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Abstract

Steam assisted gravity drainage (SAGD) is a widely used thermally enhanced

oil recovery process in western Canada. Petroleum reservoirs are large scale dis-

tributed parameter processes from a systems and control theoretic perspective.

Physics-based first principles models pose severe computational challenges in the

control and optimization studies; as a solution, proxy/surrogate models which

are computationally light are preferred to design the optimization based control

strategy. Caprock layer is the outer layer of the reservoir containing the dynamic

steam chamber from erupting out to the surrounding. Maintaining the factor of

safety (FoS) within the safety limit is crucial in operating the SAGD process. This

thesis provides comprehensive analysis of steam chamber and FoS to enable the

development of computationally efficient proxy models based closed loop reservoir

management strategy. All of the techniques presented are developed from the data

collected from a first principles-based commercial reservoir and geomechanical sim-

ulator CMG-STARS sequentially coupled with FLAC3D. The first proxy model

predicts the caprock pressure and temperature fields using reduced-order dynamic

modelling. The second performs dynamic analysis of FoS by modelling the evolu-

tion of caprock pressure clusters of high, medium and low pressure regions using

graph theory and subspace modelling. System theoretic properties of these proxy

models and their practical relevance is also analyzed. Next, a data-driven polyno-

mial chaos expansion (PCE)-based proxy model is developed to provide quick and

accurate estimation of caprock FoS along with the intention of propagating the
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uncertainty in well bottom hole pressure inputs and reservoir petrophysical pa-

rameters to the caprock FoS. The next contribution develops a static and dynamic

measures for the maximum operating pressure of the SAGD process respectively

from the PCE-based FoS proxy model and a model predictive controller (MPC) to

achieve FoS-constrained production optimized closed loop control strategy. The

final contribution analyzes the system theoretic properties viz. controllability and

observability with the intention of actuator and sensor placement and also provides

a method of assessment of partial actuation and in-sensor ranges.
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Chapter 1

Introduction

1.1 Complex systems, SAGD process and proxy

modelling

Proxy or surrogate modelling has been successfully used in many engineering dis-

ciplines, especially in control and optimization studies of complex processes; this

requires tasks like gradient computation, multi-step ahead forecasting, soft sensor

development and others[1]. Physics-based first principles models may not be feasi-

ble and/or may be computationally too costly to achieve these tasks. Weather fore-

casting models, ocean models and optimal organizational policy making processes

are some of the examples of complex processes to use proxy modelling strategy

[2, 3]. In this research work, we concentrate on petroleum reservoirs [4] which are

a class of complex processes having a large geographical spread with three dimen-

sional multiphase fluid flow through porous media parametrized by spatiotemporal

variations in petrophysical parameters contained in an irregular boundary having

multiple steam injection inputs and multiple oil production outputs; such pro-

cesses can be termed as large scale distributed parameter processes. Figure 1.1(a)

shows some of the important features which make the analysis challenging. Figure

1.1(b) shows the two major modelling strategies employed in practice; the physics-

based modelling is carried out through the partial differential equations (PDEs)

and the data-based proxy modelling is carried out using the concepts of statistical

learning, design of experiments/simulations and system identification techniques.

Physics-based models are difficult to analyze, solve and implement in practice but

proxy models can alleviate these challenges. Figure 1.1(c) compares different types

1
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of modelling techniques available in literature using the factors viz. complexity,

validity, phenomena capture, scale and precision. Physics-based models on one

end are highly complex but have global validity, captures micro/macro scale phe-

nomena, solvable at any scale with great precision; on the other end, the crude

models are highly simple but fail to meet all of these criterion. The proxy models

have to find a ’sweet spot’ between these two ends to provide optimal performance

with a fair computational cost.

Figure 1.2 shows the schematic of a SAGD process [5] having two well-injector

and producer running in parallel. Injector injects the steam which softens the

bitumen to flow down due to gravity and gets collected by the producer. The in-

jected steam creates a steam chamber which needs to be controlled. Out of many

layers in the reservoir, the caprock layer, which is an impermeable layer holding

the injected steam from erupting out to the surface, plays an important role in as-

sessing the safety of the operation of the reservoir. Maintaining the caprock factor

of safety (FoS) within the prescribed limits during the reservoir operation is cru-

cial in adhering to safe operational standards. Deformations associated with the

development of the steam chamber in the reservoir affect the FoS of the caprock

significantly [6]. In this research work we present a proxy modelling based strategy

to model and control the FoS of the caprock layer while optimizing the produc-

tion parameters of the SAGD process completely from a data driven approach.

The data is obtained from a first principles SAGD commercial simulator CMG-

STARS [7] sequentially coupled with FLAC3D [8] for geomechanical analysis on

the caprock layer [9]. To start with, we present two deterministic proxy models

to capture the spatiotemporal pressure and temperature dynamics in the caprock

layer. The first one is a proper orthogonal decomposition (POD)- based proxy

model and the second one is a cluster graph-based proxy model. The first proxy

model addresses the issue of reduced-order dynamic modelling of the caprock pres-

sure and temperature fields based on POD and system identification using data

from CMG-STARS. The second proxy model takes the first step towards dynamic

analysis of FoS in reservoir management by modelling the evolution of clusters of

high, medium and low pressure regions using graph theory and subspace modelling.

System theoretic properties of these proxy models and their practical relevance is

also analyzed.
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(a) Physics based reservoir modelling
challenges

Physics based 
First principles Model

(White Box Model)

Experimental  
or simulation data 
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Partial Differential Equations.
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(c) Varieties of modelling techniques available in literature. Each model type is assessed over the
factors of complexity, validity, phenomena capture, scale and precision. A desirable balance has to
be found when working with proxy models w.r.t. these factors.

Figure 1.1: Reservoir modelling strategies
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Figure 1.2: SAGD process overview
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In the next part, we present an uncertainty quantification technique to quan-

tify the uncertainty in the FoS with respect to the inputs and the petrophysical

parameters. With a limited number of well-logs, precise quantification of hetero-

geneity in petrophysical and geomechanical parameters is a challenge in coupled

reservoir-geomechanics modelling; this, along with nonlinearity in the process dy-

namics, gives rise to non-Gaussian uncertainties in the pore pressure/temperature,

which poses severe challenges in reservoir control and optimization. A data-driven

polynomial chaos expansion (PCE)-based proxy model is developed from sequen-

tially coupled reservoir-geomechanics simulation. Proper orthogonal decomposi-

tion (POD) combined with the PCE yields a proxy model that can provide a quick

and accurate estimation of caprock FoS along with quantifying its uncertainty. We

desire the FoS to be greater than unity, but a very high FoS is uneconomical from

the perspective of oil production rate. Hence, a FoS-constrained oil production

rate (OP) maximized closed loop reservoir management is valuable in the oil and

gas industry. A PCE based first order ARX model for the FoS is used as the

proxy model to predict its dynamics and to quantify its uncertainty. A first order

ARX model is also developed for the OP versus the well bottom hole pressure.

Using these two proxy models, we build a stochastic model predictive controller

(MPC) to decide the maximum operating pressure (MOP) of the SAGD process

to balance the FoS limit and maximal OP. We also present a static measure for

the MOP based on the PCE model along with the dynamic measure based on the

stochastic MPC.

Apart from controller design, system theoretic analysis of complex systems is cru-

cial in the framework of proxy modelling. The problem of sensor placement and the

control of steam chamber growth and oil production, respectively, require analysis

of the observability and controllability of the system. In SAGD, parametric sensi-

tivity is traditionally used in lieu of observability and controllability has not been

explored rigorously. In this work, we analyze the pressure and temperature fields

of a SAGD model and present a data-driven technique to assess the structural

controllability and observability of the system, with a view to determine optimal

locations of sensors and actuators. An agglomerative hierarchical clustering tech-

nique is used to obtain a spanning tree of the clusters which is partitioned based on

an objective function to arrive at a set of spatially contiguous clusters that display

similar pressure/temperature dynamics. A Granger causality measure is used to

create the linkage amongst the clusters to build a digraph model of the data. The
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driver nodes of the graph identify locations for actuation which provide full con-

trol over the graph, and the root strongly connected components indicate sensor

locations which ensure structural observability over the entire graph. We demon-

strate the method using data generated from CMG-STARS simulator, identify the

sensor and actuator locations required for complete structural observability and

controllability of the system, and also provide a method of assessment of partial

actuation and in-sensor ranges. We conclude our thesis highlighting the achieved

results and presenting the future horizons in this area.

1.2 Thesis contribution

Figure 1.3 shows the proposed proxy model based closed loop control framework

with an optimization objective for complex systems. The proxy models developed

for the complex system are used to design a model predictive controller to decide

on the control inputs that optimize a cost function while keeping the operation in

the required zone of stability. As soon as the new set of process data is measured,

the proxy models are calibrated/updated/recomputed to be used in the next step.

This loop continues throughout the operation of the process. This thesis provide

a similar proxy model-based framework to optimize the production profiles of the

SAGD process while keeping the FoS within the prescribed limit.

Figure 1.3: Proxy model based closed loop management of complex system
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1.3 Thesis outline

The thesis has five chapters excluding the introduction. Chapter 2: “Proxy mod-

els for caprock pressure and temperature dynamics during steam-assisted gravity

drainage process” proposes two proxy models; the first one estimates the caprock

pressure and temperature fields using a reduced-order dynamic modelling. The

second proxy model performs a dynamic analysis of FoS by modelling the evolu-

tion of caprock pressure clusters of high, medium and low pressure regions using

graph theory and subspace modelling. In Chapter 3: “Uncertainty quantification

of the factor of safety in a steam-assisted gravity drainage process through poly-

nomial chaos expansion”, a data-driven polynomial chaos expansion (PCE)-based

proxy model is developed to provide quick and accurate estimation of caprock

FoS along with the intention of propagating the uncertainty in well bottom hole

pressure inputs and reservoir petrophysical parameters to the caprock FoS. Chap-

ter 4: “Factor of Safety constrained Model Predictive Controller design for closed

loop reservoir management” combines the techniques from Chapters 2 and 3 to de-

velop a model predictive controller (MPC) to design a FoS-constrained production-

optimized closed loop control strategy. Chapter 5: “Graph-based determination of

structural controllability and observability for pressure and temperature dynamics

during steam-assisted gravity drainage operation” analyzes the system theoretic

properties viz. controllability and observability of the SAGD process with the in-

tention of actuator and sensor placement. It also provides a method of assessment

of partial actuation and in-sensor ranges. The last chapter is the Conclusions

which summarizes the thesis and discusses the scope for further development.

This is to re-emphasize that this thesis is a paper based thesis; hence, the reader is

advised of the potential repetition of the main concepts surrounding the problem,

especially in the introduction of each chapter.
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2.1 Introduction

A continuous time dynamical system can be modelled through first principles us-

ing differential equations and modelled empirically (though with a limited region

of validity) using input-output data. Reservoir modelling and analysis is typically

carried out using commercial simulators which encode first-principles models and

are computationally intensive. Parametric uncertainty is a significant challenge

when these models are used for history matching; another challenge is the accu-

rate modelling of near-well phenomena [1]. Proxy or surrogate models [2–4] are

proposed as an alternative to address some of these shortcomings [5–7]. Ideally,

Figure 2.1: System theoretic perspective of a reservoir

proxy models are computationally efficient [8], simple and easily modifiable [9–12].

Depending on their nature, they may not capture all physically significant aspects

of reservoir operation; however, they should at least be able to capture the rele-

vant input-output dynamics, perhaps with periodic updating [15, 16]. A variety of

proxy models are discussed in the literature related to reservoir modelling ranging

from artificial neural networks (ANN) [17], multidimensional polynomials [18] to

Monte Carlo sampling-based models [19] for uncertainty analysis, forecasting and

history matching. Recent advancements in local model reduction techniques for

accurately approximating highly nonlinear dynamics while considering spatiotem-

poral variations are discussed in [20–22].

The system theoretic perspective of a reservoir is shown in Figure (2.1). Steam

Assisted Gravity Drainage (SAGD) [23] is a thermal recovery technique used for re-

covery of bitumen from oil sands. There are three important layers in the reservoir:

the caprock layer, which is the top layer containing the oil and gas from coming

out (approximately 300m from the ground surface); the impermeable layer, which

is at the bottom, and the middle layer (the oil sands layer), which holds the bitu-

men. The SAGD process uses two parallel horizontal wells; the upper well, called

the injector, injects steam into the reservoir. As a result, the bitumen captured in

the oil sands becomes less viscous, flows down due to gravity and gets collected by

the lower well (called the producer). Reservoirs typically have multiple injector
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and producer wells. The injected steam creates a high pressure and temperature

chamber in the reservoir. One of the implications of having high temperatures

and pressures is that monitoring of the integrity of the caprock is essential for

safe operation. Many caprock rupture incidents like Joslyn [25] in the past have

proved the importance of monitoring the stress/strain over the caprock for a safer

operation of the reservoir. The factor of safety (FoS) [26], defined as the ratio

of the allowable stress to the actual stress in the caprock layer, specifies the con-

straints on reservoir operation. The pressure and temperature field variations in

the chamber should be monitored and kept within the FoS limit. Caprock damage

can result in great environmental damage, danger to humans and financial losses.

Reservoir operational safety is therefore of prime concern in the oil and gas indus-

try [27–29].

Closed loop optimization and control is extensively used in many engineering dis-

ciplines, and has been proposed for the management of petroleum reservoirs, too

[30]. Control-relevant proxy models for the reservoir and the caprock can pro-

vide computationally inexpensive solutions for this task. In this work, we propose

two such control relevant proxy modelling schemes. The first proxy model is de-

veloped for the pressure and temperature fields in the caprock based on proper

orthogonal decomposition (POD) and system identification. This method enables

visualization and forecasting of the entire pressure and temperature field varia-

tions using a set of basis vectors and time-varying coefficients. The second proxy

model groups the pressure and temperature fields into different clusters (zones)

and models interactions between the zones as a directed graph or network to cap-

ture the dynamic behaviour with their neighbouring interacting zones. This type

of proxy model provides a qualitative and quantitative way to analyze the factor

of safety in the reservoir based on the pressure and temperature fields and their

effect on the stress and strain profiles in the caprock. Both of these techniques are

designed to provide a computationally affordable approach considering the large

scale nature of the problem.

This article is organized as follows: The first-principles models and data gen-

erated from them are explained in the next section, followed by a description of

the proxy modelling techniques which is followed by results and discussion.
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2.2 Reservoir and caprock modelling

The data used in the development of proxy models is obtained from a CMG-

STARS reservoir simulator [33]. A model of a heterogeneous SAGD reservoir

having 5 injectors and 5 producers is provided with the designed inputs (described

later) and the data on the 2-dimensional cross section of the reservoir pressure and

temperature fields at various time instants is gathered and analysed. Figure (2.2)

explains the source of the data in the context of the reservoir geometry, showing

the 5 pairs of injector and producer wells. The spatiotemporal data consists of the

cross section of the pressure/temperature field at equally spaced time intervals,

referred to as frames. The simulation domain is illustrated in Figure (2.3) showing

Figure 2.2: Perspective view of reservoir structure with well bores and the
viewing directions. The 2D data frame (cross-section in the reservoir) is shown
and the inset shows a detailed view of the same with reference directions X and

Z.

different regions of interest. The thickness of the overburden was set to 120 m.

Part of the overburden (60 m) is included in the CMG-STARS model (STARS

2015.10 ). In the vertical direction, the model grid comprised a total of 81 grid

cells. The cell sizes were 10m per cell in the overburden (10 m × 6 cells); 1 m per

cell in the caprock (1 m × 25 cells); 1 m per cell in the reservoir (1 m × 45 cells);

and 4 m per cell in the underburden (4 m × 5 cells). In the horizontal direction,

the model width was 3000 m, and the model grid contained 1200 cells for CMG-

STARS. These cells were distributed from left to right as follows: 100 5-m cells;

1000 2-m cells; and 100 5-m cells. There are five wellpairs in the reservoir, with

the horizontal wells in each well pair being 5 m apart, and the production well

being located 5 m above the bottom of the reservoir. The horizontal coordinates

of the 5 producer wells are X = 1340 m, 1420 m, 1500 m, 1580 m and 1660 m. The
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Figure 2.3: A detailed simulation layout of the 2D frame

shale distribution of the heterogeneous 2D reservoir model is illustrated in Figure

(2.4), with 20% shale volume overall. The main parameters for the flow simulator

are summarized in Table (2.1).

Each frame has 1200 × 81 rectangular grid blocks (or points) in the X, Z direc-

tion corresponding to the width and height of the reservoir, and 184 such frames

(representing monthly data) are available. The pressure and temperature values

are reported for each grid block at each time sample. The inputs variables are

the well bottom-hole pressures of the injector and producer wells. In this chapter,

proxy models are developed for the caprock region. The dimension of the caprock

(pressure/temperature) data is 1000 × 25 × 184 and that of the input data as 10

× 184.

Table 2.1: CMG-STARS simulation parameters
So: Oil saturation, Sw: Water saturation

Particular Porosity Permeability

J (md)

Permeability

J (md)

Permeability

K (md)

So Sw

Overburden N/A 100 100 50 0.0 1.0

Caprock 0.1 1 1 0.001 0.0 1.0

Reservoir

sand

0.3 5000 5000 3330 0.85 0.15

Reservoir

shale

0.1 50 50 33 0.15 0.85

Underburden 0.1 1 1 0.001 0.00 1.0
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Figure 2.4: Shale distribution of heterogeneous reservoir

2.2.1 Input Design

Injector and producer well bottom hole pressures are the inputs to the SAGD

model. Persistence of excitation [9, 10] is an essential consideration when design-

ing inputs for the purpose of system identification. An input u(t) is said to be

persistently exciting of order n if the following conditions hold true.

1. The limit

ru(τ) = lim
N→∞

1

N

N∑
t=1

ut+τu
′
t

exists.

2. The matrix Ru(n) =


ru(0) ru(1) . . . ru(n− 1)

ru(−1) ru(0) . . . ru(n− 2)
...

...
...

...

ru(1− n) . . . . . . ru(0)

 is positive definite.

A necessary condition for consistent estimation of an nth order ARX model is

that the u(t) should be of order 2n. A pseudo random binary signal (PRBS)

persistently excites a system of any order. In this work, two simulation cases are

carried out with the CMG-STARS, one with MATLAB [31] designed PRBS for

the injector and producer well bore pressures, and another with a step input to

generate two data sets of the pore pressure and temperature. Both of the input
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data are of dimension 10 × 184. The data set with PRBS input is used for building

the POD based proxy model and the one with the step input for the clustering-

based method. As the intended proxy models are linear, a PRBS signal approach

was found to be sufficient for the identification.

2.3 Proxy modelling methods

2.3.1 Proper orthogonal decomposition

The 3D matrix data D (dimension 1000 × 25 × 184) is folded into a 2D matrix

by stacking rows such that every column in the resultant matrix corresponds to

a frame of the original data. Proper orthogonal decomposition [32] (POD) is a

data/signal/feature decomposition technique based on orthogonal basis expansion

which is used to obtain a low dimensional approximation of high dimensional

spatiotemporal data. POD can be used to approximate a function z(x, t) as a

finite sum in variables separated form as:

z(x, t) ≈ ΣN
i=1ψi(x)ai(t) (2.1)

where ψi(x) are called the basis functions or modes and the coefficients ai(t) are

called the basis weights. For a chosen N and ψi(x), equation (2.1) is the POD

expansion. In our finite dimensional discrete time case; z(x, t) is a D25K×184 ma-

trix, and POD can be achieved through singular value decomposition (SVD) and

is commonly referred as principal component analysis (PCA). We compute the

spatial basis functions using the SVD method.

D25K×184 = U25K×184 Σ184×184 V
′

184×184 (2.2)

U, V are orthogonal matrices and Σ is a diagonal matrix with the singular values

of D arranged in descending order.

In the R184 space, the principal component directions are the directions of the

columns of U25K×184. These principal directions obtained through SVD are by

definition those basis vectors which capture the information in the least square

sense and their corresponding singular values quantify the contribution of each of

the basis function. The ratio
Σr

i=iai
Σ184

i=iai
quantifies the percentage of energy captured
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by the first r basis functions out of the set of 184 basis functions. The first r

columns of U25K×184 are chosen as the truncated set of basis vectors, i.e. U25K×r.

Expressing every column of D in terms of U25K×r gives

D25K×184 = U25K×r Wr×184 (2.3)

where Wr×184 is the linear combination weights matrix, given as

Wr×184 = Σr×r V
′
r×184 (2.4)

where Σr×r is the r sized leading principal minor of Σ184×184. If full SVD com-

putation is not possible due to size constraints, then the weights matrix can be

computed as

Wr×184 = U ′25K×r D25K×184 (2.5)

Here, U ′25K×r is the transpose of U25K×r. Every column of Wr×184 contains the r

linear combination weights w1 ... wr, and we have such 184 columns of weights

corresponding to every frame.

2.3.1.1 System Identification

The pressure (or temperature) field at any point of time can be expressed as a

function of its past values and the m inputs, which suggests the possibility of

applying system identification techniques based on the proper orthogonal decom-

position. We have previously demonstrated the applicability of system identifica-

tion to proxy modelling [12, 13]. In the POD framework we see that every frame

(column of D) has r representative weights and these weights can be modelled

as functions of their past values and the m process inputs. Modelling the frames

translates to modelling the POD weights, described as follows. At any time frame

t, we can express the kth row of W =
[
w1 w2 . . . wr

]′
with respect to input U(t)

as

wk(t+ 1) = f{wk(t), U(t)}

∀ t ∈ {1 . . N − 1}, k ∈ {1 . . r}, U(t) ∈ Rm (2.6)
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We use a linear auto-regressive with exogenous input (ARX) model (f) to estimate

the future frames. The ARX model is given by

A(z−1)w(t) = B(z−1)u(t− nk) + e(t) (2.7)

A(z−1) = 1 + a1z
−1 + ....+ anaz

−na

B(z−1) = b1 + b2z
−1 + ....+ bnbz

−nb+1

A and B are polynomials of order na and nb − 1, respectively (to be estimated),

and nk is the input delay. With m inputs, the ARX model (2.7) is given by (2.8)

A(z−1)wk(t) = B1(z−1)u1(t−nk)+B2(z−1)u2(t−nk)+...+Bm(z−1)um(t−nk)+e(t)

(2.8)

Estimating a future frame that is l steps ahead translates to estimating the (N+l)th

column of D. So r ARX models (each for a POD weight) are fitted to find the

(N + l)th column of W .

W (; , N + l) =
[
w1(N + l) w2(N + l) . . . wr(N + l

]′
The future frame can be estimated as:

D(:, N + l) = U25K×r W (:, N + l)

Figure (2.5) summarizes the POD based proxy modelling procedure.

2D Data3D Data

ARX Models
for POD
Weights

Future Steam  
Injector Profile

Folding POD
Basis

Vectors POD
Weights

Basis
Vectors

Estimated  
Future POD  
Weights

ReconstructionEstimated Future
2D DataUnfolding

 
3D Data  
Estimate

Figure 2.5: Schematic of the POD based proxy modelling technique

It should be noted that the approach presented here uses stacking (or vectorization)

to fold the 3D matrix data into a 2D matrix for performing the POD analysis. A

potentially more efficient method (in terms of the number of basis vectors needed

to reproduce essential spatiotemporal features) is to use a tensor algebra-based
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approach such as higher order singular value decomposition [14]. However, the

approach used here is shown in the results to be adequate for developing a reduced

order system identification-based framework for modelling.

2.3.2 Clustering-based modelling

The proxy model described in this section clusters the pressure (or temperature)

field to identify characteristic regions and track their dynamics and the interactions

between them.

2.3.2.1 Data Clustering

The pressure (or temperature) grid points in every frame are sorted into Nc bins

(clusters) having equal spacings over the range of the pressure values (equivalent

to constructing a Nc binned histogram for every frame), and the bin counts of

the clusters (the number of grid points in that particular cluster) is computed for

every frame. After binning every frame into Nc clusters, the average and standard

deviation of pressure for each cluster over all the frames is calculated. Modelling

the bin count variations over the frames serves as a proxy model to understand

the dynamics of the clusters of different pressure ranges.

The interaction between the pressure clusters can be modelled using a graph,

with each cluster a node and the interactions between the clusters represented

by edges. Figure (2.6) shows how the clusters and interactions can be modelled

by a directed weighted line graph. Each vertex of the graph corresponds to the

bin count for that particular pressure cluster, every cluster interacts with its ad-

jacent clusters and the bin count of every cluster at any instant depends on the

interacting adjacent clusters’ bin counts; this leads to a line graph. This can be

generalized easily to any number of clusters Nc. For the specific case being con-

sidered here, the interactions only occur with neighbouring clusters, leading to a

directed line graph. This leads to a tri-diagonal structure to the system matrix

φ of equation (2.9). The tri-diagonal structure with non-zero entries assures the

controllability and observability of the model (explained in section 2.4.3) for any

number of clusters. Reservoirs with a more heterogenous nature will require a

larger number of clusters along with a more complex set of interactions between
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Cluster Nc Cluster 3 Cluster 2 Cluster 1 

d'

- a - c

b' c'

- b

S

Figure 2.6: A directed and edge weighted line graph shows the interaction
between the clusters. It governs the bin count dynamics where the edge weight
is the index of the interaction. Only the incoming edge weight affects the node

state.

the clusters; approaches such as those described in [34–36] can be used to develop

the network descriptions for those cases.

2.3.2.2 State Space modelling

For the sake of demonstrating the technique, the number of clusters in each frame

is chosen as 4, i.e Nc = 4. The bin counts of the nodes at the (i+ 1)th instant can

be represented in terms of their bin counts at the ith instant:

N i+1
4 = N i

4 − aN i
3 + ei4

N i+1
3 = N i

3 − bN i
2 + b′N i

4 + ei3

N i+1
2 = N i

2 − cN i
1 + c′N i

3 + ei2

N i+1
1 = N i

1 + dN i
2 + ei1 + S

As the pressures in the clusters are ordered as P4 < P3 < P2 < P1, the neigh-

bouring higher pressure cluster serves to decrease a cluster’s bin count, and the

neighbour lower pressure cluster increases its bin count. eik is the residual in the

model for the bin count of the kth state at the ith instant; which is assumed to

be Gaussian with zero mean. The structure of the interactions reported here is

specific to the reservoir and operating conditions considered in this work, but the

concept can be generalized easily.



Chapter 2 19

The set of difference equations governing the cluster equations is described in

matrix (state space) form as:
N i+1

4

N i+1
3

N i+1
2

N i+1
1

 =


1 −a 0 0

b′ 1 −b 0

0 c′ 1 −c
0 0 d 1



N i

4

N i
3

N i
2

N i
1

+


0

0

0

1

S + Ei

N i+1 = φ N i + Γ S + Ei (2.9)

Ei = [e1 e2 e3 e4]′ is assumed to be an independently identically distributed noise

vector, and here S is the source/input. The model development problem is to ob-

tain estimates of the unknown coefficients a, b, b′, c, c′, d and S. In the simulations

for this part of the work, S was chosen to be a step input.

2.3.2.3 State Space Parameter Estimation

The state space parameter vector θ =
[
a b b′ c c′ d S

]′
can be estimated using

the available bin count data reported in Figure (2.16) as follows:

θ = arg min
θ
||N i+1

j − (φ(θ)N i
j + ΓS)||22

and the estimates are obtained using a weighted least squares formulation.

2.4 Results

2.4.1 POD-based proxy models

The first set of results related to the POD and system identification-based proxy

models are presented in this section. Figures (2.8(a)) to (2.8(i)) shows (9 out of

10) the image representation of the POD basis vectors U25K×10 of equation (2.3).

Figure (2.9) shows the logarithmic variation of all of the POD weights of the data.

Figures (2.10(a)) to (2.10(c)) illustrate the effect of the number of basis vectors r

used in the POD reconstruction of the pressure field. A choice of 10 for r provided

good reconstruction of the original pressure field in terms of capturing the variance

in the data, with the ratio of the minimum and maximum singular values being of
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Figure 2.7: The Image representation of the pressure data frames at various
instants (180, 140, 110, 50 from top left to bottom right). The pressure values
are scaled and mapped to colors and an image is drawn (refer color bar). Number

of grids and the direction is also shown.

the order of 10−3 and the percentage of energy captured by the 10 out of 184 basis

functions is 99.58%. For the system identification procedure, the first 170 of the

184 data points are used for training and the other 14 are reserved for validation.

The parameter estimation was carried out using an autoregressive model with

exogeneous input (ARX model).

2.4.1.1 ARX modelling

This section shows the modelling results of all the POD weights models (equation

2.6). Since there are 10 input variables, the structure of the ARX model used for

each of the POD weights is given by equation (2.10)

A(p)wk(t) = B1(p)u1(t−nk)+B2(p)u2(t−nk)+...+B10(p)u10(t−nk)+e(t); (2.10)

Based on trial and error, polynomials of order 3 were used for A(p), B1(p)−B10(p)

in the identification procedure, and the delays were set to one sample. The models
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(a) Basis 1 (b) Basis 2 (c) Basis 3

(d) Basis 4 (e) Basis 5 (f) Basis 6

(g) Basis 7 (h) Basis 8 (i) Basis 9

(j) Color map for all the basis

Figure 2.8: POD spatial basis visualization: Scales of all of the subfigures is
same as of Figure (2.7)

were evaluated based on the normalized root mean squared error (NRMSE) en-

capsulated by the fit % reported by the system identification toolbox in MATLAB

given by equation (2.11), and on the autocorrelations of the residuals and their

cross-correlation with the inputs.

Fit % =
(

1− ||y − ŷ||
||y −mean(y)||

)
× 100 (2.11)
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Figure 2.9: Logarithmic plot of the POD weights showing a steep decrease
in the order of weights with their indices, the ratio of the 10th singular value
(marked on the curve) to the 1st being order 10−3 and capturing 99.58% of the

total energy can be seen.

(a) Pressure field without
any POD reduction

(b) Pressure field recon-
struction with 20 basis

(c) Pressure field recon-
struction with 10 basis

Figure 2.10: Reconstruction with different number of POD basis; Colormap
see Fig(2.7)

y is the actual data and ŷ represents the model predicted output. Figure (2.11)

and Figure (2.12) show results for the modelling of POD weight 1 for the modelling

and validation data sets, respectively, and Table (2.2) summarizes the model fit

percentages for all the ten weights. Percentage fit is shown in both Figures (2.11),

(2.12) and the Table (2.2). Figures (2.13(a), 2.13(b) and 2.13(c)) show the actual

174th frame in the validation set, the same frame reconstructed with the discussed

POD+ARX technique and the error (actual-reconstructed) frame with the error

Frobenius norm respectively. We reconstructed all the 14 frames in the validation

set and compared them with the actual data. The error (Frobenius norm) in the
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frames ranged from 85 to 115 and in the individual frame the error at every grid

ranged between -5 and 5.

Weight index % modelling Fita % Validation Fitb

1 91.91 94.36
2 82.17 97.51
3 87.63 54.48
4 62.34 96.44
5 46.98 63.59
6 24.86 68.65
7 -6.215 75.54
8 9.078 81.7
9 5.599 66.3
10 4.048 79.12

Table 2.2: System identification of POD weights. a Fit with 10 step ahead
prediction, b Fit with one step ahead prediction.

Figure 2.11: System identification on training dataset result: Actual and mod-
elled weight w1(l), dotted line indicates identified model and solid line indicates

the actual data.
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Figure 2.12: System identification on validation dataset result: Actual and
modelled weight w1(l), dotted line indicates identified model and solid line in-

dicates actual.

(a) Actual 174th frame in the
validation data set; colormap
see Fig (2.7)

(b) POD + ARX based re-
construction of 174th frame

(c) Error (actual - re-
constructed) 174th frame
||E||F = 111.9929

(d) Color map for the differential frame (2.13(c))

Figure 2.13: POD+ARX based reconstruction visualization

2.4.2 Cluster-based graph modelling

The computed average pressures of the four clusters are 803.23KPa, 1052.70KPa,

1302.2KPa and 1551.63KPa, with standard deviations of 63.79KPa, 155.98KPa,
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248.74KPa and 341.6KPa, respectively. Figure (2.15) shows the frame-wise vari-

ation of the pressure centres, with the trends showing that the pressure centres are

increasing with time. The framewise variation of the bin counts of all the four clus-

ters are shown in Figure (2.16). The parameter estimation for the cluster-based

modelling (equation 2.9) seeks to minimize the objective function

||N i+1
j − (φN i

j + ΓS)||22

which can be portrayed as the follows


−N i

3 0 0 0 0 0 0

0 −N i
2 N i

4 0 0 0 0

0 0 0 −N i
1 N i

3 0 0

0 0 0 0 0 N i
2 1





a

b

b′

c

c′

d

S


+ Ei =


N i+1

4 −N i
4

N i+1
3 −N i

3

N i+1
2 −N i

2

N i+1
1 −N i

1



Building this matrix for all the 183 instants we get a matrix of the following form

X468×7 θ7×1 + Ei = Y468×1

The vector of parameter to be estimated, θ, is obtained using an error weighted

least square solution using the normal equation

θ = (X ′ ∗W ∗X)−1X ′ ∗W ∗ Y (2.12)

The estimated model parameters θ and the corresponding state space matrix φ (of

equation (2.9)) are presented below.

a = −0.0107

b = −0.0260

b′ = −0.0057

c = −0.0211

c′ = −0.0096

d = −0.0415

S = 75.79


;φ =


1 0.0107 0 0

−0.0057 1 0.0260 0

0 −0.0096 1 0.0211

0 0 −0.0415 1
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The bin count dynamics are governed by the weighted adjacency matrix (Aw) of

the graph, which is a tri-diagonal system matrix φ = Aw + I. The spectrum of

φ is represented by the eigenvalues 1± 0.0068i and 1± 0.0338i. In the z-domain,

this is equivalent to all the poles lying outside the unit circle, giving rise to slowly

growing bin counts.

Figure 2.14: A typical frame with clustered pressure grid points: four coloured
regions corresponds to four regions having high pressure - brown, yellow clusters,
medium pressure - cyan and low pressure -blue cluster (outermost cluster near

to the ground)

2.4.2.1 Residual Error

The residual bin count error 2-norm ||Ei|| between the modelled and the original

data is computed as

||Ei||22 = ||N i+1 − (φN i + ΓS)||22
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Figure 2.15: Variation of pressure centres of every cluster with frames. Colour
map is same as Figure(2.14). Variation is centred about Blue - 803.23 KPa,
Cyan - 1052.70 KPa, Yellow - 1302.2 KPa and Brown - 1551.63 KPa with a
corresponding standard deviations of 63.79 KPa, 155.98 KPa, 248.74 KPa and

341.6 KPa

Figure 2.16: Variation of normalized bin count of each cluster vs frames.
Colour map is same as Figure(2.15)
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The norm is found to be [0.1252 0.0936 0.0930 0.0752]′. The cross correlation

coefficient matrix for the bin count error is:

Corr(Ei) =


1.0000 −0.5115 −0.6330 −0.2264

−0.5115 1.0000 0.0023 −0.3431

−0.6330 0.0023 1.0000 −0.1904

−0.2264 −0.3431 −0.1904 1.0000


Since most of the cross-correlation coefficients are relatively small (less than 0.35),

this indicates that residuals in the estimation are not correlated strongly, giving

confidence in the parameter estimates.

2.4.3 Controllability and Observability

The strong interaction between the clusters in the process assures non-zero pa-

rameters in φ for the model described by equation (2.9). Consequently, the con-

trollability matrix
[
Γ φΓ φ2Γ φ3Γ

]
is full rank, and the system is completely

controllable by construction. This ensures that the bin count of any cluster can

be controlled by the step input S. The feasibility of tracking the bin counts of all

the clusters by knowing the bin count of one of the clusters may be referred as

observability. As the bin count of a cluster is not directly measurable, we need to

build a lookup function which maps the pore pressure measured through a ground

sensor to the respective bin counts of that cluster.

Observability is evaluated using the model described by equation (2.9) along with

the measurement equation given below

Y = CN i (2.13)

With C = [1 0 0 0] (discussed in the subsequent section), the model (2.9) is fully

observable for the same non-zero parameters reason in φ. This assures us that an

asymptotic observer can be designed to track the bin counts.
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2.4.3.1 Observer with ground sensor measurement

With C = [1 0 0 0] the sensor (perhaps placed on the ground surface) can

measure the average pore pressure around the top of the caprock which corre-

sponds to the outermost cluster, in Figure (2.14). A look-up function fGL (refer

Figure(2.17)) can be constructed to relate the bin count of the outermost cluster

to this measured pressure, thereby acting as an indirect measurement for N i
4.

Ground lookup function: The outermost bin count variation (Figure 2.16) can

be modelled against the corresponding average pressure centres variation (Figure

2.15) to build a lookup function. An ARX model can be developed for the same.

Cluster bincount = fL {Pressure Centre}

An observer for the bin count developed on the basis of this look-up function is

Figure 2.17: Outermost cluster bin count versus its pressure centres look-up
function response

given below:

N̂i+1 = φN̂i + L[yi − CN̂i] + ΓS
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yi = fGL(Ground Sensor Measurement)

Figure (2.18) shows the observer bin count error dynamics versus time for a simple

Figure 2.18: Ground observer bin count error dynamics. The figure shows
that the observer is able to catch up with the actual bin count over the course

of time

Luenberger observer developed in MATLAB with gain L = [0.62 13.34 50.68 75.77]′

so that the poles [0.85 0.86 0.87 0.88]′ of φ− LC lie within the unit circle.

2.4.4 Temperature data analysis

The previous sections explained the analysis over the pressure field of the caprock.

Along the same lines Temperature or the steam chamber data can also be analysed.

Figure (2.19) shows the evolution of the temperature field in the caprock. For

brevity we do not provide detailed analysis here, but report the results in Appendix

6.2.
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Figure 2.19: The image representation of different temperature data frames
at different time instants (180, 140, 110, 50 from bottom right to top left).The
temperature values are scaled and mapped to colors and an image is drawn.
The reservoir has 5 injectors and 5 producers wells. Temperature is measured

in degrees Celsius.

2.4.5 Practical considerations

The proxy models discussed so far are fairly computationally inexpensive and can

be easily recomputed as soon as we get a new set of data, indicating that this

can be used in monitoring and prediction. A single simulation for the reservoir

and caprock over 184 time frames takes 24 hours, while each of the proxy mod-

els provide predictions of the behaviour over the same timeframe in seconds on

the same computer. After discussing the different approaches to model the pore

pressure and temperature, it is worth discussing the impact of pore pressure and

temperature on the induced stress on the caprock hence on the FoS. Let us con-

sider a simple model of a linear elastic rock reservoir which is assumed to be a very

long cylinder with an elliptical cross section with an aspect ratio (thickness:width)

of e. Pore pressure (∆P ) and temperature (∆T ) are uniformly changing within

the reservoir, and the change in vertical stress in caprock and reservoir is directly

proportional to the change in pore pressure and temperature as described by the
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Figure 2.20: A typical frame with clustered temperature grid points: : Four
colors corresponds to four clusters with high temperature 158.15 C - Brown,
116.38 C - Yellow, medium temperature 74.63 C - Cyan and low temperature
32.86 C - Blue with corresponding standard deviations of 56.86 C, 40.62 C,

24.39 C and 8.15 C.

following equation.

∆σV =
1− 2v

1− v
e

1 + e
∆C

∆C = α∆P : Pore pressure change

∆C =
Eη

1− 2v
∆T : Pore temperature change

Here v stands for Poisson’s ratio, η is the thermal expansion coefficient and α is the

Biot coefficient. [37]. This illustrates the fact that there is a direct relationship

between the pore pressure and temperature and the stress-strain profile in the

caprock. An exhaustive analysis of the stress/strain profile based on detailed

numerical calculations is outside the scope of our work in this manuscript, but will

be pursued in our future work to develop a fully quantitative dynamic prediction

for the factor of safety.
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2.5 Comparison of proxy modelling methods

The Table 2.3 summarizes these two strategies and draws a comparison between

them.

Table 2.3: POD verses Cluster Graph Comparison

Particular POD Graph Comments

Linearity Linear/Non-Linear Linear ARX models can be

non-linear in nature

but the cluster graph

is inherently linear

Number of

parameters

n+ 10(n− 1) + 10 re-

spectively for A, B1−10

and k1−10 is 11n

2(n− 1) For a nth order model

System theo-

retic proper-

ties

Not obvious Controllable

and Observ-

able

CG scores over POD

Nature Generates the whole

data field

Generates

bincounts

and lookup

functions

POD scores over CG

Computational

Complexity

Fairly Intense Fairly simple CG scores over POD

Parameter

Estimation

Advanced optimiza-

tion techniques

Ordinary

Least Squares

CG scores over POD

Type of exci-

tation used

PRBS Step ARX models inher-

ently require PRBS

excitation

Scalability Fairly complex Simple CG scores over POD

Model Up-

date

not straight forward quite straight

forward

CG scores over POD

2.6 Conclusions

The role of proxy models in reservoir management was discussed, and two compu-

tationally inexpensive proxy modelling approaches were discussed. A POD-based
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model order reduction coupled with system identification was proposed to model

and predict the pressure field. This approach demonstrated a promising result in

modelling and predicting the entire pressure field and its response to variations in

the reservoir inputs. Tensor analysis methods like Higher Order SVD and allied

methods may provide farther mathematical insights into this dynamics, but the

core idea behind the POD method was to generate a reduced order spatial basis

and build a system identification framework to forecast the future frames with a

low computational cost method. The clustering-based line graph model was pro-

posed to model the pressure bin counts (regions of different ranges of pressures),

which yielded a subspace model whose parameters were identified from the data

obtained from detailed reservoir simulations. This model exhibited full control-

lability and observability properties and was successfully used in implementing

an observer to track the bin counts by measuring the pressure in the outermost

cluster by a sensor mounted on the ground surface. These methods can be imple-

mented in forecasting the factor of safety dynamically based on predictions of the

future injector and producer well bore pressures. The feasibility of the techniques

discussed over the pore pressure were also used to model the pore temperature

with similar results.
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3.1 Introduction

Uncertainty and imprecision are unavoidable in all engineering problems, and two

types of uncertainty quantification (UQ) can be carried out in model based opti-

mal policy computation as shown in Figure 3.1(a): forward UQ and reverse UQ.

Forward UQ deals with transferring input and parametric uncertainties to the out-

puts of the system and reverse UQ deals with propagating the input and output

sensor uncertainities (noise) to the states [1]. This work deals with the former

case for the factor of safety (FoS) in a steam assisted gravity drainage (SAGD)

process as the output, with high parametric uncertainty in the reservoir perme-

ability [2–5]. SAGD is a large scale nonlinear distributed parameter system spread

across a vast geographical area and the limited availability of well logs to sample

the heterogeneity makes it even more complex in UQ. Monte Carlo simulation

[6] is a widespread method which is simple to implement but is computationally

intensive, requiring a prohibitively large number of sampling points to apply ef-

fectively to SAGD [7]. Hence, we propose a computationally affordable technique,

polynomial chaos expansion (PCE), that requires a handful of sampling points to

achieve reasonable UQ of the FoS [8–10].

�

�,�

�
�

�̄

(a) Forward UQ: Propagating uncertainty in
input U and system parameter θ to output
Y .Reverse UQ: Propagating uncertainty in
input U and measured sensor output Ȳ to sys-
tem states X.

��� − ��

���  =  � (�, � )

� ���

�

(b) Forward uncertainty quantification of FoS
with input U and petrophysical parameter ξ
as the random variables.

Figure 3.1: Uncertainty quantification.

The SAGD process [11] shown in Figure 3.2 is the most widely used recovery

technique for oil sands. Two parallel wells, the injector at the top and the

producer at the bottom, run in parallel. The injector well injects steam into the

reservoir, mobilizing the bitumen to flow down due to gravity to the producer.

The development of the steam chamber applies a vertical stress field on the
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caprock, which is an impermeable layer preventing the high pressure oil and

gas from escaping to the surface. The FoS [12, 13] is a measure of the stability

of the caprock and is computed as a function of the stress state and shear

strength of the caprock layer. Numerically, it should be greater than 1 to assure

caprock integrity. Caprock rupture incidents such as Joslyn [14] have proved the

importance of caprock surveillance in SAGD operations and precisely quantifying

the uncertainties in the FoS is essential to monitor it. The stress field on the

caprock layer is mainly a function of reservoir pore parameters like pressure, tem-

perature, well bottom hole pressure (well BHP) and the reservoir petrophysical

parameters (mainly permeability). In this work, to have a parsimonious PCE

representation, we only consider two of the factors affecting the stress field of the

caprock, i.e. the well BHP and the reservoir permeability. Figure 3.1(b) shows

Top View

Front View

Side View

ProducerInjector

Steam	Chamber

Caprock

Ground Level
Caprock

Figure 3.2: Schematic of a SAGD process showing two parallel wells (steam
injector and the oil producer). The caprock layer shown at the top experiences

stress due to the growth of the steam chamber.

the functional representation of the FoS as a function of the well bottom hole

pressure as input (U), and the petrophysical parameters (ξ). An explicit form of

this functional relationship (f) is not directly available; hence, we are left with the

option of analyzing this relationship through data obtained from a first-principles

reservoir flow simulator CMG-STARS [15] sequentially coupled with FLAC3D

[16], which is used to compute stress and strain (explained in detail in the next

section). This work will present this simulator data-based technique to obtain

a PCE model for the FoS. All of the computations are carried out in MATLAB [17].

PCE was introduced as a homogeneous chaos by Weiner and is derived
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from the Cameron-Martin theorem to represent a random process in terms

of orthogonal polynomials of standard random variables [18, 19]. As pointed

out earlier, PCE is computationally efficient compared to Monte Carlo-based

techniques [20]. PCE represents a random process as an infinite series of the

products of orthogonal polynomials of standard random variables (RV) as basis

functions and deterministic weighing coefficients:

Y =
∞∑
i=1

yiψi(ξ) (3.1)

Y is the random process of interest, yi are the deterministically computable

weighting coefficients and ψi(ξ) are the orthogonal polynomials of RV ξ (basis

functions) of order i. The recurrence relations of the orthogonal polynomials can

used to generate them and within a defined interval, they make an orthogonal

basis for a defined inner product. The first N terms are considered depending

upon the required accuracy. The most commonly used orthogonal polynomials

include, but are not limited to, Hermite, Legendre and Chebyshev polynomials[21].

The proper orthogonal decomposition (POD) [22–24] refers to decomposing

a given field (function) into orthogonal counterparts; this is practically equivalent

to the singular value decomposition (SVD) [25, 26] for our case where the

simulator FoS data is spatiotemporal data (also referred to as snapshots) [27].

The POD expansion allows us to estimate the spatial variation in the snapshots

of FoS by decomposing the field into a set of basis functions and singular values

(SVs). The SVs capture the variability present in the field hierarchically from the

highest to the lowest (component-wise), and the variability in the spatiotemporal

FoS data can be captured by the first few dominant SVs. Owing to this feature of

the SVD, we consider the SVs of the FoS as the representatives of the uncertainty

and model them with PCE while keeping the corresponding basis intact.

The organization of the chapter is as follows: Section 3.2 describes the

SAGD system and the details of the sequentially coupled reservoir-geomechanics

simulator setup and the obtained data format. Section 3.3 explains the analysis

techniques, followed by Section 3.4 providing the corresponding results and

discussion. Section 3.5 provides conclusions and future directions.
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CMG - STARS FLAC

Reservoir Caprock

Porosity,
Permeability

Update

Pore Pressure,
Temperature

Stress, Strain

Flow Simulation Geomechanical Simulation

Well Bottom Hole
Pressure

FoS
 PCE Model FoS

FoS Computations

Figure 3.3: Sequentially coupled simulation between the CMG-STARS and
FLAC3D; the pore parameters change affects the stress strain which in turn

affects the petrophysical parameters, which changes the pore parameters.

3.2 Process modelling, data generation and vi-

sualization

This section describes the details of the simulation framework and the tools used

in the data generation and visualization. To start with, we describe the details

of the sequentially coupled simulation platform, which consists of CMG-STARS

for reservoir flow simulation and FLAC3D for computing stress and strain. A

sequential coupling platform facilitates the study of the effect of geomechanics

and in turn the FoS in a SAGD process. This platform enables to visualize

the interactions between flow and deformation response in subsurface modelling

in the SAGD process [28]. Figure 3.3 shows the flow chart of the coupled

reservoir-geomechanics simulation and the use of the PCE model for UQ. The

pore pressure and temperature obtained from CMG-STARS are used to compute

the stress and strain through FLAC3D. This information is transformed into the

updates in the petrophysical parameters of the reservoir, and the pore pressure

and temperature are re-computed with the updated parameters and the loop goes

on (refer [29] for details).

A wellpad of MacKay River oil sand area is selected and applied in the

coupled platform with geomechanical and reservoir models. The schematic of

the reservoir model with the permeability distribution and the geomechanical

model under consideration is shown in Figures 3.4 and 3.5, respectively. A total

of 6 well pairs operate in the pad with well spacing of 100 m. The grid size

and numbers vary in different formations to retain the inherent heterogeneity
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due to the sedimentation process. The Wabiskaw and McMurray formations are

included in both the reservoir and geomechanical model, and the Till, Clearwater,

and Devonian formation are only included in the geomechanical model for

computational efficiency, as the flow response in these three formations can be

ignored due to the low permeability. The injectors open from day 1 for preheating

of the cold bitumen near the wellbore and the producers open in 150 days for

production; hence, for the purpose of modelling, data from day 160 and onwards

is considered. The caprock region, which is the region of interest in this study,

corresponds to the Clearwater formation, and the reservoir corresponds to the

Wablskaw and McMurry formations; the rest is the under and over burdens. A

pseudorandom binary sequence (PRBS) input for the well BHP for injectors and

producers is designed to provide excitation to the system and generate suitable

data for the purposes of modelling and identification. The designed PRBS

frequency range is between three to six months, sufficient enough to capture the

variability in the FoS due to the well BHP. In this work, the variability in the FoS

data is due to the uncertainty in the petrophysical and geomechanical parameters

and the input PRBS of the bottom hole pressures. The PCE model developed

serves as the UQ tool in both inputs and the parameters.

3.2.1 Data visualization

Here, we present the steam chamber evolution at different instants of time.

Figure 3.6 shows the steam chamber growth with Figure 3.6(a), Figure 3.6(b) and

Figure 3.6(c) showing the 3D steam chamber at t=1, 10 and 25 (time frames)

respectively. Each time frame corresponds to 100 days of operation. The spread of

the steam chamber across the reservoir and the heterogeneity in the permeability

is clearly seen in the figure.

Working with PCE requires the generation of an ensemble of realizations of

the random process of interest. In our case, it is the FoS realizations and

the corresponding well BHP input. Since we consider working with a two-

dimensional reservoir problem in this work, we conduct a single heterogeneous

three-dimensional simulation and use each two-dimensional slice perpendicular

to the well direction (XZ) as a separate realization. This approach is better

as it considers the cross-flow terms capturing the true dynamic flow behaviour

during the SAGD process, and is therefore our preferred approach for creating

2D realizations. To summarize, 200 XZ frames along the Y direction of the 3D
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Figure 3.4: The working reservoir model in 3D with permeability I distribution
in milli darcy. Well pairs 1-6 can also be seen.

Till Formations

Clear Water Formations

Wablskaw Formations

McMurry Formations

Devonian Formation

X

Z

-200 m

-150 m

-100 m
-80 m

-50 m

0 m
200 grid horizontally (X and Y) with 5 m length

10 Grids with 5m Thickness

6 Grids with 5m Thickness

10 Grids with 2m Thickness

25 Grids with 2m Thickness

10 Grids with 5m Thickness

Figure 3.5: Reservoir model schematic (XZ plane description) with grid size
and numbers. Caprock: Clear water Formations; Reservoir: Wablskaw and

McMurry formations.

model are used as 200 2D realizations to construct the ensemble. Figure 3.7

demonstrates the formatting procedure to obtain the 2D realizations from a 3D

simulation. Figure 3.8 shows the average change of the permeability across all the

realizations at t=1 (Figure 3.8(a)), t=10 (Figure 3.8(b)) and t=25 (Figure 3.8(c))

respectively. In sequential coupling, the permeability distribution is updated at
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(a) Steam chamber growth across the reservoir at t=1.

(b) Steam chamber growth across the reservoir at t=10.

(c) Steam chamber growth across the reservoir at t=25.

Figure 3.6: Reservoir steam chamber visualization at different times.
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each time step. The permeability distributions presented in Figure 3.8 are the

‘posterior’ permeability distributions obtained after the updates, which will be

used in the PCE model development.

� 200

� 6

�  200 29 ���� ������

� 200

� 6

�  200

�� 1 = Ξ1 �� 200 = Ξ200

�  1 �  29

Figure 3.7: Working data format: 200 realizations (Ξ1 − Ξ200) of spatiotem-
poral FoS data taken as the XZ frames. Data at every instant T has 200 grid
points in X, 200 grid points in Y and 6 grid points in Z taken over 29 time
frames. Every realization {Ξk}200

1 is of dimension 200 × 6. The PCE model is
computed over the realizations for each time instant.

3.3 Working procedure

Figure 3.9 presents the modelling work flow. The first three columns to the left

in the figure show the realizations of the reservoir permeability {Ξk}200
1 , the cor-

responding reservoir pressure and/or temperature fields computed from CMG-

STARS and the FoS field realizations computed from the sequentially coupled

FLAC3D data (refer to Figure 3.3 for more details on sequential coupling), re-

spectively, at any instant of time t. The singular value decomposition of the FoS

realizations yields basis {Uk}200
1 and {Vk}200

1 and the ensemble of singular values

(SVs) {Sr,k}r=6,k=200
r=1,k=1 . The SV ensemble acts as the ‘representative’ of the FoS

field, and is used as the output of the PCE model of the underlying FoS field.

3.3.1 FoS computation

After obtaining the stress data from FLAC3D, the FoS can be computed for every

grid point using

τstrength = (σ − Pp)sin(φ) + Ccos(φ) (3.2)

where σmax and σmin are the maximum and minimum stress component of the

stress tensor, respectively. Pp is the pore pressure, C is the cohesion and φ is

the friction angle. All of these variables are directly available from the coupled

simulations to compute the FoS.

τ =
σmax − σmin

2
(3.3)
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(a) Average reservoir XZ permeability over all realizations at time t=1.

(b) Average reservoir XZ permeability over all realizations at time t=10.

(c) Average reservoir XZ permeability over all realizations at time t=25.

Figure 3.8: Reservoir permeability field visualization at different times.

FoS =
τstregth
τ

(3.4)

3.3.2 Singular value decomposition: (SVD)

SVD decomposes a given matrix into a product of two basis vectors and the

matrix of SV. SVD hierarchically captures the total variance in the data into

the basis vectors scaled by the matrix of SVs (highest to lowest). In essence, the

ratio of the magnitude of a particular SV to the sum of all SVs is proportional

to the relative magnitude of the variance captured by it. Also, each SV along
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CMG-STARS FLAC SVD

Sequential coupling

SV
Decomposition

{ S1, S2 .... }

SV
Decomposition

{ S1, S2 .... }

SV
Decomposition

{ S1, S2 .... }

{ (�)�� }200
1

{ (�)�� }200
1

{ (�)�1,� }200
1

 {Ξ�}200
1

Reservoir Pressure 
/ Temperature

Caprock 
FoS Field � = ���

�
Singular Value 
Ensembles

Basis Vector 
Ensembles

PCE
.
.
.

(�) = (�)�1 ∑�

�=1 �� ��

(�) = (�)�2 ∑�

�=1 �� ��

PCE Model

{ (�)�2,� }200
1

Figure 3.9: Overview of the work flow to develop a PCE model for the FoS
field in a sequentially coupled reservoir simulation using SVD.

with its basis can be used contsruct a low rank approximation of the original

data and the highest SV gives the matrix 2-norm of the original data. It is

in this context that we call the SVs as the representatives of the original data

(in our case, the FoS field). SVD has been used extensively in data analysis

both in deterministic, stochastic and spatiotemporal frameworks.[30–32]. We

use the SVD for two purpose in our work. First, we use it to analyse the FoS

field to determine how many SVs and corresponding basis vectors are required

to reconstruct the field accurately. Secondly, we use the SVD on the reservoir

permeability field realizations to quantify or to find a set of representatives of a

particular realization to be used in building a PCE model.

The FoS data D is four dimensional (spatial dimension: 200 × 200 × 6

grid blocks, with 29 time frames) and is considered as 200 realizations of a frame

of dimension 200 × 6 with data available at 29 time instants (see Figure 3.7).

The SVD for a particular realization Ξk of the frame at any time instant {t}29
1 is

given by

D200×6(t) = U200×6(t) Σ6×6(t) V ′6×6(t) (3.5)

Σ(t) =


σ1(t) · · · 0

...
. . .

...

0 · · · σr(t)

 (3.6)
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U(t), V(t) are orthogonal matrices and Σ(t) is a diagonal matrix at any time

frame t, with the SVs of D arranged in descending order. These basis vectors

capture the variance in the data in the least squares sense and their corresponding

SVs quantify the contribution of each basis vector. The ratio
Σr

i=iσi
Σ6

i=iσi
quantifies the

percentage of variance captured by the first r SVs (out of 6 in our case). To keep

the computational cost of building the PCE model low, we choose the first r SVs

and fit a PCE model for each of them. Out of the r SVs, the first SV (S1) is the

most important as it quantifies the 2-norm of the corresponding frame, which can

be effectively taken as a representation of that frame.

Sr(t) = { Fr(ξ, µ, t) }r=6,t=20
r=1,t=1 (3.7)

The reservoir permeability realizations Ξ1−200 are analyzed similarly; here, the

data D is also four-dimensional (spatial dimensions 200 × 200 × 35 over 29 time

frames) and is viewed as 200 realizations of frames of dimension 200 × 35 at 29

time instants (see Figure 3.7). The SVD for a particular realization Ξk of the

frame at any time instant {t}29
1 is given by:

D200×35(t) = U200×35(t) Σ35×35(t) V ′35×35(t) (3.8)

Here, we choose the first r dominant SVs to represent the kth realization Ξk. Fig-

ure 3.10 explains the application of SVD in representing a realization Ξk by its

dominant SVs (ξk1, ξk2 ... ξkr). This procedure helps us to represent a 2D perme-

ability field by a sequence of SVs, which is useful in computing the PCE model.

It is worthwhile to mention that the Ξk represents the ‘posterior permeability’ of

the sequential coupling process.

{    . . .     }��1 ��2 ��� ��

SVD
Ξ�

 Realization of the permeability field�
�ℎ Representative Set

Figure 3.10: Representing each realization with a set of r representatives
obtained from SV decomposition of the reservoir permeability field.

3.3.3 Polynomial chaos expansion

After computing the SV distribution of the FoS field over its realizations for every

instant of time {Sr(t)}r1, we can develop a PCE model for each Sr(t) as a function
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of the well BHP (µ) as the input and the permeability vector (ξ) as the parametric

uncertainty at every instant of time. The parametric uncertainty ξ incorporates the

intrinsic heterogeneity in the permeability, the error in computing the permeability

field due to the limited availability of well logs and the uncertainty arising in the

sequential coupling. The input variable µ is assumed to have a uniform distribution

Find the
representatives  for

 through SVD and
normalization

�, �
Ξ, �

Generate collocation
points based on higher

order polynomial 

 roots and compute 
,��+1 ��+1

��
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�, �
�, �

� �
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Change �, �, �, �
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Figure 3.11: PCE workflow algorithm.

and is expanded with a sequence of Legendre polynomials that are orthogonal on a

scaled interval [0, 1]. The uncertain parameters ξi (representatives) are normalized

by scaling them as standard normal variables and expanded with a sequence of

Hermite polynomials on the interval [−∞, ∞]. The output variable of interest,

Sr (SVs of the FoS), is expanded as a combination of the polynomials as follows:

Sr(t) = f1(t)H1(ξ) + . . . + fr+1(t)L1(µ) + . . . + fi(t)Hj(ξ)Lk(µ) + . . . (3.9)

Equation 3.9 represents the general PC expansion, where i represents the number

of terms considered (based on truncation of equation 3.1), and j and k are the

order of the polynomials H and L, respectively. The PCE coefficients fi(t) are

computed from the process data {Sr,k}r=6,k=200
r=1,k=1 , permeability data {Ξk}200 and

the input µ for every t using regression and collocation methods [20].

Figure 3.11 describes the details of the implementation of the PCE mod-

elling. The realizations are split into modelling and validation data, with PCE

coefficients being computed over all the modelling realizations and the developed



Chapter 3 52

PCE model then being tested over the validation realizations to check the

modelling adequacy. If the model’s accuracy in validation is not satisfactory,

the number of terms, the order of the polynomial basis, and the combination of

the polynomials are changed; the new PCE model is rebuilt and checked again

for adequacy over the validation realizations. This process is repeated until an

adequate model is found. Regression analysis indices such as the error sum of

squares (SSE), the coefficient of determination (R2) and the adjusted coefficient

of determination (R2
adj) are used as the metrics for model adequacy.

A pair of polynomials, f(x) and g(x), are said to be orthogonal in an in-

terval [a, b] if

< f, g >=

∫ b

a

f(x)g(x)dx = 0 (3.10)

where < f, g > denotes the inner product of f(x) and g(x). A sequence of such

orthogonal polynomials can be generated for a given interval [a, b] using their

recurrence relationship. Table 3.1 gives the Hermite and Legendre orthogonal

polynomials of order 1-4 and their respective roots over the intervals [−∞, ∞]

and [0, 1]. The orthogonal polynomials can be generated using the Python library

ORTHPOL [33].

Table 3.1: Hermite (Hi) and Legendre (Li), ith order polynomials defined
respectively over the intervals [−∞, ∞] and [0, 1] alongwith their roots.

Type Polynomial Roots
H1(ξ) ξ 0
H2(ξ) ξ2 − 1 ±1
H3(ξ) ξ3 − 3ξ 0,±

√
3

H4(ξ) ξ4 − 6ξ2 + 3 ±2.3334,±0.7420
L1(µ) µ− 0.5 0.5
L2(µ) µ2 − µ+ 1

6
0.7887, 0.2113

L3(µ) µ3 − 3
2
µ2 + 3

5
µ− 1

20
0.5, 0.8873, 0.1127

L4(µ) µ4 − 2µ3 + 9
7
µ2 − 2

7
µ+ 1

70
0.9306, 0.6700, 0.3300, 0.0694

3.4 Results and discussion

A set of randomly chosen 100 permeability realizations are used for training the

PCE model and the other 100 realizations are used for validating it.
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3.4.1 FoS computation

The factor of safety is computed using equations (3.2, 3.3 and 3.4) at every grid

block for all realizations over time. Now we need a scalar measure of FoS for

every frame to mathematically compare its magnitude with other frames and at

other instants of time. For this purpose, we propose two schemes to obtain a scalar

measure: in the first, we find the minimum FoS over all the grids points in a frame

and call it the representative of that frame. In the second, the first SV (S1) of the

FoS field (which represents the matrix 2-norm of the field) is normalized by dividing

it by the 2-norm of a matrix of ones of the dimension of the frame (200×6). Figure

3.12 shows the evolution of the minimum FoS (first measure) of every frame over all

realizations and time. Similarly, Figure 3.13 shows the evolution of the normalized

highest SV (second measure) over realizations and time. These two visualizations

present the two different scalar measures (representatives) of the FoS of a frame

over all realizations and time. The trend in both of the representations is similar;

the FoS measure decreases with time and the variation across the realizations

increases over time. Figure 3.14 visualizes exact locations of occurrence of the

minimum FoS in the X direction over all realizations (Y) (reported with X, Y and

Z grid numbers). Figures 3.14(a), 3.14(b) and 3.14(c) shows the variation at t=1,

t=10 and t=25, respectively. At each X location, the minimum FoS always occurs

at the bottom layer of the caprock (at Z=6, the layer right above the reservoir).

This is expected as the closeness of the steam chambers influences the FoS of the

bottom of the caprock stronger than the other regions of the caprock. Also, it is

interesting to note that the location of the minimum FoS is confined to the middle

zone of X where the six well bores are placed.

3.4.2 SVD

The SV decomposition of the permeability field Ξ over all the realizations and

time shows that only first three dominant SVs are good enough to capture most

of the variance, as shown in Figure 3.15. The ratio
Σ3

i=1ξi
Σ35

i=iξi
, considering three of the

total SVs averaged over all realizations and time, is 0.4912, which means the first

three SVs capture 49.12% of the total variance in the permeability; this implies

3 random variables ξ1, ξ2 and ξ3 can characterize the permeability field covering

49.12% of the total variance. Hence, every kth realization of the permeability field

Ξk at an instant of time t is characterized by the set {ξk1 ξk2 ξk3 µt}, where the

random variable µ represents the input (well BHP).
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Figure 3.12: Evolution of actual minimum FoS over different realizations and
time.

Figure 3.13: Evolution of representative FoS (normalized highest SV) over
different realizations and time.

On the other hand, Figure 3.16 shows the SVs (S1 ... S6) of the FoS frame

over all the realizations and time. The ratio
Σ2

i=iSi

Σ6
i=iSi

considering two of the total

SVs averaged over all realizations and time, is 0.9995, and if only the first SV is

considered, the ratio becomes S1

Σ6
i=iSi

= 0.9985. That means the first SV captures

over 99% of the total variance in the FoS data. This justifies the choice of three

random variables to characterize the permeability: even though they capture only

49.12% of its variance, the corresponding variance of the FoS that is captured is
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(a) At t=1. (b) At t=10.

(c) At t=25.

Figure 3.14: Minimum FoS locations in X over realizations (Y) at Z=6 (the
bottom layer of the caprock, i.e. the layer adjacent to the reservoir). These
are the locations in the XY plane where the FoS is the least at different time

instants.

over 99%.

Once the number of SVs to be considered for the FoS field is decided, we

can use the averaged basis over all the realizations U(t) and V (t) and recon-

struct the FoS field from only two out of six SVs. Figures 3.17, 3.18 and 3.19

demonstrate this process at t=1, t=10 and t=25, respectively. Figures (3.17(a),

3.18(a), 3.19(a)), (3.17(b), 3.18(b), 3.19(b)) and (3.17(c), 3.18(c), 3.19(c)) show

the actual FoS field, the reconstructed FoS field with the first two dominant SVs

and the reconstruction error = [actual frame - reconstructed frame], respectively,

at time instants 1, 10 and 25 instants. In all of the cases, the Frobenius norm of

the error frame ‖E‖F is reported as a metric to evaluate the reconstruction error.

The Frobenius norm is defined as ‖E‖F =
(
Σ6
i=1 Σ100

j=1|eij|2
)1/2

, where eij is the
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error at each grid point. ‖E‖F is quite low at the start, increases later then and

seems to saturate. The number of SVs and the effectiveness of the technique are

deemed to be satisfactory, since ‖E‖F is relatively small at all times.

Figure 3.15: Average permeability SVs over realizations vs their index and
time. A sharp decrease at the knee point is clearly seen at the third SV, where
Σ3

i=1ξi
Σ35

i=iξi
= 0.4912. Three SVs of each realization are used as its representative in

PCE expansion.

Figure 3.16: Average FoS SVs over all realizations versus their index and
time. A sharp decrease at the knee point is clearly seen at the second SV,

where
Σ2

i=iSi

Σ6
i=iSi

= 0.9995. Hence, at most two FoS SVs of each realization can

capture 99.95% of the variance of the FoS field.
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(a) Actual average FoS frame over all realizations.

(b) SVD reconstructed average FoS frame over all realizations.

(c) Error frame = Actual - Reconstructed, ‖E‖F = 0.04.

Figure 3.17: SVD-based FoS field reconstruction with two SVs; visualization
at t=1.

3.4.3 Polynomial chaos expansion

The SVs {Sr}6
1 of all realizations of permeability are computed and normalized as

a standard Gaussian random variable ξ between [−∞, ∞] for all time. The well

BHP input is normalized as a standard uniform random variable µ between [0, 1].

The realizations are characterized by ξ and µ with the first three dominant SVs of

the permeability field; this means that the set {ξr1, ξr2, ξr3, µt} represents a par-

ticular realization Ξr. Equations 3.11 and 3.12 give the PCE expansions for {Sr}6
1

of first and second order, respectively, in terms of µ, ξ1, ξ2 and ξ3. Each of the

terms in the expansion and the corresponding estimated coefficients are tabulated

in Tables 3.2 and 3.3. The model coefficients fi are computed using regression or

collocation methods. The regression coefficients are estimated by performing least
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(a) Actual average FoS frame over all realizations.

(b) SVD reconstructed average FoS frame over all realizations.

(c) Error frame = Actual - Reconstructed, ‖E‖F = 0.56.

Figure 3.18: SVD-based FoS field reconstruction with two SVs; visualization
at t=10.

squares regression of the PCE model over all the modelling realizations and com-

puting fi over them. In the collocation method, specific realizations are chosen as

the collocation points and fi is computed over them. The Gaussian quadrature

technique [34] is used to choose the collocation points. It suggests that the collo-

cation points be chosen as the roots of the next higher order polynomials used in

the PCE model. The collocation points (realizations) in terms of representative

SVs for the first and second order PCE model are obtained through the roots of

the second and third order polynomials, respectively (see Table 3.1). A combi-

nation of higher order polynomial roots (eg. roots of H3 in ξ1, ξ2, ξ3) are used as

the collocation points and the corresponding realization and FoS are chosen as the
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(a) Actual average FoS frame over all realizations.

(b) SVD reconstructed average FoS frame over all realizations.

(c) Error frame = Actual - Reconstructed, ‖E‖F = 0.52.

Figure 3.19: SVD-based FoS field reconstruction with two SVs; visualization
at t=25.

collocating realization to find fi.

Sr(t) = f1(t)H1(ξ1) + f2(t)H1(ξ2) + f3(t)H1(ξ3) + f4(t)L1(µ) (3.11)

Sr(t) = f1(t)H1(ξ1) + . . .+ f4(t)H2(ξ1) + . . .

+ f8(t)H1(ξ1)H1(ξ2) + . . .+ f11(t)L2(µ) (3.12)

As pointed out earlier, S1 is the most important SV; hence, we show representa-

tive approximations for S1. The coefficients fi(t) for models of order 1, 2 and 3

computed using regression and collocation at times t=10 and t=25 are tabulated

in Table 3.2 and Table 3.3, respectively. Figures 3.20, 3.21 and 3.22 show the
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validation results of PCE for S1 for order 1, 2 and 3, respectively, for time t = 10.

The validation data distribution and the scatter plots are shown side by side for

easier visualization. Each point in the scatter plot corresponds to a realization

{Ξk}100
1 . Similarly, Figures 3.23, 3.24 and 3.25 show the validation results of PCE

for S1 for models of order 1, 2 and 3, respectively, for time t = 25. The R2,

R2
adj and the sum of square error SSE for each case is shown in Table 3.2 and

Table 3.3 along with the coeffficients. It is worth mentioning that each of the

first, second and third order models have only one term (polynomial basis term

in µ) of their respective order capturing the effect of the input. This is because

the input being the same for all realizations restricts the model to have only one

µ basis term in order to consistently estimate its corresponding coefficient in

the PCE model. Lower SSE and the higher R2 values are the indicators of the

effectiveness of a model and it is evident that they increase with an increase in

the model order. It is interesting to note that collocation-based models perform

comparably in many cases to their regression counterparts, given the fact that the

collocation coefficients are estimated only from a few chosen points. However, the

regression-based PCE models provide superior performance overall. The adjusted

coefficient of determination (R2
adj), which accounts for model accuracy but also

penalizes extra degrees of freedom, indicates that the second order PCE models

provide the best performance.

To completely validate the best performing PCE order 2 model, we will

use it to replicate the validation realizations of the representative FoS over all

times (Figure 3.12). As explained in Section 3.4.2 we can reconstruct the FoS field

with 99.85% accuracy using only the first SV, the second order PCE model is used

to reconstruct S1, through which we can reconstruct the validation realizations

of the representative FoS at all times. Figures 3.26(a), 3.26(b) and 3.26(c) show

the minimun FoS surface for the actual validation realizations, reconstructed

minimum FoS surface reconstructed using PCE order 2 model and the error

between them respectively. The Frobenius norm of the reconstruction error is also

reported. The error is highest when the steam chamber is dynamic and not fully

established, i.e. around the middle part of the lifetime; the variation may also be

due to the heterogeneity in the Y direction (over realizations). Overall, due to the

low ‖E‖F , we can conclude that the PCE order 2 model has good performance.
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(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 1 regression and collocation meth-
ods at t=10.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 1 regression and collocation meth-
ods at t=10, each dot is a {Ξk}1001 .

Figure 3.20: Performance of PCE order 1 regression and collocation models
for S1 at t=10.

(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 2 regression and collocation meth-
ods at t=10.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 2 regression and collocation meth-
ods at t=10.

Figure 3.21: Performance of PCE order 2 regression and collocation models
for S1 at t=10.

(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 3 regression method at t=10.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 3 regression method at t=10.

Figure 3.22: Performance of PCE order 3 regression model for S1 at t=10.
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(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 1 regression and collocation meth-
ods at t=25.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 1 regression and collocation meth-
ods at t=25, each dot is a {Ξk}1001 .

Figure 3.23: Performance of PCE order 1 regression and collocation models
for S1 at t=25.

(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 2 regression and collocation meth-
ods at t=25.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 2 regression and collocation meth-
ods at t=25.

Figure 3.24: Performance of PCE order 2 regression and collocation models
for S1 at t=25.

(a) Comparison of actual and PCE recon-
structed validation data distribution for
order 3 regression method at t=25.

(b) Comparison of actual and PCE recon-
structed validation data scatter plot for
order 3 regression method at t=25.

Figure 3.25: Performance of PCE order 3 regression model for S1 at t=25.
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(a) Actual minimum validation FoS. (b) Reconstructed minimum FoS.

(c) Error = Actual - Reconstructed, ‖E‖F = 5.42.

Figure 3.26: Performance of the PCE order 2 model in reconstructing the
validation realizations of the representative FoS (minimum FoS) over all times.

Only one SV is used in the reconstruction.

3.4.3.1 UQ through moments of the FoS

Another important feature of the PCE model is the ability to obtain explicit rep-

resentation for the moments such as mean and variance of the underlying random

process (FoS represented by Sr). Consider the PCE model of equation 3.12, and

take moments on both sides of the equation:

M [Sr(t)] = M [f1(t)H1(ξ1)] + . . .+M [f4(t)H2(ξ1)] + . . .

+M [f8(t)H1(ξ1)H1(ξ2)] + . . .+M [f11(t)L2(µ)] (3.13)

Here, M stands for any of the moments; the left hand side of the equation denotes

the moment on the representative FoS (Sr) expressed in terms of the moments of

the individual terms in the right hand side. But we know that the individual terms

(basis functions) in the PCE are polynomials of the standard random variables,
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Table 3.2: Regression and collocation PCE coefficients for order 1, 2 and 3
models with the corresponding basis at time t=10.

1st order 2nd order 3rd order
i Basis ψi Reg. Col. Reg. Col. Reg.
1 ξ1 -0.74 -0.54 -0.76 -0.47 -0.72
2 ξ2 -0.35 -0.30 -0.36 0 -0.39
3 ξ3 -0.04 -0.56 -0.11 -0.26 -0.14
4 µ− 0.5 -0.01 -0.53 - - -
5 ξ2

1 − 1 - - 0.06 0 0.07
6 ξ2

2 − 1 - - -0.12 0 -0.1
7 ξ2

3 − 1 - - 0.07 0 0.06
8 ξ1ξ2 - - -0.09 -0.08 -0.14
9 ξ1ξ3 - - -0.01 0.17 -0.01
10 ξ2ξ3 - - -0.18 -0.09 -0.19
11 µ2 − µ+ 1

6
- - 0.06 0 -

12 ξ1(ξ2
2 − 1) - - - - -0.02

13 ξ2(ξ2
3 − 1) - - - - -0.06

14 ξ3(ξ2
1 − 1) - - - - -0.1

15 ξ3
1 − 3ξ1 - - - - 0.04

16 ξ3
2 − 3ξ2 - - - - -0.02

17 ξ3
3 − 3ξ3 - - - - 0.01

18 ξ1ξ2ξ3 - - - - 0.02
19 µ3− 3

2
µ2+ 3

5
µ− 1

20
- - - - -0.68

SSE 4.63 7.54 4.12 6.54 3.99
R2 0.53 0.25 0.59 0.35 0.6
R2
adj 0.52 0.21 0.54 0.27 0.52

which can be easily computed using their moment generating functions. Also, the

orthogonality of the basis functions forces the moments of the cross terms to zero.

As an example, consider the usual operation of the reservoir, where the value of the

well BHP input µ is specified, but the randomness in the permeability is unknown

and represented by standard zero-mean normal variables ξ1, ξ2 and ξ3. Now the

problem of quantifying the uncertainty in FoS (S1) is carried out by computing

the moments of the PCE model. Below are the mean and variance computed for

a first order PCE model at t=10 using the discussed procedure.

M [S1] = M [−0.74ξ1] + M [−0.35ξ2] + M [−0.04ξ3] + M [−0.01(µ − 0.5)] (3.14)

Mean[S1] = M [−0.74ξ1] +M [−0.35ξ2] +M [−0.04ξ3] +M [−0.01(µ− 0.5)]

Mean[S1] = −0.01(µ− 0.5)] (3.15)
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Table 3.3: Regression and collocation PCE coefficients for order 1, 2 and 3
models with the corresponding basis at time t=25.

1st order 2nd order 3rd order
i Basis ψi Reg. Col. Reg. Col. Reg.
1 ξ1 -0.84 -0.65 -0.85 -0.79 -1.09
2 ξ2 0.05 0.32 -0.04 0 0.06
3 ξ3 0.09 0.23 -0.13 -0.01 -0.23
4 µ− 0.5 -0.01 0.08 - - -
5 ξ2

1 − 1 - - -0.01 0 0.11
6 ξ2

2 − 1 - - -0.18 0 -0.09
7 ξ2

3 − 1 - - 0.09 0 0.14
8 ξ1ξ2 - - -0.04 0.01 -0.12
9 ξ1ξ3 - - -0.11 -0.16 -0.19
10 ξ2ξ3 - - -0.1 -0.03 -0.29
11 µ2 − µ+ 1

6
- - 0.46 0 -

12 ξ1(ξ2
2 − 1) - - - - -0.18

13 ξ2(ξ2
3 − 1) - - - - -0.11

14 ξ3(ξ2
1 − 1) - - - - 0.02

15 ξ3
1 − 3ξ1 - - - - -0.07

16 ξ3
2 − 3ξ2 - - - - 0.03

17 ξ3
3 − 3ξ3 - - - - -0.09

18 ξ1ξ2ξ3 - - - - 0.19
19 µ3− 3

2
µ2+ 3

5
µ− 1

20
- - - - -5.18

SSE 6.05 7.51 5.10 5.95 4.93
R2 0.39 0.25 0.49 0.40 0.51
R2
adj 0.37 0.22 0.43 0.34 0.40

Since ξ1, ξ2 and ξ3 are zero mean, this means that the mean value of S1 is governed

by the deterministic input, in other words, the mean uncertainty in FoS is due to

the input. Similarly, we can compute the variance.

V ariance[S1] = V [−0.74ξ1] + V [−0.35ξ2] + V [−0.04ξ3] + V [−0.01(µ− 0.5)]

V ariance[S1] = (−0.74)2 + (−0.35)2 + (−0.04)2 + (−0.01(µ− 0.5))2

(3.16)

Equations 3.15 and 3.16 quantify the uncertainty in S1 due to the input µ. These

equations can be valuable from the perspective of designing a controller to control

the FoS. As these equations quantify the uncertainty in FoS due to the input, these

can be used in formulating a robust optimization problem often used in designing

model predictive controllers [35–37].
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3.5 Conclusions

In this work, we proposed two measures to quantify the caprock factor of safety

based on the minimum FoS value and the normalized singular value of the FoS

frame. The location of the weakest point (minimum FoS) in the caprock was

also tracked and presented. We then demonstrated a framework to propagate the

uncertainty in the petrophysical parameters and the well BHP of a SAGD pro-

cess to the factor of safety of the caprock. We have proposed a computationally

efficient technique to quantify uncertainty using singular value decomposition cou-

pled with polynomial chaos expansion requiring a handful of realizations compared

to Monte Carlo techniques requiring thousands of realizations. The uncertainty

in petrophysical parameters was modelled by three representative Gaussian ran-

dom variables and the input by one random variable with uniform distribution.

PCE models of order 1, 2 and 3 were developed with regression and collocation

approaches, the models were compared using various performance measures and

a second order PCE model was chosen as the optimum. The model was used to

reconstruct the representative FoS and the results were validated. Quantifying un-

certainty in the FoS with respect to inputs and the permeability was demonstrated

by determining the moments of the representative.
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4.1 Introduction

With the depletion of the oilsands available through surface mining, in-situ

methods are becoming popular in Alberta where 80% of the oil sands have to be

recovered using such enhanced oil recovery techniques. Steam Assisted Gravity

Drainage (SAGD) [1] is one such thermal recovery technique used in the recovery

process for heavy oil sands. A typical reservoir is of 500-1000 meters in length

with three important layers viz. the caprock layer, which is the top most layer

(300m from ground); the impermeable layer, which is the bottom most, and the

middle layer, called the oil sand layer, which holds the bitumen. The SAGD

process uses two parallel running wells; the upper well, called the injector, injects

steam into the reservoir. As a result, the bitumen captured in the oil sands

becomes less viscous, flows down due to gravity and gets collected by the lower

well (called the producer). The reservoir can have multiple injector and producer

wells. The more the injected steam, the greater is the oil recovery, but the

injected steam creates a high pressure and temperature chamber which has to be

monitored and kept well within the factor of safety (FoS) limits. FoS is the index

of the reservoir operation stability defined as the ratio of allowed stress to the

actual stress [2]; reservoir pressure, temperature and fluid flow profiles affect the

caprock stress and strain profiles, which are the prime factors determining the

FoS. If the injected steam exceeds the FoS limits, a catastrophic caprock damage

may release harmful gases to the surroundings resulting in great environmental

damage and financial losses [3]. A FoS of greater than unity is always desirable,

but too high a FoS is also not economical from the perspective of oil production

rate. Hence, FoS-constrained [4, 5] oil production rate (OP) maximized closed

loop reservoir management [6–8] is valuable in the oil and gas industry. We will

use the data obtained from commercial simulator CMG-STARS [9] and FLAC3D

[10] to develop models for use in the closed loop reservoir management.

Model Predictive Controller (MPC) has been used widely in industrial ap-

plications to control large scale dynamical systems like reservoirs efficiently

[11–13]. MPC uses a process model to forecast the output over the prediction

horizon. An on-line optimizer computes the optimal control inputs over the

control horizon by considering the given set points. An important feature of

MPC is that it can handle input and constraints as a part of the control input

design to yield a practically implementable control action. In our case, we

use a deterministic model for computing the OP and a stochastic modelling
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technique, polynomial chaos expansion, PCE, [14] for estimating the FoS. This

approach balances the best OP with an acceptable FoS, providing an efficient

solution to the SAGD management problem. We propose a framework and a

solution technique to maximize the OP based on the injector steam flow as the

decision variable taking into account the of the bounds on the FoS over uncertain

petro-physical parameters [15]. The PCE model used for the FoS has inherently

captured the information about the uncertainty in the petrophysical parameters

and the input, hence there is a scope to obtain a static measure for the MOP

based on the variance of the FoS over time. We present one such static measure

for the maximum operating pressure (MOP) and compare it with the dynamic

optimal MOP given by the MPC.

4.2 Model generation

Readers are referred to chapter 3 for all the details about the data, visualizations

and procedure to obtain the PCE model of the FoS. The PCE model developed in

that work will be used to design the MPC.

4.3 Proposed methodology

Oilsands Layer Caprock Layer

Steam
A

ctuators

RESERVOIR

Stem 
    Injection

Profile

Model
Predictive
Controller

Reservoir Proxy
Model

Safety Factor
  FoS

Geomechanical
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Stress, Strain, 
Deformation information

Caprock Proxy
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Constraints, 
Setponits

Long Term
Optimizer

Pressure, TemperatureProduction Plan
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(oil and water cut data)

Geomechanical Data 
(tilt meter data)
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In	Minutes

Figure 4.1: Process schematic for geomechanics based closed-loop reservoir
control
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Figure 4.1 explains the schematic of the geomechanics based closed loop reservoir

management strategy, highlighting the role of every block. The proxy model of the

reservoir and the caprock are updated dynamically from the field, production and

geomechanical data to reflect the reservoir’s current states. The geomechanical

analyzer processes the stress, strain and other geomechanical responses to gen-

erate the required FoS-related information to update the optimizer (the update

frequency is in months). The optimizer along with the production plan (planned

in years) generates a new set of constraints and set points to the model predictive

controller (that has a horizon of days). The controller then computes the optimal

control inputs to operate the reservoir efficiently that are actuated through the

steam actuators (with a time scale in hours). The main steps in the control loop

are:

� Reservoir and caprock models are calibrated with production, geomechanical

and other data whenever they become available to keep the models up to

date

� A set of optimal well controls are determined to optimize the production

process based on the updated models

� Model calibration and production optimization are carried out one after the

other in the closed loop management process

Figure 4.2 shows the basic three components of the model predictive controller viz.,

the process model, control scheme and the optimization scheme. The deterministic

process model relates the OP to the well bottom hole pressure (well BHP) and the

PCE-based model describes the FoS. Figure 4.3 shows the schematic of MPC. The

Online Optimizer
Control 

inputs in the 
control 
horizon

Input and/or other
constraints

Setpoint

Proxy models for
the quantity of

interest

Predicts output in the 
prediction horizon

Figure 4.2: Schematic of a MPC

FoS and the OP are computed in the prediction horizon using the proxy models

with the control inputs spanning the control horizon. Only the first input from
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Figure 4.3: MPC control schematic

the optimal sequence is applied and the process is repeated at the next time step.

In this work, the FoS set point is taken as 1.2, which is just above the failure

case(FoS = 1 ).

4.3.1 Robust optimization based MPC formulation

A robust optimization (RO) framework incorporates the uncertainty ξ in con-

straints g(ξ, U) ≤ b and the objective function f(U). [15, 16].

max
U
{ f(U) : g(ξ, U) ≤ b ∀ξ ∈ Z} (4.1)

Equation 4.1 formalizes the general framework of RO; Z is the primitive uncer-

tainty set (ensemble) containing the different realizations of the uncertain param-

eter ξ over which the robustness is desired. f is the objective function over the

optimization variable U with g(ξ, U) ≤ b as the constraint having a deterministic

upper bound b. The optimization of the moments of the f is carried out over

the set of realizations (Z) of ξ. A straightforward technique to solve this problem

would be to use Monte Carlo simulations [17], but this requires a large number

of computations, making it infeasible for our purpose. Hence, we propose a poly-

nomial chaos expansion (PCE)-based technique to address this issue [18]. In our

case the objective function f is a deterministic function, obtained by fitting an

ARX model P (U, ξ) between the OP and the well bottom hole pressures input (U)
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to the data obtained from a CMG-STARS FLAC3D simulator. A first order PCE

proxy model for the FoS (FFoS(U, ξ)) over many permeability realizations (ξ) is

used for formulating the constraint g with a given bound b for the FoS for the

robust optimization problem to maximize the OP f as described by equation 4.1.

This formulation maximizes the OP while robustly maintaining the FoS within

the prescribed limits.

4.3.2 Stochastic optimization based MPC formulation

The stochastic formulation [19, 20] proposes moments based formulation of the

objective function instead of considering an ensemble.

MOP = arg max
U

OP = arg max
U

P (U, ξ) (4.2)

a ≤ αE(FFoS(U, ξ)) + β
√
V (FFoS(U, ξ)) ≤ b (4.3)

Here, P (U, ξ) is the OP function, FFoS(U, ξ) is the PCE-based proxy model for the

FoS. E and V are the expectation and variance of FoS as predicted by the proxy

model, a and b are the prescribed FoS limits and α and β are their weights in

the constraint formulation. When α = 1 and β = 0, the constraint focuses on the

nominal value of FoS. When α = 0 and β = 1, the constraint targets the standard

deviation, i.e. the robustness. We may choose values of α and β between 0 and 1

to achieve a practical solution for the MOP. The first two moments of FFoS can

be computed from its proxy model 4.4 as described by equations 4.5 and 4.6, and

these expressions can be obtained explicitly based on the properties of the chosen

polynomials Hj and Lk.

F = f1 + f2H1(ξ) + f3L1(µ) + . . .+ fiHj(ξ)Lk(µ) + . . . (4.4)

E[F ] = f1 + f2E[H1(ξ)] + f3E[L1(µ)] + . . . + fiE[Hj(ξ)Lk(µ)] + . . . (4.5)

V [F ] = f1 + f2V [H1(ξ)] + f3V [L1(µ)] + . . . + fiV [Hj(ξ)Lk(µ)] + . . . (4.6)

Another stochastic formulation proposes an objective function incorporating the

OP function and the FoS function together with the objective of maximizing the

OP and keeping the FoS within the limit.

J(U) = Q(E(FFoS(U, ξ))− ¯FFoS)−R(OP (U)) (4.7)
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Equation 4.7 shows the objective function that needs to be minimized to find the

MOP (U); here, ¯FFoS is the FoS set point and Q is penalty to the deviation in FoS

and R is a scaling parameter for OP.

4.4 Results and discussion

This section presents static and dynamic measures for the maximum operating

pressure (MOP) over time. The static measure is based on the FoS ensemble ob-

tained from the PCE and the dynamic measure is based on stochastic optimization

MPC (the second formulation presented in equation 4.7). A first order PCE proxy

model (equation 4.8) for the FoS is taken from chapter 3 for the design purpose.

Figure 3.20 and 3.23 shows the variation of the highest singular value of the FoS

frame (representative FoS) S1 over all realizations at t=10 and 25.

S1(t) = a1(t)ξ1 + a2(t)ξ2 + a3(t)ξ3 + a4(t)(µ− 0.5) (4.8)

Here, ξ1, ξ2 and ξ3 are standard normal random variables and µ is the standard

uniform random variable over [0 1].

4.4.1 Static measure based on FoS ensemble

A static measure is obtained by projecting the MOP as inversely proportional to

the variance or range of the current FoS ensemble as described by equation 4.9.

Here, g is the FoS ensemble as in equation 4.1. This measure translates to the idea

that the MOP should be decreased because the uncertainty in FoS is increasing

over time. {
MOP (i) =

k

range(gi)

}T

i=1

(4.9)

The FoS ensemble of a required size can be generated using the PCE model (equa-

tion 4.8) at every instant of time. We generated 100K points and computed the

range of ensemble at every instant of time to compute the MOP. In the current

data set (refer Figure 3.13), if we look at the trend in the FoS variation over differ-

ent realizations and time, we see the FoS variance increasing with time and hence

the static MOP decreases with time as shown in Figure 4.4.
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Figure 4.4: Static MOP measure based on FoS ensemble generated from PCE

4.4.2 Dynamic measure based on MPC design

This section presents the proxy models for the FoS and OP used in the design of

the MPC.

4.4.2.1 Proxy models for FoS and OP

Figure 4.5 shows the mean of S1 (obtained from equation 4.8), well BHP and OP

variation over time. Equations 4.10 and 4.11 shows two first order ARX styled

proxy models for mean S1 and OP vs. well BHP. These models will be used for

the purpose of dynamic prediction of FoS and OP in MPC design. S1mean can be

converted to the actual minimum FoS of the frame using the SVD equations (refer

Chapter 3, section 3.4 for details.

OP (k + 1) = a OP (k) + b MOP (k) (4.10)

S1mean(k + 1) = c S1mean(k) + d (2000−MOP (k)) + ε(k) (4.11)

Here, ε(k) = α + β x is an additive noise term; x ∈ N(0, 1) is a standard normal

random variable. The model coefficients are chosen as a=c=0.7, b=0.09, d=0.06,

but can also be computed from data using the prediction error method. α is offset

arising from the plant to model mismatch, which is assumed to be different at each

run. We chose a value of 2 for our simulation, but ideally we need to randomly

choose a S1mean realizations from the PCE model. β is the intrinsic noise variance

present at every instant of time chosen to be 10 for the simulations. The maximum

allowable MOP is chosen to be 2000KPa, hence the constant 2000 in equation 4.11.
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Figure 4.5: Input/output data set to build proxy models. Variation of repre-
sentative FoS S1 (refer chapter 3), well BHP and OP over time.

4.4.2.2 Stochastic MPC design

The objective function (equation 4.7) along with the prediction and control horizon

can be represented as

J(∆u) =
N−k∑
j=1

(X̃T
k+jqk+jX̃k+j − sk+jOP (uk)) (4.12)

where X̃k = [(FoS(S1mean(uk))− ¯FFoS)]. FoS(S1mean(uk)) is the actual minimum

FoS of the frame computed from S1mean(uk) and ¯FFoS is the FoS set point. OP (uk)

is the output of the OP proxy model defined over the prediction horizon (N) and

uk is the MOP at instant k. q and r are the penalty factors for the output and

input, respectively. s is the scaling factor for OP, in the prediction horizon. The

objective of the optimizer is to minimize J and find the corresponding optimal

input uk over the control horizon (C 6 N). We present the results for the following

five cases to evaluate the effectiveness of MPC. Following cases are designed to
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work in the extremes of the OP and FoS objectives, thereby serving as candidate

cases to compare with the MPC strategy.

� Case 1: MPC based MOP; FoS always above the safety limit with optimal

OP.

� Case 2: Static MOP (equation 4.9) with the corresponding FoS and OP.

� Case 3: MOP held constant at 1000 KPa ; High FoS but low OP.

� Case 4: MOP held constant at 1900 KPa ; Noisy unsafe FoS but high OP.

� Case 5: MOP held constant at 2000 KPa ; Low and unsafe FoS but highest

OP.

Figure 4.6: MPC based MOP with the corresponding FoS, OP and the Jvalue
from the optimizer. The red line indicates the FoS setpoint at 1.5.
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Figure 4.7: Static MOP with the corresponding FoS and OP. The red line
indicates the FoS setpoint at 1.5.

Figure 4.8: Fixed MOP at 1000KPa with the corresponding FoS, OP and the
Jvalue from the optimizer. The red line indicates the FoS setpoint at 1.5.
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Figure 4.9: Fixed MOP at 2000KPa the corresponding FoS, OP and the Jvalue
from the optimizer. The red line indicates the FoS setpoint at 1.5.

Table 4.1: Comparison of different cases

Case COP in m3 Always
FoS > 1.5?

Remarks

MPC 468317 Yes
Optimal COP with
safe FoS limits

Static 42507 Almost
Poor COP and highly
conservative FoS

Fixed at
1000KPa

260380 Yes
Lower COP and very
conservative FoS

Fixed at
1900KPa

494114 Yes
Better COP but noisy
unsafe FoS

Fixed at
2000KPa

520120 Yes
High COP but unsafe
FoS

The Table 4.1 summarizes the performance related to the figures 4.6, 4.7, 4.8, 4.9

and 4.10. The MPC-based MOP formulation proves to be the best strategy for

achieving high COP while maintaining the FoS above the safety limit.
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Figure 4.10: Fixed MOP at 1900KPa the corresponding FoS, OP and the
Jvalue from the optimizer. The red line indicates the FoS setpoint at 1.5.

4.5 Conclusions

We presented a technique to develop a FoS-constrained and OP-maximized closed

loop SAGD management framework. We presented a stochastic model predictive

controller developed from a PCE-based ARX model of the factor of safety and an

ARX model for the oil production. Maximum operating pressure measures based

on the (static) FoS ensemble, fixed at certain values and based on OP maximized

and FoS constrained stochastic MPC were presented and compared. The MPC

strategy proves to be the best in balancing high COP while maintaining the FoS

above the safety limits.
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5.1 Introduction

Steam assisted gravity drainage (SAGD) is a thermal recovery technique com-

monly used for in-situ extraction and recovery of oil sands bitumen [1]. The

assessment of observability and controllability, as with other distributed param-

eter systems, presents significant challenges. Historically, parametric sensitivity

(the sensitivity of oil production to the permeability and/or porosity at different

spatial locations in the reservoir) [2, 3], which actually quantifies identifiability,

has been used as an alternative for observability analysis in these systems. The

so-called covariance localization, [4, 5] which is used to determine which states

and parameters to update in estimation often referred to as history matching

[6, 7], is often accomplished by choosing regions of high sensitivity for updating.

Our reading of the relevant literature in reservoir engineering has not unearthed

a rigorous approach for controllability analysis in this field.

Determining the observability and controllability for these and other dis-

tributed parameter systems (DPS) [8] is not as straightforward as in the case

of linear systems [9, 10], since these are infinite dimensional systems [11]. DPS

pose significant challenges in modelling, monitoring and control. Prior work

in quantifying the observability and controllability of DPS has focused on the

analysis of first principles models. Pacharu, et al. [12] considered packed bed

reactors and analyzed observability issues for the development of state estimates

and reconstruction of spatial and temporal profiles. A number of earlier efforts

[13, 14] have considered other quantitative criteria in conjunction with nonlinear

first principles models to arrive at optimal sensor locations. Lainiotis and Ray

[15] addressed controllability analysis in conjunction with spatiotemporal process

models. While the above approaches do consider cause and effect in a rigorous

manner and develop quantitative indices for observability and controllability, they

are computationally intensive . Some of the approaches also tend to characterize

these measures in a locally linearized sense [16].

Often, during the early stage of design for complex systems, it is perhaps

adequate to consider qualitative measures of observability and controllability

based on structural characteristics [17]. Graph theoretic approaches that represent

qualitative relationships can prove to be a computationally cheap alternative to

rigorous model-based approaches [18]. Early work in structural controllability

approaches was represented in Lin [19] and Diop and Fliess [20]. More recently,
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Liu, et al. [21, 22] have considered controllability and observability aspects

of complex networks found in nature such as food webs, biochemical reaction

networks, etc.

Figure 5.1 shows a system theoretic perspective of a SAGD reservoir [23]

with injector and producer inputs, pore pressure/temperature as states and the

measurement sensors to measure desired parameters. In this work, we present

an approach to assess the structural controllability and observability of a SAGD

process by using a graph theoretic approach. The method is data-driven in that

it uses dynamic spatiotemporal data from detailed physical simulations of the

process to identify the connectivity between different spatial locations/regions in

the reservoir, thereby transforming the description of the process to a graph. A

regionalization-based dynamically constrained agglomerative clustering algorithm

[24] with partitioning is used to group spatially contiguous regions of the reservoir

that display similar behaviour, and the connectivity structure is identified using

Granger causality analysis. We then adopt some of the measures proposed in

Liu, et al. [21, 22] to characterize observability and controllability in a structural

sense through graph theoretic techniques [25–29]. Structural controllability and

observability are analyzed by identifying the driver nodes and strongly connected

components of the graph. The data required is generated in our work using

the CMG-STARS simulator [30]. The original contributions in this work relate

Caprock Layer

Oilsands Layer

Injector

Impermeable Layer

        Steam Flow
                  

          Bitumen Flow

Producer

Front View

Ground

Sensors

Inputs

Steam Chamber (Pore Pressure, Temperature)

Figure 5.1: SAGD reservoir with schematic showing injector producer inputs,
pore pressure/temperature and the measurement sensors on wells and at ground

level.

to the development of a regionalization-based clustering algorithm to develop a
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reduced-dimensional description of the spatiotemporal behaviour of the process

based on pressure and temperature data, combining it with causality detection

to obtain a graph-based description of the process, and the application of graph

theoretic approaches to infer structural observability and controllability for this

distributed parameter system. The results obtained for the SAGD process are

original, and the data-driven method developed can be applied generally to a wide

variety of distributed parameter systems. Note that this contribution extends

our preliminary work on the topic [31], which used a standard density-based

agglomerative clustering method that did not retain clusters as spatially con-

tiguous regions and only analyzed the pressure field. In addition, the structural

observability and controllability analysis is more detailed in this work, especially

in terms of combining the pressure and temperature data and deriving an original

algorithm for identifying the regions of influence (ranges) of actuators and sensors

in a partially observable/controllable distributed parameter system.

The rest of the chapter is organized as follows: Section 5.2 describes the

SAGD system, details of the reservoir simulation and details of the spatio-

temporal pressure and temperature field data generated for the SAGD process.

Section 5.3 explains the methods used for clustering, causality analysis and iden-

tification of the graph-based process description, and structural controllability

and observability analysis. The results of the analysis are presented in section 5.4

and section 5.5 presents conclusions.

5.2 Reservoir modelling and data generation

The data used in the development of proxy models is gathered from reservoir

simulations using CMG-STARS. The parameters and operating conditions used

for the simulation are substantially similar to those used in our previous work

[32], and we refer readers to that work for full details. For the sake of clarity, we

present some essential details of the simulation conditions in this section.

A model of a heterogeneous SAGD reservoir having 5 injectors and 5 pro-

ducers is provided with the designed inputs (described later) and the two

dimensional cross section of the reservoir pressure and temperature fields at

various time instants is gathered and analysed.
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The spatiotemporal data consists of the cross section of the pressure/tem-

perature field at equally spaced time intervals, referred to as frames. Each

frame has 1200 × 81 rectangular grid blocks (or points) in the X, Z direction

corresponding to the width and the height of the reservoir, and 184 such frames

(representing monthly data) are available. The pressure and temperature values

are reported for each grid block at each time sample. The inputs variables are the

well bottom-hole pressures of the injector and producer wells, so the dimensions of

the caprock data (pressure/temperature) are 1000 × 25 × 184 and the dimensions

of the reservoir data are 1000 × 45 × 184. Details of the physical dimensions of

the reservoir, caprock, underburden, overburden, well-pair spacing, shale distri-

bution and porosity/permeability distributions are available in Ganesh, et al. [32].

The well bottom hole pressures in the injectors and producers form the inputs

to the SAGD process. Persistence of excitation [33] is an essential consideration

when designing inputs for the purpose of system identification. While our

objective in this work is not system identification, the data is being used for

dynamic clustering and causality analysis, which is why a pseudo random binary

signal (PRBS) was applied at the inputs to the SAGD process.

The reservoir simulations provide dynamic data related to the pore pressure (P)

and temperature (T) at all of the regions in the simulation domain. One of

the main steps in the analysis is to identify a graph-based description from this

data using Granger causality analysis (described in the next section on Methods).

While vector autoregressive methods can be used for multivariate causality anal-

ysis [34, 35], since we only have two variables to consider, we have chosen to use

principal component analysis (PCA) [36, 37] to identify uncorrelated directions

in the two dimensional space. Since the first principal component explains 85%

of the variance in the data, we only use the first principal component as a scalar

input for Granger causality analysis. The individual pressure and temperature

data visualizations are available in Ganesh, et al. [32].

5.3 Methods

The working data is the full reservoir data D, represented by a matrix of dimension

1000 × 70 × 184. We regard this as 2D data (dimension: 1000 × 70) having a

time series of length 184 at every grid point in the simulation domain. This section
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explains how this process data is modelled as a graph and the subsequent structural

controllability and observability analysis. All the algorithms are developed in

Python with the statsmodels module. [38].

5.3.1 Regionalization-based clustering

The simulation data is of high dimension, and it is possible that many grid points

display similar behaviour. Clustering of the spatiotemporal data reduces the di-

mensionality and aids in the subsequent causality and structural controllability

and observability analyses. Regionalization can be regarded as a specialized form

of clustering for spatially distributed data. Along with placing similar samples

into the same cluster while optimizing an objective function, it also makes sure

that the samples in the same cluster are all in a spatially contiguous region. This

can be achieved by introducing a specific constraint in agglomerative hierarchi-

cal clustering. The steps followed in agglomerative hierarchical clustering are as

follows [39]:

1. Regard each data point (sample) as a separate cluster.

2. Merge the nearest two clusters into one (based on an appropriate similarity

metric).

3. Repeat the merging process (step 2) until all samples are in the same cluster.

From the perspective of graph theory, a data set of n samples can be modelled

as a weighted undirected graph G containing n nodes and a certain number of

edges. The weight of an edge is the distance between the two nodes it connects.

Agglomerative hierarchical clustering of a data set of this type is achieved by

building a spanning tree from G. The spanning tree contains n − 1 edges that

connect all the nodes together.

We use the Euclidean distance between the two time series as the distance

measure between the two data points. Of the three commonly used linkage

methods used in agglomerative hierarchical clustering (single, average and

complete linkage) [40], we use single linkage in this work. In single linkage, the

distance between two clusters is defined as the distance between two closest pairs

of data points from each cluster.

d = min
u∈L,v∈M

duv (5.1)
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where L and M are two clusters, u and v are data points within the clusters, and

d is the distance between u and v. Because of the specific definition of distance

between two clusters, we can simplify the process of building the hierarchy into

building the minimum spanning tree of the graph G. The algorithm to build the

hierarchy is:

1. Create an empty set T = φ

2. Sort all edges in graph G in ascending order.

3. For each edge e in the sorted list: if e connects two different clusters, add it

to set T until all nodes in G are connected by edges in T .

To make the minimum spanning tree spatially contiguous, we add a constraint to

the edges in graph G to only use the edges connecting two neighbors [24]. This is

illustrated in Figure 5.2, where sample A has two neighbours, and the two edges

connecting A and its neighbours are considered. Sample B has four neighbours,

and the four edges connecting B and its neighbours are considered. By adding this

Figure 5.2: The edges considered for regionalization

constraint to the edges in graphG, we can ensure that at each level of the hierarchy,

the sub-trees we get from the minimum spanning tree are spatially contiguous [24].

After obtaining the minimum spanning tree, we carry out partitioning to

obtain a desired number (K) of clusters. At each step, one sub-tree is split while

maximizing the homogeneity gain hg. All data points in the same sub-tree belong

to the same cluster. h∗g is the maximum of hg , H(?) is the heterogeneity of a
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cluster, and k is the number of data points in one cluster.

h∗g = max(H(R)−H(Ra)−H(Rb)) (5.2)

H(∗) = Σk
j=1(xj − x̄)T (xj − x̄) (5.3)

x̄ = Σk
j=1xj (5.4)

The partitioning algorithm for obtaining K clusters can be described as follows:

Figure 5.3: Illustration of partitioning.

1. Input: The adjacency matrix D; initially, it stores the reachability in the

minimum spanning tree. The set T stores all edges in the minimum spanning

tree.

2. Set h∗g = −1.0 × 1010 (a large value). Compute the undirected strongly

connected components (USCCs) (maximal subset of connected nodes in an

undirected graph, Breadth First Search/ Depth First Search is used to com-

pute them [28], Python library has inbuilt functions for it. Section 5.3.3

explores more on SCCs for directed graphs) of D. Store the USCCs to which

each node belongs in C.

3. For each edge e in set T :

� Obtain the USCC to which its start node and end node belong and

calculate the heterogeneity H of this combined USCC.

� Delete e from D temporarily, calculate the USCCs of D, and get the

USCCs to which its start node and end node belong separately. Calcu-

late the heterogeneity H1 and H2 of the two USCCs.

� Calculate the homogeneity gain after cutting this edge: hg = H −H1 −
H2
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� If hg > h∗g, then h
∗
g = hg, best cut = e

� Re-add edge e to D.

4. Delete best cut from D and T .

5. If the number of USCCs in D is K, recalculate the USCCs of D, return C.

Else, jump to step 2.

Figure 5.3 illustrates the principle of partitioning and Figure 5.4 presents the

flowchart of the algorithm.

Figure 5.4: Partition algorithm flowchart

5.3.2 Granger causality-based graph construction

Granger causality uses a statistical hypothesis test to determine whether one time

series is useful in forecasting another [41]. Assume that x and y are two stationary

time series. If the autoregressive estimate of y is inferior to the estimate including

lagged values of x along with the autoregressive component, this implies that
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x has significant explanatory power with respect to the future behaviour of y,

which can be established by a F-test (null hypothesis: lagged values of x add no

explanatory power). If the test establishes that x has significant explanatory power

for the future behaviour of y, we say that x Granger-causes y (with the additional

difficult-to-test condition that this specific explanatory power is unique to x). After

applying the regionalization-based clustering and partitioning algorithms to the

SAGD simulation data, we have a certain number of clusters K. Each cluster can

be regarded as a node in a graph or network. The value of this node is the average

of all time series within this cluster and the geographic location is the average of

co-ordinates of all data points within this this cluster. Granger causality is used to

create directed edges between the nodes. Note that the first principal component

of the (pressure+temperature) dynamic data for the spatial locations is used as

the time series that is averaged within each cluster. If node x in the network is

the Granger-cause of node y, we draw an edge from x to y. In this work, we have

set the threshold to infer Granger causality to be 1.0 × 10 −7 , and we calculate

the F-statistic for up to 15 lags. If the maximum of the 15 values is less than the

threshold, the null hypothesis is rejected. To obtain all directed edges, we apply

the Granger causality test on all node pairs in the network. We also calculate

the in-degrees and out-degrees of each node in the network and identify the top

and bottom 20% nodes with highest/lowest in-degree and out-degree. This helps

us visualize the highly connected and sparsely connected spatial regions of the

reservoir and caprock.

5.3.3 Structural controllability and observability

The classical definition of controllability relates to the ability to navigate the

system from an arbitrary initial state to any desired final state in a finite amount

of time with the given inputs [10], and the Kalman controllability rank criterion

[9] can be used to determine complete controllability for linear time-invariant

systems. Similarly, observability relates to the ability to reconstruct the initial

state from the current output measurements, and a similar rank criterion is used

in its assessment for linear time-invariant systems. However, the determination

of controllability and observability for nonlinear systems, especially those which

are distributed parameter systems, presents significant challenges [42]. To

alleviate this difficulty, we propose to employ structural controllability and

observability analyses for these systems; these are assessed on the basis of the

system’s structure alone, and the assessment is satisfied for all the possible
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choices of the parameters of the system’s dynamic matrices (except for zero and

some pathological cases). The graph-based description of the system allows us to

use graph theoretic algorithms to assess structural controllability and observability.

Note that there are two aspects of interest related to controllability and

observability for us: the actuator/sensor locations for which the system is shown

to be fully controllable/observable, and the regions of influence for a specific

choice of actuator/sensor locations (referred to as the control range and the

observe range in subsequent discussion). The first question relates to optimal

design or placement of sensor/actuators for a system, while the second addresses

the question of which subset of states/parameters to update in an estimation

framework for an already established process.

5.3.3.1 Driver nodes

Matched edges

Unmatched edges

Unmatched nodes {2, 5} = Driver nodes for applying control inputs

Matched nodes

1

2

3
a

b

c

4 5

e

f

{a, b, e}

{c, f}

{1, 3, 5}

Figure 5.5: Illustration of matched edges, matched nodes and driver nodes in
an example directed graph. A set of edges (maximum) are said to be matched if
they do not have a source (arrow going out) or sink (arrow coming in) node in
more than one edge. Matched nodes are the ones pointed by the matched edges,
remaining nodes are the driver nodes where the input is applied to achieve full

controllability.

Driver nodes are the set of nodes that, if driven by different signals, can offer

full control over the network. According to Liu, et al. [21], the algorithm to

find driver nodes can be described as finding the ‘maximum matching’ of the

network. If all the matched nodes are excluded from the set containing all nodes,

the remaining nodes are the driver nodes. The ‘maximum matching’ in the network

is the maximum set of edges that do not share start or end nodes. A node is said

to be matched if an edge in the maximum matching points at it; otherwise it is

unmatched. Figure 5.5 illustrates the notion of a driver node.
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5.3.3.2 Root SCCs

Non-root 
strongly connected component  (non root SCC)

Root 
strongly connected component (root SCC)

Sensor locations

Figure 5.6: Illustration of an inference diagram with connected components,
strongly connected components (SCCs) and root SCCs in an example directed
graph. A graph can be split into largest connected components (sub-graphs)
which are individually connected and having no edges amongst the connected
components. In SCCs, all nodes are bidirectionally connected to each other
including a self loop. SCC having no incoming edge is a root SCC. Sensors are

placed in any one node of each of the root SCC to achieve full observability.

As proposed in Liu, et al. [22], the minimum number of sensors required for full

observability in a graph-based model is equal to the number of root strongly con-

nected components (SCCs). In a directed graph, SCCs are the largest subgraphs

in which each node has a directed path to every other node. This means that

if any one node in an SCC is observable, all the nodes in that SCC are observ-

able. Figure 5.6 illustrates the concepts of connected components, SCCs and root

SCCs. The procedure for identifying the sensor locations which provide complete

observability of the system is [22]:

1. Obtain an inference diagram by flipping the direction of all edges in the

constructed graph.

2. Decompose the inference diagram into a unique set of strongly connected

components (SCCs).

3. Find the SCCs that have no incoming edges, which are called root SCCs.

Place sensors on at least one node from each root SCC to ensure observability

of the whole system.

As mentioned earlier, we can control the complete system by placing actuators on

all driver nodes. Figures 5.5 and 5.6 provides an example that illustrates driver

nodes and SCCs for a graph and the placement of sensors/actuators for complete
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observability and controllability. The system is made completely controllable by

placing actuators at the driver nodes, and it is made completely observable by

placing sensors on at least one node from each root SCC.

5.3.4 Evaluation of actuator and sensor reachability range

For the SAGD process, sensor/actuator locations are often in the vicinity of the

well-pairs, as shown in Figure 5.7. For this situation, it is of interest to find the

actuator and sensor reachability range from the obtained graph model.

Figure 5.7: Sensor/actuator locations in the neighbourhood of well pairs

5.3.4.1 Actuator reachability range

This algorithm (presented in Figure 5.8) identifies, for a specific set of actuator

locations such as the ones shown in Figure 5.7, the actuation reachability regions

(range) of the system. The algorithm can be described as follows:

1. Input: a N × N adjacency matrix D, where N is the number of nodes in

the network. The adjacency matrix reflects the reachability between nodes.

Node set X stores the nodes at which we place actuators (which correspond

to the clusters identified using the regionalization-based approach).

2. Create an empty set open and a 1×N zero matrix tag. open records nodes

to be processed. tag records whether a node has been touched. Initialize

open by placing the node set X into it. Set tag[X] = 1.

3. Take out the first node from open and call it node A.

4. Search D to find the node set Y (there are directed edges that start from

node A and point to nodes in Y ).

5. For the ith node in Y (with i taking values from 1 to the number of nodes

in Y ), if tag[Y (i)] = 0, place this node into open and set tag[Y (i)] = 1.
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Figure 5.8: Algorithm to find the control range.

6. If open = ∅, the algorithm finishes; return the indices of non-zero elements

in tag. Else, jump to step 3.

5.3.4.2 Sensor reachability range

This algorithm identifies, for a specific set of sensor locations such as the ones

shown in Figure 5.7, the sensor reachability regions (range) of the system. The

algorithm can be described as follows and is also presented in Figure 5.9:

1. Input: a S × S adjacency matrix, where S is the number of SCCs in the

network. The adjacency matrix reflects the reachability between SCCs. C

is a 1 × N matrix, where N is the number of nodes in the network, that

reflects the SCC to which each node belongs. X is the set of SCCs, and we

place sensors on nodes within these SCCs set.

2. Create an empty matrix open and a 1×S zero matrix tag. open records SCCs

to be processed. tag records whether a SCC has been touched. Initialize open

by placing the SCCs in X into it. Set tag[X] = 1.

3. Take out the first SCC from open and call it SCC A.
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Figure 5.9: Algorithm to find the observe range.

4. Search D to find the SCC set Y (there are directed edges that start from

SCC A and point to SCCs in Y ).

5. For the ith SCC in Y (with i taking values from 1 to the number of SCCs in

Y ), if tag[Y (i)] = 0, put this node into open and set tag[Y (i)] = 1.

6. If open is empty, the algorithm finishes; obtain the indices of non-zero ele-

ments in matrix tag (the indices reflect which SCCs can be reached), and

return the nodes that belong to these SCCs. Else, jump to step 3.

5.4 Results and discussion

This section discusses the results obtained using the techniques described above

for the SAGD process simulated as described in section 5.3. Note again that the

data corresponds to the PCA-based fusion of the pressure and temperature data.



Chapter 5 101

5.4.1 Numbers of driver nodes and root SCCs and

regionalization-based clustering

The clustering technique used is hierarchical, and this leaves the choice of the

number of clusters to the user. The number of clusters controls the dimension

reduction achieved and the size of the regions that are placed into single clusters;

thus, it affects the subsequent analysis of observable and controllable regions of

the reservoir. Table 5.1 shows the dependence of the number of driver nodes and

root SCCs on the number of clusters chosen (in the range from 50 to 300 clusters).

There is a roughly linear dependence of the number of driver nodes and root SCCs

on the level of clustering; however, it should be noted that the size of the spatial

regions corresponding to each cluster changes with the number of clusters. When a

smaller number of clusters is chosen, the average size of the clusters is much larger

than when a larger number of clusters is chosen. The issue of determining the

optimal level of clustering is not trivial and is not addressed in this work. Figure

Table 5.1: Number of driver nodes and root SCCs

number of clusters number of driver nodes number of root SCCs
50 33 28
100 54 49
150 85 72
200 107 96
250 123 112
300 143 130

5.10 presents the results of regionalization-based clustering for the different choices

of the number of clusters, with the X−Z plane of the reservoir and caprock being

visualized. The changes in the average size of clusters as a function of the number

of clusters can be seen. Each of the identified cluster is treated as a potential node

in the graph-based description of the system identified in subsequent analysis. The

density of clusters is highest in the central part of the visualized region, which

corresponds to the location of the well-pairs and is where the steam chamber is

developed. This is where one would expect the highest variation and diversity in

the pressure/temperature dynamics with respect to spatial location. Given that

this is region with the largest dissimilarity between samples (grid points), it is

understandable that a larger number of clusters is situated in this relatively small

region.
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Figure 5.10: The variation of the spatial distribution of clusters with the
number of clusters. Each color corresponds to a separate (spatially contiguous)
cluster and the trend shows that the density of clusters increases in the cen-
tral region, which is the region that exhibits large variations in pressure and

temperature in the original data.

5.4.2 Graph-theoretic analysis

Figure 5.11 presents the graph model for the SAGD system, with nodes and the

directed edges connecting them. As mentioned earlier, the directed edges were

identified using Granger causality analysis with the threshold and lags specified in

Section 5.3.2. As expected, the number of edges increases significantly with the

number of clusters (nodes). Note that each node location represents the arithmetic

mean of the coordinates of all data points within the corresponding cluster, and
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the node connectivity graph is visualized in the spatial representation in the same

X − Z frame as for the regionalization-based clustering.

Figure 5.11: The graph model for the system (reservoir+caprock) based on the
spatiotemporal pressure and temperature data, with nodes and edges identified.

To aid visualization and analysis, we present a measure of the degree distribution

of the nodes for different numbers of clusters in Figures 5.12 and 5.13. In the

figures, we identify the nodes with the most, least and medium connectivity with

respect to in-degree and out-degree. The in-degree refers to the number of edges

pointing towards the node, while the out-degree refers to the number of edges

pointing away from the node. This helps us visualize the densely and sparsely

connected regions of the graph and their spatial location in the reservoir. Figure
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5.12 shows the in- and out- degree distribution for 50-150 clusters and Figure 5.13

shows the same distributions for 200-300 clusters. As expected, the in- and out-

degrees both are highest, in general, for nodes in the central region of the figure,

which corresponds to the well-pair locations and the development of the steam

chamber.

Figure 5.12: (In- and out-) Degree distribution of the nodes of the graph as
a function of the number of clusters (nodes) in the range 50-150. Red markers
correspond to the top 20% nodes in terms of in- or out- degree, blue markers to
the bottom 20%, and black markers to the middle 60% in terms of connectivity.
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Figure 5.13: (In- and out-) Degree distribution of the nodes of the graph as
a function of the number of clusters (nodes) in the range 200-300. Red markers
correspond to the top 20% nodes in terms of in- or out- degree, blue markers to
the bottom 20%, and black markers to the middle 60% in terms of connectivity.

5.4.3 Complete structural controllability and observability

As described earlier, the driver nodes identify the set of actuator locations for

which complete structural controllability of the graph is obtained. Figure 5.14

presents the clusters that represent driver nodes that provide complete control-

lability for the SAGD reservoir studied in this work. Placing actuators in any

location within each of the identified clusters will enable complete controllabiity
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of the system. The highest density of driver nodes is within the region where the

well-pairs are located, as expected.

Figure 5.14: Location of driver nodes for complete controllability as a func-
tion of the number of clusters. Each colour corresponds to a separate cluster

identified as a driver node. Blank regions do not contain driver nodes.

Similarly, Figure 5.15 shows the root SCCs, which identifies the clusters where

sensors need to be placed in order to obtain complete observability of the system.

More root SCCs are concentrated in the central region of the reservoir, which is

where the steam chamber is developed and the larger spatiotemporal variations in

pressure and temperature occur, which makes sense.
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Figure 5.15: Location of the root strongly connected components as a func-
tion of the number of clusters. Each colour corresponds to a separate cluster

identified as a root SCC.

5.4.4 Actuator and sensor range

As mentioned earlier, the actuator and sensor ranges identify the regions of actu-

ation and sensor reachability in a partially observable system with spatiotemporal

variation. In this section, we present the results for specific actuator and sensor

locations. If actuators are placed in the shaded area shown in Figure 5.7, Figure

5.16 shows the actuated and non-actuated regions as a function of the number of

clusters. Similarly, if sensors are placed in the same region as the actuators, Figure

5.17 shows the regions in-sensor-range and out-of-sensor-range as a function of the

number of clusters. It is noticeable that these ranges are larger for graphs with

larger numbers of nodes (clusters), which indicates that the smallest amount of
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clustering/lumping of spatial regions possible is preferable from the viewpoint of

maximizing the ranges. However, not performing clustering presents significant

computational demands because of the large dimension of the set of variables to

be considered for constructing the graph based on Granger causality. It is grati-

fying to note that, as expected, both of the ranges are in the central part of the

reservoir, where the well-pairs are located and the steam chamber develops.

Figure 5.16: Actuation range for the actuator locations as shown in Figure
5.7. The graphs with higher numbers of nodes yield larger controllable regions.

5.5 Conclusions

We have demonstrated a method to investigate the structural controllability and

observability of distributed parameter systems for which a fundamental model or

simulations are available based on deriving a directed graph using regionalization-

based clustering, and connectivity determination in a graph model based on

Granger causality. Algorithms for maximum matching and the identification of

strongly connected components were used to identify locations at which sensors
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Figure 5.17: In-sensor-range for the sensor locations as shown in Figure 5.7.
The graphs with higher numbers of nodes yields larger observable regions.

or actuators needed to be placed for full observability or controllability, respec-

tively. In addition, methods were developed to identify the reachable regions on

the graph (indicating the partially actuated/in-sensor-range regions) based on a

specified set of actuator/sensor locations. The method was demonstrated for the

analysis of the pressure and temperature fields of a heterogeneous steam assisted

gravity drainage reservoir process, but is applicable to a wide variety of distributed

parameter systems. Our future work in this area will focus on more rigorous anal-

ysis of the optimal level of clustering, applying the observability results in covari-

ance localization for history matching in SAGD operation, and on applying the

controllability results in model predictive control of the SAGD process.
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6.1 Conclusion

The aim of this thesis is to demonstrate a framework to optimally manage the

SAGD reservoir using proxy models. For this purpose, two computationally inex-

pensive proxy modelling approaches were presented. A POD-based model order

reduction coupled with system identification was proposed to model and predict

the pressure field. This approach demonstrated a promising result in modelling

and predicting the entire pressure field and its response to variations in the reser-

voir inputs. A clustering-based line graph model was proposed to model the pres-

sure bin counts (regions of different ranges of pressures), which yielded a subspace

model whose parameters were identified from the data obtained from detailed

reservoir simulations. These methods can be implemented in forecasting the pres-

sure/temperature fields dynamically based on predictions of the future injector

and producer well bore pressures. A polynomial chaos expansion based proxy

model was then proposed to quantify the caprock factor of safety based on the

minimum FoS value and the normalized singular value of the FoS frame. The

location of the weakest point (minimum FoS) in the caprock was also tracked and

presented. We then demonstrated a framework to propagate the uncertainty in

the petrophysical parameters and the well BHP of a SAGD process to the factor

of safety of the caprock. We proposed a computationally efficient technique to

quantify uncertainty using singular value decomposition coupled with PCE, re-

quiring a handful of realizations compared to Monte Carlo techniques requiring

thousands of realizations. The PCE model was validated by reconstructing the

representative FoS. Quantifying uncertainty in the FoS with respect to inputs and

the permeability was demonstrated by determining the moments of the represen-

tative. A model predictive controller was proposed based on the previous proxy

models to track the FoS and to maximize the production, thus demonstrating an

optimal closed loop reservoir management scheme based on proxy models. Apart

from this, we also investigated the structural controllability and observability of

distributed parameter systems to identify locations at which sensors or actuators

needed to be placed for full observability or controllability, respectively. We used

regionalization-based clustering, and connectivity determination in a graph model

based on Granger causality. Algorithms for maximum matching and the identi-

fication of strongly connected components were used to determine the structural

controllability and observability. In addition, methods were developed to identify

the reachable regions on the graph (indicating the partially actuated/in-sensor-

range regions) based on a specified set of actuator/sensor locations.



Conclusions 116

6.2 Future work

Some possibilities for future work are highlighted below:

� Incorporating the PCE approach to model the reservoir states, input and

outputs and coupling with an ensemble Kalman filter to realize a hybrid

estimator for the reservoir geomechanical optimization studies

� Updating the proxy model parameters with the real time geomechanical data

like tiltmeter data and/or SAGD well log sensors data

� Rigorous analysis of the optimal level of clustering, applying the observability

results in covariance localization for history matching in SAGD operation,

and on applying the controllability results in model predictive control of the

SAGD process

� Exploring HO-SVD based techniques to proxy model the spatiotemporal

data.

� Improvising the MPC with more detailed proxy models to realize stochastic

and robust formulations.

−o−
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.1 Appendix: Temperature data analysis

Figure 1: Variation of temperature centres of every cluster with frames. Color
map same as the temperature cluster

Figure 2: The variation of normalized bin count of each cluster vs frames.
Trend shows that, with time clusters with higher pressure value overtakes the

lower ones
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Figure 3: Normalized bin count error (actual - estimated) for all frames

(a) Actual 174th frame in the
validation data set

(b) POD + ARX based re-
construction of 174th frame

(c) Error (actual - re-
constructed) 174th frame
||E||F = 246.7114

(d) Color map for the differential frame

Figure 4: POD+ARX based reconstruction visualization
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Figure 5: System identification on training dataset result: Actual and modeled
weight w1(l), dotted line indicates identified model and solid line indicates the

actual data.

Figure 6: System identification on validation dataset result: Actual and mod-
eled weight w1(l), dotted line indicates identified model and solid line indicates

actual.
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