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Abstract 
 

Work-related musculoskeletal disorders (WMDs) are reported as the primary category of 

non-fatal work-related diseases in the industrial environment that affect joints, ligaments, 

tendons, and muscles. The contributing factors to the WMDs could be awkward postures 

adopted by workers, forceful exertions, repetitive motions, vibration, and psychological 

and environmental factors. Various assessment methods based on the kinematics and 

kinetics of the body were proposed for preventing WMDs. Self-report methods, including 

questionnaires, checklist, and interviews, are used for this purpose, based on a subjective 

report of the individuals about their behavior, symptoms, and attitude. Although the self-

report methods have low cost and cover a wide range of samples, personal reporting has 

drawbacks originating from the individuals’ inaccurate perception of the WMDs factors 

exposure. Additionally, self-report methods could have low validity and reliability 

compared to other methods. At the same time, the observational methods were proposed 

for evaluating and reducing the WMDs factors. The previous studies showed that inter-

observer reliability is the major shortcoming of these methods. Besides, accurate and 

reliable advanced observational methods such as marker-based systems are challenging to 

use in real workplaces. Therefore, a reliable system based on marker-less motion trackers 

or wearable technologies combined with an observational method is required for evaluating 

postures and movements, causing WMDs and overcome the shortcomings mentioned 

above. 

The objective of this thesis is to investigate the accuracy and reliability of using a marker-

less motion tracker and a wearable technology against a gold-standard marker-based 
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system combined with an observational ergonomic method for different manual material 

handling tasks. 

To this end, eleven able-bodied individuals participated in two manual material handling 

tasks while their motion was recorded by a marker-based system (reference), marker-less 

motion tracker (Microsoft Kinect), and a system of inertial measurement units (IMUs). 

Then, joint angles were calculated and inserted into an observational risk assessment tool: 

Rapid Upper Limb Assessment (RULA). The calculated joint angles and the associated 

RULA scores obtained by the marker-less motion and IMU-based systems were compared 

against a marker-based system (reference) using the proportion agreement index (Po), 

Cohen’s Kappa coefficient (κ) for RULA scores, and root mean square error (RMSE) for 

joint angles. Also, the intra-class correlation coefficient (ICC) was used to assess inter-

participant reliability for each system. The IMU-based system showed “moderate” to a 

“substantial” agreement with the marker-based system in most of the tested manual 

handling tasks with the median of κ > 0.6, according to Landis and Koch scale. Also, it 

showed an “excellent” agreement in the RULA scores median between participants for 

most of the manual handling tested tasks (ICC > 0.75). While the reference marker-based 

system showed an “excellent” agreement for all manual handling tested tasks (ICC > 0.75)  

in the RULA scores median between participants, according to Cicchetti guidelines for 

interpretation of ICC. 

 On the other hand, the marker-less system showed “fair” to a “moderate” agreement with 

the median of κ < 0.4 and κ > 0.41 with the maker-based system over the same scale, 

affected by both self-occlusion and object occlusion. In addition, the ICC showed “fair” to 

an excellent agreement in the RULA scores median, between participants for the tested 
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manual handling tasks (ICC < 0.59) and (ICC > 0.75), according to the same guidelines for 

interpretation of  ICC. 
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Chapter 1 

This chapter provides an introduction to the risk factors of work-related musculoskeletal 

disorders (WMDs) and their evaluation. First, the rise of ergonomics as an upstanding 

discipline is introduced. Then, the working areas of ergonomics science and the 

contributing risk factors in each area are described. After that, a light spot was shed on the 

physical ergonomics and its factors that cause WMDs, and ergonomic methods that 

proposed to prevent these factors. Lastly, the thesis objective and outline are provided. 

1. Introduction 

1.1 Work-related risk assessment  

The field of ergonomics, or human factors as it is known in North America, is a new 

discipline compared to other disciplines such as human motion biomechanics. The first 

appearance of ergonomics goes back to the early 1900s. However, it became an identifiable 

and noticeable profession only in its sixth decade of existence [1]. Since then, the number 

of ergonomists increased from a few individuals in industrialized countries to thousands of 

professional ergonomists in both industrialized and developing countries. In addition, the 

field of ergonomics has experienced an evolution, and currently, the ergonomists are 

working in a broad range of systems (e.g., simple hand tools, and software).  

The field of ergonomics has been defined both as a science and as a practice [1]. Firstly, as 

a science, ergonomists are interested in identifying human performance capabilities, 

limitations, and other characteristics in human-machine interaction. Secondly, as a 

practice, ergonomics investigates the applications of the human-system interface to foster 

safety, health, comfort, and quality of life. In addition, the National Research Council of 

Canada defines ergonomics as “the application of scientific knowledge to the workplace in 

order to improve the well-being and efficiency of both the individual and the organization.”   

The most important specialization areas of ergonomics, as reported in the IEA triennial 

report [2], are (1) physical ergonomics, (2) cognitive ergonomics, and (3) organizational 

ergonomics. The physical ergonomics concerns preventing work-related musculoskeletal 

disorders (WMDs) that are primarily associated with physical activities such as workers’ 

postures, manual material handling, and repetitive movements by maintaining a healthy 



2 

 

and safe human-environment interaction. The cognitive ergonomics concerns the mental 

processes such as perception and reasoning and their effects on human-environment 

interference. In contrast, the organizational ergonomics is concerned with the optimization 

process of the human-technology interaction.    

The musculoskeletal system is made of the bones, muscles, cartilages, tendons, ligaments, 

and joints. Any kind of sprain, strain, tear, soreness, or pain of one or more of the 

musculoskeletal system’s component(s) is considered a disorder. Three main factors are 

causing musculoskeletal disorders: physical, psychological, and environmental [3]. The 

physical factors, such as forces exerted on the musculoskeletal system, postures adopted, 

or work cycles, are considered as the main factors contributing to WMDs by causing 

muscles and joint fatigue. The psychological factors can be categorized into mental, 

psychosocial, and organizational factors. Psychological factors are not considered as a 

direct cause of WMDs. However, their hazard to the musculoskeletal system exists 

whenever the workers are mentally stressed as they try to maintain a certain posture. 

Finally, environmental factors such as noise, light, and temperature can develop WMDs or 

decrease the worker’s productivity [3].  

The WMDs are reported as the major cause of nonfatal occupational injuries in industrial 

countries [1]. According to the Canadian Community Health Survey (CCHS), in 2013, 

16.0% of Canadians aged 15 or older have suffered injuries that limited their activities, 

while for 14.5% of this population, the injury took place during work. The majority of 

those with workplace-related injuries were male (71.2%), while most of them worked in 

trades, transport, equipment operation, and related occupations (34.0%), followed by sales 

and service (24.0%). In addition to severe consequences for the Canadian workforce, 

WMDs are a significant financial burden for the Canadian health care system; they cost 

$19.8 billion annually, according to CCHS [4]. 

To reduce the negative effects of WMDs on workforce and healthcare systems, various 

methods were proposed during the past decades to assess the risk exposure of the WMDs 

factors, such as the Rapid Upper Lim Assessment (RULA) tool. Such assessments would 

benefit both workforces and the healthcare system by decreasing the injury-related costs. 
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These assessment methods can be categorized based on their method of data collection into 

three groups: self-report, observational, and instrumental [5].  

Numerous self-report methods have been developed to measure different WMDs factors, 

such as the physical load, muscle use, and body discomfort. Self-report methods depend 

on the subjective report of the individuals about their behavior, symptoms, and attitude. 

They take different forms, such as questionnaires [6]-[7]-[8]-[9], checklist [10], and 

interview [11]-[12]. The advantages of self-reporting methods are as follows: (1) the person 

expresses precisely the experience of overloading and discomfort, regardless of what the 

behavioral measures show by reporting his/ her situation, (2) a wide range of samples could 

be assessed, and (3) they have a low cost. However, subjective reporting has many 

drawbacks coming from the inaccurate perception of the WMDs factors exposure among 

workers [13]. In addition to the low reliability, researchers believe that the use of the other 

methods increases the assessment accuracy and reliability compared to self-reporting 

methods [14]. 

In addition to the self-report proactive attempts to prevent WMDs, the observational 

methods are also common in the industry in order to evaluate and manage the WMDs 

factors. Observational methods could be classified into two groups [15]: (1) simple, and 

(2) advanced. Simple observational methods or pen-paper based observational methods, 

record the worker postures in pre-designed pro-forma sheets by an independent observer. 

For example, the Ovako Working Posture Analysis System (OWAS) [16] is a practical 

observational method for recording and analyzing the whole-body posture. The OWAS 

defines the postures of the back, arms, and legs by different codes to indicate their positions 

plus three codes for the load definition. Based on the OWAS, a new method called Rapid 

Upper Limb Assessment (RULA) [17] was developed to provide a quick upper limb 

disorder factors assessment for the working population. Also, it identifies muscle fatigue 

originated from the adopted postures, exerting forces, and the frequency of muscle use.  

The RULA method utilizes silhouettes of the body segments’ postures and three coding 

tables to indicate the exposure risk level. Body segments in the RULA method are grouped 

to Group 1 containing Arm and Wrist and Group 2 containing Neck, Trunk, and Leg in 

order to provide a quick assessment. Each body segment is given a number, which 
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represents its range of motion, i.e., number 1 indicates a minimal range of motion, while 

number 4 is a high range of motion. The scoring system in the RULA method requires a 

single number from each group to indicate the amount of load exerted on the 

musculoskeletal system.  

As the RULA method was developed for sedentary task evaluation [15], the Rapid Entire 

Body Assessment method (REBA) was designed to assess dynamic tasks [16]. The REBA 

method is similar to the RULA in terms of using diagrams to represent the body segments 

and the scoring system. However, in addition to RULA purposes, the REBA method aims 

to have a comprehensive evaluation that is sensitive to a variety of tasks. For example, the 

power of grip, rapid or unstable postures, and the knee position are the additional parts in 

the REBA method. In addition to the posture and force factors, other factors such as 

biomechanical, physiological, and psychophysical could cause serious WMDs. Thus, a 

new method called the Revised NIOSH equation for the design and evaluation of manual 

lifting tasks has been developed to consider these factors [16]. While simple observational 

methods have advantages such as having a low cost, not requiring highly trained staff and 

being able to assess a variety of physical activities, the low inter-observer repeatability is 

the major shortcoming of these methods [5].  

On the other hand, advanced observational methods, based on video recording and 

computer analyzing, could be used to assess a variety of postures in fast-paced 

environments in real-time [15]. Examples of these advanced observational methods are 

HARBO [18], PEO [19], The TRAC-system [20], ARBAN [21], and SIMI [22]. Using 

these methods, physical activities could be observed and analyzed on-site or recorded for 

later analysis. For example, using marker-based systems, a 3D view of the workplaces 

could be recorded and analyzed to measure biomechanical parameters such as the distance 

of movement, range of motion of segments, and segments’ velocity and acceleration. Yet, 

the practical functionality of these systems in real workplaces is questionable because of 

problems such as occlusion and limited field of view. Also, these methods have a high 

operating cost [13].  

Direct methods for WMDs assessment are defined as the methods that have the measuring 

or sensing device attached directly to the person [13]. According to risk factors, the direct 
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measurement methods could be divided into a direct assessment of the posture and muscle 

fatigue measurements [15]. The posture direct measurement methods are based on simple, 

e.g., inclinometer, or sophisticated, e.g., electric goniometer, hand-held equipment [23]-

[24] that continuously monitor a joint angle during the task. In addition to the electric 

goniometer, other direct technologies such as optical scanning system, sonic system, 

electromagnetic system, and accelerometer-based systems have been developed for joint 

angle measurement [15]. However, these systems were developed mainly for clinical 

applications rather than in workplaces. The muscle fatigue measurement methods are based 

on muscle tension measurement, and the most common device is the Electromyography 

(EMG) sensor. However, distinguishing between different postures using EMG signals is 

highly challenging due to different muscle lengths [15].  

Recently, the fusion of direct methods and observational methods for assessing WMDs 

factors have been investigated to overcome the low inter-observer repeatability and 

increase the accuracy of data collection [25]. For example, the fusion of the EMG sensor 

and video image system has been used to collect information about postures and muscle 

activity [15]. However, there are a few research studies regarding the use of wearable 

inertial measurement units (IMUs) [26] and marker-less systems. 

IMUs could be used to measure various quantities such as body segment acceleration and 

angular velocity, by means of miniature sensors, i.e., accelerometer, magnetometer, and 

gyroscope integrated into one chip [26]. Considering the advantages of IMUs such as low 

cost, small size, and long battery life, they can be an ideal choice for ergonomic assessment 

studies. IMUs can stream the data to a computer wirelessly and allow a pre-designed 

software to monitor the worker’s motion in real-time and provide proper feedback when 

needed. Among the studies that addressed the use of IMUs for WMDs factors evaluation, 

[27]-[28]-[29] combined IMUs as a direct measurement tool with simple observational 

methods for ergonomic assessment. 

 A marker-less optical sensor is capable of capturing depth and color RGB images. The 

depth image contains the 3D information of the scene in the camera’s field of view, which 

can be beneficial for ergonomic assessment in many ways, such as creating a 3D map for 

the workplace. To capture the depth image, the sensor emits infrared rays and receives the 
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rebounds from objects in its field of view. Moreover, it uses the time of flight principle to 

determine the distance between the sensor and an object in its field of view by calculating 

the total time that the emitted rays take to strike that object and bounce back. Also, the 

depth and RGB image resolution are 512x424 and 1920x1080 pixels, respectively, for 

Microsoft Kinect V2 [30]. Besides, marker-less optical sensors allow the user to create a 

3D skeletal for the human body in its field of view using different programming languages 

such as C++/CLI, C#, or Visual Basic .NET [31]. The mentioned features of these marker-

less sensors provide an opportunity for researchers, especially in ergonomics, to develop 

algorithms that harness these features for the sake of WMDs risk assessment.  

1.2 Thesis objective 

The main objective of this study is to investigate the validity of an instrumented RULA 

assessment tool based on kinematic models obtained by (i) wearable IMUs and (ii) a 

marker-less optical sensor (Microsoft Kinect V2) against the kinematic model obtained by 

marker-based optical cameras, as the gold-standard reference. The validation has been 

performed through an experimental study including five different manual material handling 

tasks by investigating the convergent validity and accuracy of both joint angles and RULA 

score calculation using (i) IMUs and (ii) Kinect against marker-based optical cameras.  

1.3 Thesis outline 

Chapter 2 reviews the literature: a review of human movement tracking systems, an 

overview of WMDs in manual material handling tasks, and a review of 

psychophysiological and physical factors assessment methods of WMDs. Chapter 3 

presents the methodology that we used to build kinematic models based on (i) marker-

based cameras, (ii) IMUs, and (iii) Kinect to calculate the joint angles and, subsequently, 

RULA scores. Figure 1 depicts the measurement methodology proposed in this thesis. 

Chapter 4 presents the results of joint angles obtained by the IMUs and Kinect in terms of 

root mean square error (RMSE) with respect to those obtained by marker-based cameras. 

In addition, the proportion agreement index and Cohen’s Kappa coefficient are presented 

to measure the RULA scores median. Finally, Chapter 5 presents the discussion, 

conclusion, and future perspectives. 

https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Visual_Basic_.NET
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Figure 1. Thesis outline and summary of the methodology used to validate the IMU-based system and marker-less system with Marker-based 

system. 
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Chapter 2 

Chapter 2 provides a literature review on the strength and weaknesses of various 

movement tracking systems, the relation between WMDs and Manual material 

handling tasks (MMH), and the recent psychophysiological and physical factors 

assessment methods. 

2. Literature review  

2.1 Human movement tracking  

Human motion assessment has been of enormous interest for ergonomists since it can 

provide a robust means to solve severe ergonomic problems such as task modification 

and injury prevention. The quantitative analysis of human motion contains 

measurement (both kinematics and kinetic), storage, retrieval, processing, and 

presentation. The kinematic measurement of human movement is essential to picture 

underlying risks due to the task performance, and it excels the statistical analysis, which 

the latter just suggests the potential risk [1].  

The kinematic analysis requires information on the three-dimensional (3D) position of 

the anatomical landmarks of the body to quantify the relative orientation between two 

linked segments (Figure 2) [32]. Kinematic quantities such as the linear and angular 

position, velocity, and acceleration can be obtained from the position of anatomical 

landmarks [33]. In addition to technologies such as stereophotogrammetric 

optoelectronic camera systems, marker-less motion tracking systems (i.e., depth 

cameras), and wearable inertial measurement units (IMUs) are exploited to provide a 

practical measurement of human movement kinematics.  

2.1.1  Stereophotogrammetric optoelectronic camera systems 

Stereophotogrammetric optoelectronic camera systems provide a comprehensive tool 

to obtain kinematic quantities for a large number of ergonomic and biomechanical 

applications because of their ability to rebuild the 3D position of a point in a global 

coordinate system. For 3D ergonomic or biomechanical analysis, a body segment 

position and orientation can be determined using at least three non-collinear markers 

positioned on the desired segment [33]. The 3D coordinates of bony landmarks are 

reconstructed from photographs, radiographs, and video images [34]. The video 

imaging method allows human participants to move more naturally [1]. In addition, 
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Chiari et al. [34] reported potential advantages of the video imaging method over the 

other stereophotogrammetric methods: lower cost, requiring less processing time, less 

images distortion. Therefore, video-based measurements have become the most 

common approach in biomechanical motion tracking. The video-based systems 

reconstruct the three spatial coordinates of a point in space by using either 

retroreflective (passive) or light-emitting (active) marker. The passive markers reflect 

the infrared and incandescent light emitted for external sources usually positioned 

around the lens in the camera periphery, while the active markers act as light sources. 

The active markers are robust in providing continuous marker identification with a 

higher sampling rate; however, they are more cumbersome than passive markers since 

they need wires to power them [1]-[34]. The markers are mounted either on the 

anatomical landmarks or a rigid plate fixed on the body segments [2].  The identification 

of the passive markers in the video frames is made either by pattern recognition 

software [35] or by dedicated hardware [36]. On the contrary, the active markers are 

detected by the pulse timing [34].  

As mentioned above, each body segment’s kinematics can be determined by three non-

collinear markers; however, some studies recommended the use of four non-collinear 

markers to reconstruct a body segment, to reduce the possibility of missing a marker. 

To track markers, at least two cameras should simultaneously capture each marker [34].  

 

Figure 2. Illustration of body markers placement 
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2.1.1.1 Limitations of Stereophotogrammetric optoelectronic systems 

The limitations of stereophotogrammetric optoelectronic systems are due to three types 

of errors: 1) instrumental errors [34], 2) anatomical landmark misplacement [37], and 

3) soft tissue artifacts [38]. These errors can lead to inaccuracy in the marker 

identification coordinates. The instrumental errors can be systematic due to the 

calibration inaccuracies or due to nonlinearities, or random instrumental error owed to 

electronic noise, marker jittering [34]. As forementioned,  markers are placed either as 

a cluster on a plate or as a single marker placed on a palpable bony landmark. The latter 

placement procedure may affect the kinematic measurements, mainly inter- participant 

reliability [37]. Several factors contribute to the accuracy of anatomical landmarks 

determination, which is a milestone in the kinematic measurements using video-based 

systems. Examples are the soft tissue thickness over the bony landmarks, the shape of 

these bony prominences, and the experience of the examiner that plays a significant 

role in the anatomical landmarks determination [37]. The third type of error in the 

trajectory measurement of anatomical landmarks using stereophotogrammetric systems 

is the soft tissue artifacts (STA). Leardini et al. defined the STA as the relative 

movement of the marker and the bone under study [38]. This relative movement can be 

due to muscle contractions and skin deformation, and it is difficult to separate this 

movement from the actual bone motion by any kind of filer because of the similarity in 

their frequency content. It is worth mentioning that the STA depends on the 

experimental protocol and differs among participants [38].  

The stereophotogrammetric systems have high precision and also are the most common 

motion capture instruments in biomechanics research; however, the system set-up is 

time-consuming and requires technical personnel to calibrate it and to determine the 

anatomical landmarks for markers placement [39]. Moreover, using the 

stereophotogrammetric systems for kinematic measurements requires a dedicated 

laboratory volume. Thus, these systems can hardly be used out of the laboratory and in 

real-world workplaces.  

2.1.1.2  Definition of global and local coordinate systems 

Each marker’s 3D position is captured using at least two two-dimensional (2D) cameras 

with respect to a global coordinate system (GCS), defined to be fixed in the testing 
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space by a set of orthogonal axes (Xg, Yg, Zg) [40]. The GCS is defined after the 

calibration process, by which the location and orientation of each camera are identified 

[1]. The local coordinate system (LCS) is used to quantify the segment orientation and 

is identified based on the positions of markers attached to the segment [40]. Typically, 

the LCS is denoted by (Xl, Yl, Zl).  

After defining the segment’s LCS using three markers, a point’s position in the GCS 

can be obtained from its position in the LCS using a translational mapping (Eq. 2.1): 

𝑃𝑎
𝑔

= 𝑅𝑙
𝑔
 �⃗� 𝑎

𝑙 + �⃗� 𝑜
𝑔

   (Eq. 2.1) 

 

 

 

 

  

Figure 3. Depiction of Coordinate transformation of a point 𝑎 from a local frame 

[𝑋𝑙,𝑌𝑙,𝑍𝑙] to the global frame [𝑋𝑔,𝑌𝑔,𝑍𝑔]. Vectors  𝑝 𝑜
𝑔

 , and 𝑝 𝑎
𝑔

 represent the position 

of points  𝑜, and 𝑎 in space. 

 

The rotation matrix 𝑅𝑙
𝑔

 consists of the dot products of the unit vectors of the GCS and 

LCS as follow: 

𝑅𝑙
𝑔
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] (Eq. 2.2) 

 

The rotation matrix and the Eq. 2.1 are used when two or more motion capture systems 

are compared together. For example, when a segment orientation is obtained by both 

the IMU-based system and the marker-based stereophotogrammetric system, then both 

obtained orientations should be expressed with respect to the same GCS using Eq. 2.1.  
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2.1.1.3  Calculations of biomechanical parameters 

The computation of the kinematic parameters depends on the applications. Some 

applications require only the markers trajectories mounted on the body surface, while 

others require capturing the skeletal movement by placing the markers on the joint 

centers, which is impossible [1]. Therefore, to estimate the skeleton locations, the term 

of virtual markers arose. Typically, the 3D position of the virtual markers is calculated 

from the 3D position of the surface (actual) markers mounted on the segment based on 

mathematical equations. Virtual markers are used to determine the anatomical 

landmarks on the segment [40]. Kadaba et al. [41] used an empirical correlation to 

identify the hip joint center based on the anterior superior iliac spine (ASIS) marker 

location and pelvis orientations.    

2.1.2  Marker-less motion tracking systems 

Marker-less motion tracking is a system the can recognize precisely the human 

movement with clothing on, under varying illumination conditions, and without the use 

of reflective markers on the body [42]. In order to overcome the drawbacks of the 

marker-based motion tracking systems (i.e., soft tissue artifacts, and markers 

misplacement), marker-less motion tracking systems have been presented for 20 years 

[43]. In addition, they are promising for the human body kinematic assessment and can 

have an integrated usage with the marker-based motion tracking systems. However, the 

lack of using marker-less motion tracking systems for quantitative analysis of human 

motion can be attributed to the complexity of acquiring an accurate 3D kinematic model 

using marker-less techniques [39]. Moreover, the applications of marker-less motion 

capture systems are not limited to the motion analysis for clinical studies. Still, they are 

extended over the past decades to cover the surveillance systems, virtual reality, and 

user interfaces [44]. All vision-based motion capture systems follow a general structure 

that has four stages: initialization, tracking, pose estimation, and recognition [44]. The 

initialization includes choosing a model representing the participant. The models are a 

hierarchy of rigid segments linked at designated joints and are used to facilitate the 

tracking process by showing the human movement [42]. The stick figure (Figure 4) is 

a common representation of human models in the literature as in [45]. The main 

problem associated with model reconstruction is the self-occlusion that makes the 

segmentation of the human body difficult during tracking [46]. This problem can be 

solved by making simplified assumptions such as no occlusions, the camera faces the 
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participant, and constant illumination [44]. The initialization process also contains the 

camera calibration and adaption to the scene characteristics [44]. After choosing the 

model and making the simplifying assumptions, the tracking is performed by 

distinguishing the participant’s limbs from the background in consecutive frames [42]. 

Tracking consists of three stages. The first one is the segmentation and separating the 

participant limbs from the background. The second stage decreases the complexity of 

data by transferring it to another more controllable representation. The third one uses 

the participant model to distinguish the motion between frames [44]. In pose estimation, 

the identification of the participant’s segments in a scene is brought about. In other 

words, the position, orientation, and shape of each segment are identified. If there is no 

defined model at the initialization process, the pose estimation relies on the model-free 

class. In this class, the pose is represented by points [47], simple boxes [48], or a stick 

figure, which is an advanced level of pose representations (Figure 4). If the model was 

defined, the pose estimation depends on two classes: an indirect model or a direct model 

[44]. The indirect model is a reference model utilized to extract information that can 

interpret the pose. The extracted information is ranging from simple information (i.e., 

body height), to more dynamic details about the participant [46]. The direct model class 

uses a model that represents the human body continuously and contains very detailed 

information about the pose [49]. 

 

Figure 4.  Stick figure for body pose representation  

2.1.2.1 Limitations of marker-less motion tracking systems 

All marker-less motion tracking systems up-to-date have been developed based on 

assumptions that made them more workable (i.e., no occlusion, known initial state, 

constant lighting, and tight clothes). However, in reality, the conditions are more 

https://en.wiktionary.org/wiki/etc.#English
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dynamic and non-expected. In addition to the occlusion issue that could happen due to 

obstacles in the scene under observation, the self-occlusion frequently arises due to 

body parts movement. Therefore, to solve this problem, more cameras can be used as 

many as the situation requires [50]. The use of multi-camera systems does not solve the 

problem entirely, and it just alleviates the problem [42]. The occlusion problem is a 

joint problem in all computer vision-based motion tracking systems (marker-less and 

marker-based). In systems that rely on the fixed background, the moving objects in the 

background are captured as a human [42]. High accuracy is not demanded in 

surveillance systems [44]; however, the captured motion must coincide with the actual 

motion for biomechanical and clinical applications. The marker-less motion systems 

suffer from such accuracy required for these applications, because of the complexity of 

extracting such biomechanical information 2D cameras. To increase the accuracy of 

marker-less systems, a direct model tracking system can be applied [39]. So far, no 

vision-based system can capture the actual human movement without markers on the 

body [51].  Finally, the computer vision-based systems are more attractive than other 

motion capture technologies (i.e., magnetic trackers, and accelerometers), since they 

are less cumbersome and non-intrusive to participants. However, data processing of 

computer vision-based systems is more complicated. 
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2.1.2.2 Microsoft Kinect marker-less motion tracker 

On November 4, 2010, the first version of the Kinect sensor called (Microsoft Kinect) 

was released after a joint project between Microsoft and PrimeSense companies. The 

project aimed to build up a device for the user interface for video gaming based on 

gestures and voice. The use of the Kinect sensor did not stop in video gaming because 

shortly after its release, the competition to hack Kinect started as long as Kinect utilized 

the USB hardware feature that eased the mission. However, Microsoft Company did 

not want the Kinect sensor to work with other consoles other than the Xbox console; 

therefore, no drivers have been released. The first attempt to hack Kinect was by 

Adafruit, a New York-based company, when the company hosted a competition for 

making open-source drivers that could access Kinect’s data. After that, the endeavors 

continued to hack Kinect such as, Hector Martin, who made the first version to access 

Kinect’s depth image. In response to all of these efforts and on December 10,  

2010, PrimeSense company launched its own software (OpenNI) for Kinect. The 

software was fascinating since it give not only access to the depth image (Figure 5.a) 

and RBG image (Figure 5.b) but also had the ability to detect the users' skeleton (Figure 

5.c) and identify the joints positions in 3D by processing the depth image. However, a 

limitation of PrimeSense’s software was that it requires the user to stand in T-pose to 

initialize the tracking algorithm. Later, on June 17, 2011, Microsoft announced the 

Kinect SDK beta for public use without any license. The Kinect SDK had the skeleton 

Figure 5. The output of Kinect sensors: (a) Depth image, (b) Color image, and (c) 

Kinect skeleton 

(c) (b) (a) 
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tracking algorithm with no T-post initiation process and speech recognition system. 

Inspired by these huge steps on Kinect drivers’ development, the interest among 

students and researchers excavated to develop their own computer application for many 

purposes, such as applications that use the skeleton data for ergonomic and 

biomechanics studies.   

2.1.2.2.1 Kinect Hardware  

Despite the lower cost of the Kinect sensor, its hardware pieces are revolutionary and 

contain advanced technologies. The hardware has four main components: color camera, 

infrared camera, IR emitter, and set of microphone (Figure 6). An infrared camera is 

used for depth data capturing. In addition, Kinect V1 utilized a USB 2.0 port, and Kinect 

V2 utilized USB 3.0 port, which is more advanced.  

 

 

Figure 6. (a) Kinect V2 hardware (adopted from [31]). (b) Kinect V1 hardware 

(adopted from [95]). 

The main differences between the two versions are summarized in Table 1. Moreover, 

the range of view is 0.5m to 8m for Kinect V2, and after 4.5m, the quality decreases. 

However, Kinect V1 has a default range of 0.8m to 4.5m [31]. 

2.1.2.2.2 Kinect applications 

After the Kinect’s drivers had been available for public use, there have been many 

research studies published investigating the usability, reliability, and validity of 

Kinect’s data for different biomechanical, clinical, and ergonomic applications [45]-

[50]-[43]-[32]-[30]-[25]-[5]. Bonnechère et al. [43] studied the validity and 

reproducibility of Kinect V1 for clinical analysis and rehabilitation. They designed the 
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study protocol to include shoulder abduction, elbow flexion, hip abduction, and knee 

flexion motion. To check the reproducibility, the same protocol was repeated after one 

week. The joint angles were recorded simultaneously using the Kinect sensor and a 

marker-based stereophotogrammetry system (reference). They used vector conventions 

to calculate the joint angles because the stick figure obtained by Kinect does not contain 

all anatomical landmarks that are required to use ISB recommendations. The 

comparison was made in terms of the range of motion between these systems. The study 

revealed that the range of motion is different between the systems, but the 

reproducibility is similar. This study was limited to simple tasks, and more complex 

tasks should be considered.  

Table 1. Comparison between Kinect V1 and V2 

 Kinect v1  Kinect v2 

Color image 640 x 480 @ 30 Hz  1920 x 1080 @ 30 Hz 

Depth image 320 x 240 @ 30 Hz  512 x 424 @ 30 Hz 

Infrared image 640 x 480 @ 30 Hz  512 x 424 @ 30 Hz 

Skeleton joints 20 joints  25 joints 

Number of tracked  bodies 6  6 

Tilt motor Yes  No 

Angular Field of View 
57.5 deg Horizontal & 

43.4 deg Vertical 
 

70 deg Horizontal & 

60 deg Vertical 

 

 

Clark et al. [52] validated Kinect V1 against a marker-based stereophotogrammetry 

system for quantifying the postural control tests such as forward reach, lateral reach, 

and single-leg eyes-closed standing balance. They studied different kinematic 

parameters for each test. The reach tests included the reached distance and trunk angles 

in sagittal and frontal planes. For standing balance, the range of motion and variation 

of movement in the position of the anatomical landmarks provided by Kinect were 

studied compared to a marker-based system for the sternum, pelvis, knee, and ankle. 

They found that Kinect was able to provide anatomical landmarks and trunk angles with 

excellent validity. In addition, they suggested that Kinect data were usable for clinical 

screening. However, the study lacks the day-to-day reliability test, which is not feasible 
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to perform due to the placement of the marker cannot be identical between days. 

Another study by the same author [53] aimed to validate Kinect V1 data with marker-

based systems for gait retraining programs. During the study, real-time feedback of the 

lateral trunk angle was displayed to the participants. Both systems (marker-based and 

marker-less systems) recorded concurrently in order to assess the similarity and 

equivalence in the lateral trunk angle measurement. Their result showed good accuracy 

of Kinect data for gait retraining after the implementation of a simple calibration 

procedure. Yet, for more dexterous movements, the precision of Kinect is required more 

research. Fernández-Baena et al. [54] studied the precision of joint angles calculation 

of Kinect V1 marker-less sensor for a wide range of clinical rehabilitation treatments, 

including movements of the hip, knee, and shoulder in comparison with a marker-based 

system (as reference). They calculated the mean error and the range of motion and 

found that Kinect was very suitable for rehabilitation treatments, but its precision could 

be increased by putting length restriction on the bones provided by the Kinect 

algorithm. Inspired by the lower cost and the promising published results regarding 

Kinect accuracy Müller et al. [50] proposed a Kinect-based marker-less motion capture 

system for gait analysis. They validated the proposed system in terms of the accuracy 

of obtaining gait parameters, especially step width compared to a marker-based system. 

To decrease the self-occlusion while walking, the system consists of six Microsoft 

Kinect v2 sensors connecting to the main computer for control and monitoring. The 

sensors recorded synchronously by using Greyware's DomainTime II that allowed them 

to achieve a difference of two milliseconds between the internal clock of mini-

computers hosting the sensors. The general finding of this study was that the multi-

Kinect sensors system provided accurate results for gait analysis if the spatial-temporal 

calibration and sensors arrangement were bearing in mind. In the same context for 

solving the self-occlusion problem, other studies investigated the validity of using 

multiple Kinect sensors, especially for gait analysis [55]-[56]-[57]-[58]. Indeed, the 

multiple Kinect systems can cover different orientations, but the system accuracy would 

decrease if the sensors’ placement is not carefully chosen, due to the interference of the 

infrared light of each sensor, which affects the posture recognition [25]. 

The research studies that have been accomplished so far regarding the validity and 

reliability of Microsoft Kinect sensor data were not confined to the gait analyses and 

rehabilitation. The validation studies extended to cover the usability of Kinect data in 
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ergonomic studies and workplace monitoring to prevent the associated injuries and to 

give early warnings. Diego-Mas and Alcaide-Marzal [25] proposed a computerized 

OWAS observational method based on Kinect measurement to evaluate the ergonomic 

risk factors in workplaces. The study protocol was chosen to cover many orientations 

of the sensor with respect to the participant during task performance. The input of the 

OWAS method was the joint angles calculated based on the vector dot product between 

segments projection into different planes. Three planes were defined sagittal, frontal, 

and trunk plane. The vector connected the R-hip, and L-hip position is normal to the 

sagittal plane. The frontal plane is parallel to the vertical axis and perpendicular to the 

sagittal plane. While the trunk passes through the spine-shoulder and hips position. The 

results were compared to the conventional OWAS observational method that depends 

on subjective visual observation. They found the best agreement when the participant 

faced the sensor. However, the study needed to be done over a larger population. 

Manghisi et al. [32] performed another fusion implementation of an observational 

method and Kinect data called (K2RULA). They automated the RULA method based 

on Kinect V2 for the purposes of wrong postures detection. The input of the RULA 

method was the joint angles calculated in the same way as in [25]; however, the 

definition of the planes was different. Two experiments were conducted to validate the 

system and the results compared to a marker-based system and to an expert observer. 

According to the proportion agreement index, they found a very strong agreement 

between K2RULA and the marker-based system and the expert observer. Yet, the 

evaluated tasks were simple according to static or dynamic tasks. In addition, the inter-

participant repeatability was not checked. Haggag et al. [59] also used the Kinect V1 

skeleton data to calculate RULA scores based on the joint angles and Voxel-based angle 

estimation. For prolonged sitting symptoms prevention, Paliyawan et al. [60] proposed 

a system to monitor the user and classify the position as stills or moves based on 

different classifiers (i.e., decision tree, neural network, and naive Bayes). The system 

provided feedback according to the risk score for prolonged sitting. The accuracy found 

to be 98% based on levels of health in ergonomics. However, the system was affected 

by the environment noise (i.e., participant’s clothes and hair). Various studies have tried 

to improve the Kinect’s performance, such as the jumpiness of the occluded joints. 

Martin et al. [61]  proposed a system using Kinect skeleton data to evaluate the risk 

factors associated with lifting tasks in incorporation with OSHA ergonomic lifting 

model. The system embraced different iterations to process the streaming data from the 
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Kinect sensor. The first iteration was to use Kinect to calculate the user joint angles and 

insert it to the OSHA model. In the second iteration, they tried to improve the joint 

angles calculation accuracy by using multiple Kinects. However, synchronization was 

not achieved.  The biggest problem was the occlusion; therefore, they used an additional 

Kinect sensor. The last iteration was to make the necessary changes to the system as a 

response to the problems in the second iteration and to the participants’ feedback. The 

system was not able to recognize some objects that required assessing the lifting tasks; 

also, a real demonstration of the system is needed. Instead of using multiple Kinect 

sensors to solve the occlusion problem Plantard et al. [62] proposed a Kinect-RULA 

system that used a corrected Kinect skeleton data. According to Plantard et al. [45], the 

Kinect skeleton data can be optimized by creating an accurate database of the human 

poses that could be adopted by workers in a certain task. The database was created using 

a marker-based system with a couple of constraints such as (1) the database should 

consist of movements similar to those that would be conducted in real workplaces, and 

(2) it should contain many examples for a reasonable variability. Then, a pose 

reconstruction algorithm based on the Filtered Pose Graph method was implemented to 

find identical poses from the database. In contrast to the other Kinect-based 

observational methods systems such as [25], and [32], the joint angles were defined to 

be close to the ISB recommendation. For example, the trunk orientation was 

represented by the spine-shoulder, L-shoulder, and midpoint between spine-shoulder 

and spine-base. For the angles that could not be defined this way, they used the vectors 

dot product described in [43]. They validated the system in the lab using a marker-based 

system. Although the study in the lab was limited to simple movements, the overall 

performance of the system was improved using the corrected Kinect skeleton data.  

Finally, the literature shows that most of the studies validated marker-less systems 

against marker-based systems using simple movements without any environmental 

occlusions as duplication of real manual material handling tasks. In addition, the sample 

size was small (n=1), as in [32]. 

2.1.3 Inertial measurement unit (IMU)   

2.1.3.1 Frames  

The motion capture systems have been divided into active and passive motion capture 

systems [51]. The active systems are directly attached to the human body to collect 
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spatial and temporal parameters (i.e., electromagnetic devices, mechanical devices, and 

accelerometers). Since they are intrusive and cumbersome, the motivation arose to 

come up with passive motion capture systems, such as marker-based and marker-less 

computer vision-based systems. However, with the rapid development in microchips 

and wireless technologies, the intrusiveness and cumbersomeness of the active systems 

regressed, and they have become more workable in non-controlled environments. The 

wearable IMUs, surface electromyography (EMG), and hand-held dynamometers are 

demonstrative examples of this huge development (Figure 7), due to their small size 

and wireless data transmission ability.  

 

Figure 7. MPU-6500 6-axis Sensor Breakout Board (retrieved from 

https://variense.com/blog/difference-between-mems-and-imus/) 

The IMU is a sensor module for measuring the kinematic parameters of a rigid body, 

such as the acceleration and angular velocity. IMU consists of an accelerometer, 

gyroscope, and magnetometer integrated inside a miniature chip. Since these sensors 

embrace the inertia principle, the term inertial explicitly appears [26]. Many companies 

manufacture IMUs, such as XSens (Netherlands) and Innalabs (Russia). An 

accelerometer is used to measure a rigid body’s acceleration. Gyroscope is a sensor to 

measure a rigid body’s angular velocity. A magnetometer measures the magnetic field 

[63]. However, the magnetometer is sensitive to the electromagnetic fields in 

workplaces [26]. As mentioned above, these sensors have been utilized in a few 

ergonomic studies that used automated risk factors evaluation methods instead of 

subjective visual observation methods [26]. Vignais et al. [29]  proposed a real-time 

approach for assessing industrial tasks. They used seven wireless IMUs placed on the 

upper body segments to calculate the angles and goniometers for calculating wrist 

angles. The RULA method was used as an assessment method for the tasks based on 

the angles measured in a 20 degree-of-freedom (DOF) biomechanical model. The 

RULA scores displayed to the user through a head-mounted screen. They validated the 
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system using two groups of participants, the first group received auditory and visual 

feedback during task performance, and the other group did not receive such feedback. 

The results showed that the hazard associated with the tasks decreased among the group 

with the feedback. The system suffered from the magnetic field disturbances. In the 

same context, Peppoloni et al. [28] presented a novel wearable system for WMDs risk 

assessment consists of IMUs and surface EMG sensors for measuring the forearm’s 

muscle efforts. A seven DOF model of the arm has been reconstructed. The model’s 

angles and muscle strain were used as an input to two risk assessment indexes: RULA 

and the Strain Index (SI) [64] for a real-time ergonomic assessment. They validated 

their system in a simulated environment of the supermarket checkout position for 

assessing hazards associated with the handling material. For comparison, they 

compared the system’s results to subjective observational inspection. The results of the 

proposed system proved to agree with the subjective observations. The system was 

limited to the arms motions only. Battini et al. [27] introduced a whole-body motion 

capturing system integrated with different WMDs risk assessment methods: the RULA, 

OWAS, OCRA [65], lift Index (LI), hands position, and hip movement tools. The 

authors developed the last two tools. They used 17 IMUs to rebuild 20 degrees of 

freedom biomechanical model. The assessment mentioned above tools processed the 

joint angles and data regarding the segment positions. The system was applied in two 

distributive places: fashion distribution center and supermarket warehouse. The system 

increased the productivity of the warehouses and alleviated the risk factors in the 

manual handling tasks. For comprehensive in-field ergonomic assessment, the system 

needs to integrate the EMG for muscle activities.   

In addition to the systems that integrated IMUs technology with the observational 

methods, Yan et al. [66] proposed a standalone wearable IMUs system for preventing 

the WMDs risk factors related to the low back and neck positions. The system was 

composed of a smartphone that received the raw data from the wearable IMUs. The 

smartphone had an embedded application to alert the worker when an awkward posture 

was detected. The application sent a warning signal when the algorithm thresholds were 

surpassed. The proposed system was tested in the laboratory by mimicking the 

construction workers lifting and handling tasks. Also, for further validation, they 

applied the system on a real construction site. The system was proved feasible for 

WMDs factors prevention in the construction industry; however, the system worked for 
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a short period. Moreover, Ping Li et al. [67] introduced a smart safety helmet to detect 

head gestures and brain activities to prevent injuries. The smart safety helmet contained 

IMUs, EEG electrodes, and a haptic device. The IMUs were used to recognize the user’s 

head gestures. The EEG electrodes recorded brain activities. While the haptic device 

was integrated to warn the user when the risk threshold is being surpassed. The study 

considered the probability of occurrence, the severity of the mishap, and exposure as 

risk factors. The interpretation of the collected data was made by the artificial 

intelligence algorithm, which received the raw data from the sensors and evaluated the 

risk factors of the workers. The results showed the ability of the system to find the 

relationship between the head movement and brain activities. However, the system was 

limited the head motion without any information about body movements and postures.     

Finally, despite the great advantages of the IMUs (i.e., small size, occlusion-free), there 

have considerable shortcomings such as lack of reference and omitting the environment 

information, which important for hazard detection [68]. Therefore, the trade-off 

between the vision-based systems and wearable sensors for ergonomic studies relates 

to the tasks and the workplaces under study. 

2.2 WMDs and Manual material handling tasks (MMH)  

The MMH task is the task that workers manipulate objects using movements such as 

pulling, pushing, lifting, lowering, and carrying [69]. The U.S. Department of Labor 

defines the MMH as any working with the hand or hands, including seizing, holding, 

turning, and grasping. The fingers involving only conducting movements such as turn 

a switch. The MMH tasks are responsible for the majority of work time loss in 

workplaces, and 30% of accidents in the U.K. and U.S. were reported as MMH 

incidents [69]. Also, the major factors of WMDs come from MMH tasks (i.e., physical 

factors). Just in the U.S., about half a million WMD cases annually reported, including 

lower back, shoulders, and upper limb strain, are due to the MMH tasks [70]. Many 

endeavors to study the WMDs factors that related to MMH tasks. For example, Ciriello 

& Snook [69] conducted a comprehensive survey to summarize the features of MMH 

tasks that represent a wide base of the U.S. industry. The survey covered about 2,442 

industries and reviewed MMH tasks, and analyses were performed over 13 years at the 

Liberty Mutual Research Center for Safety and Health. They concluded that most MMH 

tasks were not acceptable to a high percentage of the female group based on the 

psychophysical factors (i.e., heart rate, and muscle activity). Also, the load limit 
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recommended by the NIOSH in most of the MMH tasks was accessed, which means 

serious WMDs could occur. Dempsey [71] assessed 1,063 lifting and lowering tasks 

and summarized their parameters to provide a reference for the prevention of WMDs 

in workplaces. In 1983, Ciriello & Snook [72] studied the impact of the box size, lift 

distances, frequency, and push and pull heights among a group of male and female 

workers. The experiment was carried out using a psychophysiological methodology 

that gauged psychophysiological parameters such as heart rate and oxygen 

consumption. They found a significant contribution of those variables in defining the 

maximum limit for MMH tasks. Wahyudi et al. [73] have applied the Nordic Body Map 

(NBM) questionnaire [74] along with the OWSA method to determine physical WMDs 

factors (postural detection) in MMH tasks of a corn chip factory. The results showed 

the 51.6% of the MMH tasks had a high risk of WMDs, and immediate modification 

was required. Choobineh et al. [10] studied the existence of WMDs in industrial 

workshops by using the NBM questionnaire and Quick Exposure Checklist (QEC). 

Awkward postures, MMH, and standing for long hours were the most dominant factors 

contributed to WMDs among the workers. Based on the RULA method and a self-report 

questionnaire, Deros et al. [75] found that all MMH tasks in a production area had a 

high-risk level. In addition, Torres & Viña [76] reached the same conclusion using 

REBA and NIOSH methods. The hazard associated with MMH tasks is inevitable; 

however, well-advised workers selection, safety training in MMH, and re-designing the 

job to accommodate the worker can alleviate the occurrence of WMDs [77]. 

In conclusion, the MMH tasks are considered with great significance to the WMDs 

factors occurrence. Thus, more attention must be paid to the MMH tasks in workplaces 

by developing fast and easy-to-use ergonomic assessment methods to reduce the 

involving hazard. 

2.3 Psychophysiological and physical risk assessment  

There is a broad classification of the risk assessment methods according to the physical 

and psychophysiological risk factors. The physical and psychophysiological risk factors 

can be assessed based on any of the aforementioned WMDs risk factors assessment 

forms (i.e., self-report, observational methods, and direct measurement). The physical 

risk assessment deal with WMDs risk factors that include workers’ posture, hazard in 

the workplace environment, muscle strain, and upper limb injuries. At the same time, 

the psychophysiological risk assessment deals with the evaluation of the exposure to 



25 

 

the risk of high heart rate, high blood pressure, high respiration rate, and high muscle 

activity. 

Table 2. Psychophysiological and physical risk assessment methods 

Psychophysiological 

risk assessment 
Scope Physical risk assessment Scope 

Electrodermal 

Measurement [78] 

Mental strain and 

emotional strain 

in ergonomic 

studies 

PLIBEL: A method to 

identify ergonomic 

hazards [79] 

Musculoskeletal 

discomfort checklist 

Electromyography 

(EMG) [80] 
Muscles function 

Musculoskeletal 

discomfort surveys used 

at NIOSH [81] 

Lifting equation: 

weight limit 

Estimating mental 

effort using heart 

rate and heart rate 

variability [82] 

Mental effort 

The Dutch 

Musculoskeletal 

Questionnaire (DMQ) 

[83] 

Work-related 

musculoskeletal risk 

questionnaire 

Ambulatory EEG 

methods and 

sleepiness [84] 

Brain activity 
Quick Exposure Checklist 

(QEC) [85] 

Work-related 

musculoskeletal risk 

checklist 

Assessing brain 

function and mental 

chronometry with 

event-related 

potentials (ERP) 

[86] 

Brain function 

and mental 

chronometry 

Rapid Upper Limb 

Assessment (RULA) [17] 
Posture evaluation 

Ambulatory 

assessment of blood 

pressure to evaluate 

workload [87] 

Blood pressure 
Rapid Entire Body 

Assessment [88] 
Posture evaluation 

Measurement of 

respiration in 

applied human 

factors and 

ergonomics research 

[89] 

Respiration rate The Strain Index [64] 
Repetitive 

movement equation 

  

The Occupational 

Repetitive Action 

(OCRA) methods: OCRA 

Index and OCRA 

Checklist[65] 

Repetitive 

movements 

evaluation checklist 

  

Posture checklist using 

Personal Digital Assistant 

(PDA) technology [90] 

Posture evaluation 

checklist using a 

small computer 
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2.3.1 Rapid upper-limb assessment (RULA)  

RULA is a physical risk assessment method based on the independent observation that 

can provide an evaluation of the WMDs risk factors focusing on the neck and upper 

limb. This method provides a single score that represents the posture, load, and 

movement risk. The score ranges from 1 (low risk) to 7 (high risk). The scores are 

classified into four risk indications (Table 3). 

The RULA sheet (Figure 8) is used during the task observation. The sheet consists of 

three score tables and diagrams to illustrate the position of each body part position, 

accompanied by the required threshold. 

2.3.1.1 RULA procedure 

To use RULA for ergonomic analysis, three steps should be followed: (1) choose the 

postures to evaluate, (2) rate the selected posture, and (3) convert the scores to an action 

level. 

Table 3. RULA action levels 

1-2 Acceptable posture 

3-4 Further investigation, change may be needed 

5-6 Further investigation, change soon 

7 Investigate and implement change 

 

2.3.1.1.1 Choosing the postures to evaluate 

RULA evaluation captures an instant in the work cycle. Therefore, it is essential to 

oversee the whole postures of the task or a period of task’s cycle before selecting the 

posture to assess, in order to choose the most awkward posture or longest-held posture 

[17]. 

2.3.1.1.2  Rating the selected posture 

According to the assessor, right, left, or both sides of the upper arms are required to be 

assessed. Using the RULA sheet diagrams (i.e., Group A and Group B), the posture of 

each body part is scored, along with the force and muscle use. The diagrams of Group 

A represent the position of the upper and lower arm and the wrist. The diagrams of 

Group B represent the positions of the neck, trunk, and legs.  
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2.3.1.1.3 Action level 

Using tables A and B, each observation score can be obtained for the observation 

Groups A, and B, respectively. These tables assess the impact of the adopted posture 

so as to have a preliminary indication of the risk. In addition, the scores for the force 

and muscle use can be added to the initial posture score. The final action will be 

determined using table C (Figure 8). 

2.3.1.2 Reliability and Validity 

McAtamney and Corlett [17]  have proposed and validated RULA in both industrial 

and office settings. They reported that RULA was found to be a useful evaluation tool 

in various packing operations, VDU-based tasks, garment-making operations, 

supermarket checkout operations, and operations in the car manufacturing industry. The 

validation test aimed to examine if the RULA assessment was able to provide a good 

indication of musculoskeletal onus during work. For checking the RULA reliability, 

120 physiotherapists, industrial engineers, safety, and production engineers used it to 

evaluate packing, sewing, and brick sorting operations. The results showed a high 

agreement between the participants.  

The advantages of RULA can be summarized as being quick and easy to use the 

assessment tool. RULA was reported to help demonstrate the musculoskeletal load 

during work. Also, it was useful in making fast decisions regarding the modifications 

that should be applied in the workplace. Furthermore, it was found to be practical in re-

assessing the musculoskeletal load after the modifications. 

Despite these advantages, the general disadvantage of all observational methods is bias 

due to subjective observations. A particular disadvantage of the RULA method is that 

the thresholds of most the movement are not defined, which means the door for the 

practitioners to speculate is open. 
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Figure 8. RULA score sheet (retrieved from https://ergo-plus.com/rula-assessment-

tool-guide/). 

2.3.2 Psychophysiological risk assessment 

Many methods for measuring mental workload have been utilized in ergonomics 

coming from the medical field (Table 2). Brookhuis in [91] has attributed it to three 

reasons. First, the changes in the work nature from being physical (e.g., posture and 

force exertion) to being cognitive (e.g., brain activity). Second, a large percentage of 

accidents in workplaces is due to the victims themselves. Third, he related most of the 

workplace accidents to inadequate data processing that comes from mental overload. 

Mental overload and underload are reflected in heart rate parameters. The vision 

parameters (i.e., lower awareness and lower attention) can be used to distinguish 

between high and low mental loads. In addition, work accidents and mental workload 

can be associated with blood pressure and muscle fatigue (e.g., measured by the 

electroencephalogram).   

https://ergo-plus.com/rula-assessment-tool-guide/
https://ergo-plus.com/rula-assessment-tool-guide/
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2.3.2.1 Electromyography (EMG) 

EMG is a sensor to measure muscle activities using electrical signals generated during 

muscle contractions.  

There is two way to measure the muscle activity by EMG electrodes either by inserting 

needle electrodes in the muscle or by placing surface electrodes on the skin over the 

muscle. The needle electrodes usually utilized in medical applications. Surface EMG 

electrodes are used in ergonomic because of their small size that allows measurement 

during motion.   

In ergonomics, the EMG is used to measure the muscle load, local muscle strain due to 

overload, muscle timing, and coordination. In most ergonomic applications, EMG 

measures are accompanied by other measures such as body posture, external load, and 

joint angles for a comprehensive interpretation. 

The advantages of EMG can be noticeable in its ability to measure continuous data with 

a high temporal resolution and sense the muscle fatigue in the early stage. Yet, there 

are some limitations to the EMG measures. For example, only muscles underneath the 

skin can be measured using surface EMG, there should not be too many fat tissues 

between the skin and muscles, and careful calibration, instrumentation design, and data 

interpretation are needed. 

2.4 Summary 

In this chapter, a review of the literature that is related to this thesis was presented. This 

review revealed that the observational methods are more accurate and reliable than self-

report methods in order to prevent physical risk factors of WMDs. In addition, to 

increase the accuracy and reliability of observation methods, the literature 

suggested integrating them with direct measurements and video observations rather 

than human observations. However, few studies investigate the validity of using 

wearable technologies and marker-less sensors for objective assessment of physical risk 

factors of WMDs. To the best of our knowledge, no study investigated the agreement 

between ergonomic risk assessment using wearable technology and that using a 

marker-based motion capture system as a gold-standard motion measurement 

system for manual material handling task evaluation. Note that the deployment of the 

latter system in workplaces for real-time evaluation is cumbersome, expensive, and 

hardly feasible. On the other hand, the studies that investigated the usability of a 
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marker-less optical sensor for ergonomic risk assessment for manual material handling 

tasks did not evaluate complex tasks and object-occlusion environments. Therefore, 

evaluation of WMDs risk factors using wearable technology and marker-less optical 

sensors is still technically challenging, and their accuracy and reliability are unknown. 

A new reliable system for in-field ergonomic risk assessment with proven accuracy and 

reliability can have a significant impact on preventing physical risk factors of WMDs, 

and enable objective ergonomic workplace modifications. 
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Chapter 3 

Chapter 3 provides the methodology that has been followed in this thesis. The chapter 

was divided into six subsections, participants statistics, experiment protocol, data 

collection, join angles calculation, RULA tool implementation, and data analysis. 

3. Method  

3.1 Participants 

Eleven non-disabled male individuals, age of 26±5, height of 170±5 cm, and weight of 

70±5 kg with no history of back pain, musculoskeletal, or neuromuscular injuries 

participated in the experiments. All participants had provided written consent before 

involved in the study. Research Ethics Board approval was received from the local 

ethics committee. 

3.2 Experiment Protocol  

The study participants conducted five scenarios for two manual material handling tasks. 

Each scenario lasted about 90 seconds. This included six repetitions of each of scenarios 

1, 2, and 3 and three repetitions for each of scenarios 4 and 5. As such, the total 

experimental time was about 10 minutes for each participant (Figures 9 and 10). The 

scenarios 4 and 5 were performed without using any physical objects (i.e., tables) 

because the Kinect sensor was not able to capture the motion due to the occlusion 

problem. Also, the manipulated box was not used in this study to minimize occlusion 

problem associated with the marker-less system. The dimensions of the tables used in 

scenarios 1, 2, and 4 were obtained from the NIOSH lifting equation manual [92]. In 

Scenario 1 (Packing), the participant simulated twisting 90° to pick up an object from 

the initial position (table 1: height of 30 inches) and place it over the final destination 

(table 2: height of 24 inches) without any significant control of the object. While in 

scenario 2 (Loading), the participant was required to bend and twist 45°  to pick up an 

object from a cart (position 1: height of 15 inches) and put it on (table 2: height of 36 

inches). Scenario 4 (Package inspection) involved symmetric movement in which the 

participant bent in the sagittal plane to 22 inches (height) (table 1: height of 22 inches) 

to pick up a box and placed it on (table 2: height of 59 inches) at head height. The 

scenarios associated with task 2 were i) picking an object from the ground and place it 

on the table with a height of 36 inches (scenario 3 [93]), and ii) reaching an object from 
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a position above the head (height of 75 inches) (scenario 5). In all tasks’ scenarios, the 

participants were not allowed to move the feet on the ground.   

 

 

3.3 Data collection 

Twenty-seven reflective markers (10 mm diameter) were mounted on the anatomical 

landmarks of each participant’s body (Figure 2), representing a fifteen-segment marker-

based model of the body. Eight motion capture cameras (Vicon, Oxford, UK) recorded 

the trajectory of the markers at a sampling rate of 100 Hz. Synchronously with the 

motion cameras, seventeen IMUs (Xsens, Netherlands) along with (Microsoft Kinect 

 

 

Figure 9.  Task 1 consists from three scenarios (a) Scenario 1, (b) Scenario 2, and 

(c) Scenario 4. 

 

 
Figure 10.  Task 2 consists of (a) Scenario 3, and (b) Scenario 5. 
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V2, USA) was used to record the motion of the participant at a sampling frequency of 

60, and 30 Hz respectively. Each IMU included a tri-axial accelerometer (range: ±16 

g), a tri-axial gyroscope (range: ±2000 deg/s), and a tri-axial magnetometer (range: ±1.9 

Gauss) and was attached to body segments using double-sided medical tape. The Kinect 

Sensor was placed in front of the participant three meters away and 0.69 meters high as 

recommended by Microsoft. Due to the irregularity in the Kinect sampling frequency 

(i.e., fluctuated between 30 and 29 Hz), offline spline interpolation was utilized to 

maintain a regular sampling frequency. Also, both Kinect and IMUs sampling 

frequency were resampled to attain identical sampling frequency with Vicon cameras 

at 100 Hz. 

Customized software was created to acquire Kinect data and to synchronize data 

collection of Kinect, IMUs, and Vicon cameras. In this regard, Open source Adafruit 

Metro Mini 328 (Arduino-Compatible - 5V 16MHz mini) chip was used to send a 5-

volt signal from a laptop to trigger the process (Figure 11), see section 3.3.2 for more 

details).  

 

3.3.1  Marker-based Kinematic model (reference) 

 In order to achieve three identical kinematic models, the IMU-based model and 

marker-based model were reconstructed to be close to the Kinect model in terms of 

 

Figure 11. Data collection diagram. The synchronization unit consists of Arduino Mini 

board (connected the Kinect), IMU-based system synchronization port (Awinda station), 

and marker-based system synchronization device (Vicon lock+) 
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joints number and position. The reflective markers were placed over the bony 

landmarks to obtain the location of the body segments center, as shown in Table 4.  

As it is known, the hip joint center cannot be determined easily since it is not a palpable 

bony landmark. Therefore, many studies have proposed a virtual hip joint center using 

regression estimation [94]. The method presented in [94] was used to find the hip joint 

center position in the pelvis LCS. For this purpose, markers were placed on the anterior 

superior iliac spines (ASIS), Posterior superior iliac spines (PSIS), and Femoral Lateral 

Epicondyle bony landmarks (Figure 12).  

Table 4. Bony landmarks for reflective markers positioning, and segment’s origin. 

Body part Anatomical landmarks Segment origin 

Head Right Auricularis (RA), and left Auricularis (LA) Midpoint of RA and LA 

Neck C7 C7 

Left shoulder Left Acromion (LA) LA 

Right shoulder Right Acromion (RA) RA 

Left elbow 
Left Lateral Humeral Epicondyle (LLHE), Left Medial 

Humeral Epicondyle (LMHE) 
Midpoint of LLHE and LMHE 

Right elbow 
Right Lateral Humeral Epicondyle (LLHE), Right 

Medial Humeral Epicondyle (LMHE) 
Midpoint of RLHE and RMHE 

Left wrist Left Radial Styloid (LRS), Left Ulnar Styloid (LUS) Midpoint of LRS and LUS 

Right wrist Right Radial Styloid (RRS), Right Ulnar Styloid (RUS) Midpoint of RRS and RUS 

Left Knee 
Left Femoral Lateral Epicondyle (LLE), Left Femoral 

Medial Epicondyle (LME) 
Midpoint of LLE and LME 

Right Knee 
Right Femoral Lateral Epicondyle (RLE), Right 

Femoral Medial Epicondyle (RME) 
Midpoint of RLE and RME 

Left ankle 
Left Lateral Malleolus (LLM), Left Medial Malleolus 

(LMM) 
Midpoint of LLM and LMM 

Right ankle 
Right Lateral Malleolus (RLM), Right Medial 

Malleolus (RMM) 
Midpoint of RLM and RMM 
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The origin of the Pelvis LCS was calculated as the midpoint between RASIS and LASIS 

markers position. 

�⃗� 𝑝𝑒𝑙𝑣𝑖𝑠 = 0.5(�⃗� 𝑅𝐴𝑆𝐼𝑆 + �⃗� 𝑅𝐴𝑆𝐼𝑆) (Eq. 3.1) 

 

The x-axis (𝑖 ) of the Pelvis LCS was defined as the vector passes the Pelvis origin and 

RASIS position. 

𝑖 =  
�⃗� 𝑅𝐴𝑆𝐼𝑆 − �⃗� 𝑝𝑒𝑙𝑣𝑖𝑠 

|�⃗� 𝑅𝐴𝑆𝐼𝑆 − �⃗� 𝑝𝑒𝑙𝑣𝑖𝑠|
 (Eq. 3.2) 

 

Then an auxiliary vector was created the midpoint between RPSIS and LPSIS locations 

to �⃗� 𝑝𝑒𝑙𝑣𝑖𝑠. 

𝑣 =  
�⃗� 𝑝𝑒𝑙𝑣𝑖𝑠 −  0.5(�⃗� 𝑅𝑃𝑆𝐼𝑆 + �⃗� 𝐿𝑃𝑆𝐼𝑆) 

|�⃗� 𝑝𝑒𝑙𝑣𝑖𝑠 −  0.5(�⃗� 𝑅𝑃𝑆𝐼𝑆 + �⃗� 𝐿𝑃𝑆𝐼𝑆)|
 (Eq. 3.3) 

 

Using the cross product, the y-axis and z-axis of the Pelvis LCS (�⃗�  and 𝑗 )  were 

calculated based on the right-hand rule. 

�⃗� =  
𝑖  × 𝑣 

|𝑖  × 𝑣 |
 (Eq. 3.4) 

 

Figure 12.  Anatomical landmarks for the origin and axes of Pelvis LCS. 
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𝑗 =  �⃗�  × 𝑖  (Eq. 3.5) 

 

The rotation matrix from Pelvis LCS to GCS was obtained as follows: 

𝑅𝑃𝑒𝑙𝑣𝑖𝑠
𝐺𝐶𝑆 = [ 

𝑖 𝑋 𝑖 𝑌 𝑖 𝑧
𝑗 𝑋 𝑗 𝑌 𝑗 𝑧

�⃗� 𝑋 �⃗� 𝑌 �⃗� 𝑧

]

𝑇

 (Eq. 3.6) 

 

The position of the right hip joint center in the Pelvis LCS [94] is obtained using the 

following equation: 

�⃗� 𝑅ℎ𝑖𝑝
𝑃𝑒𝑙𝑣𝑖𝑠 = [

   0.36 ∗ |�⃗� 𝑅𝐴𝑆𝐼𝑆 − �⃗� 𝐿𝐴𝑆𝐼𝑆|

−0.19 ∗ |�⃗� 𝑅𝐴𝑆𝐼𝑆 − �⃗� 𝐿𝐴𝑆𝐼𝑆|

−0.30 ∗ |�⃗� 𝑅𝐴𝑆𝐼𝑆 − �⃗� 𝐿𝐴𝑆𝐼𝑆|

] (Eq. 3.7) 

 

The position of the left hip joint center was obtained by multiplying the first row in 

�⃗� 𝑅ℎ𝑖𝑝
𝑃𝑒𝑙𝑣𝑖𝑠 by -1. In addition, to express the hip joint center in the GCS, Eq. 2.1 was applied 

as follows: 

�⃗� 𝑅ℎ𝑖𝑝
𝐺𝐶𝑆 = 𝑅𝑃𝑒𝑙𝑣𝑖𝑠

𝐺𝐶𝑆 ∗ �⃗� 𝑅ℎ𝑖𝑝
𝑃𝑒𝑙𝑣𝑖𝑠 + �⃗� 𝑃𝑒𝑙𝑣𝑖𝑠

𝐺𝐶𝑆  (Eq. 3.8) 

 

3.3.2 The kinematic model for the marker-less system  

The Kinect Skeletal data were extracted using the official Microsoft software 

development kit (SDK) (Microsoft, USA). Skeletal data were attained from the 

dynamic link library (DLL) ‘‘Microsoft.Research.Kinect.dll’’ version 2.0.0.0 utilizing 

the .NET framework and customized software built in C# (Figure 13). The skeletal data 

were obtained by depth image processing algorithms that calculated the 3D positions 

of the human skeleton joints in the Kinect field of view. The algorithms are complex, 

and use matrix transforms and machine learning techniques.    

Kinect V2 skeleton consists of twenty-five joints and exceeds that of Kinect V1 by five 

joints, as mentioned in Table 1. These joints are shown in (Figure 17). The first step in 

acquiring the Kinect skeletal data is to use either polling retrieval method or events 
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method (see M. Rahman [31] for more details). The latter was used in this study because 

it required a short code and is more common [95]. An event called FrameArrived is 

triggered whenever body data or (skeleton data in Kinect V1) are available to access 

from the BodyFrame Source of the KinectSensor class. Each frame of the BodyFrame 

Source creates a collection of bodies object up to six tracking bodies. Each body object 

has data that contain the body joints location. Each joint had a name (e.g., head, spin 

shoulder, and spine base) and a 3D vector. Secondly, the collected body joints are 

streamed and stored in a text file using the StreamWriter class for offline data analysis.  

Right after conducting the standard laboratory coordinates calibration for the (Vicon 

MX with Nexus V1.5.2) system, the Microsoft Kinect coordinates were aligned with 

the laboratory coordinates by placing a plate with four reflected markers. These four 

markers were captured by both systems to reconstruct the plate orientation with respect 

to both systems coordinate system and plug them in (Eq. 3.9) to find the Kinect 

orientation with respect to the GCS (i.e., the laboratory coordinate system).  

 

𝑅𝐶𝑆𝐾𝑖𝑛𝑒𝑐𝑡

𝐺𝐶𝑆 = 𝑅𝑝𝑙𝑎𝑡𝑒
𝐺𝐶𝑆 ∗ 𝑅𝑝𝑙𝑎𝑡𝑒

𝐶𝑆𝐾𝑖𝑛𝑒𝑐𝑡
𝑇
 (Eq. 3.9) 

 

where 𝑅𝑝𝑙𝑎𝑡𝑒
𝐶𝑆𝐾𝑖𝑛𝑒𝑐𝑡

𝑇
and 𝑅𝑝𝑙𝑎𝑡𝑒

𝐺𝐶𝑆  represent the plate rotation matrix in Kinect coordinate 

system and GCS, respectively. 

Since Kinect was not able to recognize the reflected markers; therefore, the screws used 

to fix the markers on the plate were captured. As mentioned above, the Kinect depth 

image contains 3D information of the scene. Similar to the skeletal data, depth image 

used FrameArrived event to access the DepthFrame Source whenever the Kinect sensor 

is open. The depth image is available in 16-bit ushort values representing millimeter 

distances from the Kinect’s coordinate system. In order to obtain the distance out of the 

depth image pixels, first, all pixels are stored in [512X424] array. Then by clicking over 

the targeted point in the Gray8 depth image the x and y coordinates of the targeted point 

are obtained and plugged in depth pixels array:    

 

𝑖𝑛𝑑𝑒𝑥 = (𝑥 + 𝑦 ∗ 424) (Eq. 3.10) 

 

𝑑𝑒𝑝𝑡ℎ𝑝𝑖𝑥𝑒𝑙𝑠 = [𝑖𝑛𝑑𝑒𝑥] (Eq. 3.11) 
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Figure 13. Customized software to collect and visualize the marker-less system (Kinect V2). The 

software presents the colored image (on the left-hand side) and the depth image (on the right-hand 

side). The toolbar in the left shows the start and stop buttons, the sampling frequency, number of 

frames captured, and the Arduino board status. The horizontal box shows the position of any point 

in the images in (X, Y, Z) with respect to the Kinect coordination system. The four points in the 

image are the marker used to calibrate Kinect. 

 

The “Microsoft.Research.Kinect.dll’’ library contains the coordinatemapper class that 

includes the MapDepthPointToCameraSpace method. This method is used to perform 

another transformation to the values obtained from depthpixels array to spatial points 

(X, Y, Z) with respect to the Kinect coordinate system. Figure 14 depicts Kinect and 

marker-based models before and after the calibration of the Kinect coordinate system 

in the GCS.    
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Figure 14. (a) Kinect and marker-based skeletons before calibration. (b) Kinect and 

marker-based skeletons after calibration. Both stick figures with respect to the lab 

coordinate system. 

 

Using the depth image to capture the screws (on the back of the reflective markers’ 

plate) from 2±0.5 meters was challenging. Therefore, the same method was used but 

with the color image, where the color image array size was [1920 x 1080], and the index 

changed to(𝑥 + 𝑦 ∗ 1080). Also, instead of using the MapDepthPointToCameraSpace 

method, the MapColorFrameToCameraSpace method was used with the color image. 

When the Kinect skeleton or body data are available, and a participant is detected, a 

method is called in the KinectSensor class to open a serial communication interface 

between Adafruit Metro Mini 328 and the laptop and send a 5-volt trigger signal 

through USB 2.0 cable. The trigger signal is received by the Xsens Awinda Station port 

to initiate the data collection of IMU-based and marker-based systems. In addition, 

when the motion tracking process is ended, another 5-volt signal is generated to stop 

the synchronization process.  

(b) (a) 
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3.3.3 IMU-based kinematic model 

The Xsens-MVN Analyze 2019 software package was utilized to create the IMU-based 

kinematic model. The MVN hardware is composed of the Xsens’ IMUs and its wireless 

communication technology. Therefore, it is portable and not confined to the lab uses 

and can be used in workplaces or offices for ergonomic assessment. By using advanced 

data analysis algorithms, the MVN system provides various kinematic parameters of a 

23-segment body model, such as segment orientation, angular velocity, and angular 

acceleration, and joint center position, velocity, and acceleration. The 3D joint angles 

of 22 joints are provided as well. Moreover, the magnetic field and the 3D acceleration 

data of 17 IMUs are available. 

The system can view and record real-time tracking sessions. For offline data analysis 

and editing, data can be exported in various formats (e.g., BVH, C3D, FBX, and 

MVNX). The BVH extension contains data (joint angles only) in ASCII format that can 

be imported by different animation applications (e.g., Autodesk Motion Builder and 

Autodesk 3ds Max). The C3D extension has the bony landmarks of the body that can 

be used in motion capture systems. The FBX extension file consists of the segment 

center position and orientation of the 23 segments. This extension provides access to 

AutoCAD software. The last extension (MVNX) is the most useful one since all data 

are available in this extension from the segment position to the body center of mass. 

The MVNX file is readable be tremendous software programs (e.g., Matlab and Excel). 

 

3.3.3.1 System calibration  

After the body configuration is set (i.e., full body, lower body, or upper body tracking 

configuration), the scenario, body dimensions, and segment calibration were set in the 

following order. First, the system has different scenarios (Single-Level, Multi-Level, 

No-Level, and Soft-Floor) relying on the measurement type, and they define the 

measurement’s accuracy and post-processing requirements. A Single-Level is selected 

when the participant walks on level terrain. A Multi-Level is selected when the 

participant climbs stairs. A No-Level scenario is selected when the participant is in a 

seated position. Finally, the Soft-Floor scenario is selected when the participant walks 

on grass or soft carpet. Second, the body dimensions entry consists of different 

anthropometric measurements such as body height, arm span, and ankle height, etc. 

These measurements are performed manually using a meter tape or other measurement 
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tools. For example, the body height is defined as the distance from the ground to the 

top of the head in the upright standing, more details about the body measurements are 

available in [96]. Finally, the segment calibration is conducted to align the IMU with 

the participant segments, which is important to be done with care and attention to have 

the best outcome. In the calibration, the participant is asked to stand in N-Pose for a 

few seconds, and then walk forward and back in the normal style. Before the calibration 

results are applied, the participant stands in N-Pose at the position from where the 

calibration starts to set the X-axis pointing forward and to define the coordinate system 

at the participant right heel. 

  
 

Figure 15. Xsens MVN model in T-Pose (adopted from [96].)  

 

3.3.3.2 IMU-based model reconstruction 

By using a Single-Level scenario and full-body configuration, the tracking sessions 

were performed, and the MVNX files were exported containing different kinematic 

parameters. Kinect parameters were also obtained simultaneously. Also, the positions 

of different anatomical landmarks positions were available with respect to the segment 

LCS. To get a similar model to both Kinect and marker-based models, these anatomical 

landmark positions were obtained with respect to GCS (of the MVN system) using the 

orientation and position of the segment in which the anatomical landmarks located. In 

Figure 3, the (Xg, Yg, Zg) coordinates represent the MVN system GCS, and the (Xl, Yl, 

Zl) coordinates represent the segment LCS and the vector �⃗� 𝑎
𝑙 represent the anatomical 
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landmark position in the segment LCS. After obtaining all the required anatomical 

landmarks, the same definition as section 3.3.1 was applied to reconstruct the IMU-

based model.    

 

 

 

Figure 16. The three systems stick figures with respect to the lab coordinate system 

(GCS). 

 

Similar to Kinect, the Xsens MVN system has its own coordinate system; therefore, to 

represent the IMU-based model in the GCS, all joints locations were multiplied by a 

rotation matrix. The rotation matrix was obtained using any of the 23 segment 

orientation provided by the Xsens MVN system and the marker-based system according 

to (Eq. 3.1) where 𝑅𝑝𝑙𝑎𝑡𝑒
𝐺𝐶𝑆  is replaced with 𝑅𝑎𝑛𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐺𝐶𝑆  and 𝑅𝑝𝑙𝑎𝑡𝑒
𝐶𝑆𝐾𝑖𝑛𝑒𝑐𝑡  is replaced 

with𝑅𝑎𝑛𝑦 𝑠𝑒𝑔𝑒𝑚𝑛𝑡
𝐶𝑆𝑀𝑉𝑁 . 
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3.4 Joint angles calculation 

3.4.1 2D joint angles 

The sagittal, frontal, and transverse planes of the body were defined to locate the 

segments' position required for the RULA assessment tool [32] (Figure 17). The sagittal 

plane was perpendicular to the line connecting right shoulder (4) and left shoulder (5) 

(Shoulder vector). The frontal plane was parallel to the Shoulder vector and passed 

through the Trunk vector, the line connecting the spine base (3) and spine shoulder (2). 

The transverse (horizontal) plane was the ground. 

The neck flexion/extension angle, neck lateral bending angle, trunk flexion/extension 

angle, trunk lateral bending angle, and trunk rotation angle were calculated to obtain 

the neck and trunk scores in the RULA assessment tool. The neck flexion/extension 

angle was the angle between the projection of the line connecting head and spine 

shoulder points (1 and 2) (Neck vector) in the sagittal plane and the projection of the 

Trunk vector in the same plane. The neck lateral bending was the angle between the 

Neck vector and the Shoulder vector [32]. The trunk flexion/extension was defined by 

the angle measured between the Trunk vector and the vertical direction [32]. The trunk 

lateral bending angle was measured between the projections of the Shoulder vector and 

Hip vector in the frontal plane. Hip vector was defined as a vector passing through the 

right and left hips joint centers (10 and 11). The trunk rotation was defined as the angle 

between the projections of the Shoulder vector and the Hip vector in the transverse 

plane. 

The upper arm flexion/extension angle, upper arm adduction/abduction angle, and 

elbow angle were calculated to obtain the upper limb score in the RULA assessment 

tool. The upper arm flexion/extension was the angle between the projections of the 

Trunk vector and the Upper-arm vector in the sagittal plane. The latter vector was 

defined as a vector directed from the shoulders (4 or 5) to the elbows (6 or 7). The upper 

arm adduction/abduction was the angle made between the projection of the Upper-arm 

vector in the frontal plane and the Trunk vector. The elbow angle was the angle between 

the Upper-arm vector and the Lower-arm vector that passes through the elbows (6 or 

7) to the wrists (8 or 9). In addition, the position of the lower arm was evaluated using 

the angle between the Shoulder vector and the Lower-arm vector projected into the 

transverse plane.  
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The projection of a vector (�⃐�) into a plane with normal vector (�⃐⃗�) and the angle (𝜃) 

between two vectors (�⃐�) and (�⃐⃗�) were calculated as follows: 

𝑃𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(�⃐�) =  �⃐� −
𝑎.⃐⃗⃗⃗ �⃐⃗�

‖�⃐⃗�‖2
�⃐⃗� (Eq. 3.12) 

 

cos 𝜃 =  
𝑎.⃐⃗⃗⃗ �⃐⃗�

‖𝑎.⃐⃗⃗⃗ ‖‖�⃐⃗�‖
 (Eq. 3.13) 

 

3.4.2 3D joint angles 

To evaluate the impact of joint angles definition on the RULA scores calculation, 3D 

joint angles were obtained based on the Cardan angle convention in addition to the 

 
 

Figure 17. Illustration of (a) the joints center positions used in (2D joint angles    calculation), 

and (b) Body planes. (b) Depicts the three anatomical planes used for 2D joint angles 

calculation: sagittal, frontal, and transverse planes. 



45 

 

angles obtained between the projected vectors. In order to calculate 3D joint angles, a 

segmental biomechanical model was used in this study. This model (hereafter referred 

to as 3D model) was based on anatomical landmarks as in the ISB recommendations 

[97]-[98]. For head and trunk segments we were not able to follow the ISB 

recommendations, because the head segment, was not defined by the ISB 

recommendations, and the T8, needed for trunk segment definition was missed in most 

of the trials. Therefore, the midpoint between C7 and Incisura Jugularis (IJ) and right 

and left Auricularis anatomical landmarks were used to identify the head segment. Also, 

C7, IJ, and Processus Xiphoideus (PX) were used to define the trunk segment. 

Moreover, the hip joint center of rotation was calculated as in section 3.3.1. Anatomical 

coordinate systems were built according to the same ISB recommendations.  

3.5 RULA score implementation  

After calculating the joint angles during each scenario, the RULA score was calculated, 

RULA parameters were set as in Table 5. The RULA score for each scenario was 

calculated for each frame. For those angles (in the RULA sheet adjustments), that have 

no defined thresholds, 20⸰ was set as in [62].  

Table 5. Shows the RULA segment position and its corresponded joint angle 

RULA segment position Joint angle 

Upper arm position 

Upper arm flexion/extension 

Upper arm adduction/abduction 

Shoulder adduction/abduction* 

Lower arm position 
Elbow flexion/extension 

Upper arm rotation 

Wrist position Set manually 

Neck position 
Neck flexion/extension 

Neck lateral bending 

Trunk position 

Trunk flexion/extension 

Trunk adduction/abduction 

Trunk rotation 

Muscle and Force  Set manually  

*This angle was used in both 2D and 3D calculations. 
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3.6 Data analysis  

Data from all systems were filtered using a 3rd-order one-dimensional median filter. 

The measurement reliability of all trials for the Microsoft Kinect, IMU-based system, 

and the marker-based system was quantified using the intra-class correlation coefficient 

(ICC2,1). The ICC2,1  coefficients were calculated in a 2-way analysis of variance based on 

the absolute agreement as in [52]. The raters’ agreement was identified by calculating 

the proportion agreement index and Cohen’s Kappa coefficient as in [32]. The variation 

of RMSE was tested using a Multiple-sample test for equal variances (Bartlett test) at 

the significance level: 5%. The Kruskal-Wallis test used to test that if joint angles 

RMSEs come from the same distribution at a significance level of 5%. Also, a post-hoc 

multiple comparison test was used. A non-parametric statistical hypothesis test 

(Wilcoxon signed-rank test) was used to compare the right and left sides (significance 

level: 5%). 

https://www.mathworks.com/help/stats/kruskalwallis.html#btv4oqy-10
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
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Chapter 4 

This chapter provides the results obtained in this research. First, the results of the 3D 

joint angles for the IMU-based system, then the 2D joint angles of the same system, are 

presented. Finally, the results of the 2D joint angles of the marker-less system are 

presented.  

4. Results  

4.1 IMU-based system model 

4.1.1 3D joint angles  

The root mean square error (RMSE) of the joint angles (calculated using the method 

described in section 3.4.2) is provided for both body sides for scenarios 1, 4, and 5 

between the IMU-based system model and marker-based system model (as reference) 

in Figures 18 to 20. In all scenarios, the median of RMSE was close to or below 10⸰ for 

trunk and neck angles, except for neck flexion/extension in scenarios 1, 4 and 5 (16.4⸰, 

20.4⸰ and 24.6⸰, respectively), and trunk flexion/extension in scenario 5 (11.3⸰). The 

Bartlett test indicated that the null hypothesis of equal variances across the different 

joint angles is rejected at p-value < 0.05 for all scenarios. The Kruskal-Wallis test also 

rejected the null hypothesis for all scenarios. The post-hoc multiple comparison test 

indicated significant differences among the RMSE median of joint angles in all 

scenarios.  

In scenario 1, we found that both right and left elbow adduction/abduction were 

significantly larger than other joint angles with RMSE medians of 27.9⸰ and 25.1⸰, 

respectively. At the same time, the left knee rotation was significantly smaller than 

other joint angles (RMSE median of 0.5⸰) (Figure 18).  

In scenario 4, both right elbow flexion/extension and elbow adduction/abduction were 

significantly larger than other joint angles with RMSE medians of 24.1⸰ and 25.0⸰, 

respectively. Similar to scenario 1, both right and left knee rotation showed 

significantly smaller RMSE median compared to other joint angles with values of 1.9⸰ 

and1.1⸰, respectively (Figure 19).  

In scenario 5, the right elbow flexion/extension was significantly larger than other joint 

angles with an RMSE median of 26.6⸰. In contrast, the RMSE median of right and left 

https://www.mathworks.com/help/stats/kruskalwallis.html#btv4oqy-10
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knee rotation angles were significantly smaller than other joint angles with values of 

0.3⸰ and 0.2⸰, respectively (Figure 20).  

In scenario 1, the right upper arm adduction/abduction and rotation angles had a 

significantly smaller RMSE median than the left side. In addition, the elbow 

flexion/extension and knee adduction/abduction angles showed a significantly smaller 

RMSE median on the left side than the right side (Figure 18). In scenario 4, elbow 

flexion/extension, elbow adduction/abduction, and knee rotation showed a significantly 

larger RMSE median on the right side than the left side. Whereas, the left elbow rotation 

and left upper arm adduction/abduction had a lager RMSE median (Figure 19). In 

scenario 5, the right elbow flexion/extension and right elbow adduction/abduction 

angles showed a significantly larger RMSE median than the left side. In contrast, the 

elbow rotation and upper arm adduction/abduction on the left side were significantly 

larger than the right side (Figure 20).  
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Figure 18. Scenario 1: RMSE of the joint angles (3D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 19. Scenario 4: RMSE of the joint angles (3D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 20. Scenario 5: RMSE of the joint angles (3D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Table 6. Proportion agreement index Po, linear weighted Cohen's kappa coefficient, and Z-test results for RULA scores obtained by the IMU-

based model and Marker-based model using (3D joint angles). The results are presented in 50th (25th, 75th) percentile among the participants. 

 
Body Side Po Cohen's kappa 

Agreement (Landis and 

Koch scale) 
z (k/sqrt (var)) p value Null hypothesis 

Scenario 1 
Right side 0.72(0.66,0.82) 0.41(0.28,0.58) Moderate 14.2(7.8,21.2) < 0.001 Rejected 

Left side 0.76(0.66, 0.81) 0.45(0.23,0.67) Moderate 14.7(7.7,21.1) < 0.001 Rejected 

Scenario 4 
Right side 0.82(0.80, 0.87) 0.55(0.53,0.69) Moderate 20.4(18.0,29.3) < 0.001 Rejected 

Left side 0.82(0.78,0.88) 0.55(0.49, 0.70) Moderate 20.4(16.8 ,32.0) < 0.001 Rejected 

Scenario 5 
Right side 0.89(0.71, 0.98) 0.63(0.25, 0.89) Substantial 18.0(5.9,34.2) < 0.001 Rejected 

Left side 0.80(0.68,0.95) 0.58(0.24,0.82) Moderate 21.0(5.5, 32.8) < 0.001 Rejected 
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The RULA scores obtained by both the IMU-based system and marker-based system were 

compared on a sample-to-sample basis using the proportion agreement index and Cohen’s 

kappa coefficient (Table 6). According to the Landis and Koch scale [99], the results 

showed a “moderate” agreement between the two systems in all scenarios, except for 

the right body side in scenario 5 showed a “substantial” agreement. To show the 

significance of the results, the Z-test was used to test the null hypothesis whether the 

probability of the agreement between the two systems was accidental. This null 

hypothesis (p < 0.05) was rejected in all scenarios and for both right and left body sides. 

The results presented in Table 8 showed the ICC inter-participant agreement for each 

system. Using 3D joint angles calculation for RULA evaluation, both IMU-based and 

Marker-based systems showed an “excellent” agreement in the RULA scores median 

between participants for all scenarios, according to Cicchetti [100] guidelines for 

interpretation for ICC.  

4.1.2 2D joint angles 

Similarly, the RMSEs of the joint angles (calculated using the method described in 

section 3.4.1) between the IMU-based system model and marker-based system model 

(as reference) for both body sides for scenarios 1 to 5 are depicted in Figures 21 to 25. 

In all scenarios, the RMES median was below or close to 10⸰ for trunk and neck angles. 

The Bartlett test indicated that the null hypothesis of equal variances across the different 

joint angles is rejected at p-value < 0.05 in all scenarios. The Kruskal-Wallis test 

rejected the null hypothesis for all scenarios. The post-hoc multiple comparison test 

indicated significant differences among the RMSE median of joint angles for all 

scenarios. In scenario 1, both elbow flexion/extension (right and left), and upper arm 

adduction/abduction (right and left) had an RMSE median significantly larger than 

other joint angles with values of (24.4⸰ and 22.6⸰), and (16.3⸰ and 22.6⸰), respectively. 

Also, the left upper arm flexion/extension was noticed having the smallest RMSE 

median (median: 3.2⸰) (Figure 21).  

In scenario 2, the RMSE median of right and left elbow flexion/extension was 

significantly larger compared to other joint angles with medians of 24.9⸰ and 23.1⸰, 

respectively. Also, the right knee flexion/extension was the smallest with an RMSE 

median of 3.2⸰ (Figure 22).  

In the same way, in scenario 3, the right and left elbow flexion/extension showed a 

significantly larger RMSE median compared to other angles (24.8⸰ and 22.7⸰). Also, the 

https://www.mathworks.com/help/stats/kruskalwallis.html#btv4oqy-10
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RMSE median of trunk adduction/abduction, and trunk rotation angles were 

significantly smaller than other joint angles with values of 2.0⸰ and 2.4⸰, respectively 

(Figure 23).  

In scenario 4, likewise, right and left elbow flexion/extension showed a significantly 

larger RMSE median compared to other angles (25.0⸰ and 23.5⸰), respectively. Also, the 

RMSE median of trunk adduction/abduction, and trunk rotation angles were 

significantly smaller than other joint angles with medians of 2.6⸰ and 3.1⸰, respectively 

(Figure 24). In addition, in scenario 5, right and left elbow flexion/extension had the 

largest RMSE median (24.3⸰ and 23.2⸰) respectively, while the smallest RMSE median 

was noticed in the trunk adduction/abduction and trunk rotation with medians of 1.3⸰ 

and 1.5⸰, respectively (Figure 25).  

In scenario 1, the right elbow flexion/extension and right shoulder adduction/abduction 

were significantly larger RMSE median than the left side, while upper arm 

adduction/abduction and rotation angles showed a significantly smaller RMSE median 

in the right side than the left side (Figure 21). In scenario 2, the shoulder 

adduction/abduction and elbow flexion/extension showed a significantly larger RMSE 

median on the right side than the left side. Also, the knee flexion/extension and upper 

arm rotation had a significantly large RMSE median on the left side (Figure 22). In 

scenario 3, elbow, upper arm, and knee flexion/extension angles showed a significantly 

larger RMSE median in the right side than the left side, while in the shoulder 

adduction/abduction, the significantly larger RMSE median was in the left side (Figure 

23). In scenario 4, the right elbow flexion/extension, and shoulder adduction/abduction 

angles showed a significantly larger RMSE median in the right side. Also, the upper 

arm rotation had a significantly larger RMSE median on the left side (Figure 24). In 

scenario 5, the elbow and upper arm flexion/extension on the right side had a 

significantly larger RMSE median than the left side, whereas the upper arm rotation 

angle RMSE median was significantly larger on the left side (Figure 25). 
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Figure 21.  Scenario 1: RMSE of the joint angles (2D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 22. Scenario 2: RMSE of the joint angles (2D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 23.  Scenario 3: RMSE of the joint angles (2D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees and each boxplot represents the data from the study 

participants. 
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Figure 24.  Scenario 4: RMSE of the joint angles (2D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 25.  Scenario 5: RMSE of the joint angles (2D joint angles) obtained by the 

IMU-based system compared to those obtained by the marker-based system. The 

results are expressed in degrees and each boxplot represents the data from the study 

participants. 
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Table 7. Proportion agreement index Po, linear weighted Cohen's kappa coefficient, and Z-test results for RULA scores obtained by the IMU-

based model and Marker-based model using (2D joint angles). The results are presented in 50th (25th, 75th) percentile among the participants. 

 Body Side Po Cohen's kappa 
Agreement (Landis and 

Koch scale) 
z (k/sqrt (var)) p value Null hypothesis 

Scenario 1 
Right side 0.89(0.84,0.98) 0.65 (0.55,0.93) Substantial 26.8(18.8,39.0) < 0.001 Rejected 

Left side 0.92(0.86, 0.99) 0.75(0.56,0.95) Substantial 30.6(18.4,39.8) < 0.001 Rejected 

Scenario 2 
Right side 0.89(0.82,0.92) 0.73 (0.59,0.82) Substantial 32.9 (23.0,42.6) < 0.001 Rejected 

Left side 0.85(0.80, 0.89) 0.66 (0.53,0.75) Substantial 27.0(19.4,35.1) < 0.001 Rejected 

Scenario 3 
Right side 0.88(0.83, 0.92) 0.67 (0.56,0.77) Substantial 26.6 (19.6,34.3) < 0.001 Rejected 

Left side 0.87(0.80, 0.92) 0.61(0.44,0.77) Substantial 23.2(14.2,35.0) < 0.001 Rejected 

Scenario 4 
Right side 0.89(0.79, 0.95) 0.65(0.40,0.85) Substantial 25.7(12.0,36.9) < 0.001 Rejected 

Left side 0.88(0.81,0.93) 0.64 (0.48, 0.80) Substantial 24.6(13.6,36.1) < 0.001 Rejected 

Scenario 5 
Right side 0.89(0.80, 0.99) 0.70(0.61, 0.98) Substantial 27.7(17.2,38.2) < 0.001 Rejected 

Left side 0.91(0.80,0.98) 0.66(0.58,0.94) Substantial 23.1(17.1, 39.7) < 0.001 Rejected 
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The RULA scores obtained by both the IMU-based system and marker-based system were 

compared on a sample-to-sample basis using the proportion agreement index and Cohen’s 

kappa coefficient (Table 7). According to the Landis and Koch scale [99], the results 

showed a “substantial” agreement between the two systems in all scenarios. To show 

the significance of the results, the Z-test was used to test the null hypothesis whether 

the probability of the agreement between the two systems was accidental. This null 

hypothesis (p < 0.05) was rejected in all scenarios and for both right and left body sides. 

The results presented in Table 8 showed the ICC inter-participant agreement for each 

system. Using 2D joint angles calculation for RULA evaluation, the IMU-based 

showed an “excellent” agreement in the RULA scores median between participants for 

all scenarios except scenario 2 left side showed a “good” agreement. In contrast, the 

marker-based systems showed an “excellent” agreement in the RULA scores median 

between participants for all scenarios, according to Cicchetti [100] guidelines for 

interpretation for ICC. 
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Table 8. Intraclass correlation coefficient (ICC) (lower/upper bound of 95% confidence interval [CI] in parentheses) of RULA scores median scores 

of 5 manual handling scenarios for all participants. 

 Body side 
Marker-based system 

2D 
 

Marker-based system 

3D 
 

IMU-based system 

2D 
 

IMU-based system 

3D 
 Kinect 

  ICC2,1 (95% CI)  ICC2,1 (95% CI)  ICC2,1 (95% CI)  ICC2,1 (95% CI)  ICC2,1 (95% CI) 

Scenario 1 
Right side 0.77(0.47,0.93)  0.88(0.72,0.97)  0.87(0.70,0.96)  0.82(0.55,0.95)  0.91(0.75,0.98) 

Left side 0.90(0.77,0.97)  0.92(0.81,0.98)  0.93(0.84,0.98)  0.89(0.75,0.97)  0.91(0.75,0.98) 

Scenario 2 
Right side 0.82(0.60,0.95)  NA  0.81(0.58,0.94)  NA  0.58(-0.1,0.89) 

Left side 0.85(0.66,0.95)  NA  0.70(0.30,0.91)  NA  0.58(-0.1,0.89) 

Scenario 3 
Right side 0.96(0.90,0.99)  NA  0.86(0.67,0.96)  NA  0.66(0.18,0.92) 

Left side 0.92(0.83,0.98)  NA  0.84(0.63,0.95)  NA  0.66(0.18,0.92) 

Scenario 4 
Right side 0.85(0.59,0.96)  0.81(0.43,0.95)  0.92(0.87,0.99)  0.91(0.72,0.98)  0.87(0.63,0.96) 

Left side 0.95(0.77,0.98)  0.86(0.56,0.96)  0.95(0.77,0.98)  0.82(0.48,0.95)  0.87(0.63,0.96) 

Scenario 5 
Right side 0.95(0.65,0.96)  0.89(0.64,0.97)  0.95(0.65,0.96)  0.90(0.69,0.98)  0.79(0.43,0.94) 

Left side 0.87(0.85,0.98)  0.86(0.57,0.97)  0.87(0.85,0.98)  0.94(0.83,0.99)  0.79(0.43,0.94) 

ICC2,1: Type 2,1 intraclass correlation coefficient; 95% CI: 95% confidence interval 
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Table 9. Intraclass correlation coefficient (ICC) interpretation based on Cicchetti 

(1994) 

ICC coefficient  interpretation 

Less than 0.40 poor 

0.40 <ICC<0.59 fair 

0.60<ICC<0.74 good 

0.75<ICC<1.00 excellent 

 

4.2 Marker-less system model  

Figures 26 to 30 show the RMSEs median of the joint angles (calculated using the 

method describes in section 3.4.1) obtained by the marker-less system compared to 

those the marker-based model (as reference) for both body sides for all scenarios. On 

the contrary, to the IMU-based model, all scenarios had a median of RMSE above 10⸰ 

for trunk and neck, except for trunk adduction/abduction and rotation angles in 

scenarios 3, 4, and 5. In addition, the RMSE median of trunk flexion/extension was 

below 10⸰ in scenario 5. The Bartlett test indicated that the null hypothesis of equal 

variances across the different joint angles is rejected at p-value < 0.05 for all scenarios. 

The Kruskal-Wallis test rejected the null hypothesis for all scenarios. The post-hoc 

multiple comparison test indicated significant differences among the RMSE median of 

joint angles in all scenarios. In scenario 1, the RMSE median of neck flexion/extension 

was significantly larger than other joint angles with a median of 29.6⸰. At the same time, 

the RMSE median of left trunk adduction/abduction was significantly smaller than 

other joint angles (median: 7.0⸰) (Figure 26).  

In scenario 2, the right and left upper arm adduction/abduction, and trunk 

adduction/abduction RMSE median were significantly larger compared to other joint 

angles with medians of 30.0⸰ and 33.8⸰ and 28.5⸰, respectively. The right and left 

shoulder adduction/abduction showed significantly smaller RMSE median compared 

to other joint angles with medians of 10.0⸰ and 9.5⸰, respectively (Figure 27).  

In scenario 3, the neck adduction/abduction, right and left upper arm 

adduction/abduction, and right and left knee flexion/extension were significantly larger 

than other joint angles with medians of 25.8⸰, (36.6⸰ and 33.1⸰), and (25.4⸰ and 25.6⸰) 

respectively. Also, the RMSE median of trunk adduction/abduction, and trunk rotation 

angles were significantly smaller than other joint angles with medians of 5.5⸰ and 6.0⸰, 

respectively (Figure 28).  

https://www.mathworks.com/help/stats/kruskalwallis.html#btv4oqy-10
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In scenario 4, the right and left upper arm adduction/abduction had a significantly larger 

RMSE median than other angles with medians of 38.1⸰, and 39.6⸰ respectively, while 

the trunk adduction/abduction and trunk rotation showed significantly small RMSE 

medians, 2.7⸰, and 2.9⸰, respectively (Figure 29). In the last scenario (scenario 5), the 

largest RMSE was noticed in the right and left upper arm flexion/extension and 

adduction/abduction with medians of (28.7⸰ and 29.6⸰), and (33.2⸰ and 31.2⸰) 

respectively. Also, the trunk flexion/extension, adduction/abduction, and rotation had 

the smallest RMES median 3.1⸰, 1.9⸰, and 2.0⸰, respectively (Figure 30). 

In scenario 1, the right upper arm adduction/abduction had a significantly smaller 

RMSE median than the left side, while the knee flexion/extension angle showed a 

significantly smaller RMSE median on the left side than the right side (Figure 26). In 

scenario 2, all upper arm joint angles, and knee flexion/extension showed a significantly 

larger RMSE median on the left side than the right side (Figure 27). In scenario 3, no 

significant difference was observed between the right and left sides (Figure 28). In 

scenario 4, the right upper arm flexion/extension angles showed a significantly smaller 

RMSE median than the left side (Figure 29). In scenario 5, the right side in the upper 

arm adduction/abduction was significantly larger than the left side (Figure 30).  
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Figure 26.  Scenario 1: RMSE of the joint angles (2D joint angles) obtained by 

marker-less system compared to those obtained by the marker-based system. The 

results are expressed in degrees and each boxplot represents the data from the study 

participants. 
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Figure 27. Scenario 2: RMSE of the joint angles (2D joint angles) obtained by the 

marker-less system compared to those obtained by the marker-based system. The results 

are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 28.  Scenario 3: RMSE of the joint angles (2D joint angles) obtained by 

marker-less system compared to those obtained by the marker-based system. The 

results are expressed in degrees and each boxplot represents the data from the study 

participants. 
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Figure 29. Scenario 4: RMSE of the joint angles (2D joint angles) obtained by the 

marker-less system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Figure 30. Scenario 5: RMSE of the joint angles (2D joint angles) obtained by the 

marker-less system compared to those obtained by the marker-based system. The 

results are expressed in degrees, and each boxplot represents the data from the study 

participants. 
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Table 10. Proportion agreement index Po, linear weighted Cohen's kappa coefficient, and Z-test results for RULA scores obtained by marker-

less model and Marker-based model using (2D joint angles). The results are presented in 50th (25th, 75th) percentile among the participants. 

 
Body Side Po Cohen's kappa 

Agreement (Landis and 

Koch scale) 
z (k/sqrt (var)) p value Null hypothesis 

Scenario 1 
Right side 0.82(0.75,0.87) 0.24(0.0,0.51) Fair 6.1(0.0,13.6) < 0.001 Rejected 

Left side 0.78(0.67,0.84) 0.22(0.0,0.51) Fair 5.5(0.8,18.4) < 0.001 Rejected 

Scenario 2 
Right side 0.80(0.75,0.86) 0.58(0.46,0.67) Moderate 20.6(15.5,26.1) < 0.001 Rejected 

Left side 0.77(0.71,0.84) 0.48(0.38,0.61) Moderate 17.5(12.2,24.9) < 0.001 Rejected 

Scenario 3 
Right side 0.84(0.80,0.88) 0.56(0.43,0.63) Moderate 18.4(11.9,27.6) < 0.001 Rejected 

Left side 0.83(0.80,0.89) 0.56(0.45,0.69) Moderate 23.9(16.1,30.8) < 0.001 Rejected 

Scenario 4 
Right side 0.81(0.71,0.85) 0.38(0.23,0.51) Fair 14.6(2.6,21.5) < 0.001 Rejected 

Left side 0.79(0.71,0.85) 0.41(0.25,0.50) Moderate 16.1(9.9,22.1) < 0.001 Rejected 

Scenario 5 
Right side 0.94(0.82,0.95) 0.57(0.51,0.79) Moderate 32.0(21.9,35.5) < 0.001 Rejected 

Left side 0.80(0.75,0.92) 0.55(0.50,0.77) Moderate 18.2(13.4,31.1) < 0.001 Rejected 
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The RULA scores obtained by both the IMU-based system and marker-based system were 

compared on a sample-to-sample basis using the proportion agreement index and Cohen’s 

kappa coefficient (Table 10). According to the Landis and Koch scale [99], the results 

showed a “moderate” agreement between the two systems in scenarios 2, 3, 5 and left side 

of scenario 4, while scenario 1 and right side of scenario 4 showed “fair” agreement. To 

show the significance of the results, the Z-test was used to test the null hypothesis whether 

the probability of the agreement between the two systems was accidental. This null 

hypothesis (p < 0.05) was rejected in all scenarios and for both right and left body sides. 

The results presented in Table 8 showed the ICC inter-participant agreement for each 

system. Using 2D joint angles calculation for RULA evaluation, the marker-less system 

showed an “excellent” agreement for scenarios 1, 4, and 5, “fair” agreement in scenario 2, 

and “good” in scenario 3 in the RULA scores median between participants according to 

Cicchetti [100] guidelines for interpretation for ICC.  

  



72 

 

Chapter 5 

This chapter discusses the results of the IMU-based system for in-field body motion 

tracking and RULA assessment tool evaluation in sections 5.1 and 5.2. Sections 5.3 and 

5.4 discuss the results of the marker-less system for in-field body motion tracking and 

RULA assessment tool evaluation. Sections 5.5 and 5.6 discuss the limitations of the study 

and the conclusion and future work.  

5.   Discussion and Conclusions  

5.1 IMU-based system for in-field body motion assessment  

We investigated the accuracy of a commercial IMU system for RULA score measurement 

against the marker-based motion-capture system for manual material handling tasks. The 

RULA ergonomic assessment method was used in this study because it is designed for 

sedentary tasks and for the risk factor of posture-related WMDs. For this purpose, the 

angular position of body segments was identified using vector convention and their 

projection into different planes on the one hand (2D joint angles). At the same time, the 3D 

joint angles were calculated by using the joint coordinate system (JCS) convention. In the 

IMU-based system, the RMSE of joint angles was high on upper and lower arms 

adduction/abduction, also in the elbow flexion/extension angles in all scenarios, mainly 

due to their high range of motion. In upper arm joint angles, the projection of vectors 

contributed to the majority of the error in the 2D models since the marker-based model 

overestimates the joint angles for some of the participants due to the markers placement 

and the anthropometric differences between the participants especially in high range 

motion in these limbs. However, the error in the elbow joint angles was mainly to the offset 

between systems and almost around 20⸰ in all scenarios and participants. Robert-Lachaine 

et al. [101] investigated the differences between the body joint angles obtained by the 

Xsens IMUs MVN system and those obtained by a marker-based system and showed that 

the IMUs and markers displacement over skin during manual material handling tasks might 

affect the calculation of joint angles. They also showed that the IMUs calibration process 

and the anthropometric measurements could contribute to the observed offset errors. They 

reported RMSE values of 40.2⸰ on the upper arm adduction/abduction, which were larger 

than the largest RMSE median of the same angle (3D joint angles) presented in our study 
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9.5⸰ for the left side. This large difference could be attributed to the fact that their study 

measured the glenohumeral joint to represent the upper arm joint center position. Also, in 

2D joint angles, the largest upper adduction/abduction RMSE median in our study (21.28⸰) 

was smaller than the error in the study of Robert-Lachaine et al., which can be due to the 

difference between the angle calculation methods. The duration of the tasks in their study 

was long (about 32 minutes) that could also increase the error. Conversely, the largest 

elbow flexion/extension (3D joint angles) RMSE median in our study, was larger (26.6⸰) 

than the RMSE in their study (6.2⸰). Also, the largest (2D joint angles) elbow 

flexion/extension RMSE median was (25.0⸰). This error mainly resulted from the offset 

between the IMU-based system used in our study and the marker-based system. Robert-

Lachaine et al. concluded that the task complexity (i.e., range of motion, and the duration 

of the task) contributed to the error.   

 

5.2 IMU-based system for in-field assessment of RULA score 

A few studies [28]-[29]-[102] calculated RULA scores for ergonomic risk assessment 

using IMU-based systems based on a biomechanical model with different degrees of 

freedom. However, neither of them compared the results with a marker-based system as a 

reference to demonstrate the level of agreement between the RLA. The results in Tables 6 

and 7 show that the IMU-based system was able to obtain a RULA score with moderate 

and substantial agreement with the marker-based system when the 3D joint angles and 2D 

joint angles conventions were used. The absolute differences between Cohen’s Kappa 

coefficient obtained for the right and left body sides were due to the asymmetry in the tasks. 

In [28], the authors reported that their IMU-based system had 94.79% accuracy compared 

to a subjective observation during grocery tasks. In our study, the agreement between the 

IMU-based system and marker-based system was ranging from moderate to substantial.   

5.3 Marker-less system for in-field body motion assessment 

The accuracy and reliability of the marker-less system for ergonomic evaluation were 

investigated and compared with the marker-based system. The same joint angle convention 

(2D joint angles) used to obtain joint angles by the IMU-based system and by the marker-

less system (Kinect). The marker-less system had a significant larger RMSE in most of the 

joint angles compared to IMU-based system (see Appendix B, FigureB14, and B18). The 
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error in Kinect results can be referred to the fact that the performance of Kinect depends 

on the depth image processing algorithm that can be affected by a couple of factors such 

as the existence of objects between the camera and the participant, and the lighting 

condition. In addition, as reported in [50], the reflective markers of the marker-based 

system and the plates used to attach the IMUs may influence the accuracy of the Kinect 

tracking algorithm. A study done in 2016 to validate a new method for correcting Kinect 

skeleton data, obtained the RMSE of the joint angles during short lifting and lowering tasks 

values between 5.2⸰ and 18.3⸰ for right elbow flexion/extension, shoulder flexion/extension, 

and shoulder adduction/abduction and between 7.2⸰ and 26.7⸰ for left elbow 

flexion/extension, shoulder flexion/extension, and shoulder adduction/abduction. Our 

results showed larger RMSE, which may be attributed to the joint angles calculation 

method, the algorithm used to correct Kinect data, and the complexity of the tested tasks 

in our study compared to that study. Good accuracy was obtained during rehabilitation 

movement by a physical therapist with mean error (ME) between 5.53⸰ and 13.9⸰ for knee, 

shoulder, and hip flexion/extension, and shoulder and hip adduction/abduction [54]. 

Another study by Wiedemann et al. [103] found the highest difference on the neck angle 

with the median of 8.46⸰ and upper and lower bound of 30.22⸰ and -11.06⸰ respectively for 

all static postures. They observed the lowest median error on the left knee 0.26⸰ for all 

postures. Their results are better than what is presented in the present study because they 

tested static postures and without occluded objects that retarder the Kinect view.  

5.4 Marker-less system for in-field assessment of RULA score 

The results in Table 10 reveal that marker-less system showed low agreement in the task 

scenarios that required a small range of motion, such as scenarios 1 and 4. It is because the 

measured joint angles by Kinect were not accurate around the thresholds used in the RULA 

definition, and thus Kinect was not able to detect a change in the RULA score. Therefore, 

a smaller RULA score was obtained by Kinect compared to what marker-based system 

obtained. In contrast, in scenarios with larger range of motion, such as scenarios 2 and 3, 

the maximum thresholds were reached by both systems in most of the frames a moderate 

agreement was observed (see Appendix B, FigureB11, and B12). This could be due to the 

jittering in the Kinect joints, and the occurred self-occlusion. In scenario 5 where most of 

the motion was in the arms, the agreement was very high, and the range of motion was 
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beyond angle thresholds used by RULA. However, the ICC agreement of RULA scores 

median was moderate to excellent (Table 8) and similar to that of IMU-based and marker-

based system. However, the lower and upper bound were various. A glance at the results 

of the Kinect and IMU-based system showed that the IMU-based system provided more 

stable measures than Kinect for continuous measurements. Another study [30] reported a 

perfect agreement between Kinect and a marker-based system for all postures tested, where 

in the present study; we observed a moderate agreement. The reason might be that they 

tested static postures adopted by one actor and without occluded objects. 

5.5  Limitations of the study 

First, RULA mothed is not a perfectly precise assessment tool since the users should enter 

many thresholds. In addition, the RULA method does not consider the lumbar zone, which 

should be considered for a comprehensive evaluation [27]. We did not consider the muscle 

use and weight. Also, the wrist joint angles were entered manually due to limited kinematic 

data obtained from the Kinect and marker-based system.   

The IMUs inherently suffer from drift and magnetic disturbance, which may be overcome 

by integrating them with video-based systems. As mentioned, the occlusion due to objects 

was the main limitation of both Kinect and marker-based system. Particularly, the results 

obtained by the Kinect sensor with affected by both body self-occlusions and environment 

objects occlusions. 

Finally, we tested these systems in a laboratory set-up with controlled lighting conditions 

with 11 male participants. This is the best working condition for the Skeleton Tracking 

algorithm for Kinect V2, and the results in an out-of-lab environment might be different.  

5.6. Conclusions and future works 

This study aimed to evaluate the validity of a marker-less system (Kinect) and IMU-based 

system as an in-field assessment tool for posture-based ergonomic risk assessment (based 

on RULA score). Both systems were used to calculate joint angles using a vector 

convention presented in [30], and we compared them to a marker-based motion-capture 

system (Vicon, UK) as a reference. The results showed the high accuracy and robustness 

of the IMU-based system in ergonomic risk assessment for manual material handling tasks 
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and with a substantial agreement with the marker-based system for all task scenarios. 

Therefore, the IMU-based system can be recommended for ergonomic risk assessment in 

real workplaces where the marker-based systems are of limited use. The IMU sensors are 

affordable for many workplaces and can capture the motions and postures with sampling 

frequency up to 100 Hz, which is sufficient for providing feedback toward reducing the 

risk of WMDs in work environments. To this end, we recommend a 3D joint angles 

calculation approach instead of a 2D vector convention in order to obtain more accurate 

joint angles and thus RULA scores. 

The marker-less system (e.g., Kinect) have advantageous characteristics for many 

applications of in-field motion assessments, such as the acceptable sampling rate (30 Hz), 

low cost, and being marker-less. Yet, we observed that the Kinect sensor showed lower 

accuracy for all tested task scenarios compared to the IMU-based system. In addition, the 

agreement between Kinect and marker-based systems in obtaining the RULA score ranged 

from “fair” to “moderate,” unlike the IMU-based system. It means that the performance of 

this marker-less system (Kinect) for ergonomic risk assessment is not stable and depends 

on many conditions similar to many vision-based systems, such as occlusion, lighting 

conditions, environment, etc. In order to increase the accuracy and robustness of the 

marker-less system for reliable, ergonomic risk assessment, updated data processing 

methods could be used as in [60]-[104]. Finally, we investigated the validity of a marker-

less system and an IMU-based system in five common manual material handling task 

scenarios. Further investigation should be performed for other working scenarios.  
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Appendices 

Appendix A: 3D joint angles for the IMU-based system.  
 

Table A1 presents the offset and the RMSE after removing the offset (the offset was 

calculated at the first 200 frames) for all joint angles and for all scenarios. Figure A1 to 

figure A6 presents joint angles obtained from the marker-based system and IMU-based 

system of the manual material handling. Figure A7 and Figure A8 present RULA scores 

obtained from the marker-based system and IMU-based system during the manual material 

handling scenarios. 
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Table A1. Offset and RMSE of the joint angles (3D angles) in the comparison between Marker-based system and IMU-based system presented in 50th (25th, 75th) percentile of the 

participants. 

                                                                                                     Body side   Offset  RMSE 

  Scenario 1 Scenario 4 Scenario 5  Scenario 1 Scenario 4 Scenario 5 

Neck Flex/Ext   14.0(11.3,17.1) 12.2(7.8,16.0) 11.7(8.0,17.7)  3.7(2.4,5.7) 7.3(5.8,10.1) 7.2(5.1,9.7) 

Neck Lat Bend   3.6(1.1,7.8) 2.5(1.4,5.3) 2.3(1.7,5.6)  4.2(2.6,6.7) 2.0(0.9,2.7) 2.3(1.8,3.2) 

Neck Rotation   6.3(2.0,10.2) 5.5(2.1,11.2) 3.8(1.8,13.4)  2.8(2.0,3.9) 2.2(1.6,3.2) 1.6(1.1,2.8) 

Trunk Flex/Ext    8.0(5.7,13.3) 8.7(7.6,14.7) 8.6(6.0,15.9)  4.1(3.4,4.9) 5.4(5.0,6.6) 2.0(1.4,3.5) 

Trunk Lat Bend   2.9(1.3,5.0) 3.2(2.0,3.9) 2.6(1.6,4.1)  4.6(3.3,6.0) 2.5(2.0,3.5) 1.7(1.2,2.3) 

Trunk Rotation   5.4(2.2,7.5) 4.6(2.1,8.1) 4.2(1.0,5.9)  4.8(3.8,6.2) 3.4(2.2,4.1) 1.5(1.0,2.9) 

Fore Arm Flex/Ext  
Right   23.7(16.8,35.2) 23.7(17.7,37.1) 25.9(18.0,36.6)  4.5(3.6,8.3) 7.0(5.7,8.7) 8.3(6.6,12.0) 

Left   22.6(18.4,31.2) 22.5(20.0,30.6) 23.8(21.5,34.3)  6.4(3.8,10.3) 7.9(7.2,10.8) 9.9(8.4,11.3) 

Fore Arm Add/Abd 
Right   29.8(21.9,42.9) 25.8(21.5,41.3) 24.6(19.6,31.4)  7.2(4.6,9.9) 6.2(4.2,8.0) 7.8(5.7,11.4) 

Left   24.6(17.3,36.4) 20.1(14.2,26.4) 18.7(11.6,23.2)  8.0(6.6,11.1) 6.6(5.1,11.2) 10.9(4.8,16.2) 

Fore Arm Rotation 
Right   12.7(5.9,23.7) 8.3(2.7,15.7) 4.4(2.8,8.5)  6.8(4.8,12.5) 10.6(6.0,13.6) 9.2(6.5,14.1) 

Left   16.8(9.4,28.7) 11.7(9.4,16.9) 8.1(5.1,20.9)  8.9(5.4,13.3) 11.8(6.7,17.8) 18.5(9.6,23.0) 

Upper Arm Flex/Ext 
Right   7.1(2.9,10.6) 6.6(2.6,12.7) 7.3(3.5,11.7)  5.2(4.2,7.1) 8.0(6.0,11.1) 8.5(5.6,11.9) 

Left   7.2(2.9,10.6) 9.6(2.0,13.4) 8.1(5.1,11.8)  5.1(3.9,7.2) 7.4(5.9,11.3) 8.2(4.1,10.1) 

Upper Arm  Add/Abd 
Right   2.5(1.5,4.7) 2.8(1.5,4.7) 2.9(1.5,5.2)  4.2(2.5,6.2) 4.1(3.3,5.5) 4.9(3.6,6.8) 

Left   6.1(4.0,7.5) 5.3(3.2,5.9) 5.9(4.9,7.4)  3.47(2.5,4.7) 6.1(2.0,8.2) 5.0(3.2,6.4) 

Upper Arm  Rotation 
Right   23.0(11.1,28.4) 22.2(15.2,29.6) 24.1(14.2,38.6)  10.80(8.2,17.7) 6.8(2.9,9.7) 7.6(3.7,22.6) 

Left   28.6(21.2,40.2) 25.2(17.3,29.8) 27.5(17.0,31.4)  9.47(6.6,13.7) 7.9(5.2,11.1) 5.0(3.6,12.9) 

Knee Flex/Ext 
Right   5.9(2.8,8.4) 3.0(2.3,5.8) 6.4(1.9,7.7)  2.25(1.6,3.0) 2.0(1.4,3.0) 0.3(0.2,0.5) 

Left   4.2(2.8,8.2) 3.6(1.0,7.7) 3.6(2.0,8.4)  2.01(1.2,2.8) 2.2(1.7,2.7) 0.3(0.2,0.4) 

Knee  Add/Abd 
Right   1.4(0.8,2.9) 1.8(1.4,3.5) 2.0(0.9,3.2)  0.99(0.7,1.7) 2.4(1.5,3.3) 0.4(0.2,0.5) 

Left   1.7(0.7,2.8) 1.8(0.5,2.3) 1.5(0.7,2.7)  0.74(0.5,1.5) 1.1(0.7,2.5) 0.2(0.1,0.3) 

Knee  Rotation 
Right   0.3(0.1,0.6) 0.4(0.3,1.3) 0.3(0.2,0.5)  0.39(0.2,1.1) 1.0(0.4,2.3) 0.1(0.0,0.2) 

Left   0.2(0.1,0.4) 0.2(0.1,0.4) 0.2(0.1,0.4)  0.45(0.2,0.6) 0.8(0.5,1.5) 0.1(0.0,0.1) 
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Figure A1: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, 

IMU-based system (3D joint angles) in dashed red during the first trial of the manual material handling 

scenario 1 for participant 1. The joint angles for the trunk, neck, and right upper arm, right elbow, and 

right knee are presented. 
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Figure A2: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, 

IMU-based system (3D joint angles) in dashed red during the first trial of the manual material handling 

scenario 1 for 1 participant. The joint angles for left upper arm, left elbow, and left knee are presented. 
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Figure A3: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, 

IMU-based system (3D joint angles) in dashed red during the first trial of the manual material handling 

scenario 4 for participant 1. The joint angles for the trunk, neck, and right upper arm, right elbow, and right 

knee are presented. 
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Figure A4: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, 

IMU-based system (3D joint angles) in dashed red during the first trial of the manual material handling 

scenario 4 for 1 participant. The joint angles for the left upper arm left elbow, and the left knee are 

presented. 
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Figure A5: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, IMU-

based system (3D joint angles) in dashed red during the first trial of the manual material handling scenario 5 for 

participant 1. The joint angles for the trunk, neck, and right upper arm, right elbow, and right knee are presented. 
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Figure A6: Joint angles (degrees) obtained from the marker-based system (3D joint angles) in sold black, 

IMU-based system (3D joint angles) in dashed red during the first trial of the manual material handling 

scenario 5 for 1 participant. The joint angles for the left upper arm left elbow, and left knee are presented. 
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Figure A7: RULA scores obtained from the marker-based system (3D joint angles) in sold black, IMU-based 

system (3D joint angles) in dashed red during the first trial of the manual material handling scenarios (1, 4, 

and 5) for participant 1 right body side. 
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Figure A8: RULA scores obtained from the marker-based system (3D joint angles) in sold black, IMU-based 

system (3D joint angles) in dashed red during the first trial of the manual material handling scenarios (1, 4, and 

5) for participant 1 left body side. 
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Appendix B: 2D joint angles for the IMU-based system and 

marker-less system. 
 

Table B1 and Table B2 contain offset and the RMSE after removing the offset (the offset 

was calculated at the first 200 frames) for all joint angles and for all scenarios. Figure B1 

to Figure B10 contains joint angles obtained from the marker-based system, IMU-based 

system, and marker-less system of the manual material handling. Figure B11 and Figure 

B12 contain RULA scores obtained from the marker-based system and IMU-based system 

and marker-less system during the manual material handling scenarios. Figure B13 

illustrates RULA scores obtained from the marker-based system (2D joint angles) of the 

manual material handling scenarios (1 to 5) for 11 participants for left and right body side. 

This figures visually depicts the inter-participant variability of the recorded RULA scores. 

Figure B14 to figureB14 illustrate the comparison between the accuracy of the IMU-based 

system and marker-less system for joint angle measurement for all scenarios. The accuracy 

of each system was defined as its obtained RMSE against marker-based motion-capture 

system. The p-value for these comparisons are reported based on Friedman test.
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Figure B1: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, IMUs-

based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first trial of the 

manual material handling scenario 1 for participant 1. The joint angles for the trunk, neck, and right upper arm, 

right elbow, and right shoulder, and right knee are presented. 
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Figure B2: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, 

IMUs-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first 

trial of the manual material handling scenario 1 for 1 participant. The joint angles for left upper arm, left 

elbow, left shoulder, and left knee are presented. . 
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Figure B3: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, IMUs-

based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first trial of the 

manual material handling scenario 2 for participant 1. The joint angles for trunk, neck, and right upper arm, 

shoulder, elbow, and knee. 
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Figure B4: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, 

IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first 

trial of the manual material handling scenario 2 for 1 participant.  The joint angles for left upper arm, left 

elbow, left shoulder, and left knee are presented 



107 

 

 

 

 

 

Figure B5: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, 

IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first 

trial of the manual material handling scenario 3 for participant 1.  The joint angles for trunk, neck, and right 

upper arm, right elbow, and right shoulder, and right knee are presented. 
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Figure B6: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, 

IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first 

trial of the manual material handling scenario 3 for 1 participant.  The joint angles for left upper arm, left 

elbow, left shoulder, and left knee are presented 
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Figure B7: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, IMU-

based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first trial of the 

manual material handling scenario 4 for participant 1. The joint angles for trunk, neck, and right upper arm, 

right elbow, and right shoulder, and right knee are presented. 
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Figure B8: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold 

black, IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue 

during the first trial of the manual material handling scenario 4 for 1 participant.  The joint angles 

for left upper arm, left elbow, left shoulder, and left knee are presented 
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Figure B9: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold black, 

IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during the first 

trial of the manual material handling scenario 5 for participant 1. The joint angles for trunk, neck, and right 

upper arm, right elbow, and right shoulder, and right knee are presented. 
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Figure B10: Joint angles (degrees) obtained from the marker-based system (2D joint angles) in sold 

black, IMU-based system (2D joint angles) in dashed red, and marker-less system in dashed blue during 

the first trial of the manual material handling scenario 5 for 1 participant.  The joint angles for left upper 

arm, left elbow, left shoulder, and left knee are presented 
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Figure B11: RULA scores obtained from the marker-based system (2D joint angles) in sold black, IMU-

based system (2D joint angles)  in dashed red, and marker-less system (2D joint angles)  in dashed blue 

during the first trial of the manual material handling scenarios (1 to 5) for participant 1 right body side. 
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Figure B12: RULA scores obtained from the marker-based system (2D joint angles)  in sold black, IMU-

based system (2D joint angles)  in dashed red, and marker-less system (2D joint angles)  in dashed blue 

during the first trial of the manual material handling scenarios (1 to 5) for participant 1 left body side. 
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Figure B13: RULA scores (median among trial for each participant) obtained from the 

marker-based system (2D joint angles) of the manual material handling scenarios (1 to 

5) for 11 participants for left and right body side. 
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Figure B14: Comparison between the accuracy of the IMU-based system and marker-

less system for joint angle measurement in scenario 1. The accuracy of each system 

was defined as its obtained RMSE against marker-based motion-capture system. The p-

value for these comparisons are reported based on Friedman test (* if significant, with 

a significance level of 5%). 
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Figure B15: Comparison between the accuracy of the IMU-based system and marker-

less system for joint angle measurement in scenario 2. The accuracy of each system 

was defined as its obtained RMSE against marker-based motion-capture system. The p-

value for these comparisons are reported based on Friedman test (* if significant, with 

a significance level of 5%). 
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Figure B16: Comparison between the accuracy of the IMU-based system and marker-

less system for joint angle measurement in scenario 3. The accuracy of each system 

was defined as its obtained RMSE against marker-based motion-capture system. The p-

value for these comparisons are reported based on Friedman test (* if significant, with 

a significance level of 5%). 
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Figure B17: Comparison between the accuracy of the IMU-based system and marker-less 

system for joint angle measurement in scenario 4. The accuracy of each system was 

defined as its obtained RMSE against marker-based motion-capture system. The p-value 

for these comparisons are reported based on Friedman test (* if significant, with a 

significance level of 5%). 
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Figure B18: Comparison between the accuracy of the IMU-based system and marker-

less system for joint angle measurement in scenario 4. The accuracy of each system 

was defined as its obtained RMSE against marker-based motion-capture system. The p-

value for these comparisons are reported based on Friedman test (* if significant, with 

a significance level of 5%). 


