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ABSTRACT

With this work, a new Lagrangian based inverse technique for construct-
ing turbomachinery blade geometries is presented. This method. which
consists of a 2-D flow field integrator, a camber line generator and a pas-
sage averaged momentum/pressure boundary condition, generates a blade

geometry in response to a prescribed flow turning distribution.

By describing a blade geometry as a mean camber line with a specified
thickness distribution, it is shown how this camber line can be obtained
from a Lagrangian analysis that overlays the blade onto a material line
that convects from inflow to outflow. This treatment enhances both the
global convergence of the calculation and the flow resolution near the lead-
ing and trailing edges of the blade. Also, the unsteady form of the pressure
boundary condition is derived and is shown to produce convergence accel-

eration.

Finally, a new unsteady pressure boundary condition is derived from a
complex-lamellar decomposition of the flow field, and its passage average
flow turning. With this new shock-fitting approach, transonic blades,
with strong passage shocks, can be designed that are both geometrically

continuous and faithful to the prescribed flow turning distribution.
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CHAPTER 1

INTRODUCTION

1.1 Background

With the increase in the accuracy and efficiency of numerical solutions. they are now
being implemented into every aspect of the aerodynamic design process. In fact,
while they were once used only for generating postmortem analysis of intermediate
designs. numerical methods are now being used for both design optimization and
inverse design. With inverse design, the designer specifies the final global result
required from the design, and the inverse method can be used to find the blade
geometry that produces it.

In Dang’s [2| method, upon which this work is based, a compressible finite vol-
ume scheme is used to calculate the flow around a blade whose geometry is being
inversely designed for a prescribed flow turning. The blade geometry is decomposed
into a prescribed thickness distribution and a camber line, whose shape is obtained
from a no-flux boundary condition that is updated periodically and applied to the
solutions of the finite volume scheme. Finally the flow field obtained from the finite
volume scheme, is governed by a pressure boundary condition that uses a passage
averaged momentum analysis to couple the pressure distribution to the prescribed

flow turning. This method stems from the circulation method developed by Dang (2]



and Hawthorne (1] et. al..

The prescribed flow turning is the important factor that separates this method
from other inverse design techniques. This has both physical importance, in that it
can be related directly to the work input / extracted in the cascade, as well as ease
of specification. The inverse methods used by Tong et.al.[5], Giles et.al.[6], Volpe
et.al.[7] and Meauzé (8] require the specification of the blade surface static pressures
(or velocity) which limits them to two dimensional flow. The assumption that is made
is that the pressure is specified along a streamline. In the case of turbomachinery,
there exist complex secondary flows that make it difficult to know the streamline
path and hence, the specification of the pressure distributions in 3-D flow becomes
a difficult task. In addition to the pressure specification limitation, the Hodograph
method used by Sanz[9| is also limited to 2-D because of the transformation to the
Hodograph plane. This transformation can not be carried out in 3-D. Due to the
nature of this transformation, it is also limited to potential flows and thus cannot be
used for strong shock cases. The Hodograph method is very elegant mathematically
but the trade off is that it is difficult to implement. The inverse method used by
Léonard et.al.[10] requires the specification of the Mach number on the surfaces which
limits it to 2-D flow for the same reason as specifying pressure. One other limiting
aspect of this method is the compatibility relations that are used. These relations
would not be attainable in 3-D. Specification of the flow turning distribution, on the
other hand, can be extended to the 3-D case without having to know the path of the
streamlines a priori. Another problem associated with the specification of both the
upper and lower surface pressure distributions is that the converged blade profile may
not be closed at the trailing edge. This closure is guaranteed with Dang’s method

because the thickness distribution is specified as input.



1.2 Objectives

The objectives of this work are to present a new Lagrangian based inverse design
technique for constructing turbomachinery blade geometries. The equations used
consist of a 2D flow field integrator, a camber line generator and a passage averaged
momentum / pressure boundary condition.

The first main objective is to develop a Lagrangian based unsteady camber line
generator. One of the purposes for this is to couple the camber line equation directly
to the flow equations so that a similar numerical treatment can be used for the
entire system of equations. The other purpose, is to use this technique not only
for the camber line of the blade but also for the construction of the upstream and
downstream grid boundaries to increase the accuracy at the stagnation points in the
flow and also, decrease the calculation time required for the numerical simulation.

The second main objective is to develop a new transonic pressure boundary con-
dition used to impose the prescribed flow turning. The need for this was discovered
using Dang’s [2| existing inverse technique. The design of a turbine blade in the
presence of a strong passage shock, having specified a smooth continuous turning
distribution, produces a blade with a discontinuous geometry. A method was needed

to include the effects of the shock without knowing the location of the shock a priori.

1.3 Outline

[n Chapter 2, a coupled system of inverse design equations is presented. These consist
of the unsteady Camber Line Generator and the inviscid, compressible low equations.
Also, a complex-lamellar decomposition is presented to develop a new boundary con-
dition for strong transonic flow.

In Chapter 3, the numerical approximations of the system of inverse equations is

discussed. The entire system of equations are discretized, in time, with an explicit



multi-stage time stepping scheme. The flow equations are spatially discretized using
a finite volume scheme with blended non-linear second and fourth difference artificial
dissipation terms used to capture shocks and prevent odd-even point decoupling. The
Camber Line Generator is spatially discretized using central differencing with added.
linear dissipation to keep the blade as smooth as possible. The boundary conditions
for both the inverse technique and the conventional approach are then presented.
For the inverse technique, the equations used to implement the flow turning are the
unsteady pressure boundary treatment and the transonic pressure boundary using
the complex-lamellar decomposition. Examples of the turning distribution and the
converged blade shapes are compared.

In Chapter 4, results are presented to show the advantages of coupling the Camber
Line Generator directly to the flow equations, as well as, the material line treatment
of the upstream and downstream grid boundaries for all flow regimes. Secondly.
a testcase is presented to show the effect of using the unsteady pressure boundary
treatment over the steady form. A third set of testcases is presented to show the effect
of the transonic pressure boundary condition used on strong passage shock transonic
flow.

Finally, conclusions will be drawn in Chapter 3.



CHAPTER 2

GOVERNING EQUATIONS

[n the inverse design problem both the flow field and the blade geometry are unknown.
A coupled system of equations must be developed to obtain both the blade geometry
and the flow field around it. The equations of motion for the fluid, used in this case,
are the two dimensional, inviscid compressible flow equations also known as the two
dimensional Euler equations. The equation used for the blade geometry is derived by
defining the blade to be a material line of the fluid. This ensures satisfying the no -

flux boundary condition on a solid surface in a fluid flow.

2.1 Camber Line Generator

The camber line generator is the equation used to solve for the shape of the blade.
An airfoil shape can be characterized by two things: the camber line and the thick-
ness. Having specified the blade thickness distribution along the axial chord of the
blade (set by structural and manufacturing constraints), the camber line is the single
characteristic remaining in completely defining the blade shape.

For axial turbomachinery, the notation chosen to describe the blade geometry is

that of Fig. (2.1). The blade surface equations then become
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Figure 2.1: Cascade Notation

a+5y—<f(:c,t)+%x)) (2.1)
o =y- (f(x, 0 - 3(251) (2.2)

Where a* and a~ denote the blade upper and lower surfaces respectively, S is the
blade spacing, f(z.t) is the camber line of the blade, T(x) is the specified thickness
distribution, z denotes the axial direction and ¢ is time.

The material derivative is used to describe the blade surface as a material surface
in the fluid. such that

Dat Da~
Dt Dt



The material surface that overlays the upper blade surface takes the following

form
Dat* dat

Dt~ o

and similarly for the lower blade surface,

Vt.Vat =0 (2.3)

Da~ Oa~ ~_ - ;
W—-Tat—‘i‘v -Va™ =0 (2.4)

The velocity vector V+ = (ut.v*) where u and v are the cartesian velocity com-
ponents, in the two dimensional case. on the upper blade surface and similarly for
V= on the lower blade surface. This differs from the analysis of Dang [2|, whereby.

only the no-flux condition was satisfied
V*t.Vat =0

V- -Va~ =0

The remainder of the derivation follows the steady analysis of Dang except that the

unsteady term is maintained.

By combining the blade surface geometry and the material derivative, the camber
line generator can be obtained.

For the upper surface, substitution of Eqn.(2.1) into Eqn.(2.3) yields

Sl (D)o v (03] -0

Sh- (D] Rl Do g b D)o

Since f and T are functions of only x spatially, this equation becomes



The equation for the upper blade surface now takes the form

of + +0f _ 1 u+£ +ot (2.5)

a8 " or 2 dx
Following a similar procedure for the lower blade surface
g—%—u"—ai: +.l u‘£+v— (2.6)
x T
By adding Eqns.(2.5) and (2.6) the camber line generator is obtained
8_f+ (u++u‘)_’di_ (ut —u")dT (vt +v7)

En 5 ar 4 dz | 2 (2.7)

One of the advantages that this form of the equation has over Dang’s steady form

is, that this can now be coupled directly to the flow equations. With this direct

coupling, all of the equations can be solved in a similar manner. The details of the

differences in numerical implementation, between the two methods, will be made clear

in Chapter 3, Section 3.2.3. The advantages in using this formulation will be shown

and discussed in Chapter 4.

2.2 Flow Equations

2.2.1 Integral Form

The conservation of mass, momentum and energy are the equations that govern an

inviscid, compressible fluid and are written, respectively, in integral form for a control

8



volume V as follows:

& ph
%V/Vpdv+a/\7p‘7-fida+a/Pﬁda=0 (2.8)
a

These equations are integrated over the control volume ¥V bounded by the surface
o. The unit vector 7 acts outward normal to do which is a small element of the
surface o. The variable p is the density, V is the velocity vector of the fluid. P is the
pressure and e; = pT + pzé—v is the total energy of the fluid, with T as the internal

energy.

2.2.2 Differential Form

Making use of the divergence theorem on the integral form of the equations (Eqn. 2.3),
the surface integrals can be transformed to volume integrals and the differential form

of the equations can be obtained.

dp ~
— ;; - = 0
at V- V)

DV 1
— - __VP 2.9
Dy pV (2.9)

gt—(et) +V-(eV)=-PV-V

An alternate form of the equations can be obtained from the Reynolds Transport

Theorem and is expressed using index notation

9



D
E(PJ)—O

D oP ‘
Dt (pu:J) = —Jc‘?xi (2.10)
D 0
—D—t (eeJ) = _Ja.'ri (Pu;)

where J is the Jacobian matrix of transformation between Eulerian and Lagrangian

coordinate systems.

2.2.3 Cartesian Coordinates

The differential forms of the equations of motion Eqn.(2.9) can be expressed in the
two dimensional cartesian coordinate system. The following system of first order

partial differential equations is the result,

%—f+g—f+g—5:o (2.11)
Where: ‘ ) . ) .
p pu pu
g={ Y E= put + P s F = Py
pv puv pv? + P
| e | | (ee + P)u | | (e: + P)v |

The vector 0 is the conservative variable vector, the vectors £ and F are the flux
vectors, p is the density, u and v are the cartesian components of velocity in the x

and y directions respectively, P is the pressure and e; is the total energy of the fluid.

10



2.3 System of Equations for Inverse Design

The integral form of the equations Eqn.(2.8) can be represented in the two dimensional

cartesian coordinate system as

ow
ot

Where n, and n, denote the z and y components of the unit vector normal to the

surface and

dv+f (En. + Fn,) do =0 (2.12)

( 3 4 3 s 3
p pu pv
2
- + P - v
=17\ E={ ™ F={ ™ \
pv puv pv® 4+ P
| e | { (et+P)uJ \ (e: + P)v )

For closure, the pressure and total energy of a calorically perfect gas are related

through the equation of state:

= (y—1) (e, —pKé—V) (2.13)

where v = 1.4 is the ratio of specific heat capacities for air.
These equations, coupled directly to the camber line generator (Eqn. 2.7 of Sec-
tion 2.1), combine to make the system of equations needed for the solution of the

inverse problem.

2.4 Classification of Equations

By rewriting the equations of motion in quasi - linear form as follows

Q

b = 0
26—7{

o .
o Vo = (2.14)



Where:

0 1 0 0
A, = a_ﬁ — Tt + 15h? (3 —7u —(y-1v ~v-—-1
O —uv v u 0
| g+ (= DulVPR 9% - 2+ 3u?) —(v - Dww yu
3 . ; 1 -
o
o 00+ —-(v—-1u (83— v —1
| S (= DV —(y— Duww 9% - F P +3?) w

it is possible to classify this system of equations.

The eigenvalues of the two matrices A, and Z—; define the behavior of the solution
to the Euler equations. [f the eigenvalues of the matrices are all real, the system of
equations is said to be hyperbolic. The eigenvalues are obtained as solutions of the
equations

det [A\T-A;|=0 . det N - =0 (2.15)

Where A; and A, are the eigenvalues of A=, and A=y. respectively and T is the identity
matrix.

The eigenvalues of the matrices A and 4=y can be shown to be

where c is the speed of sound and is defined by ¢ = v/YRT.
Advantage is taken of the hyperbolic nature of these equations when constructing

the camber line of the blade. Restating the camber line generator (Eqn. 2.7)

12



of [ wr+un)of  (uwh—un)dl | (v' +u7)
ot 2 Oz 4 dr 2
In the upstream and downstream regions from the blade, the thickness T = 0 so

the above equation takes the form

ﬂ+ (u++u‘)£‘3_£= (vt +v7)

5t 3 bz 3 (2.16)

This equation can now be used to construct a material surface in the upstream
and downstream regions of the flow field. In essence, a massless particle is allowed
to convect from the inlet of the domain to the leading edge of the blade. its path
then defines the material surface in that region. The blade is then constructed using
Eqn.(2.7) until the trailing edge of the blade is reached, then Eqn.(2.16) can be used
to convect the particle from the trailing edge to the outflow boundary and its path
defines the material surface in the downstream region of the flow. This entire surface.

from inflow to outflow is used as the upper and lower boundary of the domain.

2.5 Complex - Lamellar Decomposition

The derivation of this decomposition is needed in order to develop a modified bound-
ary condition in a later section. This decomposition is similar to the one by Gold-
stein [13].
Restating the linear momentum equation of Eqn.(2.10)
D aP

and following the analysis of Yokota [14],[{15] by multiplying it by the Cartesian/Lagrangian

(2.17)

transformation matrix %i_ the equation becomes
7

0z: D
aX, Dt \F*“

8.’1,‘1' 8P
an 61:,-

Jy=-J (2.18)
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Which can be manipulated using the chain rule to obtain

D dz; D [ 0z; oP
Sl AV i 2 QS el Bt B QY il 2.1
Dt {‘"“Jax,-} il by {ax,- } Tox, (2.19)
The order of differentiation in the second term can be changed to give
D ox; d (Dz; oP
_ J—2=\ s J—— N — 29
Dt {”“‘Jax,-} p““]ax,-{ Dt } 3%, (2.20)
Since %’ti = u; and using the chain rule again, the equation becomes
D oz; Jd (uu; oP
- . - = = = 2.21
Dt {’"“J ax,-} aFre { 2 } e (2.21)

As the next step in isolating w;, this can then be integrated in time

D oz; d [uiu; oP
—_ e — - - = — 2
/Dt {p'u,,Jan}dt /pjan { 2 }dt /Jax,- dt (2.22)

and expanding the second term using integration by parts and incorporating the

continuity equation of Eqn.(2.10)

ox; J (uw . oP o

where a; is a vector constant of integration dependent on the material coordinates

(X,Y). The derivative can be pulled out of the integral in the third term to give

dx; d u;Y; aP
J=— g — pf—— - = — 2.2
5%, ~ % T P, s at} =~ | Tax; & (2.24)
The equation can now be divided by pJ
ox; d UU; 1 opP
i — Aj = o { | 2t — — 2.2
Yax, Y = 3%, {5 pJ./ Tox, & (2.25)

where A;, is again, a constant of integration such that 2(A;) = 0. Since the combi-

nation, pJ, is a material quantity, the equation becomes

8:1:,- 1o} UU; J 9P
Oz 4 -9 _[L 2.2
uax, ~ Y= 5x, {[ 5] oJax; & (2.26)
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leading to

uig—;; _ A= % {/ ";“"dt} -/,%;; (2.27)
An expression is now needed for ‘ aP . By combining the first and second laws of
thermodynamics
First Law

1
de =9q—-Pd (;) (2.28)
where e is the total energy of the fluid, ¢ is the heat of the system, P is pressure and
p is density.
Second Law

Ods = dq (2.29)

where © is temperature and s is entropy.

Also from the definition of enthalpy h = T + -’3 the expression can be found as
%dP = dh — ©ds (2.30)
Substitution of this equation into Eqn.(2.27) gives the form

or; 0 Ui, oh Js ‘
uiﬁ;—Aj—a‘—Yj/Tdt—/{an—Gfdz}dt (2.31)

The terms can be collected and represented as

dz; 0 Uil .
By defining the following Weber Transformations
D<D Uu;
D=2 "
Dn
Dt~ °
Eqn.(2.32) can be rewritten as
oz; Dn 0ds
“ax, +/ Dt 3%, 2t (2.33)
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The last term can be expanded using the chain rule to give

dz; ¢ D ( 0s D ( ds .
wox, =+ ax + {ﬁ ("ax,-) "Dt (ax,-)}"t (234

which can be represented, by exchanging the order of differentiation on the last term,
u"‘—-_A’+aX,- +/Dt (77

ds d (Ds o
9x, ax,-) i~ | "5, (Bt') a  (235)

Then Eqn.(2.35), which, when multiplied by %(i,' to isolate u; and given that an

as

inviscid, nonconducting fluid implies

Ds
D"
becomes the complex-lamellar decomposition
6X j n Jds
-~ dx; 7 dz; T’Bxi

(2.36)

[t is this form of the equation that will be used to construct a new boundary condition
for transonic turbine blades. The reason this is needed will be discussed in a later

section.

2.6 Nondimensionalization

The non-dimensional form of the equations can be obtained by using the dimensional

variables
P, = upstream stagnation pressure
T, = upstream stagnation temperature
R = universal gas constant
C = axial chord length

to non-dimensionalize the variables

16



=X =_¥
= YT7C
7= u 7= v
- VRT, - VRT,
- P _ _ pRT,
°=® P77R

Substitution of these nondimensional variables into the inverse design equations

results in a set of equations that look identical to the dimensional form of the equations
(Egn.(2.12) and Eqgn.(2.7) ) .
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CHAPTER 3

NUMERICAL APPROXIMATION

3.1 Time Marching Scheme

The multi-stage scheme of Jameson et.al. [11] is used to converge the solution to
steady state. Being an explicit scheme, the solution is known at the current time

level V, and is used to advance the solution by At to give the solution at time N + L.

. v
W= (3.1)
{ f }

Where V is the cell volume, @ is the conservative variable vector and f the camber

Defining the vector

line. The following 4 - stage scheme is used to advance the inverse design equations

in time with time step At

we — wv

W = WN —a At RW®)

Ww® — WN - a, At RWW) (3.2)
W® = WN_a; At RW®P)

W = WN -, At RW®)

WN+I — [,'{/(4)
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Where the residual is defined as

o [ Y& ) _ —~ §(Eii, + Fiiy,) .
I U B O Y N Ao P P O T :
ot 2 3 4 o 2

The stage coefficients (a) are set for both time accuracy and convergence accel-
eration. The stage coefficients a3 = 3 and @y = 1 are used to maintain second order

and as = 1, are used for

time accuracy and the remaining two coefficients, a; = 1 3

1

convergence acceleration.

3.2 Spatial Discretization

3.2.1 Finite Volume Discretization of the Flow Equations

The spatial discretization formulation used for the flow equations is the finite volume
scheme. In using this scheme the entire domain is divided up into small control
volumes (or cells) and the integral equations are applied to each cell. Both the
volume integral and the surface integral of Eqn. 2.12 contain spatial terms and require

attention here. Consider the following quadrilateral control volume (i, j)

Figure 3.1: Finite Volume Cell
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Where the indices ¢ and j label the cell centers of the neighbouring cells. n.w.s. e
are the faces of the cell (¢, ) and a, b, ¢, d are the cell vertex. The mean value theorem
is used to approximate the value of the solution at the cell center (i.j). Since the
variable is approximated to have no variation within the cell. the volume integral of

Eqn.(2.12) becomes

/dt dV~—A‘v’

Where V is the volume of a cell with unit depth and is calculated as follows
1
AV = '_Z-lAl'ac Aybd — Azpq Ayac|

Consider the following control surface element s from Fig.(3.1)

Figure 3.2: Control Volume Surface

Where:
AZgp =Ty — Zo

AYab = Yb — Ya

and [, is the length vector of the control volume face ab defined as
[:xb = (Axab)gx + (Ayab)gy

By satisfying the conditions g - .y = 0 and = |l_,;b|, the outward normal vector
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Tiqp Ccan be shown to be
Tlap = (Ayab)é;: + (_Axab)gy

The values of E and F are now required on each face of the cell in order to evaluate
the surface integral. There are two approximations made to obtain these surface
fluxes. First the mean value theorem is used to approximate the variation of the fluxes.
along the faces, as the average value at the center of the face. Second, since only the
cell centered values are known, the mean value on the face must be approximated by
an interpolation scheme using the cell centered values in the neighbouring cells.

This approximation states that the face values are constant along the length of
the face and the integral can be written as

M

‘%‘(E‘ﬁz'l"F";zy)do'z Z(EmAym_Fm A:Z:m)

p m=1
with M as the number of faces on the cell.
For a quadrilateral element
Z (Em Aym — Fn Azp) = (Es Ays — Fs Axy) (3.4)

faces

+ (E. Ay, — F. Azx.)
+ (Ep Ay, — F, Azxy,)
+ (Ew Ayw - Fw Axw)

Using linear interpolation of the cell - centered solution to approximate the face

values as follows:

1 i
Ee = Ei+%.j = §(Ei+1,j + Ei,j) (30)
1
Fe=Fiy; = 5(Fus + Fiy) (3.6)

for the east face of the cell, and similarly for the remaining faces.
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Figure 3.3: Uniform Square Cell

Applying Eqn.(3.4) to the uniform square grid of Fig.(3.3), the finite volume

discretization can be reduced to

(Ee - Ew)Ay (Fn - Fs)Ax
AzAy AzAy

R= (3.7)

since.

Ar =Ty — Lo = —(Tg — T¢)
Ay =Ye ~ ¥ = —(¥a — Ya)
Substitution of Eqns.(3.3) and (3.6) into Eqn.(3.7) reduces the equation to the fol-

lowing central finite difference approximation
Eiy1; — Ei—l,j Fz‘.j+l — Fia’—l
2Ax + 2Ay (33)
Substitution of the following Taylor series expansions for E;;,; and E;_, ;
OF N Axr? 2E + AL BE
Ox 2 OJx? 6 OJx3
OFE Ax?0°E Az6PFE
By =B = B250 + =532 ~ 6 an

and similar equations for F; ;41 and F;j;_,, into Eqn.(3.8) gives the residual of the

R=

Ei+l,j = Ei,j + Al‘

exact equation plus truncation terms
OE OF Ax?8PE Ay d’F

ozt oy T 6 o T 6 o (3.9)

BE=
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The leading truncation terms are shown and are of order O(Az?. Ay?). Therefore,
the finite volume discretization reduces to a central finite difference approximation

on a uniform square grid, which gives second order accuracy spatially.

3.2.2 Artificial Dissipation

Since the finite volume scheme reduces to central differences on a uniform grid. the
addition of artificial dissipation is required to prevent odd - even point decoupling and
shock overshoots. To maintain the conservative form of the equations. the dissipation

is added as follows, suggested by Jameson et. al. [11]
o - o .
/§+}{(Qw+0w)—-0 (3.10)

Where Q is the spatial operator of the original equation and D = d¢ + d, is the
artificial dissipation. A combination of non-linear second and fourth differences are

added in the grid directions (£,7n), for convenience, and are used as follows

ow 3w

— | ~(2) (4) .

de = (& Delnas 86 52 = 9 Dielnar 26° 55 (3.11)
B i o

dn = (51(72) |’\Yl|ma:r An % - 5#) l’\nlmax ATIS d_773> (3.12)

where |Alnqs is taken to be the maximum eigenvalue of the Euler equations in that

cell

I’\£|mar = |Vé| +lal, l’\nlmaz = |Vn| + |ce| (3.13)

The velocities V; and V; are the velocities normal to the cell faces and ¢, and ¢, are

the local speed of sound on the faces. The terms E?) and eg‘) are now defined as
~(2) _ (2 (4) . 4 ~(2)
(CE )i+%,_j = K( ) max [(Uf)i-j y (VE)H-I,J'I ’ (Es )i+%,j = mar [0 . Ii( ) (:E )i+%,j}

(3.14)
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and are used to add the second difference term near shocks to prevent shock overshoots
and remove the fourth difference terms that can be destabilizing in that region. The

values for x®. k"), as recommended by Dang [2| . are

l l
K2 =1 @

2 128
The shocked region is found using the following switching function v

|Pirr; — 2P + Piewl

Ve)ij = 315
(We)es = T T T 2P + 1P (3.15)

which is based on the local pressure gradient.

In the region of low pressure gradient, only the fourth difference term will be used
to prevent odd - even point decoupling which will maintain the second order accuracy
of the finite volume scheme. In a region of high pressure gradient (a shock wave for
example) the fourth difference is turned off and only the lower order second difference

is used to capture the shock by preventing overshoots.

3.2.3 Camber Line Generator

Since the equation is marched in time using the 4-stage Runge-Kutta method of
Section 3.1 only the discussion of discretizing the remaining residual of Eqn.(3.3)

remains. With the spatial operator J., the camber line generator becomes

df (i +ui)of (uf—vu)e:T | (vf +v7) .
dt 2 Az 4 Az + 2 (3.16)

Using the central difference formulation the camber line and the thickness terms are

represented by
bef _ for = fim
Az 1y —Ti
5::T _ Ti-{-l - T'—l
Az Tiy1 — Ti—1
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This discretization along with the addition of a linear, second difference artificial
dissipation term, reduces the method to a first order upwind scheme which keeps the
camber line as smooth as possible.

Discretization of the surface velocities is done in the following manner

| N
uj’ = 3 (u,_.amb + ui_j=2) (3.17)
S e
u; = 5 (umm,b + 'ui,j=my) (318)
; 1
utl:amb = 72- (ui.j=2 + ui,j:my) (319)

and similarly for v* and v~. The velocities u; j_2 and u; j_m, refer to the cell centered
value in the cells adjacent to the upper and lower blade surfaces respectively.

There are several differences between this new formulation of the camber line
generator and the original formulation proposed by Dang. The first of these, being
the treatment of the camber line generator in the transient portion of the calculation.
The original approach was to update the camber line every 2 - 5 iterations of the flow
field. A relaxation factor of between 0.2 and 0.5 was used to damp the predicted values
for stability. With this new approach, the camber line generator is coupled directly
to the flow equations eliminating the need to specify how often the camber line is
updated. Also, the relaxation method is no longer used, instead, stability is governed
by the Courant number limit obtained using Von Neumann stability analysis.

The last major difference is the spatial discretization technique. The original
approach used a zeroth order extrapolation of the cell centered velocities to the blade
surfaces. Using this approximation the steady form of the camber line generator from

Eqn.(3.16) took on the form

(wi j=2 T uij=my) 6z f (Ui.j=2 — uij:my) 0T (v j=2 + U; j:my)
: : = - : : ' 3.20
2 Az 1 Ar * > (320)

The current method is to use Eqns.(3.17), (3.18) and (3.19) for the blade surface

velocities. For comparison purposes only, these can be substituted into the steady
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form of Eqn.(3.16) to give

(uij=2 + Ui j=my) Oz f (Uij=2 — Uij=my) 021  (Vij=2 + Vij=my)
' : = - : : : 3.21
3 Az 3 Az T 2 (3:21)

Using this method, the approximation maintains the second order accuracy of the

finite volume scheme on a uniform grid.

3.3 Numerical Stability Analysis

3.3.1 Flow Equations

The method chosen for the stability analysis of the flow equations is the Von Neumann
method. This method is used for linear. constant coefficient equations so, the following

model hyperbolic equation, representative of the flow equations, will be used
U + cuz = kAL Uprrr (3.22)

The model equation is spatially discretized using central differences and k = kyc

to give
ou; c _ kyc AL _ _ o
3t 2Az ut\-lf-l uf\-/-l) + “A_r‘ ( Uiyo 4u,+1 + 6@V 4ufil + uf‘iz) (3.23)

If the exact solution of the equation is u¥ and the numerical solution is represented

as 7Y then the difference between these values is the error <¥. This can be stated as
oy =ulN -V (3.24)

By substituting Eqn.(3.24) into Eqn.(3.23) the equation can be separated into two
parts. The first is a function of the exact solution u¥ which is equal to zero and can

be removed, leaving an equation that is only a function of the error =¥

ou  du 384u
E—*_ a—-{—kA e =0
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d&';‘ C k4CA.’L‘3
O:E—FE(EﬁI—Eﬁ_I)-FT Et+2 4€l+l+6€ _4€i1\il+ 1_2) (325)

The error term can now be decomposed using Fourier modes

N _ AN e!lﬂ:
N+1 _ AN+ _Ik(i+1)Az
‘:i+l _ A‘ e (l )
The amplification factor G is the ratio of error amplitudes at two consecutive time

levels and is written as
Am
Am—1

By applying the temporal discretization of the 4-stage Runge-Kutta scheme and

Gm —

the Fourier decomposition, setting the phase angle § = kAx, to Eqn.(3.25) the growth

factor can be found using
G =1 — a,C, [Isind + kg (2c0s(26) — 8cosf + 6)] (3.26)
Where C, = "A‘ is the Courant number. The second stage then becomes
G® =1 - a,GVC, [Isinb + ks (2cos(260) — 8cosb + 6))] (3.27)
In general, the stage growth factor can be defined by
G™ =1 - 0,, GI™NC, [I5in8 + k4 (2c0s(20) — Bcost + 6)) (3.28)

where m = 4 for a 4-stage scheme. Upon completion of the evaluation of Eqn.(3.28),

the condition for stability becomes
G| =Gl <1

which states that, for a stable scheme, the error decays with time. The scheme is said

to be unstable if the amplitude of the error grows with time at any phase angle 6.
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Figure 3.4: Growth Factor for Flow Equations with Increasing Courant Number

The stability limit for the Courant number is determined graphically by varying
the Courant number and using o) = {, 02 = },a3 = §,a4 = l and ky = &.

[t can be seen from Fig.(3.4) that the limiting Courant Number is C, = 2.7. At
any Courant number below this limit the growth factor |G| < | and at C,, = 2.8 the

amplitude of |G| goes above one, indicating that this scheme would be unstable at

this Courant number.

To insure the fastest convergence possible, a Courant number that produces the
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smallest area under the growth factor curve is required. Upon inspection of Fig.(3.4)
it can be seen that at C, = 2.0 the area is minimum, therefore the error is reduced
for all phase angles at each time step. This will ensure faster convergence than any

other C,, and it is this number which is used for all calculations.

3.3.2 Camber Line Generator

Von Neumann stability analysis was also performed on a linear, constant coefficient

hyperbolic equation of the form
u +cuy, =0 (3.29)

to obtain a stability condition for the camber line generator.

Using the method of analysis of the previous section (Sec.3.3.1) along with the
upwind spatial and 4-stage temporal discretization on the model equation the growth
factor can be represented by
(1-Cat+icz-LcCi+LCY)
+(Cn = C2+1C3 — L CY) (cos(6) — Isin(8))
+(3C2 - 1 C3 + L C4) (cos(26) — Isin(26)) (3.30)
+ (12— L C4) (cos(30) — Isin(306))
+3: CA (cos(46) — [sin(46))

Since both the phase angle and the Courant number for the limiting case are

G =

1
2
1
6

unknown, one of them must be found graphically. By varying the Courant number
for all phase angles 0 < 6 < « it is determined from Fig.(3.5) that the limiting phase
angle is . Substitution of § = w into Eqn.(3.30) yields

2

ngc;‘,—gcg+2cﬁ—2cn+1 (3.31)

Using the stability condition, |G| < 1, Eqn.(3.31) can be reduced to the following
third order polynomial
C3-2C%*+3C,-3<0
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Figure 3.5: Growth Factor for Camber Line Stability

The roots of this equation can then be found using the cubic formula combined with
the quadratic formula. Only one real root exists and it is this root that is taken to be

the stability limit for the scheme. This root is the limiting Courant number which is

C. = \3/43 +_9\/29 ~ \3/—43 + 9v/29 22 0%
54 54 3
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3.4 Time Stepping

For a time accurate calculation the time step At; ; is calculated for each cell of the
flow field. the minimum time step is then found and the entire domain is advanced
by this minimum time step. For stability reasons. this ensures that all of the cells
are advanced by a time step not exceeding the maximum time step for that cell.
The theoretical wave speed of the flow equations should be the maximum eigenvalue

obtained from the quasi - linear form along a streamline. This is
cw = Vil +Ic|

This is difficult to achieve in practice, so the time step suggested by Jameson is used

and is

Ace
qi:UAye—UAl'g C,,:C‘/Al'g‘f'Ayg At,:m

‘4cell
g = —uly, +vAz, c; =c,/Ax2 +Ay2 At; = ————
J n n 7 n n J |Qj| + lcjl

At At;
At.. =C, =525
tle T Y AL+AL

Where c is the local speed of sound and Ay is the area of the 2-D cell.

The time step for the camber line generator is obtained using the definition of the

Courant number
C fAt
Az

for a 1D equation such as the camber line generator. The wave speed on the camber

Chn =

line , from theory, is defined as
1o,
cr = b(u +u )’

where ut is the axial velocity on the upper surface of the blade and u~ the lower

surface axial velocity. To keep the time step size closer to that of the flow equations,
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the time step used numerically is
L, .
Cr = 5(’& +u ) + Iccambl
where ceams is the speed of sound on the camber line which can be approximated as
L,
Ceamb = 5(0 +c7)

This corresponds to a conservative time step for the camber line but by using this.
the flow field will not be advanced in time with a large difference between the camber
line and the flow field. The other advantage to using this method is that near the
stagnation point at the leading edge the velocity would go to zero resulting in an
infinite time step using the definition of the time step from theory.

When only the steady state solution is required, a method known as local time
stepping can be used. With this method the time step calculated for each cell is
used to advance the solution on a cell by cell basis. This produces a warped time
integration whereby each cell is advanced by a different time step governed by the
local stability requirement. Significant convergence acceleration is a result of using

local time stepping.

3.5 Boundary Conditions

3.5.1 Inflow/Outflow Boundaries

The method used to specify the inlet and outlet boundary conditions is based on the

method of characteristics. The signs of the eigenvalues from Eqn.(2.15) determine

whether information propagates in to or out of the computational domain. If the sign

is positive, information travels left to right and travels in the opposite direction if the

sign is negative. Two possibilities exist for each of the boundary conditions:
Subsonic inflow

For a subsonic inflow condition, three of the eigenvalues are positive so three physical
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conditions must be specified upstream of the domain. The physical conditions chosen
are the stagnation pressure F,, the stagnation temperature T, and the inlet flow angle
3. The fourth boundary condition is obtained using a second order extrapolation to
obtain the static pressure P. The primitive variables p, u, v. e; can now be found using

isentropic relations as well as the definition of the Mach number

S
B _ (1 + 7‘—1‘»»12) T (3.32)
P
[ Sl Y (3.33)
T
m= (3.34)

vy RT

and the following geometric relations using the specified flow angle

14
u——L v=utanpf

1 + tan?0

By using the perfect gas law and the equation of state, the remaining primitive
variables can be calculated as follows
_ P
P=T

e = i +£p(u2+v2)

v—1 2
Once these variables have been found the conservative variables of Eqn.(2.12) are
easily calculated.

Supersonic inflow
For supersonic inflow, all of the eigenvalues are positive which means that four physical
conditions must be specified. In addition to Fy, To and 3 the inlet Mach number M
is chosen as the fourth condition. The above equations can then be rearranged to
give the flow variables on the inflow boundary.

Subsonic outflow
With the subsonic outflow boundary only one physical condition and three extrapo-

lated quantities are required. The physical condition chosen is the back pressure Pygcx
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and p,u and v are obtained from inside the domain using a second order accurate
extrapolation. The one remaining variable e, can be calculated using the equation of
state.

Supersonic outflow
Since all the eigenvalues are positive with supersonic flow. all the variables are ex-
trapolated using a second order accurate method from the interior of the domain to

the outflow boundary.

3.5.2 Periodic Boundaries

The calculation of an entire row of blades can be done by calculating the flow through
two of the blades while enforcing periodicity in the regions upstream and downstream
of the blade since the flow in the passages above and below are also flows through
identical blades. The solution along the bottom edge of the domain is put into the
boundary above the top edge. Similarly, the solution along the top of the domain is

used as the boundary values on the bottom.

3.5.3 Blade Surface Boundary Treatment

[n a conventional calculation, where the solution around a fixed geometry is required.
the boundary condition enforced on the solid surfaces is the no - flux condition. This
can be stated as
V.i=0

where V is the velocity on the surface of the blade and 7 is the unit vector normal
to the surface. Thus, pressure is the only value that is required on the surface of the
blade. All other surface flux values are set to zero to enforce the no-flux boundary
condition and pressure is obtained from the equation of state using a zeroth order

extrapolation of the primitive variables from the adjacent cell center.
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For the inverse problem, the blade is required to produce a specified amount of

work. Flow turning can be related to work through the Euler Turbine Equation
W = mwr AT = mlhg (3.35)

for an axial turbomachine. The variables are: W is the work from the blade row, m
is the mass flow, w is the angular velocity of the blades, r the radial position from
the center of the engine, AT the overall change in velocity across the blade row in the
tangential direction and Ahg the change in stagnation enthalpy across the blade row.

An equation is now needed to impose this flow turning condition on the blade.
Following the steady analysis of Dang [2], but maintaining the unsteady term. the
tangential component of the momentum equation of Eqn.(2.9) can be integrated in
the pitchwise direction. Integrating from the top surface of the blade (+), through
the passage to the bottom surface of the neighbouring blade (~)

~ Dv - JdP
= dy = — —d 3.36
+ Dt 4y /+ dy Y (3.36)
the equation becomes a pressure difference, or jump, across the blade
- Dv
+ - - = — —_— DD Lrd
Pt _ P~ = AP A PGty (3.37)

By defining the massflux averaged pitchwise velocity, T

_ Ji puvdy (3.38)

7 = T(x) =

and differentiating with respect to z, assuming m is constant

dT 9 [ Y.
Mo = 5 /+ puvdy (3.39)

Then using Leibnitz’s theorem on the right hand side of the equation

aw

i /+ ) (% (puv) dy + [(puv)~| % = [(ou)?] dz (340)

m£=
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and expanding using the product rule, the equation becomes

. dv - ov 0 dy~ dy* )
m— = /; [pug + vg(pu)l dy + ,me — puv—_— (3.41)

By adding and subtracting both, p% and p'ugyﬂ and using continuity

..d"U_ - ov ov @ v _(‘_9— @—i ‘
md:r—/ { [at+uax+vay]—pat—pvay+ [— - (m;)]}dy (3.42)

+ (o)) 2 ()]
then collecting terms

_du -[ Dv & 3 _1dy” dyt ., .
mz =/ [ﬁ—a(pv)—%(mﬁ)] dy + [(pw0)™] == = [(pw)*] = (343)

and then expanding this, the equation takes on the form

R o\t _1dy” dy*
moz = . y / pv) +(,0’U) +[(puv)]-%—[(pu ]da:
(3.44)
the derivatives % and % can be obtained from Eqn.(2.1) and Eqn.(2.2) as
dyt* 0 T dy~ 0 T I
w-ml*3) Te=ml-3) (3:49)

Which, when substituted into Eqn.(2.5) and Eqn.(2.6), assuming steady state, become

dyt ot dy- v~
=~ = - = 3.46
dr ut’ dz - (3.46)
Substitution of these equations into Eqn.(3.44) and rearranging yields
- Dv
[ gty =+ / = (ov)dy (3.47)

By substituting Eqn.(3.47) into Eqn.(3.37) the final form of the blade loading equation

becomes

dv -9
AP =iz + A = (pv)dy (3.48)
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which, at steady state, is the same form that Dang has long advocated. This equation
is then used on the boundary of the blade to impose the pressure jump condition.
Using a first order Taylor series expansion, the pressure on the upper and lower blade

surfaces can be obtained

AP
Pt = Py + = (3.49)
AP

where

1
Poamp = 5 (Prj=2 + Pij=my)

The unsteady term of Eqn.(3.48) will help prevent applying a discontinuous bound-
ary condition in time. By adding this term, very little computational time is added
because the unsteady term can be obtained by integrating the residual of the y-
momentum equation which is already known from the previous cycle as follows

~d Residual y—mom eqn
— dy = D
/+ 57 (Pv)dy Xy: Achy Ay (3.51)

Therefore, no additional calculation is needed to obtain this term. The advantages
of using this boundary condition over the steady form used by Dang will be shown in
Chapter 4.

The objective of this inverse design method is to design a blade that produces
a specified amount of flow turning A7 that follows the shape of the input turning
distribution. These values are required input from the designer. The total turning
AT is chosen from the work requirement of that row of blades and the shape of the
distribution is chosen based primarily on designer experience. One family of turning

distribution shapes suggested by Dang [2] are

DK (-2 (352)
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With this, the kutta condition is satisfied at both the leading and trailing edges and
m and n are used to adjust the general shape of the curve as well as moving the

location of the maximum value. The constant K is defined as

K = AT (3.53)

?x’"(l — r)*dx

le

where

te
Av:le/%dx

The value of g must be adaptive to the flow field such that, the total turning require-
ment is satisfied. This is done by generating the average swirl velocity distribution

T(x) in the bladed region

o [ du Y e
o(z) = 7(le) + / Tdo (3.54)

This equation states that the average swirl velocity starts at 7(le) at the leading edge,
which is obtained from the solution of the flow field, and is incremented along the
axial chord of the blade by the partial area under the turning curve until the trailing
edge value is obtained. which is 7(te) = T(le) + AT.

The turning distribution that satisfies both the total turning and the turning

shape can then be obtained by differentiating 7(x) with respect to z

)

[t is this equation that is used in Eqn.(3.48) to generate the blade pressure boundary
condition.

For the inverse method, the blade surface is permeable during the iteration process.
The blade geometry is updated by aligning it with the flow during the transient time

marching process. When the calculation has converged the blade is a material line
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in the flow hence, satisfying the no-flux boundary condition of a solid surface. Since
the blade is permeable, all of the primitive variables must be given as boundary
conditions on the blade surface. The first variable is the pressure which enforces the
turning requirement and is obtained from Eqn.(3.49) and Eqn.(3.50). The second
variable is the y-component of velocity v, this can be calculated using a modified
camber line generator. Instead of adding the equations together. Eqn.(2.6) can be

subtracted from Eqn.(2.5) to produce
of (u* +u7)dT
oz 2 dr

this can then be used to construct the v velocity on the upper and lower blade surfaces

Av =vt —v™ = (u+ - u‘) (3.55)

using a first order Taylor series expansion as follows

+ Av

U' = Ueamb + —
2

_ Av

UV = Ucamb — T

where
1
Ucamb = 5 (Vi j=2 + Vi j=my)

This velocity jump condition is similar to the treatment for the pressure jump condi-
tion. The third value is obtained from interpolation of the u velocity as follows

define the camber value as
Ucgmp = 5 (Ui j=2 + Ui j=my)
and then the blade values can be obtained from
L1
u = 5 (u‘i.j=2 + ucamb)

u = 5 (ui,jzmy + uca.mb)
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The fourth and final boundary condition comes from a zeroth order extrapolation of
density, p, from the adjacent cell center value. To find the last primitive variable, the
equation of state is used to calculate e; on both the upper and lower blade surfaces.
With all of these values defined, all of the boundary conditions are specified for the
inverse problem.

To demonstrate the versatility of this method and to further explain the pressure
boundary condition, three cases are shown using Eqn.(3.52) with different values for
m and n. All three cases have the same total turning specified AT = —0.2 hence.
produce the same amount of work. This value, along with the chosen thickness
distribution of Fig.(3.6) leaves only the specification of the turning shape distribution
to define the inverse problem.

This thickness distribution was chosen based primarily on structural and manu-
facturing constraints. It has a rounded leading edge which, for subsonic inflow. allows
for a wider operating range of incidence angles. These cases all have an inlet Mach
number of 0.342, spacing to chord ratio % = 1 and an inlet flow angle 3 = 0°.

Case 1: Leading edge loaded blade.

Using Eqn.(3.52) with m = % and n = 2 the turning shape distribution that corre-
sponds to a leading edge loaded blade is shown in Fig.(3.7). By using this shape.
most of the flow turning is accomplished in the first 50 % of the chord. The Mach
number on the top surface of the blade is the critical value in determining whether the
flow will separate in these cases. A steep gradient is more likely to cause separation.
For this case, the flow is accelerated quickly and reaches its maximum at about 23 %
chord as shown in Fig(3.8). The remainder of the blade is used to bring this value
down slowly to avoid high pressure gradients.

Case 2: Symmetrically loaded blade.

Using Eqn.(3.52) with m = | and n = 1 the turning distribution that corresponds to

a symmetrically loaded blade is shown in Fig.(3.9). This shape has an equal weighting
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Figure 3.6: Thickness Distribution Used for Testcases

of flow turning on the first and last 50 % of the chord. The gradient on the top surface
in Fig.(3.10) is steeper than that of the leading edge loaded blade which would cause
it to separate sooner.

Case 3: Trailing edge loaded blade.
Using Eqn.(3.52) with m = 2 and n = £ the turning distribution that corresponds
to a trailing edge loaded blade is shown in Fig.(3.11). Looking at the top surface

Mach number in Fig.(3.12) this blade, in a viscous flow, would most assuredly cause
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separation and would not produce the required turning.

By comparing the results from these three cases it is clear that this inverse method
produces blade geometries that allow control of the acceleration and deceleration of
the fluid. With experience, the designer can design a blade that produces the specified

amount of turning while controlling the adverse pressure gradient to avoid separation.

Text resumes on page 49
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When the turning and thickness distributions are specified, resolution of the input
becomes an important factor. Since the x locations of the grid are not known until
the grid has been generated with the code, the distributions must be specified using
designer chosen x locations. The data is then interpolated onto the grid locations

using a Taylor series as follows

— 2 S 3 3

where f; is the value of the function on the grid points z,, f, is the value of the
function on the input points x,.

[f too few points are specified on the distributions, the turning and thickness will
not be transferred accurately from the arbitrary x locations to the grid locations
resulting in a loss of accuracy in the entire flow field. To show this effect, two cases
are presented, one with 41 and the other with 121 points on the turning and thickness
distributions. Both cases have 64 grid points in the bladed region. Both cases have
exactly the same input specified for the flow field, the only difference is the resolution
of the two distributions. The two turning distributions are shown superimposed in
Fig.(3.13). The differences between these two plots looks to be negligible except at the
leading edge region where there is some difference. The two thickness distributions
are shown in Fig.(3.14). Again the only difference appears to be at the leading edge.
The Mach number distribution comparison of the pressure side of the blade is shown
in Fig.(3.15). This plot shows a significant difference in the entire flow field. The flow
field is affected so severely that both the upstream and downstream Mach numbers are
different. A detail view of the leading edge region is shown in Fig.(3.16) where, the 41
point distribution has produced a large overshoot of the Mach number. By increasing
the resolution of the distributions, the blade can be more accurately transferred to

the grid locations resulting in a more accurate simulation.
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3.5.4 Blade Surface Boundary Treatment: Transonic Flow

In principle, both the steady and unsteady forms of the pressure boundary condi-
tion are applicable to all flow, but the resulting transonic blade designs are often
impractical to use. Since these conditions are based on specifying a given turning
distribution, a continuous blade geometry can only be obtained from a discontinuous
turning distribution. Thus, without knowing the effects of the shock a priori. there is
little chance of designing a smooth blade shape. While these designs are interesting,
they result in flows that are unlikely to be achieved in practice. So instead, the pres-
sure boundary condition is modified for transonic flows.

From the complex-lamellar velocity decomposition of Sec.(2.5), a new treatment for
transonic blades can be obtained.

Restating the decomposition of Eqn.(2.36)

felo) 0X; ds
i = A A==
u 81:,— + I 81‘1' + nax,-

(3.36)

Since the last term can only exist downstream of a shock. in inviscid flow. this equation
can be reinterpreted as

Js

al'i

where u; is the velocity field that would otherwise exist in a shockless flow. Follow-

(3.57)

U =u; + 1

ing Yokota [16] and substituting Eqn.(3.57) into the linear momentum equation of

Eqn.(2.9) the equation becomes

Du? + D ds | _ 1oP (3.58)
Dt Dt "ax,-  pOx; -
which can be expanded to
Dug Dn Js D [ds) 0P )
?Dt " PDiar, " Dr {6_:::1} ~ oz, (3:59)

Since z; are the coordinates in the Eulerian sense and % is a material derivative, the
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third term must be expanded as follows

D Js _ _?_ Js 4 i Js
ant B:r,- - pnat 8:1:,- mﬂ]ax,- 81‘,~

_ (0, .9 (95
B 'Dndt a.'L‘i pnu](?xi ..'L‘j
du;

3
(05, 0 (, 85\ ou 0
= Pg oz; ‘”’az,- 7 Oz ; Ox; dx]
B d [0s Js ; 0s )
= g {5 + pnu,a—x]_} 1 3z: 9, (3.60)
Which results in Eqn.(3.59) taking on the form
Dug Dn 39s d (Ds du; [ 0s | 9P
"Dt "Dt Oz; +P778 {Dt} P o {"ax,-} T Oz (3.61)
Using the Weber transformation from Sec.(2.3)
Dn
Z1T_9
Dt
where © is temperature and for an inviscid fluid
Ds
i 0
the linear momentum equation becomes
Dug Js Ou; | Os aP
T — —_ — . R 2
p Dt +p68$i pax,- {”axj} ox; (3.62)

Integrating the y-component of this equation in the pitchwise direction gives

du; [ Js )
—dy /paxl {"ax, } dy (3.63)

Following a similar procedure from Sec.(3.5.3) starting at Eqn.(3.36) a modified

boundary condition for transonic flow is obtained

AP = + / 8t(pvo)dy+ / pe dy / a“’{ ?—i}dy (3.64)

61']'
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An expression for -g—; must now be found. Using Eqn.(2.30) the differential element

ds can be found as

Using the following relations for a perfect gas

dh = C, d©
y = B9
P

where C, is the specific heat capacity of the fluid in a constant pressure process. the

equation becomes

do dP
ds = CPE' - R?
Integrating this from state 1 to state 2 assuming C,, is constant
O, P -
So — S =Cln(—)—Rln<—) 3.6
2 1 P el P1 ( '3)
Also,
R=C,-C,
G,
e

where R is the gas constant, C, is the specific heat capacity of the fluid in a constant
volume process and 7 is the ratio of specific heats. Substitution of these relations

into Eqn.(3.65) gives the entropy change of a perfect gas

As= Rin {(g—?y{_‘ (%)} (3.66)

The entropy term of the boundary condition, Eqn.(3.64), can now be approximated
by
r . 0Os —. _As
pPO—dy =) pO—Ay (3.67)
+/ Jy ; Ay
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Since
P = pRO

and substitution of the equation for As the term can be approximated numerically

=2 _
e, + -t Pi ]_l
pe @ Pin ’2) (' ﬂ (3.68)
'/ Z et.j—% 13:.]'+%

where the subscripts (i, j + ) and (¢, j — 1) refer to the cells upper and lower surface

as

respectively.
Only the last term of Eqn.(3.64) still requires attention. The integrated shock

velocity term can be expressed as

Ou; _ [ Ou, [ 3s .
/p { }dy— J "5y {ng}dy (3.69)

where 7 is the direction tangent to the flow. Given that the velocity component
generated downstream of a weak normal shock is likely to be constant, the following

expression is obtained
Js
778:1:,-

where c is a scalar constant and H(z — z,) is a Heaviside step function triggered at

=u'=cH(r—x,) (3.70)

the shock location x,. Therefore, the integrated shock velocity term can be modeled

as

[pau’ { }dy ~c H(z - z,) /pa(.;;’dy (3.71)
+

For a weak transonic flow, whose shock is nearly aligned in the pitchwise direction

this model can be further reduced to
du;
/p B gy~ k H(z — ) (3.72)

where k is scalar constant chosen to keep the blade geometrically continuous. Thus,

for a transonic flow, the pressure boundary condition becomes
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AP:m%+[§t—(pvo)dy+j

-~
P In ©.542\ " [P
Yij+i —¥Yij-1 ei.j—% L, j

—k H(x — x,)

i)
[
+
[KIET X1
SN——
A
I
<

(3.73)
This new treatment allows the inverse design of a blade whose geometry is both
shock.

continuous and faithful to the prescribed flow turning distribution upstream of the



CHAPTER 4

RESULTS

4.1 Effect of Material Camber Line Treatment

The new treatment of the camber line as a material line in the fluid is compared
to the original approach, whereby, the upstream grid line was generated using a
straight line extrapolation based on the inlet flow angle. Four different test cases are
presented: two in subsonic flow and one in each of the transonic and supersonic flow
regimes. When there is any upstream influence from the blade, the accuracy of the
calculation can be improved and the time for convergence can be decreased. This can
be attributed to the fact that the grid line is a material line, essentially making the
calculation 1-D along the periodic boundary. All of the design calculations presented
here were performed on sheared H-type meshes. A typical sheared H-type mesh is
shown in Fig.(4.1). The numerical domain consists of 128 X 32 cells with 64 cells in
the bladed region. The domain was extended one chord upstream and downstream of
the leading and trailing edges, respectively. Grid lines were clustered near the leading

and trailing edges in the x-direction and near the blade surfaces in the y-direction.
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4.1.1 Subsonic Testcase: Turbine Blade at Mach 0.3

The first subsonic case is a low mach number turbine blade designed to produce a mass
flow of m = .3527’%% for a specified back pressure of P = 0.9F,. The spacing to chord
ratio is set at unity and the inlet flow angle at 3 = 0°. The turning distribution used
is generated from £ = Kz™(1 — z)" where m = sandn = %, with the total turning
specified as AT = 0.25+/RT, and is shown in Fig.(4.2). The thickness distribution used
is shown in Fig.(4.3) with a maximum thickness to spacing ratio of I!g.“ = 0.25, this
blade has a rounded leading edge and a sharp trailing edge. This turning distribution
produces the converged blade shown in Fig.(4.4) which corresponds to a total turning
of 33°. The converged flow field is shown in Fig.(4.5). The stagnation point near
the leading edge of this blade is slightly closer to the pressure side of the blade. not
directly on the leading edge.

This calculation was done using both the original treatment of Dang and the new
material camber line. The differences between the two upstream grid lines is shown
in Fig.(4.6). With the upstream influence this blade generates, the flow starts to
turn before it reaches the blade, moving the stagnation point off the leading edge.
With the material camber line, the grid line follows the flow to the stagnation point.
The original treatment used a straight line extrapolation based on the inflow angle.
Accuracy is one of the advantages in using this new method over the straight line
method. This can be seen from the surface Mach Numbers for the two camber treat-
ments shown in Figs.(4.7) and (4.8). The primary difference in these plots is near
the leading edge. A detail view of the comparisons at the leading edge are shown in
Figs.(4.9) and (4.10). Globally, these two methods produce a flow field that has an
inlet Mach number of 0.31 and an exit Mach number of 0.39, but, the leading edge is
captured much better with the material camber line. The original method produces

an overshoot at the leading edge which introduces an error into the calculation. Due
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to this overshoot the difference between the Mach numbers at the leading edge is 0.08.
The effect this has on the convergence to steady state is shown in Fig.(4.11). The
error is reduced much more rapidly with the material camber line generator.30000
iterations instead of 60000, because the leading edge is captured

more accurately. This case produced the largest difference between the upstream
grid lines which corresponds to the biggest difference in surface Mach number plots

and the convergence acceleration.

Text resumes on page 73
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4.1.2 Subsonic Testcase: Compressor Blade at Mach 0.5

The next subsonic case is a compressor blade designed to produce a mass flow of
m = .443% for a specified back pressure of P = 0.85F,. The spacing to chord
ratio is set % = 0.9 and the inlet flow angle at 3 = 20°. The turning distribution
used is generated from £ = Kx™(1 — z)* where m = } and n = I, with the total
turning specified as A7 = —0.1/RT, and is shown in Fig.(4.12). The thickness
distribution used is shown in Fig.(4.13) with a maximum thickness to spacing ratio
of Tms= = .15, this blade has a rounded leading edge and a sharp trailing edge.
This turning distribution produces the converged blade shown in Fig.(4.14) which
corresponds to a total turning of 10°. The converged flow field is shown in Fig.(4.15).

The stagnation point is very close to the leading edge of this blade so that there
is little difference between the two camber lines generated as seen in Fig.(4.16). The
surface Mach numbers shown in Figs.(4.17) and (4.18) show that the two flow fields
are very similar. Upon closer inspection of the leading edge, Figs.(4.19) and (4.20),
there is very little difference between them. Since the straight line method happens
to coincide with the material line, the leading edge Mach numbers are already well
captured. Meaning, there are no overshoots or oscillations as in the previous case
which caused errors in the leading edge region. Therefore the convergence associated

with this blade is affected only slightly with the use of the material camber generator

as seen in Fig.(4.21).

Text resumes on page 84
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4.1.3 Transonic Testcase: Turbine Blade

The next case is a transonic turbine blade designed to produce a mass flow of m =
.228% for a specified back pressure of P = 0.53F,. The spacing to chord ratio is
set 2 = 0.5 and the inlet flow angle at 8 = 15°. The turning distribution used is
generated from £ = Kcos(%E) , with the total turning specified as AT = —0.933+/RT,
and is shown in Fig.(4.22). The thickness distribution used is shown in Fig.(4.23)
with a maximum thickness to spacing ratio of Imsﬂ = 0.25. This turning distribution
produces the converged blade shown in Fig.(4.24) which corresponds to a total turning
of 61°. The converged flow field is shown in Fig.(4.25).

The effect that the material camber line has on the flow field accuracy and conver-
gence acceleration is not restricted to subsonic flows. In this transonic case, the mate-
rial line is significantly different than the straight line method as shown in Fig.(4.26).
The difference is smaller than that of the first subsonic case so, the effect will be
smaller but still present. Upon inspection of Figs.(4.27) and (4.28), it can be seen
that a similar problem exists at the leading edge. Looking at the detail views of the
comparisons between the two methods, Figs.(4.29) and (4.30), the same overshoot
is present on the original blade, where as, the Mach numbers on the material line
case come into the leading edge smoothly. Again, as expected, the convergence of the
new treatment cuts the time to converge from 55000 iterations to 32000, which is a

significant reduction in computational time.

Text resumes on page 95
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4.1.4 Supersonic Testcase: Compressor Blade

The next case is a fully supersonic compressor blade designed to produce a mass flow
of m = .147;4% for a specified inlet Mach number of M = 1.7. The spacing to chord
ratio is set % = 0.35 and the inlet flow angle at 3 = 35°. The turning distribution used
is generated from % = Kz™(1 — z)" where m = 1 and n = 1, with the total turning
specified as AT = —0.833+/RT, and is shown in Fig.(4.32). The thickness distribution
used is shown in Fig.(4.33) with a maximum thickness to spacing ratio of I%n =0.15,
this blade has sharp leading and trailing edges. This turning distribution produces
the converged blade shown in Fig.(4.34) which corresponds to a total turning of 29°.
The converged flow field is shown in Fig.(4.35).

This case was done because there is no upstream effect in supersonic flow. To
verify the previous results. both the original straight line method and the new ma-
terial camber line method should produce identical results because the straight line
is already the material line. The two grid lines upstream can be seen to be identical
from Fig.(4.36) as was expected. The surface plots of Figs.(4.37), (4.37), (4.37) and
(4.37) also show the identical results. Therefore, the convergence of the straight line
method can not be improved by the new material line method. In fact the material
line method took 3.5 % longer, 2900 iterations instead of 2800 iterations to reduce
the error by 13 orders of magnitude.

The material camber line generator has shown to be very effective in flows where
the stagnation point moves off of the geometric center of the blades leading edge. This
includes both subsonic and transonic flows but excludes all supersonic flows because
there is no upstream affect present to shift the stagnation point. The straight line
method, in supersonic flow is already the material line upstream of the blade and can
not be improved using this new technique.

Text resumes on page 106
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4.2 Unsteady Pressure Treatment

This test case is presented as more evidence of the effectiveness of the material camber
line generator and also the effect of including the unsteady pressure term in the
pressure boundary condition. This calculation was also performed on a sheared H-
type mesh. The numerical domain consists of 128 X 32 cells with 64 cells in the
bladed region. The domain was extended one chord upstream and downstream of the
leading and trailing edges, respectively. Grid lines were clustered near the leading

and trailing edges in the x-direction and near the blade surfaces in the y-direction.

4.2.1 Subsonic Testcase: Turbine Blade at Mach 0.5

The next subsonic case is a low mach number turbine blade designed to produce a
mass flow of m = .4177‘%% for a specified back pressure of P = 0.85F,. The spacing
to chord ratio is % = 0.9 and the inlet flow angle is set at 8 = 20°. The turning
distribution used is generated from jz—i = Kcos(%), with the total turning specified
as AT = —0.4+/RT, and is shown in Fig.(4.42). The thickness distribution used
is shown in Fig.(4.43) with a maximum thickness to spacing ratio of I%n = 0.15.
This turning distribution produces the converged blade shown in Fig.(4.44) which
corresponds to a total turning of 44°. The converged flow field is shown in Fig.(4.45).
Originally a formal derivation of the unsteady pressure boundary condition was
needed to develop the transonic design pressure boundary condition. The unsteady
pressure boundary, however has proven to be helpful in convergence acceleration.
This test case further supports the material camber line method in that it pro-
duces results expected from the analysis of the previous testcases. The stagnation
point on this blade has not moved off of the leading edge as much as the previous
test case hence, a smaller difference is expected between the upstream grid lines.

This is indeed the case, as shown in Fig.(4.46). This also suggests that, because the
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original grid line is closer to the material line that the error in Mach number at the
leading edge is also smaller. The Mach numbers on the surfaces of the two blades
are shown in Figs.(4.47) and (4.48). Again, there is a problem at the leading edge.
Although, as shown in Figs.(4.49) and (4.50), the difference is much smaller than the
first case presented. The convergence plot of Fig.(4.51) shows a substantial decrease
in computational time, 85000 iterations down to 55000 iterations. Also, by compar-
ing the convergence for the material camber line method and the material camber
line method plus the unsteady pressure boundary condition the time was decreased

further to 42000 iterations.

Text resumes on page [18
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4.3 Transonic Blade Design

[n this next series of testcases, the use of the new transonic pressure boundary con-
dition is shown to be effective in the design of a transonic turbine blade. With the
original pressure boundary condition, having specified a continuous turning distribu-
tion, the geometry of the blade designed was discontinuous due to a strong passage
shock. The result of the original method is presented first, then the option of design-
ing the blade for the specified turning in subsonic flow and analyzing this blade in the
transonic regime is presented followed by the application of the new boundary condi-
tion that is adaptive to the flow conditions which essentially specifies a discontinuous
turning distribution in order to obtain a continuous blade geometry.

All test case calculations were performed on a sheared H-type mesh. The numerical
domain consists of 192 X 32 cells with 128 cells in the bladed region in order to
capture the shock more accurately. The domain was extended one chord upstream and
downstream of the leading and trailing edges, respectively. Grid lines were clustered
near the leading and trailing edges in the x-direction and near the blade surfaces in

the y-direction.

4.3.1 Original Code

The transonic turbine blade was designed to produce a mass flow of m = .2537‘%%
for a specified back pressure of P = 0.65F,. The spacing to chord ratio is g = 0.35
and the inlet flow angle is set at 8 = 20°. The turning distribution used is generated
from g = Kcos(%5), with the total turning specified as A7 = —0.783v/RT, and is
shown in Fig.(4.52). A maximum thickness to spacing ratio of Tme= = 0.3 is also
used. This turning distribution produces the converged blade shown in Fig.(4.53)
which corresponds to a total turning of 63°. The converged flow field is shown in

Fig.(4.54).
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Having specified the continuous turning distribution of Fig.(4.52), the blade pro-
duced from this design method is discontinuous. For an inviscid flow. as in this
calculation, the actual total flow turning would be 63°, but testing of this blade in
a viscous fluid, separation would most assuredly occur. The total turning would be
approximately 52° with more significant losses due to the large wake produced from
separation. The Mach numbers on the surface of the blade are shown in Fig.(4.53),
where it can be seen that the shock hits the blade surfaces at precisely the same loca-
tion due to the kink in the blade. The actual flow turning distribution produced from
this blade can be seen in Fig.(4.56). For the most part the turning corresponds to the
specified turning distribution except at the shock location where a large oscillation is

present. This is also the location of the discontinuity in the blade.

Text resumes on page 125
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4.3.2 Subsonically Designed Blade

The first option for generating a continuous blade was to raise the back pressure
to P = 0.69F, in order to get a fully subsonic flow. The blade geometry is then
guaranteed to be continuous. This blade profile is then analyzed in a transonic flow
to produce the required flow conditions mention in the previous case. All of the
specification of the previous case were used to design the blade in subsonic flow,
except for the back pressure.

The converged blade can be seen in Fig.(4.57) which corresponds to a total turn-
ing of 65°. This blade was then analyzed using a back pressure of P = 0.62F, to
try a match the mass flow of the previous case. The flow becomes choked and the
maximum mass flow attainable from this blade is m = .2467%% which is 2.8 % off
the required mass flow. This choking is due to the shock that was formed in the
passage seen in Fig.(4.58). The mach numbers on the blade surfaces are shown in
Fig.(4.59). Along with the mass flow difficulty, there exists another problem with
this design procedure: the designer has lost the control of the turning distribution.
The actual turning distribution of Fig.(4.60), shows that the blade designed does not
produce the required turning shape. This is a significant disadvantage in the design
of turbomachine blades in that. the designer has lost control of the relation between

the specified turning distribution and the one that is actually produced by the blade.

Text resumes on page 130
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4.3.3 New Treatment

With the application of the new transonic pressure boundary condition a continuous
blade profile can be designed that follows the specified turning distribution. I[n addi-
tion to specifying the turning distribution, the constant for the modeled term must
also be specified.

For this case the constant used in the model equation is chosen to be ¢ = 0.43 and is
applied using the Heaviside step function starting at the shock location. The combined
effect of these two specifications is shown on the turning distribution in Fig.(4.61).
This produces the converged, continuous blade shown in Fig.(4.62) which corresponds
to a total turning of 52°. The converged flow field is shown in Fig.(4.63). The mass
flow of this case matches the required mass flow of the original case, m = .2537’%{%.
The total turning of this case and the original case would be approximately the same
in a viscous flow. The biggest difference would be the drag losses generated from
flow separation in the original case. Thus, this method would produce a blade that
follows the prescribed flow turning, unlike the previous option, and have less viscous
drag than the original discontinuous blade. The surface Mach numbers are shown
in Fig.(4.64) where it can be seen that the passage shock is much stronger in this
case. The actual turning distribution of Fig.(4.65) shows that in order to design a

continuous blade with a passage shock, the turning shape must be discontinuous.

130



Blade Loading

1.5F

o
(¢4]
T

o
1

-0.5 ¢

0.5
Axial Location

131

0.6

0.8

Figure 4.61: Turning Distribution Including Model of Shock Velocity Term



0-4 T T T T T T T T T

0.3r

0.2

Blade Height
1=y

S
(Y]

0.3

04}

Il 1 L 1.

1. 1 1

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Axial Location (x/c)

Figure 4.62: Converged Continuous Blade Shape Using Transonic Boundary Condi-

tion

132



Blade Height

0.8

Figure 4.63

0.5 1
Axial Position (x/c)

: Mach Contours in the Blade Passage

133

1.5



1.8

1.6

1.4

1.2

Mach Number

0.2

——o Suction Side

G———=_ Pressure Side

Figure 4.64: Mach Number on Blade Surfaces Using Transonic Boundary Condition

! ! 1 1
-0.5 0.5 1 15

Axial Location (x/c)

134



Blade Loading

2 T L] ) 1 1 L] 1 L )
1.5F
[¢
1 |
o
0.5
o -
3
-0.54 4
-1 -
_1 .5 L L | I i 1 1 1 L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Axial Location

Figure 4.65: Actual Turning Distribution Generated Using Transonic Boundary Con-

dition

135



CHAPTER 5

CONCLUSIONS

With this work, a new Lagrangian based inverse technique for constructing turbo-
machinery blade geometries has been presented. This method, which consists of
a 2-D flow field integrator, a camber line generator and a passage averaged mo-
mentum/pressure boundary condition. generates a blade geometry in response to a
prescribed flow turning distribution.

By describing a blade geometry as a mean camber line with a specified thick-
ness distribution. it has been shown how this camber line can be obtained from a
Lagrangian analysis that overlays the blade onto a material line that convects from
inflow to outflow.

The first testcase presented was a blade in subsonic flow that showed a substantial
difference between the straight line extrapolation method and the new material line
treatment of the upstream grid line. This suggested that the stagnation point moved
away of the geometrical leading edge which was indeed the case. By using the material
line treatment, the convergence time was reduced to 50% of the original method and
the flow field was captured more accurately at the leading edge of the blade.

The second test case was also a subsonic blade, but there was very little difference
between the two upstream grid lines. This meant that the stagnation point had not

moved off of the geometrical point. Since the flow was essentially coming into the
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blade along the straight line, the flow field was well captured at the leading edge
region. There was little improvement in the convergence rate for this case.

To show that this method was not restricted to the subsonic regime. a third
testcase was presented in transonic flow. Again, it was shown that because of the
differences between the upstream grid lines using the two methods, the flow field was
captured more accurately at the leading edge. This testcase showed the convergence
time using the material line treatment decreased to about 58% of the original method.

As a final test of the material line treatment, it was proposed that, in supersonic
flow there is no upstream influence from the blade, therefore the converged upstream
grid line using the material line treatment should be the same as that of the straight
line extrapolation method. This is precisely what the results show. The blade geome-
tries and the flow fields of the two methods are practically identical. The convergence
times showed that the material line treatment was about 8% slower.

The next approach used, was to include the unsteady term in the pressure bound-
ary condition. A subsonic testcase case was presented that showed two things: further
support of the use of the material line treatment of the camber line and the conver-
gence acceleration achieved using the unsteady pressure boundary condition. It was
first shown that, by using the material line method alone, the convergence time was
reduced to approximately 65% of the original method. Secondly, with the combi-
nation of the material line treatment of the camber line and the unsteady pressure
boundary condition the convergence time was reduced to about 49% of the original
treatment.

These testcases show a direct correlation between how far the stagnation point is
moved away from the geometrical leading edge and the convergence acceleration that
can be achieved using the material line treatment of the camber line.

Finally, a new unsteady pressure boundary condition was derived from a complex-

lamellar decomposition of the flow field, and its passage average flow turning. The
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need for this method was discovered when the design of certain transonic testcases
was attempted. When a continuous loading distribution was specified, and a strong
passage shock was present the resulting blade shape was discontinuous.

The first test case of this series showed the resulting blade shape of the original
calculation. A discontinuity in the blade geometry occured at the shock location.
The use of this blade in a practical application would be unrealistic because the Aow
would most assurdly seperate in viscous flow creating a large wake. This seperation
would cause the flow to be turned less than originally specified and large viscous losses
would also be present.

The next case presented is the first possible solution to eliminating the blade
discontinuity. First, the back pressure is raised until the flow field is fully subsonic,
the blade geometry is then obtained using the required flow turning specification.
This blade is then put into the code in analysis mode where the back pressure is
adjusted to match the massflow rate. A strong shock was present in the flow passage
which choked the flow resulting in a massflow rate 2.8% lower than required. The
entire blade row would have to be modified by increasing the spacing to chord ratio
in order to match the massflow rate. The second disadvantage to using this option is
that the resulting blade loading shape produced by this blade in transonic flow does
not match that of the specified shape. The designer has lost the direct correlation
between the input loading shape and the shape that is produced by the blade. This
is a significant disadvantage in the design of turbomachinery blades.

The last case presented showed the use of the new pressure boundary condition
obtained from the complex-lamellar decomposition of the flow field. In order to design
a continuous blade, a discontinuous loading distribution must be specified. Without
knowing the location of the discontinuity apriori there is little chance of designing a
continuous blade. This method was shown to be effective by modifying the loading

shape based on the development of the flow field. A continuous blade was successfully
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designed by including the effects of the shock in the loading shape. The advantage this
technique has over the subsonically designed method is that the designer has direct
control of the loading shape obtained from the blade. The only difference occurs at
the shock location. The total turning of this blade would be the same as that of the
original case in viscous flow, but the flow is less likely to seperate, resulting in much

lower losses.
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