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Abstract: Reality capture technologies, also known as close-range sensing, have been increasingly
popular within the field of engineering geology and particularly rock slope management. Such
technologies provide accurate and high-resolution n-dimensional spatial representations of our
physical world, known as 3D point clouds, that are mainly used for visualization and monitoring
purposes. To extract knowledge from point clouds and inform decision-making within rock slope
management systems, semantic injection through automated processes is necessary. In this paper, we
propose a model that utilizes a segmentation procedure which delivers segments ready to classify
and be retained or rejected according to complementary knowledge-based filter criteria. First, we
provide relevant voxel-based features based on the local dimensionality, orientation, and topology
and partition them in an assembly of homogenous segments. Subsequently, we build a decision
tree that utilizes geometrical, topological, and contextual information and enables the classification
of a multi-hazard railway rock slope section in British Columbia, Canada into classes involved in
landslide risk management. Finally, the approach is compared to machine learning integrating recent
featuring strategies for rock slope classification with limited training data (which is usually the
case). This alternative to machine learning semantic segmentation approaches reduces substantially
the model size and complexity and provides an adaptable framework for tailored decision-making
systems leveraging rock slope semantics.

Keywords: 3D point cloud; voxels; supervoxels; rock slope management; classification; knowledge
extraction; semantics; object-oriented; change detection

1. Introduction

Reality capture technologies, such as both terrestrial and aerial laser scanning and
dense stereo-matching (also known as close-range sensing [1]), have become increasingly
popular for visualization and monitoring purposes for geohazard assessment along rock
slopes. Such technologies provide accurate and high-resolution (a few centimeters) n-
dimensional spatial representations of our physical world, known as 3D point clouds.
Many advances in the utilization of 3D point clouds have occurred over the last fifteen
years [2,3]. These advances have predominantly focused on survey planning and opti-
mization, pre-processing, registration, and change detection among periodically acquired
datasets providing critical geometrical and geographical information of rock slopes. Such
information includes: the exact change positioning [4–6], change volume (loss/gain) and
shape [7,8], and motion kinematics [9,10]. These derivatives have proven quite useful for
enriching the failure inventory building pipelines with valuable additional information
with regard to landslide risk management. In addition, a significant amount of the work-
flow from data acquisition to processing and change detection has been automated [11].
There are, however, still efficiencies in automation that can be realized.
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As CS discipline has been advancing rapidly, geoscientists have been interested in
automated semantic labelling of 3D point clouds depicting natural scenes of geological
and geotechnical engineering interest. As such, there has been a push to work within a
multidisciplinary framework with a view to incorporate such computer advances within
the geological realm. Although semantic segmentation is a well-investigated field in 2D
image analysis [12–14] (including rasterized 2.5D representations such as DEMs), sound
preliminary results for slope-scale landslide analysis purposes are now being published [15].
However, 3D point cloud semantic labelling is a relatively unexplored research area.

In rock slope management, only minor interest has been shown in knowledge ex-
traction from 3D point clouds. A common yet very time-consuming practice includes
the manual annotation of the content of a 3D point cloud. Masking processes have been
adopted for semantic injection to point cloud time-series [8]. However, due to the amount
of filtering and editing required, coupled with the users’ subjectivity, and the dynamic
nature of a certain setting it might not always be a practical solution. Moreover, in datasets
that do not include colour information the task becomes even more challenging. As a result,
there is a great need to automate such processes to speed up current analysis frameworks
and allow practitioners to interact with the computer more efficiently and make interpreta-
tions more quickly. This requires the integration of semantic segmentation approaches to
extract the appropriate information for a certain task. However, the semantic concepts that
are attached to case studies can vary depending on site-specific reasoning (e.g., considering
a rock outcrop as the object, or its discontinuity planes, overhanging blocks, eroded areas.),
and thus a single model cannot directly satisfy all the objectives. The engagement of
semantic meaning into virtual 3D natural scenes including different geomaterials (rock,
talus, soil, vegetation), landslide elements (i.e., scarp, deposition zone, toe, overhanging
blocks), and other geomorphological features such as rock outcrops and debris channels
is critical for an enhanced landslide risk assessment and management. The missing parts
required for the completion of this enhanced management framework based on object
identification are: interoperability, integration, and automation.

In this paper, an object-oriented knowledge-based semantic segmentation framework
utilizing a voxel-based point cloud clustering approach [16] is proposed. The goal is to
extract segments of the voxel grid (supervoxels or objects) in a way that the information is
both transferable and reproducible, and one that permits flexible usage to benefit different
application objectives. The approach aims to extract meaningful semantic information
from a rock slope by replicating expert reasoning and knowledge. The final objective is to
integrate spatio-semantic reasoning to landslide risk management frameworks by means
of a geo-database that would directly link GIS concepts to 3D point clouds. The knowledge
extraction phase includes the partitioning of the dataset into semantic objects and their
characterization by means of geometrical, topological, and contextual descriptors, followed
by a site-specific set of informed sequences, filters and rules used for classification. At this
point, the lack of ground-truth reference datasets for training and validation discourages
supervised learning in rock slope point cloud semantic segmentation. Object-oriented
analysis is expected to bridge the gap towards the development of semantically rich point
clouds of rock slope settings. It proposes a framework for the extraction of informative fea-
tures and the incorporation of simple knowledge-based rules without overcomplicating the
task. This study provides insights into the reliability challenges in rock slope semantic seg-
mentation due to the absent of solid methodologies for generating and ensuring the quality
of reference datasets and the suitability of traditional performance assessment protocols.

2. Current State and Related Works

Due to the increasing use of 3D point clouds in geosciences research, a wide range of
very-high-resolution information has become available, including geographical, spectral,
intensity, and full waveform data sets. However, point cloud analyses for geo-engineering
purposes typically aim to exploit geographical information (XYZ) by means of geometric
and topographic signatures using low-level local descriptors at user-defined point neigh-
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bourhoods. To semantically label complex natural scenes, local descriptors are usually
assigned to the neighbourhoods’ origin points which are then fed to ML classifiers. Low-
level descriptors refer to features that can be understood by an end-user without any
previous processing knowledge, but do not carry any semantic meaning. Such descriptors
(also known as features or attributes) are typically computed based on PCA by encoding
the XYZ point sets into a 3D structure tensor (3 × 3 covariance matrix), and calculating
its eigenvalues (λ1, λ2, λ3) and eigenvectors [17]. Other features, such as intensity and/or
colour, can be used for specific analyses but are rarely applied since intensity requires a
series of non-trivial corrections to be applied in order to be consistently reliable and the
latter is not a usable discriminator except where contrast results from different rock or soil
formations, the products of rock weathering or vegetation cover.

The geometric and topographic low-level local descriptors are products of the eigen-
values and eigenvectors derived from PCA applied on the XYZ space of the point neigh-
bourhoods. Such descriptors have been commonly accepted by the geosciences community
and the expeditious calculation of them has been recently enabled within the popular
open-source 3D point cloud processing software CloudCompare v.2.10. These geometric
descriptors are: normalized eigenvalues (p1, p2, p3), omnivariance, linearity, planarity,
sphericity, anisotropy, eigenentropy, and sum of eigenvalues (definitions of these parame-
ters can be found in [18]). Additional eigen-based descriptors are the parameters of slope
and aspect that are computed based on the orientation of the eigenvector corresponding to
the lowest eigenvalue (normal vector). The subsequent ML-based classification of the 3D
point cloud can be conducted based on low-level local descriptors calculated within one of
the three types of point neighbourhoods (Figure 1) listed below:

1. Single-sized point neighbourhoods;
2. Multi-sized point neighbourhoods; and,
3. Adjusted-sized point neighbourhoods.

Figure 1. Schematic representation of different types of point neighbourhoods used in point cloud featuring approaches:
(a) single-sized neighbourhoods calculate features within a fixed volume around individual points; (b) multi-sized neigh-
bourhoods calculate features within multiple volumes, around individual points; (c) adjusted-sized neighbourhoods
calculate features within a volume adjusted to the local geometry of individual points.

In geosciences research involving scenes of geo-engineering interest, only the first
two types of point neighbourhoods, as shown in Figure 1a,b, have been considered so far
in the literature. In particular, [19] proposed the CANUPO methodology that includes a
SVM [20] classification based on the dimensionality (normalized eigenvalues) of single-
sized point neighbourhoods. The size of the point neighbourhood is determined based on
the analysis of the balanced accuracy of the SVM classifier over a range of different sizes.
The CANUPO approach has had high prediction scores among classes such as defining
ground and vegetation as well as fine- and coarse-grained debris areas [21].

More recently, [22] employed a RF [23] classification based on a large number of
low-level local descriptors derived from multi-sized point neighbourhoods (Figure 1c)
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utilizing an approach adopted in point cloud processing (e.g., [24–27]). In particular, they
examined the suitability of geometric, topographic, intensity, and difference descriptors
to the classification of areas of rock, talus, vegetation, and snow on rock cuts adjacent to
highways in Colorado, USA. The descriptors used were calculated within point neighbour-
hoods of ten different sizes between 0.1 m and 5 m. Their analysis of the aforementioned
four classes (bedrock, talus, vegetation, and snow) found that a combination of geometric
and topographic descriptors generates high discriminating power between bedrock and
talus. In detail, the descriptors used are: normalized eigenvalues (p1, p2, p3) as geometric
descriptors, as well as the mean, standard deviation, skewness, and kurtosis of slope as
topographic descriptors, resulting in a total of 70 feature vectors. The calculation of the
above slope statistics requires the normal vector calculation for individual points in each
neighbourhood, based on another smaller neighbourhood. The performance of that model
was compared to the SVM-based CANUPO model showing 0.07, 0.1, and 0.14 higher
F1-score for vegetation, talus, and bedrock classes, respectively. F1-score is a weighted
average of precision and recall and ranges up to 1, with higher values indicating better
performance. The formulation of the different evaluation metrics is provided in 5.1.

The third type of point neighbourhoods (adjusted-sized: Figure 1c) has been used
by [18] in an urban scene classification problem. This approach incorporates the estima-
tion of the optimal neighbourhood size for each point. The optimization is achieved by
minimizing the Shannon entropy (a measure of unpredictability) [28] within each point’s
neighbourhood through the evaluation of a range of sizes. This approach inspired the
voxel size selection process incorporated in the proposed method and is also considered as
a featuring strategy for the ML model in the comparison section.

An alternative approach published by [29] includes the application of an object-
oriented framework in the field of landslide geomorphology. They investigated a rotational
landslide through object-based erosion monitoring on a soil slope, utilizing geometrical
information derived from TLS point clouds. The process was initiated with a primary
over-segmentation of the scene by means of k-means clustering at the point level, followed
by a seeded region growing algorithm with randomly selected seed points. In addition
to the clustering process, a 2D (x, y coordinates) maximum distance to the seed point
threshold was applied in order to keep the segments (objects) small. The subsequent object
classification is performed based on a RF classifier using 43 object descriptors as well as
expert-based topological refinement rules for corrections, achieving an overall F1-score
of 0.82.

The work by [30] on the development of a point cloud based rockfall hazard assess-
ment methodology also includes a morphology classification component. In their study,
the authors proposed an unsupervised rule-based rock slope classification scheme based
on a decision tree applied to a grid structure projected to the best-fit plane of the entire
point cloud. The scheme includes classes such as intact, closely- and widely- spaced, and
fragmented rock, as well as talus and overhangs based on each cell’s (0.05 m) slope angle
and roughness (i.e., low roughness cells are classified as either intact rock or talus based on
a slope threshold). However, the classification result was only qualitatively evaluated and
thus no performance metrics are available.

3. Materials and Methods

The proposed object-oriented framework is focused on addressing the inherent lack
of structure and semantic meaning of 3D point clouds, as pointed out by [29]. The pri-
mary objective of the model is to replicate the human perception. This is achieved by
homogenizing the raw 3D point cloud to delineate perceptually meaningful segments or
semantic object primitives (homogenous and meaningful areas with respect to the geometry
and topography of the whole scene) using an unsupervised segmentation process. These
segments aim at balancing the conflicting goals of reducing the complexity of a scene
while avoiding under-segmentation and can be essentially extracted by any segmentation
algorithm. Semantic objects can be combined in application-dependent classes within
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the subsequent knowledge-based classification task substituting the initial mapping unit
(e.g., spherical point neighbourhoods or voxels). Many methods for object recognition
rely on the organization of the scene into semantic objects since they are better aligned
with edges than a sphere or cube. This is essentially the principal of the object-oriented
model, leveraging the new properties that these newly formed object primitives yield.
The methodology can be summarized in three steps: voxelization, scene homogenization,
and classification. A detailed schematic representation of the entire proposed semantic
segmentation workflow is provided in Figure 2.

Figure 2. The flowchart representing the proposed semantic segmentation framework. The three main processes of the workflow
are: voxelization (yellow), scene homogenization (green), and classification (blue), as discussed in Sections 3.2–3.4, respectively.

3.1. Study Dataset

A section of a steep natural slope in the White Canyon, British Columbia, Canada as
shown in Figure 3 is investigated for the purposes of this study. The terrain mainly consists
of large rock exposures and debris accumulations on a 500 m high slope above the railway
line running adjacent to the Thompson River. The setting, without vegetation, and with
a clear line-of-sight for the scanner, is an ideal case to demonstrate the identification of
the two major material classes and the associated geomorphological features observed
along natural rock slopes. Large and long debris channels are present between the rock
outcrops which generate regular rockfalls. Both rockfalls and debris flows can impact the
railway line, which is protected by rocksheds, ditches, and slide detector fences as shown
in Figure 3. As part of the Canadian Railway Ground Hazard Research Program (RGHRP),
the site has been scanned multiple times each year since 2012 [31]. Each scanning campaign
includes multiple vantage points, and the different point clouds are aligned based on
the ICP algorithm [32] and the fine registration routine in RiScan Pro software following
a manual coarse registration. The final dataset is then resampled using a space-based
resampling algorithm resulting in an approximately evenly distributed point spacing of
5 cm. The latter aims to provide a standardized distribution of the quality of the extracted
local information within the dataset.
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Figure 3. Study area (a) Province of British Columbia (BC); (b) White Canyon Site Location within BC; (c) Picture of the
Scheme 2019.

3.2. Voxelization

The point cloud is first stored into a voxel grid, using an octree as shown in Figure 4.
The octree is a 3D data structure within which the bounding box of the dataset (root
node) is recursively subdivided into eight child voxels. The size of the initial root node
is technically defined by the bounding box of the input point cloud. From the resulting
child voxels of each subdivision level (known as depth level), only those containing points
proceed to further sub-division, while the rest are rejected. The sub-division continues
until a termination criterion is met. There are several termination criteria that can be used
such as: the voxel size, the depth level, or the minimum number of points per voxel. The
advantage of voxelization is that it provides the dataset with an organization and structure
which enables neighbourhood searches by means of adjacency graph representations. Voxel
adjacency in the 3D space can be modeled in two ways: (i) shared facets (6-connectivity),
and (ii) shared facets, edges, and vertices (26-connectivity; Figure 5).

In the methodology proposed in this paper, the termination criterion is based on the
voxel size and is defined by minimizing the mean voxel eigenentropy via the Shannon
entropy [28], similar to the definition of optimal point neighbourhoods used by [18]. This
defines the resolution of the extracted information which technically means that structures
smaller than this size are not “visible”. This optimization procedure aims to increase the
probability that the XYZ information is distributed along the voxel grid in a way that local
geometric differences are highlighted with the minimum resolution cost. However, user
interpretation regarding the desired level of detail is still a key factor that controls the
selection of the voxel size range to be optimized.

3.3. Characterization

As in the case of an image where each pixel is characterized by the RGB values, this
methodology aims to extract robust descriptors to characterize each leaf voxel within the
generated 3D structure. The information can be propagated in the same way to different
levels of the octree (Figure 4). The descriptors used in this method do not contain spectral
information but rather are focused on utilizing exclusively XYZ-based geometric and
topographic information. In order to provide a framework dedicated to the analysis of
natural terrain of geo-engineering interest, the local geometry is expressed by means of
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dimensionality, as used previously in natural terrain classifications [19] and the topography
through orientation, which is key information in any geological investigation.

Figure 4. Representation of the octree data structure and the effect of resolution on the spatial information. The size of the
leaf nodes (green) represents the resolution of the final voxel grid created based on the octree data structure.

Figure 5. Voxel adjacency graph representation of a given voxel (blue). The different adjacency types of a voxel in 3D space
are shown using different colours: shared facet (red), edge (green), vertex (grey).

The normalized eigenvalues (p1, p2, p3) and the normal vector (
→
n x,

→
n y,

→
n z) are

calculated for each voxel describing its dimensionality and orientation, respectively. This
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process includes the application of SVD and PCA to the covariance matrix (Q) calculated at
the point level as follows:

Q =
∑n

i=1
(
Xi − X

)(
Xi − X

)T

n− 1
, (1)

Figure 6 provides a schematic representation of the descriptors used to express the
geometry and topography of the scene. The relative proportions of the eigenvalues indicate
whether the content of a voxel is closer to being 1-, 2-, or 3-dimensional thereby defining
the dimensionality. The orientation of the point set included within a voxel can be repre-
sented by the slope and aspect using an equal area stereonet plot. The dataset is therefore
characterized by means of geometry and topography and provided with structure. The
feature vectors are then normalized in a [0:1] range using the Min-Max normalization
method to prevent outweighing and to equalize their contribution to the following object
partitioning process:

Xi =
Xi −min(X)

max(X)−min(X)
, (2)

Figure 6. Illustration of the proposed descriptor extraction process for point cloud characterization by means of local
geometry and topography. Non-empty voxels allow for the calculation of the desired descriptors at the point level.

3.4. Scene Homogenization

The clustering of a scene into homogenous segments (segmentation) is a fundamental
process in image understanding with a variety of algorithms proposed for this specific task
(i.e., chessboard, region merging, model-fitting, k-means, hierarchical, graph cut), mainly
for pixel grids. In this study, the objective was to integrate data-driven segmentation into
the object-oriented model. For this reason, we employed a non-seeded region merging
procedure which starts with the initial voxels and proceeds to a pairwise merging of
connected voxels at each iteration, forming an assembly of semantic objects, the so-called
supervoxels (Figure 7). This step aims to provide an initial over-segmentation while
simultaneously generating new properties to support the subsequent classification step.
The main difference when compared to point neighbourhoods and voxels, is that the size
and shape of supervoxels are formed according to the content of the scene, and they are
unique for each object.
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Figure 7. Schematic representation of supervoxel assembly. Different colours (red, green, and grey)
represent the supervoxels, cubes represent voxels, and black dots are the points within each voxel.

To ensure that the process is reproducible, and to avoid using seed points, local mutual
best-fitting heuristics are employed [33]. Local mutual best-fitting assures that each merge
is the best possible in the local vicinity of any object. The merging criterion, similar to [34],
evaluates the balanced sum of the overall dimensionality and orientation variation between
neighbouring objects and the merge only happens with the neighbour where the minimum
score is achieved. This score represents the degree of homogenization of a certain object
and is technically a factor that defines the object size. A task-adjustable parameterization
methodology for region merging based segmentation of 2D images has been proposed [35].
After each iteration, and when all of the objects have been examined, the overall LV of
the scene is calculated and compared to the previous iteration LV. The process terminates
when the LV is lower or equal to the previous. In detail, it is assumed that as long as the LV
is increasing the homogenization is progressing up to the point where the peak LV value
is recorded.

New graphs are thus constructed in order to retain inter-relationships among the
objects, as well as link the object with the voxel level (Figure 8). Such representation allows
each object to know the spatio-semantic relationships with both its neighbours and its
previous level content by means of the initial characterization. This semantic informa-
tion enables classification of complex scenes by assigning labels to the graph edges and
extracting subgraphs via connected components hierarchically based on specific ontologies.

3.5. Classification

After the dataset has been partitioned into semantic objects, they can be classified. The
classification can be conducted in two ways within the current object-oriented model. It can
be either ML- or knowledge-based. For ML-based classification, the collection and prepa-
ration of training, validation, and test datasets is required prior to the application of the
model. In contrast, knowledge-based classification is built on domain knowledge applied
directly to the extracted objects. In the current knowledge-based classification scheme,
object features are first selected based on domain conceptualization and by visualizing
each feature layer as a scalar field through an experimental process. These features can
vary from the previously described low-level local descriptors to higher-level descriptors
such as shape and size measures, neighbourhood relations, or even statistics on finer levels.
In contrast to both point neighbourhoods and voxels, the latter is possible within the
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current methodology since each generated object has a unique shape and size and also
retains topological knowledge via the graph representation (Figure 5). Therefore, objects
can be characterized based on their geometry, topology, content, and also their semantic
relation to their neighbourhood. The use of voxel-based objects is also favoured over point
neighbourhoods because it is a time-consuming and computationally expensive process to
either perform distance searches within the cloud or manually segment out and correct
misclassified points.

Figure 8. Graph representation of the semantic network with interrelationships within different levels
of organization of the 3D point cloud (blue: point cloud, green: voxel grid, red: object assembly).

The object descriptors proposed for the current knowledge-based classification and the
reasoning behind their selection are listed in Table 1. The rules are applied hierarchically,
and the graphs are updated at each step providing additional semantic information to be
used in the establishment of the next step rule. A semantic network is thus constructed in
order to represent the scene at multiple levels of detail.

This process allows the model developer to design a domain-knowledge-driven classi-
fication schema by means of ontologies specifically focused on the needs of the project. In
Figure 9, an idealized schematic representation of a steep railway rock slope ontology is
depicted. It includes knowledge formalization regarding different materials, geomorpho-
logical features, and constructed structures involved in landslide risk management. The
current classification procedure incorporates such an ontology-based conceptualization of
railway rock slopes. Connecting ontologies to classification schemas allows information
to be generalized more easily. The different aspects of knowledge generated through the
process can either be used in rule establishment, be output as knowledge representation at
the corresponding level, or both. The latter depends on the desired level of detail and the
scope of each project.
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Table 1. Presentation and description of both the lower- and higher-level descriptors used within the proposed object-
oriented framework.

Descriptor Name Description Purpose/Expert Reasoning

Slope
Dip angle between 0–90◦ to the horizontal plane.

Is used to describe slope variations associated
with the objects of interest.

Eroded areas such as debris channels usually
retain lower slope angles than the surrounding

rock mass.
Constructed infrastructure is usually vertical

or horizontal.

Aspect
Angle between 0–360◦ (North). Is used to

describe the alignment of the various objects
based on the azimuth.

Features such as rock benches formed from the
bedrock structure are usually oriented

perpendicular to the main slope dip direction.

Linearity The difference of the two major axes of a 3D
shape divided by the longest.

Transportation corridor structures appear to be
more elongated than geological structures.

2D compactness Expresses how close to a square is a 3D shape
projected to its best-fitting plane.

Constructed infrastructure appears to be more
squared-shaped and platy than

geological structures.
Relative adjacent class Expresses the object based to its adjacent classes. Topological rules used for refinement.

Relative elevation to class Object’s position along Z-axis relative to other
class objects. Topological rules used for refinement.

Figure 9. Railway rock slope ontology representation of the White Canyon slopes. Semantic repre-
sentation of the geometrical knowledge permits definition of materials, geomorphological structures,
and anthropogenic objects.

The slope value used for the primary detection of the “debris channel” objects is based
on the range of angles of repose related to such structures, linearity is required for the
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extraction of the elongated rail lines and barrier walls, and the 2D compactness is used
to identify the rockshed parts that are more square-shaped and platy than other natural
objects. Furthermore, all the classification steps are followed by semantic refinement rules
based on spatio-semantic relationships among objects through graph-based clustering and
connected components. At a finer level of detail, rock benches within the rock outcrop class
are detected using the aspect at the object level. Since such features are usually formed
along planes of weakness (i.e., foliation, shear, or fault zones) traversing the slope, they are
likely to be oriented sub-perpendicular to the main slope orientation compared to the rest
of rock outcrop objects.

4. Analysis and Results

The developed algorithms were used for the semantic segmentation of a section of the
railway rock slope described in Section 3.1. The aim was to automatically identify the areas
that represent different landslide hazard source zones while ensuring that the model was
as simple as possible. The goal was to highlight the potential of simple and explainable
automated knowledge-based workflows for effective and efficient multi-hazard monitoring
and management. The results of the segmentation process, without using training data,
were compared to different ML models trained with limited data from a separate portion
of the same site. Selected areas of interest within the slopes include the debris channels and
rock outcrops which generate debris flows and rockfalls, respectively, under the appropriate
conditions. Such landslide hazards may impact the constructed infrastructure directly
during an event when the main channel flushes or an event may fill a secondary channel
which in time will contribute debris to the main channel. Therefore, secondary channels or
rock benches comprise a lower-granularity class of interest within the semantic network of
this site. Constructed infrastructure is another important class since it represents the main
element at risk in almost any risk scenario in the study area.

4.1. Metrics

Semantic segmentation results are typically evaluated based on valid labeled data
repositories depicting the classes of interest. However, in engineering geology, which
deals with natural environments, the availability of such repositories is very limited or
non-existent. Although some attempts have been made in regional scale mapping (i.e.,
SLIDO) utilizing ALS point clouds and satellite imagery, there is no commonly accepted
slope-scale annotated 3D point cloud repository at this time. For this reason, the authors
suggest that at this point, performing a visual interpretation and assessment together with
providing the reader with a detailed representation of the area of interest for clarity, is the
most pragmatic approach and better reflects the current state of geoscience practice, as
in [30].

A quantitative assessment of the performance of the proposed algorithms was also
conducted for completeness. The reference dataset was generated by manual mapping
of the study dataset based on gigapixel imagery and point cloud interpretation, as well
as field observations. The assessment was conducted at the point level, in order to also
account for the voxelization impact and scene homogenization quality. This was based
on the following metrics extracted from a confusion matrix which provides visualization
of the performance of a classification algorithm by plotting the predicted against the true
instances of the four classes (rock outcrop, debris channel, benches/secondary channels,
and constructed infrastructure):

Recall =
TP

TP + FN
, (3)

Precision =
TP

TP + FP
, (4)

F1− score =
2TP

2TP + FP + FN
, (5)



Remote Sens. 2021, 13, 1354 13 of 22

where,

TP: Instances correctly predicted to be positive.
TN: Instances correctly predicted to be negative.
FP: Instances erroneously predicted to be positive.
FN: Instances erroneously predicted to be negative.

Accuracy is the most intuitive performance measure, reflected by the ratio of correctly
predicted instances divided by the total. However, accuracy provides solid estimates only
for symmetric datasets where values of FP and FN are almost the same. Therefore, other
metrics should complement the performance assessment of a model. Precision reflects the
ability of the model to avoid FP, recall is the ability of the model to predict the positive
instances, and F1-score is essentially a weighted average of precision and recall and is
usually preferred over accuracy for uneven class distribution datasets.

4.2. Evaluation
4.2.1. Predictions

In this Section, the final semantic segmentation result of the examined White Canyon
section, based on the proposed methodology, is presented and evaluated both qualitatively
and quantitively. A hierarchical classification of the generated objects was implemented
based on domain knowledge and according to the site-specific conceptualization depicted
in Figure 9. Two different ML models were also trained based on one half of the study site
(split symmetrically) and used to evaluate differences of the semantic segmentation results
compared to the proposed knowledge-based model.

Figure 10 provides a step-by-step demonstration of the classification of the objects
generated by the homogenization process based on the following simple rules:

4. “Debris channel” candidate segments are labeled based on their slope. Debris chan-
nels represent features generated by erosion and usually dip at lower angles relative
to the rest of the slope.

5. Non-debris channel candidate segments surrounded by “debris channel” candidates
are aggregated and refined. This includes potential large rock boulders within the
main channel.

6. A refined object is then tagged “debris channel” if its Z-axis range at the point level is
higher than a length threshold.

7. A linear or compact object located lower than the “debris channel” is tagged “con-
structed infrastructure”. Rail lines and barrier walls along the track are aggregated as
linear elements while rockshed components are defined as compact.

8. Remaining objects surrounded by “constructed infrastructure” are incorporated and
refined. The remaining objects are tagged “rock outcrop”. This rule is applied to
prevent potential misclassifications of parts of the infrastructure as natural features.

9. At a lower-granularity level, lower-slope “rock outcrop” objects dipping at an as-
pect (sub)-perpendicular to the average rock slope aspect are tagged “rock bench/
secondary channel”.

In Figure 11, the results of the proposed semantic segmentation are presented together
with a RGB photo of the site, the raw point cloud representation, and the ground truth
dataset for qualitative visual assessment. In addition, both the confusion matrix in Figure 12
and Table 2 provide a quantitative assessment of the performance of the proposed semantic
segmentation over the White Canyon dataset and a per-class classification report, respec-
tively. The analysis shows very high-performance scores (e.g., >94% F1-score) for steep
outcrop, debris channel, and constructed infrastructure with the minimum observed value
(64%) associated with the rock bench/secondary channel class (Table 2). The latter also
highlights the effect of occlusion due to the orientation of the rock benches and secondary
channels with respect to the scanner location that potentially leads to misrepresentation
of these specific features. Please note that, although the dataset includes only one debris
channel, the fact that almost its entire extent is well-separated from the rest of the outcrop
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identifies as a unique semantic feature (no matter its non-consistent geometry). This finding
is of particular importance for the subsequent multi-temporal analyses of the site due to the
local geometric changes caused by mass wasting processes in time. Misclassified “debris
channel” or “rock outcrop” areas would lead to false assessments regarding movement
of the debris within the channel or rockfall activity, respectively, within an automated
monitoring workflow similar to the method discussed in Section 4.3.

Figure 10. Object-oriented classification results of the study site. (a) 3D point cloud; (b) initial
segmentation (objects are assigned random RGB values); (c) detection of “debris channel” candidates;
(d) “debris channel” tagging; (e) extraction of “constructed infrastructure”; (f) extraction of guest
rock outcrop features (rock benches) at a lower ontology level. The numbers (1–6) correspond to the
classification rules, respectively.
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Figure 11. Results of the proposed object-oriented semantic segmentation on a White Canyon section. (a) RGB photo;
(b) Raw point cloud; (c) Ground Truth; (d) Prediction using the process shown in Figure 10.

Figure 12. Normalized confusion matrix of the proposed unsupervised object-based classification
approach over the study White Canyon section.

Table 2. Per-class classification report of the proposed semantic segmentation on the study dataset.

Precision Recall F1-Score

Steep outcrop 0.99 0.95 0.97
Debris channel 0.91 0.98 0.95

Constructed infrastructure 0.95 0.94 0.94
Rock bench/secondary channel 0.51 0.84 0.64

4.2.2. Comparison to Point-Based Machine Learning

The knowledge-based semantic segmentation model is also assessed against ML
using the limited available training data, which is typically the case with rock slope point
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clouds. In particular, a RF classifier trained with both multi- and adjusted-sized point
neighbourhood descriptors was employed. The examined point neighbourhood sizes were
picked from existing methodologies in rock slope classification. In detail, both a wide point
neighbourhood size range (0.1 to 5 m) and the optimal point neighbourhoods discussed
in [18] are evaluated together in a geological environment. The tested descriptors consist
of the eigen-based dimensionality features as well as slope statistics as discussed in [22].

For the purposes of the analysis, the study dataset was split proportionally into
training and validation sets (Figure 13). The split was vertical to represent the variations in
down-slope geometry and topography in both the training and validation processes. The
models were trained and implemented using the open-source ML Python package named
scikit-learn. Although the multi-sized neighbourhood model performs significantly better
than the adjusted-sized, there are still important misclassifications observed (Figure 13).
For instance, constructed infrastructure is predicted to be rock outcrop sections and vice
versa, which might cause issues and lead to incorrect decision-making if adopted in the
design of a future intelligent management system of the site.

Figure 13. Semantic segmentation of the study site based on Machine Learning using multi- and adjusted-sized point
neighbourhood features and a RF classifier.

Table 3 provides a quantitative per-class assessment of two of the ML models as
compared to the knowledge-based semantic segmentation approach based on the F1-score.
The analysis shows that the multi-sized neighbourhood RF model performs almost equally
as well for almost all the classes regardless of the limited training data. For the rock outcrop
and debris channel classes, a 3% and 6% difference were observed, respectively, while the
difference is wider for the constructed infrastructure (13%) and rock bench/secondary
channel (41%) as can be seen in Figure 13. It is, however, important to note that the
significantly higher difference in the “rock bench/secondary channel” class may be due to
occlusion bias. This is due to the vantage point of the LiDAR scanner located across the
valley, reducing the amount of data collected from horizontal surfaces located above the
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elevation of the scanner. Additional training data may be needed in order to compare the
classification performances more confidently for this particular class.

Table 3. Quantitative F1-score-based per-class comparison of proposed Machine Learning models to the proposed unsuper-
vised semantic segmentation.

Model Steep OutCrop Debris Channel Constructed
Infrastructure

Rock Bench/
Secondary Channel

Multi-sized RF 0.94 0.89 0.81 0.23
Adjusted-sized RF 0.83 0.52 0.58 0.03

Knowledge-based 0.97 0.95 0.94 0.64

Therefore, it is clear that the integration of multiple point neighbourhood sizes better
characterizes the scene, however, the object-oriented conceptualization provides significant
advantages. Apart from the pure arithmetic assessment, it is also important to see the
location of the errors in both methods. Constructed structures, predicted as rock outcrop
exist within the actual constructed infrastructure class (Figure 13). The same applies more
or less to all the four classes. In contrast, in the object-oriented approach the errors are only
observed on the boundaries, especially between rock outcrop and debris channels. The
scene homogenization component of this method provides strong support to knowledge-
based feature engineering by adding structure to the data and yielding new properties.
The scene complexity is minimized, and the dataset can be modeled as a graph where the
nodes represent the different objects and the edges the semantic relationships (rules). This
supports the conceptualization, prevents mixed-class features, and restricts the errors to
the boundaries.

4.3. Application

The current object-based semantic segmentation model was used for the example
analysis presented in Figure 14. It includes the change detection between point clouds of
the study area captured in June 2018 and June 2019, respectively. Employing the proposed
model, the debris channel areas are automatically extracted without any user intervention
and the changes are subsequently detected through M3C2 algorithm [36] by filtering the
negative values. The output provides a direct estimate and visualization of the eroded
channel material volume which can be used for further filing and interpretations.

Figure 14. Application of the proposed semantic segmentation for automated change detection with semantics. The red and
yellow information in the channel extraction panel display debris channel point cloud data taken from different times. The
difference between the two instances is the change that records the erosion and deposition processes on the slope, Figure 5.
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5. Discussion

To extract knowledge from 3D point clouds and inform decision-making within
rock slope management systems, semantic injection though automated processes is being
developed. Advances in CV have provided promising and novel approaches for semantic
injection into 3D urban scenes and every-day objects [37–40] but the adaptation of such
techniques for engineering geology purposes seems to be facing some challenges. DL/ML
models typically require large volumes of diverse training data to be able to generalize well
and produce reproducible and reliable results. To date, publicly available ground-truth
rock slope point cloud data are not available. In contrast, research on anthropogenic objects
of interest (urban scenes), such as constructed infrastructure, for instance, benefits from
numerous publicly available ground-truth datasets and the explicitly defined outlines and
geometric relationships of such objects within anthropogenic ontologies like houses (e.g.,
Semantic3D [41], S3DIS [42]). It is clear that ground-truthing natural scenes involves a
high degree of subjectivity and it is quite a challenge to put together a commonly accepted
dataset. The lack of implicit quantitative definitions regarding the classes involved in
rock slope processes makes the ground-truthing of such scenes a challenge, considering
the high degree of subjectivity among different researchers. The latter also relies on the
statement made by [14] saying that: “the term ‘agreement’ instead of ‘accuracy’ is better
fitted in landslide mapping procedures”. Due to the above reason, researchers tend to
evaluate the performance of their algorithms based on their own hand-mapped datasets.
According to [34] (p. 4), “as segmentation procedures are used for automation, they are
replacing the activity of visual digitizing. No segmentation result-even if quantitatively
proofed-will convince if it does not satisfy the human eye”. In addition, due to the dynamic
and varying nature of the geologic environments, the ability to model site-specific concepts
seems critical in rock slope semantic segmentation.

Although some researchers have proposed strategies for integrating engineering geo-
logical knowledge into 3D point clouds for further reasoning (refer to ML-based methods
in Figure 13), little has been done in the data structuration and knowledge organization.
Effective segmentation methods which are able to partition the point cloud into semanti-
cally meaningful areas, are very helpful to model a scene [42]. To accomplish this, the point
cloud needs to be structured retaining both spatial and relational information. The pro-
posed method provides semantic structure to the 3D point cloud (Figures 4 and 5), which
promotes the development of a multi-level graph representation. Thus, robust object-based
descriptors can be incorporated in the workflow following tailored conceptualizations in
order to address the substantial complexity observed in rock slopes.

The main limitation that such an unsupervised semantic segmentation model has to
overcome is the fact that, in engineering geology, ontologies are not explicitly defined. As a
result, the design of such models is based on the modeler’s conceptualization and has to be
adjusted to the specific environment based on expert characterization, potential geological
and geomorphological processes and the ensuing reasoning each time. However, expert
mapping does not always provide coherent validation due to the bias associated with
expert perception subjectivity. Therefore, researchers might be discouraged to investigate
the potential of incorporating automatic semantic segmentation into engineering geology
workflows due to the need to prepare their own reference datasets for validation and/or
training. Without defined ontologies, and a collective effort to develop annotations, seman-
tic segmentation results may remain undeveloped and satisfactory levels of interoperability
may not be achieved. However, and previous from this study, the conceptual framework
for integrating formalized knowledge within rock slope point cloud processing was also
largely absent.

6. Summary and Conclusions

This paper proposes a rock slope assessment methodology based on LiDAR point
cloud processing. Specifically, it includes a knowledge-based object-oriented framework for
tailored rock slope semantic segmentation using raw XYZ information (Figure 2). The inves-
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tigated site is a steep railway rock slope in British Columbia, Canada, where different types
of mass wasting mechanisms occur periodically (Figure 3). The proposed methodology,
which has been developed based on a data-driven homogenization procedure generating
meaningful object primitives, supports the extraction of informative descriptors able to
replicate expert perception. The developed rule-base leverages geometric, topographic,
and contextual features to extract specific classes of the investigated scheme by employing
regulation through tailored rules (Table 1). This methodology provides an alternative
to existing supervised ML-based semantic segmentation approaches [22] in cases where
sufficient amounts of annotated reference data are not available or higher-level concep-
tualization is needed (apart from texture identification). For this reason, a comparison
with two different ML models was performed to validate the capabilities of the proposed
model (Figure 13 and Table 3). The results demonstrate that one can efficiently segment
a rock slope point cloud, in a knowledge-based fashion, by employing only a few infor-
mative features, without overcomplicating the task. The classification was performed
based on an experts’ conceptualization scheme of the site (Figure 9). The application of the
method to temporally different instances of the study site, showcases its incorporation of
it into automatic multi-temporal analysis workflows for targeted rock slope assessment
(Figure 14).

This study shows that in engineering geology, satisfactory tailored semantic segmen-
tation can be achieved even without the employment of ML classifiers and the associated
largely time-consuming need for training data collection. This, however, requires proper
conceptualization for the selection of object features and the definition of the ruleset. The
model demonstrates almost equal performance to ML, with over 90% scores for three of the
four classes examined. However, although ML approaches using multi-sized point neigh-
bourhood descriptors performed very well in identifying different materials/textures, they
cannot accommodate expert conceptualization. It has been proven that bedrock and talus
can be identified as different materials using ML, but the general concept is missed (e.g., is
the talus accumulation detected to rest on a channel or bench?). Knowledge-based object-
oriented models value quality over quantity in descriptor selection and thus complexity
is reduced and explainability increased. This analytic knowledge can then be efficiently
represented through specific data structures. In contrast, point-based procedures analyze
every point in the context of its spherical neighbourhood(s), without being able to leverage
spatial or contextual information related to the point of interest since the point cloud data
inherently lacks structure and semantic meaning.

The paper shows the potential of object-oriented models to be used in rock slope
assessment and highlights new aspects of further research in this direction and especially in
knowledge formalization through ontologies. Considerations for future work include the
extension of the object-oriented model to deeper levels of the examined rock slope conceptu-
alization, as well as the calibration to other rock slope sites within different geomorphologic
settings and concepts to test the sensitivity of the rulesets. In addition, comparison between
point- and object-based ML models using rich and varying training data would provide
interesting insights. Colour information from photogrammetric point clouds will also be
considered in future tests together with the potential of other segmentation methods to be
integrated for the supervoxel generation.

Another interesting future challenge is the investigation of the processes modelling
potential, utilizing semantic relationships within multi-temporal semantically-rich point
clouds of a rock slope. The latter consideration aims to provide deeper insights regard-
ing future potential hazardous zones based on a certain slope dynamic behaviour and
eventually contributes to the establishment of quantitative definitions of different rock
slope elements. The development of computer-aided methodologies that can accommodate
expert-reasoning is considered essential in such a site-specific domain as landslide research,
and knowledge formalization is necessary towards this direction.
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2, 2.3, 3D 2-, 2.5, 3-dimensional;
CS computer science;
CV computer vision;
DEM digital elevation model;
GIS geographic information system;
ML machine learning;
PCA principal component analysis;
SVM support vector machine;
RF random forests;
TLS terrestrial laser scanner;
SCV singular value decomposition;
LV local variance;
ICP iterative closest point;
SLIDO statewide landslide information database for Oregon;
TP true positive;
TN true negative;
FP false positive;
FN false negative;
RGB red-green-blue;
M3C2 Multi-scale model to model cloud comparison;
DL deep learning.
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