Thegenomicimprovement ofmeatquality traits inpigs

by

Kristin Lee

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Animal Science

Department of Agricultural, Food and Nitittnal Science
University of Alberta

© Kristin Lee 2020



Abstract

Meat and carcagpuality traits are of increasing interest to the swine industry due to their
influence on customer purchasing and repurchasing decisiomgver, meat gglity traits must

be measured pestortem, meaning that these traits cannot be measured on the potential
breeding candidates themselves, instead they must be measured on their siblings. For this reason,
selection of meat quality traits using traditionallestion methods is difficult, expensive, and

lowly accurate, which is preventing the practical use of many of these traits in breeding programs
today.Alternatively, genomic selection (GS) can be implemented for the improvement of meat
quality traits. Usig GS, breeding values are estimated using genomic relationships or genomic
effects,providinga higher selection accuraand anncreased rate of genetic ga@iompared to
traditional selection methods. Therefd&S provides a significant opportunity bmprove and

predict meatind carcasquality. Themaingoal of this thesis wa® improve our current
understanding of the genetiad biologicafactors underlying meat and carcass quality ttaits

aid in the implementation of GS metlsoth part 1 of his thesis, variance component estimates
were used to calculate genetic parameters for meat quality traits in pigs. These results could be
usedto directlyincorporate meat quality traits into selection procedures, including both
traditional or GS methodSecondly, the biological factors underlying meat quality traits were
explored.In part 2, a genome wide association study (GWAS) was used to identify quantitative
trait loci (QTL) and genes associated with drip loss (DL). Following this, in part 3,le-SNg
association analysis was used to determine the gtietto potential causative mutations on

meat colour phenotype§hese two analyses were intended to contribute to an improved
understanding of the genes and mutations underlying meat quatgywraich wouldnot only

improve the biological knowledge for meat quality traits, but Esditate the future



implementation of alternative methods of GS that incorporate biological knowkeldgeotpes
were collected from either a purebred Duroe @97), or commercial crossbred pig population
(Duroc X Landrace/Large White,= 1098)Meat quality traits included various colour
measurements (Minolta Lg*, andb*) from multiple muscle types, includirtbelongissimus
thoracis et lumborunfloin; LOINL, LOINA, and LOINB),loin fat (LOINFATL, LOINFATA,
LOINFATB), hamgluteus mediuéGLUTL, GLUTA, GLUTB), hamquadriceps femoris
(QUADL, QUADA, QUADB), and haniliopsoas(ILIOL, ILIOA, ILIOB), as well as drip loss
(DL), and ultimate pHFurther, arcass tuits included muscle depth (MD), fat depth (FDn

eye area (LEA), and intramuscular fat (NSIF IMIR)part 1 of this thesis, meat colour traits
showed heritabilities ranging between low to modef@i@6t0.05 for QUADBto 0.44t0.09 for
LOINA) and renaining meat qualitytraits showedmoderateheritabilities including DL
(0.23+0.08 andpH (0.28t0.08. All carcass quality trai@wnalyzechad moderate heritabilities,
including MD (0.33+0.08)FD (0.39+0.08), LEA (0.39+0.09), and NSIF 1M6.43+0.09)
Moderate to high genetic correlations were observed bettheesameolourmeasurements
from different muscle types (ranging between 0.50 to 0.96) and different colour measurements
from the samenuscle types (ranging between 0.56 @2). Colour measurememnalso showed
moderate tdigh geneticcorrelations with pH (ranging betweeh54 to-0.80) andDL (ranging
between 0.38 to 0.69)he emaining meat quality traits showadiigh negative correlation,
betwe=n DL and pH-0.65+0.16) Carcass quality traits showed moderate to high correlations,
including LEA and MD (0.94£0.04), arfeD and NSIF IMK0.36+0.15). In additionyery few
unfavorable correlations were observed between the andatarcasgquality trats. Overall,

these results show that meat and carcass quality traits can be improved by genetic,delection

produce a high quality and lean pork produrtthe remaining studies of this thesis, parts 2 and



3, the biological factoranderlying meat quality traits were explored. Howevethlstudies
proved underpowered in their ability to identify genes and causative mutttairvgere
significantlyassociated with meguality traits Nonetheless, the results from these studies

provide abasisuponwhich future work catbuilt.



Preface

This thesis ighe original workof Kristin Lee.No part of this thesis has been previously
publishedThisthesis is a paxf a larger research projeétdentifying functional gene variants
and nam-additive effects to enhance the power of genomic selection of purebred pigs for
crossbred performaneeNSERC CRDPJ 4855261/06/2016. This projetiasreceived research
ethics approvairom the University of Alberta Animal Care and Use Committ&ae aimals
used in this studwerepart of a commercial herd and raigetlowing the Canadian Quality
Assurance program and the Canadian Council on Animal Care (CCAC) guid&lmssroject
wasconsidered as Category which involved tissues collected fratime abattoirwith little to

no experimental manipulation
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Chapter 1. Literature review

1.1.Introduction

Demand for animal protein is expected to doubl2®y0 due to increasing population size,
urbanization, and incom@&AO, 2019) However, this growth will be challenged blyanging
consumer attitudes and competition from plaased and other alternative protein sources. Many
countries, including Canada, the United States, China, aedad&uropean countriesyggest
eatingmoreplant proteins in their national food guid@ark provides a lean and nutritious

source of animal protein, but due to the increasing competition from alternative protein sources,
such as planAbased productpork producerspackers, and processaval all have to focus on
meeting a high level of consumer expectation on appeagemtceating qualityBy providing a
product to consumers that is both nutritious and consistently satisfies their quality pesferenc
consumers will be more willing to purchase and repurchasegsdiieir source of protein the
future.However the preference faifferent meat qualitgharacteristicg¢colour,leanness,
intramuscular fat content, drless andflavor) can vary wilely, especiallyacrossnternational
marketg(Dransfield et al., 2005; Ngapat al, 2007) Exportsmake up % of Canadian pork
production,muchof which represent highalue markets (Japan and ChifgC, 2017)andin

order to stay competitive in the future mewrket Canadan pork producersiust be able to

satisfy a wide variety of consumpreferenced-or this reason, the swine industry has begun to

focus on breeding and genetics as the means to improve and predict meat quality.

Traditioral genetic selection methods are largely responsible for the highly efficient livestock

present todayhowever selection decisions for meat quality traiésy mainly on postmortem



phenotypic measuremer(expressed late in lifejvhich cannot be measured on breeding
candidates and must be measured on tkkitives This makes current selection metkod
difficult, andexpensivdor theimprovement omeat quality traitswhich is preventinghe
practicaluseof these traitsn breeding program®day. Genomic selection (GShethodologies
allow for the selection oanimalsbasedn genomicrelationshipor genomic effectsvhich
meansanimals can be selected earlier in life and with higher accunaityut first requiring
thar phenotype to be measured on the breeding or selection candidetefore, GS provides a

substantial opportunity for the gereetinprovement of meat quality traits.

1.2.The conversion of muscle to meat

Meat quality can refer to many aspects of the final pork prothattidingthe wholesomeness,
appearance, nutritional quality, and eating experience. When considering consumesipgrch
intent pork colour, firmness, and watiesss @rip loss exudation), are important indicators of
meat qualityBuege & Griffin, 2015)In general, dsirable pork iseferred toas red, firm, and
non-exudative (RFN) meat, which isdor bright pinkin colour, firm in texture, and free of
excess watet arge variation from this quality standaxill result in an undesirabjgork

produd referred to asl) pale, soft, and exudagPSE)or 2) dark, firm, and dry (DFD)PSE
meat is abnormally pale in colour, soft in texture, @it contain excessive water accumulation
on the surface of the meat andhe product packawgg. Alternatively, DFDporkis dark in
colour,firm in apperance, and the surface of the pappeas dry. Dark meais interpreted by
consumerssbeingfrom old animals, or lackinffeshnesgViljoen et al., 2002)and isalso
prone to spoilagajue to its high pHoveralltranslaing to product and economic losses for the

retaler (Newton & Gill, 1981)



After exsanguination, physical and chemical changelse musclavill take place over time,
which causethe conversion of muscle into mektis the rate and extent that these puosttem
changes take place that will influence the meat quality of the final pr¢REdt, PSE, or DFD)
After exsanguinatiorthe circulatory system can no longer function to transport oxygen and
nutrients to the musclar remove waste products from the museéler. this reasompxygen in the
muscle willdiminish, resulting in a shift in metabolisfmrom aerobic to anaerob{&luff-
Lonergan & Page, 2006Anaerobic glycolysis breaks down glucose ilaictic acidto generate
ATP for cellular activities. Sinceactic acidcannot be removed from the muscle by the
circulatory systemit will build up in the tissue, along with other-pyoducts of anaerobic
glycolysis (H, H20), which contributes ta pH declinein the muscleUnder normaktonditions,
the muscle pH will drogradually,along withthe muscle temperaturgs thecarcasss chilled
The pH of the muscle will continue to dropuntil glycogen is used up or the glycolytic enzymes
are no longer able to functiomhis will causea change in pHrom 7.4 in living tissue tan ideal
pH of 5.6to 5.9in meat in which case the resulting pork will have desirable RFN quafityuff-
Lonergan & Page, 2006 owever if there are abnormalitiea the postmortem rate of
metabolism or the concentratioofsglycogen storeghen the final product withaveundesirable

qualities(PSE, oiDFD).

PSE meat occumshentherate of metabolism or the concentration of glycogen/glucose is high
which, after exsanguinatiomill causepH to dropextensively (< %) and very rapidlwhile the
muscle temperature sill high (WismerPederson & Briskey, 1961yhe combination of low

pH and high temperatur@sll causethedenaturation of muscle protei(\ismerPederson &
Briskey, 1961)which has a major impact on the quality of the final praddciscle proteins are

responsible for binding water and haldiit within the muscle celland denaturatiowill



eliminate their abilityto bind wateHuff-Lonergan & Lonergan, 2005n addition,the

remaining proteins that are not denatungidl not bind water due to the low pH of the muscle.
Protens musipossess a charge bind withwater, and aghe pH of meat approaches 5.1,

referred to as the isoelectric point, muscle proteins will have no net chargelarat be able

to interact with watefHuff-Lonergan & Lonergan, 2005pverall, thislow pH will contribute to
large amourgtof protein denaturation anchbound water in the muscle ¢elierefore,
compromising the integrity of the musgtesulting in a product that appears sbfirtherupon

the application oéxternal pressgresor cooking water willescapdrom the muscle cell, resulting

in excess water loss aedudative meaiOffer & Knight, 1988) In terms of meat colour,
myoglobin (he muscle specific protein that gives meat its red cplewf upmost importance
(Mancini & Hunt, 2005) and the denaturation of myoglobin will reduce the colour intensity and
redness othemeat(Pan & Myron, 1972)In addition to myoglobin, colour is also determined by
the light scattering ability of me&Dffer & Knight, 1988) Increased light reflectance is caused
by the unbound water within the muscle cell, along with the excess acatemulation oithe
surface of megiOffer & Knight, 1988) Thereforejn PSE meat, light does not penetrate deep
into the musle tissue, and is reflected off the surface of the rf@#er & Knight, 1988) This
means the light that directed on to the final pork product will be scattered in many different
directions before it can be absorbed by the myoglobin pigment heme, further contributing to the

appearance of pale pork.

DFD meat is also directly related to the pH decline postemgrhowever DFD occurs when the
rate ofpostmortemmetabolisms low or glycogen/glucosstores ar@lepletedresulting in a
minimaldrop in pH (> 6.0JHall et al, 1994) In this casethe high pHwill have a major effect

on the meat quality of the final produ€he high pHpermitsinteractiondetween muscle



proteins and watdOffer & Knight, 1988) resultinga large amount of water thattightly

bound within the muscle ceilivhich will makethe muscle cells turgid, aride porkapper firm

in textureand dry to the touchn terms of colour,he high water holding capacity of meat will
alsocontribute to the dark appearance of pasmuscle cellsvith high levels of intracellular
waterwill reflect less ligh{Offer & Knight, 1988) The high wateholding capacity of meat
along with thehigh concentration of intaahyoglobin(due to redoed protein denaturation)
means light can penetrate deep into the muscle tissue and be absorbed by myegldtity in
porkthat appearmore redn colour(Offer & Knight, 1988) In addition the oxidation status of
myoglobin will also contribute tpork colour Myoglobin has an iron (P& containing heme
group, which can reversibly bind oxygen. Ugmocessing andexposure to oxygen, myoglobin
will changefrom adark red/purple colouideoxymyoglobihto adesirablebright red colour
(oxymyoglobir). Howeverwhenthe muscle cells are swollen and tightly packed with watet,
oxygen isrestrictedn its ablity to penetrate the musceen d fi b | o o ntbe ptoduet wil i s s ue

appeadark(Hall et al., 1994)

Meat quality traits are complex (quantitative)nature and controlled by many factors that can
be either environmental or genetic in origamd for this reason, envinmental management is
integral to ensuringxcellentmeat qualityln terms of the environment, diet, pgughter
handling,andslaughter procedumachhavesignificantimpacts.Diet can alter praslaughter
muscle glycogen reserveshich asdiscussegbreviously, will affect the meat quality of the
final product. Specifically, feed withdrawa8 10 22 hours prior to slaughter has been shown to
reduce the glycogen concentration in lbregissimus thoracis et lumborugoin), resulting in
increased pH, dker meat, and reduced water I§Etkelenboom et al., 1991; Guardia et al.

2004) Similarly, dietshigh infat, andprotein,butlow in carbohydratethat arefed for three



weeks prior to lmughtemwill reduce the total amount glycogenavailableat slaughtefor
conversion to lactic acjgroviding similar results to feeditiwdrawal(Rosenvold et al., 2001a,;
Rosenvold et al., 20014dn addition, sipplemerationwith tryptophan(Guzik et al, 2006)
magnesiun{ D 6 S etwlz2800) or creatine monohydrafgyounget al, 2005)have also

shown to reduce thedidence of PSE pork afat improve meat quality.

Preslaughter sessand fearcan beexperienced by thanimalover the longterm, such aduring
on-farm handling, mixing, loading, transpoafd unloadingas well as ovetheshortterm, such
asnewlairage conditions, and handling at the abat®ath short and longerm stresgan

initiate a physiological stress resportbat camalter the meat quality of the final produStress

will stimulate the release stress hormones (cortisol and adrenalin&) the bloodstream,

which will activate the metabolism and initiate glycogen breakdowto generate the enerdyr
the Aflight or fight o r sesmpsoessimemedidtefy pripritogs ar e
slaughterthentheir metabolisnwill be activatedhigh glycolytic potetial) andtheir body
temperature will increasd\fter exsanguination, this will causiee rapid accumulation ddictic

acid in the musclevhile temperatures are higresulting in PSE meéHambrecht et al., 2004
Dokmanovi | .@onversely,.when Rigs &rd dxposed to {eren stress, glycogen
reserves will be used up and depleted, and once an animal is exsangtheatedill be limted
accumulation ofactic acid in the muscle, resultingan increased incidence BDFD pork

(Murray & Jones, 1994Martocciaet al, 1995) For these reasons, care should be taken with
transport and handling practices to redsicess prior to slaughter. For examplefamiliar

animals should not be mixed, to avoid the incidence of fighting to establish dominance and
hierarchy.Proper footingis requiredduring loading, distractions should be minimized, handheld

panels should besed to guide animals into the trailer, and the use of electrical prods should be



minimized With regards to transpa@tion, trailers should be cleaned prior to loading to prevent
slipping, and transport time, stocking density, and ventilation shoulé abmsidered. Finally, if
stress is experienced durilzgading and transportation, then animals should be restbeé
lairagefor two to four hours prior slaughter, to allow time for animals to recover and glycogen

storesto be restoredGrandin, 2003)

After exsanguination, the rate of chilling and the use of electrical stimulation will also affect
meat quality. Rapid chilling of the carcass after exsanguination can slow the process of
glycolysis, and prevent the conditiotiat contribute t&®SE(high temgrature, and rapid pH
decline)(Kerth et al., 2001)Howeve, cold shortening can occur if chilling occurs too rapidly.
Normally, in the post mortem muscle, there is a gradual increase of calcium concentration due to
leakage from the sarcoplasmic reticulum. However, upon rapid chilling or freezing, the integrity
of the sarcoplasmic reticulum is compromised, causing a rapid influx of a large concentration of
calcium into the muscle celCold shortening occunspontherapidrelease of calcium into the
muscle cellwhenATP concentrations are still high. These coiodis lead to severe muscle
contraction and sarcomere shortening, resulting in reduced tenderness as well as an increased
water loss (muscle contraction causes water to be squeezed from the musghoidd et al,

1983; Smulderst al, 1986) Therefore, rapidoolingcombined with electrical stimulation can
reduce the incidence of cold shortenigtgctrical stimulatiorcauses the muscle ¢ontract and

relax, which use up ATPandhastes thecompletionof postmortem glycolysigthe time to

reach ultimate pH)then oncenuscleis chilled or frozencalciumwill be releasedATP will not

be present, ancbld shorteningvill not occur(Smulcers et al., 1986)

It is important to mention other meat quality trastsch asntramuscular fat (IMF), tenderness,

andflavor, as thesare also important factors with regard€tmsumer eating experien@nd



subsequentepurchasinglecisionsOncetheproduct is purchased, consumers will resporithéo
smell, taste, and mouthfeel during consumption, and will judge future purchasing decision based
onthe satisfaction aheir past eating experiencgeremiah, 2006 Consumers often prefer a

more tender anddvorful product, however, due to the perceived health implications of animal
fat, consumers, especially in Canada and the United States, often prefer products with minimal
visible fat(Jeremiah, 2006)n terms of biochemical pathwaysgctors that contrdiat deosition
areimportant determinasof IMF (breedmuscle,and die} (Wood et al., 2004)Wwhereas

tenderness is determined thye srcomere lengthgollagen contentas well agpostmortem
proteolysis(Huff-Lonergan et al., 1996; Wheeler et al., 200@)xddition flavor isdetermined

by theinteraction and degradatiarf spedfic fats and low molecular weight compour{dmino

acids reducing sugars, vitamins and nucleot)de® intermediate and/or volatile compounds
(Idolo Imafidonet al, 1994)What is moreIMF, tenderness, and flavor, eaadteractwith each
otherto some extent~or examplelMF is necessarjor apalatalle meatproduct asfat contains
many of the compounds responsible for meat flaand different IMF compositions widlive
meatdifferent flavor profiledCameron et al., 1990Further IMF is responsible for a proportion

of the variability for meat tenderness, dnigh levels of IMF (> 8%) will improve the tenderness

of a product by disruptonthe connective tissues that are responsible for the toughness of meat
(Nishimura et al., 1999PDverall, toconsistently produce high qualipork product there must

be an understanding of tkavironmentafactors thatontribute to the variability in meat

quality, but geneticfactors must also be considered



1.3.From traditional selection togenomicselection

Animals have beemmprovedby selective breeding for hundreds of years. The method of
selection hatargelyimproved over the years, but the basic concepts of animal brdeieg
remained the san{®ldenbroek & van der Waaij, 2019)) Animals are selected based on a
predefined breeding ggahichnowadayscan be complexThreebreeding goals that are
common in pig breeding due to theconomidmportanceare reproductive performance of the
sow (irth weightsmothering ability, pigs weaned, slaughter pigs sold, rebregding
conformation or the boar (libido, semen quality and quantity), growth performance (daily gain,
feed intake, gain to feed ratio, disease resistance), and slaughter perfajraecass yield,
dressing percentagit andleanpercent meat quality)2) Phenotypic measuremerfts these
economically importantraits are recorded along wigledigree recordsvhich are usetb select

the best animals to produce the next generg@denbroek & van der Waaij, 2015)

Over time, atistical and quantitative genetic toalsredeveloped fothe most accurate

selection decisiongdraditional breeding methods use the statisapgroachbest linear

unbiased prediction (BLUPYvhich usesobserveghenotypic recordsf an individual or its
relatives and pedigree informatiqiproportion of shareddditive genetic relationshifetween
animals)to estimate breeding value (EBW®f dl animals within a population fa performance

trait (Henderson, 1975)-urther,breeding goals are often complex, and involve more than one
trait, and for this reasorselectionindexesare commonlycalculatedo ensurebalanced ath well-
rounded breeding decisiorfelectionindexes for individua arecalculated by multiplying

EBVs by appropriate weighting factdithe proportion of emphasis placed on the trait depending

on its economic importancggndsummingeachvalue to geneta an index valuerhenselection



index valuegan be used to rank animals based on their genetic potential, allowing for accurate

breeding decisions (selection of best animals to produce the next gendBxiomion, 2014)

Traditional breeding methods han@deconsiderablémprovements in animal productidraits
over time however difficult to measure traits, such awatand carcasquality traits are not
ideal candidates for traditional improvemevieat quality traits are measured posbrtem
cannot be measured on the selection candida¢esselvesandtheymust benferred by
measuing the phenotypedf theirrelatives As a resultthe success dfaditional breeding
methodgselies onpedigreegenetic relationshipsvhich involvessome uncertaintgnd
inaccuracieslue to Mendelian samplingariability in breeding valudetween fullsiblings due
to the inheritance adrandom sample of alleles from each parant) incomplete pedigree
(unknown relationships due shared common ancesttiat arenot recorded in the pedigree
(Oldenbroek & van der Waaij, 201%jor this reasargenetic improvement agfieat qualitytraits

throughthis methodis difficult and slomMiar et al., 2014; Oldenbroek & van der Waaij, 2015)

Nowadaysthe rise of lgh-throughput genotyping methodologies have led to the availability of
thousands ofingle nucleotide polymorphism (SNarkersand dense genotyping arrays, such
asthe50K and 60K SNP pane(Ramos et al., 2009T herefore, hesetechnological advares
along withimprovements in computing powkaveenabled alternate approachesdenetic

improvement of meat quality traits.
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1.4.Marker -assisted selection

Firstly, the method termedarker assisted selection (MABas developedyhich considers

few pre-identified markersto make slectiondecisionsMarkersthatare selectetbr use in MAS
will either be 1) causative mutations thdirectly code for the functionathangeor 2) in very
strong linkage disequilibrium (LD) with causative mutatigpskkers, 2004)Subsequently,
these SNP markerainbe used in breeding programs 19 preselect animals prior to testing and
breeding, or 2)hey can beéncorporatednto the BLUP model as fixed or random effects for
EBV estimation(Dekkers, 2004; Lopes et al., 201There are many example§LD markers
thathave been identified faneat quality traits in pig&Zhang et al.2014 andcould be used in
MAS programsin contrastthere are relatively few examplegere the causative mutation is
known.However, in the case that the causative mutationasvknthe effect is usually large, and
selection for the favorable allele hie potential to make significant improvements to meat
quality traits in pigs. The following paragraphs will discuss these most notable genes and their

alleles:

Ryanodine recepto(RYRJ)

Theryanodine recepto(RYR) geneencodes a calcium release channel that localizes
exclusivelyto the sarcoplasmic reticuluai skeletal musclevhere itplays arole inthe

regulation of intracellulacalciumconcentratiormndmusclecontraction(Fujii et al., 1991)The
presencef a singleRYR1allele (calledHal) is beneficial, as animals have been reported to have
better feed conversion efficiency, higher carcass wggher muscling, and lower féteach

et al, 1996; Murray & Johnson, 1998jloweveranimals homozygous fdral become
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susceptible tporcine stress syndrome (PS@hich is a singlegene disordewhere stressful
conditions, such as poor pstaughter handling and transportation, canseuncontrolled
muscle contraction and death in the anjraghn increasedccurrenceof pale, soft, and
exudative(PSE) porkpostmortem(Fuijii et al., 1991)A missensenutationlocated within
RYR1Hal-1843(pArg615Cys) has been found directly responsible for éffilects ofhal,
includingPSSin numerousommercally importantpig breedgPietrain, Yorkshire, Duroc,
Landrace, and Hampshir€orrespondinglyHal-1843 haslsobeen showmo have anegative
effect onthemeat qualityof both homozygosand heterozyous pigs as these animals produce
pork withlower pH 45 minutes after slaughter (] higher Minolta L*(lightness), higher
Minolta b* (yellowness)andhigherdrip loss(DL) (Otto et al., 2007)The discovery oHal-
1843and knowledge on its adverse relationship with meat qualitynbae a major impact on
the swine industry, as dannow be usedfor genetic testing and removal of thkele,resulting

in theelimination ofa major contributor oPSS from thdreedingpopulation, and improvement

of meat qualitytraitsin pigs(Ciobanuet al, 2011)

Protein kinaseAMP-activated noncatalytic subunit gamma 3PRKAG3

Protein kinase AMRictivated norcatalytic subunit gamma (PRKAG3 produces the protein
product AMP/ATRbindingdomainof the AMP-activated protein kinase (AMPK), which plays a
role in the regulation of glymen storage and energy homeostasis in skeletal md&iEa et

al., 2000 Ciobanu et al., 2001A dominant mutation in theRKAG3gene, initially calleRN,
was mapped to lacusin the regulatory subunit of AMPKpArg200GIn). This mutation was

associted withanimmense 70% increase in glycogen conternh@skeletal muscle of pigs

12



postmortem,adversely affecting theltimate pH,DL, and cooking yielaf the resulting pork
product(Milan et al., 2000)Alternatively,somemarkerswithin the PRKAG3genehave been
found to beassociatedavith reduced glycogenontent, and corresponding improvementsaat
quality (plle199Val, pThr30AsnandpGly52Ser) Specifically,plle199Val, whichis located
nearbythe causative mutation fdRN", caussthe largest meat qualitgnprovementsincluding
higher ultimate pHlower Minolta L* (lightness), higher Minolta bfrednessjCiobanu et al.,
2001) and lower DL(Otto et al., 2007)The effects of plle®9Val, pThr30Asn, and pGly52Ser
weresmaller than those of RNhowever eachallele wasoundin multiple commercially
important pig breed@uroc, Landrace, Large White, and Berkshiegjdprovidedsignificant
effectson meat quality penotypesmaking thenof usein MAS programgCiobanu et al.,

2011)

Calpastatin(CAST)

The Calpastatin(CAST) gene encodesaalcium activategbrotease inhibitothatacts on the
muscle proteasemiilli- and pcalpain,andcorrespondingly regulateke rate and extent of
protein degradation in skeletal muscle pmstrtem(Ciobanu et al., 2004}For these reasons,
CASThas been foundo bean important determinant afeat tendernesMultiple CASTalleles
(pArg249Lys, and pSer638Argpave been identifiethatinfluencethe firmness and shear force
measurement of raw pork, as well as the tenderness, juiciness, and cheivtoesed pork
(Ciobanu et al., 2004)n addition, SNPs have also been identified inGAe&S Tregulatory
regions (pomoter and transcription factor binding sites) thatsagrificantlyassociated with

pork tendernesgNonnemaret al., 2011)Recently,CASThas also been found to significantly
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influenceadditional meat quality traits, such@k, pH, colour, and intramuscular fat (IMF)
(RopkaMolik et al., 2014) Similar toPRKAG3 theseCASTalleles have proven to have
significant effects on meat quality phenotypesommercially important pig bree@@®uroc,
Landrae, Large White, Berkshire, antbrkshire)(Ciobanu et al.2004; Nonneman et al., 2011;
RopkaMolik et al., 2014)which is beneficial for MAS programs that aim to improve meat

quality traitsin pigs.

1.5.Genomic selection

Each of thanarkersdiscussed abov&reassociated witimoderate to largeffect size
(explaning > 9% and 25% of the genetic varianéer moderate and large effect sizes
respectivelyCohen, 1998)andhave provided significant opportunityo make considerable
geneticimprovemento meat qualitytraits This is becausthese SNPexplain a significant
proportion of the total genetic and phenotypic variation for a wahiich will translate to
observable genetic improvement when these SNPsetgeted individuallyHowever, complex
(polygenic)traits,such as meat arghrcass qualityare at least ipart controlled bysNPsof
smalleffects(Yang et al., 2011 )explaining < 1% of the genetic variangohen, 1998)which
is problematic as these typesSNPsare very difficult tobeidentified by current
association/fine mappingethods (genomwide association studie§WAS). Thereforepnce
thelarge effecimarkers reach fixation ifhé population, they will be difficult to replate
provide further genetic improvemenEor these reason§Swas proposeds a alternative to

MAS, for complextraits such as meat and carcagmlity traits
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GS does not require the explicit identiticaen of markers significantly associated with a trait and
insteaduses genomwide dense marker paneisth thousand®r millionsof SNPs spread across
the entire genomihat are assumed to be in LD witteunknown causative mutatiofisr the

trait (Meuwissen et al., 2001¥ince explicit identification of causative mutatiosasiot required,
GScanconsider the effects @hanyvariants including those vih asmalleffect on the trait
Manysmalleffect variants wilum to accourfor alarge proportion of the total genetic
variationfor the trait, whichcantranslate tgotentially large genetic gairlhere ardwo steps

for GS 1) genotyping and phenotyping a reference population for the traits to be genetically
improvedto identify regression parametdrs h e i steppand?)i statptizal methods are
applied to estima a genomicalhestimatedreeding value (GEBV) to predigenetic potential

of selection candidates that are oggnotypé with no phenotypic recordégenomic

predidgep)i ono

1.6. Statistical models

There are two types of GS statistical methods contyrgindied todayl) relationshipbased
methodgNejatiJavaremet al, 1997) and 2) SNP effedbased methoddvieuwissen et al.,

2001 delos Campo<=t al.,2013) Relationshipbased methods predict GEBVs by replacing the
pedigree derived numerator relationship matrix (NRYlused in traditional BLUP methods
with a genomic (or realized) relationship matrix (GRB), which estimates the caxiance
between individuals based on shared chromosomal segments (SNP marker genotypes)
(VanRaden, 2008). This method, termed genomic BLUP (GBLUP) has been successful in

improvingbreeding valu@rediction accuracy (Hayes al, 2009), as the GRM isasedn
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identity-by-state (IBS) relationships between individuals. iB&hen individuals share
chromosomal segments or SNP alldlest are similar in sequence (either due to a shared
common ancestor or a mutation event in identical loci in geneticallyefifféines) which
accounts for genetic relationships that may not be possible from pedigree predictions
(Makgahlelaet al, 2013 Fernandcet al, 2017. This includes instances suassibling
relationships (due to the uncertaiyntributed by the Mendelian sampling term) or incomplete
pedigree. Therefore, GBLUP is able to provide a more accurate estimate of relasiasiipa

population compared to the pedigree deridgM (Hayes et al., 2009).

GBLUP uses the following lineanixed model:

Al [1]

Wherey is a vector of phenotype valudsis a vector of onesnis the overall meaof the
phenotype valueg is a design matrix associatiggvith response variableg;is the vector of
random additive genetic effects; amis avector of residual effects. Genetic and residwaitors

(g ande) are assumed to be normally distributédl; . TEA ,and’™ . th
& frespectively, wheré andA are the additive genetic and residual variances, respgtiv
G is the realized GRM; anidis an identity matrixSinglestep GBLUP §sGBLUB, which will

be discussed belowses a similar model, but whares the vector of random additive genetic
effects, which are assumed normally distributed;. TE A ; andH is the relationship

matrix.

Due to the costs associated with genotyping, only potential selection candidates in a breeding

population may be genotyped, leaving many animals with phenotypes but no genotypes. For this
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reason, sSGBLUP has beemrgented as morepracticalmethod of Gompared to both
traditional BLUP and GBLURs it is able to utilize all the available data for a populatian
single methodLegarra et al., 2009; Misztal et al., 20@hristensen & Lund, 20103sGBLUP
takes adantage of genotypes, phenotypes, and pedigree data irstepn@ethod for GEBV
estimationby combining theNRM and theGRM into a single matrixH) for all animals
(Legarra et al., 2009; Misztal et al., 20@hristensen & Lund, 20107 his technique has proven
to predict breeding value more accuhaieompared to traditional selection methgaisd is also
able to increases the training population $meGBLUP, which results in improved prediction
accuracies for traits with low heritabilitin addition,ssGBLUP is alsdaster and simpler than
morecomplicated models such as midtep GBLUP. Successful implementation in this model
has been shown in multiple livestock species, including(@gsistenseret al, 2012; Fangmann

et al., 2017)

Alternatively, forSNP effectbased methods, the effect of each SNP on the trait is estimated on
the reference populatioSNP effects are each estimated by fitting all SNP effects

simultaneously as random variables drawn from a prior distributioen Breeding animals are
genotyped and the effect of each SNP is summed to generate a GE®Yhe studies, SNP
effectbased methods have been shown to predict breeding value with higher accuracy compared
to GBLUP, but the results depend on whether the true distribution of $&sdbr the trait

matches th@rior assumptions of the statistical meth{@thang et al., 2018)

The SNP-effect based method of GS ssgke following model:

« ‘ BfA = [2]
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Wherey is a vector of phenotypealues 1 is a vector obnes;mis the overall meanf the
phenotype valuedV is a design matrix relating genotypes coded 0, 1, 2 to observajionsye
effect of the ' SNP, andeis a vector of residual effects. The genetic variance of SNP effects
and residual variancejgalsWW®& , andlA , respectively, wheré andA are the additive

genetic and residual variances, respectively;laadn identity matrix.

Statistical methods for SNP effdesased methods include ridge regression BLUP (RRBLUP)
(Whittakeret al, 2000) and various Bayesian method$ie most common Bayesian methods
include BayesA, BayesBMeuwissen et al., 2001BayesQHabieret al, 2011) BayesR(Erbe

et al., 2012)BayesR(QMacLeod et al., 2016and Bayesian LASS(ibshirani, 1996)and

each diffes by their underlying assumptions of SNP effect distributi@&i$JP methods
(traditional BLUP, GBLUP, and RRBLUP) each follow an infinitesimal mobfethis case

SNPs are assumed to be drawn from a normallalision whereeachhasan equal andmall

effect on the trait, and no SNPs are expected to have a large effect on {Metnaitssen et al.,
2001) Alternatively,the Bayesian methods assume a finite loci model, where few SNPs have
moderate to large effect on the tr&@ayesA and BayesB both assumedsstribution

additionally, though, BayesA assumes there are many SNPsmvaheffects, and BayesB
assumes a mixed distribution whearemall predefined proportiorof SNPs (say 5%) have a
nonzero effect but the rest tdie SNPshavezero effec{Meuwissen et al., 2001BayesC
assumes thataproportionl T “~ ) of the SNPs has zero effect
are nor mal | yHabier et &l.r 2014 BayesRIC is(unique and will be discussed
further below, but this method is a modified version of Bay@&s#yesRassumes SNPs come

from amixture of normal distributionsncluding one distribution that assun&¥Ps haveero

effectand the remaining three distributiaihstassumeSNPs havéncreasingeffects(Erbe et al.,
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2012) Alternatively,BayesRQorovides an advantage over BayesR in ithatorporategrior
biologicaldata To do this, SNPs are allocated into ohe of our 0 c | dheirspeediobed b a s e d
effect on the trajtthen variance for each class is estimated individugMgcLeod et al., 2016)

Finally, Bayesian LASSO assumes a double exponential distribution of SNP effectsinvhere

addition to a few SNPs with moderate to large effect on therraity SNPslsohawe close to

zero effec{Tibshirani, 1996)

1.7.Accuracy of genomicselection

Breeding value prediction accuracy is defined as the correlation between true and estimated
breeding value (how reliable the phenotype of the bngeainimal can be predictedince the
true breeding value is unknowaccuracy is calculated as the correlation betvixeeading value

(A) andphenotype (true breeding val(f) and environmental influenc¢g)):

i S 0 3]

Whererap is breeding value prediction accuragy is the covariance betweéneeding value
andphenoty; ,, is theadditivegeneticvariance for the trait; is the phenotypic variance for
the trait; and h is thequare root ofieritability for the trait. The higher the accuracy of the
prediction method, theore reliablythe methodvill predict breeding value, and the higher

potential genetic gaifMrode & Thompson, 2005)

It is important to note that many factors will influence predictaccuracyincluding the

heritability of the trait, the effective population size, the size of the reference population
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(Daetwyler et al., 2010), the relationship between individuals in training and validation
populations (Clarlet al, 2012), the modef inheritance (additive or dominance) (Zestl,
2013), SNP panel dengjtLD between the QTL and SNRgeuwissen & Goddard, 2010and

the choice of statisticahodel(Goddardet al, 2010)

1.8. Alternative methods ofgenomicselection

Knowledge orthebiological factors undeylng meat quality traits couldrovidea significant
opportunity to increase th@eeding value predictiomccuracy of GSNowadays, BLUP methods
(traditional BLUP and ssGBLUP) are the most commonly practiced methods for estimating
breeding value. Howevethesemethod assume an infinitesimal model for SNP effects, which
ignores any genetic or biological information known for the trait. SNPs associated with a trait
may in fact be distributed neimiformly throughout the genome, clustered in genes that are
biologically relevant for the trait, and have varying effect sizes (from where the SNP has no
biological function in the trait, to where the SNP displays a large effect on th¢Atkat) et al.,
2010; Maurano et al., 201Z2)hereforeknowledge on the biology of a trait is valuable as it can
beincorporated intdhe statistical modelised for GS to provide a mardormed and

customized procedure.

Multiple strategies to incorporate this biological knowledge into GS procedures have been
proposedOne method, markeassisted GBLUP (MAGBLUP), derived from MASuses
GWAS to identify markers with large effect on the trait, then incorporates them into the
prediction model as fixed effectsopes et al., 2017)n pigs, incorporating theingle SNP that

explained the largest percentage of phenotypic varimdke trait intoeitherBLUP or GBLUP
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proceduresvas found to increase prediction accuracy between 0.021 to 0.124, and 0.003 to
0.043, respectivelywhat ismore, incorporatingll SNPs that explained greater than 1% of the
phenotypic variance increased prediction accueaenfurther(Lopes et al., 2017 he benefit

of MA-GBLUP s that itrequires little additional computational demands compared to BLUP or
GBLUP, as it requizstheincorporationof only afew additionalfixed effects into the model,

which makes this methaghsilyimplementedn practice.

Alternatively, GS methods can exploit biologigaflormationby using it toassigngenetic

varianceto genomic regions enhied in biologically relevarfactors. This can be done by
differentially weighing of the GRM depending on the location and the effect of the genomic
featureswhich t&es advantage of the fact that genomic effects are distributed unevenly
throughout the geome, and clustered in biologically relevant I@dwardset al, 2016)

Therefore, the asimption of the model is no longer that each SNP shares an equal variance, but
thatthe biologically relevant loci can account for a larger proportion of variance for the trait.
One method, weighte@BLUP (WGBLUP), uses estimates of SNP effects to weigh the GRM for
use in GBLUP. SNP effects have been estimated using Bayesian procedires, BagesB
(Zhang et al., 2010nnd Bayesian LASSQ.egarraet al, 2011) as well as GWAS resul{sle

los Campos<et al, 2013; Fragomereat al, 2017) WhenBayesian methods were usedveigh

the GRM, wGBLUPpredicationaccuracywasequivalent tahatof the correspondinddayesian
model(Zhang et al., 20%0.egarra et al., 2011 Alternatively, the use of GWAS results was

found to increase accuracy of GEBV estimations based on simulation gfudigemeni et al.,
2017) andfor some traitsn real data studias cattle includingvariousreproductivetraits
(Brgndum et al., 2015T herefore,wGBLUP provides an ideal methaif GS especiallywhen

the genetic architecture of the trait is controlled by genes of large effect, as GEBV prediction
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accuracy can be increased compared to GBLURvliiout the additional computational burden

imposedwhen usingBayesian proceduréZhang et al., 201Q.egarra et al., 2011)

Another method, genomic feature BLWBFBLUP)uses prior biological information refec¢o
asai g enomi sotofveglt thetGRM. Genomic featuresn be in the form of genes,
chromosomes, biological pathways, gene ontologies, sequence anntiatiscrjptomics data,
or QTL regionsand genomic features thae relevant for the spéici trait will be allocated a
heavier weigh{Edwards et al., 2016AAn increase in 48 89%, and 30 164% in prediction
accuracy for GFBLUP compared to GBLUP has been observed in real data studies in Drosophila
and dairy cattlerespectivelyEdwards et al., 2016; Fang et al., 20¥/similar Bayesian
method exists, termeBlayesRCwhereSNPs argrioritized based on known biological data
then they arallocaked intoone of fourdifferentclasseswhich areexpected to have a different
probability of containing causative mutations for the taitdthus explain a larger proportion of
variance for the traifMacLeod et al., 2016)Df course prediction accuracy for GFBLUP and
BayesRC is improved whemnlarger proportion dhe totalgenetic variance for the trait is
accounted farsuch ady theprioritizationof causal variantgndaccuracy is reduced by the
incorrectprioritizationof noncausal genetic varian(Edwards et al., 2016; Fang et al., 2017)
These alternative GS methduighlight the potential of biological knowledge as a strategy to
improve prediction accuracilowever, aside from these examples, relffifew genes have
been found associated witieat and carcass quality traitseaning a large proportion of the
total genetic variance for the trait remains unaccounted for. Therefeeg,and carcass quality
traitsaregood candidatfor genomic analyse such as genorwide association studies

(GWAYS), to further our understanding on the genetic and biological factors underlying the trait.
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1.9.Uncovering thebiology of thetrait

Association analysis apowerfulmethod to identifithe genomic regiongha are influencing a

trait, with the ultimate goab better understand the biology of complex phenotypégal
association analyses detected QTL using sparse microsatellite markers, htveseestudies

were limited by large confidence interv@ldirschhorn & Daly, 2005)in some caseshése QTL
couldencompass entire chromosomes, emgtain thousands of potential candelgenes and
variants which often required additional experiments for these to be fine mapped and identified
(Dekkers,2004).Today, high-density SNP genotyping dat@ong with a fully annotated pig
genomgPruitt et al., 2014; Zerbino et al., 2018)nowavailable for usén genomewide
association studie$SWAS). These tooldave increased powerdprecisiorto test thousands of
SNP markers across the entire genomeafsignificant associationith a phenotype of interest
andto identify candidate genesarby to significant SNRgith potentialy biologically relevant
roles(Yanget al., 2011)GWAS have been immensely successful in identifying quantitative trait
loci (QTL) associated witlobserved variation in economically importaraits in livestock. Tens

of thousands of QTL have been reported on pig QB Ifor hundreds of different performance,

disease, and carcass trdlth et al., 2005)

Despite the potential of GWAS methodigtistical difficulties present a majohallengeas they
can prevent the identification of trugovel QTL These includstringentP-values due to

multiple testing, spuous associations due to population stratification, as well as the difficulty in
detectingsmalleffect, noradditive (dominance and epistasis), chromosomal (insertions,
deletions, and translocations), and rare variants with low Mdnolio et al., 2009)Further,

even if these statisticaifficulties are overcome and statistically significant associations are

identified,furtherchallengesan arisedue to bngrange LDin livestock genomes:or this
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reasonQTL, althoughmuchsmaller tharthe confidence intervals of earlier studieanstill
span several megabases in lengtid contain multipl®iologically relevantandidate genes for
the trait This makes pinpointing the exact gene associated with the trait difficoiting their

use in alternative GS procedures

Nonetheless, toda@WAS can still benefitivestock breeding and genetiespecially in studies
where sample sizes are lar@NVAS could provide asignificant opportunity t@rogresshe
currentunderstandin@f thegenetic and biological factors underlyinggat and carcagjuality

traits. AsmoreQTL associated witkeconomicallyimportant traitsare identified, targeted studies
candeterminecandidate genes and mutasavithin thegenesand as well as their featuréd/ith
regards to meat qualitthe results of GWAS stues will not only increase our basic

understanding of the pestortem muscle biochemistry that determines meat and carcass quality,
butas mentioned previouslganalsobe considered irGS proceduréor the practical purposef

selecting breeding animaldttv superior meat quality

Instead ofelying on increasing sample sizes of GWAS to explore the biology of the trait,
alternativemethods aralso beingexplored whichincludebut are not limited toRNA
expressiorfWickramasinghet al, 2014) metabolomicg§Goldansaz et al., 201 froteomics
(D6 Al es s andr gandkepigenetiddD&A me2hldtidh Jand hisine modification)
(Gomezet al, 2013 Doherty & Couldrey, 2014 rach provide a uniqueportunity toimprove

thegenetic and biologicalnderstanding of economically important traits in livestock.
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1.10.Benefitsfor genomicselectionof meat quality traits in pigs

Both relationship and SNP effesised methods @S provide a significant opptunity to

select pigs with superior meat quali@S can estimate breeding value of breeding candidates
(selection candidatescurately, by accounting for many variants of various effect sizes
(depending on the model used), without having to colleat@tiypes on the breeding candidate
itself or on a large number of its close relativlss allows for 1) animals can be selectatan
earlier ageand 2)with a higher prediction accuraaging GScompared to traditionaelection
methodswhich taken tgether willgreatly increastherate ofgenetic gain for the trait
(Meuwissen et al., 2001lowever,sincepigs already have a relatively short getierainterval
themajorpower of GS in pig breeding will be realized through improving the accuracy of
breeding values estimatiofihe current estimates for accuracy®Eon meat quality traits is
low, for example, in a purebred Duroc populatiGikBV accuracyranged between 0.12 to 0.38
and 0.16 to 0.38pr carcass and meat quality traits, respectively, which in comparison to the
accuracy of traditional selecti@stimatesis an increase between 6 to 33% and 7 to 38% for
carcass and meat quality traitespectively{Miar, 2015) Small increases in prediction accuracy
can yield large genetic improvemettsit further improvements to theccuracy of GEBV
prediction will increase the rate of géicggain for meat quality as well as the feasibility of

including the trait in breeding programs.

1.11.Challenges for genomic selection of meat quality traits in pigs

GSpresents a significant opportunity to improve the potential genetic gammefatr qualiy traits

in pigs howevermultiple technical challenges still remaln.pig breedinggenetic selection is
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implemented in purebred pigs, but the final product is a crossbred animal. Pig bressdireg
pyramidal structure composedtbfeetiers, whichemphasizes crossbreeding throughout. 1)
Genetic improvement is made at the top of the pig bregniramid, where animals are selected
based on their own performance in a higdalth, purebred nucleus herd. 2) Purebred dam lines
are crossed (called an Ffbss) at multiper farms to produce large numbers of breeding

animals, which can be sold to commercial produd2asn lines are often selected for their
reproductive abilities, but these traits commonly have low heritability and are difficult and slow
to improve. Thereforethe cross between purebred dam lines takes advantage of the phenomenon
known as heterosis, where the performance of the crossbred offspring is better than that of the
purebred parent8) The final stage of pig production occurs atecbemmercial level, where the
crossbred dam lines acembinedwith purebrederminal sire linesThis final crosgcalled a

terminal orthreeway crossproduce animalswith excellent growth, meat, and carcass quality
that are destined for the markebimultaneos improvement of both reproduatias well agneat
guality, carcass quality, and growth is difficult and slow duthtadverse genetic relationships
between these traitShereforeindependenimprovement of these traits the dam and sire lilse
allowsfor the generationf dams that arkighly productiveas well as aefficient and high

guality commercial produgh process called breed complementarityle emphasis on
crossbreeding throughout the pig production pyramid provides many bewéfitb,were
mentionedincluding the phenomenon knownlaeterosigalso known asutbreeding
enhancemerdr hybrid vigor), and breed complementaf@ldenbroek & van der Waaij, 2015)

however it also povides unique challenges for the implementation of GS.

GS relies on LD between SNPs and nearby causative mutadimh$or this reason,

recombination will occur betweedNPsand causative mutations, reducthgaccuracy of
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GEBYV estimatiorover generatins (Meuwissen et al., 2001)f the markers used iBSwere the
causativanutations that were directly causitige phenotypic varian¢céhen estimatioof SNP
effecs would only need to be performed once in the reference population, and GEBVs for all the
following generations could be predicted using these estimates of SNP @ffeatsissen &
Goddard, 2010However the majority of causative mutations remain unknown, and SNP
effects need to be4estimated over generatioffdeuwissen et al., 2001Additionally, for an
accurate estimate GEBV for meat qualityyhich isa low heritability trait, many animals will
need to be included in the reference populatizaetwyleret al, 2010) which further
emphasizethe need for @onstanimeasurement of phenotypasd genotypefor re-estimation

of SNP effectsln theory SNP effects should be-estimatedevery generatiordue to a
substantiatiropin GEBV accuracy thas observed after the first generat{@olc et al., 2011
Pszczola & Calus, 2016 practicethis iseasily achievefor most traits aphenotypes and
genotypes of breeding animals are recom@mtinuously(Calus, 201Q)but this becomes

difficult and expensivéor meat qualitytraits thatmust be measured peastortem,sincepurebred
breedinganimals arenot produced for the purposd# slaughterAlternatively,continuous
measurementf@henotypegould be donén a crossbred populatio®S of purebred animals
based on crossbred performance has been found to predict breeding value of purebred animals
with eitherslightly lower(Toosiet al, 201Q Miar, 2014) or higheraccuracy compared to
selection based on purebred ddtae resulting selection accuracy will depend on the model
used.Current GS methodsould assumehatSNP effecs are the same across breeds, but in fact
effects will vary across breeds, due to +aattitive effects (dominance, and epistasis), eed

specific effect{Esfandyariet al, 2015) Additionally, implementing GS using crossbred data
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will comewith additionalfinancial cos$, as crossbred aninsadre notisuallyidentified,

genotyped, and their performance recor(lesfandyari et al., 2015)

Since dominancand epistatieffects are likely the genetic basis of heter@Saconer, 196),

using a GS model that incorporates both additiveremmeadditiveeffectswould becrucial for
ensuringa largegenetic gair(Esfandyari et al., 2015Additionally, accouning for breed

specific effects will also be importaftr accurate selectioof purebred based on crossbred
performance. Breedscific effects occur when the same allele has a different effect depending
on the specific breednd are intensified when thelatedness between original purebreds is low
This can bedue toincomplete LD between SNPs and causative mutatishere recombination
betweerthe SNP and causative mutation has occurred in one dveédot the othefEsfandyari

et al., 2015)Whole genome sequencing (WGS) detald solve the problem of incomplete LD,
astheoreticallyit shouldincludeall possible variants, includingausative mutationdleuwissen

& Goddard, 2010Q)Alternatively,theuse ofagenomic model that $§ips the additive genetic SNP
effectsthat areestimated from crssbreds performance inboeedspecificcomponentsvould

allow for purebred animal® be selected based on theiiquebreed specific effectdbanez

Escricheet al, 2009)

1.12.Conclusionsand thesis outline

Today, GSprovides a significant opportunity to improve meat quality trartsch must be
measured posnortem, and are difficult, expensive, and slow to improve by traditional selection
methodsThe most commdg practiced method d&S issS<GBLUP, however,this methoddoes

not consider the biology of the trait, and instead assumes SNP effects are distrifotedyuni
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across the genome each with equal and small effects on thA ltieihate methods of GSuch
aswGBLUP, GFBLUP,or BayesRQhat incorporate known biological informatiarto their
procedurénavethe potential to estimate breeding value with higaecuracywhichwould

improve the feasibility of including meat quality traits into breeding progrbiowever,

considerable advances must first be made in understanding trait biology before these alternative
methods are possibl€herefore, the main gbaf this thesis was to improve our current
understanding of the genetic and biological factors underlying meat and carcass quality traits to
aid in the implementation of GS methodiberefore, the purpose of this thesis wiggo

estimate variance compemtsandcalculate genetic parameters for meat and carcass quality in
pigs as an important first step in incorporating these traits into breeding progjfeanso use:

2) GWAS, and 3) a singi8NP association analysis of potential causative mutatiomaprove

the current understanding of the bidtm] factorsunderlyingmeat qualitytraits.
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Chapter 2. Estimating genetic parameters for meat quality and carcass traits in
purebred Duroc pigs

2.1. Introduction

Carcass traits such as baclkdapth(BF), loin muscle depthM D), andcarcass weighdre of

high economic importance due to their influencecarcass valud.arger carcassesith a higher
percentage of lean meate regarded awore valuablaccordingo the Canadiaand American
pricing standard¢Alberta Pork, 2017)Carcass traitmmaybe easily inferred from the live animal
using ultrasoundas anindicator trait)or they can be measured for a low cost directly on the
carcass using a ruler agradingprobe.Due to th& economic importancandease of
measurementhesecarcass traitbave been subject to intense selectindrapid genetic
improvement This hagesutedin immensechanges t@ork carcass compositicas well as a
largeincreasein the value of Canadian pork contrast meat quality traithavenot commonly
beenincluded asa breeding goain traditional breeding programas theymust be measured
postmortem and they cannot be predicted on potential breeding candidatesighthccuracy
(Miar, 2015) Nowadays, consumer awarene$sneat qualityis increasing anthesetraits are
becoming of higher economic importance due to their influence on customer purchasing an
repurchasing decision¥herefore breeding programshouldemphasie meat quality in addition
to carcass traitgo produce &igh-quality lean porkandfurtherimprove the value andhe

demand for Canadian pork products

Genomic selectiofiGS) provides apractical solutiorfor the genetic improvement of meat
quality traits An importanffirst stepfor introducing any trait int@a breeding program ithe

estimaion of genetic parametefesr the trait.In general, rratquality traitsshowlow to
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moderag heritability(between 0.10 to 0.39), and carcass traits show moderate to high heritability
(between 0.22 to 0.68)epending on the specific population and brg&dbanu et al., 2011;

Miar et al.,2014) The Duroc breeés a commortierminalsire line, especially in Canadas they
areknown to behighly productive (with regards to growth rate and feed efficiency) and provide
meat with highly desirable quality characteristibsiroc meat islarkred in colour,has

intramuscular fa{IMF) throughout, lower drip los®L) , and higher pH{Tannas & Tannas,

2014) However, fewstudies have reported heritability and correlation estimates for meat quality
traits in the Duroc breed, and those that do have mainly focused on carcass or (Suizakset

al., 2005 HernandezSanchez et al., 2013)uroc animalsepresenanideal breed for which to
makegeneticimprovemens for meat qualitytraits therefore, he purpose of this study was to
estimategeneticvariance components for meat quality traisswell ago calculate the
heritabilitiesandthe genetic and phenotypic correlations betweeat and carcassitsin a

purebred Duroc pig populatioht is hypothesize that meat quality traits are controlled at least in
part by genetics @ 0), and that relationships among meat quality tragsvell as between

meat and carcass traits, are at least in partad shared genetic determinants betvibetraits

(rg> 0). The results of this study could be directly incorporated into selection procedures, or they

can be used when selecting traits to include in the breeding goal.
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2.2. Materials and methods

2.2.1 Data

Animals

A total of 997 purebred female Duroc pigs originating from a Canadian breeding company

(Hypor Inc. Regina, SK, Canada) were used in this study. These animals were raised in a nucleus
pig breeding herd following the Canadian Council on Aadi@are (CCAC) guidelines and by

protocol approved by the University of Alberta Animal Care and Use GteenThis study was
characterizeds a Category A animal experimewtich involvedno experimental manipulation

andtissues collected from trabattar (CCAC, 2020)

The pigs used in this study were raised widhibitumaccess tdood and water. Pigs were

harvested every third week on dry fromJanuary oR018 toMarch 0f2019(14 month¥at a

provincial slaughterhouse (East 40 Packers, Brandon, MB, Canada). Animals were shipped to the
slaughter house in batches of3® animals, held overnight at the slaughterhouse adthbitum

acces to water and restricted access to food, then slaughtered the following morning. At the time
of slaughter, pigs weighed an average of 121 kg and were on average 168 days of age. Meat

guality measurements were recorded from the carcass withiha24eiod after slaughter.

Phenotypes

Meat and carcass quality measurements were taken on both the himmgiggimus thoracis et

lumborum(loin) muscles. Theloin washarvested from ththird to fourth lastrib, which
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corresponds to the Canadian grading $fteat colour measurements wedlectedusing a
Minolta CR 310 colorimeter set at C illuminant (Minolta, Osaka, Japan). The colorimeter
measures Minolta L*, a*, and b* values, which represent the lighth&ssO0 is black, L* = 100
is white) rednesga* = +60 is red, a* =60 is green)and yellownesgh* = +60 is yellow, b* =
60 is blue)of the muscle tissyeespectively. Loin Minolta L*, a*, and b* (LOINL, LOINA, and
LOINB) were measured from four sites on the fresh cut and anterior surface oh#iedso
center cutoin muscle. The final value was taken as an average Minolta measurement of the four
sites on the loin. Fat Minolta L*, a*, and b* (LOINFATL, LOINFATA, and LOINFATB)
measurements were taken from the subcutaneous fat tissue ablove tescle. Minolta L*,

a*, and b* were also taken from three sites of the:lhenfresh cut surface on the inside of the
hamgluteus mediuéGLUTL, GLUTA, and GLUTB), the hamuadriceps femori@QUADL,
QUADA, and QUADB), and the haitiopsoas(ILIOL, ILIOA, and ILIOB) musclesThe
ultimate pH measurementH@4) was taken 24 hours after exsanguination erdim muscle at
two of the Minolta colour score locationghe final value was taken dsetaverageneasurement
of thetwo sites DL was measured from acdn defatted and debonéain which were weighed,
placed on a stainlesseel grid, andtoredfor 48 hours at ?C. After incubation, loins were

blotted dry and weighed again. %) was calculated using the following formu$a:, b

z p Ttdroin eye aredLEA), fat depth (FD), and loimuscledepth

(MD) were each measured on tbhis muscle. LEA was determined using a 1 cm square grid and
by manually counting the number of 1 cm squaresfihaisidethe loinface FD andMD were

both measured in mm using a ruler that was placed 5.5 cm off the midline, perpendicular to the
skin. Subjective marbling score (NSIF IMF) was determined using the National Swine

Improvement Federation (NSIF) marlgichartswhich score thenarbling on thdaceof the
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loin muscle with a value between 1 to 6 (0 = devoid, 1 = practically devoid, 2 = trace, 3 = slight,

4 = small, 5 = moderate, and 6 = abund@4§IF, 1997)

Pedigree

The pedigree file used was composed of a totab6f921 animals, with 100% of the animats
this studyhaving both parents known. The pedigree includ882sires and 16,744 dams over

25 generatios

2.2.2. Statistical analysis

The significance of fixed effects and covariates was deternisiad Wald F. statistics in
ASReml softwargand factorsvith P-value< 0.05 were included in subsequent analysis
(Gilmour, 2015) A pairwise bivariate analysis was performed in ASReml software to estimate

the variance components of meatlaarcass traitgsing the following moddlGilmour, 2015)

« L AL
R I 1

Wherey: andy» arevectoss of phenotyjic recorddor traits 1 and 2respectively X1 andX> are
design matigesthat relate fixed effects tihe obsewvations;b; andb; arethe vectos of fixed
effectsincludingslaughter batch for all traiemdslaughter age fdviD; Z: andZ aredesign
matricesassociatingy andaz with phenotypic recordgésponse variablgsa; andaz arevectos

of random additie genetic effectGanimal effects)ande; ande; arevectoss of residual effects.
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The additive genetic effects and the residual effects are both assumed to be normally
distributedg* 0 mh=, ,g¢ 0 mhk Frespectively, wherg and, are the additive
genetic and residual variances, respectivlig the additive relationship matrix constructed

using pedigree data, ahds an identity maitx.

Random effects were assumed to be independent. The (co)variance matrix of random variables is

as follows:
d) = n Tt Tt
L0 = =, Tt n O
woig A o L @ [2]
Q
6} Tt Tt ] ] O’
WhereA andl are defined above ,, ,, ,and, are directadditive genetic variance, and
residual variances for traits 1 and@spectively; ang x. ,and, 7, are the

genetic and residual covariasdeetween traits 1 and Bespectively

(Co)variance components estimated from bivariate analysis were used to estimate heritabilities
(Q) for each trait‘Q  —, where, isthe direct additive genetic variance of a trait; gands

the phenotypic variance of the trait: » - Maternal additive genetic effects for the meat

and carcass quality traits analyzed were assuragligibleas indicated Y previous studies

(Miar et al., 2014)(Co)variance components were also used to estimate gangand

phenotypic ( ) correlations betweemeat and carcassaits: i ——— (parameters defined

above),andi ———— Where, Is the phenotypic covariance between traits:

;and, ,and, arethe phenotypic variance of trait and 2respectively.
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Significancefor heritability and correlation estimategredeclared using a 95% confidence
interval Confidence intervals were calculated using the following fornfDla:6 Qa w6 Q
P @ “YOwhereQi 0 "Qaai beCkither correlation or heritabilitytienates A 95%
confidence interval consists of all the values tratbetweei®2 i 0 "Qé& 1% Slandard errors
andQi 0 Q& dh.e6Qtandard errors and the probability thatpopulatiorparametewaluelies

within this confidence intervas:

0 AOOET ADB % DAOAT AABOET AR % mdov

All confidence intervals that do not contain a 0 vakezedeclaredsignificantly differentfrom 0O

with P-value< 0.05.

2.3.Results anddiscussion

2.3.1. Phenotypc statistics

A total of 21 traits were analyzed in this study, and out of these, 17 were meat quality traits and 4
were carcass traits. The carcass traits used are traits commonly tesg@sentarcass leanness
(LEA, FD, MD, and NSIF IMF)The desriptive statistics foeach tait werecalculatedand
abbreviations, number of records (M)inimum (Min.), mean,maximum (Max.) standard

deviation (SD), and coefficient of variation (CV), are recorded in TakleMinolta L*, a*, and

b* measurements were foundaweragedetweend3.9 (ILIOL, SD = 3.11)to 53.3(QUADL, SD

= 3.67) 2.5(QUADA, SD = 1.49Y0 16.0(ILIOA, SD = 2.16) and 8.34QUADB, SD = 1.41)

to 11.3(ILIOB, SD = 1.48) respectivelydepending on the specific muscle tyjokally,

Minolta L* measurements should be kit thepreferredrange of 38 to 5Go prevent the
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observance of pale, soft, exudate (PSE), and dark, firm, dry (DFD) meat ¢Ualitgrs, 2016)
The average Minolta L* measuremefus each muscle typeere within thisrange, with the
exception of hanguadriceps femorisvhichwas found to have the lightgdinolta L* = 53.3)
andalsopalest Minolta a* = 8.34 meat colour measuremenBoth utimate pH(5.87) andDL
(1.07%) had average values within optimal range6,bto 5.7, and €%, respectively{Towers,
2016) FD, MD, and NSIF IMF were each found to average 10.3 mm, 75.3 mm, and 1.46,

respectively.

2.3.2. Heritability estimates

Heritability estimates and their standard esr(8E) are reporteah the diagonah Table 2.2.
Heritability estimates for colour traiteary largely depending on the carcass cut andaleur
measurementatcolour measurements each showed low heritability estinla®dBIFATL
(0.09+0.03, LOINFATA (0.11+0.05, andLOINFATB (0.18+0.06. In general, meat colour
measurement®r Minolta L* and b*showed lowo moderatderitability, LOINL (0.11+0.09,
LOINB (0.23+0.08, GLUTL (0.27+0.08, GLUTB (0.30+0.08, QUADL (0.07+0.0%, QUADB
(0.06£0.09, ILIOL (0.12+0.06, andILIOB (0.09+0.09, and meat colour measurements for
Minolta a* showed moderate heritabilitj@OINA (0.44+0.09, GLUTA (0.42+0.09, QUADA
(0.31+0.08, andILIOA (0.25+0.08. In this study, estimates of heritability for LOINL
(0.11+0.06)were below the range of literature values (0.16 to 0.31), and LGON\N#+0.09)
estimates were slightly higher (0.21 to&).8e Vrieset al, 1994; Larzul et al., 199Buzuki et
al., 2005; Van Wijk et al., 2008/iar et al., 2014)Minolta colour measuremenfor loinfat and

ham components are novel trarighe literaturetherefordimiting the ability to compare results,
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but heritabilitiesfor hamMinolta L*, a*, and b*have been reportgateviouslyby Miar et al
(2014)for a commercial crossbred poptibn, and were also calculated fitve purebred Duroc
populationused in this studyHeidaritabayunpublished resultpersonal communicationh
comparison, heritability estimatés GLUTL, GLUTA, QUADA, QUADB wererelatively

similar for the crossbregopulation but notably,estimates foQUADL, ILIOL andILIOB were
found to be higher in therossbregopulationcompared to thpurebredoopulation(Miar et al.,
2014) In addition the animals used in this study were used in a second study, which estimated
genetic parameters usiagelationship matrix derived using imputetioleegenome sequence
(WGS) data. In theelated studyheritability estimatesor most meat qualy traits were higher
when WGS data was used (by 0.01 to 0.09 urbtg)notably, estimates f@LUTA, GLUTB,

and ILIOA, were found to bslightly higher inthis study compared to when WGS data was used
(by 001 to0.06 units) (Heidaritabay unpublishedesults personal communicatipnOthermeat
guality measuremenghowedmoderateheritability, 0.28+0.08 and 0.23+0.08 for pH and DL
respectivelywhichwereatthe high enaf theliterature ranges (0.07 to 0.39 and 0.01 to 0.31 for
pH and DL, respectivey) (de Vries et al., 1994; Larzul et al., 198(zuki et al., 2005; Van

Wijk et al., 2005 Ciobanu et al.2011; Miar et al., 2014Dverall these results show that the
Duroc breed has relatively high heritabilities for meat quality traits compared to other breeds,
suggesting that this breed could provide a significant opportunity for improving meat quality

traits in pigs, especially for loin and ham Minolta a*, DL, and pH.

In this study, heritability estimates for carcass composition traits were moderate, el Digh
(0.33£0.08), LEA (0.39£0.09), FD (0.39+0.08), and NSIF IMF (0.43£0.09), but these estimates
were on the low end of literature ranges with the exception of NSIFNMMIF(0.31 to 0.52),

LEA (0.36 to 0.47), FD (0.31 to 0.72), and NSIF IMF (0.23 to 0.44).
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Differences between heritability estimateghis study compared to other literature valcas
bedue todifferencesetweernthe breedsandpopulationsand theirenvironmens. Environmental
differences are of particular importance when comparing purebred populations with crossbred
populations, apurebreds housed mucleus farmsvill live under dfferent conditionscompared
to crossbred anidfs that are raiseth commercial conditionsl herefore, differenénvironmental
conditionswill interactdifferently with the samegenetic factorsand as a result tleameallele
can havedifferent effectonthe phenotypeepending oithe conditionsthe animal is raised
under(Wientjes & Calus, 2017)n addition, dfferences in thgenetc backgrounaf different
populationswill also affect heritability estimategor example, populations maiffer in allele
frequencieglue to different selection criteraadselectionintensity, or populations may contain
different alleleswith different effect sizes due teew mutations or variantomning into the
populationovergeneratios. Heritability estimates can also be affecteddifferences irthe
method of variance componeggtimatia or thestatistical model usefdr the analysis (fixed
effects, random effects, or relationship matri¢gd4&thevonet al, 1998; Wilson, 2008)The
relationship matrix is of relevance et comparinghe results of this study, which used a
pedigree derived relationship matrio those using WG8ata Heritability is estimatedrom the
resemblance between relativscomparing thie genetic relationshigvith their phenotypic
correlation(Visscher et al., 2006When pedigree data issed expected relationshigstimates
across the entire genorageconsideregdbutwhen genetic markers are ugedestimate
relationshipsthe proportion ogenomicmarkers shareldetween animals considered-or
examplefull sibsare expected to shab@% of alleledy identity-by-descent (IBD), however
due to Mendelian samplinghesesiblings may actually share between 40% to 60% of their

genomeand f siblings that shar60% proportion of their genomare more phenotypically
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similar thanthe siblings that share 40% of their genome, then the trait will be more strongly
influenced by genetics (higher heritabilify)/ray & Visscher, 2008)Therebre, n the case that
pedigree data igsed phenotypic variancemay beincorrectlyattributed to the environment
residual variangereducing the estimated heritability for the trait. FurtidrenWGS datais

used to estimate relationships, the entitd the additive genetic variance is expected to be
accounted for, a®/GS datas assumed tmcludeall of the causative mutations responsible for
theadditivegenetic variation of the trafMeuwissen & Goddard, 2010yherefore genetic
parameters estimated using WGS dditauld provideéhe most accuratestimateof

relationships between animadsd theheritabiliiesedimated using WGS data should be higher

compared to those estimated udinger density genotypes or pedigree data

2.3.3. Correlationestimates

Correlations among meat quality traits

Genetic (below diagonal) and phenotyfabove diagonal) correlationgtwveen meat and
carcass traits (xSE) are reported in Table [b.2ome casephenotypic correlationsan be
substituted for genetic correlations when the latter arpneciselyestimatedprecise estimates
require large samples sizebjowever, in thistudy, many genetic correlations were statistically

significant, and therefore phenotypic correlationk not be discussed here

Meat colour measurements were moderately to highly correlated with eacmothbéty
LOINL with GLUTL (0.75%0.24) QUADL (0.83+0.36) and ILIOL (0.96£0.23) LOINA with

GLUTA (0.62+0.11) QUADA (0.65+0.14) and ILIOA (0.50+0.1¢, andLOINB with GLUTB
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(0.76+0.14) QUADB (0.94+0.24) and ILIOB(0.57+0.26) Further,Minolta L*, a*, and b*
measurements the remainingnuscle tyes displayed similar trends (Table 2 Rglatively

large and ignificantrelationshipsvere also observdaetween colour traits Miar et al (2014)
LOINL with GLUTL (0.45+0.15, QUADL (0.66+0.13, and ILIOL (0.39£0.14, LOINA with
GLUTA (0.55£0.1), QUADA (0.53+0.13, and ILIOA (0.43£0.16, and LOINB with GLUTB
(0.39+0.2), QUADB (0.71£0.19, and ILIOB (0.48%0.17. These results show thsglectionfor
Minolta L*, a*, or b* colour in one musclg/pe, will cause corresponding changes to the same
colour neasurement inthermuscle typesTherefore, if meat colour preferences e same
across different muscle types, then measurement of only one of the correlated traits is required
for improvement across traits in the breeding progRmvious studies ka reported a strong,
significant correlation between LOINL and LOINB.51 to 0.6)(Van Wijk et al., 2005Miar et
al., 2014)for which a similar relationship wadso observed in this stud.55+0.2).

Additionally, significant correlationsvere observeah this stidy between GLUTL and GLUTB
(0.90+0.06) andILIOL and ILIOB (0.59+0.24, as well as other studi¢8.56+0.14 and

0.92+0.01, respectivelyMiar et al., 2014¥5howing thapaler porkproductsareadditionally

more yellow in colourLoin fat colour measurements did not show significant correlations with
many meat quality traits, LOINFATA with LOINFATB).87+0.11) and LOINFATL with

ILIOL (0.74+0.35)showed the only significarcorrelationsAs mentioned above, these are

novel traits that have not been falto be recorded in the literature fmwmparisons

Some Minolta colour traits were found to have moderate to strong negative correlations with pH
and positive correlationsithh DL, notablypH with LOINL (-0.78£0.15) LOINA (-0.54£0.15)
and LOINB(-0.80+0.12), and DL with LOINL (0.67+0.24), LOINA (0.38+0.18,), and LOINB

(0.69£0.17) Similar trends were observed for GLUT and QUAD L*, a*, and b* colour traits
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with pH and DLin this study and by Miar et .ga2014) This relationship is well supported in the
literature and in the pig production industry due toiticédence of ple, soft, and exudative
(PSE)as well aglark, firm, and dr{DFD) porktraits. Palerpork tends tocome from muscles

with predominatelywhite, fast twitch muscle fibers, which are mainly sustainedrtaerobic
glycolysis(Choe et al.2007). Muscleswith a high proportion of these fiber types have rapid and
extensive pH declinpostmortem resulting in egessive protein denaturation and water release
and PSE porkSimilarly, dark pork tends toome from muscles with predominategd, slow
twitch muscle fiberswhich are sustained by aerobic respirati©hoe et al., 2007 Muscles

with a high proportiorof these fiber types have slow pH decline pasttem, resulting in water
retention, and DFD por{Seidemaret al, 1984 Mancini & Hunt, 2005) Additionally, a strong
significant correlation between pH and PD.65+0.16 was observed in this studyhis
relationship is well supported by literature estimates of coroalgiiranging betweef.13to -
0.99depending on the populatictechnique used for trait measurememtd the time of
measuremep{Van Wijk et al., 2005Schwabet al, 2006 Ciobanu et al., 2011; Miar et al.,
2014) as wd as by thebiologicalknowledge mentioned aboy8eideman et al., 198¥ancini

& Hunt, 2005) Therefore, pHcanpotentally be used as an indicator trait for improvement of

DL.

Correlations among carcasstraits

Thetwo measures ofarcass muscléEA andMD, were highly and significantly correlated
(0.94+0.04, butneither showed a significant correlation with.farbling score (NSIF IMF)

waslow to moderatelyorrelated with FD (0.36+0.1Futalsodid not show a significant
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correlation withMD or LEA. These values fit within literature ranges, MID/LEA and FD
havecommonlybeen found to have a negative relationsagpyaluehavebeenshown torange
betweer.00 to-0.39 (Van Wijk et al., 2006Schwab et al., 20Q0&iobanu et al., 2011; Miar et

al., 2014)

Correlations among meat quality and carcasstraits

Fewsignificant correlations were observed betwdemeat quality and caass traits analyzed.
However, two moderate anshfavorable correlationsereidentified between LEA with GLUTL
(0.38+£0.18)and ILIOA (-0.43+0.19, suggesting selection for increased muscle could have led to
paler meat in these muscle typé&his is suppoed by biological data, aspid and extensive

muscle growth is associated wdh increased proportion tdst twitch muscle fibersvhich

contain less myoglobin and thus appear paler in cg®hioe et al., 2008; Choi & Kim, 20Q9)
However these results are in contrast to those of Miar (2014), which found a low positive
correlation between LEA and GLUTD.12+0.03), and no significant correlation was found
between LEA and ILI@.. Due to thdargerSEshown in this studythe correlations amongeat

quality and carcass traits from Miar (2014) may be closer toibealues.

2.4.Conclusions

Carcass quality measurement and selection has been essential in improving the dégankss
products However,most meat quality traits have nobmmonly been inclued in selection
programs due to the difficulty and expen$eepeatedneasurementhereforeGS provides a
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significant opportunity to incorporate these traits into breeding progimsesults of this

study supported the original hypothesitmeat aality traits are controlled in part by genetics
(h? > 0), and that relationships among meat quality and carcass traits are in part due to shared
genetic determinants between the trags (). Specifically, bw to moderatderitabilitiesfor

meat qualiy traits were observed this studyindicaing rapid andsignificant improvements to
these traitss possibleln addition, sronggeneticcorrelations between colotraitsand different
muscle types, as well as pH and Blggest that the improvemeftone trait will cause similar
changes in the correlated trédpecifically,due to the difficulty and expense of measuring DL
phenotypes (requires carcass destructiomprovement of DLinstead can baccomplishedby
theindirectselectiorfor pH. Fewnegative correlations between carcass and meat quality traits
analyzedsuggest thaboth can be improved simultaneously to produce a-gigtlity lean

product. Duroc animals are known for their excellent meat quality traits, and this study has
shown thathe breed alsprovidesan idealgeneticbase for which to make improvements to
meat quality in Canadian pig®verall, these results provide&formation on meat and carcass
traitsthatcanbe usefulto breeders fothe identification of valuable indicattmait(s) for meat

guality and for selecting the best pardotsgenetic improvement of these traits
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Tables and figures

Table 2.1. Descriptive stastics for meat and carcassuality phenotypes in purebred pigs:
abbreviation, number of animals (N), minimum (Min.), mean, maximum (Max.), standard

deviation (SD), and coefficient of variation (CV).

Trait Abbreviation N Min. Mean Max. SD CV (%)

Loin! Minolta L* LOINL 997 41.90 48.10 55.7 2.52 5.24
Loin Minolta a* LOINA 997 1.07 4.59 8.75 1.12 24.9
Loin Minolta b* LOINB 997 5.95 9.37 13.90 1.22 13.0
Loin fat Minolta L* LOINFATL 993 70.9 79.00 84.6 2.34 2.96
Loin fat Minolta a* LOINFATA 993 -0.50 3.00 12.40 1.61 53.0
Loin fat Minolta b* LOINFATB 993 5.9 10.90 17.20 1.76 16.20
Hamgluteus mediuMinolta L* GLUTL 997 39.90 47.40 57.20 2.66 5.61
Hamgluteus mediuMinolta a* GLUTA 997 1.20 5.51 9.60 1.26 22.9D
Hamgluteus mediuMinolta b* GLUTB 997 5.40 8.91 12.10 1.11 12.9
Hamquadriceps femoriMinolta L* QUADL 996 36.90 53.20 68.90 3.67 6.89
Hamquadriceps femoriMinolta a* QUADA 996 -1.00 2.50 10.9 1.49 59.60
Hamquadriceps femoriMinolta b* QUADB 996 4.70 8.34 14.9 1.41 16.9
HamiliopsoasMinolta L* ILIOL 996 34.0 43.90 55.60 3.11 7.08
HamiliopsoasMinolta a* ILIOA 996 8.80 16.00 23.(0 2.16 13.9
HamiliopsoasMinolta b* ILIOB 996 7.10 11.20 15.80 1.48 13.10
Ultimate pH ph24 996 5.52 5.84 6.59 0.16 2.74
Drip loss (%) DL 997 0.27 1.07 5.2 0.49 45.8
Loin muscle area (cf LEA 996 26.90 57.10 74.9 5.75 10.10
Backfat depth (mm) FD 997 4.00 10.20 19.0 2.45 23.9
Loin depth (mm) MD 997 58.00 75.9 92.0 4.78 6.35
NSIF marblingscore NSIF IMF 997 0.00 1.46 3.00 0.59 40.9

Longissimus thoracis et lumborum
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Table 2.2. Estimates for heritabilities (diagonal)as well asgenetic (below diagonal), and
phenotypic (above diagonal) correlations + standard error (SE) for meat and carcass
quality phenotypes in purebred pigs.

Trait LOINL LOINA LOINB LOINFATL LOINFATA LOINFATB GLUTL GLUTA

LOINL 0.11+0.06 0.33+0.03 0.74+0.02 0.11+0.03 -0.13+0.03 -0.10+0.03 0.32+0.03 0.09+0.03
LOINA -0.03+0.29 0.44+0.09 0.78+0.01 0.01+0.03 -0.02+0.03 -0.06+0.04 0.11+0.04 0.39+0.03
LOINB 0.55+0.21 0.7840.08 0.23+0.08 0.03+0.03 -0.08+0.03 -0.06+0.03 0.25+0.03 0.26+0.03
LOINFATL 0.52+0.36 -0.08+0.29 0.26+0.33 0.09+0.05 -0.62+0.02 -0.33+0.03 0.09+0.03 -0.04+0.03
LOINFATA 0.01+0.39 0.04+0.26 0.02+0.31 -0.46+0.30 0.11+0.05 0.73+0.02 -0.02+0.03 0.01+0.03
LOINFATB  0.17+0.33 -0.09+0.22 0.01+0.26 -0.28+0.32 0.87+0.11 0.18+0.06 -0.04+0.03 -0.02+0.04
GLUTL 0.75+0.24 0.20+0.19 0.59+0.21 0.26+0.30 0.16+0.29 -0.18+0.24 0.27+0.08 0.04+0.04
GLUTA 0.11+0.27 0.62+0.11 0.45+0.18 -0.16+0.29 0.08+0.26 -0.01+0.22 0.22+0.D 0.42+0.09
GLUTB 0.70+0.23 0.57+0.14 0.76+0.14 0.32+0.30 0.16+0.28 -0.10+0.24 0.90+0.06 0.63%+0.12
QUADL 0.83+0.36 -0.35+0.40 0.14+0.37 0.54+0.43 -0.35+0.41 -0.19+0.37 0.74+0.30 0.18+0.31
QUADA -0.19+0.29 0.65+0.14 0.43+0.20 -0.12+0.31 0.33+0.27 0.10+023  0.16+0.21 0.58+0.14
QUADB 0.47+0.41 0.78+0.23 0.94+0.24 0.47+0.45 -0.04+0.44 -0.08+0.39 0.61+0.49 0.68+0.23
ILIOL 0.96+0.23 -0.27+0.26 0.26+0.28 0.74+0.35 -0.42+0.34 -0.37+0.28 0.73+0.22 -0.16%0.26
ILIOA -0.13+0.32 0.50+0.16 0.20+0.24 0.53+0.35 -0.050.30 0.09+0.25 -0.01+0.23 0.35+0.19
ILIOB 0.81+0.28 0.29+0.25 0.57+0.26 0.89+0.51 -0.54+0.38 -0.28+0.34 0.64+0.27 -0.02+0.30
ph24 -0.78+0.15 -0.54+0.15 -0.80+0.12 0.02+0.33 -0.27+0.30 -0.30+0.24 -0.60+0.17 -0.38+0.18
DL 0.67+0.24 0.38+0.18 0.69+0.17 -0.03+0.35 0.08+0.31 -0.01+0.26 0.68+0.17 0.37%+0.19
LEA 0.12+0.27 0.11+0.18 0.28+0.21 0.18+0.28 0.33+0.28 0.19+0.22 0.38+0.18 -0.09+0.17
FD 0.25+0.26 0.30+0.16 0.46+0.18 0.37+0.29 -0.80+0.20 -0.46+0.20 0.03+0.19 0.13+0.17
MD 0.21+0.28 0.13+0.18 0.25+0.22 0.58+0.23 -0.20+0.26 -0.06+0.23 0.36+0.19 -0.06%0.18
NSIF IMF 0.11+0.33 0.22+0.20 0.21+0.25 -0.05+0.35 -0.24+0.30 0.10+0.27 -0.18+0.24 0.01+0.22
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Table 2.2. Continued

Trait GLUTB QUADL QUADA QUADB ILIOL ILIOA ILIOB

LOINL 0.29+0.03 0.29+0.03 0.03+0.03 0.22+0.03 0.31+0.03 0.06+0.03 0.28+0.03
LOINA 0.29+0.03 0.10+0.03 0.28+0.03 0.23+0.03 0.10+0.03 0.27+0.03 0.23+0.03
LOINB 0.37+0.03 0.21+0.03 0.18+0.03 0.28+0.03 0.23+0.03 0.16+0.03 0.28+0.03
LOINFATL  0.01+0.03 0.04+0.03  -0.04+0.03 0.01+0.03 0.09+0.03  -0.05+0.03 0.05+0.03
LOINFATA  0.02+0.03 -0.02+0.03 0.02+0.03  -0.01+0.03  -0.09+0.03 0.02+0.03  -0.06+0.03
LOINFATB  0.02+0.03 -0.02+0.03 -0.03%+0.03 0.01+0.03  -0.11+0.03 0.01+0.03  -0.07+0.03
GLUTL 0.69+0.02 0.22+0.03 0.04+0.04 0.16+0.03 0.23+0.03  -0.01+0.03 0.17+0.03
GLUTA 0.58+0.02 0.14+0.03 0.32+0.03 0.26+0.03 0.07+0.03 0.24+0.03 0.19+0.03
GLUTB 0.30+0.08 0.20+0.03 0.19+0.03 0.27+0.03 0.21+0.03 0.13+0.03 0.26+0.03
QUADL 0.64+0.34  0.07+0.05 -0.05+0.033 0.55+0.02 0.21+0.03 0.01+0.03 0.16+0.03
QUADA 0.33+019  -0.99+0.40 0.31+0.08 0.61+0.02 -0.04+0.03 0.31+0.03 0.12+0.03
QUADB 0.92+0.27 -0.48+0.80 0.78+0.21 0.06%0.05 0.10+0.03 0.19+0.03 0.18+0.03
ILIOL 0.60+0.23 0.99+0.31 -0.46+0.23 0.58+0.46 0.12+0.06 0.12+0.03 0.73+0.02
ILIOA 0.04+0.23 -0.44+0.40 0.51+Q17 0.27+0.35 -0.74+0.25 0.25+0.08 0.60+0.02
ILIOB 0.47+0.26 0.52+0.41 0.01+0.30 0.68+0.43 0.59+0.24 0.17+0.32 0.09+0.06
ph24 -0.62+0.15 -0.30+0.32 -0.27+0.20 -0.47+0.30 -0.09+0.29 -0.32+0.22 -0.47+0.25
DL 0.53+0.19 0.47+0.30 0.47+0.19 0.92+0.26 0.45+026 0.03+0.25 0.51+0.27
LEA 0.31+0.19 0.08+0.32  -0.24+0.18 0.07+0.34 0.27+0.24 -0.43+0.19 -0.20+0.29
FD 0.10+0.19 0.22+0.28 0.04+0.19 0.37+0.31 0.22+0.25 0.10+0.20 0.42+0.29
MD 0.35+0.19 -0.01+0.34 -0.15+0.20 0.09+0.35 0.39+0.25 -0.23+0.21 0.02+0.30
NSIF IMF -0.05+0.24  0.48+0.41 -0.37%+0.23 0.42+0.34 0.03+0.26 0.01+0.20 0.03+0.29
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Table 2.2. Continued

Traitt ph24 DL LEA FD MD NSIF IMF

LOINL -0.54+0.02 0.35+0.03 0.15+0.03 0.12+0.03 0.18+0.03 0.08+0.03
LOINA -0.36+0.03 0.26+0.03 0.05+0.04 0.14+0.04 0.03+0.04 0.11+0.04
LOINB -0.49+0.03 0.41+0.03 0.13+0.03 0.17+0.03 0.14+0.03 0.12+0.04
LOINFATL -0.07+0.03 0.04+0.03 0.08+0.03 0.09+0.03 0.13+0.03 0.01+0.03
LOINFATA 0.03+0.03 -0.01+0.03 -0.05+0.03 -0.26+0.03 -0.13+0.03 -0.14+0.03
LOINFATB 0.04+0.03 0.0140.03 -0.01+0.03 -0.24+0.03 -0.08+0.03 -0.13+0.03
GLUTL -0.30+0.03 0.20+0.03 0.11+0.04 0.01+0.04 0.08+0.04 0.04+0.04
GLUTA -0.18+0.04 0.13+0.04 0.01+0.04 0.03+0.04 0.01+0.04 0.03+0.04
GLUTB -0.26+0.03 0.19+0.03 0.11+0.04 0.02+0.04 0.11+0.04 0.05+0.04
QUADL -0.26+0.03 0.21+0.03 0.10+0.03 -0.03+0.03 0.07+0.03 0.02+0.03
QUADA -0.20+0.03 0.17+0.03 -0.05+0.04 -0.01+0.04 -0.05+0.04 0.06+0.04
QUADB -0.27+0.03 0.22+0.03 0.02+0.03 0.01+0.03 -0.01+0.03 0.06+0.03
ILIOL -0.26+0.03 0.21+0.03 0.13+0.03 0.09+0.03 0.08+0.03 -0.01+0.03
ILIOA -0.14+0.03 0.12+0.03 0.01+0.04 -0.03+0.04 -0.03+0.04 -0.01+0.04
ILIOB -0.30+0.03 0.22+0.03 0.11+0.03 0.05+0.03 0.05+0.03 -0.03+0.03
ph24 0.28+0.08 -0.38+0.03 -0.08+0.04 -0.05+0.04 -0.08+0.04 -0.01+0.04
DL -0.65+0.16 0.23+0.08 0.05+0.04 -0.01+0.04 0.01+0.04 -0.02+0.04
LEA 0.06+0.20 -0.09+0.21 0.39+0.09 0.05+0.04 0.70+0.02 -0.01+0.04
FD -0.10+0.19 0.16+0.20 0.10+0.17 0.39+0.08 0.05+0.04 0.41+0.03
MD -0.10+0.21 -0.09+0.22 0.94+0.04 0.30+0.17 0.33+0.08 0.37+0.03
NSIF IMF -0.07+020 0.02+0.21 0.09+0.17 0.36+0.15 0.12+0.23 0.43+0.09

Note: Significant values (Ralue < 0.05) are bolded.

LLOINL = Longissimus thoracis et lumborutoif)Minolta L*; LOINA = Loin Minolta a*; LOINB =
Loin Minolta b*; LOINFATL = Loin fat Minolta L*; LOIN FATA = Loin fat Minolta a*; LOINFATB
= Loin fat Minolta b*; GLUTL = Hamgluteus mediuMinolta L*; GLUTA = Hamgluteus medius
Minolta a*; GLUTB = Hamgluteus mediuMinolta b*; QUADL = Hamquadriceps femorisinolta L*;
QUADA = Hamquadriceps femorisinolta a*; QUADB = Hamquadriceps femoridinolta b*; ILIOL
= HamiliopsoasMinolta L*; ILIOA = HamiliopsoasMinolta a* ILIOB = HamiliopsoasMinolta b*;
ph24 = Ultimate pH DL = Drip loss (%) LEA = Loin muscle area (cfjt FD = Backfat depth (mm)
MD = Loin depth (mm)NSIF IMF = NSIF marbling score.

The significant correlations are bolded (P < 0.05).
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Chapter 3. A genomewide association studyGWAS) for drip loss (DL) in
commercial crossbred pigs

3.1. Introduction

Drip loss(DL) or purge theloss of wateandsolubleproteirs during postmortem storages an
economially important traitfor pork processors and retailéosmeet a high level of quality
standards domestically, and to further expand into high value export méketssiveDL has
negative casequences gorofitability, andnutritional contentas both product weight and
muscle proteins are loduringthe proces§Offer & Knight, 1988; Savage, 199®urther,
consumergommonlyprefera pork product with no drip, as excessdrip gives the reat an
undesirable watery appearandamninishing the attractiveness of thgroduct DL alsohas
unfavorablecorrelatons with important cooking and sensory traits, ceoking lossand
tendernedshear force0.14+0.03and-0.10+0.03 respectivelywhich can affect eating
experience and willingnesd consumerso repurchase the produ®gapo et al., 20QMiar et
al., 2014. Unacceptably higlbL is most often observed in pakaft, and exudativePSE)pork
productscorrespondig to DL measurements greater tHé (Towers, 2016andcauses
estimatedosses of $12 per carca$3CS|, 2001) Therefore, educing the amount &L

postmortem would havienportanteconomic benefits for the popgtoduction chainn Canada

Both environmental and genetic factors influence pork quality traits sugh.akherefore DL

can be improveth partby environmentamanagemenilhe environmental factors influencing

DL are well established r@slaughter transport and handli(@hannoret al, 2000Bal t i | et
2014) andtherate of carcass temperature decpostslaughtei(Holmeret al, 2008;

Rybarczyk.et al,2015)each playsignificantrolesin determininghe extent of product purge
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Even so, gnetic factors also play an important role in determining meat quality Daitsaits
havelow to moderateheritability (0.08 to 0.2) depending upon the specific breed or population
(de Vries et al., 19947an Wijk et al., 2005Miar et al., 2014)Specifically, he data used in this
study is part of a previous study by Miar et(2D14), which found DL to be moderately
heritable(0.21+0.09) demonstratinghata proportion of itgphenotypicvariability can be
explained by genetiqMiar et al., 2014)Further dleles of theryanodine receptor {RYR2)

(Otto et al., 2007)protein kinase AMRactivated norcatalytic subunit gamma @RKAG3
(Zhang et al., 2015pandcalpastatin(CAST) (RopkaMolik et al., 2014)geneshaveeachbeen
shownto effectDL phenotypesKnowledgeon the biological factors influencing meat quality
phenotypeprovides a significant opportunity to make considerable genetic gaimetetraits,
asin pig breeding programs, complex traits such as DL can metigally improved by selection
based on thknowngenetic factorssuch as genes and causative mutaijGusldardet al,

2016) However, aside from thesxamples, elatively few genes have been found associated
with DL, meaningalargeproportion ofthe total genetic variance for the tratnains
unaccounted forTherefore DL is a good candidate fgenomicanaly®s, such as genomaide

association studs (GWAS)

GWAS hasbeen arery successful technigue ustmidentify many newquantitative trait loci
(QTL) that are associated witomplex trais. GWAS uses dens&nglenucleotide
polymorphism(SNP) markesto identify associations betweamrkergerotypesand
phenotypesResults fromGWAS provide significant opportutgsto learn about the genetics
underlying these trai@sit canbe used to identify specific genes amghortantbiological
pathwaysanfluencingthetrait, as well as reveal the gemearchitecture underlying the trait

(Korte & Farlow, 2013Goddard et al., 2016] hereforgthe goal of this study was to identify
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the QTL and the potential canlidite genes underlying Ddhenotype®sbserved in a Canadian
crossbred commercial pig populatid@ince DL is known to beeritable and in part determined

by genetic factors, it is hypothesized that at least one marker should be significantly associated
with the trait.The results of this study calsubsequentlige used for practiturposesfor the
implementation int@enetic selectioprogramsandto expandhebiologicaland genetic

knowledgeof the trait

3.2. Materials and methods

3.2.1.Data

Animals

This projectwasapproved by the University of Alberta Animal Care and Use Commikte=
animalsusedin this study were raisesh a commercial hertbllowing the Canadian Quality
Assurance program and tB&anadian Council on Animal Care (CCAC) guideBCCAC,

2020)

A total of 1098 commerciakrossbred pigsriginatingfrom a Canadian breeding company
(Hypor Inc.Regina, SK, Canadlavereused for this study. The pigesultedirom athreeway
cross betweeaDurocsireanda F1 hybriddam(Landrace X Large WhiteYhis threeway
cross represengsmajor proportion of the commercial lines in Canadian pig produdiseding,
raising, and slughter protocol have been described in previous st(Mies et al., 2014Zhang

et al.,, 2015Yang et al., 2017)
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Phenotypes

Protocol for measurement of DL phenotypes was described previouklg thesifChapter 2

Section 2.2.1.).

Genotypes

DNA was extracted from tissue samp{earpunch)usingt h e ma n ugraocad (Therewo 6 s
Fisher Scientific Ltd., O#iva, ON, Canada)senotyping was performed by Delta Genomics
(Edmonton, AB, Canadajsing the lllumina Porcine SNP60 V2 genotyping beadchip (lllumina
Inc., San Diego, CA, USA). Qility control for genotyping datexcludced SNPswith the

following featuresminor allele frequencyMAF) < 0.01, genotype call rate 8.95 departure

from HardyWeinbergEquilibrium (test d genotyping accuracy 0.15(Wiggans et al., 2009;
Misztal et al, 2018) andduplicatedor unmapped SNPSex chromosonsgX and Y)werealso
excluded Any missing genotypes were imputed using FImpute versio(Sagjolzaeet al,

2014) After filtration of the total number of 6265 SNPs40,438 SNPsand 951 animalbad

adequate genotype and phenotype recimmdsubsequent analgs

3.2.2. Population stratification

In GWAS, spurious associations have been attributed to a mixture of multiple subpopulations
that have differing allele frequencies for SN#Pd differing phenotypic valugéManolio et al.,
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2009) Therefore, pncipal component analysis (PCA) was used to test the population
substructure for stratificatio®nalysis was conducted usitige statspackage version 3.7i@ R

software(lhaka & Gentleman, 1996)

3.2.3. Statistical analysis

The significance of fixed effects and covariates was deternuisiad Wald F. statistics in
ASReml softwargand factorsvith P-value< 0.05 werancorporated into the statistical model
(Gilmour, 2015) A single SNPGWAS (single marker GWAS)which uses a genomic
relationship matri{GRM, G), wasperformed Thefollowing statisticalmodelwas usedn

ASReml softwaréGilmour, 2015)
« Ly ALl ca g [1]

Whereyis a vector of phenotype valudsis a vector of onesris the overall meaof DL
phenotypesX is a design matrix that relates fixed effects to observatibissthe vector of fixed
effectsincluding pen duringdst @pproximately70i 115 kg) and contemporary group
(consisting ofklaughteorder and year of slaughtgp) is a design matrix associatiggvith
response variableg;is the vector ofandomadditive genet effectsthat is assumed to be
normally distibuted v is a vector is SNBenotypesoded 0, 1, 2a is a vector of additive SNP
effects;andeis a vector of residual effectisat is assumed to be normally distribut€de
additive genetic effects and the residual effects are both assumed toniadiynor

distributed] * G Ty,  that accounted for thgo)variances between individuals due to

genomic relationshipgg® 0 mh & frespectively, Were, and, are the additive genetic
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and residual variances, respieely, G is the realized genomic relationshgmdl is an identity

matrix. The G matrix was constructed using GCTA softwéranget al, 2011) The formula for

calculation of thés matrix is as follevs: ! - B , WwhereAi is agenome

wide relationshifpetween individual j and; N is the total number of SNP%; is the SNP
genotype coded 0, 1,dt the " individual atthe " SNP, x is a SNP genotype coded 0, 19f2

the K" individual at the'f SNP;and pi the allele frequencyf thei” SNP(Yanget al., 2011)

3.24. Plots and ®rrection for multiple testing

To account for population structutbe GWASP-values for each SNP was corrected for their
corresponding genomic inflation factor (lambt, Quantilequantile (QQ) plot for each trait
was used to assess the inflation efédfues by comparing the genome wide distributiodagf10
of theP-values with the expected median of the corresponding normal distrib@eoomic
inflation factor () was calculatetdy dividing median observed. by the median expected

... with 1 degree of freedom assum@&te ... test statistics were compdtom the Pvalues.
Manhattan plots were also constructedisplaythe-log10 (Rvalues)of SNPs with respect to
their genomic positiofMbp). Both QQ andManhattarplotswere constructed using the R

packagejgman(Turner, 2014)

Bonferroni correctionwas used tavoid false positives due to multiple testunging the

~

. . s e A o om v 0 .
following formula(Welleret al, 1998)" T 1T £ZADDO O HA OA A OA wherea is the

type | error threshold; and is thetotal number of SNPsThresholds of 10% and 5% type | error

were used to declare suggestive and generde significancerespectively
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3.2.5. Quantitative trait loci detectionand functional analysis

The associations detected by GWAS are being caused by either theitB\ie lowest Pralue
or a nearby SNP that imked with it, thereforethe region surrounding tH&NPwith the lowest
P-valuewas searched for potgal candidate genekl.is expected that the SN#th the lowest
P-valueand the surrounding SNiRsay be in linkage disequilibrium (LD). Therefof@TL were
defined asa 1 Mbp window surroundintpe SNPwith the lowest Rralueidentifiedby GWAS
(0.5 Mbpon each side of the SN 0.5Mbp regionwas choselbecausen crossbred pig
populationghe averag&D (r?) for distances up to BMbp is 0.15 (Badkeet al, 2012; Grossi et
al., 2017) Therefore genetic loci locatedip t00.5 Mbpfrom the SNPsvith the lowest Rralues

were analyzed, as the linkage within this region is considered high despite some LD decay

ThepotentialQTL regions identified in thistudy werecomparedvith previouslyidentified

QTL in the pigQTL databag#lu et al., 2005)QTL thatoverlappedvith genomic regions
previously foundo be associated witbL, or highly correlatedraitssuch as water holding
capacity (WHCthe abilityof meat to retain watarpon the application of external pressures),
and pH,could provide additionadvidencefor the associationsith the lowest Rralues

identifiedin this study

QTL regionswerefurther examinedior candidate genessing the NationaCenter for
Biotechnology Informatiomatabas€NCBI) (http://www.ncbi.nlm.nih.goyand Ensembl
Genome Browsehttp://www.ensembl.org)The functional informatiofor candidate genes was
inferredfrom the NCBI genedatabaséhttp://www.ncbi.nlm.nih.gov)GeneCards: The Human

Gene Databag@ttp://www.genecards.orgyas also usetb determine gene functias the
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biological functionof human genes i®lativelywell established and likely to translate to
livestock If no functional candidate gene was idéat, thegene nearest to tIf&NP (up to 0.5

Mbp) with the lowest Praluewas assessed.

3.3. Resultsand discussion

3.3.1. Phenotyjic statistics

The descriptive statistics for the DL phenotype used in the current study were determined. DL
was measured d@ise percentage of total volume of fresh loin muscle lost over a time period of
48-hours. A total of 108 animalswerecharacterized for phenotypethis study and the

following descriptive statistics were calculatedinimum of 0.086, mean of 1.1%, maxmum

of 4.43%, standard deviation of 0.568nd coefficient of variatiofCV) of 48.38%.

3.3.2. Principal componentanalysis

Figure3.1 showsa plot ofthe first two principal components frottne PCA. No subpopulations
or outliers were observed for thisaysis, implying little to no stratification in the population.
These results were expected as all the animals originated from the same farm and breeding

population. Therefore, no principal components were included in subsequent analysis.
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3.3.3. Genomewide association study

Figure3.2 shows théManhattan ploand the corresponding-Q plotfor a GWAS onDL.

40,438 SNPs were tested for association with the thaityever no SNPsshowed significance at
either 5%(P-value< 1.2x10°) or 10%(P-value< 2.5x10°) false positive ratesind the genomic
inflation factor was largely deflated (0.76)onetheless, & Mbp region surroundg five SNPs
(0.5 Mbp each sideyith the lowest Rraluewas studiedurther. Five such regionsn SSC 2, 3,
13, and 14 showethe SNPs with the lowest\Rlues € 5x10-4), and explained between 0.97 to
2.12% of the total phenotypic variance for the trait (Table .3JT)L regions were defined as a

0.5 Mbp on each side of the SNPs with the lowegalBes.

3.3.4.Comparison with previous results

Relatively few QTL have been recorded in the literature for DL, how®ltedoes showhigh
negativegenetic correlations witVHC and pH % -0.9), indicatingeitherpotential pleiotropyor
high LD between the genes controllittge diff erenttraits (Jennen et al., 2007; Miar et al., 2014)
thus providing somadditionalsources for comparisons of resuRsevious GWAS have
identifiedQTL for DL onSSC1, 4, 5, 6, 9, 13, and 1®a et al., 2013; Nonneman et al., 2013
Liu et al., 2015Casir0 et al., 2017)WHC onSSG8 (Sato et al., 2016and pH orSSC1, 2, 3,
4,6,7,9,10,11, 13 15 and 17Ma et al., 2013; Nonneman et al., 2013; Liu et al., 2dbang

et al., 2015Sato et al., 2018Zasir0 et al., 2017; Verardx al, 2017 Heidaritabayunpublished
results personal communicationAlthough there is chromosomal olagy between the QTL
identified inthedifferent studies, then@asvery little overlap betweeany ofthe QTLpositions

The exceptioreingthe regioncontainingPRKAG3 locatedon SSCG15, which was found to be
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associated with DL and pH in multiple stusi{ghang et al., 2013Casir6 et al., 2017; Verardo et

al., 2017 Heidaritabay unpublished resultpersonal communication

Therewasasingle case obverlapthatwasfoundbetweeroneQTL identified inthis studyanda
QTL that wa found to be significantly associatadth pH in the results oHeidaritabar
(unpublished resultpersonal communicationin the indicatedtudy, asingle SNPGWAS
usingwhole-genome sequen¢®/GS)datawas performedwhich incorporated the data of the
commercial crossbred population frahis study combined withdata froma secondpopulation
of purebred Duroc pigdhe results identified QTLon SSG2 that was significantly associated
with pH (Heidaritabay unpublished resultpersonal communicationand this regioverlapped
with one of theregiors with thelowest RPvaluesidentifiedin this study(SSG2, position 150.8 to
151.8)(Table 3.1)Nonethelessdt is alsoimportant to note thadlthough the marker panel
density and sample sizeeremuchgreaterin the study byHeidaritabar(unpublished results
personal communicatidnthere were stilho significant QTL identified for DI(discussed

further below)

Overall, these results suggest that sirgjdP GWAS, such as the one performed in thidystu

are greatly underpowered in their ability to detect significant associations for traitweth

effect variantor variants that explain a small proportion of the total genetic variation, limiting
the ability to learn more about the genetics oftthé. Increasing samples size hassome
casesheenfoundto linearly increase the number of significant SNPs discovered after a
minimum sample size threshold has been reafVisdcheret al, 2012) Increasing SNP panel
density has also successfully increased thebaurof significant SNPs detected by GWAS by
increasing the number of markers in linkage disequilibrium (LD) with causal mutations as well

as increasinghe strength otheirassociatior{Daetwyler et al., 2014yan et al., 201;7Van Den

78



Berg et al., 2019However,consideringhe results from the GWAS performed Hgidaritabay
(unpublished resulipersonatommunicatiol, the highersample size and marker panel density
werestill not sufficient to identify genomic regions significantly associated with DL. This
emphasizes that DL is likely to be a highly polygenic (quantitative) trait that is controlled by
many genesvith very small effectsThereforejn subsequent studig®/GS data, ambined with
much larger samplgizes will be requiretbr the discovery of associated QTL for DHowever

otherstatisticalapproacheshouldalsobe consideretb improve the power of GWAS.

3.3.5. Comparison ofstatistical methods

A surprising result bthis study is the lack of a significant association between DL and the
region on SS€15 that containPRKAG3 The protein product dPRKAG3is the AMP/ATR
binding subunit of the AMRctivated proteikinase (AMPK), whicltplays a role in the
regulation ofglycogen storageand mutations withiPRKAG3have been shown to have a major
effect on postmortem lactate production in skeletal mugdlan et al., 2000Ciobanu et al.,
2001) Changes in lactate production affects the paosttem pH decline, which can alteeth
product purgéHuff-Lonergan & Lonergan, 2005Multiple GWAS and singkSNP association
studies have detected associations between DIPRKAG3alleles(Otto et al., 2007; Rohreat
al., 2012;Zhang et al., 203%Casir0 et al., 2017; Verardo et al., 20whereas other studies
have no{Ma et al., 2013; Nonneman et al., 20LR;s et al., 2015; Sato et al., 201&)cluding
the related sturdy dfleidaritabafunpublished resulipersonal communicatiomlescribed
above This is expected as different populations can harbor populspecific QTL(Raymond

et al, 2018) However, the data used in this study, combined with data from a second
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commercial crossbred population (Gensus Genetics), was pa@WHe by Zhang et al

(2015), which found aignificantassociation between a SNP nB&KAG3andDL. This SNP

was shown to explain a relatively small proportion of the total genetic variation (0.73%) with a
low additive effecsizeof -0.043+0.010Zhang et al., 2015 he low effect size of the SNP and
the low proportion of total variation explained by the SNP suggests a high statistical power is
needed for its detectidsy GWAS. Presumablyhe overall population size in the study by

Zhang et al(2015),as well as th statistical method usgdas sufficient (a higher statistical

power) to detect genetic associationkich may not have been the case in this study.

Zhang et al. (20159)sed a Bayesiastatistical methodor their analysis SingleSNP GWAS and
Bayesian rethodsdiffer in terms of the way thahe significance oENP effectsvasestimated
(different assumptions for the two modeMyjith singleSNPGWAS, many different statistical
testswereperformedwhere each SNP is fitted as a fixed effiectietect anarker effect Since

tens of thousands of tests @mformed avery stringent significance threshold is needed, and
SNPs should explain a considerable amount of variation to pass the significance threshold. If a
SNP explains a small proportion of variatid@ns veryunlikely that the SNRvill reach the
significance threshold usirgingle SNPGWAS, resulting in dhightype Il errorrate(false
negative)and low statistical powdiHayes, 2013)Alternatively,BayesBsimultaneously fits

each SNP as a random effaokaning only a single statistical test is performed, eliminating the
requirement for a stringent significance threshottproving the pwer to detect smaller effect
SNPs(Hayes, 2013)Thisdifferencein statistical power between the two GWAS methcoisld

contribute to the difrent results observed in the two studies.

A secondBayesian methodias performedh this studyusing the adaptive least absolute

shrinkage and selection operator (LASSRreviously, LASSO has shown to be a powerful
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method for detecting QTL associatediwecomplextraits where LASSO is able to detect
overlapping as well as unique QTL comparedtteerBayesian methods (BayesB and BayesC)
(Yanget al, 2015; Yang et al., 2017yYanget al.(2017)found LASSOto be a verypuccessful
approactHor detecting QTL for meat colour phenotymesnpared to BayesBsLASSOwas
able to detect 3 out of 6 overlapping Qa& well as an additional 17 QTEhang et al., 2015
Yang et al., 2017However in this study GWAS using LASSQlid not detect any g®mic
regions significantly associated with DL (results not shown)hémge reason fathelack of
results for the LASSO methad this studymay bethe smaller sample size used compared to
previous and successful GWAS that used Bayesian statisticaldséftinang et al., 201,5rang
et al., 2017)However thesucces®f a Bayesian method withisodepend on how closely the
assumption ofhe statistical method for the prior distribution of SNP effects matches the
underlying genetic architecture of the ti@hang et al., 2018Pifferent Bayesian methods
assume a different prior distribution of SNP effeatiereLASSO assumeanon-normal,
double exponential distributiasf SNP effectsvith many SNPsthatare equal to zerd.herefore,
thedistribution assumed HyASSO seemingly doesot closelyresembleghe underlying genetic

architecture oDL.

3.36. Candidate genes

The positioml candidate genes that were found nearest to the SNP with the lewadsen
eachQTL window were assessed for a potertialogicalfunction in determining DI(Table
3.1). Five positional candidate genes were identifleldS15L1NR3C1 KLHL29, CHSTZ and

DRG1lon SSG 2, 2, 3, 13 and l4espectively, which were found fonction inbiological
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processes such aadocytosistranscriptioml regulation, enzymatic reactions, andtrotubule
dynamic (Kuo et al, 2015; Schellhaus et al., 201EPS15L1andNR3Clarethe mos

interesting gereas theiproteinfunctionscould potentiallybe implicatedn postmortem

muscle biochemistryThe gene producEPS15L1could influence DL through its interactions
with the transferrin receptor (TFR), which plays an important rolelinlar iron uptake and
homeostasislron is a crucial component of myoglobin, which plays an important role in aerobic
metabolism and the rate of energy metaboligthin the muscléOexleet al, 1999) Anaerobic
metabolism is thought to be the dominate source of/ATProductionand pH decline in the
pog-mortem musclehowever aerobic respiri@on alsoplays a role(England et al., 2018)
Therefore variability in the rate of aerobic metabolism likely influences the DL observed for
meat through its contribution to pH decline pogirtem This is becausef aerobic metabolism

is active after slaughter, tisvitch toanaerobic metabolism will dielayed and there will be no
lactic acid productiowluring this timeoverallresulting in a less extensive pH decline observed

postmortem.

Additionally, the role othe gene produdiR3C1lin glucose homeostasis couldpide evidence
for its role in DL NR3C1 is aglucocorticoid receptoiGR), whichregulats glucose uptake
glycogenolysisas well agjlycogen synthesig@uo et al., 2015)During times of stressuch as
during slaughter)GRswill alterglucose concentratioria the liver andskeletal muscl¢kuo et

al., 2015) Variability in theamount of glycogen in the muscle posbrtemis an important
indicatorof lactic acid production and thdtimate pHof the mea{Huff-Lonemgan & Lonergan,
2005) Interestingly, in previous studies tiN&R3C1was also found to be significantly associated
with meat quality phenotypeReyer et al(2014)found an association between two mutations

within the NR3C1gene with both DL and pH in@mmercial crossbred pig population (Pietrain
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X Landrace/Large WhiteBimilarly, Terenina et al. (2013) detected a significant association
between a mutation INR3C1land DL in Large White and Meishan pig breetise NR3C1gene

was alsdound to overlap wh a QTL found to be significantly associated with pH in a previous
GWAS that used WG $Heidaritabay unpublished resultpersonal communicatignin thar
study,NR3C1was not located nearest to the lead SNP in this QTL, but it was located within a 1
Mbp radius (0.5 Mbp on either side of the lead SNP), indicating that the lead SNP and the gene

were likely to be in high L@¥Heidaritabarunpublished resultpersonal communication

Both EPS15L1andNR3Clare implicated in DL through their potential irdluce on post

mortem pH decline and the ultimate pH of meat. fosittem variability in the cellular pH has a
major effect on meat quality as it effects protein degradation, net protein charge, as well as the
lateral shrinkage of the muscle fiber, each glaymportant role in determining the ability of the
muscle cell to hold wateand theextent of DL observed for meg@tiuff-Lonergan & Lonergan,
2005) These results provide some evidence for true assogatn8SC2 despite the lack of a

significant association after correction for type | error rates of 5% and 10%.

3.4.Conclusions

In this study, a singlSNP GWAS was performed identify genomic regions responsible for
variability of DL phenotypesn commercial crossbred pigé.was typothesizedhat at least one
SNP on the marker panebuld be significantly associated with DL phenotypgdswever the
results of this study did not support this hypothesis. It was concluded thathte GWAS method
usedin this studywasunderpoweredo detectQTL with significant effectss no associations

were icentified at either genomide significance or suggestive thresholds. However, based on
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postGWAS analysis of the tofive QTL with the lowest Rralues two could potentially be
implicated in DL through their biological functionfSenomic regions on SSZwere found to
harbor the gendsPS15L1andNR3C1 which havedunctionslinked to aerobic metabolism, and
glucose homeostasi$hese biological pathways could bgtbtentialy influencethe extent of
postmortem pH declinand correspondingly the Dihenotyes of theaneat However, further
studies with larger sample sizasdbr marker panel densitieas well as alternative statistical
methods with different prior assumptiosfould be exploretb improve the power of GWAS
and to confirm these claim&dditional research coullkad to insight®n the genetic
architecture and biology underlying Andcould be used to improve meat quality of pigs
throughmarker assisted selectioMAS) or genomic selectiofGS) methods that incorporate

prior biological infamation.
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Figure 3.1. Principal component analysis (PCA) of SNP genotypes from commercial
crossbredpigs originating from a single population (Hypor Inc., Regina, SK, Canada).
Principle components 1(1.7% total variation) and 2(1.3% variation) were plotted against
one another to visualize potential subpopulations.
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Figure 3.2. (A) Manhattan and (B) quantilequantile (Q-Q) plots from a genomewide
association study (GWAS) for drip loss (DL) in commercial crossbred pigs. (A) The
Manhattan plot shows the chromosome of the SNP marker along theaxis and the-
logl0(P-values) representing the significance of the association along theyis. Bonferroni
correction was used to control for multiple testing, with Pvalues of 0.0540g10 = 5.91),

and 0.10 ¢log10 = 5.61). (B) The @ plot shows the expected null distbution of -log10 (p
values) (solid red line) compared to the actual distribution (dotted black line). The genomic
inflation factor (1 ) was calculated as 0.76.
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Table 3.1. Quantitative trait loci (QTL) and the corresponding positional candidate genes
identified for the SNPs with the lowest Pralues in a genomavide association study
(GWAS) for drip loss (DL) in commercial crossbred pigs.

Chtt SNP I? MAF3 Phenotypic QTL # QTL® Positional Gene Distance
Variance  Position Candidate Functiof  (Mbp)’
(%)* (Mbp)® Gené
2 rs81293087 0.47 1.36 60.361.3 0 EPS15L1 Receptor 0.0206
mediated
endocytosis
2 rs81261395 0.23 1.79 150.8151.8 3 NR3C1 Glucocort  0.189
icoid
receptor
3 rs81475257 0.01 1.37 121.6122.6 0 KLHL29 Cul3-RING 0.00@
ubiquitin
ligase
13 rs8125685 0.36 2.12 91.292.2 0 CHST2 Carbohyd 0.173
rate
sulfotrans
ferase
14 rs80883284 0.21 0.97 50.7-51.7 0 DRG1 GTPase 0.0(89

The chromosome the SNP with the lowestafue is located.

2The SNP ID of the SNP with the lowest/Rlue.

3The minor allele fequency (MAF) of the SNP with the lowest/&lue.

“The phenotypic variance explained by the SNP with the loweatUe.

5The 1 Mbp QTL window surrounding the SNP with the lowesaRie.

*The number of previously identified QTL overlapping the Qdéntified in this study
The ID of the candidate gene located nearest to the SNP with the lowaiseP

8The known function of the candidate gene.

“The distance of the gene from the SNP with the lowestlie.

Note: Chromosomal positions are according toplgeggenome assembly Sscrofal0.2.
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Chapter 4. SingleeSNP association analysiof potential causative mutationsin

MYOD1 and RTN4 for meat colour in purebred Duroc pigs

4.1. Introduction

Meat colour is théirst and most importantisualfactorinfluencingconsumeperceptiorat the
point of purchaséSeideman et al., 198Klgapo et al., 200MNgapo, 2017)Pork meat is
expected to bead or brightpink in colour, which indicates to the custontezfresiessand
wholesomeness of the prod8eideman et al., 1984nhterestindy, both light and dark
coloured pork are equally preferreshdmeat colour prefrences change depending on the
consumer segmefigapo et al., 200MNgapo, 2017)For exampleCanadiarconsumers prefer
light coloured pork, whereas darcoloured pork is chosen in Taiwan, Japan, China, and Korea
(Ngapo et al., 2007However overall, anymeat productthat are excessively light or dark in
colour orwith inconsistencies amtiscolairationsmust besold as a processgdmmed,or
discounted product leading to sulvgtal economic lossgSeideman et al., 1984)herefore,
pork colour is an economically important trait, and being able to predict and prodoicsisent
product depending on colour preferences would be valtalsigtisfya wide variety otonsumer

demands

Fresh meat colour iontrolled bymultiple different biologicaland environmentdhctors
Important environmental factors include qstaughter ndling(Channon et al., 2000; Matthews
et al, 2001) stunning metho@Channon et al., 2000; Velarde et al., 20@lgt(Hamiltonet al.,

2002) and available pen spa@datthews et al., 2001Gentryet al, 2002) Further, the genotype
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of an animal willhave an effect on pork colothrough its influence omusclebiology and
interactions with the environmemutations withintheryanodine receptor (RYRJ (Fuijii et

al., 1991; Otto et al2007)andprotein kinase AMRctivated norcatalytic subunit gamma 3
(PRKAG3J genesxhibitlarge effects opork colour(Milan et al., 2000Ciobanu et al., 2001)
Causative mutatiorsuch as the ones identifiedRYR1andPRKAG3are useful as thegan be
incorpoited intomarker (MAS) orgenomic(GS) selectionproceduresSelectiormethodghat
rely on linkage disequilibriunLD) between SNPs on the marker panel and nezabgative
mutationscan beproblematic as.D can decay over generatiorasd across populatis,due to
recombinationAs a resultthe marker panetill not be able taexplain all of the genetic
variance contributing to a trasindaccuracy of GEBV prediction will be logMeuwissen et al.,
2001) Further, if thecausative mutatiohas a lowminor allele frequencyMAF), then it isless
likely to be in high LD with theommon varianten amarker pael, which further exacerbates
the risk of LD decayVanDen Berget al, 2016) Therefore, i morecausative mutations were to
beidentified anddirectly incorporated intgelection procedurethen this risk of recombination
will no longerbeapparentwhich isanticipatedo improvebreeding value prediction accuracy
and genetic gaias well agpreventthe deterioration of accuracy over generati@Meuwissen &

Goddard, 2010MacLeodet al, 2014)

Novel QTL harboringpotential candidatgeneswith biological roles relevant to meat colour
traitshave been identified byenomewide associatiorstudies (GWAS)Zhang et al., 2015
Yang et al., 2017)Specifically the nyoblast determination protein M{yODJ) and reticulon 4
(RTN49 have both been found to be associated pattk colour traits in Canadian pig
populatiors (Yang et al., 2017)Both genesavebeenbiologically implicated in muscle cell

differentiation during developmeand muscle fiber type specification in adult tiss@eslare
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likely influencingpostmortemmeat colour phenotypes through their efi@etmuscle fiber type
in the adult muscléHugheset al, 1997;Tang et al., 2007Chen et al., 2010; Lee et al., 2012)
SNPs within these genesuld beinfluendng meat colour phenotypes atttuscould be used as
markers foithe improvement ofeat qualitytraits in pigs However GWAS areoften not
followed upwith a search for potentighusative mutationgdirectly underlying the observed
effects limiting the practical use of candidate genes sudié®D1andRTN4in selection
programsTherefore, the goal of this study was to identifysative mutations located withihe
potential candidate genddyYODlandRTNA4 It is hypothesized th&NPs withinthe coding
region of thesgenesthat are predicted to be missense and deletegouf] beinfluendng
meat colour phenotypdxy alteringprotein structure and function. The results of this stalyd
indicateuseful markerswhich could be incorporated into MAS or &8 the genetic

improvement ofmeatcolour traits in pigs.

4.2. Materials and methods

4.2.1. Bioinformatics

TheMYOD1landRTN4genesare located withimuantitative trait loc{QTL) that are
significantly associated with meat colour phenotypes@WAS (Yang et al., 2017)and were
chosen fowuse in this studpased on their known biological functions and potemtifdcts on
meat colour phenotype§he Ensemblgenome databaghttps://uswest.ensembl.org/index.hfml
was used tadentify all the SNPs located within tiMYODlandRTN4genes in pigsas well as

therr predictedconsequencgZerbino et al., 2018)The Ensembligenome database uses the
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varianteffect predictor (VEP)(https://uswest.ensembl.org/info/docs/tools/vep/index imol as
well as thesortingintolerant fromtolerant (SIFT) program to predict the consequence of the
amino acid change caused by each SNBnt et al., 2018; Zerbino et.aR018) VEP determines
how the gene, transcript, and protein sequences are affected by syS8dimous, non
synonymousstop gain/lossmissenseandframeshift (Hunt et al., 2018)andSIFT uses
sequence homology and sequence conservatiasstgn the SNP a valubetween 0 and that
indicatedts effect onthe protein functiondeleterious (0 to 0.Q%r tolerated (0.06 to 1(Hunt et
al., 2018) Further, the location of the SNP within the protein, such as in an important protein
domain (affecting protein folding, stability, or protginotein interactions) and/@ highly
conserved region of the protein, could provide further evidence of its functional impofthece.
location of the SNP within the protein was determined uiagniversalproteinresource
(UniProt) (Apweiler, 2009)andClustal OmegaSequenceélignmenttool (Sievers et al., 2011)
Non-synonymousand deleteriouSNPsthat were locatedithin the gene coding regions

(functional domains and conserved protein sequenga®choserfor use in this study

4.2.2. Data

Animals

A total of 437femalepurebred Duroc pigs originating from a Canadian breeding company
(Hypor Inc. Regina, SK, Canada) were used in this sflidg.ethical statement, raising protocol,
phenotypesand pedigree information were all desedipreviouslyin this thesi{Chapter 2

Section2.21.)
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Genotypes

Genotyping was performed using Thermo Fisher TagMan genotyping &§bayso Fisher
Scientific Ltd., Ottawa, ON, Canad&)NA was extracted from tissue samples using Thermo
Fisher protocb(Thermo Fisher Scientific Ltd., Ottawa, ON, Canadajimals were genotyped
for two SNPsys336462969 and rs340803577, which reside iiMH©DlandRTN4gene
coding regiongsrespectivelyProbes and primers were designed using Thermo Fisher Custom
TagMan assay design toalvhich identifies DNAwithin thepre-definedtarget sequendbat are
optimized for probendprimer binding(minimizing non-specific binding. The target sequence,
along with primer and probe sequences are showafe 4.1.The PCR eaction mixture was
prepared following th&hermo Fisher standard protocol for awéll Fast 1L reaction.A
standardhermal cydng settingfor the PCR reactiowas also usedragpolymerase enzyme
activation(10 minuteshold), followed by 40 cycles ofehaturation (98C for 15 secondsgnd

annealingéxtension (6C°C for 1 minute).

4.2 3. Statistical analysis

The significance of fixed effects and covariates was deternuisied Wald F. statistics in
ASReml softwargand factorsvith P-value< 0.05 were included ithe following analysis
(Gilmour, 2015) A single SNP association analysis was performed using the following

statistical model in ASReml softwag&ilmour, 2015)

¢ ifa L4 g [
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Whereyis a vector of phenotypvalues;1 is a vector of onesnis the overall meafor meat

colour phenotypesX is a design matrix that relates fixed etfetothe observationsb is the

vector of fixed effecténcluding slaughter dat&is a vectoiof SNP genotypes coded 0, 1,a2;

is theadditive SNP effectZ is a design matrix associatiagvith response variables;is the

vector of random additiveegetic effects that is assumed to be normally distribetede is a

vector of residual effects. The additive genetic effects and the residual effects are both assumed
to be normally distributedtx 0 Th=, ,g¢ 0 mhk Frespectively, where and, are

the additive genetic and residual variances, respectikabthe additive relationship matrix

constructed using pedigree daaadl is an identity matx.

4.3. Results anddiscussion
4.31. Phenotypc statistics

The descriptive statistics for pork color phenotypes used in this study were calculated.
Abbreviations, number of records (M)jnimum, meanmaximum,standard deviation (SD), and

coefficientof variation (CV)arerecorded in Table 4.2.

4.32. Candidategenes

MYOD1is part of theMyoD family of transcription factors that regulatie process of
myogenesisMYOD1is critical in specifying the identity of myoblasts during muscle cell

differertiation in animal developmefiBlau, 1988) but has also been found to play a role in
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specifying muscle fiber type in adult musc{ekighes et al., 1997The latterhas been
confirmed in pigsastwo SNPsin theMYOD1genehaveshown a signifiant association with

muscle fiber typ@ndpork lightnesgLee et al., 2012)

RTN4is a member of the reticulaiRTN) family of proteins, which almost exclusively localize
to the endoplasmic reticulon where thadienplay a role in calcium signaling and homeostasis
(Jozsef et al., 2014l ess is known about tH&TN4geneand its exactunction inskeletal

muscle but the gene has shown differential exgsien in muscle fiber typemd the proteimas
been found to interact with MyoD family membdiYF5 (Tang et al., 2007Chen et al., 2010)
Further directassociationbetween expression levels of tR&N4gene ananeatquality
phenotypegpH) have been identified in piga/hich altogetherprovidesevidence forarole in
muscle fiber type specificaticas well askeletal muscle metabolisim adult muscldissuegTe

Pas et al., 2013)

Fiber type spediation has a direct influence on the colour of meat-pustem.Slow twitch

muscle fibers have predominantly aerobic metabolism and require high concentrations of
myoglobin (the muscle specific protein that gives meat its red colour) and oxygen to,sustai
therefore muscles with a high proportion of slow twitch muscle fiappgar redh colour. Fast

twitch muscle fibers are sustained by anaerobic metabolism and alternatively require glycogen to
generate energy, resulting in a muscle that appears Baide(man et al., 198¥ancini &

Hunt, 2005) Further, nuscles witha high proportion ofast twitchmusclefibersalsohavea

high glycolytic potential prior to slaughter, which causes a rapid drop in pHhpstm

resulting inan increase in protein daturationandlight reflecting off the surface of the pork

resulting in pale porkChoe et al., 2008)
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4.3.3. Bioinformatics

A total of 12 SNPs were identified within thdYOD1gene coding regiomnyith 7 synonymous
(SNPs that do not change the amino acid sequence of a pratelb)missens€SNPs that
change the amino acid sequence of a prat@im@ SIFT scores for thmissense variants ranged
from 0.05t0 0.6. The SNRhat waschosen for analysigs336462969hadthe only deleterious
SIFT score of 0.05~vhich was assigned as t88lPcausé a norsynonymous amino acid
change from arginine (R) to proline (P). The chaings a bulky and polar amino acid to one
that is nonpolar and compachdicatesa potentiallymajor changeo the protein structuravhich
could result in impaired or altered protéimction. Additionally, Figure 4.1 (A) shows a
multiple sequence alignent of a portion of the myogenic basic domain that contains
rs336462969 across mammadsis scrufgpig), Bos taurugcow), Ovis aries(sheep)Mus
musculugmouse), andHomo sapienghumans), with tharginine R) amino acid showing
complete conservatiaof across every species analyzéde MyoD family of proteins have
relatively well conserved structure. Each family member contains a highly conservelbbelix
helix DNA binding domain, as well as a myogenic basic domain, which shows sequence
conservatia to a lesser exte(®Ison, 1990)The sequence conservationanginine(R) could
indicateits structuralimportance for which norsynonymousand degteriouschanges could

potentially indicate impaired or altered protein function.

A total of43 SNPs were located within ti&TN4gene coding regiomyith 22 synonymous20
missensgandl caused a statbss(SNPs that change the transcript start codbim¢ SIFT

scores for thesmissense variantangedrom 0 to 0.41. The SNP chosen for analysis
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(rs340803577had a SIFT score of 0 and was prioritized as the top SNP for potentially affecting
protein function which was assigned asetSNP causé a non-synonymousamino acid change

from proline (P) to threonine (TJThe change from nepolarand compact amino acid to one that
is polar and bulky could indicate important functional changes to the pratiditionally,

Figure 4.1 shows a multiple sequencgmtnent of a portion of the-éérminal cytoplasmic

domain of theRTN4gene containing rs340803577, with the StBwing high conservations of

the proline (P) amino acid across mammalian species with the exception of humans. However,
humans showed a prolifE) to leucine (L) amino acid change, buhilar amino acid properties
weremaintaineddespite the change in protein sequésicall, hydrophobic, and nepolar). The
RTNgene familycontain a @&erminus reticulon homology domajRHD), which is a

functiorally important cytoplasmic domaftanked by two transmembrane domaiR$1D is

highly conserved across many different speaies across RTN paralo@gang & Stritimatter,

2007) On the other handhe N-terminalcytoplasmicdomain of the RTN gengesutside of

RHD, displaydow sequence similarity across species and between paralogs within the same
speciegYang & Strittmatter, 2007 However, as shown in this study (Figure. 4.1), this domain
does show some sequence conservation across marimalar to previous results, this

sequence conservatiofithe proline (P) aminocéd across mammals could indicatieuctural

andfunctional importance ahe SNP.

4.3.4. SingleSNP associationanalysis

Table 4.4 shows the#&st squares mean values and stanelaols(SE) of eachgenotype class

for eachpork colour traitEachgenoype class was tested for an association with the trait,
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however none showea significanteffecton meat colour phenotype@-value< 0.05 (Table
4.4). A previous study by Yang et.gdR017) identified a significant association between
longissimus thoras et lumborungloin) Minolta a* (LOINA) and a QTL harboring thelYOD1
gene, and betweeaquadriceps femoridinolta L* (QUADL), quadriceps femoriMinolta b*
QUADB, andiliopsoasMinolta L* (ILIOL) and a QTL harborin@TN4 However,in this study,
theP-value for the associationetweera mutation withirMYOD1(rs33646296Pand LOINA
was low with animals homozygous for teinor allele (GG) showing slightly higher LOINA
values (rednesshutthis association waseclaredhonsignificant(P-value= 0.132) This could
be due teeither the lack of an association,tbe low number of samples used in this stuidye
MAF of rs34080357 Wassomewhatow (0.16), which means larger sampleouldbe needed
to detect a significamesult ConverselytheP-values f@ the association betweammutation
within RTN4(rs34080357yand QUADL, QUADB,andILIOL were all high with P-values
equal to 0.997, 0.396, and 0.488spectively. These results dikely indicatingthe SNPis not a

potential causative mutation forgacolourin the population

In this study, the SNRsere chosen basgulimarily on theirpredictiveeffects(misserse
deleteriouswith aSIFT score €0.05) however the positionof the SNPwithin the protein may
have been more important than the SKEots themselved hers336462969 ans340803577
were located within the protein coding regibat were evolutionarily conserved in mammals,
butwere locatedutside otthe majorimportant protein functionalomains indicating that they
may not have tdhalargeeffect on the proteistructure ofunction Therefore restricting the
search for a causative mutation withineseevolutionarily conserved arfdnctionally important
regions, as well as reducing the stringent SIFT score requirement in thiscstncludenon

deleteriousSNPs couldhave beemmore successfpproach fopredictingcausative
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mutations as @en minor changes in highly conserved regiomsidtranslate to major changes

in protein structurand function(Thusberg & Vihiren, 2009) Further moreattentionis now
beingdirected towards investigatingncodingand regulatoryegion of the genomguch as
transcription factor binding sites, enhancer regions, and histone or other DNA modification
sites) as changes in thesegions of the genome couldsult in thegene being expressed in the
wrong place or at the wrong tinnar it could reduce, eliminate, or increase the expression of a
protein,potentially contributing to variability of phenotyp@gockleyet al, 2017) Interestingly,
aprevious study bye Pas et al. (2013) fad a significant association between expression levels
of RTN4and meat pHThereforethe causative mutation fR®TN4maynotbe located within its

coding regionand may insteadefoundin its regulatory region.

4.4.Conclusions

A single SNP associatn analysis was performed to identify potential causative mutations
associated with meat colour traits in a Canadian pig populdig@DlandRTN4genesvere

located within &@QTL that was declared significantly associaigth meat colour phenotypés a
previous GWASYang et al., 2017)However, potential causative mutations within these
candidate genes were not directly tested for an association with meat quality traits, limiting their
usein selection programsn this study, ptential causative mutations were identified within
MYODlandRTN4based orthe predicted effecof the SNPss well as their location within the
proteincoding regionlt was hypothesized that SNPs within the coding regions of these genes,

with missense and deleteriouseffects, were responsible for the effects observed in the previous

GWAS. However, no significant relationships were fouredween potential causative mutations
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and meatolourphenotypesThese resultsuggesthatthe causative mutations responsible for
the previously observed significant associationst residen an alternative region within the
QTL, which couldeitherbe within a differentproteinregionin the candidate genésegulatory
regionor evolutionarily conserved protein domains)within a differentgeneentirely. Further
studies are needed to identdfgusative mutationso thatthey can be included as infoative

markers for meat colour traits in MAS or GS programs.
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Tables andfigures

Table 4.1. Target, probe, and primer sequences for a quantitative PCR (QPCR) SNP
genotyping assay for potential causative mutations located within th&1YOD1
(rs336462969) andRTN4 (rs340803577) genes. Primers and probes were designed using
Thermo Fisher Custom TagMan assay design tool and applied following the standard
protocol for a 96-well Fast10 uL reaction (Thermo Fisher Scientific Ltd., Ottawa, ON,
Canada).

SNP ID
(Gene}

Target Sequence Forward Primer  Reverse Primer  Probe 1 Probe 2

rs336462969 TCA[C/G]JGAGC CGCGCGCACA CCTAAAGCCC CGGGAGCTCG CGGGAGCTCC

(MYODJ)

(RTN9

TCCCGGGGCC TGCT GAGGAACACT TGAGGA TGAGGA
GGGTGCNCTG
C

rs340803577 TGCCTGCCCTG GAAAAACTCA GGTCAATGTTG CTTTTCAGCCC CTTTTCAGACC
GACTCNGGAG GTGCTTCACCA AAACTTTGTCA AATTTA AATTT
GNGG[G/A]CGC TCAC GGTAATA
CTTCCCAGCCA
TGCCCTTGTCC

!Gene name in which the potential causative mutation is located.
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Table 4.2.Descriptive statistics for pork colour phenotypes in purebred pigs: abbreviation,

number of animals (N), minimum (Min.), mean, maximum (Max.), standard deviation

(SD), and coefficient of variation (CV).

Trait Abbreviation N Min. Mean Max. SD CV (%)
Loin! Minolta L* LOINL 437 41.42 48.77 55.72 2.44 5.01
Loin Minolta a* LOINA 437 1.07 4.61 8.75 1.18 25.57
Loin Minolta b* LOINB 437 5.97 13.90 13.90 1.24 0.28
Hamgluteus mediuMinolta L* GLUTL 437 41.20 48.00 56.8 2.65 5.5
Hamgluteus mediudinolta a* GLUTA 437 1.20 5.39 9.60 1.31 24.45
Hamgluteus mediuMinolta b* GLUTB 437 5.40 8.82 12.0 1.16 13.20
Hamquadriceps femoriMinolta L* QUADL 437 42.10 53.15 68.40 3.41 6.42
Hamquadriceps femoriMinolta a*  QUADA 437 -1.00 2.40 13.0 1.56 65.00
Hamquadriceps femoriMinolta b* QUADB 437 4.70 7.98 14.9 1.3 16.29
HamiliopsoasMinolta L* ILIOL 437 34.0 44.97 55.60 2.88 6.41
HamiliopsoasMinolta a* ILIOA 437 8.80 16.48 22.40 2.17 13.19
HamiliopsoasMinolta b* ILIOB 437 7.40 11.68 15.80 1.34 11.54

L ongissimus thoracis et lumborum
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(A) Sus_scrufa
Bos_taurus
Ovis_aries
Mus_musculus
Homo_sapien

(B)

Sus_scrofa
Bos_taurus
Ovis_aries
Mus_ﬁusculus
Homo_sapien

EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGR
EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGR

EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGR
EHAHFSTAVHPGPGAREDEHVRAPSGHHQAGR

EHSHFPAAVHPAPGAREDEHVRAPSGHHQAGR

LSASPSLEGGKPYLESFQPNLDTTKDTLLPDKVSTLTQ
LSASPSPEGGKPYLESFQPSLGITKDTLAPDEVSALTQ
LSASPPPEGGKPYLESFQPSLGITKDTLAPDEVSALTQ
LSASP-QEVGKPYLESFQPNLHITKDAA-SNEIPTLTK
LSALP-PEGGKPYLESFKLSLDNTKDTLLPDEVSTLSK

Figure 4.1. Multiple sequence alignments for regions within candidate genibsyOD1
(rs336462969) andRTN4 (rs340803577) containing potential causativeautations for meat
colour traits in purebred pigs. (A) Exon one ofMYOD1 contains the deleterious missense
mutation R7 6 P ( h i gTe protein sequences foMYOD1 were obtained from the

NCBI database, accession numbers NP_001002824, NP_001035568 0RF009390,
NP_034996, NP_002469. (B) Exon three BITN4 contains the deleterious missense

mutation P 7 5 fighlighted). The protein sequences foRTN4 were obtained from the

NCBI database, accession numbers XP_005662597, XP_005212628, XP_027821518,

NP_91893, NP_065393.
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Table 4.3. Genotype and allele frequencies for potential causative mutations located within
the MYOD1 (rs336462969) and RTN4 (rs340803577) genes in purebred pigs.

Gene SNPID Genotype Genotype and allele
Allele frequency
MYOD1 rs3364@969 CC 0.70 (307)
CG 0.26 (114)
GG 0.04 (16)
C 0.84
G 0.16
RTN4 rs340803577 CC 0.51 (222)
AA 0.42 (184)
CA 0.07 (31)
C 0.71
A 0.29

!Number of animals in each genotype class.
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Table 4.4. The least square means for genotype classd potential causative mutations
within the (A) MYOD1 (rs336462969) and (BRTN4 (rs340803577) genes on meat colour
traits in purebred pigs.

(A)

Gene LOIN LOIN LOIN GLUT GLUT GLUT QUAD QUAD QUAD ILIOL ILIOA ILIOB
type L A B L A B L A B

CC 48.69 4.53 9.26 48.03 5.32 8.86 53.05 2.25 8.01 45.01 16.63 11.77
+020 +*0.20 +0.14 +043 *0.24 +015 +035 *030 =011 +0.46 =*0.34 =+=0.13

CG 49.01 4.77 9.46 47.83 5.17 8.73 53.39 2.25 8.00 4463 16.45 11.66
+0.26 *0.22 *0.16 *047 =025 =*0.17 *043 =*032 =*+014 =050 =+0.30 =*+0.16

GG 48.69 4.69 9.18 48.63 5.23 9.09 52.99 2.33 8.09 45.18 17.03 11.72
+059 *+035 *031 *0.78 *039 *029 *091 =*050 =*=0.33 +0.87 +0.62 =+0.35

P- 0.345 0.132 0.323 0972 0.401 0.755 0538 0930 0923 0.848 0.273 0.518
values

(B)

Gene LOIN LOIN LOIN GLUT GLUT GLUT QUAD QUAD QUAD ILIOL ILIOA ILIOB
type L A B L A B L A B

CcC 48.79 4.53 9.26 48.16 5.33 8.91 53.12 2.134 7.98 4487 16.48 11.74
+0.21 *020 *0.14 +046 =+023 +0.16 +0.36 +0.30 +0.11 +048 =+0.32 =+0.15

CA 48.82 4.67 9.26 47.87 5.19 8.71 53.22 2.32 8.01 4497 16.56 11.76
+0.21 +020 +0.15 *046 =*0.23 +0.16 +037 *030 =*=0.12 +048 =+0.32 =*0.15

AA 48.54 4.71 9.40 47.64 5.47 8.93 5292 2.70 8.23+ 4485 16.62 11.68
+042 *+028 *+023 *063 =*031 =*023 =*=0.66 =*=0.40 0.23 +0.68 *0.48 =*0.26

P- 0.764 0.221 0.312 0.200 0.812 0.268 0.997 0.064 0.396 0.488 0.65 0.903
values

Note: Bolded Pralues represent a previously identified significassociated between the colour traits
and a QTL that harbored the potential causative mutafitiveng et al., 2015)
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Chapter 5. Generaldiscussion

5.1.Introduction

Theeconomic importance of meat qualisyincreasing, angdrovidingconsumers witla product
that is both lean ancbnsistentlysatisfies theiguality preferencesoday; will secure Canadian
pork as a top proteichoicein the future Genomic selectionGS) provides a significant
opportunity to select for pigs with superior mgaglity, as this trait is difficult and expensive to
measureln generalGSfollows a twestep procedurdirstly, animals in a reference population
must begenotygedand phenotygd (training population)then if thegenetic parameters for the
trait in the specific populatioareknown the breeding valuef selection candidatesn be
predictedusing only itsgenotype informatioMeuwissen et al., 200I)here are multipl&S
methods, but the most common methods@@aomic best linear unbiased prediction (GBLUP),
or a similar method singlstep GBLUP(ssGBLUP) The underlying asimptions of these

GBLUP methods are simple, each SNP contributes an equal and small etiemtroplex trait.
Thisassumptiorhas been critical in the implementation of GSidasitification ofthe exact gene
or causative mutatioresponsibldor complextrait phenotyp is not require. However this

ignores any genetic or biological information known for the trait, as in fact SNPs associated with
a trait may be distributed namiformly throughout the genome, and clustered in genes that are
biologicallyrelevant for the traifAllen et al., 2010; Maurano et al., 201Zherefore, alternative
methodssuch as weighted GBLUP (WGBLYPZhang et al., 201Brgndum et al., 2015)
genomic feature BLUP (GFBLURIEdwards et al., 2016pr BayesRGMacLeod et al., 2016)

that consider the biology underlying traits hémeen proposedilthough these methods remain
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limited asmuch still remains unknown regarding the genes and variants detegriraiis as

well as their exact functiom livestock animalsNowadays, higithroughput sequencing
technologies allowing higdensity SNP genotyping, along wildvancements ithe annotation

of livestockgenoms, have improved the ability to detect geraesl variants underlying complex
trait phenotypeas well as theiassociated biological pathway=or this reasarresearch has
begun to focus on the genetic factors underlying economically important traits in livestock
Results from these studiesntribute to the overall understanding of trait biologgdcan
subsequently be incorporated into GS proceduragspoove breeding value prediction accuracy,

and further accelerate genetic improvemewier generations, and across populations

Genomewide assoiation studies (GWAShavebeena primary tool to determinthe biology

underlying complex traits. GWAS usdage nucleotide polymorphisms (S8Pwhich are

spread across thentiregenomes oplant andanimalspecies, and can be udedietect regions

of the genome associated with traits of interest (quantitative trait loci,.QTim)erous GWAS

have been performed in pigs for meat and carcass quality traits, for which QTL have been found
across all chromosomes, and include multgdaeghat contributdarge effect{Hu et al.,

2005) Results from GWAS studies can provide insights into the genetic architecture underlying
traits, such as the candidate genes or causative mutations responsible for the genetic variation of
complex phenotypedhis will help toprogress theurrentunderstandinghe postmortem

muscle biochemistrywhich overall will be importanfior the futuremplementation of

alternative GS methoder improving the meat quality pigs

The purpose of this thesis wdisstly, to use variance component estimatesalculategenetic
parameters for meat and carcqaality traits in purebred Canadian Durag® This provided

useful estimates of heritability for meat and carcass quality traits, as well as insights into the
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genetic relationships between traidich canbe used to incorporate these traits icuiorent
breeding poceduregtraditional or GS)chapter 2)Secondlythebiological factoraunderlying
meat quality traitsvere explored using singleNP association analysighich includeda

GWAS to identifyQTL andgenesassociated with drip loss (DL) in chaptea8,well as a
single SNP associatimanalysis of two potential causative mutations aifiganeat colouin
chapter 4Thesetwo researclthaptersvere intended toontribute to an improvednderstanding
of thebiology underlyingmeat qualitytraits, which wouldfacilitate theuseof alterrative
methods of G$hatincorporate biological knowledg® that they cabe implementedh the
future In responséo the results of these chaptei® followingwill discuss 1) increasing the
statistical power o6WAS to deteciQTL, 2) strategies foan effectivepostGWAS analysis3)

futureperspective$or pig breeding

5.2.Increasing thestatistical power of genomewide association studies

GWAS has been found to lgoowerful tool to study trait biology, however major downside

of this methodthatwasalsoexperienced in this studig thatGWAS can ofteronly account for

a small proportion of the total genetic variation underlying complex ttaithapter three, a
single SNP GWAS was performed with the intention to improve the biologicanstehding of
DL, however this study was underpowered in its ability to detect QTL significantly associated
with DL phenotypesA Bayesiarneast absolute shrinkage and selection operae8$0)

approach was also used in this study, as it has been pig\sbos/n to improve detection

power of GWAS compared to other Bayesian metl{yasg et al., 2015, Yang et al., 20,1 Byt

this method was also unsuccessful. The positive and negafpeets of each statistical method
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was discussed in detail in chapter three, bshort, Bayesian methods tend to perform best for
traits controlled by fewer genes of moderate to large effect size, so it is likely that the genetic
architecture of DL dagnot align with the underlying assumption of Bayesian LASSO.
Therefore, additional research is needed to improve detection power of GWAS and reveal the

biological basis of meat quality traits.

The underlying assumption of GWAS8Ilowst he fAcommoomehos eaadaei ant O
hypothesis, which assumes that common variantseap®nsible focomplex trait phenotypes
(Botstein & Risch, 2003However, common variants, individually or in comaiion, have only

been able to account for a small proportion of the total genetic variation underlying complex
trats a phenomenon that has been {(Yaw,yetad t he A mi
2011) Human height provides a classic example of the missing heritability problem, where
thousand®f variants have been found associated witmanheight, but these variants only
translateo approximately 25% of the total variance for the trlitich proveghat a few genes

of moderate effect, and intermediate frequency are not responsible for compéephesiotypes
(Yengo et al., 2018)The most common hypothesis explainthigsoc al | ed fAmi ssi ng
her i t arbbiemmis thaycammonvariantswith small effect sizeareunderlyingcomplex
traits(Yang, et al., 2011)Y¥ang et al(2011) showed that by considering aMPs
simultaneouslycommon variants could expla#®b% of the totaphenotypicvariance for human
height(h? = 0.85) but due to lack of statistical powemall effect common variangse unable

to pass the significance threshold required by siBi® GNVAS. Yang et al(2011) also

hypothesized that the remaining variance, which could not be accountedHerr studyis due

to causative mutations that are not in complete (LD) @hiPmarkers on the genotyping panel

This is likelydue to differences minor allele frequencies (MAFand causes a reduction in the
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power to detect the variants underlying complex t&itng, et al., 2011)This is because

markers on the genotyping panel will not always be associated with the nearby causative
mutation, and thus SNP markers will not reliably be associated with the complex trait. This
problem is especiallgxacerbated when causative mutadibave lowMAF (< 0.01) making

their detection especially difficull herefore ensuring adequate statistical pote probability

of correctly declaring a statistically significant association of a defined effect sizewita Pue O
a (significance levg) in subsequent GWASor complex traits such as DWijll ensure studies

are able to detect at least a larger proportion of the variants responsible for the underlying genetic
variation of complex traitsThis can be done by eithdy) increasing samplk&ze, or 2)

increasing marker panel density.

The first method to improve powertsincreag sample sizeThe power to detect common,
moderate to large effect SNPs is high, even in situations where the sample size may be small,
however, if the causativeutations for the trait have low effect size, then they will require
additional powefor detectionSpenceet al, 2009) For example, a simple power analysis was
performed using a cliquared statistical test the pwr package version 1-@of R software
(Champely et al., 2020%iven the circumstances of the GWAS performed in this study (n
1098,a = 1.2x10%, the power to detectsignificant association fromroderate (0.2) to high
(0.5) effect size variant isigh,0.97, and 1.0, respectively. On the other hahd,power to

detect a low effect size variant (0.1)exceptionally low0.06(type Il error rate 6©.94), and
consequentlyin this study, there was only6& chance tha significant associatidior low

effed size variantsvould be correctly detecte@hereforeto detect a low effect siZ@.1)

variant with a standard power of Q8Bmuch larger sample size than what was used in this study
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will be required (n= 3,246).As a result, it can be concluded thdt I3 a complex trait controlled

by many genes of small effect sizes.

Alternatively, the power of GWAS could be improveglincreasing marker panel density.
Today, standard genotyping chips contain 50/60K SNP markers, but higher density marker
panels are ailable (660/770K), as well as whole genome sequi@NES). Increasing marker
panel densityvill either increasehe strength of LD between SN&sd causative mutationgr

in the case that WGS data is used, then thisrewial causative mutations tha¢ aot

genotyped irthe marker panel®VGS provides the most potential for improving statistical
power, as it eliminates the neéor markerghat are in high LD with causative mutatioas,
causative mutations are expected to be included in WGSHiataver, although the cost of
WGS has gone down in recent years (WGS costs approximately $1000 per individual), the cost
of sequencing thousands of animals for a GWAS wgtaatly outweigh the potential benefits.
As a result, WGS incorporating imputation theen proposeds a lowcost alternativéo

improve the power of GWAS.0 do this,a small subset of the population must be sequenced,
and the remainder of the animals can be genotyped usingdelasity marker panel, then the
missing genotypes will be iafred (imputed) from the WGS datlhis methochassuccessfuy
improved QTL detection famultiple traits in pigs(Yan et al., 2018Wu et al., 2019Li et al.,

2020)

At first glance increasing the number of animals is the nstistightforward aneffective

solutionto improving GWAS powerhowever with regards to meand carcasgquality traits,

this may not be the most feasible and -@&tctive solubn. In pig breeding, selection generally
occurs at the level of purebred animals, however the breeding animals, which genotype data is

commonly recorded, are not sent to slaughter where their phenotypes could be réxotted.
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other handrecording theghenotypes of crossbred animals, which are produced for the purpose

of slaughter, may provide a feasible solution to increase the number of phenotyped individuals
however, these animals are not commonly genotyped, and doing so would generate a substantial
increase in cosfhereforejmplementing WGS and imputation methods to increase marker

panel densityso that amaller population of either purebred or crossbred anicaade used

may provide the best solution to improving the power of GWAS for ax@tarcass quality

traits.

5.3. Strategies for an effective pstGWAS analysis

The purpose 0EWAS s to identify QTL that are significantly associated with complex trait
phenotypes to reveal the underlying biology. However, GWAS resuhstdexplicily specify
the gene or causative mutation that is actuakyponsible for the significant association.
Therefore strategies that relate SNP markers to the appropriate candidate gersedive

mutationsor other genomic elements are the crucial lagi &1 the success of GWAS.

The interpretatiomnd fine mappingf GWAS results can be complicated by adjacent SNP
markerscan ben strong linkage disequilibrium (LD)Amaralet al, 2008) As a resultQTL can
span several megabases in length and contain dozens of potential candidate,gersesne
casesQTL may not contain angenes at allFurther SNPs that are closest to the causative
mutationwill be indistinguistablefrom the neighboimg SNP limiting the use of GWASor
identifying the biological factors that atenderlying the observed phenotype variation for the
trait of interestThis shows tlateven if sample sizes and marker panel dexssérancreased,

and more QTL are found to be significantly associated with complex theatg, is nagyuarantee
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thatgenetic factors contributing to the traiill be identified Thereforestrategiesarenecessary
to improve postGWAS analysissuch asl) further annotation of the pig genome, and 2) fine

mappingand gene set enrichment

Structural and functional annotation of the pig genome, describing the location of genes and
features as well as theiurictions, are essential for biological insights from GWH8wever,
annotation of livestock genomeslimited. Gene coding regions have been annotated to some
extent, but the regulatory elementdieéstockgenoms remain mostly unknown. This is
problemaic as mosknown SNPs are located in the rooding and regulatomegionsof
genomegAuton et al, 2015) Further,n both humans andattle, SNPs withinregulatory regions
have been found to represartarge proportion of SNPs significantly associated with
economically importantraits (Van Laere et al., 200&chaubet al, 2012 Koufariotiset al,

2014) Studies such ake Functional Annotation of Animal Genomes (FAANG
https://www.animalgenome.org/community/ FAANGIm tofill this gap in knowledge by
generéing genomewide and tissuespecificdatasets and functional mapdivestock species
(similar projects have been completed in hum#resEncyclopedia of DNA Elements
(ENCODE) projecthttps://www.encodeproject. odgDunham et al., 2031 2Andersson et al.,
2015). Additionally, a project stemming from FAANG, called the regulatory GENomE of SWine
and CHicken (GENESWItCH), focuses specifically on the coding and regulatory elements of
pigs and chicken genomes in tissues and timepoints that are relevant ttablestaieat
production Then this informatiorcan be used to develop new genomic prediction mpadish
are subsequenthjirectly validatel and integraté into commercial pig and chicken populations
(https:/lIwww.geneswitch.eu/project. hdimlheseFAANG projects will use tools such aBNA-

sequencing (RNAseq)to determine tissue specific gene expression as wellidsntify novel
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gene transcriptgiene isoformsandnon-coding RNAelement{miRNA, IncCRNA). Tissue
specific gigenetic mapwvill also be costructedusing techniques such as, RNAqg, lisulfite
sequencingchromatin immunoprecipitation followed by sequencing (C&&¢) and DNAse
hypersensitivity assaye identify sites oDNA-methylation, histonéail modificatiors, and

open chromatimegiors. ChlP-Seq can also be usedsequence anldcalize DNAbinding sites
for transcription factors or other typesEDNA-protein interactiongsuch as promoters,
enhancers, silencerand insulatofs(Andersson et al., 2015Pnce these gendamelements are
known,this information can aid in pec&WAS analysigo connect genotype infmation to
observed phenotyp&NPsoverlappingregulatory elementsould be alteringegulatory function
by changing chromatin conformatiodisrupting binding sitesand preventing DNAorotein
interactionsresultingin altered transcriptional activityhus contributing to the phenotypic
variation of complex traitsAlternatively, SNPs in regulatory elements couldibduencing gene
expression bwffectingposttranscriptional processes suchthsstability of themRNA (Paiet

al., 2015) Further, expression QTL (eQTL) analysigdl also beperformedo detect a

significant association between SNPs and transcriptomics data (thaf allrmessenger RNA
(mRNA) molecules expressed within a particular tissue at a particular time). Results from these
studies will further increase the value of regulatory information, as it will connect regulatory

elements to their target genes, impliogttheir biological roles and pathways.

Fine mappingf GWAS results to identifycausativegenes anthutationss essential for the
understanding of the biological mechanism underlying trimtshaptes threeand fourof this
thesis,candidate genes weechosen based denown biological informatioron genegYang et
al., 2017)thenin chapter fourpotential causative mutations wdoaind in the Ensembl Genome

Browser and selected basedtbair predicteceffects (nonsynonymous, missense variards)
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well astheirlocation within theproteinsequence (functional domainghese methods were
somewhat successful, as in chapter three, two dhedifze genomic regionthat were
investigateccontained genes with biologically relevant roles in DL. Conversigity method was
unsuccessful in chaptésur, as no potential causative mutations were found to be significantly
associated with meat colour traikdore sophisticated methottsfine mapcausative genes and
mutationsthat incorporat@opulation specifizariants as well asegulatoryandfunctional data
areavailablefor use inlivestock animalsandshould be implementad subsequent studies to

identify potential candidate genes and edive mutations

The most straightforward firmapping approaches look for overlap betwpepulationspecific
SNP variants and functional eleme(Bsoekemaet al, 2020) WGS followed by imputationan
be used tadentify all of the variants segregatingthin apopulation then this informatiorcan
be overlapped witQTL to determinef these variants reside in functional elens€genes,
promoters, enhancers, methylation sites, or other regulatory elenfemthr thefiltering of
WGSvariantsbased orknown functional effects wilhelp to narrow down potential candidate
genes and variantasnot all varians will cause a fuctional disruption of the gene or regulatory
element(Broekema et al., 2020F-or examplea nornrsynonymousSNP located withitthe exons
of a genesuch as those used in chapter four of this staidymorelik ely to becausative
variantsthan those located in the introlternatively, in a GWAS bwelezIrizarry et al

(2019) eQTL datawvas usedo infer SNP functionality. In thisase RNA-seq analysisf the
longissimus thoracis et lumborufioin)muscleof Duroc X Pietran pigs was used to identify
tissue specific eQTL. Subsequently, theQa 'L wereoverlapped with QTL that wefeund to
besignificantlyassociatedavith growth and meat qualifyghenotypesThistechniquegreatly

reduced the number of potenteandidate genes to 16 genes folZIL. Additionally, the
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resulting candidate genes were found to be biologically relévgastmortem meat
biochemistry and included pathways such as calcium signaling, energy metabmtidnedox
homeostasigVelezIrizarry et al., 2019)One downside ofising expression dathatfunctional
disruption ofregulatoryelements causing chg@es in gene expression does not guarantee
causality This is becausén some cases, gene expression may be controlledrpostationally,
meaning changes in gene expressiomotresult inchangeso downstream processes
(Broekema et al., 20207 his highlights the importance ektraomics data to enable more
accurate predictions of complex trait phenotypes. Other typemcionalQTL datg thatcan be
used similarlyto eQTL daa, include thequantityof, proteirs (pQTL), metabolites (mQTL),
DNA methylationpatterndmeQTL), microbiota (miQTL)or cells (celtcount, ccQTL)

(Broekema et al., 2020)

In addition to thause offunctional elementstatistical fire-mapping approaches cgreatly
narrow down QTL regionand the list of potential causative genes or variddagesian methods
can be used to determine the probability that a SNP marker is cadsatissessingD

structure and patterns of associati@sulting in asetof SNPsthat aresolatedto muchshorter
genomic regiongGallagher & CherPlotkin, 2018) Li et al. (2020)used this approach far
GWAS for litter sizein pigs.Two QTL declared statistically significant ifGNVAS werefine-
mappedusing aBayesian factor modellgwvia Markov Chain MonteCarlo (BayesFMMCMC)
approachThis narrowed QTLregionsof approximately onandtwo megabasegownto 100
and870 kilobasesrespectivelyAlthoughthe finemappedQTL contairedtoo many SNPs for
identification of causal mutatien71 and432 SNPsrespectivelyfour potential candidate genes
with biologically relevant rolesvere identified using this methd@ti et al., 2020) It is important

to note that theserfe mapping approachased noassume a single gene or variant is
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responsible for the variation contributed a SiFGWAS peak In many casest is likely that

multiple variantsor even multiple genes are responsible for the GWAS sigharefore, a

metlod termed conditional analysis can be performed to determine if a GWAS signal is due to a
single locus in an area of high LD or multiple loci that are either weakly linked or un|itiiead

this information can be considered during fmapping analysi§Gallagher & CherPlotkin,

2018)

A final step that can be used to extract biological information from GWAS results is known as
gene set enrichment. This tool can be used to determine if a predefined set of genes (such as the
candidate genes identified in GWAS) is enriched for a spduaifiction or biological pathway

than would be expected by char{g@o et al, 2017) Online databaseswe available, such as

Gene Ontology (GOjAshburner eal., 2000) the Kyoto Encyclopedia of Genes and Genomes
pathway analysis (KEGG@Dgata et al., 1999and ingenuity patvay analysis (IPAjKrameret

al., 2014) which allow you to test gene sets for an enrichment in functional pathwaysyke

gene ontologies, or associated gene @&s et al., 2017)Gene set enrichment hlasenshown

to be a successful approach fioe studyof complex trait biology in both pigg-alkerGieske et

al., 2019)and cattlgCaiet al, 2018) The only downside being that this method is biased in
terms of available biological knowledge, and those genes with minimal infornaatitheir
biological function or pathway will not prioritized as a top candidate gene even if it does play a

role in the complex trait phenotygi€ao et al., 2017)
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5.4. Future perspectives forpig breeding

This chapter has discussed common challenges associated with GWAS that were experienced in
the research chapters of this thesis, as welbagmethods to improve theetection of GWAS

signals and theappropriategenes or variantglowever,it is important to note that, although

improving statistical power to identify QTL and advancing the knowledgene and regulatory
annotation will greatly improve the ability to detect the genes and variants associated with

complex traitgn the futureassimply identifying a mass amount of candidate genes may not be
sufficient for the useful application of biological information into alternative GS procettures

improve accuracy of selectio@allagher et a(2018) suggested that there should be an

increased emphasis on the downstream functional activity of GWAS loci, as the identification of
more and more GWAS signals with smaller and smaller effect sizes,simpd/ result in the
identification of all #hd egramedco rprlphestsaaati di c e
or tissue type, with no knowledge on the pathwaysiteractionghat connect them. This
hypothesis stems from an Aomnigeni cg20Bgr spect
whereevery component that acts withirspecific cell or tissue typés expectedo some extent

influence complex trait phenotypes, with only a few core genes makangeaandirect

influenceon the trait of intereBoyle et al, 2018) Therefore, ging forward, it may be best to

consider the larger picture.

GWAS results should be integrated with other relevant and informative biological didu@y or
can be used tpoint dovnstream researdbwardsother methodshatcould be used to explore
the functional consequences of SNPs that are associated with comple$ysiegas genetic
approacheswvhich have been reviewed previougBuravajhalat al, 2016 Georgest al,

2019) attempt to explain how DNA variants relate to phenotyse)g data from
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transcriptomicsproteomics metababmics epigenomicsandotherreguatory information Even
more,genefunction as well as the consequences of potential causative mutations can also be
studiedusing molecular experimental approaches, sugeasmeediting (CRISPR/Casp(Hsu

et al, 2014)

If more becomes known about the biologicallievant pathways and their components that are
controlling meat quality phenotypes, then this information can be used to classify variants based
on their potential predictive abilitgnde ven t hose that havendét been
subsequently besed to inform GS proceduaad improve breeding value prediction accurdicy
biological pathways and their constituents kmewn to influence a specific trait, then these

regions can be assigned a higher weight or can be assumed to account for ardogitgon of

SNP effectsEventually this biologicalknowledgemay even bableto be used tadentify a set

of genes which could be used as targets for genome etitinduce variatiomto livestock

populationsand improve complex trait phenotyp@eorges et al., 2019)

Threemajorgenome editingystems exidior livestock includingthe Zinc-Finger Nucleases

(ZNF) (Miller et al, 1985) Transcription ActivatoiLike Effector Nucleases (TALENgGOhre

& Robatzek, 2008)and the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/CRISPFRassociated 9 (Cas9) $gm (Horvath & Barrangou, 2010Yhese genome
editing tools work by inducing double stranded breaks (O8#)a target siten the DNA

which activates DNA repair phatvays. One repair pathwayadallednon-homologous end joining
(NHEJ),where the DSB is ligated together without the need for a repair template. This msethod
error prone and results #gmall insertions or deletions within the geoftencausing itdossof
function (called a knockut, KO). Alternatively, if a homologous DNA repair template is

present, then DSEarerepaired by homologdirected repai(HDR), whereprecise
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modifications are introduced according to the template seq&eueges et al., 201.9kenome
editing techniques have been successfully used in multiple types of livestock species, including
pigs, cattle, sheep, and chicken, bune examps of the implementation in pigsclude the
CD163and myostatinNISTN genes. Modificatiomf the CD163gene using CRISPR/Cas 9
resulted in pigs resistant to porcine reproductive respiratory syndrome virus (PRRSV)
(Whitworth et al., 2016)Further, pigs with modifiechyostatiMSTN genes have been

producedo improve meat and carcass yi@ithuschild et al., 201 Cyranoski, 2015; Wang et

al., 2015) Previously,in livestock, the main purpose génome editingvas to produce

laboratory animal for the study of human diseases, but once more is known of the biology
underlying complexandeconomically important traits in livestock, then this technologybean

used to induce variation or novel changes that are not present in the breeding populatio
(Georges etal., 20199 met hod termed Apromotion oHas al |l el e
been proposed to combine genome editing with GS, where thermyesdmal would be edited

by HDR for causative variants so they are homozygous for the favorable al&enethods

predictedto increase the rate of genetic gain by two to four tif@eorges et al., 2019)

55. Conclusions

The results of this studyan beused to help improve the meat quality of pigs in CanBga.
incorporatingnovelmeatand carcasgquality traits into breeding program, abeling able to
select for these traits withhigh accuracythenrapid genetic gain can be accomplishEais
could have a major effect on the pig induséighy improving consumer appeal to purchase and

repurchase pork as their source of protein in the future mekétnaroduct demand and value
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will improve, and the potential profit of each participant in the pork production etiflibe
improved Although additional research, of sufficient power, will be required before some of the
results of this thesis can beelitly applied to breeding and selection decisions, they provide

important background for which future research can be iypdlh
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