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ABSTRACT

Chess endgame databases, while of important theoretical interest, have yet to
make a significant impact in tournament chess. In the game of checkers, how-
ever, endgame databases have played a pivotal role in the success of our World
Championship challenger program Chinook. Consequently, we are interested
in building databases consisting of hundreds of billions of positions. Since
database positions arise frequently in Chinook’s search trees, the databases
must be accessible in real-time, unlike in chess. This paper discusses tech-
niques for building large endgame databases using a network of workstations,
and how this data can be organized for use in a real-time search. Although
checkers is used to illustrate many of the ideas, the techniques and tools
developed are also applicable to chess.

1. Introduction

In computer chess, the impact of precomputed endgame databases on tournament
play has been relatively small. There are primarily three reasons for this. First, the
variety of chess pieces result in different classes of endgames, many of which are rarely
seen in actual play. Second, the outcome of most chess games is usually decided well
before the endgame, meaning that even if databases were available, they would rarely
play a role in determining a game’s outcome. Consequently, few chess programs use
non-trivial databases as part of their real-time search. Third, the substantial computa-
tional resources required to build endgame databases in the conventional way [12, 13]
makes it difficult for most chess programmers to build their own. Fortunately, however,
the databases are being made available to the public [6, 14, 15]. For chess at least, the
main benefit of database construction seems to be educational, revealing many new
endgame results to the players (see [5] for an interesting example) without, as yet, reveal-
ing their secrets ([9] represents one attempt).

Our goal is to build a checkers endgame database of 150 billion positions (all the
1-7 piece endgames, and the 4×4 subset of the 8-piece endgames). This paper discusses
techniques for building large endgame databases using a network of workstations, and
how this data can be organized for use in a real-time search.
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This work has been applied to the domain of computer checkers (8 × 8 draughts),
which is an interesting point of comparison for computer chess. In checkers, since there
are only checker and king pieces, all games play into a limited set of endgame classes.
Also, the lower branching factor of checkers trees and the forced captures of the game
result in deeper search trees than in chess. Although the root of the tree may be far from
the endgame, the leaf nodes already may be in the databases. Consequently, the utility of
the endgame databases is higher in checkers than chess.

Computing the checkers endgame databases with the resources available to us has
been a challenge. The problem requires excessive memory, time, I/O and mass storage to
solve using either the sequential version of Thompson’s algorithm [4, 13] or Stiller’s
vector-processing method [12]. Of course, as computers get more powerful, many of
these problems will be overcome, but we want the databases now! Other approaches to
solving the problem, such as proving some properties of the search space (an interesting
example can be found in [2]), have not been successful.

The memory problem is addressed by decomposing the 150 billion positions we
want to solve into small pieces (10 million positions) and solving them individually. The
time problem is solved using a distributed network of heterogeneous workstations. The
I/O problem is (partially) solved by dividing the computation into distinct phases or
passes to eliminate redundant I/O. The mass storage problem is solved by an
application-dependent compression algorithm that also allows real-time access. Interest-
ingly, the problem has been sufficiently decomposed that a single modern workstation
can be used to solve the entire problem. The same techniques can be applied to building
chess endgames databases.

More generally, the construction of endgame databases may have a greater impact
than just in computer game playing. Many problems in mathematics and the sciences
require finding the optimal solution in a large combinatorial search space. In essence, the
construction of an endgame database is a backwards search from the solution. When
combined with a forward search tree, as with computer games, the optimal solution may
be found in less time. Therefore, some types of optimization problems can benefit from
the approach taken in this paper.

The success of the Chinook checkers program (8 × 8 draughts) is largely due to its
endgame databases [10]. The project began in June 1989 with the short-term goal of
developing a program capable of defeating the human world champion and the long-term
goal of solving the game. Chinook has achieved significant successes and also has had
some setbacks. It was the first program to earn the right to play a reigning world cham-
pion for the title by placing second to then World Champion, Dr. Marion Tinsley, at the
U.S. National Open in 1990, the biennial event for the determining the next challenger.
At the 1992 Silicon Graphics World Draughts Championship in London, Dr. Tinsley
defeated Chinook with 4 wins, 2 losses and 33 draws [11]. Previous to that match, Dr.
Tinsley had lost only 7 games in over 40 years of competitive play. The techniques
described in this paper have allowed us to significantly increase the number of positions
in the endgame databases available to Chinook for the next Tinsley-Chinook match, ten-
tatively scheduled for 1994.
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2. Retrograde Analysis

Retrograde analysis can be used to help solve a large combinatorial search space by
building the optimal solution in a bottom-up manner (searching from the solution back-
wards towards the problem statement). With an appropriate top-down search algorithm
(searching from the problem statement forwards towards a solution), a better approximate
solution, or possibly the optimal solution, can be obtained. For our problem domain,
solving the game of checkers, the search space consists of 5 × 1020 positions.

The construction of a checkers endgame database is simply the computation of a
transitive closure. Each position is a member of either the set of wins, losses or draws.
Once computed, the classification of a database entry represents perfect knowledge as to
the theoretical value of that position. Since a checkers database is a lookup table test for
set membership, the simple techniques discussed in this paper can be applied to other
problem domains.

Initially, all positions are given the value of unknown. Some of the positions can
be classified as either a win or a loss according the the rules of the game. For exam-
ple, a player without any pieces on the board (i.e. without material) or without a legal
move is a loss in checkers. The set membership of the other positions depends on the
membership of positions reachable by the legal moves of the game. Given a sufficient
amount of information, the classification of a position can be changed from unknown to
either a win, loss or draw. Specifically, if the side to play has a legal move that leads to a
position that has already been classified as a win for itself, then the current position is
also a win. If the side to play only has legal moves leading to positions that are wins for
the opponent, then its current position is a loss for itself. The transitive closure is com-
plete when there is insufficient information to change the value of any other positions.
At that point, all of the unknown positions are declared to be draws since neither player
can force a win.

In theory, if all of the leaf nodes of the minimax game tree are from the endgame
databases, then there is no error in the evaluation of the root position. Consequently, it
may be possible to compute the game theoretic value of the game of checkers using the
perfect knowledge of the endgame databases. In practice, such as playing a game under
real-time constraints, limitations on time and space may not allow the search to extend all
of the leaf nodes into the endgame databases. For each leaf node not in the databases, a
heuristic evaluation function is used to assess the position. Each application of the
evaluation function introduces the possibility of error. A combination of leaf nodes from
the databases and from the evaluation function is the most common situation. As the per-
cent of leaf nodes taken from the databases increases, the accuracy of the search result
improves.

The goal of our project is to solve 150 billion checkers positions. A naive approach
to tackling the problem would exceed the computational, storage and input-output (I/O)
facilities of most current day computers. Of course, computers continue to increase in
their capabilities, but solving the problem with the current technology requires a more
refined approach. Furthermore, although there may exist computers capable of dealing
with the size of the endgame database problem, they are neither affordable or available to
this team of researchers. The design tradeoffs and issues relating to solving large prob-
lems with limited resources is both challenging and important. There will always be
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problems that are technologically feasible, but too large to solve with the resources avail-
able. In fact, a simple implementation of retrograde analysis would be CPU-bound,
memory-bound and I/O-bound, the classic triad of a large computational problem. In the
following sections, each of these bottlenecks is addressed.

3. Basic Algorithm

All endgame databases are built according to the number of pieces on the board.
Constructing an N-piece endgame database requires enumerating all positions with N
pieces and computing whether each position is a win, loss, or draw. All database entries
describe positions with Black to move. White to move results are determined by revers-
ing the board, changing the colors of the pieces, and retrieving the appropriate Black to
move result.

An N-piece database is computed using an iterative algorithm, building on the
results of the previously computed 1, 2, ..., (N-1)-piece databases, as per a backwards
search. Initially all N-piece positions are viewed as having a value of UNKNOWN. Each
iteration scans through a subset of the positions to determine whether there is enough
information to change a position’s value to WIN, LOSS or DRAW. This is idea behind
Thompson’s original algorithm [13].

The execution strategy of the first iterative pass depends on an important rule of
checkers: a capture must be played when one or more capture moves are present among
the available legal moves. As a result, the first pass determines the value of all capture
positions and defers the rest for later passes (analogous to resolving all mate positions in
chess). Since a capture leads to a position with N-1 or fewer pieces, each N-piece cap-
ture position is resolved by retrieving the values from the previously computed databases
for N-1 or fewer pieces. The capture position is then assigned the highest value
retrieved from the previously computed positions. These values are ranked in descending
order as win, draw and loss (hence 2 bits of storage per position †). Approximately half
of the positions in a database are capture positions. In Appendix A, the pseudo-code for
the DoCaptures() routine is given.

The second and subsequent iterations through the database resolve only non-capture
positions. For each position considered, all the legal moves are generated. Each move is
executed and the resulting position’s value is retrieved from the current N-piece data-
base. The unknown position is assigned a value only when one of the legal moves results
in a win or all legal moves have been resolved. The program iterates until no more N-
piece positions can be resolved (DoNonCaptures() in Appendix A). At that point, all
remaining unknown positions are set to draws.

This algorithm is summarized in Figure 1. This method resolves positions in order
of least to most moves required to play into a lesser database. Thus, the algorithm can be
applied to problems such as finding all wins in 1 move, then 2, then 3, and so on.

There are, in fact, two opposite approaches to resolving unknown positions. The
"forward" approach described above takes each unresolved position, generates its succes-
sor positions, and from these tries to determine the value of the parent. The "backward"
approach takes a resolved position, uses a reverse move generator to find its predecessor
_ ______________
Some implementations use 1 bit per position. The justification for 2 bits is given in Section 3.3.
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1. Set all positions to UNKNOWN.
2. Iterate and resolve all capture positions.
3. Iterate and resolve non-capture positions.
4. Go to step 3 if any non-capture position was resolved.
5. Set all remaining UNKNOWNs to DRAWs.

Figure 1: Basic Iterative Algorithm.

positions, and checks if there is now enough information to resolve any of them. The
best choice depends on the ratio of unresolved positions to resolved positions in an itera-
tion [3]. For our application, a combination of approaches proved to be superior. Use of
the forward approach is critical to achieving the massive parallelism we desire (see Sec-
tion 5).

While, in theory, this enumeration technique should be sufficient to solve any N-
piece database, the real problems begin when N becomes greater than 4 because of the
exponential growth of the number of positions to resolve. Space and time become criti-
cal considerations for any solution enhancement. Table 1 lists the number of positions
that must be solved to construct all databases with 8 or fewer pieces.

_ ___________________________________
Number of pieces Number of positions_ ____________________________________ ___________________________________

1 120
2 6,972
3 261,224
4 7,092,774
5 148,688,232
6 2,503,611,964
7 34,779,531,480
8 406,309,208,481_ ___________________________________ 




































Table 1: Endgame Database Sizes.

If the approach previously described is used to compute the entire 8-piece database
of 406 billion positions, over 100 gigabytes of memory at 2 bits per position is required.
The hundreds of sequential iterations required to resolve all the 8-piece positions would
require many decades of CPU time on a current-day workstation.

3.1. Solving the Space Problem

Each position in a database maps to a unique number. There are no gaps in the
indexing function. From an index, we can construct the corresponding position. Appen-
dix B describes the indexing and deindexing algorithm used. They can easily be adopted
for chess endgames.

The space problem is handled by breaking the problem into subdatabases according
to the material, the number of checkers and kings, in each position. The first subdivision
is based on the number of black and white pieces on the board. For example, the 8-piece
database can be broken into several subsets, such as 6b versus 2w (6 black pieces
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against 2 white) or 4b versus 4w. Table 2 shows the number of database positions
within each subset. The entries where one side has 0 pieces, a loss by the rules of the
game, are not included.

_ ________________________________________________________________________________________________________

Black White Pieces

Pieces _________________________________________________________________________________________________

1 2 3 4 5 6 7
_ _________________________________________________________________________________________________________ ________________________________________________________________________________________________________

1 23,488 98,016 1,773,192 23,204,660 233,999,928 1,891,451,952 12,586,073,760

2 98,016 2,662,932 46,520,744 587,139,846 5,702,475,480 44,328,555,960

3 1,773,192 46,520,744 783,806,128 9,527,629,380 88,991,228,360

4 23,204,660 587,139,846 9,527,629,380 111,378,534,401

5 233,999,928 5,702,475,480 88,991,228,360

6 1,891,451,952 44,328,555,960

7 12,586,073,760
_ ________________________________________________________________________________________________________ 



























































Table 2: Subdividing the Database.

The second subdivision is based on the number of kings and checkers. Since check-
ers can promote into kings, but not visa-versa, positions in a database with k kings can
never play into positions with the same number of pieces and less than k kings. Hence,
these subsets can be further broken down by computing king-only positions first and
working backwards towards checker-only positions.

This subdivision can be represented by a set of graphs. Each graph contains all
positions composed of b black pieces and w white pieces. The nodes represent subdata-
bases holding positions with similar numbers of kings and checkers. Figure 2 shows the
subdivision of the 4b versus 4w positions. Each node is named using four digits to
represent the number of black kings, white kings, black checkers, and white checkers in
the subdatabase. The first subdatabase computed is 4400 (4 kings versus 4 kings) and
the last is 0044 (4 checkers versus 4 checkers).

Because lower node positions lead to upper node positions, all database computa-
tions begin at the top of each graph and fan downward. Since every position must be
resolved for both color’s turn to play, each database computation requires two nodes: the
active (or original) database and its mirror. The mirror is defined as the node (or graph)
where the colors are reversed. For example, the mirror for node 4112 in the 5b3w
graph is node 1421 in the 3b5w graph. While most nodes have mirrors in a separate
graph, a few nodes have their mirror in the same graph.

Although this database partitioning into graphs helps reduce space difficulties,
many of the nodes are still too large to calculate on most computers. For example, node
3212 in the 4b4w graph contains 11,799,496,800 positions. When combined with its
mirror, the memory requirement to compute the entire subdatabase is at least 5.9 giga-
bytes.

The key to solving nodes this large is to partition the subdatabase into yet smaller
parts. The approach used is to slice the positions up based on the rank of the leading
(most advanced) checker for each side. The ranks are numbered 0 to 7. A position with
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4400

3410 4301

2420 3311 4202

1430 2321 3212 4103

0440 1331 2222 3113 4004

0341 1232 2123 3014

0242 1133 2024

0143 1034

0044

Figure 2: 4b4w Graph of the 8-Piece Database (111.4 billion positions).

the leading checker on rank i stays in the same slice until a checker moves to rank i + 1.
Since each side with one or more checkers can have its leading checker on one of 7 possi-
ble ranks (a checker on the 7th rank is promoted to a king), the problem can be subdi-
vided into 49 slices. If only one side has a checker, then it can be subdivided into 7
slices. Because of the multi-directional mobility of kings, this slicing technique cannot
apply to all-king endgames. That node of the graph (i.e. 4400) must be solved in its
entirety at one time.

Each slice is named according to the position of the most advanced black and white
checker. For example, 3212.53 refers to the slice in node 3212 where the leading
black and white checkers are on rank 5 and 3 respectively.

There are well-defined dependencies between the slices. Computation of each
sliced-node must start from their most advanced positions. This requires the leading
checkers to start on the 6th rank. Each slice plays into a preceding one.

Table 3 displays the number of positions in the slices belonging to node 3212 in
the 4b4w tree. The largest slice is 3212.06 with 484,520,400 positions. At least 243
megabytes of memory is required to compute this slice and its mirror. This is a definite
improvement when compared to the 5.9 gigabytes required by the naive approach! Of
course, this technique could be used to further subdivide the problem by considering the
ranks of the two leading checkers. This has not been done.

The largest slice in the 4b4w graph is 2222.66 with 1,142,505,000 positions.
This slice requires approximately 286 megabytes of memory to compute since its mirror
is itself. The next largest are 2222.65 and 2222.56, each with 957,738,600 posi-
tions. Since these are mirrors of each other, at least 479 megabytes of memory is
required. Thus, from 406 billion positions requiring over 100 gigabytes, these two subdi-
visions have reduced the minimum memory requirements to under 500 megabytes.

These memory requirements are still too large for most conventional workstations.
Since the algorithm iteratively examines all positions in increasing sequential order, each
position requires only its successors to be present in memory. Therefore, to further
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_ ______________________________________________________________________________________
Black White Checker Rank

Checker _ _____________________________________________________________________________

Rank 6 5 4 3 2 1 0_ _______________________________________________________________________________________ ______________________________________________________________________________________
6 465,519,600 389,516,400 313,513,200 237,510,000 161,506,800 71,253,000 28,501,200

5 465,519,600 389,516,400 313,513,200 237,510,000 128,255,400 104,504,400 28,501,200

4 465,519,600 389,516,400 313,513,200 185,257,800 180,507,600 104,504,400 28,501,200

3 465,519,600 389,516,400 242,260,200 256,510,800 180,507,600 104,504,400 28,501,200

2 465,519,600 299,262,600 332,514,000 256,510,800 180,507,600 104,504,400 28,501,200

1 356,265,000 408,517,200 332,514,000 256,510,800 180,507,600 104,504,400 28,501,200

0 484,520,400 408,517,200 332,514,000 256,510,800 180,507,600 104,504,400 28,501,200_ ______________________________________________________________________________________ 















































Table 3: Node 3212 Slices.

reduce memory overhead, a paging algorithm is used to handle the loading and unloading
of parts of database slices. Each slice is partitioned into 8K-size pages with each page
holding 32,768 positions. Figure 3 displays the format of each page table entry. The
high order 17 bits represent the page number of the position. This is obtained by simply
shifting the position index 15 bits to the right. The low order 15 bits represent the page
offset.

0 15 31

page number page offset

Figure 3: Page Table Format.

The page management algorithm consists of a slightly modified least recently used
algorithm. Normally the least recently used page is flushed whenever a new page is
required. An exception to this occurs when the position index increases to a new page
boundary. In this case, due to the sequential processing of each slice and the fact that the
page containing the previous position index will likely not be accessed again during the
current iteration, this page is marked the "least recently used" page.

The number of page buffers present depends upon the amount of memory present in
the host processor. Normally between 250 to 1000 buffers are used (2-8 megabytes).

Breaking a database slice into a set of pages has several advantages. Any 7 or 8 (or
even greater) piece slice may be easily handled because the amount of data in memory is
constant. This also facilitates the checkpointing of computed work. At periodic inter-
vals, all "dirty" pages (those which contain one or more recently resolved positions) are
flushed to disk. This is preferable to writing the entire slice to disk. These advantages
far outweigh the disadvantages caused by the extra overhead associated with maintaining
page tables and page buffers.
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3.2. Reducing the Time Problem

Approximately half the positions in each database are capture positions and are
resolved in the first iterative pass. Since many resolvable non-capture positions may
require several dozen passes to compute, the iterative technique described earlier
becomes increasingly inefficient as the number of positions resolved increases because
most positions visited have been resolved.

This problem is handled by maintaining an ordered queue of positions resolved in
each pass, called the position queue. Only positions held in the position queue are exam-
ined in the successive passes. For each position in the position queue, all reverse moves
(moves which lead into this position) are generated. The reverse moves are executed and
the resulting positions are checked to determine if sufficient information exists for com-
plete position evaluation. If so, the position is assigned a value and added to the position
queue for reverse move generation during the next pass. Once the position queue from
the current pass is completely evaluated, it is deleted from either primary or secondary
storage (see DoQueue() in Appendix A). In effect, we use the "forward" approach to
resolving positions until the number of resolutions becomes small, and then we switch to
the "backward" approach.

This queue mechanism greatly reduces the time required to process the non-capture
passes. Each queue entry uses 4 bytes (position number). This presents a problem with
large databases because the queue length could exceed several hundred megabytes (and
the available amount of memory). Hence, queues are written to disk. To prevent exces-
sively large queues, the iterative technique is initially applied to the non-capture passes
until the number of resolved positions drops below a predefined threshold. Once this
occurs, the position queue is triggered and the remaining passes are processed using the
queue technique.

One other speed enhancement has been made to the initial capture and non-capture
passes. For positions resolved as a loss, all positions generated by applying reverse move
generation to the resolved position must be a win for the other side to play. Thus, these
positions may also be immediately resolved. Approximately 5-10% of the positions in
the non-queue passes (depending on the database being constructed) can be resolved
using this simple observation (see DoWinningMoves() in Appendix A).

3.3. Reducing the I/O Problem

The database computations require an enormous amount of disk I/O, whether it be
to previously computed results, or paging within a database under construction. Since
the previously computed databases are several gigabytes in size (Section 4 elaborates on
this), only one copy is available. When the computation is distributed over 30 or more
networked workstations, the machine servicing all I/O requests quickly becomes
swamped, as does the network. Since I/O over the network is slow, it must be kept to a
minimum.

The basic algorithm involves repeated passes resolving the non-capture positions.
Resolving a position involves examining each of its legal moves. Some of these moves
result in positions within the database being computed (king moves, advances of non-
leading checkers) while others cause conversions into previously computed databases
(advances of leading checkers and captures). Since the conversion moves may involve
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I/O, and they are repeated every time a position is revisited, it is desirable to obtain this
information once, thereby reducing the I/O.

The non-capture pass has been broken up into two components. The first, called
DoLookups(), takes each non-capture position and looks up each legal conversion
move and stores the results of this I/O back in the database. The second, DoNoIo(),
then uses the I/O information to do repeated passes through the data, only doing I/O on
the current database and never having to refer back to a previously computed result.
Appendix A contains pseudo-code for both DoLookups() and DoNoIo().

Each position can take on one of 4 values. DoLookups() takes advantage of the
2-bit per position representation to encode the result of the conversion moves. The
meaning of a position value of WIN or LOSS remains unchanged. The value of DRAW
means that the conversion moves imply that this position has a value of DRAW or better.
In other words, there is at least one conversion move leading to a draw, but none to a win.
Thus, consideration of the non-conversion moves can only leave the value as a DRAW or
possibly improve it to a WIN. A value of UNKNOWN implies that consideration of the
conversion moves gave no lower bound on the value of the position (i.e. any of WIN,
LOSS or DRAW is still possible). The result of DoLookups() is either an accurate
result or a lower bound value for each non-capture position.

DoNoIo() essentially iterates through all DRAW and UNKNOWN values trying to
improve the value. Any resolved position is added to the queue for further processing.
The value of a position is never allowed to go below that set by DoLookups().

By breaking up the non-captures part of the computation into two parts, no part of
the database calculation now requires access to both the previously computed databases
and the current database. As Table 4 shows, each component requires one or the other,
but not both. The net result is that the size of the working set of the database program is
further reduced, causing less of an impact to other users on the system. The program’s
size typically ranges from 8-15 megabytes, depending on the function being performed.
The working set of the program is typically 3-4 megabytes.

_ ______________________________________________________
Algorithm Computed Databases Current Databases_ _______________________________________________________ ______________________________________________________

DoCaptures † Yes No
DoWinningMoves No Yes
DoLookups † Yes No
DoNoIo No Yes
DoQueue No Yes
Verify Yes No_ ______________________________________________________ 




































Table 4: Storage Requirements.

_ ______________
† Note that this algorithm does require access to at most one page of the current database at a time.
Since it processes the data sequentially, a page is read in, fully processed and then written out.
Obviously this has a negligible effect on the storage requirements.
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3.4. Putting it all Together

Figure 4 displays the final iteration algorithm that is executed on each slice. After a
database has been calculated and compressed, a check is done that it is consistent
(DoVerify()). Although this does not guarantee the database is 100% correct (it does
not detect isolated cycles), the chance of an error is extremely remote. Appendix A gives
the pseudo-C code listing for the routines given below.

Set all positions to UNKNOWN. 1.

DoCaptures(): Run the capture pass on the original. 2.

DoCaptures(): Run the capture pass on the mirror. 3.

DoWinningMoves(): Run the winning move pass on the ori-
ginal.

4.

DoWinningMoves(): Run the winning move pass on the mir-
ror.

5.

DoLookups(): Run the lookup pass on the original. 6.

DoLookups(): Run the lookup pass on the mirror. 7.

DoNoIo(): Run a noio non-capture pass on the original. 8.

If the number of resolved non-capture positions is
"small", go to step 11.

9.

DoNoIo(): Run a noio non-capture pass on the mirror and
go to step 8.

10.

DoNoIo(): Run a noio non-capture pass on the mirror and
generate the queue.

11.

DoQueue(): Run until queue is empty. 12.

Convert remaining UNKNOWNs to DRAWs. 13.

Compress computed slices and add to master database. 14.

DoVerify(): Verify consistency of compressed slices. 15.

Figure 4: Iteration Algorithm.

4. Storing and Accessing the Data

The final database contains approximately 150 billion positions (the entire 1
through 7-piece databases and the 4b4w portion of the 8-piece database). The data for-
mat chosen for storing this information in was governed by two constraints:

(1) minimizing the size of the database and

(2) allowing real-time access of data values.

The former implies that the data must be compressed, but the latter limits the options.
During a tournament game, the database may be accessed hundreds of time a second,
implying that disk I/O must be kept to a minimum and that the cost of decompressing the
database to extract values be small. Most chess databases store not only the result of
each position (win, loss or draw) but, for wins and losses, also a distance metric (used for
finding the quickest win or slowest loss). Given the size of the checkers databases, it was
not feasible to save this additional information. Thus, each position has only a
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win/loss/draw designation. Note that under this scenario, it is possible for Chinook to
reach a database win but be unable to win it because it cannot search far enough ahead to
find a conversion into another subdatabase. This has never happened.

Five position values can be stored in a byte (35 = 243 < 256). This naive compres-
sion results in 150 billion positions requiring 30 gigabytes of disk storage. Unfor-
tunately, with today’s technology, this is an expensive proposition. Numerous schemes
have been tried to gain further compression. Some achieve high compression ratios, but
at a prohibitive run-time decompression cost. Others, such as the 5 positions per byte
scheme, have minimal decompression costs but low compression ratios. In this report,
only the scheme finally chosen will be discussed in detail (the scheme described in [10]
is not quite as efficient). One failed attempt worth mentioning was the use of an evalua-
tion function to predict the value of a position (a technique used for compressing chess
games [1]). If the routine was sufficiently accurate, then only exception positions need
be stored. While seemingly a promising approach, we were never able to develop a func-
tion that gave better results than the scheme eventually chosen. Finally, because of the
presence of checkers and the non-symmetric nature of the board, one cannot take advan-
tage of symmetries, as is possible in chess.

In the game of checkers, capture moves are forced. They have the same affect on
the game tree as do checking moves in chess; the branching factor drops to an average of
1.3 [8]. Since capture positions comprise roughly half of all positions in the database,
these positions can be omitted since their result can be easily computed. In a search, if a
capture position in a database is reached, it is searched an additional ply deeper to find its
value. Further, positions where one side could capture if the side-to-move were switched
comprise an additional 25% of the positions (capture-threat). Again, by removing these
positions from the database, additional compression can be achieved, at the cost of a
more complicated search algorithm for resolving values.

In each database, the number of wins, losses and draws are counted to determine
which result is dominant. All capture positions and capture-threat positions have their
database value changed to the dominant value. Consequently, the values in a database
are dominated by one value. Run-length encoding can now be used to compress the data-
base into a manageable size (similar to the methods used by Gasser [3]). Table 5 shows
the results of compressing some databases. Note that the 4b3w database achieves a high
compression ratio because having an extra piece in checkers is usually a decisive advan-
tage. Overall, we have 150 billion positions compressed into roughly 5.5 billion bytes of
storage.

_ _____________________________________________________________
3b3w 4b3w 4b4w_ ______________________________________________________________ _____________________________________________________________

Positions 783,806,128 19,055,258,760 111,378,534,401
Compressed bytes 44,715,085 365,946,247 5,088,710,532
Positions/byte 18 52 22_ _____________________________________________________________ 





























Figure 5: Compression Ratios.

Figure 6 illustrates how the compressed databases are accessed. The database is
logically grouped into a series of 1K-byte pages (adjustable to any multiple of 1K). An
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index file (a . idx file) indicates for each subdatabase the position number starting each
1K-byte block in the file. Given a position that is not a capture or a capture-threat, it is
converted to its unique position number. A binary search is done on the position’s sub-
database starting indices to identify the page that contains the position’s value. The page
is then fetched (from disk or cache) and uncompressed until the desired position’s value
is found. In Figure 6, for example, index 150,786 for subdatabase 3113.51 is found in
block 680, which contains the values for positions 148,265 to 208,299. That block is
read from disk and sequentially processed until the desired position’s value is obtained.

3113.51 db

150786 Index

.idx file

BASE3113.51 +
S 0 678/74

. 81875 679
. 148265 680
. 208300 681

E17035200 1064/770
BASE1331.15 -

.

.

.

.

.

.

.

.

.

1K bytes

148265 208300

Figure 6: Accessing the Databases.

Chinook uses several thousand 1K byte buffers to cache database pages (the number
depends on available memory). The least-recently used algorithm is used to decide
which buffer to free when all the buffers have been filled. As well, a position cache is
maintained. It is essentially a small hash table containing the results of recent database
position lookups. Thus, even if a position’s database page has been freed from memory,
its value may still be around in the position cache.

In practice, during a typical game 80-95% of all database positions encountered in
the search are found in memory. This is a result of the caching described above and
locality of reference in the search and in the way the database is organized. Even with
such a high success rate, Chinook often becomes I/O-bound. The easy solution is to
make more RAM available, increasing the number of database buffers.
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5. Parallelism

While an entire database may be computed sequentially on a single workstation
using the algorithm presented in Figure 4, in reality many workstations work simultane-
ously on many databases by taking advantage of three types of parallelism provided by
the database structure and two from the iteration algorithm design.

The first database parallelism opportunity occurs with the database subsets sorted
according to the number of black and white pieces. These form independent subsets
because no position from one subset with N pieces play into positions from another N
piece subset. This enables subsets such as 4b4w and 5b3w to be computed indepen-
dently.

The second database parallelism occurs within the graphs describing each subset
(for example, Figure 2). All nodes horizontally adjacent to each other may be computed
in parallel because positions within one node never lead to positions in same level nodes.
The only exception occurs with symmetric graphs because some horizontal nodes may be
mirrors of each other. For example, referring to Figure 2 again, nodes 2222,
3113/1331 and 4004/0440 may be computed in parallel.

The third database parallelism occurs with the ranks of the leading checker. Each
graph node is computed diagonally downward from the highest to lowest rank. Figure 7
displays the order of computation for a 49-slice node. All entries along each diagonal are
computed in parallel provided any two diagonal squares are not mirrors of each other.

6 5 4 3 2 1 0

6

5

4

3

2

1

0

White Rank

Black
Rank

Figure 7: Leading Checker Rank Parallelism.

Many steps in the iteration algorithm are frequently computed in parallel for several
database slices simultaneously. For example, the DoCaptures pass may be computed
in parallel on any number of N-piece slices since this pass references only previously
computed databases with N-1 or fewer pieces. Another example is the DoLookups
and DoVerify phase; they can execute on the original and mirror simultaneously.

Despite using the parallelism described above, many difficulties and inefficiencies
still exist with the computations. If each slice is given to a single workstation for execu-
tion, computation time is wasted because of differing slice sizes and machine speeds.
Occasionally a workstation may handle a very large slice (such as 2222.66) which
requires several days to compute. This creates a bottleneck for processors waiting to
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compute the next set of slices. Since most slices differ in size, workstations which finish
computing smaller slices often sit idle waiting for the completion of larger slices. A
further bottleneck is present in the top and bottom of the graphs since these areas afford
the least amount of parallelism.

The solution to these problems is to slice each database slice into a set of mini-
slices. The starting and finishing position for each mini-slice is aligned on a page boun-
dary to enable each workstation to compute its mini-slice without interference from other
workstations. By keeping the size of the each mini-slice small (usually 10 million or
fewer positions per mini-slice), many computers may now process a single database slice
in parallel. This also handles differences in machine speed because faster workstations
may compute two or more mini-slices while the slower machines handle one.

Computing mini-slices in parallel hinges on having each piece of work not interfere
with each other. Verifications only read computed databases, so they never conflict with
work in progress. Captures and lookups need to be able to write to a database. Thus
each of their mini-slices represents a disjoint interval of the database for which they write
their values. For DoNoIo, the choice of the "forward" approach to resolving positions
(looking at the successors rather than the predecessors of a move) is critical here. Using
this approach, consecutive addresses are considered for value updates, whereas using the
"backward" approach, resolved predecessor positions are distributed throughout the
entire range of values. The "forward" approach allows each slice to have its disk writes
localized, preventing interference with other slices and reducing the number of disk I/O
writes. Processing the position queue, however, has no locality (because it uses the
"backward" approach) and is currently done sequentially. There is room for some paral-
lelism here, but it has not been implemented.

5.1. Creating a Supercomputer

With the amount of parallelism offered by the mini-slices and database structure,
keeping 30 or more machines busy required too much manual labor. Consequently, a job
queue file has been built to describe the required computations. Each line in the job
queue file describes an action to be performed on either a database slice or mini-slice. A
controlling shell script parses the top entry, sets up the necessary parameters, and forks a
process to execute the job. This shell script runs on every workstation performing data-
base computations.

Most job queue entries have one of the following two formats:

job_type slice -max maxslices -n thisslice
job_type slice first_position last_position -n thisslice

The first parameter specifies the type of work to be performed. This can be one of
the following:

cap capture pass
winmove winning move pass
lookup lookup pass
noioo noio pass on the original
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noiom noio pass on the mirror
que queue pass
build build compressed database
ver verify compressed database consistency
stop graceful exit from shell script

The second parameter specifies either the slice or mini-slice involved in the compu-
tation. Two formats are possible for the remaining parameters. The first specifies the
maximum number of slices and the slice number of this job. These parameters align the
first and last positions of the slice onto page boundaries as follows:

numPos = number o f positions in slice

positionsperpage = 8K *4 = 32 , 768

o ff set = ( (numPos / positionsperpage) / maxslices) × positionsperpage

f irstPosition = thisslice × o ff set

lastPosition = ( thisslice + 1 ) × o ff set

lastPosition is set to numPos if it exceeds the value of numPos.

The second job queue entry format specifies a starting position, final position, and
mini-slice number. This format is useful if a previously computed mini-slice prema-
turely terminated due to conditions such as a machine reboot. Rather than resuming the
computation from the beginning of the slice, a starting index near the last completed
index is specified and the job continues from that point.

The controlling shell script recognizes several dependencies between phases of a
database slice computation. For example, noiom waits until its noioo pass is com-
plete; que waits for completion of noiom; and build waits until que is done. To
prevent processors from being idle during these periods, jobs involving other slices
currently being computed in parallel are inserted into the job queue.

Figure 8 displays an example job queue. Note that the build cannot start until the
que is completed. Rather than let a processor take the build and then wait, we usu-
ally insert enough work between such dependencies so that when the build is eventu-
ally taken, the que has completed.

5.2. A Day in the Life of a Network Supercomputer

We have used as many as 90 workstations computing simultaneously, and keeping
track of what has been computed and what problems have arisen can be a difficult and
time-consuming task. Before we developed the tools described in this section, manage-
ment of the distributed database calculation required a significant time investment every
day. We needed tools to check the consistency of the work being performed and alert us
in the event of an error.

The first check occurs with the job queue shell script. For every job computed, this
script creates a lock file whose name reflects the job being executed. Upon completion
of the job, the shell script checks the output file to determine if the job exited normally.
If so, the file is removed; otherwise the file remains as a notice that an unusual cir-
cumstance occurred. The output files are then manually inspected for the cause of the
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ver 3113.02 -max 10 -s 1 -n 00
ver 3113.02 -max 10 -s 1 -n 01
ver 3113.02 -max 10 -s 1 -n 02
ver 3113.02 -max 10 -s 1 -n 03
ver 3113.02 -max 10 -s 1 -n 04
ver 3113.02 -max 10 -s 1 -n 05
ver 3113.02 -max 10 -s 1 -n 06
ver 3113.02 -max 10 -s 1 -n 07
ver 3113.02 -max 10 -s 1 -n 08
ver 3113.02 -max 10 -s 1 -n 09

cap 2123.66 230445242 241002422 -n 20

que 3113.01

build 3113.01

Figure 8: Example Job Queue.

problem and, if necessary, the job is reinserted (either from the beginning or from the last
checkpointed location) back into the job queue.

One problem with working in a network environment is machine reliability.
Hardware failures, software bugs, and power interrupts are among the factors which
cause machine crashes and reboots. Because database slice passes have dependencies,
these interruptions must be dealt with immediately to avoid the situation where many
processors wait for completion of a previously aborted mini-slice. We have developed a
tool which monitors all machines computing databases by sending a ping packet to each
machine every minute. Normally every machine responds immediately to the ping query.
However, a negative response indicates one of three conditions: either the target machine
is down, the reply has been lost, or the ping inquiry has been lost.

The problem with the above is distinguishing between lost packets and machine
crashes. We have found packets created by database computations account for approxi-
mately 75% of our department’s network traffic. Consequently, it is not uncommon for a
ping inquiry or response packet to be lost. Whenever a ping response fails, attempts are
made to query the machine for another 10 minutes. If the machine responds within this
time period, a query is made to determine how long it has been up since many machines
reboot within 10 minutes. If the machine has been been rebooted, the last job running on
the host is extracted from the log file and reinserted to the top of the queue. The job
queue script is remotely restarted and a mail message is sent to indicate the action per-
formed.

If the host fails to respond within 10 minutes, it is assumed to have "crashed" and its
hostname is recorded in a "crashed" file. The last job it processed is extracted from the
log file and reinserted to the top of the job queue list. Again, a mail message is sent to
indicate job resumption. When the machine finally reboots, the machine monitoring tool
automatically forks the job queue script.

This tool successfully handles nearly all machines running nearly all types of
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database computations. The only manual intervention required occurs when our file
server is rebooted. In this case, a check of all machines is done to ensure no potential
errors.

The job queue mechanism with automatic restart upon machine reboot is ideal for a
set of identical workstations (with identical performance) and no other users on the net-
work. Since many workstations we use belong to other faculty and staff members who
are active during the day, a second tool has been developed to monitor these machines for
activity. Whenever activity is detected, the computations are checkpointed and one of
two actions are taken. If the workstation swap space is large, the process is suspended
and the operating system migrates the process to the swap space. The monitoring tool
restarts the process after 10 minutes of workstation inactivity. If the workstation does not
have sufficient available swap space, the process is terminated, the job reinserted to the
top of the queue, and a mail message is sent to us describing the action taken. A new
process is then started on the workstation after normal working hours and monitoring
resumes at that time.

Since the database structure and the mini-slice breakdown allows us a high degree
of parallelism, we can always productively use additional workstations. At our peak, we
have had 90 machines performing databases computations in the background at low
priority. The machines are a heterogeneous collection of Sun, SGI, HP, and MIPS
workstations. Using a single job queue list for a diverse variety of machines is infeasible
because of varying processor speeds, amount of available RAM per processor, and day-
time restrictions for privately owned machines. Consequently, the job queue list has
been sub-divided into four separate lists and each machine obtains its work from one of
the lists. These queues are called prime, non-prime, slow, and small. Works-
tations using prime are assumed to be fast, have sufficient memory to handle any job
type, and are always accessible. This queue contains immediate, high-priority jobs such
as lookup, noio, or que for the database slice being computed. Workstations using
non-prime are similar to those using prime except daytime restrictions apply. Thus,
this queue is fed low priority work during the day and high priority work during evenings
and weekends. All slow workstations with sufficient memory to handle any job type read
their jobs from slow. This queue usually contains medium to low priority jobs.
Finally, machines with restricted amounts of memory (for example 8 megabytes or less)
obtain their jobs from small. This queue contains jobs which are low priority and
require small amounts of memory (principally DoCaptures()).

Another important tool we have developed is addq. Manually adding work to the
queues occasionally introduced errors. To eliminate this, addq takes a computation,
breaks it into mini-slices (roughly 10 million positions per slice) and adds it to the work
queue. This utility is invoked with the name of a queue, the work type to be performed,
and the database slice to be acted on. For example,

addq p lookup 3113.01

appends

lookup 3113.01 -max 02 -s 1 -n 00
lookup 3113.01 -max 02 -s 1 -n 01

to the prime queue for 3113.01 with 17,035,200 positions. In Figure 8, the
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verification of 3113.02 was added using addq.

The primary advantage with using job queues has been obtaining nearly 100%
machine utilization for our computations. Very few machines sit idle waiting for the last
mini-slice of a dependency to be completed. The job queue, in addition to the the tools
just described, has also reduced the manual labor required for database computations.
Most effort is now spent moving files between disks, archiving files to tape, and planning
the correct order to insert work into the queues to maximize machine utilization.

Appendix C gives a brief summary of the tools used to manage our network super-
computer.

5.3. Using a "Real" Supercomputer

Our retrograde analysis program has also been implemented on a shared memory
multiprocessor, the BBN TC2000 [7]. The basic algorithms, and most of the source
code, remain the same but the hardware, software and human overheads are different.

On the TC2000, each process of the parallel job is equivalent to a process working
on a mini-slice in the network supercomputer. The entire active and mirror databases are
stored in shared memory to eliminate the I/O on those pages. When a process needs to
access a portion of the databases that is part of a different mini-slice, it can simply do a
read from shared memory. As previously, a process can look up the value of a position
in a different mini-slice, but it can only change positions in its own mini-slice. With the
network of workstations, the distributed processes operating on the same database use a
shared file system to communicate partial results. Each process works on a disjoint
mini-slice, but as soon as a page is flushed to disk, another parallel process can access the
new results. In effect, the network file system emulates the communication power of
shared memory, albeit with relatively high latency and low bandwidth. Having shared
memory supported in hardware, as with the TC2000, reduces the high overheads of the
workstation network. Partial results can be used by other processes more readily, thus
increasing the ability to resolve positions more quickly.

Another advantage of a multiprocessor machine is the ease with which parallel
processes are created and synchronized. The TC2000 is designed to be used as a mul-
tiprocessor, therefore the different processes of a parallel job can be started with a single
command instead of having to update one or more network job queues. The homogene-
ous nature of the TC2000 processors also make process placement a trivial task. Further-
more, with the network of workstations, the central scheduling process implicitly syn-
chronizes the processes by how and when it initiates them. Only when one iteration of
the database is complete are processes for the next iteration initiated. There is also the
overhead of starting up new processes in the network environment, but in a shared
memory multiprocessor the processes can simply synchronize with a barrier mechanism
and continue. Processes are not repeatedly initiated and exited which reduces the startup
overheads and also the human overhead of having to manage the job queues.

Clearly, the BBN TC2000 with its dedicated interconnection network, hardware
supported shared memory and parallel processors mainly offers a performance advantage
to the network of workstations. However, the fact that over a hundred parallel processes
are available and the fact that the machine is designed to run parallel programs leads to a
substantial performance advantage over a network of dozens of workstations using
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specialized software to manage the distributed processes. We do not exclusively use the
TC2000 for the database computations because the addition of the network supercom-
puter significantly increases our throughput.

6. Conclusions

During the academic term, we have access to 25-30 workstations in our department,
mainly machines on professor’s desks and in graduate student laboratories. These
machines allow us to compute roughly 300 million database positions per day. The BBN
TC2000 and an additional 60 workstations that we get access to between academic terms
allow even greater throughput. The overall throughput averages out to 425 million posi-
tions per day.

The 4b4w subset of the 8-piece databases is the last database to be computed.
Completing the rest of the 8-piece databases is a daunting task. The 186 billion positions
in the 5b3w endgame will take over a year to complete. Completing this is necessary
before the 5b4w database (1,997,749,399,776 positions) can be computed. Unless addi-
tional computing resources and further motivation can be found, it is unlikely we will
tackle this task.

When we first started out in 1989, the 5-piece databases seemed an impossible task
given the workstation environment that we had. Now the 7-piece databases are a "trivial"
problem. The evolution from a single machine, large address space algorithm to a distri-
buted solution that minimizes disk space, execution time and I/O operations has taken a
long time and an enormous effort. Whether it was all worthwhile depends on the out-
come of the next Chinook-Tinsley match (tentatively scheduled for 1994) and whether
the databases we have are sufficient to solve the game of checkers.

Since most of the database construction process is now automated, we could, in
theory, let it continue to run and add 300-400 million positions per day to the databases.
However, the other users in our computing environment may have something to say
about that! Instead, the network supercomputer tools we developed for this project will
be applied to other aspects of checkers. For example, our work queues will be modified
to specify opening positions. In this way, we can distribute the task of building and veri-
fying an opening book. As well, when we start trying to solve the game of checkers, we
can use our network supercomputer to solve different subtrees in the search space in
parallel.
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Appendix A: Algorithms

In this section, the pseudo code for the various algorithms discussed in this paper
are given. The code assumes the following routines:

MakeMove( pos, move )
In position pos, move is made, leading to a new position stored in pos.

UnMakeMove( pos, move )
In position pos, a move is undone, modifying pos back to the state it was
before move was played. MakeMove and UnMakeMove are inverses of each
other.

SetupPosition( pos, db, index )
Position number index in db is converted to a board position pos.

index = Index( pos )
Convert position pos into its unique number index. SetupPosition and
Index are inverses of each other.

numb = CaptureMoves( pos, moves )
In position pos, find all the legal capture moves. The number of moves found is
returned in numb, with the moves being stored in the array moves.

numb = NonCaptureMoves( pos, moves )
In position pos there are no capture moves. Find all the legal non-capture moves.
The number of moves found is returned in numb, with the moves being stored in
the array moves.

SetValue( db, index, value )
Set the value of position index in database db to value. Valid values are
WIN, LOSS, DRAW and UNKNOWN.

childvalue = GetValue( db, index )
In database db, return the value of position index.

mirror = MIRROR( db )
MIRROR is a macro that returns the mirror database of db.

NQueue( db, index )
Add the position represented by db and index to a queue of positions. It
assumes there is a global variable PositionQueue indexed by QSize which is
initialized to 0. Each addition to the queue increments QSize. This queue is pro-
cessed by DoQueue.

DeQueue( db, index )
Remove the position from the head of the PositionQueue, returning its data-
base in db and position number in index.

convert = Conversion( move )
Determine whether move will cause a conversion to a previously computed data-
base. Conversion occurs by a capture move, or by advancing the leading checker.
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/* Compute(): generic driver routine for database computations. */
/* Called with a function of either DoCaptures(), DoWinningMoves(), */
/* DoNonCaptures(), DoLookups(), DoNoIo() or DoVerify(). */

Compute( db, fromindex, toindex, function )
database db;
int fromindex, toindex;
void function();
{

int index;

for( index = fromindex; index < toindex; index++ ) {
function( db, index );

}
}

Figure A1: Compute().

/* DoCaptures(): resolve all capture positions */

DoCaptures( db, index )
database db;
int index;
{

int i, value, numb, childvalue, moves[ MAX_MOVES ];
position pos;

value = GetValue( db, index );
if( value != UNKNOWN )

return;
SetupPosition( pos, db, index );
numb = CaptureMoves( pos, moves );
if( numb == 0 )

return;

value = LOSS;
for( i = 0; i < numb; i++ ) {

MakeMove( pos, moves[ i ] );
childvalue = GetValue( MIRROR( db ), Index( pos ) );
UnMakeMove( pos, moves[ i ] );
if( childvalue == LOSS ) {

value = WIN;
break;

}
if( childvalue == DRAW )

value = DRAW;
}
SetValue( db, index, value );

}
Figure A2: DoCaptures().
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/* DoWinningMoves(): extend all losing positions to their predecessor */
/* winning positions. */

DoWinningMoves( db, index )
database db;
int index;
{

int i, value, numb, moves[ MAX_MOVES ];
position pos;

value = GetValue( db, index );
if( value != LOSS )

return;
SetupPosition( pos, db, index );
numb = NonCaptureMoves( pos, moves );

for( i = 0; i < numb; i++ ) {
MakeMove( pos, moves[ i ] );
SetValue( MIRROR( db ), Index( pos ), WIN );
UnMakeMove( pos, moves[ i ] );

}
}

Figure A3: DoWinningMoves().
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/* DoNonCaptures(): try to resolve each non-capture position. It may */
/* require repeated passes over the data to resolve all the positions. */

DoNonCaptures( db, index )
database db;
int index;
{

int i, value, numb, childvalue, moves[ MAX_MOVES ];
position pos;

value = GetValue( db, index );
if( value != UNKNOWN )

return;
SetupPosition( pos, db, index );
numb = NonCaptureMoves( pos, moves );

value = LOSS;
for( i = 0; i < numb; i++ ) {

MakeMove( pos, moves[ i ] );
childvalue = GetValue( MIRROR( db ), Index( pos ) );
UnMakeMove( pos, moves[ i ] );
if( childvalue == LOSS ) {

value = WIN;
break;

}
if( childvalue == DRAW && value != UNKNOWN )

value = DRAW;
else if( childvalue == UNKNOWN )

value = UNKNOWN;
}
if( value != UNKNOWN ) {

SetValue( db, index, value );
if( value != DRAW )

NQueue( db, index );
}

}
Figure A4: DoNonCaptures().

/* DoQueue(): resolve all positions in the PositionQueue and their */
/* predecessors. Called with either DoNonCaptures() or DoNoIo(). */

DoQueue( function )
void function();
{

database db;
int index;

while( QSize != 0 ) {
DQueue( db, index );
function( db, index );

}
}

Figure A5: DoQueue().
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/* DoLookups(): for each non-capture position, resolve all references */
/* to previously computed databases. This pass obviates the need to */
/* reference these databases in any subsequent computation (except */
/* verification). At the end of this pass, a value of win or loss is */
/* accurate, but a draw means the position is either a tie or a win */
/* (it cannot be a loss). */

DoLookups( db, index )
database db;
int index;
{

int i, value, numb, childvalue, moves[ MAX_MOVES ], conv;
position pos;

value = GetValue( db, index );
if( value != UNKNOWN )

return;
SetupPosition( pos, db, index );
numb = NonCaptureMoves( pos, moves );

value = LOSS;
conv = 0;
for( i = 0; i < numb; i++ ) {

if( Conversion( moves[ i ] ) == NO )
continue;

conv++;
MakeMove( pos, moves[ i ] );
childvalue = GetValue( MIRROR( db ), Index( pos ) );
UnMakeMove( pos, moves[ i ] );
if( childvalue == LOSS ) {

value = WIN;
break;

}
if( childvalue == DRAW )

value = DRAW;
}
if( conv == numb && value == LOSS ) {

/* Special case where all moves are conversions */
SetValue( db, index, LOSS );

}
else if( value != LOSS )

SetValue( db, index, value );
}

Figure A6: DoLookups().
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/* DoNoIo(): resolve all non-capture positions. Each position has either */
/* its exact value or a lower bound on its value. Successor positions’ */
/* values can be viewed as upper bounds. See if there is enough inform- */
/* ation to resolve a position’s value. */

DoNoIo( db, index )
database db;
int index;
{

int i, value, numb, childvalue, moves[ MAX_MOVES ], before;
position pos;

before = GetValue( db, index );
if( before == WIN || before == LOSS )

return;
SetupPosition( pos, db, index );
numb = NonCaptureMoves( pos, moves );

value = ( before == DRAW ) ? DRAW : LOSS;
for( i = 0; i < numb; i++ ) {

if( Conversion( moves[ i ] ) == YES )
continue;

MakeMove( pos, moves[ i ] );
childvalue = GetValue( MIRROR( db ), Index( pos ) );
UnMakeMove( pos, moves[ i ] );
if( childvalue == LOSS ) {

value = WIN;
break;

}
if( childvalue == WIN || before == DRAW )

continue;
if( childvalue == DRAW )

value = DRAW;
else if( childvalue == UNKNOWN && value == LOSS )

value = UNKNOWN;
}
if( before == UNKNOWN && value == DRAW )

value = UNKNOWN;
if( value != before ) {

SetValue( db, index, value );
NQueue( db, index );

}
}

Figure A7: DoNoIo().
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/* DoVerify(): check each position’s value to see if it is consistent */
/* with its successor positions. */

DoVerify( db, index )
database db;
int index;
{

int i, dbvalue, value, numb, childvalue, moves[ MAX_MOVES ];
position pos;

dbvalue = GetValue( db, index );
if( dbvalue == UNKNOWN )
{

printf( "ERROR: position %d UNKNOWN", index );
exit(-1);

}
SetupPosition( pos, db, index );
numb = NonCaptureMoves( pos, moves );

value = LOSS;
for( i = 0; i < numb; i++ ) {

MakeMove( pos, moves[ i ] );
childvalue = GetValue( MIRROR( db ), Index( pos ) );
UnMakeMove( pos, moves[ i ] );
if( childvalue == LOSS ) {

value = WIN;
break;

}
if( childvalue == DRAW )

value = DRAW;
}
if( value != dbvalue ) {

printf( "ERROR: position %d is %d; should be %d",
index, dbvalue, value );

exit(-1);
}

}
Figure A8: DoNonCaptures().

Appendix B: Indexing/Deindexing Functions

The following formulas show how to compute the checkers indexing function.
They can easily be adopted for chess, using 64 instead of 32 as the number of squares on
the board and 8 instead of 4 for the number of squares in a row. The formulas given are
for an arbitrary number of kings and checkers. Their properties are exactly the same as
for kings and pawns in chess. Thus these formulas could be used as is for indexing king
and pawn endgames. Some modifications are required to introduce other piece types.

All slices are enumerated by determining the number of positions within the slice
and then assigning a unique number (with no gaps) to each position. First, the squares of
the board are mapped from the black side and are numbered 0 to 31. Black rank 0 con-
tains squares 0-3, rank 1 squares 4-7, and so on. Squares within each rank are numbered
in increasing order from left to right. Note that rank i for black corresponds to rank 7 − i
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for white. Figure 9 displays this mapping.
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Figure 9: Mapping of Checkerboard Squares.

Let:
nbk = number of black kings
nwk = number of white kings
nbp = number of black checkers
nwp = number of white checkers
rbp = rank of leading black checker
rwp = rank of leading white checker.

The method for computing the number of positions in a slice starts with an empty
board. The first value computed is the number of positions which have only nbp black
checkers with leading rank rbp. This value is added to the number of positions created
by adding nwp white checkers with leading rank rwp. This is then summed to the
number of positions obtained by adding nbk black kings and nwk white kings to the
board. The final sum represents the number of positions for the slice.

The first value is obtained by computing the number of positions which have the
leading black rank less than or equal to rbp (where rbp is between 0 and 6) and then sub-
tracting the number of positions which have the leading black rank less than or equal to
rbp − 1. Using combinatorial arithmetic, this is formulated as:

MaxBP = 
 nbp
4×(rbp + 1 )


− 
 nbp
4×rbp


.

A different formulation is used to determine the number of white checker positions with
nwp white checkers and leading white checker rank rwp because nbp squares (of which
some may be within the first rwp ranks) are now occupied by black checkers. The pro-
cedure below resolves the number of white checker positions:

1. Compute the minimum square number of rwp:

MinSqNum rwp = 4×( 7 − rwp) .

2. Compute the maximum available squares for rwp:
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MaxAvail rwp = 4×(rwp + 1 ) .

3. For each black checker configuration with leading checker rank rbp (i.e. for
0≤ i < MaxBP):

3.1. Compute the number of squares within white ranks 0 to rwp occupied by black
checkers:

NumBP = # o f _black_checker_squares≥MinSqNum rwp .

3.2. Subtract from MaxAvail rwp to obtain the actual number of available white
checker squares:

Avail rwp = MaxAvail rwp −NumBP .

3.3. Compute Avail rwp − 1.

3.4. Compute the number of white checker positions with leading rank rwp for this
black checker configuration:

NumWP i =


 nwp
Avail rwp




−


 nwp
Avail rwp − 1





.

3.5. Add this value to the total number of white checker positions:

MaxWP = MaxWP + NumWP i .

Calculations for MaxBK and MaxWK are much simpler because the multi-
directional mobility of the kings does not require specifying a leading rank. Hence, the
number of positions with nbk black kings given nbp black checkers and nwp white check-
ers is:

MaxBK = 
 nbk
32 − nbp − nwp


,

and the number of positions with nwk white kings given nbp black checkers, nwp white
checkers, and nbk black kings is:

MaxWK = 
 nwk
32 − nbp − nwp − nbk


.

Thus, the total number of positions for the slice is:

NumPos = MaxBP×MaxWP×MaxBK×MaxWK .

The enumeration algorithm initially assigns the nbp black checkers to the black side
of the board on squares (0, 1, ..., nbp − 1). If the leading rank is greater than zero then the
last checker is assigned to the square rbp×4. White checkers are placed on the white side
of the board: (31, 30, ..., 31-(nwp − 1)). Again, if the leading white rank is greater than
zero then the last checker is assigned to the square 31− (rwp×4 ). Each white checker is
checked for possible conflicts with other pieces already on the board before its square is
assigned. If such a conflict is present, the starting white checker square is decremented.
Black kings are assigned initial squares of (0, 1, ..., nbk − 1). As with the white checkers,
each black king square is checked for possible conflicts. This time, however, a conflict
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results in an increment of the starting king square. White kings are handled similarly to
black kings.

Each position is representable by four tuples, one for each set of pieces. These are
expressed as (bp 0 , bp 1 , ... ,bp nbp − 1 ), (wp 0 , wp 1 , ... ,wp nwp − 1 ), (bk 0 , bk 1 , ... ,bk nbk − 1 ),
and (wk 0 , wk 1 , ... ,wk nwk − 1 ). The entries in each tuple correspond to square numbers
occupied by their pieces, sorted left to right in increasing order.

The next index for a tuple, Sq i , is determined by scanning left to right and incre-
menting the first element satisfying either Sq i < Sq i + 1 − 1, or i = n and
Sq n < LastSq ( = 32 ). If neither of these two conditions can be met, the last position for
the tuple has been reached. Otherwise, Sq i is checked for piece conflicts and, if neces-
sary, incremented again until a vacant square is found. Elements Sq 0 , Sq 1 , ... ,Sq i − 1 are
reset to 0, 1, ..., i − 1 and similar conflict checks are made with each.

The tuples are ordered wk, bk, wp, and bp from least significant to most significant.
The next position is obtained by incrementing the lowest available element from the
lowest significant tuple. If the tuple affected is not the least significant tuple, then all
lower ordered tuples are reset.

The deindexing function takes a numerical value and creates the position
corresponding to this number. Recall from the discussion of the indexing function the
values MaxBP, MaxWP, MaxBK, MaxWK, and NumWP i . For any index n where
0≤n < NumPos, the method to compute the position described by n is generalized as fol-
lows:

1. Initialize tuples bp, wp, bk, and wk.

2. Set i = 0.

3. If n < MaxWK then increment tuple wk n times, and exit.

4. If n < MaxBK×MaxWK then increment tuple bk b times where n = (b×MaxWK) + r.
Set n = n − (b×MaxWK) and go to Step 3.

5. If n < NumWP i ×MaxBK×MaxWK then increment tuple wp b times where
n = (b×MaxBK×MaxWK) + r. Set n = n − (b×MaxBK×MaxWK) and go to Step 4.

6. Since n≥NumWP i ×MaxBK×MaxWK, tuple bp must be incremented. The number
of times this tuple is incremented is determined by the values NumWP i obtained
when the number of positions in the slice was first determined. Note 0≤ i < MaxBP.

6.1. If n≥NumWP i ×MaxBK×MaxWK then increment tuple bp; else go to Step 5.

6.2. Set n = n − (NumWP i ×MaxBK×MaxWK), i = i + 1, and go to Step 6.1.

The above algorithm requires minor modification whenever one (or more) of the
tuples is the empty set.

Appendix C: Network Supercomputer

The following shell scripts and files form the basis for our network supercomputer.

Job queue for prime workstations.db.list.p

Job queue for non-prime workstations.db.list.n
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Job queue for workstations with less available memory.db.list.m

Job queue for slow workstations.db.list.s

Edit a job list queue file. This script creates a lock file which prevents
any other process from editing the specified job queue file while an
editing session is in progress.

vidb

Add syntactically correct job entries to a specific job queue.
Example: addq p lookup 3113.01

addq

Display status of capture pass for a specified slice.
Example: capcheck 3113.01

capcheck

Display status of lookup pass for a specified slice.
Example: lookcheck 3113.01

lookcheck

Display status of non-capture pass for a specified slice.
Example: noncheck 3113.01

noncheck

Display status of slice verification.
Example: vercheck 3113.01

vercheck

List of workstations eligible for computing databases. Each entry has
the following format:
hostname queue_suffix platform_type memory_size
public_or_private night_only,
where hostname is the workstation name, queue_suffix is one of p, n, m,
s and represents the queue the workstation reads its jobs from,
memory_size is the amount of available random access memory for
page tables, public_or_private indicates if a database computation on
the workstations should be suspended during normal working hours,
and night_only specifies if the database process should run only at
night and on weekends, and be terminated otherwise.

hosts

Display status of active database computations on all workstations
listed in the hosts file.

dbstatus

Start database processes on a target list of workstations. The program
checks the hosts file to find the architecture of each machine, and
spawns the appropriate executable. For example, dbstart host1
host2 forks a database process on host1 and host2.

dbstart

Monitor a workstation for interactive activity. If activity is detected,
either suspend the process until the interactive session is complete, or
checkpoint and terminate the process.

wswatch

Monitor all workstations computing databases for machine crashes and
reboots.

wsmonitor


