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Abstract

Geostatistical simulation aims at reproducing the variability of the real underlying
phenomena. When non linear features or large range connectivity are present, the
traditional simulation approaches that use only two-point statistics, such as a var-
iogram or covariance function, do not provide good reproduction of those features.
Connectivity of high and low values is often critical for grades in a mineral deposit,
concentrations of a pollutant in an environmental study, or high permeability flow
paths in a petroleum reservoir. Multiple-point statistics can help to characterize
these features.

The use of multiple-point statistics in geostatistical simulation was proposed
more than ten years ago, based on the use of training images to extract the statistics.
This research proposes the use of multiple-point statistics extracted from actual
data.

A simulation method is developed to account for runs, that is, strings of points
that are all above (or below) a threshold. The method is implemented in a hierar-
chical fashion, starting at the highest threshold and eroding the field to reproduce
histograms of runs above and below several thresholds. A selection function is used
to pick the nodes that will be switched to be below the threshold (eroded). Im-
plementation shows that the selection function is critical to obtain convergence to
the target histograms of runs. However, artifacts were found that invalidate this
approach.

A second approach is proposed to correct the indicator kriging probabilities
used in sequential indicator simulation, with probabilities extracted from multiple-
point configurations. The correction is done under three different assumptions of
redundancy between the two sources of information. The practical implementation
of these methods showed improvement in the numerical models for medium and long

term mine planning,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I would like to thank my advisor, Dr. Clayton V. Deutsch, for his help and support
throughout this research. This study benefitted from his creativity and experience.
His wide knowledge about the practice and theory of geostatistical methods has
been an inspiration to push my curiosity beyond what I thought was its limit.

I am also grateful to my undergraduate ore reserve estimation professor back
in Chile, Dr. Eduardo Magri, for giving me the motivation and guidance to start
graduate studies.

I am most grateful to the Mining Department at the Universidad de Chile for his
financial support, which would not have been possible without the help of his indus-
try affiliates, in particular Codelco Chile. The Centre for Computational Geostatis-
tics was another source of financial stability during these years and I am grateful to
the industry affiliates that keep supporting the research developed by the group.

I thank all the students that I met during these years for their companionship.
In particular, I thank Oy Leuangthong, Karl Norrena, and Michael Pyrcz for their
friendship and for showing me the Canadian approach to life (and to winter).

Finally, I thank my wife Mabel for her support and love during these years, and

my children, Amanda, Martin, and Vicente for bringing endless happiness to my
life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

1 Introduction 1
1.1 Problem Setting . . ... . ... ... ... 1
1.2 Proposed Approach . . . . . . .. ... ... ... . 4

1.2.1  Accounting for Multiple-Point Statistics as Runs . .. .. .. 4
1.2.2 Integrating the Indicator Kriging Probability and the Multiple-
Point Statistics under Different Assumptions . .. ... ... 5

1.3 Dissertation Qutline . .. . ... ... ... ... .. . 5

2 Overview of Geostatistics 7
2.1 Theory of Regionalized Variables . . . . ... .............

2.2 Statistical Inference and Stationarity . . . . ... ... ... ... .. 9
2.2.1 Moments of a Random Variable. . . . .. ... ........ 10
2.2.2 Decision of Stationarity . . ... .. ... .. ... ... .. 11
2.2.3 Inferring Representative Histograms . . . . .. .. ... ... 11
2.2.4 Variogram Inference . . ... ... ... ... . 0. 13
2.2.5 Inferring Multiple-Point Statistics . . . . ... .. ... ... 14
2.2.6 A Note on Positive Definiteness . . . . .. .. ... ... ... 15

2.3 Geostatistical Estimation . ... ... ... ... ... .. ... 16
2.3.1 SimpleKriging . .. .. ... ... ... . o oo 16
2.3.2 Ordinary Kriging . . . . ... ... .. ... .. ... .. 18
2.3.3 Non-Stationary Kriging . . . . . o v v v v v v o oo 19
2.3.4 Non Linear Variants . . ... .................. 19
2.3.5 Cokriging . . . . . . .. e e 20
2.3.6 Indicator-Based Estimation . . ... ... ... ........ 21

2.4 Conventional Two-Point Geostatistical Simulation . ... ... ... 30
2.4.1 The Place of Simulation . . ... ... ... ... ....... 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4.2 Gaussian Techniques . . . . . . . ... .. ... .. 31

24.3 Indicator Simulation . . ... ... ... ... .. . ... ... 36
2.5 Attempts at Multiple-Point Geostatistics. . . . . ... .. ... ... 37
25.1 Object-Based Methods . . . . . ... ... ... ... ... 38
2.5.2 Variogram-Based Techniques . . .. ... ... ... ..... 38
2.5.3 N-Point Connectivity Function . . . . .. .. ... ... ... 38
2.54 Extended Normal Equations . . . .. .. ... ........ 39
2.5.5 Simulated Annealing . . . . ... .. ... ... 41
2.56 Iterative Methods and Markov Chain Monte Carlo Methods . 44
2.6 Discussion . . . . .. . v ittt e e e e e e 45

3 Incorporating Multiple-Point Runs in Geostatistical Simulation 47

31 Introduction. . . ... ... .. it 47
311 KeyConcepts . . .. ... . i i i i e 47
3.12 The Theoryof Runs ... ..... ... ... ... ... 50

3.2 Analytical Derivation of the Frequency of Runs . . . . .. ... ... 52
321 GeneralCase . ... ... ittt 53
3.22 The Multi-Gaussian Case . . . . . . . .. v v v v v .. 53
323 Example. . ... . ... e 54
3.24 The Random Case: Relation with Mood’s Results . . . . . . 55
3.25 Discussion . . . . . .. L e 57

3.3 Hierarchical Indicator Simulation . . . . ... ... .......... 57
3.31 Methodology ... ... ... .. . 57
3.3.2 Implementation Problems . .. ... ... ........... 67
3.33 Examples . . .. . . . i e e 69

34 Comments on the Direct Simulationof Runs . . .. ... ...... 86

4 TUpdating the Indicator Kriging Probability with Multiple-Point
Statistics 89
41 Introduction. . . . . .. ¢ ¢ i i i i i i i e e e e 89
4.2 Statistical Inference of Two-Point and Multiple-Point Statistics . . . 91

4.3 Integrating Multiple-Point Statistics . ... ... ... ... ... .. 91
4.3.1 Assumption of Independence Between Multiple Events . . . . 92
4.3.2 Permanence of Ratios Assumption . . ... ... ... .. .. 92
4.3.3 Multi-Gaussian Assumption . . . . . . . ... 0oL 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



434 CommentS. . . . v v v v e e e e e e e e e e 96

4.4 Practical Implementation . ... ... .... .. ... .. 0., 97
4.4.1 Sequential Multiple-Point Simulation . . . . ... ... .. .. 98
4.5 Applications. . . . . . . ... e e 100
451 BinaryExamples . . . .. .. ... ... 0000, 100
4.5.2 Continuous Variable Example . . . . . ... ... ... . ... 107
45.3 Discussion . .. ... ot i i e e e 107
4.6 Assessing Performance . . . .. ... ... .. ... . 111
4.7 Quantifying Non-Convexity on the Estimators . . . . ... ... ... 115
48 Discussion . . . . . . .0 e e e e 115
5 Case Study 119
51 Imtroduction. . .. ... ... .. 119
5.2 Available Data and Basic Statistics . . . . . ... ... ... ... .. 120
5.2.1 Drillhole Information . . . . . ... ... ... ... ... ... 120
5.2.2 Blasthole Information . . ... ... ... .. ... ... 122
523 Declustering. . . . . . . . ... e 125
5.2.4 Comparisonof Datasets . . . . ... ... ... ... 125
52.5 Comments. . . . . ... o v v ittt 129
5.3 Variogram Modelling . . . . .. ... ... .. .. ... . ... 132
5.3.1 Selection of Thresholds . .. .................. 132
5.3.2 Variogram Calculation and Modelling .. ........... 134
5.4 Multiple-Point Statistics Inference . ... ... ............ 136
5.5 Sequential Indicator Simulation . . . . ... ... ... ... ... .. 140
5.5.1 Parameters . . ... ... ... ... . . o, 140
5.5.2 Validationof Results . . . .. ... ... ... ......... 140

5.6 Assumption of Independence between Single-Point (DH Data) and
Multiple-Point Information (BHData) . . . ... ... ........ 148
5.6.1 Parameters . . .. . . .. ... 00 e e e e 148
5.6.2 Validationof Results . . . . . ... .. ... ... ....... 148
5.7 Assumption of Permanence of Ratios . . . . .. ... ... ...... 151
5.7.1 Parameters . . . . . ... . e e 151
5.7.2 Validationof Results . . . . ... .. ... ... ..., 152
5.8 Multi-Gaussian Assumption . . . . . . .. ... oo oo 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.8.1 Parameters . . . . . . i i i i it e e e e e e e e e e 157

5.82 ValidationofResults . . . . . ... ... ... ...... ... 157

5.9 Sequential Gaussian Simulation . . . . .. ... ... .o 000 161
5.9.1 Normal Score Transformation . . . . ... ... .. ...... 168
5.9.2 Variogram of Normal Scores . . . ... ... ... .. ..... 168
5.9.3 Parameters . . . . . . . . .. e 168
5.9.4 ValidationofResults . . . . ... ... ............. 169

5.10 Comparisonof Results . . . . . ... ... .. .. .. 173
5.10.1 Statistical Performance . .. ... .. ... ... ... ... 173
5.10.2 Mine Planning Performance . . . . . ... ... .. ... ... 173
5103 Conclusions . . . . . . . . . . o e 175

6 Conclusions and Future Work 179
6.1 Conclusions . . . . . .. o v i i it it e e e e 179

6.1.1 Incorporating Multiple-Point Runs in Geostatistical Simulation179
6.1.2 Updating the Indicator Kriging Probability with Multiple-

Point Statistics . . . . .. .. ... . . o oo 180

6.2 Future Work . .. . .. . . . i it i e e e 182
Bibliography 197
A Pseudo-Random Number Generators 199
A.1 Random Number Generators . . ... ................. 199
A.1.1 Linear Congruential Method . ... .............. 200

A.1.2 Additive Congruential Method . . .. ... ... ... .... 200

A.1.3 OtherMethods . . . .. ... ... ... ... ... 201

A2 Statistical Tests . . . . . . . . . . .. e 201
A.21 Empirical Tests . . . . . . .. .. o o o e 202

A.22 Theoretical Tests . . . . . . . .. ... .. ... ... 205

A.3 Testing Five Random Number Generators . . . . ... ... .. ... 206
A.3.1 Serial Correlation Test . . . . ... ... ... ... .. ..., 206

A.3.2 Uniformity Test. . . . . . . . oo v v vttt 206

A.3.3 K-Dimensional Uniformity Test . . . . ... ... ....... 208

A34 RunsUpandDown . ..............0.o.u.... 208

A.3.5 Runs Above and Below the Median. . . . . ... ... .. .. 208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A36 ExtremeValues. . . . . . v v i v i i i it e e e e e

Ad DiSCUSSION + v v v v v e e e e e e e e e e e e e e e e e e e e e

Exploratory Examples Using Runs

B.1 Distribution of Total Number of Runs Above and Below Thresholds
B.2 Comparison of Different Variogram Functions . . . . . ... ... ..
B.3 Maps of Frequencies of Length of Runs Above Each Threshold

B.4 Maps of Differences in Frequencies of Lengths of Runs . . . . . ...

Calculation of Uncertainty in the Variogram
Cl Imtroduction. . . . . . . . i i i i it i s et e e e e
C.2 Pointwise Variogram Uncertainty . . . . . .. ... ... . ... ...
C.3 Theoretical Approach . . . ... .... ... ... . ... ...,
C.4 Simulation Alternative . . . . . .. ... .. .. o o oL
C.4.1 Local Simulation Method . .. .................
C.4.2 Global Simulation Method . . . . .. ... ...........
C.5 Validation of Theoretical Approach by Simulation ... .......
C.6 Example 1: Clusterdat . ... ... .... .. .. ..........
C7 Example 2: Reddat . . .. ... ... .. ..
C.8 Transferring Pointwise Uncertainty into the Joint Model . . . . . . .

CO Comments . . . . v v i i i e e e e e e e e e e e

HISIM: Hierarchical Indicator Simulation

D.1 Imtroduction. . . . . . . . . . . L e

D.2 TheOriginalIdea . . . . .. ... . ... ... .. ... .. .....

D.3 Proposed Approaches . . . . . v v v i i vt v it e e e
D.3.1 Modifying the Mean in Simple Kriging . . . . . .. ... ...
D.3.2 SIS Hierarchical . .. ... ... ... ... ... .. ...
D.3.3 Nested Indicator Simulation . . . . .. ... ... ... ...,
D.3.4 Correcting Proportions: Markov and Empirical Approaches .
D.3.5 Median Hierarchical Indicator Simulation . . ... ... ...

D4 Conclusions . . . v v v v v i e et e e e e e e e e e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215



List of Figures

1.1

2.1
2.2
2.3

24

3.1
3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12

Example runs inadrillhole. . . . . ... ... ... ..o 000

Example of calculation of a third order covariance. . . .. ... ...
Forward and downward correction for order relation deviations. . . .
Power model for cumulative distribution function interpolation and
extrapolation. . . . . . . . ... L e e

Hyperbolic model for cumulative distribution function extrapolation.

Coding a continuous variable into indicators for different thresholds.
Multiple-point configurations valid as runs and other possible config-
UFALIONS & v v v e e e e e e e e e e e e e e e e e e
Increasing conditioning in the calculation of the joint probability of
havingarunoflength L. ... ... ... .. ... ... ... ...,
Theoretical and experimental results for the calculation of the prob-
ability of having arunoflength L. . . ... ... ... .. ... ...
Schematic of hierarchical indicator simulation of runs. . . ... ...
The concept of “accumulated runs”. . . ... ... ... .. ... ..
The histogram of accumulated runs given three runs of length 3, 2,
and 2. . . ... e e e e
Histograms of runs above and below the threshold at the beginning
ofthesimulation. . . . . ... ... . .. .. o,
Function f(I) used in the calculation of the selection function value
for each candidate node to be switched. . . . . ... ... ... ...
Impact of switching a node on histograms ofruns . . . . . ... ...
The concept of alternating to converge to the solution . . ... ...
Reproduction of runs above and below the median for a random se-

QUETICE.  + v v v v v e e e e e e e e e e e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
29

55



3.13 Reproduction of runs above and below the median for a regular se-
QUETICE.  « v v v e e e e e e e e e e e e e e e e e e e 70
3.14 Reproduction of runs above and below the median for a binary array
obtained by truncating a multi-Gaussian sequence. . . .. ... ... 71
3.15 Reproduction of runs above and below the median for a binary array
obtained from a realistic exhaustive dataset. . ... ... ... ... 71
3.16 Reproduction of runs above and below the median for a binary array
obtained from a second realistic exhaustive dataset. . . ... .. .. 72
3.17 Indicator maps for a spatially uncorrelated variable. . . ... .. .. 73
3.18 Random case: indicator maps for a simulated model using a maxi-
mum lengthof runsof 3. . . . . . . ... .. .. oo L 74
3.19 Random case: indicator maps for a simulated model using a maxi-
mum lengthofrunsof 8. . . . . . .. ... ... ... .. ... 75
3.20 Random case: indicator variograms for a simulated model using a
maximum lengthof runsof 3. . . . ... ... ... ... . .00, 76
3.21 Random case: indicator variograms for a simulated model using a
maximum lengthof runsof 8. . . . . ... .. ... ... ... ... 76
3.22 Random case: maps of the training image and the simulated models
with maximum lengthof 3and 8. . . . . .. ... ... . ... ... 77
3.23 Indicator maps for a multivariate Gaussian correlated variable. . .. 78
3.24 Multi-Gaussian case: indicator maps for a simulated model using a
maximum lengthof runsofd4. . . ... ... ... ... ... ..., 79
3.25 Multi-Gaussian case: indicator maps for a simulated model using a
maximum lengthof runsof 8. . . ... ... ... ... ........ 80
3.26 Multi-Gaussian case: indicator variograms for a simulated model us-
ing a maximum lengthof runsof4. . . . . . ... ... .. ...... 81

3.27 Multi-Gaussian case: indicator variograms for a simulated model us-

ing a maximum length of runsof 8 . . . . . .. . ... ... ... .. 81

3.28 Multi-Gaussian case: maps of the training image and the simulated

models with maximum lengthof4and 8 .. ... .. ... ... .. 82
3.29 Indicator maps forrealdata. . ... .................. 83
3.30 Case with real data: indicator maps for a simulated model. . . . .. 84
3.31 Case with real data: indicator variograms for a simulated model. . . 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.32 Case with real data: maps of the training image and the simulated

3.33 CPU time required to run a model with nine thresholds and consid-

ering four directions for the multiple-point runs. . ... ... .. ..

4.1 Example of events A, B, and C used in updating techniques
4.2 Multiple-point patterns with adjacent grid nodes . . . ... ... ..
4.3 Multiple-point patterns extracted from drillhole or well data . . . . .
4.4 Maps of simulated values for small isotropic objects. Proportion
above the thresholdis 10 % . . . . . . . .. ... ..« .. ... ...
4.5 Maps of simulated values for small isotropic objects. Proportion
above the thresholdis 50 % . . . . . . .. . ... ... .. ... ...
4.6 Maps of simulated values for small isotropic objects. Proportion
above the thresholdis 90 % . . . . ... ... ... .. .. ... ..
4.7 Maps of simulated values for large isotropic objects. Proportion above
thethresholdis 10 % . . . . . .« . v v it it i i e
4.8 Maps of simulated values for large isotropic objects. Proportion above
the thresholdis 50 % . . . . . . . . . . o o
4.9 Maps of simulated values for large isotropic objects. Proportion above
the thresholdis 90 % . . . . . . . . . . . . i i o
4.10 Maps of simulated values for small anisotropic objects. Proportion
above the threshold is 10 % . . . . ... ... .. ... .. ......
4.11 Maps of simulated values for small anisotropic objects. Proportion
above the thresholdis 50 % . . . . . . .. ... ... .. ...
4.12 Maps of simulated values for small anisotropic objects. Proportion
above the threshold is 90 % . . . . .. .. .. .. ... ... ...,
4.13 Maps of simulated values for large anisotropic objects. Proportion
above the thresholdis 10 % . . . . .. ... ... .. ... ......
4.14 Maps of simulated values for large anisotropic objects. Proportion
above the threshold is 50 % . . . . . . .. ... ... ... ......
4.15 Maps of simulated values for large anisotropic objects. Proportion
above the threshold s 90 % . . . . . . ... ... ... ... ...
4.16 Maps of simulated values for a binary image taken from a continuous

variable. Proportion above the thresholdis50 % .. ... ... ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.17 Maps of continuous simulated values for a continuous variable, using
tenthresholds . . . . . . . . v i i i i i i e e e e e e e e 108

4.18 Histograms of order relation corrections in SIS . ... ... ... .. 110

4.19 Indicator variogram before and after correcting for bias due to order
relations in SIS . . . . . . . Ll 111
4.20 Mismatch in MP probability for all 81 MP configurations for four of

themethods. . . .. ... . . . ... e 113
4.21 Absolute value of the mismatch in MP probability for all 81 MP

configurations for four of the methods. . . . . . ... ... ... ... 114
4.22 Graphs of P(A|B,C) given P(A) under the assumption of full inde-

pendence and permanence ofratios . . . . . .. ... o 0oL 116

4.23 Graphs showing the area where the estimated probability P(A|B, C)
is outside the range defined by P(A|B) and P(A|C) under the as-

sumption of full independence and permanence of ratios . . . . ... 117

5.1 Histogram of copper grade considering all composites and only com-

posites with rock type code 20 and under elevation 3928 . . . . . .. 121
5.2 Probability plots for the entire copper grade dataset and for the sam-

ples in rock type 20 and under elevation 3928 . . . ... ... .. .. 121
5.3 Projection over the three planes horizontal, vertical along the East-

West direction, and vertical along the North-South direction, showing

the drillhole data. . . . . . . .. ... o oo e e 122
5.4 Plan views showing the drillhole information. . . . ... ... .. .. 123

5.5 Plan views showing the locations of drillhole samples with rock type

code 20 and samples with othercodes . ... ... ... ... .. .. 124
5.6 Histogram and lognormal probability plot of copper grade from the

blastholes. . . . . . . . . . . . o e 125
5.7 Plan views showing the blasthole information. . . . . ... ... ... 126

5.8 Histogram and lognormal probability plot of copper grade from the
blastholes of benches 3910 and 3922. . . . . ... ... .. ... ... 127
5.9 Cell size versus declustered mean . . . ... ... ... ........ 127
5.10 Histogram of declustered copper grade from the drillhole data with
rock type code 20 and elevations below 3928. . . ... .. ... ... 128
5.11 Q-Q plot of drillhole copper values and blasthole sample values. . . . 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.12 Cross plots of paired samples for different tolerance distances. . . . . 130
5.13 Local mean and variance along the East-West direction of the drillhole
and blastholedata. . . . . . ... ... ... ... 0 oo, 131

5.14 Local mean and variance along the North-South direction of the drill-
hole and blastholedata. . . . .. ... ... ... ... ....... 132

5.15 Local mean and variance with elevation of the drillhole and blasthole

5.16 Indicator variogram models . . . ... ... ... ... . 00 137

5.17 Change in nugget effect and sill contributions for different thresholds. 138

5.18 Change in ranges for different thresholds. . ... ... ... ..... 138
5.19 Indicator values of the scattered blasthole data approximated by a
regular grid. . . . . . ... e e e 139
5.20 Maps of the two benches for the first two realizations by SIS. . . .. 141
5.21 Histogram and q-q plot of all the simulated values by SIS . .. ... 142
5.22 Histograms of the means and variances of the realizations by SIS . . 142

5.23 Q-Q plots of the reference distribution versus the distribution from

the first six simulated models by SIS. . . . ... ... ... ... .. 143
5.24 Cross plot of sample values and the value assigned at the closest node

in the models simulated by SIS . . . . . . .. .. ... .. . ... .. 144
5.25 Definition of the directions for variogram calculation in the regular

gridofthemodel.. . . ... ... . . i i 145
5.26 Indicator variogram reproduction for direction N30°W (SIS). . ... 146
5.27 Indicator variogram reproduction for direction N60°E (SIS).. . . .. 147

5.28 Histogram and g-q plot of all the simulated values under the assump-

tion of independence of the sources of information . ....... .. 149
5.29 Histograms of the means and variances of the realizations obtained

by updating under the independence assumption .. ... ... ... 149
5.30 Histogram and g-q plot of all the simulated values under the assump-

tion of independence of the sources of information . ... ... ... 150
5.31 Histograms of the means and variances of the realizations under the

assumption of independence of the sources of information ... ... 150
5.32 Histogram and g-q plot of all the simulated values under the assump-

tion of permanence ofratios . . . . .. . ... o o0 o L 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.33 Histograms of the means and variances of the realizations under the
assumption of permanence of ratios . . . . . ... ... ... . ... 153
5.34 Histogram and g-q plot of all the simulated values under the assump-
tion of permanenceof ratios . . . . . . .. ... oo oL 154
5.35 Histograms of the means and variances of the realizations under the
assumption of permanence ofratios . . . . . ... ... . 0oL, 154
5.36 Maps of the two benches for the first two realizations under the as-

sumption of permanence of ratios. . .. ..... ... ... .. ... 155

5.37 Q-Q plots of the reference distribution versus the distribution from
the first six simulated models under the assumption of permanence
ofratios. . . . . . . . . e 156
5.38 Indicator variogram reproduction for direction N30°W under the as-
sumption of permanence of ratios. . . .. ... ... ... .. ..., 158
5.39 Indicator variogram reproduction for direction N60°E under the as-
sumption of permanence of ratios. . .. ... ... ... ... .. .. 159
5.40 Histogram and g-q plot of all the simulated values under the multi-
Gaussian assumption before correcting for inconsistency between uni-
variate distributions . . ... .. ... ... .o L oo 160
5.41 Histograms of the means and variances of the realizations under the
multi-Gaussian assumption before correcting for inconsistency be-
tween univariate distributions . . . . ... ... e e 161
5.42 Histogram and g-q plot of all the simulated values under the multi-
Gaussian assumption after correcting for inconsistency between uni-
variate distributions . . . . .. ... L. oL oL 0o 162
5.43 Histograms of the means and variances of the realizations under the
multi-Gaussian assumption after correcting for inconsistency between
univariate distributions . . . . . .. ... o o oo 162
5.44 Maps of the two benches for the first two realizations under the multi-
Gaussian assumption. . . . . . . . . oo i e e e 163
5.45 Q-Q plots of the reference distribution versus the distribution from
the first six simulated models under the multi-Gaussian assumption. 164
5.46 Indicator variogram reproduction for direction N30°W under the multi-

Gaussian assumption. . . . . . . . .o L. e i e e 165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.47 Indicator variogram reproduction for direction N60°E under the multi-
Gaussian assumption. . . . . . . . .. ..o e 166
5.48 Normal scores variogram model. The continuous line corresponds to

the vertical direction, the dashed line is in the N30°W direction, and

the dotted line corresponds to the N60°E direction. . . . . ... ... 169
5.49 Maps of the two benches for the first two realizations using sequential

Gaussian simulation. . . . . ... ... ... L oL 170
5.50 Histogram and g-q plot of all the simulated values by SGS . . . . .. 171
5.51 Histograms of the means and variances of the realizations by SGS . . 171

5.52 Q-Q plots of the reference distribution versus the distribution from

the first six simulated models by SGS. . . .. .. ... .. ... ... 172
5.53 Variogram of normal scores reproduction for directions N30°W and

N6O%E (SGS). .« v v v i et it e et e e e e 173
5.54 Histograms of correlation coeflicients between the blasthole data and

the closest simulated value . . . . .. ... ... . ... ... 174
5.55 Area considered for calculation of quantity of metal. . . . ... ... 175

5.56 Experimental variogram of Cu grades and model used for ordinary

kriging. . . . . .. e 176
A.1 Schematic showing how acorn generates random numbers. . . . . . . 201
B.1 Histograms of total number of runs for different thresholds. . . . . . 216

B.2 Mean and standard deviation of total number of runs for mcorn and

BCOTNI . . . o e e e e 218
B.3 Mean and standard deviation of total number of runs for sequences

with a triangular variogram function generated by moving average . 219
B.4 Mean and standard deviation of total number of runs for sequences

with a triangular variogram function generated by simulated annealing220
B.5 Mean and standard deviation of total number of runs for sequences

with a range of 5 and different variogram functions . . . . . ... .. 222
B.6 Variogram models used in the examples . . . . ... ... ...... 223
B.7 Map of frequency of lengths of runs above quantiles for random se-

quences generated with acorni andmcorn . . . . . .. ... ... .. 223
B.8 Map of frequency of lengths of runs above quantiles for sequences

generated by moving average (triangular variogram model) . . . .. 224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.9 Map of frequency of lengths of runs above quantiles for sequences

generated by simulated annealing (triangular variogram model) . . . 225
B.10 Map of differences of frequencies of lengths of runs above quantiles

for sequences generated with acorni and mcorn. . .. ... .. ... 226
B.11 Map of differences of frequencies of lengths of runs above quantiles

for sequences generated by moving average . .. ........... 227

B.12 Map of differences of frequencies of lengths of runs above quantiles

for sequences generated by simulated annealing . . .. ... ..... 228
C.1 Calculation of fourth order covariances Cij(h) . . . .. .. ... ... 231
C.2 Location map of samples taken from Cluster database. . . . . . . .. 234

C.3 Experimental and fitted variogram, and central confidence intervals

at 95 %, 75 %, 50 %, and 25 % for each lag (Cluster database) . .. 235
C.4 Location map of samples and gold content taken form the Red database.236
C.5 Experimental and fitted variogram, and central confidence intervals

at 95 %, 75 %, 50 %, and 25 % for each lag (Red database) . . . . . 236
C.6 Experimental variogram values calculated using all simulated data

and only the simulated values at sampling locations (Red database) 237
C.7 An example of the uncertainty distribution of the pointwise variogram

values . . . . L. e e e e e e e 239
C.8 An example of an incorrect interpretation of joint uncertainty given

the pointwise uncertainty . .. ... ... ... . 0L, 240

C.9 An example of a correct interpretation of joint uncertainty . . . . . . 240

D.1 Map showing the result for the original implementation of HISIM . . 244
D.2 Variogram reproduction for the original implementation of HISIM.. . 245
D.3 HISIM varying the simple kriging mean for a single threshold case . . 246
D.4 SIS applied hierarchically . .. ... ... ... ... ... ... .. 247
D.5 Hierarchical application of SIS using a Markov assumption . .. .. 249
D.6 Empirical adjustment of the proportion to apply SIS hierarchically . 250
D.7 Illustration of median hierarchical indicator simulation . . . . . . .. 250

D.8 Illustration of the case when drawing nodes by Monte Carlo sim-
ulation is virtually random and when the drawing is effective and

accounts for the differences in probabilities ... ... ... ... .. 252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.9 Application of median hierarchical indicator simulation for an intrin-
sically correlated variable or mosaic model. . . . ... .. ... ... 253
D.10 Application of median hierarchical indicator simulation for a multi-
Gaussian variable. . . . . . . ..o e 254
D.11 Application of median hierarchical indicator simulation for a non-

Gaussian variable. . . . . . . . . e e e e e e e e e e e e 255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

4.1

4.2

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10

5.11

Mean squared error and mean absolute error in the MP probability
for the different algorithms. . . . ... .. ... ... ... .. .. 112

Fraction of the nodes updated where P(A|B, C) was outside the range
of P(A|IB) and P(A|C). . . . . . . .. .. e 115

Threshold definition for indicator variogram calculation and simulation133

Parameters for calculation of experimental variograms . . ... ... 134
Indicator variogram model parameters. . . . . . ... ... ... ... 135
Grid definition for multiple-point inference and simulation. . . ... 136
Simulation parameters. . . . . . . . .. o e e e 140

Summary of order relation deviations for a particular realization in
S 0 7P 145
Summary of order relation deviations for a particular realization, be-
fore correcting for inconsistency of univariate distributions, under the
assumption of independence of the sources of information. . . . . . . 151
Summary of order relation deviations for a particular realization, af-
ter correcting for inconsistency of univariate distributions, under the
assumption of independence of the sources of information. . . . . . . 152
Summary of order relation deviations for a particular realization un-
der the assumption of permanence of ratios, before correcting for
inconsistency of univariate distributions. . . . . ... ..o 0L 157
Summary of order relation deviations for a particular realization un-
der the assumption of permanence of ratios, after correcting for in-
consistency of univariate distributions. . . . ... ... .. .. 00 160
Summary of order relation deviations for a particular realization un-
der the multi-Gaussian assumption, before correcting for inconsis-

tency of univariate distributions. . . . ... ... 000000 167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.12 Summary of order relation deviations for a particular realization un-

der the multi-Gaussian assumption, after correcting for inconsistency

of univariate distributions. . . . . . ... .. .o o oo oo 167
5.13 Normal scores variogram model parameters. . . . ... ... ... .. 168
5.14 Simulation parameters.. . . . . . . .. ... oo 169

5.15 Expected quantity of metal based on the different methods, compared

to the “truth” computed by ordinary kriging of the blastholes. . . . 176
A.1 Resultsof serial correlationtest . . . . .. .. ... ... . ... 207
A.2 Results of uniformity test . . .. ... ... ... ... ... ... .. 209
A.3 Results of k-dimensional uniformity test . . . . ... ... ... ... 210
A4 Resultsofrunsupanddowntest . .. ... ... ........... 211
A.5 Results of runs above and below the median test . ... ... . ... 212
A6 Resultsof maximum valuestest . . . . . . . . .. . v o v v 213
B.1 Theoretical and observed results -mcorn. . ... ........... 215

C.1 Pointwise variogram uncertainty calculated using the three methods
presented. . . . .. ..o e e e e e 235

C.2 Theoretical approach to calculate the variogram confidence intervals. 238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Problem Setting

Geostatistical simulation provides tools to quantify uncertainty to help in decision
making.

For example, mine planning and scheduling could be done with a set of realiza-
tions, that is, numerical models of properties such as specific gravity, rock type, and
grades that share some characteristics of the real mineralization. Planning could en-
sure that the mill would have a guaranteed tonnage and grade for each production
period.

In petroleum, several response variables are considered: hydrocarbon recovery,
breakthrough time, and flow rate. Several recovery schemes can be proposed and
the response variables evaluated through multiple realizations by flow simulation.
A histogram of possible responses is then generated to help decide the best recovery
scheme.

When considering environmental applications, it is important to have an assess-
ment of the uncertainty in, for example, the concentration of a pollutant at different
locations. Good reproduction of the features of the real phenomenon will allow
accurate estimation of the probability of exceeding a regulatory threshold.

In all cases, the transfer functions —mine plan, flow simulation, or compliance
with a threshold- are highly sensitive to the existence of long range connectivity,
that is, paths or patches of high or low values. Geostatistical realizations should
correctly reproduce these important aspects of the true distribution.

Classical geostatistical simulation techniques such as Gaussian and indicator
approaches account for only two-point statistics through a covariance or variogram
function. This limitation is mainly due to the difficult inference and modelling of
higher order statistics. The integration of information of different types is also a
complicated problem: the redundancy between different sources must be accounted
for and, in practice, it is not easy to quantify. Simulation techniques would be
improved with multiple-point statistics, since the resulting realizations would share
more quantitative information with the underlying true distribution. More realistic
numerical models will surely lead to better decisions.

The implementation of simulation algorithms that account for multiple-point
statistics must overcome two main problems: (1) inference of the multiple-point
statistics, and (2) development of an algorithm that integrates multiple-point statis-

1
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tics into simulation.

Inferring multiple-point statistics is difficult because the information available
is scarce. The spatial configuration must be repeated several times to estimate dif-
ferent moments of the multivariate distribution, that is, the probability of having
different combinations of the values or classes in the same spatial arrangement. In
practice, it is impossible to have all spatial configurations of multiple-points and
combinations of values to infer probabilities. This is one of the reasons to use train-
ing images to supplement the data. Nevertheless, a few typical patterns are available
from the data. If drillholes are drilled in the same direction, several similar com-
binations of data are available. The grade may be coded as an indicator at some
critical threshold. The number of multiple point events is largely reduced. In the
case of three points, there would be 2% = 8 combinations, that is, {1,1,1}, {1,1,0},
{1,0,1}, {1,0,0}, {0,1,1}, {0,1,0}, {0,0,1}, and {0,0,0}. If blastholes are available,
two dimensional multiple-point patterns can easily be extracted. In practice, blast-
holes are spaced in a pseudo-regular grid, hence the inference of the probability
of having a given multiple-point configuration becomes possible with some minor
approximations regarding the exact location of the points of the pattern.

Several researchers have tried to incorporate multiple-point statistics in simula-
tion. Most of them have not been adopted in practice, because they are extremely
CPU time consuming or because they require too many parameters to be set.

Training images have been used to extract multiple-point statistics from outcrops
or from conceptual geological models. Although this is a valid approach to obtain
multiple-point statistics, a data-driven approach to modelling is preferred and these
statistics are extracted from data.

Some interesting results in number theory motivate us to study application of the
indicator approach. This research aims to explore methods to incorporate multiple-
point information extracted from data, into geostatistical simulation. Training im-
ages are often used to test the methods.

Multiple-point statistics extracted from data are not used in existing multiple-
point simulation methods. The applicability of the methods proposed in this re-
search depends on drillhole and blasthole data, where the number of replications
of multiple-point configurations is enough to calculate the expected probabilities of
these configurations happening.

Two types of patterns are being considered, although the methodologies can be
extended to any pattern, if abundant data are available. The first type of multiple-
point configuration is one-dimensional. It is what is called a run. To explain the con-
cept, Figure 1.1 presents a drillhole with 22 composites (samples of equal length).
The actual grade is shown as a solid line, while the sample values are shown as black
dots. A run of length [ above a threshold can be seen as the event of having ! con-
secutive samples with grade higher than the threshold. In the example of Figure
1.1 runs are represented by thicker solid lines. For z;, there is one run of length
16; for z9, there is one run of length 13; for z3, there are two runs, one of length 4
and the other of length 5; for z4 there are three runs of lengths 2, 2, and 1 respec-
tively; finally, for 25 there are no runs. The probability of having a run of length
{ is equivalent to the expected value of the product of ! indicators corresponding
to adjacent samples, or equivalently, to their non-centered I-order indicator covari-
ance. This high order moment is a multiple-point statistic that characterizes the

2
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Figure 1.1: Example runs in a drillhole with 22 samples. The black dots are the
sample values. The runs are presented as thick solid lines under each threshold
zi,t=1,..,5.

true multivariate distribution or spatial law. Notice that the spatial law cannot be
fully characterized only by runs, but the information provided by these statistics is
more complete than the one obtained by simply using the variogram.

A second type of data corresponds to two-dimensional configurations obtained
from samples taken at blastholes. Since blastholes are generally regularly spaced,
enough replications of the same configuration can be found. If the grades are coded
as indicators for a given cutoff, then inference of multiple-point statistics is possible.

Two different methodologies have been explored with mixed success:

¢ A methodology to honor the frequency of multiple-point runs was developed,
that is, the probability of having a number of adjacent nodes with the same
indicator value. The difficulty in finding a rule to define the nodes that are
above or below the threshold is illustrated.

e A different approach was also developed to integrate the multiple-point infor-
mation into the traditional sequential indicator simulation framework, while
still honoring histogram and indicator variograms. Three different assump-
tions about the redundancy between the variogram or covariance function and
the multiple-point statistics extracted from the data are discussed:

1. The assumption of independence of the information provided by several

3
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sources to estimate the indicator values at an unsampled location.

2. The assumption of permanence of ratios, that is, the incremental infor-
mation provided by one source is constant before and after knowing the
information provided by the other sources.

3. A multi-Gaussian approximation of the relationship between the different
sources of information.

Some of the drawbacks of the techniques are exposed and the methods are im-
plemented and tested with a real data set from a porphyry copper mine.

1.2 Proposed Approach

1.2.1 Accounting for Multiple-Point Statistics as Runs

A method to simulate a continuous variable using the indicator framework, and
using multiple-point statistics in the form of runs, in a hierarchical fashion is first
explored.

Given histograms of frequencies of runs in several directions, for different thresh-
olds, the algorithm starts with the highest threshold and erodes the initially high
valued field, to account for the histograms of runs above and below that threshold in
multiple directions. All nodes are initially coded as 0 (above the threshold). Once
enough nodes have been switched to 1, that is, they are set to be below the thresh-
old, the simulation at the current threshold stops. The nodes that still have a value
of 0 correspond to high values. These are simulated using some extrapolation func-
tion, as it is usually done in indicator simulation. The remaining nodes, the ones
that have their indicators set to 1 are reset to 0 for the next (lower) threshold, and
the algorithm erodes this new constrained domain, until enough nodes have been
switched to 1. Now, the nodes with an indicator set at 0 are valued between the
current threshold and the previous (higher) threshold. This hierarchical procedure
is repeated until all thresholds have been simulated. It can be seen as a simulation
into consecutively constrained domains that are nested within another.

The decision to switch a node is based on the favorableness of that change to
converge to the histogram of runs above and below that particular threshold. A
decision rule is applied that permits this convergence.

As with conventional indicator simulation, interpolation and extrapolation be-
yond the discretized local distribution of uncertainty is required to draw a value in
a continuous domain.

The algorithm does not require direct input of the variogram or indicator vari-
ograms. The histogram is reproduced by construction. Enough nodes are switched
at each threshold to reproduce the global distribution.

This method generates artifacts that invalidate the results for practical applica-
tion, although it opens an area, of research that has not been explored. The definition
of the decision rule to switch nodes to be above or below the threshold seems to be
key to ensure convergence and to avoid artifacts.

Several examples are presented to illustrate the implementation and problems
of this methodology.
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1.2.2 Integrating the Indicator Kriging Probability and the Multiple-
Point Statistics under Different Assumptions

A second approach is to integrate the indicator kriging probability and high-order
statistics under some assumption of their relationship. This integration requires
the knowledge of the redundancy between both statistics, which implies that the
knowledge of the multivariate spatial distribution is required. This is only possible
when using a training image to extract the two-point and multiple-point statistics
or under the parametric multi-Gaussian model. Some approximations are proposed
for the general case, where the multivariate distribution is unknown. Three different
assumptions regarding the relationship between the different sources of information
are discussed:

1. Assuming independence between the probability estimated by indicator krig-
ing and the multiple-point probability allows a simplification of the expression
for their joint probability, obtained through Bayes’ law. This assumption ap-
pears as unrealistic in a spatial context and its implementation carries serious
difficulties due to the possibility of generating values for the probability in
excess of one.

2. Assuming that the incremental information provided by one source is constant
regardless of the additional available information from other sources also per-
mits an expression to be obtained for the joint probability between several
sources. This assumption of permanence of ratios is implemented without
major difficulties and shows an improvement in the performance of the nu-
merical models when applied for medium or long term planning in a mine.

3. Assuming the relationship between the several sources of information is mul-
tivariate-Gaussian, the redundancy between them can be assessed. A new
estimate of the indicator value for a given threshold can be built by linearly
combining the probabilities coming from indicator kriging and multiple-point
statistics. The assumption allows the determination of the weights assigned to
each probability. The implementation of this methodology is straightforward,
although the results do not show any improvement with respect to the standard
indicator simulation method.

A practical case study is presented to illustrate the methodologies. Advantages
and drawbacks of each method are discussed.

1.3 Dissertation Outline

Chapter 2 discusses the theoretical basis used in this dissertation, by providing an
overview of geostatistical methods. The concepts of spatial law and multivariate spa-
tial distribution are explained. Problems encountered when inferring spatial statis-
tics are discussed. Conventional estimation and simulation methods that account
for two-point statistics are reviewed as well as the attempts made to incorporate
multiple-point statistics in simulation.

Chapter 3 presents the methodology proposed to infer multiple-point statistics
as runs from drillhole or well data, and the implementation of the hierarchical simu-
lation of runs based on the indicator approach. Problems encountered are discussed.

5
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Chapter 4 is devoted to methods that integrate the multiple-point statistics
into the sequential indicator simulation framework. The multiple-point information
is considered as a secondary source of information and the relationship between the
two-point and multi-point statistics is approximated under different assumptions.

Chapter 5 shows a case study using actual data from a producing mine.

Finally, discussion on the issues encountered in the application of the proposed
methods, as well as future work and conclusions are presented in Chapter 6.

The thesis includes several appendices with results from related studies. Ap-
pendix A shows a review on random number generators and tests for high-order
correlation. Appendix B presents results from different exploratory exercises com-
puted to better understand the behavior of multiple-point statistics as runs. Changes
in these statistics due to the choice of the algorithm that constraints only up to the
second-order (the variogram) are illustrated with several examples. Appendix C
shows an application where multiple-point statistics are required to calculate the
uncertainty on the variogram. The parametric multi-Gaussian distribution is used
to overcome the problem of inferring these statistics. Finally, Appendix D gives
the background for the hierarchical method implemented in Chapter 3 without con-
sidering the multiple-point statistics, but only the indicator variograms.
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Chapter 2

Overview of Geostatistics

This chapter presents an overview of the theoretical background necessary to proceed
to modelling accounting for multiple-point statistics. Many books that contain some
of the topics presented in this chapter are available and can be used as a source for
additional information on the concepts reviewed here (see [20, 41, 43, 82, 94]).

Geostatistics deals with the prediction of variables distributed in space. It uses
the spatial correlation to quantify the relationship of the values of the variable taken
at different locations. This spatial correlation is often calculated using two points at
a time. As a branch of applied statistics, geostatistics works under a probabilistic
framework that allows inference. Numerical models are constructed to estimate the
value of the variable and to simulate its spatial features for uncertainty quantifica-
tion. In Section 2.1, basic concepts of the Theory of Regionalized Variables are
introduced.

Definitions for univariate, bivariate and multivariate moments and a discussion
on statistical inference are presented in Section 2.2.

Estimation is done by kriging, which corresponds to linear regression in a spatial
context, that is, taking into account the dependence among the data. The variable
at an unsampled location is predicted with the information provided by a set of
samples within a neighborhood. The estimate is built as a linear combination of the
data values, although some non-linear estimators also exist. The weights assigned
to each sample are chosen to minimize the mean squared error calculated between
the estimated value and the true one. A brief presentation of estimation techniques
is provided in Section 2.3.

Simulation is done to assess performance considering the joint variability of
petrophysical properties such as concentration of elements, porosity or permeability.
Uncertainty in response variables can be quantified. These response variables can be
as simple as a block average or as complex as a mine schedule for production. Krig-
ing estimates are smooth and do not reproduce the variability of the true variable.
Multiple realizations can be built through simulation that honor the sample data,
the representative histogram, and the spatial correlation known as the variogram.
Conventional simulation techniques are described in Section 2.4.

Additional features can be injected by considering more than just the variogram.
These consider the relationship between more than two points at the same time
and are known as multiple-point statistics. Some methods have been proposed to
account for these statistics, however they have not been widely applied. A review

7
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of the approaches that incorporate multiple-point statistics is presented in Section
2.5.

The chapter ends in Section 2.6 with a brief discussion on the reasons for
limited applicability of algorithms that account for multiple-point statistics.

2.1 The Theory of Regionalized Variables

In 1965 Georges Matheron introduced the Theory of Regionalized Variables [117],
formalizing notions that had been around for a few decades in various fields {58, 105,
115, 116, 150]. Journel and Huijbregts [94] summarize this theory. The following
presentation of the Theory of Regionalized Variables is based mainly on Journel and
Huijbregts.

Natural phenomena can be characterized by measuring one or more variables
distributed in space. Those variables are called regionalized variables and the un-
derlying phenomenon, a regionalization. A measure of the value of interest, z, can
be performed at any location u in space. The set of all the measures in the domain
of interest {z(u),u € D} represents the “reality”, which is unknown in practice.
Typical examples of regionalized variables are the copper grade of a composite of
length L, the thickness of a gold vein, and the depth of a seam on a coal mine.

The definition of a regionalized variable does not carry any probabilistic inter-
pretation per se; however, when observing measurements of regionalized variables,
two characteristic features are seen: they present an apparent local random behavior
and a general structured aspect. For example, when looking at copper grades in a
porphyry deposit, the following structured behavior of the grades can be found: the
closer two samples are, the more similar their grades. On the other hand, a random
behavior is also observed: two samples very close to each other could have grades
that differ in an unpredictable manner. The concept of a random variable is then
introduced. A random variable is a variable that can take a value according to a
probability distribution. For example, in a copper deposit, the grade obtained in a
sample at a given location z(u) is assumed to be drawn from a probability distri-
bution fz(z) and is seen as a particular realization of the random variable Z(u).
Although, only one true grade exists at that location, this probabilistic approach is
taken to handle the ignorance regarding the grade at unsampled locations.

The set of all random variables in the domain is called random function.

Random Function ~ {Z(u),Vu € D}

Each of the random variables Z(u) has a probability distribution and they are
related with each other. The set of all joint distributions or multivariate spatial
distributions fz(u,),z(us),....2(ux) for any finite integer k¥ and all locations u; € D, i =
1,...,k corresponds to the spatial law of the random function. It can be seen as the
simultaneous behavior of several points at the same time or their joint variability.
The spatial law characterizes the dependence of all these multiple points.

This idea can also be extended to multiple variables. Consider the case of three
different concentrations of interest in a deposit. These three variables can be mea-
sured at a location u, generating three values z;(u), 22(u), and z3(u). When consid-
ering all three random variables at all locations, this becomes the random function.

8
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The three values have their own spatial structure and they may be cross-correlated,
for example, the value of variable Z; taken at location u; may be informative to
estimate the value of Zy at the same or different location uy. A typical case is
when different elements are deposited by the same mineralizing event. Their con-
centrations will likely be correlated, that is, when the concentration of one element
increases in one location, it is probable that the concentration of the second element
will also be higher there. For example, it is common to find that the concentration
of molybdenum is positively correlated with copper in porphyry type deposits.

The spatial law can be characterized by several of its moments. For example, the
mean, variance, and spatial correlation. Since in general the spatial law is unknown,
these moments must inferred from the data. The more moments are specified, the
more detailed information is available of the multivariate spatial distribution of the
variable. This will allow more accurate inference of the probability distributions at
unsampled locations, which will lead to better informed decisions.

The goal of this probabilistic interpretation is to allow inference at unsampled
locations. The probability distribution is a model of the lack of knowledge regarding
the value of the regionalized variable at that location. A measurement cannot be
repeated at the same location u; to “sample” the probability distribution of the ran-
dom variable Z(u;). However, under some assumption of stationary, taking samples
at different locations us, ug, ..., u; provides a prior model of the probability distri-
bution for Z(u;). Therefore, inference of moments of the probability distribution
calls for this assumption of stationarity (refer to Section 2.2 below).

The convention of using upper case to denote random variables and random
functions is followed, for example, Z(u). The regionalized variable and its actual
values are denoted in lower case, z(u).

2.2 Statistical Inference and Stationarity

Inference is possible because of the random function formalism. The actual values
of the regionalized variable are seen as a realization of a set of random variables
(the random function). The decision of stationarity defines the data that are pooled
together for statistical inference [88].

Given a set of samples {z(u,),a = 1,..., N}, inference of some of the moments
of the population is required. These moments are inferred using the experimental
frequencies calculated from the data or from some secondary source of information,
such as a training image. Those statistics are then used as input in estimation and
simulation algorithms.

A very basic mathematical operator is the ezpected value of a random variable.
The expected value of a function of a random variable g(Z) is:

_ ffooo 9(2)fz(z)dz if Z is continuous
Blol2)} = { Yoy 9(Z)P(Z = z) if Z is discrete

provided that the integral or sum exists. x represents the domain of the categorical
values of Z in the discrete case. Notice that if Z is a random variable, then any
function of Z, in this case g(Z), is also a random variable.

The expected value has several properties that are useful to determine relation-
ships between different moments of the random variable as discussed next [19].

9
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2.2.1 Moments of a Random Variable

The first moment of a random variable Z(u), called the mathematical ezpectation,
is defined as:

E{Z(u)} = m(u)

Notice that in general, the mathematical expectation depends on the location u.

Second-order moments can be considered between any two points in space. The
variance is defined at a given location u as the second moment around the mean.
It is also, in general, a function of the location u:

Var{Z(u)} = E{(Z(u) — m(u))?}

The standard deviation corresponds to the square root of the variance. It has the
advantage of being in the same units as the variable.

When considering two different points in space, u; and ug, the centered covari-
ance is calculated as:

Cov{uy, ug} = E{(Z(w1) — m(u1)) - (Z(uz) — m(uz))} (2.1)

Notice that when u; = ug, the covariance becomes the variance.
Another second-order moment is the semi-variogram, defined as half the variance
of the difference between the variable at two different locations:

Yo, w) = 5Var(Z(w) - Z(ua))

The prefix semi- was used to emphasize that it corresponds to half the variance
of the difference Z(u;) — Z(u2), however, in current literature the semi-variogram
is simply called the variogram. From now on, the prefix semi- will be dropped from
the semi-variogram and it will be called variogram.

The correlogram is defined as the standardized covariance, that is, the covariance
divided by the corresponding standard deviations:

Cov{ul, UQ}
VVar{Z(u)} - Var{Z(u,)}

p{111, u2} =

These moments can also be defined in a multivariate context.

Cross-covariance: Covgz, z,{u1,uz} = E{(Z1(u1) — mz,(n1)) - (Z2(uz) — mz, (uz))}

Cross-variogram: vz,,z,(u1,u) = $E{(Z1(u;) — Z1(uz)) - (Z2(u1) — Zo(ug))}

- Covgz,, z,{ui,uz}
uz} V/Var{Z1(u1)}-Var{Z;(uz)}

Cross-correlation: pz, z,{u,

The notion of covariance can be extended to multiple-points. Denote Covy, the
n-point centered covariance:

Covnfuy,...,un} = E{][(Z(w;) - m(u))}
i=1

10
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Many other moments can be calculated after transforming the data. If a vari-
able Y = f(Z) is considered, the transformed variable Y~ will have a mathematical
expectation, variance, covariance, and high-order moments (see Section 2.4).

2.2.2 The Decision of Stationarity

Stationarity is a decision that the data come from the same population and can be
used to infer different statistics. Several types of stationarity can be defined [117].
In general it can be said that a random function is stationary of order n if all the
n** order moments exist and are independent of the location of the points used to
calculate the n-order moment, that is, Vu:

Order 1: E{Z(u)}
Order 2: Cov{u,u+h}

23Ov{h} = E{Z(u) - Z(u+h)} — m?

Order n: Cov,.{u +ho,u+hi,...,u+ hﬂ_1} Covn{ho, hi,.., hn_1}

E{I[L,(Z(u+ hi_1) —m)}

Notice that none of the statistics above depends on the location of the points, but
only on their spatial configuration.

In most geostatistical applications, stationarity up to the second order is of
interest. Note that stationarity in the covariance (order 2) implies the existence of
the variance and the stationarity of the variogram. Considering the covariance at a
lag h = 0, then the definition of the covariance identifies the variance:

Cov{u,u+h} = Cov{0} = Var{Z{u)}

Under second order stationarity, the variogram can be related to the covariance
and the variance:

v(h) = Cov{0} — Cov{h}

Some phenomena show an apparent infinite capacity of dispersion and therefore
the variance and covariance cannot be calculated [142]. The assumption of second
order stationarity may not be correct for the data. Intrinsic stationarity is a less
constraining condition than second order stationarity. It assumes that the mean
exists and that the variogram depends on the spatial configuration, or equivalently
that the increments Z(u)—Z(u+h) are second order stationary, hence the variogram
exists. However, the covariance is not defined.

2.2.3 Inferring Representative Histograms

Sample data are used to construct a global stationary histogram. Statistical mea-
sures of the distribution are estimated from the histogram; however, when sampling
is spatially biased the histogram must be corrected.

Declustering corrects for preferential sampling [9, 33, 43, 71, 82]. In mining, the
high valued zones or the area that will be produced first is of economic importance
and will be sampled more closely. Declustering can be performed in several ways:
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Polygonal declustering. This method works by volume of influence of each sam-
ple. The denser the sampling in a given zone, the less influence each sample
will have. One of the problems of this method is how to handle the edges of
the domain. If the domain is well delineated, then it gives, in general, reliable
results. If, on the other hand, the edges of the domain are not clear, the outer
samples will have too much or too little influence. This is especially important
when the outer samples are poorer than the ones in the center of the domain
and global estimation is required. The mean value of the variable will drop
as the domain is made bigger. Several approaches can be used to limit the
influence of the outer samples: a radius of influence can be assigned to the
samples so that they only inform up to a maximum volume.

Cell declustering. This method handles the problem of the domain boundary.
The domain is divided into cells or blocks that receive equal weight; every
sample is assigned the same weight within the cell. The more samples in a
cell, the less influence they will have in the global statistics. The question is
how to pick a cell size. Common practice is to run the algorithm with several
cell sizes and select the one that minimizes (or maximizes, if the samples were
biased toward the low values) the mean. Although there is no reason to pick
the minimum, it has given reasonable results [33].

Kriging. Ordinary kriging weights can be used as a measure of influence (see
Section 2.3 for further discussion on kriging). The samples that have the
higher influence in estimating the points in the domain will have higher kriging
weights. The sum of the weights assigned to a given sample will be standard-
ized and used as its weight. The advantage of this method for declustering is
that it accounts for the configuration of the data and the spatial continuity
[82]. However, one feature of kriging is that it assigns larger weights to sam-
ples at the end of strings such as drillholes. This will have an impact on the
declustering weights [36, 38].

Declustering only changes the weight of the sample values in terms of its prob-
ability in the global distribution, but does not change the value itself. Therefore,
these techniques will not be able to correct for sampling that did not cover the entire
range of the variable. Debiasing methods are then required. Two methodologies are
available:

Detrending the model. If enough evidence that a trend in the variable exists [97],
then a trend model should be constructed and the geostatistical study should
be carried on working with residuals. The trend model can be constructed
by combining the horizontal and vertical trend, as suggested by Deutsch [41].
An alternative is to work in a framework that implicitly accounts and models
the trend, such as intrinsic random functions of order k or universal kriging
[20]. Unfortunately, for simulation purposes, departures from the stationarity
assumption will greatly affect the final result [41].

Bivariate calibration. If some secondary measurements exist, for example from
a geophysical survey, and if the relationship between the variable of interest
and this secondary variable is known analytically or experimentally, then this

12
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bivariate relationship can be used to correct the histogram of the variable of
interest, given exhaustive (or denser) samples of the secondary variable over
the domain [138].

2.2.4 Variogram Inference

The variance can be calculated from the corrected histogram. The most important
bivariate statistic used in geostatistics is the variogram. Inference of the variogram
has been extensively discussed in the literature [3, 4, 20, 21, 43, 47, 61, 71, 75, 94,
129, 130, 134, 156].

The experimental variogram is estimated as half the average of squared differ-
ences between data separated exactly by a distance vector h. In practice, angle
and lag tolerances are defined so that a reasonable number of pairs approximately
h apart, n(h) can be found:

(b) = s -%[Z(u') — 2(u; + h)}?
Y 2-n(h) £ i i

The number of lags, lag separation distance and tolerances (vertical and hori-
zontal angles and band widths) may help to get a reliable estimate of the variogram,
although this is not always possible [25]. Bad choices will generate noisier plots that
are not representative of the underlying population.

Variograms must be modelled to be incorporated to estimation or simulation
algorithms. Models are considered licit if they are positive-definite, that is if they
are a valid measure of distance [5]. The positive-definiteness constraint ensures that
the estimation variance will be positive or zero. Otherwise the mathematical model
would not be valid since the variance must be non-negative, by definition.

When more than one variable exist cross-variograms measure their relationship
in space, that is, how similar the variables at two locations are. The cross-variogram
can be calculated as:

n(h)
W)z = g - O o) = s+ 1) - fy) — (s + )
i=1

Modelling variograms and cross-variograms is even more demanding. A valid
model of coregionalization is required. This means that direct and cross variogram
models must be consistent with each other and provide a measure of spatial corre-
lation that makes physical sense. The positive definiteness condition ensures that
when solving a cokriging system the estimation variance is positive (see related note
in Section 2.2.6).

One assumption regarding cross-variograms is that the correlation is symmetric
with respect to the direction of the vector h. In some applications, this may not
be a correct assumption, and a model that can handle the offset in the correlation
may be required. Cross-covariances are more flexible, since they do not require the
primary and secondary variables to be measured at the same locations.

Considering the mean of the primary and secondary variables to be known and
equal to mz, and my respectively, an experimental cross-covariance can be calcu-
lated as:
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X 1 n(h)
Czy = o) Z[Z(ui) —mgz] - [y(u; + h) — my]
=1

The order in which the variables are considered in the calculation matters, and
a second cross-covariance can be calculated by switching the variables for the head
and tail of the lag vector h [20].

2.2.5 Inferring Multiple-Point Statistics

Working with multiple-points is more demanding than with only two points at a
time. Multiple configurations must be found in space to provide an estimate of the
frequency of occurrence of each arrangement of values.

/ Lag DIstan7 Grady Residual /3 Point Events
0 0.2

1% ¢
£ |4
§ ——fe 12 04 1

L4 0.3 05 2
L4 0.5 0.3 3
L4 08 0.0 4
° 1.0 0.2
L.

Figure 2.1: Example of calculation of a third order covariance.

Consider for example the calculation of the covariance of third order (Figure
2.1) with only one particular lag at a given direction to illustrate how this is done. If
there are some composites of length h calculated from drillhole data, the composite
size can be used as lag separation distance for the calculation. C'ovs is calculated as
the average product of the residual values from the mean separated by the vectors
h and 2h. In this example the mean is 0.8:

Couvs(h,2h) = 4 ((1.0-0.8).(1.2—0.8)(0.3—0.8) + (1.2 —0.8)- (0.3 — 0.8) - (0.5 — 0.8)
+(0.3 — 0.8) - (0.5 — 0.8) - (0.8 — 0.8) + (0.5 — 0.8) - (0.8 — 0.8) - (1.0 — 0.8))
1((0.2) - (0.4) - (-0.5) + (0.4) - (=0.5) - (—0.3)

+(=0.5) - (=0.3) - (0.0) + (~0.3) - (0.0) - (0.2))

% ((~0.04) + (0.06) + (0.0) + (0.0))

0.005

As shown in the previous example, the probabilities of multiple-point events are
estimated with their relative frequencies found in the data set or training image. To
estimate the third order covariance, “three point events” were used, that is, all the
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possible combinations of three points that met the requirements defined by the lag
separation distances being h and 2h. This can be generalized to any two distance
vectors hy and hs. The data can be coded in different ways (see discussion later).
Indicator coding is a typical approach, since it reduces the dimensionality of the
problem by defining a binary variable, depending on the grade being greater than a
cutofl. A multiple-point event can now be defined based on the value and geometric
configuration of the points. This notion will be formalized later.

The higher the order of the statistic, that is, the number of points considered at
the same time, the larger the number of required samples. It is practically impossible
to know the probability of all spatial configurations of n-points.

Inference will only be possible if multiple replications of an event are available
to calculate its frequency. In practice most of the samples are taken at drillholes as
almost linear strings. The frequencies of low-order statistics, such as the indicator
values for strings of 3, 4, or 5 composites in the vertical direction may be possible
to infer.

Linear data could not be used to infer curvilinear features. In this case, train-
ing images or data in two-dimensional arrangements, such as blasthole data, are
required. The use of training images is appealing because the extraction of fre-
quencies of multiple-points events is consistent. The problem of having a positive
definite model is resolved when done on a single image. Another problem arises
when a given event is not found in the training image. This can be solved by reduc-
ing the dimension of the statistic until it is found in the training image. Training
images make explicit the multivariate distribution, which in most random function
models is implicit [34, 37, 76, 91].

Many problems arise when inferring statistics from the data or training images.
One problem is that there may not be enough data to reliably estimate multiple-
point statistics. Estimating a two-point statistic like the variogram is hard enough in
most cases. Stationarity is also an issue. The decision must be made to pool together
data for inference. If the data do not belong to the same underlying population,
the statistics extracted will not be representative of the domain under study. On
the other hand, if there are not enough data to infer these statistics, the resulting
simulated models will also be unreliable.

One of the main problems with multiple-point statistics is that there is a large
combinatorial space to sample. Consider a template with N points and a variable
that has been coded into K categories. The number of combinations whose fre-
quencies must be found is NX. A simple case is a template with 4 nodes and 10
classes. This results in more than a million combinations. To accurately estimate
the frequencies, say up to the second decimal place, more than one hundred million
replications of this pattern are required. This is one of the reasons why multiple
points are not inferred from limited sample data. The use of training images al-
leviates this “combinatorial nightmare”, but still, approximations are required to
overcome the large number of replications required. Lowering the dimension of the
multiple-point statistic is one approximation.

2.2.6 A Note on Positive Definiteness

Variograms and multiple-point statistics need to be positive definite. This means
that during the process of kriging, the estimation variance will be positive.
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Consider a covariance function such that C is any n x n matrix of covariances
between n different sample locations. The classical definition of a positive definite
matrix is that if a column vector x = (1, %3, ...z, is considered and any quadratic
form g(x) defined as:

n n
g(x) =x'Cx = ZZCovij - & - T
i=1 j=1
the quadratic form is greater than 0 for all x # 0 and is zero only if x = 0 [102].

In the context of this research, the problem arises when considering integrat-
ing conventional two-point statistics (variograms or covariances) and multiple-point
statistics. A covariance matrix between the single point events and the n-point
events must be built. This covariance matrix will have two-point covariances, cal-
culated to account for the relationship between pairs of single-point events, multiple-
point covariances, calculated to account for the relationship between pairs of multiple-
point events, and cross-covariances of single to multiple-point events, to account for
pairs constituted by a single-point event and a multiple-point event.

Statistics extracted from training images are positive definite if the domain of
the point to be estimated is kept constant for all the configurations of interest.

Discussion about the requirement of positive definiteness in modelling variograms
can be found in [5, 23, 51]. A discussion on positive definiteness for multiple variables

is presented in [126]. Finally, guidelines for licit variogram modelling can be found
on [71, 75].

2.3 Geostatistical Estimation

Estimating the value of a variable at an unsampled location is done by considering
the nearby information. Classical geometric methods rely on the spatial config-
uration of the samples used to inform the location being estimated. Polygonal,
triangulation, and inverse distance weighting methods do not account for the spa-
tial correlation between the data, that is, they do not consider the variogram as a
measure of closeness and redundancy of the samples to the location of interest [82].

Geostatistical estimation techniques use the covariance or variogram. They are
generically called kriging and are based on the minimization of the estimation vari-
ance, which is defined as the mean squared error between the estimated value and
the true (unknown) value [128]. The kriging estimate is built as a linear combina-
tion of the nearby data or transformed data values and may or may not use the
global mean as an additional “data”. This mean does not have to be stationary.
Depending on the type of kriging used, an unbiasedness condition may constrain
the weights.

The most important types of kriging are briefly reviewed next. The basic equa-
tions for cokriging, that is, estimating the value of one variable given sample data
from more than one source, are also presented. These are the basis for most simu-
lation techniques that will be reviewed in Section 2.4.

2.3.1 Simple Kriging (SK)

Consider the residuals of Z around the mean m. Defining the new variable ¥ =
Z —m, consider n data values y(ua), @ = 1,...,n. The mean of Y is zero, since they
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are residuals. Estimation of the Y variable at an unsampled location ug is done by
linearly combining these samples, that is:

[b(wo)lix = D Ao - 4(ua)

a=1

To find the weights the estimation variance is expressed as:

op(w) = E{(Y*(u)-Y(w)*}
= E{(V*(w)’} -2 E{Y*(u) - Y(u)} + E{(Y())*}

= Z Z AaAgE{Y (ug) - Y (uq)}

a=1#=1

—2- ST AE{Y (w) - Y(ua)} + E {(Y ()}
a=1

= Zn: Z AargCov{ug — uy}
a=1

=1

-2 i AeCov{u — u,} + Cov{0}

a=1

Notice that the covariance of the Y variable is required.
To find the optimal weights, this expression is minimized by taking the partial
derivatives with respect to the weights Ay, @ = 1,...,n and setting them to zero:

dof(w)]

D 2. Z AgCov(ug —uy) — 2- Cov(u — uy) a=1,.,n

B=1
This process yields the following system of equations known as normal equations

or simple kriging system (94, 109]:

n
Z AgCov{ug —uo} = Cov{u — u,} a=1.,n
p=1

In matrix notation, this system can be written as:

Ci Ci2 -+ Cua M Cio
Ca Cry -+ Cop A2 Cxo
Cnl Cn2 tee Cnn )\n CnO
or
C-A=k

The variable Y can be replaced by a variable Z second order stationary, that is,
whose mean and variance are constant everywhere and equal to m and o2, respec-
tively.

The estimate can be re-expressed as:
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[2(w0) — m]sk = Z Ao+ (2(ug) —m)

a=1

or

n n
[(uo)l5x = D _ Aa- 2(wa) + (1 -3 ,\a) m
a=1 a=1
The covariance of Y and Z is the same since the mean is equal everywhere.

2.3.2 Ordinary Kriging (OK)

If the mean is not known, a linear combination of the available data can still be
utilized, however, a constraint for the weights is required to ensure unbiasedness of
the estimate, that is, that the expected value of the estimate is equal to the expected
value of the true values. This is simply translated into the condition that the weights
sum to one. The ordinary kriging estimate and system of n + 1 equations are:

[2(uo)]ok = Y Aa (2(ua))

a=1

Cov{u —u,} a=1,.,n

Y1 AsCov{uip — ua} —
1

Za.—:l Q

I

Notice that these equations are found by minimizing the estimation variance
subject to a constraint on the weights.

min[o%] s.t. Z Ao =1

This is done using the Lagrange method, by adding an extra parameter which
also has to be found. A new function with n + 1 parameters is defined and its
derivatives are set to be equal to O:

f(Ala/\Za seey ’\'IH I-l') = U%(/\ly A27 ey An) -2. I (Z /\a - 1)
a=1

a[f()q,)\z, ---7/\nvll’)] 0
W

Of ey )]
ou

Again the variable Z is assumed to be stationary of second order, although in
practice this is not strictly required. A local stationarity decision suffices, that is,
the neighborhood of the n data used to estimate the location ug does not show a
clear trend [94].
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2.3.3 Non-Stationary Kriging

When the mean is not constant, there are several options:

Simple Kriging with Locally Varying Mean (SK with LVM) A simple way
to handle non stationarity is to use a local mean in the simple kriging equation.
The global mean m is replaced by a local mean m(u) [41, 43, 71].

Ordinary Kriging (OK) One possibility is to have OK to implicitly estimate the
mean from the n data in the neighborhood of up. This option is robust if
enough data are available [97].

Universal Kriging (UK) or Kriging with a Trend (KT) Another possibility
is to specify a polynomial shape for the trend. This is called Universal Kriging
(UK) or Kriging with a Trend (KT). The estimate is built as a linear combi-
nation of these polynomial functions and the residual sample values, that is,
the sample values filtered from the polynomials. Weights for the polynomials
and residuals are determined by solving a kriging system with K 41 Lagrange

parameters, to account for the K polynomial functions and the unbiasedness
constraint [20, 32, 43, 64, 81, 128].

Kriging with an External Drift (KED) One last option is to estimate the mean
values as a linear function of a secondary variable [43, 71, 112]. The change
in the local mean of the secondary variable is assumed to be linearly linked to
the mean of the primary variable. At every location a new value for the mean
is calculated. This map does not have to be a polynomial fitted to the data
as in KT. KED constraints local means to match the model of the smooth
secondary mean and also imposes an unbiasedness condition to the weights.

2.3.4 Non Linear Variants

Kriging can be done on the original variable, on its residual around some mean, or
on some transform of the data. Typical transformations are:

Normal Scores The sample data are transformed into a standard normal distribu-
tion. The assumption of multi-Gaussianity permits the development of many
geostatistical techniques [167, 168, 169].

Logarithmic Since many variables in Earth Sciences are positively skewed, that is,
they show a long tail of high values, a lognormal transform tends to normalize
the data. This is very convenient because of the tractability of the Gaussian
distribution. In the early days of geostatistics, when computer resources were
scarce, many calculations were made by hand and approximations were often
used. The lognormal transformation had an important place and techniques
such as lognormal kriging were proposed [46, 84, 137, 143, 163].

Uniform Scores The uniform scores or rank order of the sample data could be
used (17, 78, 93]; however, the only algorithm where this transformation has
some applicability is Probability Kriging (PK), which is a cokriging between
the indicators and the standardized rank order of the data (see Section 2.3.6)
[162].
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Indicator The variable is changed into a binary variable, where the transformed
indicator represents the probability of the true value to be below a threshold.
These techniques are reviewed in more detail in Section 2.3.86.

Factors. The variable can be decomposed into factors, that is into uncorrelated
elements, such that the variable can be retrieved as a linear combination of
them [148]. Kriging can be applied to estimate these factors, as in Disjunctive
Kriging (DK) [6, 118, 119, 141, 145].

2.3.5 Cokriging

Cokriging is a generalization of kriging with multiple variables [43, 71, 125, 128,
171]. Note that these variables could be measuring the same attribute but with
different support or precision. Copper grade in diamond drillhole samples could be
considered to be a different variable than copper grades obtained from blast holes.
The sample size on a core recovered from the diamond drillhole is a few kilograms,
while the material from where the sample is taken in the blast hole can be as much
as one tonne. They represent different regionalizations, because they are measured
at different supports and their sampling errors are different.

The most intuitive case, however, is the use of two or more variables that measure
different attributes, such as gold and silver grade for example, but that are highly
correlated. The knowledge of one variable gives information regarding the other.
This information is measured by the cross-variogram.

The general expression for the cokriging estimate with residual data is:

n P np
Yook (u) = Z AaY (uq) + Z Z ’\ngp(uap)
a=1

p=1a,=1

where the Y(u,),a = 1,...,n are the sample data for the primary variable (the
variable of interest); Yp(uq,),ap = 1,...,np are the data values for the secondary
variable p at location u,,. There are P secondary variables and each one has n,
sample values (p = 1,..., P) within the neighborhood of u. The weights A, and X5,
are determined by the cokriging system of equations:

COO COl . COP )\0 kOO
Clo cit ... ClP A k10

. : .. : ’ : = : : (2.2)
C.PO C.Pl .. Cj’P /\.P kbo

where the sub-matrix C¥ is the matrix of cross-covariance values between the loca-
tions of the n; samples of variable 7 and the n; samples of variable j. If ¢ = j these
terms are direct covariances and the sub-matrix is necessarily square and symmetric.
The vectors A\* and k™ correspond to the optimal weights obtained by solving this
system and the cross-covariances between the locations of the n; data of variable 4
and the point of interest located at u, respectively.

Unbiasedness constraints must be added if the variables do not have a mean
of zero [82]. The traditional ordinary cokriging approach considers the following
unbiasedness conditions:
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n Np
> da=1 and DX =0VY=1,.,P

a=1 ap=1

This weighting scheme limits the influence of the secondary variables. The al-
ternative standardized ordinary cokriging scheme allows the secondary variables to
have more influence [72, 82]. However, the mean of the secondary variables must be
reset to the one of the primary. The unbiasedness condition becomes:

Cokriging is often avoided because of the tedious inference of cross-covariances.
Simplified methods have been proposed. Collocated cokriging retains only the sec-
ondary data that is located in the location where the primary variable is being
estimated. The simplification comes by assuming that the cross terms are pro-
portional to the variogram (or covariance) of the primary variable. This is only
a valid assumption if the collocated secondary sample screens completely all other
secondary samples. This is known as the Markov assumption [2, 48, 179)].

2.3.6 Indicator-Based Estimation

Since this research is based on an indicator framework, these techniques are reviewed
in more detail to explicitly state some equations and explain the terminology that
will be useful to follow the later discussion.

The non-parametric formalism of indicators was introduced in 1983 by A. G.
Journel (85, 86, 87, 88, 91]. Many authors have presented this approach in great
detail (e.g. see [43, 71]). This method permits the direct estimation of the condi-
tional distribution at an unsampled location, that is, its distribution of uncertainty.
It permits the random variable to have different spatial continuity for high and low
values.

The indicator formalism requires the data to be coded directly as probabilities.
A conditional cumulative distribution function is obtained at the location being
estimated. Simulation can be performed by including the previously simulated nodes
into the conditioning information, and drawing from the distribution function (see
Section 2.4.3). Several important advantages are derived from this basic idea of
directly estimating the probabilities [29, 107, 162]:

1. The correlation at different thresholds can be used, that is, a different vari-
ogram model is specified for each one of the thresholds.

2. Secondary information can be coded in the same way, which gives a great
flexibility to this approach, although cokriging is still needed to integrate all
sources of information.

3. Change of support can be performed by any conventional technique such as
affine correction, lognormal indirect correction or the use of the discrete Gaus-
sian model [63, 82, 121]. The type of correction should be selected according
to the variance correction factor. For instance, the affine correction does not
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perform well for large variance reductions. The indirect lognormal correction
is in general more robust. The application of the discrete Gaussian model has
the disadvantage of oversmoothing secondary modes of the point distribution,
although in most applications this is not a major concern and it performs
correctly [63].

4. Recoverable reserves of blocks can be calculated by truncating the corrected
conditional distributions at a given cutoff.

Although very flexible, the implementation of the method can be difficult:

e The coding of soft data as if they were hard data is useful, but secondary
information cannot be used as primary, even though the coding is the same.
A model of Coregionalization has to be used [110, 172].

e The use of data at different supports is also a difficult task, since the correlation
between the variables changes at different supports [136].

Indicator Coding

The basic idea is to code the data as probability values [41] after selecting the
thresholds zx, k= 1,..., K:

i(uq; 2k) = Prob{z(u,) < zx}

At every data location, there is now a vector of K indicator values. If there
were n data at the beginning, then there are n - K indicator values after coding
the data. The choice of the number of thresholds is critical for good performance
of this approach: too few thresholds imply a poor discretization of the conditional
distributions; a large number would reduce this problem, but larger computation
and inference efforts would be needed and order relations deviations are expected
(see Section 2.3.6) [43, 68]. Goovaerts recommends between 5 and 15 thresholds
[71], Deutsch suggests a number between 7 and 11 [41]. A good practice is to
match thresholds with critical values of the problem under study, and distribute
them uniformly through the distribution, i.e. thresholds can be chosen at regular
quantiles. Alternatively, they can be set at quantiles such that equal quantities of
metal fall in each class.

Hard Data Samples with negligible sample errors are called hard data. The cod-
ing for hard data is:

ooy L ifz(uy) <% _
(U 25) = { 0. otherwise k=1,..,.K (2.3)
where z(u,) is the value at the data location u,. This can be interpreted as a

probability:

i(uq; 2k) = Prob{z(u,) < 2z} = Fu,(2k)
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Constraint Intervals The data may only tell us that the value of z is constrained
by some higher and lower limits, b, and a, (by physical reasons, for example). The
data can be coded as follows:

1 , if 2 > by
(ug;z) = undefined , ifay<zg<by, k=1,.,K (2.4)
0 y if 2z <ag

where z(u,) is the value at the data location u,, a, is the known lower limit of the
variable, and b, is the known upper limit of the variable.

Soft Categorical Data Sometimes a categorical variable can be used to condition
the cumulative distribution function of the primary variable {71]. For example, if the
value of the z variable and the categorical variable s (e.g. rock type) are measured
at n data locations u,, then the conditional cumulative distribution of z given the
secondary categorical variable s can be calculated as:

n

L iZ(ua;zk)'iS(utx;Sl) k=1,...K
=1

F* . S—
(lst) = S aaron 2

where ig(uy; ;) is the indicator function of the secondary variable s (equal to 1 if
the category at location u, is s; and 0 otherwise).

Using the secondary information, a different conditional distribution of the pri-
mary variable will be used when kriging different locations, since the categorical
conditioning variable depends on location.

Soft Continuous Data Extending the idea presented for categorical data, a con-
tinuous secondary variable v can be used to condition the primary variable z. The
secondary variable is “categorized” into L classes and then used as a categorical
variable to condition the cumulative distribution of the primary variable. The pro-
cedure:

e Discretize the secondary variable into L classes (v;—1,v;], with vp commonly
0.

e Code the secondary attribute as:

1, ifv(uy) € (v1_1, )

iv(ua;vr) = { 0. otherwise l=1,..,.L (2.5)

e Calculate the conditional cumulative distribution of z given the secondary
continuous variable v:

. 1 N . )
F*(zg|lu) = m ;zz(ua;zk) - iy (ug;up) k=1,...K

where iy (u4; v;) is the indicator function of the secondary continuous variable
v as presented before.
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Indicator Kriging

The distribution of uncertainty can be inferred by kriging the indicator function at
every threshold. Using the coding presented in Equations 2.3 to 2.5, the original
n data are converted into K sets of n indicator variables. Each one of those sets of
data can be used to estimate the value of the indicator at an unsampled location,
that is, the probability of having z(u) < zk. The indicators at different thresholds
could also be used as secondary variables to perform cokriging [43, 68, 71]. Again,
there is no difference between indicator cokriging and standard cokriging, except
for the transformation of the variable. A short explanation of different techniques
applied to indicators is presented next.

Simple Indicator Kriging To perform simple indicator kriging [152], the sta-
tionary mean of the indicator random function is required. This mean is given by
the cumulative distribution function of the random function Z(u):

E{I(u;2)} = Prob{Z(u) < z} = F(z)

The stationary simple kriging estimate of the indicator at that threshold is writ-
ten:

[i(w; 2)] 5k [Prob{Z(u) < z|(n)}5x

Yam1 Aa (w52)  i(ua; 2) + [1 - gmq AK (15 2)|F(2)

(2.6)

where the weights 5K (u; z) are the unique solution of the simple kriging system:

> b1 )\gK(u; 2)-Cr(ug —ug;2) =Cr(lu—uy32) a=1,.,n (2.7)

Notice that a covariance indicator function Cr(u — ug;2) or, assuming station-
arity, Cr(h; z), has to be inferred for each threshold in Equation 2.7.

Ordinary Indicator Kriging Ordinary kriging differs from simple kriging in that
the mean is unknown and therefore, unbiasedness requires the sum of the weights
to be constrained to be equal to one.

The ordinary indicator kriging estimate is written:

[i(u; 2)]ok [;mb{z (u) < 2|(n)Hok

AOK (u;2) - (ua; 2)

n

where the weights AJ¥ (u; z) are the unique solution of the ordinary kriging system:

ZQ' K(u;2) - Cr(ug — ua; 2) + pok(u;2) = Cr(u —u4;2) a=1,..,n
E /\OK =1

Again, indicator covariances have to be inferred for each threshold.
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Median Indicator Kriging K variogram or covariance functions must be mod-
elled for the procedures introduced above. The inference of the variograms at ex-
treme low or high thresholds is, in general, difficult since there are few zeros or ones,
generating a noisier experimental variogram. For thresholds close to the median,
where the number of zeros and ones is roughly the same, the inference of the vari-
ogram is easier. Median indicator kriging can be applied if the K indicator random
functions I(u;zx) are intrinsically correlated, that is, all indicator variograms and
cross variograms are proportional to a common variogram model, or equivalently, all

correlograms are equal. This random function model is known as the mosaic model
[87]):

pz(h) = pr(h;zx) = pr(h; 2z, 20 )y Vo, 2y

The single correlogram required can be estimated using the sample z correlogram
or the sample indicator correlogram at the median cutoff zx = M, where F(M) =
0.5. The advantage of using the experimental indicator correlogram is that there
are no outliers.

If all indicators are defined for all data location, that is, when there is no missing
data due to the use of constraint intervals as in Equation 2.4, then at every location
to be estimated or simulated only one kriging system must be solved. The weights
will not change for different cutoffs since the data configuration and variogram
remain the same.

Indicator Cokriging

Indicators at different thresholds can also be used to help infer the cumulative
probability at a particular threshold. The indicator i(u; 2x) can be estimated using
the indicator values at the data locations for the same threshold and for different
thresholds, that is, obtain the cokriging estimate with the indicators at different
thresholds to get the value at a particular threshold.

This method requires the inference of LI;'HZ indicator variograms and cross
variograms, which makes it very demanding; however, it uses all the bivariate infor-
mation given by the indicator coding, improving (theoretically) the result: a lower
kriging variance than the one obtained just by kriging should be expected.

Since the mean values for the K indicator variables are the cumulative distri-
bution function values of the corresponding thresholds, simple indicator cokriging
can always be performed and should give a lower estimation variance than ordinary
indicator kriging.

The simple indicator cokriging estimate can be written as:

[i(u; 2k ) — Prol51COK = Z Z )\SICOK (Ras 2x) * (#(ua; 25) — Pr)
k=la=1
where ko corresponds to a particular threshold in [1, K] and pg is the cumulative
distribution value for threshold z;. The weights A3 9% (ua; zk) are obtained by
solving the simple cokriging system (Equation 2. 2) The direct and cross covari-
ances are replaced by indicator direct and cross covariances.
The ordinary indicator cokriging estimate is written:
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K n
[i(ws 2601k 00K = D D AT OK (Uas 2) - 6(a; 21)
k=1a=1

As with standard cokriging, the unbiasedness condition must be imposed to
constrain the sum of weights at the threshold zx, to be one, while for every secondary
variable, the weights must sum to zero.

Alternatively, the ordinary indicator cokriging estimate using the standardiza-
tion of the means of the secondary variables, that is, all thresholds zj # 2, is:

K n

[i(w; zk0) 01K COK = Z Z AQIZOK (ug; 21) - (i(0as 2k) — Pi + Pro)
k=1a=1

In this case, the sum of all the weights must be equal to one to ensure an unbiased
estimator.

Practice has shown that indicator cokriging requires considerably more infer-
ence effort and brings little improvement [68, 71]. This is particularly true when the
samples for the secondary variable are collocated with the samples for the primary
variable, which is called the case of homotopic sampling of all the variables. This
is the case with indicators, since they are defined at the same locations, unless con-
straint intervals are used. In the case of heterotopic sampling, that is, when primary
and secondary variables are sampled at different locations, cokriging improves the
result in a more significant manner.

Probability Kriging

Instead of using all indicators for all thresholds, the original data or their standard-
ized rank ordering could be used as a secondary variable [87, 162, 169]. This requires
less effort inferring variogram and cross variogram functions; the number is reduced
from ﬂ‘;iﬂl to just 2K + 1.

The standardized rank ordering corresponds to the position of the data when all
the data are sorted increasingly, divided by the total number of data, i.e. p(u,) =
r(uq)/n, where r(uq) is the rank of the datum z(u,).

The simple probability kriging estimate is written:

n

(i 26)]pre — Flak) = 3 AW 26) - [i(a) = F(zk)] + 3 vl 26) + [p(11a) — 0.5]
a=1

a=1

where p(u,) = F(2(us)) € [0,1] is the standard rank ordering of the data, which
has an expected value of 0.5, F(z) = Prob{Z(u) < z} is the stationary cumulative
distribution function of Z(u). A, and v,, @ = 1, ..., n are the simple cokriging weights
of the indicator data and the standardized rankings respectively.

The ordinary probability kriging estimate could also be written, when local de-
viations from the global probabilities exist.

Secondary Information

Simple Indicator Kriging with Local Prior Means In simple kriging, the
decision of stationarity implies that the mean of the indicator random function is
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independent of the location u being estimated. In some cases, a secondary variable
may be available that gives prior information on the mean. That probability is
defined as:

y(u; z) = Prob{Z(u) < z| secondary information at u} (2.8)

then, the simple kriging estimate (Equation 2.6) using these local prior means can
be rewritten as follows:

[Prob{Z(u) < zx|(n)}sx
S o1 ASK (w5 2k) - (W 26) + [1 — Yooy ASK (5 2)] - 9(ua; 2)

[6(u; 26)) 51k

where the weights A\3% (u; 2;) are the same than those in Equation 2.6.

Soft Cokriging The probabilities used as prior means in Equation 2.8 can be
used as secondary data (soft data). They are interpreted as a realization of a random
variable Y (u, z;), correlated with Z(u, z;). A cokriging estimate using only the
information at the threshold being estimated can be written.

This method requires the inference of the variogram of the primary indicator
data, of the secondary variable and the cross variograms between the primary indi-
cator variables and the secondary one.

Collocated Indicator Cokriging Practitioners often try to avoid the need of
modelling too many covariances and cross-covariances simultaneously through the
Linear Model of Coregionalization. Moreover, when secondary data are abundant,
instability of the cokriging system can occur. One possible solution is to keep only
the collocated secondary data at the location where the primary variable is being
estimated. However, there is still the need to infer the variogram of the primary
variable and cross variogram between the hard and soft data for every threshold.
The variogram model of the secondary variable is only required at h=0, where it is
given by:

Cy (0; zx) = my(2g) « [1 — my (2k)]

where my (zx) = E{Y (u; z)}.

So, collocated indicator cokriging fixes the possible instability of the cokriging
system, without a real simplification of the variogram model. The Markov-Bayes
approximation can be done in order to alleviate the inference of cross variograms,
as explained in the next section.

Markov-Bayes Algorithm Assuming that the collocated secondary data will
have the biggest impact when estimating the primary variable at the same location,
then the cross variogram is not required. The covariance for the secondary variable
and the cross covariance can be deduced from the covariance function of the primary
variable. Only a calibration parameter is required to scale this covariance.

The following relations can be proven under this assumption [180]:

Cy(h;zx) = [B(zk)|-Cr(hjzr) h=0
= Bz(zk) - Cr(h; z) Vh>0
Cry(h;zz) = B(zk) Cr(h;zx) Vh
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where the coefficients B(zy) € [—1,1] are defined as:
B(zk) = m(l)(zk) - m(o)(zk) k= 1, ...,K
with

mD(z) = E[Y(wz)|[(uz)=1] €10,1]
mO(z) E[Y (u; z)|I(u; 2¢) =0] €[0,1]

These coefficients can be estimated by:

m(z) = m 3ol y(uas 2c) - H(Uas 2¢)
m(o)(zk) = g z(ua z)] Ea—l y(um zk) [1 - z(uaazk)]

where nry is the number of loca‘mons where both hard and soft data are available.

These relations are of interest since they greatly simplify the inference necessary
to utilize secondary information. These coefficients can be calculated for more than
one secondary variable, allowing integration of many different sources of information.

Correcting for Order Relations Deviations

The estimated probabilities [i(u; 2¢)]*, ¥ = 1,..., K generated through indicator
kriging must satisfy the conditions of a cumulative distribution: they have to be
non-decreasing between 0 and 1 [41, 43, 71, 87].

The kriged indicator value can lie outside the interval [0,1] because the kriged
estimate may be a non-convex linear combination of the conditioning data. Lack of
data in some classes and differences in the variogram models from one threshold to
the next are important factors to have a non-increasing function [43, 96].

The a posteriori forward and downward correction of the conditional cumulative
distribution functions works well in general, as documented by Deutsch and Journel
[43] (Figure 2.2). Although more difficult in its implementation, constraining
the kriging system, so that it satisfies the order relations by construction is also a
solution {71].

Interpolation and Extrapolation of the Conditional Cumulative Distribu-
tion Functions

Since the number of data is limited, the distribution of local uncertainty is discretized
using only five to fifteen thresholds. The continuous conditional distribution at every
location u is then represented by a set of points [i(u; 2¢)]* with & = 1,..., K, that
lie in [0, 1].

It is therefore necessary to interpolate the values between thresholds, and ex-
trapolate the values beyond the smallest and largest values [43, 71]. This decision
has a large impact in the final statistics of the model being estimated or simu-
lated, so it has to be analyzed carefully. It is commonly sufficient to interpolate
linearly between the indicator values at thresholds z;—; and z;. When extrapolat-
ing the tails, a minimum and maximum possible values should be considered and the
extrapolation should not be done linearly, since this would imply a uniform distribu-
tion between the minimum value and 27, and between zx and the maximum value,
which is often unrealistic. Power and hyperbolic models are used to extrapolate
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F(z) 4

2, 2,2, .. Zoox

Figure 2.2: Forward and downward correction for order relation deviations. The
model used is the thick line. :

the distribution functions beyond the lower and higher indicator values. Another
possibility is to consider the global distribution and scale it to extrapolate the tails
of the distributions.

The different methods to interpolate and extrapolate are listed below:

e Linear model: Assuming a uniform distribution between the cumulative prob-
abilities for two thresholds, or between a lower limit and the first threshold
or the higher threshold and an upper limit (maximum value), the cumulative
distribution function value is given by:

2 — 2k-1

[F(z)];‘inear = F*(Zk—l) + [Zk — Zk—1

] (P () - F*aeet)] V€ (zhon, )

e Power model: Depending on the value of the parameter w, the power model
can take a wide range of shapes (Figure 2.3). The cumulative distribution is
calculated as:

2= 2k-1

[F(z)];ower = F*(Zk—l) + [ ]w . [F*(Zk) - F*(Zk_]_)] Vz € (zk_l, Zk]

2k T %k—-1

It can be used to extrapolate the lower and upper tails of the distribution.
This is done by replacing z;x—1 and z; by zmin and z;, and using a power
w > 1 for the lower tail, or replacing zx—; and 2 by zx and zpyq, and using
a power w < 1 for the upper tail.

e Hyperbolic model: This model is useful to extrapolate the upper tail. As with
the power model, the parameter w permits to control the shape of the function
(Figure 2.4). The cumulative distribution is calculated as:
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Figure 2.3: Power model for cumulative distribution function interpolation and
extrapolation, given different values of the parameter w.

_Zg (- Fr(z)]

P Vz > z

[F(z)];;yperbolic =1

e Re-scaling the global distribution: This can be used to extrapolate the tails
of the conditional distribution. The tails of the conditional distribution will
have the same shape than those of the global distribution.

2.4 Conventional Two-Point Geostatistical Simulation

Conventional geostatistical techniques exploit second-order statistics, that is, the
histogram and variograms or equivalently, the covariance function. Variograms used
can be direct, cross-variograms, or variograms of a transform, such as the indicator
values. The common techniques are described in this section.

2.4.1 The Place of Simulation

It is known that kriging, as most estimation methods, gives a smooth map that does
not look like the underlying variable (for example, see [82]). Hence, a kriged map
should not be used to represent the spatial variability of the variable. Analytically it
can be shown that the variance between estimates in kriging is lower than required.
The difference is exactly the simple kriging variance, the so called “missing variance”.
When assessing uncertainty it is desired that each realization reflects the variability
of the random variable.
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Figure 2.4: Hyperbolic model for cumulative distribution function extrapolation,
given different values of the parameter w.

Simulation methods aim at reproducing the spatial variability of the underly-
ing phenomenon. They work by drawing from a conditional distribution, that is,
the missing variance is added back into the total variability of the realizations. In
sequential algorithms, previously simulated nodes must be used along with the orig-
inal sample data when calculating the mean of the distribution by simple kriging.
This ensures the reproduction of the covariance model input in the algorithm.

Geostatistical realizations permit the calculation of joint uncertainty, that is,
the uncertainty over larger volumes. This cannot be obtained by kriging methods.
They also allow inference of response variables, such as grade above a cutoff for
different supports.

Simulation does not compete with estimation, but provides a complementary
result. Estimates can be obtained from multiple realizations under any measure of
goodness, not only the minimization of the mean squared estimation error. Loss
functions are used to come up with best estimates under different definitions of
goodness. The reader are referred to [41, 88] for further details.

2.4.2 Gaussian Techniques

Although it is very rare to find a random variable whose histogram is Gaussian,
methods that rely on the assumption of multivariate Gaussianity are quite common
[110]. Since the original variables are not Gaussian, a transformation is required
to make the sample distribution a standard normal distribution. This does not
ensure that higher order moments are also Gaussian, thus one should check if the
assumption contradicts the transformed data. Notice that when referring to the
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multivariate distribution, we are referring to it in spatial context of a single variable,
and not necessarily to the case of multiple variables.

Thus, the first requirement is to have a variable that has a Gaussian histogram.
This is accomplished by a simple transformation that can be performed graphically
or through polynomial fitting [20, 43, 145]:

y(uy) = G UF,(2(us)) = ¢{z(uq)} Ya=1,...N

Then, to check bivariate Gaussianity, h-scatter plots of the transformed variable
could be generated. That means pairs of Y sample values that are separated by
approximately h would need to be found. This procedure has to be repeated for
different lag separation vectors h. Each one of these plots should show elliptical con-
tour lines of equal probability density that are characteristic of a bivariate Gaussian
distribution.

Another simple test consists of plotting the square root of the experimental
variogram of normal scores over the madogram (or variogram of order 1) of normal
scores, that is, half the average of absolute differences of normal scores separated
by a lag distance h. This ratio should be constant and equal to /7 [53]:

VEE® y(w) - yu+ )2
TP y(w) - y(u +h)|

Tests for Gaussianity at higher levels exist, however they are often inconclusive.

The reason for the popularity of Gaussian methods is that the multivariate
distribution is completely defined by the knowledge of the mean and covariance
function. All conditional distributions are Gaussian with the simple kriging mean
and kriging variance.

Several Gaussian methods are briefly described next. They all assume the vari-
able has been transformed to normal scores and that the transformed values do not
violate the assumption of normality at higher level.

All the work is done with these normal scores. The resulting simulated val-
ues are also expressed in transformed units. A last step is then required: back-
transformation of the simulated values into original units.

The results should always be checked for histogram and variogram reproduction
within acceptable statistical fluctuations.

Sequential Gaussian Simulation

Sequential Gaussian simulation (SGS) is aimed at reproducing the right pattern of
variability by correcting kriging. SGS works by adding a residual to the estimate.
This residual is independent from the estimate obtained when kriging the normally
transformed data, and it has a Gaussian distribution with mean 0, hence, it does
not change the expected value of the estimate, and with variance 0%, giving the
simulated values the right variability.

The shape of the conditional distribution is Gaussian, which ensures that the
final histogram, before back-transformation, is also Gaussian.

Variogram reproduction is ensured by drawing the simulated value from a dis-
tribution with the mean and variance obtained by simple kriging [83].
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Once the normal scores of the data have been obtained, the required steps for
SGS are:

e Generate a random path to visit every node that has not been assigned a
sample value on the grid.

e Visit each node in turn, following the random path, and perform simple kriging
of the normal score transforms.

e Draw a simulated value from the Gaussian distribution with mean and variance
given by the previous kriging. Notice that this is equivalent to drawing from
the distribution of the random residual and adding it to the simple kriging
estimated value.

o Add the simulated value to the set of hard data to be used in the subsequent
kriging estimations.

¢ Repeat until all nodes are informed.

In practice, (transformed) sample data are often assigned to grid nodes to ensure
that the samples are honored and to speed up the implementation. Only one search is
required for sample data and previously simulated nodes. However, this is optional,
because it may entail a significant loss of data since, if many samples are close to the
same node, only the closest will be kept and used for the subsequent conditioning.

Multiple realizations can be obtained by generating a different random path and
a different set of random numbers for drawing from the conditional distributions.
This is implemented as a change in the seed of the pseudo-random number generator.

Matrix Simulation

Matrix or LU simulation is a very efficient algorithm when a relatively small number
of nodes are to be simulated {1, 31]. It also requires transformation of the original
data to normal scores. The nodes are simulated simultaneously. Matrix simulation
requires decomposing a matrix of size (n + N) x (n+ N), where n is the number of
data values and N is the number of nodes to simulate. This decomposition generates
a lower and an upper triangular matrix.

The method works by building a matrix with the covariance values between the
locations with samples and nodes to be simulated. Then, the matrix is decomposed
using the Cholesky method:

C=[011 Clz]z[Lll 0].[U11 B12

Q21 (22 A21 122 0 U22 :| =L-U

where C is the covariance matrix of size (n + N) x (n+ N), L is a lower triangular
matrix and U is upper triangular. The matrix L is decomposed into four sub-
matrices, where L1 and L??2 are lower triangular, 0 is a matrix of zero values and
A2l is not necessarily lower triangular, to make L a lower triangular matrix. U is
decomposed in a similar fashion: U*! and U?2? are upper triangular sub-matrices,
0 is a matrix of zero values and B2 is not necessarily upper triangular. U is an
upper triangular matrix. The Cholesky decomposition entails that:
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L=UT

A vector w of size (n + N) x 1 is multiplied by the the lower triangular matrix.
The first n terms of the vector, denoted w!, are the normal scores transform of
the data, and the next N, denoted w2, are random normal deviates. The resulting
vector is the vector of normal scores of the data (first n terms) and simulated values
(remaining N values).

CLowe Lt 0 ‘ wl
y= W= A2l 122 w2

where wl = [L11]! .y, with y! being the vector of normal scores of the data.

The input covariance model is reproduced:
E{y-yT} E{L.w.-wT.LT}

E{L-w-wT.U}

L-E{w-wT}.LT

L.-I.U

C

g owou

A vector of random normal deviates must be generated for each realization.
The generation of random normal deviates can be done easily with any random
number generator and transformation of the uniform numbers into normal deviates
(see Appendix A). Alternatively, methods for directly generating normal deviates
exist [10, 113, 144].

The simulation is very fast and can be performed with high efficiency once the
decomposition has been done. Improvements in the method to make it capable of
handling larger grids have been developed [30].

Moving Average Methods

This method generates unconditional simulations that must be conditioned after-
wards. It requires the simulated nodes to be located in a regular grid and works by
calculating a weighted average of a field with known spatial covariance. The prob-
lem is to calculate the weighting function that will generate the desired covariance
function.

The covariance of the initial field is often a pure nugget effect. So, the weighting
function is calculated as the function that when convoluted gives the desired co-
variance function. The result is normal because of the Central Limit Theorem and
the averaging process. It is suggested in practice to start with normal deviates to
ensure that the final result will be Gaussian.

Once the normal scores have been computed, the required steps are:

e Calculate a weighting function f so that

Cy(h) = f*f

where Cy(h) is the covariance function required for the final realizations.
Further details on how to obtain this function can be found in {20, 94, 110].
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o Generate a field of random numbers independently drawn from a given distri-
bution with known mean and variance (usually a Gaussian or uniform distri-
bution are used).

e Calculate the simulated values by weighting the drawn numbers in the vicinity
of the location to be simulated according to f.

o Scale the mean and variance to zero and one, to a standard normal distribution.

e Condition the simulation. This is done by adding a simulated error to the
kriging estimate:

Yos(u) = Yi(u) + [Ys(u) - Yix(u)] (2.9)

where Yrg(u) is the simulated value conditioned to the sample data; Yz (u)
is the kriging estimate at that location; Yg(u) is the simulated value uncon-
ditional to the samples, that is, the one obtained with the moving average
method in this case; and Y3y (u) is the kriging estimate at location u cal-
culated using the simulated values at the sample locations rather than the
original sample values [88].

The simulated values are then back-transformed and checked. This method is
the basis for turning bands simulation.

Turning Bands Simulation

This method is based on the simulation of a covariance function on lines, that is, in
one dimension [94]. The simulated values in two or three dimensions are obtained
by averaging the projected values of the uniformly randomly distributed lines. The
problem is to find the one dimensional covariance model that will generate the
desired three dimensional model. Although a maximum of 15 lines can be regularly
distributed in a sphere, more lines can be randomly located. This would help avoid
artifacts in the method.
The steps required to apply turning bands simulation are:

e Calculate a one dimensional covariance function C(V((h,u)) so that

3/

27 J3unit sphere
where Cy (h) is the covariance function required for the final realizations. For
details on the calculation of the one dimensional covariance, see [12, 28, 94].

Cy(h) CW((h,u))du

e Draw values with the one dimensional covariance C(V)((h,u)) on L lines uni-
formly distributed in a unit sphere.

e Compute the three dimensional simulated values by adding the values simu-
lated on L lines projected into the location to be simulated. Standardize the
sum, dividing by v/L.

e Condition the realization as in Equation 2.9.

The simulated values are back-transformed to original units.
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Comments on Gaussian Methods

Gaussian methods are very appealing because of their simplicity. Under the multi-
Gaussian assumption the shape of all conditional and marginal distributions is Gaus-
sian, greatly simplifying inference problems. Only means and variances must be
specified.

However, the Gaussian formalism assumes spatial continuity is symmetric with
respect to the median and has maximum disconnectiveness at extremes, that is, if the
indicator variograms of a multi-Gaussian variable are considered, they will present
maximum continuity for the median threshold. Departing from it, the variograms
show an increase in the nugget effect reaching, at the limit, a pure nugget effect for
the highest and lowest thresholds. Variograms are symmetric, that is, the indicator
variograms for say thresholds corresponding to quantiles 0.25 and 0.75 are similar.
The same happens with any other pair of thresholds equidistant (in probability)
to the median, for example, the 0.1 and 0.9 quantiles, the 0.2 and 0.8, etc. This
concept is known in geostatistical jargon as mazimum entropy.

This disconnectiveness may have serious consequences if the connectivity of high
valued points is of importance, such as when considering flow in petroleum reser-
voirs. In mining this could have important consequences because of the support
effect. Considering that mining is by selecting large blocks rather than “points”,
the connectivity of highs and lows will have an effect on the rate of change of the
grade as the support gets larger. A very disconnected variable will average quickly
toward the mean value, while a variable that shows connectivity of highs and lows
will tend to stay high or low as the block support increases, having a slower rate of
change in the grade toward the mean than in the disconnected case.

Indicator techniques are an alternative to overcome this problem. They also
have other features that make them attractive.

2.4.3 Indicator Simulation

Indicator simulation avoids the need of a multi-Gaussian assumption at the bivariate
level and therefore the problem of maximum entropy implicit in that assumption.

Indicator simulation uses the conditional distribution obtained through indica-
tor kriging to draw a simulated value using Monte Carlo simulation [43, 66]. It is
important to emphasize that the conditioning data used to get the conditional dis-
tributions, consist of actual data and previously simulated values within the search
neighborhood. In this way, the covariance is reproduced.

The sequential simulation approach proceeds as follows:

1. Randomly pick an uninformed node.
2. Search for nearby data and previously simulated nodes.

3. Perform indicator kriging at each threshold to build the conditional distribu-
tion.

4. Draw, by Monte Carlo simulation, a value from that conditional distribution
and assign it to the node.

5. Go to Step 1.
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The conditioning information increases from n data to n + N — 1. The bigger
the number of conditioning data, the bigger the kriging system. This problem is
overcome by using a search neighborhood and limiting to a maximum number of
data within these radii.

Variogram reproduction depends on different factors such as the size of the search
neighborhood and the kriging type used.

Applications of indicator methods can be found in [92, 95] for continuous vari-
ables, and in [83] for categorical variables. A discussion about the origin of the
indicator paradigm is presented in [120].

2.5 Attempts at Multiple-Point Geostatistics

Algorithms that only account for two-point statistics cannot reproduce some fea-
tures that are captured by higher-order statistics. The introduction of indicator al-
gorithms allowed different characterization of the continuity at different thresholds,
which cannot be controlled by Gaussian algorithms [91]. Some novel applications
of conventional simulation techniques show improvements over typical applications,
by incorporating local directions of anisotropy [178] or by correcting the variogram
range to account for the additional connectivity not captured by the variogram [42].

Object based methods are also used to characterize the large features first (e.g.
channels) and then conventional two-point statistics are used to simulate the petro-
physical variable inside the different objects [44, 62].

The direct use of multiple-point statistics in simulation has been addressed sev-
eral times. The use of extended normal equations was proposed by Guardiano and
Srivastava [76]. The implementation of this technique was improved by Strebelle
and Journel [159], by using a search tree to find the frequencies of the multiple-point
events in the training image.

Deutsch [34] applied simulated annealing for constructing reservoir models with
multiple-point statistics. The difficult setting of the annealing schedule and high
computational cost of this technique makes it unappealing to practitioners. An-
other interesting implementation was proposed by Srivastava [155] to simulate using
change of support statistics, indirectly accounting for multiple-point statistics.

Another iterative technique was proposed by Caers [13] that is based on the use
of neural networks to model the conditional distribution function in a non-linear
fashion.

All implementations proposed assume that multiple-point statistics are available.
They consider training images for their inference. The reproduction of features
that belong to the training image but not to the underlying process that is being
simulated has not been addressed properly. We may want to reproduce the general
appearance of the training image but not all its details. Caers [13] uses a technique to
avoid overtraining the neural network, however the question of which features should
be extracted from the training image is not answered. Furthermore, transferring
statistics from the training image to the realization is a problem. The univariate
and bivariate statistics of the training image may not be exactly the same as those
of the phenomenon. Once again, the use of multiple-point statistics inferred from
the data does not have this problem, since the statistics are consistent to a common
spatial law.
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A quick review of the methods currently available to simulate incorporating
multiple-point statistics is presented next.

2.5.1 Object-Based Methods

Object based techniques are a natural way to model geological shapes. In reservoir
characterization, the petrophysical properties change drastically from one facies to
another. The facies are generally located in a certain depositional environment. For
instance, sand is easier to be found in a channel than outside it. Therefore the
generation of the surfaces or volumes that define the objects is seen as first-order
heterogeneity in the reservoir characterization. Inside these objects, second and
third-order heterogeneities can be modelled [44].

Although this approach is appealing since it mimics the genesis of geological
formations, it is difficult to implement because of the large number of parameters
required to stochastically generate the objects. Inference of these parameters is
generally done from similar reservoirs. The other problem is that conditioning to
data is not easy. The objects must be moved to match the data and several iterations
are required. Active research is being done in this field {170].

2.5.2 Variogram-Based Techniques

Other techniques have been proposed to account for long range connectivity. Xu
and Journel [178] proposed an approach based on simulating the local angle of
anisotropy, in order to reproduce curvilinear features of the true underlying phe-
nomenon. They then applied a conventional two-point technique to simulate the
petrophysical property, using the previously simulated angles of anisotropy.

Another approach consists on increasing the range on the variogram model to
account for the longer range connectivity, which is not captured directly by the
variogram. Deutsch and Gringarten [42] used an annealing approach to accomplish
this task.

The use of isofactorial models to characterize bivariate behavior in a framework
similar to that of disjunctive kriging has been proposed to generate numerical models
with the same two-point statistics, but with control over the connectivity of extremes
[52].

2.5.3 N-Point Connectivity Function

Gaussian methods suffer from the maximum entropy of extremes [120]. This means
that, when considering the continuity of extreme high or low values, it tends to a
pure nugget effect.

Journel and Alabert [91] used the n-point connectivity function to show the im-
provement in the reproduction of long range connectivity of realizations constructed
with the sequential multiple indicator algorithm, versus realization built with Gaus-
sian techniques.

They defined multiple steps connectivity based on the n-point function:

6(n) =E{H1[u+(j—1>h;z1}

=1
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where n is the number of connected points considered at the same time and z is a
threshold.

They did not use this statistics in the simulation but showed the better perfor-
mance of indicator techniques compared with Gaussian simulation.

Deutsch [34] incorporated this statistics in numerical models using simulated
annealing for petroleum reservoir characterization. This is the only practical appli-
cation of this concept.

The n-point connectivity function is a non-centered multiple-point indicator co-
variance function, similar to a run. As shown in Section 3.2, if the random function
was known, the n-point connectivity function could be calculated before-hand, with-
out requiring a realization. In practice, this is possible only in two cases: (1) in the
multi-Gaussian case, where the multivariate distribution is fully defined by its mean
and covariance function; each conditional probability is retrieved by simple indicator
kriging, and (2) the independent case (pure nugget effect) is easily computed:

¢(n) = [[ F(z) = [p.]"
Jj=1

Although indicator simulation improves the result when the desired multivari-
ate distribution departs from the multi-Gaussian case, this high-order continuity
cannot be captured only by two-point statistics. These higher-order features will
considerably change the resulting uncertainty after the transfer function.

2.5.4 Extended Normal Equations
Guardiano and Srivastava [76] introduced the generalization of the indicator al-
gorithm and use of the extended normal equations (see also [83]). Conventional

indicator kriging is just an approximation of the more general theory presented
here.

The conditional expectation of an indicator variable can be calculated exactly
by considering a linear combination of the following events:

o The indicator values at the same threshold i(uq; 2, ), @ € (n),

e The indicator values at different thresholds i(uq; 2), € (n),k=1,..., K,k #
ko, and

¢ All products of indicators from all thresholds, that is, products of two indicator
values at a time, three indicator values and so on.

The conditional expectation can be written as a function of these events:
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F(w zi,|(n)) = P(Z(u) < 2k,|(n))
= E{I(u;z,)|(n)}
= ¢{{i(ua;zk),a e{n),k=1,...,K},

{i(ua;zk) : i(uﬂ;zk’)sa € (n)aﬁ € (TL),
k=1, KK =1,.,K},

{ﬁ II i(ua;zk)}}

k=1 ac(n)

where 2, is one of the k thresholds considered.

Inferring the weights to linearly combine these events calls for the knowledge of
the entire spatial law of the variable, which is never possible. Simplifications are
then required.

First, the conditional probability is approximated by dropping all the terms that
involve indicators at different thresholds. Only the indicators at the same threshold
2, are used. All cross-correlation between indicators at different thresholds and
products of indicators, also called multiple point indicators, is ignored. This first
approximation is done not because the inference of the cross-correlations is too dif-
ficult, but because, in general, the improvement in the resulting simulation does not
justify the increase work required. This is particularly true because the covariances
between the different events must be positive definite to ensure that the system has
a solution and that this solution is unique.

The conditional expectation can be written as a function of the conditioning
information in the following manner:

B{I(w; 2ko) [T (0 2ko) = (W0 2k0), @ € (n)} = ¢'{i(1a; 2k,), @ € ()}
=ao+ Y a1(a) - i(Ua; zk,)
ag(n)

+ 3 Y aa(e,d) - i(ua 2k - (U0 2ke) F

a€(n) a’€(n),asa’

+an - H t(ug; 2ky)

a€(n)

Notice that the function ¢ is different than ¢’. The indicators and products of
indicators at the same threshold are now being used to estimate the conditional
expectation.

The 2" coefficients ag, a1(a), az(a, @), ..., a, in the last expression correspond
to the extended indicator kriging weights and can be determined by an extended
system of 2™ normal equations [76, 109].

Using a training image to extract the multiple-point covariances ensures the
positive definiteness condition on the covariance matrix.

The implementation of this technique was improved by Strebelle and Journel
[159], by using a search tree to find the frequencies of the multiple-point events in
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the training image. The methodology as applied to reservoir modelling is outlined
in [160].

The classical application of indicators considers only the use of univariate and
bivariate statistics (the sample histogram and the covariance or variogram function),
since the positive definite modelling of higher order covariances is difficult. The first
(n+1) terms of the previous expansion are retained for kriging and only two-point
covariances are used, that is, the standard covariance as defined in Equation 2.1.

2.5.5 Simulated Annealing

Simulated annealing (SA) is a general optimization algorithm that is capable of
incorporating as many statistics as required to the simulation process [8, 20, 34, 54,
60, 103, 147]. The algorithm will honor all of the statistics if they are consistent
with each other and the optimization parameters are set correctly. The basic idea
is to start with a realization that does not honor the statistics and perturb the
nodes until the statistics are close enough to the target. This is done by defining
an objective function that corresponds to a weighted sum of component objective
functions. Each one of these components corresponds to a measure of mismatch
between the target statistics and the current statistics, which are expressed as a
mathematical expression.
In general, the objective function is written:

Nc
0= Zin,-
i=1

where N, is the number of components in the objective function, w; are the weights
assigned to each one of the components, and O; is the mismatch value for component
i.

For example, this function could be composed by the mismatch in histogram
reproduction, defined as the difference in the cumulative frequencies measured at
some quantiles for the model being simulated versus the target histogram, and a
mismatch in variogram reproduction, composed by differences between the target
variogram model and the variogram calculated from the realization being perturbed,
for a number of lag distances. In this case:

Nlag

Q
O=uw - Z [Fg"o‘iel(qi) — F;arget (qi)]z + wy « Z [,Ymodel(hi) _ ,),tar.t]et(l,li)]2

i=1 i=]

where Fodl(g;) and F5*"%*(q;) correspond to the cumulative frequency for a given
quantile ¢; for the model being perturbed and for the reference statistics, ¢} is the
number of quantiles in which the cumulative frequencies (interval [0,1]) has been
discretized, Y™°%!(h;) and 4"9¢(h;) are the variogram values for a lag h; in a
specific direction, and ny,4 is the number of lags considered.

SA allows to incorporate in the same manner, variograms in multiple direc-
tions, indicator variograms, multiple-point histograms and any other statistics or
constraint such as conditioning data [34].

A key characteristic of SA is that some bad changes are accepted, that is, even
if the perturbation increases the value of the objective function, it may be kept.
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The rule for accepting or rejecting a change is based on the Gibbs or Boltzmann
probability distribution, which gives the name to the algorithm, since it was used
to model the energy of molecules in the physical process of annealing [41].

The fact that some bad changes are conditionally accepted differentiates SA from
most optimization algorithms, where all bad changes are rejected. The probability
of acceptance, given by the Boltzmann distribution is:
if Onew < Oold

1
P{accept} ={ 2452 i herwise

where ¢ is a parameter equivalent to the product of the Boltzmann constant kp
and the temperature 7" in the application to the physical process. By analogy,
t is called the temperature in SA; Oy and Opey are the values of the objective
function before and after the perturbation, equivalent to the difference in Gibbs
free energy AE in the physical process of annealing. All good changes and some
bad changes are accepted. As in the physical process of annealing, the temperature
decreases with time letting the molecules to reorganize in a state of lower energy.
In SA, the temperature must be lowered as the algorithm runs. In the numerical
implementation, the number of perturbations attempted is associated with time.
There are many consideration before attempting to run a SA algorithm:

Initial Realization The initial realization is in general spatially random with the
target histogram, because otherwise, long range features may be difficult to
undo, taking longer for the algorithm to converge to the desired statistics.

Objective Function The components of the objective function will dictate which
features will be present in the simulated model. These components should
not be inconsistent with each other, otherwise the model will not reach a low
objective function value because of the incompatibility of requirements. The
components must make physical sense. Furthermore, the objective function
must be designed so that if all statistics are matched, it equals zero.

Stop Criteria The obvious criterion is to stop if the objective function is very close
to zero. That means that the statistics of the simulated model are very close
to the target ones. Deutsch [41] suggests a value of 1% of the initial value of
the objective function. A second criterion for stopping is CPU time. If the
algorithm does not converge within reasonable time, it should be stopped. If
the objective function was still decreasing that means that the problem is too
complex and may require more perturbations, hence a longer CPU time to
converge. If the objective function has converged to a value not close to zero,
this means that the components of the objective function may be conflicting
with each other or that the decision rule, also called annealing schedule was not
set up properly (see next). The formulation of the problem must be revised
in this first case and the parameters of the annealing schedule, revised, in the
second case.

Perturbation Mechanism As mentioned, swapping of nodes randomly selected
as a perturbation mechanism will preserve the histogram. An alternative is
to randomly select one node and draw a new value from the global target
distribution. It has also been proposed to draw from a conditional distribution
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built by indicator kriging the surrounding nodes in a given template [41], or
by calibration with a secondary variable [45].

Updating of Objective Function The re-calculation of the objective function
can be done by updating the initially calculated objective function with the
changes due to the modification of the node (or nodes) perturbed. This makes
the algorithm much more efficient in terms of CPU time than re-calculating the
entire objective function every time, as illustrated by Deutsch in [41, 43, 45]. A
typical example is updating the variogram after one node has been perturbed.
The new value of the variogram for a given lag is calculated as:

Tnewt(hs) = oeteH(hi) +

1 new _ Y2 _ (0ld _ )2

Ty L") — 2 +0))" — () ~2(a + )]
where h; is a particular lag distance, N(h;) is the number of pairs encoun-
tered in the model to calculate the variogram at that lag, 2"“(u) and z°*(u)
are the values of the node being perturbed after and before the perturbation
has taken effect, and z(u + h;) is a node h; apart from the node perturbed.
This fast updating of the objective function speeds up the simulation process

considerably, since the number of operations required is greatly reduced.

Annealing Schedule The annealing schedule refers to the parameters that spec-
ify how the temperature is reduced. The temperature parameter ¢ must be
lowered to allow convergence. However, convergence is not guaranteed and
depends on how this parameter is changed during the simulation. As the
temperature decreases, bad changes will have a lower probability of being ac-
cepted, that is, the realization will tend to stay in the same state (nodes will
not change) unless the changes are favorable. In practice the temperature is
lowered with six control parameters (see [41] for more details):

e The initial temperature ¢y should be set to a high value.

e The reduction factor A € (0,1) is a multiplicative factor to reduce the
temperature if a maximum number of attempted perturbations K,q is
reached at the same temperature, or if a maximum number of accepted
perturbations is reached at that temperature.

o The simulation will stop if K, is reached S times, that is, if the number
of perturbations accepted at a given temperature has not been reached
in the last S attempted temperatures.

e The tolerance in the objective function to define convergence AQ, corre-
sponds to about 1% of the initial value of the objective function.

Further discussion on SA for geostatistcal applications in petroleum can be found
in the book by Deutsch [41]. Deutsch also [34] applied simulated annealing for
integration of production data in petroleum reservoir modelling. Casar-Gonzéalez
end Suro-Pérez [18] applied this method to simulate vuggy formations in a Mexican
offshore field.

Multiple-point statistics can be input as easily as the histogram or variogram
in the algorithm. Deutsch [34] proposed the use of multiple-point histograms in an
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annealing framework. The idea is to define a pattern of p points and code the data
as indicators. Then 2P possible combinations of zeros and ones are possible. Each
one of these is coded with a number. For example for a pattern of four points:

4
Inde:l:Mp(il,iz,i3,i4) =14+ sz_l - g
j=1
where 41, 99, i3, and i4 are the indicator transforms for the four data points. In this
case, a histogram of frequencies of the sixteen combinations can be used as a target
statistics and the multiple point histogram can be added to the objective function.
Connectivity functions can also be specified in the same way.

Srivastava proposed honoring multiple-point statistics by controlling histograms
at different supports [155].

Multiple-points histograms have also been used more recently in simulation in
an annealing framework by Qiu and Kelkar [139].

Although very flexible, annealing suffers of one drawback. The fine tuning of the
parameters is often difficult, and convergence for problems with complex objective
functions, for example, with multiple components and many statistics to honor, may
be too slow for practical applications. However, as computers get faster and more
powerful, this technique will surely have a place in solving difficult problems in the
future.

2.5.6 Iterative Methods and Markov Chain Monte Carlo Methods

Iterative methods are based on the work by Metropolis et al. [122]. They have been
used in spatial statistics [144] and were introduced in geostatistics by Srivastava
[154].

The idea behind iterative techniques is to start with a realization and perturb the
nodes until the model converges to the desired statistics. However, the perturbation
mechanism differs from annealing. It uses a Markov Chain to go from one state
to the next, that is, there is a transition matrix that defines the probability of
going from one state (one arrangement of values on the nodes) to another. The
problem is to find a transition matrix that satisfy some properties that ensure that,
after a large number of perturbations, the simulation will converge to the desired
state. Several methods exist: the Metropolis algorithm, the Barker’s algorithm,
and the Metropolis-Hastings algorithm [14, 20]. A simpler application corresponds
to the Gibbs sampler [20, 43]. In this case, only one node is perturbed at a time,
by drawing from a conditional distribution built from the surrounding information.
This conditional distribution can be built by gathering information from several
sources, such as indicator variograms, and potentially multiple-point statistics such
as connectivity functions, and multiple-point histograms. The nodes in the grid
are visited many times in random order and at every location the current value is
discarded and a new one is drawn from its current local distribution.

Caers [13] presented another technique based on the use of neural networks to
model the conditional distribution function in a non-linear fashion. This method
requires a training image to train the neural network. Coeflicients are calculated that
allow the inference of the local distributions of uncertainty given surrounding data.
Although convergence of this method is ensured, the speed cannot be calculated
beforehand. Applications to facies modeling can be found in [16, 153].
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2.6 Discussion

Geostatistics provides a way to generate numerical models of regionalized variables
that help in decision making. Conventional techniques exploit up to second-order
statistics. Higher-order statistics are defined by the random function model, that
is often multivariate Gaussian. The incorporation of multiple-point statistics de-
rived from actual data into the modelling process should lead to models that better
represent the reality.

Although many methods have been proposed to consider multiple-point infor-
mation, they have not been widely applied for several reasons:

1. Inference of multiple-point statistics is not an easy task and depending on
the type of application, they may require a modelling step to ensure a con-
sistent mathematical formulation of the problem. Regression type algorithms
and the solution of linear systems of equations are particularly sensitive to
inconsistencies in the input statistics, generating unreliable results.

2. Considering a training image representative of the phenomenon under study
means it is assumed that the training image and the sample data belong to the
same stationary population. There is a need for the training image to share
the cumulative distribution and exactly represent the multivariate distribution
desired for the modelled phenomenon.

3. Setting of the parameters for object-based methods, simulated annealing and
iterative methods is a difficult task. In the first case, many parameters about
the shape, dimensions, and orientation of the objects have to be set. For SA,
the setting of the annealing schedule requires a deep understanding of the
method and previous experience. As for Markov Chain Monte Carlo methods
the choice of the algorithm and complex theory behind it make it unappealing.

The proposed work aims at investigating some of these issues and proposing new
solutions.
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Chapter 3

Incorporating Multiple-Point
Runs in Geostatistical
Simulation

This chapter covers the development and implementation of a simulation algorithm
that accounts for runs in multiple directions. This algorithm considers simulat-
ing single-point events using multiple-point data. This is done in an hierarchical
indicator framework, that is, the runs are simulated for one threshold at a time.
Once the simulation is completed for the first threshold (either the highest or lowest
cutoff value), the generated runs are used as conditioning information for the next
threshold. The implementation of this algorithm shows artifacts that invalidate the
practical use of the proposed method, however the research is considered valuable
due to the insight it provided.

Some general concepts are recalled. Key concepts and the definition of runs are
presented in Section 3.1.

The analytical derivation of the frequency of runs for a general case is exposed,
with application to the multi-Gaussian and independent cases (Section 3.2).

Hierarchical indicator simulation accounting directly for multiple-point runs is
presented in Section 3.3. Implementation details are presented. Some examples in
one and two dimensions are presented and the problems encountered are discussed.

Finally, some comments about trying to directly account for runs in simula-
tion and discuss an alternative approach to incorporate multiple-point statistics are
presented (Section 3.4).

3.1 Introduction

3.1.1 Key Concepts

Multiple-Point Statistics as Runs Multiple-point (MP) statistics are different
summaries of the multivariate spatial distribution of the variable. These statis-
tics are estimated by the frequency of occurrence of the spatial arrangement
of the multiple points (see related discussion on Section 2.2). In general,
if the variable of interest is continuous, the indicator paradigm can be used
to characterize it as a binary event at several thresholds (see Figure 3.1).
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Figure 3.1: Coding a continuous variable into indicators for different thresholds.

As discussed in Section 2.3.6, the data is considered for a fixed threshold
as being above or below it. Multiple thresholds can be considered, allowing
a discretization of the range of variability of the data. Accounting for mul-
tiple locations adds additional complexity to the problem. The inference of
multiple-point statistics is done by calculating the frequency of the arrange-
ment of indicators for the multiple locations from some source. This can be
a training image, as in most proposed methods, or data with some repeated
pattern, such as drillholes, as in the approach proposed in this research. The
larger the number of points considered in this multiple-point arrangement,
the harder to infer the statistic from data, since a larger number of samples
is required as the number of elements of the MP pattern increases. For in-
stance, there are 32 possible combinations of five locations that take a binary
outcome.

In general multiple-point events can be considered for any number of points,
but in practice, only a few points, say 3 to 6, are sufficient to improve the
appearance and performance of numerical models. Deutsch [34] showed how a
simple 4 point pattern generates realizations that look much more realistic even
reproducing long range features. Most application of multiple-point statistics
utilize a small number of points in their definition of the pattern (see for
example [15, 153, 159, 160]).

In this chapter, we focus on utilizing multiple-point configurations arranged
in lines. Furthermore, the points must be equidistant (Figure 3.2). Other
configurations could also be used if enough replications of the spatial arrange-
ment are available. As in most practical applications, these constrains on the
multiple-point configuration can be relaxed and the multiple-point statistics
can be inferred from data approximately equidistant or that approximately
falls in some patterns.

One advantage of using linear strings of data is that inference is possible from
drillhole data. A drawback is that curvilinear features will not be captured by
this statistic. In any case, resorting to training images is always an alternative
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Runs Other MP Configurations

Figure 3.2: Multiple-point configurations valid as runs are shown on the left. The
configurations on the right could also be used if enough replications were available
for inference.

to make inference possible.

Nesting of Runs As illustrated in Figure 1.1, nesting of runs naturally occurs
for continuous variables, when the indicator coding is used. Runs above the
current threshold are also above any lower threshold. This property can be
used to simulate hierarchically. The runs at one threshold condition the next
threshold (see below).

Hierarchical Simulation The idea of simulating one indicator at a time, starting
with the highest (or the lowest) and proceeding hierarchically to the lower
(higher) ones is attractive because order relation deviations would be avoided
by construction. Furthermore, the reproduction of the proportions within each
class would be controlled at every threshold.

Order relation deviations are one of the main problems of indicator simula-
tion. Each indicator is estimated separately, so the algorithm does not impose
the conditions required for a cumulative distribution. Although indicator cok-
riging (see Section 2.3.6) would partially solve this problem of consistency
between thresholds, it could not be applied in a hierarchical framework and
reproduction of runs would be difficult.

This hierarchical approach has been used before for indicator simulation. Fur-
ther discussion can be found on [26] and it is further investigated in Appendix
D. This is a key concept for the method proposed (see Section 3.3).
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3.1.2 The Theory of Runs

The results presented here are based on a paper by A. M. Mood published in 1940
[123]. Mood summarized most of the work done previously by other authors and
can be considered as the basis for the majority of the subsequent statistical studies
on runs (see for example [57, 67, 73, 124, 149, 161]). Mood derived the “distribution
of runs of given length both from random arrangements of fixred numbers of elements
of two or more kinds, and from binomial and multinomial populations”. He also
gives the limiting form of these distributions as the sample size increases. Those
limit distributions are all normal. The results are based on combinatorial analysis,
so independence between the elements is assumed at all times. Binary events are
of particular interest to us, since these results are to be applied in the indicator
framework.

Let us first consider a sequence of uniform random numbers between a and b. A
threshold 2; can be set and then rename each number with a zero, if it is greater
than zg, or a one, if it is less than or equal to z;. That is, the values are coded
as indicators (see Equation 2.3). Since the numbers are uniformly distributed,
they can be considered as drawn from a Bernoulli distribution with probability of
drawing a one equal to p = 2:=2, Zeros are drawn with probability ¢ = 1 — p. Now
that a sequence of zeros and ones is available, the length of strings of ones and zeros
can be evaluated. This is what is called runs.

For uniform random sequences, the distribution of runs of given lengths is known,
so this property can be used to test pseudo-random number generators (see Ap-
pendix A for further examples). The special case when 2; = 0.5, a = 0.0, and
b = 1.0 originated the so called tests of runs above and below the mean (or the
median).

The following example shows how to calculate the runs for a sequence of uniform
random numbers between 0 and 1, using the median as a threshold (2 = 0.5).

Let the sequence be:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51

This sequence would generate the following sequence of zeros and ones (values
above or below the median):

,01,1,0,0,0,1,0,0
and the sequence of lengths of runs above/below the median would be:
1,1,2,3,1,2

Considering that there are no zeros and n; ones (and knowing that n = ng+mn,)

then the proportions ¢ = %2 and p = 7% of values above and below the threshold

can be calculated. The total number r of runs above and below z; should follow a
normal distribution with the following mean and variance [123]:

m,=E{r}=2-n-p-q
af=E{(r—E{r})2}=4-n-p-q-(1—3'P'Q)
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When the threshold is the median (or the mean) of a uniform distribution then,
the parameters are simply:

SN
Il

NS

My =

i3
Q

The number of runs above zj of length ¢, noted my,,, can be calculated as:
_ ('n.1 + 1)(2)71((:)

where the factorial z(®) corresponds to z(¥ =z - (z —1) - (= 2)+...- (z —a+1)
The number of runs above z;, of length greater than or equal to i, noted my,,,
can also be calculated:

_ (n1+ l)n((,i)

80i — n(,)

The covariance and variance between the number of runs of zeros of different
lengths ¢ and j are given by:

n§2) (ny + 1)(2)n(()i+j ) 3 n2(ny + 1)2n((,i)n(()j )

0'1;]'

n(+i+2) n(+D) G+
P )@+ )@ (o + 1)@
G = (2it2) D) T G

The expected value for the total number of runs of zeros and its variance are
given by:

n1 + Ln
My, = E{ro} (m+Ljno - Jno
o2 o (mt 1)@nd
o nn(?

Finally, when ng and n; are fixed, the distribution of the total number of runs
of elements of zeros (or ones) is asymptotically normal:

20,2
Nnoni1 Ngn
’r‘oNN( y 0 1)

n n3

When the number of elements are random variables drawn from a binomial
population, then the numbers ng and n; are not fixed and the results change. The
mean and variance of runs of zeros of length 7, and the covariance between runs of
zeros of lengths ¢ and j, become:

Mry, = ¢'p{(n—i-1)p+2}
o5 = ¢Pp{(n—i-5)@p*+ (n—i-j)p(l+5q)
+6¢° — (n—i—1)p+2)((n—j — p+2)}
oi = ¢¥p*{(n—2i)Pp?+ (n—2i)p(1 + 5q)

+6¢° — (n—i—1)p+2)’} +¢'p((n —i— 1)p+2)
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where p and ¢ = 1 — p are the probabilities of drawing a one and a zero respectively.
And the limit distribution of the total number of runs is asymptotically normal
with the following mean and variance:

r ~ N (2npq , 4npg(1 — 3pq))

Most of the moments of the distribution of runs for a random uniform case can
be predicted. Analytical or approximate expressions for correlated sequences are of
interest (in particular, the multi-Gaussian case, see Section 3.2).

For geostatistical applications, the indicator coding (Equation 2.3) can be ap-
plied to define two types of elements (zeros and ones). The continuous random
variable Z is transformed into a binary random variable I.

Consider the following sequence of uniform numbers in [0,1] and the three se-
quences coded for thresholds 0.25, 0.50, and 0.75.

z-value:  0.35 0.07 0.85 0.94 0.66 0.48 0.65 0.35 0.79 0.19
W(z;22=02): 0 1 0 0 0 0 ©0 ©0 0 1
iz;22=050): 1 1 o0 0 0 1 0 1 0 1
i(z;23=075): 1 1 0 0 1 1 1 1 0 1

A run of length L above a threshold z; can be identified as a sequence of L + 2
adjacent nodes valued as zeros, except for the first and last nodes, valued as ones.
The first run above the threshold 0.25 in the previous example is of length L = 1.
The second run has a length L = 7 and is highlighted below.

z-value:  0.35 0.07 0.85 0.94 0.66 0.48 0.65 0.35 0.79 0.19
Wzz1=025): 0 1 06 0 0 O0 ©0 o0 0 1

Notice that the runs above the threshold are nested, that is, runs above a thresh-
old contain the runs above a higher threshold. This is shown next, where runs above
the thresholds 0.25, 0.50, and 0.75 are highlighted, showing the nesting.

z-value:  0.35 0.07 0.85 0.94 0.66 0.48 0.65 0.35 0.79 0.19
(z;iza=025): 0 1 0 0 0 0 0 o0 0 1
i(z;22=050): 1 1 0 0 0 1 0 1 0 1
i(z;z3=075: 1 1 o0 0 1 1 1 1 0 1

The same happens with runs below a threshold.

zvalue:  0.35 0.07 0.85 0.94 0.66 0.48 0.65 0.35 0.79 0.19
Wz21=025): 0 1 0 0 ©0 O0 0 0 0 1
i(z22=05): 1 1 0 0 ©0 1 0 1 0 1
i(z23=075: 1 1 o0 © 1 1 1 1 o0 1

As seen in this example, indicator coding facilitates the application of the concept
of runs in geostatistical simulation. Several additional exploratory examples using
runs are presented in Appendix B.

3.2 Analytical Derivation of the Frequency of Runs

In general, multiple-point events can be analytically derived if the multivariate spa-
tial distribution is known. This is very uncommon. We show the multivariate
Gaussian and independent cases.
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3.2.1 General Case

A run of length L of elements below a threshold can be seen as the event of having
a string of nodes of length L + 2, such that the first and the last values are above
the threshold z; and all other nodes are below the threshold value. The separation
distance between nodes is h.

This multiple-point event occurs with the following joint probability:

Prob{Run of length L} =
Prob{Z(u) > 2, Z(u+h) < 24, ..., Z(u+ L-h) < 2z, Z(u+ (L + 1) - h) > z}

This joint probability can be calculated by a recursive application of Bayes’
postulate, that is, if A and B are two events (multiple-point events or not), the
probability of both events happening is equal to the probability of the first event
conditional to the second multiplied by the probability of the second event occurring:

Prob{A,B} = Prob{A|B} - Prob{B} (3.1)

In the case of runs, the multiple-point event “run of length L” has a probability
of occurring given by:

Prob{Run of length L} =
Prob{Z(u) > zx|Z(u+h) < 2x,....,Z(u+L-h) <z, Z(u+ (L+1)-h) > z} - ...
Prob{Z(u+ L-h) < zg|Z(u+ (L +1)-h) > 2} -
Prob{Z(u+ (L +1)-h) > 2z}

3.2.2 The Multi-Gaussian Case

The conditional probabilities involved in the calculation can only be completely
retrieved in a case where the spatial law is fully known. In the multi-Gaussian case
all conditional distributions are characterized by the mean vector and covariance
matrix.

Let us denote the multi-Gaussian variable Y. It could be the normal score trans-
form of Z. Code the data as indicators at threshold y; and rewrite the expression
for the joint probability as:

Prob{Run of length L} =
Prob{I(u) =0|/I(u+h)=1,..,J(u+L-h)=1,I(u+ (L +1)-h)=0}-
Prob{I(u+h)=1I(u+2-h)=1,...,J(u+L-h)y=1,I(u+(L+1)-h)=0}-..-
Prob{I(u+1-h)=1|I(u+ (L +1)-h) =0} Prob{I(u+ (L +1)-h) =0}

Now, conditional probabilities can be calculated in the multi-Gaussian case, by
simple indicator kriging [91]:
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Location: u uth u+2h u+3h utsh u+sh

P,=Prob{l(u+5h)=1)

P,=Prob{l(u+4h)=1|(u+5h)=0)
Ps:Prob{l(u+3h)=1I|(u+4h)=1,|(u+5h)=0) -nn

P,=Prob{l(u+2h)=1](u+3h)=1,u+4h)=1,}(u+5h)=0) [ [1]1]0o]
Ps=Prob{l(u+h)=1}I(u+2h)=1,I(u+3h)=1,I(u+4h)=1,I(u+5h)=0) | [1]1[1]0]
Ps=Prob{l(u)=1|l{u+h)=1,I(u+2h)=1,I(u+3h)=1,I(u+4h)=1,I(u+5h)=0) 1]1{1]1]0]
Prob{Run of length L=4}=(1-P,) P, P; P4 P5 (1-Pg) ol 11 1]111]o0l}

Figure 3.3: Illustration of the increasing conditioning in the calculation of the joint
probability of having a run of length L. L=4 in this example. The calculation of the
terms P, Ps, ..., P is done by simple indicator kriging.

n n
Prob{Y (u) < gk|(n)} = Prob{I(w) = 1{(n)} = X;- I(w;) + (1 = > _ N\;) - Flux)
j=1 i=1
where the A, j = 1,...,n are the solution of the system:

n
Z)\) . Cl(ukauj) = Cl(uk,ui) k= 1,..n
j=1

The increasing conditioning is illustrated in Figure 3.3. Notice that the covari-
ance function Cr(ug,u;) has to be calculated from the continuous covariance of the
Gaussian variable, as shown in [43).

3.2.3 Example

The previous results can be tested by constructing a realization of a multi-Gaussian
variable with a known covariance function. Then, the continuous simulated values
can be coded as indicators for a given threshold, say the median, and the indicator
variogram can be calculated for that threshold [88]. This experimental indicator var-
iogram must be modelled or derived analytically from the known covariance Cy (h).
Simple indicator kriging is used to calculate the conditional probabilities with in-
creasing conditioning, as illustrated in Figure 3.3. A chart showing a comparison
between the theoretical calculation and the experimental result is presented in Fig-
ure 3.4. An almost perfect match between the two suggests that the n-point con-
nectivity curve (see Section 2.5.3) calculated from a realization obtained through
a multi-Gaussian simulation algorithm can be predicted analytically. Journel and
Alabert [91] used the n-point connectivity function to illustrate the improvement
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Probability of having a run of length L
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Figure 3.4: Comparison of theoretical and experimental results for the calculation of
the probability of having a run of length L. This is also called the n-point connectivity
function.

obtained by using indicator simulation over Gaussian simulation. They calculated
the n-point connectivity function from the realization obtained via a Gaussian tech-
nique. As stated above, this calculation could have been done without recursing to
a numerical rendition, since it is analytically defined.

3.2.4 The Random Case: Relation with Mood’s Results
Mood’s results [123] are calculated in a finite domain of size n. The probabilities
derived using a recursive application of Bayes’ postulate (Equation 3.1) are defined

in an infinite (ergodic) domain. When all elements are drawn independently, then
Bayes postulate becomes:

Prob{A,B} = Prob{A} - Prob{B}

Thus, all conditional distributions are reduced to their marginals. The proba-
bility of having a run of elements below a threshold of length L is simply:
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Prob{Run of length L}

Prob{I(u) =0} - Prob{I(u+h)=1}-...-
Prob{I(u+L-h) =1} Prob{I{(u+ (L + 1)) =0}
ol g

Taking Mood’s expected values for runs of length L, when the elements above
and below the threshold are drawn from a binomial population, and considering the
total number of events of length L + 2 in a sequence of n nodes, the proportion of
multiple-point events of size L + 2 of which the nodes have a run configuration can
be calculated. Thus, the corresponding probability can be derived by taking the
limit as n approaches infinity:

L
. prg{(n—L~-1)q+2}
Prob(rie) = lim, 7{L—(L+2)+1
. 2pq
— 1 L 2
N )
= pt-¢

Thus, the result derived by Mood is exactly the same as the analytical derivation.
The total number of runs can be calculated as the infinite sum of the expected
number of runs of length L:

o0
m, = mro+mrl=E{Z(r1L+r2L)}

L=1
)

= Z n (Prob(rir) + Prob(rar))
L=1

o0
= Zn(qu2+qu2)
L=1

I
M]3

n(p"(1-p)?+¢"(1-9)?)

t~
]

1

Rearranging the values and using the following result for the infinite sum [80]:

n
. L__ %
dm ) et =1 k<t

we get:
mr = E{r} = n(p(l-p)+q(1-q))
= n(p-g+q-p)
= 2npq

which is exactly the value given by Mood.
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3.2.5 Discussion

The results presented above show the simplicity and ease of calculation when the
multivariate distribution is known. Real data do not show in general a multi-
Gaussian or pure random behavior, hence the analytical derivation and modelling
of the multiple-point runs is not straightforward. Inference must be done from some
source of information that characterizes the multivariate spatial distribution of the
variable. Borrowing these features from a training image is the easiest option, since
in that case, the spatial law is assumed to be represented in this reference image.
As pointed out earlier, it has the advantage of being exhaustive and consistent (pos-
itive definite). A second option is to infer these multiple-point statistics from data.
Unfortunately many problems arise when extracting statistics from samples:

1. We can find strings of data from drillholes. Channel samples are also gener-
ally taken in lines. Blastholes are generally drilled in pseudo-regular arrays.
Two dimensional configurations could be obtained from blasthole samples.
Approximations could be made to find runs in the horizontal plane, in sev-
eral directions. Reconciling these one and two dimensional data with a three
dimensional consistent model may be difficult (see next).

2. Ensuring positive definiteness of statistics from different sources is difficult.
The combination of one and two dimensional information must lead to a valid
three dimensional mathematical model of the correlation of multiple-points.
This problem is also encountered when considering training images.

3. Kriging methods or more generally, the normal equations, require a positive-
definite model for the covariances of all orders, which is particularly difficult
when considering cross-covariances between statistics of different order. How-
ever, some updating techniques permit to avoid the modelling of these covari-
ances. Disregarding the fact that the mathematical model must be valid may
allow calculations, but will be reflected in the final result as order relations
deviations or other artifacts, which are a sign of inconsistency of the model.

The advantage of working with statistics extracted from actual data is a data-
driven model. The more statistics can be reliably inferred from the data, the more
information this model will share with the data set used. This should reflect favor-
ably in the performance of the numerical models built.

3.3 Hierarchical Indicator Simulation

A first attempt to directly simulate in an indicator framework, accounting for
multiple-point runs, is documented. The algorithm considers a hierarchical ap-
proach to erode a field. Runs above and below several thresholds are considered
in different directions. The general idea is described next; the input information
required, selection criterion, implementation details and examples are also included.

3.3.1 Methodology

The general methodology is presented next. Every point is discussed more exten-
sively at the end of the list.
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1. Start at the highest threshold zk.

2. Fill the grid with zeros except at conditioning points, where the z-values are
coded as indicators. A value of zero means the node has a z-value above 2.

3. Calculate the current histograms of runs above and below the threshold for
all the directions of interest.

4. Visit every node in the grid that is not a conditioning value or has not been
frozen at a previous threshold (none of them has been frozen yet at zx ). Nodes
that at the current threshold have already been switched to one should also
be skipped during this process.

e Switch its value to one.
¢ Recalculate the histogram of runs considering this change.

e Calculate the value of the selection function with the current values of
the nodes in the grid. Save that value for comparison.

e Reset the value of the node to zero to restore the original state.

5. Assign a value of one to the node with highest selection function value.
6. Update the histograms of runs above and below the threshold in all directions.

7. Go back to 4 and repeat until enough nodes have been switched to honor the
proportion below the threshold.

8. Once enough nodes have a value of one, draw a simulated value between the
current threshold and the adjacent higher threshold (or a maximum value if
the current threshold is the highest) at all locations that have a value of zero,
which means their z-value is higher than the threshold value.

9. Move to the adjacent lower threshold and reset all the nodes that do not
have a z-value assigned to zero. Recall that only conditioning data and nodes
with a value higher than the previous higher threshold have already a z-value
assigned.

10. Go back to 3 and repeat all the steps at the current threshold.

11. Once the lowest threshold is reached and the switching of nodes is completed,
then all nodes with a value of zero are assigned a z-value simulated between
the lowest threshold 2; and the adjacent higher threshold z3. The nodes with
a value of one are below the lowest threshold and a simulated value is drawn
between a minimum value z,,;, and the lowest threshold z;. This concludes
the simulation.

The algorithm can be seen as an erosion process. The grid starts filled with
very high values and is then eroded. The erosion is performed using some decision
rule to select the nodes. This idea is repeated in smaller and smaller domains as
lower thresholds are considered. If a node has been set to be above the current
threshold, that means it is also above all subsequent lower thresholds, hence it is
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frozen and not considered in the domain for the lower thresholds. The domain for
the first threshold is the entire area minus the nodes that correspond to conditioning
samples. The nodes not eroded for that threshold are frozen and cannot be moved
for the next thresholds.

The algorithm was initially implemented to reproduce the indicator variogram.
Conclusions for this case are illustrated in Appendix D. The discussion presented
here is for the case of reproducing runs.

The algorithm is illustrated on Figure 3.5. Three thresholds have been con-
sidered and a one-dimensional grid of ten nodes is being simulated. Starting at the
highest threshold z3, all ten nodes are simulated to be above or below that threshold.
The runs above and below that threshold should be reproduced (see discussion on
the selection of nodes, next). Nodes that have been assigned a zero are higher than
23, thus higher than 25 and z; as well. Simulated values are drawn between z3 and a
maximum value 2Zpmqz, and with some extrapolation shape. All the nodes that have
a value higher than 23 are not available at the following threshold z3, they are dis-
carded from the domain for simulating at z3. The nodes in the reduced domain are
now simulated, considering the frozen nodes as conditioning data. The algorithm
continues in this fashion up to the last threshold z;. The nodes assigned a zero in
the binary simulation are now drawn between z; and 2o with some interpolation
shape, and the values that are below 2z; are drawn as well between a minimum value
Zmin and z; (see Section 2.3.6). This concludes the simulation.

Input Information

The algorithm requires two basic input statistics:

e Proportion of nodes below the threshold, that is, the cumulative distribution
function value of the threshold.

e Histograms of runs above and below the threshold. They can be inferred
from drillhole data or from any source where the samples represent the same
support and are linearly located.

Runs are calculated as illustrated in Figure 3.6 [131], that is, taking what
classically is called a run of length L, we can consider it as one run of length L plus
two runs of length L—1, plus three runs of length L—2, and so forth. A run of length
L corresponds to ¢ runs of length L —i 41, with ¢ = 1, ..., L. Consider a simplified
case with a run of length 3 and two runs of length 2. The histogram of accumulated
runs would be calculated as the sum of the three histograms, see Figure 3.7. The
reason for changing the classical definition of runs to the one presented in Figure
3.6 is that the construction of histograms of runs with the new definition generates
a plot with a decreasing number of runs as the length increases. This is done to
further control long runs, since a long run (in the sense of the classical definition)
will have components for all shorter lengths.

Inference of these statistics requires data in form of drillholes or wells, and a
representative distribution to obtain the proportions for each class.
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Figure 3.5: Schematic of hierarchical indicator simulation of runs. Top: all nodes
are available to be simulated. Nodes that have been assigned a zero are frozen for
all subsequent thresholds, since they are higher than 2z3. Simulated values are drawn
between z3 and a maximum value zp,;. The remaining nodes are considered for the
next threshold. Middle: the nodes not frozen are simulated at threshold z;. The
frozen nodes from the previous threshold are used to condition the simulation of
the remaining ones. Again, nodes with indicator values equal to zero are discarded
from the simulation domain for the subsequent threshold z;, while the ones valued
as one become the domain for the simulation at the following threshold. Bottom:
finally, the last threshold z; is simulated with a reduced domain. After nodes have
been assigned an indicator value, simulated z-values are drawn between thresholds,
and between the lower threshold z; and a minimum value 2,4,.
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Figure 3.6: The concept of “accumulated runs”: one single run of length 6 corre-
sponds to 2 accumulated runs of length 5, 3 accumulated runs of length 4,..., and 6
accumulated runs of length 1.
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Figure 3.7: The histogram of accumulated runs given three runs of length 3, 2, and
2.
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Figure 3.8: Histograms of runs above and below the threshold at the beginning of
the simulation (dashed lines). The current histograms must converge to the targets
(solid lines).

Selection of Nodes

The selection of which node to switch is critical to obtain the desired result. The
selection is based on a function that quantifies the closeness of the current histograms
of runs to the target histograms of runs for that particular threshold.

Recall that the histogram of runs to be honored is defined for several directions.
The current histogram is calculated by counting how many runs of zeros (above the
threshold) and ones (below the threshold) are found in every direction of interest.
The starting histograms in a case without conditioning data are shown in Figure
3.8.

Runs are counted up to a maximum length. The mismatch for every length,
between the current state of the simulated field and the target values, is calculated
for runs above and below the threshold for all direction of interest.

A decision rule is applied to pick a node whose indicator value is going to be
switched to one. Only nodes that have not been frozen are considered in this op-
eration. Hence, conditioning data are not included in this process. The node to
be switched is selected to bring the current histograms of runs as close together as
possible to the target histograms. The selection criterion could hence be considered
“sreedy” in optimization terms, that is the fastest path to convergence is followed.

The measure of closeness of the current and target histograms is a weighted func-
tion of mismatches for runs of different lengths, giving equal value to all directions.
More complex rules could have been considered, however simplicity was preferred in
order to extract some insight from sensitivity analysis of the result as a function of
changes in this selection rule. The histogram of runs above and below the threshold
are also equally weighted, that is, none of them is favored.

The decision of which one to switch is made based on a selection function that
will penalize changes that do not significantly improve the matching between the
current and desired histograms of accumulated runs above and below the threshold.
This is considered for all directions where the histograms of runs are available.
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The selection process considers evaluating at all available nodes at the threshold
the value of a selection function:

2-maxl

s(ui) = H fabove(l) * fbelo'w(l)a i=1,.,N (3-2)
1=1
where [ is the length of a cumulative runs, maz! is the maximum length of runs in
the target histograms, N is the total number of nodes in the grid, and

0.054+095.e~ ()" | ifA<0

above )= w
fatoue (1) { 0.05+0.95~e‘(%) , otherwise

with A being the difference between the number (frequency) of cumulative runs of
length [ in the current histogram, noted freqeyr(l), and the number of cumulative
runs of the same length in the target histogram, noted fregq,q(l):

A = freqeurr (l) - f're‘harg(l)
fretow(l) is defined exactly as fopope(l) but with

A= fTCQtarg(l) — freqeurr(l)

The parameters a (scaling) and w (power) give the shape of the function f(l),
as illustrated in Figure 3.9.

The idea behind the selection function (Equation 3.2) is to find a path towards
convergence of the simulated runs to the desired runs. It was found, by experiment-
ing with the selection function, that the simulation will tend to take easy paths,
such as building up some runs and ending up with very long runs, if the selection
function did not force the best possible improvement in histogram matching. Al-
though highly heuristic, the selection function tends to generate realizations with
histograms of runs close to the target.

Tuning was always necessary to ensure good reproduction of the target statistics.
As the complexity of the problem increases, that is, as more directions, thresholds
and longer runs are accounted for, the tuning becomes more difficult. Parameters
were then found by trial and error.

Consider the starting case with only one node below the threshold (coded as a
one) and all other nodes above it (coded as zeros). There are two possibilities: we
can either cut the long run of zeros into two of approximately the same size, or we
can switch the node at the end of the run of zeros, shortening the long run by one
node (see Figure 3.10) and increasing the length of the run of ones, of length one
to two. The first option brings both histograms closer to the target than the second
option. Anything in between these two extreme cases will yield an improvement in
the matching of histograms of runs that is not as good as the first case, or as bad
as the second case. The selection function must favor nodes as in the first option.
This will bring the histogram of runs of the simulated model closer to the target
ones faster.

The selection function presented in (Equation 3.2) reflects this concept by
giving a value close to one to changes that favor the closeness of the model and
target histograms. If the mismatch is exactly zero for all lengths of runs considered,
the selection value will be one and the node will be picked, since it has the highest
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Figure 3.9: Function f(I) used in the calculation of the selection function value for
each candidate node to be switched. In this case, the parameter a has been set to
10 and w takes the values 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0.
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selection value possible (equal to one). In this case the simulation will reproduce
exactly the target values.

This selection value is calculated as a product of the values taken by fapove(l)
and fpelow(l) for all length | = 1,...,2 - maxl, where mazl is a maximum length
considered. The function has been built symmetric with respect to a mismatch of
zero, because having less runs of a given length, reflected in a negative mismatch,
means that the model will show a lower connectivity of nodes for that threshold
than it should. This should also be avoided.

The selection function is built as a product of the exponential functions of the
mismatch for different length, f(I), because in this manner, if for a given length the
mismatch is unacceptable (close to zero), it will significantly lower the value of s(u;).
If for example s(u;) was built as a sum of the f(I) values, a node could be selected
to be switched below the threshold, that improves the matching for all lengths but
one. The one length that is not matched could be critical in the performance of
the realization. Considering the product of the f(I) values, it is ensured that the
improvement is overall better than if any other node is switched. Although the
definition of what is “good” is arguable, it is considered that an improvement for
all lengths of runs is better than a more significant improvement on some lengths
at the cost of sacrificing the matching for other lengths.

Several shapes of the function f(I) for both cases (runs above and below the
threshold) are considered by means of an exponential function. These are defined
by two parameters:

e Scaling parameter o affects the horizontal scale of the plot (Figure 3.9). The
same shape is preserved as long as the other parameter, w, is kept constant;
only the horizontal scale is distorted. This parameter is linked to maximum
length of runs considered, maxl: it was found that by fixing the parameter a
to be equal to 5 - maxl gave consistent results. In this manner the algorithm
also generates results that are independent on the grid definition and size of
the domain simulated.

e Power parameter w changes the shape of the function f(I). The higher this
value, the more severely high mismatches are penalized. It also allows more
fluctuations around the target values, by widening the interval of mismatches
where the value of f is close to one. It was found that convergence happened
for several values of this parameter. In other cases, a value for w could not be
found to have a good matching of the histograms. Matching happened only
for some lengths of runs, but others were always different than the target (see
the examples next).

Updating Histograms of Runs

Since the selection is made by comparing the value of the selection function after
switching all available nodes, one node at a time, this process is computationally very
expensive. The histograms of runs must be recalculated every time. For instance, if
four directions of runs are considered, and recalling that we have one histogram for
runs above and one for runs below the threshold, and considering a maximum length
of runs of five nodes, 40 values must be updated for every single node switched to
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Figure 3.10: Example showing how switching a node that cuts a long run (sixth node
from top to bottom on the string) gets both histograms of runs closer to the target
than shortening a run (switching second node from top to bottom on the string),
that is, switching one node at the end of a run, which generates a less significant
change in the histograms of runs.
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evaluate the selection function. Considering a grid with 10000 values, which is small
for most practical applications, and a threshold corresponding to the quantile 0.90,
the number of values needed quickly goes to 0.36 million. That is 0.36 million values
have to be updated every time a node is switched. Since 90% of the 10000 nodes
have to be switched at the highest threshold, the count goes up to the billions of
values that must be recalculated only at that threshold. Multiply this by 5 or more
thresholds and by the number of operations required on each calculation, and the
algorithm becomes unpractical due to time considerations.

To avoid this problem, fast updating of the histograms of runs is required. The
idea is then to store the data as strings, instead of individual nodes. One node will
be in as many strings as directions of interest. Every time the value of a node is
changed, all strings that consider that particular node are updated.

Histograms of runs are kept as partial sums of counts of runs in individual strings.
Fast updating is done by analyzing the change on a node value only in the strings
that contain that node, reducing considerably the amount of calculations required
to update the histograms.

The counts of runs above and below the threshold for each direction are sub-
tracted to the current histograms of runs (global) and the new counts of runs within
the strings are computed and added back to the global histograms of runs.

Once the selection value is calculated, this process is reverted to get back the
original global histograms of runs on each direction.

Finally, when the node to be switched has been selected, the process is repeated
one last time only with that node to obtain the updated histograms of runs above
and below the threshold for every direction.

3.3.2 Implementation Problems

Several problems were found during the implementation process and most were
solved using rather classical solutions:

e The grid was wrapped to avoid edge effects [13, 154, 173]. The main concern
was the calculation of histograms of runs. If a small grid is simulated edges
will have a much larger impact than in the case of simulating a larger grid.
The intention was to simulate honoring histograms of runs and to have a result
independent of the grid definition.

This is a very typical problem found in many applications. Simulated anneal-
ing shows edge effects also known as thermodynamic edge effects [41]. With
neural networks, statistics on nodes close to the edges are calculated consid-
ering the nodes on the other end of the grid, that is, nodes that are adjacent
when the grid is wrapped, to avoid these edge effects [13]. The same solution
was applied to avoid these artifacts.

e Determining the right set of parameters w and a was done by trial-and-error.
Running several examples spanning a reasonable range of parameters gave
insight about the relevance of each. As mentioned before, the parameter a
depends on the maximum length of runs considered. The consistency in the
results seen setting a = 5 - maxl is due to this standardization of the penalty
given to mismatches for different lengths. That is, the lengths considered
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when calculating the histogram of runs are treated equally for different values
of maxl, since always the parameter a was set at the same relative value
5 - mazl. w could not be related to any parameter of the simulation and had
to be found by trying different values and observing if convergence to the
target histograms was reached.

e Convergence is not ensured by this method. It was found that in some cases
the target histograms were not reached by the algorithm as it was. In most one
dimensional examples computed, alternations around the desired proportion
were necessary to ensure convergency (see for example [11]).

Alternations can be considered as an erosion-dilation process. More nodes
than necessary are pushed down (eroded), that is, their indicator values is set
to one. After a given proportion of ones has been reached, larger than the
target proportion, dilation starts by switching the ones to zero. Again, this
is done until a proportion of zeros larger than the target is achieved. These
processes of erosion and dilation are repeated getting closer and closer to the
target proportion.

Figure 3.11 shows an example where 9 alternations are used. The target
proportion is 50%, that is, the threshold corresponds to the median. Each
alternation goes beyond the required number to be switched, but every time it
gets closer to the target proportion. The first erosion step consists on switching
nodes until 90% of them are ones. This is far beyond the target of 50% of ones.
Once this proportion of 90% of ones is reached, the algorithm is changed to
start dilating. In practice, zeros are seen as ones and ones are seen as zeros, and
the algorithm keeps eroding with the same rules than before. The first dilation
corresponds to switching 80% of those ones to zero. The new proportion is
now 10% of ones. Notice that the configuration of zeros and ones at this point
is different than the configuration that existed when the first 10% of the nodes
were eroded, that is, in the first pass of the algorithm. The new erosion process
starts with 10% of ones with a spatial distribution different than the 10% of
ones obtained in the first erosion. This concept is repeated to sequentially
achieve 80% of ones in the second erosion, 20% of ones in the second dilation,
70% in the third erosion, 30% in the third dilation, and so forth, until the
right proportion of 50% of ones is achieved after nine alternations. The key
point of the process is that every time erosion and dilation has occurred, a
new starting point is available.

It is interesting to mention that some schemes of alternations made the his-
tograms diverge from their targets, instead of converge.

e Precision problems in the calculation of the selection function value were en-
countered. The product of many very small numbers in Equation 3.2 caused
a problem of computer precision. When too small, these numbers are rounded
down to zero, making them undistinguishable from the point of view of the
selection function. This caused the algorithm to draw randomly from them,
since they looked all “equal” to zero. This was solved by taking an arbitrary
number of lengths, in this case 2 - mazl, where mazl is the maximum length
on the target histograms of runs. Also, the function f has a minimum value
of 0.05 to avoid values too close to 0.
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Figure 3.11: The concept of alternating to converge to the solution is showed in this
schematic.

Selection functions that fixed this problem did not perform well in terms of
convergence. A selection function consisting of the sum of the exponential
functions of the mismatches for different lengths was tested, but the realiza-
tions never matched the target values.

3.3.3 Examples
Examples in One-Dimension

The algorithm was tested for several one dimensional cases, with one threshold. The
parameters a and w are critical to ensure convergence. After a sensitivity analysis,
it was found that a should be approximately the length of the simulated array, while
w is dependent on the complexity of the problem. All of the examples presented
worked with w = 4.6.

Random Case The first case consists of simulating the runs found on random
sequences, when coded as above or below a threshold.

A reference sequence of random numbers was generated with the random number
generator acorni. The numbers generated were then coded as 1 if below or equal
0.5, and 0 if above 0.5.

The reproduction of the histograms of runs above and below the threshold, the
reference string of indicator values, and five realizations are shown in Figure 3.12.
Some fluctuations around the target values are observed. The algorithm tends not
to reproduce the runs of length one, that is, isolated white or black nodes. The
realizations look more continuous than the reference, which has no spatial continuity
by construction. It can be seen in the histogram of runs below the median, that
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Figure 3.12: Reproduction of runs above and below the median for a random se-
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Figure 3.13: Reproduction of runs above and below the median for a regular se-
quence.

some long runs (in white) are generated. Also, notice that the histogram of runs
above the threshold is better reproduced than the histogram of runs below it.

Regular Case A regular array with sets of five nodes above and five below the
threshold was used as a reference to test the algorithm. The reproduction of the
histograms of runs, reference string of data, and five realizations are shown in Figure
3.13. As with the random case, the histogram of runs above the threshold seems to
be better reproduced. This could be caused by the alternation sequence that tends
to give more importance to the histogram above, since the differences are larger (see
Figure 3.8). Some long runs below the threshold are generated and some of the
runs above it are broken into shorter ones.

Multi-Gaussian Case A one dimensional array was simulated using the algo-
rithm sgsim of GSLIB [39]. The realization was then truncated at the median to
generate a binary array. The histograms of runs extracted from it was simulated
using the algorithm proposed. The resulting histograms of runs, reference and simu-
lated strings are presented in Figure 3.14. Notice the apparent good reproduction
obtained from the histograms. Again, when looking at the realizations all runs of
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Figure 3.14: Reproduction of runs above and below the median for a binary array
obtained by truncating a multi-Gaussian sequence.
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Figure 3.15: Reproduction of runs above and below the median for a binary array
obtained from a realistic exhaustive data set.

length 1 seem to be lost. Visually, these realizations appear quite different than the
reference string. All the noise of the reference image is lost in the different renditions
obtained through this algorithm.

Real Datal A string from an exhaustive data set was used to obtain the multiple-
point runs statistics. The resulting simulated sequences showed very good repro-
duction of the reference statistics as seen on Figure 3.15. In this case very few
short runs existed in the reference. The algorithm generated realizations that look
similar to the reference string of indicator values, although short runs are again lost.

Real Data 2 A second example from real data was computed. The histogram of
runs was again very well reproduced and the realizations look similar to the reference
(Figure 3.16) with short runs missing.

Extension to 2D and 3D

Extending the algorithm to two and three dimensions is straightforward. Several
directions of runs can be considered at the same time. The selection function will
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Figure 3.16: Reproduction of runs above and below the median for a binary array
obtained from a second realistic exhaustive data set.

be calculated as the value of the function f(I) for several directions. For example,
working with two directions, the selection function corresponds to the product of
four values of the f(I) function: two corresponding to the mismatches for runs
above and below the threshold for the first direction of runs, and the other two
corresponding to the second direction.

Several examples in two and three dimensions were computed.

Pure Nugget Effect A variable that has no spatial correlation will generate a
variogram with a pure nugget effect, that is, all variability is due to pure random-
ness. In this case, the frequencies of runs above and below any threshold are easily
computed and are a function of the proportion above and below the threshold only
(see Section 3.2). A 40 by 40 nodes grid was used. Figure 3.17 shows indicator
maps for a reference realization . Figures 3.18 and 3.19 show the indicator maps
for two realizations generated with the proposed algorithm. The first one aims to
reproduce runs up to a maximum length of 3, while the second one uses 8 as a max-
imum length. Runs are considered above and below every one of the nine deciles of
a standard Gaussian distribution in four directions with azimuths of 0, 45, 90, and
135 degrees.

Undesired patterns are clearly seen in both realizations, particularly at low
thresholds (the first ones being simulated). They are due to the selection func-
tion used, which does not give an equal probability to every node in the grid to be
set above the current threshold. Figure 3.20 shows the indicator variograms for
the model generated using runs up to a maximum length of 3; Figure 3.21 shows
the result when a maximum length of 8 is used. The dashed lines correspond to
the variograms in the horizontal and vertical directions for the reference image, the
solid lines are the corresponding variograms for the simulated models. In the first
case, the indicator variograms do not reflect the artifact that can clearly be seen on
the indicator maps. In the second case, a higher correlation (lower variogram value)
is seen at some lag distances, in particular 5 and 10 units. These can be attributed
to the selection function. It can be seen that the spatial correlation disappears as
the thresholds move upwards. The final result is shown on Figure 3.22.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.17: Indicator maps for a spatially uncorrelated variable.
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Figure 3.18: Random case: indicator maps for a simulated model using a maximum
length of runs of 3.
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Figure 3.19: Random case: indicator maps for a simulated model using a maximum
length of runs of 8.
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Figure 3.20: Random case: indicator variograms for a simulated model using a
maximum length of runs of 3.
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Figure 3.21: Random case: indicator variograms for a simulated model using a
maximum length of runs of 8.
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Figure 3.22: Random case: maps of the training image and the simulated models
with maximum length of 3 and 8.
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Figure 3.23: Indicator maps for a multivariate Gaussian correlated variable.

Multi-Gaussian Case A second example was built using a multi-Gaussian ran-
dom function. An unconditional realization was generated (sgsim) as a reference
(or training) image. Frequencies of runs and threshold values were extracted from
it. The variogram model used was an isotropic spherical model with a range of 5
units and a 10% of nugget effect. As in the previous case, indicator maps were con-
structed for the nine deciles of the distribution and for each one of two realizations
built accounting for the frequencies of runs considering maximum lengths of runs
of 4 and 8 units. These are presented in Figures 3.23, 3.24, and 3.25. Again, a
regular pattern appears at the lowest threshold with a spacing of 5 units, which is
clearly reflected in the indicator variograms computed for each case (Figures 3.26
and 3.27). The simulated models present a higher nugget effect than the target
indicator variograms, however the shape of the structures appears quite similar to
the ones seen in the reference image.

Finally, the reference image along with the two generated accounting for runs
up to different lengths are presented on Figure 3.28. The noise added at the early
stages of the simulation can be seen on the final models.
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Figure 3.24: Multi-Gaussian case: indicator maps for a simulated model using a
maximum length of runs of 4.
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Figure 3.25: Multi-Gaussian case: indicator maps for a simulated model using a
maximum length of runs of 8.
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Figure 3.26: Multi-Gaussian case: indicator variograms for a simulated model using
a maximum length of runs of 4.
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Figure 3.27: Multi-Gaussian case: indicator variograms for a simulated model using
a maximum length of runs of 8.
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Figure 3.28: Multi-Gaussian case: maps of the training image and the simulated
models with maximum length of 4 and 8.
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Figure 3.29: Indicator maps for real data.

Case using Real Data An exhaustive training image obtained from a section of
a rock collected at a sedimentary deposit is used in this example. The exhaustive
image is used to extract the multiple-point statistics and histogram. The frequencies
of runs above and below the nine deciles of the distribution were obtained. The
indicator maps for the reference image and a simulated model considering runs up
to a length of 10 units in the horizontal direction and up to 5 in the vertical and
two diagonal directions, are presented in Figures 3.29 and 3.30. The indicator
variograms obtained are presented in Figure 3.31. The matching is not good.

Finally, the maps of the reference image and simulated one are presented in
Figure 3.32.

Computation Time

Some of the runs were timed to find out the impact of increasing the model size and
considering longest runs. Around two minutes are necessary to simulate a 40 by 40
nodes model using four directions, nine thresholds, and runs of up to 8 nodes in all
directions.
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Figure 3.30: Case with real data: indicator maps for a simulated model.
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Figure 3.31: Case with real data: indicator variograms for a simulated model.
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Figure 3.32: Case with real data: maps of the training image and the simulated
model.
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Figure 3.33: CPU time required to run a model with nine thresholds and considering
four directions for the multiple-point runs. Left: Models of 20 by 20 nodes, 30 by 30
nodes, 40 by 40 nodes, and 50 by 50 nodes are computed considering a maximum
length of runs of 8. Right: Runs up to a maximum length of 4, 8, 12, and 16 are
considered on a 40 by 40 nodes model.

Sensitivities with respect to the maximum length of runs considered and the grid
size can be seen in Figure 3.33.

For large grids computation time would make this algorithm unpractical, even
if the artifacts were corrected.

3.4 Comments on the Direct Simulation of Runs

The implementation has a few problems that have been partially addressed. Firstly,
there is a problem with the selection criterion, since in the case of pure nugget
effect, all nodes should always have the same probability of being switched to a
lower threshold. This is not happening. Unwanted structure exists in all the models
that does not belong to the phenomenon being simulated.

Convergence is another major issue. The use of heuristic scaling parameters to
make the simulation converge is not appealing. Although rules for these parameters
could be found by sensitivity analysis, they do not have a clear meaning, making
them very difficult to interpret. Problems found in one-dimension were not apparent
in two dimensions. The alternating approach was not needed in the 2-D examples.

This is a type of optimization problem. The more restrictions applied to the
problem, by defining more directions of interest and longer runs, the more difficult
it gets to converge. Depending on the consistency of the data used to infer these
runs, a solution may not even exist. This can be better explained by considering a
combination of runs in one direction that restricts physically the existence of runs
in another direction.

Given all the previous considerations, this approach was discarded, although
some insight is given and it is considered valuable.

Runs do not fully characterize the multivariate spatial distribution of the vari-
able, that means that although in some cases the histograms of runs were closely
reproduced, the simulated images did not look like the reference, since further
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multiple-point features were not captured by this statistic.

The idea of erosion requires the algorithm to take into account the probabilities
of being below the threshold. This was not achieved properly by the proposed
algorithm. In the case of trying to reproduce a variable randomly distributed in
space, that is, without spatial correlation, the probability of eroding a node should
have been the same for all nodes in the field, however the algorithm privileged some
nodes, due to the selection function considered. This is what caused the generation
of undesired regular patterns and invalidated the method.

An alternative approach is proposed next, by considering updating of the prob-
abilities obtained through indicator kriging. This algorithm improves the perfor-
mance of numerical models and is simpler to apply.
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Chapter 4

Updating the Indicator Kriging
Probability with Multiple-Point
Statistics

This chapter discusses the implementation of updating techniques to merge indicator
kriging probabilities and multiple-point statistics. These techniques are presented
as an approach to simulate with multiple-point statistics and their implementation
improves results given by conventional sequential indicator simulation.

Section 4.1 reviews several ways to integrate information from multiple sources.
A new approach is proposed. Section 4.2 explains the difference between a kriging-
like approach to integrate data and the framework of updating probabilities.

Section 4.3 presents different approaches to update the probabilities obtained
by indicator kriging (IK) and multiple-point (MP) statistics. These assumptions are
presented in generality.

Practical implementation details are presented in Section 4.4. The IK proba-
bilities are updated using MP statistics obtained for some particular configurations
of points.

Examples are given in Section 4.5. The improvements on model performance
are assessed in Section 4.6 by considering statistical measures such as the mean
squared error of the multiple-point probabilities.

Section 4.7 shows an analysis of the non-convexity of the different estimators.
These values provide some insight about the performance of the methods.

Finally, a brief discussion about the results and the methods is presented in
Section 4.8.

4.1 Introduction

Integration of MP statistics into geostatistical models is difficult because the infer-
ence of these statistics is often unreliable and their use in a kriging-like framework
requires the positive definite calculation or modelling of covariances between MP
events and single-point events that calls for the knowledge of the multivariate dis-
tribution of the variable.

One way to overcome these problems is to use a training image deemed repre-
sentative of the phenomenon being studied [7, 15, 77, 157, 158]. This raises different
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problems: the representativeness of this training image, the scale of the training
image, the grid definition of the simulated model, and the univariate distribution of
the training image. A concern is the amount of information deemed general to the
phenomenon and the amount considered particular to the training image. The goal
is not to reproduce the training image, but to simulate a model that shares some of
the multivariate characteristics of the true value, represented by this training image.

The paradigm of the extended normal equations and the consequent concept of
the single normal equation solve most of these problems [76, 157]. A conditional
distribution function is calculated that considers the MP configuration in a neigh-
borhood. The probability of that particular location to be above a threshold is
given by the frequency of occurrence of that MP configuration in the training im-
age. Therefore, there is no kriging system to solve. The multivariate distribution is
being approximated by the frequencies extracted from the training image.

The question of the representativeness of the training image remains. The only
apparent way out of this problem would be to use MP statistics extracted from
the actual data [132]. Borrowing the MP information from a training image is
equivalent to using the variogram from a different area, deposit, or reservoir to
build a numerical model that reproduces the spatial continuity of the phenomenon.
Expert judgement is used.

In most geostatistical techniques the multivariate distribution is commonly mul-
tivariate Gaussian. Consequently, high order and non-linear connectivity is not
reproduced in the numerical model. The response after a transfer function is not
reliably reproduced. [65]. Transfer functions can be sensitive to high order correla-
tion, that is, continuity of high and low values in the model. In mining, the mine
design, mine plan, and grade control could change as the high order correlation is
better reproduced. The design of stopes and open pits may also change as a con-
sequence of the multiple-point characteristics of the numerical model used. Better
reproduction of multiple-point statistics at point support may allow block averaged
values to follow more closely the true block distribution, improving grade control.

If the data present a multivariate distribution that departs from multi-Gaussian,
multiple-point statistics have to be explicitly imposed in the simulation algorithm to
control these high order spatial relationships. In order to extract statistics from the
data and avoid modelling of the high-order covariances, some updating techniques
are considered to improve the reproduction of MP features [90]. The multivari-
ate distribution is pushed closer to the one of the data used to extract these MP
statistics, although not explicitly honored. The updating is done in the indicator
framework. The idea is to update the conditional probabilities calculated by indi-
cator kriging with the ones based on multiple-point configurations. This is similar
to what is done in collocated cokriging. It can be seen as a Bayesian updating of
the probability provided by indicator kriging [48, 49, 50].

A short discussion on the inference of two-point and multiple-point statistics is
presented. Then, the idea of directly drawing from the multiple-point probability,
disregarding the one obtained by indicator kriging, is presented, and finally, several
updating techniques to combine both sources of information are discussed.
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4.2 Statistical Inference of Two-Point and Multiple-Point
Statistics

The expansion of current methods toward the use of higher order statistics has
been impeded by the problem of inferring these statistics. Many practitioners find
inference of second-order moments (covariances or variograms) quite challenging in
presence of relatively sparse data. The inference and modeling of more complex
moments is daunting. The problem is exacerbated by the further requirement that
all statistics be jointly positive definite.

Updating techniques do not require an explicit model. Consider, for example,
collocated cokriging. The prior is given by the local distribution obtained by kriging
the primary data only. The likelihood distribution corresponds to the distribution
generated from the secondary data. A posterior distribution is generated that corre-
sponds to the updated one by Bayes’ law, exactly equivalent to collocated cokriging.
This model is consistent. The Markov hypothesis and the use of the linear correla-
tion coefficient provide a consistent model of coregionalization, without the need of
difficult modelling under the linear constraints.

4.3 Integrating Multiple-Point Statistics

The probability of a variable Z to exceed a threshold 2 at location u is of interest,
which is called event A. A number of events R that inform this location is available
to calculate the conditional probability of A at u. These events are as Bj, ..., Bg.
They may correspond to any arrangement of any number of data at any support.
They can be disjoint or have elements in common. They can be considered as sets of
elements, such as the samples used in kriging to estimate the value at an unsampled
location, or they can be considered as a joint event, such as a multiple-point event,
that is, a configuration of samples with fixed values.

Consider the case where information from several different sources is used to
estimate the conditional probability of event A. Bayes’ law gives a formalism to
calculate this conditional probability. These different sources of information can
be integrated to estimate the posterior conditional probability. The integration of
multiple sources of information, however, calls for a model of redundancy between
these sources.

Bayes’ law gives the general expression for the conditional probability of the
event A:

P(A,By,..,Bg)
P(B,;,..,Bx)

P(ABy,...Bg) = (4.1)

However, this expression requires the knowledge of the joint distribution of the
events By, ..., Bp with event A, that is, P(A,Bs,...,Br). These multivariate dis-
tributions are difficult to infer, thus their use is avoided in practice.

The conditional probability P(A|Bj,...,Br) is estimated by making some as-
sumption about the relationship between the different sources of information.

Recursive application of Bayes’ law permits Equation 4.1 to be rewritten as:
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P(Bgr|A,B1,...Br-1) - P(Br-1/A,By,..,Br_2):-- P(B1]A) - P(A)

P(A|By,...,Bg) = P(By,...,Bg)

This will simplify calculation later when assumptions are made about the redun-
dancy of the sources of information.

4.3.1 Assumption of Independence Between Multiple Events

The assumption of independence between B;, B, ..., Bg permits the calculation of
the conditional probability of A as the product of the independent probabilities:

P(By,...,.Bg) = P(B,) - P(By) - P(Bg)

The expression for the conditional probability of A given By, ..., Bp is simplified
to:

P(A[B;) P(A[By) P(A[Bg)

P(A|By,...,Bg) = P(A) P(A) P(A)

- P(A)

This simplification comes from assuming conditional independence of the likeli-
hoods, with respect to the conditioning event A:

P(B‘ilAa Blv ---aBi—l) = P(leA-) Vi= 2, ,R
and from Bayes’ law:

P(A[B;)

- P(B;)

Independence between the events B1, ..., Br appears as a very strong assumption
in our context, since the variable is certainly spatially correlated. It seems unrealistic
to have the events By, ..., Bg correlated to A, and yet have them uncorrelated with
respect to each other.

4.3.2 Permanence of Ratios Assumption

The assumption of permanence of ratios is another way around the problem of know-
ing the joint probability of Bj,...,Br [90]. This assumption basically states that
the incremental information provided by one event B; before and after knowing the
others is constant. Although not as strong as the assumption of independence be-
tween all the events By, ..., Bg, this assumption also calls for a model of dependence
that could be proven wrong. However, practice has shown that it performs better
than the previous independence assumption.

The permanence of ratios assumption can be written by considering first a pair
of events B; and By:

1-P(A|B;,B;)  1—P(A|B;)

P(A[B1,B2) _ _P(A[By)
I-P(AB) ~  1-P(A
P(AB; P(A
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From this expression, the conditional probability P(A|B1,B;) can be calculated:

1-P(A
PlA

P(A|By,Bs) = 1-P(A) , 1-P(A[B;)  1-P(A[B3)

T TP@AB)  PAE:)

Now considering a third event Bs, the conditional probability P(A|B1, Bg, B3)
can be retrieved by using the previous expression for P(A|B;, B2). First, the per-
manence of ratios is established:

1-P(A|B;,B2,B3) 1-P(A|B3)
P(A[B1,B;,B3z) _  P(A|B3)

1-P(A[B1,B2) _ 1-P(A
P(A|B:,B3) P(A

Now, rearranging, the expression of interest can be found:

1-P{A
P(A

1-P(A) |, 1-P(A|B1,B;)  1-P(A|B
_PZ%YI + _(_'P A;TB' l—l ,I'B 'Tzz h _(Lrp A BLJ ;

Similarly, the permanence of ratios assumption can be generalized to R events.
The conditional probability P(A|Bj,...,Bg-1) can be calculated by iteratively ap-

plying the previous procedure. The last step to obtain the distribution of A condi-
tioned to all R events By, ..., Bg is to establish the permanence of ratios relation:

1-P(A|B;,...Br_1,Br 1—-P(A|Bgr
P(A[B1,....Br-1,BR) __ _P(A[BRr
1_P(A|B1,...Br_1) _ 1-P(A
P(AB1,...Br-: P(‘(TzA
This entails the general expression for the conditional probability under the
permanence of ratios assumption:

P(A|B;1,B,B3) =

1-P(A)
_ P(A)
P(A[By,...,Br) = 1-P(A) | 1-P(A[B1,,Br_1) , 1-P(A[Bg)
P(A) P(A[B1,-.,Br-1) P(A[Br)

This expression does not require a prior knowledge of the relationships between
the B;s, that is, all conditional relationships are built based on the assumption
that the incremental information provided by the event B; regarding the event A
is constant regardless of the other conditioning events. The permanence of ratios
assumption greatly simplifies the calculation of the conditional probability and it
appears to correspond to a less restrictive assumption than the assumption of full
independence between the events By,...,Bg.

4.3.3 Multi-Gaussian Assumption

The redundancy between the sources of information can be calculated if the multi-
variate spatial distribution of the variable is known. This is not the case in general.
The full multivariate distribution is known in the multi-Gaussian case.

Under the multi-Gaussian assumption, a multiple-point covariance can be fully
described as combinations of second-order covariances (see for example, [134]). Sim-
ple indicator kriging can be used to estimate the conditional expectation of the
indicator variable. A multiple-point event can be expressed as the set of all the
single-point events that constitute it.
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Although variables are not multi-Gaussian, this model can be used to approxi-
mate the redundancy term. In the context of integrating MP information, building
an estimator that combines the estimate of the conditional probability at an un-
sampled location given different events could be considered. These events could be
the indicator kriging (IK) estimate of the probability at u, and MP probabilities for
different configurations. These conditioning events are noted as Bj1,...,Bgr. The
conditional probability we are trying to estimate can be denoted as the event A.
Notice that because the assumption of multi-Gaussianity is used, the events must
be disjoint, in the sense that no one single point should belong to more than one
event. Otherwise, the simple indicator kriging system of equations will be singular.

The conditional probability of A can be written as a linear combination of the
conditional probabilities calculated with each one of the conditioning events sepa-
rately:

R
P(A[By,...,Bp) - P(A) = ) _w; - (P(A|B;) - P(A)) (42)

i=1

If each event B; is made of n; single points, then, under the multi-Gaussian as-
sumption, the joint distribution of all the events can be considered. The distribution
is multivariate Gaussian of order 1+ S"f n; with mean and variance-covariance

matrix:

P(A)
PA+y R ni)x1 = :
P(A)

Taa  ZaB, * ZABg

231,:4 231,31 EBx,BR

(X IEAICE X IEN Rl I P
235,31 EBR,BZ ZBR:BR

Each sub-matrix Xp, p; of size n; x n; corresponds to the covariance matrix
between the n; single point events that constitute event B; and the n; single points
that make the event B;:

Cov(ul ,up?) C'ov(u1 ,u2 7} oo Cov(uP un;')

Cov(u2 ,uf) Cov(uds ,u2’) C’ov(uz ,unJ)
Yp,,B;, = .

Cov(uB ,ul’) Cov(uBi,uf?) .- Cov(uBi, uni)

When considering the events B;s as multiple-point events, the conditional proba-
bility of A given B; is calculated as the simple indicator kriging estimate at location
u given the n; samples that constitute that multiple-point event.

The weights w; in Equation 4.2 can be seen as a measure of closeness and
redundancy between the event B; and all the other events B;, with j # <.

Notice that the goal is to use a set of conditional probabilities P(A|B;),i =

., R obtained from different sources. The use of simple indicator kriging is meant
to solve for the weights that yield the right conditional probability, if the variable
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was multivariate Gaussian and all the conditional probabilities were calculated by
simple indicator kriging.

We calculate the conditional probability of A given a single event B;. This
conditional probability can be seen as the indicator kriging estimate of u, given the
vector iBt of indicator values i%(uZ),a = 1,...,n;, or equivalently, as the linear
regression estimate of the probability of A given B; :

P(A[B;) — P(A) = S4,5, - T5. 5, - (B — P(A)) Vi=1,.,R  (43)

Now, expressing the conditional probability of A given all the events, that is,
accounting for the redundancy between them, under the multi-Gaussian assumption:

P(A|By,..,Br)—P(A) = (Zap, -+ ZaBp)-
EBl,Bl EBl,BR -1 iB1 — P(A)
EBn,Bl EBR_,BR iBR. — p(A)

To calculate the coefficient w; we can consider the event C being the combination
of all the events Bj,j # i. The expression for the conditional probability can be
rewritten as:

-1
S5 b, B _ P(A
P(AIB:C) = P(A) = ( Sas. Bac ) ( Sos Soo ) ( lic_P((A)) )

The inverse of the covariance matrix can be written as:

(234,3; 2Bic _1= D, Dy
YeB;, oo DI D,

with
Dy = (Z,B: —ZBiC" EZ‘,IC ' ZC,B;)_l
Dy = —(ZBi,Bi - Z;B;,C' : EE}C : 2C',Bi)_l ' zBin ) 26’,10
T
Dy = Tgeo+ ((Esi.B.» ~®p,.c T Tep) ! - Taio 25,10) Th,c-Toke
That is,

P(A|B;,C) - P(A) = (EA,Bi D1 +X4,0- Dg‘) - (iB — P(A))+

(Za,B; - Do+ Zac - D2)- (i — P(A)) (4.4)

In order to determine the weight assigned to the conditional probability P(A|B;),
we can rewrite the conditional probability on Equation 4.2 as:
P(A|B;,C) — P(A) = w; - (P(A|B;) — P(A)) +wc - (P(A|C) — P(A))

and using Equation 4.3, this can be written as:
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P(A[B;,C) — P(A) = w;-(Zap 55 (% - P(A))) +

4.5
we - (EA,C Toe - (€ - P(A))) 49

To identify the conditional probabilities of Equations 4.4 and 4.5, the approx-
imate values for w; and wg can be defined:

_ B4, - D1+ Zac - Df| i — 4,5, Do+ Sac - Do

= c = (4.8)

i

Because our goal is to combine two estimates, the weights must be numbers, not
vectors. The ideal case to apply this method is when the vector £ p,-D1+X4 ¢ Df
is proportional to ¥4 p, -ZE’ p,» and the vector X 4., - Do+ X 4,c D2 is proportional
to Xa0- EE}C. In general, these pairs of vectors are not proportional to each other.
The calculation of w; and we under these circumstances is an approximation of the
proportionality coefficient if they were proportional.

We can consider some extreme cases of the linear combination of estimates pre-
sented above. A first extreme case is to assume independence between the events.
This amounts to setting the cross-terms ¥.p, ¢ and X¢ g, as 0. Do becomes zero, D
is reduced to (£p, 5,) "}, and Dy is simplified to (E¢,c) . Thus, w; = wg = 1. The
estimate built as a linear combination is then just the sum of the two (independent)
estimates of the conditional probability.

Independence of B; and C is, in the context presented here, not a good assump-
tion, since C is very close to u and B; is correlated with A, therefore it should also
be correlated with C.

Notice that this procedure to estimate the weights that measure the redundancy
between the sources of information can be extended to an arbitrary number of
conditioning events R. The theory has been presented looking at the quantification
of the redundancy for a single event given all others (C), however the same reasoning
can be applied to define simultaneously the weights for multiple conditioning events.

In a general case, where the indicator variable does not come from a multivari-
ate Gaussian distribution but where quantifying the redundancy between the two
sources of information B; and C appears not possible, the weighting proposed under
the multi-Gaussian assumption could be used to improve the solution, although it
would be just an approximation.

4.3.4 Comments

In the implementation of these methods a few problems may arise.

First, the property of Bayesian updating under the full independence assumption
between the sources of information can lead to severe order relation deviations, since
under this assumption, the updated probability can easily take values above one.
The more complex the implementation, that is, if multiple sources are used and
deemed independent from one another, the problem will worsen making its practical
use inadequate.

This problem is not encountered under the assumption of permanence of ratios
and under the multi-Gaussian assumption to assess the relationship between the
sources of information. Permanence of ratios gives an updated probability always
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A=Prob{l{u)=0} B: single-points for IK

C: MP pattern of informed adjacent nodes

Figure 4.1: Example of three events. A corresponds to the probability of the grey
node not to exceed a threshold value. Six single-point events are found in a search
neighborhood of the node being estimated. They are illustrated as white and black
nodes. B is formed by all the single point events that are not part of the multiple-
point configuration that constitutes C. From the six single-points found in the search
neighborhood, only the white nodes (np = 4 points) will be used to get the IK
estimate, to avoid singularity due to full redundancy with the nodes in C. C is the
multiple-point event formed by nc = 2 points adjacent to the node whose conditional
probability is being estimated. They appear as black nodes. The probability of A
given the information in C is obtained either from a training image or from data.

within the interval [0,1], provided each component falls within this interval. In the
case of approximating the redundancy through a multi-Gaussian assumption, order
relations should be minor, since the weighting will prevent the estimated probability
to fall outside [0,1]. Deviations should occur with approximately the same frequency
as when IK is used.

A second problem that becomes evident when these methods are applied is the
inconsistency between the univariate distributions of the different sources of infor-
mation. The methods assume that the proportions below the thresholds are the
same no matter what source of information is considered. This is not always the
case. Corrections are needed to solve this problem. The goal is to make the es-
timator unbiased. The simplest solution is to replace the term for P(A) by the
probability calculated from the source that differs from the target probability.

4.4 Practical Implementation

The methods for integrating different events have been implemented. Consider the
following definitions for the events (Figure 4.1):

A : The event of having Z(u) < z. 2, corresponds to a threshold value.

B : The np single points used to inform the location u. These points are located
in a neighborhood of u. They correspond to the data used to solve the simple
indicator kriging system to estimate the conditional probability at u.

C : The multiple-point event formed by a set of n¢ points, usually very close or
adjacent to the location of interest u.

B will help reproduce the long range on the variable, while C will locally modify
the estimation of the probabilities to consider more complex multiple-point infor-
mation. It will integrate some of the MP information to the IK estimator.
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Bayes’ postulate says that the conditional probability of having the event A
given the information B, and C is given by:

P(A,B,C) P(C|A,B)-P(BJA)- P(A)

P(AB.C)=—pmqy = P(B,C)

This requires the knowledge of the joint probability between B and C. Often
this joint probability is hard to infer, in particular when the data used in B and
C are different variables and/or at different supports. In our application, we would
need to infer the covariance between np single point events and the MP event made
of ng points. This is difficult, thus the idea is to find some way to avoid these
calculations.

The inference of C is not difficult: there is no need to model the multiple-
point statistics to ensure positive definiteness, although if these probabilities are
not consistent with the ones obtained for A given B, order relations deviations will
likely increase. B is obtained by simple indicator kriging, thus the standard practice
of calculation, interpretation and modelling of the indicator variograms is required.

C is calculated for a given set of multiple-point patterns according to the con-
figuration of the data. In case of having a large training image, very complicated
patterns could be used to condition the estimation. If only data are available, a lim-
ited number of restrictive configurations should suffice to improve the final numerical
model.

In the following examples, a set of very simple two-dimensional patterns are
used and the probabilities are inferred from training images built to investigate the
performance of each technique. The idea is to use only the four adjacent nodes to
the one being estimated (Figure 4.2). The probabilities are associated with the
frequencies of having those configurations in the training image. Since every node
is coded as an indicator, for each p-point configuration there are 2P combinations of
zeros and ones possible. The total number of MP events from which the probabilities
of occurrence must be obtained, is 81:

4 .
Z(Z)x2‘=1><1+4x2+6x4+4><8+1x16=81
i=0

If a combination of the indicators is not found in the training image, no updat-
ing will take place and the updated probability will correspond exactly to the one
obtained by indicator kriging.

As mentioned before, this idea can be extended to any configurations that fit
the data or training image. For example, the use of a linear vertical pattern would
match the spatial configuration of drillhole data or well data (Figure 4.3). With
these patterns, the total number of probabilities needed is 41.

4.4.1 Sequential Multiple-Point Simulation

The probability of a point being below a threshold given some multiple-point con-
figuration can be extracted from a training image, or even from data. The idea of
a sequential MP simulation is then to visit randomly the nodes in the model and
check for the nodes within a specific pattern. In all the examples presented here,
the pattern is made of the 4 adjacent nodes to the node of interest. These can be
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Figure 4.2: Multiple-point patterns with adjacent grid nodes. The gray node is the
one being estimated. The patterns correspond to the four adjacent nodes to the
node of interest. The probabilities are extracted from the training image even when
some of the nodes are not informed, generating the three-, two-, one-, and zero-point
patterns.

LR

4 points 3 points 2 points 1 point 0 points

Figure 4.3: Multiple-point patterns extracted from drillhole or well data. Only
connected patterns are considered.
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data values or previously simulated nodes. These MP probabilities correspond to
P(A|C).

4.5 Applications

Several reference images have been built to have a training image for MP statistics,
and for a visual reference. Five methods are used: sequential indicator simulation
(S1S), MP simulation, updating under the independence assumption between B and
C, updating under the permanence of ratios assumption, and combining estimates
under the multi-Gaussian assumption. The five methods are simulated uncondition-
ally and with the same random path for comparison.

4.5.1 Binary Examples

Binary images are built with the object based algorithm ellipsim in GSLIB [39].
Different proportions are tested (p= 10, 50, and 90%) and cases with and without
anisotropy.

This section also presents some binary examples using training images of con-
tinuous variables.

Small Isotropic Objects

Objects of radius equal to 3 units on a two-dimensional domain of 100 by 100 nodes,
with a spacing of one unit are simulated as a reference. The five methods proposed
are used to generate one realization of the phenomenon. Figures 4.4, 4.5, and 4.6
show the results.

Large Isotropic Objects
Larger objects were simulated, with a radius of 9 units, under the same condition
as before. The results are shown on Figures 4.7, 4.8, and 4.9.

Small Anisotropic Objects

Ellipses with an anisotropy at 30 degrees and major radius of 6 units and minor
radius of 3 units were generated, again using different proportions (10, 50, and 90
%). The results are presented in Figures 4.10, 4.11, and 4.12.

Large Anisotropic Objects

Finally, larger anisotropic ellipses were generated to extract the MP statistics and
then simulated with the five methods. The major radius is 18 and the minor radius
is 9 units. Figures 4.13, 4.14, and 4.15 show the resulting maps.

MP Statistics Extracted From a Continuous Training Image

A training image showing a continuous variable is used in this example. The median
threshold has been chosen to create a binary image. The probabilities of multiple-
point events as shown on Figure 4.2 are extracted to update the SIS algorithm. The
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Figure 4.4: Maps of simulated values for small isotropic objects. Proportion above
the threshold is 10 %
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Figure 4.5: Maps of simulated values for small isotropic objects. Proportion above
the threshold is 50 %
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Figure 4.6: Maps of simulated values for small isotropic objects. Proportion above
the threshold is 90 %
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Figure 4.7: Maps of simulated values for large isotropic objects. Proportion above
the threshold is 10 %
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Figure 4.8: Maps of simulated values for large isotropic objects. Proportion above
the threshold is 50 %
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Figure 4.9: Maps of simulated values for large isotropic objects. Proportion above
the threshold is 90 %
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Figure 4.10: Maps of simulated values for small anisotropic objects. Proportion
above the threshold is 10 %

Zero

Figure 4.11: Maps of simulated values for small anisotropic objects. Proportion
above the threshold is 50 %
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Figure 4.12: Maps of simulated values for small anisotropic objects. Proportion
above the threshold is 90 %
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Figure 4.13: Maps of simulated values for large anisotropic objects. Proportion
above the threshold is 10 %
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Figure 4.14: Maps of simulated values for large anisotropic objects. Proportion
above the threshold is 50 %

Figure 4.15: Maps of simulated values for large anisotropic objects. Proportion
above the threshold is 90 %
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Zero

Figure 4.16: Maps of simulated values for a binary image taken from a continuous
variable. Proportion above the threshold is 50 %

results are shown on Figure 4.16. Although the curvilinearity is not captured by
any of the methods, the layering that can be seen on the training image is also seen
on the simulated models. The models cbtained with Bayesian updating assuming
data independence and permanence of ratios look too clean. These two methods
erase all the noise that can be seen in the reference. On the contrary, the updating
by combining the estimates of the conditional probability under the multi-Gaussian
assumption seems to add too much noise.

4.5.2 Continuous Variable Example

The same training image of a continuous variable used in the last example is now
utilized to simulate using multiple thresholds. A variable with a positively biased
distribution has been characterized with 10 thresholds corresponding to each one
of the 9 deciles, in addition to the quantile 0.95. The indicator variograms for
each thresholds were calculated to perform sequential indicator simulation. The
frequency of occurrence of the MP-patterns that have at least one adjacent node
informed are extracted from the reference image. These statistics are then used
to update the SIS simulated model. Again, all five methods were applied and the
results are shown on Figure 4.17.

4.5.3 Discussion

There are several comments:

e SIS generates a map with the correct long range continuity, but in the short
range there seems to be too much noise: multiple-point statistics are clearly not
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Figure 4.17: Maps of the continuous simulated values using all five methods for a
continuous variable. Ten thresholds were used to characterize the spatial continuity
of the variable.

reproduced. This problem is partially solved via image cleaning. Algorithms
such as MAPS reduce the excessive randomness, but without direct control of
the multivariate distribution.

e MP simulation by itself does not correct for this problem due to the short
range of the pattern and the random path used. When there are no adjacent
nodes informed, the algorithm will simply draw from the global, generating a
very noisy image. The long-range structure is not captured by this algorithm.
Some attempts were made to correct this problem, such as using a regular
path, however the resulting models showed artifacts of the path chosen.

e Updating under the data independence assumption cleans the image. It looks
like an SIS output cleaned, for example, with a MAPS algorithm (maximum
a posteriori selection) [40]. The short-range anisotropic features of the SIS
output look more isotropic, maybe because of the small size of the pattern
used to extract the MP statistics, which does not reflects anisotropies very
clearly. In general, the result is more similar to the training image.

e Updating under the permanence of ratios assumption also cleans the image.
It is hard to judge which method gives the better result.

e The idea of combining both estimates of the conditional probability, the one
calculated by indicator kriging of the data not belonging to the pattern used
to infer the MP statistics, and the probability obtained from the MP pattern,
performed surprisingly well. It compares similarly to the algorithm where
the updating is made under the data independence and permanence of ratios
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assumptions. However, it approximates the effect of redundancy between both
sources of information, so this assumption should be more realistic.

The examples presented correspond to unconditional simulations. It was found
in these examples that all the methods generated a bias on the probabilities below
each threshold. This bias was always towards the median, that is, if the global
proportion below a threshold was 0.10, the resulting proportion in the simulated
model was 0.15. Similarly, if the target proportion was 0.90, the resulting proportion
in the simulated model was 0.85. Interestingly, if the threshold corresponded to the
median, no bias was found.

The fact that sequential indicator simulation departs from the target proportions
even in the case of having conditioning data, for categorical variables is known and
a correction for that case has already been proposed [69, 98, 151].

Investigation of the bias in our case of simulating continuous variables uncondi-
tionally showed that it is due to the correction of order relation deviations.

This also happens when sequential indicator simulation is implemented without
incorporating MP statistics. For the cutoffs corresponding to the tenth and ninetieth
percentiles, the bias is around 2.5 % towards the median. For the fiftieth percentile,
no bias was found.

The bias can be explained by recalling that the IK estimate of the probability
to be below a threshold is an unbiased estimator (recall Equation 2.6). However,
the estimated value may lie outside the allowed interval for a probability, that is,
outside [0,1]. Thus, a correction is required (see Section 2.3.6).

Considering a binary simulation, that is, when only one threshold is being used,
say the ninetieth percentile, the bias is introduced by correcting more often de-
viations due to having an estimate greater than one, than deviations due to the
estimate being less than zero. Overall, the estimated values are no longer unbiased.

Figure 4.18 shows the histogram of corrections required during a run of sequen-
tial indicator simulation with a threshold at the percentile 90. Overall, corrections
are biased, giving a non-zero average. Furthermore, when inspecting the histograms
of positive and negative corrections, two facts are evident: first, positive corrections
are made in more than 95% of the cases where a correction is required; and sec-
ond, the average of the positive corrections is much smaller than the average of the
negative corrections. However, negative corrections are fewer than positive correc-
tions, and despite their larger magnitude, they are not enough to counterbalance
the positive corrections, leaving an overall positive bias in the estimation of the
probabilities. A similar problem can be seen when considering different thresholds.
When the median is used, the corrections for values above one and below zero are
similar, cancelling each other and generating no bias.

One way to overcome this problem is to dynamically correct for the bias intro-
duced, every time a correction is made. This has been implemented with favorable
results. The idea is to keep track of the last order relation correction made, and
to adjust the next estimate by that amount, in order to generate overall unbiased
realizations.

This dynamic correction generates a slight increase in the nugget effect, which
is seen as a shift in the experimental variogram of the realization. The change is
not significant if the corrections are small (Figure 4.19).
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Figure 4.18: Histograms of order relation corrections in SIS. The top histogram
shows all corrections together, the middle one shows the negative corrections and
the bottom one shows the positive order relation corrections.
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Distance

Figure 4.19: Experimental indicator variogram before (continuous line) and after
dynamically correcting for the bias introduced by order relation corrections (dashed
line) in SIS.

The same problem occurs with the proposed methods for updating the IK prob-
abilities with MP statistics. The magnitude of the order relation corrections will
dictate if a dynamic correction such as the one applied for SIS gives satisfactory
results. However, it is known that SIS performs well without that correction, if the
following conditions are met:

e Enough conditioning information is available.

e The size of the simulated domain is large with respect to the range of correla-
tion of the variogram.

e Multiple grid search is used to simulate.

We expect that the proposed updating methods will also perform well under
these circumstances. A problem with the updating of the IK probabilities with
multiple-point statistics under the assumption of independence of these probabili-
ties is foreseen, since the order relation deviations for this updating technique are
extremely large.

4.6 Assessing Performance

Comparing the methods is not an easy task. One straightforward approach would
be to look at the histograms of MP probabilities obtained from each simulated
model, compared with the reference probabilities. However, there are 81 geometrical
configurations and a measure of closeness to the truth is not simple to measure, since
certain small deviations could be important. Classical measures of mismatch could
be used, such as a mean squared error or mean absolute error. Unfortunately, not
all the MP configurations have the same importance, so a small mismatch in an
important configuration can pass unnoticed with a summary statistic of this kind.
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Algorithm SIS Full Indep. | Perm. of Ratios | MG Assumption
MSE 3.18E-05 | 1.98E-05 2.48E-05 4.78E-06
MAS 3.36E-02 | 3.85E-02 4.14E-02 2.71E-02

Table 4.1: Mean squared error and mean absolute error in the MP probability for
the different algorithms.

This analysis was done to the binary example generated with a training image
from a continuous variable; otherwise, we would need to graph the probabilities for
each threshold and cross-probabilities between thresholds.

The probabilities of each one of the 81 MP configurations was calculated for the
reference and for each one of the 5 maps generated with the different algorithms.
In all rigor, this should be done over multiple realizations with each algorithm, to
avoid problems of ergodicity. The mismatch between the MP probability for each
configuration from the training image and from each simulated map was calculated
and plotted (Figure 4.20). The model resulting under the permanence of ratios
assumptions appears visually as the best, however small deviations from the target
MP probabilities may have a large impact on response of the model after a transfer
function. The absolute value of this error is also presented in Figure 4.21. In this
plot, the multi-Gaussian assumption appears as the closest to the target probabili-
ties. The results for the sequential MP simulation approach are not presented, since
the models generated with this algorithm did not share the long range correlation
required.

Interestingly, the graphs show quite clearly that the estimation of the conditional
probability combining the IK estimate (from the data) and the MP probability
estimate (from the training image) generates in general smaller errors than the
other algorithms. This is also seen when looking at summary statistics, such as
the mean squared error and the mean absolute error (Table 4.1). Cases where a
given configuration of the multiple-points was not found are not easily comparable,
since the impact of not having a configuration that is present in the target statistics
cannot easily be quantified.

Implementation with real data should provide more insight regarding which
method performs the best. The exploratory examples developed in this section only
help to anticipate the improvement in performance of each one of the methodologies
proposed.
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Figure 4.21: Absolute value of the mismatch in MP probability for all 81 MP configurations for four of the methods.



Example Full Indep. | Perm. of Ratios | MG Assumption
Small isotropic objects p = 0.10 0.76 0.25 0.65
Small isotropic objects p = 0.50 0.66 0.45 0.55
Small isotropic objects p = 0.90 0.40 0.34 0.52
Large isotropic objects p = 0.10 0.72 0.24 0.72
Large isotropic objects p = 0.50 0.59 0.31 0.63
Large isotropic objects p = 0.90 0.26 0.17 0.63
Small isotropic objects p = 0.10 0.75 0.25 0.66
Small isotropic objects p = 0.50 0.60 0.37 0.59
Small isotropic objects p = 0.90 0.33 0.26 0.58
Large isotropic objects p = 0.10 0.68 0.22 0.74
Large isotropic objects p = 0.50 0.59 0.29 0.65
Large isotropic objects p = 0.90 0.25 0.14 0.64
Real example - One threshold p = 0.50 0.85 0.85 0.35
Real example - Ten thresholds 0.82 0.78 0.29

Table 4.2: Fraction of the nodes updated where P(A|B, C) was outside the range
of P(A|B) and P(A|C).

4.7 Quantifying Non-Convexity on the Estimators

One of the good properties of the estimators, when integrating information from
various sources is the possibility to be non-convex, although in the kriging context,
this is sometimes deemed inappropriate to estimate probabilities. The idea is that
the new method performs better than all the individual sources of information when
estimating the conditional probability at a location of interest.

Bayesian updating under the full independence and permanence of ratios as-
sumptions gives a unique map of the updated probability given the marginal prob-
ability of the event of interest. That is, given P(A), the map of P(A|B,C) as a
function of P(A|B) and P(A|C) is fixed (for example, see Figure 4.22).

The non-convexity can easily be obtained for these methods, by coding with a
different color all the area of this map where the resulting probability P(A|B, C) is
outside the range defined by the two sources of information P(A|B) and P(A|C).
These maps are presented in Figure 4.23.

The non-convexity of all the methods can also be quantified during the simulation
procedure. At every node, the three probabilities P(A|B), P(A|C), and P(A|B, C)
are known for all the updating methods. The proportion of the time in which
the corresponding algorithm generates a result outside the range of the two input
probabilities can be used as a measure of non-convexity.

Table 4.2 shows the result for the first two binary examples previously pre-
sented. In general, the linear combination of estimates under the multi-Gaussian
assumption generated more estimates outside the range of the probabilities inferred
from the two sources B and C.

4.8 Discussion

Updating using different sources of information is difficult because the redundancy
between the sources is hard to quantify and therefore some assumption of depen-
dence must be done. The most straightforward approach is to assume that both
sources are fully independent, so they provide completely new information. This
is not a good assumption in the context of spatial simulation, since in general the
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Figure 4.22: Graphs of P(A|B, C) given P(A) = 0.25 (top), P(A) = 0.50 (middle),
and P(A) = 0.75 (bottom). The plots on the left show the maps under the assump-
tion of full independence between B and C. The plots on the right show the maps
under the assumption of permanence of ratios
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(top), P(A) = 0.50 (middle), and P(A) = 0.75 (bottom). The plots on the left
show the maps under the assumption of full independence between B and C. The
plots on the right show the maps under the assumption of permanence of ratios
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sources of information are correlated.

The assumption of permanence of ratios has several nice properties that suggest
it should perform better than the full independence assumption for updating a
conditional probability. The examples presented here showed a similar performance
of this updating technique.

Linearly combining the estimates of indicator kriging with the farthest data
and the probability of the MP event constituted by the closest (adjacent) nodes
to the location being simulated calls for an assumption of dependence. The multi-
Gaussian framework is used because of its convenient mathematical properties. The
estimation of MP covariances is done by combining two-point covariances. This
greatly simplifies the integration of information and allows the calculation of factors
(or weights) to be assigned to each estimate. The resulting probability is often
outside the range of the input probabilities, which is a nice property, since it means
that the updated probability is better informed than the two input probabilities.
The examples presented showed a reasonably good performance of this method.
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Chapter 5

Case Study

This chapter presents a study undertaken with data from a porphyry copper mine
in Chile. The objective is to show the practical implementation of the methods
proposed to update the indicator kriging probabilities with multiple-point statistics
in a sequential simulation framework and compare the results in terms of medium
and long-term planning performance.

The study is introduced in Section 5.1. A description of the available data and
basic statistics of the drillhole and the blasthole database are presented in Section
5.2.

Variogram inference and modelling is presented in Section 5.3. The inference of
multiple-point statistics from data is illustrated in Section 5.4. Classical sequential
indicator simulation is performed. The results are shown in Section 5.5. The
alternative methods for updating the indicator probabilities with multiple-point
statistics are implemented in Sections 5.6, 5.7, and 5.8. Sequential Gaussian
simulation is also implemented. The steps are quickly explained in Section 5.9.
Finally, the results are compared in Section 5.10.

5.1 Introduction

The objective of this case study is to show the improvement that can be achieved by
considering additional information as multiple-point configurations when generating
grade models for mine planning. The methods are compared in terms of mismatch
with a kriged model with dense blasthole data, which are used for validation only.
Conventional sequential Gaussian simulation is also implemented to compare the
proposed method with the most widely applied method in mining.

The classical sequential indicator simulation is compared with the techniques
proposed in this research. Updating the indicator kriging probabilities with multiple-
point information obtained from production data (blastholes) is done under different
assumptions of the relationship between this information and the one that comes
from the drillhole samples.

Models are built to match the reference statistics as closely as possible, in ex-
pected terms. The same parameters are used for all methods. Corrections due
to inconsistency of the two sources of information are implemented to avoid the
introduction of bias in the resulting proportions below each threshold.

Blasthole data from two benches are kept aside for validation of the results

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and comparison between the different methods. Performance is measured by the
expected correlation coefficient between the validation data and the simulated grades
from each method and by calculation of quantity of metal as compared with a map
of the “true” grades, obtained by kriging with dense data.

5.2 Available Data and Basic Statistics

Two databases are available for this study.

A drillhole database is provided that contains over 2300 data. The data are
located within the volume defined by the 24450 and 24850 East coordinates, 25000
and 25650 North coordinates, and 3820 and 3950 elevation coordinates (all coordi-
nates in metres). The data are fairly regularly spaced. The approximate drillhole
spacing is 50 m. About half of the drillholes are vertical. Plunge and trend are
variable for the remaining drillholes.

The second database contains blasthole information for almost 21000 locations.
The coordinates range from 24400 to 25000 in the East direction, 24950 to 25800 in
the North direction, and 3800 to 4050 in elevation. Blast holes are almost regularly
spaced on a squared grid with 10 m separation distance.

5.2.1 Drillhole Information

The drillhole database has composites of length equal to 12 m., which corresponds
to the bench height. Drillhole samples typically allow a fundamental sampling error
of up to 5%.

This data base contains East, North and elevation coordinates, the copper grade
in percent by weight, and the rock type code. Seven different rock type codes exist:
4, 20, 28, 29, 31, 34, and 54. However, the only rock type of interest is 20, since this
is the code of the material of economic interest. The study will be done considering
only these data. Furthermore, it was found that data over elevation 3928 has a
larger local variance (see Section 5.2.4). All the data within rock type 20 below
this elevation can be considered belonging to an homogeneous population, where
quasi stationarity of the mean and variance appears as a reasonable assumption.
For this reason, the study considered only data below elevation Z = 3928 m.

Figure 5.1 shows the histograms of composites including all rock types and
elevations, and considering only the composites with rock type coded as 20 under
elevation 3928. 2376 composites in total and 1281 in rock type 20 below elevation
3928 are available. The average grade within the reduced domain is higher than when
considering all data. The data range from 0 to around 7 %Cu and the distribution
is positively skewed. The coeflicient of variation is approximately 0.5, which can be
considered relatively low. It is a normal value for deposits of this type. The median
is very close to the mean value.

Probability plots are presented to compare the distribution of grades with a
lognormal distribution (Figure 5.2). A very good fit of a straight line could be
done, except for the upper part of the curve, where there is a shift on the slope. High
grades have a different behavior than low grades. The curve does not change much
by considering the reduced domain (rock type 20 and elevation below Z = 3928).
The same shift in the slope is seen in this plot.
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Figure 5.1: Histogram of copper grade considering all composites (left) and only
composites with rock type code 20 and under elevation 3928 (right).

a0.99 Drlilhole Copper Grades a5.90 Drillhole Copper Grades - <3928 - RT=20
.
83 e 338
% » v 4
ot hot
% 0 4 £ = V4
8 y 4 g & y 4
g - P 4 g » y 4
: 4 ; 8
b 5
= :
= 2 =
01k )
100 1.00 100 .100 1.00 . 100
Cu Grade Cu Grade

Figure 5.2: Probability plots for the entire copper grade dataset (left) and for the
samples in rock type 20 and under elevation 3928 (right). The distribution appears
close to a lognormal, with a slight change in the high values.
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Figure 5.3: Projection over the three planes horizontal, vertical along the East-West
direction, and vertical along the North-South direction, showing the drillhole data.

Drillholes are shown in Figure 5.3. These maps are projections of all the
samples on the horizontal plane, vertical plane along the East-West direction, and
vertical plane along the North-South direction. Different directions for the drillholes
can clearly be seen on these projections. Notice that in the horizontal projection,
the vertical drillholes appear as a point, since the projections of all the samples of
the drillhole fall in the same point on the plane.

Some plan views are presented in Figure 5.4. The copper grades are shown at
the bench level with a tolerance of 12 m. Many driliholes have been drilled in this
mine because it is currently in production. The average spacing between drillholes
is around 50 m. In many zones drillholes are spaced even closer.

Rock type codes are shown for these same plan views on Figure 5.5. The
samples coded with 20 are shown in white, while the other rock types are shown in
black. It is clear that the other codes are located mainly in the boundaries of the
mineralization.

5.2.2 Blasthole Information

Blastholes for several benches are available. Blastholes are typically drilled at the
bench height plus about 10% of sub-drill depth. However, the samples are taken
once the bench height (12 m) is reached, that is, the sub-drilling is not included
in the sample. Diameter is typically 9 3/4 inches. Sample protocols for blasthole
material generate a fundamental Cu grade error of up to 15%. Although the support
is larger than the one of the drillhole samples, this larger sampling error increases
the variance of these data.

A histogram of the blasthole data considered for this study (benches 3886 to
3922) along with a lognormal probability plot are presented in Figure 5.6. Plan
views of some of the benches are presented in Figure 5.7. The samples appear quite
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Figure 5.4: Plan views showing the drillhole information.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25700

RT Drillholes Bench 3886

25600.

25500.

25400.

25300.

25200.

25100.

25000.

24900.

[ETSTSTES AN SN SN EE N ST UUWEES SU SIUT N T I S S S T ST AE SN T N A AU A A B A A

@ eQ ® ©
oo )
QQ (] [ ]
o 0 ° [
®00 ®®@ [
° om‘b.
o o e ®
omooo%o.
egq® 0o o
Py o o
o o o o
ee® 00 0 O o & [
o ®© o o
. o e -]
L] ] o _ o0 o4
o o oo o R
® o
o b o o
o@ooooooo o o
. o 2° o
0000
o o o
[ 00 0 © g5 o0 ]
. [ ° -] 0 ©
®» o o
[ 9° 9 © o
00 000 S oo
PR - 2 |
0 %0°°
* o Py os
®000e, [
- g 2P
e

L SSLAR N0 S B S A B B B B

24400. 24500. 24600. 24700. 24800. 24900.

25700.

25600._]

25500,

24900

RT Drillholes Bench 3910

‘.0

®
oo o0 0%
O%..
© ©0
e0o0 o

ool
8o

8

Poooocoooo 8Boe

® co

o

®»o

[ ]
o o 0o

. .
®es
o

oo

e38 e
o]

00% go

o
0 00 0

(=]
[

o
o

&0 o
0 0% ®, o
00 .
D e o
o
o°Y
o e e
o o _e
00 oy ®
o o
o o
o o @
w . 000 .
o.0 ®
o [¢]
o o o
@ o o e
°0°
o 0%
©0_ 000 o
Q [+]
oo _ o
o "o
(DOOO 00.
02 °
.
cee” o
T X] .
® 0o
. o
OO. o
Qo .
*

24400. 24500. 24600 24700. 24800 249

Figure 5.5: Plan views showing in white the locations of drillhole samples with rock
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Blastholes Grades
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Figure 5.6: Histogram and lognormal probability plot of copper grade from the
blastholes.

exhaustive and regularly spaced. Blastholes are more irregular in the perimeter
where damage control on the walls requires a closer spacing and delineating the
wall.

For comparison, the two lower benches (elevations 3886 and 3898) will be kept
aside of all inference and estimation procedures, since they will be used for the final
comparison of performance of the methods.

Statistics for the remaining data are presented in Figure 5.8.

5.2.3 Declustering

Declustering is required to obtain a representative reference distribution for simu-
lation. Although the drillhole samples appear quite regularly distributed in space,
the different orientations of the drillholes and the fact that they are distributed in
the three dimensional space, it is hard to judge visually if high grade or low grade
zones have been over sampled. A cell declustering procedure is applied to find the
cell size that minimizes the mean. Given the spacing of the data an anisotropic cell
is used with a ratio horizontal to vertical size of 4 to 1, since the vertical spacing
of the samples is 12 m and the drillhole spacing is approximately 50 m. The most
appropriate cell size to obtain a representative distribution was 120 x 120 x 30 m?
(Figure 5.9). The representative histogram obtained by considering the samples
with the declustering weights is shown in Figure 5.10. Notice the reduction on
the mean value from 1.157 %Cu to 1.068 %Cu, and that the variance remained
almost constant. The change in the declustered mean is within the normal range
seen in this type of deposit. The reduction in the mean is less than 10% of the
average clustered grade, meaning that clusters had not a large impact in the global
statistics.

The declustering weights will be used to correct the cumulative distribution
function value below each threshold.

5.2.4 Comparison of Datasets

The drilthole and blasthole information can be compared in several ways:
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Blastholes Bench 3886 - Blastholes Bench 3898
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Figure 5.7: Plan views showing the blasthole information.
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Figure 5.8: Histogram and lognormal probability plot of copper grade from the
blastholes of benches 3910 and 3922.
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Drillholes Cu Grades
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Figure 5.10: Histogram of declustered copper grade from the drillhole data with
rock type code 20 and elevations below 3928.

Global distribution The two global distributions can be compared with a g-q
plot. A g-q plot is a cross plot of pairs, where the first element of the pair is the
quantile value of one distribution and the second element, the same quantile
from the second distribution. For example, one pair will be formed by the value
at which 1% of the data falls under that value for each distribution. If the
distributions are equal, the plot will look as a straight line at 45 degrees and
intersecting the origin. Any departure from the 45 degrees reflects differences
in the distributions.

Spatial distribution Each drillhole data can be associated to the closest blasthole
samples, within some maximum distance. A cross plot of the pairs will give
an idea of the match of the two datasets in a spatial context. The correlation
coefficient should be high, although not one, since there are sampling errors
for both types of samples, and there is a distance tolerance which will make
the correlation decrease.

Trends In average terms, drillholes and blastholes should show the same trends
when looking at moving averages on different directions.

The g-q plot is shown in Figure 5.11. Notice that both distributions match
very closely up to a grade of approximately 3.0 %Cu. Although over this value
the discrepancy is larger, this corresponds to less than 1 % of the population (see
Figures 5.2 and 5.6). Notice that the domain over which drillholes are distributed
is much larger than the volume informed by blastholes.

Drillhole and blasthole data were paired considering different tolerance distances,
that is, for a given drillhole sample, all blasthole samples falling within that distance
were identified and subsequently, a cross plot of the pairs was plotted. Figure 5.12
shows the cross plots for three increasing tolerances. As expected, the number of
pairs found increases as the tolerance distance is increased. Also, the correlation
coefficient decreases with larger tolerances, since the samples tend to be less corre-
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Figure 5.11: Q-Q plot of drillhole copper values and blasthole sample values.

lated the farther away they are. Notice that, due to sampling errors and the nugget
effect on the copper grade, these cross plots must show a correlation lower than 1.0
even in the case the samples are very close. Thus, a correlation coefficient of 0.7
reflects a very good match between the two data sets. Also notice that the mean of
drillhole and blasthole data tend to get closer as more samples are used. When a
10 m tolerance is used to pair the data, the means are almost equal.

Moving averages are calculated over stripes along the three main directions (east-
ing, northing, and elevation) to check for abrupt changes in the local mean and vari-
ance. The general trend should look the same for both sets of data. This analysis
has two purposes. First, it allows comparing the two datasets. Second, it can be
used to assess stationarity of the data for the subsequent geostatistical simulation
method. In case of finding sudden changes over short distances in the local mean
and variance, the trend should be removed to work with the stationary residuals.
Plots of the local mean and variance along the three main directions are presented
in Figures 5.13, 5.14, and 5.15. The results presented in these trend graphs show
that the two sets of data behave similarly regarding changes on the local means and
variances, except for elevations over Z = 3928. This is the reason to discard the
data above this elevation for statistical inference.

5.2.5 Comments

From the previous analysis, it seems reasonable to utilize the blasthole data from
the benches 3886 and 3898 for comparison of the results.

The drillhole data above the elevation Z = 3928 is not considered for statistical
inference, since the two data sets give different results. The variations in local
means and variances are considered reasonably stationary when considering local
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Figure 5.12: Cross plots of paired samples for different tolerance distances.
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Conditional Mean and Variance - East-West Diraction
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Figure 5.13: Local mean and variance along the East-West direction of the drillhole
and blasthole data.

neighborhoods.

Although relatively large differences can be seen in the global means of drillhole
and blasthole sample grades, these can be rationalized by considering the larger
volume informed by the drillhole data compared to the volume informed by blastoles.
Blastholes tend to inform only the center of the deposit, which has a higher grade
than the boundaries, better informed by drillholes. Furthermore, the datasets have
been validated at the mine and there is no evidence of a systematic bias in the
blasthole data. Discrepancies will be dealt with when updating to avoid a bias due
to the difference in the means (see Section 5.7).

Differences in the high grades are deemed minor and will not be reflected in
the indicator simulation, except during the step of extrapolating beyond the up-
per tail. Care must be taken to avoid a bias due to extrapolation of the upper
tail. The distribution of copper values in the drillhole data set will be used as the
representative distribution, considering the weights from declustering to correct the
proportions below each threshold, since these samples have a lower sampling error
than blasthole samples.

There is no need to model and remove the trend, since local stationarity appears
as a reasonable assumption. Sequential indicator simulation should perform well
under these circumstances.

The calculation of indicator variograms follows and then inference of multiple-
point statistics from the blasthole data set, without including the data belonging to
the benches that are used for validating the final results.
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Conditional Mean and Variance - North-South Direction
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Figure 5.14: Local mean and variance along the North-South direction of the drill-
hole and blasthole data.

5.3 Variogram Modelling

5.3.1 Selection of Thresholds

To obtain an adequate discretization of the conditional distributions, 10 thresholds
are used in all subsequent calculations involving indicators. The selection of these
10 values calls for several considerations: the full distribution should be adequately
sampled by these values, that is, selecting values that are regularly spaced (in terms
of probabilities) is convenient because interpolation between thresholds does not
carry many difficulties; the adequate characterization of high grades is required,
hence additional thresholds are located in the high tail of the distribution, however,
inference becomes more difficult as the threshold is more extreme. The 10 threshold
values correspond to the nine deciles in the clustered distribution, and an additional
threshold at the quantile 0.95. This last value will help characterizing the high
values, minimizing extrapolation problems due to the skewness of the distribution.

The proportions below the thresholds considering the declustering weights are
used within the indicator simulation.

Table 5.1 shows the threshold values, proportions that fall below that thresh-
old in the clustered distribution, and the proportions corrected to account for the
clusters.
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Conditional Mean and Variance - Elevation
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Figure 5.15: Local mean and variance with elevation of the drillhole and blasthole
data.

Threshold number 1 2 3 4 5 6 7 ] 9 10

Threshold value 058 { 073 1] 084 | 095 | 1.08 | 1.22 | 1.36 | 1.56 | 1.91 | 2.18
Clustered quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
Declustered quantile | 0.15 | 0.28 | 0.38 | 0.47 | 0.57 | 0.68 | 0.76 | 0.85 | 0.93 | 0.97

Table 5.1: Threshold definition for indicator variogram calculation and simulation
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Parameter Horizontal | Vertical
Directions | Direction
Number of lags 10 5
Lag Separation Distance 15.0 12.0
Lag Distance Tolerance 7.5 6.0
Azimuth Tolerance 22.5 22.5
Horizontal Bandwidth 25.0 25.0
Dip tolerance 22.5 22.5
Vertical Bandwidth 25.0 25.0

Table 5.2: Parameters for calculation of experimental variograms

5.3.2 Variogram Calculation and Modelling
Anisotropy

To determine the main directions of anisotropy, variograms were calculated in several
directions (not shown). The main directions of anisotropy were found at N30°W,
N60°E, and vertical. This information is consistent with geological information of
the region.

Experimental Variogram Calculation

Variograms were calculated in the three principal directions: N30°W, N60°E, and
vertical. The other parameters used to calculate the experimental indicator vari-
ograms are shown on Table 5.2. The data used for variogram inference correspond
to the drillhole information for rock type 20 and below the elevation 3928, and the
blasthole samples taken in the benches 3910 and 3922. Given the abundant informa-
tion, variograms could be calculated with relatively small tolerances. This should
ensure that they correspond to the directions of interest and that averaging with
other directions by increasing the tolerances is avoided.

Variogram Modelling

Variogram modelling is done considering that abrupt changes in the model from one
threshold to the adjacent will generate order relation deviations, which are undesir-
able. Therefore, the modelling process takes into account the adjacent variogram
models, so that any change is consistent from one threshold to the next.

Table 5.3 shows the parameters for the models fitted to the experimental vari-
ograms. The fitting is presented in Figure 5.16. Three structures are used to model
the variogram: two spherical and one exponential. The nugget effect is smaller for
thresholds far from the median, opposite to what is obtained using a multi-Gaussian
method. Inference of the variogram at the lowest threshold gave an erratic exper-
imental variogram, particularly for short distances. The nugget effect and ranges
were considered based on the variogram at the next threshold. Ranges tend to de-
crease as the cutoff increases, which is common in metal concentrations such as gold,
silver, and in a lesser extent, copper.

Changes in sill can be seen in Figure 5.17. Changes in ranges of the variograms
are presented in Figure 5.18.
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Direction | Number | Center coordinate | Grid
of nodes of first node spacing
Easting 50 24405.0 10.0
Northing 80 24905.0 10.0
Elevation 2 3910.0 12.0

Table 5.4: Grid definition for multiple-point inference and simulation.

5.4 Multiple-Point Statistics Inference

Blasthole data from benches 3910 and 3922 are used to infer multiple-point statistics.
The scattered blasthole locations are associated with the closest point on regular
grid from which the frequencies of MP configurations for all the patterns shown in
Figure 4.2, are inferred.

Inference is made by simply counting how many times there is a one at the
central node of the MP configuration, given the indicator values of the four adjacent
nodes, if informed. This count is divided by the total number of MP events with
the same configuration to approximate the frequency of this event.

Figure 5.19 shows the indicator maps from the blasthole dataset for one bench
considering a regular grid defined by the parameters in Table 5.4.
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Figure 5.16: Indicator variogram models fitted to the experimental variograms in
the three principal directions of anisotropy. The continuous line corresponds to the
vertical direction, the dashed line is in the N30°W direction, and the dotted line
corresponds to the N60°E direction.
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Figure 5.17: Change in nugget effect and sill contributions for different thresholds.
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Figure 5.18: Change in ranges for different thresholds.
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Random number generator seed | 120574

Max. data for kriging 24
Max. previously sim. nodes 24
Multiple-grid search levels 3
Maximum search radius horiz. 300.0 m

Maximum search radius vertical | 150.0 m

Table 5.5: Simulation parameters.

Simulation must be done at the same resolution defined on Table 5.4 if MP
information is used to update the indicator kriging probabilities.

5.5 Sequential Indicator Simulation

5.5.1 Parameters

100 realizations obtained by sequential indicator simulation (SIS) are generated
(see Figure 5.20). Thresholds and corrected proportions presented in Table 5.1
are used. The conditioning data corresponds to the drillhole samples with rock
type 20 under the elevation 3928. Interpolation between thresholds is done linearly,
while for the tails, the shape of the global declustered distribution is re-scaled for
extrapolation, considering a minimum copper grade of 0.0 % and a maximum of 7.5
%. The grid specification is as defined in Table 5.4, but instead of considering the
two benches 3910 and 3922, two benches are simulated below these, that is, with
elevations 3886 and 3898. The seed for the random number generator and search
parameters are presented in Table 5.5.

Maps of the two benches for the first two renditions obtained by indicator sim-
ulation are presented in Figure 5.20.

5.5.2 Validation of Results
Reproduction of Statistics

A histogram and g-q plot of all the realizations considered together are built to
check overall performance (Figure 5.21). The reproduction of the mean, variance,
and quantiles of the reference distribution is acceptable.

The mean and the variance of each realization is calculated and plotted on his-
tograms. The reference values are signaled as black dots underneath the histograms
(Figure 5.22). This graph shows the good reproduction of the histogram.

Additionally, g-q plots were built for each realization. Some of them are shown
on Figure 5.23. Quantiles differ for grades greater than 3.0 %Cu, which represent
a very small proportion of the population.

Reproduction of Data Values

The data were assigned to grid nodes. The original values were then coded as
indicators for all thresholds. The algorithm ensures reproduction of the data values
by drawing a simulated value only if the node is not informed, that is, if an original
value existed for the node, the algorithm will keep that value rather than drawing a
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Figure 5.20: Maps of the two benches for the first two realizations by SIS.
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Figure 5.21: Histogram and g-q plot of all the simulated values by SIS (100 realiza-
tions). The dot represents the mean from the reference declustered distribution.
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Figure 5.22: Histograms of the means and variances of the realizations by SIS. The
dots below the histogram represent the corresponding reference values.
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Figure 5.23: Q-Q plots of the reference distribution versus the distribution from the
first six simulated models by SIS.
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Figure 5.24: Cross plot of sample values and the value assigned at the closest node
in the models simulated by SIS. Only 307 out of 349 data inside the model are
reproduced, since a closer sample is assigned to the node.

new value in the corresponding class defined by the indicators. Although indicator
methods have a resolution based on the number of the thresholds defined to code
the data, the implementation used ensures that the lost resolution will not affect
sample values, hence they are assigned to nodes without drawing a new value.

It is expected that all data will be honored unless more than one sample is
assigned to the same node, in which case the closest sample will be assigned. Figure
5.24 shows the reproduction of sample data. From the 1281 samples available, only
349 are located inside the model defined by the two benches to be simulated, that
is, their elevation is between 3880 and 3904. From these samples, 42 are assigned
to nodes that have another closest sample, hence their values are not reproduced.

Reproduction of Indicator Variograms

From the models generated, indicator variograms can be calculated approximately
for the main directions of anisotropy, due to the grid specification. The vertical
direction cannot be checked with the two benches simulated.

Variograms are calculated for lags multiple of a vector defined by one node in
the West direction and two nodes in the North direction, which corresponds to an
azimuth of 26.5°. Similarly, the perpendicular horizontal direction is calculated
for vectors multiple of a vector defined by two nodes East and one node North,
corresponding to 63.5° (Figure 5.25).

The experimental variograms for the two horizontal directions for each realiza-
tion along with the corresponding model are presented in Figures 5.26 and 5.27.

Variograms are well reproduced, except for the first few thresholds in the first
direction (N26.5°W), where the range is shorter in the realizations than in the
model. However, the shift can be considered minor in all the cases.
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Figure 5.25: Definition of the directions for variogram calculation in the regular grid
of the model.

Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 3436 0.0086 0.1544

2 4256 0.0138 0.1986

3 4620 0.0142 0.1654

4 4759 0.0198 0.1855

5 4388 0.0171 0.1779

6 4444 0.0150 0.1456

7 4449 0.0148 0.1682

8 4275 0.0116 0.1710

9 4019 0.0098 0.1916

10 3636 0.0069 0.1986

Total 52.85 % | Average 0.0135

Table 5.6: Summary of order relation deviations for a particular realization in SIS.

Order Relation Deviations

Order relation deviations occurred in around 52 % of the points simulated with
an average magnitude of less than 1.5 %. This means, on average, the cumulative
probability values corresponding to each threshold were corrected by this amount.
The maximum correction due to order relation was of 20 %. These corrections are
within the range that is commonly seen in practice [43]. Hence, they are deemed
acceptable and should not affect considerably the performance of the numerical
models generated.

A summary of the order relation deviation for a particular realization is shown
in Table 5.6.
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Figure 5.26: Indicator variogram reproduction for direction N30°W (SIS).
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Figure 5.27: Indicator variogram reproduction for direction N60°E (SIS).
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5.6 Assumption of Independence between Single-Point
(DH Data) and Multiple-Point Information (BH
Data)

The practical implementation of updating the indicator kriging probability with
MP information under the assumption that both sources of information are inde-
pendent was done with serious limitations due to the problem of order relations and
consistency between the statistics.

Under this assumption, the updated probability can easily have a value over
one. Furthermore, this value can be extremely high when a low threshold is con-
sidered. For example, assume the IK probability is 0.9, the MP probability is 0.9,
and the global cumulative probability for that threshold is 0.1. The updated prob-
ability under the assumption of independence of both sources of information is:
P(A|B,C) =0.9-0.9/0.1 =8.1.

This property of the updating technique implies that large corrections are applied
to satisfy the requirements of a cumulative distribution, when all the thresholds are
estimated by IK and updated under this assumption, which introduces a severe bias
in the resulting proportions.

5.6.1 Parameters

The same parameters described for the implementation of SIS were used in this case
(see Table 5.5). Additionally to these, multiple-point statistics inferred from the
blasthole data on the two benches above the ones simulated are used (see Section
5.4).

5.6.2 Validation of Results
Reproduction of Statistics

100 realizations were computed updating under the assumption of independence of
the two sources of information. The implementation of this method implies severe
order relation corrections that produce a bias, particularly for low thresholds. The
effect of order relation deviations can be seen in Figure 5.28, where a bias in the
histogram and g-q plot is evident.

The means and variances of the realizations also reflect this bias, as expected
(Figure 5.29).

Another problem is due to the inconsistency of the distribution of both sources
of data: the univariate distribution of drillhole data used as a representative dis-
tribution and blasthole data used to infer the MP statistics do not match exactly.
The proportions below the ten thresholds are slightly different. For this reason,
the bias in the MP information was corrected by replacing the cumulative probabil-
ity from the reference distribution by the corresponding value from the univariate
distribution of the data used to infer the multiple-point statistics.

Again, 100 realizations were computed with the results shown in Figures 5.30
and 5.31. The mean could not be reproduced.

Although the correction improves the result, the simulated models still show a
strong bias with respect to the mean. The bias is due to the large order relation
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Figure 5.28: Histogram and g-q plot of all the simulated values (100 realizations)
under the assumption of independence of the sources of information. The dot rep-
resents the mean from the reference declustered distribution.
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Figure 5.29: Histograms of the means and variances of the realizations obtained
by updating under the independence assumption. The dots below the histogram
represent the corresponding reference values.
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Figure 5.30: Histogram and g-q plot of all the simulated values (100 realizations)
under the assumption of independence of the sources of information. The dot rep-
resents the mean from the reference declustered distribution.
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Figure 5.31: Histograms of the means and variances of the realizations under the
assumption of independence of the sources of information. The dots below the
histogram represent the corresponding reference values.
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Threshold | Number of | Average | Maximum
number | corrections | deviation { deviation

1 4484 0.1653 4.6875

2 5028 0.0686 1.8496

3 5255 0.0788 1.2642

4 5206 0.0867 0.9427

5 4812 0.0682 0.5572

6 4445 0.0664 0.3711

7 4533 0.0606 0.3641

8 4243 0.0510 0.3761

9 4580 0.0276 0.4040

10 4539 0.0158 0.3207

Total 58.91 % Average 0.0693

Table 5.7: Summary of order relation deviations for a particular realization, before
correcting for inconsistency of univariate distributions, under the assumption of
independence of the sources of information.

corrections to satisfy the requirements of a cumulative distribution. This will likely
have consequences in the processing of the results.

Order Relation Deviations

Order relation deviations are significantly high for this algorithm. Summaries of
order relation deviations for a particular realization before and after correcting for
the inconsistency of univariate distributions are provided in Tables 5.7 and 5.8.
Using a dynamic correction to fix the departure from the target proportions does not
appear as a plausible solution. The sole existence of deviations of this magnitude
renders the method unfit for practical applications.

It can be seen that the attempt to correct for the inconsistent probabilities
below the thresholds obtained from the two sources of information worsens the
order relation deviations.

Due to this problem, this method is discarded from further analysis and com-
parisons.

5.7 Assumption of Permanence of Ratios

The assumption of permanence of ratios has the advantage of generating an estimate
that is always in the interval [0,1]. Combining this probability with the one obtained
by indicator kriging does not generate large order relation deviations.

5.7.1 Parameters

The parameters used to update the IK probabilities with MP statistics under the
assumption of permanence of ratios are the same than before (Table 5.5). MP
statistics are inferred, as with the previous method, from the two benches above the
ones being simulated.
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Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 4420 1.1061 8.9115

2 5700 0.7532 3.7157

3 6164 0.5804 2.5376

4 6172 0.4829 1.7835

5 5974 0.3435 1.0661

6 6199 0.2538 0.6607

7 6130 0.1850 0.4449

8 5989 0.1320 0.4265

9 6194 0.0630 0.4129

10 6239 0.0373 0.3600

Total 73.98 % | Average 0.3703

Table 5.8: Summary of order relation deviations for a particular realization, after
correcting for inconsistency of univariate distributions, under the assumption of
independence of the sources of information.

5.7.2 Validation of Results
Reproduction of Statistics

The method is first applied disregarding the discrepancy between the univariate
distribution of drillhole and the one of blastholes used to infer the multiple-point
statistics. The reproduction of global statistics is shown in Figures 5.32 and 5.33.
Results show again that a severe bias in these statistics stems from the mismatch
between the proportions below the thresholds calculated from the univariate distri-
butions of drillholes and blastholes.

The mismatch is corrected by using P(A) obtained from the blasthole grade
distribution. The new implementation results in a much better reproduction of the
statistics. The tradeoff is an inflation of the variance of the realizations (Figures
5.34 and 5.35).

Maps of the first two realizations are shown in Figure 5.36. Comparing these
maps with the ones obtained by SIS (Figure 5.20), the higher connectivity of highs
and lows can be appreciated.

The reproduction of the reference distribution on a realization basis is presented
in Figure 5.37.

Reproduction of Data Values

As before, the drillhole samples are assigned to the nodes in the grid. The same
procedure for SIS is used and around 90 % of the samples are reproduced, with the
other 10 % not assigned to a node because a closer sample was available (see Figure
5.24).

Reproduction of Indicator Variograms

The impact of adding multiple-point information to the models is reflected in the
reproduction of the indicator variograms. A larger range is seen in most cases,
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Figure 5.32: Histogram and g-q plot of all the simulated values (100 realizations)

under the assumption of permanence of ratios. The dot represents the mean from
the reference declustered distribution.
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Figure 5.33: Histograms of the means and variances of the realizations under the
assumption of permanence of ratios. The dots below the histogram represent the
corresponding reference values.
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Figure 5.34: Histogram and g-q plot of all the simulated values (100 realizations)
under the assumption of permanence of ratios. The dot represents the mean from
the reference declustered distribution.
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Figure 5.35: Histograms of the means and variances of the realizations under the
assumption of permanence of ratios. The dots below the histogram represent the
corresponding reference values.
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Figure 5.36: Maps of the two benches for the first two realizations under the as-
sumption of permanence of ratios.
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Figure 5.37: Q-Q plots of the reference distribution versus the distribution from the
first six simulated models under the assumption of permanence of ratios.
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Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 4713 0.0147 0.3884

2 5352 0.0141 0.3849

3 5832 0.0216 0.3639

4 5923 0.0247 0.3468

5 5563 0.0261 0.3034

6 5274 0.0264 0.3028

7 5330 0.0266 0.2881

8 5282 0.0286 0.3534

9 5098 0.0218 0.3274

10 4583 0.0284 0.3884

Total 66.19 % Average 0.0233

Table 5.9: Summary of order relation deviations for a particular realization under the
assumption of permanence of ratios, before correcting for inconsistency of univariate
distributions.

which is consistent with results obtained by other researchers [42] (Figures 5.38
and 5.39).

Order Relation Deviations

Order relation deviations are relatively small, but slightly higher than in SIS. They
should not affect the performance of the models. As presented in Tables 5.9 and

5.10, corrections are on average smaller than 2.5 %, with maximums reaching up
to 40 %.

5.8 Multi-Gaussian Assumption

The multi-Gaussian assumption to approximate the redundancy between the two
sources of information also provides reasonable estimates, with conditional probabil-
ities generally not outside the interval [0,1]. Order relations do not generate major
difficulties in its implementation.

5.8.1 Parameters

The parameters in Table 5.5 are once again used to update the IK probabilities
with MP statistics under the multi-Gaussian assumption.

5.8.2 Validation of Results

Reproduction of Statistics

Without correcting for the difference between the univariate statistics of drillhole
and blasthole data sets, global statistics are poorly reproduced (Figures 5.40 and
5.41).

The use of the probabilities obtained from the blasthole dataset, from where
MP statistics are inferred, results in a much better reproduction of the reference
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Figure 5.38: Indicator variogram reproduction for direction N30°W under the as-
sumption of permanence of ratios.
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Figure 5.39: Indicator variogram reproduction for direction N60°E under the as-
sumption of permanence of ratios.
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Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 4284 0.0357 0.4065

2 4976 0.0306 0.3885

3 5852 0.0286 0.3529

4 6159 0.0276 0.3377

5 5999 0.0260 0.3533

6 6127 0.0231 0.2816

7 6017 0.0253 0.3442

8 5651 0.0215 0.3724

9 4776 0.0144 0.4065

10 4059 0.0086 0.3885

Total 67.38 % | Average 0.0244

Table 5.10: Summary of order relation deviations for a particular realization un-
der the assumption of permanence of ratios, after correcting for inconsistency of
univariate distributions.
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Figure 5.40: Histogram and g-q plot of all the simulated values (100 realizations)
under the multi-Gaussian assumption before correcting for inconsistency between

univariate distributions. The dot represents the mean from the reference declustered
distribution.
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Figure 5.41: Histograms of the means and variances of the realizations under the
multi-Gaussian assumption before correcting for inconsistency between univariate
distributions. The dots below the histogram represent the corresponding reference
values.

distribution (Figures 5.42 and 5.43). The mean of the simulated models appears
slightly higher than the reference value, and the variance is correctly reproduced.
Maps of the first two realizations are shown in Figure 5.44. These maps do
not show the high connectivity obtained through the assumption of permanence of
ratios.
Q-Q plots of the first six realizations versus the reference distribution show the
good reproduction of it (Figure 5.45).

Reproduction of Data Values

Data values are reproduced in the same manner than with the other methods. All
data assigned to a node are correctly reproduced, and only the few ones that cannot
be assigned because another available data is closer to the node where it was to be
assigned, are not honored.

Reproduction of Indicator Variograms

The impact of this assumption on the reproduction of the indicator variograms is
not evident. It appears as if a bit more variability was added to them, although this
is only a conjecture (Figures 5.46 and 5.47).

Order Relation Deviations

Order relation deviations are quite mild. In fact, this method generates a lower
number of deviations than SIS with a similar average magnitude (see Tables 5.11
and 5.12).

5.9 Sequential Gaussian Simulation

Sequential Gaussian simulation is implemented in this section. Gaussian methods
are by far the most used. Their main disadvantage is that all multiple-point statistics
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Figure 5.42: Histogram and g-q plot of all the simulated values (100 realizations)
under the multi-Gaussian assumption after correcting for inconsistency between
univariate distributions. The dot represents the mean from the reference declustered

distribution.
Means of Realizations Varlances of Realizallons
B - Number of Data 100 ] — Number of Data 100
180 ] mean 1.086 1 mean .303
] std. dev. 029 E std. dev. 021
coef. of var 026 180 _§ _T coef. of var .070
T maximum 1.168 i maximum 353
h 1 upper quartite 1.114 ] upper quartile 316
120 - median 1.100 ] median 300
J lower quartile 1.076 120 lower quartile .287
. minimum  1.032 = minimum 259
g ] § ]
a N -
g 080 g
[ ] | & 080
1 E —
040 .OAOJ
000 yaor—er—t t —t en et ™ 00Q ] T T T T T T
1.000 1.050 1.100 1.150 1.200 1.250 250 .300 .350 400 450

Figure 5.43: Histograms of the means and variances of the realizations under the
multi-Gaussian assumption after correcting for inconsistency between univariate dis-
tributions. The dots below the histogram represent the corresponding reference
values.
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Figure 5.44: Maps of the two benches for the first two realizations under the multi-
Gaussian assumption.
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Figure 5.45: Q-Q plots of the reference distribution versus the distribution from the
first six simulated models under the multi-Gaussian assumption.
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Figure 5.46: Indicator variogram reproduction for direction N30°W under the multi-
Gaussian assumption.
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Figure 5.47: Indicator variogram reproduction for direction N60°E under the multi-
Gaussian assumption.
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Table 5.11: Summary of order relation deviations for a particular realization under
the multi-Gaussian assumption, before correcting for inconsistency of univariate

distributions.

Table 5.12: Summary of order relation deviations for a particular realization un-
der the multi-Gaussian assumption, after correcting for inconsistency of univariate

distributions.

Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 4103 0.0111 0.2660

2 4573 0.0154 0.1846

3 4703 0.0187 0.2816

4 4379 0.0188 0.2438

5 3223 0.0192 0.2469

6 3079 0.0165 0.2867

7 2683 0.0167 0.1827

8 1865 0.0160 0.3722

9 1550 0.0115 0.3423

10 1023 0.0124 0.4297

Total 38.98 % Average 0.0162

Threshold | Number of | Average | Maximum
number | corrections | deviation | deviation

1 1637 0.0137 0.2330

2 2367 0.0150 0.1893

3 3091 0.0166 0.3066

4 3468 0.0204 0.2217

5 3535 0.0174 0.2735

6 3542 0.0160 0.2863

7 3400 0.0150 0.2288

8 2950 0.0138 0.3586

9 2274 0.0093 0.3526

10 3029 0.0060 0.3803

Total 36.61 % Average 0.0147
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Nugget Effect 0.20
Structure 1 Spherical
Sill Contribution 0.15
Range N30°W 20.0
Range N60°E 60.0
Range Vertical 45.0
Structure 2 Exponential
Sill Contribution 0.70
Range N30°W 160.0
Range N60°E 105.0
Range Vertical 220.0

Table 5.13: Normal scores variogram model parameters.

are fixed, once the variogram model has been specified. There is also an increased
loss of connectivity for extreme thresholds.

5.9.1 Normal Score Transformation

Transformation of the original grades to normal scores is required to calculate the
variogram used in Gaussian simulation. This procedure is done by a standard graphi-
cal method [43]. Each sample value has now associated a normal value. A one-to-one
relationship between the values in original units and the transformed values exists.
In some cases “atoms” in the histogram may prevent this one-to-one relationship,
that is, when many samples have the same value (typically zero or the detection
limit of the sampling procedure). In these cases, despiking of the distribution would
be required, however, given the characteristics of the global distribution of copper
grades, this not deemed necessary.

5.9.2 Variogram of Normal Scores

The variogram of the normal scores is calculated with the same search and toler-
ance parameters used for the indicator variograms (Table 5.2). The final model is
presented in Table 5.13 and the experimental and fitted variograms in the three
main directions of anisotropy are shown in Figure 5.48.

5.9.3 Parameters

The conventional program sgsim in GSLIB [43] is used to generate the Gaussian
realizations. Data are assigned to nodes. The other parameters used in the simula-
tion are presented in Table 5.14. Interpolation and extrapolation of the lower tail
are done linearly. For the upper tail, a hyperbolic model with parameter w = 1.5 is
used up to a grade of 7.5 %Cu. Maps of the first two renditions obtained are shown
in Figure 5.49.
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Figure 5.48: Normal scores variogram model. The continuous line corresponds to
the vertical direction, the dashed line is in the N30°W direction, and the dotted line
corresponds to the N60°E direction.

Random number generator seed 120574
Max. data and previously sim. nodes 24
Multiple-grid search levels 3
Maximum search radius horiz. 300.0 m
Maximum search radius vertical 150.0 m

Table 5.14: Simulation parameters.

5.9.4 Validation of Results
Reproduction of Statistics

The histogram and g-q plot of all the simulated realizations considered together are
presented in Figure 5.50. Reproduction of the mean, variance, and quantiles of
the reference distribution is satisfactory.

The histograms of means and variances calculated from each individual realiza-
tion are shown in Figure 5.51. This graph shows the good reproduction of the
histogram. The average variance of the realizations is smaller than the target value,
which may be due to the conditioning data.

Plots comparing the distribution of grades for the first six realizations versus the
target distribution are shown on Figure 5.52. Fluctuations occur, as expected.

Reproduction of Data Values

As with the previous methods, the data were assigned to grid nodes. The reproduc-
tion of data is then restricted to the samples that were actually assigned, while the
samples for which another sample was available and closer to a grid node, were not
honored.
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Figure 5.49: Maps of the two benches for the first two realizations using sequential
Gaussian simulation.
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Figure 5.50: Histogram and g-q plot of all the simulated values by SGS (100 realiza-
tions). The dot represents the mean from the reference declustered distribution.

Means of Realizations

120

080

Frequency

040

Number of Data 100

Frequency

Variances of Realizations
Numbaee of Date 100

mean 282

couf. of var 142

maximum 453

fower quartile 255
minimum 187

Figure 5.51: Histograms of the means and variances of the realizations by SGS. The
dots below the histogram represent the corresponding reference values.
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Figure 5.52: Q-Q plots of the reference distribution versus the distribution from the
first six simulated models by SGS.
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Figure 5.53: Variogram of normal scores reproduction for directions N30°W and
N60°E (SGS).

Reproduction of Variogram of Normal Scores

For every realization, the variogram of normal scores was computed and compared
to the model used in the simulation. Figure 5.53 shows the reproduction. A slight
bias can be seen in the N60°E direction.

5.10 Comparison of Results

5.10.1 Statistical Performance

To measure performance, the simulated models are compared with the available
blasthole data kept for validation, for the two benches simulated. For each realiza-
tion, the blasthole data are compared with the closest nodes in the simulated model,
and the correlation coefficient is calculated. A histogram of these correlation coef-
ficients summarizes the performance of indicator simulation and the other methods
to predict the short term information provided by the blasthole data.

Models generated considering only two-point statistics via sequential indicator
simulation gave an average correlation close to 0.30. The ones generated with se-
quential Gaussian simulation correlated better with the blastholes, the average co-
efficient of correlation was 0.33. Updating the IK probabilities with multiple-point
statistics improved the average correlation to 0.35 under the assumption of perma-
nence of ratios. The multi-Gaussian assumption performed poorly (Figure 5.54).

The improvement obtained by adding multiple-point statistics is significant.
Considering indicator methods, the correlation coefficient goes up from 0.30 to
0.35 under the permanence of ratios assumption. Interestingly, Gaussian simula-
tion outperforms the conventional indicator method, but still, the proposed method
to integrate multiple-point statistics shows an even better performance. The as-
sumption of permanence of ratios appear to be a robust way to integrate additional
information into the indicator framework.

5.10.2 Mine Planning Performance

A second approach to measure performance is to consider the accuracy of the meth-
ods in predicting quantity of metal. Using the blasthole information kept for valida-
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Figure 5.54: Histograms of correlation coefficients between the blasthole data and
the closest simulated value, over 100 realizations. Top left: sequential indicator
simulation; Top right: updating under the assumption of permanence of ratios; Bot-
tom left: updating under the multi-Gaussian assumption; Bottom right: sequential
Gaussian simulation.
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Figure 5.55: Area considered for calculation of quantity of metal. Blasthole data
for the bench 3886 are shown.

tion, that is, the blastholes in benches 3886 and 3898, a map that will be considered
the truth is built by ordinary kriging. The data are very densely located, hence the
smoothing effect of kriging is not a concern. The quantity of metal is calculated
considering blocks of 10 by 10 by 12 m3, and a cutoff grade of 1.0 %Cu. The vol-
ume is restricted to the area where blasthole data are available, that is, only data
within the volume defined by North coordinates between 24550 and 24750, and East
coordinates between 25100 and 25540, are used (Figure 5.55). The performance
of the proposed methods showed an improvement with respect to the conventional
sequential indicator simulation approach of almost 3 % in terms of the mismatch
with the truth obtained through kriging. The multi-Gaussian approach to assess
the relationship between single and multiple-point information performed poorly,
increasing the mismatch of the conventional technique. In this case, the error goes
from -5.68% for SIS to -10.43% for the multi-Gaussian approximation. The sim-
ulation considering multiple-point statistics under the assumption of permanence
of ratios also outperformed (although marginally) sequential Gaussian simulation.
This corroborates the results in the previous section.

The experimental variogram is calculated and modelled for the principal direc-
tions of anisotropy (Figure 5.56).

The expected quantity of metal calculated over 100 realizations of sequential
indicator simulation, updating under the permanence of ratios assumption, and
updating under the multi-Gaussian assumption are compared with the true quantity
of metal from ordinary kriging (Table 5.15).

5.10.3 Conclusions

The results indicate that better performance should be expected when incorporating
multiple-point statistics into the simulation method. From the techniques proposed
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Figure 5.56: Experimental variogram of Cu grades and model used for ordinary
kriging,.

Method Tons. Cu | Mismatch | Error %
Kriging (truth) 55274

SIS 52036 -3238 -5.86
Perm. of Ratios 53679 -1595 -2.89
Multi-Gaussian 49510 -5764 -10.43
SGS 53614 -1660 -3.00

Table 5.15: Expected quantity of metal based on the different methods, compared
to the “truth” computed by ordinary kriging of the blastholes.
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to update the IK probability, the integration under the assumption of permanence
of ratios appears as the best one. In this case study, it provides an estimate of the
quantity of metal that is 3% closer to the true value than SIS, and marginally closer
to the quantity of metal obtained with sequential Gaussian simulation.

The assumption of multi-Gaussianity to integrate the IK and multiple-point
probabilities does not improve the estimation of quantity of metal.

This study suggests that multiple-point statistics extracted from data can be
used to improve the numerical models built for medium and long term planning.
However, abundant information is required in order to obtain reliable estimates of
the probabilities of multiple-point events.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Since their first introduction more than ten years ago, the use of multiple-point
statistics in simulation has been an active area of research in geostatistics. All
applications have been based on the extraction of multiple-point statistics from
training images and the focus has been put on the simulation algorithm used to
reproduce them.

This research tries to approach this problem by privileging the use of data,
instead of training images. These statistics are used to add quantitative information
into the conventional sequential indicator simulation framework.

A first approach developed consists of a hierarchical simulation to account for
the multiple-point information. This approach presents several challenges that can
be further explored. Practical implementation has shown that the first approach
produces artifacts that are undesirable and invalidate their application.

A second approach is to use Bayes’ law to update the probability obtained by in-
dicator kriging with some multiple-point information. The problem of compatibility
of the two-point statistics, provided by the variogram or covariance, and multiple-
point statistics, calculated as the probability of a node to be below a threshold given
a specific arrangement of multiple values in space, can be resolved by considering
some assumption about the redundancy of the two types of information. This sec-
ond approach provides favorable results improving the performance of the numerical
models for medium and long term planning.

The main conclusions that can be extracted from this research follow. Many of
them can be seen as open paths to further research.

6.1.1 Incorporating Multiple-Point Runs in Geostatistical Simula-
tion

The algorithm proposed to account for runs above and below several thresholds, in
multiple directions was based on the simple idea of proceeding hierarchically from
the highest threshold to the lowest, eroding the field.

The following ideas were developed in Chapter 3:

1. Runs in multiple directions must be honored for each threshold.
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2. Due to the nesting property of runs, runs simulated at a higher threshold
will constrain the domain for the subsequent lower thresholds, and can be
considered as conditioning information.

3. The definition of a function to select the nodes to be switched (eroded) is
required.

4. The selection function used can be considered as greedy, from a numerical op-
timization perspective, and pushes the histograms of runs close to the targets
as fast as it can.

5. Convergence to the target statistics is not ensured by any means. Experimen-
tal results showed that satisfactory values could be obtained by defining an
appropriate set of parameters for the selection function.

6. The appropriateness of these parameters cannot be generalized; they were
found by trial and error.

7. Although the target statistics were reasonably reproduced, the algorithm gen-
erates undesired artifacts that make the realizations useless for further analy-
sis.

8. The use of alternations to improve convergence appears as a possible solution
to the defects of the algorithm as it stands.

Notwithstanding the apparent bad results, several theoretical developments were
made during the consideration of this method. The expected probability of a run
of a given length can be calculated in all generality if the spatial law of the random
variable is known. This result allows the prediction of the occurrence of runs under
the multi-Gaussian assumption.

The expected number of runs for a constant variogram model and different al-
gorithms was also looked into, as presented in Appendix B. Very stable results for
the expected number of runs and unstable ones for the variance of this value were
noticed and could be further investigated.

6.1.2 Updating the Indicator Kriging Probability with Multiple-
Point Statistics

The approach developed in Chapter 4 considers the simplification of the expression
of the conditional probability calculated as an indicator at an unsampled location,
given several sources of information.

In general, the relationship between the sources of information is unknown. Some
approximation must be made in order to allow its calculation. In this research,
the relationship could be quantified if cross covariances between single-point and
multiple-point events were known. This is what makes the use of multiple-point
statistics a difficult matter: these cross-covariances are extremely hard to infer, and
the modelling to ensure a positive definite function is rather complicated. Alterna-
tive approaches must be taken. The simplification of the redundancy terms is done
by assuming some relationship between the sources of information.

The indicator kriging estimate and the probability of having a value below the
threshold given a spatial arrangement of indicator values in a predefined pattern,
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are first considered independent. This entails a great simplification of the expression
to obtain the conditional probability at an unsampled location. However, practical
implementation of this method showed that large order relation corrections were
required to keep the updated probabilities within the permitted range [0,1]. These
large departures are acceptable when looked from the Bayesian perspective, but
are unacceptable in the implementation of the algorithm. The method is deemed
theoretically correct, but practically inapplicable.

An alternative assumption to integrate the two sources of information is the
permanence of ratios. It means that the incremental information provided by one
source of information is constant before and after knowing the information provided
by other sources. It performs well in the spatial context presented in this research.

A final method to integrate multiple sources of information is proposed by means
of the multivariate Gaussian assumption. The relationship between different sources
of information is approximated as if the variable was multi-Gaussian. The theoretical
derivation of this assumption is presented with unexpectedly poor performance in
the case study.

The following points were developed in Chapter 4:

1. Updating of IK probability using MP statistics does not necessarily require a
knowledge of the spatial law.

2. Assumptions can be made regarding the relationship between the different
sources of information.

3. Three assumptions were developed for the purpose of incorporating MP statis-
tics in a sequential indicator context. The description of the updating tech-
niques has been made for the general case, where several sources of information
are considered:

e Independence between the sources of information. This appears as an
unrealistic assumption in the context of spatial simulation. Its practi-
cal implementation carries important limitations due to order relation
deviations.

e Permanence of ratios. It entails that the incremental information pro-
vided by one source is independent of the other sources of information.
This assumption is not as strong as the assumption of full independence
between the sources of information, however it is not clear what is im-
plicitly assumed. Nevertheless, its performance showed the best results
among the methods proposed.

e Multi-Gaussian approximation to assess the redundancy between the
sources of information. What appeared to be the most realistic approach,
in the sense that actual redundancy was being estimated as if the variable
was multi-Gaussian, ended up performing poorly.

A case study using real data from an operating mine is presented in Chapter 5.
Care has been taken to provide details of all the steps involved in the implementation

of the techniques. The realizations are checked for data honoring, histogram, and
indicator variograms reproduction. The indicator methods are implemented along
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with sequential Gaussian simulation, the most widely applied method for simulation.
The performance is measured from two different points of view:

e A statistical measure of performance is considered by computing the correla-
tion coefficient between blasthole data kept for validation and not used for in-
ference or estimation, and the simulated numerical realizations of the variable
by sequential indicator simulation and considering multiple-point statistics to
update the IK probability under the different assumptions. Improvement in
performance occurred for the models that integrate the MP statistics under
the permanence of ratios assumption.

e A mine planning measure of performance is defined, by calculating the quantity
of metal from the validation blasthole data, and comparing the improvement
in the estimation of this parameter from the simulated models. Again, the per-
manence of ratios assumption appeared as the best methodology to integrate
MP statistics into the indicator simulation.

6.2 Future Work

Several issues were not addressed in this research and remain as key research topics
for integrating multiple-point statistics into geostatistical simulation:

e The assumption of stationarity between different sources of data. As illus-
trated in the case study (Chapter 5), slight differences between the univari-
ate distributions of the data to extract two-point and multiple-point statistics
may have large impact on the simulated models. The simple correction devel-
oped in Chapter 5 to make the estimators unbiased showed excellent results.
However, this correction can be seen as a re-scaling of all the probabilities of
multiple-point events. The consequences of this correction should be further
investigated.

e The spacing of the simulated nodes was set to be equal to the spacing of the
data used for MP statistical inference. The necessity of a denser simulated
grid would require modelling the multiple-point statistics for distances shorter
than the spacing between the data used for their inference, in the same way
the nugget effect is extrapolated in variogram inference. Positive definiteness
of this model is a difficult problem to solve.

e The problem of order relation deviations in sequential indicator simulation
and in the updating techniques proposed remains as a drawback of indica-
tor methods. The consequences of constraining the kriging weights to avoid
deviations could be of interest.

e Support and precision of different sources of data. The consequences of having
data at different support has not been considered in this research, although
this could become an issue when implementing the techniques proposed in
petroleum applications, where the integration of seismic data is of interest.
Seismic data have a very large support compared to well data. For mining
applications, the same problem could be foreseen when considering samples
with different precision, such as channel samples, blasthole, and drillhole data.
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Further extensions of this work would be the application of these techniques
to categorical variables. Considering cokriging between thresholds instead of IK
probabilities is also an avenue of research.

The determination of methods that control connectivity using only two-point
statistics appears as promising. The use of the disjunctive kriging framework, with
bivariate isofactorial families that are non-Gaussian could be explored as an alter-
native method to multiple-point integration.

The relationship between runs and the indicator variogram could be further
explored.

An alternative approach suitable for continuous and categorical variables is the
use of several classes. The larger the number of classes and points considered at the
same time, the larger the possible combinations. This approach is an interesting
area for further developments of multiple-point techniques.
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Appendix A

Pseudo-Random Number
(Generators

Random numbers are at the heart of all geostatistical simulation methods. Practi-
tioners assume that the software they are using uses an appropriate pseudo-random
number generator; however, this may not be true. This Appendix contains a short
literature review on random number generators and tests to quantify their ran-
domness. The history of pseudo-random number generation is reviewed. Tests for
randomness are described and applied to five different pseudo random number gen-
erators. Results show that generators that were considered good a few years ago fail
some recent tests. We recommend careful testing and monitoring of the literature.

A.1 Random Number Generators

In the early twentieth century people needed random numbers for their scientific
work. They started replacing the basic methods of drawing balls of a well stirred
urn or rolling dice with tables of numbers taken from some source or with random
numbers generated by mechanical devices. In 1927 a table of over 40,000 digits
taken at random from census reports was published by L. H. C. Tippett [165]. M.
G. Kendall and B. Babington-Smith [99] presented in 1938 a mechanical device to
generate random digits. They proposed 4 different tests that they applied to a
sequence of 5,000 digits generated by their machine. The same tests were applied
to two series of 1,000 digits obtained from Tippett’s table. All the sequences passed
the tests and were considered locally random. In 1939 a table with 100,000 digits
was published by Kendall and Babington-Smith [100] using the same randomizing
machine. They tested their digits and those published by Fisher and Yates [55]
with satisfactory results. The well-known RAND [140] table of random digits was
published in 1955. It included 1 million digits generated by another machine from
electronic noise. Most of those tables showed undesirable properties when new tests
were applied.

~ The introduction of computers led to other ways to generate random number
sequences. Tables had limited utility because of their size. Instead, arithmetic
operations were proposed to efficiently generate sequences of random numbers on
computers. J. Von Neumann [127] presented in 1946 the middle square method,
which consists in taking the middle digits of the previous number squared. This
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method does not generate random sequences [104].

One of the most popular methods to generate sequences of random numbers
was the Linear Congruential Method, which is covered in more detail in the follow-
ing section. These generators present some undesirable properties such as lattice
structure [114]. In 1965, M.D. MacLaren and G. Marsaglia presented a procedure
to combine two generators to have better sequences (more random). In 1989, R.S.
Wikramaratna proposed the Additive Congruential Method which has proved to
give satisfactory results. More details about the history of pseudo- random number
generators can be found in Knuth [104], Ripley [144], and Kennedy and Gentle [101].

A.1.1 Linear Congruential Method

D. H. Lehmer [106] introduced in 1948 the idea of generating a random number
sequence using the following formula:

Xn41= (aXn + c)modM, n>1

where X is the starting value or seed of the sequence (X > 0), a is called the
multiplier (a > 0), ¢ is the increment (¢ > 0), and M is the modulus (M > X,
M>a, M >c).

When c is set to zero (as it was in the original sequence proposed by Lehmer) the
method is called Multiplicative Congruential Method, otherwise (i.e. if ¢ # 0), it is
called Mized Congruential Method. The first examples of the mixed generator were
given independently by Thomson [164] and Rotenberg [146]. Other applications
were presented by Franklin [56] and Greenberger [74].

A.1.2 Additive Congruential Method

Additive generators calculate each number as some additive combination of the
previous n numbers in the sequence. R. S. Wikramaratna {175, 176, 177] proposed
the k** order ACORN (additive congruential random number) generator X J’-°, a more
general recursive method than the linear congruential, which combines the previous
number in the sequence with a corresponding number from the (k — 1)®* order
sequence. X is defined recursively from a seed X§ (0 < X{§ < 1) and a set of k
initial values X§*, m=1, ..., k each satisfying 0 < X§* < 1 by:

X‘g = Xg—la n>1
X = (X 4+ X moa;, n21, m=1,..,k

This generator has three features: it is faster to compute (the algorithm is very
simple), the period length can be set arbitrarily large, and it gives the same sequence
in any machine (differing only in the number of significant digits).

Figure A.1l presents a schematic of this method. The user has to choose the
numbers in the first column. All the numbers in the Zero Order row are the same (the
seed number XJ). The arrows show which previous numbers are used to calculate
the current one. The numbers generated in the row of the k** order are considered
to be pseudo-random numbers. One should not take the first few numbers, since
for seed numbers close to each other they may be similar. It is recommended to
initialize the sequence not considering the first thousands.
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Zero Order: X3 — X9 — X3 — -+ — X%

l ! !
1%t Order: X} — X} - X} - -« - X}
! l !
2 Order: X — X} — X2 - - - X%
! ! i
! ! l
kth Order: Xt — XF - X§F - ... = Xk

Figure A.1: Schematic showing how acorn generates random numbers.

A.1.3 Other Methods

Many other methods to generate sequences of random numbers may be cited. R. R.
Coveyou created a quadratic method (which is, in fact, a double precision middle
square method). The seed has to be chosen such that:

Xomods = 2
and the sequence is then defined by:
Xnt1=Xp - (Xn + 1)modae, 7 >0

The well-known Fibonacci sequence (originated in the early 1950’s) present a long
period (longer than M), but it is not satisfactorily random. It is defined by:

Xn+1 = (Xn + Xn—l)modM

Variations such as the one presented by Green, Smith and Klem [73], do not improve
the randomness of the sequences considerably:

Xn+1 = (Xn + Xn—k)modM

An interesting approach was presented by MacLaren and Marsaglia [111] and con-
sists in combining two sequences to get another “even more random”. This approach
has been accepted by some authors and rejected by others [35, 144]. In any case,
the algorithm proposed by MacLaren and Marsaglia seems to work well, as shown
by F. Gebhardt [59].

A different method to combine two sequences was proposed by W. J. Westlake
[174], based on circular shifting and exclusive “or” on a binary computer.

A.2 Statistical Tests

The sequences generated by any algorithm must be tested in order to know quan-
titatively its randomness. The statistical tests applied to pseudo- random number
sequences can be grouped as:

Empirical tests : Non-parametric test of a sample sequence of numbers. The
evaluation is based on “goodness of fit” of observed distributions with respect
to expected ones (predicted theoretically).
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Theoretical tests : Based on theoretical properties of the generators that may
be deduced without a sample sequence. Generators such as the congruential
ones are predictable in the sense that knowing the values a, ¢, M, and Xy, the
period of the generator may be predicted, as well as other properties.

A.2.1 Empirical Tests

Many different tests have been used to test sequences of pseudo-random numbers.
Most of them are based in a comparison between observed and expected frequencies.
A x? test or a Kolmogorov-Smirnov test can be applied to quantify the mismatch
between both distributions, based on probability at some level of significance [22, 27].
A brief description of those tests is given below:

1. x? Test: The following statistic is used:
n 2
w- — m.
i=1 *

where z; is the experimental frequency in interval ¢ and m; is the expected
(theoretical) frequency in the same interval. The quadratic form @ follows a
x? distribution with n — 1 degrees of freedom [22]. Once the value of @ has
been calculated, the user can refer to tables to find the percentile for a x2
distribution with n — 1 degrees of freedom. One should expect to be between
the fifth and ninety fifth percentiles.

2. Kolmogorov-Smirnov Test: The statistic D may be compared with the
critical value for a given significancy level:

D= MaxlFi — Sil

where F; denotes the cumulative relative frequency for each category of the
theoretical distribution and S; is the value from the observed data.

Tables of critical values of D for different probability values may be found in
most statistics books [79, 104].

The following are considered the most powerful tests for randomness [35, 99, 104].

e Frequency test (uniformity or equidistribution test): in a sequence
of random digits the observed frequency can be compared with the expected
frequency (each digit should appear {; times, where n is the total number
of digits in the series). A x2 test can be applied to quantify the departure
between observed and expected results. In a sequence of numbers, the interval
can be divided into n subsets (e.g. U < 0.01,0.01 < U £ 0.02,...), the observed
and expected frequencies are calculated and a x? test is applied. Srivastava
proposed to check uniformity over extreme intervals close to 0 and close to
1 (for applications of random numbers in mining simulations, where extreme
values will be critical when transformed to actual grades).
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o Serial test (k-dimensional uniformity): Given that numbers in the se-
quence should be independent, a good random number generator should pro-
duce pairs of numbers that uniformly fill the unit square, triplets that uni-
formly fill the unit cube, etc. The frequency of k-tuples {U;, Uit1, ..., Ui+k—1}
is calculated and compared with the expected frequency. We expect to have
the same number of observations in each one of the n* equal-sized cells, where
n is the number of cells in which each dimension is divided and k is the di-
mension or size of the k-tuple.

o Poker test (partition test): This test was originally proposed by Kendall
and Babington-Smith [99] for sequences of digits. When digits are arranged
in blocks of five, there will be certain expectation of the numbers in which the
five digits are all the same, the numbers in which there are four of one kind,
and so on. Knuth [104] explains the “classical” poker test in the following
manner: The numbers are arranged in n groups of five successive integers,
(Y5, Y5541y oy Y5j44), 0 < § < n. We observe which of the following seven
patterns each quintuple matches:

All different: abcde Full house: aaabb
One pair: aabcd Four of a kind: aaaab
Two pairs: aabbc Five of a kind: aaaaa

Three of a kind: aaabc

A x? test is based on the number of quintuples in each category. A simpler
version is proposed by Knuth. The test can also be applied using only four
digits [100].

¢ Gap test (Runs above and below the median): We can consider the
gaps occurring between the same digit in the series. For example, one digit
will be followed immediately by the same digit in about one-tenth of the cases
(in this case, there will be no gap). There will be one digit (different) between
two equal digits in about nine- hundredths of the cases. In about eighty-one-
thousandths of the cases there will be a gap of two between a repeated digit,
and so on.

A generalization for a series of numbers (not just digits) would be to examine
the length of gaps between occurrences of U; in a certain range. Let 0 < a <
B < 1, we consider the length of consecutive subsequences Uj, Ujt1, ooy Ujpr—1
in which U;_; and Uj4, lies between o and 3 but the elements in the subse-
quence do not. This subsequence represents a gap of length r.

The special cases (o, 3) = (0, %) or (%, 1) originated the so called tests of runs
above and below the mean (or the median). In order to implement this test, we
have to produce another sequence from the sequence being tested, by counting
the length of successive runs above and/or below the median. For example,
the sequence:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51, ...
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would generate the following sequence of above/below the median observa-
tions:

below, above, below, below, above, above, above, below, above, above, ...
and the sequence of lengths of runs above/below the median would be:
1,1,2,3,1, 2,..

The same procedure can be applied for any threshold (not only the median).
Depending on the proportion of values above and below the threshold, the
total number of runs above and below the threshold should follow a normal
distribution with the following mean and variance [123]:

Elr]=2-n-ps-pB

02=4-n-pa-pg-(1—3-pa-pB)

where ps and pp represent the proportion (probability) of values above and
below some threshold respectively, and n is the total number of values in the
sequence.

When the threshold is the median (or the mean) of a uniform distribution
then, the parameters are simply:

Elr]=% a,?=%

A X? test can be applied to the observed values in order to determine if there
is any significant difference with the expected value.

¢ Runs up and down: This test examines the length of monotone subsequences
of the original sequence, i.e. segments which are increasing or decreasing.

Again, to implement this test, we have to produce another sequence from the
sequence being tested, by counting the length of successive runs up and down.
For example, the sequence:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51, ...
would generate the following sequence of runs up and down:
up, down, down, up, down, up, down, up, down, ...
and the sequence of lengths of runs up and down would be:

,2,1,1,1,1,1,1, ..
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For an independent and uniform sequence of numbers, the number of runs up
and down should come from a normal distribution with the following mean
and variance:

2:n—-1
E[r]=—3
9 16-n—29

=V

In this case, the conventional x? test has to be modified to take into account
the fact that the number of runs of various lengths are negatively correlated
(101, 104, 108] (covariances are used to make this correction).

¢ Extreme values (maximum of k): Given that in most applications extreme
values are important (e.g. in mining simulations), a test over the extreme
values of the sequence is required. If we group the sequence into k-tuples,
and we extract, for each k-tuple, the maximum value, then the distribution of
maximums from k-tuples should show no serial correlation and should have a
cumulative distribution that follows a power law: Fi(z) = zF. Now, we must
show that the distribution of maximums follows a power law. The probability
of maz(Ur,Us,...,U) < z is the probability that U; < z and U < z and ...
and Uy < z, and this is the product of the individual probabilities, z -z - ... :
z = z¥. The closeness of the observed distribution to the expected can be
checked comparing the distribution of (maz(Uy, Us, ..., U ))* with the uniform
distribution, using a x? test. The serial correlation can be calculated. This
test can also be applied with the minimum of k.

¢ Coupon collector’s test: This test consists in calculate the length of seg-
ments required to get at least one observation per cell, when the interval [0,1]
is divided in some equally sized number of classes d. A x2 test can be applied
to the observed counting of length r. The corresponding probabilities are:

r—1 t—1

where r is the length of the segment, d is the number of classes and ¢ is some
length such that all the segments longer than t are put together.

¢ Permutation test: If we divide the sequence in k-tuples, then each k-tuple
can have t! possible relative orderings. The number of times each ordering
appears is counted and a x? test is applied with k = #! classes and with
probability 1/¢! for each ordering.

e Test on subsequences: All the tests previously presented can be applied
to a subset of the sequence, so we can verify if these subsets behave equally
random than the whole sequence.

A.2.2 Theoretical Tests

Some random number generators are suitable for analysis a priori, so that the param-
eters needed to generate a sequence can be understood and chosen properly. Linear
congruential generators have been thoroughly studied {74, 101, 104, 114, 144]. Some
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other generators, as the additive method presented by Green, Smith and Klem [73]
allows some theoretical analysis as well. Wikramaratna [175] shows some theoreti-
cal results for his additive congruential generator. The interested reader can check
those references for further explanations of the tests.

Some authors recommend against methods that do not allow those analysis [144],
such as the one proposed by MacLaren and Marsaglia [111];however those generators
have shown to perform well for many applications [35].

A.3 Testing Five Random Number Generators

This section contains the results of testing five different random number generators.
The tests presented here are only those which have proven to be the more effective
to detect poor pseudo-random number generators [104].

The following methods were tested:

e Linear Congruential Method (lcorn): the parameters of this generator are:
m =29 41, a =75, c = 1. Three seed numbers were used: 69069, 112063,
and 76715.

e Mixed Congruential Method (mcorn): this is the generator proposed by Ma-
cLaren and Marsaglia [111].The seeds used are the same than those for 1corn.

e Additive Congruential Method (acorn): This is the generator proposed by
Wikramaratna [175] in real arithmetic. The seeds used must be real values

between 0 and 1. In this application the initial values are: 0.10, 0.81, and
0.12.

e Additive Congruential Method (acorni): This is the generator proposed by
Wikramaratna [177] in integer arithmetic. Again, the seeds used are those for
lcorn.

e excel: this generator comes with the commercial software Microsoft Excel.
The pseudo-random sequences are generated without specifying a seed number.

For each generator, nine sequences of numbers have been created. Three sequences
of 10,000 values, three of 30,000, and three of 90,000 values between 0 and 1.

A.3.1 Serial Correlation Test

The serial correlation was calculated using the routine gam of the public domain
software GSLIB [39]. Results are presented in Table A.l. Correlations greater
than 0.02 in absolute value were highlighted. lcorn presents four of those high
values for sequences of 10,000 numbers, however they are still not significant. excel
also has one sequence with correlation greater than 0.02. All the random number
generators passed this test, since all the correlations are acceptably close to zero.

A.3.2 Uniformity Test

The uniformity of the sequences was tested dividing the interval [0,1] into 100 subin-
tervals (]0,0.01), [0.01,0.02), ..., [0.99,1]). A x? test was applied to the observed
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10000 Data
Algorithm Seed h=1 h=2 h=3 h=4 h=35
LCORN 69069 0.01241 0.00501 -0.01182 0.02127 0.00371
112063 0.01217 -0.00515  0.00106 0.00048 -0.022901
76715 | 0.02587  0.00015 -0.00788 0.00931  0.02054
MCORN 69069 0.00415  0.00214 0.01294 -0.00814 0.01826
112063 0.01501 -0.01339  0.00885 0.00631 -0.00444
76715 | -0.01881 -0.00113  0.00805 0.00106 0.00052
ACORN 0.10 -0.00323 0.00461 -0.00661 0.00579 0.00957
0.81 0.01117 -0.00783  0.00027 -0.00634 0.00761
0.12 0.00106  0.01729  0.00602  -0.00205 -0.00486
ACORNI 69069 | -0.00318 -0.00831 -0.00647 0.00002 0.01980
112063 0.01048  0.00654  0.00904 0.00217 0.01222
76715 | -0.00810 -0.00755  0.00938 -0.01783 0.00373
EXCEL — 0.00140 -0.00602  0.00419 -0.00220 -0.01285
— 0.00053 -0.01690 -0.00025 -0.00903  0.02864
— -0.01667 0.00894 0.01240 -0.00189 0.00137

30000 Data
Algorithm Seed h=1 h=2 h=3 h=4 h=35
LCORN 69069 0.01407 -0.00198 -0.00580 0.00700 -0.00875
112063 0.01490 -0.00093  0.00497 -0.00486 -0.00137
76715 0.01271 -0.00278 -0.00719 0.00513 -0.00495
MCORN 69069 0.00287  0.00656  0.00737 0.00176 0.01153
112063 0.00381 -0.00892  0.00192 0.00185 0.00234
76715 0.00750 -0.00119  0.01183 0.01169 -0.00305
ACORN 0.10 -0.01548 -0.00196  0.00473 0.00011 0.00683
0.81 -0.00086 -0.00071  0.00155 -0.00761 -0.00681
0.12 -0.00124  0.01308 -0.00241 0.00494 0.00354
ACORNI 69069 0.00059 -0.01027 -0.00921 0.00255 0.01482
112063 0.00676  0.00775  0.01339  -0.00249 0.00221
76715 0.00112 -0.00593  0.00509 -0.01035 -0.00144
EXCEL — 0.00670  0.00648 -0.00099  -0.00416 0.00308
- -0.00762  0.00476  0.00342 -0.00472 0.00165
— 0.00140  0.00038 -0.00897 0.00318 -0.00352

90000 Data
Algorithm Seed h=1 h=2 h=3 h=4 h=5
LCORN 69069 0.01243  0.00017 -0.00173 0.00183 -0.00309
112063 0.01292  0.00139  0.00140 -0.00179 -0.00167
76715 0.01454 -0.00013 -0.00205 0.00116 -0.00167
MCORN 69069 0.00345 0.00552  0.00289 -0.00112 0.00471
112063 0.00154 -0.00329 -0.00122 0.00077 0.00068
76715 0.00297 -0.00136  0.00255 0.00958 0.00109
ACORN 0.10 -0.00726  0.00494 -0.00331  -0.00377 0.00019
0.81 0.00509 -0.00195 -0.00065 -0.00388 -0.00622
0.12 0.00076  0.00376  0.00073 0.00437 0.00008
ACORNI | 69069 | -0.00177 -0.00184 -0.00487  -0.00057 0.00174
112063 0.00354  0.00328  0.00482  -0.00270 0.00163
76715 0.00171 -0.00427  0.00036 -0.00178 0.00024
EXCEL — -0.00062 -0.00570  0.00039 0.00339 0.00538
— -0.00721  0.00331 -0.00560 0.00153 0.00066
— -0.00487  0.00319  0.00007 0.00010 0.00163

Table A.1: Results of serial correlation test for 5 pseudo-random number generators
and sequences of length 10000, 30000 and 90000.
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frequencies. The results are presented in Table A.2. All the x? percentiles out-
side of the 90% central confidence interval were highlighted. 1corn failed this test
when sequences of 30,000 and 90,000 numbers were used. mcorn and acorn seem to
perform the best in this test.

A.3.3 K-Dimensional Uniformity Test

After partitioning the space of 3, 4, and 5 dimensions regularly, the frequency of
observed values in each subset should be approximately the same if the numbers are
random. In 3-D the space was divided into 153 = 3375 cells, in 4-D it was divided
into 8% = 4096 cells, and in 5-D it was divided into 5° = 3125 cells. Table A.3
presents the x? percentiles for this test. lcorn failed this test for all the sequences
tested. Again, mcorn seems to perform the best. excel also gives good results.
acorn and acorni give acceptable results.

A.3.4 Runs Up and Down

The total number of runs up and down and the number of runs for each length
were calculated and are shown in Table A.4. The total number of runs should
fall between the 5! and 95" percentile of the expected distribution. For 10,000
numbers, the acceptable interval is (6598,6736), for 30,000 it is (19880,20120), and
for 90,000 the confidence interval is (59793,60207).

lcorn gives too few runs in most of the sequences, while mcorn failed in one
sequence, which is acceptable. acorn and acorni failed in two cases. excel per-
formed excellent in this test. In summary, we can say that lcorn failed and excel
gave the best results, and the other generators gave acceptable results.

A.3.5 Runs Above and Below the Median

Table A.5 presents the total number of runs above and below the mean, and
the detailed list of number of runs of different lengths. According to the limit
distribution of the total number of runs, the observed number of runs should be
into the interval [m — 1.645 - o, m + 1.645 - o] . That means that for the sequences
of 10,000 values, they should be within (4918,5082). In the case of 30,000 numbers,
the number of runs should be into (14858,15142),and finally, for 90,000 numbers, it
should be in (44753,45247).

The results again show that 1corn gives bad results for most of the sequences.
The other generators only have minor problems with this test.

A.3.6 Extreme Values

Generators were tested for maximum values in a k-tuple. The distribution of max-
imums should follow a power law. A x? test was applied to compare the observed
frequencies with the expected ones. Table A.6 presents the percentile of the x?
test for each sequence.

lcorn failed the test for uniformity (k = 1) (see Table A.1) and for higher
values of k. All the other generator presented some problems, however in general
they seemed to pass this test. mcorn gave the best results.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10000 Data
Algorithm Seed 00-10 00-01 09-1.0
LCORN 69069 56 42 63
112063 1 14 67
76715 37 50 14
MCORN 69069 27 40 39
112063 80 62 66
76715 86 62 9
ACORN .10 24 72 25
.81 63 48 11
12 6 47 27
ACORNI 69069 74 9 66
112063 14 2 97
76715 41 20 93
EXCEL — 6 68 49
-— 41 84 14
- 71 95 14
30000 Data
Algorithm Seed 0.0-10 00-01 09-1.0
LCORN 69069 0 0 0
112063 0 0 0
76715 0 0 0
MCORN 69069 38 31 40
112063 60 73 16
76715 24 40 25
ACORN .10 9 66 86
.81 92 80 7
12 18 76 24
ACORNI 69069 54 65 26
112063 47 81 45
76715 64 60 98
EXCEL — 98 64 85
— 72 98 88
— 6 8 22
90000 Data
Algorithm Seed 00-10 00-01 09-1.0
LCORN 69069 0 0 0
112063 0 0 0
76715 0 0 0
MCORN 69069 31 12 0
112063 5 48 87
76715 44 40 76
ACORN .10 23 99 60
.81 96 35 8
12 44 79 11
ACORNI 69069 60 80 56
112063 30 14 15
76715 32 60 51
EXCEL — 37 70 46
—_ 33 11 94
— 42 33 60

Table A.2: Results of uniformity test for 5 pseudo-random number generators and
sequences of length 10000, 30000 and 90000.
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10000 Data
Algorithm Seed k=3 k=4 k=5
LCORN 69069 4 1 30
112063 (4] 3 11
76715 1 2 4
MCORN 69069 47 70 28
112063 51 5 6
76715 34 82 60
ACORN .10 55 83 35
.81 6 96 20
12 41 18 90
ACORNI | 69069 27 71 26
112063 69 49 75
76715 93 99 26
EXCEL — 7 19 6
— 10 33 78
— 35 62 83
30000 Data
Algorithm Seed k=3 k=4 k=5
LCORN 69069 0 0 0
112063 0 0 0
76715 0 0 0
MCORN 69069 14 57 92
112063 14 19 6
76715 62 35 63
ACORN .10 86 49 98
.81 8 55 60
12 35 22 85
ACORNI | 69069 12 82 41
112063 54 55 89
76715 98 20 56
EXCEL —_ 41 82 61
— 57 87 47
— 87 41 55
90000 Data
Algorithm Seed k=3 k=4 k=5
LCORN 69069 0 100 0
112063 0 100 0
76715 0 100 0
MCORN 69069 47 63 59
112063 11 53 7
76715 65 41 83
ACORN .10 13 28 57
.81 69 59 76
.12 78 1 21
ACORNI | 69069 58 52 67
112063 81 68 65
76715 91 76 99
EXCEL -— 97 36 68
— 66 71 62
— 89 15 20

Table A.3: Results of k-dimensional uniformity test for 5 pseudo-random number
generators and sequences of length 10000, 30000 and 90000.
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10000 Data
Algorithm | Seed Runs 1=1 1=2 =3 I=4 =5 1=6 1=7 1=8
LCORN 69069 6638 4137 1809 549 121 19 3 0 0
112063 | 6568 4053 1794 566 122 27 5 1 0
76715 6582 4033 1861 539 122 23 4 0 0
MCORN 69069 6624 4115 1838 507 138 21 5 0 0
112063 | 6642 4132 1827 543 119 18 3 0 0
76715 6701 4219 1844 496 112 24 6 0 0
ACORN .10 6702 4222 1829 508 121 21 1 0 0
.81 6657 4166 1807 549 110 20 4 0 1
12 6691 4222 1798 528 120 22 0 1 0
ACORNI 69069 6630 4099 1879 502 119 27 3 1 0
112063 6679 4176 1844 527 108 22 2 0 0
76715 8590 4058 1847 530 123 28 3 1 0
EXCEL — 6618 4103 1821 549 121 21 3 0 0
—_ 6611 4087 1822 557 130 13 2 0 0
— 6716 4235 1837 514 108 16 6 0 0
30000 Data
Algorithm Seed Runs 1=1 1=2 1=3 =4 1=5 1=6 I1=7 ]=8
LCORN 69069 19817 | 12305 5401 1656 371 67 15 1 1
112063 { 19863 | 12307 5516 1592 371 65 10 1 1
76715 | 19834 | 12307 5428 1660 355 69 14 1 0
MCORN 69069 19935 | 12399 5553 1534 372 62 11 4 0
112063 | 19884 | 12319 5516 1634 341 63 10 1 0
76715 19975 | 12443 5546 1569 341 63 13 0 0
ACORN .10 20157 | 12707 5556 1467 362 60 4 1 0
.81 20073 | 12612 5480 1578 335 58 8 1 1
12 20054 | 12616 5419 1615 327 71 5 1 0
ACORNI 69069 19905 | 12360 5548 1543 369 73 11 1 0
112063 | 20047 | 12512 5606 1526 335 55 g 4 0
76715 19842 | 122904 5482 1620 360 77 7 2 0
EXCEL — 20036 | 12622 5408 1560 368 64 10 3 1
— 20056 | 12533 5575 1545 342 54 6 1 0
— 19946 | 12434 5500 1586 338 75 12 0 1
90000 Data
Algorithm Seed Runs 1=1 1=2 1=3 =4 Il=b I=6 I=7 1=8
LCORN 69069 | 59580 | 37010 16347 4892 1083 206 38 3 1
112063 | 59601 | 37019 16399 4845 1092 204 37 3 2
76715 | 59512 | 36887 16390 4908 1076 207 40 3 1
MCORN 69069 | 59783 | 37222 16498 4719 1137 172 29 6 0
112063 | 59838 | 37274 16492 4799 1052 193 25 3 0
76715 | 59989 | 37469 16543 4702 1070 173 31 1 0
ACORN .10 60387 | 38167 16320 4652 1044 170 28 6 0
.81 59954 37392 16620 4670 1040 201 26 4 1
12 59975 | 37504 16425 4814 990 215 21 6 0
ACORNI 69069 60045 | 37528 16565 47256 1006 187 31 3 0
112063 | 59925 | 37383 16555 4696 1072 191 22 5 1
76715 50816 | 37194 16548 4824 1037 193 16 4 0
EXCEL — 59904 | 37277 16625 4770 1032 173 21 5 1
— 60162 | 37850 16276 4820 995 176 38 7 0
— 60060 | 37579 16559 4663 1027 192 35 5 0

Table A.4: Results of runs up and down test for 5 pseudo-random number generators
and sequences of length 10000, 30000 and 90000.
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10000 Data
Algorithm| Seed | Runs | I=1 1=2 1=3 1=4 I=5 I=6 =7 1=8 1=9 =10 l=11 1=12

Theory 5000 | 2500 1250 625 313 156 78 39 20 10 5 2 1
LCORN | 690069 | 4938 | 2450 1198 662 309 143 92 44 24 5 5 3 2
112063 4913 | 2389 1249 644 292 179 81 39 21 10 4 1 3

76715 | 4904 | 2408 1203 646 338 145 79 37 28 7 3 3 3

MCORN | 690689 | 4970 | 2479 1266 576 310 169 93 40 17 8 4 6 2
112063 | 4937 | 2413 1252 654 311 151 74 47 13 6 5 3 3

76715 | 5061 | 2549 1309 591 293 167 72 46 20 5 6 2 1

ACORN .10 5032 | 2543 1242 633 305 159 80 34 12 12 3 4 2
.81 4981 | 2472 1243 638 335 135 77 34 31 6 4 2 3

.12 5038 | 2548 1255 608 304 167 84 44 10 12 1 3 2

ACORNI | 69069 | 5043 | 2513 1286 619 327 149 81 41 16 8 1 2 0
112063 4937 | 2425 1251 615 337 142 84 50 8 10 9 4 0

76715 [ 5038 | 2558 1265 592 300 154 87 43 19 13 4 2 1

EXCEL -— 5038 | 2546 1265 582 334 163 87 28 14 8 3 3 4
— 4980 | 2442 1320 585 318 165 71 36 21 11 7 1 0

— 5067 | 2604 1229 623 309 144 81 32 21 12 8 2 1

30000 Data

Algorithm | Seed | Runs | I=1 1= 1=3 l=4 l=5 1=6 1=7 |=8 1=9 l=10 l=11 I=12
Theory 15000 | 7500 3750 1875 938 469 234 117 59 29 15 7 4
LCORN | 69069 [14750| 7225 3688 1933 905 491 264 123 67 26 12 5 9
112063 114816 | 7317 3706 1851 940 518 247 120 60 33 10 4 7

76715 | 14803 | 7275 3697 1941 926 468 253 117 69 29 12 4 7

MCORN | 69069 | 14859 | 7428 3646 1848 936 494 270 122 52 28 16 12 4
112063 | 15049 | 7506 3828 1870 920 466 226 130 53 18 13 8 4

76715 | 14936 | 7440 3813 1789 904 492 255 121 54 33 18 10 4

ACORN .10 15236 | 7719 3799 1917 937 442 207 104 534 30 10 7 5
.81 | 15046 | 7542 3789 1824 995 429 236 104 72 23 12 9 6

.12 115077 | 7608 3724 1859 944 473 255 114 49 29 6 10 5

ACORNI | 69069 | 15017 | 7419 3811 1941 943 455 246 104 46 29 8 8 3
112063 | 15019 | 7540 3740 1867 924 460 242 134 40 28 23 4 4

76715 | 14974 | 7481 3786 1829 938 424 261 125 68 37 15 3 5

EXCEL —_ 15077 | 7610 3780 1805 942 482 217 119 62 26 16 8 8
— 15017 | 7561 3743 1816 949 457 253 121 54 32 14 11 4

— 14905 | 7404 3683 1914 961 474 223 134 57 29 13 7 5

90000 Data

Algorithm| Seed | Runs | I=1 1=2 =3 Il=4 I=5 1=6 I1=7 I=8 1=9 1=10 I1=11 =12
Theory 45000 [ 22500 11250 5625 2813 1406 703 352 176 88 44 22 11

LCORN | 69069 |44409}21890 11067 5703 2813 1455 748 363 201 83 39 16 19
112063 1 44414 {21927 11073 5618 2829 1495 741 369 187 91 36 16 20
76715 {44357 21845 11052 5680 2853 1443 745 365 201 84 39 16 19
MCORN | 69069 {44727 22324 11087 5621 2783 1425 761 355 185 92 48 26 9
112063 | 44901 | 22332 11351 5617 2772 1422 678 370 172 83 56 25 11
76715 | 44942 | 22416 11326 5593 2772 1403 700 378 174 85 48 22 15
ACORN .10 | 45147 122740 11163 5638 2829 1353 705 368 179 93 39 24 7
81 | 44779 122293 11173 5635 2824 1406 748 338 187 80 31 30 24
.12 | 45138 | 22635 11360 5511 2774 1431 752 353 167 86 28 19 14
ACORNTI | 69069 | 45132 [22577 11280 5688 2783 1442 701 340 160 98 23 20 10
112063 | 45095 | 22675 11234 5595 2769 1377 730 364 162 87 62 15 14
76715 | 44967 | 22365 11388 5627 2834 1308 716 371 175 103 39 17 15
EXCEL — 44924 22321 11309 5729 2786 1391 691 345 171 87 40 21 19
— 45227 | 22762 11211 5696 2780 1398 690 365 161 88 36 14 19
— | 4525622760 11343 5607 2770 1375 704 348 177 93 40 22 7

Table A.5: Results of runs above and below the median test for 5 pseudo-random
number generators and sequences of length 10000, 30000 and 90000.
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10000 Data,
Algorithm Seed k=1 k=2 k=3 k=4 k=5

LCORN 69069 56 100 98 98 98
112063 1 99 100 100 95
76715 37 100 85 100 99

MCORN 69069 27 54 73 37 2

112063 80 29 78 85 8

76715 86 78 70 85 66

ACORN .10 24 18 39 - 44 83
.81 63 91 94 1 10

12 6 19 64 93 71

ACORNI 69069 74 19 6 16 46
112063 14 30 76 76 94
76715 41 12 50 40 40

EXCEL — 6 24 15 28 5
- 41 48 14 70 68

— 71 72 96 63 46

30000 Data

Algorithm Seed k=1 k=2 k=3 k=4 k=5
LCORN 69069 0 100 100 100 100
112063 0 100 100 100 100
76715 0 100 100 100 100

MCORN 69069 38 37 67 11 0
112063 60 73 16 58 8
76715 24 69 20 76 24
ACORN .10 9 64 15 15 34
.81 92 83 42 22 67
.12 16 15 81 85 96
ACORNI 69069 54 4 73 24 60
112063 47 81 91 99 99
76715 64 26 41 9 57
EXCEL — 98 67 55 90 27
— 72 87 76 86 99
— 6 0 22 43 18
90000 Data

Algorithm Seed k=1 k=2 k=3 k=4 k=5
LCORN 69069 0 100 100 100 100
112063 0 100 100 100 100

76715 0 100 100 100 100
MCORN 69069 31 18 28 7 24
112063 5 38 2 22 28
76715 44 93 20 57 11
ACORN .10 23 72 11 3 4
81 96 66 25 19 62
12 44 79 88 55 29
ACORNI 69069 60 10 39 56 32
112063 30 14 68 9 52
76715 32 42 28 73 55
EXCEL — 37 75 56 71 60
— 33 86 86 79 82

- 42 63 50 53 82

Table A.6: Results of maximum values test for 5 pseudo-random number generators
and sequences of length 10000, 30000 and 90000.
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A.4 Discussion

Pseudo-random generators are required for geostatistical simulation. Since truly
random numbers cannot be generated by computer, we need to quantify the ran-
domness of the pseudo-random sequences generated by different algorithms. Many
different tests have been proposed to measure randomness, however, only a few of
them are able to detect important departures from randomness.

Some powerful tests have been applied to five commonly used generators. They
showed that the widely used lcorn generator does not give satisfactory results.
Many applications that required random numbers a few years ago used this gener-
ator. We should test our pseudo-random number generators whenever a new pow-
erful test is proposed. For the generators tested in this paper, acorni and mcorn
performed the best, so they may be recommended as artifact-free pseudo-random
number generators. acorn and the generator provided in excel, gave satisfactory
results, but presented abnormal results more often than the previous two.

Test for randomness are of interest for geostatisticians, since they provide new
ways to quantify correlation. The use of runs above thresholds is just one of them.
Others could also be explored.
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Appendix B

Exploratory Examples Using
Runs

In this Appendix, the total number of runs above and below thresholds have been
calculated for different correlated series. The results are compared with the theo-
retical distribution for uncorrelated sequences. Then, the frequencies of lengths of
runs above thresholds are plotted in a map, along with the curve of average length
for a given threshold. Again, different two-point variogram functions are used in
order to see the differences with the random case. Thresholds have been chosen as
regularly spaced quantiles.

Finally, maps of differences between the observed frequencies of lengths of runs in
correlated sequences and the expected frequencies for the random case were plotted,
showing again different responses given different two-point variogram functions.

B.1 Distribution of Total Number of Runs Above and
Below Thresholds

Using mcorn (the generator with best results in tests documented in Appendix 1),
1,000 sequences of 10,000 pseudo-random numbers were generated. The number of
runs above and below 4 thresholds were counted and compared with the theoretical
limit distribution.

Histograms showing the distribution of total number of runs above and below
the corresponding thresholds are shown in Figure B.1. The theoretical parameters
of the distribution are summarized in Table B.1 and compared with the observed
ones. Both the mean and the standard deviation are close to their theoretical values.

1,000 Sequences of 10,000 Random Numbers - mcorn
Threshold | Theoretical Theoretical | Observed  Observed
Mean Std. Dev. Mean Std. Dev.
0.2 3200 57.69 3199 59.20
0.4 4800 51.85 4800 51.65
0.6 4800 51.85 4799 51.97
0.8 3200 57.69 3200 58.32

Table B.1: Theoretical and observed results - mcorn.
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Threshold = 0.2
Number of Data 1000
mean 3199.70
otd. dev. 50.20
coel. of var .02
maximum 3375.00
upper quartile 3240.00
maedian 8200.00
lower quartiie 3156.00
minimum 3019.00

Frequency

Threshold = 0.2

Threshold = 0.6
A Number of Data 1000
T mean 4799.26
sid. dev. 51.97
coef. of var .01
maximum 4966.00
upper quartile 4834.00
median 4799.00
lower quartile 4763.00
minimum 4648,00

Frequency
g
i

Threshold = 0.6

Figure B.1: Histograms of total number
sequences generated with mcorn.

160_Throshold = 0.4

Threshold = 0.8

Frequency

Numbar of Data 1000

Number of Data 1000

mean 3198.87
std. dev. 58.32
coet. of var .02

maximum 3357.00
upper quartile 3238.00
median 3201.50
lower quartiie 3160.00
minimum 3026.00

of runs for different thresholds - 1,000
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B.2 Comparison of Different Variogram Functions

Recall that the distribution of runs of elements above and below a threshold (i.e.
assumed independently drawn from a Bernoulli distribution with probabilities p and
g = 1 — p, respectively) are asymptotically normally distributed with the following
parameters:

p=2-n-p-q
o’=4:n-p-q-(1-3-p-q)

Two of the random number generators were compared with the expected number
of runs (for uncorrelated values). mcorn and acorni showed a very good reproduc-
tion of the theoretical mean, as presented in Figure B.2. The standard deviation
is not as smooth as the mean, but notice the good reproduction at extremes; this
is common to all cases presented. The mean and standard deviation of the total
number of runs above and below each threshold was calculated as an average over
100 sequences of 1000 values each.

Series of correlated data were generated using moving average simulation and
simulated annealing. The first example considers a triangular variogram function
(this variogram model is valid in one dimension only):

h, ifh<a
V(h)z{ a, ifh>a

A wide variety of ranges were evaluated using sequences generated by moving
average (Figure B.3). The curves of mean and standard deviation of the total
number of runs depart predictably from the uncorrelated case. When correlation
increases, runs tend to be longer, so there are less than in the random case. For
some ranges (5, 10, 15, 20, and 25 units) simulated annealing was used to generate
correlated series. Figure B.4 gives the result for a triangular variogram function.
Some different variogram models were explored with similar results: in all the cases,
the mean number of runs decreases when the sequence has a greater correlation
range.

Three different seed numbers were used with a fixed range (equals to 5 units).
The results showed that there is no significant differences between the sequences
generated with different seed numbers. Notice that for every sequence in those
examples a different seed number was used.

In general, the curve of mean total number of runs is quite smooth and well
behaved, however, the standard deviation does not seem to be as stable as the
mean. Differences between moving average and simulated annealing might be due
to the random function implicit in each method. In the first case, Gaussianity is
derived from the averages and the Central Limit Theorem. In the case of simulated
annealing, the random function is unknown. In order to visualize the differences
between different variogram models and between the methods used to generate the
sequences, Figure B.5 is presented comparing the result for a correlation range of
5 units. The theoretical result for uncorrelated sequences is plotted as a reference.
The same comparison was done for other ranges. An interesting and consistent dif-
ference between the results given by moving average and simulated annealing (using
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Figure B.2: Mean and standard deviation of total number of runs above and below
thresholds (quantiles) for mcorn and acorni, compared with the theoretical expected
values.
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Figure B.3: Mean and standard deviation of total number of runs above and below
thresholds (quantiles) for sequences with a triangular variogram function generated

using moving average, compared with the theoretical expected values for uncorre-
lated series.
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Figure B.4: Mean and standard deviation of total number of runs above and below
thresholds (quantiles) for sequences with a triangular variogram function generated
using simulated annealing, compared with the theoretical expected values for un-
correlated series.
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the triangular variogram function) is demonstrated here. In all the cases the mov-
ing average method (Gaussian) generates standard deviations closer to the random
case than the simulated annealing technique. This situation can be explained by
the maximum entropy property of the Gaussian model. Differences between the
triangular, spherical and exponential variogram are due to the different correlation
for a given distance, as presented in Figure B.6.

B.3 Maps of Frequencies of Length of Runs Above Each
Threshold

In order to obtain a plot easily understandable and that reflects clearly any change
in the high order behavior of the variable, a map of lengths of frequencies of lengths
of runs above each threshold along with a curve showing the average length of runs
above each threshold has been implemented.

Using sequences with ranges of 2, 5, 10, 15, 20, and 25 units, the number of
runs above each threshold were calculated. The decision of using only the runs
above (instead of runs above and below) was taken because using both might hide
differences in the continuity of high and low values, by averaging the number of
runs.

Figure B.7 shows the maps for random sequences generated with acorni and
mcorn. Figure B.8 shows the maps for sequences generated using moving average
with a triangular variogram model. In Figure B.9 sequences with the same vari-
ogram model were generated using simulated annealing. Some other examples with
different correlation functions are not presented here.

In all the cases, when the range increases, the cloud of non zero frequencies grows
to the right and up, because when the range of correlation is greater, long runs are
more likely to be found.

When different models of correlation are used, slight differences in the cloud of
frequencies can be seen. The curve of average lengths also changes when different
variogram models are used.

The next section presents another way to look at high order correlation. Sub-
tracting the expected frequencies of lengths of runs for the random case to the
observed frequencies, maps of differences were generated.

B.4 Maps of Differences in Frequencies of Lengths of
Runs

The expected number of runs above a threshold of a given length ¢ for a random
sequence, 1, can be expressed as [123]:

(ng +1)@ - nf’
n('i-l-l)

E(ry) =
where ny =n - py, ne =n - pg, and 2@ =z-(t-1)-...-(z—a+1)
The difference between frequencies observed from correlated sequences and the

expected for the random case were calculated. Figure B.10 shows the maps of
differences using the pseudo-random sequences generated using acorni and mcorn.
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Figure B.5: Mean and standard deviation of total number of runs above and be-
low thresholds (quantiles) for sequences with a range of 5 and different variogram
functions (sasim and movavg have a triangular variogram).
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Figure B.6: Variogram models used in the examples (relative shape for effective
range of 20).
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Figure B.7: Map of frequency of lengths of runs above quantiles for random se-
quences generated with acorni and mcorn. The solid line shows the average length
as a function of the quantile.
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Figure B.8: Map of frequency of lengths of runs above quantiles for sequences gen-
erated by moving average (triangular variogram model). The solid line shows the
average length as a function of the quantile.
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Figure B.9: Map of frequency of lengths of runs above quantiles for sequences gen-
erated by simulated annealing (triangular variogram model). The solid line shows
the average length as a function of the quantile.
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Figure B.10: Map of differences of frequencies of lengths of runs above quantiles for
sequences generated with acorni and mcorn.

This just shows that the pseudo-random number generators do not depart signifi-
cantly from the theoretical values. Figure B.11 shows the maps of differences for
sequences generated using moving average with a triangular variogram model. The
differences for the same variogram model, but for sequences generated with simu-
lated annealing are presented in Figure B.12. Again, different correlation functions
were used with similar results and are not shown in this Appendix. A characteristic
zone where the observed frequencies are lower than the expected ones is repeatedly
seen for all ranges and variogram models; there are fewer short runs. Then, there is
a zone where the observed frequencies are higher than the expected for the random
case: there are more longer runs. In other words, when correlated sequences are
used, there are less short runs and more long ones than in the random case.
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Figure B.11: Map of differences of frequencies of lengths of runs above quantiles for
sequences generated by moving average (triangular variogram model).
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Figure B.12: Map of differences of frequencies of lengths of runs above quantiles for
sequences generated by simulated annealing (triangular variogram model).
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Appendix C

Calculation of Uncertainty in
the Variogram

There are often limited data available in early stages of geostatistical modeling. This
leads to considerable uncertainty in statistical parameters including the variogram.
This Appendix presents an approach to calculate the uncertainty in the variogram.
A methodology to transfer this uncertainty through geostatistical simulation and
decision making is also presented.

The experimental variogram value 24(h) for a separation lag vector h is a mean
of squared differences. The variance of a mean can be calculated with a model of the
correlation between the pairs of data used in the calculation. The “data” here are
squared differences; therefore, we need a measure of four-point correlation. A theo-
retical multivariate Gaussian approach is presented for this uncertainty assessment
together with a number of examples. The theoretical results are validated by numer-
ical simulation. The simulation approach permits generalization to non-Gaussian
situations.

Multiple plausible variograms may be fit knowing the uncertainty at each var-
iogram point, 2y(h). Multiple geostatistical realizations may then be constructed
and subjected to process assessment to measure the impact of this uncertainty.

C.1 Introduction

Variogram modelling is a critical step in any geostatistical study; however, a reliable
variogram is difficult to infer in presence of sparse data. This is particularly true in
the early exploration stages of an ore deposit or petroleum reservoir. A quantitative
model of the uncertainty in the variogram would allow an assessment of uncertainty
from geostatistical simulation.

Notwithstanding robust procedures to calculate variograms and other measures
of spatial correlation [25, 24, 61] there is unavoidable uncertainty in the variogram.
There are many references on the calculation and use of the variogram (including {70,
129, 130]); however, there is little on the calculation of the unavoidable uncertainty
in the variogram.

We show how to calculate the pointwise uncertainty in the variogram. This
pointwise uncertainty must be translated to joint uncertainty, that is, into uncer-
tainty in the variogram model. Within the bounds of pointwise uncertainty, we
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propose to establish different scenarios, ranging from small continuity to great con-
tinuity. These “scenarios” can be used to evaluate the consequences of the choice
of the variogram model after simulating a number of realizations of the transfer
function. These realizations can be used to determine the sensitivity of the results
to variogram uncertainty.

C.2 Pointwise Variogram Uncertainty

The variogram is defined as:
2.4(h) =Var{Z(w;) — Z(u; + h)} (C.1)

where Z(-) is an element of a random field {Z(u) : u € D}.

A method of moments estimator of the variogram 2v(h) is the average of squared
differences between data separated exactly by that distance vector h (in practice, we
define angle and lag tolerances, so that n(h) is the number of pairs approximately

h appart): ®
2-4(8) = s - O 12(w) = Z(o+ W (©2)
i=1

where in practice n(h) is the number of data pairs approximately h apart.
Consider X; = [Z(w;) — Z(w; + h)]?, the squared difference between the values
at locations u; and u; + h. The variogram is the mean of the X;’s:

n(h)
X=2"3’(h)=;b‘(1?6'ZXz‘ (C.3)
i=1

From classical statistics, we know that the uncertainty in the mean X is defined as:
Var{X} = E{(X - E{X})’} = E{X?} - (BE{X})® (C.4)

Now, using Equation C.4 we can calculate the uncertainty in the variogram assum-
ing that we have a “reference” variogram model fitted to the experimental points.
X is replaced by 2 -4(h) and the variance of squared differences around the model
is calculated as follows:

Eaw = B{2-4(0)%} - (B{2-4(0)})?
= F{(zhy - TrP(2(w) - Z(u; + h)]?)2} - (B{2- A(h)})?

= B{(dy Ty i (2(w) - Z(w + )P - [Z2(u5) - Z(u; +h))?}
~(2+4(h))?
(C.5)
\ 1 n(h) n(h) \ \ ) \
Phatn =yt 2 2 U2 = 20+ R [20a) = 20 + B~ (2-4(0)
=1 )=
(C.6)

This can be simplified by using the definition of the covariance:

Cij(h) = Cov{Xi, X;} = B{(Xi - E{X:})- (X; - B{X;})}
= B{X:- X;} - E{X:} - B{X;) (C.7)
= E{X:-X;} - X2
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Figure C.1: Calculation of fourth order covariances C;j(h). For a given lag vector
h, the fourth order covariance corresponds to the covariance between the squared
differences of pairs ¢ and j.

Now, replacing X; and X; by the squared differences [2(u;) —z(u; +h)]? and [2(u;) -
z(u; + h)]? respectively, and X by the variogram 2 - v(h):

Cij(h) = B{{Z(w) — Z(w + 0)]* - [Z(u;) — Z(u; + h)]*} = (2-4(h))*  (CB)

A simple formula for the variance of a particular variogram value is obtained replac-
ing the covariance (Equation C.8) in Equation C.6:

n(h) n(h)

O34h) = W:I)E >3 " Cij(h) (C.9)

i=1 j=1

where Cj;(h) is calculated as in Equation C.8. To avoid confusion, note that
C;;(h) is covariance between pair i [Z(w;) — Z(u; + h))? and j [Z(w;) — Z(u; + h))?
(Figure C.1).

Equation C.9 tells us that the uncertainty in the variogram at a distance h is
the average covariance between “pairs of pairs” used to calculate the variogram for
that particular lag.

The covariance between “pairs of pairs” can be calculated theoretically under
a multiGaussian assumption. The following section presents this approach. The
next sections present the Local and Global Simulation Methods to check the results
given by the Theoretical Approach. The Global Simulation Method is more general
in the sense that it gives the whole distribution of uncertainty in the variogram
values for each lag. Although the shape of the pointwise uncertainty distribution is
unknown and we know that the variogram values must be non-negative, a Gaussian
shape was assumed to present the confidence intervals calculated using the variance
in the theoretical approach and the local simulation method. Theory says that if
all the squared random variables are independent (which is clearly not the case)
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the distribution of uncertainty in a variogram point should be x? (chi square). The
Global Simulation Method shows in few cases asymmetric distributions; however, a
Gaussian distribution is a good approximation in most of the cases.

The following steps are required for all three methodologies,

1. Transform data to normal space: Any data distribution can be easily trans-
formed to a Gaussian univariate distribution. In the following examples the
program nscore in GSLIB [39] was used to perform the transformation. This
transformation is commonly done to allow Gaussian simulation.

2. Check multivariate Gaussianity: To fulfil the multivariate Gaussian condition,
one should assure that not only the univariate distribution is Gaussian, but
also the bivariate and all multivariate distributions. In practice, some tests
can be done to the transformed distribution in order to accept bi-Gaussianity;
however, they are not often applied, especially in presence of sparse data.

3. Calculate the experimental variogram: The location of the sampled points and
the values of the variable under study at these locations are used to calculate
the experimental variogram, 2 - 4(h).

4. Fit a variogram model: The fitted variogram model is critical for subsequent
stages of uncertainty evaluation. The requirement for a variogram model to
assess uncertainty in the variogram is of some concern. Nevertheless, a model
assumption is required to proceed.

The difference between the Theoretical Approach and the Numerical methods lies
in how the variance for each lag is calculated.

C.3 Theoretical Approach

Assuming that the regionalized variable is multivariate Gaussian the variogram un-
certainty can be calculated from theory. Expanding Equation C.8, the covariance
can be written as a sum of fourth order moments:

Cy(h) = E{(Z(w) - Z(wi +h)J2- [Z(w5) - Z(u; + W2} — (2- 5(h)?
= B{Z(w)- Z(w)?

-2 Z(u,-)z . Z(Uj) . Z(Uj + h) + Z(ui)z . Z(u]- + h)2

-2 Z(u,-) . Z(ui + h) . Z(uj)2

+4-Z(w;) - Z(u; + h) - Z(u;) - Z(u; + h)

-2 Z(w;) - Z(u; + h) - Z(u; + h)%2 + Z(u; + h)? - Z(u;)?

—2- Z(w; + h)? - Z(wy) - Z(u; + h) + Z(w; + h)? - Z(u; + h)*}

—(2-9(h))?

(C.10)

This covariance is called a quadratic covariance {117} and it can be calculated if
Z(w;), Z(u;+h), Z(u;), and Z(u;+h) have a multivariate Gaussian distribution. In
such case, any fourth order moment can be calculated using the pairwise covariance
values as follows:

E{Z1-Z2-2Z3-Z4} =C12-C34+C13-Coa +C14-Ca3 (C.11)
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Notice that those pairwise covariances are different than the Cj;(u) presented
earlier, which are fourth order statistics, since they correspond to the covariance
between pairs of squared differences (i.e. “pairs of pairs”).

Then, the variogram variance is calculated as a sum of fourth order moments
minus two times the variogram squared.

A simple program can perform these calculations. For each lag, the location of
pairs considered in the experimental variogram calculation is used to determine the
fourth order moment as follows:

E{z(w) - z(wi + h) - 2(u0y) - 2(u; + h)} = C(z(w), z(u; + h)) - C(2(n;), 2(u; + h))
+C(2(wi), 2(uy)) - C(2(w; + h), z(u; + h))
+C(z(w), 2(u; + h)) - C(z(w; + h), 2(u;))

A valid, positive definite, covariance model is required to perform the calculation
presented above. That is the reason to require a first guess of the variogram model.

C.4 Simulation Alternative

C.4.1 Local Simulation Method

The idea is to simulate each set of four-point locations in turn and evaluate the
fourth order moments in Equation C.10 by simple averages. Again, the assumption
of multivariate Gaussianity simplifies the simulation. A matrix or LU simulation
approach is very fast and efficient since only four points are considered at a time
and there are no conditioning data. All fourth order moments in Equation C.10
are estimated as averages of products using the simulated values, and the variogram
variance is calculated with Equation C.9.

C.4.2 Global Simulation Method

The basic idea is to generate non-conditional realizations of the domain using the
variogram model, and then calculate the variogram using only the values at the
sampled locations. The variance between the variogram values at each lag calculated
using these realizations should converge to the same value obtained through any
of the other approaches; however, the advantage of this approach is that we can
estimate the entire uncertainty distribution of all variogram lags simultaneously,
without assuming its shape.

This approach was implemented using the GSLIB program sgsim, that is, un-
conditional realizations are generated. The sequential path in the program could
be modified to only simulate the locations of the original data. Uncertainty in the
variogram is directly evaluated by the variability between multiple realizations.

This global simulation method can be viewed as a “spatial bootstrap” or resam-
pling from geostatistical realizations [89).
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Locations of Clustered Data

Figure C.2: Location map of samples taken from Cluster database.

C.5 Validation of Theoretical Approach by Simulation

The Theoretical Approach has the following advantages over the two simulation-
based methods (1) implementation is easier since the fourth order moments are
calculated analytically and directly, (2) computer speed is much improved since
there is no need for random number generation or multiple realizations, (3) the
simulation methods are approximate, although they converge to the correct result.

The Global Simulation Method has the advantage that the entire distribution of
uncertainty is simulated.

C.6 Example 1: Cluster.dat

Consider the database cluster.dat available in GSLIB [39]. The sample locations
are in a pseudo-regular grid, with clusters in the high value zones (Figure C.2).
After normal score transformation, the north-south variogram is calculated for five
lags, using a lag separation distance of 4.0 and a lag tolerance of 2.0.

An isotropic spherical variogram model with range 15 m and 90 % of variance
contribution is fitted to the experimental variogram. The nugget effect is 0.1 (10 %
of variance contribution):

h

v(h) = 0.1+ 0.9 - Sph( 15

) (C.12)
The variogram uncertainty is assessed theoretically, using local simulation, and
through the global simulation method. The variance has been calculated for each
lag using the three methodologies presented above. In the local simulation approach
(using LU simulation), 100 realizations were performed. The results are presented
in Table C.1.

Results show that with a reasonable number of LU simulations, the Local Sim-
ulation Method gives a variance very close to the theoretical result. Assuming nor-
mality in the uncertainty distribution, the confidence intervals can be calculated.
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Lag Lag Experimental Fitted Variance Var. Local | Var. Global
Distance Variogram Variogram | Theo. App. | Sim. Meth. | Sim. Meth.
2 1.395 0.262 0.225 0.004 0.004 0.004
3 4.361 0.431 0.481 0.021 0.019 0.014
4 7.906 0.716 0.746 0.046 0.042 0.038
5 11.876 1.191 0.946 0.080 0.068 0.068
6 15.796 1.198 1.000 0.096 0.083 0.130

Table C.1: Pointwise variogram uncertainty calculated using the three methods
presented.

Semivariogram Uncertainty
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T T T A )
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Figure C.3: The experimental variogram, along with the variogram model fitted and
the central confidence intervals at 95 %, 75 %, 50 %, and 25 % for each lag (Cluster
database).

The variogram, its model and the central confidence intervals at 95 %, 75 %, 50 %
and 25 % for each lag are shown in Figure C.3.

C.7 Example 2: Red.dat

This database contains samples of a vertical north-south tabular deposit, where
thickness and gold, silver, copper, and zinc concentrations were measured. The var-
iogram uncertainty is calculated for thickness and gold content using the Theoretical
Approach and both numerical methods. The sample locations are presented in Fig-
ure C.4. The normal score transformation is performed for each variable. The
following isotropic variogram model is fitted to the omnidirectional experimental
variogram of thickness:

h
=0. 85 Exp(— .
v(h) =0.15+0.85 mp(250 (C.13)

For gold content, the variogram model is:

h
7(h) = 0.45 +0.55 - Sph(z (C.14)

The calculation of confidence intervals was performed for each variable, and the
results are shown in Figure C.5.
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Figure C.4: Location map of samples and gold content taken form the Red database.
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Figure C.5: The experimental variogram, along with the variogram model fitted and
the central confidence intervals at 95 %, 75 %, 50 %, and 25 % for each lag (Red
database). Left: Variogram for thickness; Right: Variogram for gold content.
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Figure C.6: The experimental variogram values for each lag calculated using (Left)
all the simulated data and (Right) only the simulated values at sampling locations
(Red database). Top: Thickness; Bottom: Gold.

The Global Simulation Method was used to obtain the entire uncertainty dis-
tribution for each lag. 100 non-conditional realizations of a Gaussian random vari-
able were generated using sgsim. The simulated values at the sampled locations
(obtained from the database red.dat) were extracted for each realization. The
experimental variogram was calculated using the simulated values at the sampled
locations and the same parameters that were used to find the experimental points
shown in Figure C.5.

The experimental variograms calculated for each realization using the entire
simulated field (showing ergodic fluctuations) and those calculated using only the
simulated data at the sample locations (now considering the effect of ergodic fluc-
tuations and “sampling fluctuations”) are shown in Figure C.6 for thickness and
gold content.

Table C.2 shows the variogram variance for each variable and lag, calculated
using the Theoretical Approach, the Local Simulation Method, and the Global Sim-
ulation Method. 100 realizations were generated for the numerical methods.

The results obtained from the Theoretical Approach and the Local Simulation
Method are similar; however, the Global Simulation Method gives lower variance
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Variable: Thickness

Lag Lag Experimental Fitted Variance Var. Local | Var. Global

Distance Variogram Variogram | Theo. App. | Sim. Meth. | Sim. Meth.
2 17.497 0.332 0.311 0.013 0.012 0.004
3 51.119 0.687 0.540 0.008 0.001 0.007
4 99.311 0.669 0.742 0.044 0.041 0.024
5 148.627 0.871 0.857 0.092 0.089 0.052
6 197.746 0.957 0.921 0.152 0.150 0.085
7 250.436 1.178 0.958 0.176 0.177 0.112
8 297.843 0.969 0.976 0.264 0.258 0.160
9 345.356 0.992 0.986 0.289 0.270 0.193

Variable: Gold content

Lag Lag Experimental Fitted Variance Var. Local | Var. Global

Distance Variogram Variogram | Theo. App. | Sim. Meth. [ Sim. Meth.
2 17.497 0.493 0.554 0.044 0.041 0.014
3 54.099 0.706 0.712 0.015 0.001 0.008
4 99.435 0.715 0.833 0.030 0.005 0.015
5 149.221 0.865 0.908 0.053 0.043 0.028
6 198.912 1.065 0.949 0.078 0.075 0.056
7 249.254 1.216 0.972 0.096 0.092 0.066
8 297.879 0.961 0.985 0.134 0.140 0.079
9 345.618 1.088 0.991 0.160 0.161 0.110

Table C.2: Theoretical approach to calculate the variogram confidence intervals.

for all the lags. The main difficulty of this approach is to ensure correct use of the
variogram for all distances when a limited number of nearby samples is used [166].
The variogram calculated for each realization (using all the simulated nodes) was
presented in Figure C.6 (Left). The variability in the variograms calculated using
all the nodes in the grid is lower than the expected variability.

Histograms showing the entire uncertainty distribution for the corresponding
lags are presented in Figure C.7. All the histograms generated through the Global
‘Simulation Method are slightly asymmetric with a tail to the right. This asymmetry
was expected since the variogram is non-negative.

C.8 Transferring Pointwise Uncertainty into the Joint
Model

Several alternative variogram models could be fitted within the confidence limits
generated above. In order to achieve more realistic predictions, we can assume
different scenarios within those confidence limits. It is important to note that vari-
ogram models fitted using the 97.5 and the 2.5 quantile variogram values for all lags
(Figure C.8) do not fairly represent extreme cases in the joint uncertainty. The
correlation between the lags and the “continuity” of alternative variogram models
should be accounted for when fitting models to represent extreme “joint” cases.

Our proposal is to evaluate the consequences of using our first guess (the one used
to calculate the pointwise uncertainty), plus two extreme scenarios showing high and
low continuity, within the pointwise confidence limits (Figure C.9). Simulation
can be done using those three scenarios to determine the sensitivity of the results to
variogram uncertainty. Notice that we do not just have to modify the parameters
(range and sill contribution) of the variogram model, but the type of structure to
account for high and low continuity scenarios.
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Figure C.7: An example of the uncertainty distribution of the pointwise variogram
values: Histograms of variogram values for lags 6, 7, 8, and 9 for Gold (Red
database).
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Joint Uncertainty - Wrong Fitting
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Figure C.8: An example of an incorrect interpretation of joint uncertainty given the
pointwise uncertainty. Scenarios 1 and 2 do not represent quantiles 97.5 and 2.5 in
the joint model.

Joint Uncertainty - Correct Fitting
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Figure C.9: An example of a correct interpretation of joint uncertainty: Scenarios
1 and 2 represent low and high continuity (extremes of the joint model).

Uncertainty in the variogram sill can be addressed by fitting models with different
sill. This uncertainty can be due to uncertainty in the reference statistics.

C.9 Comments

A variogram model is required in all approaches. Ideally, one could determine the
uncertainty using the experimental points before fitting a model. The assessment
of uncertainty, however, requires a positive definite covariance model (i.e. a non-
negative variogram model), therefore a variogram must be fitted before evaluating
the uncertainty. This seems circular, however, it is the only way to solve the problem:
the authorized model is assumed as the expected value of the variogram at each lag
and then the variance is calculated.

The variogram uncertainty can be transferred to subsequent stages of a geosta-
tistical study. The Theoretical Approach and the Local Simulation Method generate
the same results. The Global Simulation Method requires more computer time and
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should give the same result, since the idea is basically the same than the Local
Method; however, it is difficult to honor the variogram precisely for large distances
and consequently, the variance may be lower. The advantage of the Global Simula-
tion Method is that it estimates the shape of the entire distribution of uncertainty
in the variogram for all lags.

Confidence intervals for each experimental variogram value can be determined
from the variance assuming normality. This is approximate since the histogram
of variogram values obtained for each lag must be non-negative. All methods re-
quire multivariate Gaussianity, which could be relaxed with non-Gaussian simulation
methods. This has not been explored in this Appendix.

The difference between the point uncertainty and joint uncertainty must be
addressed: the procedures presented in this paper allow calculation of the pointwise
uncertainty. Within this uncertainty, several variogram models (joint models) can
be fitted. The confidence intervals for the joint model will be different since we
are interested in finding the uncertainty in the continuity of the variable. Several
joint models with different degrees of continuity (e.g. characterized by a Gaussian
model the more continuous and by a spherical model the less) should be used in the
subsequent stages of the study (simulations, mine planning) to account for the joint
uncertainty of the variogram model.
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Appendix D

HISIM: Hierarchical Indicator
Simulation

D.1 Introduction

The idea of simulating indicators hierarchically in order to avoid order relations and
to set a framework suitable to incorporating multiple point statistics was previously
proposed. The implementation failed in that indicator variograms could not be re-
produced for all thresholds. What initially appeared to be a loss in freedom from
one threshold to the next, due to a misinterpretation of the results, was not such.
What truly happened was that a virtually random drawing of the nodes were occur-
ring due to the little difference between the probability of informed and uninformed
nodes. In this note we explore several ways to fix this problem. A hierarchical
implementation of sequential indicator simulation (SIS), along with methods that
combine the SIS paradigm and the hierarchical idea, are also presented. Although
some of the techniques here presented gave results quite satisfactory, the problem
still remains unsolved from a theoretical point of view.

D.2 The Original Idea

The proposed idea [133] was to simulate one threshold at a time starting at the
highest. This can be seen as an eroding algorithm, where all nodes start higher
than the highest cutoff, and then they are pushed down based on their probabilities
of being below each threshold.

At a given threshold 2z, the conditioning data are coded as indicators:

1, if z(uy) < 2 k=1

: ey K
0, otherwise T

i(Ua; 2k) = {
where z(u,) is the value at the data location u,.

The idea is to calculate for every node, the probability of it being lower than
the current threshold. This is done by simple kriging the indicators. The known
mean used to calculate the estimate is the proportion from the global distribution
corresponding to the threshold.
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Figure D.1: Map showing the result for the original implementation of HISIM. Higher
thresholds present high nugget effect.

li(w; 2e)]55c = [Prob{Z(u) < zx|(n)}sx
Pam1 Xa (w5 2) + ias 2k) + [ = Yoy AT (w3 24)]F (1)

where the weights A3 (u; z;) are the unique solution of the simple kriging system.

> B=1 MG (s 25) - Cr(ug — Ugj 24) = Cr(u— Ua; 25) @ =1,..,7

Notice that a covariance indicator function Cr(u—u,; 2x) (or, assuming station-
arity, Cr(h; 2x)), has to be inferred for each threshold.

Once the probabilities are known for every node, a node is chosen based on
them, that is, a uniform random number between zero and one is drawn and the
nodes are visited in order until the sum of probabilities is higher than the random
number multiplied by the total sum of probabilities. In this manner, nodes with
higher probability of being below the threshold, i.e. with higher kriging estimates,
will have a larger probability of being switched down or eroded.

As in the example shown on Figures D.1 and D.2, the variogram models are
not reproduced for higher thresholds, that is for the thresholds that were simulated
first in the algorithm.

The initial idea of loosing freedom discussed in {133] from one threshold to the
next was therefore a misinterpretation of the results. The proposed correction of
using cokriging instead of kriging to calculate the probabilities is also erroneous,
since at the first threshold the cokriging estimate is the same than the kriging one,
since there is not information at other thresholds than the one being worked on (this
is true in an unconditional case).
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Figure D.2: Variogram reproduction for the original implementation of HISIM.
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Figure D.3: HISIM varying the simple kriging mean for a single threshold case
(skmean varying from 0.01 to 0.9).

The nugget effect seen at the highest threshold is due to the extremely little
difference between the probability of a node uninformed (p € [0.9—1.0]) and a node
that has been informed, i.e. switched down (p = 1.0). This leads to a virtual random
drawing of the nodes. This effect is less severe when a lower threshold is being
simulated, since the difference between a node uncorrelated with the conditioning
data and the others is larger, so the drawing in not random anymore. Although a
very high nugget effect is still present, some correlation can be observed.

D.3 Proposed Approaches

D.3.1 Modifying the Mean in Simple Kriging

The first proposed approach is to modify the mean used when kriging the indicators.
A simple example with one threshold at the median is used to test this method.
Although intuitively the mean used when simple kriging should be F(z1) = 0.5,
where 23 is the only cutoff, several means were used. The results are not encouraging,
since, as seen in Figure D.3, a decrease in nugget effect is accompanied by an
increase in the correlation range. Therefore, the variogram cannot be reproduced
by simply changing the simple kriging mean.

D.3.2 SIS Hierarchical

The idea of eroding an initially high field is now replaced by the hierarchical appli-
cation of SIS (sequential indicator simulation). The idea is to perform SIS at the
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Figure D.4: SIS applied hierarchically. The use of zeros from the higher thresh-
olds biases the conditioning data, generating realizations that do not honor the
proportions. The histogram shows that there are no nodes being assigned to the
lower thresholds, since they have all already been assigned to higher ones. The
standardized variograms using the resulting proportions show that the correlation
is preserved.

highest threshold and then use the nodes simulated to be above that threshold as
conditioning data for the following thresholds, since it is known that if the node is
above a threshold, it is also above all other lower thresholds. This results in real-
izations that do not honor the proportions required, because of the bias introduced
by the conditioning data. They are heavily biased towards zero, since those are the
only nodes that can be used as conditioning data when proceeding from the highest
threshold down. However, variogram reproduction was reasonable, except for the
sill that depends on the proportion of ones and zeros (Figure D.4).
This naturally leads to two ideas:

e To use an approach similar to the nested indicators proposed by Dagbert for
kriging reserves [26].

e To modify the proportions used as input to obtain the desired ones in the
oufput.

D.3.3 Nested Indicator Simulation

The first solution was implemented with relative success. The steps involved in its
implementation are:

1. At the highest threshold, the domain corresponds to all uninformed nodes.
2. An uninformed node is picked in the domain randomly.

3. The simple indicator kriging estimate at the current threshold is calculated
given the nearby data and previously simulated nodes.

4. A random number is drawn and a one is assigned to the node if this random
number is lower or equal than the simple indicator kriging estimate of the
probability at that threshold, and a zero otherwise.
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5. Go back to 2 until all nodes in the domain have been visited.

6. If the value is above the threshold, that is a value of zero was assigned in
the binary simulation, then eliminate the node of the domain for the next
threshold.

7. If the value is below the threshold include it in the domain for the next thresh-
old.

8. Repeat for all thresholds.

In the énd, a continuous value can be assigned at every node, since the class to
which it belongs is known. The usual interpolation and extrapolation beyond the
discrete cumulative distribution function used in SIS is required (see for example
[39)).

One of the problems of this approach is that correlation between thresholds is
not imposed, therefore the result looks patchy, and it is common to find high values
beside low values without the appropriate transition in between. This algorithm has
been fully developed. Refer to [135] for further details and applications.

D.3.4 Correcting Proportions: Markov and Empirical Approaches

The second proposed solution implies accounting for the bias generated by the condi-
tioning data. The question is: How much do we have to change the input proportion
to obtain the required proportions?

After several attempts, a correction factor for the proportion used as a mean was
applied. This implies a non-linear additive correction to the estimated probabilities.
Consider the original estimate, using Prpe,, and the new estimate using Pcoorp.

(W]t = Z:l )\gK(u) “i(ug) +[1 - 2:1 ’\gK(u)] * Prheo
[2(w)]Eorr a1 Mok () - i(ug) + [L = 36—y A% ()] - Poorr

The difference in the estimate is:

n
A=[1- Z AEK(U)] * (Pgorr — Prheo)
a=1

Next to a data location, this factor vanishes, since, the sum of the kriging weights
approaches one. On the other hand, far from data, this factor tends to its maximum,
Poorr — P Theo-

Notice also that the same type of correction would be possible using a cokriging
approach. The correlation between indicators at different thresholds does not need
to be input. It can be calculated, given the proportions of ones at the current
threshold pq, and the proportion of ones at the previous (higher) threshold p;:

p2-(1-m)
p1- (1 —p2)

We experimented also with this approach. Results showed that the proportions
were not reproduced either. Variograms showed a small increase on the nugget

p:
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Figure D.5: Hierarchical application of SIS using a Markov assumption for collocated
cokriging of the indicators using the value at the previous higher threshold. The
histogram is not reproduced (uniform distribution) and some increase in the nugget
effect can be seen for lower thresholds.

effect for lower thresholds, i.e. the last ones being simulated. However, the range of
correlation was preserved (Figure D.5).

An empirical correction factor for the simple kriging mean was found that “up-
dates” the mean for every threshold. It is the ratio of the average probability
expected for each node at the current threshold, over the average probability calcu-
lated considering the conditioning data:

f= D2

2is1 5k
nx

where ps is the proportion at the current threshold, nx is the total number of nodes,
and 15y are the simple kriging estimates of the probabilities of being below the
threshold.

The simple kriging mean is then multiplied by this factor every time a new
threshold is being simulated.

The results show a good reproduction of the histogram, but an increase in corre-
lation for lower thresholds, along with a decrease in nugget effect as the simulation
proceeds (Figure D.6).

D.3.5 Median Hierarchical Indicator Simulation

One last idea proposed is the use of SIS to simulate at the median, and then proceed
up and down using the original hierarchical idea, that is, eroding in both directions,
keeping the nodes set below the median when going to higher thresholds, or the
nodes set above the median when going to lower thresholds. This is illustrated in
Figure D.7.

This algorithm proceeds as follows:

e Simulate by SIS (or any other binary simulation method, such as truncated

Gaussian simulation) the median threshold. Every node is assigned a one or
a zero, depending if they are below or above the median value, respectively.

e For thresholds below the median:
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Figure D.6: Empirical adjustment of the proportion to apply SIS hierarchically.

Histogram reproduction is good, variograms show an increase in correlation and
reduction in nugget effect.
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Figure D.7: Illustration of median hierarchical indicator simulation. The nodes with
a value higher than the median are used as conditioning data for lower thresholds,

and the nodes with values below the median are used as conditioning data for all
thresholds higher than the median.
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— Use the nodes set above the median, that is those coded with a zero, as
conditioning data.

— Calculate the simple indicator kriging estimates at every location.

— Select one location by Monte Carlo drawing, using the probabilities pre-
viously calculated by simple indicator kriging.

— Repeat until the right proportion of nodes has been set below the current
threshold.

— Set all the nodes that have not been switched as zero. Their values are
between the current cutoff and the higher threshold.

~ Use all the nodes with zero values (the ones that have just been coded and
those that were coded in a previous threshold simulation) as conditioning
data for the next threshold.

— Repeat until the lowest threshold has been simulated.
e For nodes above the median:

— Code the data above the median as ones and the nodes with values below
the median as zeros.

— Proceed as with the thresholds below the median, but working with the
probability of being above the cutoff, instead of below it.

The algorithm is symmetric with respect to the median. Results showed good
reproduction of the histogram: the number of nodes above and below the median
presents ergodic fluctuations from SIS or the algorithm used to generate this binary
simulation. The proportions for other thresholds is guaranteed by construction since
the number of nodes to switch is defined by the proportions. Variogram reproduction
at the median is also obtained depending on the algorithm used to generate the initial
binary simulation. At other thresholds, variogram reproduction is obtained just as
in the original case, but here, the problem of having a small difference between the
probability calculated by simple kriging and the probability for nodes away from
data is large, so the drawing of the nodes to be switched is not random (Figure
D.8).

A first example is shown in Figure D.9. Twenty realizations of a one dimen-
sional array of 3000 nodes with intrinsically correlated indicators, that is the so
called mosaic random function model, was tested. Nine thresholds and a spherical
variogram with a range of 10 units and a 10% of nugget effect was used. The re-
sults are encouraging. Variogram reproduction is good, although a slight increase
in correlation can be seen for indicators far away from the median.

A second example with a multivariate Gaussian variable is also presented (Fig-
ure D.10). In this case variogram reproduction is poor at thresholds other than
the median. However, the range of correlation is preserved. Again histogram is
reproduced by construction.

Finally, a non-Gaussian variable was used (Figure D.11). The results are a mix-
ture of the previous two examples. Good reproduction of the indicator variograms
at some thresholds and poor reproduction at others.
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Figure D.8: Illustration of the case when drawing nodes by Monte Carlo simulation
is virtually random (top) and when the drawing is effective and accounts for the
now larger differences in probabilities (bottom).

D.4 Conclusions

Simulating one threshold at a time is an appealing idea, since this avoids order
relation deviations, and permits a useful framework for incorporating multiple-point
statistics.

The original idea failed in that correlation could not be reproduced for high
thresholds. However, correlation was recovered as the algorithm proceeded to the
lower thresholds. The use of another technique such as SIS for locking the realiza-
tion at a given threshold was explored, however, variogram reproduction was never
achieved in a completely satisfactory way. Apparently, the biased conditioning gen-
erates unavoidable bias in the covariance reproduction. This problem is difficult to
tackle, since we proceed sequentially, and this generates a constant change in the
magnitude of the bias. The idea of correcting while simulating could be a possible
way to fix this problem.

Among all the techniques explored, the nested approach seems reasonable, be-
cause it rests in the well known indicator approach. Research could focus on correct-
ing for the increase in nugget effect generated by not accounting for the zeros from
the higher thresholds. The result would be different than the one obtained through
818, since the nested approach would generate a map that truly resembles a mosaic,
in the sense that patches of different classes would be randomly distributed in the
field.

As a final comment, the incorporation of multiple-point statistics could be ap-
proached separately from this hierarchical algorithm. Runs could be drawn directly
into a field without even considering the two-point statistics.
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Figure D.9: Application of median hierarchical indicator simulation for an intrinsi-
cally correlated variable or mosaic model.
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Figure D.10: Application of median hierarchical indicator simulation for a multi-
Gaussian variable.
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Figure D.11: Application of median hierarchical indicator simulation for a non-
Gaussian variable.
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