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ABSTRACT

The Creighton Pluton is located in the southern Superior Province of Ontario and
intrudes the lowermost volcanic strata of the Paleoproterozoic Huronian Supergroup.
The granitoid pluton is actually composed of two temporally separate intrusions (dated at
2415 + S Ma and 2376.3 + 2.3 Ma), each of which has distinctive mineralogy, chemistry
and isotopic signatures. Overall, the intrusions have eng values of ~2 and similar rare-
earth element pattern (LREE enrichment, negative Eu, flat HREE). These characteristics
conform to other plutonic and volcanic rocks in the region. [ propose that the Creighton
Pluton was derived by partial melting of two sources, a mafic granulitic crust that formed
by the underplating of Matachewan Igneous Events related mafic magmas and older pre-

existing lower crust.
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CHAPTER 1: INTRODUCTION

Although a considerable amount of Paleoproterozoic mafic magmatism is located
within the southern Superior craton, it is only recent studies that have recognized its
importance in the breakup and rifting of an Archean supercontinent (Heaman, 1997,
Vogel et al., 1998). Collectively, the Hearst-Matachewan dike swarms, Huronian flood
basalts and a number of gabbro-anorthosite plutons are defined as Matachewan Igneous
Events (MIE) (Heaman, 1997) and are constrained by precise U-Pb geochronology to an
interval of 50 m.y. between 2490 and 2440 Ma (Krogh et al., 1984; Prevec, 1993;
Heaman, 1997). Despite its importance as possibly being one of the first Large Igneous
Provinces in Earth’s history, the nature of this magmatism and mechanism of rifting has
remained enigmatic. There is controversy pertaining to the mechanism of rifting (active
vs. passive), the origin of the magma’s enriched geochemical signatures in the Huronian-
aged volcanic rocks and the genetic link between felsic and mafic magmatism. Although
there is a general consensus on the enriched nature of the source region for Matachewan
magmatism, a wide range of interpretations has been invoked to explain the origin of this
signature. These include AFC (assimilation-fractional crystallization) processes, an
inherited Archean subduction signature or a compositionally distinct Archean-
Paleoproterozoic mantle (Nelson et al., 1990; Boily and Ludden, 1991; Jolly et al., 1992;

Smith et al., 1992; Tomlinson, 1996; Vogel et al., 1998).



The Creighton pluton is one of a number of Paleoproterozoic felsic igneous bodies
that may be temporally and genetically linked to the Matachewan Igneous Events. These
bodies include the nearby 2477 + 9 Ma Murray pluton (Krogh et al., 1996), the 2450
+25/-10 Ma Copper CIiff rhyolite (Krogh et al., 1984) and two (2460 Ma and 2475 Ma)
Street Township granites located in the Grenville Province (Corfu and Easton, 2001).
The Creighton pluton is located near the southern margin of the 1850 Ma Sudbury Nickel
Irruptive and intrudes the lowermost volcanic strata of the Proterozoic Huronian
Supergroup.

Previous geochronological studies that have attempted to establish the
emplacement age of the Creighton pluton have yielded a Rb-Sr isochron age of 2165 Ma
(no age uncertainty reported) (Stockwell, 1982) and a U-Pb zircon age of 2333 +33/-22
Ma (lower intercept at 195 Ma) (Frarey et al., 1982). However, recent U-Pb zircon ages
for other similar granitic bodies noted above (Krogh et al., 1996, Corfu and Easton, 2001)
indicate that most of the Proterozoic granite bodies in this region are 2450 — 2477 Ma.
Therefore, previous age determinations for the Creighton pluton are suspect, raising
questions about the genetic relationship between this intrusion and other lithologically
similar plutons in the area. Moreover, there have been no studies that have focussed on
the issue of identifying the tectonic setting and source of the parental magma of these
plutons.

The Creighton pluton is the largest Paleoproterozoic granitic intrusion in the
southern Superior Province but has not been extensively studied. The purpose of this
study is to integrate petrography. geochemistry, U-Pb geochronology and Sr-, Nd-, Pb-

isotope tracer studies to constrain the timing and examine the petrogenesis of the



Creighton pluton. The pluton will be compared to other temporally related granitic
bodies in an attempt to unravel the evolution of felsic magmatism potentially associated
with the mafic Matachewan Igneous Events. The significance of this study is that it will
be the first to address the petrogenesis of felsic plutonism that may be linked to the 2.45

Ga Matachewan Igneous Events (Bennett et al., 1991; Heaman, 1997).

(¥7)



CHAPTER 2: GEOLOGICAL BACKGROUND

Introduction

The Southern Province of the Canadian Shield is primarily composed of the
Paleoproterozoic Huronian Supergroup (Figure 2.1). These supracrustal rocks outcrop
along the northern shore of Lake Huron, bounded to the north by K-rich Archean granites
and to the east by the ca. 1.0 Ga Grenville Front, an area of intense deformation and
metamorphism. A major feature in the vicinity of the present field area is the elliptical
Sudbury Structure which is important due to its unique impact origin and economic
significance (e.g. Dietz, 1964).

A considerable amount of Paleoproterozoic mafic magmatism occurred in the
south-central Superior craton and is collectively designated as Matachewan Igneous
Events (MIE) (Heaman, 1997) (Figure 2.1). MIE are constrained to an interval from ca.
2.49 Ga to 2.45 Ga and include the Matachewan-Hearst dike swarms, Huronian flood
basalts and a series of gabbro-anorthosite intrusions (Krogh et al., 1984; Heaman, 1997).
The Creighton pluton, together with the Murray pluton, Street Township granites and the
Copper Cliff rhyolite may represent a felsic component of this magmatic event. A
compilation of data for ca. 2.45 Ga MIE magmatism in the Superior Province is presented

in Figure 2.2 and Table 2.1. Recent studies on this mafic magmatic event (Heaman,
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Figure 2.1: Simplified regional geology map of central Superior Province with ca. 2.45

Ga magmatism adapted from Vogel et al. (1998).
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1997) have recognized the global scale of the event and its potential importance in the

recognition of the breakup of large continental masses.

Archean rocks

Located to the north of the southern Superior Province is a large volume of felsic
plutonic magmatism associated with high-grade gneisses and mafic suites exposed in
east-west trending greenstone belts. This includes the 2711 Ma Levack Gneiss (Krogh et
al., 1984) and the “Algoman” granites: the Birch Lake Batholith, the 2665 Ma Ramsay-
Algoman granite complex (Heather and van Breeman, 1994), the 2642 + 1 Ma Cartier
Batholith (Meldrum et al., 1997) and a number of 2616 Ma plutons (Gariepy and Allegre,
1985). These intrusives are primarily granodiorite to monzogranite (quartz monzonite) in
composition that are intensely deformed in areas and show signs of hydrothermal
alteration (Meldrum et al., 1997). These igneous bodies represent a 100 Ma period of
felsic plutonic activity (Card et al., 1984; Gariepy and Allegre, 1985) that resulted from

widespread crustal anatexis common to the Archean (Meldrum et al., 1997).

Huronian Supergroup

The Huronian Supergroup is a 12-km-thick stratigraphic succession of
Paleoproterozoic metavolcanics and metasediments. It is primarily located along the
northern shore of Lake Huron in the Southern Province and forms a 450 km arcuate east-

west trending fold belt (Bennett et al., 1991). The Supergroup lies unconformably on



Archean basement and is thought to have formed in an extensional regime, possibly
representing the rifting of an Archean craton (Bennett et al., 1991; Roscoe and Card,
1993). The Supergroup is regionally deformed and metamorphosed by the ca. 1.85 Ga
Penokean Orogeny (Card, 1978) and shows the effects of other geological events such as
the 1850 Ma Sudbury Impact Event (Krogh et al., 1996) and 1.7 Ga Na and K
metasomatism (e.g. Schand! et al, 1994; Fedo et al., 1997). Recently it has also been
proposed that these events were preceded by the 2.4 — 2.2 Ga Blezardian orogeny in the
Lake Huron area (Riller et al., 1999) but the existence of this tectonic event has been
called into question (Young et al., 2001).

The Paleoproterozoic Huronian Supergroup is comprised of four main
sedimentary packages (Figure 2.3). In ascending stratigraphic order, they are the Elliot
Lake, Hough Lake, Quirke Lake and Cobalt Groups. Volcanics occur only in the
lowermost Elliot Lake Group including the felsic plutonism of the Murray and Creighton
plutons. The upper three groups generally consist of cyclical repetitions of
conglomerates, pelitic rocks and sandstones (Card, 1978). Detailed descriptions of the
upper sedimentary sequences can be found in Card (1978) and Bennett et al. (1991).

In the western region of the Southern Province, the Livingstone Creek Formation
underlies the Elliot Lake Group volcanics. It consists primarily of arenites and wackes
with some polymictic conglomerate (Bennett et al., 1991). In the eastern region around
Sudbury, the volcanics of the Elliot Lake Group are subdivided into 3 formations, the
Elsie Mountain, Stobie and Copper Cliff Formations (Card, 1978). A fourth formation

located at the base of the Huronian sequence in the Massey area is called the Salmay Lake
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Formation (Robertson, 1970). In the western portion of the Penokean Fold Belt, the
bimodal Thessalon volcanics are correlated with the basal Elliot Lake Group volcanics.

The Elsie Mountain formation is dominated by massive and foliated basalt flows
with subsidiary metasediments (Card, 1978). The Stobie Formation has both felsic and
mafic volcanics with a higher proportion of metasediments and is characterized by the
cyclical repetitions of the mafic volcanics and intercalated sediments (Card, 1978). The
Copper Cliff Formation is primarily composed of felsic rhyolite with minor pyroclastic
rocks and metasediments (Card, 1978). The rhyolite has a U-Pb zircon age of 2450 +25/-
10 Ma but may be as old as 2475 Ma depending on the regression treatment (Krogh et al.,
1984). The Salmay Lake Formation consists of basaltic to andesitic flows and is
lithologically similar to the rocks of the Elsie Mountain Formation (Card, 1978). The
Elliot Lake Group volcanics are associated with a number of east-west regional faults that
may have initiated sedimentary deposition and controlled volcanic emplacement (Card,
1978). The Elliot Lake Group is capped by the sedimentary successions of the Matinenda
and McKim Formations.

The Murray and Creighton plutons are two local, NE trending granitic bodies that
intrude the metavolcanic package of the Elliot Lake Group in the Sudbury region. The
two bodies have been thought to be coeval based on proximity and similarities in
petrography and chemistry. Both plutons have been the focus of studies because of
ambiguous field relations with the Sudbury Nickel Irruptive (Lewis, 1951; Gibbins and
McNutt, 1975). The ambiguities were resolved by the application of radiometric dating.
The Murray pluton is precisely dated by an U-Pb zircon age of 2477 £ 9 Ma with a lower

intercept age of 1850 Ma interpreted to reflect Pb-loss related to the nearby Sudbury



Impact Event (Krogh et al., 1996). Prior to the present study, the most recent age
obtained for the Creighton pluton is an U-Pb zircon age of 2333 +33/-22 Ma (Frarey et
al., 1982). The Creighton pluton has been proposed to be associated with the 2.4 ~ 2.2 Ga
Blezardian orogeny (Riller et al., 1999). However, the zircon analyses are very
discordant and the accuracy of this age determination is in question.

Regional metamorphism by the 1.85 Ga Penokean Orogeny is expressed by the
sub-greenschist to lower greenschist grade assemblages in the Huronian rocks (Card,
1978). The sediments of the Huronian Supergroup have also been affected by regional

Na + K metasomatism at ca. 1.7 Ga (Schandl et al., 1994; Fedo et al., 1997)

Gabbro-anorthosite Intrusions

Temporally associated with the volcanics of the Huronian Supergroup are a series
of 2.49 - 2.44 Ga Paleoproterozoic layered mafic intrusions collectively identified as the
East Bull Lake Suite (Bennett et al., 1991; Vogel et al., 1998). This suite includes the
2480 +10/-5 Ma East Bull Lake Intrusion (Krogh et al., 1984), the 2491 + 5 Ma Agnew
Lake Intrusion (Krogh et al., 1984), the 2475 +1/-2 Ma River Valley anorthosite
(Heaman, personal communication), the 2441 £ 3 Ma (2°7Pb/2°6Pb age from one fraction)
Falconbridge Township intrusion (Prevec, 1993) and intrusives located in the Drury, May
and Wisner townships. The intrusives are all located in the Southern Province with the
exception of the River Valley anorthosite that is located immediately south of the
Grenville Front. The intrusions are grouped together based on similarities in

morphology, stratigraphic correlations (for example, between Agnew Lake and East Bull



Lake) and high precision U-Pb geochronology. These ages either indicate an extended
period of mafic magmatism or possibly two (or more) temporally distinct events at ca.
2.48 Ga and ca. 2.44 Ga associated with the major dike swarms (see below).

The mafic intrusions generally consist of layered gabbronorite with associated
anothositic and syenitic rocks. Some of the intrusions are interpreted to have intruded as
subvolcanic sills and in a series of magma pulses (Peck et al., 1995; Vogel et al., 1998,
Vogel et al., 1999). The intrusions are thought to be overlain by the volcanics of the
Elliot Lake Group but in many areas the contacts are obscured by pseudotachylite
associated with Sudbury breccias (Chubb et al., 1994). Economically, the bodies are of

importance because of the associated PGE-Cu-Ni mineralization (e.g. Peck et al., 1995).

Mafic dikes

The 2473 +16/-9 Ma Matachewan and 2446 + 3 Ma Hearst dike swarms (Heaman,
1997) are located in the south-central region of the Superior Craton extending over an
area of 250 000 km? (Halls and Bates, 1990). They are dominantly Fe-rich quartz
tholeiites with a median width of 20 m and have undergone lower greenschist-grade
metamorphism (Halls, 1991). The Matachewan dike swarm is located east of the
Kapuskasing Structural Zone. It trends N-S and is characterized by a porphyritic texture
with abundant calcic plagioclase megacrysts (Heaman, 1997). The Hearst dikes are NW-
SE trending intrusives located west of the Kapuskasing Structural Zone and are distinctly
non-porphyritic (Heaman, 1997). All the dikes exhibit both normal- and reverse- polarity

magnetization with a greater abundance of the reverse polarity dikes (Halls and Palmer,
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1990; Halls, 1991). The dike swarms are interpreted as cogenetic based on similar
geochemical signatures (Nelson et al, 1990) and may be feeders to the Huronian mafic

magmatism (Heaman, 1997).

Ca. 2.45 Matachewan Igneous Events

Bennett et al. (1991) proposed that the Huronian Supergroup formed in an
evolving rift — passive margin setting. The early stages of rifting were passive as
recorded by the deposition of the sedimentary Livingstone Creek Formation. Subsequent
active rifting was initiated by the onset of volcanism represented by the Elliot Lake Group
flood basalts, gabbro-anorthosite intrusions and the major dike swarms. The upper Elliot
Lake Group (some volcanics and sediments) represents a late-stage rift or early passive
margin stage and the sedimentary Hough Lake, Quirke Lake and Cobalt Groups represent
an extended passive margin stage. Deposition of the entire package was completed prior
to the intrusion of the 2.2 Ga Nippissing diabase sills. The package was subsequently
deformed and metamorphosed by the ca. 1.85 Ga Penokean Orogeny.

The Paleoproterozoic dike swarms, mafic intrusions and Huronian flood basalts
that comprise the MIE are thought to represent a large continental igneous province
initiated by the rifting of an Archean granite-greenstone terrane (Heaman, 1997; Vogel et
al., 1998). This rifting and mafic magmatism could have been a consequence of a mantle

plume activity (Heaman, 1997).
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Street Township intrusions

Recent geochemical and U-Pb geochronological studies (Easton, 1998; Corfu and
Easton, 2001) east of the Grenville Front have also identified Huronian-aged magmatism.
The felsic bodies have similarities in major- and rare-earth-element geochemistry to the
Murray and Creighton plutons and the Paleoproterozoic felsic volcanics of the region
(Easton, 1998). A 2468 * 5 Ma age was obtained for an orthopyroxene hornblendite,
interpreted as metamorphosed Huronian age volcanics (Corfu and Easton, 2001). The
granitoid gneiss yielded an age of 2475 +25/-10 Ma and a metamorphosed foliated
monzogranite an age of 2460 + 20 Ma (Corfu and Easton, 2001). The ca. 2.45 Ga ages
and similar geochemical signatures provide additional evidence for the preservation of
Huronian-age magmatism east of the Grenville Front other than the River Valley

anorthosite.

Sudbury Structure

The Sudbury Structure, located between the Archean gneisses and granites to the
north and the Paleoproterozoic rocks to the south has continued to be the focus of many
studies because of the enigmatic features of its origin and its economic significance. The
60 by 30 km layered elliptical structure comprises three parts, the Sudbury Igneous
Complex, the concentric turbidite sediments of the Sudbury basin and the brecciated

basement rocks in the surrounding region. The base of the igneous complex is host to a
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series of Ni-Cu-PGE deposits making the area the most productive nickel camp and one
of the iargest mining districts in the world.

The uniqueness of the Sudbury Structure has led to many interpretations regarding
its origin and its geological history. Currently, three differing hypotheses have been
proposed for the formation of the Sudbury Igneous Complex. The first is a meteorite
impact model (Dietz, 1964; Grieve et al,, 1991), the second is explosive volcanism (Muir,
1984) and the third is an integrated model of impact induced magmatism (Naldrett,
1984). Although the emplacement mechanisms remain controversial, the impact origin
first postulated by Dietz (1964) and substantiated by subsequent authors (e.g. Grieve et
al., 1991) is generally accepted. A U-Pb zircon age of 1850 +1 Ma has been established
for the age of the irruptive from the average of numerous dates from the norite (Krogh et
al., 1982; Krogh et al., 1984). This age is further corroborated by the U-Pb baddelyite age
of 1850.5 + 3.0 Ma for the granophyre unit (Krogh et al., 1984) and a series of ages
ranging from 1848.1 to 1849.8 Ma reported from a number of different phases (Corfu and
Lightfoot, 1996). The precision of these age-dates limits the magmatic episode of the
igneous complex to a few million years. The shock metamorphism effect of the ca. 1850
Sudbury impact event is widespread in the surrounding units and is represented in
geological structures such as shatter cones, “Sudbury breccias” and PDFs (planar

deformation features) that occur in zircon crystals from the Murray pluton.



CHAPTER 3: FIELD OBSERVATIONS & PETROGRAPHY

Introduction

The Creighton pluton is a small (20 km x 3 km), NE trending granitic body that is
located in Graham, Waters and Snider townships near the city of Sudbury, Ontario
(Figure 4.1). It lies along the southern flank of the Sudbury Structure and intrudes the
metasediments and metavolcanics of the Paleoproterozoic Elliot Lake Group, specifically
the Elsie Mountain, Stobie and Copper Cliff Formations (Figure 4.1). The pluton is
intruded by the 1850 Ma Sudbury Nickel Irruptive and olivine diabase dikes of the 1235
Ma Sudbury Swarm (Krogh et al., 1987). Previous work on the Creighton pluton has
included a number of mapping and structural projects (Card, 1978; Dutch, 1976, 1979)
and geochronology studies (Fairbairn et al., 1965; Stockwell, 1982; Frarey et al., 1982).
Fieldwork and systematic sampling on the Creighton pluton was conducted during June
1999. Thirty-one samples were collected to form a representative suite including two
felsic microgranular enclaves and three Sudbury Impact related breccias. Five samples

from the Murray pluton and two samples from the Copper CLff rhyolite were also

acquired.



Field observations

The Creighton pluton is a composite quartz-two feldspar granitoid intrusive with
minor mafic interstitial minerals. There is very little variation in the basic mineralogy
despite a wide variety of textural phases in the pluton. The dominant phase in the pluton
is a pink to grey medium-grained porphyritic granite. Phenocrysts of potassic feldspar are
commonly 1 — 2.5 cm in size, are contained in a groundmass of 2 — 4 mm crystals. Other
textures include coarse- to medium-grained granites that are pink to grey in colour.
Foliation is present in many areas but is more pronounced in regions with an abundance
of mafic minerals. Contacts between individual textural types are gradational in nature
with no obvious correlation between composition and type of texture.

Brecciation related to the 1850 Ma Sudbury Impact Event is common within the
Creighton granite and generally forms irregular-shaped bodies. These bodies contain
round granitic fragments in a dark coloured fine-grained granitoid matrix (Figure 3.1).

Contacts with the Huronian Supergroup are sharp when not brecciated. There is
little evidence for contact metamorphism, but the Creighton pluton contains abundant
inclusions of metasediments and metavolcanics ranging from centimetre scale up to 8 km
in size. Small, ovoid microgranular enclaves with 1 — 2 cm potassium feldspar
phenocrysts are uncommon but present in the pluton (Figure 3.2).

Previous mapping and structural studies (Card, 1978; Dutch, 1976, 1979) have
identified a number of foliations in the granitic intrusion. The first is a strong pre-
Sudbury Impact brecciation event foliation that is defined by the parallel alignment of

quartz and feldspar grains on the macro scale (Dutch, 1979). This foliation is interpreted
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Figure 3.1: Photographs showing Sudbury Impact related brecciation texture in the
Creighton pluton.
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Figure 3.2: Photographs showing felsic microgranular enclaves from the Creighton
pluton. (a) Enclave sample MS99-57. (b) Enclave in outcrop.



to be a syn-intrusive deformation feature primarily based on the observation that it is
roughly parallel to the intrusive contact (Dutch, 1979). In the eastern portion of the
pluton this foliation forms a complete loop suggesting that the Creighton is made up of
two structurally independent deep granitoid bodies (Dutch, 1979). The completely closed
form of the foliation event is difficult to explain solely based on a regional metamorphic
event. The second foliation is a pervasive, post-breccia, ENE trending cataclastic fabric
that formed as a result of regional metamorphism during the Penokean Orogeny (Dutch,
1979). The Creighton pluton has undergone the effects of regional deformation and has
been elongated and deformed parallel to the major structural trends in the region
Modelling of geophysical gravity data (Bouguer anomaly) by Popelar (1972 cf.
Dutch, 1979) indicates estimated pluton depths of 4 km in the western and 2.5 km in the
eastern portion of the pluton. This information is interpreted to represent two separate

intrusive centres and corresponds well with the existing structural data.

Petrography

Both modal mineralogy and major-element chemistry can be used to properly
identify plutonic igneous rocks with no genetic context. Modal analyses of the Creighton
pluton plot within the fields of monzogranite to granodiorite using the IUGS
classification (Streckeisen, 1976). On the CIPW normative equivalent to the IUGS
classification diagram (Streckeisen and LeMaitre, 1979), the Creighton pluton is

dominantly monzogranite with a few of the samples classified as granite or granodiorite
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(Figure 3.3). The microgranular enclaves tend to contain more mafic minerals and plot in
the granodiorite field. The estimated modal and normative chemical classification
schemes are in agreement and are consistent with previous determinations by Card (1968)
and Dutch (1976, 1979). There are a number of samples that contain a greater proportion
of mafic minerals but appear indistinguishable using these classification schemes.

The Creighton pluton is dominated by holocrystalline quartz-plagioclase-potassic
feldspar framework and potassic feldspar phenocrysts (Figure 3.4). In most of the
samples these three minerals comprised nearly 90% of the modal mineralogy except near
the centre of the intrusion where this decreases to approximately 80%. Grains are
dominated by an anhedral to subhedral shape with some of the minor constituents having
an euhedral form. Quartz is the most abundant mineral showing typical undulose
extinction and uniaxial character. A poikilitic texture with euhedral epidote inclusions is
common in the larger plagioclase grains. Microprobe analyses on a JEOL Microprobe
and microscope determination indicate plagioclase composition of An;s—Anyp
(oligoclase) with these regions encompassed by thin zones of secondary albitization.
Microcline twinning is common in the potassic feldspar crystals whereas lamellar twins
are rare in plagioclase.

Minor constituents include interstitial biotite, hornblende, epidote and zircon with
rare allanite, apatite, chlorite, ilmenite, muscovite and titanite. Biotite is the dominant
mafic mineral and can comprise up to ~20% of the total mineralogy. It is more prevalent
along contacts and in the central portion of the pluton where it commonly occurs as
foliated clots with other mafic minerals. Both the enclaves and the breccias tend to have

higher proportions of the minor constituents. A poikilitic texture is common often with
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Figure 3.3: IUGS granitoid rock classification diagram (Streckeisen and LeMaitre, 1979)

showing plotted CIPW norms calculated for the Creighton pluton. ANOR parameter =
[An/(An + Or)] * 100; Q parameter = [Q/Q + Ab+ Or + An)] * 100.



Figure 3.4: Backscatter electron images showing mineralogy and texture of the Creighton
50).
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anhedral crystals of epidote, allanite or titanite comprising the poikoblasts. Primary
muscovite is extremely rare and occurs only in the most silicic sample (MS99-31). The
influence of later metamorphic or hydrothermal events is displayed by obvious
replacement textures and secondary mineral growth. Many of the larger crystals of quartz
or feldspar show recrystallization to smaller domains from metamorphic or deformation
events (Dutch, 1976; 1979). Relict amphibole grains are present having altered to biotite
or chlorite. Epidote, titanite and albitization of the plagioclase are secondary in nature,
possibly the result of hydrothermal fluids from the 1850 Ma Sudbury Impact event (Ames
et al., 1998). Hydrothermal fluids may also explain the relative high abundance of

epidote (>10%) found in the microcrystalline Sudbury Breccia samples.

Discussion

Although all the granite samples from the Creighton pluton contain similar modal
and chemical abundance of quartz-plagioclase-potassic feldspar, there appear to be two
broad lithological types based on the quantitative proportions of these framework
minerals. The Type 1 granites are predominantly classified as granite to monzogranite
and comprise most of the Creighton pluton. The Type 2 granitoids are generally located
near the centre of the pluton, are strictly monzogranites and are recognisable in the field
by more abundant mafic (and accessory) minerals (Figure 4.1). These samples have
higher contents of biotite. zircon, epidote and titanite when compared to the Type 1
samples. Green calcic amphibole grains can only be identified in the Type 2 granitoids

whereas they are absent in the Type | grouping. The microgranular enclaves are
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petrographically similar to the Type 2 granitoids containing calcic amphibole, abundant
biotite and other accessory minerals. These two groupings correspond well with the
previous structural and geophysical data that indicate that the Creighton pluton is
composed of two distinct intrusive centres. This petrographic grouping of the granite
samples will be further explored using the major- and trace-element and isotopic

compositions to determine if there is a genetic basis to these mineralogical groupings.
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CHAPTER 4: GEOCHEMISTRY

Introduction

Thirty-one samples from the Creighton pluton were analyzed for major, trace and
rare-earth element compositions at the Geoscience Laboratories in Sudbury, Ontario
(Figure 4.1). Within this sample set, two were microgranular enclaves, three were
hydrothermally altered Sudbury Impact related breccias, with the remaining samples
being granitoids. Samples weighed approximately 5 kg; their locations can be found in
Appendix A. Major elements were determined by X-ray fluorescence (XRF) and the
concentration of the trace and rare-earth elements by Inductively Coupled Plasma Mass
Spectrometry (ICP-MS). Sample preparation, quality control and analytical procedures
are outlined in Dressler et al. (1992). Complete XRF and ICP-MS elemental abundances
are located in Appendix B. The primary objectives of the geochemical study are to
identify separate geochemical phases, constrain the tectonic setting and gain insight into
the crystallisation history and potential sources of the Creighton pluton. As discussed
above, the samples investigated from the Creighton pluton have no apparent distinctive
textural features but can be subdivided into two types according to certain mineralogical
and chemical differences. A summary of the range of values and averages for the two-

granitoid types is given in Table 4.1.
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Figure 4.1: Simplified geological map of the Creighton pluton area modified from

Dressler (1984) showing distribution of rock types and sample locations for
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Type 1 Granitoid Type 2 Granitoid
Range Average Range Average

SiO, 67.73 -79.41 72.59 63.69 - 71.81 68.47
AlLO, 11.06 - 13.98 13.12 13.62 - 15.04 13.99
MnO 0.01-0.07 0.04 0.05-0.12 0.07
MgO 0.13-0.81 0.58 0.76 -1.24 0.93
FeO* 1.01-3.53 2.52 3.67-7.52 4.91
TiO, 0.09-040 0.31 0.42-0.93 0.66
Ca0 0.58-248 1.58 2.09-3.59 2.59
Na,O 2.65-461 3.05 2.56-3.35 3.06
K,O 224-580 494 1.93-5.50 4.55
P,Osg 0.01-0.11 0.07 0.09-0.26 0.16
Mg# 18.5-33.8 28.5 21.2-318 25.7
Ba 437 - 767 654 545 - 1777 1197
Nb 16.4-428 28.1 249-494 343
Rb 146.6 - 400.0 289.7 128.7 - 400.0 218.7
Sc 26-85 6.5 58-19.0 11.8
Sr 18.2-219.3 103.0 144.1 - 237.6 184.8
Th 32.5-76.1 44 1 204 -473 29.1
U 46-11.0 7.1 22-52 3.8
Y 455 -106.7 78.3 426 -152.8 101.8
Zn 22-80 45 60 - 109 79
Zr 130.7 - 320.1 231.8 316.7 - 440.0 363.1
La 29.94 - 88.51 72.87 79.36 - 126.68 105.02
Ce 72.01 - 203.88 165.16 177.21 - 250.00 231.03
Eu 0.37-145 1.09 1.52 -2.86 2.28
Gd 466-11.00 8.80 8.54 -21.18 14.03
Yb 3.75-1042 6.91 3.44-12.88 7.61
EuwEu* 0.20-044 0.36 0.34-0.75 0.51
(La’Yb), 562-945 7.69 7.06 - 23.46 10.08
(Gd/Yb),| 0.87-1.45 1.06 1.36-2.05 1.36

Table 4.1: Table showing the range and average geochemistry of the Type 1 (n=18) and
Type 2 (n=8) granitoids of the Creighton pluton.
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Major- and trace-element chemistry

The Creighton pluton is a potassic (Na;O/K,0 < 1) granitic body that shows
continuous linear trends with SiO, (Figure 4.2). It consists of a wide compositional range
of SiO, values from 63% to 79% with no clear cut-off boundary between the two defined
granitoid types. Major element trends with increasing SiO; are typified by decreasing
Al;03, Ca0, MgO, MnO, FeO* (total Fe), TiO; and P,0s whereas K;O increases. Na,O
compositions are relatively constant regardless of the silica content. The Creighton
pluton has high values of K,O, CaO, Na;0+K;O, and an average Mg#
(=100*Mg/(Mg+Fe*) of 27.6. Although all granitoid samples (both Type 1 and 2) show
continuous linear trends with no clear slope differences, there are some discrepancies in
the major element chemistry. Type 2 granitoids (solid triangles) tend to be less
fractionated with higher values of Al,O;, CaO, MgO, FeO*, TiO,, P,Os and (FeO* +
MgO + TiO,). These granites are strictly metaluminous when classified by the alumina-
saturation index (ASI = molar Al,05/(CaO + Na,O + K;0) (Figure 4.4a) and plot slightly
in the tholeiitic field on an AFM ternary diagram (Irvine and Baragar, 1971) (Figure
4.4b). Conversely, the Type 1 granitoids (open triangles) are metaluminous to weakly
peraluminous and show a calc-alkaline affinity. Overall, the ASI index becomes more
peraluminous as the SiO; content increases.

Both types of granitoids exhibit similar trace-element patterns on Harker
Diagrams (Figure 4.3). With increasing SiO,, Ba, Ce, Ga, Hf, Sc, Sr, Yb, Zn and Zr

decrease whereas Th increases. Other elements such as Nb and Y show slight decreases.
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Figure 4.2: Major element oxide (wt %) Harker diagrams for the Creighton pluton.
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As with major-element composition discussed above, the granitoid populations of the
Creighton pluton show significant differences in trace element contents and distinct
fractionation slopes. Relative to the Type 1 granitoids, the Type 2 samples show higher
Ba, Ce, Sc, Zn and Zr (weakly higher Hf, Ga, Sr) and lower Rb, Th and U content.
Comparative diagrams of Zr/Th vs. FeO*+MgO+MnO+TiO; and Zr/Th vs. Zr+Ce+Y+Nb
incorporating differences in both major and trace elements identify well-defined
discrimination boundaries between all rock types in the Creighton pluton (Figure 4.4c).
The microgranular enclaves and hydrothermal breccias are compositionally
similar, metaluminous and plot along the calc-alkaline — tholeiitic boundary of the AFM
ternary diagram (Figure 4.3). Both have elevated values of FeO*, MgO and MnO with
lower K,O and Ba compared to the granitoids. The enclaves are enriched in Na;O, Ga
and Zn whereas the breccias have higher CaO values. The “Sudbury” breccias exhibit
opposite fractionation trends to the granitoids for a number of elements. With respect to
silica content CaO, TiO,, Ga and Sr increase whereas K;O decreases (Figure 4.2, 4.3).
Many of these elements are mobile under metamorphic and hydrothermal conditions and

can easily be disturbed by these processes.

Rare-earth-element chemistry

Despite differences in major- and trace-element concentrations, the Creighton
pluton exhibits similar rare-earth-element patterns for all rock types (Figure 4.5). The
intrusion has light rare-earth-element (LREE) enrichment (average Lan/Ybn = 8.16), a

slight negative Eu anomaly (average EwEu* = 0.41), and a relatively flat heavy rare-
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Figure 4.5: Chondrite normalized rare-earth element diagrams for the Creighton pluton.

Normalization values are after Sun and McDonough (1989).



earth-element (HREE) pattern (average Gdn/Ybn = 1.19). The less felsic Type 2
granitoids tend to be more LREE-enriched, which is the reverse of normal igneous trends.
Primitive mantle and MORB-normalised spidergrams also illustrate the similar
characteristics of all rock types in the Creighton pluton (Figure 4.6). Relative depletions
in Ba, Nb, P, Sr, and Ti are typical with the Type 1 granitoid depletions being more
pronounced. Relative enrichments of Rb, Pb, Th and U, equal abundance of Ta-Nb-Ce

and flat MORB-like values of Zr-Hf-Sm-Y-Yb are characteristic of the granitic intrusion.

Discussion

The geochemistry further supports the initial claim based on the mineralogy that
there are two distinct phases within the Creighton pluton. The geochemical similarities
and continuous chemical trends between the two types of granitoids (e.g. ASI, REE
pattern) indicate that they could be the products of the same parental magma or source.
The minor differences suggest that each possess a slightly different petrogenetic history.
The geochemical zones identified here roughly correspond to previous geophysical
(Popelar, 1972; cf. Dutch, 1979) and structural (Dutch, 1976; 1979) data that were
interpreted to indicate the Creighton pluton is composed of two separate intrusive centres.
Anomalous values in certain major elements (Na,O, K;O0) occurred in samples located
near the Sudbury Irruptive contact and likely resulted from element mobility during this

geological event.
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CHAPTER 5: GEOCHRONOLOGY

Introduction

A U-Pb geochronology study was conducted on two samples (LH98-63 and
MS99-50) from the Creighton pluton to constrain the precise timing of granite
emplacement and facilitate temporal comparisons with other Matachewan Igneous Events
in the Southern Superior and Grenville Provinces. The two samples were selected to
represent each of the two distinct mineralogical and chemical phases within the granitic
body, to test whether they have identical emplacement ages.

The U-Pb zircon age data for a total of 14 analyses from the Creighton pluton are
presented in Table 5.1 with corresponding concordia diagrams in Figures 5.1b, 5.5b, 5.8
and 5.9. In addition, three U-Pb zircon analyses from Frarey et al., (1982) are shown for
comparison. Complete zircon fraction descriptions are given in Table 5.2 and sample
locations in Figure 4.1.

Analytical procedures for the mineral separation of zircon and the determination
of the isotopic composition of uranium and lead are outlined in Appendix C. All U and
Pb isotopic analyses were determined in single collector (Daly) mode with either a
VG354 or Micromass Sector 54 mass spectrometer. Discordia line calculations were

performed using the ISOPLOT/Ex program of Ludwig (1998).
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Complete U-Pb data from Creighton pluton.

Table 5.1



Fractions Grain Size  |Description’
# [ Wt(mg) |  (um)
LH98-63
1 0.0009 100 1 gr, tan prism, ab, frac
2 0.0020 100 1 gr, tan prism, ab, frac
3 0.0010 125 1 gr, tan prism, ab, frac
4 0.0062 60 4 gr, tan prism, ab, frac
5 0.0010 100 1 gr, tan prism, ab, frac
MS99-50
2 0.0010 80 1 gr, tan prism, small, ab, frac
3 0.0020 125 1 gr, brown equant, ab, incl, frac
4 0.0017 125 1 gr, brown equant, ab, incl, frac
5 0.0020 125 1 gr, brown equant, ab, frac, clear tip
6 0.0024 100 1 gr, trans brown equant, ab, frac
7 0.0001 80 1 gr, clear trans prism, ab, incl, frac
8 0.0022 80 2 gr, trans brown equant, ab, incl, frac
9 0.0043 80-100 8 gr, brown equant, ab, incl, frac
10 0.0132f 100-125 |12 gr, large, brown equant, ab, frac

Al Creighton pluton zircon samples separated out are non-magnetic

at 1.8A and 15° inclined tilt

Gr: grain; Ab: air abraded; Frac: fractures; Incl: inclusions;
Trans: transparent

Table 5.2: Complete zircon fraction descriptions from the Creighton pluton.
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LH98-63

Sample LH98-63 is gray, coarse-grained porphyritic granite located in the south-
central region of the pluton along Highway 144 (Figure 5.1a). It is a Type 1 granitoid
with minor amounts of biotite and accessory minerals. Four abraded single grain and one
multi-grain zircon fraction were analyzed from this sample.

The zircon crystals are cloudy to transparent tan prisms that are euhedral to
subhedral in form (width:length = 4:1). The larger grains (75-150 microns) tend to be
more mottled with abundant mineral inclusions and fractures and show signs of
resorption. Backscatter electron images illustrate these features, as well as compositional
zoning and structure within the zircon grains (Figure 5.2). A characteristic common to
some of the crystals seen in secondary electron images (Figure 5.3) are parallel planar
fractures that have been interpreted as shock induced PDF (planar deformation features)
similar to those found in the nearby 2477 £ 9 Ma Murray pluton (Krogh et al., 1996).
The smaller transparent (30-60 microns) tan prisms are generally less fractured with
fewer inclusions and were carefully selected for U-Pb analyses (Figure 5.4).

All analyzed fractions are slightly to moderately discordant (1.1 - 12.7%) and
yield a scattered pattern (Figure 5.1b). Th/U ratios are consistent (0.52 — 0.63) with four
samples having a uranium concentration range of 202 — 473 ppm. 207pp/2%ph ages are all
near 2400 Ma with a range from 2382.6 Ma to 2419.7 Ma. The most discordant sample
corresponds to the anomalous low uranium concentration (#4 — 84.1 ppm) and the

youngest 2°’Pb/*%Pb age. The scatter is likely to represent a complex Pb-loss history and
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Figure 5.1: (a) Photograph of Type 1 sample LH98-63. (b) U-Pb concordia diagram
showing results from sample LH98-63. Regression line plots through the two single
grain analyses with similar 207pp/206ph ages (#1 and #2). Numbers beside error ellipses
refer to analysis number in Table 5.1. Error ellipses are shown at lo.



Figure 5.2: Backscatter electron images of zircons from LH98-63.
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Figure 5.3: Secondary electron images of shocked zircons from the Creighton pluton
(sample LH98-63) displaying PDF (planar deformation features).
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Figure 5.4: Photographs of zircon fractions from LH98-63. Magnification is x100.
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no precise emplacement age can be determined through linear regression. However, a
minimum crystallization age of 2411 Ma can be assigned to the Creighton pluton using
the 297Pb/?%Pb age of the least discordant fraction (#3 — 1.08%). Regression of analyses
#3 and #5 yield an upper intercept age of 2414.7 + 2.9 Ma with the three other analyses
(#1, #2, #4) falling slightly to the right of this line. These fractions may simply be
showing slight inheritance from earlier (ca. 2450 — 2490 Ma) Paleoproterozoic
magmatism. These data show that the Creighton pluton is nearly 100 Ma older than age
interpretations based on previous radiometric determinations (Stockwell, 1982; Frarey et

al., 1982).

MS99-50

Sample MS99-50 is dark grey, foliated, coarse-grained granite located in the
northeastern portion of the pluton near the contact with the Sudbury Structure (Figure
5.5a). It is a Type 2 granitoid with abundant biotite and accessory minerals (epidote,
zircon) and minor homnblende. Six abraded single grain and three multi-grain zircon
analyses from this sample are reported in Table 5.1.

This granitoid sample possesses two morphologically distinct populations of
zircon. The first are tan prisms similar in size and appearance to those in sample LH98-
63. The second population is small (60-80 microns), brown, subhedral equant (width:
length = 2:1) grains that are cloudy to transparent. Backscatter electron images show
inclusions, abundant fractures and a well-defined oscillatory zoning within the crystals

(Figure 5.6). Fractures interpreted as PDF are common and can be easily viewed using a
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Figure 5.5: (a) Photograph of Type 2 sample MS99-50. (b) U-Pb concordia diagram
showing results from sample MS99-50. Regression line plots through five analyses (#2.
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Figure 5.6: Backscatter electron images of zircons from MS99-50.
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reflected light microscope. Zircon grains from both the tan prisms and brown equant
populations were selected for U-Pb radiometric analyses (Figure 5.7).

Although most of the U-Pb zircon analyses are moderately discordant (1.89 —
4.51%), similar to sample LH98-63. the data for MS99-50 produced a cluster pattern
(Figure 5.1b). With the exception of two fractions, the Th/U ratios are generally
consistent (0.30 — 0.53) with a uranium concentration range from 75 to 337 ppm. Unlike
LH98-63, there is no correlation between uranium concentration and degree of
discordance. The most discordant fraction (#3) possesses anomalous concentrations of
model Th (6 ppm), U (36.9 ppm), Pb (8.3 ppm) and a low Th/U ratio of 0.160. This
fraction was not used in any U-Pb age calculations because of apparent U and Pb mobility
and is not shown in Figure 5.5b. Fraction #6 possesses high concentrations of model Th
(1095.8 ppm) and common Pb (145.3 pg) with a Th/U ratio of 3.36. The analysis is
reversely discordant which may be the result of incomplete dissolution of the sample.

207pp,/2%p} ages ranging

Five of the fractions (#2, #4, #6, #7 and #10) yielded consistent
from 2373.7 Ma to 2377.9 Ma. Two of the multi-grain fractions (#8 and #9) have slightly
older °’Pb/*®Pb ages of 2398.7 Ma and 2383.0 Ma, respectively, with single grain
fraction #5 having a younger 207pp/*%Ph age of 2366.4 Ma. A weighted average
207pp,206py calculation of the five similar fractions (#2, #4, #6, #7 and #10) yields an age
of 2376.3 £ 2.3 (MSWD = 0.69). A regression line through these five points produces a
similar age of 2375.2 + 3.3 Ma with a lower intercept of -8 Ma (MSWD = 3.2) (Figure

5.5b). Analyses #8 and #9 could have slight inheritance from either the Creighton Type 1

granitoid intrusion or older Paleoproterozoic material.
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Figure 5.7: Photographs of zircon fractions from MS99-50. Magnification is x100.
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Discussion

To assess all of the U-Pb geochronology data (Figure 5.8) and determine the best
age estimate for the Creighton pluton phases, a number of factors must be considered.
The two samples produce different initial age estimates (2414.7 + 2.9 Ma and 2376.3 +
2.3 Ma) with the fractions from MS99-50 generally yielding tightly constrained and
younger 207pp2%ph ages.  Sample LH98-63 yields a scattered pattern suggesting a
complex, multiple Pb-loss history, whereas MS99-50 yields a cluster pattern suggesting a
similar Pb-loss history and similar degree of Pb-loss. The multi-grain zircon analyses
(#8, #9, and #10) from MS99-50 are slightly more discordant but not as much as the
multi-grain analysis (#4) from LH98-63. The well-documented 1850 Ma Sudbury Impact
related Pb-loss event in the nearby Murray pluton (Krogh et al., 1996) does not seem as
prevalent in the Creighton pluton despite the presence of fractures interpreted as PDFs in
the zircon crystals. Although rare, there are two studies that document relatively nearby
geological events at ca. 2.4 Ga. The first is a 2408 + 3 Ma meta-diabase dike located in
the Grenville Province (Krogh, 1994) and the second is a 2416 + 30 Ma metamorphic
zircon overgrowth from a granulite-grade meta-anorthosite recovered in a Jurassic
kimberlite pipe near Kirkland Lake, Ontario (Moser and Heaman, 1997).

The possibility of an 1850 Ma component of Pb-loss that is prevalent in the zircon
from the nearby Murray granite cannot be discounted for the Creighton granite zircon. A
closer inspection of the fractions from LH98-63 appears to show three separate trends that

all suggest a similar upper intercept age (Figure 5.9a). Fraction #3 can be interpreted to
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three separate regression treatments are plotted with corresponding upper and lower
intercepts. (b) U-Pb concordia diagram showing results from sample MS99-50. The
reference line plots from 2480 Ma to 1850 Ma. Some of the analyses plot near this
inferred Pb-loss line. Numbers beside error ellipses refer to analysis number in Table 5.1.

Error ellipses are shown at lc.

53



lie along a discordia line between 1850 Ma to 2450 Ma. Fractions #2 and #4 yield an
upper intercept of ca. 2440 Ma and fractions #1 and #5 yield an upper intercept of ca.
2460 Ma. Each grouping has a different lower intercept that may reflect a combination of
separate Pb-loss events. Further examination of sample MS99-50 indicates three of the
single zircon grain analyses lie along an 1850 Ma - ca. 2480 Ma discordia line with the
fourth single grain and multi-grain analyses falling only slightly below this reference line
(Figure 5.9b). Unfortunately, in both cases the data do not allow construction of a robust
regression line making it difficult to identify any 1850 Ma Pb-loss event. The best age
estimate for the Type 1 granitoids is 2415 Ma with an assigned error of + 5 Ma to
encompass the 207pp/2%ph age of the least discordant analysis (#3) and for the Type 2
granitoid intrusion, 2376.3 + 2.3 Ma. The Type 2 lower intercept age of ca. 0 Ma may
simply reflect a recent Pb-loss event.

The interpreted ages of crystallization for the Type 1 and 2 granitoids are 2415 £ 5
Ma and 2376.3 + 2.3 Ma, respectively. Different 207pp/206ph ages and Pb-loss patterns
combined with the mineralogical and geochemical variances support the hypothesis that
the two distinct geochemical zones of granitoid within the Creighton pluton represent

temporally discrete pulses of felsic magmatism separated by ca. 40 Ma.
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CHAPTER 6: TRACER ISOTOPES

Introduction

Tracer isotope Rb-Sr, Sm-Nd and common Pb-feldspar studies were conducted on
seven representative samples from the Creighton pluton. The purpose of these isotopic
studies is to complement the existing geochemical studies and provide more diagnostic
information that may help to elucidate the origin of the felsic magmatism. Radiogenic
isotopes are excellent geologic tools to gain information on the petrogenesis of granitic
rocks because their ratios remain unchanged during subsequent fractionation events. This
enables the identification of characteristic isotopic source reservoirs or the mixing
between distinct sources. Common Pb-feldspar studies have been demonstrated to be a
sensitive indicator for identifying ancient crustal signatures (e.g. Yamashita et al.. 1999).

A typical suite from the Creighton pluton based on geography and geochemistry
was selected for analysis of Rb-Sr, Sm-Nd and common Pb-feldspar. Four whole rock
samples of Type 1 granitoid, one of Type 2 granitoid, one breccia and one enclave were
chosen for Rb-Sr and Sm-Nd isotopes. Potassium feldspar mineral separates were
selected from the same samples for Pb isotope analysis. The two samples used for U-Pb
zircon radiometric dating (LH98-63, MS99-50) had duplicate analyses run on both

residues and leachates. A complete summary of the tracer isotope data is presented in

Tables 6.1, 6.2 and 6.3.
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Table 6.1: Summary of Rb-Sr whole rock and apatite data from the Creighton pluton.
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Table 6.2: Summary of Sm-Nd whole rock data from the Creighton pluton.
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Sample' Rock |Separate [*Pb/"™Pb  [Pb/”™Pb  |Pb/”**Pb
Type® |Type®
LH98-63 CG1 R 36.662 15.862 17.447
L1 41.177 16.198 20.221
LH98-63D CG1 R 36.606 15.845 17.438
L4 38.015 15.938 18.877
L1 44.410 16.337 21.538
MS99-31 CG1 R 37.901 15.929 17.588
MS99-38 CG1 R 36.676 15.809 17.126
MS99-46 CG1 R 36.290 15.759 16.900
MS99-50 CG2 R 36.226 15.390 15.658
L4 36.779 15.379 16.381
L1 39.005 15.525 16.740
MS99-50D CG2 R 36.283 15.399 15.672
L4 37.259 15.564 16.779
L1 39.562 15.524 16.801

Pb isotopic ratios were corrected for mass discrimination based on values
obtained for NBS-981 (n = 4) and normalized to the value reported by
Todt et al., (1996).

' *D" denotes duplicate analysis
% Rock type legend

CG1 = Type 1 granitoid
CG2 = Type 2 granitoid

3) Potassium feldspar separate type legend
R = Residue

L1 = Leachate 1
L4 = Leachate 4

Table 6.3: Summary of common Pb-feldspar data from the Creighton pluton.
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Mineral separation techniques and Rb-Sr and Sm-Nd isotope dilution techniques are
outlined in Appendix D and are primarily based on procedures described by Creaser et al.
(1997). Common Pb-feldspar leaching procedures and Pb purification by ion exchange
chromatography follow Cumming and Krstic (1987), Housh and Bowring (1991) and
Lugmair and Galer, (1992). Rb and Sm concentrations were determined by isotope
dilution using a Micromass30 in single collector mode with Sr, Nd and Pb isotopic ratios
and concentrations determined on a VG354 mass spectrometer. Pb isotopic ratios were
corrected for mass discrimination based on values obtained for NBS-981 (n = 4;

208py,204py = 36,511 2O7Pb/2®Pb = 15.435; 2%Pb/2%Pb 16.881) and normalized to the

values reported by Todt et al., (1996).

Rb-Sr

The suite of samples analyzed from the Creighton pluton produce a range of initial
87Sr/%6Sr ratios of 0.65521 to 0.70368. Except for sample MS99-50, all initial ratios are
lower than any reasonable terrestrial values. The lowest of the initial Sr values (t = 2415
Ma) is from the most felsic sample (MS99-31) with the remaining Type 1 samples having
compositions consistently near 0.69. The breccia and microgranular felsic enclave have
similar low initial Sr values of just above 0.67. The Type 2 granitoid sample yields the
only realistic value with an initial ¥Sr/**Sr ratio (t = 2376 Ma) of 0.70368. With the
exception of the Type 2 sample all the reported data are implausibly low (e.g. below the
most primitive ratios known in our solar system) and can have no petrogenetic

significance. In an attempt to verify that the Rb-Sr whole rock system could be disturbed,
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Sr isotope analyses on two apatite mineral separates (LH98-63 and MS99-50) were
conducted. Apatite has been shown to record a minimum initial 3’Sr/*Sr ratio where the
whole rock values were too low (Creaser and Gray, 1992). However the initial 87Sr/3Sr
values from the two-apatite analyses are very radiogenic (0.83052 and 0.74879) and likely
reflect post-crystallization exchange with a radiogenic reservoir, similar to results

obtained for granitic rocks of the World Beater Complex (Lanphere et al., 1964).

Sm-Nd

The analyzed samples from the Creighton pluton yield a narrow range of Sm/Nd
ratios, eng values. and depleted mantle ages irrespective of rock type. The Sm/Nd ratios
range from 0.18 to 0.20, f™ from -0.37 to -0.44 and &g (t = 2376 and 2415 Ma) values
from —1.8 to —2.4. Calculated depleted mantle model ages (Goldstein et al., 1984),
representing the time the sample has been separated from the mantle, are Mesoarchean
between 2790 — 2830 Ma. (Figure 6.1). The exceptions are sample MS99-46 and the
enclave which possess slightly lower exg (t = 2415) values of —4.4 and -2.9 respectively,
and an older Tpym of 2.9 - 3.0 Ga. Overall these data are consistent with the single Sm-Nd
analysis (Sm/Nd = 0.18, eng (t = 2415) = -2.2, fs'"’Nd = .0.43) calculated from data

reported in Dickin (1998).
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Figure 6.1: £y vs. time (Ma) diagram of Creighton pluton samples with respect to
CHUR (CHondritic Uniform Reservoir) and Depleted Mantle (DM) after Goldstein et al.,
(1984).
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Common Pb-feldspar

The Pb isotopic data obtained for potassic feldspar residues have a wide range of
isotopic ratios. The Type 1 granitoid 2°®Pb/”**Pb values range from 36.290 to 37.901, the
27pb/2%Ph from 15.759 to 15.929 and the **Pb/2**Pb from 16.900 to 17.588. The Type 2
granitoid possesses less radiogenic values of 2®*Pb/*Pb from 36.226 to 36.283, the
207pp/2%Ph from 15.390 to 15.399 and the 2%*Pb/***Pb from 15.658 to 15.672. Attempts
to measure the Pb isotopic composition for the breccia and the enclave were unsuccessful
due to a lack of measurable lead in the small feldspar separate. The granitoid residue
compositions appear too radiogenic for Paleoproterozoic samples and may have had

addition of Pb by a later geological event.

Discussion

The isotopic data from the Creighton pluton indicate a complex system that is
partially disturbed by later geological events. There is no significant variation in the eng
values or Tpm ages for the Creighton pluton. suggesting a similar isotopic source
reservoir for all the samples. The values reflect neither a pure mantle nor pure crustal
source but are likely the result of mixing of the two sources and will be used in
conjunction with the geochemistry to identify possible source materials for the Creighton

pluton.

The impossibly low initial Sr values for the Type 1 samples from the Creighton

pluton imply that the data do not provide any direct petrogenetic constraints to the
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Creighton pluton, but may help in assessing the effects of geological events in the region.
A close correlation between the Rb/Sr ratio and the initial ®’Sr/*Sr ratio shows that
samples with a higher Rb/Sr ratio are more disturbed (Figure 6.2a). A whole rock
isochron diagram of the four Type | samples yields an age of 2367 £ 37 Ma (MSWD =
8.2) with a lower intercept of 0.695 + 0.010 (Figure 6.2b). This whole rock Rb-Sr
isochron age is identical within error to the U-Pb zircon age of 2376 + 2.3 Ma for the
Type 2 granitoid. The significance of this isochron age is that it demonstrates that the
Rb-Sr system in the Creighton pluton has not been reset by younger events such as the
1850 Ma Sudbury Event nor the 1.7 Ga K-metasomatism common to the Huronian
sediments (Fairbairn et al., 1965; Roscoe et al., 1992; Schandl et al., 1994; Fedo et al.,
1997). The most likely explanation is Rb addition ca. 40 Ma after emplacement of the
Type 1 granitoid. The isochron age of the Type | samples seems to be recording the
intrusion of the Type 2 granitoid body, with low initial Sr ratios as a result of Rb or Sr
migration during its emplacement. The fact that the Rb-Sr system in the Type 1 samples
shows little evidence of later geological disturbances suggests that similar circumstances
have occurred in the Type 2 sample. This would imply that the initial 81Sr/4Sr value
from the Type 2 sample might have some petrogenetic significance. The low initial Sr
ratio of the Type 2 granitoid indicates that it is unlikely that mixing with a highly
radiogenic (high %75r/%8Sr) Archean mid- to upper crustal component occurred during
crystallisation. The initial ¥’Sr/*Sr value of 0.70368 for the Type 2 granitoid would

suggest a depleted mantle source, if reliable.
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Figure 6.2: (a) Rb/Sr vs. initial 875r/%Sr ratio. (b) Rb-Sr isochron diagram of four Type 1
granitoid samples from the Creighton pluton.
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The Pb isotopic signatures show evidence of an open system because the leachates and
residues from the two samples do not plot parallel to a 2400 Ma reference isochron
(Figure 6.3). The Pb leachate-residue isochrons from both granitoid types show similar
regression slope results. The Type 1 samples yield an age of 1962 + 360 Ma (MSWD =
19) (Figure 6.4a) and the Type 2 sample (MS99-50) an age of 1956 + 140 Ma (MSWD =
1.3) (Figure 6.4b) with the two anomalous leachate points ignored. Although the two
granitoids have different Pb isotopic compositions, it appears that the Pb systems were
disturbed by the same Mesoproterozoic event. Both ages agree within the uncertainty to
the 1850 Ma Sudbury Impact event responsible for Pb-loss in the nearby Murray pluton
(Krogh et al., 1996). A plot of the residues compared to the Pb evolution model of Stacey
and Kramers (1975) (u = 9.74) shows that all the samples do not plot at ca. 2.4 Ga on any
evolution curve. They would require a long residence time in a high U/Pb reservoir to
generate the required high radiogenic Pb isotope compositions (Figure 6.5). Unlike the
Nd isotopes, the Pb isotopic compositions are different for each granitoid intrusion. This
data supports the U-Pb zircon geochronology indicating that there are two temporally
separate bodies and combined with the geochemical differences, this may imply a slightly

different petrogenetic origin.
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Figure 6.3: Pb isochrons for the two U-Pb ages of the Creighton pluton plotted with
corresponding potassium feldspar residues and leachates.
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Figure 6.4: Pb isochron diagrams from the Creighton pluton. Shaded ellipses represent
leachates and empty ellipses residues. Error ellipses are shown at 2. (a) Pb isochron
from residues and leachates from Creighton Type | granitoid samples. (b) Pb isochron
from residues and leachates from Creighton Type 2 granitoid sample MS99-50. The two
L4 samples (large error ellipses) were not used in the regression treatment.
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CHAPTER 7: TECTONO-MAGMATIC SETTING

Introduction

Unlike their volcanic counterparts, identifying source components and the tectonic
setting of granitic magmatism based solely on geochemistry commonly gives ambiguous
results. The complexity of granites is due to a complicated petrogenetic history that is the
product of a diversity of origins, sources and subsequent geological processes (i.e. crustal
contamination) that can alter their chemistry. Numerous classification techniques
designed using field relations, mineralogy/petrography or chemistry have been proposed
to address the issue of determining the tectonic environment of granitic emplacement
(e.g. Chappell and White, 1974; Pearce et al., 1984; Whalen et al., 1987; Maniar and
Piccoli, 1989; Batchelor and Bowden, 1985). Unfortunately, many problems arise when
attempting to use these classification schemes because of the complex nature of granites.
Most systems are empirically based on Phanerozoic granites with the resulting well-
defined boundaries and simple tectonic correlation not necessarily valid for granite
magmatism throughout Earth’s evolution.

In an attempt to decipher the complex features of the Creighton pluton, an
integrated approach using field relationships, mineralogy/petrography, chemistry and
isotopic characteristics will be employed in an attempt to constrain the source
components and tectonic setting. This type of synthesis will incorporate many of the

existing granite petrogenetic classifications. The advantages to this approach are that it
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does not solely rely on one set of criteria or one type of methodology that may have been
adversely affected by subsequent geological events. Exceptional mineral occurrences and
anomalous geochemical values can be correctly identified, allowing the evaluation of

their importance, thus minimizing the chance of any potential misinterpretations.

Field relations

Prior to any attempts to classify granitic magmatism mineralogically or
chemically, the field relationships must be considered first. Petrographically, the
Creighton pluton consists of granites to monzogranites and is associated with mafic dike
swarms, extensive basaltic to rhyolitic volcanism and a number of gabbro-anorthosite
intrusions (Krogh et al., 1984; Ashwal and Wooden, 1989; Prevec, 1993; Heaman, 1997,
Corfu and Easton, 2001). Felsic microgranular enclaves are present along with two large
mafic enclaves of the surrounding volcanic formations. These characteristics are
common to granitoids located in a wide range of geological settings such as rifts, volcanic

arcs or post-orogenic Zones.

Mineralogy

The Creighton pluton is a typical two feldspar-quartz granite containing minor
amounts of biotite + epidote + amphibole. Accessory minerals of apatite + zircon +
ilmenite + allanite + titanite are common as well. Type 2 granitoids contain calcic

amphibole and a higher modal abundance of the accessory minerals. Pyroxene is absent
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and muscovite was identified in only one highly silicic sample (MS99-31). Epidote and
titanite are likely to be secondary in origin having crystallized as a result of later
hydrothermal alteration or metamorphism.

Chappell and White (1974, 1992) proposed and modified a classification scheme
to distinguish between I-type (intracrustal/igneous) and S-type (supracrustal/sedimentary)
using both mineralogy/petrography and geochemistry based on extensive work on the
Australian Lachan Fold Belt granites. The S-type intrusions have a peraluminous nature
and contain specific minerals (e.g. cordierite, Al-polymorphs, garnet, muscovite) not
found in a mixed or mantle generated granite. The Creighton pluton is metaluminous to
weakly peraluminous and lacks these common Al-rich minerals associated with crustal
anatexis. The simple mineralogy of the intrusion with biotite as the dominant mafic

mineral is consistent with [-type granites.

Geochemistry

Major-element chemistry has been applied to provide a descriptive nature for
granitoids and identify the tectonic setting. Maniar and Piccoli (1989) utilise the major
elements in a series of discrimination diagrams to distinguish granites into appropriate
tectonic environments. Most of the Creighton pluton samples plot in the POG (post-
orogenic granite) field of the SiO; vs. FeO*/FeO*+MgO diagram with a number of the
Type 2 granitoids located in the RRG (rift-related granite) field (Figure 7.1a). The multi-
cationic system of Batchelor and Bowden (1985) that was designed based on the R1-R2

diagram of de la Roche et al., (1980) shows the Creighton pluton samples plot mainly in
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Figure 7.1: Granitoid tectonic discrimination diagrams. (a) SiO; vs. FeO*/(FeO*+MgO)
diagram of Maniar and Piccoli (1989). TAG = island arc granitoids; CAG = continental
arc granitoids; CCG = continental collision granitoids; POG = post orogenic granitoids;
RRG = rift-related granitoids; CEUG = continental epeirogenic uplift granitoids. (b) R1
vs. R2 diagram of Batchelor and Bowden (1985). Group 1 = mantle fractionates; group 2
= pre-plate collision granitoids; group 3 = post-collision uplift granitoids; group 4 = late-
orogenic granitoids; group 5 = anorogenic granitoids; group 6 = syn-collision granitoids.
Rl = 4Si - 11(Na+K) — 2(Fe+Ti); R2 = 6Ca + 2Mg + Al. (¢) Rbvs. Y + Nb and Rb vs.
Yb + Ta diagrams of Pearce et al., (1984). WPG = within-plate granite; VAG = volcanic
arc granite; ORG = ocean ridge granite; syn-COLG = syn-collisional granite. (d) A-type
granite discrimination diagram of Whalen et al., (1987). A-type = anorogenic granite; I-
type = intracrustal/igneous derived granite; S-type = supracrustal/sedimentary derived
granite.
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the syn-collisional field, but there is considerable data scatter (Figure 7.1b).
Unfortunately, the use of major elements such as Na_K and Ca is suspect because they are
considered highly mobile under metamorphic or hydrothermal conditions and may have
been modified by the 1.85 Ga Penokean Orogeny or 1.7 Ga metasomatism.

Pearce et al. (1984) also used trace-element chemistry to define tectonic
boundaries in Rb-Y-Nb and Rb-Yb-Ta space modelled on the basis of the petrogenetic
histories of different granites. All samples from the Creighton pluton are well
constrained to the WPG (within-plate granite) field on the Rb vs. Y+Nb diagram with a
few samples straying into the syn-COLG (syn-collisional granite) field on the Rb vs.
Yb+Ta diagram (Figure 7.1c). This may be the result of post-emplacement Rb addition
that was also observed in the Rb-Sr isotope data. The pluton shows many characteristics
of the subset category ‘b’ of the within-plate granites (metaluminous, calcic amphiboles)
that are associated with dike swarms (Pearce et al. 1984). On an ORG-normalised plot
the granitoids exhibit relative Rb and Th enrichments, slight Ce and Sm enrichments, a
negative Ba anomaly and a flat Hf-Zr-Y-Yb pattern that are common for a crustal
dominated pattern. The disadvantage to these diagrams is that they do not readily identify
post-orogenic characteristics.

Although mineralogically consistent with [-type granites of Chappell and White
(1974), geochemically the Creighton pluton has high values of Na,0+K30, Zr, Nb, Ga, Y
and REE with low Sr that are signatures of A-type (anorogenic) granitoids. Whalen et al.
(1987) designed a number of graphical plots to distinguish A-type granites primarily
using the major elements, the immobile high-field strength elements and the Ga/Al ratio.

On these diagrams the Creighton pluton plots in the A-type field with a number of the
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Type 1 samples lying along the border with fractionated I-type granites (Figure 7.1d,
Figure 7.2). Despite the good correspondence, the Creighton pluton shows several
deviations from the expected A-type magma chemistry having unusually high contents of
CaO, Ba and Th with lower SiO; and Fe/Mg.

Studies by Kilpatrick and Ellis (1992) have identified C-type (charnockite)
magmatism that can be distinguished from [-type and A-type granites by distinct
geochemical signatures. This magmatic type is generally expressed by the presence of
charnockites (orthopyroxene-bearing granites), but can have granites and felsic volcanics
that exhibit the same chemical features inherited from their parental magma. Although
similar in many features to A-type granitoids, the C-type magmatism is characterized by a
lower (and wider range) SiO; values, higher TiO, P,Os and K,O at a given SiO; level
and a lower ratio of Mg#. Multi-element diagrams normalized to average I-type (n = 991)
and A-type granites (n = 148) (Whalen et al., 1987) (Figure 7.3) provide an effective tool
to compare C-type magmatism (SiO; = 66.37% and 70.75%) (Kilpatrick and Ellis, 1992)
and the Creighton pluton. In both diagrams the Creighton pluton and Ardery
Charnockites possess comparable patterns of relative elemental enrichments and
depletions. The similarity is more striking on the plot normalized to average A-type
granite with lower Zr and higher Ca, Ba, P and Mg#. One key chemical feature of C-type
magmatism that distinguishes it from either A-type or I-type granites is the Fe/Mg ratio
(Kilpatrick and Ellis, 1992). C-type magmas generally possess a wide range of Mg#
values from 25-40, whereas A-type granites are commonly <10 and I-type granites around
45. The average Mg# for the Creighton pluton Type 1 and Type 2 granitoids are 29 and

26 respectively, plotting in the C-type range.
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Isotopes

Although tracer isotopes are not generally used to specify the tectonic setting of
granites, they are extremely useful for identifying source reservoirs of the parental
magma. Unfortunately, the Creighton pluton possesses a complex isotopic history having
been affected by many post-emplacement geological events. This makes it difficult to
provide unequivocz;l evidence of the source components.

Both the Rb-Sr and common Pb-feldspar analyses show evidence of an open
system but still can be used in conjunction with other data to eliminate certain
possibilities. The low initial 875r/%Sr values from the Type 2 Creighton pluton sample
show that the intrusion was not derived solely from an evolved Archean crustal source
such as the Cartier Batholith or Levack Gneiss. Common Pb-feldspar data from the
Creighton pluton is generally consistent with the rest of the ca. 2.45 Ga Huronian felsic
and mafic magmatism with the Type 1 residues lying slightly above the reference field
(Figure 7.4). None of the Pb isotope compositions from ca. 2.45 Ga magmatism overlap
the field of Archean compositions that represent the depleted mantle at approximately 2.7
Ga. Similar to the findings for the River Valley anorthosite by Ashwal and Wooden
(1989), the source reservoir for the Creighton pluton is not likely to be late Archean
crustal rocks nor the typical depleted mantle from which they were derived. In order to
evolve to the Pb isotopic values of the Creighton pluton from the Archean field, the

magma would require a very high U/Pb (u =13 - 15) ratio. Although not providing any
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Figure 7.4: 207pp20pp vs. 2%pb/2*Pb diagram of the Creighton pluton k-feldspar
residues and potential source materials. Archean field includes komatiite minerals
(Tilton, 1983), granitoid k-feldspar residues (Gariepy and Allegre 1985; Stevenson et al.,
1999) and Levack gneiss (Prevec, 1993; Dickin. 1998). Huronian Magmatism field
includes River Valley Anorthosite (Ashwal and Wooden, 1989), Hearst dikes (Smith et
al., 1992), gabbro-anorthosite intrusions (Prevec, 1993) and Murray pluton (this study).
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direct evidence for the source components of the Creighton pluton, the Rb-Sr and
common Pb-feldspar systems seem to rule out late Archean materials as the primary

Source reservoirs.

The Sm-Nd system appears to be the only isotopic system that is robust enough in
the Creighton pluton to make petrogenetic interpretations. Overall, the eng and fommd
values reported from the Creighton pluton are consistent with the field for the Huronian
magmatism with a small overlap with late Archean granitoid rocks (Figure 7.5a). The
slightly negative exq values make it unlikely that it is a melt from a pure mantle or pure
crustal source with the negative fs"‘/Nd showing its LREE enriched nature. A simple
interpretation would be that the values are the result of LREE enriched mantle magma
with variable amounts of crustal contamination. The difficulty lies in correctly
identifying the isotopic nature of the “Huronian™ mantle at ca. 2.45 Ga and the crustal
contaminant. Prevec et al. (1995) and Tomlinson (1996) have indicated that the mantle
beneath the Southern Superior Province at this time is likely very chondritic in nature, or
relatively uniformly enriched. This seems plausible in that the Hearst-Matachewan dikes
have near chondritic values (average eng = 0.9, n = 7) (Boily and Ludden, 1991) and may
represent the most primitive source magma of the ca. 2.45 Ga MIE. A multi-element
spidergram comparing average Creighton pluton to average Hearst-Matachewan dike
shows a very similar pattern, with the granites being more enriched in many of the
elements (Figure 7.6a/7.6b). A suitable contaminant that is exposed in the region with
Nd isotopic data is the Levack Gneiss. Attempts at AFC (assimilation-fractional

crystallization) calculations (DePaolo, 1981) involving the Hearst-Matachewan dikes (Nd

=10 ppm, en¢= 1.3 att= 2400 Ma) and Levack Gneiss (Nd = 40 ppm, eng =-2.3 att=
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Figure 7.5: (a) eng vs. time (Ma) diagram of Creighton pluton samples and potential
source material with respect to CHUR (CHondritic Uniform Reservoir) and Depleted
Mantle after Goldstein et al., (1984). Hearst-Matachewan dikes values from Boily and
Ludden (1991) and 3.0 sialic crust from Stern et al. (1994). (b) &g vs. fs'“’Nd diagram of
the Creighton pluton samples and potential source materials. Archean komatiite field
from Dupre et al. (1984), Archean granitoids from Shirey and Hanson (1986) and
Stevenson et al. (1999) and Levack Gneiss from Prevec (1993) and Dickin (1998).
Huronian magmatism field includes the Hearst-Matachwean dikes (Boily and Ludden,
1991), Thessalon volcanics (Jolly et al., 1992), gabbro-anorthosite intrusions (Prevec,
1993) and Murray pluton (this study).
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Figure 7.6: Multi-element spidergrams comparing average Creighton pluton Type |
(n=18) and Type 2 (n=8) granitoids to average Hearst-Matachewan dike (n=33) (Condie
et al., 1987; Nelson et al., 1990; Boily and Ludden, 1991). Normalization values from
Sun and McDonough (1989). (a) Chondrite normalized rare-earth element diagram. (b)

Primitive mantle normalized diagram.
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2400 Ma) show that an unrealistic bulk distribution coefficient for the basaltic magma
(0.75) is required to generate the Nd concentration and eng values of the Creighton pluton.
However, if 3.0 Ga average Superior sialic crust (Nd =25 ppm, eng =-7.0 at t = 2400 Ma)
(Stern et al., 1994) is substituted as the contaminant it is possible to generate the values of
the Creighton pluton with 30% of the original mafic magma remaining. For the model, a
distribution coefficient of 0.2 for the basaltic magma and an r-value of 0.33
corresponding to the assimilation of cool crust, was used. This is not to say with certainty
that 3.0 Ga sialic crust is the contaminant, only that if the Creighton pluton formed under
AFC conditions then an older, more enriched contaminant than is exposed at surface is
required. Other authors that have conducted isotopic studies of the MIE magmatism have
also made note that older crust is necessary to explain AFC processes (Ashwal and
Wooden, 1989; Boily and Ludden, 1991). This type of meso-Archean source component
may be found at depth underlying the Southern Superior Province with the Tpus 0f 2.79 —

2.83 Ga, supporting involvement with a major melting event at this time.

Discussion

The Creighton pluton is a small granitic intrusive body that has surprisingly
complicated geochemical and isotopic characteristics. The difficulty lies in providing the
most plausible explanation for the source components and tectonic setting of the
Creighton pluton based on the existing evidence. In constructing a viable tectonic model,

only elements and isotopic systems that seem unaffected will be used.
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The first conclusion is that the Creighton pluton does not appear to be the product
of a pure crustal nor pure mantle source. It does not contain the correct mineralogy nor
does it have the necessary chemical or isotopic signatures to be the result of melting of
exposed late Archean crust. The pluton also does not possess the mineralogy,
geochemistry nor isotopic characteristics of a granitoid that derived solely from a mantle
reservoir. It is also unlikely to be a local magmatic episode of the proposed 2.4 - 2.2 Ga
Blezardian Orogeny (Riller et al., 1999) because it shows none of the characteristics of a
syn-orogenic granite. The Creighton pluton appears to have occurred in a geodynamic
environment that could facilitate the mixing of mantle and crustal source components.

The favored explanation is that the Creighton pluton is similar to the C-type
magmatism as described by Kilpatrick and Ellis (1992). The lack of charnockites in the
Southern Superior Province appears to be a problem, but this style of magmatism can be
expressed solely by extrusive or granitoid equivalents (Kilpatrick and Ellis, 1992) and the
charnockites could be found at depth. C-type magmatism can occur due to the input of
large volumes of basalt into stabilized fertile lower crustal granulites with subsequent dry
partial melting (Kilpatrick and Ellis, 1992). Although there is no surficial expression of
any Paleoproterozoic granulites in the southern Superior Province, there is evidence of a
significant granulite grade metamorphic event between 2.50 and 2.40 Ga from kimberlite-
borne mafic granulite xenoliths, near Kirkland Lake under the Abitibi Province (Moser
and Heaman, 1997). This metamorphic event is interpreted to have occurred under
anhydrous conditions and is the result of heat supplied by the underplating Huronian-aged
magmas in a rift setting (Moser and Heaman, 1997). It is possible that similar

Paleoproterozoic-aged granulite-grade metamorphic rocks underlie the southern Superior
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Province. The extended period of granulite metamorphism (2.50 — 2.40 Ga) and mafic
magmatism (2.48 — 2.44 Ga) would imply the existence of granulitic crust prior to
emplacement of the Creighton pluton. The 2416 + 30 Ma metamorphic age (Moser and
Heaman, 1997) suggests a period of heating and melting that might be coeval with the
crystallization of the Creighton pluton. The granitoid intrusive would be the result of the
melting of the enriched granulite-grade intermediate to mafic material (Hearst-
Matachewan dikes or Elliot Lake volcanics equivalent) with the incorporation of some of
the pre-existing (granulitic?) lower crust. If AFC (assimilation-fractional crystallization)
processes and crustal contamination are involved. then this crustal material may have Nd
isotopic signatures similar to 3.0 Ga sialic crust that is only exposed at depth.

This tectonic model involving the partial melting of two different types of
components explains the discrete differences between the two types of granitoids in the
Creighton pluton. The bodies are temporally separate and based on a number of lines of
evidence (mineralogy, geochemistry, geophysics, structure, tracer isotopes), resulted from
two distinct pulses of magma. These pulses must have come from a similar parental
source because of similar Nd isotope signatures and rare-earth-element patterns. The
differences in geochemistry and common Pb-feldspar isotopes may reflect the variability
in the amount and nature of the lower crustal material being incorporated, or open system
processes. The felsic microgranular enclaves are interpreted to represent a more primitive
stage of crystallization of the granitic magma based on their similar geochemical patterns

and isotopic characteristics.
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CHAPTER 8: MATACHEWAN IGNEOUS EVENTS

Introduction

The Creighton pluton possesses unusual chemical and isotopic characteristics
making it important to compare to the other nearby felsic granitoid bodies to determine if
these signatures are consistent in all the plutonic magmatism. These include the proximal
Murray pluton and recently identified Street Township granites in the Grenville Province
(Corfu and Easton, 2001). A comparison will help evaluate the genetic relationship

between the granitic plutonism and its relationship with the ca. 2.45 Ga mafic MIE.

Granitoid Comparison

The three intrusions primarily classify as granite to monzogranite with the only
textural difference being that the Creighton pluton has porphyritic phases. Despite the
proximity of the intrusions, high-precision U-Pb geochronology has shown that the
Creighton pluton may be approximately 50 m.y. younger than the Murray pluton and
Street Township granites (Krogh et al., 1996; Corfu and Easton, 2001; this study). This
relatively short temporal gap may explain both similarities and differences in
characteristics of the granitoids.

All the plutonic intrusions have roughly the same geochemical features (Table

8.1). Trends on Harker diagrams are roughly the same and the rare-earth element patterns
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Creighton pluton Murray pluton |Street Township
Type 1 Type 2

SiO, 72.59 68.47 73.81 69.16
AlL,O4 13.12 13.99 12.43 12.27
MnO 0.04 0.07 0.04 0.10

MgO 0.58 0.93 0.24 0.50
FeO* 2.52 4.91 2.26 557

TiO, 0.31 0.66 0.29 0.54
Ca0o 1.58 2.59 0.83 218

Na,0 3.05 3.06 3.23 3.68
K;0 494 4.55 5.31 4.09
P,05 0.07 0.16 0.03 0.08
MgO# 28.5 25.7 16.6 13.6
Ba 654 1197 1396 1251
Nb 28.1 343 36.7 27.8
Rb 289.7 218.7 198.6 1211
Sr 103.0 184.8 65.6 146.3
Th 44 1 291 28.3 18.6
Y 78.3 101.8 103.6 78.6
Zr 2318 363.1 469.5 522.9
La 72.87 105.02 95.98 72.4
Ce 165.16 231.03 215.36 216.0
Eu 1.09 2.28 2.17 2.69
Gd 8.80 14.03 14.95 14.01
Yb 6.91 7.61 9.80 8.39
(La’Yb), 7.69 10.08 6.88 6.51

(Gd/Yb), 1.06 1.36 1.22 1.43

Table 8.1: Comparison of average geochemistry from Creighton pluton Type 1 (n=18)
and Type 2 (n=8), Murray pluton (n=6) (Chai and Eckstrand, 1994; this study) and Street

Township granites (n=8) (Easton, 1998).
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(LREE enrichment, negative Eu anomaly, flat HREE) are nearly identical, with only the
Creighton pluton having slightly more negative Eu anomalies (Figure 8.1a). Primitive
mantle normalized spidergrams (Sun and McDonough, 1989) also illustrate the overall
resemblance in elemental patterns with strong relative depletions in Nb, P and Ti (Figure
8.1b). However, upon closer inspection it becomes evident that there are some clear
chemical differences in the granitoids. Some elements (e.g. Ba, Ca, Rb, K) can be
mobilized during low grade metamorphism and the differences show that the intrusions
may have been affected to variable degrees but others may reflect on the geodynamic
environment of emplacement.

In a geochemical comparison of all the intrusions, the most obvious difference is
the SiO, concentration. The Creighton pluton has a much wider range in silica content
overall, as well as within each specific granitoid type. The Street Township granites
possess higher FeO* and MnO values at a given SiO; content, plot clearly as tholeiitic on
an AFM diagram (Irvine and Baragar, 1975) and have the lowest Th values. The Murray
pluton contains the lowest CaO content and is also the most potassic granitoid. The
Creighton Type 1 samples tend to be more enriched in Rb and Th while having
significantly lower Ba values compared to the other intrusives. An interesting
characteristic is the Mg# where there is a distinct boundary at a value of 20 (Figure 8.2a).
Samples from the Creighton pluton irrespective of rock type (with the exception of
MS99-3 1, the most silicic sample), plot above this cut-off line whereas the Murray pluton
and Street Township granites plot below. A comparative diagram of Zr/Th vs.

FeO+MgO+MnO+TiO; combining selected major- and trace-elements illustrates some of
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Figure 8.1: Multi-element spidergrams of the Creighton pluton, Murray pluton and Street
Township granites. Normalization values from Sun and McDonough (1989). A)
Chondrite normalized rare-earth element diagram. B) Primitive mantle normalized

diagram.

90



(@, | (b)

40

“« T T T
a
k3 3 M A“ - o 230
m, a
NG LN
A A
- JPY) Ao 40 g
s
] ] %
10k e F a E L 410
0 L . 0
60 85 70 75 80 12
S0, FeQ"MgOsMnO+TiO,
(c) ! (d)
vr v T v 10
| RRG + CEUG ]
e L]
. 09
-
3 3
'3 o8 §
s 4 z
3
- - 07
i IAG + CAG + CCG 1
. I . 06
60 65 70 75 )

SrO2

~
o

~—
~
Nas/

-
o

Syn-COLG
Pl
" g
2 ) ;g
10 2
Ardery §
Charnockites
1% 01

Ca Rb Ba K NbCe Sr P Zr Ti Y Mgs

Y+Nd

A Creighton pluton (T1)
A Creighton pluton (T2)
O Murray pluton

@ Street Township granttes

91



Figure 8.2: Comparative geochemical and tectonic discrimination diagrams showing
similarities and contrasts between Creighton pluton, Murray pluton and Street Township
granites. (a) SiO; vs. Mg#. Mg# = molar MgO/(MgO+FeO*). (b) Multi-element
diagram incorporating major and trace elements. (c) A-type granite discrimination
diagram of Whalen et al., (1987). A-type = anorogenic granite; I-type =
intracrustal/igneous derived granite; S-type = supracrustal/sedimentary derived granite.
(d) SiO; vs. FeO*/(FeO*+MgO) diagram of Maniar and Piccoli (1989). IAG = island arc
granitoids; CAG = continental arc granitoids; CCG = continental collision granitoids;
POG = post-orogenic granitoids; RRG = rift-related granitoids; CEUG = continental
epeirogenic uplift granitoids. (e) Rb vs. Y + Nb diagrams of Pearce et al., (1984). WPG
= within-plate granite; VAG = volcanic arc granite; ORG = ocean ridge granite; syn-
COLG = syn-collisional granite. (f) Multi-element profile diagram normalized to average
A-type granite (Whalen et al., 1987) showing the C-type Ardery Charnockites (Kilpatrick

and Ellis, 1992).



the key differences and provides excellent constraints on separating out the granitoid
bodies (Figure 8.2b).

No isotopic work has been conducted on the Street Township granites, but one
sample from the Murray pluton was analyzed in this study for Rb-Sr, Sm-Nd and
common Pb-feldspar to compare to the Creighton pluton. Complete isotopic data for the
Murray pluton can be found in Appendix E. The Rb-Sr system appears to have been
affected in a similar fashion to the Type | granitoids. An initial 87Sr/2Sr value of
0.694174 (t = 2477 Ma) was obtained, showing that the Rb-Sr system of the Murray
pluton is disturbed. The isotopic ratio is comparable to recalculated values that were
previously determined (Fairbairn et al., 1965; Gibbins and McNutt, 1975). The Murray
pluton is characterised by Sm/Nd = 0.19, exq (t = 2477 Ma) = -2.04, fSmNd= 042, and a
depleted mantle model age (Goldstein et al., 1984) of ca. 2.9 Ga. All signatures from the
Sm-Nd isotopic system are within the range of values obtained for the Creighton pluton.
Common Pb-feldspar values were ®*Pb/2*Pb = 35812, *’Pb/**'Pb = 15.454, and
206pp/204pp = 15.827 and are comparable to values from the Creighton Type 2 granitoids.

Tectonic discrimination diagrams for all the granitic intrusions illustrate the
general similarities between the bodies (Figure 8.2). Almost all of the samples plot in the
WPG (within-plate granite) field (Pearce et al., 1984) (Figure 8.2¢) and are classified as
A-type granites (Whalen et al., 1987) (Figure 8.2C). The only difference is on the SiO;
vs. FeO*/(FeO*+MgO) tectonic diagram (Maniar and Piccoli, 1989). The Street
Township granites plot only in the RRG + CEUG (rift-related granitoids + continental
epeirogenic uplift granitoids) field but the Creighton and Murray plutons plot in both the

RRG + CEUG and POG (post-orogenic granitoids) fields (Figure 8.2d). A multi-
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elemental diagram normalized to average A-type granite (Whalen et al., 1987) shows how
all three granitoids have similar patterns to the Ardery Charnockites of Kilpatrick and
Ellis (1992) (Figure 8.2f). The key difference is the Mg# where A-type granitoids are
commonly less than 10 and C-type range from 25 — 40 (Kilpatrick and Ellis, 1992). The
Creighton pluton samples average 27.6 whereas the Street Township granites and Murray
pluton have averages of 13.6 and 16.6, respectively.

Overall the granites are very similar in mineralogy, geochemistry and isotopic
characteristics and appear to have a genetic link despite occurring over a span of 100 m.y.
The Street Township granites and the Murray pluton show more rift/anorogenic
characteristics from being closely related with the main stages of rifting. The Creighton
pluton seems to be an anomalous period of magmatism that occurred subsequent to the

main stages of rifting and may explain some of its contrasting geochemical signatures.

Ca. 2.45 Ga magmatism

The ca. 2.45 Ga Matachewan Igneous Events represents a large-scale igneous
province whose origins still remain somewhat enigmatic. It is not the purpose here to
provide conclusive answers to its genesis but rather to deal with the relationship of the
timing of the Creighton pluton with the mafic MIE and how they are linked.

All of the magmatic rocks in the Southern Superior Province that occur between
2.50 and 2.40 Ga exhibit similar geochemical and isotopic characteristics. The rocks
include the ca. 2.48 Ga gabbro-anorthosite intrusions (Peck et al, 1995; Prevec, 1993;

Vogel et al., 1999), the Hearst-Matachewan dike swarms (Condie et al., 1987; Nelson et

94



al., 1990; Boily and Ludden, 1991), the Elliot Lake Group and Thessalon volcanics (Jolly
et al., 1992; Chai and Eckstrand, 1994; Easton, 1998; this study) and the three granitic
intrusions discussed above (Chai and Eckstrand, 1994; Easton, 1998; this study). The

me/Nd and

MIE-related magmatism outlines well-defined isotopic fields on both gng vs.
207pp2%py, vs. 2%pb/2%Ph diagrams (Figure 7.4/7.5). The narrow ranges of &g and
5™ values suggest that a relatively uniform source reservoir was involved in the
genesis of all the magmas. The geochemical signature is defined by enrichment of the
LILE (light-ion lithophile elements) and LREE (light rare-earth elements) with relative
depletions in Nb, P and Ti and flat HFSE (high field strength elements) (Figure 8.3).
This type of pattern is usually attributed to a subduction-related setting.

Although most authors agree on the enriched nature of the MIE magmatism, there
is some debate over the mechanism of this enrichment. One possible explanation is that
the subduction-like signatures are the result of the metasomatism in the mantle
lithosphere of a previously subducted slab (e.g. Boily and Ludden, 1991; Tomlinson,
1996). Another, more recent proposal by Vogel et al., (1998), is that there is a
fundamental contrast in the composition and structure of the Archean-Paleoproterozoic
mantle from the more modern mantle. The authors support this hypothesis with the
evidence that most Archean greenstone volcanic rocks and pre ~2.0 Ga dike swarms
possess these subduction-related geochemical signatures and that more modern mantle
plume or N-MORB patterns are rare to absent (Condie et al., 1987; Condie, 1994; Vogel
et al., 1998). The mantle plume related MIE is proposed to be part of a global rifting

event (Heaman, 1997) at ca. 2.45 Ga facilitating the comparison of this hypothesis with

other regions of the world (e.g. the Fennoscandian Shield).
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Figure 8.3: Primitive mantle normalized multi-element spidergram of average values for
all Paleoproterozoic MIE linked magmatism. Normalization values from Sun and
McDonough (1989). (a) Felsic plutonism including the Creighton pluton Type 2 (n=8)
and Type 1 (n=18) (this study), the Street Township granites (n=8) (Easton, 1998) and the
Murray pluton (n=6) (Chai and Eckstrand. 1994; this study). (b) Felsic volcanism
including the Copper Cliff rhyolite (n=3) (Easton, 1998; this study), the Stobie Dacite
(n=4) (Chai and Eckstrand, 1994; Easton, 1998) and the Thessalon rhyolites (n=7) (Jolly
et al., 1992; Tomlinson, 1996). (c¢) Mafic magmatism including the Hearst-Matachewan
dikes (n=33) (Condie et al., 1987; Nelson et al.. 1990; Boily and Ludden, 1991), the
Stobie Basalt (n=8) (Easton, 1998), the Thessalon Volcanics (n=9) (Jolly et al., 1992), the
East Bull Lake Intrusion (n=21) (James and Born, 1985; Prevec, 1993) and the Agnew
Lake Intrusion (n=43) (Prevec, 1993; Vogel et al., 1999).

97



The three granitic intrusions represent a minor plutonic episode related to the
mafic MIE. The Creighton and Murray plutons and the Street Township granites are
interpreted to have formed as the result of the melting of mafic-intermediate granulitic
crust that was metamorphosed by underplating basalts in a mantle plume driven rift. The
discrete differences in the three bodies are explained by the differences in timing and
incorporation of variable amounts of a heterogeneous lower crustal material. The
significantly younger ages of the Creighton pluton coupled with the kimberlite-borne
mafic granulite xenoliths suggests that MIE related magmas may have underplated the
crust for an exterded period of time and that the duration of the magmatism occurred for

over 100 m.y.
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CHAPTER 9: CONCLUSIONS

1y

2)

3)

4)

5)

6)

The rocks of the Creighton pluton are mainly granite to monzogranite in composition.
Texture can be quite variable but overall they possess a simple mineralogy of quartz-
plagioclase-potassic feldspar with biotite as the major mafic mineral and trace
hornblende and accessory minerals.

Mineralogy, geochemistry, U-Pb geochronology and tracer isotopes have identified
that the Creighton pluton is actually composed of two separate and distinct intrusions.

The 2415 + 5 Ma Type 1 granitoids compose most of the pluton and are characterized
by higher SiO; and Th, lower Ba and more radiogenic Pb isotopic ratios relative to the
Type 2 granitoids.

The 2376.3 + 2.3 Ma Type 2 granitoids compose a small circular body in the centre of
the pluton and are characterized by higher FeO*, MgO, TiO2, Y, Zr and less
radiogenic Pb isotopic ratios relative to the Type 1 granitoids.

U-Pb zircon geochronology, Rb-Sr isotopes and common Pb-feldspar isotopes show
evidence of open system behaviour due to subsequent geological events.

The Creighton pluton is interpreted to be the result of C-type (charnockite)
magmatism. It formed from the melting of granulitic crust caused by the underplating
of basaltic magmas. The granite is likely the result of the mixing of two sources at
depth: 1) a mafic granulitic material and 2) older pre-existing (granulitic?) lower

crust.
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7) Despite a temporal gap of >40 m.y., geochemistry and isotopes show that the
Creighton pluton is genetically linked to the Murray pluton and Street Township
granites and the mafic Matachewan Igneous Events (MIE).

8) Based on the age of the Creighton pluton and the kimberlite-borne mafic granulite
xenoliths near Kirkland Lake, it is interpreted that MIE related magmas ponded at the
base of the crust for over 100 m.y. This would mean that that MIE magmatism spans

from ca. 2490 — 2380 Ma, nearly 50 m.y. more than previous interpretations.
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Appendix A

Sample Locations

Sample Rock Type Longitude (N) Latitude (W)
Creighton pluton

LH98-63 Type 1 46° 25' 55" 081°10' 57"
MS98-1 Breccia 46° 26' 37" 081°11' 29"
MS98-2 Breccia 46° 26' 37" 081° 11' 29"
MS98-3 Type 1 46° 26' 48" 081° 08' 59"
MS99-13 Type 2 46°27' 17" 081° 09 47"
MS99-14 Enclave 46° 27" 17" 081° 09' 47"
MS99-15 Type 2 46°27' 21" 081° 10' 04"
MS99-16 Type 2 46°27' 17" 081°10' 57"
MS99-17 Type 1 46°25' 17" 081°10' 57"
MS99-18 Type 2 46° 26' 56" 081°11' 39"
MS99-19 Dike 46° 26' 56" 081°11' 39"
MS99-31 Type 1 46° 26' 06" 081°17' 04"
MS99-32 Type 1 46° 26' 03" 081° 16' 43"
MS99-33 Type 1 46° 25' 47" 081°15' 47"
MS99-34 Type 1 46° 26' 02" 081° 15' 04"
MS99-35 Breccia 46° 26' 01" 081° 14' 59"
MS99-36 Type 1 46°26' 11" 081° 14' 39"
MS99-37 Type 1 46° 26' 14" 081°13 21"
MS99-38 Type 1 46° 25' 51" 081°13 43"
MS99-39 Type 2 46°25' 11" 081°18' 25"
MS99-40 Type 1 46° 25' 52" 081°17' 30"
MS99-41 Type 1 46° 25' 50" 081° 18' 45"
MS99-42 Type 1 46° 28' 57" 081°04' 18"
MS99-43 Type 2 46° 27' 09" 081°11' 52"
MS99-44 Breccia 46°27' 15" 081°11' 06"
MS99-45 Type 1 46°28' 15" 081° 10" 41"
MS99-46 Type 1 46° 29' 05" 081°05' 16"
MS99-47 Type 1 46° 28' 28" 081°05' 41"
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Appendix A

Sample Locations

Sample Rock Type Longitude (N) Latitude (W)
Creighton pluton

MS99-48 Type 1 46° 28' 09" 081° 07" 24"
MS99-49 Type 1 46° 27' 24" 081° 08' 05"
MS99-50 Type 2 46° 28' 25" 081° 09' 34"
MS99-51 Type 2 46° 29' O7" 081°09' 11"
MS99-57 Enclave 46° 27' 21" 081° 10' 04"
Murray pluton

MS98-4 Granite 46° 30' 48" 081° 02' 34"
MS99-20 Granite 46° 30' 56" 081° 03' 09"
MS99-54 Granite 46° 31' 10" 081° 02' 23"
MS99-55 Granite 46° 31' 55" 081° 01' 48"
MS99-56 Granite 46° 32' 39" 081° 00" 16"
Copper Cliff rhyolite

MS99-52 Rhyolite 46° 25' 41" 081° 08' 40"
MS99-53 Rhyolite 46° 30' 08" 081° 02' 05"
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Appendix B

Creighton pluton: Major, trace and rare-earth element data

Sample LH98-63 MS98-2 MS98-3 MS99-13 MS99-14 MS99-15 MS99-16 MS99-17
Rock Type Type1 Breccia Type1 Type2 Type1 Type2 Type2 Type1

Sio, 71.49 66.68 71.24 70.02 63.26 66.77 67.99 73.13
UL 13.14 13.18 13.20 13.53 14.29 13.56 13.80 12.93
MnO 0.06 0.09 0.05 0.06 0.14 0.10 0.06 0.03
MgOo 0.77 1.85 0.77 0.89 2.19 0.93 0.75 0.50
Cao 1.87 3.58 1.94 2.13 2.93 2.66 245 1.40
Na,O 2.94 2.93 3.11 3.06 3.7 3.15 2.54 2.93
K;0 5.34 4.15 4.92 4.86 2.96 4.50 5.45 524
P05 0.09 0.1 0.09 0.09 0.15 0.23 0.13 0.06
TiO, 0.38 0.56 0.39 0.42 0.65 0.77 0.66 0.29
Fe,0, 3.41 5.87 3.40 4.10 9.50 6.92 5.22 2.90
LOI 0.40 0.77 0.35 0.65 0.74 0.56 0.68 0.76
TOTAL 99.89 99.77 99.46 99.81 100.52 100.15 99.73  100.17
Ba 672 533 598 896 312 1193 1487 625
Ga 17 17 18 20.52 28.58 22.20 20.37 19.21
Hf 7.9 6.9 7.6 8.46 7.98 8.22 8.75 6.97
Nb 25 24 26 38.49 39.85 38.41 30.49 30.40
Pb 29 51 36 3542 30.41 26.95 26.17 28.18
Rb 266 267 249 >400.00 >400.00 160.08 142.66 >400.00
Sc 6.4 12.8 6.1 9.0 13.8 14.7 10.6 7.3
Sr 78 112 79 144 .1 138.1 237.6 196.6 129.2
Ta 3.5 2.97 3.7 2.18 137 ° 198 1.66 2.89
Th 43 34 41 38.08 29.90 21.21 25.72 43.21
) 8 7.9 8 3.88 7.87 4.66 3.36 10.96
Y 71 63 72 131.13 10669 122.52 109.74 105.59
Zn 47 95 54 76 184 109 60 31
Zr 284 241 269 316.74 310.71 339.80 357.74 247.79
La 83 68 79 116.19  78.54 9049 10030 79.67
Ce 161 132 151 >250.00 184.96 221.68 24262 193.90
Pr 17 14 16 25.71 18.95 22.20 22.30 16.93
Nd 60 51 58 90.06 70.32 84.10 78.02 56.34
Sm 11 9.5 1 15.84 14.83 16.97 14.58 10.00
Eu 1.2 1.28 1.17 1.77 1.61 2.77 2.37 1.02
Gd 9.9 8.8 9.8 15.64 14.70 15.63 13.38 9.56
Tb 1.6 1.47 1.69 2.54 2.26 2.60 2.17 1.54
Dy 10.2 9.21 10.4 14.64 12.51 14.86 12.29 9.37
Ho 2.24 2.04 2.29 3.39 2.83 3.28 2.86 2.32
Er 6.6 57 6.76 9.12 7.88 8.89 7.45 6.34
m 1.18 11 1.24 1.38 1.17 1.31 1.04 1.05
Yb 7.21 6.4 7.62 9.08 7.53 8.79 7.01 7.21

Lu 1.09 1 .61 1.16 1.46 1.24 1.32 1.04 1.24
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Appendix B

Creighton pluton: Major, trace and rare-earth element data

Sample MS99-18 MS99-19 MS99-31 MS99-32 MS99-33 MS99-34 MS99-35 MS99-36
Rock Type Type 2 Dike Type1 Type1 Type1 Type1 Breccia Type 1

Sio, 69.29 74.71 79.58 71.48 71.62 71.52 65.15 71.66
AlL,O, 13.54 12.97 11.08 13.58 13.74 13.42 12.92 13.89
MnO 0.06 0.02 0.01 0.05 0.05 0.05 0.09 0.04
MgO 0.89 0.22 0.13 0.81 0.78 0.79 1.78 0.76
Cao 2.36 1.00 0.58 1.83 1.93 2.04 5.07 2.46
Na,O 2.55 2.78 2.66 2.92 3.33 3.00 3.80 4.58
K0 5.14 6.19 493 5.15 4.93 479 1.85 2.23
P,0s 0.14 0.03 0.01 0.09 0.09 0.09 0.16 0.09
TiO, 0.58 0.10 0.09 0.38 0.38 0.39 0.92 0.40
Fe,O, 4.89 1.29 1.14 3.37 3.42 3.52 7.03 3.23
LOI 0.67 0.38 0.49 0.71 0.59 0.62 1.91 0.68
TOTAL 100.11 9969 100.70 100.37 97.53 100.23 10068 100.02
Ba 1321 685 65 720 701 681 180 437
Ga 19.71 16.69 16.06 19.29 19.48 19.22 20.90 18.35
Hf 7.85 3.55 4.66 7.24 6.68 6.41 5.50 6.63
Nb 34.86 17.52 19.46 30.38 31.00 30.66 27.85 29.53
Pb 22.29 38.44 31.06 26.26 31.33 311 12.05 36.87
Rb 180.12 201.76 >400.00 >400.00 234.89 >400.00 167.00 146.56
Sc 13.0 4.2 26 8.4 8.4 8.5 19.5 8.5
Sr 175.6 98.3 18.2 123.5 154.7 138.7 260.7 2193
Ta 1.80 2.47 210 2.44 2.55 2.50 2.03 2.48
Th 20.83 33.18 55.96 38.96 40.05 42.56 27.64 40.64
U 3.78 11.93 8.43 5.46 7.84 7.85 6.67 9.38
Y 152.79  48.54 49.67 90.37 10186  98.13 67.18 84.84
Zn [ 26 22 S0 48 56 62 47
Zr 32946 116.38 14337 27449 26493 25468 209.01 247.85
La 106.56  38.70 49.40 74.92 80.03 88.51 61.93 80.21
Ce >250.00 91.42 13491 185.88 198.50 203.88 139.82 182.63
Pr 24.72 7.00 10.89 15.53 17.14 18.74 13.08 16.80
Nd 90.48 22.43 35.93 51.37 58.82 63.03 44.74 57.46
Sm 18.14 4.89 6.34 9.38 10.40 11.67 8.24 10.28
Eu 2.19 0.63 0.37 1.03 1.22 1.32 1.7 1.15
Gd 17.65 4.38 5.03 8.10 10.07 10.81 8.13 9.79
Tb 2.83 0.74 0.78 1.42 1.70 1.76 1.31 1.56
Dy 16.77 5.03 4.81 8.84 10.05 10.55 7.88 9.70
Ho 3.78 1.17 1.14 1.99 2.37 2.41 1.88 217
Er 10.63 3.37 3.04 5.80 6.96 6.62 5.58 6.69
Tm 1.43 0.55 0.52 0.96 1.08 1.14 0.85 1.04
Yb 9.37 3.93 3.75 6.76 7.47 7.62 5.52 7.14

Lu 1.32 0.68 0.60 1.02 1.20 1.23 0.88 1.07
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Appendix B

Creighton pluton: Major, trace and rare-earth element data

Sample MS99-37 MS99-38 MS99-39 MS99-40 MS99-41 MS99-42 MS99-43 MS99-44
Rock Type Type1 Type1 Type2 Type1 Type1 Type1 Type2 Breccia

Si0; 7232 7020 69.36 7637 7223 7202 7172 6169
A0, 1371 1340 1380 1276 1346 1330 1380 13.18
MnO 005 005 005 002 004 007 005 013
Mgo 075 075 095 023 064 065 08 276
Ca0 189 191 208 074 179 190 257 463
Na,0 302 291 327 268 308 313 335 271
K0 492 507 498 582 463 457 193 337
P20s 009 009 016 003 011 009 013 009
Tio, 038 037 05 015 039 040 064 063
Fe,0 334 333 410 148 323 397 483 770
LOI 063 095 065 072 104 071 074 279
TOTAL 10110 9903 99.98 101.00 10064 10081 10061 99.68
Ba 723 702 978 541 767 696 545 366
Ga 2010 1956 1936 1637 1795 2015 2158  18.68
Hi 673 747 923 471 664 946 997 424
Nb 3099 2952 2488 1718 2195 4276 2902  28.03
Pb 3731 2539 4062 3227 2892 4406 3145 3124
Rb >400.00 >400.00 181.23 >400.00 201.88 >400.00 128.73 >400.00
Sc 8.2 8.2 92 35 7.3 8.0 58 202
Sr 928 1054 1608 608 1369 840 1912 1387
Ta 307 237 18 139 222 461 172 184
Th 4001 4152 3119 7614 3819 5029 4731  26.20
u 549 715 440 607 604 694 522 736
Y 7888 7866 6158 4546  69.52 10665 4264  55.81
Zn 55 49 65 24 as 80 80 123
Zr 25165 26975 370.18 148.11 24316 32011 389.50 152.04
La 8404 8180 7936 5481 7625 8162 11245 77.10
Ce 17820 177.95 17721 127.23 17060 186.81 22919 139.17
Pr 1774 1739 17.39 1116 1634  17.94 2237 1357
Nd 5972 5710 5910 3668 5449 6126 7109  45.00
sm 1079 1049 1024 591 966 1125 945 756
Eu 113 121 152 067 136 145 194 117
Gd 994 972 897 501 910 1100 854 749
Tb 162 157 144 084 145 189 121 1.19
by 981 999 834 512 863 1206 603 742
Ho 233 233 180 123 191 28 124 171
Er 700 673 541 368 549 882 351 517
Tm 113 108 080 060 083 148 055 081
Yb 811 802 547 443 597 1042 344 543

Lu 1.24 1.16 0.83 0.74 0.99 1.67 0.51 0.84
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Appendix B

Creighton pluton: Major, trace and rare-earth element data

Sample MS99-45 MS99-46 MS99-47 MS99-48 MS99-49 MS99-50 MS99-51 MS99-57

Rock Type Type1 Typet1 Type1 Type1l Type1 Type2 Type2 Enclave
SiO, 75.11 73.22 72.70 75.18 71.91 63.09 65.74 65.69
Al,O, 12.59 13.93 12.79 13.28 13.13 14.21 14.88 14.08
MnO 0.02 0.04 0.05 0.02 0.04 0.12 0.07 0.12
MgO 0.30 0.61 0.56 0.27 0.51 1.23 0.85 1.91
Cao 0.84 1.59 1.58 0.92 1.40 3.56 2.74 2.80
Na,O 2.88 3.01 2.85 3.07 3.05 3.20 3.22 4.21
K0 5.66 531 5.01 5.54 5.35 4.09 5.19 2.37
P,05 0.04 0.04 0.07 0.02 0.07 0.26 0.17 0.15
TiO, 0.18 0.22 0.31 0.1 0.34 0.92 0.64 061
Fe, 04 1.72 2.40 3.03 1.40 3.03 8.38 5.41 7.85
LOI 0.79 0.62 0.63 0.65 0.67 0.71 0.87 0.77
TOTAL 100.13 100.99 99.58 100.46 99.50 99.77 99.78  100.56
Ba 562 762 639 613 689 1377 1777 238
Ga 17.07 17.80 18.69 17.74 18.22 23.88 20.69 25.18
Hf 4.77 6.08 6.80 4.44 6.99 11.06 9.26 7.50
Nb 16.37 30.65 30.35 36.58 26.97 49.47 29.00 39.34
Pb 25.53 40.37 42.52 26.18 34.26 23.37 25.51 32.94
Rb 209.73 >400.00 247.03 24574 270.04 156.96 >400.00 >400.00
Sc 3.7 6.1 6.5 2.9 6.7 19.0 13.0 12.6
Sr 70.1 84.9 99.0 75.5 104.0 163.5 209.1 132.2
Ta 2.29 3.13 3.65 1.91 2.87 3.24 1.52 1.67
Th 41.10 40.69 43.43 32.48 44,10 28.20 20.35 30.03
U 6.06 4.64 7.33 6.42 6.61 293 2.15 3.05
Y 57.20 84.46 87.43 48.44 80.08 136.8¢ 5723 111.81
Zn 27 46 58 30 41 90 78 146
2r 158.62 200.39 23520 130.73 228.36 43999 361.16 300.52
La 58.91 80.98 72.03 29.94 76.51 12668 108.16 8191
Ce 13244 17754 158.38 72.01 179.96 >250.00 227.54 187.62
Pr 13.10 16.22 15.16 6.50 16.38 31.22 22.60 18.67
Nd 44.55 53.09 50.61 2417 56.57 11392 76.95 69.23
Sm 8.53 9.67 9.27 4.91 10.03 21.98 12.02 14.34
Eu 0.99 1.15 1.35 0.65 1.19 2.81 2.86 1.47
Gd 8.06 8.90 9.45 4.66 9.41 21.18 11.25 13.30
Tb 1.23 1.49 1.52 0.88 1.54 3.47 1.61 2.21
Dy 7.72 9.37 9.44 5.85 9.59 20.61 9.02 13.10
Ho 1.69 2.19 2.20 1.43 2.24 4.55 1.92 3.00
Er 5.08 6.60 7.09 4.83 6.86 13.08 543 8.27
Tm 0.72 1.09 1.12 0.78 1.1 1.95 0.75 1.29
Yb 460 7.69 8.13 5.00 7.31 12.88 482 7.80
Lu 0.68 1.16 1.31 0.75 1.18 1.89 0.79 1.24
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Appendix B

Murray pluton & Copper Cliff rhyolite: Major, trace and rare-earth element data

Sample  MS98-4 MS99-20 MS99-54 MS99-55 MS99-56 MS99-52 MS99-53
RockType MG MG MG MG MG  CCR __ CCR
Wi(%)
sio, 7532 7181 7436 7485 7511 8304 7554
AL,O, 11.88 1295 1221 1230 1230 840 13380
MnO 004 005 003 003 003 002 002
MgO 015 026 023 021 024 013 020
Ca0 078 133 055 057 083 175 152
Na,0 326 331 325 321 328 141 254
K,0 545 517 566 536 525 326 443
P,0s 002 004 002 002 002 001 001
Tio, 025 039 023 023 024 008 008
Fe,0; 252 382 235 233 246 124 138
Lol 023 048 051 061 061 054 092
TOTAL 9990 9961 99.40 9972 10037 99.88  100.44
ppm
Ba 1264 1934 1088 1091 1096 243 82
Ga 19 2085 1977 2003 2021 2295 4355
Hf 142 1292 1102 931 920 353 596
Nb 33 3207 3517 3890 4378  33.99  59.80
Pb 24 2423 2033 2405 1315 21.29 63388
Rb 163 13329 >400.00 18144 17375 116.38 >400.00
sc 2.8 5.5 4.2 3.9 4.4 25 26
sr 46 803 500 458 912 838 533
Ta 34 201 251 246 268 298 501
Th 26 2491 2597 2586 29.31 2091 4247
u 43 515 457 487 7.6 939  14.44
Y 101 9365 8445 87.73 15098 86.33  137.36
Zn 75 83 94 o7 37 19 73
Zr §22 47250 367.63 33365 32114 86.50  123.30
La 114 10667 7282 6510 10327 3792 27.53
Ce 218 >250.00 197.57 178.61 >250.00 90.48  74.46
Pr 25 2548 17.07 1539 2389 1111 968
Nd 95 9357 60.59 57.47 8762 4166 3897
sm 18 1660 1196 1135 1669 1037  11.97
Eu 2 300 145 141 193 061 045
Gd 168 1711 1035 1048 1665 11.26  15.24
b 278 262 178 18 262 191 299
Dy 165 1578 1102 1178 1668 1231  19.90
Ho 37 348 253 271 391 296 478
Er 9.89 1032 704 747 1035 789 1329
Tm 171 154 120 120 161 131 211
Yb 1020 993 854 799 1095 9.02 1462
Lu 152 154 123 132 154 134 217
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Appendix C

Mineral Separation Chart

Sample - unweathered
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Appendix D

Analytical Techniques: U-Pb Isotope Geochemistry

All U-Pb isotopic work was completed at the Radiogenic Isotope Facility in the
Department of Earth and Atmospheric Sciences at the University of Alberta.

Mostly unweathered samples were crushed using a Jaw crusher then powdered with a
Bico disk mill. Heavy minerals were separated out using a Wilfley table and then sieved
to <70um. Material was then further separated using a vertical Frantz isodynamic
magnetic separator and Methylene iodide (MI). The “sinks” were passed through another
Frantz isodynamic magnetic separator at a higher current and side tilt. Zircons were
selected for analysis by handpicking under a microscope. Some fractions were subjected
to air abrasion (Krogh, 1982) in order to remove cracked and irregular surfaces that may
cause discordance.

Grains were cleaned in two steps. The first was a warm HNO; bath and then rinsed in
millipore water and placed in an ultrasonic bath for 30 seconds. The zircon grains were
then rinsed twice with both millipore water and acetone. The grains were transferred to a
tin foil “boat”, carefully weighed and placed in a pre-cleaned teflon bomb. Bombs were
rinsed prior to addition of the acid cleaning. Step 1: 15 drops of 48% HF and 2 drops of
7N HNOj3; Step 2: 30 drops of 6N HCL; Step 3: 15 drops of 48% HF and 2 drops of 7N
HNO;; and Step 4: 15 drops of 48% HF and 2 drops of 7N HNOs. After each step the
bombs were sealed and placed in an oven at 210° for two days.

Each bomb with zircon grains had 30 drops 48% HF and 2 drops HNO; added to it along
with the appropriate quantity of mixed 205py, . 25 spike. Spike was calculated using the
formula: sample weight x Pb (ppm) x 207pp2%ph = Pb(ng)/2 = spike (ng). Bombs were
then sealed and loaded into a metal carousel and placed in the oven at 210° for 5 days to
dissolve the grains. The sample solution was then evaporated on a hot plate. 8 drops of
3.IN HCI was then added to convert the residue to a chloride solute with the bombs then
being sealed and heated in the oven at 210° for 24 hours.

Micro columns containing an anion exchange resin were used to chemically separate Pb
and U. Note: some zircon fractions analyzed were small enough not to warrant column
chemistry. Columns were cleaned three times each by alternating 6.2N HCI and millipore
water. Columns were equilibrated using 3.1N HCI with the sample being loaded in the
same solution. Columns were additionally rinsed with more 3.1N HCL to remove any Zr
and Hf from the columns. Pb was eluted using 6.2N HCIl and U with millipore water,
both into a pre-cleaned PMP beaker. 2 drops of phosphoric acid was added to the
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separates prior to drying. Separates were then loaded onto a rhenium filament with a
H3;PO,4/SiGel mixture (phosphoric acid and silica gel).

Isotopic ratios of U and Pb were analyzed on a VG 354 or Sector 54 thermal ionization
mass spectrometer using a single collector Daly photomultiplier detector. All Pb data
obtained was corrected by a factor of 0.13%/amu (VG 354) or 0.056%/amu (Sector 54).
All U data obtained was corrected by a factor of 0.15%/amu (VG 3540 or 0.024%/amu
(Sector 54). Isotopic ratios were corrected for mass discrimination based on repeated
analyses of the NIST SRM981 Pb and U500 standards. Mass discrimination corrections
for the VG 354 were 0.09%/amu (Pb) and 0.16%/amu (U). Mass discrimination
corrections for the Sector 54 were 0.15%/amu (Pb) and 0.14%/amu (U). Laboratory
procedural blanks were measured by repeated analyses at 2 pg + 50% for Pb and 0.5 pg +
20 for U. Decay constants used were 1(235U) =1.55125x 10" a! and k(mU) =0.8485
x 10"° 2! and an atomic ratio of 2*U/?°U = 137.88 as recommended by Steiger and
Jager (1977) (Jaffrey et al., 1971; Cowan and Adler, 1976). Data were calculated using
an in-house software program and linear regression age calculations were performed
using ISOPLOT/Ex (Ludwig, 1998)
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Appendix E

Analytical Techniques: Rb-Sr, Sm-Nd and common Pb-feldspar Isotope Geochemistry

All Rb-Sr, Sm-Nd and common Pb-feldspar isotopic dilution and analysis were
completed at the Radiogenic Isotope Facility in the Department of Earth and Atmospheric
Sciences at the University of Alberta.

Rb-Sr and Sm-Nd

Representative whole-rock samples (1-2 kg) were collected in the field for analysis. All
weathered faces were removed and samples were crushed using a Jaw crusher. The rock
chips were then reduced to ~35 microns with a tungsten-carbide ring mill. Sample
powders were weighed into pre-cleaned PFA teflon vials and then spiked by weighed
tracer solutions of ¥'Sr-*Rb and '"°Nd-'**Sm. The samples were then dissolved by
adding vapour distilled 24N HF and 16N HNO; solution at a sample/spike ratio of 5:2.
The vials were sealed and heated on the hot plate at 150°C for one week. After
evaporating to dryness, 10 ml of 6N HCI was added to the fluoride residue to convert the
samples to chlorides. Samples were then heated on the hot plate at 100°C for 24 hours.
The teflon vials were removed, evaporated to dryness and then dissolved in a loading
solution of 3 ml of 0.75N HCI prior to column chemistry. Samples were centrifuged at
5000 rpm for 10 minutes prior to loading in columns.

Rb, Sr and REE were separated using Bio-Rad AG50W-X8 cation-exchange resin (200-
400 mesh, H+ form) in Savillex custom Teflon PFA columns (6.4 mm, IB stem, 30 ml
reservoir, 11.5 cm 6N HCL equilibrated resin). Separation procedure took place as
follows: 6 x 0.50 ml of 0.75 HCI, 3 x 1 ml of 1.5N HCI, 11 ml of 1.5N HCI, collect 5 ml
of 1.5N HCI (Rb collected), 4 ml of 1.5N HCI, 5 ml of 2.5N HCI, collect 6 ml of 2.5N
HCI (Sr collected), 13 ml of 2N HCL, 2.5 ml of 6N HCI and collect 4 ml of 6N HCI
(REE collected).

The Rb and Sr separates were re-dissolved in approximately 1.5 ml of a mixed oxalic and
HCI solution and passed through a second set of the same columns to further purify the
samples. Both were loaded with 0.25 m! oxalic-HC] mix and used elution solution of
1.5N HCI and 2.5N HCI for Rb and Sr, respectively. In both cases, 5 ml of the elution
solution were collected. Sm and Nd were further separated using columns containing
BioBeads SX-8 Di-(2-ethylhexyl phospate) coasted 200-400 mesh resin. Samples were
loaded with 0.25 ml of 0.025N HCI. Separation procedure took place as follows: 3 x 0.25
ml of 0.025N HC, 2 x 0.5 ml of 0.025N HCl, 4 — 4.5 ml of 0.25N HCI, collect 3 ml of
0.25N HCI (Nd collected), 0 — 1.0 ml of 0.25N HCI, 1.0 ml of 0.60N HCl and collect 1.0
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— 1.5 ml 0.60N HC! (Sm collected). Column blanks are <400 pg for Nd, Sm and Sr and
<100 pg for Rb.

Samples were converted to nitrates before loading and analysis. Rb and Sr were loaded
onto single rhenium filament beads using a millipore-phosphoric acid and Ta gel mix.
Sm and Nd were loaded onto double rhenium filament beads using nitric acid. Sm and
Rb were measured on a Micromass 30 thermal ionization mass spectrometer whereas Sr
and Nd were measured on a VG 354 thermal ionization mass spectrometer. Measured
ratios were normalized to °Sr/*Sr = 0.1194 and '“*Nd/'*Nd = 0.7219. Repeated
analysis of standards produced results of ¥St/**Sr = 0.7102716 + 7 for the NBS 987 Sr
standard (n = 47). The Shin Etsu Nd standard (equivalent to La Jolla) produced repeated
analyses of "*Nd/'*Nd = 0.512097 + 4 (n = 39).

Common Pb-feldspar

Whole rock samples were crushed using the Jaw crusher and powdered with the Bico disc
mill before being separated on the Wilfley table. A “lights™ separate was collected then
sieved to collect grains <100um. The grains were then washed in an acetone ultrasonic
bath and passed through a tiited Frantz isodynamic magnetic separator. The floats were
then collected from a TBE-acetone (p = 2.605) heavy liquid mixture. The grains were
then checked for purity using XRD (x-ray diffraction) and under the microscope.
Approximately 300 mg of pure potassium feldspar was then measured out for the
leaching procedure.

The mineral grains were subjected to a series of heated leaches over successive nights.
The first four are from Cumming and Krstic (1987): 2 ml of 2N HCI, 6 ml of 6N HCl, 3
ml of 16N HNO; and 3 ml of 16N HNO; + 1 drop of 48% HF. Leach solution from
leaches 1 and 4 were saved for isotopic chemistry and analyses. Leach #5 (Housh and
Bowring, 1991) was 3 ml of 5% HF and 8N HNO; in an 8:1 mix. This solution was then
placed on a hotplate for 20 minutes and repeated 4 additional times. The leached residue
was then dissolved in 4 — 5 ml of 24N HF and a few drops of 16N HNO; by heating
overnight on the hotplate. Residues were dried then had 1 — 3 ml of 6N HCIl added and
heated on the hotplate for 12 hours. The residues were again evaporated and then
dissolved in 0.5N HBr solution.

Pb was extracted in Bio-Rad AG1-X8 anion resin (200 — 400 mesh, CI" form) columns.
Column chemistry is modified after Lugmair and Galer (1992) with the procedure as
follows: 0.25 ml of 0.5N HBr, 0.5 ml of 0.5N HBr, 0.5 ml of 0.5N HBr, 0.75 mi of a
0.2N HBr — 0.5N HNO; mix, 0.25 ml of a 0.03N HBr — 0.5N HNO; mix and collect 1 ml
of the previous HBr-HNO; mix (collect Pb).

Total blank for the entire chemical procedure was <500 pg, thus no blank corrections

were applied. The samples were on a single rhenium filament bead with a phosphoric
acid-silica gel mix. Isotopic determinations were made by a VG 354 thermal ionization
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mass spectrometer in single collector mode. Measured Pb isotopic ratios were corrected
for mass discrimination based on values obtained for NBS (n = 4) and normalized to the
value reported by Todt et al., (1996).
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Appendix G

MAFIC DIKE
Dr. Larry M Heaman’s Theme Song
(With apologies to 3 Doors Down’s Kryptonite)

I took my hammer to the dike to find emplacement time
I left my errorchrons, open systems way behind

I watched my grad students and trained precise lab crew
U-Pb, there’s nothing I can’t do, yeah

[ washed Teflon bombs, ‘braded grains and picked a few
After all I knew lead had to be something to do with U

I really don’t mind some lead loss now and then

As long as it’s concordant at the end

If I'm discordant then will you still call me Big Heaman
If I’ve got common lead, will you get down to picograms
I’1l regress two-four-five with zircon, baddeleyite

Mafic Dike

You rift terranes, you break the peaks but still I think plume mantle deep
You took for granted the date from Hearst-Matachewan

You picked bad rocks, outcrops misread if not for me, Archean instead

I joined the remnants up with the ages that | found

If I'm discordant then will you still call me Big Heaman
If I've got common lead, will you get down to picograms
I’ll regress two-four-five with zircon, baddeleyite

Mafic Dike

If ’'m discordant then will you still call me Big Heaman
If I’ve got common lead, will you get down to picograms
I’ll regress two-four-five with zircon, baddeleyite

Mafic Dike

Yeah!

Concordant fractions and you can call me Big Heaman
My errors are low and lead blanks under picogram

My world is two-four-five with zircon, baddeleyite
Mafic Dike



