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ABSTRACT 

Vertical scaling is the process of establishing a numerical test score scale 

across several age or grade levels.  Given that the current literature does not 

indicate which of the different vertical scaling procedure works “best” for all 

situations.  This study evaluated the performance of four vertical scaling 

procedures (concurrent calibration, fixed common item parameters, test 

characteristic curve, and hybrid characteristic curve), across two content areas 

(Reading and Mathematics), two score distribution types (normal and negatively 

skewed), and two sample sizes (1,500 and 3,000).  Five outcome measures were 

used to evaluate the results: decision accuracy, decision consistency, conditional 

standard errors at each of two cut-scores, root-mean-squared-differences of the 

scale scores between scaling procedures, and correlations between scaling 

procedures’ final item parameters.  The data used in this study was from a U.S. 

large scale testing program in Reading and Mathematics for grades 3 through 8.  

These data were used to simulate the type of score distribution and sample sizes 

considered with 100 replicates for these combinations.   

The largest differences among the four vertical scaling procedures for 

Reading were found at the lower and upper grade levels, particularly for decision 

accuracy.  Differences were found between the normal and skewed distributions, 

for decision accuracy where a different pattern of results were found.  The 

accuracy results decreased markedly as grades increased for the skewed 

distribution.  For Mathematics the largest differences across all outcome measures 
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occurred across grade levels rather than across vertical scaling procedures.  

Sample size for both Reading and Mathematics did not seem to have an effect.   

Practitioners should ensure high decision accuracy and consistency values 

across all grade levels, and that a particular scaling procedure does not result in 

undesirable results.  If a state program allows different procedures for different 

content areas, then the hybrid characteristic curve procedure would be most 

appropriate for Reading and the test characteristic procedure most appropriate for 

Mathematics. However, if the procedure must be the same, then the hybrid 

characteristic curve procedure could be used for both Reading and Mathematics.  

Measurement specialists can use these results to guide their implementation of 

vertical scaling for their state assessment programs.    
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CHAPTER 1 INTRODUCTION 

One of the biggest challenges in education today is quantifying how much 

a student has learned over time.  There are many methods teachers use to evaluate 

student performance, but testing a student’s knowledge and skills through 

examinations is the most prevalent.  Assessments throughout a school year can 

provide some evidence of learning for that year.  However, measuring learning is 

more complex and difficult over longer periods of time, for example across grade 

levels.  One way to accomplish this is to develop a vertical scale.  Vertical scaling 

is defined as a process of placing scores on a common scale obtained from tests 

administered at different grade levels or ages that are intended to measure similar 

constructs but that differ in difficulty (Kolen & Brennan, 2004).   

Vertical scaling is used to create scales across several grades for both test 

batteries and achievement tests (Hoover, Dunbar, & Frisbie, 2003; Ito, Sykes, & 

Yao, 2008; Karkee, Lewis, Hoskens, Yao, & Haug, 2003; Lohman & Hagen, 

2002).  However there are many different methods for creating vertical scales.  

While there is extensive use of vertical scales in practice, the “gold standard” for 

the development of vertical scales is still being pursued.   

Early research on vertical scaling led to the development of Thurstone 

scaling, which was the first proposed method to create a vertical scale (Thurstone, 

1925, 1938).  As computers evolved in power new procedures were developed.  

One such development involved the use of item response theory (IRT; Lord, 

1980).  IRT was first used to equate single grade levels in the early 1980s.  

Subsequently, the single grade procedures were extended across grades, 
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particularly for the one parameter model with the results compared to the results 

obtained from Thurstone scaling (Becker & Forsyth, 1992; Camilli, Yamamoto, 

& Wang, 1993; Cook & Douglass, 1982; Harris, 1991; Petersen, Cook, & 

Stocking, 1983; Phillips, 1986; Williams, Pommerich, & Thissen, 1998).  More 

sophisticated models were developed where the two- and three-parameter models 

were used to establish vertical scales (Baker & Al-Karni, 1991; Becker & Forsyth, 

1992; Briggs & Weeks, 2009; Camilli, et al., 1993; Chin, Kim, & Nering, 2006; 

Clemans, 1993; Cook & Douglass, 1982; Hanson & Béguin, 2002; Harris, 1991; 

Harris & Hooker, 1987; Ito, et al., 2008; Jodoin, Keller, & Swaminathan, 2003; 

Keller, Skorupski, Swaminathan, & Jodoin, 2004; J. Kim, 2007; S. H. Kim & 

Cohen, 1998; Kolen, 1981; Meng, 2007; Petersen, et al., 1983; Skaggs & Lissitz, 

1988; Tong, 2005; Tong & Kolen, 2007; Williams, et al., 1998; Yen & Burket, 

1997).  These models were introduced as model-data fit issues resulted with the 

less complex models. 

Concurrent calibration was the first method used for either the one-, two-, 

or three- parameter models (Briggs & Weeks, 2009; Camilli, et al., 1993; Chin, et 

al., 2006; Custer, Omar, & Pomplun, 2006; Hanson & Béguin, 2002; Harris, 

1991; Harris & Hooker, 1987; Holmes, 1982; Ito, et al., 2008; Jodoin, et al., 2003; 

Karkee, et al., 2003; Keller, et al., 2004; J. Kim, 2007; S. H. Kim & Cohen, 1998; 

Meng, 2007; Petersen, et al., 1983; Pomplun, Omar, & Custer, 2004; Shen, 1993; 

Skaggs & Lissitz, 1988; Tong, 2005; Tong & Kolen, 2007; Williams, et al., 

1998).  Other methods included the fixed common item parameter procedure 

(Becker & Forsyth, 1992; Jodoin, et al., 2003; Keller, et al., 2004; J. Kim, 2007), 
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mean-mean procedure (Baker & Al-Karni, 1991; Guskey, 1981; Hanson & 

Béguin, 2002; Skaggs & Lissitz, 1988), mean-sigma procedure (Chin, et al., 2006; 

Hanson & Béguin, 2002; Jodoin, et al., 2003; Keller, et al., 2004; Tong, 2005; 

Tong & Kolen, 2007), Haebara procedure (Hanson & Béguin, 2002), and the 

Stocking and Lord procedure (Baker & Al-Karni, 1991; Briggs & Weeks, 2009; 

Clemans, 1993; Hanson & Béguin, 2002; Karkee, et al., 2003; Keller, et al., 2004; 

J. Kim, 2007; S. H. Kim & Cohen, 1998; Meng, 2007; Tong, 2005; Tong & 

Kolen, 2007; Yen & Burket, 1997).   

The different methods have been compared in approximately 20 studies 

using real or actual test data (Briggs & Weeks, 2009; Camilli, et al., 1993; Cook 

& Douglass, 1982; Guskey, 1981; Harris, 1991; Harris & Hooker, 1987; Holmes, 

1982; Ito, et al., 2008; Jodoin, et al., 2003; Karkee, et al., 2003; J. Kim, 2007; 

Kolen, 1981; Petersen, et al., 1983; Phillips, 1986; Rentz & Bashaw, 1977; Shen, 

1993; Slinde & Linn, 1978, 1979; Whitely & Dawis, 1974; Williams, et al., 

1998).  Taken together, these studies reveal that the different methods yield 

inconsistent results where different procedures in each study seem to be the best 

procedure.  Consequently, it is not easy to recommend one vertical scaling 

method over the others.  

In order to systematically determine which procedure might be best 13 

simulation studies have been conducted (Baker & Al-Karni, 1991; Chin, et al., 

2006; Clemans, 1993; Custer, et al., 2006; Gustafsson, 1979; Hanson & Béguin, 

2002; Keller, et al., 2004; S. H. Kim & Cohen, 1998; Meng, 2007; Pomplun, et 

al., 2004; Skaggs & Lissitz, 1988; Tong, 2005; Tong & Kolen, 2007; Yen & 
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Burket, 1997).  While these studies have evaluated vertical scaling more 

systematically than those using real data, many of the studies did not clearly 

delineate which scaling procedure produced the best results for all of the features 

that are important operationally.  For example, all of the studies based their 

simulated data on only one content area and many included only two grade levels.   

There are two aspects of the previous research on vertical scaling that have 

not been systematically evaluated in one study.  One aspect is the properties of the 

data from which the real data has been simulated.  For example, several of the 

studies were based on response data from a content area such as Reading or 

Mathematics.  Only three studies compared more than one content area at the 

same time, and they were conducted with real data (Ito, et al., 2008; J. Kim, 2007; 

Tong & Kolen, 2007).  Furthermore, in the case of simulation studies, a normal 

distribution of scores was assumed in all of the studies except the Custer et al.’s 

(2006) study in which “slightly” skewed distributions were simulated.   

The second aspect not considered in the previous studies is the use of 

evaluation methods that would be most useful to practitioners in the field (e.g., 

state testing officials).  For example, Jodoin et al. (2003) placed examinees in 

proficiency categories based on cut-scores, but the results across the methods 

were different and, since the data were real, it is unclear which procedure 

provided the most accurate and consistent results.  In another study, Meng (2007) 

evaluated the absolute bias, standard error (SE), and root-mean-squared-error 

(RMSE) between the true versus estimated proportion classification values, 

which, while important indicators of success, are not easily understood by 
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practitioners.  Measures such as the accuracy and consistency of the decisions 

made using the cut-scores were not evaluated in the context of vertical scaling 

procedures in either of these two studies.   

Purpose of the Study 

To address these gaps in the literature the purpose of this study was to 

evaluate four different vertical scaling procedures in terms of classification 

accuracy and consistency, conditional standard errors of the cut scores, root-

mean-squared-differences (RMSD) between scale scores, and correlations 

between scaled item parameters.  Therefore, a simulation study based on real data 

acquired during the implementation of a vertical scale was conducted.  The real 

data, together with cut-scores were used to develop a simulation study that 

mirrored actual practice.   

The following four scaling procedures were examined: 

1. Concurrent calibration (CC).  This method simultaneously calibrates all of 

the item parameters and theta values for all grades at the same time.  No 

linking or equating methods are used to place the item parameters or theta 

values on the same scale. 

2. Fixed common item parameters (FCIP).  This method sequentially 

calibrates the item parameters for two test forms for each grade level.  The 

base level grade 6 item parameters are estimated first.  Then the separate 

grade item parameters are used to calibrate the upper and lower grade 

levels (e.g., start at grade 6 and move down to grade 5), where the known 

parameters are fixed (e.g., grade 6 item parameters) and the unknown 
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parameters (e.g., grade 5 item parameters) are estimated.  Once all grade 

combinations are estimated the final theta values are estimated based on 

the final item parameters.   

3. Test characteristic curve (TCC).  Similar to the FCIP procedure, the TCC 

procedure is sequenced.  First, the item parameters for each grade are 

separately estimated.  Then the item parameters for each grade other than 

the base grade level are transformed onto the scale of the base grade level 

using an IRT equating method.  In this study that method will be the 

Stocking and Lord (1983) IRT equating procedure.   

4. Hybrid characteristic curve (HCC).  This method is similar to both the CC 

and TCC methods.  Instead of calibrating the separate grade levels as is 

done for TCC, two or more grade consecutive levels are combined to 

conduct a concurrent calibration (e.g., grade 3 and 4, grade 5 and 6, and 

grade 7 and 8) and then the three separate grade grouping item parameters 

are transformed onto the same scale.  In this example the concurrent 

calibration is smaller as only two grades levels are included instead of six 

to prevent difficulties in estimating the parameters.  The TCC equating 

procedure is the method used to place the item parameters onto the scale 

of the base grade level.   

Four factors were evaluated: scaling method (four procedures), 

distribution shape (normal, negatively skewed), content area (Reading, 

Mathematics), and sample size (1,500, 3,000).  The four factors resulted in a fully 

crossed 4 x 2 x 2 x 2 design with 32 conditions. 



 7 
 

Evaluation criteria 

Five statistical procedures were used to evaluate the results: decision 

consistency and accuracy, conditional standard error at each cut-score, root-mean-

squared-differences of the final scale scores, and correlations of the final 

parameters across vertical scaling methods.  The purpose of the first three of the 

outcome measures was to evaluate the four scaling methods across the conditions 

in a criterion-referenced score interpretation context.  The first method was 

decision accuracy, which measured how accurate the decisions were in placing 

students into one of three proficiency categories.  The second method was 

decision consistency, which measured how consistent the decisions were in 

placing students in these categories (Crocker & Algina, 1986; Livingston & 

Lewis, 1995).  The third measure was the conditional standard error at each cut-

score, which measured the relative error for the theta score at each cut-score.   

The last two evaluation criteria were used to evaluate the vertical scaling 

procedures commonly used in other vertical scaling research.  The fourth criteria, 

the root-mean-squared-difference (RMSD) measured the agreement between the 

scale scores for the pairs of each vertical scaling procedure.  The fifth criteria, the 

correlation between the item parameters obtained for each scaling method, 

measured the agreement between the item parameters found by the pairs of 

vertical scaling procedures.   

Research Questions 

The following four research questions were addressed using simulated 

data based on real data: 
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1. Do vertical scaling methods perform the same for the five evaluation 

criteria? 

2. Does distribution shape have an effect on the five evaluation criteria? 

3. Does content area have an effect on the five evaluation criteria? 

4. Does sample size have an effect on the five evaluation criteria? 

Organization of Dissertation 

An introduction to the research on different vertical scaling procedures, 

purpose of the study, brief description of the procedures and the evaluation 

criteria used and the presentation of the simulation conditions and research 

questions were presented in Chapter 1.  Chapter 2 contains the context in which 

vertical scaling occurs followed by an explanation of the vertical scaling 

procedures, an extensive literature review, and de-limitations of the current study.  

Chapter 3 describes the methods used in the present study.  This includes a 

description of the vertical scaling procedures, simulation conditions, and 

evaluation procedures used.  The results for the Reading conditions are presented 

in Chapter 4.  The results of the Mathematics conditions are presented in Chapter 

5.  The discussion, conclusions, recommendations for practice, and 

recommendations for future research are presented in Chapter 6.      
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CHAPTER 2 REVIEW OF THE LITERATURE 

 Chapter 2 is organized into three main sections.  Section 1 provides a 

description of vertical scales used in practice and the rationale for why vertical 

scales are created.  In Section 2 the data collection design used in this study is 

described first.  Then a brief description of traditional vertical scaling procedures 

is presented.  As well, the item response models and estimation methods are 

described.  The four vertical scaling procedures evaluated in this study are then 

described in greater detail: Concurrent Calibration (CC), Fixed Common Item 

Parameters (FCIP), Stocking and Lord test characteristic curve (TCC), and Hybrid 

test characteristic curve (HCC).  Within the subsection on the four scaling 

procedures, the mean/mean and mean/sigma equating methods are briefly 

described as the test characteristic curve procedures are similar to these methods.  

Finally, the last section provides a summary and critical analysis of the research 

literature on vertical scaling methods.  Real data studies are reviewed first 

followed by simulation studies.  Studies that compared the IRT methods to 

traditional methods are briefly presented, followed by studies that compare IRT 

vertical scaling methods. 

Description of Vertical Scaling 

 Educational research is focused on many areas that involve student 

learning.  One method to evaluate some aspects of this learning is through 

assessments.  In many cases learning is defined as student growth.  One purpose 

of school achievement or aptitude tests is to estimate individual student growth, 

either within a year, year-to-year or over multiple years.   
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To adequately measure growth it is necessary to administer achievement 

tests across time.  There are different methods to estimate growth.  One method is 

to administer the same test each year and chart growth in test scores over multi-

year periods (Kolen & Brennan, 2004).  However, administering the same test 

items over a wide range of educational levels is problematic as many items are 

likely too difficult for students at early educational levels and too easy for 

students at higher educational levels (Kolen & Brennan, 2004).  In addition, pre- 

and post-test gain scores are difficult to measure due to regression (Glass & 

Hopkins, 1996).  One alternative method to overcome these two problems is to 

use similar test forms that measure the same construct and the process of vertical 

scaling.   

The purpose of vertical scaling is to allow comparisons of students or 

cohorts at different grade levels by administering different test forms that measure 

the same general construct and that are constructed based on the range of item 

difficulty for each group of students for each testing occasion.  A vertical scale 

consists of separate test forms that differ in difficulty to reflect the differences in 

learning by age or grade, but which are intended to measure the same constructs; 

vertical scaling involves placing the scores obtained from these tests on the same 

scale (Kolen & Brennan, 2004).  Vertical scales are created for constructs that 

remain similar across educational levels, such as the constructs of Reading, 

Writing, and Mathematics, especially those created in the context of No Child 

Left Behind legislation.  They are not typically used for constructs which change 

across increasing educational levels, such as the constructs of science and social 
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studies.  In the case of educational achievement assessments such an overlap in 

content may be very different (e.g., Social Studies grade 3 – California history 

and Social Studies grade 4 – United States government). Vertical scales provide 

the ability to measure growth on a common metric so that the interpretation of 

educational growth is easier.   

Two types of tests that can use vertical scales are test batteries and 

educational achievement tests.  For example, the Iowa Test of Basic Skills (ITSB; 

Hoover, et al., 2003) and the Cognitive Abilities Test (CogAT; Lohman & Hagen, 

2002) are test batteries that are typically administered to students in consecutive 

grades.  However, test batteries are sometimes created without using a vertical 

scale.  Norms are created using representative samples of students for the 

population of students at each of the identified grade levels.  In this case, the 

purpose of the vertical scale is not to measure growth per se, but to compare 

students or schools to the appropriate norms developed from the responses of the 

students in the different grade levels.  For example, results from students in a 

particular school can be compared to the national population using national school 

norms at each grade level.  These batteries include tests in several content areas.  

An example of a normed test battery is the TerraNova, The Second Edition 

(CAT/6), which includes two different forms (C and D), K-12 educational levels, 

and multiple content areas (e.g., Reading/Language Arts, Mathematics, Science, 

Social Studies, Word Analysis, Vocabulary, Language Mechanics, Spelling, and 

Mathematics Computations; CTB/McGraw-Hill, 2001).  In this case the vertical 

scale is constructed for norming information but in educational achievement 
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testing, but vertical scaling is not constructed for some of these content areas (i.e., 

Science and Social Studies).  This is primarily due to the content specifications of 

test batteries not being based on general knowledge where an overlap across 

grades is measured and not for a specific state assessment.  

Educational achievement tests have not been necessarily administered at 

adjacent grade levels like many test batteries.  For example, many state testing 

programs included non adjacent grade levels, such as grades 2, 5, 7, and 9.  More 

recently vertical scaling methods have been used to scale educational achievement 

tests that are constructed for multiple adjacent grade levels so that growth across 

grades can be measured.   

The No Child Left Behind Act of 2001 (NCLB, 2001) changed the pattern 

of nonadjacent grades for educational achievement tests in the United States, 

where students in consecutive grades 3 through 8 are currently tested in Reading 

and Mathematics, and will be required to be tested in Science and Social Studies 

in the near future.  However, vertical scaling will not likely be used in the content 

areas of Science and Social Studies as the constructs in these areas may be too 

different.  However, vertical scaling is still used when creating national schools 

norms for these content areas.  As of early 2009, 39 states were fully compliant 

and had passed Federal Peer Review, 11 states were not fully compliant (10 states 

did not test all the required grades in Science and one state had not passed the 

Federal review due to using inappropriate content standards for Mathematics; 

U.S. Department of Education, January, 2009).  To become fully compliant each 

state must pass Federal peer review that indicates that their state assessment that 
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adheres to the NCLB legislation (a full description can be found on the U.S. 

Department of Education website; Lead and manage my school: The standards 

and assessments peer review Program Overview, U.S. Department of Education, 

n.d.).  The NCLB legislation also requires that states achieve 100% proficiency by 

2014 (Linn, Baker, & Betebenner, 2002).  To measure whether states achieve this 

growth, Adequate Yearly Progress (AYP) measures are used to evaluate the 

magnitude of growth which is used as part of the accountability program within 

each state.  There is no clear definition of how AYPs are to be calculated, but a 

measure of learning over time is necessary, which could include year to year 

comparisons of cohorts or a longitudinal comparison of the same cohort over time 

(see the U.S. Department of Education summary by the National Title I Directors' 

Conference for a full description; U.S. Department of Education, 2003).  

Although AYPs have been defined differently in different states, it is common for 

states to use vertical scales to measure the states’ AYP (e.g., Arizona, Iowa; Lead 

& manage my school. Letters to chief of state school officiers regarding an update 

on several NCLB cornerstones, U.S. Department of Education, n.d.).   

Given several vertical scaling procedures are available, different states 

employ different procedures, albeit with Federal oversight by the Department of 

Education (i.e., Federal Peer Review).  Unfortunately, different vertical scaling 

procedures do not always provide the same results.  Consequently, it may be 

difficult to compare validly the AYPs across states.  Therefore, there is a need for 

additional research to evaluate different methods for vertical scaling educational 

achievement tests and to determine if one procedure is clearly superior. 
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Before describing vertical scaling, three types of linking are described: (1) 

equating, (2) scaling and (3) predicting (sometimes called linking).  Linking is 

used to derive a metric for which student scores are “comparable” (Holland, 

2007).  The statistical mechanisms used to link two or more tests are generally 

similar.  However, the requirements for and strength of interpretations are 

different for each type of linking.  Equating is the most demanding and strongest 

form of linking (Linn, 1993; Mislevy, 1992), and “a direct link is one that 

functionally connects the scores on one test directly to those of another” (Holland 

& Dorans, 2006, p. 188).  According to Kolen and Brennan (2004) equating 

adjusts for difference in difficulty among forms that are built to be similar in 

difficulty and content (p. 2).  Further, there are four properties of equating that 

must be met (1) the symmetry property – which requires that equating 

transformations be symmetric (i.e., where the function used to transform a score 

on one form to the second form be the inverse of the function used to transform a 

score on the second form), (2) the same specifications property – the different test 

forms must be built to the same content and statistical specifications, (3) the 

equity property – Lord (1980) stipulated that it must be a matter of indifference to 

each examinee whether one form or another is administered or that the 

distribution of true scores has the same distribution of converted scores on either 

form, and (4) the group invariance property – the equating relationship is the 

same regardless of the group of examinees used to conduct the equating (Kolen & 

Brennan, 2004).  The strongest interpretations can be made with equating as the 

different forms or scores are considered the most comparable when the properties 
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are met.  The resulting scores are considered interchangeable in the sense that the 

students’ score on one form would be the same on the other form. 

Scaling is to align or transform the scores from two different tests onto a 

common scale to create comparable scores (Holland & Dorans, 2006; Kolen, 

2006; Linn, 1993; Mislevy, 1992).  Scaling is used in different types of situations: 

a) battery scaling - different constructs and a common population of examinees, 

b) anchor scaling - different constructs and different populations of examinees, c) 

vertical scaling - similar constructs and similar reliability but different difficulties 

and populations of examinees, d) calibration - same construct, different 

reliabilities, and the same population of examinees, and e) concordance - similar 

constructs, difficulty, reliability and the same population of examinees (Holland 

& Dorans, 2006).  Scaling does not strictly meet any of the properties of equating, 

such as symmetry, same specification, equity, and group invariance.  While the 

statistical mechanisms used for equating can be used for scaling, the scores are 

not as closely comparable as with equating.  Therefore, the strong interpretations 

of interchangeable scores that are made with equating cannot be made with 

scaling.  But the scores are considered comparable.   

The final linking type is called predicting (sometimes called linking) 

where assessments are constructed around different types of tasks, administered 

under different conditions, or for different purposes related to students’ affect and 

motivation, where the equating or scaling application could be misleading (Kolen, 

2006; Linn, 1993; Mislevy, 1992).  In a prediction study, a relationship is 

determined between the scores to be predicted from one test (representative of the 
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dependent variable) from the scores obtained on the second test (representative of 

the independent variable; Mislevy, 1992).  Predicting is achieved by matching a 

set of similar items to provide a “link” between two sets of test items (predicting 

is sometimes called linking by practitioners but I will use the term predicting 

throughout this paper).  Kolen and Brenan (2004) provide an example of a 

predicting of the ACT Assessment composite scores and the SAT I Verbal-plus-

Mathematics (V+M) scores.  Both of these testing programs are used for college 

admissions in the U.S.  While there are similarities in the content tested and the 

correlations between the scores are relatively high (usually in the low 0.90s), the 

forms are developed with a different table of specifications and do not provide 

interchangeable scores. The only requirement is that a relation between the two 

measures can be created.  The interpretation of the “comparable” scores in 

predicting is the weakest, as compared to equating and scaling.  All three linking 

procedures use the same statistical machinery to establish the link between test 

forms, the interpretation of the scores is qualitatively different, with the strongest 

interpretation with equating, followed by scaling and then predicting.   

In the context of NCLB, while the general constructs across the full set of 

grades are similar, and the constructs between grades are similar, the conditions 

necessary for equating are not met.  But the degree of comparability of the 

constructs is not so different to be a predicting link.  Consequently, scaling for 

comparability is the appropriate form of linking for vertical scales.  As such, the 

statistical procedure used to create a vertical scale is important to ensure the 
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interpretations of scaled scores, while not as comparable as equated scores, are 

nevertheless comparable and can be interpreted across different grade levels.   

Vertical Scaling Designs 

Vertical Scaling Data Collection Design. 

There are two basic data collection designs for vertical scaling, one based 

on randomly equivalent groups and the other based on non-equivalent groups.  

The randomly equivalent groups design requires that two or more test forms be 

randomly assigned to students.  Given the ability of the students in the two groups 

is randomly equivalent, the performance on the test forms is linked through 

scaling procedures developed for a random equating design.  In contrast, the 

students in a non-equivalent groups design are intact groups such as classrooms 

and schools.  To overcome the non-randomness, the non-equivalent groups design 

requires a common set of items, presented in approximately the same location on 

the different test forms administered to the different groups.  While the ability of 

the students on the common-items may differ between the two test forms 

administered to these groups, the common items are used to link the performance 

on the different tests using a common-item equating process (Kolen & Brennan, 

2004).   

In the context of creating a vertical scale both the randomly equivalent 

groups design and the common-item non-equivalent groups design can be used 

(Kolen & Brennan, 2004).  However, when using different vertical scaling 

procedures the data collection design must conform to the requirements of the 

scaling procedures, and must be the first decision made when determining how to 
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create the vertical scale.  For the randomly equivalent groups design the on-level 

form(s) and off-level test form(s) are randomly assigned to random samples of 

students at different grade levels.  The students’ scores can then be placed on the 

same scale using concurrent calibration procedures.  However, scaling across 

many grade levels would require that all test forms for each grade level are 

randomly assigned to all examinees.  But this is not reasonable in most contexts.  

The common-item non-equivalent groups design can be used to overcome this 

problem.  But what is now required is that the on- and off-level test forms contain 

a common set of items.  The students’ scores may then be linked using the 

common items with one of the CC, FCIP, TCC, and HCC procedures.  Most 

vertical scaling designs involve both randomly equivalent and non-equivalent 

groups.   

Figure 1 shows such a design.  The design being used in this study 

involves administering the on-grade level and the off-grade level test forms 

randomly to grade level students.  The solid horizontal lines indicate that two test 

levels are administered to two randomly assigned groups of students at the same 

grade level.  For example, the grade 4 students were randomly assigned to either 

the grade 4 test or the below grade 3 test.  The dashed diagonal lines indicate the 

same grade level tests (i.e., common items) but administered to two different 

grade level students.  For example, two samples of grade 3 and grade 4 students 

are administered the two grade 3 level test forms.  Thus both concurrent 

calibration within grade and/or common-item equating procedures between grades 

are needed to place the scores of the students in all grades on a common metric.   
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Figure 1. Data collection design across grade levels 
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dichotomously scored and separate norms are constructed for successive age or 

grade levels.  This method has an assumption that the scores are normally 

distributed within each age or grade level.  In 1938, Thurstone suggested using 

transformed percentile ranks of examinees to create a vertical scale (as cited in 

Williams, et al., 1998).  While Thurstone Absolute Scaling is computationally 

simpler than some other methods discussed below, the requirement of a normal 

distribution for each grade level might not be practical in the case of the tests used 

for NCLB.  This legislation requires 100% proficiency, which will likely lead to 

negatively skewed distributions.   

There are additional traditional equating methods, including linear (e.g., 

Tucker Observed Score; Levine Observed Score, and Tucker True Score) and 

equipercentile equating procedures.  However, since these methods are more 

appropriate for horizontal equating, they are not included in the methods 

identified by Kolen and Brennan (2004) to establish vertical scales.  

Consequently, they are not discussed here.   

IRT Logistic Models. 

Item response theory (IRT) can be used to create vertical scales using the 

one- two- or three- parameter logistic IRT models.  The one-parameter logistic 

model (1-PL) includes one item parameter, namely the item difficulty.  The item 

characteristic curves (ICCs) for this model are given by the equation: 

𝑃𝑖(𝜃) =
𝑒(𝜃−𝑏𝑖)

1 + 𝑒(𝜃−𝑏𝑖)
          𝑖 = 1,2, … , 𝑛, 

where 𝑃𝑖(𝜃) is the probability that an examinee with ability 𝜃 answers item 𝑖  

correctly, 𝑏𝑖 is the item 𝑖 difficulty parameter, 𝑛 is the number of items in the test, 
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and 𝑒 is a transcendental number whose value is 2.718 (Hambleton, 

Swaminathan, & Rogers, 1991, pp. 12-13).  The two-parameter logistic model (2-

PL) includes two item parameters: item discrimination and item difficulty.  The 

ICCs for the (2-PL) are given by the equation: 

𝑃𝑖(𝜃) =
𝑒𝐷𝑎𝑖(𝜃−𝑏𝑖)

1 + 𝑒𝐷𝑎𝑖(𝜃−𝑏𝑖)
      𝑖 = 1,2, … ,𝑛, 

where 𝑃𝑖(𝜃), 𝑏𝑖, 𝑛, and 𝑒 are defined as above, 𝑎𝑖, which is the discrimination 

parameter, and 𝐷 is the scaling factor of 1.7 for item 𝑖 (Hambleton, et al., 1991, p. 

15).  The three-parameter logistic model (3-PL) includes three parameters: item 

discrimination, item difficulty, and pseudo-guessing.  The ICCs for the (3-PL) are 

given by equation: 

𝑃𝑖 = 𝑃(𝑋𝑖 = 1|𝜃�) = 𝑐𝑖 + (1 − 𝑐𝑖)
𝑒𝐷𝑎𝑖(𝜃−𝑏𝑖)

1 + 𝑒[𝐷𝑎𝑖(𝜃−𝑏𝑖)]       𝑖 = 1,2, … ,𝑛, 

where 𝑃𝑖(𝜃), 𝑏𝑖, 𝑛, 𝑒, and 𝑎𝑖 are defined as above and 𝑐𝑖 is the pseudo-guessing 

parameter for item 𝑖 (Hambleton, et al., 1991, p. 17).  An item characteristic curve 

(ICC) can be used to represent the relationship to 𝑃𝑖(𝜃) and 𝜃 for each item.  An 

example is provided in Figure 2 for an item with the a- parameter = 0.9 the b- 

parameter = 1.25 and the c- parameter = 0.18.   
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Figure 2.  Example Item Characteristic Curve 
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incorrectly (Oshima, 1994).  One measure of speededness is the percentage of 

examinees completing the test, where the percentage of students completing 75% 

and 80% of the items are reviewed (Hambleton, et al., 1991).  

IRT Estimation Methods. 

Each of the logistic models can be used to simultaneously estimate the 

person latent abilities and each item parameter in the IRT model used.  Three 

different estimation methods can be used: maximum likelihood estimation (MLE), 

Bayesian modal estimation or maximum a posteriori (MAP), or expected a 

posteriori estimation (EAP).  Each estimation procedure has benefits and 

drawbacks.  For the MLE procedure the data may not contain perfect and 

imperfect scores (i.e., 0% and 100%).  The MAP estimator is similar to the EAP 

estimator but has a somewhat larger average total error.  According to the authors 

of BILOG-MG “the EAP estimator exists for any answer pattern and has a 

smaller average error in the population than the other two estimators” (Zimowski, 

Muraki, Mislevy, & Bock, 1996, p. 17).  Therefore, the EAP procedure will be 

used in this study. 

EAP is conducted where the Bayes estimate is the mean of the posterior 

distribution of 𝜃, given the observed response pattern 𝑥𝑖 (Bock & Mislevy, 1982;  

as cited in Zimowski, et al., 1996, p. 16).  This procedure is approximated by the 

Gaussian quadrature using the following function: 
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where 𝑋𝑘 is one of q quadrature points (the number of quadrature points are 

indicated in the program syntax), 𝑃(𝑥𝑖|𝑋𝑘�) is the probability that 𝑥 = 1 at the 

point 𝜃 on the ability continuum, and 𝐴(𝑋𝑘) are weights depending on the 

assumed distributions of 𝜃 (Bock & Mislevy, 1982; Zimowski, et al., 1996).  A 

measure of the precision of �̅�𝑖 is the posterior standard deviation (PSD), which is 

approximated by 
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where 𝑋𝑘, 𝑃(𝑥𝑖|𝑋𝑘�), and 𝐴(𝑋𝑘), and �̅�𝑖 are as defined above (Bock & Mislevy, 

1982; Zimowski, et al., 1996). 

IRT Scaling Methods.   

Concurrent Calibration.   

An IRT logistic model is typically used to calibrate a single test form 

administered at a single grade level.  However, practitioners sometimes 

administer several forms at the same grade level or the same form is administered 

to multiple grade levels.  The scores for these two situations can be linked 

simultaneously using concurrent calibration.  Only one analysis is conducted, and 

separate linking procedures are not needed.  A simultaneous calibration of 

multiple grade levels and/or forms can be conducted to estimate the latent ability 

(𝜃) of the students and the item parameters, providing the following requirement 

is met: the test forms administered must be randomly assigned to students at each 

grade level.  The requirement of random assignment applies to both multiple 

forms and multiple grade levels.  However, the random assignment of test forms 
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is not necessarily inclusive of the entire grade span.  Instead adjacent grade level 

test forms are randomly assigned.   

An example of the scaling design is shown in Figure 3 where an ellipse 

indicates that all of the grade level tests are simultaneously estimated. Any one of 

the three logistic models can be used to conduct concurrent calibration (CC).   
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Figure 3. Scaling design for Concurrent Calibration 
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calibration, BILOG-MG can be used to complete the estimation.  Either BILOG-

MG (Zimowski, et al., 1996) or MULTILOG (Thissen, 1991) can be used to 

perform the needed estimation when multiple grade levels are involved.   

Fixed Common Item Parameters. 

Fixed common item parameter estimation (FCIP) occurs when common 

items are used to link items in two test forms administered either at the same 

grade level or at different grade levels.  In contrast to CC, FCIP estimation begins 

with identification of the base grade level.  CC is first used to place the base grade 

level test forms on a common scale.  For example, at the base grade 6 level the 

responses of the random sample of students for the grade 6 items and the 

responses of the random sample that responded to the adjacent grade 5 items are 

calibrated concurrently.  This calibration is represented by the ellipse at the base 

level seen in Figure 4.  The second step occurs when the parameters for the items 

for the base level are used in the other grade group calibrations.   
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Figure 4. Scaling design for Fixed Common Item Parameters 
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grade 6 students are fixed for the grade 6 level test form(s) administered to a 

random sample of students in grade 7.  FCIP is then conducted by fixing the item 

parameters for the grade 6 level test form(s) for the calibration of the grade 7 level 

test form(s).  Therefore, the fixed item parameters are read into the computer 

program, and the syntax indicates that the non-fixed item parameters are to be 

estimated while at the same time fixing the item parameters indicated (the data for 

both test forms are included in the estimation process).  The solid lines indicate a 

single calibration within a grade (e.g., the grade 5 and 6 tests administered to 

random sample of the grade 6 level students).  The dashed lines and dashed 

ellipses indicate that the FCIP scaling employed the fixing of the parameters 

indicated for the subsequent calibration.  This process occurs up and down the 

scale until all item parameters are estimated for each of the grade level students.  

In summary, the vertical scale in FCIP estimation fixing item parameters for 

grade levels with common items for each subsequent calibration. 

IRT Linking Methods. 

In addition to the CC and FCIP calibration methods, item parameters can 

be linked using a separate IRT calibration for each test and a linking procedure.  

Using IRT linking methods, the two grade level test forms for each of randomly 

different student samples are concurrently calibrated first (e.g., at grade 6, the 

grade 6 and grade 5 level test items are concurrently calibrated).  This process is 

repeated separately for all of the grade level student groups (e.g., all grade level 

student groups are separately calibrated).  Second, the item parameters between 

grade levels are linked using an IRT linking procedure.  In this step the item 
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parameters for the common test forms are used to transform the item parameters 

of the adjacent grade level items so that the same scale is established.  Four 

different IRT equating procedures are commonly used in vertical scaling: Mean-

Mean, Mean-Sigma, Stocking and Lord test characteristic curve and Hybrid test 

characteristic curve procedures.  

Mean-Mean. 

 The Mean-Mean (MM) IRT equating method was first described by Loyd 

and Hoover (1980).  The ability and item parameter estimates for the two groups 

(either two test forms or one form at two grade levels) are placed on a common 

scale using the item difficulty and discrimination estimates of the common items 

for each set of items (Loyd & Hoover, 1980).  The 𝜃 values for the two scales are 

related as follows: 

𝜃2𝑖 = 𝐴𝜃1𝑖 + 𝐵 

where, A and B are the constants in the linear equation and 𝜃1𝑖 and 𝜃2𝑖 are values 

of 𝜃 for common item i on form 1 and form 2, respectively (Kolen & Brennan, 

2004).  The A constant is calculated using the mean of the a- discrimination - 

parameter estimates for the common items by the following equation: 

𝐴 =
𝜇(𝑎1)
𝜇(𝑎2)

, 

where, 𝜇(𝑎1) is the mean of the a- parameter estimates for the common items on 

form 1, and 𝜇(𝑎2) is the mean of the a- parameter estimates for the common 

items on form 2 (Kolen & Brennan, 2004).  The B constant is calculated using the 

mean of the b-difficulty - parameter estimates of the common items by the 

following equation: 
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𝐵 = 𝜇(𝑏2) − 𝐴𝜇(𝑏1), 

where, A is the constant defined above, 𝜇(𝑏2) is the mean of the b- parameter 

estimates for the common items on form 2, and 𝜇(𝑏1) is the mean of the b- 

parameter estimates for the common items on form 1 (Kolen & Brennan, 2004).  

Given the values for A  and B the unique item parameters are transformed via the 

following equations: 

𝑎2𝑖 =
𝑎1𝑖
𝐴

, 

where, 𝑎2𝑖 is the a- parameter estimate for unique item i on form 2, and 𝑎1𝑖 is the 

a- parameter estimate for unique item i on form 1, 

𝑏2𝑖 = 𝐴𝑏1𝑖 + 𝐵, 

 where, 𝑏2𝑖 is the b- parameter estimate for unique item i on form 2, and 𝑏1𝑖 is the 

b- parameter estimates for unique item i on form 1, and  

𝑐2𝑖 = 𝑐1𝑖, 

where, 𝑐2𝑖 is the c- pseudo guessing - parameter for item i on form 2, and 𝑐1𝑖 is 

the c- parameter estimate for item i on form 1 (Kolen & Brennan, 2004).   

Mean-Sigma. 

 The Mean-Sigma (MS) IRT equating method was first described by Marco 

(1977).  This method is similar to the MM method where the A and B constants 

are estimated to transform the unique items on form 2.  However, the calculation 

of the A constant is different.  The A constant is calculated as follows:  

𝐴 =
𝜎(𝑏2)
𝜎(𝑏1)

, 
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where, 𝜎(𝑏2) is the standard deviation of the b- parameters on form 2, and 𝜎(𝑏1) 

is the standard deviation of the b- parameters on form 1 (Kolen & Brennan, 2004).  

The B constant is calculated using the formula for B for the MM method (Kolen 

& Brennan, 2004). 

Stocking and Lord Test Characteristic Curve Method. 

 In contrast to the MM and MS procedures, a more precise estimation that 

takes into account more information for each item parameter can be conducted by 

matching test characteristics curves (TCC method; Stocking & Lord, 1983), 

which is the sum of the ICCs on a test form, or a subset of items such as common 

items.  The MM and MS methods may be overly influenced by the differences in 

the b- parameter estimates as the MM and MS procedures does not consider all of 

the common item parameter estimates simultaneously unlike the TCC procedure 

(Kolen & Brennan, 2004).  The TCC method overcomes this problem.   

The TCC method minimizes the differences between the TCCs.  The 

function in which the sums over all items of the squared differences between the 

two ICCs for each form being equated is calculated and given by: 

𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖) = ��𝑝𝑖𝑗�𝜃2𝑖;𝑎�2𝑗 , 𝑏�2𝑗 , �̂�2𝑗� −�𝑝𝑖𝑗 �𝜃2𝑖;
𝑎�1𝑗
𝐴

,𝐴𝑏�1𝑗 + 𝐵, �̂�1𝑗�
𝑗:𝑉𝑗:𝑉

�

2

. 

The 𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖) is the function that defines the differences between the ICCs.  

The summation is taken over common items for each set of parameter estimates 

before squaring (Kolen & Brennan, 2004).  The function 

𝜏(𝜃𝑖) = �𝑝𝑖𝑗(𝜃𝑖)
𝑗
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is referred to as the test characteristic curve (Kolen & Brennan, 2004), where 𝑗 

represents the common items (j:V in the above equation calls for summation over 

the common items).  Therefore, the test characteristic curve is the sum of the item 

probabilities across items for that test form.  The expression 𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖) is the 

squared difference between the test characteristic curves for a given 𝜃𝑖.  These 

differences are then summed over examinees.  The estimation proceeds by finding 

the combination of A and B that minimizes the differences between test 

characteristic curves on two forms by the following equation: 

𝑆𝐿𝑑𝑖𝑓𝑓 = �𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖).
𝑖

 

An example of the linking design and TCC procedure is shown in Figure 5; this 

design also allows the use of the MM and MS linking procedures in the context of 

vertical scaling.   
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Figure 5. Scaling design for Test Characteristic Curve 
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level students using the TCC method.  For example, the item parameters from the 

concurrent calibration of the grade 6 level student test forms are used as the 

common-item anchors to link the grade 7 level student items (i.e., grade 6 and 7 

test items).  That is, the item parameters for the grade 7 student test forms (grade 

7 and 6 test items) are transformed using TCC scaling.  Subsequently, the 

transformed grade 7 item parameters for the grade 7 students are used to 

transform the grade 8 level student items (i.e., grade 7 and 8 items).  This process 

is continued for the grade 5, 4, and 3 student groups.  The TCC procedure is a 

commonly used IRT equating procedure for form-to-form equating.   

Hybrid Test Characteristic Curve Method. 

 The Hybrid test characteristic curve method (HCC) uses both concurrent 

calibration and an IRT equating procedure, such as TCC procedure, mean/mean, 

mean/sigma or Haebra.  However, using FCIP in this context would be more 

difficult as several grade level forms would need to be fixed and the concurrent 

calibration of some grade levels is not possible (i.e., upper or lower grade 

groupings could not be concurrently calibrated).  In this method, groups of 

continuous grades are concurrently calibrated instead of the entire grade span at a 

time, and then groups of concurrent calibration results are linked using IRT 

equating procedures such as TCC.  The grade groups can be as small as two 

grades but less than the full grade span, as shown in Figure 6. 

The grade 8 and 7 students that take both the on-level test and off-level 

exams are concurrently calibrated.  In addition, the grade 5 and 6 students that 

take both on-level and off-level tests are concurrently calibrated and the grade 4 
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and 3 students are concurrently calibrated.  After the three separate concurrent 

calibrations, the item parameters are linked via the TCC method (or the MM, MS, 

and Haebra procedures).  However, only four studies to date have used the HCC 

method and all studies used the TCC method (Briggs & Weeks, 2009; Ito, et al., 

2008; Karkee, et al., 2003; Meng, 2007). 

 

Figure 6. Scaling design for Hybrid Characteristic Curve 
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currently used to develop vertical scales.  The primary focus of this literature 

review is to highlight the differences between currently used vertical scaling 

procedures and to identify what methods were used to evaluate the results.  For 

the simulation studies, the conditions simulated are also highlighted in addition to 

comparing vertical scaling procedures and identifying the methods of evaluation.  

For the more recent studies the content areas, grades, sample sizes, and vertical 

scaling methods are listed.  In addition, the evaluation methods to compare the 

different scaling procedures are listed and summarized.  Of particular concern is 

whether the methods of evaluation and conclusions definitively indicate which 

procedure is best.   

Real Data Studies. 

Traditional and IRT Scaling Comparisons. 

 Although Thurstone Absolute Scaling is not used with many current real 

data applications, it has been compared to IRT methods in terms of scale 

shrinkage across grades.  Scale shrinkage occurs when the variances of the scale 

scores decrease as grade levels increase.  In the first of three studies, Becker and 

Forsyth (1992) compared Thurstone Absolute Scaling to two IRT vertical scaling 

methods, 1-PL FCIP and 3-PL FCIP.  They noted that although the Thurstone and 

IRT methods yielded similar results in terms of average growth grade to grade, 

differences were found in the tails of  the distribution (at and above the 90th 

percentile and at or below the 10th percentile).  In addition, given the average 

variability was consistent across grades scale, shrinkage did not occur with this 

data.  In the second study, Williams et al. (1998) compared three different 
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versions of Thurstone Absolute Scaling to a 3-PL CC with two different computer 

programs, BIMAIN and MULTILOG.  The authors reported that the scaling 

methods produced similar trends in mean growth, with somewhat different trends 

in terms of standard deviations, where two of the Thurstone methods showed 

increased variability across grades, while the Thurstone (1925) method and the 

IRT scales showed variances that did not consistently increase or decrease.  In the 

third study, Camilli et al. (1993) evaluated the use of the 3-PL model (CC) as an 

alternative to equipercentile equating in vertical scaling and primarily focused on 

scale shrinkage.  They found that the IRT method did not produce equal interval 

scales, and suggested that the “criteria for determining useful vertical scales 

constitute a controversial topic for debate and research” (p. 387). 

Several researchers compared vertical scaling using linear or 

equipercentile methods to IRT methods (Cook & Douglass, 1982; Harris, 1991; 

Kolen, 1981; Petersen, et al., 1983; Phillips, 1986).  These studies focused on 

meeting the requirements of IRT adequately (i.e., misfitting persons, misfitting 

items, guessing and in the case of the one parameter model equal discrimination).  

Harris (1991) examined different data collection designs in addition to comparing 

equipercentile and IRT true score equating.  These studies indicated that data fit 

issues can impact the choice of the IRT model to be employed, and that the 3-PL 

model performed the best among the three IRT estimation models in the vertical 

scaling context. 
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IRT Scaling Comparisons. 

Several early researchers evaluated IRT scaling methods to create vertical 

scales, where the adequacy of the model was the primary focus and where the 1-

PL logistic model CC was commonly used (Guskey, 1981; Holmes, 1982; Rentz 

& Bashaw, 1977; Shen, 1993; Slinde & Linn, 1978, 1979; Whitely & Dawis, 

1974).  The results generally indicated that the 1-PL model was inadequate for use 

in vertical scaling due to model-data fit issues and assumption violations.  In a 

later study to evaluate the use of the 3-PL model, Harris and Hooker (1987) 

evaluated vertical scaling for a Mathematics computation test from the Iowa Tests 

of Basic Skills for grades 4 through 8 with approximately 200 examinees per test 

form (though two forms only had 79 and 89 examinees) using the LOGIST 5 

computer program.  In their study, the model’s properties, such as item-free 

measurement and person-free calibration, were evaluated and found to not hold.  

In summary, the use of IRT equating methods in vertical scaling initially 

produced inferior results due to not meeting assumptions such as 

unidimensionality and/or poor model-data-fit.  The assumption of normal 

distributions was met in all of these studies. However, as pointed out above, the 

condition of normality may not hold with the need to meet NCLB proficiency 

requirements.   

   Several IRT vertical scaling methods have been compared in more recent 

research.  Jodoin et al. (2003) compared CC, FCIP, and MS , each conducted 

using MLE and EAP, to assess academic growth year-to-year for a single grade 

level in Mathematics (grade level not specified) from a high-stakes state-wide 
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testing program, with a sample of about 60,000 examinees.  This study focused on 

year-to-year growth across three or more years and did not evaluate the creation 

of a vertical scale across grades.  However, the scaling procedures they used are 

also used in the context of vertical scaling.  Jodoin et al. (2003) used two different 

types of comparisons: (1) the average, standard deviation, minimum and 

maximum theta values obtained from the CC, FCIP and MS procedures, and (2) 

the theta values yielded by the MLE and EAP estimation procedures.   

For both estimation procedures the largest growth was found in the 2000 

year using the CC method (i.e., 0.09, 0.07, and 0.16 for EAP for the 1998, 1999, 

and 2000 years respectively; and 0.12, 0.09, and 0.21 for MLE), followed by the 

FCIP procedure which estimated a moderate amount of growth (i.e., 0.06, 0.08, 

0.13 for EAP, and 0.08, 0.10, and 0.18 for MLE), and the smallest amount of 

growth was found using the MS procedure (i.e., 0.02, 0.03, and 0.05 for EAP, and 

0.04, 0.06, and 0.09 for MLE).  Further, the mean growth was found to be 

consistently higher with the MLE estimation method than the EAP estimation 

method.  According to Jodoin et al. (2003) “the results suggest that the choice of 

equating methodology and ability estimator have important consequences in 

measuring academic growth” (p. 241).  In addition, this study was the only real 

data study that compared the multiple scaling methods in terms of the agreement 

of the classification of examinees into proficiency categories.  Each examinee was 

placed into one of the four proficiency categories (i.e., inadequate, adequate, 

proficient, and advanced).  Whereas, all three scaling methods had a high level of 

consistent classifications, the MS and FCIP methods produced a slightly higher 
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degree of agreement for proficiency categories than the CC procedure, and the 

FCIP method placed examinees in the next higher proficiency category more 

often than the MS and CC procedures for MLE, while inconsistent placement 

occurred for all scaling procedures for EAP.  However, the percentage agreement 

between the two estimation methods (i.e., MLE vs. EAP) was not provided.   

Karkee et al. (2003) studied the CC, TCC, and HCC methods used to 

vertically scale student performance on a series of Mathematics test forms that 

spanned six grade levels (grades 5 through 10).  The sample size was 

approximately 10,000 examinees per grade level.  The HCC procedure was 

conducted by using the CC procedure to link pairs of adjacent grade level items 

(grades 5 and 6, grades 7 and 8, and grades 9 and 10).  Then the results of the 

grade 5 and 6 concurrent calibration were linked to the CC results of grade 7 and 

8 using the TCC method.  The grade 9 and 10 CC results were linked to the 

results of the grade 7 and 8 results in a similar fashion.  Four different types of 

comparisons were conducted to evaluate the results: (1) number and average of 

item model-data fit indices, convergent items, and differential item functioning 

(DIF; a statistical flag for item bias where the probability of answering an item 

correctly that is compared for two groups), (2) means and standard deviations of 

the scale scores, (3) residuals  between the observed and predicted scores for 

items and tests, and (4) mean and standardized difference between means (SDMs) 

of the item parameters.   

Karkee et al. (2003) indicated that the TCC method produced consistently 

better results than the CC or HCC methods.  The MLE estimation procedure 
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failed to converge for two items for the CC method and for one item each for the 

HCC and TCC methods.  For model-fit indices, 20 items were flagged as 

misfitting for the CC method, 18 items for the HCC procedure, and 10 for the 

TCC procedure.  For DIF indices, the CC procedure identified 30 items, HCC 

identified 27 items, and the TCC procedure identified 13 items.  The CC 

procedure had the smallest range of item residuals, which ranged from 2 to 24, for 

the HCC procedure from 0 to 44, and for the TCC procedure from 2 to 30.  The 

test score residuals were generally consistent across procedures.  The Pearson 

correlations between the item parameters across procedures were all high (𝜌 > 

0.90) for the a- and b- item parameters, and were lower for the c- parameters 

which ranged from 0.69 to 0.88.  In summary, the TCC procedure seemed to 

outperform the HCC and CC procedures in this study.   

Kim (2007) examined the CC, FCIP, and TCC methods when scaling 

grades 3 through 8 for Vocabulary, Reading, Mathematics, and interestingly 

Science assessments.  The data used were based on the Iowa Test of Basic Skills 

(ITBS) which is not referenced to any particular curriculum and where the focus 

is on national outcomes and comparisons.  The number of examinees per grade 

ranged from approximately 500 to 1,800 examinees.  Four different comparisons 

were made: (1) grade-to-grade growth, (2) grade-to-grade variability, (3) effect 

size of grade separation, and (4) horizontal distances.  In addition, Kim examined 

five different estimation procedures: MLE-pattern scores, MLE-number scores, 

EAP-pattern scores, EAP-number scores, and posterior distribution of “true” 

underlying proficiency (QD).  Kim used the BILOG-MG computer program for 
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the analyses.  The results of the grade-to-grade variability and horizontal distances 

will not be presented here as these results are not relevant to the current study.   

 The mean theta differences between consecutive grades across the five 

estimation procedures for Vocabulary ranged from 0.19 to 0.77 for CC, from 0.19 

to 0.86 for FCIP, and from 0.19 to 0.78 for TCC.  The mean theta differences 

between consecutive grades across the five estimation procedures for Reading 

ranged from 0.53 to 1.06 for CC, from 0.44 to 1.61 for FCIP, and from 0.47 to 

1.66 for TCC.  The mean theta differences between consecutive grades across the 

five estimation procedures for Mathematics ranged from 0.24 to 0.87 for CC, 

from 0.22 to 1.01 for FCIP, and from 0.25 to 0.94 for TCC.  The mean theta 

differences between consecutive grades across the five estimation procedures for 

Science ranged from 0.40 to 0.83 for CC, from 0.38 to 1.62 for FCIP, and from 

0.40 to 1.02 for TCC.  Kim (2007) noted that the five estimators provided almost 

the same results and that the differences between scaling procedures were very 

small for Vocabulary and Mathematics.  However, for Reading and Science the 

grade level mean difference for the scaling methods were different depending on 

the proficiency estimator and grade level.  CC provided smaller mean differences 

at the lower grades (grades 3-5) than did FCIP or TCC, and larger mean 

differences between grades 3 and 4 when MLE (pseudo and pattern) was used.   

Kim (2007) used Yen’s (1986) effect size measure to measure the 

separation of grade distributions.  The effect sizes for pairs of consecutive grades 

across the five estimation procedures for Vocabulary ranged from 0.17 to 0.74 for 

CC, from 0.18 to 0.73 for FCIP, and 0.19 to 0.75 for TCC.  The effect sizes for 
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pairs of consecutive grades across the five estimation procedures for Reading 

ranged from 0.45 to 0.80 for CC, from 0.47 to 0.81 for FCIP, and 0.52 to 0.81 for 

TCC.  The effect sizes for pairs of consecutive grades across the five estimation 

procedures for Mathematics ranged from 0.20 to 0.76 for CC, from 0.20 to 0.75 

for FCIP, and 0.22 to 0.78 for TCC.  The effect sizes for pairs of consecutive 

grades across the five estimation procedures for Science ranged from 0.27 to 0.63 

for CC, from 0.33 to 0.62 for FCIP, and 0.29 to 0.68 for TCC.  The effect sizes 

for the different methods were essentially the same.  The effects sizes for 

Mathematics were the smallest followed by Science, Vocabulary, and Reading.  

The effect sizes decreased as grade increased for Vocabulary and Mathematics 

and fluctuated for the Reading and increased for the Science test as grade 

increased.   

The range of theta differences was the smallest for CC and TCC (except 

for TCC for Reading which was similar to FCIP), and the FCIP had the largest 

range of theta differences.  The range of effects sizes for pairs of consecutive 

grades was generally similar across the CC, FCIP and TCC procedures.  In 

summary, it is difficult to know which procedure was best since some of the 

results were similar and the evaluation methods only looked at the differences 

between grades and not any type of error rate.  

Ito et al. (2008) examined the CC and HCC methods when scaling 

Kindergarten through grade 9 Reading and Mathematics, with approximately 

1,700 examinees per grade.  Three different comparisons were made: (1) means, 

standard deviations, and correlations of the item difficulties, and item 
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discriminations and (2) root-mean-square-differences (RMSDs) between the sets 

of scales scores.  Ito et al. (2008) used the 3-PL model with the proprietary 

software PARDUX (Burket, 1991) and BMIRT programs, which implement 

unidimensional and compensatory multidimensional multi-group IRT models 

using Markov chain Monte Carlo (MCMC) methodology.   

The scale scores were transformed from the theta metric using a multiplier 

of 30 and an additive constant of 550 for each content area.  The mean difficulties 

for Reading ranged from 367 to 586 for the CC method and 391 to 586 for the 

HCC procedure.  The mean difficulties for Mathematics ranged from 355 to 606 

for the CC method and 400 to 606 for the HCC procedure.  The mean item 

discriminations for Reading ranged from 0.02 to 0.04 for both the CC and HCC 

procedures.  The mean item discriminations for Mathematics ranged from 0.01 to 

0.03 for the CC, and 0.02 to 0.04 for the HCC procedure.  The discrimination 

estimates from the CC method for extreme grades (upper or lower grades) were 

on average higher than those from the HCC method.   

Strong linear relationships between ability estimates for the two 

procedures were observed (𝜌 > 0.99).  The RMSDs of the scale scores for 

Reading ranged from 0.81 to 8.12 with grades 1, 2, and 9 having the largest 

differences.  The RMSDs of the scale scores for Mathematics ranged from 1.19 to 

21.58 with grades 1, 2, 8 and 9 having the largest differences.   Ito et al. (2008) 

noted the two procedures provided similar results for many grades in terms of 

correlations and RMSDs.  However, there were larger RMSDs for Mathematics 

and smaller RMSDs for Reading.  According to Ito et al. (2008), the results 
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indicate that it matters more for Mathematics than for Reading which scaling 

method is used and suggested that the dimensionality of the construct could be a 

contributing factor.  However, Ito et al. (2008) noted that determining 

dimensionality with multiple grades is complex and not easily defined.  These 

results indicate that there may be scaling differences attributable to content area; 

however, until this is systematically evaluated using simulation methods this is 

only a hypothesis.   

The most recent study was conducted by Briggs and Weeks (2009).  

Briggs and Weeks (2009) compared three factors: (1) 1-PL and 3-PL IRT models, 

(2) TCC and a variant of the HCC method, and (3) EAP and MLE estimation 

procedures.  They used Reading data in grades 3 through 7, with an average of 

55,681 students for each grade.  The data for grades 3 and 4 were collected in 

2003, for grades 4 and 5 in 2004, for grades 5 and 6 in 2005, and for grades 6 and 

7 in 2006.  In this study, the HCC method was conducted in which the CC 

procedure was used within the same grades across years (e.g., grade 4 in 2003 and 

2004), and the TCC procedure was used across different grades within a test year 

(e.g., grade 3 and 4 in 2003).  Two outcomes were compared for the eight 

comparisons (1) mean and SDs of the logit scale scores across grades and (2) an 

effect size of the growth.   

The mean logist scale scores ranged from approximately 0.02 to 0.50 for 

the 1-PL model and 0.02 to 1.00 for the 3-PL model (values are estimated from 

figures since specific values were not provided).  The effect sizes of growth for 

the 1-PL models ranged from approximately 0.45 for the grade 3-4 group to 0.30 
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for the grade 5-6 group.  The effect sizes of growth for the 3-PL models ranged 

from approximately 0.50 for the grade 3-4 group to 0.25 for the grade 5-6 group.  

Depending on the IRT model, linking method, and estimation approach used, the 

vertical scale was either stretched or compressed.  Briggs and Weeks indicated 

that no single method adequately measured growth.   

Taken together, the studies in which real data were used revealed that 

differences in the outcome measures were not consistent across studies.  Real data 

studies in which the 1-PL model with the CC procedure was used produced 

inferior model-fit in vertical scaling.  The 3-PL model using the CC, FCIP, and 

TCC procedures produced mixed results with some vertical scaling methods 

producing better results for some studies, but no particular procedure providing 

consistently better results across all the studies reviewed.  The primary evaluation 

method used in these studies was to examine model-data-fit in terms of 

convergence of items and model-data fit indices.  These studies also used 

different content areas to evaluate the vertical scaling methods (i.e., Vocabulary, 

Reading, Mathematics, and Science) and varying sample sizes (1,700 to 60,000).  

Only three studies evaluated content areas comparatively and they indicated 

differences in results between the different vertical scaling methods considered 

(Ito, et al., 2008; J. Kim, 2007; Tong & Kolen, 2007).  The first study compared 

the size of the RMSDs (Ito, et al., 2008) and the second study compared the 

grade-to-grade growth and effect sizes (J. Kim, 2007).  The third study is 

summarized in the next section compared the effect size and horizontal distances 

of score distributions (Tong, 2005; Tong & Kolen, 2007).  Lastly, different 
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evaluative procedures were used to assess and compare the results obtained by the 

different vertical scaling procedures, but the evaluative procedures did not 

indicate which procedure produced the best results.  However, since all of these 

studies are based on real data, comparisons across methods might be better 

analyzed using simulated data with known parameters.   

Simulation Studies. 

Traditional and IRT Scaling Comparisons. 

 Skaggs and Lissitz (1988) simulated vertical equating of two tests for 

examinee samples of low, medium, and high ability, and ability matched to the 

difficulty level of an unspecified test (unknown if simulated or taken from an 

existing test).  The 1-PL MM, 3-PL CC, and equipercentile methods were 

compared.  The sample size for each test form was 2,000.  Four levels of 

examinee ability were considered: -0.5 mean logits for both samples, 0.0 mean 

logits for both samples, 0.5 mean logits for both samples, and -0.5 mean logits for 

one sample and 0.5 mean logits for the second sample.  The focus of the study 

was to evaluate the effect of examinee ability on the equating results.  Two 

statistics were used to evaluate the results: (1) unweighted mean square error and 

(2) weighted mean square error.  The results indicated that all three methods were 

generally invariant with respect to examinee ability level for all conditions.  They 

found that the 3-PL model seemed to work better than the 1-PL model.  The 

authors indicated that: 

Multidimensionality might account for a lack of test equating invariance 

has profound implications for vertical equating.  It may not be meaningful 
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to vertically equate certain kinds of tests.  The Harris and Hoover, Harris 

and Kolen, and Loyd and Hoover studies all used mathematics tests, the 

content of which is known to vary considerably across grade levels.  

Reading and vocabulary test, on the other hand, might be more 

unidimensional across grades and may provide more invariant equating 

results. (Skaggs & Lissitz, 1988, p. 80).   

Similar to the real data studies, early research in evaluating vertical scaling was to 

ensure model-data fit, an important first step, in the context of simulated 

conditions.   

One identified problem in earlier research in creating vertical scales was 

scale shrinkage.  While the current focus of the present study was not on scale 

shrinkage, the next two studies provide additional evidence that agreement is 

problematic on which vertical scaling method is most appropriate.  Clemans 

(1993) simulated data based on body weights in pounds for each of 12 age groups 

from age 6 to 17.  The two scaling procedures used were Thurstone Absolute 

Scaling and TCC (Clemans did not indicate which IRT model was used).  

Clemans claimed that the TCC method produced scale shrinkage.  He also 

indicated that the Thurstone procedure did not result in a systematic decrease in 

variance, and the results for the Thurstone method were more precise.   

In the second study, Yen and Burket (1997) examined the Thurstone 

Absolute Scale and the 3-PL TCC methods in a response to Clemans’ (1993) 

article.  One criticism of the Clemans article was that the simulated data were 

favourable to the Thurstone Absolute Scaling method.  Yen and Burket (1997) 
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simulated data that was consistent with both the Thurstone and 3-PL models.  

Their results indicated that realistic simulation conditions and analysis procedures 

did not produce scale shrinkage for either procedure.   

Tong and Kolen (2007; see Tong, 2005 for full details) evaluated 

Thurstone Absolute Scaling method and several IRT scaling methods using both 

real and simulated data.  Four content areas were considered in the real data 

comparison: Vocabulary, Mathematics, Language and Reading Comprehension 

for grades 3 through 8 with approximately 600 to 1,800 examinees per grade.  The 

simulated data were only based on item parameters from the Vocabulary tests.  

The factors modeled in the simulation included: (1) scaling method (Thurstone, 3-

PL scaling test design, 3-PL common item design), (2) SDs by grade (increasing, 

decreasing, and constant), and (3) sample size (500, 2,000, and 8,000).  For the 3-

PL IRT scaling model two designs were considered: a scaling design in which a 

scaling test is constructed to cover the content area across all levels being placed 

on the same developmental scale (Kolen & Brennan, 2004; Tong, 2005; Tong & 

Kolen, 2007) and a common anchor item design.  Five scores were produced for 

each design: MLE-pattern scores, Quadrature Distribution (QD)-pattern scores, 

EAP-pattern scores, MAP-pattern scores, and summed scores based on EAP.  The 

evaluation criteria included: (1) means and standard deviations of the scale score 

distributions, (2) effect size of the scale score distributions, and (3) horizontal 

distance of the scale score distributions.  Horizontal distance is defined as a 

percentile difference on the score scale for the same percentage between two 

distributions (Holland, 2002; as cited in Tong & Kolen, 2005, p.237).  The means 
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and SDs and horizontal distances of the scale score distributions are not presented 

here as they are similar to the effect size measure. 

The effect sizes for the real data are presented in this paragraph and the 

simulated condition results are presented in the next paragraph.  This study is the 

third study that compared content areas.  The effect sizes for the real data 

Vocabulary ranged from 0.41 to 0.80 for the Thurstone method, from 0.20 to 0.62 

for scaling test design, and from 0.26 to 0.69 for common-item design.  The effect 

sizes for the real data Mathematics ranged from 0.11 to 0.71 for the Thurstone 

method, from 0.09 to 0.67 for scaling test design, and from 0.31 to 0.69 for 

common-item design.  The effect sizes for the real data Language ranged from 

0.16 to 0.48 for the Thurstone method, from 0.13 to 0.48 for scaling test design, 

and from 0.28 to 0.76 for common-item design.  The effect sizes for the real data 

Reading ranged from 0.26 to 0.45 for the Thurstone method, from 0.20 to 0.42 for 

scaling test design, and from 0.61 to 0.76 for common-item design.  The effect 

size differences were on average the highest for Reading for all three procedures.  

The second highest effect size differences were found with Language at grades 

3/4, Vocabulary for grades 4/5 and grades 6/7, and Mathematics for grades 7/8 

(grades 5/6 were tied between Vocabulary and Language).  The lowest effect size 

differences were found in Mathematics for all grade groups except between grade 

7 and 8.  Similar to the other two studies that compared content areas, this study 

found differences between content areas for some of the outcome measures. 

This paragraph summarizes the simulated portion of the study.  The effect 

sizes for the increasing SD conditions ranged from 0.09 to 0.52 for Thurstone, 
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from 0.11 to 0.64 for scaling test design, and from 0.11 to 0.63 for the common-

item design.  The effect sizes for the decreasing SD conditions ranged from 0.12 

to 0.62 for Thurstone, from 0.18 to 0.76 for scaling test design, and from 0.18 to 

0.80 for the common-item design.  The effect sizes for the constant SD conditions 

ranged from 0.11 to 0.55 for Thurstone, from 0.02 to 0.70 for scaling test design, 

and from 0.10 to 0.70 for common-item design.  According to Tong and Kolen 

(2007) the effect sizes “often yielded higher estimates for the common-item 

design than the scaling test design, and the general trend was the higher the grade 

level, the larger the effect size difference between the two designs” (p. 240).  But 

Tong and Kolen recognized that other models (i.e., random-equivalent group 

design, multidimensional IRT) should be examined to determine which IRT 

model is most appropriate.  They indicated that if the items on the tests across 

grades were reasonably unidimensional, then IRT methods might be preferred due 

to the assumption of normality underlying the use of Thurstone Scaling.  In 

summary, Tong and Kolen (2007) indicated that “clearly, the results of this study 

show that the choice of design can have important practical effects on the results” 

(p. 248).   

In summary, the IRT vertical scaling methods appear to produce better 

results than Thurstone Absolute Scaling as long as the data fit and met the 

assumptions of the model.  However, the studies summarized suggest that using 

the 3-PL model either concurrently or with a linking method like MS and TCC is 

superior to the Thurstone scaling method or the 1-PL model, but they did not 

suggest which of the 3-PL methods was superior. 
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IRT Scaling Comparisons. 

 Similar to the early real data studies, one of the earliest simulation studies 

examined model-data-fit indices to evaluate the appropriateness of IRT vertical 

scaling procedures.  Gustafsson (1979) simulated data (1,300 examinees with 

normal distribution) to fit the 1-PL CC model with two levels of difficulty 

corresponding to an “easy” and “hard” test.  He used model fit indices to evaluate 

these procedures for both horizontal and vertical scaling.  He indicated that the 

lack of applicability of the 1-PL model for use in vertical scaling shown in a 

previous study (Slinde & Linn, 1978) was due model data misfit.   

Baker and Al-Karni (1991) compared the MM and TCC procedures using 

the 3-PL model.  Their simulation was based on three different ability levels (low, 

medium and high) within a normal distribution.  Three different comparisons 

were conducted: (1) average equating coefficients, (2) loss-function values, and 

(3) root-mean-squared-difference values (RMSD) for the a-, b-, and theta values 

between the two scaling procedures.  The two linking methods produced similar 

linking coefficients for all three ability levels.  The loss function values ranged 

from 0.02 to 6.15 for the MM procedure and from 0.00 to 1.28 for the TCC 

procedure.  The RMSD values varied from 0.03 to 0.38 for the theta estimates, 

from 0.01 to 0.19 for the a- parameters, and from 0.02 to 0.23 for the b- 

parameters.  Baker and Al-Karni concluded that the TCC method was superior to 

the MM method and was less sensitive to atypical test characteristics.   

Kim and Cohen (1998) compared the CC and TCC procedures and the 

BILOG and MULTILOG computer programs in their simulation study.  Two 
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grade levels were simulated using a 2-PL model with a sample of 500 normally 

distributed scores for each grade.  In addition, four different numbers of common 

items were simulated (5, 10, 25, and 50).  Two comparisons were conducted: (1) 

root-mean-squared-differences (RMSD) for the a- and b- parameters and (2) mean 

Euclidean differences based on both parameters.  The RMSDs for the item 

discriminations ranged from 0.09 to 0.21 for the CC and from 0.10 to 0.15 for the 

TCC method.  The RMSDs for the item difficulties ranged from 0.07 to 0.25 for 

the CC and 0.07 to 0.11 for the TCC method.  The mean Euclidean differences 

ranged from 0.10 to 0.27 for the CC, and from 0.10 to 0.15 for the TCC method.  

The TCC method yielded smaller root-mean-square-differences for the item 

discrimination and difficulty parameters with the two smaller number of common 

item conditions (i.e., 5 and 10) than the CC method, particularly for the smaller 

sample sizes.  For the conditions with the largest number of common items (i.e., 

50) the two methods produced similar results.  The RMSD differences for both 

item discrimination and difficulty were similar using either BILOG or 

MULTILOG for TCC, but the RMSD values were smaller for item 

discriminations and higher for item difficulties for the CC and BILOG compared 

to CC and MULTILOG.  The mean Euclidean differences indicated that the CC 

and MULTILOG values were smaller than CC and BILOG, but for TCC either 

computer program produced similar results.   

Hanson and Béguin (2002) evaluated five scaling procedures used to 

establish a vertical scale across two grade levels - CC, MM, MS, TCC, and 

Haebara (Haebara, 1980).  The Haebara procedure is an alternative item 
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characteristic curve equating procedure.  Five additional factors were examined: 

(1) computer program (MULTILOG and BILOG-MG), (2) sample size (1,000 and 

3,000) based on a normal distribution, (3) number of common items (10 and 20), 

(4) equivalent and non-equivalent groups with two forms (no mean difference and 

one SD difference), and (5) score type (weighted true score and weighted ICC 

score).  The equivalent group conditions were simulated to mimic horizontal 

equating and the non-equivalent group conditions were simulated to mimic 

vertical scaling.  Two comparisons were conducted to evaluate the results: (1) 

squared bias for the weighted true score equating and weighted ICC criterion, and 

(2) mean square error for the weighted true score equating and weighted ICC 

criterion.   

The summary of Hanson and Béguin’s (2002) study results only include 

the non-equivalent group conditions because this portion of the study simulated a 

creation of a vertical scale and the equivalent group conditions are similar to a 

general equating within a grade level with alternate forms.  Graphical 

representations of the results were provided by Hanson and Béguin (2002).  For 

the weighted true scores using BILOG-MG the smallest amount of squared error 

occurred for the CC procedure, followed in order of increasing error by the 

Haebara, TCC, MS, and MM procedures.  The pattern was not as consistent for 

the MULTILOG procedure where squared error values for the TCC procedures 

were the smallest for the smaller number of common item conditions and the 

square error for the MS procedure was the smallest for the larger number of 
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common items.  The average bias values for all conditions were overall smaller 

for MULTILOG than for BILOG-MG.   

In contrast, a consistent pattern of results was found for the weighted ICC 

criterion.  The MS and MM had the highest squared bias and mean square error 

across conditions and the CC condition had the smallest error with the exception 

of the 3,000 sample size conditions for squared bias.  In addition, the values were 

higher for BILOG-MG conditions than for MULTILOG.  Hanson and Béguin 

(2002) indicated that the CC estimation generally resulted in lower error than the 

separate estimation methods for the smaller sample sizes, but higher error for the 

3,000 sample size conditions.   

Keller et al. (2004) evaluated the CC, FCIP, MS, and TCC scaling 

procedures to evaluate student year-to-year growth.  Three additional factors were 

manipulated: (1) sample size (250 and 5,000 based on a normal distribution), (2) 

number of common items (5 and 9), and (3) seven levels of growth (0.00, 0.10, 

0.25, 0.50, -0.10, -0.25, and -0.50).  The mean growth values recovered were used 

to evaluate the different scaling procedures between the estimated and true theta 

values.  The differences between estimated and true growth for the smaller 

number of anchor items across sample size conditions ranged from 0.04 to 0.14 

for the CC procedure, from 0.00 to 0.30 for the FCIP procedure, from 0.00 to 0.05 

for the MS procedure, and from 0.01 to 0.24 for the TCC procedure.  The 

differences between the estimated and true growth for the larger number of anchor 

items across sample size conditions ranged from 0.01 to 0.10 for the CC 

procedure, from 0.00 to 0.26 for the FCIP procedure, from 0.00 to 0.09 for the 
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MS procedure, and from 0.03 to 0.06 for the TCC procedure.  Keller et al. (2004) 

found that there was a lack of consistency across the scaling procedures, but that 

the MS method performed the best and the FCIP method performed the worst, 

consistently underestimating the amount of growth. 

Pomplun et al. (2004) compared the BILOG-MG and WINSTEPS 

computer programs with the 1-PL CC vertical scaling procedure.  Real and 

simulated data based on a Mathematics test were scaled across 5 grade levels 

(grades 2 through 6) with a sample of 2,500 normally distributed examinees per 

grade.  Three comparisons were used to evaluate the results: (1) mean differences 

between true versus estimates theta values, (2) correlations between true versus 

estimated values for both item difficulties, and (3) root-mean-squared-error values 

for the true versus estimated values for the item difficulties and thetas.  The 

correlations between the true and estimated item difficulties were perfect at 1.00 

and the mean differences ranged from -0.18 to 0.18 for all grades and for both 

computer programs.  The true versus estimated theta estimates were also perfectly 

correlated for all grades and the mean differences ranged from -0.17 to 0.21 for 

both computer program estimates.  The RMSE values for the item difficulties 

ranged from 0.05 to 0.10 for WINSTEPS, and 0.06 to 0.24 for BILOG-MG.  The 

RMSE values for the theta estimates ranged from 0.49 to 0.55 for WINSTEPS, 

and 0.49 to 0.57 for BILOG-MG.  The authors indicated that while the 

WINSTEPS program captured the individual and mean estimates more accurately, 

BILOG-MG captured the standard deviations more accurately.  They also 
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suggested that the choice of software seemed to influence the outcome for the 1-

PL CC estimation.   

Custer et al. (2006) examined the 1-PL CC vertical scaling procedure 

using the same two computer programs but with the real and simulated data based 

on a vocabulary test across 11 grades (K-10, simulated 7,500 examinees per 

grade).  Three factors were manipulated: (1) distribution (normal and skewed 

distributions-positively skewed for K-1, and negatively skewed for grades 2 

through 10), (2) computer program (WINSTEPS and BILOG-MG), and (3) 

convergence settings (default settings 0.01 for BILOG-MG and WINSTEPS, and 

tighter settings of 0.003, 0.001, and 0.0005 of the threshold value of the logit 

change).  The following comparisons were made: (1) mean and standard deviation 

for item and theta estimates, and (2) effect size for item and theta estimates.  The 

effect sizes were calculated by obtaining the difference at each grade between the 

estimated and simulated mean and dividing this difference by the simulated 

standard deviation (Custer, et al., 2006).   

The effect size values for normal distribution conditions ranged from 0.00 

to 0.86 for WINSTEPS, and 0.00 to 0.49 for BILOG-MG.  Likewise, the effect 

size values for the skewed distribution conditions ranged from 0.01 to 0.86 for 

WINSTEPS, and 0.01 to 0.49 for BILOG-MG.  The results indicated that BILOG-

MG captured the individual and mean estimates more accurately, but with tighter 

convergence settings both programs provided similar results.  There were not 

large differences between the normal distribution conditions and the skewed 

distribution conditions.  Although the simulated skewed distributions were based 
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on the real skewed distributions in the data, the skewed distributions were not 

markedly different from the normal distributions.   

Chin et al. (2006) simulated four factors and evaluated two IRT scaling 

methods (MS and CC) with the 3-PL model.  The four factors were: (1) amount of 

grade-to-grade growth (0.5 and 1.0), (2) number of grade levels (3, 4, and 5), (3) 

number of common items (12, 18, 24), and (4) difficulty range of linking items 

(0.0 SD, 1.0 SD, and 2.0 SD).  The data were simulated with a sample of 10,000 

students per grade level with a normal distribution.  Three criteria were used to 

evaluate the results: (1) the number of estimation cycles for convergence, (2) 

mean and standard deviation of the thetas, and (3) root-mean-squared-error 

(RMSE) for the item parameters and ability estimates.  The total number of 

estimation cycles ranged from 32.20 to 102.60 for the CC method and from 6.50 

to 9.20 for the MS method.  The RMSE values for the item discrimination values 

ranged from 0.07 to 0.18 for the CC method and from 0.08 to 0.60 for the MS 

method.  The RMSE values for the item difficulty values ranged from 0.16 to 0.41 

for the CC method and from 0.18 to 0.42 for the MS method.  The RMSE values 

for the theta values ranged from 0.35 to 0.51 for the CC method and from 0.36 to 

0.60 for the MS method.  The results indicated that MS is vulnerable to restriction 

of the common item difficulty range, whereas CC was generally less affected by 

number of common items or the range of difficulty of the items.  However, CC 

estimation was more likely than the MS procedure to have items converge when 

the number of forms to be linked was larger and grade-to-grade growth was 

larger. 
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Meng (2007) evaluated four different vertical scaling procedures using 

simulated data derived from a Reading assessment in grades 3 through 8.  The 

four scaling procedures were CC, TCC, and two versions of the HCC procedure 

(pairwise HCC - two adjacent grade pairs with CC, and semi-concurrent HCC - 

three adjacent grades with CC).  The 3-PL model was used for the dichotomous 

items and the generalized partial credit model (Muraki, 1992) was used for the 

polytomous items.  Four additional factors were varied: (1) sample size (500, 

1,000, and 5,000), (2) number of common items (10 and 20), (3) type of common 

item (dichotomous, dichotomous and polytomous), and (4) number of constructed 

response items (6 and 12).  All of the data were simulated based on a normal 

distribution.  The computer program used to simulate and calibrate the data was 

the IRT Command Language program using 500 cycles and convergence of 0.001 

with MLE estimation.  There were four classification proficiency categories 

labelled Level 1 through 4.  The results were evaluated based on the following 

outcome measures comparing true parameters to estimated parameters: (1) 

proficiency score mean comparisons using absolute bias, RMSE, and SE, (2) 

proficiency score SD comparisons using absolute bias, RMSE, and SE, (3) effect 

size between adjacent scores for grades using absolute bias, RMSE, and SE, and 

(4) proficiency score classification proportions comparisons using absolute bias, 

RMSE and SE.  The results for the proficiency classification proportions are the 

focus of this review since it is the most relevant information to this proposal.    

The results for the means, SDs, and effect size can be found in the full paper 

(Meng, 2007).   
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Meng summed the results for each outcome measure (i.e., absolute bias, 

SE, and RMSE) across grade levels and then averaged across conditions to 

compare the vertical scaling procedures (see Tables 4.4 through 4.7 in Meng 

(2007) for full results by condition).  The results were summed across grade levels 

and averaged across conditions were summarized here.  There were three cut-

scores used for this study that resulted in four levels labelled Level 1 through 

Level 4 for each grade.  For Level 1, the CC procedure had the lowest value and 

the TCC procedures had the largest value for absolute bias, SE and RMSE.  For 

Level 2, the pairwise HCC had the lowest value and the CC procedure had the 

largest value for absolute bias, SE and RMSE.  For Level 3, the semi-concurrent 

HCC procedure had the lowest value for absolute bias and RMSE, but the CC 

procedure had the lowest value for SE.  The TCC procedure had the highest value 

for all three outcome measures.  For Level 4, the pairwise HCC procedure had the 

lowest value for absolute bias and RMSE, but the semi-concurrent HCC 

procedure had the lowest value for SE.  The CC procedure had the highest value 

for absolute bias and RMSE, and the TCC procedure had the highest value for SE.  

The results when examined more closely showed inconsistencies across grade 

levels (i.e., summarized results versus tables that did not summed across grades 

and averaged across conditions).  The summarized results may be consistent for 

one level (i.e., Level 1) by condition and grade, but the raw results showed 

inconsistencies, where some conditions show higher error by scaling method with 

no clear picture as to which procedure is best.  For example, for Test 1 results in 

Table B28 (Meng, 2007, p. 245) show the largest error for grades 3, 4 and 8.  It is 
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difficult to interpret the resulting summed values when the values across grades 

are different and when these results are averaged across conditions. 

This section summarized various studies that examined different IRT 

vertical scaling procedures, such as CC, FCIP, MM, MS, Haebara, HCC and TCC 

scaling methods.  Some of these studies simulated data based on real data and 

content areas such as Reading, Vocabulary and Mathematics, while other studies 

simulated data from simulated item parameters.  Sample sizes ranged from 500 to 

10,000 examinees with normal distributions represented, with the exception of the 

Custer etal. (2006) study that also included simulated skewed data based on the 

population distributions.  Unfortunately, there was no consensus on which vertical 

scaling procedure produced the best outcome.  While these simulation studies 

have been valuable in identifying some of the procedures to be used to evaluate 

results obtained in a simulation, the inconsistency in results suggests that it is 

unclear which procedures are best to use when creating a vertical scale.   

Shortcomings of Reported Research 

 There are three aspects of the previous research that have not been 

systematically evaluated in one study.  The first aspect is the properties of the data 

from which the real data are simulated.  For example, several studies were based 

on data for either the Reading or Mathematics content areas.  Only three studies 

examined more than one content area in a comparative manner with real data, and 

the results were mixed (Ito, et al., 2008; J. Kim, 2007; Tong & Kolen, 2007).  The 

effect of content area on creating vertical scales has not been systematically 

explored.  The research to date suggests that one method should be suitable for 
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many different content areas (e.g., Mathematics, Vocabulary, and Reading).  But 

is this a good assumption? Second, with the exception of the Custer et al.’s (2006) 

study in which a “slightly” skewed distribution of the real data was simulated, all 

of the simulation studies assumed a normal distribution.  Due to current changes 

and expectations of 100% proficiency under the NCLB legislation the assumption 

of a normal distribution likely is not realistic.  Negatively skewed distributions are 

likely to be common due to the pursuit of higher standards.  What effect this 

change in the shape of the distribution of scores might have on vertical scaling 

procedures has not been systematically explored.   

 A third aspect not systematically evaluated is the use of evaluation 

methods that are useful to practitioners when creating vertical scales.  For 

example, one study placed examinees in proficiency categories based on cut-

scores (Jodoin, et al., 2003).  In another study, Meng (2007) evaluated the 

absolute bias, SE, and RMSE between the true versus estimated proportion 

classification values.  Other studies examined the RMSE or RMSD between pairs 

of item parameters, ability estimates, or equating coefficients; correlations 

between true versus estimated values; and convergence or model-fit criteria.  

While many of these methods are good measures for evaluating different scaling 

methods, other more practical measures used in conjunction may provide more 

information.  Some new outcome measures in the context of vertical scaling 

research to evaluate state assessments include decision accuracy and consistency, 

and conditional standard errors of measurement at cut-scores.  Decision 

consistency refers to the agreement between the classifications based on two non-
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overlapping, equally difficult forms of a test (Livingston & Lewis, 1995).  

Decision accuracy refers to the extent to which actual classifications of test takers 

agree with those that would be made on the basis of their true scores, if their true 

scores would be known (Crocker & Algina, 1986; Livingston & Lewis, 1995).   

The NCLB (2001) legislation requires administering tests to examinees in 

grades 3 through 8 in Reading and Mathematics and proficiency cut-scores are 

used to determine part of the measure of AYP.  Another measure of AYP is 

change in the percentages of examinees achieving “basic proficiency” or higher 

between two grades and across time (i.e., different cohorts in the same grade).  

Measures that estimate how accurate and precise the cut-scores are important 

created for a vertical scale to ensure that the cut-scores and scales are adequate.  

Decision accuracy, decision consistency, and conditional standard errors outcome 

measures were not used to evaluate the outcomes in the previous research, but 

their use could provide more information in determining which scaling measure 

works best and in what context. 
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CHAPTER 3 METHODS 

 The methods used in this research study are described in the present 

chapter.  First, the samples from which the data was simulated are described.  

Second, the calibration methods used to obtain the item parameters used to 

simulate the data conditions are provided.  Third, the conditions simulated are 

presented.  Fourth, the scaling procedures used are outlined.  Fifth, cut-scores and 

rescaling of the cut-scores are described.  Sixth, the evaluation methods for 

comparing the results are provided.   

Research Design 

Sample. 

The data used in this study was from a large-scale state assessment in the 

United States1

Table 1. 

Approximate Student Population per Grade 

.  The approximate maximum number of students that were 

available to be tested for this state assessment is reported in Table 1 for each of 

the grades in the present study.  The full subset of available data was used for this 

study (approximately 1,500 students per grade per form). 

Grade Number of students 
3 81,400 
4 86,000 
5 82,700 
6 75,800 
7 81,400 
8 86,000 

 

                                                 
1 The state is not identified in compliance with the conditions set for obtaining and using the data. 
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The real data used included student responses to Reading and Mathematics 

multiple choice items for grades 3 through 8.  The Reading and Mathematics 

assessments were administered in the same year for all grade levels.  Different 

random samples of students in each grade were administered the Reading and 

Mathematics assessments.  For grade 3, two different forms were administered to 

separate stratified random samples of students for both Reading and Mathematics.  

That is, grade 3 had a 3A and 3B form in both Reading and Mathematics that was 

on-grade.  For grade levels 4 through 8, four different forms (two on grade level 

and two below grade level) were administered to separate stratified random 

samples of students for both Reading and Mathematics.  There were four forms 

for grade 4 Reading and four forms for grade 4 Mathematics and labelled 4A and 

4B for the on-grade level forms, and 3A and 3B for the below or off-level grade 

forms.  Figure 1 presented earlier on page 19, shows the basic data collection 

design.  Since the data collection design utilizes the randomly equivalent groups 

design, all of the four vertical scaling procedures were appropriate to use for the 

data available for this study (Kolen & Brennan, 2004).  Due to the small number 

of items on each of the A and B forms (i.e., 25 items or less), the A and B forms 

for each grade level in each content area were treated as one form (i.e., the 3A and 

3B forms were treated as one form).  For example, the item parameters for the 20 

items from the 3A form for Reading grade 3 and the item parameters for the 20 

items from the 3B form for Reading grade 3 item parameters were combined for 

one form. The number of multiple choice items for the combined test forms is 

reported in Table 2 for each grade for Reading and Mathematics.   
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Table 2.  

Number of items per form for Reading and Mathematics 

  Reading Mathematics 
Grade on-level off-level on-level off-level 

3 40 
 

42 
 4 34 40 49 42 

5 34 34 49 49 
6 34 34 47 49 
7 31 34 49 47 
8 34 31 49 49 

 

Procedure. 

Calibration and Data Simulation Procedures. 

The 3-PL IRT model was used to calibrate the data because this model is 

the calibration model currently used in most large-scale assessments and in 

previous research (Briggs & Weeks, 2009; Chin, et al., 2006; Cook & Douglass, 

1982; Hanson & Béguin, 2002; Harris & Hooker, 1987; Ito, et al., 2008; Jodoin, 

et al., 2003; Karkee, et al., 2003; Keller, et al., 2004; J. Kim, 2007; S. H. Kim & 

Cohen, 1998; Meng, 2007; Tong & Kolen, 2007; Yen & Burket, 1997).  The 3-PL 

item parameters were estimated for the real data using BILOG-MG (Zimowski, et 

al., 1996) for each of the boxes shown in Figure 1.  For example, at grade 4, the 

combined grade 3  test forms (3A and 3B) and the combined grade 4 level test 

forms (4A and 4B) were calibrated separately to estimate item parameters for the 

four test forms.  The same procedure was used for the remaining grades.  Thus, 

the total number of calibrations for Reading and Mathematics was 22.  A sample 

BILOG-MG syntax file for this calibration is provided in Figure A1 in Appendix 

A.  The convergence criteria were increased from the default of 10 cycles to 500 
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cycles, the number of quadrature points was increased from 20 to 40, and the 

NOFLOAT and TPRIOR options were used for all calibrations.  This was to 

prevent non-convergence of item parameters where possible.  The number of 

quadrature points corresponds to points along the theta scale.  That is, the theta 

scale is divided by the number of quadrature points on the theta scale and 

corresponds to each of the points along the scale.  For example, if you had a theta 

scale from -4 to 4 and there were 9 quadrature points they would refer to the 

following theta points: -4, -3, -2, -1, 0, 1, 2, 3, 4.  By increasing the number of 

quadrature points from 20 to 40 the precision of measurement of the item 

parameters will be increased.  Also, the estimation process converges more easily.   

The mean and standard deviation item parameters by grade and form for 

Reading and Mathematics are provided in Table 3.  The a- and c- parameter 

estimates were relatively similar between Reading and Mathematics and across 

the grade levels.  For Reading, with one exception (grades 4 and 5), the b-

parameter estimates were in ascending order.  In contrast, the order of the b-

parameter estimates across the six grades was not consistent.  Similar patterns for 

the on-level and off-level test forms were found for both Reading and 

Mathematics.  Further, the mean b-parameters estimates across the grade levels 

were further apart for Mathematics as compared to Reading.  
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Table 3. 

Reading and Mathematics Mean item parameters for the on-level and off-level 

test forms by grade 

  Reading 
  a b c 

 
On-level 

Grade Mean SD Mean SD Mean SD 
3 0.817 0.350 -0.774 0.771 0.197 0.076 
4 0.963 0.270 -0.405 0.972 0.222 0.051 
5 0.874 0.401 -0.514 1.387 0.207 0.044 
6 0.872 0.263 -0.083 1.470 0.199 0.056 
7 0.802 0.309 -0.011 1.284 0.202 0.063 
8 0.818 0.280 -0.313 1.261 0.240 0.051 
  Off-level 
3       
4 0.786 0.338 -1.007 0.929 0.238 0.057 
5 0.949 0.277 -0.741 0.972 0.222 0.045 
6 0.962 0.425 -0.847 1.260 0.220 0.052 
7 0.864 0.342 -0.318 1.397 0.202 0.072 
8 0.791 0.269 -0.234 1.411 0.217 0.049 
  Mathematics 
  On-level 
3 0.805 0.248 -1.287 1.017 0.207 0.048 
4 0.918 0.629 -0.090 1.403 0.198 0.061 
5 0.767 0.283 -0.351 1.279 0.210 0.080 
6 0.947 0.382 -0.128 1.457 0.211 0.080 
7 0.840 0.362 0.574 1.668 0.209 0.079 
8 1.047 0.389 0.564 1.173 0.186 0.067 
  Off-level 
3       
4 0.795 0.261 -1.665 1.041 0.235 0.036 
5 0.850 0.374 -0.727 1.416 0.207 0.064 
6 0.806 0.304 -0.912 1.111 0.211 0.063 
7 0.966 0.397 -0.364 1.418 0.206 0.078 
8 0.941 0.379 -0.125 1.402 0.205 0.072 

 



 70 
 

The item parameter estimates were used to simulate the data. The SAS 

software (SAS Institute Inc., 2009) syntax was used to create the first factor - two 

distribution shapes (i.e., normal and negatively skewed) and the second factor - 

two sample sizes (i.e., 1,500 and 3,000 per-form-by-grade) for each Reading and 

Mathematics on-level and off-level forms at each grade level.  Data were 

simulated for both Reading and Mathematics and each condition was replicated 

100 times.   

There were four steps to simulating the data.  First, normal and negatively 

skewed population distributions of thetas were simulated (N = 2,000,000).  The 

means of these population distributions increased by half a standard deviation per 

grade above the base grade and decreased by half a standard deviation per grade 

below the base grade as shown in Table 4.  The base grade for both the normal 

and skewed distributions was grade 6.  However, since the skewed distribution 

was not centered at zero, the grade 6 mean thetas were centered at 0.5. 

Table 4.  

Mean thetas for the normal and negatively skewed distributions 

Grade Normal Skewed 
3 -1.5 -1.0 
4 -1.0 -0.5 
5 -0.5 0.0 
6 0.0 0.5 
7 0.5 1.0 
8 1.0 1.5 

 

These distributions were used for this study instead of creating a vertical scale 

based on one of the scaling procedures to avoid bias in favour of the vertical 
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scaling procedure used to produce the “true” vertical scale.  Therefore, the 

samples for all conditions were selected from the constructed population of thetas.  

The normally distributed distributions were created using the Normal Distribution 

function in SAS, with the means shown in Table 4 and a standard deviation of 1.  

The negatively skewed distributions were created using the RAND Beta 

Distribution function in SAS with the two shape parameters set to 4 and 2 (see 

SAS website reference for full description of the RAND function; SAS Institute 

Inc., n.d.).  The negatively skewed distribution population of thetas from which 

the conditions were drawn had skewness of -0.47 and kurtosis of -0.37.  The 

simulated negatively skewed distributions were the pulled from population of 

thetas with the means shown in Table 4 and a standard deviation of 1.  These 

distributions were created for each grade level.     

The second step was to randomly select (1,500 or 3,000) examinees theta 

values with replacement from each population distribution and sample size 

condition for each grade level and test form.  The samples for each subject area 

were selected for each test form within each grade level. For example, in the case 

of the normal distribution of thetas, the grade 3 level test data for Reading was 

drawn from the distribution with a mean theta of -1.5.  For grade 4, the data for 

the grade 4 test form and the grade 3 form were drawn from the distribution with 

a mean theta of -1.0.   

The third step was to calculate the probabilities for each item parameter 

and randomly simulate binary (0, 1) response values to create (1,500 or 3,000) 

item score vectors for each grade level item for both Reading and Mathematics.  
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A vector of item probabilities were calculated for each selected theta examinee 

using the 3-PL item parameters obtained from the separate calibration of the real 

test form data for each item.  A random selection based on the Bernoulli 

distribution was conducted using the RAND function in SAS that uses the 

calculated item probability vectors for each examinee and simulated the binary 

(0,1) item values for each examinee (theta).   

Lastly, each of the vectors was placed in the appropriate format for the 

data files for input into the computer programs being used for each scaling 

procedure.  While the data formats for the FCIP and TCC scaling procedures were 

the same, the file formats were different for the CC, and HCC procedures.   

Steps two to four were repeated 100 times, yielding 100 replicates.  This 

procedure was repeated for each simulated condition and content area.   

Scaling Procedures. 

 The fourth factor evaluated in this study was vertical scaling procedure.  

Four vertical scaling methods were considered: CC, FCIP, TCC, and HCC.  The 

first three procedures were the most common procedures used in previous 

research and in practice (Briggs & Weeks, 2009; Chin, et al., 2006; Cook & 

Douglass, 1982; Hanson & Béguin, 2002; Harris & Hooker, 1987; Ito, et al., 

2008; Jodoin, et al., 2003; Karkee, et al., 2003; Keller, et al., 2004; J. Kim, 2007; 

S. H. Kim & Cohen, 1998; Meng, 2007; Tong & Kolen, 2007; Yen & Burket, 

1997).  The fourth procedure, HCC, was used in four of the previously cited 

studies (Briggs & Weeks, 2009; Ito, et al., 2008; Karkee, et al., 2003; Meng, 

2007) and is a promising vertical scaling procedure that should be systematically 
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evaluated against the other three scaling procedures.  The scaling designs for each 

of the CC, FCIP, TCC and HCC procedures are represented in Figure 3 through 

Figure 6 (see pages 26, 28, 34, and 36, respectively).   

BILOG-MG was used to estimate the item parameters for the four vertical 

scaling procedures for all conditions.  BILOG-MG could not be used to estimate 

the thetas, since BILOG-MG rescales all of the thetas with a mean of zero and the 

standard deviation of one.  Therefore, to avoid this situation, the IRT Command 

Language program, called ICL,  as described by Hanson in the Manual for ICL 

(Hanson, 2002) was used to estimate thetas for all of the conditions (i.e., the theta 

values from BILOG-MG were not used in this study).  A description of the 

scoring syntax and theta score is described on page 78 in the Scoring Procedure 

section. 

Figure 3 shows the scaling design for the CC method (see page 26).  The 

item parameters for the items in the combined forms for Reading at all six grade 

levels were estimated simultaneously for this method and centered at the base 

grade 6 to ensure the results across scaling procedures were comparable.  The 

same procedure was followed for Mathematics.  An example BILOG-MG syntax 

file is presented in Figure A2 in Appendix A.  The REFERENCE=4 option 

indicates to BILOG-MG that the center of the scale is grade 6.  The other options 

were the same as the initial BILOG-MG run used with the real data (see Figure 

A1 in Appendix A). 

In contrast to the CC procedure, the FCIP scaling method is a staged 

process (see Figure 4 on page 28).  Quadrature points and weights were required 
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for the BILOG-MG syntax to rescale the FCIP item parameters for all conditions 

appropriately, since BILOG-MG centers each distribution of item parameters with 

a mean of zero and standard deviation of one.  The quadrature points were 

adjusted to center each grade with the half standard deviation differences shown 

in Table 4.  The mean weights were calculated for each grade level and condition 

across replications from the separate concurrent calibration.  These values were 

used for each of the FCIP replications for each set of conditions.  Sample BILOG-

MG syntax files for Reading and Mathematics are provided for the FCIP 

procedure at each grade level, except grades 3 and 6 in Figure A3 through Figure 

A10 in Appendix A.  No rescaling was necessary at grade 3 since the item 

parameters were estimated at grade 4.  No quadrature points were required for 

grade 6, since this was the base grade level.  The two options of FIX on the TEST 

line and NOADJUST on the CALIB line were used to fix the item parameters for 

the appropriate form.  The item parameters from the grade 6 level students’ 

calibration were used as the starting point.  The subsequent calibrations were 

conducted as follows: 

1. Grade 6.  A data set for the grade 6 level students that included the 

grade 6 and grade 5 items was created.  CC was then used to estimate 

the grade 6 and grade 5 item parameters. 

2. Grade 5.  A data set for the grade 5 level students that included the 

grade 5 items and grade 4 items was created.  FCIP calibration was 

then used where the common item parameters included in the grade 5 
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level test form were fixed for the values obtained in step 1 and the 

grade 4 item parameters were estimated. 

3. Grade 4.  A data set for the grade 4 level students that included the 

grade 4 items and grade 3 items was created.  FCIP calibration was 

then used where the common item parameters included in the grade 4 

level test form were fixed at the values obtained in Step 2 and the 

grade 3 item parameters were estimated. 

4. Grade 3.  The grade 3 item parameters were fixed for the grade 3 level 

students in step three and no further calibration was necessary. 

5. Grade 7.  A data set for the grade 7 level students that included the 

grade 7 common items and grade 6 items was created.  FCIP 

calibration was then used where the common item parameters included 

in the grade 6 level test form were fixed at the values obtained in Step 

1 and the grade 7 item parameters were estimated. 

6. Grade 8.  A data set for the grade 8 level students that included the 

grade 8 items and grade 7 items was created.  FCIP calibration was 

then used where the common item parameters in the grade 7 test form 

were fixed at the values determined in Step 5 and the grade 8 item 

parameters were estimated. 

For the TCC scaling procedure, like with FCIP, a staged process occurred 

(Figure 5 see page 34).  Again the base grade level was 6.  First, the pairs of 

different grade level tests administered at each grade level were concurrently 

calibrated.  The CC procedure was used within grade level with horizontal solid 
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lines and ellipses shown in Figure 5.  For example, the grade 6 level students had 

the grade 6 test items and the grade 5 test items in one data set and item 

parameters were calibrated.  A sample syntax file is shown in Figure A11 in 

Appendix A, and is similar to the initial run syntax file, with only the number of 

items in each form being different for each grade level.  The data sets used for the 

FCIP procedure were also used for the TCC procedure. Again, six steps were 

required as follows: 

1. Grade 6.  A data set for the grade 6 level students that included the 

grade 6 and grade 5 items was created.  CC was then used to estimate 

the grade 6 and grade 5 item parameters. 

2. Grade 5.  TCC scaling occurred by placing the grade 5 student items 

(both grade 5 and grade 4 items) onto a common scale using the TCC 

transformations with the grade 5 level items from the CC performed at 

step 1 as the common anchor items. 

3. Grade 4.  TCC scaling occurred by placing the grade 4 student items 

(both grade 4 and grade 3 items) onto a common scale using the TCC 

transformations with the grade 4 level items from the TCC scaling step 

2 as the common anchor items. 

4. Grade 3.  TCC scaling occurred by placing the grade 3 student items 

(grade 3 items) onto a common scale using the TCC transformations 

with the grade 3 level items from the TCC scaling step 3 as the 

common anchor items. 
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5. Grade 7.  TCC scaling occurred by placing the grade 7 student items 

(both grade 7 and grade 6 items) onto a common scale using the TCC 

transformations with the grade 6 level items from the CC from step 1 

as the common anchor items. 

6. Grade 8.  The data set for the grade 8 level students created for the 

FCIP procedure was used.  TCC scaling occurred by placing the grade 

8 student items (both grade 8 and grade 7 items) onto scale using the 

TCC transformations with the grade 7 level items from the TCC 

scaling step 4 as the common anchor items. 

The HCC scaling method is a modification of the CC method.  As shown 

in Figure 6 (see page 36) the grade 6 and grade 5 students’ scores were 

concurrently calibrated.  In addition, the grades 8 and 7 students and grades 4 and 

3 students were concurrently calibrated.  The final step was to place the grades 8 

and 7 item parameters and grades 4 and 3 item parameters onto a common scale 

using TCC linking.  The TCC linking was adopted for this purpose since the TCC 

method was used for this purpose in previous research (Briggs & Weeks, 2009; 

Ito, et al., 2008; Karkee, et al., 2003; Meng, 2007).  A sample syntax file is 

provided in Figure A12 in Appendix A.  This syntax file is similar to the files 

used for the CC procedure, but instead incorporating pairs of grade levels.  The 

HCC scaling was completed in two steps: 

1. TCC scaling occurred by placing the grade 7 and 8 student item 

parameters (grades 8, 7, and 6 item parameters) onto the same scale using 

the TCC transformations with the grade 6 item parameters from the 
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concurrent calibration of the grade 6 and 5 level students as the anchor 

items. 

2. TCC scaling occurred by placing the grade 4 and 3 student item 

parameters (grades 4 and 3 item parametrs) onto a common scale using the 

TCC transformations with the grade 4 item parameters from the 

concurrent calibration of the grade 6 and 5 level students as the anchor 

items. 

Taken as a whole, the research design corresponds to a 2 x 2 x 2 x 4 (shape of 

distribution-by-sample size-by-content area-by-scaling procedure) fully crossed 

design, yielding 32 conditions with 100 replications per condition.  Within each 

condition all six grade levels were simulated and evaluated.   

Dependent Variables 

Scoring Procedure. 

Item Response Theory (IRT) pattern scoring was used for each of the 

simulated examinee score vectors for each of the conditions in the simulation 

study.  Expected a posterior (EAP) scoring was used for all of the simulated data 

sets.  While, the BILOG-MG program was used for the estimations of item 

parameters, it was not appropriate for estimating the EAP theta scores for the 

rescaled item parameters for the FCIP, TCC, and HCC procedures.  To avoid 

possible bias that might occur by using BILOG-MG for CC and another program 

for the other three procedures, the IRT Command Language program (Hanson, 

2002) was used to estimate the EAP pattern scores for all conditions.  The theta 

estimates were estimated based on the final item parameters after each of the 
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vertical scales was created.  A sample syntax file for ICL is provided in Figure 

A13 in Appendix A.  Each of the theta values were converted to a scale score by 

multiplying the theta value by 50 and adding 500 to facilitate the interpretation of 

the root-mean-squared-difference.   

Cut-scores rescaling. 

An initial set of cut-scores for each grade and content area was provided 

on the theta scale separately for each grade.  These cut-scores produced three 

proficiency groups called below basic, basic, and above basic.  An adjustment 

was required to place the cut-scores onto the vertical scale metric.  Initially, the 

cut-scores were adjusted following the same procedure to determine the means of 

the population distributions for each grade level (see Table 4).  However, in 

conducting the analyses for the four vertical scaling procedures, the mean scale 

scores did not uniformly differ by a half standard deviation as the grades 

increased and decreased from the base grade for the CC, TCC and HCC 

procedures.  However, the results for the FCIP procedure did increase 

appropriately.  Therefore to make the comparisons fairer, the quadrature points 

used in the FCIP procedure were adjusted so that the mean scale scores for the 

FCIP procedure more closely matched the mean scale scores for the other three 

vertical scaling procedures.  The description of the adjustment for FCIP is 

presented first, then the description for the cut-scores rescaling is described.   

The quadrature points for the FCIP procedure were adjusted until similar 

student scale scores were found for the CC, TCC and HCC procedures for the 

normal distribution and the 3,000 sample size condition.  For example, if the 
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mean scale score for CC was a half standard deviation above the scale score for 

FCIP, the 40 quadrature points were increased by a half standard deviation.  The 

same quadrature points were used for all conditions for FCIP.  The final 

quadrature points used for each grade are provided in the sample syntax file for 

FCIP in Figure A3 to Figure A10 in Appendix A.  The mean and standard 

deviations of the scale scores for each condition is presented in Appendix B in 

Tables B1 to B4 for reference purposes.   

The cut-scores were adjusted so that they were appropriate for the larger 

separation of scale scores found for all grade levels.  Because of this, the mean 

scale scores for the normal distribution and 3,000 sample size condition for 

Reading and for Mathematics were used.  First, the mean scale score for the 

normal distribution and 3,000 sample size was calculated for each of the four 

scaling methods for each grade level and content area from the 100 replications.  

Second, the difference in mean scale score from the expected to the actual scores 

was standardized by dividing by the standard deviation of 50. For example, the 

expected mean scale score for grade 3 Reading was 425; the mean scale score for 

Reading were 407.40, 399.31, 391.13, and 395.33 for CC, FCIP, TCC, and HCC, 

respectively.  The mean of these mean scale scores was 398.29, and the difference 

was -26.71, which was then divided by 50, which produced a standardized 

difference of -0.534.  This adjustment was calculated and then applied to each 

cut-score in each content area and grade level.  Table 5 shows the final cut-scores 

for Reading and Mathematics on the transformed theta and score scales.  These 
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final cut-scores were used in the evaluation procedures to evaluate the four 

scaling procedures. 

Table 5.  

Final Cut-scores for Reading and Mathematics 

  Reading 
  Lower cut-score Upper cut-score 

Grade Theta Scale Score Theta Scale Score 
3 -2.62 369 -0.70 465 
4 -1.95 403 0.19 509 
5 -1.22 439 0.76 538 
6 -0.46 477 1.45 572 
7 0.15 507 2.18 609 
8 0.80 540 2.62 631 

 
Mathematics 

  Lower cut-score Upper cut-score 
Grade Theta Scale Score Theta Scale Score 

3 -3.05 347 -1.24 438 
4 -2.30 385 -0.34 483 
5 -1.67 416 0.27 514 
6 -0.45 477 1.31 566 
7 0.09 505 2.03 601 
8 1.36 568 3.08 654 

 

Evaluation Measures. 

Five statistical indices were used to evaluate the results: decision 

accuracy, decision consistency, conditional standard error at the cut-scores, 

RMSD of the transformed scale scores, and correlations of the final item 

parameters across scaling methods.   

Evaluation of Assignments to the three proficiency levels. 

 Three measures evaluating the standard setting outcomes for each of the 

different scaling procedures were employed in this study.  The first two statistical 
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measures were decision accuracy and decision consistency of the classifications 

of students into proficiency categories using the adjusted cut-scores.  Standard 

setting procedures are first employed by the state agency to set the specific values 

for the cut-scores to divide the student population into proficiency groups, such as 

masters and non-masters.  There are various methods to set the cut-scores but 

those descriptions are not provided in this text (see citation for full description of 

methods; Crocker & Algina, 1986).  Decision accuracy indicates how accurate the 

decisions are in placing students in categories.  The estimated probability of 

decision accuracy is the number of examinees accurately classified as masters 

using observed scores and the estimated true scores divided by the total number of 

examinees.  Several methods have been developed to estimate decision accuracy 

for a single administration (Lee, Hanson, & Brennan, 2002; Livingston & Lewis, 

1995; Livingston & Wingersky, 1979; Rudner, 2005; Wilcox, 1977).  Decision 

consistency indicates how consistently the decisions are made for placing students 

in categories.  The estimated probability of decision consistency is the number of 

examinees consistently classified as masters using only observed scores divided 

by the total number of examinees (Crocker & Algina, 1986; Livingston & Lewis, 

1995).  Several procedures have been developed to estimate decision consistency 

for a single administration (Hanson & Brennan, 1990; Huynh, 1976; Lee, et al., 

2002; Livingston & Lewis, 1995; Peng & Subkoviak, 1980; Subkoviak, 1976; 

Wang, Kolen, & Harris, 2000; Wilcox, 1981).   

The procedure used to examine the decision accuracy and decision 

consistency in the present study was the Livingston and Lewis (1995) procedure, 
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and the calculations were performed using the BB-CLASS Version 1.1 computer 

program (Brennan, 2004).  Decision accuracy and consistency outcome measures 

were calculated for the two adjusted cut-scores based on the final scale scores for 

each condition at each grade level.  The mean decision accuracy and mean 

decision consistency for each cut-score were calculated across the 100 

replications for each of the conditions and grades in this study.  For the 

calculation of decision accuracy and consistency, the cut-score results were 

calculated in separate computer runs for each cut-score.  The overall decision 

accuracy and consistency values across both cut-scores at the same time were not 

calculated.  

The third measure to evaluate each cut-score was the conditional standard 

error at the cut-score.  The conditional standard error at a cut-score is referred to 

as the standard error of the estimate of the theta value associated with the cut-

score (Hambleton, et al., 1991).  The standard error of estimate is defined as the 

square root of the reciprocal of the amount of information provided by a test at the 

theta value corresponding to the cut-score, 𝜃�𝑐: 

𝑆𝐸�𝜃�𝑐� =
1

�𝐼(𝜃)
, 

where 𝑆𝐸�𝜃�𝑐� is the standard error of estimation of 𝜃�𝑐 and 𝐼(𝜃) is the information 

value at the cut-score (Hambleton, et al., 1991).  The standard error of estimation 

differs for each theta point in the distribution.  These calculations were based on 

the transformed theta scores for each of the vertical scale procedures and not on 

the transformed scale scores.  Squared conditional standard errors at each cut-

score were calculated for each replication and then averaged across the conditions 
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and grades.  Then the square root was taken of the squared conditional standard 

errors to calculate the conditional standard error for each set of conditions.   

Evaluation of IRT outcomes. 

The fourth statistical measure used to compare the four scaling methods 

was the root-mean-squared-difference (RMSD) between the transformed scale 

scores for each of the conditions averaged across replications.  The RMSD for a 

scaling procedure for each condition is defined as: 

𝑅𝑀𝑆𝐷𝑝 = �
1
𝑟
�

1
𝑛
��𝑆𝑆𝑝1 − 𝑆𝑆𝑝2�

2
𝑛

𝑛=1

𝑟

𝑟=1

, 

where 𝑟 is the number of replications, where 𝑛 is the total number of examinees 

and 𝜃𝑝1 is the scale score based on the theta for one of the two different scaling 

procedures and 𝜃𝑝2 is the scale score based on the theta for another scaling 

procedure (e.g., CC versus FCIP).  The RMSD value was calculated for each of 

the conditions and grades.   

The fifth statistical measure used to evaluate the scaling procedures was 

the correlation between the item parameters obtained for each scaling method.  

Pearson correlations between each pair of a-, b-, and c- parameters were 

transformed to Fishers Z for each condition, then the mean Fishers Z’s across 

conditions were calculated.  The mean Fisher’s Z values were transformed back to 

the correlation metric, using the anti-log of the Fisher’s Z.  
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CHAPTER 4 RESULTS: READING 

The results for Reading are presented in this chapter.  The results for 

Mathematics are presented in Chapter 5.  The results are presented for each 

evaluation measure for the four distribution shape and sample size conditions.  

The decision accuracy and consistency results are presented first followed by the 

presentation of the conditional standard errors of estimation at the cut-scores.  

Third, the root-mean-squared-differences (RMSDs) of the scale scores are 

presented.  Lastly, the correlations between the item parameters across vertical 

scaling procedures are presented.  The results presented in Chapters 4 and 5 

provide a micro evaluation of the differences.  Chapter 6 presents a summary of 

the micro evaluation, and presentation of a macro discussion and applications for 

practitioners. 

The presentation of the results for the first condition – a normal 

distribution with a sample size of 1,500 – includes a summary table and a 

graphical representation of the results for decision accuracy, decision consistency, 

conditional standard error estimates, and RMSD, and a summary table for the 

correlations of the item parameter estimates.  The presentation for each of the 

remaining conditions includes only a graphical representation for decision 

accuracy, decision consistency, conditional standard error estimates, and RMSD 

and a summary table for the correlations of the item parameters estimates.  The 

tables corresponding to the graphs for the remaining conditions are provided in 

Appendix B.   
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Decision Consistency and Accuracy 

Normal distribution 1,500 sample size 

 The decision accuracy and consistency results are presented for the normal 

distribution with 1,500 examinees in Table 6.  The results for all four vertical 

scaling methods are presented for each grade and cut-score. As indicated earlier, 

there are three performance levels – below basic, basic, and above basic.  For all 

tables the cut-score between below basic and basic is listed as the lower cut-score, 

and the cut-score between basic and above basic is listed as the upper cut-score.  

The decision accuracy and consistency values are bounded by zero and one, 

where, for example, a value of 0.80 is interpreted as 80 % accurate or consistent.  

However no specific minimum criteria have been identified for decision accuracy 

and consistency in the literature.  Therefore, the minimum value for the present 

study was set at 0.80 as 0.80 represents 80% both accurate or consistent 

classifications, and the values below 0.80 are bolded in the tables. 
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Table 6.  

Decision Accuracy and Consistency for Vertical Scaling for Reading, normal 

distribution, 1,500 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.825 0.817 0.579 0.735 
upper 0.890 0.910 0.930 0.932 

4 lower 0.819 0.755 0.808 0.766 
upper 0.934 0.949 0.957 0.956 

5 lower 0.734 0.719 0.729 0.722 
upper 0.942 0.954 0.945 0.950 

6 lower 0.676 0.688 0.688 0.684 
upper 0.956 0.945 0.945 0.947 

7 lower 0.649 0.702 0.712 0.696 
upper 0.988 0.978 0.980 0.981 

8 lower 0.648 0.723 0.725 0.714 
upper 0.997 0.991 0.993 0.993 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.826 0.795 0.797 0.802 
upper 0.935 0.944 0.954 0.955 

4 lower 0.856 0.835 0.821 0.825 
upper 0.944 0.954 0.962 0.962 

5 lower 0.856 0.848 0.848 0.849 
upper 0.937 0.948 0.938 0.943 

6 lower 0.848 0.853 0.853 0.853 
upper 0.948 0.939 0.939 0.940 

7 lower 0.813 0.830 0.832 0.827 
upper 0.980 0.967 0.970 0.972 

8 lower 0.819 0.845 0.839 0.840 
upper 0.993 0.984 0.987 0.986 

 

 As shown in the upper panel of Table 6, the pattern for decision accuracy 

at the lower cut-score was not consistent across scaling procedures.  For the two 

lower grades for the lower cut-score, the decision accuracy was below 0.80 for 
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TCC (0.58) and HCC (0.74) at grade 3 and for FCIP (0.76) and HCC (0.77) for 

grade 4.  For grade 3 and 4 lower cut-score, the values of decision accuracy 

values were not substantially above 0.80 compared to the corresponding upper 

cut-score (0.81 to 0.83 vs. 0.89 to 1.00).  For the four upper grades, the decision 

accuracy at the lower cut-score was less than 0.80 for all four scaling procedures, 

ranging from 0.65 (grades 7 and 8, CC) to 0.73 (grade 5, CC and TCC; grade 8, 

TCC).   

However, the decision accuracy values for the four scaling procedures 

exceeded 0.80 for the upper cut-score for all grade levels.  At the upper cut-score, 

the decision accuracy across grades and scaling methods varied from 0.89 (grade 

3, CC) to essentially 1.00 (grade 8, CC).  There were smaller differences across 

the four vertical scaling procedures at the upper cut-score, with all values of 

decision accuracy above 0.80.   

All of the decision consistency values were equal to or greater than 0.80.  

However, the decision consistency values at the lower cut-score were lower than 

the corresponding decision consistency at the upper cut-score which ranged from 

0.80 to 0.86 vs. 0.94 to 0.99 for all four scaling procedures.  Given the small 

range among the decision consistency values across the four scaling procedures 

the four methods behaved similarly at each grade level and across grade levels.   

The decision accuracy and consistency results presented above are 

graphically shown, respectively, in Figure 7 and Figure 8.  The grade levels are 

displayed on the X-axis.  Decision accuracy and consistency values are shown on 

the Y axis bounded by 0.40 and 1.00 to show the differences between procedures 
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more easily.  Both the lower and upper cut-scores are displayed on the same 

graph, where the solid line indicates the lower cut-score and the dashed line 

indicates the upper cut-score. Each vertical scaling procedure is shown in a 

different colour with a different marker, CC is blue (square marker), FCIP is red 

(diamond marker), TCC is green (circle marker), and HCC is yellow (triangle 

marker).   

 

Figure 7. Decision accuracy for Reading, normal distribution, 1,500 sample size 
 

 For the lower cut-score, larger differences across the vertical scaling 

procedures were found, especially for the lowest grade level, with the TCC 

procedure having the lowest value.  For example, a difference of 0.25 between the 

TCC (0.58) and CC (0.83) procedures were found.  With these larger differences 

it appears the vertical scaling procedure may produce decision accuracy 
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differentially at some grade levels.  The CC procedure had the largest values for 

most grade levels, except for grade 7 and 8.  The most consistent procedures were 

the FCIP and HCC procedures, with few extreme values either high or low.   

For the upper cut-score, similar results across the four vertical scaling 

procedures were found, where all but one (CC, grade 3) of the values were greater 

than 0.90.  The lowest values were found in the two lower grade levels for the CC 

procedure followed by the FCIP procedure.   

 

Figure 8. Decision consistency for Reading, normal distribution, 1,500 sample 
size 

 

The line graphs shown in Figure 8, when compared to the line graphs in 

Figure 7, indicate that the decision consistency values across the four vertical 

scaling procedures and grades were more similar than the decision accuracy 

values.  For the lower cut-score, the CC procedure had the largest decision 
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consistency values for the two lower grade levels, but lower decision consistency 

values for the two highest grade levels, similar to those results found for decision 

accuracy.  Generally all of the decision consistency values were above 0.80, and 

were consistent across the FCIP, TCC, and HCC procedures across grade levels.   

Similar results were found for the upper cut-score where all the decision 

consistency values were above 0.90.   It appears that for decision consistency the 

vertical scaling procedure does not impact decision consistency across grade 

levels. 

Normal distribution 3,000 sample size 

The decision accuracy and consistency results are displayed, respectively, in 

Figure 9 and Figure 10 for the normal distribution and a sample size of 3,000; the 

corresponding numerical values are provided in Table B5 in Appendix B. 
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Figure 9. Decision accuracy for Reading, normal distribution, 3,000 sample size 
 

 As shown in Figure 9, the decision accuracy for Reading, normal 

distribution, 3,000 sample size was higher and less variable at the upper cut-score 

than at the lower cut-score.  Larger differences across the vertical scaling 

procedures were found at the lower cut-score, especially for grade 3, with the 

TCC procedure having a markedly lower value.  For example, a difference of 0.24 

between TCC (0.59) and FCIP (0.83) was found.  At the lower cut-score, the CC 

procedure generally had the largest values, except for grades 7 and 8.  The most 

consistent procedures were the FCIP and HCC procedures.   

For the upper cut-score, similar results across the four vertical scaling 

procedures were found, where all but one (CC, grade 3) of the decision accuracy 

values were greater than 0.90.  The lowest values were found at grade 3.  The 
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values were somewhat consistent from grade 4 though 6, then gradually increased 

to 1.00 for the upper grade levels.   

The results for the normal distribution and 3,000 sample size condition 

were fairly consistent with the results from the normal distribution 1,500 sample 

size condition.  Therefore, it appears that sample size did not influence decision 

accuracy when the scale scores were normally distributed. 

 

Figure 10. Decision consistency for Reading, normal distribution, 3,000 sample 
size 

 

 As shown in Figure 10, the decision consistency values across the four 

vertical scaling procedures and grades were generally quite similar. The CC 

procedure had the largest decision consistency values for the two lower grade 

levels for the lower cut-score, but lowest values for the two highest grade levels.  

However the values were all above 0.80.   
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Similar results were found for the upper cut-score, with all decision 

consistency values above 0.90 and close to 1.00 for the two upper grade levels.  

Slight differences were found at the two lower grade levels, where the CC 

procedure had the smallest values, and at the three upper grade levels, where the 

CC procedure also had the largest values.   

Skewed distribution 1,500 sample size 

 The decision accuracy and consistency results are displayed, respectively, 

in Figures 11 and 12 for the skewed distribution and a sample size of 1,500; the 

corresponding values are provided in Table B6 in Appendix B.   

 

Figure 11. Decision accuracy for Reading, skewed distribution, 1,500 sample size 
 

 At the lower cut-score, there is a decrease in decision accuracy from grade 

3 to grade 6 for all four scaling procedures.  For grades 7 and 8 the HCC and TCC 
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procedures remained constant at about 0.70, but the decision accuracy values for 

the FCIP procedure were slightly higher than the HCC and TCC procedures and 

the decision accuracy values for the CC procedure were slightly lower.  The 

decision accuracy values exceeded 0.80 for all four procedures at grade 3 and for 

the CC, TCC, and HCC procedures at grade 4.  The decision accuracy for all four 

procedures was less than 0.80 for the four upper grade levels.   

At the upper cut-score, the decision accuracy values exceeded 0.90 with 

one exception (CC grade 3) for the four scaling procedures and grade levels.  The 

greatest variability among the decision accuracy values was at grade 3, where the 

decision accuracy values for the CC procedure was less than 0.90, the FCIP, TCC 

and HCC procedures were all over 0.90.   

Comparison of Figure 7 (see page 89) and Figure 11 shows that the shape 

of the score distribution differentially influenced the decision accuracy of the four 

scaling procedures, particularly at the lower cut score.  In particular, whereas the 

decision accuracy values decreased more so for the skewed distribution condition 

for the upper grade levels, the decision accuracy values for the normal distribution 

condition were lower for the upper grade levels as grades increased.   
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Figure 12. Decision consistency for Reading, skewed distribution, 1,500 sample 
size 

 

 As shown in Figure 12, the decision consistency exceeded 0.80 for all four 

procedures and grade levels for the lower cut-score skewed distribution, sample 

size of 1,500.  For the lower cut-score, the CC procedure had the largest values 

for the three lower grade levels, and the lowest values for the two higher grade 

levels.  The FCIP, TCC, and HCC procedures had similar values that were 

essentially unchanged from grade 3 to grade 6 and then decreased for grades 7 

and 8.   

The decision consistency values for the upper cut-score for all vertical 

scaling procedures were at least 0.90 across the grade levels, with lower values 

for grade 3 and higher values for grades 7 and 8.  The decision consistency for the 

TCC and HCC procedures were similar across all grades, while the decision 
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consistency of the CC procedure was the lowest at grades 3 and 4, followed by the 

FCIP procedure at grade 3.  However, as previously indicated, the decision 

consistency for all four scaling procedures was at least 0.90.  In contrast to 

decision accuracy, the decision consistency values of the four scaling procedures 

were not influenced as much by the change in shape for the score distribution (cf, 

Figure 8 page 90 and Figure 12 page 96).     

Skewed distribution 3,000 sample size 

The decision accuracy and consistency results are displayed, respectively, 

in Figures 13 and 14 for the skewed distribution and a sample size of 3,000; the 

numerical values are provided in Table B7 in Appendix B.   

 

Figure 13. Decision accuracy for Reading, skewed distribution, 3,000 sample size 
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Similar to the skewed distribution 1,500 sample size condition, the shape 

of the score distribution differentially influenced the decision accuracy of the four 

scaling procedures, particularly at the lower cut-score, a similar way.  At the 

lower cut-score, the decision accuracy values decreased from grade 3 to grade 6.  

For grades 7 and 8, the decision accuracy values for the HCC and TCC 

procedures remained relatively constant at about 0.70, the decision accuracy for 

the FCIP procedure slightly increased, and decreased for the CC procedure.  

There was a slight difference between the TCC and HCC procedures at grade 8 

with the TCC procedure being slightly lower than 0.70.  The decision accuracy 

values exceeded 0.80 for all four scaling procedures at grade 3 and for the CC 

procedure at grade 4.  The decision accuracy values for all four scaling procedures 

were less than 0.80 for the four remaining upper grade levels.   

At the upper cut-score, the decision accuracy values for the four vertical 

scaling procedures exceeded 0.80 for all four scaling procedures and grade levels, 

with the exception of the CC procedure at grade 3.  The greatest variability among 

the decision accuracy values was at grade 3, where the values were less than 0.90 

for the CC procedure and were over 0.90 for the FCIP, TCC and HCC procedures.  

The decision accuracy values were up to 1.00 for grades 7 and 8.   

The decision accuracy for the TCC and HCC procedures at both cut-scores 

were similar across all grade levels.  In contrast, the values for the CC and FCIP 

procedures varied, particularly for grades 3 and 4 and grades 7 and 8 at the lower 

cut-score and grade 3 at the upper cut-score.   
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Figure 14. Decision consistency for Reading, skewed distribution, 3,000 sample 
size 

 

 The decision consistency values for all of the vertical scaling procedures 

were not influenced as much by the change in shape for the score distribution (cf., 

Figure 10 page 93, and Figure 14).  At the lower cut-score, the decision 

consistency exceeded 0.80 for all four scaling procedures and grade levels.  The 

CC procedure had the largest decision consistency values for the three lower 

grade levels, and the lowest values for the two higher grade levels.  The FCIP, 

TCC, and HCC procedures had similar values that were very similar from grade 3 

to grade 6 and then decreased to approximately 0.85 for grades 7 and 8.  The 

highest decision accuracy value for grade 8 was for the FCIP procedure.   
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As shown in Figure 14, the decision consistency values were at least 0.90 

for the four scaling procedures at the upper cut-score across the grade levels, with 

lower values for grade 3 and higher values for grades 7 and 8.  The decision 

consistency for the TCC and HCC were similar across all grade levels, while the 

decision consistency of the CC procedure was the lowest at grades 3 and 4 

followed by the FCIP procedure at grade 3.  However, as previously indicated, the 

decision consistency for all four scaling procedures was at least 0.90.   

Similar to the results found for the normal distribution and 1,500 and 

3,000 sample size conditions, these results did not seem to be affected by the 

sample size conditions evaluated in this study.  However, the skewed distribution 

3,000 sample size condition compared to the normal distribution 3,000 sample 

size condition had similar patterns as compared to the normal and skewed 1,500 

sample size conditions.  That is, a similar pattern of decreasing decision accuracy 

as grade levels increased was found for the skewed distribution 3,000 sample size 

condition.   

Summary for Decision Accuracy and Decision Consistency 

The decision accuracy results were generally consistent with a few 

exceptions, more so for the upper cut-score than for the lower cut-score within 

distribution shape across sample size.  There were some differences for decision 

accuracy for the lower cut-score at particular grade levels; for example, grade 3 

had different values for the different vertical scaling procedures.  There was a 

decrease in decision accuracy as grade increased for the lower cut-score for both 

the normal and skewed distribution conditions.  However, the decision accuracy 
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value’ decrease for the skewed distribution across grade levels was more 

pronounced than for the normal distribution.  This finding indicates that the 

accuracy of the decisions may not be consistent across scaling methods and grade 

levels.  An increase in sample size from 1,500 to 3,000 did not have an impact on 

the results.   

The decision consistency results were more consistent for both the upper 

and lower cut-scores than decision accuracy.  While the values were higher for the 

upper cut-score than the lower cut-score, the values for both cut-scores were quite 

high.  There were few differences among the four vertical scaling procedures 

across grade levels and the four distribution/sample size conditions.  Therefore, 

decision consistency does not seem to be impacted for vertical scaling procedure, 

distribution shape, sample size, and grade level for the Reading assessment.  

Conditional Standard Error 

Normal distribution 1,500 sample size 

 The values of the conditional standard error at each cut-score are reported 

for the normal distribution 1,500 sample size condition in Table 7 and shown 

graphically in Figure 15.  Since there is no clear metric to indicate if a conditional 

standard error is too high, no minimum value has been set.   
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Table 7.  

Conditional Standard Error for Reading, normal distribution, 1,500 sample size 

condition 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.229 0.234 0.251 0.230 
upper 0.408 0.414 0.492 0.469 

4 lower 0.211 0.224 0.228 0.223 
upper 0.395 0.436 0.485 0.481 

5 lower 0.290 0.289 0.315 0.305 
upper 0.681 0.701 0.685 0.704 

6 lower 0.312 0.297 0.297 0.302 
upper 0.663 0.632 0.632 0.628 

7 lower 0.404 0.361 0.336 0.378 
upper 0.864 0.734 0.699 0.789 

8 lower 0.499 0.461 0.414 0.449 
upper 1.081 0.975 0.900 0.950 

 

 As shown in Table 7, the conditional standard errors for the lower cut-

scores were consistently less than the standard errors for the upper cut-scores at 

each grade level.  The conditional standard errors for the four scaling procedures 

for both the lower and upper cut-scores were similar at grades 3 and 4, and grades 

5 and 6, and less so at grades 7 and 8.  The conditional standard errors generally 

increased from grade 3 through 8, with the increase more so for the upper cut-

scores than for the lower cut-scores.  Further, the variability among the standard 

errors across grades and procedures was less for the lower cut-scores (0.21 to 

0.45) than for the upper cut-scores (0.40 to 1.08).  Figure 15 shows the 

conditional standard error results for the same information provided in Table 7.   
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Figure 15. Conditional Standard Error for Reading, normal distribution, 1,500 
sample size 

 

As shown in Figure 15, the conditional standard errors for the four scaling 

procedures were flat, then increased, then flat, and then increased for pairs of 

grades starting with grades 3 and 4.  Further, the four scaling procedures for the 

lower cut-score were relatively consistent with small differences across grade 

levels for the upper two grade levels.  For the upper grade levels, lower values 

were found for the TCC procedure and slightly higher values were found for the 

CC, FCIP and HCC procedures.  Although, the TCC procedure had the highest 

value for the lowest grade 3, these conditional standard error values for TCC were 

similar to the conditional standard errors for the other three scaling procedures at 

the upper grades.   
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The conditional standard error results for the upper cut-score were larger 

than those for the lower cut-score and larger differences between the procedures 

were apparent.  The CC procedure had the lowest values for the three lowest 

grade levels but had the largest values for the three highest grade levels.  

Similarly, the TCC procedure had the reverse pattern, where the lowest values 

were for the upper grade levels and the largest values for the lowest grade levels.  

The most consistent procedures were HCC and FCIP, where the conditional 

standard error values were largely in the middle between the other scaling 

procedures.   

Normal distribution 3,000 sample size 

The mean conditional standard error results are displayed in Figure 16 for 

a normal distribution and a sample size of 3,000. The mean conditional standard 

error values are shown in Table B8 in Appendix B.   

 

 



 105 
 

 

Figure 16. Conditional Standard Error for Reading, normal distribution, 3,000 
sample size 

 

As shown in Figure 16, there was close agreement among the conditional 

standard error values for grades 3 through 6 and generally increased across the six 

grade levels for the lower cut-score.  At grades 7 and 8, the conditional standard 

error values for the four scaling procedures were slightly different, with larger 

differences for grade 8.  Lower values were found for the TCC procedure and 

slightly higher values were found for the FCIP and HCC procedures.   

The conditional standard error values were larger for the upper cut-score 

than the values for the lower cut-score.  Also, larger differences between the 

vertical scaling procedures were found.  The CC procedure had the lowest values 

for the two lower grade levels but had the largest values for the two highest grade 

levels.  In contrast, the TCC procedure had the reverse pattern, where the lowest 
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values were for the upper grade levels and the largest values for the lower grade 

levels.    These results were consistent with those found in the normal distribution 

1,500 sample size condition, indicating that sample size did not affect the results 

of normal distributions. 

Skewed distribution 1,500 sample size 

The mean conditional standard error results are displayed in Figure 17 for 

the skewed distribution and a sample size of 1,500.  The conditional standard 

error values are shown in Table B9 in Appendix B.  

 

Figure 17. Conditional Standard Error for Reading, skewed distribution, 1,500 
sample size 

 

As shown in Figure 17, there was close agreement among the conditional 

standard errors at the lower cut-score across the four lower grade levels, with 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

3 4 5 6 7 8

C
on

di
tio

na
l S

ta
nd

ar
d 

E
rr

or

Grade

CC lower
FCIP lower
TCC lower
HCC lower
CC upper
FCIP upper
TCC upper
HCC upper



 107 
 

slight differences at grades 7 and 8, where the conditional standard error values 

for the CC procedure were the largest followed by the HCC procedure.  The 

conditional standard errors for the TCC and FCIP procedures were similar.   

The conditional standard error values for the upper cut-score were larger 

than those for the lower cut-score and there were larger differences among the 

procedures, primarily for the CC procedure.  The CC procedure had the lowest 

values for the three lower grade levels and the largest values for the two upper 

grade levels.  The remaining three procedures were closer in value, with a change 

in order across grades.  For example, the conditional standard errors for the TCC 

procedure were slightly larger than the conditional standard errors for the HCC 

and FCIP procedures for grades 3 and 4, while the conditional standard errors for 

the HCC procedure were smaller than the other scaling procedures for grade 7.  

But these differences were not as large for the HCC procedure as those found for 

the CC procedure.   

The patterns of conditional standard errors for the skewed distribution as 

compared to the normal distribution were slightly different.  There was more 

variability among the conditional standard errors for the upper cut-score.  Also, 

the values for the skewed distribution were larger than those found in the normal 

distribution condition.  However, the values for the lower cut-score were not 

affected as much as the upper cut-score.   
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Skewed distribution 3,000 sample size 

The mean conditional standard error values are displayed in Figure 18 for 

a skewed distribution and a sample size of 3,000.  The conditional standard error 

values are shown in Table B10 in Appendix B.   

 

Figure 18. Conditional Standard Error for Reading, skewed distribution, 3,000 
sample size 
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values for the lowest grade, these values were not too different from the values for 

the other scaling procedures.   

The conditional standard error values for the upper cut-score were larger 

than those for the lower cut-score and there were larger differences among the 

procedures, especially for the CC procedure.  The CC procedure had the lowest 

values for the two lower grade levels and the largest values for the two upper 

grade levels.  In contrast, the TCC procedure had the reverse pattern, where the 

lowest values were found for the upper grade levels and the largest values for the 

lower grade levels.  The most consistent procedures were HCC and FCIP, where 

the conditional standard error values were in between the other scaling 

procedures.  The pattern of results was consistent with those found in the skewed 

distribution 1,500 sample size as well as the normal distribution conditions.   

Summary for Conditional Standard Error 

The conditional standard errors were relatively consistent across vertical 

scaling procedures for the normal distribution condition.  This consistency was 

found more so for the lower cut-score than the upper cut-score values.  There was 

an increase in the conditional standard errors as grade increased.  When the 

skewed distribution condition was introduced, the conditional standard errors for 

the upper cut-score differed across vertical scaling procedures more so than for 

the normal distribution conditions, the CC procedure differed the most from the 

other procedures.  The values of the conditional standard error values decreased 

slightly when the sample size increased.        
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Root-Mean-Squared-Difference 

Normal distribution 1,500 sample size 

The root-mean-squared-differences for the pairs of the four vertical 

scaling procedures for the normal distribution, 1,500 sample size condition are 

presented in Table 8.  As shown, there are six RMSDs among the four scaling 

procedures for each grade.  Similar to the conditional standard error results there 

is no metric to indicate which values are too high.   



 

Table 8.  

Root-Mean-Squared-Difference for Vertical Scaling procedures for Reading, normal distribution, 1,500 sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 9.121 17.249 13.182 10.316 6.615 5.268 
4 8.537 14.170 11.933 7.569 5.830 2.626 
5 4.997 5.563 4.048 4.478 2.346 3.061 
6 4.657 4.657 4.019 0.000 1.088 1.088 
7 8.939 9.300 7.146 2.536 3.525 3.161 
8 9.529 11.405 7.892 9.749 3.067 9.093 
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The results reported in Table 8 indicate that the agreement between pairs 

of scale scores can be clustered into two groups.  The first cluster, which had 

lower RMSDs across grade levels, includes the following pairs: FCIP/TCC, 

FCIP/HCC, and TCC/HCC.  The second cluster which had larger RMSDs across 

grade levels includes the following pairs: CC/FCIP, CC/TCC, and CC/HCC.  In 

the first cluster, the RMSDs ranged between 0.00 and 7.57 with three exceptions – 

grade 3, FCIP/TCC (10.32), grade 8, FCIP/TCC (9.75), and TCC/HCC (9.09); the 

greatest agreements were for the FCIP and HCC procedure pairs.  For the second 

cluster eight of the mean RMSDs exceeded 9.0 and the remainder varied between 

4.02 and 8.94.  The CC was one of the members of each pair in the second cluster.  

Larger RMSD values were found for the two lowest and two upper grade levels.   

 Figure 19 shows the RMSD results for the same information provided in 

Table 8.  The grade levels are shown on the X-axis.  The value of the RMSD is 

shown on the Y-axis.  The differences between the CC/FCIP pair is shown in blue 

(square markers), CC/TCC is red (diamond markers), CC/HCC is green (circle 

markers), FCIP/TCC is purple (triangle markers), FCIP/HCC is yellow (asterisk 

markers), and TCC/HCC is orange (cross markers).   



 113 
 

 

Figure 19. Root-Mean-Squared-Difference for Reading, normal distribution, 
1,500 sample size 

 

 As shown in Figure 19, the graphs are somewhat parabolic in shape, with 

low values at grades 5 and 6, and increasing values on both sides.  The difference 

between pairs of vertical scaling procedures was greater at grades 3 and 4 than at 

grades 7 and 8.  The three pairs with the CC procedure tended to have larger 

RMSDs than the pairs in which the CC procedure was not a member.  The largest 

differences were for the CC/TCC pair.  Similar but smaller differences were 

found for the CC/HCC pair.  Smaller differences were found for the FCIP/HCC 

and CC/FCIP pairs.  Smaller differences were found for the TCC/HCC pair for 

most grade levels, but a higher difference was found for grade 8.  Less extreme 

differences were found when the FCIP and HCC procedures were one of the pairs 

with other procedures.   
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Normal distribution 3,000 sample size 

Figure 20 shows the RMSD results for the normal distribution 3,000 

sample size.  The values of the RMSD are provided in Table B11 in Appendix B.   

 

Figure 20. Root-Mean-Squared-Difference for Reading, normal distribution, 
3,000 sample size 
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than the pairs in which the CC procedure was not a member.  The largest 

differences between procedures occurred for the CC/TCC pair followed by the 

differences for the CC/HCC pair.  Smaller differences were found for the 

FCIP/HCC and the CC/FCIP pairs.  However, while smaller differences were 

found for the TCC/HCC pair for most grade levels, slightly different values were 

found for grade 8.  The least extreme differences were found for the FCIP/HCC 

pair.   

Skewed distribution 1,500 sample size 

 Figure 21 shows the RMSD results for skewed distribution 1,500 sample 

size.  The values of the RMSD are provided Table B12 in Appendix B.   

 

Figure 21. Root-Mean-Squared-Difference for Reading, skewed distribution, 
1,500 sample size 
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 As shown in Figure 21, the graphs are somewhat parabolic in shape, with 

low values at grades 5 and 6, and increasing values on both sides.  The largest 

differences between procedures occurred when the CC procedure was paired with 

each of the FCIP, TCC and HCC procedures, particularly at grades 3 and 4 and 

grades 7 and 8.  The differences for the CC/TCC pair increased as the grade levels 

increased or decreased from the base grade of 6 with a similar pattern to the 

CC/HCC pair.  Smaller differences were found for the FCIP/HCC and TCC/HCC 

pairs.  While smaller differences were found for the FCIP/HCC pair for most 

grade levels, a larger difference was found for grade 7.  The less extreme 

differences were found for the TCC/HCC pair, and there was no difference for the 

FCIP/TCC pair at grade 6.   

The results of the skewed distribution 1,500 sample size condition patterns 

were different than those found for the normal distribution sample size condition 

with a sample size of 1,500 (cf. Figure 19 see page 113 and Figure 21).  The pairs 

that had the largest RMSDs were the same as those found in the normal 

distribution conditions.  But the CC/FCIP, FCIP/TCC, FCIP/HCC RMSDs pairs 

were either higher or lower depending on the grade level.  However, the CC 

procedure still had larger differences when paired with the other vertical scaling 

procedures.   

Skewed distribution 3,000 sample size 

 Figure 22 shows the RMSD results for skewed distribution 3,000 sample 

size.  The RMSD values are shown in Table B13 in Appendix B.   
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Figure 22. Root-Mean-Squared-Difference for Reading, skewed distribution, 
3,000 sample size 
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decreased from the base grade of 6 with a similar pattern to the CC/TCC pair.  

Smaller differences were found for the FCIP/HCC and TCC/HCC pairs.  

However, while smaller differences were found for the FCIP/HCC pair for most 

grade levels, a larger difference was found for grade 5.  Less extreme differences 

were found for the TCC/HCC pair.   
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Comparison of Figure 21 and Figure 22 indicates that sample size had 

little effect for the skewed distributions.  The RMSD values for the lower grades 

were smaller for this larger sample size condition, and higher for the upper grade 

levels.  These results were similar to those found in the skewed distribution 1,500 

sample size condition.   

Summary for Root-Mean-Squared-Difference 

The RMSDs for the six pairs of vertical scaling procedures showed a lot of 

variability especially at the lower and upper grades.  The variability among 

RMSDs was somewhat smaller for the larger sample size conditions.  This 

indicates that the scale scores were sometimes quite different between vertical 

scaling procedures.  The patterns were similar for the normal distribution for both 

sample size conditions.  While there were differences between the normal and 

skewed distributions, the RMSD values were different depending on the pair 

members.  The RMSDs were larger when the CC procedure was paired with the 

other three scaling procedures.  However, since these results are aggregated over 

all scale scores it is difficult to determine how large the differences were for the 

scale scores at the cut-scores.  That is, the largest differences may not have 

occurred near either cut-score, so it may be there was no impact on decision 

accuracy and consistency.  

Correlations between Item Parameters 

Normal distribution 1,500 sample size 

 The mean correlations between the pairs of a-, b-, and c-parameter 

estimates obtained from the four scaling procedures are presented for the normal 
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distribution 1,500 sample size condition in Table 9.  The results are presented for 

all six sets of correlations of the item parameters for each grade.  While 

correlations of 0.50 are considered moderate in value (Glass & Hopkins, 1996), 

values less than 0.50 are bolded since the item parameter correlations were 

expected to be higher.   



 
 

Table 9.  

Correlations of item parameters for Vertical Scaling for Reading, normal distribution, 1,500 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.935 0.918 0.999 0.839 0.935 0.920 
4 0.912 0.813 0.811 0.624 0.625 0.996 
5 0.948 0.935 1.000 0.831 0.950 0.932 
6 0.884 0.884 0.877 1.000 0.995 0.995 
7 0.896 0.888 0.999 0.998 0.896 0.890 
8 0.997 0.981 0.998 0.978 0.992 0.991 

  b 
3 0.963 0.915 0.996 0.866 0.961 0.935 
4 0.982 0.978 0.977 0.944 0.941 0.999 
5 0.989 0.987 1.000 0.970 0.989 0.987 
6 0.991 0.991 0.993 1.000 0.999 0.999 
7 0.989 0.988 1.000 1.000 0.990 0.989 
8 0.999 0.997 1.000 0.998 0.999 0.998 

  c 
3 0.705 0.934 0.994 0.613 0.688 0.931 
4 0.553 0.847 0.842 0.451 0.369 0.964 
5 0.511 0.797 0.997 0.269 0.496 0.795 
6 0.891 0.891 0.898 1.000 0.970 0.970 
7 0.864 0.871 0.998 0.998 0.868 0.876 
8 0.918 0.919 0.994 0.962 0.890 0.936 
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As shown in Table 9, the pattern of mean correlations for the b-parameter 

estimates is less complex than the pattern for the a-parameter estimates which is 

less complex than the pattern for the c-parameter estimates.  For the a-parameter 

mean correlations, with the exception of FCIP/TCC and FCIP/HCC at grade 4, 11 

were between 0.80 and 0.90, while the rest were at least 0.90.  Seven of the 11 

mean correlations between 0.80 and 0.90 involved CC (two at grade 4, three at 

grade 6, and two at grade 7).   

The mean correlations for the b-parameter estimates were above 0.90, with 

one exception, the mean correlation for the FCIP/TCC pair for grade 3 which was 

0.87.  All of the correlations were high for all scaling pairs. 

In the case of the c-parameter the mean correlations can be divided into 

two sets.  The first set includes the pairs CC/TCC, CC/HCC, and TCC/HCC, for 

which the correlations were all at least 0.80 across grade levels.  The second set 

includes CC/FCIP, FCIP/TCC and FCIP/HCC; the mean correlations for these 

pairs of procedures were less than 0.72 for the three lower grades and above 0.86 

for the three upper grades.  Further, the mean correlations for the c-parameter 

estimates for the scaling procedures were lower than the mean correlations for the 

corresponding a- and b-parameter estimates.  The lower mean correlations for the 

c-parameters were likely due to fixing the parameters for the on-level test forms 

for the lower grades.  The fixing of the c-parameters did not affect the upper grade 

levels since the fixed parameters were for the off-level test forms for those grade 

levels.  Since the FCIP procedure results in fixed parameters from the upper grade 
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level, these results may be expected as they are not estimated independently of the 

grade level. 

Normal distribution 3,000 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the normal 

distribution 3,000 sample size condition in Table 10.   



 
 

Table 10.  

Correlations of item parameters for Vertical Scaling for Reading, normal distribution, 3,000 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.948 0.935 0.999 0.885 0.949 0.936 
4 0.929 0.845 0.835 0.690 0.688 0.997 
5 0.957 0.940 1.000 0.857 0.959 0.938 
6 0.887 0.887 0.882 1.000 0.996 0.996 
7 0.900 0.895 0.999 0.999 0.899 0.896 
8 0.997 0.986 0.998 0.982 0.992 0.993 

  b 
3 0.965 0.918 0.996 0.866 0.959 0.938 
4 0.984 0.979 0.975 0.950 0.944 0.999 
5 0.990 0.987 1.000 0.974 0.990 0.988 
6 0.991 0.991 0.992 1.000 1.000 1.000 
7 0.989 0.988 1.000 1.000 0.989 0.988 
8 0.999 0.997 1.000 0.998 0.998 0.998 

  c 
3 0.707 0.935 0.990 0.625 0.687 0.930 
4 0.507 0.834 0.822 0.478 0.390 0.960 
5 0.518 0.769 0.996 0.305 0.497 0.770 
6 0.888 0.888 0.887 1.000 0.972 0.972 
7 0.855 0.860 0.998 0.998 0.862 0.867 
8 0.932 0.918 0.996 0.972 0.913 0.937 
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 Similar to the normal distribution 1,500 sample size condition, the pattern 

of mean correlations for the b-parameter estimates is less complex than the pattern 

for the a-parameter estimates which is less complex than the pattern for the c-

parameter estimates.  For the a-parameter mean correlations, with the exception 

of grade 4, FCIP/TCC, and FCIP/HCC, 10 were between 0.80 and 0.90, and the 

rest were at least 0.90.  Six of the 10 mean correlations between 0.80 and 0.90 

involved CC (two at grade 4, three at grade 6, and one at grade 7).   

The mean correlations for the b-parameter estimates were above 0.90, with 

one exception (FCIP/TCC grade 3 0.87).  All of the correlations were high for all 

scaling pairs. 

For the c-parameter the mean correlations again can be divided into two 

sets.  The first set included the pairs involved CC/TCC, CC/HCC, and TCC/HCC; 

the mean correlations for these pairs of scaling procedures were all at least 0.80 

across the grades.  The second set includes CC/FCIP, FCIP/TCC and FCIP/HCC; 

the mean correlations involving these procedures were less than 0.71 for the three 

lower grades, and above 0.86 for the three upper grades.  Further, the mean 

correlations among the c-parameter estimates for the scaling procedures were 

lower than the mean correlations for the corresponding a- and b-parameter 

estimates, likely due to the same reasons provided for the normal distribution 

1,500 sample size condition.  The lower mean correlations for the c-parameters 

were likely due to fixing the parameters for the on-level test forms for the lower 

grades.  The fixing of the c-parameters did not affect the upper grade levels since 

the fixed parameters were for the off-level test forms for those grade levels.   
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Skewed distribution 1,500 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the skewed 

distribution 1,500 sample size condition in Table 11.   



 
 

Table 11.  

Correlations of item parameters for Vertical Scaling  for Reading, skewed distribution, 1,500 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.936 0.917 0.999 0.898 0.943 0.927 
4 0.834 0.653 0.756 0.684 0.694 0.962 
5 0.928 0.915 0.999 0.834 0.935 0.924 
6 0.892 0.892 0.890 1.000 0.967 0.967 
7 0.900 0.901 0.998 0.999 0.903 0.905 
8 0.985 0.979 0.999 0.986 0.987 0.987 

  b 
3 0.945 0.948 0.998 0.860 0.941 0.959 
4 0.980 0.966 0.978 0.946 0.950 0.996 
5 0.985 0.990 1.000 0.969 0.986 0.990 
6 0.987 0.987 0.992 1.000 0.996 0.996 
7 0.991 0.991 1.000 1.000 0.990 0.990 
8 0.998 0.996 1.000 0.996 0.998 0.997 

  c 
3 0.656 0.937 0.996 0.603 0.641 0.932 
4 0.516 0.821 0.841 0.385 0.285 0.953 
5 0.457 0.723 0.993 0.248 0.454 0.716 
6 0.879 0.879 0.913 1.000 0.937 0.937 
7 0.767 0.764 0.996 0.998 0.783 0.782 
8 0.820 0.856 0.997 0.959 0.810 0.886 
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Similar to the normal distribution conditions, the pattern of mean 

correlations for the b-parameter estimates is less complex than the pattern for the 

a-parameter estimates which is less complex than the pattern for the c-parameter 

estimates.  For the a-parameter mean correlations, with the exception of grade 4, 

CC/TCC (0.65), CC/HCC (0.76), FCIP/TCC (0.68), and FCIP/HCC (0.69) 

procedures at grade 4, six were between 0.80 and 0.90, and the rest were at least 

0.90.  The four correlations below 0.80 were close to 0.70 or above.  Four of the 

six mean correlations between 0.80 and 0.90 involved CC (one at grade 4, and 

three at grade 6).   

The mean correlations for the b-parameter estimates were above 0.90, with 

the same exception, the mean correlation between the FCIP/TCC procedures for 

grade 3.  All of the correlations were high for all scaling pairs. 

For the c-parameter the mean correlation can be divided into two sets.  

The first set included the pairs CC/TCC, CC/HCC, and TCC/HCC; the mean 

correlations for the pairs of scaling procedures were all at least 0.80 across the 

grades.  The second set includes CC/FCIP, FCIP/TCC and FCIP/HCC; the mean 

correlations for the pairs of scaling procedures were less than 0.66 for the three 

lower grades and above 0.82 for the three upper grades.  Further, the mean 

correlations among the c-parameter estimates for the scaling procedures were 

lower than the mean correlations for the corresponding a- and b-parameter 

estimates.  Like the normal distributions, the lower mean correlations for the c-

parameters were likely due to fixing the parameters for the on-level test forms for 

the lower grades.     
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Skewed distribution 3,000 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the skewed 

distribution 3,000 sample size condition in Table 12.   



 
 

Table 12.  

Correlations of item parameters for Vertical Scaling  for Reading, skewed distribution, 3,000 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.945 0.925 0.998 0.928 0.954 0.937 
4 0.827 0.647 0.774 0.737 0.742 0.952 
5 0.942 0.922 0.999 0.867 0.950 0.933 
6 0.895 0.895 0.908 1.000 0.976 0.976 
7 0.907 0.907 0.997 0.999 0.905 0.908 
8 0.976 0.963 0.995 0.980 0.979 0.973 

  b 
3 0.945 0.945 0.996 0.865 0.938 0.961 
4 0.979 0.961 0.974 0.947 0.950 0.994 
5 0.984 0.990 0.999 0.973 0.987 0.991 
6 0.983 0.983 0.992 1.000 0.996 0.996 
7 0.992 0.992 0.999 1.000 0.988 0.988 
8 0.996 0.997 1.000 0.998 0.995 0.997 

  c 
3 0.655 0.932 0.989 0.612 0.630 0.926 
4 0.473 0.779 0.801 0.409 0.288 0.944 
5 0.407 0.670 0.990 0.272 0.409 0.668 
6 0.847 0.847 0.893 1.000 0.919 0.919 
7 0.716 0.705 0.992 0.998 0.742 0.733 
8 0.792 0.788 0.993 0.940 0.794 0.814 
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Similar to the previous conditions, the pattern of mean correlations for the 

b-parameter estimates is less complex than the pattern for the a-parameter 

estimates which is less complex than the pattern for the c-parameter estimates.  

For the a-parameter mean correlations, with the exception of grade 4, CC/TCC 

(0.65), CC/HCC (0.77), FCIP/TCC (0.74), and FCIP/HCC (0.74), four were 

between 0.80 and 0.90, and the rest were at least 0.90.  The four correlations 

below 0.80 were close to 0.70 or above.  Three of the four mean correlations 

between 0.80 and 0.90 involved CC (one at grade 4, and two at grade 6).   

The mean correlations for the b-parameter estimates were above 0.94, with 

the exception, the mean correlation for the FCIP/TCC pair for grade 3 (0.86).  All 

of the correlations were high for all scaling pairs. 

For the c-parameter the mean correlation can again be divided into two 

sets.  The first set included the pairs involved CC/TCC, CC/HCC, and TCC/HCC; 

the mean correlations for these pairs of scaling procedures were all at least 0.80 

across the grades.  The second set includes CC/FCIP, FCIP/TCC and FCIP/HCC; 

the mean correlations for these pairs of scaling procedures were less than 0.66 for 

the three lower grades, and above 0.72 for the three upper grades.  Further, the 

mean correlations among the c-parameter estimates for the scaling procedures 

were lower than the mean correlations for the corresponding a- and b-parameter 

estimates.  The lower mean correlations for the c-parameters were likely due to 

fixing the parameters for the on-level test forms for the lower grades.     
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Summary for Correlations 

The correlations between the six pairs of scaling procedures were not 

affected by the distribution shape or sample size.  The highest correlations were 

found for the b-parameter, where all were greater than 0.90 except for FCIP/TCC.  

For the correlations for the a-parameter the majority of the pairs were above 0.80, 

with the exception of four pairs at grade 4.  Lastly, the correlations for the c-

parameter were generally quite high, with some exceptions when FCIP was a 

member.  The smallest c-parameter correlations occurred for pairs that included 

FCIP with the lower grade levels (3, 4, and 5).  This was most likely due to the 

lower grades having the off-level item parameters fixed.  The item parameters for 

the a-, b-, and c- parameters did not differ based on the distribution type or 

sample size.  There was no consistent pattern of which pair had the highest values 

across the a-, b-, and c-parameters, but generally the values were high with the 

few exceptions presented above.  These results indicate similar ranking for the 

vertical scaling procedure item parameters.    
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CHAPTER 5 RESULTS: MATHEMATICS 

The results for Mathematics are presented in this chapter.  The results are 

presented for each evaluation measure for the four distribution shape and sample 

size conditions.  The decision accuracy and consistency results are presented first 

followed by presentation of the conditional standard errors of estimation at the 

cut-scores.  Third, the root-mean-squared-differences of the scale scores are 

presented.  Lastly, the correlations between the item parameters across vertical 

scaling procedures are presented.  The results presented in Chapters 4 and 5 

provide a micro evaluation of the differences.  Chapter 6 presents a summary of 

the micro evaluation, and a macro discussion and applications for practitioners. 

The presentation of the results for the first condition – normal distribution 

with a sample size of 1,500 – includes a summary table and a graphical 

representation of the results for decision accuracy, decision consistency, 

conditional standard error estimates, and RMSD and a summary table for the 

correlations of the item parameter estimates.  The remaining conditions only 

include a graphical representation for decision accuracy, decision consistency, 

conditional standard error estimates and RMSD and a summary table for the 

correlations of the item parameters estimates.  The remaining tables appear in 

Appendix B.   

Decision Consistency and Accuracy 

Normal distribution 1,500 sample size 

 The decision accuracy and consistency results are presented for the normal 

distribution with 1,500 examinees in Table 13.  The results for all four vertical 
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scaling methods are presented for each grade and cut-score. As indicated earlier, 

there are three performance levels – below basic, basic, and above basic.  For all 

tables the cut-score between below basic and basic is listed as the lower cut-score, 

and the cut-score between basic and above basic is listed as the upper cut-score.  

The decision accuracy and consistency values are bounded by zero and one, 

where, for example, a value of 0.80 is interpreted as 80 % accurate or consistent.  

However no specific minimum criteria have been identified for decision accuracy 

and consistency in the literature.  Therefore, the minimum value for the present 

study was set at 0.80 as 0.80 represents 80% both accurate or consistent 

classification and the values below 0.80 are bolded in the tables.   
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Table 13.  

Decision Accuracy and Consistency for Vertical Scaling for Mathematics, normal 

distribution, 1,500 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.559 0.467 0.484 0.519 
upper 0.916 0.934 0.930 0.935 

4 lower 0.807 0.829 0.805 0.815 
upper 0.949 0.961 0.960 0.962 

5 lower 0.819 0.815 0.794 0.802 
upper 0.922 0.931 0.919 0.930 

6 lower 0.672 0.684 0.684 0.680 
upper 0.927 0.915 0.915 0.919 

7 lower 0.681 0.707 0.715 0.699 
upper 0.930 0.929 0.917 0.927 

8 lower 0.661 0.690 0.690 0.674 
upper 0.874 0.907 0.870 0.877 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.818 0.815 0.814 0.818 
upper 0.945 0.955 0.953 0.956 

4 lower 0.833 0.817 0.818 0.820 
upper 0.954 0.963 0.962 0.964 

5 lower 0.884 0.880 0.872 0.878 
upper 0.936 0.944 0.938 0.942 

6 lower 0.841 0.845 0.845 0.844 
upper 0.942 0.935 0.935 0.937 

7 lower 0.842 0.848 0.850 0.846 
upper 0.941 0.939 0.932 0.938 

8 lower 0.886 0.888 0.890 0.887 
upper 0.915 0.930 0.912 0.916 

 

 As shown in Table 13, the decision accuracy for the four scaling 

procedures exceeded 0.80 for the upper cut-score for all grade levels.  However, 

the pattern for decision accuracy at the lower cut-score was not consistent across 
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grade levels.  For example, the decision accuracy was less than 0.80 for all four 

vertical scaling procedures for grade 3 (from 0.47 to 0.56) and grades 6, 7, and 8 

(from 0.66, CC, grade 8 to 0.72, TCC, grade 7).  In contrast, the decision accuracy 

for grade 4 ranged from 0.80 to 0.83.   

At the upper cut-score, the decision accuracy across grades and scaling 

methods varied from 0.87 (grade 8, CC) to 0.96 (grade 4, FCIP, TCC, HCC).  

There were smaller differences among the four vertical scaling procedures, with 

all decision accuracy values above 0.80.   

The decision consistency values for both cut-scores were all greater than 

0.80 for all four scaling procedures and grade levels.  However, the decision 

consistency values at the lower cut-score were lower than the corresponding 

decision consistency at the upper cut-score (0.81 to 0.89 vs. 0.92 to 0.96) for all 

four scaling procedures.  Given the small range, the decision consistency values 

across the four scaling procedures behaved similarly across grade levels.   

The decision accuracy and consistency results presented in Table 13 are 

graphically shown, respectively, in Figure 23 and Figure 24.  The grade levels are 

displayed on the X-axis.  Decision accuracy and consistency values are shown on 

the Y axis bounded by 0.40 and 1.00 to show the differences between procedures 

more easily.  Both the lower and upper cut-scores are displayed on the same 

graph, where the solid line indicates the lower cut-score and the dashed line 

indicates the upper cut-score.  Each vertical scaling procedure is shown in a 

different colour with a different marker, CC is blue (square marker), FCIP is red 
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(diamond marker), TCC is green (circle marker), and HCC is yellow (triangle 

marker).   

 

Figure 23. Decision accuracy for Mathematics, normal distribution, 1,500 sample 
size 

 

As shown in Figure 23, for the lower cut-score larger differences across 

the grade levels occurred rather than differences across vertical scaling 

procedures.  At the lower cut-score, only at grades 4 and 5 were the values above 

0.80, and the smallest values (< 0.56) were found at grade 3.  Decision accuracy 

values, less than 0.80, were found at grade 6, 7 and 8 (approximately 0.70) with 

smaller differences among the four vertical scaling procedures at the two upper 

grade levels.  The decision accuracy values for the lower cut-score showed some 

inconsistencies across grade levels.  For example, the difference between CC 

(0.56) and FCIP (0.47) at grade 3 was 0.09.  The largest difference of 0.36 
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occurred across grade levels, which ranged from 0.47 (FCIP grade 3) to 0.83 

(FCIP grade 4).  Generally, the CC procedure had the largest decision accuracy 

values, except for the two upper grade levels.  For the upper cut-score, similar 

results across the four vertical scaling procedures were found, where most of the 

values were greater than 0.90, with the exception of the CC, TCC and HCC 

procedures for grade 8.  Most of the values were quite high and the differences 

were small.   

 

Figure 24. Decision consistency for Mathematics, normal distribution, 1,500 
sample size 

 

The decision consistency values shown in Figure 24 were more similar 

across the four scaling procedures and grades than the values of decision accuracy 

shown in Figure 23.  At the lower cut-score, the CC procedure had the largest 
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values for grades 4 and 5 and the CC procedure had similar decision consistency 

values with the other procedures for the other grade levels.  However, there were 

few differences across the scaling procedures, and all of the results were above 

the 0.80 level.   

Similar decision consistency values were found for the upper cut-score, 

where slight differences were found at the two lower grade levels, where the CC, 

TCC, and HCC procedures had the smallest values, though these differences were 

really small.  However, most of the results showed fairly consistent values all 

above 0.90 and approached 0.95 at the two lower grades.  It appears that for 

decision consistency the vertical scaling procedure does not impact the values 

even across grade levels. 

Normal distribution 3,000 sample size 

The decision accuracy and consistency results are displayed, respectively, 

in Figures 25 and 26 for the normal distribution and a sample size of 3,000 and 

the values are provided in Table B14 in Appendix B.   
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Figure 25. Decision accuracy for Mathematics, normal distribution, 3,000 sample 
size 

 

 The decision accuracy values varied more across the grade levels and 

occurred more for the lower cut-score than for the upper cut-score.  At the lower 

cut-score, only at grades 4 and 5 were the decision accuracy values above 0.80.  

The smallest values, which were approximately 0.50 were found at grade 3, while 

the somewhat larger values, approximately 0.70, were found at grade 6, 7 and 8.  

Further, there was more variability among the values between the four scaling 

procedures at grade 3, followed by grades 7 and 8.  The larger differences 

occurred across grade levels ranging from 0.47 (FCIP grade 3) to 0.84 (FCIP 

grade 4) with a difference of 0.37.  Generally, the CC procedure had the largest 

values, except for the two upper grade levels.   
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For the upper cut-score, similar results across the four vertical scaling 

procedures were found, where most of the values were greater than 0.90, with the 

exception of the CC, TCC, and HCC procedures for grade 8, for which the values 

were slightly less than 0.90.  The differences between the four scaling procedures 

were small.  The decision accuracy and decision consistency results are very 

similar to the 1,500 sample size condition.  Sample size does not seem to have an 

effect on both decision accuracy and consistency. 

 

Figure 26. Decision consistency for Mathematics, normal distribution, 3,000 
sample size 

 

 As shown in Figure 26, the decision consistency values showed similar 

values across the four vertical scaling procedures for both cut-scores and across 

grade levels.  At the lower cut-score, the decision consistency was above 0.80 at 

all grade levels for each scaling procedure.  Further, differences for the four 

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 6 7 8

D
ec

isi
on

 C
on

sis
te

nc
y

Grade

CC lower
FCIP lower
TCC lower
HCC lower
CC upper
FCIP upper
TCC upper
HCC upper



 141 
 

scaling procedures were with small, except for grade 4 where the CC procedure 

had the largest values.  However, there were few differences across the scaling 

procedures, and all of the results were above the 0.80 level.   

Similar results were found for the upper cut-score where slight differences 

were found at the two lower grade levels, where the CC, TCC, and HCC 

procedures had the smallest values, though these differences were really small.  

However, most of the results showed fairly consistent values all above 0.90 and 

approached 0.95 at the two lower grades.  It appears that for decision consistency 

the vertical scaling procedure does not impact the values even across grade levels. 

Skewed distribution 1,500 sample size 

 The decision accuracy and consistency results are displayed, respectively, 

in Figures 27 and 28 for the skewed distribution and a sample size of 1,500.  The 

numerical values are provided in Table B15 in Appendix B.   
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Figure 27. Decision accuracy for Mathematics, skewed distribution, 1,500 sample 
size 

 

 At the lower cut-score, the decision accuracy values at grade 4 (CC, FCIP, 

TCC, and HCC) and grade 5 (CC and FCIP) were above 0.80.  The lowest 

decision accuracy occurred at grade 3, which ranged from 0.50 (FCIP) to 0.74 

(TCC).  Decision accuracy values less than 0.80 were found at grades 6, 7 and 8, 

which ranged from 0.70 to 0.72.  The decision accuracy values at the lower cut-

score showed some inconsistencies across the four scaling procedures across 

grade levels, particularly at grade 3.  The largest difference between scaling 

procedures, 0.23, occurred between TCC (0.74) and FCIP (0.51) at grade 3.  The 

larger difference between scaling procedures of 0.36 occurred across grade levels 

and ranged from 0.51 (FCIP grade 3) to 0.87 (TCC grade 4).  However, the 
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decision accuracy values differed in pattern between the skewed distribution as 

compared to the normal distribution, especially for grade 3. 

For the upper cut-score, similar results for the decision accuracy values for 

the four vertical scaling procedures were found, where most of the values were 

greater than 0.90, with the exception of the CC, TCC and HCC procedures for 

grade 8.  However, most of the values were quite high and the differences were 

small for most grade levels, with a larger difference between the FCIP procedure 

and the CC, TCC and HCC procedures only for grade 8.   

Comparison of Figure 23 (see page 136) and Figure 27 indicates that the 

shape of the score distribution differentially influenced the decision accuracy of 

the four scaling procedures, more so at the lower cut-score than at the upper cut-

score.  For example, the decision accuracy values were more variable at grade 3 

for the lower cut-score and grade 8 at the upper cut-score.   
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Figure 28. Decision consistency for Mathematics, skewed distribution, 1,500 
sample size 

 

 The patterns of the decision consistency values shown in Figure 28 are 

similar to the patterns of the decision consistency values in Figure 27.  At grade 4 

the CC procedure had the largest values; otherwise the values of decision 

consistency were generally the same.  Similar decision consistency values across 

vertical scaling procedures were found for the upper cut-score for grades 5 and 8, 

where the CC, TCC, and HCC procedures had the smallest values.  The largest 

difference occurred at grade 8 between the FCIP and the CC, TCC and HCC 

procedures.  It appears that for decision consistency the vertical scaling procedure 

does not impact the values even across grade levels.  These results were similar to 

those found for the normal distribution 1,500 sample size condition.   

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 6 7 8

D
ec

isi
on

 C
on

sis
te

nc
y

Grade

CC lower
FCIP lower
TCC lower
HCC lower
CC upper
FCIP upper
TCC upper
HCC upper



 145 
 

Skewed distribution 3,000 sample size 

The decision accuracy and consistency results are displayed, respectively, 

in Figures 29 and 30 for the skewed distribution and a sample size of 3,000.  The 

numerical values are provided in Table B16 in Appendix B.   

 

Figure 29. Decision accuracy for Mathematics, skewed distribution, 3,000 sample 
size 

 

As shown in Figure 29, the lowest decision accuracy values for the lower 

cut-score occurred at grade 3, which ranged from 0.54 (HCC) to 0.82 (TCC).  

Lower decision accuracy values were found at grades 6, 7, and 8, which varied 

between 0.68 and 0.76.  The decision accuracy values for the lower cut-score 

showed some inconsistencies across vertical scaling procedures, particularly with 

grade 3 with a difference of 0.27 between TCC (0.81) and HCC (0.55).  The 
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larger difference of 0.32 occurred across grade levels, which ranged from 0.55 

(HCC grade 3) to 0.87 (FCIP and HCC grade 4).   

For the upper cut-score, the decision accuracy values were greater than 

0.90 for most grade levels, except for grade for the CC, TCC, and HCC 

procedures.  The differences between the four vertical scaling procedures were 

generally small, with the largest differences between the FCIP procedure and the 

CC, TCC and HCC procedures at grade 8.   

Comparison of Figure 25 (see page 139) and Figure 29 show that the 

shape of the score distribution did not influence the decision accuracy of the four 

scaling procedures.  For example, the decision accuracy values for the lower cut-

score had larger differences at grade 3 and smaller differences at grades 7 and 8, 

similar to those found in the normal distribution.  However, the differences at 

grade 3 were larger for the skewed distribution than for the normal distribution, in 

part because the TCC procedure had a higher value for the skewed distribution as 

compared to the normal distribution. 
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Figure 30. Decision consistency for Mathematics, skewed distribution, 3,000 
sample size 

 

 The patterns of decision consistency values shown in Figure 30, when 

compared to the patterns of values in Figure 29, showed that there was greater 

agreement among vertical scaling procedures and grade levels than for decision 

accuracy.  At the lower cut-score, the CC procedure had the largest values for 

grade 4 and agreed with the other procedures for the other grade levels.  However, 

there were few differences across the scaling procedures, and all of the results 

were above the 0.80 level.   

Most of the decision consistency values were consistent with values all 

above 0.90 that approached 0.95 at the two lower grades.  The largest difference 

occurred at grade 8 between the FCIP and the CC, TCC and HCC procedures.  It 
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appears that for decision consistency the vertical scaling procedure does not 

impact the values even across grade levels.   

Summary for Decision Accuracy and Decision Consistency 

The decision accuracy results indicated a great deal of agreement across 

the four scaling procedures for both sets of cut-scores for the normal and skewed 

distributions and sample sizes.  For Mathematics, the differences for the normal 

distributions occurred more across grades than across vertical scaling procedures.  

While there were some differences across vertical scaling procedures, these 

differences primarily occurred for grade 3.  There was a decrease in decision 

accuracy as grade increased for the lower cut-score for grade 4 through 8.  There 

were virtually no differences across vertical scaling procedures and grade levels 

for the upper cut-score.  This indicates that the accuracy of the decisions is not 

consistent for all grade levels.  An increase of sample size from 1,500 to 3,000 did 

not have an impact on the results.   

The decision consistency results were more similar for both the upper and 

lower cut-scores.  The values were larger for the upper cut-score, but all of the 

values exceeded 0.80.  There were few differences found across vertical scaling 

procedure and grade levels.  In fact, there were few differences found between the 

distribution type or sample size as well.  Therefore, decision consistency does not 

seem to be impacted for the different distributions and sample sizes for this 

Mathematics assessment.  
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Conditional Standard Error 

Normal distribution 1,500 sample size 

 The values for conditional standard error at the cut-score are reported for 

the normal distribution 1,500 sample size condition in Table 14 and shown 

graphically in Figure 31.  Since, there is no clear metric to indicate if a 

conditional standard error is too high no maximum value has been set.   
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Table 14. 

Conditional Standard Error for Mathematics, normal distribution, 1,500 sample 

size 

    1500 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.285 0.270 0.283 0.258 
upper 0.484 0.495 0.499 0.487 

4 lower 0.180 0.188 0.180 0.178 
upper 0.236 0.256 0.260 0.265 

5 lower 0.209 0.213 0.205 0.212 
upper 0.329 0.354 0.324 0.343 

6 lower 0.197 0.199 0.199 0.201 
upper 0.300 0.297 0.297 0.305 

7 lower 0.230 0.200 0.204 0.220 
upper 0.375 0.347 0.335 0.353 

8 lower 0.228 0.180 0.199 0.212 
upper 0.390 0.350 0.338 0.367 

 

 The conditional standard errors for the lower cut-scores were consistently 

lower than the conditional standard errors for the upper cut-scores.  The 

conditional standard errors for both the lower and upper cut-scores were similar at 

grades 5 and 6 across the four scaling procedures, and systematically increased 

from grade 3 through 8, with the increase more so for the upper cut-scores than 

for the lower cut-scores.  The variability among the conditional standard errors 

across grades and procedures was less for the lower cut-scores (0.18 to 0.29) than 

for the upper cut-scores (0.24 to 0.50).  The results were similar across the four 

scaling methods with slight differences for the upper cut-score for the two upper 

grade levels.  Figure 31 shows the conditional standard error results for the same 

information provided in Table 14.   
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Figure 31. Conditional Standard Error for Mathematics, normal distribution, 
1,500 sample size 

 

As shown in Figure 31, there was strong agreement between the 

conditional standard errors for the lower cut-score, where small differences were 

found for the upper two grade levels.  The lowest value was found for the FCIP 

procedure and slightly higher values were found for the CC, TCC and HCC 

procedures, particularly at grade 8.  Although, the TCC procedure had slightly 

higher values for the lowest grade, these differences were minimal.   

The conditional standard error values for the upper cut-score were larger 

than those for the lower cut-score and slight differences between the scaling 

procedures occurred at the two upper grade levels.  Further, the values were very 

similar for the four scaling procedures across the grade levels, varying by less 
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than 0.04.  The largest conditional standard error values were for grade 3 (0.50), 

the smallest was for grade 4 (0.24).     

Normal distribution 3,000 sample size 

The mean conditional standard error results are displayed in Figure 32 for 

a normal distribution and a sample size of 3,000. The conditional standard error 

values are shown in Table B17 in Appendix B.   

 

Figure 32. Conditional Standard Error for Mathematics, normal distribution, 
3,000 sample size 

 

As shown in Figure 32, the conditional standard errors for the four scaling 

procedures at the lower cut-score were relatively constant from grades 4 through 

6.  The largest conditional standard errors were for grade 3, approximately 0.30, 
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7 and, particularly at grade 8, the conditional standard errors slightly diverge.  For 
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grade 8, the CC procedure had the largest value, approximately 0.22, and the 

FCIP procedure had the lowest value, approximately 0.18.     

The conditional standard error values at the upper cut-score were larger 

than the conditional standard errors at the lower cut-score.  Further, the values 

were very similar for the four scaling procedures across the grade levels, varying 

by less than 0.04.  The largest conditional standard error values were for grade 3 

(0.50), the smallest was for grade 4 (0.30).  These results were very similar to 

those found in the normal distribution 1,500 sample size condition.   

Skewed distribution 1,500 sample size 

The mean conditional standard error results are displayed in Figure 33 for 

a skewed distribution and a sample size of 1,500.  The conditional standard error 

values are shown in Table B18 in Appendix B.  
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Figure 33. Conditional Standard Error for Mathematics, skewed distribution, 
1,500 sample size 

 

As shown in Figure 33, the conditional standard errors at the lower cut-

score across the four vertical scaling procedures were quite close for grades 4 

through 7.  At grade 3, the conditional standard error values for the CC procedure 

were the largest and the conditional standard errors for the TCC procedure were 

the lowest, with the difference of 0.07.  At grade 8, the lowest conditional 

standard error was for the FCIP procedure, while the conditional standard errors 

for the CC, TCC and HCC procedures were essentially the same, with a 

difference of 0.07.   

The conditional standard error results for the upper cut-score were larger 

than those for the lower cut-score and larger differences between the procedures 
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occurred at grades 4, 5, and 6.  The CC procedure had the smallest values 

compared to the other three procedures for grade 4, 5, and 6, and the FCIP and 

TCC procedures had the largest values.  The conditional standard errors for the 

lower cut-scores across all grade levels were lower and did not differ across grade 

levels.  The conditional standard errors were largest for the four vertical scaling 

procedures at grade 3 and were smaller for the remaining grade levels.   

Skewed distribution 3,000 sample size 

The mean conditional standard error values are displayed in Figure 34 for 

a skewed distribution and a sample size of 3,000.  The conditional standard error 

values are shown in Table B19 in Appendix B.   

 

Figure 34. Conditional Standard Error for Mathematics, skewed distribution, 
3,000 sample size 
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 As shown in Figure 34, the conditional standard errors for the lower cut-

score were relatively consistent, where small differences were found for grade 8.  

For grade 8, the lowest value was found for the FCIP procedure with slightly 

higher values for the CC, TCC and HCC procedures.  The conditional standard 

errors were again higher for grade 3. 

The conditional standard error values for the upper cut-score were larger 

than those for the lower cut-score and larger differences between the scaling 

procedures occurred at grades 4, 5, 6 and 7.  For grade 8, the conditional standard 

errors were more similar.  The CC procedure had smaller values compared to the 

other three procedures for grade 4, 5, and 6, and the FCIP and TCC procedures 

had the largest values.  The conditional standard errors for the lower cut-score 

across all grade levels were lower and did not differ much across grade levels.  

The conditional standard errors were largest for the four vertical scaling 

procedures at grade 3 and were smaller for the remaining grade levels.   

Summary of Conditional Standard Error 

The conditional standard errors were very consistent across vertical 

scaling procedures for the normal and skewed distribution conditions for both sets 

of cut-scores.  However, the conditional standard errors were larger in value for 

the upper cut-score than for the lower cut-score for all four scaling procedures.  

The change in distribution slightly changed the conditional standard error patterns 

among the vertical scaling procedures for the skewed distribution conditions as 

compared to the normal distribution conditions.  The sample size slightly changed 
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the conditional standard error values as they decreased with the larger sample 

size.   

Root-Mean-Squared-Difference 

Normal distribution 1,500 sample size 

The root-mean-squared-differences between the six pairs of the four 

vertical scaling procedures for the normal distribution, 1,500 sample size 

condition are presented in Table 15.  Similar to the conditional standard error 

results there is no metric to indicate which values are too high.   



 
 

Table 15.  

Root-Mean-Squared-Difference for Vertical Scaling procedures for Mathematics, normal distribution, 1,500 sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 10.653 5.653 4.468 10.160 9.980 3.680 
4 7.397 6.960 6.368 5.263 5.319 1.673 
5 3.464 4.077 2.718 4.901 2.991 3.415 
6 4.051 4.051 3.392 0.000 1.132 1.132 
7 5.253 6.075 2.892 3.126 3.965 4.238 
8 7.396 4.904 3.046 5.827 5.718 2.927 
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 The results reported in Table 15 indicate that the agreement between pairs 

of scale scores was affected by grade level more so than vertical scaling 

procedure.  Most of the RMSDs were below 5.0.  The CC/FCIP procedure had 

RMSDs greater than 5.0 for grades 3, 4, 7, and 8.  The FCIP/TCC and FCIP/HCC 

pairs had RMSDs above 5.0 for grades 3, 4, and 7.  The CC/HCC pair was above 

5.0 only for grade 4, and the TCC/HCC pair had lower values for all grade levels.  

The largest RMSDs were found at grade 3 which is the farthest grade level from 

the base grade.   

 Figure 35 shows the RMSD results for the same information provided in 

Table 15.  The grade levels are shown on the X-axis.  The value of the RMSD is 

shown on the Y-axis.  The RMSDs for the CC/FCIP pair is shown in blue (square 

markers), CC/TCC pair is red (diamond markers), CC/HCC pair is green (circle 

markers), FCIP/TCC pair is purple (triangle markers), FCIP/HCC pair is yellow 

(asterisk markers), and TCC/HCC pair is orange (cross markers).   
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Figure 35. Root-Mean-Squared-Difference for Mathematics, normal distribution, 
1,500 sample size 

 

 As shown in Figure 35, the patterns are parabolic in shape with the lowest 

RMSDs occurred for grades 5 and 6 and larger RMSDs found for the two upper 

grade levels and the two lowest grade levels.  The largest RMSDs occurred for the 

CC/FCIP pair for grades 3, 4 and 8.  For grade 5 the largest differences between 

procedures occurred for the FCIP/TCC pair, and for grade 7 the CC/TCC pair.  

Similar but smaller differences were found for the CC/HCC pair.  The differences 

for the CC/FCIP pair were larger as the grades increased or decreased from the 

base grade of 6.  Smaller differences were found for the CC/HCC pair for grades 

5 through 7, and the TCC/HCC pair for nearly all grade levels.   

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

3 4 5 6 7 8

R
M

SD

Grade

CC vs FCIP
CC vs TCC
CC vs HCC
FCIP vs TCC
FCIP vs HCC
TCC vs HCC



161 
 

Normal distribution 3,000 sample size 

Figure 36 shows the RMSD results for the normal distribution 3,000 

sample size.  The values of the RMSD are provided in Table B20 in Appendix B.   

 

Figure 36. Root-Mean-Squared-Difference for Mathematics, normal distribution, 
3,000 sample size 

 

 As shown in Figure 36, the largest RMSDs for the CC/FCIP, FCIP/TCC, 

FCIP/HCC pairs were found for grades 3 and CC/FCIP for grade 8.  For grade 7 

the largest differences between procedures occurred for the CC/TCC pair.  Similar 

but smaller differences were found for the CC/HCC pair.  The differences for the 

CC/FCIP pair were larger as the grades increased or decreased from the base 

grade of 6.  Smaller differences were found for the CC/HCC pair for grades 5 
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through 7, and the TCC/HCC pair for nearly all grade levels.  These results were 

similar to those found in the normal distribution 1,500 sample size condition.   

Skewed distribution 1,500 sample size 

 Figure 37 shows the RMSD results for skewed distribution 1,500 sample 

size.  The values of the RMSD are provided Table B21 in Appendix B.   

 

Figure 37. Root-Mean-Squared-Difference for Mathematics, skewed distribution, 
1,500 sample size 
 

The RMSDs of the skewed distribution 1,500 sample size condition 

patterns were slightly different to those found for the normal distribution sample 

size condition patterns (cf. Figure 35 see page 160 and Figure 37).  As shown in 

Figure 37, the largest differences between procedures occurred for FCIP/TCC and 

CC/FCIP, particularly at grades 3, 4, 7, and 8.  There were also larger differences 

in scale scores for the FCIP/HCC pair.  But the differences among CC/TCC, 
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CC/HCC, and TCC/HCC procedures were smaller across all grade levels as 

compared to the normal conditions.  The most consistent differences across the 

grades involved HCC compared to CC and TCC.  There was no difference for the 

FCIP/TCC pair at grade 6.   

Skewed distribution 3,000 sample size 

 Figure 38 shows the RMSD results for skewed distribution 3,000 sample 

size.  The RMSD values are shown in Table B22 in Appendix B.   

 

Figure 38. Root-Mean-Squared-Difference for Mathematics, skewed distribution, 
3,000 sample size 

 

 This figure shows that the largest differences between procedures occurred 

for the FCIP/TCC pair for grades 3 and CC/FCIP for grade 8.  For grade 7 the 

largest differences between procedures occurred for the CC/TCC pair.  Similar 
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but smaller differences were found for the CC/FCIP and FCIP/HCC pairs.  The 

differences for the CC/FCIP pair were larger as the grades increased or decreased 

from the base grade of 6.  Smaller differences were found for the CC/HCC 

procedures for grades 5 through 7, and TCC/HCC pair for nearly all grade levels.   

Summary of Root-Mean-Squared-Difference 

The RMSDs showed variability especially at the tail ends of the grade 

span.  This indicates that the resulting scale scores were sometimes different 

between vertical scaling procedures.  The patterns were similar for the normal 

distribution for both sample size conditions.  But some of the values were slightly 

smaller for the larger sample size condition.  There were differences between the 

normal and skewed distributions, where more variability was found for the 

skewed distribution conditions.  However, since these results are aggregated over 

all scale scores it is difficult to determine what impact scale score differences at 

the cut-scores could have had on classification decisions.  That is, the largest 

differences may be at the extreme ends of the score scale.   

Correlations between Item Parameters 

Normal distribution 1,500 sample size 

 The mean correlations between the pairs of a-, b-, and c-parameter 

estimates obtained from the four scaling procedures are presented for the normal 

distribution 1,500 sample size condition in Table 16.  The results are presented for 

all six sets of correlations of the item parameters for each grade.  While 

correlations of 0.5 are considered moderate in value (Glass & Hopkins, 1996), 

values less than 0.5 are bolded since the correlations were expected to be higher. 



 
 

Table 16.  

Correlations of item parameters fors Vertical Scaling for Mathematics, normal distribution, 1,500 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.931 0.858 0.998 0.728 0.930 0.857 
4 0.934 0.857 0.851 0.760 0.755 0.998 
5 0.925 0.801 1.000 0.712 0.928 0.799 
6 0.902 0.902 0.901 1.000 0.996 0.996 
7 0.719 0.738 0.997 0.998 0.694 0.716 
8 0.998 0.992 0.998 0.997 0.999 0.996 

  b 
3 0.969 0.985 1.000 0.938 0.968 0.985 
4 0.977 0.972 0.972 0.932 0.931 1.000 
5 0.957 0.979 1.000 0.915 0.957 0.980 
6 0.987 0.987 0.988 1.000 0.999 0.999 
7 0.976 0.974 1.000 1.000 0.976 0.974 
8 0.999 0.999 1.000 1.000 1.000 0.999 

  c 
3 0.208 0.856 0.997 0.215 0.195 0.850 
4 0.633 0.874 0.871 0.650 0.609 0.972 
5 0.671 0.899 0.999 0.649 0.667 0.899 
6 0.919 0.919 0.935 1.000 0.968 0.968 
7 0.882 0.905 0.999 0.996 0.880 0.903 
8 0.970 0.951 0.995 0.990 0.970 0.966 
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 As shown in Table 16, the pattern of mean correlations for the b-parameter 

estimates is less complex than the pattern for the a-parameter estimates which is 

less complex than the pattern for the c-parameter estimates.  For the a-parameter 

mean correlations, nine of the mean correlations were less than 0.80 (FCIP/TCC 

grade 3; FCIP/TCC and FCIP/HCC grade 4; FCIP/TCC and TCC/HCC grade 5; 

and CC/FCIP, CC/TCC, FCIP/HCC, and TCC/HCC grade 7), five were between 

0.80 and 0.90, while the rest were greater than 0.90.  Six of the nine mean 

correlations less than 0.80 involved FCIP.   

The mean correlations for the b-parameter estimates were above 0.93.  All 

of the correlations were high for all scaling pairs. 

In the case of the c-parameter the mean correlation can be divided into two 

sets.  The first set includes the pairs CC/TCC, CC/HCC, and TCC/HCC; the mean 

correlations for these pairs of scaling procedures were all at least 0.80 across the 

grade levels.  The second set includes CC/FCIP, FCIP/TCC and FCIP/HCC; the 

mean correlations for these pairs of procedures were less than 0.67 for the three 

lower grades, and above 0.88 for the three upper grades.  Further, the mean 

correlations for the c-parameter estimates for the scaling procedures were lower 

than the mean correlations for the corresponding a- and b-parameter estimates.  

The lower mean correlations for the c-parameter were likely due to fixing the 

parameters for the on-level test forms for the lower grades.  The fixing of the c-

parameters did not affect the upper grade levels since the fixed parameters were 

for the off-level test forms for those grade levels.  Since the FCIP procedure 
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results in fixed parameters from the upper grade level, these results may be 

expected as they are not estimated independently of the grade level. 

Normal distribution 3,000 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the normal 

distribution 3,000 sample size condition in Table 17.   



 
 

Table 17.  

Correlations of item parameters for Vertical Scaling  for Mathematics, normal distribution, 3,000 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.949 0.887 0.998 0.793 0.947 0.885 
4 0.940 0.880 0.875 0.797 0.795 0.999 
5 0.922 0.803 0.999 0.734 0.932 0.801 
6 0.922 0.922 0.921 1.000 0.998 0.998 
7 0.650 0.670 0.996 0.999 0.622 0.644 
8 0.999 0.997 0.999 0.999 0.999 0.998 

  b 
3 0.971 0.984 1.000 0.941 0.970 0.984 
4 0.977 0.970 0.967 0.932 0.928 1.000 
5 0.941 0.974 0.999 0.913 0.949 0.977 
6 0.989 0.989 0.989 1.000 0.999 0.999 
7 0.972 0.970 1.000 1.000 0.971 0.969 
8 0.999 0.999 1.000 1.000 1.000 0.999 

  c 
3 0.194 0.845 0.997 0.214 0.171 0.833 
4 0.594 0.833 0.824 0.641 0.601 0.972 
5 0.630 0.863 0.992 0.662 0.641 0.878 
6 0.923 0.923 0.936 1.000 0.971 0.971 
7 0.852 0.880 0.995 0.995 0.834 0.861 
8 0.970 0.960 0.996 0.992 0.973 0.972 
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 Similar to the normal distribution 1,500 sample size condition, the pattern 

of mean correlations for the b-parameter estimates is less complex than the pattern 

for the a-parameter estimates which is less complex than the pattern for the c-

parameter estimates.  For the a-parameter mean correlations, eight of the mean 

correlations were less than 0.80 (FCIP/TCC grade 3; FCIP/TCC and FCIP/HCC 

grade 4; FCIP/TCC grade 5; and CC/FCIP, CC/TCC, FCIP/HCC, and TCC/HCC 

grade 7), six were between 0.80 and 0.90, while the rest were greater than 0.90.  

Six of the eight mean correlations less than 0.80 involved FCIP.   

The mean correlations for the b-parameter estimates were above 0.91.  All 

of the correlations were high in value for all scaling pairs. 

For the c-parameter the mean correlation can be divided into two sets.  

The first set included the pairs involved CC/TCC, CC/HCC, and TCC/HCC; the 

mean correlations involved these scaling procedures were all at least 0.80 across 

the grades.  The second set includes CC/FCIP, and FCIP/TCC and FCIP/HCC; the 

mean correlations involved these procedures were less than 0.66 for the three 

lower grades, and above 0.83 for the three upper grades.  Further, the mean 

correlations for the c-parameter estimates for the scaling procedures were lower 

than the mean correlations for the corresponding a- and b-parameter estimates.  

The lower mean correlations for the c-parameters were likely due to fixing the 

parameters for the on-level test forms for the lower grades.  The fixing of the c-

parameters did not affect the upper grade levels since the fixed parameters were 

for the off-level test forms for those grade levels.   



 170 
 

Skewed distribution 1,500 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the skewed 

distribution 1,500 sample size condition in Table 18.   



 
 

Table 18.  

Correlations of item parameters for Vertical Scaling  for Mathematics, skewed distribution, 1,500 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.930 0.809 0.997 0.736 0.938 0.833 
4 0.891 0.764 0.807 0.775 0.772 0.968 
5 0.881 0.685 0.999 0.738 0.892 0.696 
6 0.777 0.777 0.870 1.000 0.932 0.932 
7 0.700 0.717 0.995 0.997 0.680 0.699 
8 0.994 0.989 0.999 0.998 0.990 0.985 

  b 
3 0.967 0.988 1.000 0.937 0.967 0.989 
4 0.973 0.963 0.971 0.927 0.932 0.997 
5 0.935 0.972 0.999 0.902 0.939 0.977 
6 0.981 0.981 0.990 1.000 0.995 0.995 
7 0.975 0.975 1.000 1.000 0.975 0.974 
8 0.999 0.998 1.000 1.000 0.999 0.999 

  c 
3 0.262 0.835 0.997 0.269 0.250 0.831 
4 0.654 0.851 0.870 0.627 0.591 0.961 
5 0.637 0.828 0.995 0.643 0.632 0.825 
6 0.882 0.882 0.919 1.000 0.934 0.934 
7 0.849 0.861 0.998 0.996 0.848 0.859 
8 0.955 0.938 0.994 0.988 0.949 0.949 
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Similar to the normal distribution conditions, the pattern of mean 

correlations for the b-parameter estimates is less complex than the pattern for the 

a-parameter estimates which is less complex than the pattern for the c-parameter 

estimates.  For the a-parameter mean correlations, 13 of the mean correlations 

were less than 0.80 (FCIP/TCC grade 3; CC/TCC, FCIP/TCC, FCIP/HCC grade 

4; CC/TCC and FCIP/TCC grade 5; CC/TCC, FCIP/TCC, and TCC/HCC grade 5, 

CC/FCIP, and CC/TCC grade 6; CC/FCIP, CC/TCC, FCIP/HCC, and TCC/HCC 

grade 7), seven were between 0.80 and 0.90, and the rest were at least 0.90.  Nine 

of the 13 mean correlations less than 0.80 involved TCC.   

The mean correlations for the b-parameters estimates were above 0.90.  

All of the correlations were high in value for all scaling pairs. 

For the c-parameter the mean correlation can be divided into two sets.  

The first set included the pairs involved CC/TCC, CC/HCC, and TCC/HCC; the 

mean correlations involved these scaling procedures were all at least 0.83 across 

the grades.  The second set includes CC/FCIP, and FCIP/TCC and FCIP/HCC; the 

mean correlations involved these procedures were less than 0.65 for the three 

lower grades, and above 0.85 for the three upper grades.  Further, the mean 

correlations for the c-parameter estimates for the scaling procedures were lower 

than the mean correlations for the corresponding a- and b-parameter estimates.  

The lower mean correlations for the c-parameters was likely due to the fixing the 

parameters for the on-level test forms for the lower grades.  The fixing of the c-

parameters did not affect the upper grade levels since the fixed parameters were 

for the off-level test forms for those grade levels.   
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Skewed distribution 3,000 sample size 

The mean correlations between pairs of a-, b-, and c-parameter estimates 

obtained from the different scaling procedures are presented for the skewed 

distribution 3,000 sample size condition in Table 19.   



 
 

Table 19.  

Correlations of item parameters for Vertical Scaling  for Mathematics, skewed distribution, 3,000 sample size 

  a 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 0.935 0.822 0.998 0.786 0.944 0.847 
4 0.888 0.772 0.817 0.809 0.795 0.958 
5 0.867 0.668 0.997 0.755 0.889 0.683 
6 0.790 0.790 0.906 1.000 0.905 0.905 
7 0.645 0.657 0.983 0.996 0.625 0.642 
8 0.989 0.983 1.000 0.996 0.986 0.979 

  b 
3 0.963 0.986 1.000 0.932 0.962 0.988 
4 0.970 0.955 0.967 0.922 0.929 0.995 
5 0.927 0.969 0.999 0.900 0.935 0.976 
6 0.981 0.981 0.992 1.000 0.993 0.993 
7 0.971 0.969 0.999 1.000 0.969 0.967 
8 0.998 0.998 1.000 0.999 0.999 0.998 

  c 
3 0.249 0.840 0.996 0.240 0.222 0.830 
4 0.621 0.802 0.821 0.626 0.595 0.959 
5 0.586 0.789 0.987 0.640 0.586 0.796 
6 0.882 0.882 0.923 1.000 0.929 0.929 
7 0.791 0.808 0.996 0.993 0.790 0.807 
8 0.940 0.942 0.996 0.982 0.935 0.948 
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Similar to the previous conditions, the pattern of mean correlations for the 

b-parameter estimates is less complex than the pattern for the a-parameter 

estimates which is less complex than the pattern for the c-parameter estimates.  

For the a-parameter mean correlations, 12 of the mean correlations were less than 

0.80 (FCIP/TCC grade 3; CC/TCC and FCIP/HCC grade 4; CC/TCC, FCIP/TCC 

and TCC/HCC grade 5; CC/FCIP and CC/TCC grade 6; CC/FCIP, CC/TCC, 

FCIP/HCC, and TCC/HCC grade 8), seven were between 0.80 and 0.90, and the 

rest were greater than 0.90.  Nine of the 12 mean correlations involved TCC.   

The mean correlations for the b-parameter estimates were above 0.90.  All 

of the correlations are high for all vertical scaling pairs.   

For the c-parameter the mean correlation can be divided into two sets.  

The first set included the pairs involved CC/TCC, CC/HCC, and TCC/HCC; the 

mean correlations involved these scaling procedures were all at least 0.83 across 

the grades.  The second set includes CC/FCIP, and FCIP/TCC and FCIP/HCC; the 

mean correlations involved these procedures were less than 0.65 for the three 

lower grades, and above 0.85 for the three upper grades.  Further, the mean 

correlations for the c-parameter estimates for the scaling procedures were lower 

than the mean correlations for the corresponding a- and b-parameter estimates.  

The lower mean correlations for the c-parameters were likely due to fixing the 

parameters for the on-level test forms for the lower grades.   

Summary of Correlations 

The correlations between the six pairs of scaling procedures were not 

affected by the distribution shape or sample size.  The highest correlations were 
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found for the b-parameter, where all were greater than 0.90.  For the correlations 

for the a-parameter the majority of the pairs were above 0.80, with a few 

exceptions depending on vertical scaling pair and grade level.  Lastly, the 

correlations for the c-parameter were generally quite high, with some exceptions 

when FCIP was a member.  The smallest c-parameter correlations occurred for 

pairs that included FCIP with the lower grade levels (3, 4, and 5).  This was most 

likely due to the lower grades having the off-level item parameters fixed.  The 

item parameters for the a-, b-, and c- parameters did not differ based on the 

distribution type or sample size.  There was no consistent pattern of which pair 

had the highest values across the a-, b-, and c-parameters, but generally the values 

found were high with the few exceptions presented above.  These results indicate 

similar ranking for the vertical scaling procedure item parameters.   
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CHAPTER 6 DISCUSSION AND CONCLUSIONS 

A brief description of the vertical scaling procedures, evaluation measures, 

factors in simulation study and four research questions used in this study are 

presented first.  The findings are summarized and highlighted next at the micro 

level, followed by the limitations of the study.  The results at a macro level are 

then discussed in the context of current research to date.  Finally, 

recommendations for practice and future research are presented.   

Summary of Study and Research Questions 

Four vertical scaling procedures were evaluated in the present study.  The 

first vertical scaling procedure was CC, which simultaneously estimates the item 

parameters across the test forms for the six grade levels included.  FCIP was the 

second procedure, which took the item parameters at the base form for grade 6 

and fixed the parameters for the adjacent grade level(s).  For example, the grade 6 

level form from the grade 6 students was fixed for the grade 5 students’ 

calibration of the grade 5 form.  TCC was the third procedure, which estimated 

the item parameters separately for each grade and then linked the item parameters 

using the TCC procedure (Stocking & Lord, 1983).  The HCC procedure was the 

fourth procedure, which concurrently calibrated adjacent pairs of consecutive 

grades instead of all grades, and linked the pairs using the TCC procedure.   

Four factors were evaluated in this simulation study.  The first factor was 

vertical scaling procedure.  The second factor was content area, which included a 

Reading and Mathematics assessment in grades 3 through 8.  The third factor was 

distribution type, which included a normal distribution and negatively skewed 
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distribution.  The fourth factor was sample size, which included 1,500 and 3,000 

examinees per form.  There were 100 replications for each simulated condition. 

Five evaluation measures were used in this study. The first two were 

decision accuracy and decision consistency, which were calculated for each cut-

score at each grade level.  Third, conditional standard errors were calculated for 

each cut-score at each grade level.  Fourth, RMSD values were calculated 

between the final scale scores for each of the six pairs of vertical scaling 

procedures for each grade.  Fifth, correlations of the final item parameters were 

calculated between each of the vertical scaling procedures for each grade. 

The following four research questions were addressed using simulated 

data based on real data: 

1. Do vertical scaling methods perform the same for the five evaluation 

criteria? 

2. Does distribution shape have an effect on the five evaluation criteria? 

3. Does content area have an effect on the five evaluation criteria? 

4. Does sample size have an effect on the five evaluation criteria? 

Summary of Findings 

 The following summary highlights the micro level results for the four 

factors in this study.  Each of the four questions is summarized separately: vertical 

scaling procedure, distribution shape, content area, and sample size.     
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Vertical Scaling Procedures 

 Each of the four vertical scaling procedure’s micro level results are 

presented separately: concurrent calibration, fixed common item parameters, test 

characteristic curve, and hybrid characteristic curve.     

Concurrent Calibration. 

1. The decision accuracy values ranged from 0.52 to 0.86 for the lower cut-

score and 0.87 to 1.00 for the upper cut-score.  For the lower cut-score, the 

CC procedure had the lowest values for grades 7 and 8 for most 

conditions.  The CC procedure had similar or larger values at each of the 

other grade levels as compared to the other vertical scaling procedures.  

For the upper cut-score, the CC procedure had the lowest values for grades 

3 and 4 (0.87 to 0.89), and similar or larger values at each of the other 

grade levels as compared to the other vertical scaling procedures. 

2. The decision consistency values ranged from 0.81 to 0.91 for the lower 

cut-score and 0.88 to 1.00 for the upper cut-score.  While the CC 

procedure had a similar pattern of lower decision accuracy values for the 

grades described above, the decision consistency values were all much 

higher and the differences were much smaller. 

3. The conditional standard errors ranged from 0.18 to 0.63 for the lower cut-

score and 0.24 to 1.40 for the upper cut-score.  Small differences between 

scaling procedures were found for the lower cut-score standard error.  The 

CC procedure had the lowest conditional standard errors for grades 3 and 
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4 (0.24 to 0.66) and the highest values for grades 7 and 8 (0.37 to 1.40) for 

the upper cut-score. 

4. The RMSDs ranged from 2.35 to 17.25 when CC was a member.  The 

values were the smallest for the two middle grades (2.35 to 6.41), larger 

for grades 7 and 8 (2.88 to 16.70), and the largest for grades 3 and 4 (4.18 

to 17.25). 

5. The item parameter correlations were generally quite high (>0.60) for 

most of the conditions.  Lower c-parameter correlations were found for the 

three lowest grade levels for the CC procedure when paired with the FCIP 

(0.19 to 0.70).     

Fixed Common Item Parameters. 

1. The decision accuracy values ranged from 0.47 to 0.87 for the lower cut-

score and 0.90 to 1.00 for the upper cut-score.  The FCIP procedure had 

similar or larger values than the other scaling procedures, with a few 

exceptions.  The lowest values for the lower cut-score were found for  

grade 3 (0.56 - Mathematics normal, 1,500  and 0.52 - 3,000; 0.58 - 

Mathematics skewed, 1,500), and grade 4 (0.81 - Reading, skewed, 1,500 

and 0.81 - 3,000).  For the upper cut-score, the FCIP procedure had no 

noticeable differences with the other vertical scaling procedures. 

2. The decision consistency values ranged from 0.79 to 0.92 for the lower 

cut-score and 0.91 to 1.00 for the upper cut-score.  While the pattern for 

the FCIP procedure was similar to the pattern of decision accuracy values, 
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the decision consistency values were all much higher and the differences 

were much smaller. 

3. The conditional standard errors ranged from 0.18 to 0.53 for the lower cut-

score and 0.26 to 1.26 for the upper cut-score.  Small differences between 

scaling procedures were found for both cut-scores. 

4. The RMSDs ranged from 0.00 to 16.70 when FCIP was a member.  The 

values were the smallest for the two middle grade levels (0.00 to 6.41), 

larger for grades 7 and 8 (1.98 to 16.70), and the largest in value for 

grades 3 and 4 (4.93 to 13.52). 

5. The item parameter correlations were generally quite high (<0.60) for 

most of the conditions.  Lower c-parameter correlations were found for the 

three lowest grade levels for the FCIP procedure when paired with each of 

the other scaling procedures (0.17 to 0.71).     

Test Characteristic Curve. 

1. The decision accuracy values ranged from 0.48 to 0.87 for the lower cut-

score and 0.86 to 1.00 for the upper cut-score.  The TCC procedure had 

similar or larger values than the other scaling procedures, with a few 

exceptions.  The lowest values for the lower cut-score were found for 

grade 3 (0.58 - Reading normal, 1,500 and 0.59 - 3,000; 0.81 - Reading 

skewed, 1,500).  For the upper cut-score, the TCC procedure had no 

noticeable differences with the other vertical scaling procedures. 

2. The decision consistency values ranged from 0.80 to 0.91 for the lower 

cut-score and 0.88 to 1.00 for the upper cut-score.  While the pattern for 
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decision consistency for the TCC procedure was similar to the pattern of 

decision accuracy values, the decision consistency values were all much 

higher and the differences were much smaller. 

3. The conditional standard errors ranged from 0.17 to 0.55 for the lower cut-

score and 0.24 to 1.23 for the upper cut-score.  Small differences between 

scaling procedures were found for both cut-scores. 

4. The RMSDs ranged from 0.00 to 17.25 when TCC was a member.  The 

values were the smallest for the two middle grade levels (0.00 to 5.64), 

larger for grades 7 and 8 (1.98 to 11.40), and the largest in value for 

grades 3 and 4 (1.67 to 17.25). 

5. The item parameter correlations were generally quite high (>0.60) for 

most of the conditions.  Lower c-parameter correlations were found for the 

three lowest grade levels for the TCC procedure when paired with the 

FCIP procedure (0.21 to 0.66).   

Hybrid Characteristic Curve. 

1. The decision accuracy values ranged from 0.50 to 0.87 for the lower cut-

score and 0.87 to 1.00 for the upper cut-score.  The HCC procedure had 

similar or larger values than the other scaling procedures, with one 

exception, grade 3 (0.54 - Mathematics skewed 3,000).  For the upper cut-

score, the HCC procedure had no noticeable differences with the other 

vertical scaling procedures. 

2. The decision consistency values ranged from 0.80 to 0.91 for the lower 

cut-score and 0.88 to 1.00 for the upper cut-score.  While the patterns of 
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decision consistency for the HCC procedure was similar to the pattern of 

decision accuracy values, the decision consistency values were all much 

higher and the differences were much smaller. 

3. The conditional standard errors ranged from 0.17 to 0.58 for the lower cut-

score and 0.25 to 1.22 for the upper cut-score.  Small differences between 

scaling procedures were found for both cut-scores. 

4. The RMSDs ranged from 1.08 to 16.11 when HCC was a member.  The 

values were the smallest for the two middle grade levels (1.08 to 5.18), 

larger for grades 7 and 8 (2.43 to 11.52), and the largest in value for 

grades 3 and 4 (1.67 to 16.11). 

5. The item parameter correlations were generally quite high (<0.60) for 

most of the conditions.  Lower c-parameter correlations were found for the 

three lowest grade levels for the HCC procedure when paired with the 

FCIP procedure (0.17 to 0.69).   

Distribution Type 

In contrast to decision accuracy and consistency, the micro level results 

are presented comparatively for the normal distribution and skewed distributions.     

1. Of the five outcome measures, decision accuracy was most affected by the 

shape of the distribution at the lower cut-score.  Further, the differences 

found for decision accuracy were content area dependent.  For Reading, 

the decision accuracy values decreased as grades increased for the skewed 

conditions, for the lower cut-score.  In contrast for Mathematics, the 

decision accuracy values for the vertical scaling procedures for the skewed 
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conditions larger differences were found primarily at grade 3 and smaller 

differences at grades 7 and 8, which were not found in the normal 

conditions for the lower cut-score.  For the upper cut-score, neither the 

Reading nor Mathematics decision accuracy values changes from the 

normal as compared to the skewed distributions.    

2. The decision consistency values were similar across scaling procedures 

and grade levels with small differences between the normal and skewed 

distributions. 

3. The patterns of conditional standard errors for the vertical scaling 

procedures across grade levels were relatively similar for the normal and 

skewed distributions.  But for the normal distribution there was less 

variability across scaling procedures, primarily for the upper cut-score.   

4. There were no noticeable differences between the normal and skewed 

distributions for the RMSDs. 

5. There were no noticeable differences between the normal and skewed 

distributions for the item parameter correlations. 

Content Area 

Similar to the summary for distribution type, the content area micro level 

results are presented comparatively for Reading and Mathematics.   

1. The decision accuracy values ranged from 0.58 to 1.00 for Reading, and 

from 0.47 to 0.99 for Mathematics.  Lower values were found for the 

lower cut-score as compared to the upper cut-score for both Reading and 

Mathematics.  For the lower cut-score, Reading generally had higher 
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accuracy values compared to Mathematics for grade 3 (0.58 to 0.87 vs. 

0.47 to 0.81), lower values for grades 4 and 5 (0.72 to 0.82 vs. 0.79 to 

0.87), and similar values for grade 6 through 8.  Whereas Reading had 

more variability across scaling procedures than Mathematics, Mathematics 

had more variability across grade levels.  For the upper cut-score, Reading 

had no noticeable differences as compared to Mathematics. 

2. The decision consistency values ranged from 0.79 to 1.00 for Reading, and 

from 0.81 to 0.98 for Mathematics.  Reading had decision consistency 

values that were similar across scaling procedures and grade levels while 

there were small differences with Mathematics. 

3. The conditional standard errors ranged from 0.21 to 1.40 for Reading, and 

from 0.17 to 0.69 for Mathematics.  The conditional standard errors for 

Reading were larger and more variable than the conditional standard errors 

for Mathematics.  Further, the conditional standard errors for Reading 

increased as grade level increased, while the conditional standard errors 

for Mathematics were slightly more consistent across grade levels and 

vertical scaling procedures.   

4. The RMSDs were generally larger in value for Reading (0.00 to 17.25) as 

compared to Mathematics (0.00 to 12.30). 

5. There were no noticeable differences between the item parameter 

correlations for Reading and Mathematics.  
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Sample Size 

1. The sample size factor had little to no effect on the values and patterns for 

the outcome measures, with the exception of the conditional standard 

errors and RMSDs.  The conditional standard errors and RMSDs  were 

smaller for the larger sample size condition, but the patterns for the 

outcome measures were nearly identical.   

Limitations of the Study 

There were four limitations to this study.  First, the decision accuracy and 

consistency rates for false positive and negative could have been examined to 

determine whether incorrect decisions whether the inaccurate results occurred by 

incorrectly placing students in the lower or upper proficiency categories.  The 

scope of this study did not include identification of false positive or false negative 

classification rates.  Rather, the intent of the present study was to provide a 

general indication of how well the different vertical scaling procedures impacted 

the overall decision accuracy and consistency results.   

Second, the results of this study are specific to the particular set of real 

data used to simulate the conditions conducted in this study, namely examinee 

responses to the Reading and Mathematics assessment administered in a particular 

U.S. state assessment.  Other data sets obtained from different state assessments 

in which vertical scaling was implemented were not used.   

Third, tests with mixed item formats were not addressed in the present 

study.  Consequently, the findings of this study can only extend to assessments 

containing only multiple choice items. 
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Fourth, the dimensionality of the vertical scaling data cannot easily be 

determined.  Because the item information occurs by grade level and only 

adjacent grade levels have items in common, a principal component analysis 

cannot be conducted for the full grade span.   

Discussion 

In this section, the results of this study are integrated and discussed for 

three aspects of the previous research, which were previously identified in the 

section Short Comings of Reported Research on vertical scaling (see page 62).  

These results are discussed at the macro level.  First, negatively skewed 

distributions and normal distributions were included in the present study, which 

had not been compared in previous vertical scaling research.  Second, Reading 

and Mathematics content area data files were used to simulate and compare 

different vertical scaling procedures.  Third, three new outcome measures for 

standard setting outcomes were compared for the vertical scaling procedures, 

namely, decision accuracy and decision consistency, and conditional standard 

errors of estimation. 

Distribution type 

First, the research to date has not compared a skewed distribution to a 

normal distribution in a simulation study.  Only one previous study evaluated a 

non-normal distribution (Custer, et al., 2006), where only a slightly skewed 

distribution that matched the real data was simulated and no comparison to a 

normal distribution was made.  In the present study, the type of distribution, 

normal or moderately skewed, had an impact primarily on the decision accuracy 
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results, more so for Reading than Mathematics.  The decision accuracy values for 

the four scaling procedures for Reading were affected primarily at the upper and 

lower grade levels and for Mathematics were affected at grade 3.  Distribution 

type had little to no impact on the decision consistency, conditional standard 

error, RMSDs, and item parameter correlations outcome measures.  This result 

indicates that as negatively skewed distributions are found, the distribution type 

will not necessarily impact the vertical scaling results for most of the outcome 

measures.   However, since the decision accuracy results were impacted, caution 

should be taken when implementing a vertical scale for distributions that have a 

negatively skewed distribution.  Practitioners can use this information to focus 

evaluation of vertical scaling on the decision accuracy results since these were the 

most impacted by the skewed distribution conditions.    

Content area 

Second, this study was the first to evaluate more than one content area 

using simulation techniques.  It is important to ensure that the results of a vertical 

scaling procedure are appropriate as the results indicate content area dependent 

results, specifically for classification decisions.  Testing agencies that implement 

vertical scaling procedures typically want to use the same scaling procedure 

across content areas, and it is important to ensure that this process is appropriate.  

Three previous studies, as outlined in the shortcomings of reported research, 

compared content areas, although not in a simulation study (Ito, et al., 2008; J. 

Kim, 2007; Tong & Kolen, 2007).  Larger RMSD results between HCC and CC 

were found as grades were farther from the base grade level in the Ito et al. (2008) 
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study.  However, while Ito et al. found that the RMSDs were larger for 

Mathematics than for Reading, larger RMSDs were found in Reading than 

Mathematics in the present study.   

Kim (2007) evaluated CC, FCIP, and TCC for different content areas in 

normed assessment batteries in terms of effect sizes and grade-to-grade growth.  

However, since only effect sizes and grade-to-grade growth were the outcome 

measures, this study is difficult to compare to the current study.  The Kim study 

found that there were differences between the content areas, similar to the 

findings from this study.  Even though the outcome measures were different in the 

two studies both studies support that content areas are differentially affected by 

the outcome measures used in each study.   

Tong and Kolen (2007) compared Thurstone scaling design to the 3-PL 

test and common item designs for four content areas with similar outcome 

measures to the Kim study.  Differences in content areas were also found, but the 

results are difficult to directly compare to the current study given the outcome 

measures were different.  However, these three studies from the literature indicate 

that vertical scaling procedures do not always produce the same outcomes for 

different content areas.   

In the current study, although decision consistency had similar results for 

Reading and Mathematics, the results for decision accuracy were different 

depending on the grade level, scaling procedure, content area, and distribution 

type, and the conditional standard errors and RMSDs were larger for the Reading 

content area as compared to Mathematics.  It is unclear if there is something 
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inherently different between the constructs of Reading and Mathematics that will 

influence vertical scaling, or that the different number of items on the test forms 

had an effect on the results. 

Standard setting outcome measures 

This study evaluated the four vertical scaling procedures using different 

outcome measures, namely decision accuracy, decision consistency and 

conditional standard errors at the lower and upper cut-score(s).  Two studies 

evaluated vertical scaling with standard setting outcome measures.  Meng (2007) 

evaluated CC, TCC, and two versions of HCC for the absolute bias, SE, and 

RMSE between the true and estimated proportion classification values.  However, 

the results from Meng’s study were difficult to interpret as the differences were 

summed across grade levels and then averaged across conditions to compare the 

vertical scaling procedures.  In the Meng study comparisons to truth were made, 

and in the current study, measures of classification decisions were compared.  In 

contrast to Meng’s study, the current study did not find inconsistent patterns 

across the scaling procedures and grade levels for the standard setting outcomes 

used.  In fact, fairly consistent patterns were seen for all the outcome measures 

and conditions. 

In another study, Jodoin et al. (2003) placed examinees in proficiency 

categories based on cut-scores and compared CC, FCIP, and MS for the 

percentages of students within the categories, which is similar to a classification 

measurement. Jodoin et al. evaluated these results with real data and not 

replicated samples, and evaluated year-to-year growth and not a single year 
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vertical scaling design.  Jodoin et al. found that the MS and FCIP procedures 

produced a slightly higher degree of agreement for proficiency categories than the 

CC procedure, and the FCIP procedure placed examinees in the next higher 

proficiency category more often than the MS and CC procedures for EAP and 

inconsistently classified students for MLE.  The results of the current study 

consistently indicate differences between vertical scaling procedures similar to the 

Jodoin et al. study, but since the Jodoin et al. study was a year-to-year evaluation 

with only one grade level, a direct comparison is more difficult.  Neither Meng 

(2007) nor Jodoin et al. (2003) evaluated decision accuracy, decision consistency 

or conditional standard errors.   

The decision accuracy results seemed most affected by the different 

vertical scaling procedures.  Comparison of vertical scaling procedures on the 

impact of decision accuracy is important to ensure that the procedures being used 

are adequate for all grade levels.  For Reading, differences were found for the 

decision accuracy results primarily for grade levels farther from the base grade 

level, where the HCC procedure had no really low values for any of the 

conditions and had similar or larger values than the values for CC, FCIP, and 

TCC procedures for most conditions.  For a Mathematics assessment, all 

procedures performed similarly, except for the skewed distributions, where the 

TCC showed higher values.  These results indicate that practitioners need to treat 

with caution the decision accuracy results when implementing a vertical scale.   
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Conclusions 

Vertical scaling research has developed and expanded.  There are no 

“true” values for a vertical scale, because a particular vertical scaling procedure 

needs to be implemented to create the scale.  This creates problems in evaluating 

“truth” even when real data is being used.  The approach in this research study 

was to evaluate each procedure as a test developer would in practice.  Therefore, 

the outcome measures were evaluated using standard setting outcomes that are 

commonly used when developing vertical scales.  Practitioners should take care to 

ensure that the reliability of the cut-score decisions are not affected at all grade 

levels, because measures of growth in Annual Yearly Progress rely on good 

measurement at all grade levels.  

Taken together, a pattern of which vertical scaling procedure produced the 

highest decision accuracy results somewhat emerged.  Since decision accuracy 

was the most affected outcome measure, and it measures how accurately students 

are placed in proficiency categories, the decision accuracy results should be 

evaluated and considered when deciding which scaling procedure to implement.  

The CC procedure produced the lowest decision accuracy values for the grade 

levels farthest from the base grade, but in opposite directions for both the lower 

and upper cut-scores (higher accuracy results were found for the lower grades for 

the lower cut-score, and higher accuracy results were found for the upper grades 

for the upper cut-score).  Unfortunately the vertical scales developed for state 

assessments do not usually include two or three grade levels under NCLB, and 

therefore the use of the CC procedure may not be appropriate.   
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The FCIP, TCC and HCC procedures generally produced either the 

highest or similar results for the five outcome measures, although the TCC and 

FCIP procedure did have a few more low values depending on the content area 

and conditions of the data used to create the vertical scale.  Unfortunately, the 

item parameter correlations for the FCIP procedure had some of the lowest 

values, specifically for the c-parameter for some grade levels.  The correlations 

were generally quite high for all other pairings, but fixing the item parameters 

seemed to have affected the c-parameter estimation for the FCIP procedure. 

Further, the FCIP procedure is difficult to implement as the specification of 

quadrature points is required in BILOG-MG, when creating a vertical scale.  

Whereas LOGIST 5.0 was used in the study conducted by Becker and Forsyth 

(1992), PARSCALE 3.5  was used by Jodoin et al. (2003), only BILOG-MG and 

MULTILOG are specifically capable of handling multiple grades (Kolen & 

Brennan, 2004).  Use of MULTILOG, would also require quadrature points if the 

FCIP procedure is used.  The different c-parameters and the requirement of the 

quadrature points may indicate that using the FCIP procedure to create a vertical 

scale is not recommended.    

The HCC procedure seemed to have more stable results than the TCC and 

FCIP procedures and did not have the issue of low c-parameter correlations like 

the FCIP procedure.  Therefore, the HCC procedure could be used for both 

Reading and Mathematics as the results were good or the best for most conditions.  

However, if the state department of education allows for different procedures for 
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content areas then the HCC procedure would be most appropriate for Reading 

while the TCC procedure would be most appropriate for Mathematics. 

The results of this study indicate how difficult it is to create a vertical 

scale that is accurate and can be used to measure growth over time.  Given the 

poor decision accuracy results for some grade levels in this study, can the 

measures of growth from a vertical scale be trusted?  Given present accountability 

practices, can we rely on IRT vertical scaling methods to measure such growth?  

Unfortunately for now, the methods considered in the present study are the 

methods most prominently used.  Therefore procedures that determine the 

decision accuracy and consistency of the decisions made about students’ 

placement in proficiency categories for each of the grade levels should be of 

interest.  There is already difficulty in creating test forms that increase in 

difficulty and complexity and shows growth grade-by-grade.  In addition, accurate 

cut-scores in the score distribution of each grade test form must be established to 

reflect year-to-year growth.  In addition to these two aspects, the results of this 

research study indicate that classification decisions should also not be neglected.  

To ensure fairness, it is necessary that educational practitioners working with 

federal and state governments responsible for education closely attend to these 

issues to ensure that the scores used to place each student in a proficiency 

category is valid and that the placements are accurate and consistent.  

Recommendations for Practice 

This study has a few implications for practitioners for implementing a 

vertical scale using one of the four scaling procedures.  First, choice of vertical 
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scaling procedure requires three considerations: content area, distribution type, 

and range of grade levels.  For Reading, differences were found for the decision 

accuracy results, primarily for the grade levels furthest from the base grade level 

for the lower cut-score.  For the Mathematics, there were fewer differences 

between the vertical scaling procedures, but where there were differences in some 

cases they were rather large.  Practitioners should carefully examine the decision 

accuracy results to ensure that high values are found for all grade levels at both 

cut-scores for each content area assessed, especially when negatively skewed 

distributions are found.  Negatively skewed distributions are commonly seen in 

testing programs developed to satisfy the requirements of NCLB.  The 

information at the lower cut-score is typically used to determine AYP.   

For the most part the FCIP and HCC procedures were the most consistent 

in not having very low values for any grade level for Reading and the TCC 

procedure for Mathematics.  But the implementation of the FCIP using BILOG-

MG is problematic as the appropriate quadrature points were required to create 

the grade separation for a vertical scale.  The “correct” method of creating the 

appropriate scale is not well documented for the FCIP procedure.  Overall, the 

HCC procedure appears to be the best for Reading, and the TCC procedure for 

Mathematics.  But if a common procedure across content areas is implemented, 

then the HCC procedure should be used. 

Third, a sample size of 1,500 was adequate for the outcome measures 

evaluated in this study.  Therefore, collection of a sample size of 1,500 per form 

for the data collection design used in this study is adequate.   
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Recommendations for Future Research 

 There are several areas that should be examined in future research studies.  

First, MLE or MAP estimates can be used instead of the EAP estimate to see if 

similar patterns of results are found, particularly with decision accuracy, decision 

consistency, and conditional standard errors.  The primary focus of this study was 

to evaluate the four vertical scaling procedures in terms of decision accuracy, 

decision consistency, and conditional standard errors.  Evaluating MLE scoring 

method could be helpful to determine if the results from the current study are 

generalizable to MLE.   

Second, the Reading and Mathematics tests in the present study only 

included multiple choice items.  The study should be replicated with a 

combination of multiple choice and constructed response items given educational 

assessments often include both item types.   

Third, false positive and false negative rates should be examined.  The 

values could determine if the decisions being made for the different vertical 

scaling procedures place students in the lower or upper proficiency category and 

thereby indicate the type of error by the conditions evaluated in this study.   

Fourth, smaller sample sizes could be implemented in a similar study. 

Ensuring that similar results are found with a smaller sample of 1,000 or even 500 

examinees may be useful to practitioners.  A smaller sample size would enable the 

practitioner to reduce resource load and sampling issues.    
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Appendix A: BILOG-MG and ICL command files2

  

 

                                                 
2 The example syntax file for ICL was included when you install the program by the creator of the 
ICL program and.  The comments in the ICL file were created by the author of the program.  The 
syntax files from BILOG-MG were created by Andrea J. Gotzmann and no additional comments 
are provided. 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'mathgr3_3.dat', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'mathgr3_3.PAR', 
      SCORE = 'mathgr3_3.SCO', 
      PDISTRIB='mathgr3_3.PPD', 
      EXPECTED='mathgr3_3.exp'; 
>LENGTH NITEMS = (42); 
>INPUT  NTOTAL=42, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST1 TNAME = TEST1,; 
>FORM1 LENGTH=21, INUMBER = (1(1)21); 
>FORM2 LENGTH=21, INUMBER = (22(1)42); 
(7A1,1X,I1,1X,21A1) 
>CALIB NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, PLOT=0.05, 
NOFLOAT; 
>SCORE METHOD=2, INFO=2, NOPRINT; 
 

Figure A1. BILOG-MG initial run sample syntax file 
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BILOG-MG syntax  
25/01/2010 12:42:30 PM 
>COMMENT 
>GLOBAL  DFNAME='rep1.dat', NPARM=3, SAVE; 
>SAVE    SCORE='rep1.sco', PARM='rep1.par'; 
>LENGTH  NITEMS=207; 
>INPUT   NTOT=207, NGROUPS=6, NFORMS=6, NIDCH=7; 
>ITEMS   INUM=(1(1)207), INAME=(ITEM0001(1)ITEM00207); 
>TEST1    TNAME=TEST1; 
>FORM1 LENGTH=40, INUM=(1(1)40); 
>FORM2 LENGTH=34, INUM=(41(1)74); 
>FORM3 LENGTH=34, INUM=(75(1)108); 
>FORM4 LENGTH=34, INUM=(109(1)142); 
>FORM5 LENGTH=31, INUM=(143(1)173); 
>FORM6 LENGTH=34, INUM=(174(1)207); 
>GROUP1  GNAME='GRADE 3', LENGTH=40, INUM=(1(1)40);      
>GROUP2  GNAME='GRADE 4', LENGTH=74, INUM=(1(1)74);     
>GROUP3  GNAME='GRADE 5', LENGTH=68, INUM=(41(1)108); 
>GROUP4  GNAME='GRADE 6', LENGTH=68, INUM=(75(1)142);  
>GROUP5  GNAME='GRADE 7', LENGTH=65, INUM=(109(1)173);  
>GROUP6  GNAME='GRADE 8', LENGTH=65, INUM=(143(1)207);      
(7A1,I1,I1,1X,40A1) 
>CALIB   NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, PLOT=0.01, 
NOFLOAT, 
 REFERENCE=4; 
>SCORE   METHOD=2, INFO=2, NOPRINT; 
 

Figure A2. BILOG-MG Concurrent Calibration sample syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (74); 
>INPUT  NTOTAL=74, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(0(0)40, 1(0)34); 
>FORM1 LENGTH=40, INUM=(1(1)40); 
>FORM2 LENGTH=34, INUM=(41(1)74); 
(7A1,1X,I1,1X,40A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01,  
NOFLOAT, NOADJUST; 
>QUAD POINTS=( -5.45000  -5.24487  -5.03974  -4.83462  -4.62949 
               -4.42436  -4.21923  -4.01410  -3.80897  -3.60385 
               -3.39872  -3.19359  -2.98846  -2.78333  -2.57821 
               -2.37308  -2.16795  -1.96282  -1.75769  -1.55256 
               -1.34744  -1.14231  -0.93718  -0.73205  -0.52692 
               -0.32179  -0.11667   0.08846   0.29359   0.49872 
                0.70385   0.90897   1.11410   1.31923   1.52436 
                1.72949   1.93462   2.13974   2.34487   2.55000), 
 WEIGHTS=( 0.000027723  0.000064470  0.000140651  0.000290691  
0.000574843 
  0.0010854  0.0019561  0.0033679  0.0055457  0.0087288 
  0.0131277  0.0188542  0.0258582  0.0338773  0.0424667 
  0.0511115  0.0593831  0.0669830  0.0734978  0.0783385 
  0.0808699  0.0804123  0.0764270  0.0689102  0.0586244 
  0.0469372  0.0353650  0.0251195  0.0168614  0.0107321 
  0.0064973  0.0037482  0.0020676  0.0011046  0.0005539 
  0.0002717  0.0001253  0.0000581  0.0000227  0.0000001); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A3. BILOG-MG Fixed Common Item Parameter Reading grade 4 sample 
syntax file 
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BILOG-MG syntax  
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (68); 
>INPUT  NTOTAL=68, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(0(0)34, 1(0)34); 
>FORM1 LENGTH=34, INUM=(1(1)34); 
>FORM2 LENGTH=34, INUM=(35(1)68); 
(7A1,1X,I1,1X,34A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01, 
NOFLOAT, NOADJUST; 
>QUAD POINTS=( -4.75000  -4.54487  -4.33974  -4.13462  -3.92949 
               -3.72436  -3.51923  -3.31410  -3.10897  -2.90385 
               -2.69872  -2.49359  -2.28846  -2.08333  -1.87821 
               -1.67308  -1.46795  -1.26282  -1.05769  -0.85256 
               -0.64744  -0.44231  -0.23718  -0.03205   0.17308 
                0.37821   0.58333   0.78846   0.99359   1.19872 
                1.40385   1.60898   1.81410   2.01923   2.22436 
                2.42949   2.63462   2.83974   3.04487   3.25000), 
  WEIGHTS=(0.000031527  0.000071514  0.000154124  0.000315784  
0.000617043 
  0.0011518  0.0020548  0.0035034  0.0057079  0.0088852 
  0.0132130  0.0187672  0.0254931  0.0332121  0.0416366 
  0.0504106  0.0591811  0.0675524  0.0748961  0.0802781 
  0.0826727  0.0813343  0.0761087  0.0675557  0.0568206 
  0.0453017  0.0342853  0.0246775  0.0169271  0.0110855 
  0.0069410  0.0041554  0.0023790  0.0013164  0.0006774 
  0.0003503  0.0001572  0.0000768  0.0000322  0.0000129); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A4. BILOG-MG Fixed Common Item Parameter Reading grade 5 sample 
syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO',PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (65); 
>INPUT  NTOTAL=65, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(1(0)34); 
>FORM1 LENGTH=34, INUM=(1(1)34); 
>FORM2 LENGTH=31, INUM=(35(1)65); 
(7A1,1X,I1,1X,34A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01,  
NOFLOAT, NOADJUST; 
>QUAD POINTS=(-3.30000  -3.09487  -2.88974  -2.68462  -2.47949 
              -2.27436  -2.06923  -1.86410  -1.65897  -1.45385 
              -1.24872  -1.04359  -0.83846  -0.63333  -0.42821 
              -0.22308  -0.01795   0.18718   0.39231   0.59744 
               0.80256   1.00769   1.21282   1.41795   1.62308 
               1.82821   2.03333   2.23846   2.44359   2.64872 
               2.85385   3.05897   3.26410   3.46923   3.67436 
               3.87949   4.08462   4.28974   4.49487   4.70000), 
  WEIGHTS=(0.000027433  0.000061894  0.000133515  0.000275347  
0.000542707 
  0.0010220  0.0018381  0.0031578  0.0051856  0.0081452 
  0.0122337  0.0175594  0.0241190  0.0318221  0.0405119 
  0.0499454  0.0596718  0.0689398  0.0767399  0.0819904 
  0.0838033  0.0817278  0.0759005  0.0670518  0.0563451 
  0.0450813  0.0343919  0.0250566  0.0174554  0.0116396 
  0.0074282  0.0045318  0.0026615  0.0014709  0.0007999 
  0.0003909  0.0001979  0.0000870  0.0000375  0.0000172); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A5. BILOG-MG Fixed Common Item Parameter Reading grade 7 sample 
syntax file 
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BILOG-MG syntax  
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (65); 
>INPUT  NTOTAL=65, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(1(0)31); 
>FORM1 LENGTH=31, INUM=(1(1)31); 
>FORM2 LENGTH=34, INUM=(32(1)65); 
(7A1,1X,I1,1X,34A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01,  
NOFLOAT, NOADJUST; 
>QUAD POINTS=(  -2.50000  -2.29487  -2.08974  -1.88462  -1.67949 
                -1.47436  -1.26923  -1.06410  -0.85897  -0.65385 
                -0.44872  -0.24359  -0.03846   0.16667   0.37179 
                 0.57692   0.78205   0.98718   1.19231   1.39744 
                 1.60256   1.80769   2.01282   2.21795   2.42308 
                 2.62821   2.83333   3.03846   3.24359   3.44872 
                 3.65385   3.85897   4.06410   4.26923   4.47436 
                 4.67949   4.88462   5.08974   5.29487   5.50000), 
  WEIGHTS=(0.000012639  0.000030242  0.000069700  0.000154861  
0.000331192 
  0.0006792  0.0013265  0.0024482  0.0042498  0.0069453 
  0.0107421  0.0158056  0.0222240  0.0299806  0.0389455 
  0.0488494  0.0591941  0.0691437  0.0775419  0.0831606 
  0.0850526  0.0828407  0.0768270  0.0678876  0.0572213 
  0.0460658  0.0354637  0.0261337  0.0184497  0.0124864 
  0.0081005  0.0050402  0.0030066  0.0017198  0.0009377 
  0.0004967  0.0002421  0.0001164  0.0000550  0.0000228); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A6. BILOG-MG Fixed Common Item Parameter Reading grade 8 sample 
syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (91); 
>INPUT  NTOTAL=91, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(0(0)42, 1(0)49); 
>FORM1 LENGTH=42, INUM=(1(1)42); 
>FORM2 LENGTH=49, INUM=(43(1)91); 
(7A1,1X,I1,1X,49A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01, 
 NOFLOAT, NOADJUST; 
>QUAD POINTS=( -6.19000  -5.98487  -5.77974  -5.57462  -5.36949 
               -5.16436  -4.95923  -4.75410  -4.54897  -4.34385 
               -4.13872  -3.93359  -3.72846  -3.52333  -3.31821 
               -3.11308  -2.90795  -2.70282  -2.49769  -2.29256 
               -2.08744  -1.88231  -1.67718  -1.47205  -1.26692 
               -1.06179  -0.85667  -0.65154  -0.44641  -0.24128 
               -0.03615   0.16897   0.37410   0.57923   0.78436 
                0.98949   1.19462   1.39974   1.60487   1.81000), 
 WEIGHTS=( 0.000028396  0.000064789  0.000141006  0.000292593  
0.000580170 
  0.0010993  0.0019904  0.0034393  0.0056623  0.0088704 
  0.0132243  0.0187992  0.0255623  0.0333466  0.0418392 
  0.0506028  0.0591395  0.0669428  0.0735087  0.0783312 
  0.0808283  0.0803249  0.0763033  0.0688420  0.0587864 
  0.0474813  0.0362603  0.0260484  0.0174268  0.0108199 
  0.0062871  0.0034657  0.0018377  0.0009412  0.0004700 
  0.0002265  0.0001076  0.0000471  0.0000213  0.0000001); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A7. BILOG-MG Fixed Common Item Parameter Mathematics grade 4 
sample syntax file 
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BILOG-MG syntax  
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (98); 
>INPUT  NTOTAL=98, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(0(0)49, 1(0)49); 
>FORM1 LENGTH=49, INUM=(1(1)49); 
>FORM2 LENGTH=49, INUM=(50(1)98); 
(7A1,1X,I1,1X,49A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01, 
 NOFLOAT, NOADJUST; 
>QUAD POINTS=( -5.15000  -4.94487  -4.73974  -4.53462  -4.32949 
               -4.12436  -3.91923  -3.71410  -3.50897  -3.30385 
               -3.09872  -2.89359  -2.68846  -2.48333  -2.27821 
               -2.07308  -1.86795  -1.66282  -1.45769  -1.25256 
               -1.04744  -0.84231  -0.63718  -0.43205  -0.22692 
               -0.02179   0.18333   0.38846   0.59359   0.79872 
                1.00385   1.20897   1.41410   1.61923   1.82436 
                2.02949   2.23462   2.43974   2.64487   2.85000), 
  WEIGHTS=(0.000027603  0.000063689  0.000139567  0.000291426  
0.000580207 
  0.0011027  0.0019982  0.0034474  0.0056616  0.0088449 
  0.0131578  0.0186727  0.0253472  0.0329944  0.0412887 
  0.0498153  0.0581390  0.0658144  0.0723685  0.0772745 
  0.0800072  0.0801464  0.0772805  0.0710208  0.0615299 
  0.0498343  0.0375264  0.0262135  0.0170102  0.0103026 
  0.0058624  0.0031558  0.0016175  0.0007937  0.0003745 
  0.0001704  0.0000747  0.0000318  0.0000132  0.0000001); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A8. BILOG-MG Fixed Common Item Parameter Mathematics grade 5 
sample syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (96); 
>INPUT  NTOTAL=96, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(1(0)47); 
>FORM1 LENGTH=47, INUM=(1(1)47); 
>FORM2 LENGTH=49, INUM=(48(1)96); 
(7A1,1X,I1,1X,49A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01, 
 NOFLOAT, NOADJUST; 
>QUAD POINTS=(-3.28000  -3.07487  -2.86974  -2.66462  -2.45949 
              -2.25436  -2.04923  -1.84410  -1.63897  -1.43385 
              -1.22872  -1.02359  -0.81846  -0.61333  -0.40821 
              -0.20308   0.00205   0.20718   0.41231   0.61744 
               0.82256   1.02769   1.23282   1.43795   1.64308 
               1.84821   2.05333   2.25846   2.46359   2.66872 
               2.87385   3.07897   3.28410   3.48923   3.69436 
               3.89949   4.10462   4.30974   4.51487   4.72000), 
  WEIGHTS=(0.000019093  0.000045866  0.000105087  0.000229192  
0.000477669 
  0.0009464  0.0017741  0.0031363  0.0052354  0.0082766 
  0.0124350  0.0178100  0.0244152  0.0321528  0.0407164 
  0.0495775  0.0581801  0.0660846  0.0728586  0.0779909 
  0.0808695  0.0808415  0.0774588  0.0706937  0.0610247 
  0.0494753  0.0375046  0.0265709  0.0176491  0.0110509 
  0.0065645  0.0037231  0.0020262  0.0010625  0.0005381 
  0.0002637  0.0001239  0.0000565  0.0000251  0.0000104); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 
 

Figure A9. BILOG-MG Fixed Common Item Parameter Mathematics grade 7 
sample syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', PRNAME='rep1.PRN', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1_1.PAR', SCORE='rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (98); 
>INPUT  NTOTAL=98, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST TNAME = TEST1, FIX=(1(0)49); 
>FORM1 LENGTH=49, INUM=(1(1)49); 
>FORM2 LENGTH=49, INUM=(50(1)98); 
(7A1,1X,I1,1X,49A1) 
>CALIB IDIST=1, NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, 
PLOT=0.01, 
 NOFLOAT, NOADJUST; 
>QUAD POINTS=(  -1.99000  -1.78487  -1.57974  -1.37462  -1.16949 
                -0.96436  -0.75923  -0.55410  -0.34897  -0.14385 
                 0.06128   0.26641   0.47154   0.67667   0.88179 
                 1.08692   1.29205   1.49718   1.70231   1.90744 
                 2.11256   2.31769   2.52282   2.72795   2.93308 
                 3.13821   3.34333   3.54846   3.75359   3.95872 
                 4.16385   4.36897   4.57410   4.77923   4.98436 
                 5.18949   5.39462   5.59974   5.80487   6.01000), 
  WEIGHTS=(0.000024297  0.000057703  0.000129812  0.000276630  
0.000559936 
  0.0010748  0.0019569  0.0033821  0.0055521  0.0086540 
  0.0128047  0.0180457  0.0243997  0.0318283  0.0401262 
  0.0489599  0.0578417  0.0661600  0.0733693  0.0789577 
  0.0821299  0.0820336  0.0789577  0.0705298  0.0599264 
  0.0477699  0.0357942  0.0253593  0.0171034  0.0110451 
  0.0068547  0.0040989  0.0023621  0.0013125  0.0006992 
  0.0003615  0.0001750  0.0000824  0.0000385  0.0000154); 
>SCORE METHOD=2, IDIST=3, INFO=2, NOPRINT; 

 

Figure A10. BILOG-MG Fixed Common Item Parameter Mathematics grade 8 
sample syntax file 
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BILOG-MG syntax 
25/01/2010 12:42:30 PM 
>GLOBAL DFNAME = 'rep1.dat', 
       NPARM = 3, 
       SAVE; 
>SAVE PARM = 'rep1.PAR', 
      SCORE = 'rep1.SCO', PDISTRIB='REP1.PPD'; 
>LENGTH NITEMS = (74); 
>INPUT  NTOTAL=74, NFORM=2, NALT=4, NIDCHAR=7; 
>ITEMS; 
>TEST1 TNAME = TEST1,; 
>FORM1 LENGTH=40, INUMBER = (1(1)40); 
>FORM2 LENGTH=34, INUMBER = (41(1)74); 
(7A1,1X,I1,1X,40A1) 
>CALIB NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, PLOT=0.01, 
NOFLOAT; 
>SCORE METHOD=2, INFO=2, NOPRINT; 

 

Figure A11. BILOG-MG Test Characteristic Curve sample syntax file 
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BILOG-MG syntax  
25/01/2010 12:42:30 PM 
>GLOBAL  DFNAME='rep1.dat', NPARM=3, SAVE; 
>SAVE    SCORE='rep1.sco', PARM='rep1.par'; 
>LENGTH  NITEMS=145; 
>INPUT   NTOT=145, NGROUPS=2, NFORMS=3, NIDCH=7; 
>ITEMS   INUM=(1(1)145), INAME=(ITEM0001(1)ITEM0145); 
>TEST1    TNAME=TEST1; 
>FORM1 LENGTH=47, INUM=(1(1)47); 
>FORM2 LENGTH=49, INUM=(48(1)96); 
>FORM3 LENGTH=49, INUM=(97(1)145); 
>GROUP1  GNAME='GRADE 7', LENGTH=96, INUM=(1(1)96); 
>GROUP2  GNAME='GRADE 8', LENGTH=98, INUM=(48(1)145);      
(7A1,I1,I1,1X,49A1) 
>CALIB   NQPT=40, CYCLES=500, CRIT=0.01, TPRIOR, PLOT=0.01, 
NOFLOAT, 
 REFERENCE=1; 
>SCORE   METHOD=2, INFO=2, NOPRINT; 

 

Figure A12. BILOG-MG Hybrid Test Characteristic Curve sample syntax file 
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output -log_file rep1.log 
allocate_items_dist 40 
options -default_prior_a none 
options -default_prior_b none 
options -default_prior_c none 
 
read_examinees rep1.dat 40i1 
read_item_param rep1.par 
set estep [new_estep] 
estep_compute $estep 1 1 
delete_estep $estep 
 
set eapfile [open rep1.theta w] 
 
# Write EAP and MLE estimates and number correct for each examinee on 
# a separate line of the output file 
for {set i 1} {$i <= [num_examinees]} {incr i} { 
 # compute number correct 
 set resp [examinee_responses $i] 
 set numcorrect 0 
 foreach r $resp { 
  if {$r > 0} then {incr numcorrect} 
 } 
  # get examinee posterior mean (EAP estimate) 
 set eap [examinee_posterior_mean $i] 
  
 # get examinee MLE estimate 
 set mle [examinee_theta_MLE $i -10.0 10.0] 
 # Write EAP and MLE estimates and number correct. The first 
 # argument to the format command indicates that the second and 
 # third arguments to the format command will be written as 
 # floating-point numbers with 6 digits after the decimal point and 
 # that the fourth argument will be written as an integer, with 
 # a tab character separating the numbers. 
 puts $eapfile [format "%.6f\t%.6f\t%d" $eap $mle $numcorrect] 
} 
 
# close output file 
close $eapfile 
 
# end of run 
release_items_dist 

 

Figure A13. ICL theta scoring sample syntax file  
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Appendix B: Results Tables Scale Score Mean and Standard Deviations, 

Decision Accuracy and Consistency3

                                                 
3 The decision accuracy and decision consistency minimum value for the present study was set at 
0.80, as 0.80 represents 80% both accurate and consistent classification and the values below 0.80 
are bolded in the tables. 

, Conditional Standard Error, and Root-

Mean-Squared-Difference



 
 

Table B1. 

Scale Score mean and standard deviations for Reading normal conditions 

 
1,500 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 407.64 42.33 400.02 42.66 390.94 43.25 394.92 41.17 
4 442.36 41.06 434.85 41.68 428.67 42.33 430.92 41.68 
5 467.87 45.13 463.47 44.93 463.46 46.96 464.02 45.70 
6 495.92 46.42 499.97 46.35 499.97 46.35 499.20 46.62 
7 521.06 43.51 529.13 43.77 529.75 42.35 527.96 42.84 
8 551.07 38.17 559.85 38.23 557.68 36.59 558.65 37.33 

 
3,000 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 407.39 42.10 399.31 42.93 391.13 42.96 395.33 40.66 
4 442.46 40.77 434.43 41.76 428.99 41.90 431.14 41.26 
5 468.22 44.76 463.77 44.65 463.72 46.76 464.31 45.33 
6 495.79 46.54 500.02 46.36 500.02 46.36 499.19 46.69 
7 520.77 43.90 529.18 43.79 529.39 42.52 527.27 42.98 
8 550.60 39.02 559.87 38.34 559.89 36.67 557.59 37.99 
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Table B2.  

Scale Score mean and standard deviations for Reading skewed conditions 

 
1,500 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 412.25 43.05 400.66 45.57 396.34 42.60 397.02 42.28 
4 429.49 41.20 434.28 42.40 429.49 42.24 430.29 42.73 
5 465.66 46.20 464.40 44.02 465.66 46.49 464.77 46.59 
6 499.82 47.68 499.82 45.83 499.82 45.83 499.29 47.39 
7 525.68 43.95 528.76 42.55 525.68 41.65 526.27 43.15 
8 552.14 38.09 558.04 35.83 552.14 35.39 554.15 36.98 

 
3,000 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 411.25 43.02 400.74 45.84 397.14 42.23 397.61 41.76 
4 443.02 41.01 433.74 42.44 429.91 41.81 430.45 42.20 
5 469.45 45.96 464.73 43.65 466.12 46.30 464.83 46.22 
6 495.28 47.79 499.76 45.82 499.76 45.82 499.22 47.48 
7 517.06 44.52 529.02 42.47 525.04 42.14 525.63 43.46 
8 543.55 38.62 559.68 35.42 552.34 35.55 554.17 37.19 
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Table B3  

Scale Score mean and standard deviations for Mathematics normal conditions 

 
1,500 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 371.09 43.80 367.29 41.95 366.68 42.84 368.26 41.16 
4 412.82 40.36 406.94 40.14 406.82 40.72 407.39 39.79 
5 454.45 41.17 452.81 40.04 452.30 42.70 451.88 41.08 
6 496.87 46.85 500.05 47.33 500.05 47.33 499.27 47.01 
7 528.54 48.58 531.46 47.08 533.39 48.27 530.70 48.01 
8 589.58 55.55 590.82 49.53 593.15 53.69 590.95 54.06 

 
3,000 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 370.10 43.53 367.09 41.89 367.55 42.58 368.14 40.90 
4 412.08 40.39 407.44 40.32 407.57 40.51 407.13 39.77 
5 454.42 41.27 453.20 40.13 452.87 42.59 452.38 41.05 
6 497.01 46.93 499.85 47.32 499.85 47.32 499.07 47.12 
7 529.14 48.65 531.59 47.25 533.28 48.42 531.25 47.92 
8 590.76 55.40 591.77 49.10 592.71 54.18 591.31 53.95 
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Table B4  

Scale Score mean and standard deviations for Mathematics skewed conditions 

 
1,500 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 371.40 44.90 368.71 42.91 373.67 40.64 368.65 42.10 
4 406.73 40.56 404.34 40.22 406.73 38.22 404.35 39.73 
5 451.47 41.82 450.81 38.75 451.47 42.02 450.95 41.62 
6 499.90 48.10 499.90 47.32 499.90 47.32 498.55 47.88 
7 535.22 50.19 532.24 46.82 535.22 49.17 532.95 49.35 
8 597.15 55.99 593.68 47.14 597.15 53.73 595.74 54.39 

 
3,000 

  CC FCIP TCC HCC 
Grade Mean SD Mean SD Mean SD Mean SD 

3 372.44 44.36 370.30 42.80 375.00 39.67 368.71 41.64 
4 410.81 40.09 407.03 39.90 407.43 37.34 404.31 39.29 
5 453.64 41.71 450.75 38.67 451.49 41.86 450.63 41.62 
6 496.18 48.27 499.69 47.40 499.69 47.40 498.52 47.92 
7 528.77 50.79 532.95 46.91 534.34 49.85 531.36 49.11 
8 593.81 56.76 597.78 46.16 596.63 54.88 592.53 54.69 
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Table B5.  

Decision Accuracy and Consistency for Vertical Scaling for Reading, normal 

distribution, 3,000 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.820 0.827 0.586 0.775 
upper 0.893 0.911 0.931 0.933 

4 lower 0.823 0.750 0.798 0.755 
upper 0.935 0.950 0.958 0.957 

5 lower 0.736 0.718 0.724 0.720 
upper 0.941 0.953 0.944 0.949 

6 lower 0.675 0.687 0.687 0.683 
upper 0.955 0.945 0.945 0.946 

7 lower 0.645 0.702 0.708 0.690 
upper 0.988 0.978 0.980 0.982 

8 lower 0.644 0.723 0.727 0.704 
upper 0.996 0.991 0.992 0.993 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.824 0.792 0.797 0.802 
upper 0.936 0.945 0.954 0.956 

4 lower 0.858 0.834 0.822 0.826 
upper 0.945 0.955 0.963 0.963 

5 lower 0.856 0.847 0.846 0.848 
upper 0.938 0.948 0.939 0.944 

6 lower 0.848 0.853 0.853 0.852 
upper 0.948 0.939 0.939 0.939 

7 lower 0.813 0.830 0.830 0.826 
upper 0.980 0.966 0.970 0.972 

8 lower 0.818 0.845 0.842 0.837 
upper 0.993 0.983 0.985 0.987 
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Table B6.  

Decision Accuracy and Consistency for Vertical Scaling for Reading, skewed 

distribution, 1,500 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.840 0.873 0.814 0.830 
upper 0.869 0.903 0.935 0.936 

4 lower 0.814 0.764 0.804 0.807 
upper 0.955 0.969 0.971 0.973 

5 lower 0.753 0.735 0.736 0.740 
upper 0.951 0.968 0.956 0.962 

6 lower 0.696 0.702 0.702 0.702 
upper 0.976 0.968 0.968 0.967 

7 lower 0.662 0.713 0.700 0.696 
upper 0.997 0.992 0.994 0.993 

8 lower 0.626 0.733 0.690 0.700 
upper 1.000 0.999 0.999 0.999 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.885 0.862 0.861 0.866 
upper 0.902 0.917 0.938 0.936 

4 lower 0.897 0.876 0.861 0.868 
upper 0.938 0.957 0.964 0.963 

5 lower 0.877 0.864 0.866 0.867 
upper 0.930 0.954 0.937 0.943 

6 lower 0.869 0.873 0.873 0.875 
upper 0.958 0.949 0.949 0.946 

7 lower 0.827 0.851 0.843 0.847 
upper 0.994 0.985 0.989 0.987 

8 lower 0.812 0.863 0.839 0.850 
upper 0.999 0.997 0.999 0.998 
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Table B7.  

Decision Accuracy and Consistency for Vertical Scaling for Reading, skewed 

distribution, 3,000 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.820 0.866 0.859 0.868 
upper 0.875 0.900 0.934 0.938 

4 lower 0.811 0.762 0.791 0.793 
upper 0.959 0.969 0.971 0.975 

5 lower 0.752 0.734 0.732 0.736 
upper 0.952 0.968 0.954 0.962 

6 lower 0.696 0.700 0.700 0.700 
upper 0.975 0.967 0.967 0.966 

7 lower 0.657 0.715 0.686 0.691 
upper 0.997 0.992 0.995 0.993 

8 lower 0.622 0.746 0.685 0.703 
upper 1.000 0.998 0.999 0.999 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.883 0.862 0.862 0.866 
upper 0.904 0.917 0.939 0.938 

4 lower 0.896 0.874 0.861 0.868 
upper 0.941 0.957 0.965 0.965 

5 lower 0.876 0.863 0.866 0.867 
upper 0.930 0.954 0.935 0.943 

6 lower 0.869 0.872 0.872 0.874 
upper 0.958 0.948 0.948 0.945 

7 lower 0.827 0.851 0.842 0.845 
upper 0.994 0.984 0.990 0.987 

8 lower 0.811 0.867 0.840 0.849 
upper 0.999 0.997 0.999 0.997 
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Table B8.  

Conditional Standard Error for Reading, normal distribution, 3,000 sample size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.229 0.239 0.251 0.227 
upper 0.414 0.434 0.495 0.474 

4 lower 0.209 0.227 0.225 0.220 
upper 0.388 0.441 0.470 0.469 

5 lower 0.289 0.290 0.319 0.304 
upper 0.698 0.711 0.705 0.723 

6 lower 0.316 0.305 0.305 0.310 
upper 0.654 0.651 0.651 0.646 

7 lower 0.420 0.371 0.350 0.392 
upper 0.882 0.752 0.728 0.817 

8 lower 0.514 0.464 0.410 0.465 
upper 1.041 0.953 0.855 0.934 
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Table B9.  

Conditional Standard Error for Reading, skewed distribution, 1,500 sample size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.217 0.248 0.230 0.229 
upper 0.461 0.557 0.591 0.567 

4 lower 0.207 0.240 0.236 0.238 
upper 0.429 0.603 0.641 0.595 

5 lower 0.343 0.330 0.369 0.366 
upper 0.774 0.883 0.862 0.843 

6 lower 0.377 0.354 0.354 0.360 
upper 0.743 0.816 0.816 0.749 

7 lower 0.487 0.421 0.418 0.460 
upper 1.153 1.002 1.013 1.067 

8 lower 0.627 0.534 0.525 0.570 
upper 1.398 1.265 1.215 1.224 

  



233 
 

Table B10.  

Conditional Standard Error for Reading, skewed distribution, 3,000 sample size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.218 0.252 0.226 0.224 
upper 0.473 0.581 0.601 0.570 

4 lower 0.205 0.244 0.233 0.233 
upper 0.429 0.630 0.647 0.585 

5 lower 0.345 0.330 0.375 0.367 
upper 0.798 0.927 0.893 0.875 

6 lower 0.382 0.366 0.366 0.373 
upper 0.742 0.869 0.869 0.782 

7 lower 0.501 0.427 0.437 0.476 
upper 1.161 1.020 1.054 1.091 

8 lower 0.633 0.524 0.545 0.582 
upper 1.354 1.237 1.235 1.218 

 

  



 
 

Table B11.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Reading, normal distribution, 3,000 sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 9.102 16.620 12.368 9.219 5.695 5.393 
4 8.693 13.810 11.674 6.605 5.027 2.472 
5 4.897 5.571 4.039 4.252 2.125 2.980 
6 4.710 4.710 4.001 0.000 1.097 1.097 
7 8.956 9.163 6.759 1.982 3.563 3.358 
8 9.606 9.769 7.575 2.742 3.735 3.613 
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Table B12.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Reading, skewed distribution, 1,500 sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 13.520 16.907 16.110 7.052 7.586 4.568 
4 10.784 15.224 14.410 6.650 6.996 3.933 
5 6.409 5.607 5.176 5.440 4.185 4.251 
6 5.636 5.636 4.849 0.000 2.496 2.496 
7 12.443 10.311 9.336 5.291 4.504 5.295 
8 15.034 10.049 10.867 7.337 4.758 4.829 
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Table B13.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Reading, skewed distribution, 3,000 sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 12.041 14.766 14.044 6.546 6.428 2.764 
4 10.280 14.000 13.139 5.570 4.988 2.170 
5 6.121 5.211 4.774 5.320 3.707 3.880 
6 5.564 5.564 4.592 0.000 2.395 2.395 
7 12.662 9.085 9.003 4.308 5.158 3.759 
8 16.700 9.713 11.523 7.661 7.101 4.578 
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Table B14.  

Decision Accuracy and Consistency for Vertical Scaling for Mathematics, normal 

distribution, 3,000 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.519 0.465 0.481 0.498 
upper 0.920 0.934 0.930 0.937 

4 lower 0.818 0.842 0.833 0.834 
upper 0.951 0.959 0.959 0.963 

5 lower 0.818 0.818 0.799 0.806 
upper 0.921 0.930 0.918 0.929 

6 lower 0.673 0.683 0.683 0.680 
upper 0.926 0.915 0.915 0.919 

7 lower 0.685 0.707 0.713 0.703 
upper 0.929 0.928 0.916 0.926 

8 lower 0.670 0.698 0.686 0.677 
upper 0.870 0.905 0.869 0.877 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.816 0.815 0.814 0.816 
upper 0.947 0.955 0.953 0.957 

4 lower 0.830 0.817 0.820 0.820 
upper 0.955 0.962 0.962 0.965 

5 lower 0.884 0.881 0.873 0.879 
upper 0.937 0.944 0.937 0.942 

6 lower 0.840 0.844 0.844 0.843 
upper 0.942 0.935 0.935 0.937 

7 lower 0.843 0.848 0.849 0.847 
upper 0.939 0.939 0.932 0.937 

8 lower 0.889 0.890 0.891 0.889 
upper 0.913 0.930 0.912 0.916 
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Table B15.  

Decision Accuracy and Consistency for Vertical Scaling for Mathematics, skewed 

distribution, 1,500 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.582 0.507 0.738 0.545 
upper 0.912 0.930 0.930 0.935 

4 lower 0.864 0.855 0.867 0.854 
upper 0.979 0.983 0.985 0.988 

5 lower 0.802 0.805 0.789 0.789 
upper 0.945 0.963 0.936 0.954 

6 lower 0.694 0.692 0.692 0.694 
upper 0.944 0.924 0.924 0.936 

7 lower 0.698 0.720 0.727 0.718 
upper 0.940 0.946 0.919 0.936 

8 lower 0.705 0.726 0.725 0.715 
upper 0.866 0.930 0.866 0.869 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.853 0.849 0.860 0.852 
upper 0.934 0.946 0.944 0.947 

4 lower 0.869 0.853 0.858 0.860 
upper 0.965 0.972 0.976 0.979 

5 lower 0.906 0.902 0.893 0.901 
upper 0.927 0.951 0.934 0.937 

6 lower 0.873 0.870 0.870 0.874 
upper 0.928 0.926 0.926 0.924 

7 lower 0.877 0.878 0.879 0.881 
upper 0.922 0.932 0.912 0.917 

8 lower 0.911 0.910 0.913 0.912 
upper 0.877 0.922 0.879 0.880 
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Table B16.  

Decision Accuracy and Consistency for Vertical Scaling for Mathematics, skewed 

distribution, 3,000 sample size 

Accuracy 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.615 0.559 0.814 0.545 
upper 0.913 0.927 0.932 0.938 

4 lower 0.847 0.872 0.863 0.865 
upper 0.978 0.979 0.985 0.989 

5 lower 0.803 0.805 0.789 0.786 
upper 0.944 0.962 0.936 0.955 

6 lower 0.694 0.691 0.691 0.695 
upper 0.944 0.924 0.924 0.936 

7 lower 0.688 0.723 0.719 0.709 
upper 0.943 0.941 0.918 0.943 

8 lower 0.701 0.754 0.719 0.698 
upper 0.866 0.914 0.860 0.888 

Consistency 
Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.856 0.853 0.865 0.853 
upper 0.933 0.944 0.946 0.949 

4 lower 0.871 0.856 0.858 0.859 
upper 0.964 0.968 0.977 0.981 

5 lower 0.906 0.901 0.892 0.900 
upper 0.926 0.951 0.935 0.913 

6 lower 0.872 0.869 0.869 0.874 
upper 0.929 0.926 0.926 0.923 

7 lower 0.875 0.878 0.878 0.880 
upper 0.924 0.929 0.912 0.924 

8 lower 0.911 0.916 0.913 0.909 
upper 0.876 0.913 0.876 0.889 
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Table B17.  

Conditional Standard Error for Mathematics normal distribution, 3,000 sample 

size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.284 0.271 0.278 0.256 
upper 0.491 0.503 0.491 0.490 

4 lower 0.181 0.190 0.169 0.169 
upper 0.237 0.259 0.242 0.252 

5 lower 0.212 0.217 0.207 0.214 
upper 0.335 0.361 0.327 0.346 

6 lower 0.196 0.197 0.197 0.197 
upper 0.292 0.285 0.285 0.290 

7 lower 0.229 0.204 0.210 0.219 
upper 0.365 0.347 0.340 0.345 

8 lower 0.226 0.180 0.208 0.212 
upper 0.383 0.347 0.352 0.367 
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Table B18.  

Conditional Standard Error for Mathematics skewed distribution, 1,500 sample 

size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.311 0.295 0.253 0.279 
upper 0.658 0.687 0.605 0.667 

4 lower 0.183 0.204 0.183 0.174 
upper 0.294 0.362 0.373 0.378 

5 lower 0.211 0.217 0.221 0.215 
upper 0.388 0.481 0.454 0.412 

6 lower 0.207 0.238 0.238 0.215 
upper 0.347 0.446 0.446 0.381 

7 lower 0.251 0.224 0.243 0.237 
upper 0.464 0.483 0.484 0.434 

8 lower 0.260 0.199 0.246 0.242 
upper 0.490 0.502 0.496 0.468 
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Table B19.  

Conditional Standard Error for Mathematics skewed distribution, 3,000 sample 

size 

Grade Cut-Score CC FCIP TCC HCC 

3 lower 0.299 0.289 0.242 0.274 
upper 0.638 0.678 0.592 0.664 

4 lower 0.181 0.203 0.180 0.168 
upper 0.292 0.363 0.383 0.386 

5 lower 0.210 0.219 0.225 0.216 
upper 0.387 0.490 0.465 0.416 

6 lower 0.208 0.242 0.242 0.213 
upper 0.346 0.451 0.451 0.366 

7 lower 0.255 0.229 0.256 0.236 
upper 0.465 0.494 0.512 0.433 

8 lower 0.264 0.188 0.261 0.247 
upper 0.490 0.474 0.516 0.486 

 

  



 
 

Table B20.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Mathematics, normal distribution, 3,000  

sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 10.300 4.179 4.237 10.475 10.058 3.219 
4 6.095 5.624 6.018 4.947 4.934 1.708 
5 3.257 3.641 2.350 4.568 2.845 3.282 
6 3.660 3.660 3.093 0.000 1.077 1.077 
7 4.817 5.457 3.037 2.687 3.673 3.878 
8 7.569 3.412 3.102 6.101 6.078 2.427 
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Table B21.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Mathematics, skewed distribution, 1,500  

sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 9.868 6.522 4.739 11.221 9.326 6.283 
4 7.093 5.131 6.309 5.670 5.303 3.457 
5 4.975 4.705 2.656 5.168 3.939 4.120 
6 5.003 5.003 3.304 0.000 2.617 2.617 
7 5.653 6.303 3.282 4.347 4.662 4.162 
8 10.375 4.510 2.881 8.705 9.017 2.687 
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Table B22.  

Root-Mean-Squared-Difference between Vertical Scaling procedures for Mathematics, skewed distribution, 3,000  

sample size 

Grade CC vs FCIP CC vs TCC CC vs HCC FCIP vs TCC FCIP vs HCC TCC vs HCC 
3 11.154 6.645 5.074 12.295 10.811 7.389 
4 5.873 5.517 7.281 5.310 5.893 4.210 
5 5.159 4.833 3.237 5.022 4.001 4.175 
6 5.072 5.072 3.344 0.000 2.738 2.738 
7 6.783 6.727 3.608 3.615 4.506 4.645 
8 12.148 4.156 3.347 9.689 10.822 4.572 
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