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Abstract 

Polyolefin thermoplastics form a significant fraction of the world scale production of plastics and 

are of high interest due to their toughness, low cost, good chemical resistance and excellent IR 

properties. Two grades of PE: Linear Low-Density Polyethylene (LLDPE) and High-Density 

Polyethylene (HDPE). LLDPE and HDPE have a huge number of applications in a diverse range 

of areas such as radiative passive heating and cooling, infrared (IR) and visible camouflage, 

additive manufacturing, defense sector and many more. However, LLDPE faces the challenge of 

being visibly semi-transparent, while HDPE exhibits severe warpage during 3D printing. This 

dissertation aims to address these challenges and enhance the performance of PE for expanded 

applications in IR camouflage and radiative passive heating and cooling applications. Chapter one 

focuses on resolving the semi-transparency issue of LLDPE by pigmenting the material using a 

simple and easier compounding method while making sure to maintain its highly desirable IR 

transparency. A comprehensive FTIR, UV-VIS, mechanical testing, and IR analysis is 

implemented to confirm the successful achievement of a visibly opaque LLDPE material without 

compromising its exceptional IR transparency. This breakthrough enables the utilization of 

LLDPE in various applications, including radiative passive heating and cooling, IR and visible 

camouflage, and IR shielding applications. Chapter two addresses the warpage challenges 

experienced during the 3D printing of HDPE. Incorporation of 10 wt% LLDPE into HDPE helps 

reduce crystallinity and mitigate stresses during 3D printing, by optimizing printing parameters 

and exploring different print bed options. Through this approach, this research provides a 

successful solution to provide significant reduction in warpage for 3D printing of HDPE leading 

to its expansion of potential applications in additive manufacturing. Overall, this thesis dissertation 

highlights the excellence of PE as a material, the challenges it faces and addresses those challenges. 
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Through custom compounding of PE, we have successfully produced PE based metamaterials 

which have high visible opacity, are available in diverse range of colors and still maintain their 

high IR transparency properties. HDPE based grades of PE can be successfully 3D printed which 

pave the way for 3D printing functionality of these metamaterials which can further be drawn into 

fibers to make fabrics for civilian and military camouflage and radiative heating/cooling 

applications.  

 

Key words: Additive manufacturing, HDPE, LDPE, Fused filament fabrication, polyethylene 

printing, warpage, polymer blends, shrinkage, stresses, Pigmentation, Compounding LLDPE, 

polymer composites, FTIR, UV-VIS, IR analysis, IR transparency, IR reflectance, IR emittance, 
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Chapter 1 

Introduction
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1.1. Polyolefins  

A polyolefin is a polymer produced from an olefin or alkene as a monomer. In organic chemistry, 

an alkene, olefin, or olefin is an unsaturated chemical molecule containing at least one carbon to 

carbon double bond [1]. Polyolefins include polyethylene - PE  (low-density, high-density, and 

linear low-density polyethylene), polypropylene - PP , and polybutene - PB (polybutene-1 and 

polyisobutylene) in which PE and PP are the most commonly used commercially available 

polyolefins [2]. Radical polymerization and coordination catalysis are two major methods of 

polymerizing ethylene and propylene [3]–[5]. The worldwide market size of polyolefins was 

approximately USD 294 billion in 2022 and is expected to rise to USD 355 billion by 2026 [6], 

[7]. This high rise in demand is due to its various industry applications due to its easy ability to 

form desired shapes and easy molding and their low cost. It has become essential for applications 

such as packaging, construction, automotive and medical industries due to low cost, low density, 

good chemical resistance and excellent processability [8]–[11]. Out of the two major polyolefins, 

PE is an interesting polymer from point of the view of its molecular structure. Different grades of 

PE are available based on the degree of branching, such as high-density polyethylene (HDPE), 

low-density polyethylene (LDPE), and linear-low density polyethylene (LLDPE). LLDPE is a 

copolymer of ethylene with longer olefin, has short-chain branching (<100 per 1000 C-atoms) 

[12]. LDPE has a higher number of long-chain branching (8–40 per 1000 C-atoms), which leads 

to a loss of molecular symmetry and a lower degree of crystallinity (40–50%) [12]. HDPE has a 

low amount of short chain branching (5–10 per 1000 C-atoms) and a high degree of crystallinity 

(70–80%) [12]. Their schematic is shown in Figure 1. On the other hand, PP is popular for having 

lower density among commodity plastics. It is a nonpolar, and partially crystalline polymer with 

good strength, stiffness, and chemical resistance but poor UV stability [13]. It can be processed by 
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a variety of processing techniques, such as extrusion or injection molding [14], [15].  

 

Figure 1: Grades of PE. High-density polyethylene (HDPE), low-density polyethylene (LDPE), 

and linear low-density polyethylene (LLDPE). 

 

1.2. Additive manufacturing  

Currently, there is a high demand for 3D printing technology due to its revolutionary impact on 

the manufacturing and design of ceramics, metals, concretes, polymers, and their composites [16]. 

Additive manufacturing, also known as 3D printing, constructs a 3D object using a computer-aided 

design (CAD) and a layer-by-layer approach, as opposed to the subtractive manufacturing process 

which involves removing material from a solid piece to create the desired shape [17]–[19]. 

Initially, 3D printing was primarily used for producing prototypes. However, it is now increasingly 

used in large-scale applications in various industries such as automotive, aerospace, construction, 

electronics, and medical industries, owing to its ability to mass customize [19]–[35]. There are 

many types of 3D printing processes available, such as selective laser sintering [36], 
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stereolithography [37], digital light processing [38], direct metal laser sintering [39], fused 

deposition modeling (FDM) [40], and electron beam melting [41]. FDM is the most versatile and 

commonly used method, among these techniques, used for polymeric materials, due to its low cost, 

easy processing, variation in build styles, and simple support removal [42], [43]. Compared to 

traditional processing techniques, FDM 3D printing is budget-friendly and scalable. It does not 

require a mold to produce a product, which saves the significant investment cost of creating 

product-specific molds. It is also easy to operate and can create complex 3D parts with ease  [43]–

[45]. However, the mechanical strength of printed objects is lower than that of a product made 

using conventional molding techniques. Furthermore, there is a limited availability of 

thermoplastics feedstock that can be used for FDM 3D printing due to its dependence on 

amorphous feedstocks [47]–[51].  

1.3. Hight density polyethylene (HDPE)  

High-density polyethylene (HDPE) is used in various applications such as plastic bottles, pipes, 

containers due to its high durability, toughness, and resistance to chemicals and UV radiation [52]. 

Its market was valued at 70.7 billion U.S. dollars in 2020. The HPDE market is expected to reach 

a value of almost 90 billion U.S. dollars by 2026 whereas global HDPE production is projected to 

reach 53.62 million metric tons by 2025 [53]. Application of different grades of polyethylene in 

FDM is very challenging due to their high melting temperature, low thermal conductivity, semi 

crystalline nature and low adhesion properties [54]. When semi crystalline polymers, like HDPE, 

are used in 3D printing, they tend to shrink and warp during cooling after being melted. This is 

because the molten polymer chains rearrange themselves in a more ordered manner as they cool, 

which can cause problems with bed adhesion and lead to failure in the printing process [55]–[58]. 

These issues can result in 3D objects that are distorted or do not meet design specifications. 
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Therefore, there is a need to improve 3D printing compatibility of HDPE with FDM in order to 

enhance the flexibility and capabilities of their use in diverse applications [59], [60] . 

1.4. Linear Low-density polyethylene (LLDPE) 

Linear low-density polyethylene (LLDPE) is produced by the copolymerization of ethylene with 

a small amount of a comonomer, typically an alpha-olefin such as 1-butene, 1-hexene, or 1-octene 

[61]–[63]. This results in a linear polymer structure with short side chains, which gives LLDPE its 

unique mechanical properties such as excellent tensile strength, impact resistance, and puncture 

resistance [64]–[67]. Due to its abundant supply, good chemical resistance, low cost, superior 

processability, low energy requirement for processing, and high specific modulus and strength it 

is extensively used in packaging applications such as films, bags, and pouches [68]–[71]. LLDPE 

is also compounded with various additives and agents to enhance its properties and expand its 

applications. Compounded LLDPE is widely used in various other applications such as agriculture, 

medical, electrical and construction industry [72]–[78]. Recently, LLDPE has found interesting 

usages in radiative passive cooling and heating applications due to its desirable and unique 

properties such as high transparency in infrared region. Its ability to absorb, transmit which is most 

important for us, and reflect IR radiation in different ranges makes it a versatile material for use in 

radiative cooling and heating applications [77], [79]–[82]. However, compounding of LLDPE can 

be very challenging due to its poor compatibility with fillers and additives due to its low surface 

energy, lack of polar groups, high melt viscosity, and degradation at higher temperatures. Some 

complex manufacturing and chemical process are listed in the literature which are used to achieve 

compounding conventionally [83]–[87]. Another challenge is that PE exists in a translucent or 

milky-white color in its natural state [88] and is difficult to dye, or paint due to its low surface 

energy [89]–[94]. Therefore, it is important to come up with simple fabrication methods for 
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compounding of LLDPE while maintaining its desirable visible, mechanical and IR properties.  

1.5 Research motivation 
Polyethylene (PE) is an exceptional material renowned for its remarkable properties and 

versatility, making it highly sought after across various industries. With its wide range of grades 

and formulations, PE offers unparalleled advantages for numerous applications, including 

radiative passive heating and cooling, infrared (IR) and visible camouflage, IR shielding, 

packaging, agriculture, medical and numerous other applications. It has diverse capabilities and 

significant contributions to industrial, military, and civilian sectors equally.  

1.5.1 Visible and infrared camouflage applications 
Traditionally, military textiles have been used to visibly camouflage and blend the soldiers and 

military equipment with their environment and background. Typical desired colors for visible 

camouflage, while may slightly based on the regions, are olive, green, khaki, brown and black 

[95]. These are mostly used in the manufacturing of soldier clothing, light flexible nets, garnishing 

and covers to provide visible camouflage and in doing so conceal them from enemy weaponry and 

visual detection equipment [96]. In modern warfare, while visible camouflage is still highly 

desired, with the addition of hyperspectral imaging technologies being more available, Infrared 

(IR) or thermal camouflage is an area of high interest by the defense sector around the world [97]. 

The integration of visibly and IR camouflage capabilities in the military textiles present several 

challenges. Comfort, maintaining garment functionality, resistance to laundering and switchability 

between high and low emitting surface are some of the crucial factors to keep in mind. Therefore, 

there is need to avoid complex-embedded electronics and powering devices while at the same time, 

it is desired to maintain compatibility, modularity and adherence to existing textile standards for 

intuitive use [98].  
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Three-dimensional (3D) printing, surface dyeing, embedded additives, low-emissivity coatings, 

metamaterials and microfluidics are some of the potential solutions for improved camouflage 

capabilities. 3D printing offers opportunities for fabricating complex fabric structures using 

metamaterials and microfluidics. Examples include 3D metamaterial absorber textiles for radar 

stealth, and hierarchical metamaterials for multispectral camouflage. The application of 

microfluidics in adaptive camouflage, through the manipulation of chromatophores and 

hyperplastic matrices, is also discussed in the literature [95], [99]–[102]. visible and IR camouflage 

solutions in designing low and high IR emitting surfaces using techniques such as kirigami, 

electrowetting, lenticular lens, micro-structuring and microfluidics etc. are of great interest in the 

literature [95], [99]–[102] . Kirigami, a variation of origami, with the concept of using one high 

emitting and one low emitting surface, can be utilized to create unique surface structures for 

achieving IR camouflage [103]. A highly reflective surface, such as aluminum, reflects the 

surrounding thermal temperature, which makes the object appear at the same temperature as its 

surroundings under IR or thermal imaging cameras providing excellent IR camouflage. However, 

reflective materials fail to provide visible camouflage. Therefore, thee kirigami solutions need to 

be covered under such metamaterials which are highly visibly opaque, and are available in typical 

military camouflage colors while still providing high IR transparency so that they don’t affect the 

kirigami’s IR capabilities. Thus, these solutions as a whole unit can provide camouflage under 

both visible and IR range without impacting on each other’s performance. In this work, we will 

investigate, develop, test and characterize these metamaterials for effective visible and IR 

camouflage applications. Chapter 3 directly addresses to and is an integral part of this work. 

1.5.2 Blackbody, Grey body Radiation, the Stefan–Boltzmann Law 

and IR transparency  
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A blackbody is an idealized object that absorbs all incident electromagnetic radiation and emits 

radiation over a wide range of frequencies, depending solely on its temperature. The radiation 

emitted by a blackbody is referred to as blackbody radiation [104]. One of the fundamental laws 

governing blackbody radiation is the Stefan–Boltzmann law, which states that the total energy 

radiated per unit surface area of a blackbody is directly proportional to the fourth power of its 

absolute temperature (T). Mathematically, this is expressed as [105]: 

𝐸 = 𝜎. 𝑇4                       (1) 

E is the total radiant energy emitted per unit area. 

σ is the Stefan–Boltzmann constant, approximately equal to 5.67×10−8W𝑚−2𝐾−4.  

This law is essential for understanding the relationship between the temperature of an object and 

the amount of IR radiation it emits. In the context of thermal imaging, IR cameras exploit this 

principle to detect temperature differences in their field of view. 

Not all materials are blackbodies, meaning they do not absorb and emit radiation perfectly. Most 

real-world objects are grey bodies, which emit less radiation compared to a blackbody [106]. The 

emissivity (ε) of a material quantifies its ability to emit thermal radiation relative to a blackbody. 

Emissivity values range from 0 (perfect reflector, no radiation emission) to 1 (perfect blackbody) 

[107]. For our research, we are considering grey bodies as our point of interest for thermal 

camouflage applications. The heat source and surrounding environments for camouflage research 

motivation are treated as grey bodies with FLIR thermal camera, which is widely used for 

capturing thermal images and detecting IR radiation [108], set at 95% emissivity.   

For materials like LLDPE, which are intended to be IR transparent for camouflage purposes, it is 

essential to for them to let most of IR radiation pass through depicting as IR transparent to fool 

thermal cameras. They allow IR radiation to pass through without significant absorption and 

emission, making them challenging to detect by IR cameras [109], [110]. We are interested in the 



9  

8 µm to 12 µm range of IR which ensures compatibility with FLIR thermal cameras, which are 

optimized for this wavelength region. 

The motivation of the research is to investigate the IR properties of compounded LLDPE with an 

aim to thermally mimic the surroundings and making it less detectable by thermal imaging 

systems, allowing for effective camouflage. By matching the emissivity of the material to its 

background, it becomes exceedingly challenging for IR cameras to distinguish the material from 

its environment [111], [112]. This principle is instrumental in deceiving IR cameras, making 

objects or individuals appear as if they are part of their surroundings. 

1.5.3 Radiative passive cooling and heating applications 
The energy consumption in buildings contributes to over 30% of global final energy use and is 

responsible for 10% of global greenhouse gas emissions [113]. This has significant environmental 

and economic implications. Space heating and cooling account for approximately 48% of the total 

energy consumed in buildings [103], [104], . With the effects of climate change and population 

growth, it is projected that the demand for heating and cooling energy will increase by 79% and 

83%, respectively, from 2010 to 2050 [114]–[116]. Specifically, in Alberta, about 89% of the 

power is generated by burning fossil fuels- approximately 36% from coal and 54% from natural 

gas. Fossil fuels emit greenhouse gasses which pollute the environment and are directly 

responsible for global warming and climate change. Alberta’s total energy demand is the largest 

in Canada at 410 petajoules (PJ) in 2019 with commercial and residential being one of the largest 

consuming sectors. Space heating is the number one form of energy consumption in commercial 

and residential buildings, making up 63% of the total energy consumption [117]–[119].   

To address these challenges and promote sustainability, there is a pressing need for innovative 

science and technology to achieve high energy efficiency in buildings while minimizing carbon 
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emissions. One such solution is radiative passive heating and cooling which can be implemented 

to our buildings to passively heat and cool them using advanced radiative surface materials. Some 

of the major challenges are the dynamic nature of weather conditions, which can compromise the 

effectiveness of passive solar heating or radiative cooling. These variations occur spatially and 

temporally, including seasonal fluctuations and variations across climate zones. Development of 

switchable thermal management systems utilizing the concepts of radiative passive heating and 

cooling are of great interest in this field [79], [120], [121]. In this regard, we have launched a new 

startup called Kryozesto under which we are developing a new inexpensive switchable radiative 

cooling (RC) and solar heating (SH) system for thermal management applications which uses outer 

space as a passive heat sink and harvests heat from the sun as a renewable energy source through 

switching the functionality of a variety of passive radiative systems [122]. This combination is 

achieved through deploying a multilayer thin-film composite system with a sliding mechanism to 

allow switching between two systems upon request at different times of the day/seasons of the year 

as per the need. For radiative passive cooling is achieved with a highly visible reflective surface 

combined with an efficient thermal emitter. When insulated from conduction and convection to 

the surroundings, these systems can in theory cool to many 10s of degrees Celsius below ambient 

temperatures.  Efficient radiative heating requires the opposite, with a highly visibly absorbing and 

low IR emitting material.  This solution promises the benefits of both with minimum 

manufacturing and actuation complexity. Use of PE is shown in the schematic diagram of the dual 

mode thermal management system is shown in Figure 2.  
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Figure 2: a) & b) represent two scenarios of radiative heating and cooling using radiative passive 

heating and cooling thermal management system being developed in our lab. 

 

In this work, we are investigating, developing, testing and characterizing highly IR transparent, 

high IR scattering, surfaces which are to be used for heating and cooling applications. Chapter 3 

directly addresses to and is an integral part of this project.   

1.5.4 3D printing applications  

As we know, 3D printing of plastics has widespread application in various industries and has the 

potential to revolutionize manufacturing processes [123]. It enables rapid prototyping, 

customization, and cost-effective production of complex geometries with high precision. 

Industries such as aerospace, automotive, healthcare, and consumer goods benefit from reduced 

lead times, increased design flexibility, and improved efficiency [124]. From lightweight 
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components in aircraft to medical implants and consumer products, 3D printing of plastics offers 

transformative possibilities in the manufacturing world. Even though 3D printing has made great 

progress and is available for a wide range of materials, there are still many challenges for printing 

with polyolefins. Polyolefin materials, especially such as polyethylene (PE), is very challenging 

to 3D print with due to its high crystalline nature and very little is available about it in the literature 

[125]. PE thermoplastics often cause severe warpage and delamination problems during 3D 

printing. Therefore, it is very important to solve this problem so that we can 3D print complex 

objects using highly desired PE materials and increase their applications across the board. In this 

regard, we will investigate, test and optimize 3D printing parameters, print bed materials and 

techniques to help solve this problem and making 3D printing of polyolefins more accessible. 

Chapter 4 directly addresses to and is an integral part of this work.   

1.5.5 Thermal draw tower applications 
The thermal draw tower is a versatile and widely utilized apparatus in various fields, ranging from 

materials science to fiber optics. The thermal draw tower operates on the principle of controlled 

heating and stretching of materials to achieve desired properties and structures [126]. The process 

involves the controlled melting of a starting material, followed by drawing it into a thin, elongated 

shape through controlled tension. The key elements of a typical thermal draw tower setup include 

a furnace or heating zone, a drawing mechanism, and a cooling section [127]. The furnace raises 

the material's temperature to its melting point, allowing for proper viscosity and flow. The drawing 

mechanism controls the tension and elongation rate during the drawing process, while the cooling 

section solidifies the material into its final form [128].  

Micro structured thermoplastic filaments which are traditionally made via die extrusion, can be 

successfully drawn and manufactured using thermal draw tower [129], [130]. In conventional 
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methods, each shape requires a specially designed and fabricated die. Co-extruding multiple 

materials and hollow features requires highly specialized dies, and multiple compounder and 

extrusion stages. Therefore, 3D printing and thermal draw tower technique are used together to 

manufacture complex and tailorable geometry in micro structured fibers without the significant 

infrastructure required for conventional fabrication such as dies, molds, etc. 3D printed complex 

specimens of PE grades can be thermally drawn and used to make micro structured fibers for 

making smart textiles, specialized complex and functional fibers such as sensors, air-core 

waveguides, actuators, and energy storage devices by creating preforms of diverse range of shapes 

and materials [131]–[133]. Chapter 4 provides successful 3D printing of HDPE which is an integral 

step toward thermal drawing of PE and achieving nanoscale fibers.  

1.6 Research Objective 

While Polyethylene (PE) is undeniably an excellent material with a multitude of applications, 

it is not without its challenges. Two specific challenges have been identified: the semi-

transparency of LLDPE and the severe warpage experienced during 3D printing with HDPE. 

However, this dissertation aims to address these challenges head-on by proposing innovative 

solutions. This work aims to improve visible, IR and 3D printing properties of PE. For this 

purpose, the research work has been divided into two chapters. 

1. In the first chapter, the semi-transparency issue of LLDPE is resolved through pigmenting 

techniques, ensuring that its highly desirable infrared (IR) transparency remains 

unaffected. A simpler and easier method to compound LLDPE with different pigments is 

devised that offer desirable IR properties as well as bold coloration potential to obtain both 

camouflage and visually appealing colors/ surface finishes of compounded LLDPE. 

Extensive analyses and testing, including FTIR analysis, UV-VIS analysis, mechanical 
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testing, and IR analysis under a FLIR E75 camera are implemented to investigate the 

visible, IR and mechanical properties of compounded LLDPE, and a comparison is made 

with pure LLDPE.  

2. In the second chapter, the warpage challenge of HDPE during 3D printing is addressed. 

Various blends of HDPE are investigated and their impact on warpage is tested for various 

concentrations. Analyzing the impact of various angles on shrinkage and warpage of 

printed part and examining different process parameters and print bed materials to improve 

3D printability of HDPE is also part of the scope of this work.  

Through these efforts, the aim is to overcome the limitations of PE and unlock its full potential for 

a wide range of industrial, military, and civilian applications. 

1.7 Thesis structure 

This is a paper-based master dissertation that contains four chapters. Chapter 2 and 3 are 

written on a theme of a journal paper. Both chapters will be submitted separately for journal 

publications.  

Chapter 1 presents a brief overview of polymeric materials and their classifications as well as 

a brief introduction to the two most common types of polyethylene: HDPE and LLDPE. It 

includes a brief introduction to Additive manufacturing techniques in particular to FDM 

technique and the challenges faced in FDM printing of polyethylene, especially HDPE. It 

outlines challenges associated with compounding of LLDPE with pigments which offer 

visually appealing color potentials without impacting its desirable IR and mechanical 

properties. It also provides the research motivation and background into this research and 

explains the importance of this work and how this research work enhances the functionality of 
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PE for diverse applications.  

Chapter 2 presents detailed steps of the fabrication process of custom compounding master 

batches of pigments with LLDPE in various concentrations. In this phase, compounded 

LLDPE blends are extruded. Microscale sheets are fabricated and analyze to investigate their 

visible, IR and mechanical properties. Mechanical characterization was achieved using tensile 

testing. Visible characterization was checked using UV-VIS analysis. IR spectroscopy was 

done using FTIR analysis, and IR transparency, reflectance and emission were also analyzed 

and characterized using a FLIR E75 thermal camera and a heat source. 

Chapter 3 presents a detailed process of reducing warpage problem of HDPE in FDM 3D 

printing. In this phase, HDPE is blended with LLDPE in various concentrations, filaments 

were manufactured and used for 3D printing to investigate impact of each blend on warpage 

values. Warpage values were also examined at different angles of the print specimen. Print 

process parameters and build materials were also optimized to minimize warpage of HDPE. 

Mechanical characterization tests were also performed on each blend and comparison was 

made with pure HDPE.  

Chapter 4 summarizes the major findings and conclusion of this thesis and suggests future 

directions for this research work. 
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Chapter 2 

Enhancing optical properties and 

preserving IR transparency: pigmentation 

technique for visibly opaque yet highly IR 

transparent LLDPE 
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2.1 Introduction 

Linear low-density polyethylene is a semi-crystalline polymer with short branches on its main 

molecular chains. This means that these linear molecules do not become entangled as easily as 

LDPE and HDPE. It is a low-density polymer having a density that ranges between 0.915 and 

0.930 g/cm3 [134], [135]. LLDPE plastic is typically made from one of three different co-

monomers classified as alpha-olefins: octene, hexene, butene. Due to its lower cost, butene is the 

most common co-monomer for commodity plastic applications[136], [137]. The butene co-

monomer has the shortest branch chains. Various blends of the above-mentioned co-monomers are 

also used to adjust the properties of LLDPE plastic, the most common being a blend of butene and 

hexene [61]–[63], [138]. Linear low-density polyethylene is manufactured via the 

copolymerization of ethylene and an alpha-olefin. The catalyst (either Ziegler-Natta or 

metallocene) and ethylene are blown into a fluidized bed reactor where copolymerization occurs. 

The polymer then settles at the bottom and exits the reactor as a powder which is then pelletized 

[139], [140]. Linear low-density polyethylene has many advantages and is well suited for thin-film 

properties. Their excellent properties like puncture-resistance, good flexibility, resistant to 

oxidation, high impact strength, stress cracking resistance and UV resistance make them desirable 

for various applications in packaging, agriculture, medical and industrial applications [135], 

[141]–[146]. LLDPE is often compounded with different filler and additives to enhance and tailor 

its applications for various applications. In the packaging industry, LLDPE is widely compounded 

with additives such as antioxidants, slip agents and anti-block agents to improve its performance 

to make films, bags, and other packaging sheets [87], [147]. For instance, Dadbin et al. performed 

a study to replace polyethylene multi-layer films used in food packaging industry with single-layer 
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polyethylene nanocomposites films. They reported that addition of organoclay even at low level 

(below 5 phr) in LLDPE had a significant effect on barrier properties of the nanocomposites and 

decreased oxygen permeability by 50% by adding only 3 per hundred resin (phr) of nanoclay into 

the blend [148]. Panrong et al. added Green tea (GT) and thermoplastic starch (TPS) from native 

starch (NS) and acetylated starch (AS) with different degrees of substitution (DS) with linear low-

density polyethylene (LLDPE) to developed TPS-GT LLDPE films. These films showed high 

efficacy as active eco-friendlier food packaging, with enhanced stability of meat and oil-based 

food products [149]. Similarly, LLDPE is compounded with UV stabilizers and other additives to 

improve its UV resistance and degradation [150].  This has its application in agriculture industry 

in which LLDPE is compounded to make films for greenhouse covers, silage bags and mulch films 

[151], [152]. Korol et al. investigated the recycling potential of LLDPE wastes originated from the 

agricultural films recycling line. They modified LLDPE them with 2.5 wt % of commercially 

available compatibilizers and presented their reusability [153]. Seven and others presented the 

preparation and biological assessment of an insecticide releasing plastic film by incorporation of 

deltamethrin loaded, nano-sized halloysite nanotubes into LLDPE polymeric films for agricultural 

covering purposes. They presented nanocomposites are observed to repel mature aphids and kill 

young aphids and thrips [150]. In the construction industry, LLDPE is compounded to be used as 

geomembrane material for lining landfills, reservoirs, and other water containment systems [154]–

[156]. LLDPE is compounded with additives such as carbon black and antioxidants to improve its 

resistance to UV radiation, weathering and chemical degradation [157]–[161]. In the medical 

industry, LLDPE is compounded with biocompatible additives to products such as medical tubing, 

bags, antibacterial containers etc. [65], [162]–[164]. For instance Harun et al. investigated the 

actions of LLDPE/TiO2/ZnO (1:3) nanocomposites in different weight% against two 
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representative MDR pathogens, namely, methicillin-resistant Staphylococcus aureus (MRSA) 

and Klebsiella pneumonia (K.pneumoniae). The study presented reduction in the bacterial 

adherence and biofilm formation and found that high ZnO weight ratio killed both types of 

pathogens [165]. Recently, LLDPE has found renewed interest in radiative passive cooling 

applications due to its high infrared transparency and tunable visible opacity [79], [80], [166]–

[171]. However, it is challenging and many a times involves complex chemical steps to achieve 

desirable compounding of LLDPE. For instance, Peng et al. used paraffin oil as solvent to dissolve 

PE, continuously extruded it by industrial extruder machine to form fibers with microscale 

diameter. Upon cooling, solid-phase PE was separated from liquid-phase paraffin oil. 

Subsequently, methylene chloride was used to extract oil phase from PE fibers. Their study found 

resulting fibers, compared with commercial cotton fibers showed greater cooling power [172]. In 

this study, we aim to present a simpler, and easier method to custom compound LLDPE to achieve 

visually appealing LLDPE blends for diverse applications while retaining their desirable IR and 

mechanical properties. Compounded LLDPE will be extruded into filaments and formed into 

micro composite sheets to test their mechanical, visible and IR properties.  

2.2  Materials and methodology 

2.2.1 Materials 

Linear low linear low-density polyethylene (LLDPE, MKCH0863; melt index 1.0 g/10 min (190 

C/2.16 Kg)) in the form of pellets was purchased from Sigma-Aldrich. Zinc oxide (ZnO, powder, 

UPS-2 grade, min. 99%, CAS no. 1314-13-2, Lot # H5C 486) and Titanium dioxide (TiO2, powder, 

FCC grade, min. 99%, CAS no. 13463-67-7, Lot # C8C039) were bought from 

ChemicalStore.com. Zinc Sulfide (ZnS, powder, 10 µm, 99.99% trace metals basis, CAS no. 1314-

98-3, MW: 97.46 g/mol, density: 4.1 g/mol at 25 C, Lot #MKCM9532) was acquired from Sigma-



21  

Aldrich. Iron oxide yellow (FeO, Yellow 930 dark, synthetic (> 3 nm), temperature resistance: 

120C, Lot# 48045), Iron oxide light brown (FeO, brown 610 light, synthetic (> 3 nm), temperature 

resistance: 120C, Lot# 48300), Iron oxide dark brown (FeO, brown 686 dark, synthetic (> 3 nm), 

temperature resistance: 120C, Lot# 48360) were purchased from Kremer Pigmente. Polyethylene 

powder (low melting point 105C, CAS# 9002-88-4, Lot# L8C722 (EP51102373)) was purchased 

from Chemcialstore.com. Heat press machine (hydraulic, model: CR2042-1, serial: AP005-209) 

was bought from Amazon.ca to make micro-composite films.  Wellzoom B desktop single screw 

extruder (extrusion rate capacity of 10”-26”/min, and a temperature of 180-190 ℃) was used for 

extrusion. [173].  

2.2.2 Fabrication of master batches of pigments 

In this study, we introduced a simpler and easier method to custom compound LLDPE with 

pigments. Pigmentation of LLDPE is achieved using custom compounding of master batches of 

six pigments chosen for their high IR transparency and bold coloration potential to obtain visually 

appealing colors/ surface finishes while not interfering with IR properties of LLDPE. The six IR 

transparent pigments are: ZnO, TiO2, ZnS, FeO yellow, FeO light brown, FeO dark brown. Three 

different concentrations of compounded LLDPE were studied: 1 wt%, 3wt% and 5 wt%. The 

process of making master batch of pigments is same for the blend. Each particular pigment was 

mixed with polymer wax (polyethylene powder) in 1:1 ratio by weight. A master batch of 50g of 

(1:1) pigment-wax mixture was made for each pigment. These mixtures were then melted under 

heat press for three times at a temperature of 190℃ to achieve uniform melting. When cooled, 

they were crushed into smaller granules and stored as master batch for each pigment. Desired 

amounts of pigment-wax mixture were mixed with LLDPE pellets to achieve the required pigment 

concentration levels for each blend. For instance, 6 g of pigment-wax mixture (which contains 3 g 
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pigment and 3 g wax) was taken out of master batch and mixed with 94 g of LLDPE to achieve 3 

wt% ZnS-LLDPE blend. Similarly, 10 g of pigment-wax mixture was taken out of FeO Yellow 

pigment master batch and added with 90 g of LLDPE to achieve 5 wt% FeO yellow-LLDPE blend. 

The detailed concentration levels of pigment, polymer wax and LLDPE in each blend are listed in 

Table 1. Polymer wax was used as a mixing agent that ensures uniform mixing of pigment with 

LLDPE. A complete schematic diagram showing step by step process of making of master batches 

and subsequent compounding and extrusion of LLDPE blends is shown in Figure 3. There are six 

pigments, each pigment is blended with LLDPE in three concentrations (1,3 and 5 wt%) so in total, 

there are 18 compounded LLDE blends.  

Table 1:Concentrations of custom compounded LLDPE blends 

Custom compounded LLDPE Blends                  Concentration levels 

  Pigment  Polymer wax LLDPE 

Pure LLDPE  0 wt  0 wt 100 wt 

1 wt% ZnS-LLDPE  1 wt  1 wt 98 wt 

3 wt% ZnS-LLDPE  3 wt  3 wt 95 wt 

5 wt% ZnS-LLDPE  5 wt  5 wt 90 wt 

1 wt% TiO2-LLDPE  1 wt  1 wt 98 wt 

3 wt% TiO2-LLDPE  3 wt  3 wt 95 wt 

5 wt% TiO2-LLDPE  5 wt  5 wt 90 wt 

1 wt% ZnS-LLDPE  1 wt  1 wt 98 wt 

3 wt% ZnS-LLDPE  3 wt  3 wt 95 wt 

5 wt% ZnS-LLDPE  5 wt  5 wt 90 wt 
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1 wt% FeO yellow-LLDPE  1 wt  1 wt 98 wt 

3 wt% FeO yellow -LLDPE  3 wt  3 wt 95 wt 

5 wt% FeO yellow -LLDPE  5 wt  5 wt 90 wt 

1 wt% FeO light brown -LLDPE  1 wt  1 wt 98 wt 

3 wt% FeO light brown -LLDPE  3 wt  3 wt 95 wt 

5 wt% FeO light brown -LLDPE  5 wt  5 wt 90 wt 

1 wt% FeO dark brown -LLDPE  1 wt  1 wt 98 wt 

3 wt% FeO dark brown -LLDPE  3 wt  3 wt 95 wt 

5 wt% FeO dark brown -LLDPE  5 wt  5 wt 90 wt 

 

 

Figure 3: Schematic diagram of preparation of masterbatches of pigments and subsequent 

compounding and extrusion of LLDPE blends 

2.2.3 Filament fabrication  

After making the master batches of pigments, they were mixed with pellets of LLDPE in specified 
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concentration and extruded into filaments using Wellzoom desktop extruder. The extruded 

polymer strands were pulled off under a gravity fed pulling system, cooled at room temperature 

and then wound up on a spool [174]. The parameters used for filament extrusion are listed in Table 

2. The filaments extruded for all the pigmented LLDPE concentrations are shown in Figure 4.  

Table 2: Extrusion parameters for filament fabrication 

Extrusion parameters  Value 

Extrusion Temperature  190 °C 

Speed of rotation  6 RPM 

Ambient temperature  22 °C 

Extrusion rate  14’’/min 

 

 

Figure 4: a) White filaments: ZnS, 𝑇𝑖𝑂2, ZnO b) Colored pigments: FeO yellow, light brown, dark 

brown 
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2.2.4 Mechanical characterization        

The tensile strength, also known as the ultimate tensile strength, is the load at failure divided by the 

original cross-sectional area where the ultimate tensile strength (U.T.S.). The equation is  

σmax = Pmax /A0   (1) 

where Pmax = maximum load, A0 = original cross-sectional area. The actual area A at break is 

measured by measuring the diameter of fractured specimen and using the equation 𝐴 = 𝜋𝑟2 where 

r is radius. The Young’s modulus (E) is a property of the material that tells us how easily it can 

stretch and deform and is defined as the ratio of tensile stress (σ) to tensile strain (ε). The equation 

is 

𝐸 =
𝜎

𝜀
           (2) 

where stress is the amount of force applied per unit area (σ = F/A) and strain is extension per unit 

length (ε = dl/l). Elongation at break, also known as fracture strain, is the ratio between changed 

length and initial length after breakage of the test specimen. The equation is  

ɛ = (ΔL/L) x 100  (3) 

Where ɛ is the elongation, ΔL is the final length, L is the initial length.  

Mechanical characterization tests were performed on the extruded filaments. Sample filament of 

gauge length of 25 mm were cut for each of the 18 pigmented LLDPE blends. The samples were 

installed between two pneumatic clamps of Instron 5960 series machine. The Instron machine had 

a load cell with 50 N capacity. The filament specimens were elongated at a speed of 25 mm/min 

until break. Four samples were tested for each compounded LLDPE blend. Tensile strength, 

Young’s modulus and elongation at break were investigated for each blend. Data was gathered, 

values were noted and relevant plots were drawn. Same tensile testing was also performed for pure 

LLDPE for comparison. The findings are presented in the results and discussion section. The 
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tensile testing setup is shown in Figure 5. 

 

Figure 5: Instron tensile machine testing of pigmented LLDPE filaments 

2.2.5 Fabrication of micro size pigmented LLDPE sheets  

The extruded filaments of each blend of pigmented LLDPE were cut into small pieces. The pieces 

of filament were then melted in a heat press at 190°C and pressures of 2,4 and 6 bars to achieve 

sheets of 150, 100 and 50 µm thicknesses, respectively. The heat press process was repeated three 

times for each blend, each concentration and each thickness to achieve uniform thickness and 

coloration in the final sheets. Sheets of different thicknesses were prepared and cut into squares of 

1x1 inch for each of the 18 blends. A set of two sheets for each thickness of each blend were 

prepared, so in total, there are 108 sheets of pigmented LLDPE blends. Along with this, sheets of 

different thickness (50,100,150 µm) were also prepared for pure LLDPE for comparison. The 

schematic process of micro sheet fabrication is shown in Figure 6.  
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Figure 6: Pigmented PE sheet were hydraulically heat pressed in the thicknesses of 50, 100 and 

150 µm for three different concentrations of 1, 3, 5 wt% for each pigment. 

The pictures of pigmented sheets cut in 1x1 inch size are shown in Figure 7.  
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Figure 7: 50, 100, 150 µm thickness (vertical), 1, 3, 5 wt% concentrations (horizontal) for six 

pigments: a) ZnS, b) 𝑇𝑖𝑂2, c) ZnO, d) FeO yellow, e) light brown, f) dark brown. 

2.2.6 FTIR analysis  

Fourier Transform Infrared Spectroscopy Technique (FTIR) is used for characterizing the 

pigmented blends of LLDPE. FTIR samples were cut from 150 µm thick sheets for each pigmented 

LLDPE blend. 50 and 100 µm thickness samples were neglected because FTIR is independent of 

the thickness of the sample sheets and only varies for each pigment concentration. Samples were 

cut in a 10x10 mm shape and were installed in the FTIR Spectrometer Spectrum. The data was 

collected from the absorption spectra ranges between 5 µm to 25 µm. Spectra of pure and 

pigmented blends of LLDPE film samples were acquired and normalized in order to identify 

characteristic absorbance peaks and quantify their relative absorbance values. Two different spots 
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on each film were selected to perform the measurement. The schematic of the FTIR setup is shown 

in Figure 8.  

 

Figure 8: FTIR schematic diagram setup 

2.2.7 UV-VIS analysis  

The absorbance rate of the extruded blend films was measured by an ultraviolet-visible 

spectrometer. The diameters of the light source beam and the detector were approximately 3 mm. 

The distance between film and detector was 6 mm. The film samples were cut for each pigment, 

concentration, and thickness level. Through visual inspection, it was clearly seen that all of the 

colored pigmented LLDPE sheets are visibly opaque while it was harder to determine the opacity 

of white pigments through visual inspection. Therefore, UV-VIS was performed on the white 

pigments and compared with pure LLDPE. Two different spots on each film were selected to 

perform the measurement. The schematic of the UV-VIS spectroscopy setup is show in Figure 9. 

UV-VIS analysis was performed for sheets of pure LLDPE (50, 100, 150 µm thickness) and white 
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pigmented LLDPE blends (1,3, 5 wt% concentrations and 50, 100, 150 µm thickness) on the visible 

spectrometer. White pigments presented a range of opaqueness with some being highly opaque 

and some being semitransparent, therefor it was vital to rank their UV-VIS absorbance. Colored 

pigments, on the other hand, were highly and completely opaque under naked eye which is required 

for our applications, therefore they were not tested under UV-VIS. The visible spectrometer did 

not allow to extract data points therefore, pictures were taken, which were uploaded in ImageJ 

software and the data points were traced and extracted and gathered in excel using imageI software. 

The graphs were plot in the Origins software. 

 

Figure 9: UV-VIS schematic diagram setup 

2.2.8 IR analysis  

To determine that all of the pigmented LLDPE blends still retained their desirable IR properties as 

close to that of pure LLDPE, a comprehensive IR analysis was performed. In this regard, three 

types of tests were performed and three types of IR properties - transparency, reflectance and 

emissivity - were tested. An experimental setup was designed for testing each property. An IR 

opaque fixture was designed and 3D printed to hold the 1x1 inch sheets of pigmented LLDPE. A 

FLIR E75 thermal camera was used to capture the data. For transparency testing: the 1x1 inch 

pigmented LLDPE sheets were installed in the fixture and placed directly in front of the heat source 
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at a distance of 1 inch.  The heat source was set to 49°C for each test. The IR camera was placed 

on a tripod and pointed directly at the sheets at a distance of 2 feet. The IR radiation is emitted by 

the heat source, pass through the sheets and are detected by the IR camera to determine the IR 

transparency of each pigment, concentration and thickness level. The schematic of the setup is 

shown in Figure 10.  

 

Figure 10: IR transmission testing setup - schematic diagram 

 For emittance tests, the pigmented LLDPE sheets were placed directly on top of the heat source. 

The readings were taken after five minutes to let the sheets temperature reach the heat source’s 

temperature. Once the temperature was stable, the same process was repeated for testing the 

emittance radiation and the IR emission data was recorded using the IR camera pointed directly at 

the sheet at a standoff distance of 2 feet. The schematic of the setup is show in Figure 11. 
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Figure 11: IR emission testing setup - schematic diagram 

 For reflectance testing, a 1.5x1.5-foot metalized mylar sheet was placed on top of a fixture which 

was used as a mirror to reflect IR radiation. The metalized mylar sheet was placed at a distance of 

2 feet from the heat source at an angle of 45° and was adjusted until the heat source was completely 

reflected by the metalized mylar sheet as detected in the IR camera placed at a 45° angle. The 

pigmented LLDPE sheets were placed in front of the metalized mylar sheet at a distance of 1 inch 

and the IR radiation was collected through the IR camera. These results capture the transparency 

power of pigmented LLDPE sheets for IR radiations coming from a reflected heat source at an 

angle of 45°. The schematic of the setup is shown in Figure 12.  
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Figure 12: IR reflectance testing setup - schematic diagram 

The IR camera was pointed at three points of each sheet and the tests were performed on two sets 

of sheets for testing each property and for each testing setup.  The average was taken for each 

reading and noted as the temperature reading for that particular sheet. The actual pictures of these 

setups are shown in Figure 13. 
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Figure 13: Setup of IR analysis. a) Fixture designed to hold pigmented sheets, b) Transparency 

setup c) Reflectance setup, d) Emissivity setup e) singular sheet of ZnO showing for reference.  

2.3  Results and discussion  

2.3.1 Mechanical characterization  

The mechanical load capacity of pigmented LLDPE blends was investigated to determine what 

negative impacts on modulus and strength would occur with the addition of the pigments. In this 

regard, tensile strength, Young’s modulus, and elongation at fracture were calculated for each 

blend and compared with the mechanical characterization values of pure LLDPE. Stress-strain 

curve is presented in Figure 14 which shows a trend similar to those of thermoplastics available in 

the literature [175]. The rest of the results are summarized in Table 3, Table 4, Table 5 and 

displayed in Figure 15, Figure 16, Figure 17. The results indicate that pure LLDPE exhibits the 

highest tensile strength value of 14 MPa while1 wt% pigmented blends also show similar tensile 

strength values. This is because the concentration level of the pigment/wax blend is so low that it 

does not affect the overall tensile strength of the blends. 3 wt% blends have tensile strength values 
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in the range of 13 MPa and 5 wt% blends have tensile strength in the range of 12 MPa which is 

lower than that of pure LLDPE. This reduction in tensile strength is due to presence of pigment 

and polymer wax which are not as strong as LLDPE. Overall, pigmented LLDPE filaments show 

a very small reduction in their tensile strength as compared to that of pure LLDPE unless added in 

higher quantities as it is suspected that most of the reduction comes mainly from the wax binder 

for the pigment due to its lower molecular weight.  

A similar trend is observed with Young’s modulus. The results indicate that pure LLDPE exhibits 

the highest modulus of 145 MPa. 1 wt% pigmented blends exhibit a similar value of Young’s 

modulus in the range of 140 MPa. This is because the concentration level of the pigment is so low 

that it does not affect the overall Young’s modulus of the blends. 3 wt% blends have Young’s 

modulus in the range of 110-120 MPa which represent an approximate 20% reduction compared 

with pure LLDPE. This not significant reduction and does not affect overall mechanical strength 

properties of the blends. 5 wt% blends have Young’s modulus in the range of 90 MPa. This 

reduction is observed due to the addition of wax and pigments which have lowered the overall 

Young’s modulus of the compounded filaments.  

Similar trend is also observed in elongation at break values. The results indicate that pure LLDPE 

filaments have elongation at break value of 1200%. 1 and 3 wt% pigmented blends exhibit a similar 

value of elongation at break in the range of 1150-1240%. This is very close to the elongation at 

break values of pure LLDPE which means addition of 1 and 3 wt% have almost negligible effect 

on the elongation at break of LLDPE blends. 5 wt% blends have elongation at break values in the 

range of 1040-1100% which represents a reduction of approximately 10.5% as compared to pure 

LLDPE. This reduction in overall elongation at break is still not significantly huge and does not 

impact the overall mechanical profile of blends. To sum up, the impact of mixing up to 3 wt% of 
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pigments LLDPE has shown very minimal impact on the overall mechanical strength whereas 5 

wt% can show somewhat impactful reduction in the mechanical strength of filaments. Therefore, 

pigments concentration should be optimally limited up to 3 wt% in order to reduce any impact on 

mechanical strength of pigmented filaments.  

 

Figure 14: Stress vs strain curve for pigmented PE filaments at 3 wt% 

Table 3: Mechanical properties (Young’s modulus, tensile strength, elongation at break) of 1 wt% 

LLDPE blends 

LLDPE filaments 

Young’s modulus 

(MPa) 

Tensile strength 

(MPa) 

εmax (%) 

Pure LLDPE 145 ± 30 14.0 ± 1.0 1200 ± 50 
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ZnS (1 wt%) 140 ± 40 14.0 ± 1.0 1240 ± 30 

TiO2 (1 wt%) 134 ± 25 13.8 ± 1.0 1225 ± 30 

ZnO (1 wt%) 141 ± 40 14.5 ± 1.5 1220 ± 25 

FeO yellow (1 wt%) 143 ± 25 15.0 ± 0.7 1230 ± 20 

FeO light brown (1 wt%) 146 ± 15  14.3 ± 1.0 1165 ± 40 

FeO dark brown (1 wt%) 147 ± 20 14.3 ± 1.0 1150 ± 50 

 

Table 4: Mechanical properties (Young’s modulus, tensile strength, elongation at break) of 3 wt% 

LLDPE blends 

LLDPE filaments  

Young’s modulus 

(MPa) 

Tensile strength 

(MPa) 

εmax (%) 

Pure LLDPE 145 ± 40 14.0 ± 1.0 1200 ± 50 

ZnS (3 wt%) 113 ± 30 13.0 ± 1.2 1175 ± 35 

TiO2 (3 wt%) 115 ± 25 13.2 ± 1.3 1155 ± 25 

ZnO (3 wt%) 120 ± 20 13.0 ± 0.8 1170 ± 30 

FeO yellow (3 wt%) 122 ± 25 13.4 ± 0.5 1160 ± 30 

FeO light brown (3 wt%) 110 ± 20  12.9 ± 1.0 1175 ± 40 

FeO dark brown (3 wt%) 110 ± 30 13.3 ± 1.0 1190 ± 35 

 

Table 5: Mechanical properties (Young’s modulus, tensile strength, elongation at break) of 5 wt% 

LLDPE blends 

LLDPE filaments 

Young’s modulus 

(MPa) 

Tensile strength 

(MPa) 

εmax (%) 
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Pure LLDPE 145 ± 40 14.0 ± 1.0 1200 ± 50 

ZnS (5 wt%) 90 ± 40 12.5 ± 0.4 1055 ± 40 

TiO2 (5 wt%) 99 ± 25 12.0 ± 0.7 1100 ± 30 

ZnO (5 wt%) 98.5 ± 30 12.2 ± 0.9 1080 ± 25 

FeO yellow (5 wt%) 95 ± 15 12.1 ± 0.3 1070 ± 25 

FeO light brown (5 wt%) 90 ± 25 12.3 ± 1.2 1040 ± 35 

FeO dark brown (5 wt%) 92 ± 35 12.0 ± 1.1 1035 ± 30 
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Figure 15: Tensile testing a) 1 wt% pigmented LLDPE blends b) 3 wt% pigmented blends c) 5 

wt% pigmented blends 
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Figure 16: Young’s modulus a) 1 wt% pigmented LLDPE blends b) 3 wt% pigmented blends c) 

5 wt% pigmented blends 
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Figure 17:  Elongation at break a) 1 wt% pigmented LLDPE blends b) 3 wt% pigmented blends 

c) 5 wt% pigmented blends 
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2.3.2 FTIR analysis  

The FTIR analysis data was gathered, analyzed and plotted with wavenumber (in µm) along x-axis 

and peaks in percentage on y-axis. The FTIR graphs for white pigments were stacked along y-axis 

on one graph to make a comparison with pure LLDPE and each other. Similarly, FTIR graphs for 

colored pigments were stacked along y-axis on one graph to make a comparison with pure LLDPE 

and each other. The FTIR graphs for white pigmented blends (ZnS, TiO2, ZnS with 1,3,5 wt% 

concentrations for each) are presented in Figure 18, whereas FTIR graphs for color pigmented 

blends (yellow, light brown, dark brown with 1,3,5 wt% concentrations for each) are presented in 

Figure 19.  

For us, we are interested to know whether adding pigments in concentrations of 1,3,5 wt% in 

LLDPE have any impact on IR properties of LLDPE or not. Since IR wavelength spectrum for 

human body is around 10 µm range. By looking at Figure 18 and Figure 19, it is evident that there 

are no peaks at 8-12 µm wavelength range for LLDPE as well as for any of the white pigmented 

LLDPE blends, therefore, it means that white pigmented LLDPE blends exhibit a same IR 

behavior as pure LLDPE. This is because only those pigments were chosen specifically which 

have IR transparency properties similar to LLDPE at those wavelengths. Blends show a few 

smaller absorbance peaks at around 5 µm, 7 µm and 14.5 µm range which are due to presence of 

C-CH3 and C-CH2 groups and are in correspondence with the literature [176]. 

A similar trend was observed in FTIR plots of colored pigmented blends of LLDPE. By looking 

at the graphs, it is evident that there are no peaks at 10 µm wavelength range for LLDPE as well 

as for any of the colored pigmented LLDPE blends, therefore, it means that colored pigmented 

LLDPE blends exhibit a similar IR behavior as pure LLDPE at those wavelengths. This means that 

addition of colored pigments in concentrations of up to 5 wt% does not change the IR behavior of 
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LLDPE at wavelengths in the range of 8-12 µm. There are some a fewer absorbance peaks at 

around 5 µm, 7 µm, 14.5 µm range which are present due to the presence of methyl, ethyl groups 

as well as due to presence of pigments such as Fe3O4 group present in the colored pigments. 

Overall, the FTIR behavior shows us that pigmented LLDPE blends show a similar behavior in IR 

range in the 8-12 µm wavelength range which is very desirable for us for the camouflage and 

radiative passive heating and cooling applications.  

 

Figure 18: FTIR analysis - (1,3,5 wt%) white pigmented LLDPE blends 
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Figure 19: FTIR analysis - (1,3,5 wt%) colored pigmented LLDPE blends 

2.3.3 UV-Vis analysis  

The UV-Vis plots for 1 wt% (with 50, 100, 150 µm thickness), 3 wt% (with 50, 100, 150 µm 

thickness) and 5 wt% (with 50, 100, 150 µm thickness) are presented in Figure 20, Figure 21, 

Figure 22 respectively. The visible range (400-650) of the wavelength spectrum is plotted along 

x-axis and absorbance is plotted along y-axis since we are not interested in the UV range for our 

camouflage and radiative heating and cooling applications. Pure LLDPE has maximum absorbance 

value at around 0.1 for all the thicknesses. This is very close to zero meaning LLDPE is very 

transparent in the visible range. The graph shows that LLDPE has low absorbance. It tends to 

transmit a significant of visible light, particularly in the higher wavelength range. As a result, the 



45  

visible spectrum of LLDPE shows an almost flat or very little gradually decreasing baseline as the 

wavelength increases. LLDPE is known for its excellent transparency in the visible spectrum, 

allowing most visible light to pass through and that is what we saw in the graph as well which is 

in line with the literature. As we know that the visible spectrum for LLDPE can be influenced by 

various factors, such as the specific composition, additives, processing conditions, and thickness 

of the LLDPE sample [177], [178]. Therefore, the visible spectrum of LLDPE can exhibit some 

variations depending on these factors.  

From the graphs, it is visible that white pigments absorb more visible light that LLDPE in the order 

of ZnS, TiO2 and ZnO respectively with ZnO being the most absorbing. These trends align with 

our observations through naked eye under visible light. ZnO is more transparent as in closer in 

transparency to pure LLDPE followed by TiO2 and ZnO which are opaquer. All the graphs show 

a gradually decreasing baseline as the wavelength increases which means that they absorb more at 

lower wavelengths. This trend is in coherence with that of pure LLDPE and the literature. 

Moreover, this trend is attributed to the presence of LLDPE since LLDPE holds at or more than 

90 wt% concentration in the blends.  

Apart from this, there are two main trends observed in the graphs. These trends are observed across 

all the pigments. One is that the blends absorb more at higher thicknesses i.e absorbance increases 

with increase in thickness. For instance, 1 wt% TiO2 has approximate absorbance values of 0.6, 

1.0 and 1.5 for 50 µm, 100 µm and 150 µm thicknesses respectively at 420 µm wavelengths. A 

similar trend is shown for the rest of the pigmented blends.  

Number two is that the absorbance increases with increase in concentration of white pigments. For 

instance, at 100 µm, 1 wt%, 3 wt% and 5 wt% ZnO have an approximate absorbance value of 1.2, 

1.45 and 1.8 respectively at 420 µm wavelengths. These trends are in line with our expectations 
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and visible qualitative observations because pigmentation makes LLDPE opaquer in the visible 

range.  

To summarize, ZnS pigmented LLDPE blends are transparent and lie in the range of pure LLDPE. 

Then comes the TiO2 which is somewhat transparent for 1 wt% pigmentation concentrations and 

lower thicknesses. However, becomes very opaque at higher thicknesses and concentrations 

especially at 5 wt%. ZnO is the opaquest of all when compared with pure LLDPE at all 

concentration and thickness levels. Therefore, for applications where LLDPE is required to be 

visibly opaque, pigmenting LLDPE with ZnO can be a great solution.  
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Figure 20: UV-VIS analysis - 1 wt% (50, 100, 150 µm) pigmented LLDPE blends 
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Figure 21: UV-VIS analysis - 3 wt% (50, 100, 150 µm) pigmented LLDPE blends 
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Figure 22: UV-VIS analysis - 5 wt% (50, 100, 150 µm) pigmented LLDPE blends 
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2.3.4 IR analysis  

IR transparency, reflectance and emittance tests were performed, the data was collected by the IR 

camera for all pure LLDPE, all the pigments, concentrations and thicknesses along with IR picture 

taken by the camera. The pictures of the sheets along with their IR temperature reading were 

recorded, sorted and put together for each pigment and a comparison was made with pure LLDPE. 

This means that we have six pictures (one for each pigment) for transparency. Similarly, we have 

six pictures (one for each pigment) for reflectance and six pictures (one for each pigment) for 

emittance tests. Only the pictures for the most optimal pigments for each category will be 

presented. These pictures are presented in Figure 23, Figure 25, Figure 27. The rest of the data is 

shared and discussed in bar graphs so that we can compare them easily with one another. These 

graphs are presented in Figure 24, Figure 26, Figure 28.    

2.3.4.1 IR Transparency  

After recording the temperature reading for each sheet using FLIR E75 thermal camera and taking 

the average for all the readings, it is noted that under IR camera, pure LLDPE has temperature 

readings of 44.5 C, 43.5 C, 42.3 C for 50 µm, 100 µm and 150 µm thick sheets, whereas the 

source temperature reading is 49 C. This means that pure LLDPE lets approximately more than 

85% of the IR radiations to pass through it. In other words, it is very highly transparent.  

From the charts, it is clear that ZnO has the highest IR transparency among the white piments 

whereas yellow FeO has the highest IR transparency among colored pigments. Moreover, IR 

transparency decreases in the following order for the pigments: ZnO, ZnS, TiO2, yellow, light 

brown and dark brown respectively with dark brown being the least IR transparent when compared 

with pure LLDPE. This is because, pigmented LLDPE samples exhibit increased light scattering 

due to imperfections, impurities, particle size and different absorbance spectra within the material. 
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Light scattering contributes to reduced transparency by redirecting and diffusing the incident IR 

radiation rather than transmitting it through the blended sheets.  

ZnO is known for its relatively high IR transparency. It has a wide bandgap and exhibits minimal 

absorption in the IR region, allowing IR radiation to transmit through the material more readily. 

While ZnS has good transparency in the visible spectrum, it absorbs more in the IR region than 

ZnO. The particle size of ZnS used in pigmented LLDPE blends can vary, but it is usually larger 

than that of ZnO. The larger particle size contributes to some light scattering, reducing overall IR 

transparency compared to ZnO. TiO2 exhibits lower IR transparency compared to ZnO and ZnS. 

The absorption spectra of TiO2 typically show peaks in the IR range, indicating significant 

absorption of IR radiation.  

FeO Yellow, FeO Light Brown, and FeO Dark Brown are iron oxide-based pigments which have 

Fe3O4 in them which has high IR absorbance properties. Iron oxide pigments exhibit absorption in 

both the visible and IR regions. The absorption spectra of iron oxide pigments show strong 

absorption bands in the visible range, which indicates that they are effective in providing 

coloration. However, this also implies that they absorb a significant portion of IR radiation, leading 

to reduced IR transparency. The particle size of iron oxide pigments used in pigmented LLDPE 

blends can also be responsible for affecting transparency, with larger particle sizes contributing to 

increased light scattering and decreased IR transparency. 

Apart from this, there are two more trends visible from the charts. Number one is that IR 

transparency decreases very slightly with increase in the concentration of the pigments. For 

instance, for 150 µm sheets of TiO2 at 1 wt%, 3 wt% and 5 wt%, the temperature reading under 

IR are 41.6 C, 41.2 C and 38.6 C respectively. This slight decrease, even though insignificant, 

is due to the higher concentration of pigment in LLDPE especially at 5 wt% . As the concentration 
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of the pigment increases, more pigment particles are present in the LLDPE material. These 

particles have absorption properties higher than LLDPE that can absorb and scatter IR. When IR 

radiation encounters pigment particles, they can scatter the light in various directions instead of 

transmitting it through the material. Moreover, with higher pigment concentrations, there is also a 

higher probability of particle aggregation or clustering within the LLDPE matrix. Aggregated 

pigment particles can create larger structures that effectively scatter and absorb more IR radiation. 

Therefore, as the concentration of the pigment increases, there is a higher absorption of IR 

radiation by the pigment particles, leading to a decrease in IR transparency of LLDPE blend. 

The second trend is that IR transparency decreases slightly with increase in thickness of the sheets. 

This trend is observed across all the blends and is in line with our expectations and literature. For 

instance, 5 wt% light brown pigmented LLDPE sheet, under IR, shows a temperature reading of 

43.1 C, 40.2 C, 37.4 C for 50 µm, 100 µm and 150 µm thicknesses. This is because LLDPE, 

like other polymers, has specific molecular vibrations and modes that can absorb IR radiation. In 

the mid-infrared region, these vibrations are associated with bending, stretching, and rotational 

motions of the polymer chains. When thin layers of LLDPE and its pigmented blends are 

encountered by IR radiation, the radiation can easily penetrate the material due to the relatively 

low probability of absorption by the limited number of polymer chains. However, as the thickness 

of the LLDPE increases, the probability of encountering absorbing groups and polymer chains also 

increases. Consequently, there is a greater chance of the IR radiation being absorbed by the 

polymer chains, resulting in reduced transparency.  

To summarize, IR transparency tests of pigmented LLDPE sheets have presented excellent results 

with very high IR transparency values, very close to those of the pure LLDPE for corresponding 

thicknesses. Therefore, we can successfully pigment LLDPE to tune its visible properties without 
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significantly impacting its IR transparency which is desirable for our camouflage and radiative 

cooling and heating applications.  

 

Figure 23: ZnO IR transparency. 1st column: Heat source, 2nd column (50,100,150um thickness 

downwards): pure LLDPE, 3rd column: 1 wt% ZnO, 4th column: 3 wt% ZnO, and 5th column: 5 

wt% ZnO 
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Figure 24: IR transparency: a) White pigments (ZnO, ZnS, 𝑇𝑖𝑂2) at 50 µm, b) white pigments at 

100 µm, c) white pigments at 150 µm, d) colored pigments (FeO yellow, light brown, dark brown) 

at 50 µm, e) colored pigments at 100 µm, and f) colored pigments at 150 µm 

2.3.4.2 IR Reflectance  

After recording the temperature reading for each sheet using FLIR E75 thermal camera and taking 
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the average, it is noted that under IR camera, pure LLDPE, for reflectance, has temperature 

readings of 44.5 C, 43 C, 41. C for 50 µm, 100 µm and 150 µm thick sheets, whereas the source 

temperature reading is 49 C. This means that pure LLDPE has high transmittance for reflected IR 

radiations.  

When looked at the IR reflectance rates for pigmented LLDEP sheets, it is observed that ZnO has 

the highest IR reflectance among the white piments whereas yellow FeO has the highest IR 

reflectance among colored pigments. Moreover, IR transparency decreases in the following order 

for the pigments: ZnO, ZnS, TiO2, yellow, light brown and dark brown respectively with dark 

brown showing the least IR reflectance when compared with pure LLDPE. The rest of the trends 

are also same as observed in IR transparency tests. That is IR reflectance decreases with increase 

in concentration of pigments as well as an increase in the thickness of sheets. The reasons are same 

as stated in the previous section. However, the IR reflectance values are overall lower than IR 

transparency values. This is because IR radiation that is reaching the sheets is itself being reflected 

through metalized mylar sheet which contributed to the its own absorption and scattering of IR 

before it reaches the sheets. That is why the trend is consistent across the board for all the sheets. 

Finally, it is seen that reflectance values of the pigmented LLDPE blends for lower thickness and 

concentrations are comparable with those of pure LLDPE. Therefore, it is concluded with 

confidence that LLDPE can be pigmented successfully while still providing high IR reflectance 

properties comparable with that of pure LLDPE.  
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Figure 25: ZnS IR reflectance. 1st column: Heat source, 2nd column (50,100,150um thickness 

downwards): pure LLDPE, 3rd column: 1 wt% ZnS, 4th column: 3 wt% ZnS, and 5th column: 5 

wt% ZnS 
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Figure 26: IR reflectance: a) White pigments (ZnO, ZnS, 𝑇𝑖𝑂2) at 50 µm, b) white pigments at 

100 µm, c) white pigments at 150 µm, d) colored pigments (FeO yellow, light brown, dark brown) 

at 50 µm, e) colored pigments at 100 µm, and f) colored pigments at 150 µm. 

2.3.4.3 Emittance 

Sample sheets of pure and pigmented LLDPE blends were placed directly onto the heat source 
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until temperature was stable and IR readings were recorded. It was observed that all the samples 

exhibited the same temperature as the heat source i.e 49 C. This means LLDPE and pigmented 

blends all emit the heat source temperature at roughly the same value irrespective of the thickness 

of the sheets or concertation levels of the pigments as shown below. 

 

Figure 27: FeO yellow IR emissivity test. 1st column: Heat source, 2nd column (50,100,150um 

thickness downwards): pure LLDPE, 3rd column: 1 wt% yellow, 4th column: 3 wt% yellow, and 

5th column: 5 wt% yellow 
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Figure 28: IR emissivity test: a) White pigments (ZnO, ZnS, 𝑇𝑖𝑂2) at 50 µm, b) white pigments at 

100 µm, c) white pigments at 150 µm, d) colored pigments (FeO yellow, light brown, dark brown) 

at 50 µm, e) colored pigments at 100 µm, and f) colored pigments at 150 µm. 

2.4  Conclusion  

In conclusion, we have demonstrated a simple method to pigment LLDPE with master 
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batches of diverse pigments using polymer wax. The pigmented LLDPE has been extruded 

using commercially available wellzoom desktop extruder and converted into micronized 

sheets of 50 µm, 100 µm, 150 µm thickness. FTIR analysis has confirmed that IR spectrum 

of pigmented LLDPE blends do not have absorbance peaks for 7-12 µm wavelength range 

and therefore do not affect the IR properties at that range.  UV-VIS analysis presented the 

intensity of visible opacity for pigmented LLDPE blends was higher than pure LLDPE. It 

showed that it is possible to pigment LLDPE to attain visible opacity and acquire different 

colorations for camouflage and other applications. Mechanical characterization tests 

confirmed that addition of different concentrations of pigments in LLDPE did not 

significantly affect the overall mechanical properties of LLDPE. Finally, it was determined 

that IR transparency, reflectance and emittance properties of pigmented LLDPE blends are 

very close to those of pure LLDPE. ZnO, ZnS showed an almost similar IR transparency 

as pure LLDPE followed by TiO2 and yellow, light brown and dark brown pigments. It 

was observed that IR properties decline with an increase in concentration of pigments and 

thickness of sheets. Therefore, we can say this with confidence that LLDPE sheets can be 

pigmented and converted into visibly opaque yet still highly IR transparent. Thus, we have 

achieved successful pigmentation of LLDPE without affecting its mechanical and IR 

properties. The pigmented LLDPE sheets which are visibly opaque, have visually 

appealing and camouflage colors can be highly desirable in diverse applications especially 

in radiative cooling and heating and visible and IR camouflage applications for buildings 

and wearable textiles. 

2.5  Future work 

2.5.1 Micro structuring of PE – conversion from highly IR transparent to 

highly IR scattering 
In future work, other grades of PE such as HDPE, LDPE and UHMWPE can be 
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investigated, pigmented and characterized to test their visible and IR camouflage 

properties. Another forward direction of study is tuning the IR transparency of PE or be 

able to change the IR properties of PE from highly IR transparent to highly IR scattering. 

The IR tuning of PE has numerous applications in thermal insulation, camouflage, radiant 

heating and IR shielding. I have performed qualitative tests on this topic and the results 

have been very promising. The process used is called micro-structuring of PE. The LLDPE 

sheets have been micro-structured by sandwiching the sheets between two micro-

structured copper cloths. This sandwich structure was then heat pressed at temperatures 

closer to melting temperature of PE under heat press and left for one minute. After which, 

the PE sheets were taken out and viewed under microscope which confirmed that copper 

cloth’s microstructures was transferred onto the PE sheets as shown in Figure 29. 
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Figure 29: Schematic diagram setup for micro-structuring of pigmented PE sheets 

The micro-structured PE sheets were tested under IR and the results are shown in Figure 30. The 

first column shows the university of Alberta logo made of metalized polyester where some part of 

it has polymer and other has metal facing. This logo when placed on top of the heat source and 

viewed under IR camera shows low emitting and high emitting IR surfaces as visible in column 

two. The high emitting plastic surface shows a reddish color while the low emitting and highly 

reflective metal surface appears cold and shows a bluish color. In third step, the non-structured PE 

sheets were placed in front of the university of Alberta logo at a distance of 2 mm one by one and 
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viewed under IR. As visible in column four, the university of Alberta logo is clearly visible under 

non-structured PE sheets which is completely expected because PE sheets are highly IR transparent 

and all the features of the university of Alberta logo are completely visible. In last step, the micro 

structured PE sheets were placed in front of the university of Alberta logo and viewed under IR. 

As visible in column five, the university of Alberta logo is completely hidden. This is because 

micro-structured PE sheets are scattering the IR light rather than being transparent. This is 

achieved through micro structuring of PE with the size of the microstructures be in the range of 

the wavelength of the IR light. This range corresponds to the infrared wavelengths typically used 

in applications, such as 1 to 10 micrometers (mid-infrared region). By having microstructures on 

this size scale, the incident IR light interacts with the structures, resulting in scattering. Doing so, 

we can tune the IR properties of PE from highly IR transparent or scattering as per our 

requirements and applications.  
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Figure 30: Results of micro-structuring of pigmented PE sheets- conversion of PE from highly IR 

transparent to highly IR scattering  

Applications of micro structured PE films with high IR scattering range from improving 
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heat management in passive radiative passive heating applications to IR shielding and 

camouflage. By scattering IR radiation, these materials can reduce heat transfer, minimize 

thermal radiation losses, and enhance thermal insulation. Other potential applications 

include building materials, thermal packaging, and energy-efficient windows. The 

structured PE films with controlled IR scattering can also very useful in IR camouflage 

applications in instances where it is desired to scatter IR to obstruct thermal imaging and 

surveillance. Upon further investigation, selective scattering or absorbing specific IR 

wavelengths can be achieved, which can be used to scatter selective range or extent of IR 

and transmit the rest as per our requirements and applications. 
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Chapter 3 

Addressing Warpage Challenges in HDPE 

3D Printing: Optimized Parameters, Print 

Bed Selection, and Incorporation of LLDPE 

for Improved Printability
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3.1  Introduction 

Advanced digital manufacturing technologies are quickly approaching mainstream adoption as an 

excellent tool to manufacture complex structures with maximum flexibility, freedom of design and 

mass customization [179]. Among these, additive manufacturing (AM) has gained immense 

popularity for its ability to convert computer designed virtual models into real, functional 3D 

objects using digital slicing by adding materials layer-by-layer to produce end products in much 

less time and with much less material waste [22], [54], [180]–[182]. Even though impressive 

advances have been made in application of additive manufacturing toward a diverse variety of 

materials such metal, ceramic, and concrete , plastics are the most widely adopted materials used 

for 3D printing at the present day [59], [183]–[187]. The most widely known AM techniques are 

fused filament fabrication (FFF) or known under its trademark name fused deposition modeling 

(FDM), Stereolithography (SLA), Digital light processing (DLP) and Selective laser sintering 

(SLS). Most prominent among these is fused filament fabrication (FFF) due to its lower cost in 

which an object is built by depositing a melted thermoplastic polymer filament layer-by-layer 

using a heated nozzle. The melted material is extruded onto a platform called a print bed and the 

nozzle or print head travels in the X-Y directions to form a two-dimensional layer of the object. 

Before the next layer, the print bed lowers or the hear rises in the Z direction repeating the extrusion 

process fusing the subsequent layers together to generate the 3D object.[188], [189]  

FFF printing was invented by Scott Crump at Stratasys Inc. in 1989 [190] and is gaining massive 

popularity in all the fields such as academia, manufacturing, medicine, aerospace etc. Its relatively 

inexpensive but rugged printer hardware, easy to use user interface and robust design has made it 

an excellent resource for rapid prototyping [180].  Since each layer is fused on top the previous 

layer, volume contraction and polymer crystallization of the polymers during solidification is very 
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challenging to deal with in FFF. Therefore, the most common materials used in FFF are 

acrylonitrile-butadiene-styrene copolymers (ABS), polylactic acid (PLA) and poly (ethylene 

terephthalate) copolymer (PET-G), polyamides and polyetheretherketone (PEEK). which are 

either amorphous or semi-crystalline with lower crystallization in nature [59], [191]–[194]. This 

means that the range of polymers that are routinely printed with FFF is relatively small. Even 

though, polyolefin materials like polypropylene (PP) and polyethylene (PE) make up around 50% 

of plastics usage worldwide, relatively little is known about 3D printing of polyolefin 

thermoplastics which are very hard to print with due to their crystalline nature [125]. Although 

some manufacturers have recently started to sell commercial filaments under the marketing name 

of PP and PE, they mostly consist of lower melting point, less crystalline, and more flexible 

ethylene-propylene copolymers which have different mechanical properties [54]. The 

manufacturers also issue a warning that they have not perfected a reliable way to print with this 

material and advise novices to stay away from HDPE and work with ABS and PLA instead [22]–

[25]. Among polyolefins, high density polyethylene (HDPE) is the most challenging to print with 

FFF due to its higher crystalline nature, low surface energy, massive volume shrinkage upon 

cooling, and its poor adhesion to anything but hot HDPE. Warpage occurs when the intended shape 

of the final 3D printed object is distorted or bent during 3D printing process when deposited 

filament cools inducing stresses in the material that cause distortion out of the printing plane in its 

effort to relieve those stresses. As a result, the adhesion of the PE polymer with the print is severely 

poor and the adhesion between adjacent PE layers is also very weak resulting in layer delamination 

and warpage problems [26]–[29].  

To reduce warpage and improve adhesion for FFF of PE, literature suggests the following (i) 

preparing and testing composites of PE by adding fillers, (ii) improving the print parameters such 
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as print temperature, extrusion rate, cooling rate, build plate composition etc. Spoerk and Sapkota 

have published a series of articles in which they have investigated many propylene/ethylene 

copolymers and composites in FFF printing [196], [197], [203]–[206]. It was shown that spherical 

fillers like glass or perlite microspheres or reinforced carbon fibers reduce shrinkage in the PP/PE 

copolymers and increase their mechanical strength. Carneiro et al. investigated thermal distortion 

in FFF printing of composite PP polymers by improving different printing parameters and 

presented improvement in printability of PP [46]. Decker et al. explored FFF printing of a 

maximum of up to 25 wt% HDPE in HDPE/ABS blends and reported poor filament extrusion and 

mechanical properties [207]. In another study, FFF printing results of 50 Vol% HDPE as shell 

material and PC/ABS blend as core material showed poor dimensional accuracy due to presence 

of HDPE [208]. Hees and co-workers used styrene-ethylene/butylene-styrene (SEBS) block 

copolymer as print bed for FFF printing of HDPE and reported SEBS as a good print bed 

alternative for HDPE printing by offering easy removal low warpage [54]. Chinga-Carrasco et al. 

have reported FFF printing of HDPE composites reinforced with compatibilized thermo-

mechanical pulp (TMP) fibers and maleic anhydride functionalized polyethylene (MAPE) [209], 

[209]. Although, these bio composites exhibited better adhesion and extrusion, printing pure 

HDPE failed due to warpage, shrinkage and poor adhesion problems. Gudadhe et. al used 10 wt% 

LLDPE, 0.5 wt% dimethyl benzylidene (DMDBS) and 99.5 wt% waste-recycled HDPE blend with 

polyvinyl acetate-based glue as print bed for FFF printing [180]. They reported reduction in 

warpage when printed with the blend as compared to neat HDPE however the warpage was only 

measured at 90 angle and no research was done to monitor warpage at more sharper angles of 

print objects. Much interest is also shown in finding the feasibility of filament extrusion from 

recycled HDPE waste and investigating its use in 3D printing to turn HDPE waste into value-
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added 3D printed parts. In this regard, Chong and others have reported filament extrusion of waste 

HDPE but have failed to solve warpage and adhesion problems in its 3D printing [201], [210]–

[212]. In spite of the problems encountered with 3D printing of HDPE especially and PE, PP 

polymers in general, they remain materials of great interest for researchers due to their abundance 

availability and easier recyclability. This puts them as clear leaders for future recyclable materials 

used for FFF printing according to life cycle assessments [213]. As listed in the introduction, 

several researchers have claimed that adding fillers such glass, amorphous fibers to HDPE [180], 

[196], [205], [209] improves printability of HDPE and helps reduce part shrinkage.  

In this work, we aim to solve the warpage problem of HDPE 3D printing by investigating the effect 

of addition of different concentrations of LLDPE. During FFF printing, the filament is heated and 

deposited layer by layer. As the printed part cools down, it undergoes thermal contraction. Sharp 

angles can restrict the natural contraction of the material, leading to increased stresses at those 

points and more warpage in the final printed part. In this research, we also aim to analyze and 

quantify warpage at sharper angles of the test object to identify warpage impact at sharper angles 

of 90, 60 and 30. Warpage will be measured for each HDPE-LLDPE blend and compared with 

pure HDPE. The mechanical properties of the blends will also be determined.  

3.2  Materials and methodology 

3.2.1 Materials  

High density polyethylene (HDPE, MKCR2072; melt index 2.2 g/10 min (190 C/2.16 Kg)), and 

linear low-density polyethylene (LLDPE, MKCH0863; melt index 1.0 g/10 min (190 C/2.16 

Kg)), were purchased from Sigma-Aldrich. Creality CR-200B Carborundum Tempered Glass 

Printing bed and PEI coated steel magnetic print bed were purchased from Creality3dparts.com. 

Ultra-high Molecular Weight Polyethylene film (product number: 85655K11, thickness 4 mil) was 
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purchased from McMaster-Carr. UHMWPE tape (3 mil) was purchased from findtapes.com and 

double-faced clear polyester carrier film FLX000546 (0.5 mil) was obtained from Flexcon. 

HDPE, HDPE-LLDPE blend filaments were extruded for 3D printing from HDPE and LLDPE 

pellets using a Wellzoom B desktop single screw extruder equipped with the extrusion rate 

capacity of 10”-26”/min, and a temperature of 180-190 ℃ [173]. The extruded polymer strands 

were pulled off under a gravity fed pulling system, cooled at room temperature and then wound 

up on a spool [174]. The parameters used are listed in Table 7.  

3.2.2 Fabrication of HDPE-LLDPE blends 

We compounded 2, 5, 10 and 20 wt% LLDPE to make four blends. The pellets of LLDPE and 

HDPE were weighed in specified wt% levels, mixed together and put in the hopper of the 

wellzoom desktop extruder. The concentration details of the HDPE-LLDPE blends are listed in 

Table 6. 

Table 6: Blend concentration levels of LLDPE, HDPE 

  HDPE (wt%) LLDPE (wt%) 

Pure HDPE  100 0 

2 wt% LLDPE-HDPE  98 2 

5 wt% LLDPE-HDPE  95 5 

10 wt% LLDPE-HDPE  90 10 

20 wt% LLDPE-HDPE  80 20 

 

3.2.3 Filament fabrication  

In order to achieve a uniform material extrusion at the nozzle of the Ender 5 plus 3D printer, it is 

important to have uniform diameter of the filament being fed during printing. Commercially 
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developed filaments come in variety of sizes and a popular diameter size is 1.75 mm [214]. 

Preliminary tests showed that the Ender 5 plus 3D printer with 0.8 mm nozzle worked well with 

1.75 mm diameter commercial filaments and was less prone to clogging the event of any 

contamination of the materials. In order to achieve these desired dimensions, pellets of HDPE or 

the blend of the HDPE-LLDPE pellets was extruded through a Wellzoom B desktop single screw 

extruder with the parameters listed in Table 7.The extruded filaments were collected through a 

gravity fed mechanism at a height of three feet which exhibited a uniform thickness. In order to 

achieve good mixing of the HDPE and LLDPE, pellets were thoroughly pre-mixed before being 

fed into the extruder. The final extruded filaments exhibited dimension of 1.75 mm (± 0.06 mm) 

recorded after ten measurements. The schematic of filament extrusion process is shown in Figure 

31. 

 

Figure 31: Filament extrusion schematic of HDPE-LLDPE blends 
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Table 7: Extrusion parameters for HDPE, HDPE-LLDPE blend filament fabrication 

Process Parameter  Value 

Extrusion Temperature 

(HDPE) 

 190 °C 

Extrusion Temperature 

(HDPE-LLDPE blend) 

 180 °C 

Speed of rotation  4 RPM 

Ambient temperature  22 °C 

Extrusion rate  15’’/min 

3.2.4 3D printing process parameters  

Fused filament fabrication (FFF) was performed on a Creality Ender 5 plus 3D printer. Ultimaker 

Cura5.2.1 was used to slice the 3D model and generate the G-Code files for the print specimen. 

There were also some manual modifications made to the G-Code to further improve printing 

parameters during the FFF printing. A round nozzle with diameter of 0.8 mm was used for printing. 

The print parameters used are listed in Table 8. 

Table 8: Printing parameters for HDPE, LLDPE-HDPE blends 

Print parameters  Standard (Non-improved) Improved parameters 

Nozzle size  0.8 mm 0.8 mm 

Nozzle temperature  230 – 240 °C 230 – 240 °C 

Nozzle temperature - layers 1,2  230 – 240 °C 210 °C 

Bed temperature  50 °C 60 °C 

Print speed  25 – 100 mm/s 25 - 100 mm/s 
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Print speed – layers 1,2  25 – 100 mm/s 20 mm/s 

Line width   0.8 mm 0.8 mm 

Layer Height  0.6 mm 0.6 mm 

No. of walls  3 2 

Filling/ infill density  20% 20% 

Material flow  100 – 107% gradually  100 – 107% gradually 

Filling pattern  cubic cubic 

 

A range of print parameters were tested to find the optimal values that offered best results for FFF 

printing of all the blends in terms of minimum warpage, good adhesion, easier detachment and 

superior dimensional accuracy. In this regard, different printing temperatures Tprint (200°C, 

210°C, 220°C, 230°C, 240°C) were tested keeping other parameters constant (infill density: 20%, 

infill pattern: cubic, print speed: 25 mm/s, print bed temperature, Tbed: 60 °C). A Tprint = 200°C 

allowed for acceptable adhesion but detachment was very easy and that contributed to high 

warpage.  Tprint = 210°C, 220°C offered best adhesion to the print bed with least warpage but the 

print quality on higher layers was not good. Tprint = 230°C, 240°C offered excellent print quality 

and surface finish but offered very strong adhesion to the build plate that made it challenging to 

peel off the print specimen from print bed with normal hand force, especially at the center of the 

object. In some cases, the adhesion was so strong that it caused layer detachment between upper 

layers of the print object causing layer delamination. To solve this problem, manual changes were 

made to the G-Code to print the first two layers at Tprint = 210°C and the rest of the print object 

was printed at Tprint = 230°C with cooling at 50% for first two layers and 100% for the rest. Doing 

so provided best overall results for FFF printing of all the blends with strong adhesion, easier 
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detachment and excellent print quality. A visual representation of these tests is shown in Figure 

32. 
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Figure 32:Images of FFF Printing of test specimen with brim (left) and raft (right). (a,f) pure HDPE 

without optimized printing parameters. (b,g) 2 wt% LLDPE-HDPE blend, (c,h) 5 wt% LLDPE-

HDPE blend (d,i) 10 wt% LLDPE-HDPE blend (e,h) 20 wt% LLDPE-HDPE blend [with 

optimized parameters] 
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Once printing parameters were finalized, FFF printing was conducted using two build types (brim 

and raft) As warpage is maximum at the bottom layers of the print object, having brim layers that 

enclose the print object absorb some of the induced stress due to shrinkage which helps in 

minimizing the warpage. A brim of 5 perimeters was printed around the print specimen as after 5 

lines, there was no change noted in warpage or adhesion. Similarly, the print specimens were 

printed on a raft. So, in total, print specimens of pure HDPE, and 2, 5, 10, and 20 wt% LLDPE 

blends were printed on brim and raft with optimized parameters. Three specimens for each blend 

as well as for pure HDPE were printed with a dimensional accuracy of ± 0.2 mm. Printing on a 

brim and a raft reduced offered adhesion support to the first few layers of printing to the build 

plate.  

3.2.5 Warpage measurement 

Warpage of the printed specimen was quantified and the extent of warpage (W) was measured by 

imaging the printed specimen using a high-resolution Epson-workforce ES-400 II scanner (800 

dpi) with the specimen laid on its sides. The images were analyzed by digitizing their profiles 

using ImageJ software. The extent of warpage (W) at the edges was measured with reference to 

the bottom plane of the printed specimen at the center. There is no standard artifact for analyzing 

warpage values of the print specimens for additive manufacturing. Although National Institute of 

Standards and Technology (NIST) has suggested a standardized test specimen it is typically used 

for evaluating performance of FFF hardware only [215], [216]. Since objects with sharp corners 

exhibit more severe warpage, we selected a triangular specimen for our studies. The test specimen, 

we chose for FFF printing, has the following dimensions - (Angles: 30°, 60°, 90°, (base: 1 inch, 

perpendicular: 1.73-inch, hypotenuse: 2 inches, with respect to angle 60°), height: 12.50 mm). By 

observation, more warpage occurs on the edges of the specimen and minimum or no warpage is 
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observed in the center. The maximum thickness of the object around the center is already measured 

and noted using a caliper. The maximum value of the difference between the top and bottom 

coordinates of the test specimen profiles is the extent of warpage occurred at each corner and is 

denoted as W. All the warpage measurements are recorded in mm. 

3.2.6 Mechanical characterization 

Tensile strength, Young’s modulus and elongation at break were determined using Instron 5960 

series according to ASTM D 638-IV standard with a load of 10 KN. ASTM D 638-IV test 

specimens were designed in SolidWorks. The files were saved as stl. format, exported to Cura 

5.2.1 sliced and were printed with 100% infill density at an angle of 45° and cubic infill pattern 

shown in Figure 33. The samples were clamped in the Instron 5960 machine and were elongated 

at a load speed of 5 mm/min until break.  The mechanical load capacity of LLDPE-HDPE blends 

was investigated to determine what negative impacts on modulus and strength would occur with 

the addition of the LLDPE. In this regard, Young’s modulus, tensile strength and elongation at 

break were calculated for each blend and compared with the mechanical characterization values 

of pure HDPE.  

 

Figure 33:ASTM D638-IV - 3D printed Tensile test specimen: 100% infill density 

This was done to minimize the anisotropic mechanical behavior effect which cannot be entirely 

excluded during FFF printing of objects. 

3.3  Results and discussion 

3.3.1 Fabrication of HDPE and HDPE-LLDPE blend filaments  
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The filament extruded using the wellzoom desktop extruder was of uniform thickness. The 

diameter was measured at different parts of the filament and was found to be consistent at 1.75mm 

which is suitable for FFF printing. Furthermore, there were no visible impurities or imperfections 

in the filament which could impact the 3D printing of print object.  

3.3.2 Evaluation of build plate  

Proper adhesion of HDPE onto the print bed during the entire printing process which can take 

several hours is another perquisite for successful 3D printing of HDPE by means of FFF. The build 

plate/print bed should offer two qualities for optimal performance. (i) It should offer high adhesion 

to the print object during printing, and (ii) the print object at the end of the printing process should 

be able to readily and easily detach from the print bed without damage to the part or the plate. 

Since HDPE is a very difficult material to bond with any other material but HDPE, this makes it 

exceptionally challenging to find a suitable build plate material for this purpose. Here, we tested 

variety of materials such as glass, Polyethyleneimine (PEI) coated steel, HDPE, UHMWPE sheet 

with double sided tape, and UHMWPE tape as build plate materials. The test object was a tensile 

specimen according to ASTM D 638-IV which was printed using a 0.8 mm nozzle and a filling 

degree of 100% and a cubic filling pattern at an angle of ± 45° to the longitudinal axis. The results 

of the adhesion and detaching tests are summarized in Table 9. The build plate materials commonly 

applied in FFF such as carborundum tempered glass did not adhere to HDPE at all at any 

nozzle/print temperatures. Similarly, no adhesion was observed on PEI coating at any Tprint. On 

the other hand, permanent bonding was observed on HDPE sheet at Tprint ≥ 215 °C and at Tbed 

= 60 °C. Lastly, UHMWPE sheet with double sided tape and UHMWPE tape were tested which 

showed by far the best adhesion when printing in the temperature range of Tprint = 200 - 240 °C 

and at Tbed = 60 °C. Based on these results, we choose UHMWPE tape as build plate material. As 
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is apparent from Figure 34 and Figure 35, UHMWPE sheet as not only showed excellent adhesion 

to the print object during the complete 3D printing process, it was easily pulled off from the final 

part by hand without causing any damage to the print object.  

Table 9: Evaluation of build plate material 

Build plate material/type  Results 

Carborundum Tempered glass  No adhesion 

PEI-coated steel build plate   No adhesion 

HDPE sheet  

Permanent bonding at Tprint ≥ 215 °C and Tbed =60 °C; 

difficult detaching; detaching impossible at Tprint ≥ 230 °C 

UHMWPE film (adhered to the 

print bed with double sided tape) 

 

Good adhesion at Tprint = 200 – 240 °C and Tbed =60 °C; 

easily detachable; difficult detaching at Tprint ≥ 230 °C 

UHMWPE tape  

Good adhesion at Tprint = 200 – 240 °C and Tbed =60 °C; 

easily detachable; difficult detaching at Tprint ≥ 230 °C 
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Figure 34: a) Printing of ASTM D638-IV test specimen, b) partial detachment from build plate, c) 

complete detachment from build plate by peeling it off with hand, d) ASTM D638 -IV test 

specimen reading for testing 

 

Figure 35: (1) FFF printing of pure HDPE exhibiting max warpage at Tprint = 200°C. (2) FFF 

printing of of pure HDPE exhibiting layer delamination at Tprint = 240°C. (3) FFF printing of 

pure HDPE exhibiting best overall result at Tprint = 210°C for first two layers 

3.3.3 Mechanical characterization      

For mechanical characterization, six samples were tested for each blend. The mechanical 

characterization results are summarized in Table 10 and are displayed in Figure 38. The force vs 

displacement curve is shown in Figure 36. 
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The force vs. displacement curve is a fundamental characterization tool for understanding the 

mechanical behavior of materials. The force vs. displacement behavior of Pure HDPE and its 

blends through tensile testing is listed below. This analysis sheds light on HDPE's mechanical 

properties. The findings provide valuable insights into the material's suitability for various 

engineering applications. As can be seen in the graph, the blends follow a very close trend with 

pure HDPE in terms of their force vs displacement curve, which is in accordance with our 

experimental expectations.   

 

Figure 36: Force vs Displacement curve: HDPE-LLDPE blends 

The stress strain curve is showed in Figure 37. The results indicate that pure HDPE exhibit the 

highest modulus of 453 MPa with 20% LLDPE-HDPE blend exhibiting the least value at 316 MPa. 

The 2, 5 and 10 wt% lie in between the two. The Young’s modulus of 10 wt% and 20 wt% is 21% 

and 30% less than pure HDPE respectively. Young’s modulus gradually decreases with increase 

of LLDPE concentrations due to an overall decrease in crystallinity and stiffness of the blend. Pure 

HDPE has a value of tensile strength of 18 MPa followed by 2, 5, 10 and then 20 wt%. The tensile 
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strength values for 2, 5 and 10 wt% are in the range of 17 MPa with 20 wt% at approximately 16 

MPa. This shows that blending HDPE with LLDPE concentrations reduces its tensile strength by 

a very small margin. Elongation at break is approximately same for all the blends which means it 

is minimally impacted by addition of small concentrations of LLDPE. The overall trend is a 

minimal reduction in mechanical properties of the 3D printed objects with increase in concertation 

of LLDPE grade. Therefore, we can use HDPE-LLDPE blends (up to a concentration level of 

20wt% LLDPE) in place of pure HDPE for 3D printing without impacting the parts mechanical 

properties.  

 

Figure 37: Stress strain curve - LLDPE: HDPE blends 
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Figure 38:Mechanical properties (in terms of Young’s Modulus, tensile strength, elongation at 

break) of pure HDPE, LLDPE-HDPE blends 



85  

Table 10: Mechanical properties (in terms of Young’s Modulus, tensile strength, elongation at 

break) of pure HDPE, LLDPE-HDPE blends 

Blends 

Young’s modulus 

(MPa) 

Tensile strength 

(MPa) 

εmax (%) 

Pure HDPE 452.97 ± 30 18.06 ± 0.7 227.54 ± 40 

2 wt% LLDPE-HDPE 443.97 ± 40 17.84 ± 0.9 220.42 ± 25 

5 wt% LLDPE-HDPE 392.39 ± 25 17.02 ± 1.2 218.69 ± 30 

10 wt% LLDPE-HDPE 354.32 ± 40 17.01 ± 1.2 209.26 ± 5 

20 wt% LLDPE-HDPE 316.12 ± 15 15.88 ± 0.3 220.46 ± 20 

 

3.3.4 Warpage measurement 

The 90°-30° side and 90°-60° side profiles of the test specimen with optimized parameters are 

printed with brim and raft respectively, are presented in Figure 39 and Figure 40, respectively. It 

is worth noting that HDPE when printed without optimized parameters exhibits worse warpage 

values of 6.2 mm, 4.45 mm, and 1.73 mm at 30°, 60°, and 90° angles respectively. 30° angle being 

the sharpest angle exhibits maximum warpage followed by 60° and 90° angles. This trend is 

followed in all the blends. Then print parameters are optimized and a brim is incorporated for 3D 

printing of pure HDPE and HDPE-LLDPE blends. After incorporation of brim, we observed an 

overall reduction trend in the warpage of all the print objects. Pure HDPE exhibits warpage values 

of 2.9 mm, 1.8 mm, and 1.60 mm at 30°, 60°, and 90° angles respectively. This corresponds to 

approximately 56.0%, 59.5% and 7.5% reduction in warpage at 30°, 60°, and 90° angles 

respectively when compared with pure HDPE printed with non-optimized parameters. This is 

followed by 2, 5, 10 and 20 wt% with 20 wt% exhibiting the maximum reduction in warpage. 20 
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wt% shows an approximate 79%, 75% and 59.5% reduction in warpage at 30°, 60°, and 90° angles, 

respectively. This significant reduction in warpage is attributed to addition of LLDPE which 

lowers overall crystallinity of the blend leading to less induced stresses upon cooling during 

printing. 10 wt% is not far behind 20 wt% with a reduction of approximately 78%, 72% and 48% 

at 30°, 60°, and 90° angles respectively.  

With incorporation of a raft, no significant reduction in warpage is observed for pure HDPE. 

However, a significant reduction was observed for the HDPE-LLDPE blends. 2 and 5 wt% blends 

exhibited an approximate 75%, 70% and 45% reduction in warpage at30°, 60°, and 90° angles 

respectively. 10 wt% HDPE-LLDPE blend presented an approximate reduction of 81%, 80% and 

75% in warpage at 30°, 60°, and 90° angles respectively whereas 20 wt% HDPE-LLDPE blend 

offered an approximate 86%, 86% and 80% reduction in warpage for 30°, 60°, and 90° angles 

respectively. Therefore, with the addition of LLDPE in HDPE, we can see an overall reduction of 

more than 80% in the warpage. As mechanical strength decreases for higher LLDPE concentration 

blends therefore, we can conclude that 10 wt% HDPE-LLDPE blend offers the most optimal result 

with optimal reduction in warpage and optimal retention of mechanical properties. Another 

interesting trend was observed which presents that addition of LLDPE had more impact on 

warpage reduction at sharper angles such as 30° and 60° as compared to as 90°. For instance, 10 

wt% blend when printed with brim exhibits a reduction of 78% and 72% at 30° and 60° angles 

respectively while a 50% reduction at 90°angle. While this trend is not significantly impacting and 

is not translated across all blends, it is still worth noting. The complete list of warpage values (in 

mm) and warpage reduction (in %) for each blend are listed in Table 11 and Table 12 respectively. 

In conclusion, the warpage problem during FFF printing of HDPE can be partially solved through 

addition of LLDPE in small concentrations, particularly at 10 wt% with most optimal values, 
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without compromising on the mechanical properties of the 3D printed parts. This strategy has been 

successfully employed to print a Canadian maple leaf with LLDPE-HDPE blends which exhibits 

excellent 3D printing qualities as shown in Figure 41. 

 

 

Figure 39: Warpage profiles of 90°-30° side (left) and 90°-60° side (right) of the test specimen for 

FFF printing with brim. (a) Pure HDPE (b) 2 wt% LLDPE-HDPE blend, (c) 5 wt% LLDPE-HDPE 

blend (d) 10 wt% LLDPE-HDPE blend (e) 20 wt% LLDPE-HDPE blend 
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Figure 40: Warpage profiles of 90°-30° side (left) and 90°-60° side (right) of the test specimen for 

FFF printing with raft. (a) Pure HDPE (b) 2 wt% LLDPE-HDPE blend, (c) 5 wt% LLDPE-HDPE 

blend (d) 10 wt% LLDPE-HDPE blend (e) 20 wt% LLDPE-HDPE blend. 
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Table 11: Warpage values at angles 90°, 60° and 30° for printing of HDPE, LLDPE-HDPE blends 

Blends                         Warpage (mm)  

  Brim    Raft   

  90° 60° 30°  90° 60° 30°  

Pure HDPE (without 

optimized parameters) 

 1.73 4.45 6.62     

Pure HDPE  1.60 1.8 2.9  1.40 1.62 2.53 

2 wt% LLDPE-HDPE  1.07 1.4 2.25  0.97 1.30 1.93 

5 wt% LLDPE-HDPE  0.97 1.29 1.55  0.88 1.03 1.34 

10 wt% LLDPE-HDPE  0.9 1.21 1.42  0.43 0.85 1.21 

20 wt% LLDPE-HDPE  0.7 1.1 1.35  0.35 0.58 0.92 

 

Table 12: Warpage reduction in (%) with respect to pure HDPE printed without optimized 

parameters 

Blends  Warpage reduction (%)  

 Brim    Raft   

 90° 60° 30°  90° 60° 30° 

Pure HDPE 7.52 59.55 56.12  19.00 63.50 61.70 

2 wt% LLDPE-HDPE 38.15 71.01 66.0  43.93 70.75 70.85 

5 wt% LLDPE-HDPE 43.94 71.1 76.58  49.13 76.85 79.76 

10 wt% LLDPE-HDPE 47.97 72.81 78.54  75.14 80.85 81.72 

20 wt% LLDPE-HDPE 59.50 75.28 79.60  79.77 86.96 86.10 
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Figure 41: Canadian Maple leaf printed with blends of HDPE.  

3.4  Conclusion  

In conclusion, HDPE is very challenging to print due to its warpage and shrinkage problem upon 

cooling during printing. Warpage is even worse at sharper angles of the print object. We 

demonstrate warpage problem of HDPE printing can be solved by improving print parameters, 

using UHMWPE tape as build material, and through addition of LLDPE in small concentration 

with HDPE. By using optimal print process parameters and printing with brim and raft as support 

and addition of 10 wt% of LLDPE in pure HDPE making a 10 wt% LLDPE-HDPE blend, we can 
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significantly reduce the warpage. This solution can provide an approximate 80% reduction in 

warpage when compared with pure HDPE especially at sharper angles. Mechanical 

characterization tests show that addition of 10 wt% LLDPE results in very minimal, almost 

negligible, change in mechanical strength of the final print object as compared to that of pure 

HDPE. This means HDPE warpage and shrinkage problem can be solved using this technique 

without making a compromise on the higher mechanical properties of HDPE during FFF printing. 

This approach expands the range of materials for 3D printing by including semi-crystalline 

polyolefins, which are typically very challenging to print, but are very common in industrial plastic 

products. Our strategy of mixing HDPE with LLDPE, filament extrusion and FFF printing can be 

readily implemented on commercially available extruders and printers without the need for any 

hardware changes such as heated chambers. It can very easily be scaled up due to the simplicity of 

the technique and operations involved.  
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Chapter 4 

Concluding Remarks and Future Direction 

of Research 
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4.1  Conclusion and closing remarks  

In this thesis research, we addressed key challenges associated with two grades of polyethylene 

(PE): LLDPE and HDPE. Each grade of PE offers diverse applications in various industries, the 

military, and civilian sectors. Moreover, grades of PE form a significant fraction of the world scale 

production of plastics and are of high interest due to their low cost, good chemical resistance and 

abundant availability. Our research focused on overcoming specific limitations of these materials 

to enhance their performance and expand their potential applications.  

In the first part of this research work, chapter two was dedicated to addressing the issue of 

LLDPE's semi-transparency while maintaining its high infrared (IR) transparency. To achieve this, 

we employed pigmentation techniques with different pigments to render LLDPE visibly opaque 

without compromising its IR transparency. We conducted a comprehensive analysis, including 

FTIR analysis, UV-VIS analysis, mechanical testing, and IR analysis under a FLIR E75 camera. 

The results confirmed that the pigmented LLDPE maintained its exceptional IR transparency while 

becoming visibly opaque. This breakthrough opens up new opportunities for using LLDPE in 

radiative passive heating and cooling applications, IR and visible camouflage applications, IR 

shielding, and other diverse fields. For pigmentation, we demonstrated a simpler method for 

pigmenting LLDPE using polymer wax and master batches of different pigments. LLDPE was 

pigmented with six different pigments: three white pigments (ZnS, ZnO, TiO2) and three colored 

pigments (FeO yellow, light brown and dark brown). It was shown that the resulting pigmented 

LLDPE maintains its mechanical and IR properties and is suitable for diverse applications, 

including radiative cooling for buildings and wearable textiles. ZnO and ZnS showed the highest 

IR transparency and reflectance rates which were same as those of pure LLDPE. With ZnO 

exhibiting the most visible opacity and highest IR transparency, it is definitely the best overall 
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pigment that can offer high visible opacity and reflectance and highest IR transparency, reflectance 

and emission properties in white pigments whereas FeO yellow showed best results in colored 

pigments. It was noted that lower thickness of PE sheets are more IR transparent than higher 

thickness overall which confirms that IR transparency decreases with increase in thickness. 

Moreover, it was also presented that IR transparency also decreases with increase in concentration 

of the pigments. Therefore, up to 5 wt% addition of pigments can offer excellent visible opacity 

and high IR transparency. Overall, It was presented that PE can virtually be pigmented in any color 

for visible camouflage and attractiveness for passive radiative heating and cooling applications.  

In the second part of this research work, chapter three focused on addressing the challenges associated 

with HDPE in the context of 3D printing. HDPE exhibited severe warpage, particularly at sharper angles 

during FFF (Fused Filament Fabrication) 3D printing. To overcome this issue, we employed a systematic 

approach. Firstly, we optimized printing parameters and investigated different types of print beds and then 

we introduced a solution by incorporating 10 wt% of LLDPE into HDPE. This addition reduced crystallinity 

and subsequently decreased stresses within the printed object during 3D printing, thereby mitigating warpage 

issues in the final 3D printed parts. Here in, LLDPE was blended with HDPE in concentrations of 2, 

5, 10 and 20 wt%. Warpage was measured for each blend at three different angles: 90, 60 and 

30, of the print specimen. Mechanical characterization tests: tensile strength, Young’s modulus 

and elongation at break were performed. 10 wt% LLDPE-HDPE blend was the overall winner and 

provided best solution by exhibiting excellent warpage reduction at all the angles whereas 

maintaining its mechanical properties comparable to that of pure HDPE. UHMWPE was used as 

print bed as it offered excellent adhesion and removal for the print objects. The overall gains in 

printing performance with negligible impact on mechanical performance makes blends of HDPE-

LLDPE a viable solution to overcome polyolefin FFF printing challenges. This approach expanded 
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the range of materials for 3D printing, making semi-crystalline polyolefins easier to print. 

To sum up, this research contributes significantly to the understanding and improvement of PE 

materials. By pigmenting LLDPE to achieve both visual opacity and high IR transparency, we 

have expanded the potential applications of LLDPE. Furthermore, our findings regarding HDPE 

and its warpage issues during 3D printing provide practical solutions to enhance the printability 

and quality of HDPE objects. These advancements have significant implications for various 

industries, such as additive manufacturing, packaging, construction, and beyond. The outcomes of 

this research open up exciting possibilities for the utilization of PE materials in a wide range of 

industrial, military, and civilian applications, making them more versatile and valuable resources 

in various fields. 
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4.2  Possible future directions 

Based on the accomplished works, the following future directions of research are identified: 

i. Investigating the IR transparency, reflectance and emission properties of HDPE 

and LLDPE-HDPE blends. If they show high IR transparency and other similar 

desirable IR properties, then this step will allow us to produce sheets which are 

more durable and stronger for use in buildings and other applications while making 

use of their IR properties.  

ii. Structuring and patterning the LLDPE and other grades of PE to tune their visible 

and IR properties. A preliminary research has been done in this direction and the 

results have been promising. This can allow us to use structured/patterned 

pigmented PE sheets to be tunable to scatter visible and IR light when and where 

needed. Doing so, we will be able to control the intensity of visible and IR 

transparency and opaqueness of PE sheets enhancing their applications even more. 

To achieve this, other experimental techniques like surface texturing, nanoparticle 

incorporation, or blending with other materials could be explored to achieve the 

desired scattering effect. 
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