght_no = flight fight_no—Jjoin
Exchanging tickat.purc_date < SYSDATE and Union
Moving below Union
Duplicating Join
Duplicating subtree ticket.purc_date < SYSDATE
Duplicating ticket.fight_no = flightfight_no
Attaching links in left subtree
Attaching links in right subtree
exchanging flight.flaht_date > SYSDATE and ticketpurc_date < SYSDATE
No more Union nodes below, not moving
Exchanging flightfight_date > SYSDATE and ticket.purc_date < SYSDATE
No more Union nodes below, not moving
Heuristic complete a

1d

Log Level

==

Figure 4-19: Screen showing the log information of Move Joins Down heuristic processor when it
decided to move the join down.

Union Union

Total Cost = 197559 Total Cost = 389015
Local Processing Cost = 95116.6 Local Processing Cost = 95116.6
Communication Cost = 27840 Communication.Cost = 163712
Response Time Cost = 74602.2 Response Time Cost = 130186
Operator Assigned to Site dr90003 Operator Assigned to Site client
Total Extent Size = 40144 Total Extent Size = 40144
Number of Aggregate Components = 8 Number of Aggregate Components = 8
(a) before updating the unit local cost (b) after updating the unit local cost

Figure 4-20: Comparison of cost information for the Union node.

Figure 4-11 on page 74, to site dr30003, which is expected because most of the relevant information
for this query is found at that site. Consider the log information of the query node containing the
Union. To open the log view window click on the union node.

Now, consider modifying the unit local processing cost at that site. Open the Unit Local Costs
window by pressing the button in the Cost Processor Panel, in column Union Cost of site dr90003,
modify the text field so that it contains 1 (as shown in Figure 4-14). Re-run the Cost Optimizer by
pressing Previous and Next buttons on the query manager window. Note that the site and the cost
of the node containing the Union have changed (note highlighting color used for this node). Again,
open the log of this node and compare it with the old log. The two logs are shown in Figure 4-20
on page 80. Note that not only the site but the cost components of this node has changed. The
communication cost is six times higher.

Although the change was only made to the unit local processing cost of site dr90003, the overall
local cost has not been changed because the union is now scheduled at the client site. The scheduler
has decided to assign the union to the client site and thus compensate for the 100-time increase in
the local processing costs of the union at site dr90003. As a result, the total cost has almost doubled.

80

o - e

Chapter 5

Related Work and Conclusion

This Chapter contains a section that outlines some of the related work that is most representative in
the area of distributed query processing and optimization, and a summary of the work done in the
present thesis, it also outlines the contributions of this thesis, and comments on its possible future
developments and improvements.

5.1 Overview of Related Work

Most theoretical research of the present thesis is based on the results obtained in [18, 1, 5]. In this
section we provide a brief summary of the main ideas proposed in each of these papers.

5.1.1 Query Optimization in System R

The paper describes query optimization techniques used in System R, a centralized experimental
database management system based on the relational model [18].

Query processing in this system consists of four phases: parsing, optimization, code generation,
and execution. The main focus of the paper is on the optimization phase.

The optimizer in System R performs global query optimization by evaluating the cost of each
possible query execution plan and selecting the plan with the minimum cost. Statistical information,
such as estimated relation cardinality, and index cardinality, along with the selectivity factors for
each of the relational operators, are used to evaluate the cost of each query execution plan.

Two techniques are used for executing the join operator: method of nested loops, and method of
merging scans. The optimizer presented in the paper selects the most beneficial of the two methods
to execute each of the joins in the query being processed. For queries with multiple join operators
the optimizer also chooses the optimal join order that results in the minimum execution cost.

To reduce the number of join order permutations the authors propose to use a heuristic by which
the joins between relations that do not have a common join column, i.e., the ones requiring Cartesian
product, are performed as late in the join sequence as possible [18]. To find the optimal join order
among the remaining join permutations the following search is performed:

1. the optimizer finds the best way to access each single relation found in the FROM clause of the
query;

2. the optimizer finds the best way to join any of the remaining relations to any of the relations
optimized at step 1, thus forming the optimized sequences of two relations;

3. the optimizer finds the best way to join any of the remaining relations to any of the two-relation
sequences obtained at step 2, thus forming the optimized sequences of three relations, etc;

4. when all relations are included in the optimized sequence, the optimizer chooses the sequence
with the minimum cost.

81

The cost of joins is estimated based on the selectivity factors and the available statistical infor-
mation about the arguments of the join operators.
The contributions of the query optimizer are the following [18]:

e extensive use of statistical information in estimating the cost of the query execution plan;
o global query optimization, which is achieved by exhaustive search of all possible join orders;

o inclusion of ORDER BY and GROUP BY clauses into the process of optimization, which results
in avoiding the need to sort the intermediate query results;

o use of heuristics that allow to prune the search of the optimal query plan;

As authors point out, their optimizer makes the query performance of the database systems that
support non-procedural query languages comparable to the query performance of DBMS that are
based on procedural query languages.

Unlike DIOM, which is a distributed system, the work presented in this paper is targeted at a
centralized database management system. This fundamental difference does not allow us to employ
most of the query optimization techniques described in this paper [16]. However, this paper has
proven to be a valuable source for our work in the present thesis in the following aspects:

e In our Distributed Query Scheduling prototype we propose to use the same statistical model
for evaluating the cardinalities of intermediate query results as the model used in this paper;

o We utilize the global approach to the optimization problem, i.e., we consider all possible site
assignments to select the optimal query execution plan. However, we have not applied this
technique for join ordering problem. We anticipate that the application of our heuristic-based
query processor will reduce the complexity introduced by the presence of inter-site joins;

e We use the heuristic-based approach to reduce the solution space of the optimization prob-
lem prior to evaluating the cost of each of the query plans, which significantly reduces the
complexity of the problem.

5.1.2 Query Processing in SDD-1

The main objective of [1] is to describe a technique called semijoin and the application of this
technique to distributed query optimization in the distributed version of System R SDD-1. Semijoin
is an operation that allows to reduce the quantity of inter-site data transfer needed to execute an
inter-site join operation.

The algorithm proposed in this paper consists of three main steps [1]:

1. mapping the user query into relational calculus form (referred to as envelope);

2. evaluating the envelope. Evaluation is accomplished by translating the relational calculus
query into a program that contains relational operations (referred to as reducers) and the
move commands that move the results of reducers. The goal of this step is to construct such a
program that the cost of computing reducer and moving its results to the site where the result
is assembled is minimum over all reducers and sites;

3. executing the user query at the result assembly site using the data assembled by step 2.

The paper is focused on the optimization problem posed by step 2 of the query processing algorithm:.

The paper defines the notions of envelope and reducer in terms of relational algebra. Also, it
defines the benefit of a reducer as the amount of data it eliminates, and the cost of a reducer as the
amount of inter-site data transfer required to compute this reducer.

Relational selection and projection operators are one type of reducers, they have nonnegative
benefit and zero communication cost (because they do not require any inter-site data transfer).
Relational join operator is another type of reducer, its cost-to-benefit ratio may vary depending on
the size of its arguments and on the size of its result.

82

The authors propose to use operator called semijoin instead of join to achieve the same data
reduction. The cost of semijoin is lower than the cost of join. Although the benefit of a semijoin
may be lower than the benefit of join, the combination of two symmetrical semijoins results in the
same benefit as join. See [1] for full definition of the semijoin operator.

The authors propose a method to estimate the cost and the benefit of reducers. They first
introduce 2 statistical model of the database, then they provide an algorithm that evaluates the
selectivity of relational selection operator and the selectivity of the semijoin operator. The selectivity
allows to estimate the cardinality of the result of the operator based on the cardinalities of its
operands.

The authors present the optimization algorithm for performing step 2 of query processing. This
algorithm performs an iterative hill-climbing procedure that at each iteration selects the most prof-
itable semijoin and appends it to the resulting query execution program until all profitable semijoins
have been exhausted [1]. As the authors concede, the proposed algorithm is an example of a greedy
optimization algorithm. Such algorithm breaks down the complex optimization problem into simple
subproblems and then solves each of these subproblems separately. The advantage of this approach
is that the complexity is reduced significantly, while the disadvantage is that the solution found
by such algorithm is not guaranteed to be optimal. There are two enhancements to this algorithm
proposed in the paper, which we will not discuss here as they do not change the nature of the
optimization approach taken by the authors. For details, see [1].

The Distributed Query Scheduling prototype that we propose uses many of the ideas presented in
this paper. For instance, we propose to employ the same statistical model and the cost estimation
techniques for generating the optimal query execution plan.

However, there are a number of fundamental differences between SDD-1 and the DIOM system
that prevent us from using the semijoin technique:

o SDD-1is a classical distributed database management system, therefore it does not address the
heterogeneity issue, which affects query processing significantly, e.g., there may be constraints
imposed by the information sources that limit the optimizer’s ability to assign certain query
operators to it, therefore the optimization algorithm presented in the paper does not suit the
requirements of DIOM query processing;

o the main assumption of the authors is that the communication cost is the dominant factor in
the total cost of query evaluation. At the time the paper was written this assumption was
legitimate as the performance bottleneck of the distributed database systems was the network
connection. In our prototype of DQS we propose to use a more flexible cost model that takes
into account not only the communication cost but also the local processing cost and response
time parameters.

5.1.3 Query Processing in a Multidatabase System

This paper was written to summarize the query processing techniques used in the Multibase sys-
tem [5]. Multibase is a system that integrates a collection of distributed databases that are het-
erogeneous and possibly inconsistent with one another. It keeps a global schema that facilitates a
uniform access to these databases.

The global query posed in such multidatabase system is processed in four steps:

1. query modification, in which the global query is modified into a query over local schemas;

2. global query optimization, in which a global execution plan is constructed. The plan consists
of a set of local queries, a set of move instructions, and a set of post-processing instructions;

3. local query optimization;
4. translation of the local query plans into the language of the local schemas for execution.
The global query optimization step is the main focus of the paper. The following tactics are used

in global query optimization:

83

e moving selections and projections below inter-site joins and unions, if possible;

o performing the semiouterjoin operation — unlike semijoin, this operation addresses the issue
of possible inconsistency among the local databases. Although semiouterjoin does not have
an immediate gain in the cost of query execution, it facilitates the subsequent distribution of
relational selections and joins;

distributing inter-site join operations to the local databases, if it is possible and beneficial;

e using semijoins if the corresponding joins are distributed and if it is beneficial.

The paper describes the cost estimation model used to determine the benefit of the considered
query optimization decisions. Based on the assumption of equal unit costs throughout the distributed
database, it states that the cost of a query operation is defined by the size of its operands. The
information about the size of the intermediate results can then be statistically estimated and used
for subsequent query operators.

The paper also provides a summary of the available heuristic-based optimization techniques,
such as applying semijoins “greedily”, as done in [1], or enumerating all possible join orders, as done
in [18]. As the middle ground, between these two heuristics, the paper proposes to use a “parameiric
hill climbing” heuristic that examines join sequences of length k at a time, where k is the heuristic
parameter.

Another issue the paper addresses is the effect of aggregation functions on the distributed query
processing. Due to the fact that the data can be inconsistent across local databases, relational
selections and projections on a distributed relation may not always be performed before the relation
is materialized at the central site. The authors present a detailed analysis of such cases (see [5] for
details on this issue).

The main architectural difference between the system presented in [5] and DIOM is that DIOM
uses query mediator-wrapper approach to solve the problem of heterogeneity of the information
producers [14], while the multidatabase model of [5] uses the global schema that logically integrates
the local databases through the global view mechanism. Due to this difference query processing in
DIOM is a more complex problem than in the multidatabase model described in [5]. For instance,
such optimizing techniques as semijoins and semiouterjoins can not be used directly. Moreover,
the aggregation query functions pose an even greater problem in DIOM environment than in the
multidatabase environment.

Our version of Distributed Query Scheduling prototype does not address these issues, leaving
them for future development. At the same time our prototype does employ such techniques as query
cost estimation and moving the joins down, presented in [5]. Unlike the system described in [5],
DQS prototype uses the global optimization criteria for evaluating the cost of a distributed query
(see Chapter 3), which allows to profile the user’s preferences. We also use the site-specific unit cost
information, which allows to calibrate each of the information sources registered with DIOM.

5.2 Summary and Contribution of The Thesis

The present thesis documents the theoretical research and practical implementation of the Dis-
tributed Query Scheduling (DQS) prototype for Distributed Interoperable Object Model. Our work
on this topic started from research of the related work in the area of distributed query processing and
optimization, namely [1, 5, 18]. Based on the analysis of the task of distributed query scheduling in
DIOM environment and the previous work in DIOM [14, 12, 10] we have accomplished the following:

o identified the necessary components of the distributed query scheduling prototype,
the heuristic-based query processing component, and the cost-based query processing compo-
nent;

o adapted the the heuristic-based optimization techniques of [5] to the heterogeneous environ-
ment of DIOM and proposed a number of modified approaches to heuristic-based query opti-
mization;

84

October
November

Figure 5-1: Time and Resources Used in The Project.

e unified the techniques for evaluating the statistical information from [1, 18} and generalized
them for the prototype of cost-based component of DQS;

To provide evidence of viability of the proposed techniques we have carried out a task of imple-
menting these techniques in the form of a Distributed Query Scheduling software that demonstrates
the intrinsics of the proposed techniques. To accomplish this task we have

o performed a detailed requirements analysis of the DQS software and adopted the object-
oriented model for the subsequent software development phases;

o designed the main components of the DQS software package using object-oriented approach;

o implemented an experimental version of the software package using Java programming lan-
guage;
o tested and debugged the software and delivered the first prototype of the D@S software package

that includes the on-line query processing utility, the on-line developer’s documentation, and
the user’s documentation.

5.2.1 Project Statistics

This project commenced in May, 1996 and was completed in April 1997. Figure 5-1 shows the
breakdown of time and resources we used. The code design, implementation and testing of the DQS
software package started in November, 1996 and finished in March, 1997. The resulting software
package has approximately 4300 lines of code and 2000 lines of documentation.

5.3 Comments on Future Improvement

The work done in the present thesis is a prototype for distributed query scheduling process in DIOM.
Being a prototype, it does not solve all the problems of distributed query processing and will require
much more work and research to make it a production software. Below we outline possible future
development of this work:

v e <t et T

e design and implementation of all heuristics described in Chapter 3 in the DQS software package,
e.g., the heuristic of moving projections down and the heuristic of ordering the joins in the
query tree;

e incorporation of group by and order by IQL clauses into the query scheduling algorithm and
research of their effect on the optimization problem;

o implementation improvementsto the cost-based query processor to use a variety of the available
statistical parameters, e.g., implementation of statistical parameters for string datatype as
described in Chapter 3;

o design and implementation of additional query operators, such as aggregate operators (such
as SUM, AVERAGE), and analysis of their effect on query processing;

e incorporation of a richer functionality front-end component of the software, e.g., the option to
install the query to DIOM server;

o incorporation of the complete query routing and the query result assembly modules into the
package;
e support of continual queries [15] as a possible option for distributed query scheduling;

o adaptation of JDBC technology to facilitate more efficient data access between the client and
the DIOM server.

Besides the issues specific to the Distributed Query Scheduling software, the DIOM team currently
works on a number of other issues that are beyond the scope of this thesis but still are relevant to the
problem of query processing [14, 12, e.g., the semi-automatic generation of wrappers to www-html
servers, relational database systems, OODB systems, and ASCII file systems (bibtex files).

86

[———E)

Bibliography

[1] P. A. Beranstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr., “Query Processing
in a System for Distributed Databases (SDD-1),” ACM Transactions on Database Systems, Vol.
6, No. 4, December 1981, pp. 602-626.

[2] M. Betz. “Interoperable Objects: Laying The Foundation for Distributed Object Computing,”
Dr. Dobb’s Journal: Software Tools for Professional Programmer, (220), October 1994.

[3] R. Cattell et. al., The Object Database Standard: ODMG-93 (Release 1.1) Morgan Kaufmann,
1994.

[4] Wesley W. Chu, and Paul Hurley, “Optimal Query Processing for Distributed Database Sys-
tems,” IEEE Transactions on Computers, Vol. ¢-31, No. 9, September 1982, pp. 835-850.

[5] Umeshwar Dayal, “Query Processing in a Multidatabase System,” Query Processing: Database
Systems, eds. Kim, et al., Springer Verlag, New York, Vol. 1, pp. 81-108, 1985.

[6] David Flanagan, Java in a Nutshell, O’Reilly & Associates, Inc., First Edition, February 1996.

[7] O. R. B. T. Force., “The Common Object Request Broker: Architecture and Specification,”
Object Management Group, 1993.

[8] R. Hull and R. King, “Reference Architecture for The Intelligent Integration of Information
(version 1.0.1),” http://isse.gmu.edu/I3-Arch/index.html, May 1995.

[9] Henry F. Korth and Abraham Silberschatz, Database System Concepts; McGraw-Hill, Inc.,
Second Edition 1991.

[10] Yoo-Shin Lee, “Prototyping the DIOM Interoperalc;le System (TR96-32),” Department of Com-
puting Science, University of Alberta, July 1996.

[11] Ling Liu, “A recursive object algebra based on aggregation abstraction for manipulating com-
plex objects,” Data & Knouwledge Engineering, No. 11, 1993.

[12] Ling Liu and Calton Pu, “An Adaptive Object-Oriented Approach to Integration and Access
of Heterogeneous Information Sources,” To appear in Distributed and Parallel Databases: An
International Journal Volume 5, No. 2, 1997.

[13] Ling Liu and Calton Pu, “The Distributed Interoperable Object Model and its Application to
Large-Scale Interoperable Database Systems,” In ACM International Conference on Informa-
tion and Knowledge Management (CIKM’95), Baltimore, Maryland, USA, November 1995.

[14] Ling Liu, Calton Pu, Yooshin Lee, “Adaptive Approach to Query Mediation across Heteroge-
neous Information Sources,” In International Conference on Cooperative Information Systems
(CooplS), Brussels, Belgium, June 13-19, 1996.

ils] L. Liu, C. Pu, R. Barga, and T. Zhou, “Differential Evaluation of Continual Queries,” In

IEEE Proceedings of the 16'* International Conference on Distributed Computing Systems,
Hong Kong, May, 1996.

[16] M?.ﬂil‘axéler Ozsu and Patrick Valduriez, Principles of Distributed Database Systems, Prentice
Hall, 1991.

[17] Roger S. Pressman, Software Engineering, A Practitioner’s Approach, McGraw-Hill, Third
International Edition, 1992.

87

[18] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, T. G. Price, “Access Path
Selection in a Relational Database Management System,” Proceedings of ACM-SIGMOD, pp.
82-93, 1979.

[19] A. Sheth and J. Larson. “Federated database systems for managing distributed, heterogeneous,
and autonomous databases,” ACM Computing Surveys., Vol. 22, No.3, pp. 183-236, 1990.

[20] Jeffrey D. Ullman, Principles of Database Systems, Computer Science Press, Second Edition
1982. .

[21] G. Wiederhold, Intelligent Information Integration Glossary, Draft 7, March 16, 1995.

[22] Yao, S.B., “Approximating block accesses in database organizations,” Communications of The
ACM, Vol. 20, 4 (April), pp. 260-261, 1977.

88

Appendix A

DQS Code Implementation

The code excerpts contained in the draft have been removed because the complete code is available
on-line at URL http://www.cs.ualberta.ca/ diom/query/src/.

89

