
Proceedings of the 5th MecE 668 Student Project Seminar
Edmonton, Alberta, Canada, April 10th, 2017

PARAMETER SCREENING FOR CURIOUS REINFORCEMENT LEARNER MOTIVATED BY
UNEXPECTED ERROR

Nadia M. Ady
Department of Computing Science, University of Alberta

Patrick M. Pilarski
nmady@ualberta.ca

ABSTRACT

Curiosity is a critical component of intelligence. One
method of motivating curious behaviour in compu-
tational systems is to use reinforcement learning to
learn which decisions maximize the amount of un-
expected error observed by a predictive component.
However, reinforcement learning algorithms for pre-
diction and control require the system designer to
set multiple parameters, and it is unknown how such
a curious system’s behaviour might vary depending
on parameter settings. Eight parameters (αp, γp, λp
for prediction, αc, γc, λc, ε for ε-greedy control, and
β0 for computation of White’s (2015) unexpected
error) were tested in an inscribed central composite
experimental design. The response variable was the
return. We found that the linear effects on return
for ε, β0, αc, and γp were significant, along with the
quadratic interactions between ε and β0, ε and γp, β0
and γp, and αp and γp.

Keywords: computational curiosity, unexpected er-
ror, factor screening, reinforcement learning, intrin-
sic motivation.

INTRODUCTION

From the multitude of ‘why’ questions asked by
children to the multitude of projects undertaken by
researchers, human behaviour is marked by curios-
ity. Many other animals also engage in behaviour
that is well-explained as motivated by curiosity.2 Cu-
riosity’s pervasiveness has lead us to believe it to be
a crucial component of intelligent behaviour, yet it
is still poorly understood.3 One way we hope to de-
velop our understanding of curiosity is to model and
utilize curiosity in computational systems.

Humans seem to maintain knowledge of their
environment and utilize this knowledge to make de-
cisions. One perspective on curiosity is that it should
motivate behaviour that helps an agent improve its
environment knowledge. In computational systems,
one method of maintaining environment knowledge
is through estimates or predictions of what the sys-
tem expects to observe in the near future.6

In 2014, White suggested a measure of ‘unex-
pected error’ for the purpose of generating curious
behaviour in a robot.4 Intuitively, exploring situa-
tions that the agent can already predict well (lead-
ing to low error) will not improve its environment
knowledge. Neither will exploring situations that
have already been explored, but have such high vari-
ance that we cannot expect predictions to improve.

1

mailto:nmady@ualberta.ca

Motivating a system to maximize cumulative unex-
pected error observed over time should ideally ben-
efit the system by leading to improved knowledge
of its environment.

Reinforcement learning (RL) is a well-studied
way for biological systems and machines to learn
about the value of situations and choices through
trial and error and then utilize those learned values
to make decisions.7 Given a reward signal provided
to the system, there are standard RL algorithms to
learn to predict and/or maximize cumulative reward
over time. Using RL algorithms to predict obser-
vations, White’s ‘unexpected error’ as the curiosity
reward signal, and another RL algorithm to choose
actions, we can create a ‘curious system.’

However, RL algorithms use multiple parame-
ters, and it is unknown how varying those param-
eters changes the behaviour of the curious system.
While there is no clear measure of the ‘curiousness’
of observed behaviour, we may simply hope to rec-
ognize when it is different. One partial measure of
the behaviour in a finite-length run of the system is
the cumulative sum of the observation signal, called
return, G, which may call for maximization or min-
imization.

G =
∞∑
t=1

r
(p)
t (1)

where r(p)t is the observation or reward received from
the environment.

The agent in our design is modifying its behaviour
to maximize its cumulative unexpected error, but at
this stage of the study we have little interest in the
total accrued; varying its parameters may impact the
magnitude of error observed, and therefore it is un-
reasonable to compare accrued unexpected error for
different parameters.

The objective of this study is to determine which
parameters, and which interactions of parameters,
impact the return.

MATERIALS AND METHODS

2.1 HARDWARE AND SOFTWARE

All experiments were implemented in Python with-
out parallelism and performed on a Lenovo Flex 3
laptop with four Intel(R) Core(TM) i7-6500U CPU
@ 2.50GHz processors running Ubuntu 16.04.1 LTS.

2.2 EXPERIMENTAL SETUP

The experimental setup can be considered in three
parts: domain (environment), curious system, and
test. We describe each in detail in the following
sections, and the Python code is included in Ap-
pendix C. We typically refer to an RL system as an
‘agent’, referencing the agency exhibited by making
choices. The curious system will hereafter be called
the agent.

2.2.1 Test Design

Each test (also called a run) was composed of an
initialization and 20,000 iterative discrete timesteps.
To initialize the test, the domain’s initial state signal
is recorded, and the agent takes its initial action. In
each timestep, the domain reward and new state are
observed. The agent takes another action based on
the observed state, then updates. The interaction be-
tween the agent and the domain in each timestep is
depicted in Figure 1. Our implementation of a test
can be found in Appendix C as Test.run().

Within each test, we also maintain a count of
how many times each action was taken and a run-
ning sum of the domain reward, and use both to
compute our response variables.

2.2.2 Domain Design

We devised the curiosity bandit, depicted in Fig-
ure 1(a), to showcase the behaviour elicited by vari-
ations in domain-delivered reward. The curiosity
bandit has a single state (S = {s0}), but provides
the learning agent with three actions (A = {a1, a2, a3}),
each of which results in a different domain reward
signal.

2

If the agent takes a1, its reward is drawn uni-
formly randomly from [−1, 1]. If the agent takes a2,
it always receives a reward of 0. If the agent takes
a3, then it receives a reward of sin(c1 · t), where c is
a small constant, held-constant at c1 = 0.001 in our
experiment, and t is the current timestep (starting at
t = 0).

The algorithm followed to determine the out-
put state signal and domain reward is controlled
throughout the experiment. The pseudo-random gen-
eration of the reward received after taking action a1
is allowed to vary, because it theoretically simu-
lates noise in the reward signal.

2.2.3 Agent Design

The agent has two components: a prediction learner
and a control learner. In this section, we describe
the algorithm followed and introduce the parame-
ters varied as design factors.

For the set of all available actions A and the
set of all observable state signals S, the prediction
learner uses the TD(λ) algorithm7 [p. 174] to esti-
mate the value function Qπ : S × A → R, where,
for each state s ∈ S and each action a ∈ A, the
value of a, given it is taken from s, is defined by

Qπ(s, a) = E

{
∞∑
k=0

γkpr
(p)
t+k+1

∣∣∣∣∣st = s, at = a

}
(2)

where E denotes the expected value, st, at, and r(p)t+1

are, respectively, the state observed and the action
taken at timestep t, and the resulting domain reward,
and 0 ≤ γp ≤ 1 is a constant parameter often called
the continuation probability.

For the TD(λ) algorithm, the agent starts with
some initial estimation Q of Qπ. The initial Q is
chosen by the agent designer and while it does typi-
cally affect behaviour, the effects are short-term and
tend to be small in domains where S × A is small.
Therefore, in our experiment it is a held-constant
factor initialized with Q(s, a) ← 0 for all s, a ∈
S ×A.

The algorithm also makes use of an eligibility
trace, e : S × A → R. It is always initialized with
e(s, a)← 0 for all s, a ∈ S ×A.

(a)

(b)

CONSTANT

RANDOM SINUSOID

THE CURIOSITY BANDIT

DOMAIN REWARD

A
C

T
IO

N STA
T

E

CURIOSITY REWARD

PREDICTION
LEARNER

CONTROL
LEARNER

Figure 1: (a) The domain, the Curiosity Bandit, is
depicted in relation to (b) the agent. At each timestep,
the agent observes the domain’s output state signal and

domain reward signal. The control learner component of
the agent chooses an action (a1, a2, or a3), which is

observed by the prediction learner and will impact the
domain’s next state and domain reward. The prediction
learner updates its predictions about the domain reward

and provides a curiosity reward signal to the control
learner, which updates its predictions about the curiosity
reward, and uses its predictions to select the next action.

Note that by design, the domain always outputs the
same state signal s0, but the reward signal depends on

the action taken (and, for action a3, the timestep).

3

At each timestep, the agent observes some state
s and takes some action a. At the beginning of the
next timestep, the agent observes a domain reward
r(p) and a new state s′ and takes a next action a′. The
agent can then use the sum of the observed domain
reward and Qπ(s′, a′) to update Q(s, a).

To update, the prediction learner uses two com-
ponents: the eligibility trace, e, and the temporal
difference error (TD-error), δ. Eligibility is assigned
to the action taken, via

e(s, a)← min {e(s, a) + 1, 1} (3)

and the TD-error is computed as

δ ← r(p) + γp Q(s
′, a′)−Q(s, a) (4)

Because there may be an element of randomness
to the domain’s rule for determining the next state
and reward given the current state and action, we do
not necessarily want to change our new estimated
value to the sample value—we only move it towards
that value, so the estimated value for action a from
state s is then updated as follows:

Q(s, a)← Q(s, a) + αpδe(s, a) (5)

where αp is a learning rate parameter. To complete
the predictor’s update, the eligibility trace then de-
cays as follows:

e(s, a)← λpe(s, a) ∀s, a ∈ S ×A (6)

The curiosity reward is computed using the pre-
dictor’s TD-error. Essentially, we maintain a smoothly
averaged estimate, ξ, of recent TD-error and divide
by the root sample variance to obtain the curiosity
reward (unexpected error). This method was pro-
vided by White5 [p. 121].

The algorithm to maintain ξ utilizes a single pa-
rameter, β0, and a holding variable τ . Holding vari-
able τ and estimate ξ are initialized to τ ← 0 and
ξ ← 0. To update ξ during each timestep, we per-
form the following two steps:

τ ← (1− β0)τ + β0 (7)

ξ ←
(
1− β0

τ

)
ξ +

β0
τ
δ (8)

The sample variance, var(δ), is maintained using a
standard incremental algorithm (see Appendix C for
the implementation) and the final curiosity reward
for the timestep is

r(c) =
ξ√

var(δ) + c2
(9)

where c2 is held-constant at c2 = 0.001 in our ex-
periment.

For control, we used ε-greedy Watkin’s Q(λ)7

[p. 184]. Q(λ)-learning maintains estimates of the
optimal curiosity value Q∗, assuming the agent will
choose the action with the highest curiosity value in
the next step.

Watkin’s Q(λ) uses updates analogous to those
shown in equations (3)-(5), so our control compo-
nent also uses analogous parameters αc, γc, and λc.

To select an action, a random number between
0 and 1 is drawn. If the random number is less
than ε, the agent will choose an action randomly (so
all actions have equal probability), but otherwise, it
chooses the action with the greatest curiosity value
(hence the name, ε-greedy).

Like the domain, the described algorithms used
to make predictions and select actions are controlled
throughout the experiment, while the pseudo-random
generation is allowed to vary because it represents
the metaphorical ‘coin-flip’ used to decide in a slightly-
random policy. However, the parameters αp, γp,
λp, β0, αc, γc, λc, and ε are our manipulated vari-
ables.

2.3 PARAMETER FACTOR RANGES

Learning rates within the interval [0, 2) are gen-
erally stable. However, the purpose of the learn-
ing rate is to minimize error. For this reason, the
learning rates, αp, αc, are defined on (0, 1] which are
theoretically sound with regards to this purpose.7

Also, the learning rate is known to typically have
a non-linear effect on prediction error and return8

[pp. 155, 43].
The continuation probabilities chosen for con-

tinuing tasks8 like our domain fall in the interval
[0, 1) [p. 53]. Setting γp, γc < 1 ensures the the

4

Responding Variable
Return, G
Manipulated Variable Coding Function
Learning rate αp = 0.51 + 0.49xαp

Continuation probability γp = 0.49 + 0.49xγp
Trace decay parameter λp = 0.49 + 0.49xλp
Unexpected error parameter β0 = 0.5 + 0.49xβ0
Learning rate αc = 0.51 + 0.49xαc

Continuation probability γc = 0.49 + 0.49xγc
Trace decay parameter λc = 0.49 + 0.49xλc
Probability of random action ε = 0.5 + 0.49xε

Table 1: Summary of full-factorial design and cod-
ing for factor levels.

value functions Qπ and Q∗ are bounded. Prior work
has shown that γp has an important effect on be-
haviour.1

The trace decay parameters λp, λc are used to
assign most credit for an observation to the most
recent choice, and decreasing amounts of credit to
historical choices. The amount of credit decays by
a factor of λ in each step. Like γp, γc, the parameter
is set within the interval [0, 1) for continuing tasks.
The trace decay parameter has

The parameter ε represents a probability, so is
bounded to [0, 1]. However, if ε = 0, the agent will
get stuck taking the action whose curiosity value es-
timate first exceeds the estimates for the other ac-
tions. Similarly, if ε = 1, the agent will never utilize
its learning; it will act randomly at every timestep.
Therefore, we bound ε to the range (0, 1).

2.4 EXPERIMENTAL DESIGN

For a design summary, see Table 1.
Since many of the parameters of interest are al-

ready expected to affect the response variables, and
in many cases to have non-linear effects, we were
interested in a response surface method (RSM) de-
sign to help capture this information in a simplified
model.

A full-factorial design capturing non-linear ef-
fects of even five of the eight factors would take

nearly 2000 tests for a single replication. Further,
we hoped to run twenty replications to account for
the randomness impacting each run. While this is
a feasible number of tests, given that a single test
takes less than a second to complete, the analysis of
the resulting data requires a great deal of computa-
tion, and a quadratic model can be realized much
more efficiently using an RSM.

We chose to utilize an inscribed central compos-
ite (CCI) design. CCI designs are suitable RSM de-
signs when the extrema of the included factors rep-
resent hard limits. As described in section 2.3, the
ranges of interest represent the reasonable limits for
each parameter, so a CCI design was a reasonable
choice. The test order was fully randomized.

RESULTS

The raw data can be found in Appendix A. The
linear models were created using STATISTICA 13.

3.5 RESULTS FOR RETURN

An ANOVA was performed to determine the sig-
nificant factors and interactions. Our initial model
including all linear effects and quadratic interactions
was validated using a run sequence plot of the resid-
uals (5), a normal probability plot of the residu-
als (6), and a scatter plot of the predicted values
against the residuals (7), shown in Appendix B. We
defer discussion of the validation plots to section
3.6. From the Effect Estimates (Table B1), ANOVA
(Table B2), and Pareto chart of standardized effects
(Figure 2), we determined that the linear effects for
ε, β0, αc, and γp were significant, along with the quadratic
interactions between ε and β0, ε and γp, β0 and γp,
and αp and γp.

We reduced our model by removing all insignif-
icant effects, up to fulfilling the hierarchy principle
(we keep the linear effect of αp, despite its relatively
high p-value). We then performed the same statis-
tical analysis for our new model. Again, the model
was visually validated (Figures 6 and 8, and 10 in
Appendix B) and the Effect Estimates (Table B3)
and ANOVA (Table B4) computed. As is shown by

5

Pareto Chart of Standardized Effects; Variable: Return
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return

.1203844

-.134111

-.142363

-.186991

-.239603

-.269113

.2746103

-.276574

-.316883

-.351504

.3695904

-.403362

-.413646

-.473235

.4983492

.4999923

.513125

.5484734

.5871004

-.628548

-.64024

-.711272

.7171066

.7232585

1.088388

1.150968

-1.19983

1.45572

1.508676

-1.51495

1.581392

1.605436

-1.6796

1.734736

-1.74019

1.85379

-2.21738

2.536713

3.971575

-4.55667

6.526809

9.878728

-10.7953

13.9026

p=.05

Standardized Effect Estimate (Absolute Value)

(8)Lambda_c(L)

(7)Lambda_p(L)

4Lby8L

Lambda_c(Q)

Lambda_p(Q)

3Lby4L

Alpha_c(Q)

1Lby7L

Gamma_c(Q)

6Lby7L

1Lby6L

5Lby7L

4Lby6L

4Lby5L

2Lby6L

4Lby7L

1Lby8L

3Lby6L

7Lby8L

5Lby8L

2Lby8L

3Lby7L

2Lby3L

6Lby8L

2Lby7L

Gamma_p(Q)

5Lby6L

(6)Gamma_c(L)

(3)Alpha_p(L)

1Lby4L

3Lby8L

Alpha_p(Q)

2Lby4L

Epsilon(Q)

1Lby3L

Beta_Naught(Q)

2Lby5L

3Lby5L

1Lby2L

1Lby5L

(4)Alpha_c(L)

(1)Epsilon(L)

(2)Beta_Naught(L)

(5)Gamma_p(L)

Figure 2: A Pareto chart showing the standardized effects on return for the initial model with all linear and
quadratic effects.

6

Pareto Chart of Standardized Effects; Variable: Return
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return

1.509384

-2.21842

2.537904

3.973439

-4.5588

6.529872

9.883364

-10.8003

13.90912

p=.05

Standardized Effect Estimate (Absolute Value)

(3)Alpha_p(L)

2Lby5L

3Lby5L

1Lby2L

1Lby5L

(4)Alpha_c(L)

(1)Epsilon(L)

(2)Beta_Naught(L)

(5)Gamma_p(L)

Figure 3: In this Pareto chart, the effects with bars
surpassing the red line (that is, those effects which
have a component to the right of the red line) are

significant in the reduced model.

the Pareto chart in Figure 3, the effects listed in the
previous paragraph remained significant.

With our reduced model, the return G can be
written as a function of coded parameters as fol-
lows:

G = 139.5106 + 10.9775xε − 11.9960xβ0
+ 1.6765xαp + 7.2528xαc + 15.4490xγp
+ 4.5799xεxβ0 − 5.2546xεxγp
− 2.5570xβ0xγp + 2.9253xαpxγp

(10)

3.6 MODEL VALIDATION

The assumptions of the ANOVA procedure re-
quire that the residuals of the linear model are nor-
mal.

Normal Prob. Plot; Raw Residuals
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return

-400 -300 -200 -100 0 100 200 300 400 500

Residual

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
xp

e
ct

e
d

N
o

rm
al

 V
a

lu
e

.01

.15

.35

.55

.75

.95

Figure 4: This plot shows the normal probability
plot for the residuals, given our reduced model.

Unfortunately, we can see in Figure 4, that there
are outliers. Interestingly, those outliers are runs
where xε = −1, and all other coded variables are
set to 0. This suggests that our model may fail in
nearby cases.

On the other hand, neither the run-sequence plot
of residuals in Figure 8 nor the plot of residuals as
a function of value in Figure 10 appear to show any
trend suggesting further invalidity of the model.

3.7 OPTIMIZATION

A system designer may be interested in maxi-
mizing return while still using this curiosity method.
We used sqp in Octave, and found that the follow-
ing coded values maximized return according to our
model, with a predicted expected return of 182.51.

xε = 1 (11)
xβ0 = −1 (12)
xαp = 1 (13)
xαc = 1 (14)
xγp = 1 (15)

DISCUSSION

The initial objectives of this work were to find
parameters that significantly affect the behaviour of

7

a reinforcement learning agent controlled using White’s
unexpected error as a curiosity reward.

To the best of the author’s knowledge, there have
been no prior attempts to determine which parame-
ters in a curious agent impact its behaviour.

Using return as the response variable provided
limited insight into this issue. Parameters which re-
sult in significantly different final return must have
resulted in significantly different behaviour to do so.
However, this experiment does not exhaust the pos-
sibility that some parameters which cause signifi-
cantly different behaviour could still result in simi-
lar return.

Despite its limitations, return is an interesting
response variable, as there could be situations where
the system designer would like to maximize return
while still requiring the learning system to utilize
this kind of curiosity reward.

In future work it will be crucial to utilize more
descriptive measures of behaviour than the return.
Such measures could include the average probabil-
ity of each action or other measures of the agent’s
predictive error.

CONCLUSIONS

We found that the significant factors were the
linear effects for ε, β0, αc, and γp, along with the
quadratic interactions between ε and β0, ε and γp,
β0 and γp, and αp and γp.

To maximize return, we found that the best val-
ues in our utilized ranges for the significant param-
eters were as follows:

ε = 0.99 (16)
β0 = 0.01 (17)
αp = 1 (18)
αc = 1 (19)

γp = 0.98 (20)

ACKNOWLEDGMENTS

Thank you to Dr. Patrick M. Pilarski and Dr.
Kajsa Duke for their guidance on this project.

REFERENCES

1. Ady, N. M. & Pilarski, P. M. (2016, December).
Domains for Investigating Curious Behaviour in
Reinforcement Learning Agents. Poster session
presented at the Women in Machine Learning
Workshop, Barcelona, Spain.

2. Glickman, S. E., & Sroges, R. W. (1966). Curios-
ity in zoo animals. Behaviour, 26(1), 151-187.

3. Gottlieb, J., Oudeyer, P. Y., Lopes, M., &
Baranes, A. (2013). Information-seeking, cu-
riosity, and attention: computational and neu-
ral mechanisms. Trends in cognitive sciences,
17(11), 585-593.

4. White, A., Modayil, J., & Sutton, R. S.
(2014, July). Surprise and curiosity for big data
robotics. In AAAI-14 Workshop on Sequential
Decision-Making with Big Data, Quebec City,
Quebec, Canada.

5. White, A. (2015). Developing a predictive ap-
proach to knowledge (Doctoral dissertation, Uni-
versity of Alberta).

6. Modayil, J., White, A., & Sutton, R. S.
(2014). Multi-timescale nexting in a reinforce-
ment learning robot. Adaptive Behavior, 22(2),
146-160.

7. Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction (1st Ed.). Cam-
bridge: MIT press.

8. Sutton, R. S., & Barto, A. G. (2016). Re-
inforcement learning: An introduction (2nd
Ed.). Manuscript in preparation. Retrieved from:
http://incompleteideas.net/sutton/book/bookdraft
2016sep.pdf on April 2, 2017.

8

http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf

Appendix A Raw Data

The raw data is available at
https://drive.google.com/a/ualberta.ca/file/d/0B5rsyN1Hdb1qd1B4OGQ3dGxVc0U/view?usp=sharing

Appendix B Additional Tables and Plots (Return)

Effect Std.Err. t(5555) p -95.%
(Cnf.Limt)

+95.%
(Cnf.Limt)

Coeff. Std.Err.
(Coeff.)

-95.%
(Cnf.Limt)

+95.%
(Cnf.Limt)

Mean/Interc. 131.0435 6.227438 21.0429 0.000000 118.8352 143.2517 131.0435 6.227438 118.8352 143.2517
(1)Epsilon (L) 21.9551 2.222461 9.8787 0.000000 17.5982 26.3120 10.9775 1.111231 8.7991 13.1560
Epsilon (Q) 5.0775 2.926942 1.7347 0.082843 -0.6605 10.8154 2.5387 1.463471 -0.3302 5.4077
(2)Beta_Naught(L) -23.9921 2.222461 -10.7953 0.000000 -28.3490 -19.6352 -11.9960 1.111231 -14.1745 -9.8176
Beta_Naught(Q) 5.4259 2.926942 1.8538 0.063822 -0.3120 11.1639 2.7130 1.463471 -0.1560 5.5819
(3)Alpha_p(L) 3.3530 2.222461 1.5087 0.131438 -1.0039 7.7099 1.6765 1.111231 -0.5020 3.8549
Alpha_p(Q) 4.6990 2.926942 1.6054 0.108455 -1.0389 10.4370 2.3495 1.463471 -0.5195 5.2185
(4)Alpha_c(L) 14.5056 2.222461 6.5268 0.000000 10.1487 18.8625 7.2528 1.111231 5.0743 9.4312
Alpha_c(Q) 0.8038 2.926942 0.2746 0.783626 -4.9342 6.5417 0.4019 1.463471 -2.4671 3.2709
(5)Gamma_p(L) 30.8980 2.222461 13.9026 0.000000 26.5411 35.2549 15.4490 1.111231 13.2705 17.6274
Gamma_p(Q) 3.3688 2.926942 1.1510 0.249795 -2.3691 9.1068 1.6844 1.463471 -1.1846 4.5534
(6)Gamma_c(L) 3.2353 2.222461 1.4557 0.145527 -1.1216 7.5922 1.6176 1.111231 -0.5608 3.7961
Gamma_c(Q) -0.9275 2.926942 -0.3169 0.751344 -6.6655 4.8105 -0.4637 1.463471 -3.3327 2.4052
(7)Lambda_p(L) -0.2981 2.222461 -0.1341 0.893320 -4.6549 4.0588 -0.1490 1.111231 -2.3275 2.0294
Lambda_p(Q) -0.7013 2.926942 -0.2396 0.810647 -6.4393 5.0366 -0.3507 1.463471 -3.2196 2.5183
(8)Lambda_c(L) 0.2675 2.222461 0.1204 0.904183 -4.0893 4.6244 0.1338 1.111231 -2.0447 2.3122
Lambda_c(Q) -0.5473 2.926942 -0.1870 0.851675 -6.2853 5.1906 -0.2737 1.463471 -3.1426 2.5953
1L by 2L 9.1599 2.306357 3.9716 0.000072 4.6385 13.6812 4.5799 1.153179 2.3193 6.8406
1L by 3L -4.0135 2.306357 -1.7402 0.081882 -8.5349 0.5079 -2.0067 1.153179 -4.2674 0.2539
1L by 4L -3.4940 2.306357 -1.5150 0.129842 -8.0154 1.0273 -1.7470 1.153179 -4.0077 0.5137
1L by 5L -10.5093 2.306357 -4.5567 0.000005 -15.0307 -5.9879 -5.2546 1.153179 -7.5153 -2.9940
1L by 6L 0.8524 2.306357 0.3696 0.711702 -3.6690 5.3738 0.4262 1.153179 -1.8345 2.6869
1L by 7L -0.6379 2.306357 -0.2766 0.782117 -5.1592 3.8835 -0.3189 1.153179 -2.5796 1.9417
1L by 8L 1.1834 2.306357 0.5131 0.607884 -3.3379 5.7048 0.5917 1.153179 -1.6690 2.8524
2L by 3L 1.6539 2.306357 0.7171 0.473338 -2.8675 6.1753 0.8270 1.153179 -1.4337 3.0876
2L by 4L -3.8737 2.306357 -1.6796 0.093092 -8.3951 0.6476 -1.9369 1.153179 -4.1976 0.3238
2L by 5L -5.1141 2.306357 -2.2174 0.026638 -9.6354 -0.5927 -2.5570 1.153179 -4.8177 -0.2964
2L by 6L 1.1494 2.306357 0.4983 0.618258 -3.3720 5.6707 0.5747 1.153179 -1.6860 2.8354
2L by 7L 2.5102 2.306357 1.0884 0.276471 -2.0111 7.0316 1.2551 1.153179 -1.0056 3.5158
2L by 8L -1.4766 2.306357 -0.6402 0.522043 -5.9980 3.0447 -0.7383 1.153179 -2.9990 1.5224
3L by 4L -0.6207 2.306357 -0.2691 0.787852 -5.1420 3.9007 -0.3103 1.153179 -2.5710 1.9503
3L by 5L 5.8506 2.306357 2.5367 0.011217 1.3292 10.3719 2.9253 1.153179 0.6646 5.1860
3L by 6L 1.2650 2.306357 0.5485 0.583389 -3.2564 5.7863 0.6325 1.153179 -1.6282 2.8932
3L by 7L -1.6404 2.306357 -0.7113 0.476946 -6.1618 2.8809 -0.8202 1.153179 -3.0809 1.4405
3L by 8L 3.6473 2.306357 1.5814 0.113845 -0.8741 8.1686 1.8236 1.153179 -0.4371 4.0843
4L by 5L -1.0914 2.306357 -0.4732 0.636064 -5.6128 3.4299 -0.5457 1.153179 -2.8064 1.7150
4L by 6L -0.9540 2.306357 -0.4136 0.679150 -5.4754 3.5673 -0.4770 1.153179 -2.7377 1.7837
4L by 7L 1.1532 2.306357 0.5000 0.617100 -3.3682 5.6745 0.5766 1.153179 -1.6841 2.8373
4L by 8L -0.3283 2.306357 -0.1424 0.886798 -4.8497 4.1930 -0.1642 1.153179 -2.4249 2.0965
5L by 6L -2.7672 2.306357 -1.1998 0.230257 -7.2886 1.7541 -1.3836 1.153179 -3.6443 0.8771
5L by 7L -0.9303 2.306357 -0.4034 0.686698 -5.4517 3.5911 -0.4651 1.153179 -2.7258 1.7955
5L by 8L -1.4497 2.306357 -0.6285 0.529671 -5.9710 3.0717 -0.7248 1.153179 -2.9855 1.5359
6L by 7L -0.8107 2.306357 -0.3515 0.725224 -5.3321 3.7107 -0.4053 1.153179 -2.6660 1.8553
6L by 8L 1.6681 2.306357 0.7233 0.469552 -2.8533 6.1895 0.8340 1.153179 -1.4266 3.0947
7L by 8L 1.3541 2.306357 0.5871 0.557160 -3.1673 5.8754 0.6770 1.153179 -1.5836 2.9377

 Factor

 Effect Estimates; Var.:Return; R-sqr=.08709; Adj:.07986 (stats_cci)8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682DV: Return

Table B1: Given our initial model, this table shows all linear effects and quadratic interactions.

9

https://drive.google.com/a/ualberta.ca/file/d/0B5rsyN1Hdb1qd1B4OGQ3dGxVc0U/view?usp=sharing

SS df MS F p
(1)Epsilon (L) 664454 1 664454 97.5893 0.000000
Epsilon (Q) 20489 1 20489 3.0093 0.082843
(2)Beta_Naught(L) 793468 1 793468 116.5378 0.000000
Beta_Naught(Q) 23398 1 23398 3.4365 0.063822
(3)Alpha_p(L) 15497 1 15497 2.2761 0.131438
Alpha_p(Q) 17549 1 17549 2.5774 0.108455
(4)Alpha_c(L) 290045 1 290045 42.5992 0.000000
Alpha_c(Q) 513 1 513 0.0754 0.783626
(5)Gamma_p(L) 1315998 1 1315998 193.2823 0.000000
Gamma_p(Q) 9020 1 9020 1.3247 0.249795
(6)Gamma_c(L) 14428 1 14428 2.1191 0.145527
Gamma_c(Q) 684 1 684 0.1004 0.751344
(7)Lambda_p(L) 122 1 122 0.0180 0.893320
Lambda_p(Q) 391 1 391 0.0574 0.810647
(8)Lambda_c(L) 99 1 99 0.0145 0.904183
Lambda_c(Q) 238 1 238 0.0350 0.851675
1L by 2L 107396 1 107396 15.7734 0.000072
1L by 3L 20618 1 20618 3.0282 0.081882
1L by 4L 15626 1 15626 2.2951 0.129842
1L by 5L 141370 1 141370 20.7632 0.000005
1L by 6L 930 1 930 0.1366 0.711702
1L by 7L 521 1 521 0.0765 0.782117
1L by 8L 1793 1 1793 0.2633 0.607884
2L by 3L 3501 1 3501 0.5142 0.473338
2L by 4L 19208 1 19208 2.8210 0.093092
2L by 5L 33477 1 33477 4.9168 0.026638
2L by 6L 1691 1 1691 0.2484 0.618258
2L by 7L 8065 1 8065 1.1846 0.276471
2L by 8L 2791 1 2791 0.4099 0.522043
3L by 4L 493 1 493 0.0724 0.787852
3L by 5L 43813 1 43813 6.4349 0.011217
3L by 6L 2048 1 2048 0.3008 0.583389
3L by 7L 3445 1 3445 0.5059 0.476946
3L by 8L 17027 1 17027 2.5008 0.113845
4L by 5L 1525 1 1525 0.2240 0.636064
4L by 6L 1165 1 1165 0.1711 0.679150
4L by 7L 1702 1 1702 0.2500 0.617100
4L by 8L 138 1 138 0.0203 0.886798
5L by 6L 9802 1 9802 1.4396 0.230257
5L by 7L 1108 1 1108 0.1627 0.686698
5L by 8L 2690 1 2690 0.3951 0.529671
6L by 7L 841 1 841 0.1236 0.725224
6L by 8L 3562 1 3562 0.5231 0.469552
7L by 8L 2347 1 2347 0.3447 0.557160
Error 37822229 5555 6809
Total SS 41430353 5599

 Factor

ANOVA; Var.:Return; R-sqr=.08709; Adj:.07986 (stats_cci)
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682
DV: Return

Table B2: Given our initial model for all linear effects and quadratic interactions, this table provides ANOVA
data.

10

Residuals vs. Case Numbers
8 factors, 1 Blocks, 5600 Runs; MS Residual=6801.417

DV: Return

-1000 0 1000 2000 3000 4000 5000 6000 7000

Case Number

-400

-300

-200

-100

0

100

200

300

400

500

R
a

w
 R

e
si

d
ua

ls

Figure 5: This plot shows the raw residuals for the initial model including all linear and quadratic effects as a
function of case number (equivalently, the raw residuals are shown in the run sequence order).

Normal Prob. Plot; Raw Residuals
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return

-400 -300 -200 -100 0 100 200 300 400 500

Residual

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
xp

e
ct

ed
 N

or
m

al
 V

al
ue

.01

.15

.35

.55

.75

.95

Figure 6: This plot shows the normal probability plot for the residuals, given our initial model including all
linear and quadratic effects.

11

Predicted vs. Residual Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return

60 80 100 120 140 160 180 200 220

Predicted Values

-400

-300

-200

-100

0

100

200

300

400

500

R
a

w
 R

es
id

ua
ls

Figure 7: This plot shows the raw residuals as a function of the predicted values for the initial model
including all linear and quadratic effects.

Effect Std.Err. t(5590) p -95.%
(Cnf.Limt)

+95.%
(Cnf.Limt)

Coeff. Std.Err.
(Coeff.)

-95.%
(Cnf.Limt)

+95.%
(Cnf.Limt)

Mean/Interc. 139.5106 1.102132 126.5824 0.000000 137.3500 141.6712 139.5106 1.102132 137.3500 141.6712
(1)Epsilon (L) 21.9551 2.221419 9.8834 0.000000 17.6002 26.3099 10.9775 1.110709 8.8001 13.1550
(2)Beta_Naught(L) -23.9921 2.221419 -10.8003 0.000000 -28.3469 -19.6372 -11.9960 1.110709 -14.1735 -9.8186
(3)Alpha_p(L) 3.3530 2.221419 1.5094 0.131257 -1.0019 7.7078 1.6765 1.110709 -0.5009 3.8539
(4)Alpha_c(L) 14.5056 2.221419 6.5299 0.000000 10.1507 18.8604 7.2528 1.110709 5.0754 9.4302
(5)Gamma_p(L) 30.8980 2.221419 13.9091 0.000000 26.5431 35.2528 15.4490 1.110709 13.2716 17.6264
1L by 2L 9.1599 2.305275 3.9734 0.000072 4.6406 13.6791 4.5799 1.152638 2.3203 6.8396
1L by 5L -10.5093 2.305275 -4.5588 0.000005 -15.0285 -5.9901 -5.2546 1.152638 -7.5143 -2.9950
2L by 5L -5.1141 2.305275 -2.2184 0.026566 -9.6333 -0.5948 -2.5570 1.152638 -4.8167 -0.2974
3L by 5L 5.8506 2.305275 2.5379 0.011179 1.3313 10.3698 2.9253 1.152638 0.6657 5.1849

 Factor

 Effect Estimates; Var.:Return; R-sqr=.0822; Adj:.08072 (stats_cci)8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296DV: Return

Table B3: This table provides the main effects and model coefficients for our reduced model.

12

SS df MS F p
(1)Epsilon (L) 664454 1 664454 97.6809 0.000000
(2)Beta_Naught(L) 793468 1 793468 116.6472 0.000000
(3)Alpha_p(L) 15497 1 15497 2.2782 0.131257
(4)Alpha_c(L) 290045 1 290045 42.6392 0.000000
(5)Gamma_p(L) 1315998 1 1315998 193.4637 0.000000
1L by 2L 107396 1 107396 15.7882 0.000072
1L by 5L 141370 1 141370 20.7827 0.000005
2L by 5L 33477 1 33477 4.9214 0.026566
3L by 5L 43813 1 43813 6.4410 0.011179
Error 38024835 5590 6802
Total SS 41430353 5599

 Factor

ANOVA; Var.:Return; R-sqr=.0822; Adj:.08072 (stats_cci)
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296
DV: Return

Table B4: This table provides ANOVA data for our reduced model.

Residuals vs. Case Numbers
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return

-1000 0 1000 2000 3000 4000 5000 6000 7000

Case Number

-400

-300

-200

-100

0

100

200

300

400

500

R
a

w
 R

e
si

d
ua

ls

Figure 8: This plot shows the raw residuals for the reduced model as a function of case number
(equivalently, the raw residuals are shown in the run sequence order).

13

Predicted vs. Residual Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return

60 80 100 120 140 160 180 200

Predicted Values

-400

-300

-200

-100

0

100

200

300

400

500

R
a

w
 R

e
si

d
ua

ls

Figure 9: This plot shows the raw residuals as a function of the predicted values for the reduced model.

Observed vs. Predicted Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return

-300 -200 -100 0 100 200 300 400 500 600

Observed Values

60

80

100

120

140

160

180

200

220

P
re

di
ct

e
d

V
a

lu
e

s

Figure 10: This plot shows values predicted by the reduced model vs observed values.

14

Appendix C

The following code runs all of the experiments and produces a csv (comma-separated-values) file containing
the raw experimental data.

parameter_screening .py
Copyright (C) 2017 Nadia Ady
#
This module is part of the curiosity project .
To run , type : python parameter_screening .py

import numpy # used for random functions

class Test(object):
def __init__(self , domain , num_steps):

self.domain = domain
self.num_steps = num_steps
self.return_sum = 0.0

tracks counts for each state - action pair
self.count = {}
for state in domain.get_state_set ():

self.count[state] = {}
for action in domain.get_action_set ():

self.count[state][action] = 0

def run(self , agent , initial_state):
self.return_sum = 0.0 # reset before starting a new test
state = initial_state
action = agent.get_action(state)
for step_num in range(self.num_steps):

self.count[state][action] += 1

domain_reward , new_state = self.domain.sample(state ,
action)

new_action = agent.get_action(new_state)

agent.update(state , action , domain_reward ,
new_state , new_action)

state = new_state
action = new_action

self.return_sum += domain_reward

15

class CuriosityBandit(object):
def __init__(self , offset =0.001 , start_time =0,

update_sin_every_step=True , random_seed=None):
constant to affect the frequency of the sinusoidal action
self.offset = offset
sin_argument holds self . offset * timestep
self.sin_argument = start_time
if False , sinusoid action only shifts when action is taken
self.update_sin_every_step = update_sin_every_step

if random_seed is None:
numpy.random.seed()

else:
numpy.random.seed(random_seed)

def sample(self , state , action):
if self.update_sin_every_step or action == 1:

self.sin_argument += self.offset
reward = self.get_reward(action)
return reward , state

def get_reward(self , action):
if action == 0: # random

return 2 * numpy.random.random_sample () - 1
elif action == 1: # sinusoidal

return numpy.sin(self.sin_argument)
elif action == 2: # constant

return 0

def get_state_set(self):
""" The returned list of states is a singleton . """
return [0]

def get_action_set(self):
return [1, 0, 2]

def get_initial_state(self):
return 0

class ActionValuedAgent(object):
def __init__(self , domain , params , random_seed=None):

self.params = params
self.domain = domain

if random_seed is not None:
numpy.random.seed(random_seed)

16

self.gamma = self.params[’gamma’] if ’gamma’ in \
self.params else 0.9

self.alpha = self.params[’alpha’] if ’alpha’ in \
self.params else 0.1

self.epsilon = self.params[’epsilon ’] if \
’epsilon ’ in self.params else 0.1

self.initial_value = self.params[’initial_value ’] if \
’initialValue ’ in self.params else 0

self.decay = self.params[’lambda ’] if ’lambda ’ in \
self.params else 0

self.UDE_keeper = UDE(self.params[’beta_naught ’]) if \
’beta_naught ’ in self.params else UDE (0.1)

self.Q = {s: {a: self.initial_value for a in
domain.get_action_set ()} for s in

domain.get_state_set ()}
self.trace = {state: {action: 0 for action in

domain.get_action_set ()} for state in
domain.get_state_set ()}

self.delta = 0

def get_action(self , state):
if state not in self.Q:

self.Q[state] = {a: self.initial_value for a in
self.domain.get_action_set ()}

if numpy.random.random () < self.epsilon:
action_set = self.domain.get_action_set ()
action = numpy.random.choice(action_set)

else:
action = numpy.random.choice(

[k for k, v in self.Q[state]. iteritems () if
v == max(self.Q[state]. values ())])

self.last_action = action
return action

class WatkinsQLearningAgent(ActionValuedAgent):
def __init__(self , domain , params):

super(WatkinsQLearningAgent , self). __init__(domain , params)

def update(self , state , action , reward , state_new , action_new):

astar = max(self.Q[state_new], key=self.Q[state_new].get)
if self.Q[state_new][action_new] == self.Q[state_new][astar]:

astar = action_new

self.delta = reward + \
self.gamma * self.Q[state_new][astar] - \
self.Q[state][action]

17

self.trace[state][action] += 1
self.trace[state][action] = 1 if \

self.trace[state][action] >= 1 else \
self.trace[state][action]

for s in self.trace:
for a in self.trace[s]:

self.Q[s][a] += self.alpha * self.delta * \
self.trace[s][a]

if action_new == astar:
self.trace[s][a] *= self.gamma * self.decay

else:
self.trace[s][a] = 0

update used to compute the curiosity reward .
self.UDE_keeper.update(self.delta)

class TDLambdaAgent(ActionValuedAgent):
def __init__(self , domain , params):

super(TDLambdaAgent , self). __init__(domain , params)

def update(self , state , action , reward , state_new , action_new):

self.delta = reward + \
self.gamma * self.Q[state_new][action_new] - \
self.Q[state][action]

for s in self.trace:
for a in self.trace[s]:

self.trace[s][a] *= self.gamma * self.decay
self.trace[state][action] += 1
self.trace[state][action] = 1 if \

self.trace[state][action] >= 1 else \
self.trace[state][action]

for s in self.Q:
for a in self.Q[s]:

self.Q[s][a] += self.alpha * self.delta * \
self.trace[s][a]

self.UDE_keeper.update(self.delta)

class MultiBrainedAgent(object):
def __init__(self , domain , params):

self.domain = domain
self.params = params

18

assert ’control ’ in self.params
self.control_agent = \

self.params[’control ’][’agent_type ’](domain ,
self.params[’control ’][’params ’])

assert ’predictor ’ in self.params
self.predictor_agent = \

self.params[’predictor ’][’agent_type ’](domain ,
self.params[’predictor ’][’params ’])

assert ’control_reward ’ in self.params
self.control_reward = self.params[’control_reward ’]

def get_action(self , state):
return self.control_agent.get_action(state)

def update(self , state , action , reward , state_new , action_new):
self.predictor_agent.update(state , action , reward ,

state_new , action_new)

curiosity_reward = self.control_reward(self.predictor_agent)

self.control_agent.update(state , action , curiosity_reward ,
state_new , action_new)

class UDE(object):
def __init__(self , beta_naught , small_constant =0.0001):

self.beta_naught = beta_naught
self.small_constant = small_constant
self.knower_of_variance = SampleHolder ()
self.tau = 0
self.learned_avg_delta = 0
self.beta = None

def update(self , delta):
tau_ {t +1}
self.tau = (1-self.beta_naught)*self.tau + self.beta_naught
self.beta = self.beta_naught/self.tau

learn variance of delta
self.knower_of_variance.add_variable(delta)
v = self.knower_of_variance.get_variance ()

learn exponentially weighted moving average of delta
self.learned_avg_delta = (1 - self.beta) * \

self.learned_avg_delta + \
self.beta * delta

19

def get_output(self):
return abs(float(self.learned_avg_delta) /

(self.knower_of_variance.get_variance () +
self.small_constant))

https :// en. wikipedia . org / wiki / Algorithms_for_calculating_variance
class SampleHolder(object):

def __init__(self):
self.K = 0
self.n = 0
self.ex = 0
self.ex2 = 0

def add_variable(self ,x):
if self.n == 0:

self.K = x
self.n += 1
self.ex += x - self.K
self.ex2 += (x - self.K) * (x - self.K)

def remove_variable(self ,x):
self.n -= 1
self.ex -= (x - self.K)
self.ex2 -= (x - self.K) * (x - self.K)

def get_mean(self):
return self.K + self.ex / self.n

def get_variance(self):
if self.n == 0:

return 0
if self.n == 1:

return (self.ex2 - (self.ex*self.ex) / self.n) / self.n
return (self.ex2 -(self.ex * self.ex)/self.n)/(self.n-1)

if __name__ == "__main__":

init_random_seed = 2017
num_steps = 20000
num_replicates = 20

filename = ’stats.csv’

epsilons = {-1: 0.01, 0: 0.5, 1: 0.99}
beta_naughts = {-1: 0.01, 1: 0.99}

20

alpha_ps = {-1: 0.01, 0: 0.5, 1: 0.99}
alpha_cs = {-1: 0.01, 0: 0.5, 1: 0.99}
gamma_ps = {-1: 0, 0: 0.49, 1: 0.98}
gamma_cs = {-1: 0, 0: 0.49, 1: 0.98}
lambda_ps = {-1: 0, 0: 0.49, 1: 0.98}
lambda_cs = {-1: 0, 0: 0.49, 1: 0.98}

with open(filename , ’w’) as f:
f.write(’Epsilon ,Beta_Naught ,Alpha_p ,Alpha_c ,Gamma_p ,’ +

’Gamma_c ,Lambda_p ,Lambda_c ,Percent␣Periodic ,’ +
’Percent␣Random ,Percent␣Constant ,Return\n’)

code_combos = [(epsiloncode , b0code , apcode , accode ,
gpcode , gccode , lpcode , lccode)

for epsiloncode in epsilons
for b0code in beta_naughts
for apcode in alpha_ps
for accode in alpha_cs
for gpcode in gamma_ps
for gccode in gamma_cs
for lpcode in lambda_ps
for lccode in lambda_cs]* num_replicates

numpy.random.seed(init_random_seed)
numpy.random.shuffle(code_combos)

for code in code_combos:
epsilon = epsilons[code [0]]
beta_naught = beta_naughts[code [1]]
alpha_p = alpha_ps[code [2]]
alpha_c = alpha_cs[code [3]]
gamma_p = gamma_ps[code [4]]
gamma_c = gamma_cs[code [5]]
lambda_p = lambda_ps[code [6]]
lambda_c = lambda_cs[code [7]]

make spreadsheet
with open(filename , ’a’) as f:

for c in code:
f.write(str(c) + ’,’)

test_domain = CuriosityBandit(random_seed=init_random_seed)
test_system = \

MultiBrainedAgent(test_domain ,
{’predictor ’:

{’agent_type ’: TDLambdaAgent ,
’params ’: {’gamma’: gamma_p ,

’alpha’: alpha_p ,
’lambda ’: lambda_p ,

21

’beta_naught ’:
beta_naught ,

’initial_value ’: 0}},
’control ’:

{’agent_type ’:
WatkinsQLearningAgent ,

’params ’: {’gamma’: gamma_c ,
’alpha’: alpha_c ,
’epsilon ’: epsilon ,
’lambda ’: lambda_c ,
’beta_naught ’:

beta_naught ,
’initial_value ’: 0}},

’control_reward ’: lambda agent:
agent.UDE_keeper.get_output ()})

test = Test(test_domain , num_steps)
test.run(test_system , test_domain.get_initial_state ())

with open(filename , ’a’) as f:
for action in test_domain.get_action_set ():

f.write(str(float(test.count [0][action])/ num_steps)
+ ’,’)

f.write(str(test.return_sum) + ’\n’)

22

	Hardware and Software
	Experimental Setup
	Test Design
	Domain Design
	Agent Design

	Parameter Factor Ranges
	Experimental Design
	Results for Return
	Model Validation
	Optimization
	Raw Data
	Additional Tables and Plots (Return)
	

