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Abstract

One-class classification is a problem that arises in situations where we have

data available that describes objects belonging to a particular class but very

little or no data describing objects that do not belong to this class, where

we must then be able to classify new data objects according to whether or

not they belong to this class. Outlier detection is a similar problem where

we are presented with an unlabelled collection of data and must determine

whether the data objects are outliers or inliers according to some definition of

an outlier. In this thesis we explore the relationship between one-class clas-

sification and outlier detection by comparing methods used for each problem

in a common framework, investigate some unique issues in applying one-class

classification in a realistic setting, as well as consider methods to combine

one-class classifiers.

In comparing one-class classification and outlier detection, we note that

they are similar problems in that both are looking to classify data objects as

either inlier or outlier. We extend previous comparison studies by studying

a number of one-class classification and unsupervised outlier detection meth-

ods in a rigorous experimental setup, comparing them on a large number of

datasets with different characteristics using the commonly used area under the

receiver operating characteristic curve (AUC) measure, as well as the adjusted

precision-at-n measure used in unsupervised outlier detection. An additional

contribution is the adaptation of the unsupervised outlier detection method,

GLOSH, to the one-class classification setting.
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The lack of outlier data objects available for training means that we can-

not use the standard procedure of using a validation set in order to estimate

the generalization performance of a model for one-class classification, and so

selecting good parameters for a method can be difficult. We investigate this

problem by comparing the performance of methods at different parameter

values to determine how stable their performance is with respect to their pa-

rameters, and whether certain parameter settings are likely to do well across

multiple datasets.

In combining one-class classifiers, we apply rank-based combination strate-

gies to the outlier rankings produced by multiple one-class classifiers and com-

pare different strategies. We find that simple combinations of ranks can pro-

duce robust classifiers which outperform individual classifiers.
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The good news about computers is that they do what you tell them to do. The

bad news is that they do what you tell them to do.

– Ted Nelson
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Chapter 1

Introduction

Outlier detection is one of the central tasks of data mining. The goal of

this task is to identify those observations which deviate substantially from

the remaining data. Many definitions of outlier exist in the literature. One

of the most used is Hawkins’ definition [24], which refers to an outlier as

“an observation which deviates so much from other observations as to arouse

suspicions that it was generated by a different mechanism”. Detecting such

patterns is important because they might represent extraordinary behaviors

that deserve some special attention, such as traffic accidents and network

intrusion attacks.

Outlier detection algorithms can be categorized in supervised, semi-supervised,

and unsupervised techniques [22]. Supervised techniques can be seen as a spe-

cial case of binary classification, where there are enough observations labeled

as inliers and outliers available to train a classifier using approaches for imbal-

anced classification [1]. In semi-supervised outlier detection, due to the rarity

of the outliers, there are only very few or even no outlier observations available

to sufficiently describe the outlier class. In this scenario, also referred to as

“one-class classification”, the model is typically obtained using one-class clas-

sification techniques [46]. When no labeled data are available, unsupervised

techniques can be used that do not assume any prior knowledge about which

observations are outliers and which are inliers [52].

One-class classification in particular represents an important problem in

today’s world, as our society becomes more and more data-driven. In situations
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such as credit card fraud or aircraft engine testing, we have many instances

of normal behavior, but few anomalous observations which do not provide a

representative sample with which we could train a binary classifier and achieve

good results. Instead we turn to one-class classification techniques which only

require instances of normal objects in order to make predictions about new

data.

1.1 Thesis Outline

The thesis is organized as follows. In Chapter 2 we provide an overview of the

one-class classification and unsupervised outlier detection problems, as well as

the methods used in each that we compare in this study. We also detail the

evaluation measures commonly used.

In Chapter 3 we propose a methodological framework in which unsuper-

vised outlier detection methods can be adapted for one-class classification while

establishing basic principles that should not be violated in order to provide

a foundation for a model is not changed by new observations, as well as to

improve the runtime performance of unsupervised outlier detection methods

for one-class classification. Utilizing this framework, we adapt the GLOSH

outlier detection method to one-class classification.

In Chapter 4 we perform a thorough comparison study on a number of

unsupervised outlier detection methods and one-class classification methods,

performing an expanded study similar to those previously done, as well as in

a new scenario that has not been previously studied by reversing the selection

of classes for inliers and outliers. Additionally we introduce an evaluation

measure used in unsupervised outlier detection (Adjusted-Precision-at-n) to

one-class classification to complement those commonly used.

In Chapter 5 we investigate the hyperparameter selection problem in one-

class classification, performing an analysis of the datasets used and the relative

strengths and weaknesses of some of the better performing methods in order

to gain some insight which may help guide the selection of hyperparameters

in the absence of real outliers for performing validation.
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In Chapter 6 we apply the use of rank-based combination strategies to

one-class classifiers, showing a fast and simple way to improve robustness and

accuracy by combining one-class classifiers.

Finally, in Chapter 7 we conclude this thesis by providing a summary of

this study and providing possible future directions for research.
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Chapter 2

Background and Related Work

In this chapter we discuss related work that compares one-class classification

methods with unsupervised outlier detection methods, as well as provide de-

scriptions of the outlier detection and one-class classification methods used in

this thesis, and how they are evaluated.

Although both unsupervised outlier detection and one-class classification

were first studied in field of statistics [4], [40], little has been done in the

literature in order to compare the performance of both categories of algorithms.

The one-class classification scenario generally is an easier task, because training

data for one class is available. While in the one-class classification setting one

can estimate the probability density function (p.d.f.) or other models without

considering the presence of outliers in the dataset, in the unsupervised outlier

detection setting one must deal with possible outliers while estimating the

p.d.f. or other models. Given the differences between these two settings, the

corresponding methods cannot be compared in a straightforward way.

One attempt to compare one-class classification and unsupervised outlier

detection methods was done by Hido et al. [26]. In that work, the authors

compared their proposed outlier detection algorithm against other approaches,

including supervised, semi-supervised and unsupervised outlier detection tech-

niques. The comparison, however, was not entirely fair since most compared

algorithms had their parameters tuned using cross-validation, while only 3

different values for LOF’s (see Section 2.2) parameter were tested.

Janssens et al. [29] proposed a methodological framework to make unsu-
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pervised outlier detection algorithms work in a one-class classification setup

and thus be able to compare them against algorithms specifically designed for

this task. The authors, however, only assessed the performance of two unsu-

pervised methods, namely, LOF and LOCI (see Section 2.2), in the one-class

classification scenario. In a follow-up work [28], the same framework previ-

ously proposed in [29] was once again applied to LOF and LOCI, but this

time these methods were also compared against three one-class classification

methods. The authors concluded that LOF and SVDD (see Section 2.1) are

the top two performers with an identical average performance rank, although

each method has particular scenarios where one may outperform the other.

2.1 One-Class Classification

Unlike in the traditional classification problem, in one-class classification [55]

we are only provided with observations from one class and our model must then

classify new observations as belonging to this class or not. While in binary

classification one strategy might be to separate the feature space into two

areas representing each class, the analogous strategy for one-class classification

would be to define some region of the feature space as belonging to the inlier

class, with the rest of the feature space belonging to outliers (Figure 2.1).

(a) Binary (b) One-class

Figure 2.1: Binary and one-class classifiers trained on a banana-shaped
dataset.

In order to keep terminology consistent, we will refer to observations be-
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longing to the provided class as inliers, and observations not belonging to this

class as outliers.

One-class classifiers can be categorized into density methods, boundary

methods, and reconstruction methods. Commonly used density methods for

one-class classification are the Gaussian density [5], Mixture of Gaussians [5],

and Parzen density estimation [44]. In density estimation, the parameters for

some p.d.f. can be fit using the training data, and then new observations

can be classified using this p.d.f. Since the p.d.f. is estimated using only

inliers, there is no risk of outliers affecting the distribution. One drawback,

however, is that we require a sufficiently large sample of inliers to produce

a good estimation. Depending, e.g., on the dimensionality of the problem,

the number of observations required to sufficiently represent the underlying

distribution can become very large, and may prove too expensive to obtain in

a real-world setting.

Boundary methods avoid the requirement for a large number of samples

by instead attempting to define a boundary around the training data, such

that new observations that fall within the boundary are classified as inliers,

while observations falling outside of the boundary are classified as outliers.

Since we are only interested in defining this boundary, it is not necessary to

obtain a large number of samples to fully represent the inlier class. Boundary

methods include the Support Vector Data Description (SVDD) [54] and the

Linear Programming Distance Data Description (LP) [45].

Lastly, reconstruction methods can be used to model the training data by

using a generating process. Such a generating process is chosen to provide

a compact representation of the data while attempting to preserving most

of the information as well as filtering out noise. Once the model has been

obtained, new observations can then be described through this model in order

to be classified. Reconstruction methods include approaches like auto-encoder

networks [30].
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a

R

xi

ξi

Figure 2.2: An example hypersphere enclosing inlier data with center a and
radius R. The objects on the boundary form support vectors, and the object
xi is outside the boundary with ξi > 0 (adapted from [55]).

Support Vector Data Description

Support Vector Data Description (SVDD) [54] is a boundary-based one-class

classification method inspired by Support Vector Machines (SVM) [59] used

in regular classification problems. The primary difference between SVDD and

SVM is that while SVM attempts to separate two or more classes with a

maximum margin hyperplane, SVDD instead will enclose the inlier class in

a minimum volume hypersphere (see Figure 2.2) by minimizing the following

error:

E(R, a, ξ) = R2 + C
∑
i

ξi (2.1)

subject to the constraints:

∥xi − a∥2 ≤ R2 + ξi, ξi ≥ 0, ∀i (2.2)

where R is the radius of the hypersphere, a is the center of the hypersphere, ξ

are slack variables allowing training observations x to fall outside the SVDD

boundary, and C is a penalty (regularization) parameter. C can be replaced

by a parameter fracrej, which represents the fraction of training objects that

will lie outside the hypersphere boundary, allowing for more intuitive tuning

of the regularization parameter.

Like traditional SVMs, the above formulation can also be extended to non-

linearly transformed spaces using kernel methods. In our experiments we use
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a Gaussian kernel.

Gaussian Data Description

Figure 2.3: A simple Gaussian probability density function.

In the Gaussian Data Description [55], the Gaussian probability density

function (Figure 2.3):

pGauss(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (2.3)

is fit to the inlier data, where µ is the mean and Σ is the covariance matrix,

and d is the dimensionality of the data. A new observation can be classified by

computing its probability under the learned distribution. We can also apply a

regularization parameter r to the covariance matrix:

Σnew = (1− r)Σ + rI (2.4)

Parzen Window Data Description

Parzen Window Data Description (PW) is based on Parzen Density Estimation

[44] which estimates the density of the data using a mixture of kernels centered

on each of the N individual training observations (Figure 2.4). In our case,

we use Gaussian kernels with diagonal covariance matrices Σi = λI, where λ

is a width parameter which can be optimized using the maximum likelihood
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Figure 2.4: An example of a Parzen density estimator.

solution. The probability of an observation being an inlier is then computed

as:

PW (x) =
1

N

∑
i

pGauss(x|xi, λI) (2.5)

Unlike other density methods, PW is non-parametric and since it sums

over all data points, classifying new observations can be relatively expensive.

Linear Programming Distance Data Description

Dissimilarity space

Figure 2.5: The intuition of LP is to attract a hyperplane as close to the
origin as possible in the dissimilarity space. The dashed lines indicate the
open boundary that objects are contained in (adapted from [45]).

The Linear Programming Distance Data Description (LP) [45] is a bound-
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ary method which utilizes a dissimilarity measure to compare new observations

to inlier observations in the training set, Dtrain. The dissimilarity measure used

must meet a number of criteria defined by the authors. One such measure they

propose and which we use in our experiments is the L0.95 dissimilarity. LP con-

structs a boundary by bringing a hyperplane which bounds the training set

from above in the dissimilarity space as close to the origin as possible while

still accepting most inliers (Figure 2.5).

Auto-Encoder Data Description

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #3

Output #4

Hidden
layer

Input
layer

Output
layer

Figure 2.6: An auto-encoder with 2 hidden units.

In the Auto-Encoder Data Description [55], a neural network with hyper-

bolic tangent sigmoid units, a single hidden layer, and a parameter-defined

number of hidden units is trained on the inlier class with the goal of recover-

ing the input data at the output layer (Figure 2.6). In order to classify new

observations, each observation to be classified is supplied as input to the net-

work, and the difference between the original input and the network’s output

in terms of mean squared error is computed.

The Auto-Encoder Data Description falls within the category of recon-

struction methods for one-class classification.

k-Nearest Neighbor Data Description

k-Nearest Neighbor Data Description [28], [48], which we call here kNNlocal, is

similar to LOF and LOCI in that it approximates the local density of the train-

ing observations, however in a simpler way (see Figure 2.7). An observation
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xi

Figure 2.7: k-Nearest Neighbor Data Description with k = 3.

is classified under kNNlocal by computing the ratio between the distance from

an observation to its kth nearest neighbor NNk(xi), and the distance between

the kth nearest neighbor and its kth nearest neighbor:

kNNlocal(xi, k) =
d(xi,NNk(xi))

d(NNk(xi),NNk(NNk(xi)))
(2.6)

2.2 Unsupervised Outlier Detection

In unsupervised outlier detection, we are provided with a set of unlabeled

observations and are tasked with determining whether each observation is

an inlier or an outlier. In this situation, an outlier may be defined as an

observation that deviates from other observations in some significant way, as

determined by the chosen method. There are a variety of approaches, including

statistical, density-based, and cluster-based methods.

Statistical outlier detection methods [24] assume that the inliers were gener-

ated using some known parametric type of probability density function (p.d.f.).

Potential drawbacks of these methods in the unsupervised setting are (1) the

data may now contain outliers that will influence the estimated parameters of

the assumed density, and (2) we rarely know in advance the true distribution

of the data.

Density-based methods assume that outliers will appear in a region of

low density, according to some non-parametric measure of density. Density-

based approaches generally fall into global and local density methods. With
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global density methods, the density around an observation is compared with

some density measure for the entire dataset. If the observation’s density is

sufficiently low, it is considered an outlier. In contrast, local density methods

compare the density of an observation to that of its neighbors, rather than the

entire dataset. Density-based methods include LOF [8] and LOCI [43].

Cluster-based methods use a clustering of the data in order to detect out-

liers. The intuition behind these methods is that observations that do not fit

well into clusters can be considered outliers. A recent example is GLOSH,

which is based on the HDBSCAN* clustering hierarchy [9].

k-Nearest Neighbor Outlier Detection

xi

Figure 2.8: k-Nearest Neighbor Outlier Detection with k = 3.

The k-nearest neighbor outlier detection method, which we call kNNglobal,

has been originally introduced as an unsupervised distance-based outlier de-

tection method [47]. Its score is the numerator of Equation (2.6):

kNNglobal(xi, k) = d(xi,NNk(xi)) (2.7)

This makes the score global rather than local (see Figure 2.8).

Local Outlier Factor

Local Outlier Factor (LOF) [8] is an unsupervised outlier detection method

which functions similarly to kNNlocal by comparing the local density of an

12



xi

Figure 2.9: The intuition behind Local Outlier Factor is that it compares the
local density of an object with the densities of its neighbors.

observation to that of its neighbors (Figure 2.9). The distances between ob-

servations are replaced by reachability distances, defined as:

reach-distk(xi ← xj) = max{d(xj,NNk(xj)), d(xi,xj)} (2.8)

The local reachability density of an observation xi is then defined as the inverse

average reachability distance from the set of xi’s neighbors, kNN(xi)
1, that are

within the k nearest neighbor distance around xi:

lrdk(xi) =
| kNN(xi)|∑

xj∈kNN(xi)
reach-distk(xi ← xj)

(2.9)

Finally, the LOF score of an observation is computed by comparing the lrd of

the observation with that of its neighbors:

LOFk(xi) =

∑
xj∈kNN(xi)

lrdk(xj)

lrdk(xi)

| kNN(xi)|
(2.10)

Local Correlation Integral

Local Correlation Integral (LOCI) [43] is an unsupervised outlier detection

method which analyzes the density of an observation at multiple neighborhood

radii αr of a given maximum radius r, where α ∈ (0, 1]. Figure 2.10 shows this

analysis at one such radius. For each observation xi, a (local) r-neighborhood

1In most cases kNN(xi) will have k objects, however in rare cases where there is a “tie,”
it can be greater than k.
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xi
x2

x3

x1

r

n(xi, r)

αr

Figure 2.10: Local Correlation Integral also compares an object’s local density
with its neighbors, but at multiple levels of granularity (adapted from [43]).

N (xi, r) = {x|d(xi,x) ≤ r} and a (local) r-density n(xi, r) = |N (xi, r)| are

defined.

The average αr-density inside an r-neighborhood around an observation xi

is then defined as:

n̂(xi, r, α) =

∑
xj∈N (xi,r)

n(xj, αr)

n(xi, r)
(2.11)

and the multi-granularity deviation factor (MDEF) is given by:

MDEF(xi, r, α) = 1− n(xi, αr)

n̂(xi, r, α)
(2.12)

An observation xi is classified using the following score:

σMDEF(xi, r, α) =
σn̂(xi, r, α)

n̂(xi, r, α)
, (2.13)

which is the normalized standard deviation σn̂(xi, r, α) of n(xi, αr) for xi ∈

N (xi, r). With these quantities, the LOCI score is computed as follows:

LOCI(xi, α) = max
r∈R

{
MDEF(xi, r, α)

σMDEF(xi, r, α)

}
(2.14)

Angle-Based Outlier Detection

The intuition behind Angle-Based Outlier Detection (ABOD) [36] is that by

measuring the variance in the angles between an observation and pairs of other
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Figure 2.11: The intuition behind Angle-Based Outlier Detection.

observations, we can determine whether or not an observation is an outlier. If

the variance is high, it suggests that the observation is surrounded by other

observations (in a cluster), while a low variance suggests that the observation

is far away from other observations (an outlier). This is illustrated in Figure

2.11. The Angle-Based Outlier Factor (ABOF) is defined as follows:

ABOF(xi) = VARxj ,xk∈Dtrain

(
⟨xi − xj,xi − xk⟩

∥xi − xj∥2 · ∥xi − xk∥2

)
(2.15)

2.3 Evaluating One-Class Classification

In order to evaluate an algorithm’s performance in one-class classification and

compare it to other algorithms, we must first determine a way of measuring

the performance of an algorithm.

When predicting an object’s class with a one-class classifier, we either get

a classification label {inlier, outlier} or a real-valued score, which can take

the form of a probability or some metric by which the classifier quantitatively

expresses a degree of “inlierness.” We can then apply a threshold to this

output in order to classify the object, where values above this threshold result

in a classification of “inlier”, while values below will result in “outlier”.

When evaluating a classifier’s performance on some dataset where we are

given labels, we can compare the predicted labels provided by the classifier

with the true labels in the dataset. In doing this, there are four possible

15



a
ct
u
a
l

la
b
e
l

predicted label

inlier outlier

inlier
True
Positive
(TP)

False
Negative
(FN)

outlier
False
Positive
(FP)

True
Negative
(TN)

Figure 2.12: A confusion matrix representing the four possible outcomes of a
one-class classifier’s predictions compared to the true labels.

outcomes: true positive, false negative, false positive, and true negative. These

possibilities can be depicted with a confusion matrix (Figure 2.12).

Using these four outcomes we define two measures which will be used to

evaluate the performance of one-class classifiers. The true positive rate (TPR)

is the fraction of true inliers which the classifier correctly predicts as inliers:

TPR =
TP

TP+FN
(2.16)

where a score of 1 means all inlier objects are correctly identified by the classi-

fier, and a score of 0 means all inlier objects were incorrectly labeled as outliers

by the classifier. The false positive rate (FPR) is the fraction of true outliers

which the classifier incorrectly predicts as inliers:

FPR =
FP

FP+TN
(2.17)

By varying the threshold applied to a classifier’s output for a labeled

dataset, there is a trade-off between the true positive rate and false posi-

tive rate obtained. At one extreme, the classifier can label every object as an

inlier, achieving a perfect true positive rate of 1, but a false positive rate of

1 as well. At the other extreme, the classifier can label every object as an

outlier, achieving a 0 for both rates. This trade-off can be seen in a Receiver

Operating Characteristic (ROC) curve (Figure 2.13).
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Figure 2.13: Receiver Operating Characteristic curve for a one-class classifier
on an example dataset.

If we integrate the ROC curve over all threshold values, we obtain the

area under the ROC curve (AUC) [7], which quantifies the trade-off between

the true positive rate and false positive rate, and allows us to evaluate a

classifier’s performance without specifying a threshold. The AUC represents

the probability that a random inlier object is correctly given a higher score than

a random outlier object. Intuitively, this means that when ranking predictions

made by a classifier, true inlier objects with lower scores than any true outlier

will decrease the AUC. A perfect AUC of 1 is achieved when every true inlier

object is given a higher score than every true outlier object.

In the datasets used in this thesis, many are originally multi-class datasets

with two or more classes, and are converted into two or more one-class datasets

using the procedure outlined in Chapter 4. When we report a classifier’s

performance on these datasets, the results from these one-class datasets are

aggregated using the weighted AUC (WAUC) measure [18]:

WAUC =
m∑
i=1

p(i)AUCi (2.18)

where m is the number of classes in a dataset used as inliers, AUC(i) is the

classifier’s AUC score for the dataset with inlier class i, and p(i) represents the

fraction of objects belonging to class i among all the objects in the original

dataset that belong to classes used as inliers.
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Chapter 3

GLOSH for One-Class
Classification

3.1 Adapting Unsupervised Outlier Detection

to One-Class Classification

Common to unsupervised outlier detection methods is that they compute a

certain outlier score for each observation. To use an unsupervised outlier detec-

tion method in one-class classification, the general strategy is as follows: First

run the unsupervised method on the (one-class) training data, pre-computing

the scores for each inlier. Then compute the score for a new observation to

be classified, possibly using other pre-computed quantities (e.g., densities or

distances to nearest neighbors) related to observations in the training data.

Then, in order to classify the new observation, compare its score with the

pre-computed scores for the inliers.

There are two important aspects related to the use of pre-computed quan-

tities that involve training data when computing the outlier score for a new

observation to be classified. First, when classifying multiple observations, there

is no need to recompute these quantities over and over again for each new ob-

servation, since they relate solely to the training data (inlier class model) and

can thus be pre-computed, which makes computations faster.

Second and more importantly, using pre-computed quantities regarding the

observations in the training data assures that the model is by no means affected

by new observations to be classified. This is a basic principle of one-class
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classification, i.e., unlabeled observations should not affect the pre-computed

inlier class model, since they may be outliers. For example, suppose that a

certain algorithm operates by comparing the density of a new observation to

be classified against the densities of its nearest neighbors among the known

inliers (training data). In this case, the densities of the inliers should be pre-

computed, not to be affected by the presence of the unlabeled observation

being currently assessed; otherwise, each unlabeled observation would affect

the model in a different way, which means that different observations would

be classified by different models/criteria.

When classifying multiple observations, it is also recommended that the

classification procedure described above be performed independently for each

observation. This way, different unlabeled observations will not affect each

other’s assessment. The reason we only classify one observation at a time

instead of multiple observations at once is because we make no assumptions

about the nature of each observation in relation to the combined dataset as

a whole. It is possible that observations to be classified, while outliers in the

sense that they do not belong to the inlier class, may be grouped together in

such a way that an unsupervised method would not detect them as ouliers.

3.2 HDBSCAN* and GLOSH

3.2.1 HDBSCAN*

Hierarchical DBSCAN* (HDBSCAN*) [9] is a hierarchical clustering method

that follows Hartigan’s model of density contour clusters or trees and can be

seen as an improvement over OPTICS [2], an earlier hierarchical clustering

method. It provides as a result a complete clustering hierarchy composed of

all possible density-based clusters following the non-parametric model adopted

for an infinite range of density thresholds, from which a simplified cluster tree

can be easily extracted by using Hartigan’s concept of rigid clusters [23].

DBSCAN* is a density-based clustering algorithm similar to DBSCAN [16],

where an object, xi, is called a core object with respect to the user-defined

parameters, ε, and mpts, if it contains at least mpts objects in a minimum
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Figure 3.1: Objects and edges of an MST computed using mutual reachability
distances with mpts = 3.

radius, ε. Otherwise the object is called noise. Based on this definition the core

objects are clustered with respect to ε andmpts in non-empty maximal subsets,

such that every pair of objects in a cluster is density-connected, meaning

they are directly or transitively reachable by the radius, ε (ε-reachable). The

original definitions of DBSCAN also include the concept of border objects

which is not used by DBSCAN*.

HDBSCAN* has as its input parameters a value for mpts, as well as one

for mclSize which controls the minimum cluster size. For a proper formula-

tion of the density-based hierarchy with respect to a value of mpts, it em-

ploys notions related to the core and reachability distances introduced for

OPTICS. While the notion of core distance, dcore(xi), is the same as for OP-

TICS, the minimum radius, ε, such that xi becomes a core object with respect

to mpts, the reachability distance follows the symmetric definition of reach-

ability distance (mutual reachability distance), defined as: dmreach(xi,xj) =

max{dcore(xi), dcore(xj), d(xi,xj)} [37]. Using those notions, a mutual reach-

ability graph is built in which the objects of the dataset are vertices and the

weight of each edge is the mutual reachability distance (with respect to mpts)

between the respective pair of objects.

Figure 3.1 shows a Minimum Spanning Tree (MST) computed using mutual

20



1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

Data objects (indices)

S
ca
le

(ϵ
)

C1

C2 C3
C4

C5

Figure 3.2: Dendrogram representing a hierarchical clustering produced by
applying HDBSCAN* to the dataset in Figure 3.1 with mpts = 3 and mclSize =
3. The thinner red lines correspond to noise.

reachability distances. Removing edges in decreasing order of weight from the

mutual reachability graph can produce a hierarchy of all DBSCAN* clusterings

for any ε ∈ [0,∞), where clusters according to DBSCAN* with respect to mpts

and ε are then the connected components of core objects and the remaining

objects are noise. A hierarchical clustering can be represented using a dendro-

gram as seen in Figure 3.2. By removing the edges with weights greater than

some decreasing threshold from a complete proximity graph and then check-

ing for the remaining connected subcomponents of the graph is essentially the

graph-based definition of the hierarchical Single-Linkage algorithm [32], which

formalizes the conceptual relationship between DBSCAN* and Single-Linkage

in the transformed space of mutual reachability distances.

3.2.2 GLOSH

The Global-Local Outlier Score from Hierarchies (GLOSH) [9] is an unsuper-

vised outlier detection algorithm based on the hierarchical density estimates

provided by HDBSCAN* where for each query object the scope of a reference
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set of objects is chosen dynamically and based on the closest structure within

the density-based hierarchy. This allows it to classify outliers on a local or

global scale depending on the hierarchy structure and the object’s cluster as-

signment in the hierarchy. In all cases, the most meaningful reference structure

for an object is the “nearest” cluster in the hierarchical cluster hierarchy, as

opposed to all other objects in some region around the object. This avoids

comparing outliers to other outliers or unrelated clusters as could happen for

a local method; it also enables the user to find both global and local outliers.

In order to classify an object xi with GLOSH, we must determine the near-

est cluster (with respect to mpts and mclSize) to the object, using the densest

object in the cluster as a referential density for the cluster with which to com-

pare our object. Given the density of xi, λ(xi), the closest cluster from a

density-based perspective is the cluster Cxi
which xi is assigned to in the hi-

erarchy at λ(xi). The cluster Cxi
, is simply the first cluster xi is assigned as it

switches from noise to core when we increase the density threshold bottom-up

through the hierarchy. We use the densest object in Cxi
, xl, as the referential

object to compare to the density of xi as it can be considered the most “in-

lierly” object in the cluster and can serve as a standard for other objects with

Cxi
as their closest cluster. We can then use the density of xl as the referen-

tial density for Cxi
for every object xi that has Cxi

as its closest density-based

cluster. We can now define the GLOSH score of an object:

GLOSH(xi) =
λmax(Cxi

)− λ(xi)

λmax(Cxi
)

(3.1)

where λ(xi) is the density of xi and λmax(Cxi
) is the density of the highest

density object xl ∈ Cxi
, where densities are defined by the density threshold ε,

the density level where an object is labeled noise in the HDBSCAN* hierarchy.

The closest cluster Cxi
is the one that xi belongs to at the density level of xi.

The output of GLOSH are scores in the range [0, 1), where a score of 0

means the density of an object xi is equivalent to that of the densest object

in Cxi
, while a score near 1 means that xi has a much lower density than Cxi

.
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3.3 Adapting GLOSH to One-Class Classifica-

tion

One of the contributions of this thesis is the adaptation of GLOSH to the one-

class classification scenario. The motivation for doing so is to continue the

investigation of unsupervised outlier detection methods for one-class classifi-

cation, given the success of other unsupervised methods in the past. By taking

advantage of potential hierarchical structures in the data, we may be able to

find semantically meaningful outliers that other methods would have difficulty

detecting. Additionally, this would expand the utility of HDBSCAN* for use

in one-class classification with little added computational cost.

We can use the procedure described in Section 3.1 to apply GLOSH to one-

class classification. Given the one-class training data, we construct a density-

based hierarchy using HDBSCAN*, supplying the parametersmpts andmclSize,

and store relevant information such as each cluster assignment given to each

training object as we vary the density threshold, as well as the referential

density for each cluster, λmax(C).

In order to classify an incoming object, we must determine which cluster

it is last assigned to before becoming noise as the density threshold is in-

creased. Since adding a new object to the HDBSCAN* clustering hierarchy

can potentially change the clustering results, we instead fix the clustering hi-

erarchy as our inlier class model, and estimate the assigned cluster by some

approximation.

While there are potentially many ways to approximate an object’s cluster

assignment and GLOSH score, in this thesis we use the following approach:

we conceptually consider the effect of connecting an object xi to its nearest

neighbor xj (according to mutual reachability distance) with an edge equal to

dmreach(xi,xj), and what cluster assignment results from this connection.

If we track this connection as we remove edges in decreasing order of weight

from the mutual reachability graph, we note that there are two situations that

may occur. The first situation is that the edge connecting xi and xj is removed

before xj is separated from the original mutual reachability graph. In this
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Figure 3.3: MST based on mutual reachability distances with mpts = 3 using
the dataset in Figure 3.1 with the addition of a new observation xi with edges
removed just above and below the density threshold ϵ corresponding to the
edge connecting object xi and x7. Since dmreach(xi,x7) > dmreach(x6,x7), the
edge between xi and x7 is removed before x7 becomes considered noise and so
the closest cluster to xi is the one x7 is assigned at this density level. In this
case it is the cluster C1 from Figure 3.2.

case, the closest cluster to xi will be the cluster xj belongs to at this density

threshold, and we can use this cluster to compute the GLOSH score for xi.

An example of this situation is seen in Figure 3.3.

The second situation is that xj is separated from the mutual reachability

graph before the edge between xi and xj is removed. In this case, the closest

cluster for xi is the same as the closest cluster for xj. This is demonstrated in

Figure 3.4.

In order to quickly and easily classify an object in the one-class classifi-

cation setting with this adaptation of GLOSH, we can perform the following

procedure:

After performing HDBSCAN* on our inlier training data Xtr with supplied

values for mpts and mclSize, we store the densities λ(xj) for all xj ∈ Xtr,

the cluster assignments for each xj that they are assigned to in the density-

based hierarchy at all density levels, the referential densities for each cluster,

the GLOSH scores for Xtr if they will be used to compare to new objects,

as well as the original training data. When classifying a new object xi, we
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Figure 3.4: MST based on mutual reachability distances with mpts = 3 using
the dataset in Figure 3.1 with the addition of a new observation xi with edges
removed just above and below the density threshold ϵ corresponding to the
edge connecting object xi and x7. Since dmreach(xi,x7) < dmreach(x6,x7), the
edge between x6 and x7 is removed before xi becomes considered noise and
so the closest cluster to xi is the closest cluster for x7. In this case it is the
cluster C5 from Figure 3.2.

compute dcore(xi) with mpts relative to Xtr and use this to compute the mutual

reachability distances, dmreach(xi,xj) for all xj ∈ Xtr. Note that the core

distances for the objects in Xtr are not changed by xi. We then find the

nearest neighbor of xi, NNmreach(xi) based on mutual reachability distance.

If dmreach(xi,NNmreach(xi)) is greater than the density threshold ϵ associated

with λ(NNmreach(xi))), then xi will become noise before NNmreach(xi) and we

must find the cluster assignment for NNmreach(xi) as in Figure 3.3, which we

have saved. Otherwise, if dmreach(xi,NNmreach(xi)) is less than the density

threshold ϵ associated with λ(NNmreach(xi))), then the closest cluster for xi is

the same as for NNmreach(xi), as in Figure 3.4.

Once we have identified the closest cluster for xi, we can compute its

GLOSH score using Equation 3.1.

Using this approach we satisfy the principles established in Section 3.1.

We only need to perform the HDBSCAN* clustering once on our training

data, and store all the necessary computed quantities to perform classification.

Furthermore, we ensure that the model does not change with new observations.
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Chapter 4

On the Evaluation of Outlier
Detection and One-Class
Classification Methods

4.1 Introduction

In this chapter1, we focus on the comparison of one-class classification methods

with unsupervised outlier detection methods adapted to the problem of one-

class classification. Following the approach proposed in [29], unsupervised

outlier detection methods can be extended to use inlier class information to

be applicable also in the semi-supervised setting.

Janssens et al. [28] performed a comparative study between 3 methods

proposed for one-class classification (kNN Data Description [48], Parzen Win-

dows [44] and SVDD [54]) and 2 methods originally proposed for unsupervised

outlier detection i.e. LOF [8] and LOCI [43] extended to the one-class classifi-

cation scenario. The authors concluded that LOF and SVDD are the top two

performers and that they are not distinguishable from a statistical significance

test perspective.

In this chapter, we perform a more comprehensive investigation, using

a more rigorous experimental setup, which leads to conclusions that do not

fully agree with Janssens et al. [28]. In particular, we make the following

1The work in this chapter has been published as L. Swersky, H. O. Marques, J. Sander,
R. J. Campello, and A. Zimek, “On the Evaluation of Outlier Detection and One-Class
Classification Methods,” 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), Montreal, QC, 2016, pp. 1-10, with small changes for the thesis format.
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contributions:

• When reproducing the experiments in [28], which reports averages over 5

repetitions of 5-fold cross-validation, we noticed a large variability in the

results. In order to increase results confidence, we perform 30 repetitions

using 10-fold cross-validation instead.

• We increase the number of datasets used in the evaluation from 24 to 433

(33 base datasets plus 400 dataset variants from an image collection),

and the number of compared methods from 5 to 11.

• In addition to the well-known Area Under the ROC curve (ROC AUC),

used in Janssens et al. [28], we also use Adjusted Precision-at-n (Ajust-

edPrec@n), as defined in [10], to measure performance. These measures

complement each other and together give a more complete picture of the

performance characteristic of a method [10].

• In addition to the type of experiment performed by Janssens et al. [28],

where one class is labeled as inlier and the other classes are relabeled

outliers, we also conduct a second type of experiment where one class is

labeled as outlier and the other classes are re-labeled inliers. Both types

represent possible real application scenarios. We show that some of the

conclusions change depending on the type of experiment.

• We also include an adaptation of a recent outlier detection method —

called GLOSH [9] — to the one-class classification problem.

• Lastly, we discuss basic principles of one-class classification that should

not be violated when adapting unsupervised outlier detection methods

to this task. We carefully examined and adjusted all the codes used

in our experiments, making sure that these principles were not violated

when producing the reported results.
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4.2 Experimental Setup

We compare and evaluate the 11 algorithms described in Chapter 2: ABOD,

Auto-Encoder, Gaussian Density, GLOSH, kNNglobal, kNNlocal, LOCI, LOF,

Linear Programming, Parzen Windows and SVDD. We use code from the

repository available at http://prlab.tudelft.nl/users/david-tax/ [53]

for most compared algorithms, except for LOF, LOCI, kNNlocal and GLOSH.

In the case of LOF and LOCI, their implementations were modified to ensure

that new observations to be classified do not affect the pre-computed model

for the inlier class, following the guidelines previously discussed in Section 3.1.

As KNNlocal was not available in that repository, we used our own implemen-

tation for this algorithm. GLOSH was adapted based on the implementation

of HDBSCAN* made available at http://lapad-web.icmc.usp.br/.

We use 31 real-world datasets from the UCI Machine Learning Repository

[38] as pre-processed for one-class classification and made available at http://

prlab.tudelft.nl/users/david-tax/: Abalone, Arrhythmia, Balance-scale,

Ball-bearing, Biomed, Breast, Cancer, Colon, Delft1x3, Delft2x2, Delft3x2,

Delft5x1, Delft5x3, Diabetes, Ecoli, Glass, Heart, Hepatitis, Housing, Im-

ports, Ionosphere, Iris, Liver, Satellite, Sonar, Spectf, Survival, Vehicle, Vow-

els, Waveform and Wine.

In addition, we use CellCycle-237 and YeastGalactose, made public by

Yeung et al. [63], [64], as well as a collection of 400 datasets based on the

Amsterdam Library of Object Images (ALOI) [19], created as described in [27].

Specifically, this collection has been created by randomly selecting 2, 3, 4 or 5

ALOI image categories as class labels and then sampling 25 images from each of

the selected categories, thus resulting in datasets containing 2, 3, 4, or 5 classes

and 50, 75, 100, or 125 images (observations). Following [27], these images are

described by six descriptors: color moments (144 attributes), texture statistics

extracted from the gray-level co-occurrence matrix (88 attributes), Sobel edge

histogram (128 attributes), first-order statistics from the gray level histogram

(5 attributes), gray-level run-length matrix features (44 attributes), and gray-

level histogram (256 attributes). PCA is then applied to each set of attribute
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vectors separately and the first principal component resulting from each set is

extracted. The extracted first components are then combined in such a way

that each image is thus described by a vector with six attributes.

In total, we have 433 real-world multi-class datasets. We average the results

for the ALOI and Delft datasets, for they are variants obtained from the same

source. Finally, due the inability of some algorithms to deal with replicated

observations, duplicates are removed from the datasets where they are present.

In order to evaluate a method’s performance on a one-class dataset, we

perform the following procedure: First, we split the dataset into 2 subsets,

one containing 20% and the other containing 80% of the data. In the subset

with 80% of the data we apply a 10-fold cross-validation procedure to optimize

the parameters of the methods with respect to ROC AUC.

The hyperparameters of the methods were optimized in the following ranges:

k = 1, 2, · · · , 50 for LOF, kNNglobal and kNNlocal; mclSize = mpts = 1, 2, · · · , 50

for GLOSH; No. hidden units = 2, 5, 7, 10, 12, 15, 17, 20, 22, 25 for

Auto-Encoder2, h = 0.001 to 50 (discretized logarithmically in 25 different

values) for Gaussian Density and for the Gaussian kernel used in SVDD,

α = 0.1, 0.2, · · · , 1.0 for LOCI, LP, Parzen Windows and SVDD.

After hyperparameter optimization, the subset containing 20% of the data

(test set) is used to measure the performances of the methods (trained with

the optimal parameter values from the 10-fold cross-validation). In order to

get more reliable results, this procedure is repeated 30 times, and the resulting

ROC AUC values are aggregated and reported.

For the sake of comparison with the results reported by Janssens et al.,

we also compute the Weighted ROC AUC measure used in their work [28],

which gives more weight to results obtained from experiments involving larger

inlier classes. It is worth remarking, however, that this approach may be

questionable, since it is well known that ROC curves already inherently adjust

for the imbalance of class sizes.

2Due to the high computational demand of Auto-Encoder, a time limit of 1000s was
imposed to the network convergence, which gives a maximum amount of time equal to 30
repetitions × 10 folds × 10 parameters × 1000s ≈ 35 days per experiment involving a single
dataset.
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In addition to ROC AUC values, we also report the adjusted precision-at-n

measure (AjustedPrec@n) [10] for the classification of results obtained on the

test sets. While ROC AUC takes the entire test set into account, precision-

at-n (fraction of true outliers among the top n outlier scores in the test set)

evaluates only the top n observations, where n is the number of observations

known to be outliers in the test set. To compare precision-at-n values across

datasets with different numbers of outliers, one has to adjust precision-at-n by

chance, as discussed in [10], which gives rise to the AjustedPrec@n measure

used in our experiments.

A high ROC AUC score indicates only that, in the overall outlier ranking,

outliers are more likely to be ranked ahead of inliers; it does not necessarily

mean that the top positions in the ranking are dominated by outliers. There-

fore, following the extensive study in [10], we argue that one cannot rely solely

on ROC AUC scores in judging the quality of an outlier method; rather, ROC

AUC and AdjustedPrec@n complement each other, as they reveal different

aspects of an outlier ranking, both of which are relevant in practice.

We perform two major types of experiments. In the first type of experi-

ment (Type I), we follow the only approach taken by Janssens et al. [28], where

multi-class datasets are transformed into one-class datasets by re-labeling one

class as inliers, and the remaining classes as outliers. Except for datasets where

only a single inlier class has been pre-defined as such in the data repository

(http://prlab.tudelft.nl/users/david-tax/) — e.g., Ecoli — we repeat

the procedure for every class as inliers in a dataset, and average the results.

For the second type of experiment (Type II), we reverse the inlier and

outlier classes obtained in the first type of experiment for datasets that have

more than 2 possible inlier classes defined. This type of experiment is impor-

tant since it models situations with a possibly multi-modal inlier class. Note

that Type II experiments are only different from Type I — and are therefore

only reported — for datasets with 3 or more classes. For this reason, results for

Type II experiments are only available for a subset of the datasets considered

in Type I experiments.
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Figure 4.1: Average ranking of the methods compared in [28] over all Type I
experiments w.r.t. weighted ROC AUC.

4.3 Results and Discussion

Figure 4.1 shows the average ranking of the 5 methods compared in [28] over

all Type I experiments w.r.t. weighted ROC AUC. This figure summarizes

our attempt at reproducing Janssens et al.’s results [28], which were restricted

to this particular setup only. The width of the upper bar (CD) indicates

the critical distance of the well-known Friedman/Nemenyi statistical test at

significance level α = 0.05. The horizontal bars within the plots indicate

subsets of methods for which there is no significant difference according to the

test. The analogous figure in [28] shows two subsets of methods: (1) the top

performers SVDD, LOF, and KNNlocal (with SVDD and LOF having exactly

the same average rank), and (2) a group consisting of PW and LOCI, clearly

separated from (1), with much lower performance. Our result does not agree

in several respects: first, LOF and SVDD are not tied, second, there are no

longer two clearly separated groups, and third, KNNlocal is the worst performer

rather than one of the best.

In the following, we describe the results according to our experimental setup

described above. Detailed numbers for all experiments are given in tables 4.1,

4.2, 4.3, and 4.4. The overall ranking results are summarized in Figures 4.2

and 4.3.

Figure 4.2 shows the average rankings of the methods over all Type I

experiments with respect to ROC AUC and AdjustedPrec@n. When looking

at ROC AUC, one can see SVDD, Gaussian, and kNNglobal, in this order, at

the top. The average ROC AUC for SVDD, Gaussian, and kNNglobal were
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Figure 4.2: Average rankings of the methods over all Type I experiments.

0.8, 0.8, and 0.78, respectively. When looking at AdjustedPrec@n the overall

picture is similar, but AdjustedPrec@n tells us that SVDD is no longer the

top performer as it is now outperformed by Gaussian. This suggests that

in the outlier scoring produced by Gaussian there are on average more true

outliers with top scores than in SVDD, whereas for SVDD the scores of the

true outliers tend to be higher than those of inliers, overall.

Figure 4.3 shows the average rankings of the methods over all Type II ex-

periments with respect to ROC AUC and AdjustedPrec@n. When comparing

ROC AUC with AdjustedPrec@n, we can notice again some inversions in the

ranks, e.g., between LOF and PW/GLOSH. In particular, the relative perfor-

mance of SVDD drops once more for AdjustedPrec@n, as it also does in Type

I experiments, but now SVDD is outperformed by KNNglobal, not by Gaussian.

In fact, when comparing Type I experiments in Figure 4.2 and Type II exper-

iments in Figure 4.3, a noticeable difference can be observed with respect to

Gaussian: while it was among the top 3 performers in Type I experiments, its

relative performance drops sharply in Type II. The absolute performance of

Gaussian indeed drops from Type I to Type II experiments, from 0.8 to 0.77

for ROC AUC and from 0.48 to 0.38 for AdjustedPrec@n, which is expected

as Gaussian presumes a unimodal inlier class model that fits best the data

as arranged in Type I experiments. But this alone does not fully explain the

drop of Gaussian in terms of relative performance. What also explains it is

that other methods, particularly local density-based methods like GLOSH and

LOF, perform better in Type II experiments (see the tables in the Appendix
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Figure 4.3: Average rankings of the methods over all Type II experiments.

for detailed values), which correspond to application scenarios with possibly

multi-modal target classes.

4.4 Conclusion

Overall, based on both types of experiments, we conclude that: (i) in agree-

ment with [28], SVDD is a top performer, especially with respect to ROC

AUC; (ii) kNNglobal, however, might be a preferable choice, since it is consis-

tently a top performer, yet it is much simpler than SVDD; this method was

not included in the study in [28]; and (iii) in contrast to [28], LOF does not

perform as strongly as SVDD, and kNNlocal is not among the top performers,

but consistently among the worst.

In this chapter we provided a comprehensive comparison of one-class clas-

sification algorithms and unsupervised outlier detection methods extended to

the one-class classification scenario. These methods were evaluated over a

number of datasets, measuring performance with respect to ROC AUC and

AdjustedPrec@n in different experimental settings. The most important con-

clusion is that SVDD and kNNglobal are the top choices for one-class classifica-

tion, while we do not recommend kNNlocal. This is in contrast to the previous

comparison study by Janssens et al. [28], which did not include kNNglobal and

reported kNNlocal as a top performer. In addition, we could not confirm the

top performance of LOF reported in [28], but only that of SVDD.

As additional contributions, we proposed and described an adaptation of a
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Table 4.1: First type of experiments — ROC AUC

Dataset GLOSH KNN L. LP ABOD Auto Enc. Gaussian KNN G. LOCI LOF PW SVDD

Abalone 0.66 0.66 0.71 0.71 0.72 0.74 0.73 0.76 0.66 0.74 0.77
Aloi 0.98 0.97 0.95 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98
Arrhythmia 0.63 0.58 0.5 0.51 0.53 0.55 0.52 0.53 0.6 0.5 0.64
Balance-Scale 0.88 0.86 0.88 0.86 0.91 0.93 0.87 0.87 0.92 0.87 0.91
Ball-Bearing 0.98 0.97 0.5 0.93 1 1 0.98 0.96 0.99 0.53 0.98
Biomed 0.84 0.81 0.51 0.65 0.72 0.8 0.84 0.79 0.71 0.69 0.7
Breast 0.96 0.93 0.81 0.93 0.91 0.98 0.96 0.98 0.96 0.8 0.98
Cancer 0.52 0.52 0.5 0.53 0.54 0.59 0.54 0.53 0.53 0.51 0.53
CellCycle237 0.81 0.72 0.74 0.81 0.76 0.82 0.84 0.72 0.81 0.74 0.83
Colon 0.67 0.63 0.5 0.64 0.58 0.67 0.66 0.59 0.68 0.5 0.68
Delft 0.95 0.96 0.93 0.68 0.83 0.95 0.93 0.89 0.96 0.93 0.96
Diabetes 0.65 0.63 0.51 0.61 0.62 0.64 0.62 0.63 0.66 0.59 0.65
Ecoli 0.94 0.93 0.92 0.93 0.89 0.94 0.94 0.94 0.94 0.94 0.94
Glass 0.78 0.78 0.81 0.79 0.76 0.78 0.81 0.67 0.81 0.81 0.82
Heart 0.6 0.57 0.5 0.59 0.67 0.73 0.58 0.58 0.59 0.55 0.61
Hepatitis 0.56 0.53 0.5 0.56 0.73 0.74 0.56 0.55 0.54 0.56 0.57
Housing 0.65 0.65 0.58 0.68 0.76 0.78 0.69 0.66 0.65 0.7 0.7
Imports 0.7 0.68 0.81 0.66 0.69 0.65 0.71 0.73 0.78 0.83 0.74
Ionosphere 0.74 0.66 0.66 0.64 0.62 0.64 0.67 0.6 0.64 0.64 0.74
Iris 0.97 0.95 0.98 0.97 0.96 0.98 0.97 0.97 0.97 0.98 0.98
Liver 0.54 0.55 0.53 0.55 0.54 0.54 0.55 0.58 0.55 0.53 0.56
Satellite 0.95 0.92 0.5 0.95 0.9 0.94 0.96 0.94 0.93 0.92 0.96
Sonar 0.7 0.73 0.76 0.64 0.67 0.66 0.76 0.65 0.77 0.76 0.75
Spectf 0.66 0.61 0.5 0.56 0.57 0.55 0.52 0.61 0.63 0.64 0.66
Survival 0.61 0.58 0.56 0.56 0.57 0.58 0.62 0.62 0.61 0.55 0.65
Vehicle 0.75 0.77 0.5 0.76 0.83 0.9 0.79 0.76 0.77 0.79 0.82
Vowels 0.99 0.98 1 0.99 0.63 0.99 1 0.91 0.99 1 0.99
Waveform 0.89 0.85 0.87 0.9 0.86 0.91 0.89 0.89 0.88 0.88 0.91
Wine 0.86 0.85 0.57 0.88 0.85 0.96 0.86 0.86 0.86 0.83 0.87
YeastGalactose 0.99 0.99 0.98 0.99 0.97 0.98 0.99 0.75 0.99 0.99 0.99
Average Rank 5.35 7.48 8.55 6.93 7.08 4.23 4.72 6.72 5.02 6.87 3.05

Table 4.2: Second type of experiments — ROC AUC

Dataset GLOSH KNN L. LP ABOD Auto Enc. Gaussian KNN G. LOCI LOF PW SVDD

Abalone 0.62 0.62 0.7 0.67 0.65 0.7 0.68 0.67 0.63 0.71 0.73
Aloi 0.96 0.94 0.95 0.92 0.94 0.92 0.96 0.92 0.96 0.96 0.96
Balance-Scale 0.82 0.8 0.79 0.79 0.77 0.78 0.83 0.81 0.84 0.82 0.81
CellCycle237 0.81 0.69 0.73 0.75 0.76 0.76 0.79 0.71 0.75 0.74 0.78
Glass 0.75 0.71 0.76 0.69 0.69 0.64 0.76 0.7 0.77 0.76 0.77
Iris 0.95 0.93 0.97 0.96 0.94 0.82 0.96 0.95 0.93 0.97 0.97
Satellite 0.85 0.79 0.5 0.74 0.77 0.74 0.84 0.77 0.82 0.82 0.85
Vehicle 0.68 0.63 0.5 0.61 0.66 0.71 0.74 0.7 0.67 0.72 0.75
Vowels 0.94 0.94 0.98 0.75 0.7 0.64 0.98 0.9 0.95 0.98 0.98
Waveform 0.81 0.69 0.75 0.75 0.62 0.76 0.81 0.83 0.75 0.77 0.86
Wine 0.74 0.73 0.58 0.76 0.84 0.85 0.75 0.71 0.74 0.76 0.77
YeastGalactose 0.95 0.91 0.97 0.93 0.93 0.91 0.97 0.93 0.95 0.97 0.97
Average Rank 5.08 8.63 6.58 7.79 7.83 7.58 3.33 7.25 5.67 3.71 2.29
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Table 4.3: First type of experiments — AdjustedPrec@n

Dataset GLOSH KNN L. LP ABOD Auto Enc. Gaussian KNN G. LOCI LOF PW SVDD

Abalone 0.21 0.17 0.3 0.32 0.29 0.32 0.33 0.37 0.2 0.31 0.4
Aloi 0.92 0.87 0.85 0.93 0.92 0.95 0.94 0.91 0.91 0.92 0.92
Arrhythmia -0.19 0.14 -0.77 0.03 0.08 0.09 0.05 0.05 0.17 -0.77 -0.19
Balance-Scale 0.44 0.5 0.53 0.51 0.61 0.59 0.44 0.55 0.61 0.56 0.64
Ball-Bearing 0.84 0.78 -0.28 0.7 0.97 0.98 0.85 0.76 0.88 -0.2 0.84
Biomed 0.57 0.52 -0.54 0.31 0.4 0.54 0.57 0.45 0.37 0.06 0.08
Breast 0.84 0.75 0.43 0.75 0.72 0.87 0.84 0.88 0.83 0.38 0.87
Cancer 0.05 0.06 -0.32 0.06 0.03 0.08 0.11 -0.01 0.08 -0.32 -0.04
CellCycle237 0.41 0.32 0.4 0.45 0.42 0.51 0.5 0.34 0.44 0.45 0.52
Colon 0.2 0.16 -0.62 0.18 0.13 0.21 0.21 -0.17 0.2 -0.62 0.27
Delft 0.73 0.73 0.67 0.29 0.48 0.71 0.67 0.63 0.77 0.67 0.73
Diabetes 0.22 0.19 -0.52 0.18 0.16 0.22 0.18 0.21 0.24 0.11 0.23
Ecoli 0.75 0.7 0.66 0.72 0.59 0.73 0.75 0.72 0.74 0.74 0.74
Glass 0.4 0.38 0.47 0.45 0.37 0.41 0.48 0.24 0.46 0.49 0.49
Heart 0.16 0.11 -0.86 0.13 0.27 0.34 0.1 0.13 0.13 -0.23 0.17
Hepatitis 0.01 0.03 -0.28 0.04 0.24 0.25 0.01 0.02 0 -0.26 -0.02
Housing 0.11 0.13 0 0.14 0.2 0.22 0.18 0.16 0.13 0.14 0.16
Imports 0.35 0.28 0.45 0.21 0.31 0.22 0.36 0.38 0.41 0.53 0.32
Ionosphere 0.12 0.3 0.28 0.29 0.25 0.32 0.39 0.14 0.32 0.31 0.17
Iris 0.81 0.78 0.88 0.85 0.8 0.88 0.82 0.83 0.84 0.86 0.86
Liver 0.01 0.08 -0.62 0.06 0.05 0.06 0.05 0.13 0.07 -0.32 0.03
Satellite 0.73 0.59 -0.21 0.73 0.55 0.71 0.75 0.71 0.67 0.71 0.77
Sonar 0.26 0.34 0.38 0.18 0.23 0.21 0.39 0.23 0.41 0.39 0.3
Spectf 0.04 0.08 -0.26 0.06 0.05 0.08 0.07 0.12 0.11 0.04 0.05
Survival 0.15 0.12 0.04 0.1 0.11 0.13 0.19 0.17 0.17 0.06 0.25
Vehicle 0.35 0.37 -0.33 0.35 0.46 0.62 0.44 0.35 0.38 0.43 0.47
Vowels 0.87 0.83 0.94 0.83 0.84 0.82 0.94 0.82 0.86 0.94 0.94
Waveform 0.56 0.47 0.51 0.61 0.5 0.61 0.56 0.61 0.53 0.53 0.62
Wine 0.5 0.52 -0.28 0.56 0.49 0.8 0.51 0.52 0.51 0.47 0.53
YeastGalactose 0.96 0.9 0.88 0.94 0.88 0.9 0.96 0.44 0.91 0.92 0.95
Average Rank 6.3 7.02 8.8 6.4 7 3.92 4.23 6.33 4.85 6.97 4.18

Table 4.4: Second type of experiments — AdjustedPrec@n

Dataset GLOSH KNN L. LP ABOD Auto Enc. Gaussian KNN G. LOCI LOF PW SVDD

Abalone 0.12 0.2 0.22 0.21 0.18 0.3 0.23 0.26 0.21 0.3 0.16
Aloi 0.81 0.74 0.67 0.68 0.77 0.74 0.81 0.69 0.8 0.78 0.81
Balance-Scale 0.43 0.48 0.54 0.43 0.45 0.44 0.43 0.52 0.59 0.54 0.56
CellCycle237 0.31 0.18 0.04 0.22 0.24 0.23 0.28 0.17 0.3 0.21 0.27
Glass 0.29 0.28 0.34 0.2 0.22 0.13 0.32 0.21 0.34 0.34 0.17
Iris 0.8 0.75 0.86 0.83 0.78 0.58 0.82 0.79 0.76 0.85 0.86
Satellite 0.47 0.44 -0.21 0.21 0.35 0.31 0.46 0.29 0.45 0.32 0.44
Vehicle 0.25 0.17 -0.33 0.14 0.2 0.25 0.28 0.23 0.23 0.16 0.28
Vowels 0.58 0.58 0.77 0.14 0.19 0.08 0.77 0.3 0.61 0.77 0.76
Waveform 0.45 0.29 0.38 0.35 0.14 0.34 0.45 0.48 0.36 0.4 0.53
Wine 0.33 0.38 -0.51 0.37 0.54 0.56 0.37 0.37 0.38 0.26 0.31
YeastGalactose 0.81 0.64 0.82 0.74 0.69 0.64 0.85 0.73 0.73 0.84 0.85
Average Rank 5.21 7.46 6.58 8.04 7.17 7.33 3.71 6.67 4.67 4.92 4.25
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recent outlier detection method — called GLOSH [9] — to the one-class clas-

sification problem. We also discussed basic principles of one-class classifica-

tion that should not be violated when adapting unsupervised outlier detection

methods to this task, and how to assure that such principles are not violated.
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Chapter 5

Hyperparameter Selection in
One-Class Classification

5.1 Introduction

In chapter 4, we evaluated a number of different algorithms for one-class clas-

sification in a rigorous experimental setup. While our experimental setup was

consistent with previous literature involving one-class classification, there is

a major concern when performing one-class classification in real-world situa-

tions: performing model selection.

In traditional classification, it is possible to perform model selection and

choose hyperparameters using a separate validation set from training and test

data or performing cross-validation using training data, in order to produce

an estimate of the generalization performance of a model and guide the op-

timization of hyperparameters. In one-class classification however, we do not

have outlier objects with which to evaluate different models. If we were to

try to use cross-validation using only inlier objects, we could end up with a

model that simply classifies everything as an inlier, achieving perfect accuracy

on training data, but likely to do poorly at detecting outliers when deployed.

There has been some work done in exploring hyperparameter tuning in the

absence of outliers, these methods fall into the categories of heuristic methods

which are designed for one algorithm [17], [20], [33], [57], [60]–[62], or relying on

the generation of artificial outliers to use for validation [3], [13], [14], [56], which

quickly becomes computationally expensive with increasing dimensionality.
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In order to better understand the effects that hyperparameter values can

have on an algorithm’s accuracy for one-class classification, we can evaluate an

algorithm’s model on test data after training it on a range of hyperparameter

values on the training data. In this way we can analyze the sensitivity of an

algorithm to its parameters, which will determine its performance if a way

to reliably find ”good” parameters is not available. We should be careful to

note that a comparison between different one-class classification algorithms is

not valid here, as we are intentionally evaluating each algorithm’s generaliza-

tion performance across a range of hyperparameter values. Even though one

algorithm’s top accuracy score may be better than others’, there is no guaran-

tee that the associated hyperparameter values will be selected under normal

training and validation circumstances.

5.2 Experimental Setup

Our experimental setup is similar to that used in Chapter 4. For these exper-

iments, we evaluate the five top performing one-class classification algorithms

from Chapter 4 on 28 datasets, excluding the Aloi and Delft datasets as they

are aggregated datasets and as such, the effects of different hyperparameters

on individual datasets might not be reflected in the aggregate results. The

methods compared are: Gaussian Data Description, k-Nearest Neighbor Out-

lier Detection, Local Outlier Factor, GLOSH, and SVDD with a Gaussian

kernel.

From each dataset we produce multiple new datasets, each labeling a single

class as inliers, with all other classes as outliers, as in the Type I experiments

in 4, using the classes noted in Appendix A. Each dataset is split into training

and testing subsets containing 80% and 20% of the data respectively. Our

training phase differs from the experiments in Chapter 4, as we are not per-

forming cross-validation in order to select the best hyperparameters, instead

for each hyperparameter value we train each method on the training data (us-

ing only inliers), and evaluate the trained model on the testing subset using the

Weighted ROC AUC measure. This process is repeated 30 times to improve
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the reliability of our results. The full results for each method and dataset are

provided in Appendix B.

Two of the methods used, GLOSH and SVDD, have two parameters avail-

able for tuning. For the parameters of GLOSH, we adopted the convention of

setting mclSize equal to mpts. For SVDD, we fixed the parameter fracrej to

0.1, which is commonly used in practice.

5.3 Results and Discussion

In this section we will analyze the results of the experiments, noting some

interesting cases as well as providing insights that can be drawn from them.

For the Gaussian Data Description, we can see that the results tend to be

quite stable, with changes in the regularization parameter, r, not having as

large of an effect on its accuracy as with the other methods. In the datasets

where we do notice an effect, one of two situations occurs: either the accu-

racy increases monotonically with larger parameter values up to the maximum

value, or decreases monotonically. When r = 1, the covariance matrix becomes

the identity matrix, and the classifier’s output simply depends on an object’s

distance to the mean of the inlier objects in the training data, regardless of

direction. In datasets where the classes are well separated, such as Yeast-

Galactose (see Figure 5.1a), this can result in accurate classification results.

In datasets where the classes are not well separated, such as Vehicle (Figure

5.1b), retaining the covariances is important to accurately classify objects, and

so adding regularization has a negative effect.

Since we only have inlier objects available to us in one-class classification,

we cannot predict whether or not the outlier objects will be sufficiently separate

from the inlier objects to guide our decision to use covariance regularization,

and this can impact the results when we cannot perform cross-validation with

outlier objects as we did in Chapter 4.

For the most part, the results for k-Nearest Neighbor Data Description are

fairly stable across a range of values for k. Some interesting results include

those from the Biomed, Imports, Sonar, and Vowels datasets.
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(a) YeastGalactose

(b) Vehicle

Figure 5.1: t-SNE [39] scatter plots and Gaussian hyperparameter results for
the YeastGalactose and Vehicle datasets.

Recall that in k-NN Outlier Detection, an object is classified simply by its

distance to its k-th nearest neighbor. In Biomed (Figure 5.2a), it seems that

the classes are sufficiently separated such that with larger values of k, it is more

likely that for an object of one class, the k-th nearest neighbor in the other

class is towards the “back” of the distribution, resulting in a higher distance

and better classification. Imports (Figure 5.2b) is an interesting case, as the

inlier objects seem to form many small clusters. As a result, when simply

looking at the 1-nearest neighbor, we get good results. As we increase k, we

lose the benefits of the small clusters of neighbors as the distance to other

clusters starts to be considered until k becomes large enough that the more

global distances start to improve results similar to Biomed. In Sonar (Figure

5.3a) and Vowels (Figure 5.3b), we see a similar situation to Imports where
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(a) Biomed

(b) Imports

Figure 5.2: t-SNE scatter plots and kNN hyperparameter results for the
Biomed and Imports datasets.

the small clusters lead to good results with very small values of k, however we

do not see the same improvement with large values of k as the classes are not

sufficiently separate.

In practice we once again cannot predict how close the distribution of

outliers will be to the inliers. It would therefore seem that using large values

of k for k-NN Outlier Detection would not reliably achieve good results. If,

however, we are able to detect small, closely grouped clusters as in Imports,

Sonar, and Vowels, then it is possible that using small values of k can achieve

good results.

In Local Outlier Factor we see larger variability in the results with chang-

ing hyperparameter values compared to Gaussian Data Description and k-NN

Outlier Detection. In datasets such as Imports, Sonar, and Vowels (Figure 5.4)
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(a) Sonar

(b) Vowels

Figure 5.3: t-SNE scatter plots and kNN hyperparameter results for the Sonar
and Vowels datasets.

we again see high accuracy with low values of k, reflecting the small clusters

from which we can produce good local density estimates, however in other

cases it is not so clear that we can derive any information about a good value

for k without knowing any information about the outlier distribution.

A pattern emerges with GLOSH in that for most datasets, we see good

results for some small value of mpts, though the exact value varies. Once again

we see the small clusters present in the Imports, Sonar, and Vowels datasets

(Figure 5.5) resulting in good results for small mpts with the advantage quickly

disappearing. In other cases, there appears to be a fairly wide range of values

for which the performance of GLOSH is stable. The exceptions to this are

the Breast (Figure 5.6a) and Spectf (Figure 5.6b) datasets. We also show

the performance of GLOSH for each individual class. One possible reason
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(a) Imports (b) Sonar

(c) Vowels

Figure 5.4: LOF hyperparameter results for the Imports, Sonar, and Vowels
datasets.

for the poor performance of GLOSH at low values of mpts in Breast is due

to the small number of benign objects which overlap the malignant objects.

With a low value of mpts, these could be interpreted as a low density cluster

by HDBSCAN*, with malignant objects then being assigned to this cluster

for GLOSH and having a similar density to the benign objects in the cluster,

being classified as inliers. For Spectf, we note this result as a drawback of

the Weighted ROC AUC evaluation measure, as the aggregate measure can

result in a poor performance for one class masking a good performance with

another class, especially in an imbalanced dataset, as we see here. It is possible

that identifying values for mpts (and mClSize) that result in good HDBSCAN*

clustering results may also produce good results for GLOSH.

The results for SVDD show that in many cases, the kernel bandwidth
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(a) Imports (b) Sonar

(c) Vowels

Figure 5.5: GLOSH hyperparameter results for the Imports, Sonar, and Vowels
datasets.

parameter σ is quite sensitive to different values, with a noticeable peak for

many datasets (Figure 5.7). The performance of SVDD would then highly

depend on the hyperparameter selection method’s ability to find these peaks

in the absence of outlier data.

5.4 Summary and Conclusion

We analyzed the effect of a range of hyperparameter values on five one-class

classification algorithms. From this we found that in the absence of outlier

data for training and validation, it can be difficult to reliably select the best

hyperparameters. We saw how certain characteristics of the inlier class may

be helpful in selecting hyperparameters, such as the presence of clusters which

could help the unsupervised methods, though whether or not this is a reliable
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(a) Breast

(b) Spectf

Figure 5.6: t-SNE scatter plots and GLOSH hyperparameter results for the
Breast and Spectf datasets.

method remains to be seen.

While the SVDD algorithm has a number of hyperparameter selection

methods proposed, there is no similar work done for other one-class classi-

fication algorithms, nor has there been an extensive comparison of algorithms

without including outlier objects for validation. It is possible that internal

evaluation methods such as that proposed in [41] could provide a way to select

hyperparameters for one-class classification, and for a method such as that

proposed in [42] to produce a good clustering result for GLOSH.
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(a) Sonar (b) Vehicle

Figure 5.7: SVDD hyperparameter results for the Sonar and Vehicle datasets.
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Chapter 6

Combination Methods

6.1 Introduction

Often times when performing one-class classification, it can be beneficial to

combine different classifiers in order to improve their robustness and perfor-

mance [51]. The use of ensemble methods for classification is well studied and

many different methods exist to construct an ensemble [49]. Additionally, en-

semble methods have been used in outlier detection. [50], [65]. There is also a

growing amount of research into ensemble methods for one-class classification.

[25], [35], [55].

When looking to build an ensemble of one-class classifiers, some strategies

involve combining the classification scores produced by multiple classifiers on

some batch set of data. In general, these strategies can be divided into score-

based strategies and rank-based strategies. With score-based strategies, the

output scores for different classifiers must be combined in some fashion to

produce a new output score. One difficulty with this strategy is that the

output domains of the different classifiers may vary, for example one might

output a probability while another might be a distance measure. In order to

combine the classifiers, some normalization procedure must be applied to the

scores.

In order to avoid the problem of normalizing output scores, another set of

strategies instead relies on combining the rankings of the classifier outputs.

Given a list of outputs by a classifier on some data, we can construct a set of

rankings such that an object with a rank of j means that it has the j’th small-
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est value according to the classifier’s outputs, or the object most considered

an outlier. In this chapter, we will explore the use of rank-based strategies for

building ensembles of one-class classifiers utilizing the implementations pro-

vided by [31]. In particular, we utilized the Borda count [6], median [58],

Footrule [15], Condorcet [12], Reciprocal Rank Fusion [11], and ULARA [34]

methods.

Borda Count

The Borda count [6] is commonly used in elections as a ranking system where

voters can rank candidates according to their order of preference. For a given

voter’s ballot, each candidate is then awarded points according to their ranking

in the ballot. The winner is the candidate with the most points summed across

all voters. There are multiple versions of the Borda count, however in our

experiments we use the method which, given a ranking of n objects from a

classifier, awards n − 1 points to the object ranked 1st, n − 2 points to the

object ranked 2nd, and so on, with the object ranked last receiving 0 points.

Median

With the median combination rule [58], we simply present the median of an

object’s rankings across all classifiers as its score.

Footrule

The Footrule method [15] seeks to find the optimal solution to the problem

of minimizing the sum of distances between the combined ranking and the

individual rankings:

Footrule(R) = argmin
π

(∑
τ∈R

d(τ, π)

)
, (6.1)

where R is the collection of all the rankings from individual classifiers, τ is

the set of rankings from an individual classifier, and π is the set of rankings

produced by the combination method. The distance measure we use in our
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experiments is the Spearman footrule distance:

d(τ1, τ2) =

|τ |∑
i=1

|τ1(i)− τ2(i)| (6.2)

Condorcet

A Condorcet method is any method which satisfies the Condorcet criterion

[12] which states that in a ranked voting system, if a candidate would win in

all pairwise comparisons with the other candidates that candidate is the Con-

dorcet winner and should be ranked first. We use a method which satisfies the

Condorcet criterion by computing a matrix P of pairwise comparisons between

each object in a given classifier’s ranking, where P (i, j) = 1 if the object at

index i is ranked higher than the one at index j, and 0 otherwise. We produce

one such matrix for each classifier, and sum all the matrices together. We then

perform another series of pairwise contests between each object, ranking them

according to how many contests they win.

Reciprocal Rank Fusion

Reciprocal Rank Fusion (RRF) [11] is a simple scoring method that is based

on the authors’ intuition that the effect of lower ranked objects should not

vanish as it would were an exponential function used. The score of an object

is given by:

RRF score(s) =
∑
τ∈R

1

ϵ+ τ(s)
(6.3)

where τ(s) is the rank of object s from a given classifier and ϵ is a fixed

parameter. We use ϵ = 60 as suggested in [11] which mitigates the impact of

abnormal classifier rankings.

ULARA

ULARA [34] rewards classifiers that produce different rankings than other

classifiers by weighting them according to a measure of inconsistency:
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Inconsistency(τci) =

|τ |∑
j=1

(τci(j)− µ(j))2

where τci is the set of rankings from a given classifier, µ is the average ranked

list among all the classifiers, and |τ | is the number of ranked objects. We can

then assign a weight to each classifier:

W (τci) =
Inconsistency(τci)∑|τ |
j=1 Inconsistency(τci)

The weights are then used to perform a weighted average of the rankings

from each classifier.

6.2 Experimental Setup

Our experimental setup is as follows: for each experiment type outlined in

Chapter 4, we select the five top performing one-class classification algorithms

to use for combination (SVDD, Gaussian, kNNglobal, LOF, and GLOSH for

Type I, SVDD, PW, kNNglobal, LOF, and GLOSH for Type II). The datasets

and testing subsets are the same as in Chapter 4, with the exception of the

Aloi dataset. From the predictions made by each algorithm on each testing

subset of size m, we convert the algorithm’s output into a set of rankings from

1 to m, with the object of rank 1 considered the most outlier, and the object

of rank m considered the least outlier.

Once we have obtained a set of rankings for each algorithm on a given test-

ing subset, we then apply each combination method using these rankings to

obtain the predictions, and evaluate the output using the Weighted ROC AUC

measure. This procedure is repeated 30 times as before. Our goal is to inves-

tigate the application of rank combination methods to one-class classification,

and to determine whether or not they can build a robust classifier.

6.3 Results and Discussion

Tables 6.1 and 6.2 show the weighted ROC AUC scores for the combina-

tion methods. Figure 6.1 shows the average rankings of the methods with
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Figure 6.1: Average rankings of the combination methods over Type I and
Type II experiments.

width of the the upper bar (CD) indicating the critical distance of the Fried-

man/Nemenyi statistical test at significance level α = 0.05.

For the type I experiments, we can see that all the combination methods

do well compared to the individual methods, although the Footrule method

performs the worst among the methods, and close to SVDD. The Borda count

method frequently performs highest among the combination methods, as well

as overall. RRF and Ulara also perform well, though Borda is able to equal or

beat their performance on every dataset.

In the type II experiments, we see that SVDD now performs better than

the Condorcet, Footrule, and Median methods. The Borda count method once

again outperforms all the other methods, achieving the highest performance

on most datasets except Abalone, Glass, and Waveform. RRF and Ulara once

again are 2nd and 3rd in performance to Borda, though SVDD is not far

behind.

From the results, we can see that when most individual methods perform

well, the combination methods will also perform well and in many cases ex-

ceed any individual method’s performance as the diverse strengths of each

individual method benefits the combination. In the Spectf dataset, we see

the opposite effect in which the diverse weaknesses of each individual method

manifests in the combination methods doing very poorly.
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Table 6.1: Type I experiments with combination methods — ROC AUC

Dataset Combination Methods Single Methods

Borda Condorcet Footrule Median RRF Ulara GLOSH Gaussian KNN G. LOF SVDD

Abalone 0.74 0.74 0.75 0.75 0.73 0.74 0.66 0.74 0.73 0.66 0.77
Arrhythmia 0.57 0.57 0.59 0.59 0.57 0.57 0.63 0.55 0.52 0.6 0.64
Balance-Scale 0.96 0.96 0.95 0.95 0.96 0.96 0.88 0.93 0.87 0.92 0.91
Ball-Bearing 0.99 0.98 0.98 0.98 0.99 0.99 0.98 1 0.98 0.99 0.98
Biomed 0.84 0.84 0.84 0.85 0.84 0.84 0.84 0.8 0.84 0.71 0.7
Breast 0.97 0.96 0.96 0.96 0.97 0.97 0.96 0.98 0.96 0.96 0.98
Cancer 0.56 0.56 0.56 0.56 0.56 0.56 0.52 0.59 0.54 0.53 0.53
CellCycle237 0.88 0.88 0.88 0.88 0.88 0.88 0.81 0.82 0.84 0.81 0.83
Colon 0.68 0.68 0.68 0.68 0.68 0.68 0.67 0.67 0.66 0.68 0.68
Delft 0.98 0.97 0.97 0.97 0.97 0.97 0.95 0.95 0.93 0.96 0.96
Diabetes 0.68 0.67 0.67 0.67 0.67 0.67 0.65 0.64 0.62 0.66 0.65
Ecoli 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
Glass 0.81 0.8 0.8 0.8 0.8 0.81 0.78 0.78 0.81 0.81 0.82
Heart 0.64 0.62 0.62 0.62 0.63 0.63 0.6 0.73 0.58 0.59 0.61
Hepatitis 0.61 0.58 0.57 0.57 0.61 0.59 0.56 0.74 0.56 0.54 0.57
Housing 0.65 0.63 0.63 0.63 0.64 0.64 0.65 0.78 0.69 0.65 0.7
Imports 0.76 0.74 0.73 0.73 0.76 0.75 0.7 0.65 0.71 0.78 0.74
Ionosphere 0.75 0.74 0.74 0.74 0.75 0.75 0.74 0.64 0.67 0.64 0.74
Iris 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.98
Liver 0.56 0.56 0.55 0.55 0.56 0.56 0.54 0.54 0.55 0.55 0.56
Sat 0.97 0.97 0.97 0.97 0.96 0.97 0.95 0.94 0.96 0.93 0.96
Sonar 0.77 0.76 0.76 0.76 0.77 0.76 0.7 0.66 0.76 0.77 0.75
Spectf 0.38 0.39 0.39 0.41 0.38 0.38 0.66 0.55 0.52 0.63 0.66
Survival 0.65 0.65 0.65 0.65 0.65 0.65 0.61 0.58 0.62 0.61 0.65
Vehicle 0.85 0.84 0.84 0.84 0.84 0.84 0.75 0.9 0.79 0.77 0.82
Vowels 1 1 1 1 1 1 0.99 0.99 1 0.99 0.99
Waveform 0.91 0.89 0.89 0.89 0.9 0.9 0.89 0.91 0.89 0.88 0.91
Wine 0.91 0.88 0.88 0.88 0.91 0.89 0.86 0.96 0.86 0.86 0.87
YeastGalactose 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
Avg. rank 3.78 5.59 5.91 5.70 4.54 4.56 8.30 6.46 7.85 7.43 5.89

Table 6.2: Type II experiments with combination methods — ROC AUC

Dataset Combination Methods Single Methods

Borda Condorcet Footrule Median RRF Ulara GLOSH PW KNN G. LOF SVDD

Abalone 0.7 0.69 0.69 0.69 0.69 0.7 0.62 0.71 0.68 0.63 0.73
Balance-Scale 0.94 0.94 0.94 0.93 0.94 0.94 0.82 0.82 0.83 0.84 0.81
CellCycle237 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.74 0.79 0.75 0.78
Glass 0.74 0.72 0.72 0.72 0.73 0.73 0.75 0.76 0.76 0.77 0.77
Iris 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.97 0.96 0.93 0.97
Satellite 0.86 0.85 0.85 0.85 0.84 0.85 0.85 0.82 0.84 0.82 0.85
Vehicle 0.75 0.74 0.74 0.74 0.74 0.75 0.68 0.72 0.74 0.67 0.75
Vowels 0.98 0.98 0.98 0.98 0.98 0.98 0.94 0.98 0.98 0.95 0.98
Waveform 0.81 0.81 0.81 0.81 0.82 0.8 0.81 0.77 0.81 0.75 0.86
Wine 0.78 0.77 0.77 0.77 0.78 0.78 0.74 0.76 0.75 0.74 0.77
YeastGalactose 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.97 0.97 0.95 0.97
Average Rank 3.64 5.27 5.27 5.55 4.77 4.41 8.32 7.36 7.23 9.36 4.82
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6.4 Summary and Conclusions

In this chapter we investigated the use of rank-based strategies for combin-

ing one-class classifiers. The use of rankings rather than real-valued outputs

alleviates the need for normalizing the outputs of different methods.

One potential drawback of rank-based strategies over other strategies is

that we discard important information that could be present in scores, for

example if two objects have adjacent rankings but a large difference in score,

we may want this represented in the combination by a greater amount.

Another drawback is that rank-based strategies do not specifically target

the strengths and weaknesses of the individual classifiers and instead rely on

the classifiers being sufficiently accurate to achieve good results. In one-class

classification, however, because we normally do not have outlier objects with

which to validate our models, it is difficult to assess the strengths and weak-

nesses we could use to build our ensemble.

Nevertheless, we found the Borda method to be a simple and highly effec-

tive method for combining multiple one-class classifiers, consistently perform-

ing among the best out of all the methods tested.
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Chapter 7

Summary and Conclusions

In this thesis, we performed an extensive study on unsupervised outlier de-

tection methods adapted for one-class classification. We proposed a method-

ological framework for adapting unsupervised outlier detection methods to

one-class classification and applied it to GLOSH as an example.

We performed a comparison of one-class classification algorithms and un-

supervised outlier detection methods in the one-class classification scenario

over a number of datasets in two different experimental settings, as well as in-

troducing a complementary evaluation measure to one-class classification with

AdjustedPrec@n. We found that SVDD and kNNglobal were the top performing

methods.

We investigated the hyperparameter selection problem in one-class classi-

fication, providing an overview of the performance of hyperparameter settings

across a variety of datasets and gaining insight into what characteristics of a

dataset can affect the performance of a method. We saw how in the absence

of true outliers for performing hyperparameter optimization, it is difficult to

determine how well a method can perform in practice even if it does well with

good hyperparameters.

Finally, we investigated the use of rank-based combination strategies for

combining multiple one-class classifiers and found that they are a simple and

fast way to improve the robustness and performance over individual methods.
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7.1 Future Work

There are many avenues of research available in the realm of one-class classi-

fication and the application of techniques from unsupervised outlier detection

and learning. While we performed an extensive comparison of one-class classi-

fication algorithms and unsupervised outlier detection methods, there are still

more methods which could be compared in a larger study.

In addition, the comparisons performed in this study and in some literature

utilize true outliers in order to perform hyperparameter optimization, which

violates the principle that in one-class classification we do not have sufficient

samples of outliers to perform validation. While there have been methods

proposed for optimizing hyperparameters in the absence of outliers, a detailed

comparison has not been performed.

The hyperparameter selection problem is one which we believe could see

the biggest benefits from research. One possible direction could be the use of

generative models (such as Generative Adversarial Networks [21]) for gener-

ating artificial outliers which lie close to the boundary of an inlier class for

validation.
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Appendix A

Datasets

Table A.1 contains a list of all the Datasets used in this thesis, including the

number of objects in the dataset, dimensionality, number of classes, number

of objects in each class, as well as which classes were used as inliers to produce

one-class datasets.
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Table A.1: Datasets Used

Dataset # of objects # of features # of classes Class sizes Classes used

Abalone 4177 10 3 1407, 1323, 1447 all
Aloia 50 - 125 X 400 6 2-5 25 X 2-5 all
Arrhythmia 420 278 2 237, 183 all
Balance-Scale 625 4 3 288, 49, 288 all
Ball-Bearing 4150 32 2 913, 3237 1
Biomed 194 5 2 127, 67 all
Breast 699 9 2 241, 458 all
Cancer 198 33 2 151, 47 all
CellCycle237 237 17 4 49, 31, 18, 139 all
Colon 62 1908 2 22, 40 all
Delftb 3300 64 2 817, 2483 1
Diabetes 768 8 2 500, 268 all
Ecoli 336 7 2 52, 284 1
Glass 214 9 6 70, 76, 17, 13, 9, 29 1,2,3,4,6
Heart 297 13 2 137, 160 all
Hepatitis 155 19 2 123, 32 1
Housing 506 13 2 458, 48 all
Imports 159 25 2 71, 88 1
Ionosphere 351 32 2 225, 126 all
Iris 150 4 3 50, 50, 50 all
Liver 345 6 2 145, 200 all
Satellite 4435 36 6 1072, 479, 961, 415, 470, 1038 all
Sonar 208 60 2 111, 97 all
Spectf 349 44 2 95, 254 all
Survival 306 3 2 225, 81 all
Vehicle 846 18 4 212, 217, 218, 199 all
Vowels 528 10 11 48 X 11 all
Waveform 5000 21 3 1657, 1647, 1696 all
Wine 178 13 3 59, 71, 48 all
YeastGalactose 205 80 4 83, 15, 93, 14 all

aThe Aloi dataset is an aggregation of of 400 individual datasets, as detailed in Section
4.2.

bThe Delft dataset is an aggregation of 5 individual datasets: Delft5x3, Delft5x1,
Delft3x2, Delft2x2, and Delft1x3.

63



Appendix B

Hyperparameter Selection

Figures B.1, B.2, B.3, B.4, and B.5 show the weighted ROC AUC (y-axis)

obtained on testing data by varying hyperparameters (x-axis).
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(a) Abalone (b) Arrhythmia (c) Balance-Scale (d) Ball-Bearing

(e) Biomed (f) Breast (g) Cancer (h) CellCycle237

(i) Colon (j) Diabetes (k) Ecoli (l) Glass

(m) Heart (n) Hepatitis (o) Housing (p) Imports

(q) Ionosphere (r) Iris (s) Liver (t) Satellite

(u) Sonar (v) Spectf (w) Survival (x) Vehicle

(y) Vowels (z) Waveform (aa) Wine (ab) YeastGalactose

Figure B.1: Gaussian Data Description ROC AUC, parameter 10r
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(a) Abalone (b) Arrhythmia (c) Balance-Scale (d) Ball-Bearing

(e) Biomed (f) Breast (g) Cancer (h) CellCycle237

(i) Colon (j) Diabetes (k) Ecoli (l) Glass

(m) Heart (n) Hepatitis (o) Housing (p) Imports

(q) Ionosphere (r) Iris (s) Liver (t) Satellite

(u) Sonar (v) Spectf (w) Survival (x) Vehicle

(y) Vowels (z) Waveform (aa) Wine (ab) YeastGalactose

Figure B.2: k-Nearest Neighbor Outlier Detection ROC AUC, parameter k
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(a) Abalone (b) Arrhythmia (c) Balance-Scale (d) Ball-Bearing

(e) Biomed (f) Breast (g) Cancer (h) CellCycle237

(i) Colon (j) Diabetes (k) Ecoli (l) Glass

(m) Heart (n) Hepatitis (o) Housing (p) Imports

(q) Ionosphere (r) Iris (s) Liver (t) Satellite

(u) Sonar (v) Spectf (w) Survival (x) Vehicle

(y) Vowels (z) Waveform (aa) Wine (ab) YeastGalactose

Figure B.3: Local Outlier Factor ROC AUC, parameter k
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(a) Abalone (b) Arrhythmia (c) Balance-Scale (d) Ball-Bearing

(e) Biomed (f) Breast (g) Cancer (h) CellCycle237

(i) Colon (j) Diabetes (k) Ecoli (l) Glass

(m) Heart (n) Hepatitis (o) Housing (p) Imports

(q) Ionosphere (r) Iris (s) Liver (t) Satellite

(u) Sonar (v) Spectf (w) Survival (x) Vehicle

(y) Vowels (z) Waveform (aa) Wine (ab) YeastGalactose

Figure B.4: GLOSH ROC AUC, parameter mpts
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(a) Abalone (b) Arrhythmia (c) Balance-Scale (d) Ball-Bearing

(e) Biomed (f) Breast (g) Cancer (h) CellCycle237

(i) Colon (j) Diabetes (k) Ecoli (l) Glass

(m) Heart (n) Hepatitis (o) Housing (p) Imports

(q) Ionosphere (r) Iris (s) Liver (t) Satellite

(u) Sonar (v) Spectf (w) Survival (x) Vehicle

(y) Vowels (z) Waveform (aa) Wine (ab) YeastGalactose

Figure B.5: SVDD ROC AUC, fracrej = 0.1, parameter 10σ
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