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Abstract

As has been established in the literature, the rate of convergence in the

strong law of large numbers for a centered stationary and asymptotically in-

dependent time series (Xk)k∈Z with finite moment of order p ∈ [1, 2), is given

by any integer q < p such that n−
1
q

n∑
i=1

Xi converges almost surely to 0. This

type of result is called a Marcinkiewicz strong law of large number. If the tails

of probability distribution Xi is heavier than the exponential distribution then

Xi is heavy-tailed.

Based on the classical definition of long-range dependence, a time series is

declared long-range dependent if the sum of the autocovariances diverges. Hall

[51] suggested that the long-range dependence should be considered in view of

a specific convergence problem, and a time series should be considered long-

range dependent if the convergence rate in the problem of interest is strictly

slower than in the case of independent data.

Classical time-series theories are mainly concerned with the statistical anal-

ysis of light-tailed and short-range dependent stationary linear processes. Ap-

plications in network theory and financial mathematics lead us to consider

time series models with heavy tails and long memory. Heavy-tailed data ex-

hibits frequent extremes and infinite variance, while positively-correlated long

memory data displays great serial momentum or inertia. Heavy-tailed data

with long-range dependence has been observed in a plethora of empirical data

set over the last fifty years and so. Methodological and theoretical results as

well as a considerable portion of applied work in this thesis address long-range

dependence and heavy-tailed types of the data.
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The first contribution of this thesis is the development of Marcinkiewicz

strong law of large numbers for outer products of multivariate linear processes

while handling long-range dependent and heavy-tailed data structure. This

result is used to obtain Marcinkiewicz strong law of large numbers for non-

linear function of partial sums, sample auto-covariances and linear processes

in a stochastic approximation setting.

The next part of the result is on developing almost sure convergence rates

for linear stochastic approximation algorithms under some assumptions that

are implied by Marcinkiewicz strong law of large numbers. Finally, we ver-

ify our results experimentally in the stochastic approximation setting while

handling all gains, long-range dependence and heavy tails and addressing the

optimal polynomial rate of convergence by establishing results akin to the

Marcinkiewicz strong law of large numbers.
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Chapter 1

Introduction

In this chapter, we give background for Marcinkiewicz strong law of large num-

bers, long-range dependence and heavy tail phenomena as well as stochastic

approximation type of algorithms. We finish this chapter by providing the

research objectives and notation list. Results given here are widely known;

the theorems are stated without proofs.

1.1 Strong Laws under Heavy Tails and Long-

Range Dependence

We start with law of large numbers and its evolution to Marcinkiewicz strong

law of large numbers. Then we talk about notion of heavy tails and long-range

dependence. Finally, we give a literature review on Marcinkiewicz strong law

of large numbers for processes with heavy tails and long-range dependence.

1



1.1.1 From Strong Law of Large Numbers to Marcinkie-

wicz Strong Law of Large Numbers

The weak law of large number was proved by Swiss mathematician James

Bernoulli around 1700 which was published in his treatise “Ars Conjectandi”

[5] posthumously in 1713. Bernoulli’s theorem was generalized by Poisson

[57] around 1800 and Chebychev [11] developed the method under his name

in 1866. Later on, Chebychev’s argument was employed to extend Bernoulli’s

theorem to dependent random variables by Markov [47]. Further generalization

of Bernoulli’s theorem as the strong law of large numbers was proved by French

mathematician Emile Borel [7] in 1909. Necessary and sufficient conditions

for a set of mutually independent random variables to follow the law of large

numbers was derived by Kolmogorov in 1926.

The weak law due to Bernoulli states that

P

(∣∣∣∣Snn − p
∣∣∣∣ > ε

)
≤ pq

nε2
, (1.1)

where Xi are independent and identically distributed (i.i.d.) Bernoulli random

variables such that P (Xi = 1) = p, P (Xi = 0) = 1 − p = q and Sn =

X1 + · · · + Xn represent the number of successes in n trials. That is to say,

the ratio total number of successes to the total number of trials tends to p

in probability as n increases. A stronger version of this result due to Borel

and Cantelli is called strong law of large numbers and states that the ratio Sn
n

tends to p not only in probability, but also with probability 1. Technically:

If {εn} is a sequence of positive numbers converging to zero, then the strong
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law of large numbers states that if

∞∑
n=1

P

(∣∣∣∣Snn − p
∣∣∣∣ > εn

)
<∞ (1.2)

is satisfied then the Borel-Cantelli lemma guarantees that the events of form{∣∣Sn
n
− p
∣∣ > εn

}
occur only for a finite number of n in an infinite sequence,

which means the event Sn
n

converges to p almost-surely.

Note that the strong law of large numbers would immediately follow from

the weak law of large numbers if it were not for non-summability of 1
n

in

equation (1.1).

Based on the weak law, the ratio Sn
n

for all large enough n, is likely to

stay close to p with a probability that tends to 1 as n increases. However, if

additional trials are conducted beyond specific n
′

that already satisfied (1.1),

the weak law does not guarantee that Sn
n

is bounded to stay close p. Indeed,

events may occur such that for n > n
′
, Sn
n

be greater than p+ε. The probability

for such an event is the sum of a large number of very small probabilities, and

the weak law is unable to say anything specific about the convergence of that

sum.

However, the strong law based on (1.2) states that not only all such sums

converge, but the total number of all such events where Sn
n

is greater than

p + ε is indeed finite. This implies that the probability
{∣∣Sn

n
− p
∣∣ > ε

}
of the

events as n increases becomes and remains small, since with probability 1 only

finitely many events violate the above inequality as n goes to infinity.

What was defined above is the strong law of large number in the context

of binomial distributions. There is a natural analogue to this law regardless

of type of probability distributions, which we state as follows.
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Theorem 1.1 Suppose {Xi, i ≥ 1} be a sequence of i.i.d. random variables

with finite expected value EX1 = µ and E(|X1|) <∞. Let Sn = X1 + · · ·+Xn

be the sum of the Xi. Then

P

(
lim
n→∞

Sn
n

= µ

)
= 1 (1.3)

The strong law of large number states that the sample average converges al-

most surely to the expected value.

Taking into consideration that the strong law of large number can be

viewed as a result about the magnitude of the fluctuations of {Sn, n ≥ 1}

when E|X1| <∞, it seems natural to investigate whether there are analogous

fluctuation results when E|X1|p < ∞ for some 1 < p < 2. This leads us to

the generalization of Kolmogorov’s strong law of large numbers which is called

Marcinkiewicz strong law of large numbers.

Theorem 1.2 Let {Xi, i ≥ 1} be a sequence of i.i.d. random variables with

finite expected value EX1 = µ. If E|X1|p <∞ for some 1 < p < 2, then

(Sn − nµ)

n
1
p

→ 0 a.s. (1.4)

Theorem 1.2 states that the magnitude of the asymptotic fluctuations of Sn

about the line nEX1 are asymptotically of no larger than n
1
p when E|X1|p <∞

for some 1 < p < 2.

The classical Kolmogorov’s strong law of large numbers has been extended

to various weakly dependent random variables which are not necessarily iden-

tically distributed. There has been a huge amount of work concerning the

rates of convergence in the strong law of large numbers for weakly dependent
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random variables. Chandra and Ghosal [10] showed that the independence

assumptions can be weakened for Marcinkiewicz strong law of large numbers

as well.

Bo [6] studied the strong limit behavior of sequences of blockwise m-

dependent random variables with only p-moments, where 1 ≤ p < 2, and

provide a result analogous to the classical Marcinkiewicz-Zygmund strong law

of large numbers which states that if {Xn}n≥1 is a sequence of i.i.d. random

variables with E|X1|p <∞ and 0 < p < 2, then

1

n
1
p

n∑
k=1

(Xk − c)→ 0 a.s. (1.5)

where c = 0 if 0 < p < 1 and EX1 = c if 1 ≤ p < 2.

Definition 1.1 A sequence of random variables {X1, X2, · · · } is m-dependent

for some m ≥ 0, if the vector (X1, · · · , Xi) is independent of (Xi+j, Xi+j+1, · · · )

whenever j > m.

For strongly mixing sequences, the problem of rate of convergence in Marci-

nkiewicz strong law of large numbers has been fully considered in Rio [63].

Definition 1.2 The sequence of random variables {Xn}n≥1 is said to be strong

mixing if α(m)→ 0 as m→∞ where:

α(m) = sup
n≥1

sup
F∈Fn1 ,G∈G∞n+m

|P (F ∩G)− P (F )P (G)|

for all m = 1, 2, · · · .

Louhichi [42] proved that the Marcinkiewicz strong law of large numbers holds

for associated sequences for which the second moment is not assumed to be
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finite but rather the moment of order p(p ∈ [1, 2[). Hence, similar to Dabrowski

and Jakubowski [14], she found a suitable weak dependence coefficient defined

for associated sequences with infinite variance.

Note that based on one of the given definition of heaviness of tail in the

next two sections, Louhichi [42] considered Marcinkiewicz strong law of large

numbers for heavy tailed laws.

1.1.2 Limit Theory for Linear Processes

As we mentioned quickly in the previous section the strong laws of large num-

bers and other variants of limit theorems for independent and identically dis-

tributed random variables have been extensively studied and many deep results

have been obtained. With various weak dependence conditions, some of the

obtained results under the i.i.d. assumption have been generalized to depen-

dent random variables. See e.g., [36], [70], [30], [40], [21], [78] and [23] among

others.

The limiting behavior for a sequence of random variables is interesting in

its own right. However, it is of interest to see under what conditions the

classical limit theories for random variables hold for some linear processes, for

example, of form xk =
∞∑
j=0

cjξk−j with coefficients cj and i.i.d. innovations

ξk, k ∈ Z with zero mean.

Phillips and Solo [59] used an algebraic decomposition method and estab-

lished (among several other weak and strong results) that under innovations

with finite second moment and
∞∑
j=1

j2c2
j <∞, the strong law of large numbers

for partial sum of linear processes follows directly from strong law of large

numbers of innovations. They also proved that the strong law of large num-
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bers still holds if we relax the second moment boundedness of innovations but

instead impose the following condition on the coefficients:
∞∑
j=1

j|cj| <∞.

Therefore, based on adopted conditions on the innovations and coefficients

different limit laws can be transferred from the innovations to the correspond-

ing linear processes.

In addition, the limit behavior of dependent linear processes has been in-

vestigated in many directions and researchers have established many results

concerning strongly mixing processes of various types; see e.g., [4], [8], [24],

[69], [63], [40], [18], [60] and [61] among others. Strong mixing is one of the

most general and well known type of mixing.

Also, there has been a lot of research concerning the properties of depen-

dent linear processes. For instance, Chanda [9] has shown that members of

the important class of linear stochastic processes are strongly strong mixing,

provided they are based on innovation random variables which have Lebesgue-

integrable characteristic functions. Later, Withers [76] gave an alternative set

of conditions for linear processes to be strong mixing. Mokkadem [54] showed

that stationary vector ARMA processes are strong mixing, provided the inno-

vations have absolutely continuous distribution with respect to Lebesgue mea-

sure. On the other hand, Ibragimov and Linnik [36] and Chernick [12] gave

examples of first-order autoregressive (AR(1)) processes based on discrete-

valued innovation random variables which are not strong mixing. The latter

proof was based on contradiction method and did not give the intuitive reason

about what causes the failure of the strong mixing condition. Several years

later, Andrews [2] explicitly constructed sequences of sets which violated the

strong mixing condition and showed that certain AR(1) processes are not

strong mixing. The intuition behind Andrews’ construction, as mentioned in

7



[2], is as follows:

Suppose {Xt} is an AR(1) process based on Bernoulli (q) innovation ran-

dom variables, and Xt,s is equal to Xt+s minus its component which depends

on Xt, Xt−1, · · · . If we know Xt is small, then we know that with probability

1 Xt+s must fall in a set which is a small neighborhood of the support of Xt,s.

A sequence of such small neighborhoods can be constructed for s = 1, 2, · · ·

which have unconditional probability bounded away from 1. Hence, knowledge

that Xt is small increases the probability of certain sets which are determined

by the “future” of the process, no matter how far in the future, by a non-

negligible amount. This implies {Xt} is non-strong mixing.

This thesis is not concerned with sum of random variables produced by lin-

ear processes, but rather interested in sum of outer products of linear processes

which will be discussed more in future sections.

1.1.3 The Notion of Heavy Tails and Long-Range De-

pendence

Heavy Tails

To detect heavy tails and measuring heaviness of the tails, there are several

statistical approaches. Whenever in literature random variables with heavy

tails are mentioned, it can be interpreted in different ways [67]. Some common

possibilities:

• random variables with subexponential tails

• random variables with regularly varying right tails

• random variables with infinite second moment

8



It is, therefore, important, to ascertain in what sense the notion of heavy

tails is used in any given instance.

Definition 1.3 The random variable X is called subexponential random vari-

able if

lim
x→∞

P (X1 +X2 > x)

P (X > x)
= 2. (1.6)

When X1 and X2 are two independent copies of X.

A function f : R→ R is called regularly varying at infinity with exponent

a ∈ R if for every c > 0

lim
x→∞

f(cx)

f(x)
= ca. (1.7)

The function f is called slowly varying (at infinity) if (1.7) holds with a = 0.

Any function f that is regularly varying with exponent a can be written in

the form f(x) = xaL(x) for x > 0, where L is a slowly varying function.

Definition 1.4 A random variable X is said to have regularly varying right

tail with tail exponent α > 0, if P (X > x) is regularly varying at infinity with

exponent −α.

P (X > x) = x−αL(x)

If P (X > x) is slowly varying at infinity, then we say that X has a slowly

varying right tail.

Generally, heavy tails are related to the tendency of various time series to

exhibit sudden and discontinuous changes. This was first observed by Mandel-

brot [46] who proposed the stable Paretian distribution for modeling financial

9



time series. The empirical work by Mandelbrot [46] and others lead to the

general acceptance that there are heavy tails in financial distributions. The

reason for heaviness of tail in financial data is that large observations have

non-negligible probability and they, although rare, can dominate a systems

performance.

The assumption that the random variables under investigation follow a

Gaussian distribution is the basis of many techniques. However, the marginal

distributions of observed time series in many areas are heavy-tailed or asym-

metric and often deviate from the Gaussian model. In such circumstances, the

appropriateness of the commonly adopted normal assumption is highly ques-

tionable. Hence, in the presence of heavy tails it is natural to assume that they

are approximately controlled by a non-Gaussian stable distribution. Investi-

gations of the appropriateness of the stable Paretian distribution in modeling

heavy tail type of data have been started by the work of Fama [25][26] (See,

[48], [50], [51], [52], [53], [58] and [62]).

Based on Rachev and Mittnik [52], a random variable X is heavy-tailed

distributed with index α if P (X ≥ x) ∼ cx−αL(x) as x → ∞ for c > 0 and

0 < α < 2 when L(x) is a slowly varying function. Mandelbrot refers to this

effect as the infinite variance syndrome which shows observations of a heavy-

tailed distribution can fluctuate far from its mean value (defined only when

1 < α < 2) with non-negligible probability.

Long-Range Dependence

Around the World War II a huge impetus was given to research in time

series, as a natural result of developments in such areas as radio signals and

some engineering applications. Subsequently, a flexible subset of models, so-

called ARMA, was reformulated in the time domain. These are short-range

10



dependent models involving correlation functions that decrease exponentially

fast over time. Despite the fact that short-memory models had a wide range

of usage, by economists for example, these type of models had certain short-

comings and were not applicable to all fields. For instance, the measurement

on the Nile River taken by Hurst [34] [35] in the 1950s appeared to require

models, whose correlation functions would decay much more slowly.

In the sixties, models involving the so-called “Joseph effect” or long-range

dependence was suggested by Benoit Mandelbrot [44]. Long-range dependence

or long memory denotes the property of time series to exhibit persistent behav-

ior such as a significant dependence between very distant observations. gen-

erally, Long-range dependence affects phenomena in which correlations decay

like a power law, thus much less quickly than in the ARMA models. Mandel-

brot generated long-range dependence through the fractional Brownian mo-

tion model and its increments. Fractional Brownian motion was discovered

by Kolmogorov [38] in 1940 but it was Mandelbrot [45] who distinguished its

relevance to applications. Authors like Samorodnitsky, Yaglom, Rosenblatt,

Major, Dobrushin, Taqqu, Giraitis, Surgalis, Robinson ( see e.g. [66], [79],

[65], [20], [72], [27] [64]) and many others continued Kolmogorov’s work in the

theoretical developments of long-range dependence.

The phenomenon of long-range dependence is widely believed to be both

ubiquitous and important in data arising in a variety of different fields, such

as econometrics [64], hydrology [56], climate studies [74], DNA sequencing [37]

etc. Yet what is long-range dependence? How does one measure it? There

is no consensus on the notion of heavy tails. There is even less consensus

on the notion of long-range dependence. Historically, long-range dependence

was viewed as a property of certain stochastic models with a finite variance,
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and then it was associated either with a particularly slow decay of correlation.

Long-range dependence is a phenomenon characterized by sample paths dis-

playing apparent trends and cycles. Processes whose autocorrelation function,

decaying as a power law in the lag variable for large lag values, sums to infinity.

The decay is slower than exponential, and the area under the curve is infinite.

One of the definition of long-range dependence is as follows:

Definition 1.5 A stationary process {Xk} (with finite variance) is said to

have long-range dependence if its autocorrelation function ρ(h) = corr(XkXk+h)

decays as a power of the lag h:

ρ(h) = corr(XkXk+h) ∼
L(h)

h1−2σ
ash→∞, 0 < σ <

1

2
(1.8)

where L is slowly varying at infinity.

In other word, if the sum of the autocovariances diverges then the series

is said long-range dependent. Concentrating too much on the correlations,

however, has a number of drawbacks. For example, correlations provide only

very limited information about the process if the process is not very close

to being Gaussian. In addition to obvious drawbacks of correlation carrying

limited information in non-Gaussian case, this leaves one unable to define long

memory for stochastic processes with infinite variance.

Models in which variances may be infinite are needed for the analysis of a

variety of phenomena (e.g. in finance [49], geology [55]). The above definition

of long-range dependence is inflexible in providing extensions that allow for

departure from stationarity and, indeed, infinite variances.

The problem of defining long-range dependence for infinite variance time

series is made even more ambiguous because of the fact that there is not a
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unique structure that can describe such time series. Heyde and Yang [31]

provided definitions, almost equivalent to the original ones in that domain of

applicability, which were useful for processes which may not be second-order

stationary, or indeed have infinite variances.

Samorodnitsky [67] proposed a new way of thinking about long-range de-

pendence in terms of the way rare events happen. This is particularly appro-

priate in the heavy-tailed situations because most practitioners using heavy-

tailed models are interested precisely in certain rare events related to the tails.

However, since this thesis is not concerned about all different definitions of

long-range dependence, we end the discussion here.

In the next section we define the notion of long-range dependence and

heavy tailness that is used through the rest of this thesis.

1.1.4 Marcinkiewicz Strong Law of Large Numbers with

Heavy-Tails and/or Long-Range Dependence

Let {Xk} be Rd-valued (possibly two-sided, multivariate) linear processes

Xk =
∞∑

l=−∞

Ck−lΞl, (1.9)

defined on some probability space (Ω, F, P ) with coefficient matrix (Cl) and

i.i.d. zero-mean innovations {Ξl}. If the coefficients (Cl) are absolutely summable

and innovations have second moments, then the covariances ofXk are summable

and we say that {Xk} is short-range dependence. On the contrary, we gener-

ically say that {Xk} is long-range dependence if its covariances are not abso-
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lutely summable. Practically, as |l| → ∞ by choosing appropriate coefficients,

matrix sequence (Cl) can decay slowly enough such that {Xk} shows long-

range dependence. We consider {Xk} to have long-range dependence too in

this {Cl} non-summable case even though the second moments for Xk may not

exist. If each Xk fails to have a second moment, then we say it is heavy-tailed

(HT) and is otherwise light-tailed (LT).

The limit behavior of linear processes with heavy-tailed and/or long-range

dependence has been investigated for a long time in different contexts such

as partial sums, sample covariance and non-linear function of partial sums.

Though, there are limited number of works on Marcinkiewicz strong law of

large numbers for partial sums of Xk under both heavy-tailed and the long-

range dependence and there is hardly any result handling the Marcinkiewicz

strong law of large numbers for partial sums of nonlinear functions of Xk.

It is widely known that if (Xn)n∈Z is an i.i.d. sequence of random variables

in the domain of attraction of stable law with index α, 1 < α ≤ 2, then

n−
1
α

n∑
i=1

Xi converges in distribution to a stable law, however, for all p < α the

statistic n−
1
p

n∑
i=1

Xi converges almost surely to zero. This problem has been

investigated for weakly dependent variables as well, see for instance Rio [63]

and the references therein, but has not been fully studied in the context of

long-range dependence. One result in this area is by Louhchi and Soulier [43]

in which they considered the Marcinkiewicz strong law of large numbers for

associated random variables with not necessarily finite second moment.

Nonetheless, there have been large number of studies concerning the weak

convergence of linear processes. For instance, many results handle the exis-
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tence and description of limit distributions of sums

Sn,h(t) =

[nt]∑
k=1

(h(xk)− E(h(xk))), t ≥ 0, (1.10)

where h is a (nonlinear) function. One-sided linear (moving average) process

is one of the well studied non-Gaussian long-range dependent processes,

xk =
∞∑
j=0

cjξk−j, (1.11)

in which, innovations ξk, k ∈ Z, are i.i.d., have zero mean with finite variance,

and coefficients cj satisfy:

cj ∼ cσj
−σ, j ≥ 1 (1.12)

for some constant cσ 6= 0, c0 = 1 and σ ∈ (1
2
, 1).

The distributional convergence for normalized partial sums of Appell poly-

nomials Am(xk) of linear processes xk having both long-memory and heavy

tails in the sense EA2
m(xk) = ∞ has been studied in Vaiciulis [73]. In par-

ticular, he assumed xk had the form (1.11) with innovations belonging to the

domain of attraction of an α-stable law with 1 < α < 2 and cj following (1.12).

Another example which, in the case of long-range dependent and heavy

tails, is an area of active research, involves auto-covariance functions. The

research in this area started with work of Anderson and Walker [1], which

resulted in a central limit theorem for the so-called autocorrelation process

under strict stationarity and summability condition of coefficients. In fact,

Anderson and Walker showed that the normal approximation can continue
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to hold even when ξk does not have finite fourth-order moments but, as il-

lustrated in [15], this is limited to one-dimensional autocorrelation processes.

Later, Hannan [32] added the autocovariance process to the class of strictly

stationary, linear-model-based processes satisfying the central limit theorem

under general conditions including finite fourth-order moments for ξk. Next,

in studying the sample covariance process, Giraitis and Surgailis [28] proved

a central limit theorem for the related process and allowed both processes to

be two-sided linear processes. In a complimentary and very interesting set of

results, Davis and Resnick [16][17] have established weak convergence results

for sample covariance processes of two-sided linear models to non-normal sta-

ble distributions when ξk does not have fourth order moments with absolutely

summable coefficients cj with form of (1.12). Later, Horváth and Kokoszka [33]

considered the asymptotic distribution of normalized sample autocovariances

of long-memory processes with innovations of infinite fourth moment.

1.2 Stochastic Approximation Algorithms

Stochastic approximation methods are a family of iterative stochastic opti-

mization algorithms that attempt to find zeroes or extrema of functions which

cannot be computed directly, but only estimated via noisy observations (Y ).

The original work in recursive stochastic algorithms was by the Robbins and

Monro, who developed and analyzed recursive procedure for finding the root

of real-valued function g and real variable h. Suppose that we have a function

g(h) and a constant r, such that the equation g(h) = r has a unique root at

h = c. While the function g(h) cannot be observed directly but measurements

can instead be obtained of the random variable Y where E[Y (h)] = g(h).
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Robbins and Monro proved that the following iterative algorithm of the form:

hn = hn−1 + µn(r − Y (hn))

generates iterates which is convergent in L2 to c under some proper conditions.

Nevertheless, as explained in [19], the first known stochastic algorithm has

been traced back to 1890 by B. Bru in the European artillery regulations. The

problem was to adjust the slant h (an angle) of a cannon in order to obtain

a specified range r. This was done by trial and error, firing one shell after

another. The nth experiment was done with the adjustment corresponding to

the (n−1)th estimated value of h, and led to an improved value hn; the result

of this experiment was an observed range rn, with a misadjustment r − rn.

It had been observed that rn was actually a random variable, what made the

problem much more difficult. After some heuristics, the specialists of the army

converged on the following algorithm

hn = hn−1 −
λ

n
(r − rn)

where λ is some fixed normalization constant. In the case where one observes

only if the shot were too short or too long, the regulations were to use

hn = hn−1 −
λ

n
sign(r − rn)

The important discovery here is that the right choice of gain is of order 1
n
.

This is a common feature of stochastic algorithms to have a rather large gain

due to the necessity to average out the noise coming from the randomness of

the observations.
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Stochastic approximation creates an adaptive filtering algorithm which can

be used to produce sequential estimates of parameters and uses feedback in the

form of an error signal to refine its transfer function to match the changing pa-

rameters. One of the simplest subclasses of general stochastic approximation

algorithms could be considered as linear stochastic approximation algorithms,

they have a wide range of applications in system identification, adaptive con-

trol, transmission systems, adaptive filtering for signal processing, and several

aspects of pattern recognition and learning (see e.g., [3], [22], [41], [68], [77]).

The aim of these algorithms is to estimate recursively an unknown time in-

variant (or slowly varying) parameter vector in a target model. Consequently,

their asymptotic rates of almost sure and rth-mean convergence as well as

invariance and large deviation principles are of utmost importance.

In the class of linear stochastic approximation, the least mean square al-

gorithm has become one of the most popular adaptive filtering algorithm due

to its simplicity and robustness. Suppose

yk+1 = xTk h+ εk ∀k = 1, 2, . . . , (1.13)

where {xk, k = 1, 2, · · · } and {yk, k = 2, 3, · · · } are second order Rd− and

R−valued stochastic processes, defined on some probability space (Ω,F , P ),

h is an unknown d-dimensional parameter or weight vector of interest and εk

is a noise sequence. One of the questions of interest is finding the value of

h that minimizes the mean-square error h → E|yk+1 − xTk h|2. Assuming the

expectations exist, wide-sense stationarity conditions, the value that minimizes

the mean-square error is given by h = E(xkx
T
k )−1E(yk+1xk). However, it is

the case that neither the joint distribution of (xk, yk+1) nor the necessary
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stationarity of the processes are known. An alternative method estimates h

through a linear algorithm of the form

hk+1 = hk + µk(yk+1xk − xkxTk hk), (1.14)

where µk is the kth step size. A general model that includes the least mean

square algorithm, as well as other adaptive-filtering algorithms is

hk+1 = hk + µk(bk − Akhk), (1.15)

where

Ak =
1

N

k∑
l=max{k−N+1,1}

xlx
T
l and bk =

1

N

k∑
l=max{k−N+1,1}

yl+1xl (1.16)

for some N ∈ N, are random sequences of symmetric, positive-semi-definite

matrices and vectors respectively.

The convergence rate and algorithm effectiveness is influenced by step size

µk (see, e.g., [12], [15] and references cited therein). In an extreme case of

homogeneous, deterministic setting, i.e. Ak = A and bk = b, (1.15) can solve

the linear equation Ah = b. In this situation the best choice is a constant

gain, µk = ε, and we get hn → h geometrically, provided ε is small enough

that the eigenvalues of I − εA are within the unit disc. By way of contrast, in

the presence of persistent noise, the decreasing step sizes are required for the

convergence hn → h to take place. Existing results show that the best possible

almost-sure rate of convergence is |hn−h| = O
(√

n−1 log log(n)
)

, implied by

the law of the iterated logarithm, and that this rate is only attainable when

µk = 1
k
, second moments of Ak, bk exist and there is no long-range dependence.
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(These claims follow from the almost-sure invariance principle in Kouritzin

[39].)

There were many results that gave convergence or rates of convergence

for linear algorithms. However, these results assumed a specific dependency

structure and, thereby, were not generally applicable. More recently, some

authors, e.g. [13], [19] and [71], have followed the similar path of transferring

convergence and rates of convergence from partial sums of (the coefficient)

random variables to the solutions of linear equations.

1.3 Research Objective

As we mentioned in previous sections, there is almost no general Marcinkiewicz

strong law of large numbers results for partial sums of Xk neither for partial

sums of nonlinear functions of Xk under both heavy-tailed and the long-range

dependence. Our objective in part of this thesis is to establish a method and

a structure under which certain Marcinkiewicz strong law of large numbers

for heavy-tailed and the long-range dependent phenomena can be handled

properly. Precisely, for some (σ, σ) ∈
(

1
2
, 1
]

and α > 1 our goal is to prove the

Marcinkiewicz Strong Law,

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s. for p <
1

2− σ − σ
∧ α ∧ 2,

for outer products Dk = XkX
T

k , where {Xk}, {Xk} are both two-sided multi-

20



variate linear processes of form

Xk =
∞∑

l=−∞

Ck−lΞl, Xk =
∞∑

l=−∞

Ck−lΞl. (1.17)

with i.i.d. zero-mean random Rm+m-vectors (innovations) such that E[|Ξ1|2] <

∞, E[|Ξ1|2] < ∞ and (Cl)l∈Z, (C l)l∈Z are Rd×m-matrix sequences satisfy-

ing sup
l∈Z
|l|σ‖Cl‖ < ∞, sup

l∈Z
|l|σ‖C l‖ < ∞. As |l| → ∞, matrix sequences Cl

and C l can decay slowly enough that {Xk, Xk} have long-range dependence

while {Dk} can have heavy tails. In particular, the heavy tail and long-range-

dependence phenomena for {Dk} are handled simultaneously and a new decou-

pling property is proved that shows the convergence rate is determined by the

worst of the heavy tails requirement p < (α ∧ 2) or the long-range dependent

condition p < 1
2−σ−σ , but not the combination.

The main result is applied to obtain Marcinkiewicz strong law of large

numbers for non-linear functions forms, autocovariances and stochastic ap-

proximation.

Next part of research objective is studying almost sure convergence rates

for linear algorithms

hk+1 = hk +
1

kχ
(bk − Akhk) (1.18)

where χ ∈ (0, 1), {Ak}∞k=1 are symmetric, positive semidefinite random matri-

ces and {bk}∞k=1 are random vectors. It is shown that nγ|hn−A−1b| → 0 a.s. for

the γ ∈ [0, χ), positive definite A and vector b such that 1
nχ−γ

n∑
k=1

(Ak−A)→ 0

and 1
nχ−γ

n∑
k=1

(bk − b) → 0 a.s. When χ − γ ∈
(

1
2
, 1
)
, these assumptions are

implied by the Marcinkiewicz strong law of large numbers, which allows the
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{Ak} and {bk} to have heavy tails, long-range dependence or both. The idea

is inferring convergence and rates of convergence results for linear algorithms

(1.18) from like convergence and rates of convergence of its coefficients.

Finally, we verify our results experimentally in the stochastic approxima-

tion setting. In fact, we deal with all gains, long-range dependence, and heavy

tails, addressing the optimal polynomial rate of convergence by establish-

ing results akin to the Marcinkiewicz strong law of large numbers, namely

nγ|hn − h| → 0 a.s. (i.e. |hn − h| = o(n−γ)), for all γ < γ0(χ)
.
= χ−M . M is

called the Marcinkiewicz threshold in what follows and is defined by

M
.
= inf

{
1

m
: lim
n→∞

1

n
1
m

n∑
k=1

(Ak −A) = 0, lim
n→∞

1

n
1
m

n∑
k=1

(bk − b) = 0 a.s.

}
. (1.19)

Generally, due to strong law of large numbers and central limit theorem in the

light-tailed, short-range dependence case, M is expected to vary in the range

M ∈ (1
2
, 1], but when there is long-range dependence and/or heavy tails M

usually cannot approach 1
2
.

The simulation results show that convergence (hk → h) in (1.18) takes

place provided that χ ∈ (M, 1). All this suggests that more quickly decreasing

gains like µk = 1
kχ

with χ near 1 should be used in very heavy-tailed or long-

range dependent settings. Conversely, slowly deceasing gains like µ = 1
kχ

with

smaller χ might work well in lighter-tailed, short-range dependent situations.

In addition, based on simulations it is clear that the smallest normalized error,

|hn−h|
|h1−h| , usually occurs for χ ∈ (M, 1] and the most commonly used choice

χ = 1 is most appropriate in very heavy-tailed or long-range dependent settings

(where M is close to 1) or very long runs. In other words, a slower decreasing

gain usually gets you close to the true parameters h more quickly unless the

coefficients have a high probability of differing significantly from their means.
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1.4 Notation List

Before moving to the result chapters, we define our notations that will be used

through this thesis.

|x| is Euclidean distance of some Rd-vector x.

‖C‖ is sup|x|=1 |Cx| for any Rn×m-matrix C.

||| A |||2
∑d

n=1

∑d
o=1(A(n,o))2.

A(n,o) is the (n, o)th components of A ∈ Rd×d.

btc is max{i ∈ N0 : i ≤ t}for any t ≥ 0.

dte is min{i ∈ N0 : i ≥ t} for any t ≥ 0.

ai,k
i
� bi,k means ∀k, ∃ck > 0 not depending on i s.t. |ai,k| ≤ ck|bi,k| ∀i, k.

q∏
l=p

Bl is BqBq−1 · · ·Bp if q ≥ p or I if p > q, ∀Bl ∈ Rd×d.

a ∨ b is max{a, b}.

a ∧ b is min{a, b}.
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Chapter 2

Marcinkiewicz Law of Large

Numbers for Outer-products of

Heavy-tailed, Long-range

Dependent Data *

2.1 Introduction

Let Dk = XkX
T

k be random matrices with {Xk}, {Xk} being Rd-valued (pos-

sibly two-sided, multivariate) linear processes

Xk =
∞∑

l=−∞

Ck−lΞl, Xk =
∞∑

l=−∞

Ck−lΞl. (2.1)

*A version of this chapter has been accepted for publication. Kouritzin, M.A. and

Sadeghi, S. (2015). Marcinkiewicz Law of Large Numbers for Outer-products of Heavy-

tailed, Long-range-Dependence Data. Advances in Applied Probability Journal, in press.
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defined on some probability space (Ω, F, P ).

{(
Ξl = (ξ

(1)
l , ..., ξ

(m)
l ),Ξl = (ξ

(1)

l , ..., ξ
(m)

l )
)
, l ∈ Z

}

are i.i.d. zero-mean random Rm+m-vectors (innovations) such that E[|Ξ1|2] <

∞, E[|Ξ1|2] < ∞ and (Cl)l∈Z, (C l)l∈Z are Rd×m-matrix sequences satisfying

sup
l∈Z
|l|σ‖Cl‖ <∞, sup

l∈Z
|l|σ‖C l‖ <∞ for some (σ, σ) ∈

(
1
2
, 1
]
. Hence, {Dk} can

have heavy tails as well as long-range dependence.

Linear process models are heavily used in finance, engineering, economet-

rics, and statistics. In fact, classical time-series theory mainly involves the

statistical analysis of stationary linear processes. Current applications in net-

work theory and financial mathematics leads us to study time series models

where {Dk} can have heavy tails and long memory. Heavy-tailed data exhibits

frequent extremes and infinite variance, while positively-correlated long mem-

ory data displays great serial momentum or inertia. Heavy-tailed data with

long-range dependence has been observed in a plethora of empirical data set

over the last fifty years and so. For instance, Mandelbrot [12] observed that

long memory time series often were heavy-tailed and self-similar.

The possible rates of the convergence is affected by both long-range de-

pendence and heavy-tails. There are two broad types of dependence for linear

processes. If the coefficients (Cl) are absolutely summable and innovations

have second moments, then the covariances of Xk are summable and we say

that {Xk} is short-range dependence (SRD). On the contrary, we generically

say that {Xk} is long-range dependence (LRD) if its covariances are not ab-

solutely summable. Practically, by choosing appropriate coefficients, matrix

sequence (Cl) can decay slowly enough (as |l| → ∞) such that {Xk} shows

33



LRD. We consider {Dk} to have LRD too in this {Cl} non-summable case even

though the second moments for Dk may not exist. There are also two general

kinds of randomness. If each Dk fails to have a second moment, then we say

it has heavy-tailed (HT) and is otherwise light-tailed (LT). In our setting, Dk

will either have HT or LT depending upon the moments of and dependence

between Ξ1 and Ξ1.

There few general Marcinkiewicz Strong Law of Large Numbers (MSLLN)

results for partial sums of Xk under both heavy-tailed and the long-range

dependence and the MSLLN for partial sums of nonlinear functions of Xk is

almost untouched. Our purpose here is to establish a method and a structure

under which certain MSLLN for heavy-tailed and the long-range-dependent

phenomena can be handled properly. Technically, our goal is to prove:

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s. for p <
1

2− σ − σ
∧ α ∧ 2,

when max
1≤i,j≤m

sup
t≥0

tαP (|ξ(i)
1 ξ

(j)

1 | > t) <∞ for some α > 1 and sup
l∈Z
|l|σ‖Cl‖ <∞,

sup
l∈Z
|l|σ‖C l‖ < ∞ for some (σ, σ) ∈

(
1
2
, 1
]
. This format of {Dk} is critical for

our result since it allows the LRD and HT conditions decouple and conver-

gence rate be determined by the worst of the HT requirement p < (α ∧ 2)

and the LRD condition p < 1
2−σ−σ , but not the combination. A bifurcation

happens. Consider the summation, Dk =
∞∑

l,m=−∞

Ck−lΞlCk−mΞm, broken into

off-diagonal and diagonal terms. Due to the independence of (Ξl,Ξl) from

(Ξm,Ξm), the off-diagonal sum
∑
l 6=m

Ck−lCk−mΞlΞm does not have heavy tails

(when α > 1). Conversely, since σ+σ > 1 the diagonal sum
∞∑

l=−∞
Ck−lCk−lΞlΞl
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does not experience long-range dependence. In addition, the rate of conver-

gence depends on the worst of (α ∧ 2) and 1
2−σ−σ , so whenever we are in the

LRD dominant case, (α > 1
2−σ−σ ), the off-diagonal terms dictate the rate of

convergence by the LRD effect (p < 1
2−σ−σ ) and in the HT dominant case,

(α < 1
2−σ−σ ), the diagonal terms dictate the rate of convergence by HT effect

(p < α). The bifurcation point is when α = 1
2−σ−σ and α < 2.

2.2 Background

We give a review of some existing literature on MSLLN or weak convergence

for partial sums, sample covariance and non-linear function of partial sums

with heavy-tailed and/or long-range dependence. Many existing results were

only established in the scalar case. For ease of assimilation we use {xk}, (cl),

{dk} and {ξk} to denote these scalar versions of {Xk}, (Cl), {Dk} and {Ξk}

and {xk+h} for {Xk} when it is a shifted version of {xk}.

2.2.1 Partial Sums

There are are only a few publication, like Louhchi and Soulier [11], that con-

sidered the combination of these LRD and HT phenomena. They stated the

following result for linear symmetric α-stable (SαS) processes.

Theorem 2.1 Let {ξj}j∈Z be i.i.d. sequence of SαS random variables with

1 < α < 2 and {cj}j∈Z be a bounded collection such that
∑
j∈Z
|cj|s <∞ for some

s ∈ [1, α). Set xk =
∑
j∈Z

ck−jξj. Then, for p ∈ (1, 2) satisfying 1
p
> 1− 1

s
+ 1

α

1

n
1
p

n∑
i=1

xi → 0 a.s.
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The condition s < α ensures
∑
j∈Z
|cj|α <∞ and thereby convergence of

∑
j∈Z

ck−jξj.

Moreover, {xk} not only exhibits heavy tails but also long-range dependence

if, for example, cj = |j|−σ for j 6= 0 and some σ ∈
(

1
2
, 1
)
. Notice there is

interactions between the heavy tail condition and the long-range dependent

condition. In particular for a given p, heavier tails (α becomes smaller) implies

that you can not have as long-range dependence (s must become smaller) and

vice-versa. Moreover, this result does not apply in our outer product setting

due to the fact that xk’s are linear processes with SαS innovations and so xk

cannot be decomposed to product of two variables even in the scalar case.

2.2.2 Non-linear function of partial sums

The limit behavior of suitably normalized partial sums of stationary random

variables with either LRD or HT has been studied by many authors. Appli-

cations can be found in geophysics, economics, hydrology and statistics. For

instance, in contexts like Whittle approximation, the asymptotic behavior of

quadratic forms of stationary sequences have an important role. In addition,

the efficacy of “R/S-statistic” theory that was introduced for estimating the

long-run, non-periodic statistical dependence of time series by Hurst and de-

veloped by Mandelbrot [13], can be confirmed by convergence of these limit

functions.

Many results deal with the existence and description of limit distributions

of sums

Sn,h(t) =

[nt]∑
k=1

(h(xk)− E(h(xk))), t ≥ 0, (2.2)

where h is a (nonlinear) function. The limit behavior for a Gaussian LRD
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process {xk}, firstly was studied by Rosenblatt [14]. Afterward, Dobrushin

and Major [3] explained it in more general form. Then, Taqqu [18] showed that

the limit in distribution of particular normalized sums Sn,h(t) is determined by

the Hermite rank m∗ ∈ {1, 2, ...} of h(x), which is the index of the first nonzero

coefficient in the Hermite expansion. Nonetheless, the behavior of nonlinear

non-Gaussian LRD processes is less known. One of the most studied non-

Gaussian LRD processes is the one-sided linear (moving average) process,

xk =
∞∑
j=0

cjξk−j, (2.3)

in which, innovations ξk, k ∈ Z, are i.i.d., have zero mean with finite variance,

and coefficients cj satisfy:

cj ∼ cσj
−σ, j ≥ 1 (2.4)

for some constant cσ 6= 0, c0 = 1 and σ ∈ (1
2
, 1).

Surgailis [16] considered the limit behavior of partial sum processes Sn,h(t)

of polynomial h of linear process {xk}k∈Z. Later, Giraitis and Surgailis [4][5],

Avram and Taqqu [1] noticed that the only difference between this case and

Gaussian case is that the Hermite rank m∗ of h(x) has to be replaced by the

Appell rank m.

Vaiciulis [19] investigated distributional convergence for normalized partial

sums of Appell polynomials Am(xk) of linear processes xk having both long-

memory and heavy-tails in the sense EA2
m(xk) =∞. In particular, he assumed

xk had the form (2.3) with innovations {ξmk } belonging to the domain of at-
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traction of an α-stable law with 1 < α < 2 and cj following (2.4). The limit

was: i) an α-stable Levy process, ii) an mth order Hermite process, or iii)

the sum of two mutually independent α-stable Levy and mth order Hermite

processes, depending on the value of α,m and σ where σ ∈ (1
2
, 1).

Later, Surgailis [17] considered the bounded, infinitely differentiable h case

where {xk} was LRD and had innovations with probability tail decay of x−2α

for 1 < α < 2. Suppose xk satisfies (2.3) and (2.4). Then, he showed three

different limiting behaviors corresponding to three different LRD-HT setting:

n1−(2σ−1)m∗/2Sn,h(t), n
1

2ασSn,h(t) or n
1
2Sn,h(t) converge in distribution to re-

spectively a Hermite process of order m∗, a 2ασ-stable Levy process or a

Brownian motion, all at time t, for certain range of α and σ.

2.2.3 Sample Covariances

Auto-covariance functions play a substantial role in time series analysis and

have diverse applications in inference problems, including hypothesis testing

and parameter estimation. The natural estimator of auto-covariance is sample

covariance. Hence, the convergence properties of the sample covariance is of

great interest (see, e.g. [2], [6] and [10]). In the case of LRD and HT, it is an

area of active research.

Davis and Resnick [2] studied the distributional convergence of sample

autocovariances for two-sided linear processes with innovations that were i.i.d.

and had regularly varying tail probabilities of index α > 0.

P (|ξk| > x) = x−2αL(x),

P (ξk > x)

P (|ξk| > x)
→ p and

P (ξk < −x)

P (|ξk| > x)
→ q, as x→∞, (2.5)
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where L(.) is slowly varying at infinity

(
so lim

j→∞

L(aj)

L(j)
= 1

)
and 0 ≤ p ≤

1, q = 1 − p. They considered the case where the innovations had finite

variance (ι) but infinite fourth moment, i.e. 1 < α < 2 with absolutely

summable coefficients cj with form of (2.4).

Note: We choose to scale our constants, here and in the sequel, so that

α < 2 always mean HT of the object of interest, which is xkxk+h or more

generally, XkXk.

In case of infinite fourth moment for {ξk}k∈Z, the asymptotic distribution of

normalized sample autocovariances of long-memory processes was studied by

Horváth and Kokoszka [6]. Suppose we observe the realization x1, x2, ..., xn+v,

n > 1, v ≥ 0, the sample autocovariances and population autocovariances are

defined as

γ̂
(n)
h =

1

n

n∑
k=1

xkxk+h, and γh = E[x0xh] = ι
∞∑
j=0

cjcj+h, h = 0, 1, ..., v, (2.6)

respectively. Horváth and Kokoszka [6, Theorem 3.1] studied the asymptotic

distribution [γ̂
(n)
h − γh], h = 0, 1, ..., v for linear process of form (2.3) with

coefficients and innovations satisfying (2.4) and (2.5) and a norming constant

an = inf{x : P (|ξ1| > x) ≤ n−1} (roughly of order n
1
2α ) satisfying

lim
n→∞

nP [|ξk| > anx] = x−2α, x > 0. (2.7)

We quote this result in our notations as the following theorem.

Theorem 2.2 Suppose, conditions (2.3), (2.4), (2.5) and (2.7) hold.

(a) If 1− 1
2α
< σ < 1 and 1 < α < 2, then
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na−2
n [γ̂

(n)
h − γh]

d→
(
S − α

α−1

) [ ∞∑
j=0

cjcj+h

]
, h = 0, 1, ..., H.

where S is an α-stable random variable. (For the above to hold for σ =

3/4, we must additionally assume that a−4
n n lnn→ 0.)

(b) If 1
2
< σ < 1− 1

2α
and 1 < α < 2, then

n2σ−1[γ̂
(n)
h − γh]

d→ ιc2
σ [Uσ(1)] , h = 0.1, ..., H.

where Uσ is a Rosenblatt process.

The Rosenblatt process is often defined by the iterated stochastic integral:

Uσ(t) = 2

∫
w1<w2<t

[∫ t

0

(τ − w1)−σ+ (τ − w2)−σ+ dτ

]
W (dw1)W (dw2),

in which W (.) is the standard Wiener process on the real line.

This theorem works for one-sided linear processes with a regularly varying

tail condition and gives us weak convergence.

Notice that in Theorem 2.2, case (a) represents the HT dominant, (α <

1
2−2σ

), so the diagonal terms dictate convergence to an α-stable distribution.

However, case (b) represents the LRD dominant, (α > 1
2−2σ

), hence off-

diagonal terms take over and we get convergence to Rosenblatt process.

2.3 Main Results

Our first result is in the scalar case. Later, we will extract the vector-valued

result as a second theorem. All proofs are delayed until the next section after

our applications.
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Theorem 2.3 Let
{

(ξl, ξl)
}
l∈Z be i.i.d. zero-mean random variables such that

E[ξ2
1 ] < ∞, E[ξ

2

1] < ∞ and sup
t≥0

tαP (|ξ1ξ1| > t) < ∞ for some α > 1.

Moreover, suppose (cl)l∈Z, (cl)l∈Z satisfy sup
l∈Z
|l|σ|cl| < ∞, sup

l∈Z
|l|σ|cl| <

∞ for some σ, σ ∈
(

1
2
, 1
]
, dk =

∞∑
l,m=−∞

ck−lck−mξlξm and d = E[ξ1ξ1]
∞∑

l=−∞
clcl.

Then, for p satisfying p < 1
2−σ−σ ∧ α ∧ 2

lim
n→∞

1

n
1
p

n∑
k=1

(dk − d) = 0 a.s.

Remark 2.1 The tail probability bound ensures that E[|ξ1ξ1|r] < ∞ for any

r ∈ (1, (α ∧ 2)) and E[d1] exists but it is possible that E[d2
1] = ∞ so, we are

handling heavy tails for {dk}. On the other hand, E[|ξ1ξ1|α] <∞ implies our

tail condition by Markov’s inequality. σ, σ bound the amount of long-range

dependence in xk =
∞∑

l=−∞
ck−lξl, xk =

∞∑
l=−∞

ck−lξl. If σ can be taken larger

than 1, then
∞∑
k=1

E[x0xk] <∞ and there is no long-range dependence in {xk}.

σ > 1
2

with E[ξ2
1 ] <∞ ensures that

∞∑
l=−∞

ck−lξl converges a.s.

Remark 2.2 Notice that the constraints to handle long-range dependence,

p < 1
2−σ−σ , and to handle the heavy tails, p < (α ∧ 2), decouple. This de-

coupling appears to be due to the structure of dk. Due to the independence

of (ξl, ξl) from (ξm, ξm), the off-diagonal sum
∑
l 6=m

ck−lck−mξlξm does not have

heavy tails. Conversely, since σ + σ > 1 the diagonal sum
∞∑

l=−∞
ck−lck−lξlξl

does not experience long-range dependence.

Corollary 2.1 Assume `(·), L(·) be slowly varying functions,
{

(ξl, ξl)
}
l∈Z be

i.i.d. zero-mean random variables such that E[ξ2
1 ] < ∞, E[ξ

2

1] < ∞ and

sup
t≥0

tαP (|ξ1ξ1| > t) < ∞ for some α > 1. Also, suppose (cl)l∈Z, (cl)l∈Z sat-
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isfy sup
l∈Z

`(l)|l|σ|cl| < ∞, sup
l∈Z

`(l)|l|σ|cl| < ∞, for some σ, σ ∈
(

1
2
, 1
]
, dk =

∞∑
l,m=−∞

ck−lck−mξlξm and d = E[ξ1ξ1]
∞∑

l=−∞
clcl. Then, for p satisfying p < 1

2−σ−σ∧

α ∧ 2, lim
n→∞

L(n)

n
1
p

n∑
k=1

(dk − d) = 0 a.s.

Proof. Inasmuch as the two generalizations to allow slowly varying func-

tions are similar, we just illustrate one. Let p′ ∈ (p, 1
2−σ−σ ∧ α ∧ 2) so

lim
n→∞

1

n
1
p′

n∑
k=1

(dk − d) = 0 a.s. by Theorem 2.3. By the representation theo-

rem for the slowly varying function L(n) = exp
(
η(n) +

∫ n
B

θ(t)
t
dt
)

for some

B > 0 and bounded measurable η, θ with lim
n→∞

η(n) existing and lim
t→∞

θ(t) = 0.

Hence,

lim
n→∞

L(n)

n
1
p

n
1
p′ = lim

n→∞
exp

(
η(n) +

∫ n

B

θ(t)

t
dt+

(
1

p′
− 1

p

)∫ n

1

1

t
dt

)
= 0.�

We will give a simple example to verify conditions in Theorem 2.3. Recall,

a non-negative random variable ξ obeys a power law with parameters β > 1

and xmin > 0, written ξ ∼ PL(xmin, β), if it has density

f(x) =
β − 1

xmin

(
x

xmin

)−β
∀ x ≥ xmin

so E|ξ|r =

 xrmin( β−1
β−1−r ) r < β − 1

∞ r ≥ β − 1
.

It has a folded t distribution with parameter β > 1, written ξ ∼ Ft(β), if it

has density

f(x) =
2Γ(β

2
)

Γ(β−1
2

)
√

(β − 1)π

(
1 +

x2

(β − 1)

)−β
2

∀ x > 0
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so E(|ξ|r) exists if and only if r < β − 1.

Example 2.1 Suppose p, q, α, β, β > 1 are such that 1
p

+ 1
q

= 1, β > pα +

1, β > qα + 1 and pα, qα ≥ 2. If ξ1 and ξ1 have power law distribution,

lets say ξ1 ∼ Pl(xmin, β), ξ1 ∼ Pl(xmin, β) for some xmin, xmin > 0, then

E[ξ2
1 ], E[ξ

2

1] < ∞ and sup
t≥0

tαP (|ξ1ξ1| > t) < ∞. If ξ1 ∼ Ft(β), ξ1 ∼ Ft(β),

then E[ξ2
1 ], E[ξ

2

1] <∞ and sup
t≥0

tαP (|ξ1ξ1| > t) <∞. Either way, the Theorem

2.3 applies with properly chosen (cl, cl).

We now consider the case where Xk and Xk are (multivariate) linear pro-

cesses.

Theorem 2.4 Let {Ξl} and
{

Ξl

}
be i.i.d. zero-mean random Rm-vectors such

that Ξl =
(
ξ

(1)
l , ..., ξ

(m)
l

)
, Ξl =

(
ξ

(1)

l , ..., ξ
(m)

l

)
, max

1≤i,j≤m
sup
t≥0

tαP (|ξ(i)
1 ξ

(j)

1 | > t) <

∞ for some α > 1, E[|Ξ1|2] < ∞ and E[|Ξ1|2] < ∞. Moreover, suppose

matrix sequences (Cl)l∈Z, (C l)l∈Z ∈ Rd×m satisfy

sup
l∈Z
|l|σ‖Cl‖ <∞, sup

l∈Z
|l|σ‖C l‖ <∞ for some (σ, σ) ∈

(
1

2
, 1

]
,

Xk, Xk take form of (2.1), Dk = XkX
T

k and D = E[X1X
T

1 ]. Then, for p

satisfying p < 1
2−σ−σ ∧ α ∧ 2

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s.

This theorem follows by linearity of limits and Theorem 2.3.
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2.3.1 Application: Stochastic Approximation

Stochastic approximation (SA) is often used in optimization problems for linear

models. Hence, the convergence properties of SA algorithms driven by linear

models is of utmost interest (see, e.g. [7], [8] and [9]). For illustration, we as-

sume {zk, k = 1, 2, ..} and {yk, k = 2, 3, ...} are respectively Rd− and R−valued

stochastic processes, defined on some probability space (Ω, F, P ), that satisfy

yk+1 = zTk h+ εk, ∀k = 1, 2, . . . , where h is an unknown d-dimensional param-

eter or weight vector of interest and {εk} is a noise sequence. We want to

estimate the parameter vector h through the stochastic approximation algo-

rithm:

hk+1 = hk + µk(bk − Akhk), (2.8)

where µk is the kth step gain of the form µk = k−χ for some χ ∈
(

1
2
, 1
]
,

Ak = zkz
T
k and bk = yk+1zk.

Kouritzin and Sadeghi [7] studied the convergence and almost sure rates of

convergence for the algorithm (2.8) in a general enough setting to handle

HT and LRD. Now, we can combine our main result (Theorem 2.4) with

[7, Corollary 3] to obtain a powerful rate of convergence result for stochastic

approximation.

Theorem 2.5 Let {Ξl} be i.i.d. zero-mean random Rm-vectors such that for

some α ∈ (1, 2), sup
t≥0

tαP (|Ξ1|2 > t) < ∞, (Cl)l∈Z be R(d+1)×m-matrices such

that sup
l∈Z
|l|σ‖Cl‖ < ∞ for someσ ∈

(
1
2
, 1
]
, (zTk , yk+1)T =

∞∑
l=−∞

Ck−lΞl, Ak =

zkz
T
k and bk = yk+1zk and A = E[zkz

T
k ] and b = E[yk+1zk].

Then, |hn−h| = o(n−γ) as n→∞ a.s. for any γ < γ
(χ)
0

.
= (χ− 1

α
)∧(χ+2σ−2).
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Proof. By Theorem 2.4 when 1
p

= χ − γ, X
T

k = XT
k = (zTk , yk+1), Ξl = Ξl,

C l = Cl, σ = σ, and Dk =

 zkz
T
k yk+1zk

yk+1z
T
k y2

k+1

 ,

1

nχ−γ

n∑
k=1

(Dk −D)→ 0 a.s.,

where D =

 A b

bT E[y2
k+1]

 . The first d-rows of 1
nχ−γ

n∑
k=1

(Dk −D)→ 0 a.s.

then establish the MSLLN

1

nχ−γ

n∑
k=1

(Ak − A)→ 0 and
1

nχ−γ

n∑
k=1

(bk − b)→ 0 a.s.

Now, we apply [7, Corollary 3] to complete the proof. �

Remark 2.3 Note that χ− γ satisfies the required conditions χ− γ > 2− 2σ

and χ− γ > 1
α

in Theorem 2.4. Theorem 2.5 also appears in [7, Theorem 9].

2.3.2 Application: Non-linear Function of Linear Pro-

cesses

As mentioned in Background, Vaiciulis [19] showed the convergence of distribu-

tions of the partial sum processes with non-linear h(xk) in terms of convergence

of Appell polynomials Am(xk) of a long-memory moving average process {xk}

with i.i.d. innovations {ξk} in the case where the variance EA2
m(xk) =∞, and

the distribution of ξm1 belongs to the domain of attraction of an α-stable law

with 1 < α < 2.

Practically, the simplest examples of functions h(x) with a given Appell
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rank m are Appell polynomials h = Am relative to the marginal distribution

x1 of the linear process (2.3). In case m = 2 the Appell polynomial is A2(x) =

x2 − µ2 where µ2 = Ex2. Viaiciulis [19, Theorems 1.1 and 1.2] proved that

when m(2σ−1) < 1, m ≥ 2 and σ ∈ (1
2
, 1) the limit distribution of partial sums

of mth Appell polynomial is either (i) an α-stable Levy process for 2 − 2σ <

1+ 2
m

( 1
α
−1), or (ii) an mth order Hermite process for 2−2σ > 1+ 2

m
( 1
α
−1) or

(iii) the sum of two mutually independent processes depending on the value

of α,m and σ, for 2− 2σ = 1 + 2
m

( 1
α
− 1).

Taking into account all his conditions (when t = 1) and transforming it to

our case we write our complementary almost sure rate-of-convergence theorem:

Theorem 2.6 Suppose A2 represents the Appell polynomials with rank 2 rel-

ative to the marginal distribution x1 of the linear process xk =
∞∑
j=0

ck−jξj, for

p ∈ [1, 1
2−2σ

∧ α) when

sup
t≥0

tαP (ξ2
1 > t) <∞, sup

l∈Z
|l|σ|cl| <∞, for some α ∈ (1, 2), σ ∈

(
1

2
, 1

]
.(2.9)

Then, lim
n→∞

1

n
1
p

n∑
k=1

A2(xk) = 0 a.s.

One might wonder if we have obtained the best possible MSLLN. In-

deed, we have. For example, Viaiciulis [19] shows convergence in distribu-

tion of 1

n(2−2σ)∧ 1
α

n∑
k=1

A2(xk) for m = 2 to different non-trivial limits in cases

(2 − 2σ) > 1
α

(LRD dominant) or (2 − 2σ) < 1
α

(HT dominant), respectively.

Therefore,
1

n(2−2σ)∧ 1
α

n∑
k=1

A2(xk) cannot converge to zero almost surely. The-

orem 2.6 gives MSLLN for Appell polynomials with rank 2 or in other word

gives the convergence and almost sure rates of convergence for partial sums

of second Appell polynomial when 1
p
> (2− 2σ) ∨ 1

α
. Our result is optimal in
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polynomial sense and we cannot do better than that in terms of MSLLN.

2.3.3 Application: Autocovariances

As mentioned in the background, autocovariance estimation under HT and

LRD conditions is an active area of research. We will handle the asymptotic

behavior of sample covariance function for processes with LRD, innovations of

infinite 4th moment and finite variance ι. If we define the sample aurtocovari-

ance and population autocovariance functions by γ̂(n)(h) and γ(h), as (2.6),

we have following almost sure result.

Theorem 2.7 Assume γ̂(n)(h) and γ(h), as (2.6) in which xk =
∞∑
j=0

ck−jξj

and satisfies (2.9) with E[ξ2
1 ] = ι. Then, for p satisfying p < 1

2−2σ
∧ α ∧ 2

n1− 1
p [γ̂

(n)
h − γh]→ 0 a.s. (2.10)

Proof. Note that in Theorem 2.3, for case ξl = ξl, E[ξ2
1 ] = ι, cl = cl+h and

{cl = 0, ∀ l < 0} we have

dk =
k∑

l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm and d = ι
∞∑
l=0

clcl+h.

Hence, 1

n
1
p

n∑
k=1

(dk − d) = 1

n
1
p

n∑
k=1

(
k∑

l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm − ι
∞∑
l=0

clcl+h

)
.

On the other hand, (2.10) can be written as

n1− 1
p [γ̂

(n)
h − γh] =

1

n
1
p

n∑
k=1

(xkxk+h − Ex0xh)

=
1

n
1
p

n∑
k=1

(
k∑

l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm − ι
∞∑
l=0

clcl+h

)
. (2.11)
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So, the result follows.�

As we saw, Theorem 2.2 gives the convergence to the following non-trivial

limits for 2α−1
2α

< σ < 1 and 1
2
< σ < 2α−1

2α
when 1 < α < 2,

(a)
1

a2
n

n∑
k=1

(xkxk+h − Ex0xh)
d→
(
S − α

α− 1

)[ ∞∑
l=0

clcl+h

]
,

(b)
1

n2−2σ

n∑
k=1

(xkxk+h − Ex0xh)
d→ ιc2

σ [Uσ(1)] , (2.12)

respectively, for h = 0, 1, ..., v.

It is clear that in the case of HT dominant, 1
α
> 2−2σ, we have almost-sure

convergence (Theorem 2.7) when 1
p
> 1

α
. When 1

p
= 1

α
, we get into the case

(a) and have convergence to an α-stable distribution. On the other hand, in

the LRD dominant case, 1
α
< 2−2σ, ( from Theorem 2.7) we have almost-sure

convergence for 1
p
> 2 − 2σ, yet for 1

p
= (2 − 2σ) we have convergence to

Rosenblatt process by (b) .

Hence, Theorem 2.7 shows the a.s convergence for difference of sample au-

tocovariance and population autocovariance with HT and LRD. One example

can be in the case that h = 0. Theorem 2.2 and (2.12) give the convergence

in distribution

1

a2
n

n∑
k=1

(x2
k − Ex2

0)
d→ (S − α

α− 1
)
∞∑
l=0

c2
l

1

n2−2σ

n∑
k=1

(x2
k − Ex2

0)
d→ ιc2

σUσ(1),

for 1
p

= 1
α

and 1
p

= 2− 2σ, respectively.

While, Theorem 2.7 gives the almost-sure convergence for
1

n
1
p

n∑
k=1

(
x2
k − Ex2

0

)
when 1

p
> (2− 2σ) ∨ 1

α
.

48



When we have convergence in distribution to non-trivial limits we can not get

almost-sure convergence to 0. However, by Theorem 2.7 we can get arbitrary

close to that with polynomial rate and get optimal polynomial almost sure

rate of convergence. We can not do better than that in terms of MSLLN.

Remark 2.4 The power to detect long-range dependence and estimate σ can

improve by considering increasing (in n) lag autocovariances in lieu of fixed

lag. As random variables are moved apart the magnitude of their covariance

often decreases at a rate that depends on the long-range dependence coefficient

σ. Hence, one can wonder if a MSLLN with a faster rate exists for the in-

creasing lag covariance in our two-sided linear process setting. Unfortunately,

the answer appears to be no. To explain, we let πn be the lag (so xk = xk+πn)

and consider the convergence rate of
1

n

n∑
k=1

∑
l,m

ck−lck+πn−mξlξm, with πn non-

decreasing and satisfying 0 ≤ πn ≤ n. Then, after some calculus, one finds

that the diagonal terms satisfy
1

π1−2σ
n n

1
p

n∑
k=1

∞∑
l=−∞

ck−lck+πn−lξ
2
l → 0 a.s. (under

mild additional assumptions on {ci}), implying the order π1−2σ
n rate increase

over our fixed lag results as expected from the results in Wu et. al. [22]. How-

ever, letting
D
= denote equal in distribution and taking m′ = m − πn, we find

that

n∑
k=1

∞∑
l=−∞

∞∑
m=−∞
m6=l,l+πn

ck−lck+πn−mξlξm
D
=

n∑
k=1

∞∑
l=−∞

∞∑
m=−∞
m6=l,l+πn

ck−lck+πn−mξlξm−πn

=
n∑
k=1

∞∑
l=−∞

∞∑
m′=−∞
m′ 6=l,l−πn

ck−lck−m′ξlξm′ . (2.13)

The terms on the far left is the off-diagonal terms for the increasing lag case

with the terms m = l + πn removed whereas the far right is the off-diagonal
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terms for the constant lag case with the terms m′ = l − πn removed. Now,

our off-diagonal term bounds in the proof to follow appear to be of tight order

so a ‘faster’ MSLLN for the increasing lag case seems unlikely. Moreover, the

removed terms would only appear in the large c and mixed terms since πn ≤ n.

Hence, the bound of E
[
(S

(3)
n )2

]
would remain unchanged and T (n) would have

to increase faster to expect a better convergence rate. However, that would

negatively affect the bound of E
[
(S

(2)
n )2

]
, which seems insignificantly changed

by the single m term swap in the above equation. Consequently, we believe the

increasing-lag autocovariance MSLLN has the same form as the constant lag

and the increasing lag autocovariance test has limited advantage over the fixed

lag in the two-sided linear process case. Thus, we have not complicated our

proofs to include the increasing-lag case.

2.4 Proofs

In this section proof of theorems will be provided.

2.4.1 A First Light Tail Result

We first give a result that only handles long-range dependence without heavy

tails. However, our proof of Theorem 2.3 to follow will show that these two

phenomena decouple, so we can easily build upon the Theorem 2.8 to handle

both long-range dependence and heavy tails together.

Theorem 2.8 Let
{

(ξl, ξl), l ∈ Z
}

be i.i.d. zero-mean random variables such
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that E[(1 + ξ2
1)(1 + ξ

2

1)] <∞, (cl, cl)l∈Z satisfy

sup
l∈Z
|l|σ|cl| <∞, sup

l∈Z
|l|σ|cl| <∞ for some σ, σ ∈

(
1

2
, 1

]
,

xk =
∞∑

l=−∞
ck−lξl, xk =

∞∑
l=−∞

ck−lξl, dk = xkxk =
∞∑

l,m=−∞
ck−lck−mξlξm and

d = E[ξ1ξ1]
∞∑

l=−∞
ck−lck−l = E[ξ1ξ1]

∞∑
l=−∞

clcl. Then, for p < 1
2−σ−σ

lim
n→∞

1

n
1
p

n∑
k=1

(dk − d) = 0 a.s.

Proof. Insomuch as the proof of the general case only differs cosmetically

from the notationally-simpler case where ξl = ξl and cl = cl =

 1 l = 0

|l|−σ l 6= 0
,

we only provide the proof of the latter for which the constraint becomes p <

1
2−2σ

. Assume without loss of generality that σ < 1 and E[ξ2
1 ] = 1.

Step 1: Divide partial sums into diagonal, large c, small and mixed type

terms.

Let nr = 2r and T = T (n) = nν for ν > 0, n ∈ [nr, nr+1) and r ∈ N0, and

define

S(1)
n =

n∑
k=1

∞∑
l=−∞

c2
k−l
(
ξ2
l − 1

)
(2.14)

S(2)
n =

n∑
k=1

k+T∑
l,m=k−T
l 6=m

ck−lck−mξlξm (2.15)

S(3)
n =

n∑
k=1

∑
(l−k)∧(m−k)>T

l 6=m

ck−lck−mξlξm (2.16)

S(4)
n =

n∑
k=1

∑
m−k>T

k+T∑
l=k−T

ck−lck−mξlξm. (2.17)
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By breaking

{
1

n
1
p

n∑
k=1

(dk − d) , n = 1, 2, ...

}
into pieces and considering those

pieces with different (process) distributions, we just need to show that

lim
n→∞

S
(1)
n

n
1
p

= lim
n→∞

S
(2)
n

n
1
p

= lim
n→∞

S
(3)
n

n
1
p

= lim
n→∞

S
(4)
n

n
1
p

= 0 a.s.,

provided p < 1
2−2σ

. To handle (the diagonal terms) S
(1)
n , we let ζl = ξ2

l − 1, set

K = E[ζ2
1 ] and use standard steps.

Step 2: Bound second moment of geometric diagonal partial sums S
(1)
nr .

By symmetry and then integral approximation, we have that

E[(S(1)
nr )2]

=
∞∑

l=−∞

∞∑
m=−∞

nr∑
j=1

nr∑
k=1

c2
k−lc

2
j−mE[ζlζm]

= K
∞∑

l=−∞

∣∣∣∣∣
nr∑
k=1

c2
k−l

∣∣∣∣∣
2

r
�

nr∑
k=1

(
1 + 2

∞∑
l=1

l−4σ + 2
nr∑

j=k+1

(
2(j − k)−2σ +

k−1∑
l=−∞

(k − l)−2σ(j − l)−2σ

+

j−1∑
l=k+1

(l − k)−2σ(j − l)−2σ +
∞∑

l=j+1

(l − k)−2σ(l − j)−2σ

))
r
�

nr∑
k=1

(
1 +

nr∑
j=k+1

((j − k)−2σ + (j − k)1−4σ)

)
r
� nr. (2.18)

Note:

j−1∑
l=k+1

1

(l − k)2σ (j − l)2σ ≤ 2

b j+k2 c∑
l=k+1

1

(l − k)2σ (j − l)2σ

j,k
� (j − k)−2σ

b j+k2 c∑
l=k+1

1

(l − k)2σ

j,k
� (j − k)(1−4σ) . (2.19)
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Step 3: Maximal bound for geometric diagonal partial sums.

Following (2.18) we have for nr ≤ n < o < nr+1

E[(S(1)
o − S(1)

n )2] ≤ K
∞∑

l=−∞

∣∣∣∣∣
o∑

k=n+1

c2
k−l

∣∣∣∣∣
2

o,n
�

o∑
k=n+1

(
1 +

o∑
j=k+1

((j − k)−2σ + (j − k)1−4σ)

)
o,n
� o− n. (2.20)

Therefore, it follows by Theorem 2.4.1 of Stout [15] with g(a, n) = Cn for

some constant C > 0 that

E

[
max

nr≤n<o<nr+1

(
S(1)
o − S(1)

n

)2
]

r
�

(
log(2(nr+1 − nr))

log 2

)2

(nr+1 − nr)
r
� r2nr. (2.21)

Step 4: Use previous two steps to show normalized diagonal sums con-

verge.

Combining (2.18) and (2.21), one has that

∞∑
r=0

E

 max
nr≤n<nr+1

(
S

(1)
n

n
1
p

)2
 �

∞∑
r=0

r2n
1− 2

p
r <∞, (2.22)

provided p ∈ (0, 2). It follows by Fubini’s Theorem and nth term divergence

that

lim
n→∞

S
(1)
n

n
1
p

= 0.
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Step 5: Set up for off-diagonal terms.

Letting

a2,n
l,m = 2

n∑
k=1

1m−T≤k≤l+T ck−lck−m (2.23)

a3,n
l,m = 2

n∑
k=1

1k<l−T ck−lck−m (2.24)

a4,n
l,m =

n∑
k=1

1k<m−T1l−T≤k≤l+T ck−lck−m, (2.25)

we find that

E
[
(S(i)

n )2
]

=
∞∑

l1=−∞

∞∑
m1=l1+1

ai,nl1,m1

∞∑
l2=−∞

∞∑
m2=l2+1

ai,nl2,m2
E [ξl1ξm1ξl2ξm2 ]

=
∞∑

l1=−∞

∞∑
m1=l1+1

ai,nl1,m1

∞∑
l2=−∞

∞∑
m2=l2+1

ai,nl2,m2
δl1,l2δm1,m2

=
∞∑

l=−∞

∞∑
m=l+1

(
ai,nl,m

)2
(2.26)

and for nr ≤ n < o < nr+1

E
[
(S(i)

o − S(i)
n )2

]
=

∞∑
l=−∞

∞∑
m=l+1

(
ai,ol,m − a

i,n
l,m

)2
(2.27)

for i = 2, 3, 4. Using a change of variables and the Beta distribution pdf, we

have that

j−1∑
l=k+1

cj−lck−l
j,k
�

∫ j

k

(j − t)−σ (t− k)−σ dt

= (j − k)1−2σ

∫ 1

0

(1− s)−σ s−σds︸ ︷︷ ︸
B(1−σ,1−σ)

j,k
� (j − k)1−2σ . (2.28)
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Step 6: Apply S(1)-procedure for convergence of large c terms S
(2)
n

n
1
p

.

Using (2.28) and integral approximation, one has for n ∈ [nr, nr+1)

E
[
(S(2)

n )2
]
− 4

n∑
k=1

∑
m>l

1k−T≤m≤k+T · 1k−T≤l≤k+T c
2
k−lc

2
k−m

= 8
∑
j>k

∑
m>l

1j−T≤m≤k+T · 1j−T≤l≤k+T cj−lcj−mck−lck−m

≤ 4
∑
j>k

∣∣∣∣∣
k+T∑
l=j−T

cj−lck−l

∣∣∣∣∣
2

≤ 4
n∑
k=1

n∧(k+2T )∑
j=k+1

∣∣∣∣∣2cj−k +
k−1∑
l=j−T

cj−lck−l +

j−1∑
l=k+1

cj−lck−l +
k+T∑
l=j+1

cj−lck−l

∣∣∣∣∣
2

n
�

n∑
k=1

k+2T∑
j=k+1

[
(j − k)−2σ + (j − k)2−4σ + (j − k)−2σ T 2−2σ

]
n
� nl(n),

where l (n) =


T 3−4σ = n

ν(3−4σ)
r σ < 3

4

log (T ) = ν log(nr) σ = 3
4

1 σ > 3
4

. Hence,

E
[
(S(2)

n )2
] n
� nl (n) +

n∑
k=1

∣∣∣∣∣
T∑

l=−T

c2
l

∣∣∣∣∣
2

n
� nl (n) . (2.29)

Similarly, we have for nr ≤ n < o < nr+1 that

E
[(
S(2)
o − S(2)

n

)2
] o,n
�

o∑
k=n+1

∣∣∣∣∣
T∑

l=−T

c2
l

∣∣∣∣∣
2

+
o∑

j,k=n+1
j>k

∣∣∣∣∣
k+T∑
l=j−T

cj−lck−l

∣∣∣∣∣
2

o,n
� (o− n) l (n) . (2.30)
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Therefore, it follows by Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(S(2)
o − S(2)

n )2

]
r
�

(
log(2nr)

log 2

)2

(nr+1 − nr)l(nr+1)

r
� r2nrl(nr). (2.31)

Combining (2.29) with n = nr and (2.31), one has that

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S

(2)
n

n
1
p

)2
 �

∞∑
r=0

r2n
1− 2

p
r l(nr) <∞, (2.32)

provided 1 + ν(3− 4σ)∨ 0 < 2
p

(i.e. p < 2
1+ν(3−4σ)

when σ < 3
4

and p < 2 when

σ ≥ 3
4
, both of which are true). It follows that lim

n→∞
S
(2)
n

n
1
p

= 0 a.s.

Step 7: Apply S(1)-procedure for convergence of small c terms S
(3)
n

n
1
p

.

E
[
(S(3)

n )2
]

=8
∑
j>k

∑
m>l

1j+T<l · 1k+T<lcj−lcj−mck−lck−m

+4
n∑
k=1

∑
m>l

1k+T<lc
2
k−lc

2
k−m

≤4
∑
j>k

∣∣∣∣∣
∞∑

l=j+T+1

cj−lck−l

∣∣∣∣∣
2

+ 2
n∑
k=1

∣∣∣∣∣
∞∑

l=k+T+1

c2
k−l

∣∣∣∣∣
2

n
�

n−1∑
k=1

n∑
j=k+1

∣∣∣∣ ∫ ∞
j+T

(t− j)−σ (t− k)−σ dt

∣∣∣∣2 +
n∑
k=1

∣∣∣∣ ∫ ∞
k+T

(t− k)−2σ dt

∣∣∣∣2
n
�

n∑
k=1

(
n∑

j=k+1

∣∣∣∣ ∫ ∞
T

t−2σdt

∣∣∣∣2 +

∣∣∣∣ ∫ ∞
T

t−2σdt

∣∣∣∣2
)

n
�n2T 2−4σ. (2.33)
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Similarly, we have for nr ≤ n < o < nr+1 that

E
[(
S(3)
o − S(3)

n

)2
] o,n,r
� (o− n) oT 2−4σ

o,n,r
� (o− n)n

1+ν(2−4σ)
r+1 . (2.34)

Therefore, it follows by Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(
S(3)
o − S(3)

n

)2
]

r
�

(
log(2nr)

log 2

)2

(nr+1 − nr)n1+ν(2−4σ)
r+1

r
� r2n2+ν(2−4σ)

r . (2.35)

Combining (2.33) with n = nr and (2.35), one has

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S

(3)
n

n
1
p

)2
 �

∞∑
r=0

r2n
2+ν(2−4σ)− 2

p
r <∞, (2.36)

provided p < 1
1+ν(1−2σ)

, which is the given condition, so lim
n→∞

S
(3)
n

n
1
p

= 0 a.s..

It is notable that condition on p, p < 2
1+ν(3−4σ)

, in step 6 gets more stringent

when ν > 1 and the same is true for condition on p, p < 1
1+ν(1−2σ)

, in step 7

when ν < 1, so the best choice that raises the same condition on p is when

ν = 1. Hence, we will have to satisfy p < 1
1−2σ

in either cases.

Step 8: Apply S(1)-procedure for convergence of mixed terms S
(4)
n

n
1
p

.

Finally, we note

E
[
(S(4)
n )2

]
=

n∑
k=1

∞∑
m=k+T+1

c2
k−m

l=k+T∑
l=k−T

c2
k−l + 2

n∑
k=1

k+2T∑
j=k+1

∞∑
m=j+T+1

cj−mck−m

k+T∑
l=j−T

cj−lck−l

n
�

n∑
k=1

T 1−2σ +

k+2T∑
j=k+1

T 1−2σ
[
(j − k)−σ + (j − k)1−2σ + (j − k)−σ T 1−σ

]
n
� nT 3−4σ.
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Similarly, we have for nr ≤ n < o < nr+1 that

E
[(
S(4)
o − S(4)

n

)2
] o,n
� (o− n)T 3−4σ.

Therefore, it follows by ν = 1 and Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(
S(4)
o − S(4)

n

)2
]

r
�
(

log(2nr)

log 2

)2

(nr+1 − nr)n3−4σ
r+1

r
� r2n4−4σ

r .

Combining these two equations, one has

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S

(4)
n

n
1
p

)2
 �

∞∑
r=0

r2n
(4−4σ)− 2

p
r <∞, (2.37)

provided p < 1
2−2σ

, which is true. It follows that lim
n→∞

S
(4)
n

n
1
p

= 0 a.s. �

2.4.2 Proof of Theorem 2.3

Without loss of generality we assume 1 < α < 2.

Step 1: Reduce to continuous {(ξl, ξl)}.

Let {(Ul)}l∈Z be independent [−1, 1]-uniform random variables that are inde-

pendent of everything and set U l = Ul for all l. Then, we have that

1

n
1
p

n∑
k=1

(dk − d) =
1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
(ξl + Ul)(ξm + Um)− d− 2

3

)

− 1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
ξlUm + Ulξm + UlUm −

2

3

)
.(2.38)

However,

lim
n→∞

1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
ξlUm + Ulξm + UlUm −

2

3

)
= 0 (2.39)
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by Theorem 2.8. Moreover, ξ1 + U1, ξ1 + U1 have the same moment and

tail probability bounds as ξ1, ξ1. Hence, without loss of generality, we can

assume ξl, ξm are continuous random variables, which will be important for

the truncation to follow in Step 4.

Step 2: Handle off-diagonal sum as previous proof since unaffected by

heavy tails.

Suppose S
(2)
n , S

(3)
n and S

(4)
n are defined as in (2.15-2.17). Then, we know that

lim
n→∞

S
(2)
n

n
1
p

= lim
n→∞

S
(3)
n

n
1
p

= lim
n→∞

S
(4)
n

n
1
p

= 0 a.s.,

provided p < 1
2−σ−σ by the proof of Theorem 2.8.

Step 3: Reduce ξlξl (in diagonal sum) to non-negative with single atom

at 0.

Noting

∞∑
l=−∞

ck−lck−l(ξlξl − E[ξlξl])

=

∞∑
l=−∞

ck−lck−l((ξlξl)
+ − E[(ξlξl)

+])−
∞∑

l=−∞
ck−lck−l((ξlξl)

− − E[(ξlξl)
−]), (2.40)

we only have to consider the case where ξlξl ≥ 0 for the remainder of the proof.

Moreover, insomuch as the proof of the general case only differs cosmetically

from the notationally-simpler case where ξl = ξl, E[ξ2
1 ] = 1 and cl = cl = 1 l = 0

|l|−σ l 6= 0
, we only provide the proof of the later for which the long-

range dependence constraint becomes p < 1
2−2σ

. We will however indicate the

most significant changes that would be needed for the general case.
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Step 4: Divide diagonal terms into zero-mean truncated (i.e. bounded)

and remainder pieces.

Let κ > 0. Fix u+
r = n

κ
2−α
r to find

2

∫ u+r

0

P (ξ2
1 > s)sds

r
� 2

∫ u+r

0

ss−αds
r
� nκr ∀ r = 1, 2, ... (2.41)

Now, by defining

 ζ i = ζ
r

i = (ξ2
i ∧ u+

r )− ϑi, where ϑi
.
=
∫ u+r

0
P (ξ2

i > s)ds ≤ 1,

ζ̃i = ζ̃ri = ξ2
i − 1− ζri ,

(2.42)

we find that

E[ζ i] =

∫ u+r

0

P (ξ2
i > t)dt−

∫ u+r

0

P (ξ2
i > t)dt = 0, (2.43)

so both ζ i and ζ̃i are zero mean, and by (2.41)

E[|ζ1|2] = E|ξ2
1 ∧ u+

r |2 −

(∫ u+r

0

P (ξ2
1 > t)dt

)2

= 2

∫ u+r

0

P (ξ2
1 > s)sds−

(∫ u+r

0

P (ξ2
1 > t)dt

)2

r
� nκr ∀ r = 1, 2, ... (2.44)

(In the general case, we note that ξ1ξ1 is non-negative and of continuous dis-

tribution on (0,∞) so E[ξ1ξ1 ∧ u+
r ] =

∫ u+r
0

P (ξ1ξ1 > s)ds as required. We also

have ζ̃ri = ξiξi − E[ξiξi]− ζ
r

i .)

Step 5: Moment Bound for truncated using the proof of Theorem 2.8.

60



Noting {ζ i} are i.i.d. with E[ζ1] = 0 and E[ζ
2

1] <∞ and defining

S(1)
n =

n∑
k=1

∞∑
l=−∞

c2
k−lζ l, (2.45)

one finds from (2.22) in the proof of Theorem 2.8 that

E

[
max

nr≤n<nr+1

(
S(1)
n

)2
]
≤ E|ζ1|2r2nr. (2.46)

Hence, it follows by (2.44) that

E

[
max

nr≤n<nr+1

(
S(1)
n

)2
]

r
� r2n1+κ

r . (2.47)

Step 6: Moment Bound for remainder using Doob’s inequality.

Turning to the ζ̃ri and using the formula

E[g(X)] =

∫ ∞
0

g′(t)P (X > t)dt−
∫ 0

−∞
g′(t)P (X < t)dt, (2.48)

one has by our tail probability bounds that the non-negative part of ζ̃1 satisfies

E|ζ̃+
1 |τ = τ

∫ ∞
0

sτ−1P (ξ2
1 > u+

r + s+ 1− ϑ1)ds

≤ τ

∫ ∞
0

sτ−1P (ξ2
1 > u+

r + s)ds since ϑ1 ≤ 1

r
�

∫ ∞
u+r

(s− u+
r )τ−1s−αds

≤
∫ 2u+r

u+r

(s− u+
r )τ−1ds(u+

r )−α +

∫ ∞
2u+r

(s− u+
r )τ−α−1ds

r
� (u+

r )τ−α
r
� n

κ(τ−α)
2−α

r , (2.49)

for 1 < τ < α. Therefore, it follows by Jensen’s inequality and Doob’s Lp
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inequality that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∞∑
l=−∞

c2
l ζ̃
r
k−l

∣∣∣∣∣
τ]
≤ E

1
τ

[∣∣∣∣∣
∞∑

l=−∞

c2
l sup
nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

ζ̃rk−l

∣∣∣∣∣
∣∣∣∣∣
τ]

r
�

∞∑
l=−∞

c2
lE

1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

ζ̃rk−l

∣∣∣∣∣
τ]

r
�

∞∑
l=−∞

c2
lE

1
τ

[∣∣∣∣∣
nr+1−1∑
k=1

ζ̃rk−l

∣∣∣∣∣
τ]

r
� nr‖ζ̃r1‖τ , (2.50)

so by (2.49, 2.50)

E

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∞∑
l=−∞

c2
l ζ̃
r
k−l

∣∣∣∣∣
τ]

r
� n

τ−κ(α−τ)
2−α

r . (2.51)

Step 7: Use Truncation and Error Term bounds with Borel-Cantelli for

convergence.

Combining (2.47) and (2.51), one has that

P

(
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∞∑
l=−∞

c2
l ζk−l

∣∣∣∣∣ > 2εn
1
p
r

)

≤
E

[
sup

nr≤n<nr+1

∣∣∣∣ n∑
k=1

∞∑
l=−∞

c2
l ζ
r

k−l

∣∣∣∣2
]

ε2n
2
p
r

+

E

[
sup

nr≤n<nr+1

∣∣∣∣ n∑
k=1

∞∑
l=−∞

c2
l ζ̃
r
k−l

∣∣∣∣τ]
ετn

τ
p
r

r
� r2n

1+κ− 2
p

r + n
τ−κ(α−τ)

2−α −
τ
p

r

r
� r2n

1−α
p

r + n
τ−α

p
r , (2.52)
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by letting κ = 2−α
p

. Hence, if τ ∈
(

1, α
p

)
, then

∞∑
r=1

P

(
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∞∑
l=−∞

c2
l ζk−l

∣∣∣∣∣ > 2εn
1
p
r

)
<∞, (2.53)

under our heavy-tail condition p < α and

n−
1
p

n∑
k=1

∞∑
l=−∞

c2
l ζk−l → 0 a.s., (2.54)

by Borel-Cantelli. The proof is complete. �
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Chapter 3

Convergence Rates and

Decoupling in Linear Stochastic

Approximation Algorithms*

3.1 Introduction

Linear stochastic approximation algorithms have found widespread applica-

tion in parameter estimation, adaptive machine learning, signal processing,

econometrics and pattern recognition (see, e.g., [1], [3], [9], [26] and [32]).

Consequently, their asymptotic rates of almost sure and rth-mean convergence

as well as invariance and large deviation principles are of utmost importance

(see e.g., [6], [11], [17], [18], [21], [22], [24], [34] and [36]). For motivation,

suppose {xk, k = 1, 2, · · · } and {yk, k = 2, 3, · · · } are second order Rd− and

*A version of this chapter has been published. Kouritzin, M.A. and Sadeghi, S. (2015).

Convergence Rates and Decoupling in Linear Stochastic Approximation Algorithms. SIAM

Journal on Control and Optimization, vol. 53-3, pp. 1484-1508.
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R−valued stochastic processes, defined on some probability space (Ω,F , P ),

that satisfy

yk+1 = xTk h+ εk, ∀k = 1, 2, . . . , (3.1)

where h is an unknown d-dimensional parameter or weight vector of interest

and εk is a noise sequence. One often wants to find the value of h that min-

imizes the mean-square error h → E|yk+1 − xTk h|2. This best h is given by

h = A−1b, where A = E(xkx
T
k ) and b = E(yk+1xk), assuming the expectations

exist, wide-sense stationarity conditions and that A is positive definite. How-

ever, we often do not know the joint distribution of (xk, yk+1) nor have the

necessary stationarity but instead estimate h using a linear algorithm of the

form:

hk+1 = hk + µk(bk − Akhk), (3.2)

where µk is the kth step size (often of the form µk = k−χ for some χ ∈
(

1
2
, 1
]
)

and

Ak =
1

N

k∑
l=max{k−N+1,1}

xlx
T
l , and bk =

1

N

k∑
l=max{k−N+1,1}

yl+1xl (3.3)

for some N ∈ N, are random sequences of symmetric, positive-semi-definite

matrices and vectors respectively. Most often N = 1 so Ak = xkx
T
k and

bk = yk+1xk. More information on stochastic approximation can be found

in e.g. [5], [8], [10], [13], [17], [25], [30] and [37], which provide examples

and motivation for our work. However, our work is easily differentiated from

these. Delyon [8], for example, focuses on non-linear stochastic approximation
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algorithms, treating linear examples the same as non-linear ones. (In Section

4.2.2 he uses linear algorithm approximation but with a constant deterministic

matrix Ak = A in our notation.) Delyon’s work handles important applica-

tions. However, his A-stable and (A, B) Conditions are usually harder to

verify than our Marcinkiewicz Strong Law of Large Numbers (MSLLN) con-

ditions (given below) in the (unbounded, random Ak) linear case, he does not

supply almost sure rates of convergence, his theorems are geared to martingale-

increment-plus-decreasing-perturbation noise and he often assumes fourth or-

der moments. We are motivated by (but not restricted to) the common setting

where XT
k = (xTk , yk+1) is a (multivariate) linear process

Xk =
∞∑

l=−∞

Ck−lΞl. (3.4)

Matrix sequence (Cl) can decay slowly enough (as |l| → ∞) for long-range

dependence (LRD) while {Ξl} can have heavy tails (HT), so E|bk|2 = ∞

and/or E|Ak|2 =∞. Even in the lighter tail, short-range dependence case our

two-sided linear process example {xk} is not a martingale. Moreover; long-

range dependence and heavy tails; exhibited in many network [19], financial

and paleoclimatic data sets for example; voids the usual mixing and moment

conditions. We focus on one-step versus Polyak-Ruppert’s two-step averaging

algorithms but handle heavy tails and long-range dependence, deriving a sur-

prising decoupling. This means that the optimal convergence rate of (3.2) is

affected by either the heavy tails or the long-range dependence, whichever is

worse, but not both. This contrasts the rate for partial sums of long-range

dependent, heavily-tailed random variables, which is degraded twice (see e.g.

Theorem 3.4).
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Step size µk has a direct effect on the convergence rate and algorithm

effectiveness (see, e.g [12], [15] and references cited therein). Consider the

extreme cases. In the homogeneous, deterministic setting, i.e. Ak = A and

bk = b, (3.2) can solve the linear equation Ah = b when matrix inversion

of A is ill-conditioned. In this case, a constant gain µk = ε is best: Since

b = Ah, we have hk+1 = hk − εA(hk − h), so hn − h = (I − εA)n−1(h1 − h)

and hn → h geometrically, provided ε is small enough that the eigenvalues

of I − εA are within the unit disc. Conversely, in the presence of persistent

noise, decreasing step sizes are required for the convergence hn → h. Existing

results show that the best possible almost-sure rate of convergence is |hn−h| =

O
(√

n−1 log log(n)
)

, implied by the law of the iterated logarithm, and that

this rate is only attainable when µk = 1
k
, second moments of Ak, bk exist and

there is no long-range dependence. (These claims follow from the almost-sure

invariance principle in Kouritzin [22].)

Herein, we handle all gains, long-range dependence and heavy tails, ad-

dressing the optimal rate of convergence by establishing results akin to the

MSLLN, namely nγ|hn − h| → 0 a.s. (i.e. |hn − h| = o(n−γ)), for all

γ < γ0(χ)
.
= χ −M . M is called the Marcinkiewicz threshold in the sequel

and is defined by

M
.
= inf

{
1

m
: lim
n→∞

1

n
1
m

n∑
k=1

(Ak −A) = 0, lim
n→∞

1

n
1
m

n∑
k=1

(bk − b) = 0 a.s.

}
. (3.5)

Usually, we expect M ∈ (1
2
, 1], due to Strong Law of Large Numbers and

Central Limit Theorem in the light-tail, short-range-dependence case but when

there is LRD and/or HT M generally cannot approach 1
2
. When {(xTk , yk+1)T :

k ∈ Z} is a linear process as in (3.4), it is shown in [20] that M = 1
α
∨ (2− 2σ)
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with α
.
= sup{a ≤ 2 : sup

t≥0
taP (|Ξ1|2 > t) < ∞} and σ

.
= sup{s ∈ (1

2
, 1] :

sup
l
|l|s‖Cl‖ < ∞}. Hence, γ < γ0(χ)

.
= (χ − 1

α
) ∧ (χ + 2σ − 2). Here,

α ∈ (1, 2] is a heavy-tail parameter with α = 2 indicating non-heavy tails and

σ ∈
(

1
2
, 1
]

is a long-range dependence parameter with σ = 1 indicating the

minimal amount of long-range dependence.

In classical applications the best theoretical convergence rate is attained

when χ = 1 corresponding to γ0(χ) = 1
2
. However, this rate knowledge can lead

to erroneous conclusions as the algorithm often performs better with µk = k−χ

for some χ < 1 or even constant gain (see [23]) than with µk = 1
k
. How

might one explain this apparent paradox? First of all, these simple rate-of-

convergence results do not account for the possibility of exploding constants,

i.e. if h
(χ)
k denotes the solution of the algorithm (3.2) with µk = k−χ, then

|hn(χ)− h| = Dχn−γ(χ) for all γ(χ) < γ0(χ). However, this Dχ often increases

rapidly as χ↗ 1 so the observed convergence may be fastest for some χ < 1.

Secondly, a higher value of χ is worse for forgetting a poor initial guess h0 of h

since you move further and further from the geometric convergence mentioned

above as χ→ 1.

Our approach is to transfer the MSLLN from the partial sums of a linear

algorithm’s coefficients to its solution. In other words, we establish the almost

sure rates of convergence nγ|hn − h| → 0 a.s., for the algorithm

hk+1 = hk +
1

kχ
(bk − Akhk) ∀ k = 1, 2, 3, ... (3.6)

with χ ∈ (0, 1), assuming only

lim
n→∞

1

nχ

n∑
k=1

(Ak − A) = 0 and lim
n→∞

1

nχ−γ

n∑
k=1

(bk − Akh) = 0 a.s. (3.7)
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for some γ ∈ [0, χ), which can be implied by e.g.

lim
n→∞

1

nχ−γ

n∑
k=1

(Ak − A) = 0 and lim
n→∞

1

nχ−γ

n∑
k=1

(bk − b) = 0 a.s., (3.8)

where Ah = b. When χ − γ ∈ (1
2
, 1], these conditions can be verified by

the MSLLN under a variety of conditions, which we study using the specific

structure of Ak and bk in Section 3.4.

In addition to rates of convergence, our results show that convergence

(hk → h) in (3.6) takes place provided that χ ∈ (M, 1). All this suggests

that more quickly decreasing gains like µk = 1
kχ

with χ near 1 should be used

in very heavy-tailed or long-range dependent settings. Conversely, slowly de-

ceasing gains like µ = 1
kχ

with smaller χ might work well in lighter-tailed,

short-range-dependent situations. Our simulations in Section 3.5 show that

the smallest normalized error, |hn−h||h1−h| , usually occurs for χ ∈ (M, 1] and the

most commonly used choice χ = 1 is most appropriate in very heavy-tailed

or long-range-dependent settings (where M is close to 1) or very long runs.

In other words, a slower decreasing gain usually gets you close to the true

parameters h more quickly unless the coefficients have a high probability of

differing significantly from their means.

Let us consider what is new in terms of our theoretical results. The idea

of inferring convergence and rates of convergence results for linear algorithms

(3.2) from like convergence and rates of convergence of its coefficients is not

new. Indeed, it dates back at least to work done by one of the authors in 1994

and 1996 (see [21], [22] and [24]). The result [24] considered relatively general

gain µk and achieved optimal rates of rth-mean convergence. It has been proved

in [22] that the solution of the linear algorithm (3.2) satisfies an almost sure
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invariance principle with respect to a limiting Gaussian process when µk = 1
k

and each Ak is symmetric under the minimal condition that the coefficients

satisfy such an a.s. invariance principle. One could then immediately transfer

functional laws of the iterated logarithm from the limiting Gaussian process

back to the solution of the linear algorithm. Again assuming the “usual”

conditions of Ak symmetry and µk = 1
k
, Kouritzin [21] showed that the solution

of the linear algorithm converges almost surely given that the coefficients do.

While this result does not state rates of convergence, our current work in

going from Proposition 3.1 to Theorem 3.1 within shows that almost-sure rate

of convergence sometimes follow from convergence results for linear algorithms

as a simple corollary.

There were many results (see, e.g. [13], [14] and [16]) that preceded those

mentioned above and gave convergence or rates of convergence for linear algo-

rithms. However, these results assumed a specific dependency structure and,

thereby, were not generally applicable. More recently, some authors, e.g. [6],

[8] and [34], have followed the path of transferring convergence and rates of

convergence from partial sums of (the coefficient) random variables to the solu-

tions of linear equations. Specifically, Tadić [34] transferred almost-sure rates

of convergence, including those of the law-of-the-iterated-logarithm rate, from

the coefficients to the linear algorithm in the non-symmetric-Ak, general-gain

case. He does not develop a law of the iterated logarithm where one charac-

terizes the limit points nor does he consider functional versions. Moreover, he

imposes one of two sets of conditions (A and B in his notation). Conditions B

ensure the gain µk ≈ 1
k
, so these results should be compared to prior results in

[4] and [22], which imply stronger Strassen-type functional laws of the iterated

logarithm. Tadić does not give any examples verifying his Conditions A where
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lesser rates are obtained.

It seems that we are the first to consider processes that are simultaneously

heavy-tailed and long-range dependent in stochastic approximation.

The rest of this chapter is organized as follows. A motivational example is

given next. The main theorems are formulated in Section 3.3. Then, Section

3.4 includes some background about the Marcinkiewicz Strong Law of Large

Numbers for Partial Sums and a new MSLLN result for outer products of

multivariate linear processes with LRD and HT. Experimental results are given

in Section 3.5 and proof of main result (Theorem 3.1) is delayed until Section

3.6.

3.2 Example: Asymptotic Linear Observers

by Adaptive Filtering

We refer to books Kushner and Yin [25], Ljung [27] and Soderstrom and Sto-

ica [31] for standard vital applications in system identification, equalization,

estimation, and adaptive control in stochastic systems. Rather than repeating

these developments here, we just adapt a less-discussed, yet interesting appli-

cation from Thanh, Yin and Wang [35]. They analyzed the convergence of

double-indexed or triangular-array processes with mixing driving noises and

random weights and established Marcinkiewicz Strong laws of large numbers

and convergence rates for such problems (see Theorem 3.6 herein).

For motivation,Thanh, Yin and Wang considered the least square estimate

of internal state of a multi-input-single-output linear-time-invariant system

and showed that the estimation error is a special case of triangular-array pro-
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cesses with random weights and mixing driving noise. Alternatively to least

squares, the internal states of linear observers can be estimated through adap-

tive filtering algorithms.

Consider the following linear time-invariant system operating near steady

state  Ẋ(t) = AX(t) +Bu(t),

Y (t) = CX(t),
(3.9)

where A ∈ Rm0×m0 , B ∈ Rm0×m1 and C ∈ R1×m0 are known system matrices.

We are interested about estimating the state X(t). However, since we are

operating near steady state X(t) ≈ h for some unknown h. X(t), i.e. h,

must be estimated through output Y . Y (t) is measured only at a sequence of

irregular (i.e. random) sampling time instants {tk} with measured values yk+1

corrupted by correlated noise {dk}:

yk+1 = Y (tk) + dk. (3.10)

(Irregular sampling time sequences Y (tk) are sometimes generated actively by

input control or threshold adaptation under binary-valued sensors, or passively

due to event-triggered sampling or low-resolution signal quantization.) The

goal is to estimate the state X(t) from information on the control input u(t),

{tk}, and {yk+1}, all of which are known or learnt in real time. The internal

state in (3.9) satisfies

X(tk+1) = eA(tk+1−tk)X(tk) +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ, (3.11)

which we can not observe. Rather, we get access to the observations at the
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sampling time sequence {tk, k = 1, ..., n}

yk+1 = CeA(tk+1−tk)X(tk) + C

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ + dk

= xkh+ νk + dk, (3.12)

where xk = CeA(tk+1−tk) and νk = C
∫ tk+1

tk
eA(tk+1−τ)Bu(τ)dτ can be built in real

time from known system matrices and the observed sampling times. Letting

εk = dk + νk, we find (3.12) is the same as (3.1). Hence, the stochastic

approximation algorithm can be used to recursively find the value of h that

minimizes the mean-square error h→ E|yk+1− xTk h|2. h gives us the estimate

of internal state of multi-input-single-output linear-time-invariant system X.

In addition, if the estimated steady state h agrees with the calculated steady

state value of X from the model itself, this supports the model and choice of

system matrices.

If X were not close to steady state initially but the variation of X(tk) is

rarely large between consecutive samples, then one should use a constant gain

adaptive algorithm (as in Kouritzin [23]) to start and then switch to the type

considered herein once close to steady state.

3.3 Theoretical Result

In this section, we provide our results.

3.3.1 Main Results

We will prove our results in a completely deterministic manner and then apply

these results to each path. Therefore, we assume that χ ∈ (0, 1), d is a positive

76



integer, {Āk}∞k=1 is a symmetric, positive semidefinite Rd×d -valued sequence,

{b̄k}∞k=1 is a Rd-valued sequence and {h̄k}∞k=1 is a Rd-valued sequence satisfying:

h̄k+1 = h̄k +
1

kχ
(b̄k − Ākh̄k) for all k = 1, 2, ... (3.13)

Our first main result establishes rates of convergence:

Theorem 3.1 Let γ ∈ [0, χ), h ∈ Rd and A be symmetric and positive-

definite.

a) If

lim
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk − A)

∥∥∥∥∥ = 0, and lim
n→∞

∣∣∣∣∣ 1

nχ−γ

n∑
k=1

(b̄k − Ākh)

∣∣∣∣∣ = 0, (3.14)

then nγ|h̄n − h| → 0 a.s. as n→∞.

b) Conversely, lim
n→∞

∣∣∣∣∣ 1

nχ

n∑
k=1

(b̄k − Ākh)

∣∣∣∣∣ = 0, if lim
k→∞

∣∣k1−χ(h̄k − h)
∣∣ = 0 and

1

nχ

n∑
k=1

kχ−1
∥∥Āk∥∥ is bounded in n. (3.15)

Now we state the almost sure version of the above theorem as the following

corollary:

Corollary 3.1 Let γ ∈ [0, χ), h ∈ Rd and A be symmetric and positive-

definite.

a) If

lim
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Ak − A)

∥∥∥∥∥ = 0 and lim
n→∞

∣∣∣∣∣ 1

nχ−γ

n∑
k=1

(bk − Akh)

∣∣∣∣∣ = 0 a.s.,(3.16)
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then nγ|hn − h| → 0 a.s. as n→∞.

b) Conversely, lim
n→∞

∣∣∣∣∣ 1

nχ

n∑
k=1

(bk − Akh)

∣∣∣∣∣ = 0 a.s., if lim
k→∞
|k1−χ(hk − h)| = 0 a.s.

and
1

nχ

n∑
k=1

kχ−1 ‖Ak‖ is bounded in n almost surely.

Proof. a) Fix ω such that (3.16) is true, recall (3.6); set Āk = Ak(ω),

b̄k = bk(ω) and h̄k = hk(ω) for all k; and apply Theorem 3.1. b) is similar. �

Corollary 3.1 implies hn(ω), the solution of (3.2), converges to h = A−1b

a.s.

Remark 3.1 Lemma 3.1 of Appendix establishes that the first equation of

(3.14) implies (3.15).

Indeed, to establish the rate of convergence nγ|h̄n − h| → 0 a.s., one need

only check standard conditions for the MSLLN in (3.16), which is less onerous

task than checking the technical conditions in Corollary 1 or Corollary 3 in

[34] say. Indeed, there appears to be a need for some extra stability in [34] by

the imposition that “the real parts of the eigenvalues of A should be strictly

less than a certain negative value depending on the asymptotic properties of

{γn} and {δn}”. We do not need any such extra condition.

Generally, we do not know h when using stochastic approximation so we

cannot just verify second condition in (3.14) (or (3.16)) but rather use the

following corollary instead of Theorem 3.1 (or Corollary 3.1).

Corollary 3.2 Suppose γ ∈ [0, χ) and A is a symmetric positive-definite ma-

trix.

1

nχ−γ

n∑
k=1

(b̄k − b)→ 0 and
1

nχ−γ

n∑
k=1

(Āk − A)→ 0 a.s. (3.17)
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Then, nγ|h̄n − h| → 0 a.s. as n→∞.

Finally, we give a version of the theorem for linear processes under very

general and verifiable conditions.

Theorem 3.2 Let {Ξl} be i.i.d. zero-mean random Rm-vectors such that

sup
t≥0

tαP (|Ξ1|2 > t) <∞ for some α ∈ (1, 2)

(Cl)l∈Z be R(d+1)×m-matrices such that sup
l∈Z
|l|σ‖Cl‖ <∞ for someσ ∈

(
1
2
, 1
]
,

(xTk , yk+1)T =
∞∑

l=−∞

Ck−lΞl,

Ak = xkx
T
k , bk = yk+1xk and A = E[xkx

T
k ] and b = E[yk+1xk].

Then, nγ|hn− h| → 0 a.s. as n→∞ a.s. for any γ < γ0(χ)
.
= (χ− 1

α
)∧ (χ+

2σ − 2).

Remark 3.2 Theorem 3.2 follows from Corollary 3.2 and Theorem 3.7 (to

follow), by letting 1
p

= χ− γ and X
T

k = XT
k = (xTk , yk+1) and correspondingly,

Ξl = Ξl, C l = Cl and σ = σ. σ and α are long-range dependence and heavy-tail

parameters, respectively. Theorem 3.7 also appears in [20, Theorem 4].

Remark 3.3 sup
l∈Z
|l|σ′′‖Cl‖ <∞ for some σ′′ > 1 would be the (normal) short-

range dependence and this clearly implies our weaker sup
l∈Z
|l|σ‖Cl‖ < ∞ con-

dition for some σ ∈
(

1
2
, 1
]
, which allows for long-range dependence. Our

tail condition sup
t≥0

tαP (|Ξ1|2 > t) < ∞ is implied by the moment condition

E|Ξ1|2α <∞. However, it too is general enough to allow non-standard (heavy-

tailed) {Ak}∞k=1, {bk}∞k=1, since α < 2 corresponds to moments less than 2 for

Ak and bk.
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3.4 Marcinkiewicz Strong Law of Large Num-

bers for Partial Sums

Our basic assumptions are MSLLN for random variables for {Ak} and {bk}.

(Technically, our assumptions are even more general as they allow the non-

MSLLN case where χ − γ ≤ 1
2

that could be verified by some other method

in some special situations.) The beauty of this MSLLN assumption is that:

1) It is minimal in the sense that the linear algorithm with Ak = I and

µk = 1
k

reduces to the partial sums hk+1 − h = 1
k

k∑
j=1

(bj − b) (since h = b

when A = I) so a rate of convergence in the algorithm solution hk implies

a MSLLN for random variables {bj}. 2) MSLLNs hold under very general

conditions, including heavily-tailed and long-range dependent data. Hence,

we review some of the literature in this area before giving simulation results

for our theoretical work.

The classical independent case, due to Marcinkiewicz, is generalized slightly

by Rio [29]:

Theorem 3.3 Let {Xi} be an m-dependent, identically distributed sequence

of zero-mean R-valued random variables such that E|X1|p < ∞ for some p ∈

(1, 2). Then,

1

n
1
p

n∑
i=1

Xi → 0 a.s.

Actually, Rio gives a more general m-dependent result on page 922 of his work.

However, the important observation for us is that only the pth moment need

be finite rather than a higher moment as is typical under some stronger de-

pendence assumptions. Theorem 3.3 is quite useful in verifying our conditions

when {Ak} and {bk} may have heavily-tailed distributions but are indepen-
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dent or m-dependent. For example, if χ − γ ∈
(

1
2
, 1
)

and the {Ak} and {bk}

are defined as in (3.3) in terms of i.i.d. {xk} and {yk} with E|x1|
2

χ−γ < ∞,

E|y1|
2

χ−γ < ∞, then {Ak}k≥M and {bk}k≥M are identically distributed, M -

dependent and

1

nχ−γ

n∑
k=1

(Ak − A)→ 0 and
1

nχ−γ

n∑
k=1

(bk − b)→ 0

a.s., where A = EAk and b = Ebk, by applying Theorem 3.3 for each compo-

nent. Hence, (3.8) holds.

There are many other important results that include heavy-tails, long-range

dependence or both. For example, Louhchi and Soulier [28] give the following

result for linear symmetric α-stable (SαS) processes.

Theorem 3.4 Let {ζj}j∈Z be i.i.d. sequence of SαS random variables with

1 < α < 2 and {cj}j∈Z be a bounded collection such that
∑
j∈Z
|cj|s <∞ for some

s ∈ [1, α). Set Xk =
∑
j∈Z

ck−jζj. Then, for p ∈ (1, 2) satisfying 1
p
> 1− 1

s
+ 1

α

1

n
1
p

n∑
i=1

Xi → 0 a.s.

The condition s < α ensures
∑
j∈Z
|cj|α <∞ and thereby convergence of

∑
j∈Z

ck−jζj.

Moreover, {Xk} not only exhibits heavy tails but also long-range dependence

if, for example, cj = |j|−σ for j 6= 0 and some σ ∈
(

1
2
, 1
)
. Notice there is

interactions between the heavy tail condition and the long-range dependent

condition. In particular for a given p, heavier tails (α becomes smaller) implies

that you cannot have as long-range dependence (s becomes smaller) and vice

versa. Moreover, this result is difficult to apply in the stochastic approxima-

tion setting. For example, if wanted to apply it for Xk = Ak in the scalar case,
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then we would need xk such that x2
k = Ak which is impossible when Ak is SαS.

One nice feature of mixing assumptions is that they usually transfer from

random variables to functions (like squares) of random variables. There are

many mixing results that handle long-range dependence. For example, Berbee

[2] gives a nice β-mixing result. However, strong mixing is one of the most

general types of mixing that is more easily verified in practice. Hence, we will

quote the following strong mixing result from Rio [29] (Theorem 1) in terms of

the inverse α−1(u) = sup{t ∈ R+ : αbtc > u} of the strong mixing coefficients

αn = sup
k∈Z

sup
A∈σ(Xi,i≤k−n),B∈σ(Xk)

|P (AB)− P (A)P (B)|

and the complementary quantile function

QX(u) = sup{t ∈ R+ : P (|X| > t) > u}.

Theorem 3.5 Let {Xi} be an identically-distributed zero-mean sequence of

R-valued random variables such that
∫ 1

0
[α−1(t/2)]p−1Qp

X(t)dt < ∞ for some

p ∈ (1, 2). Then,

1

n
1
p

n∑
i=1

Xi → 0 a.s.

Notice again that for a given p, heavier tails implies that you cannot have as

long-range dependence and vice versa: If you wanted to maintain the same

value of the integral condition and there became more area under P (|X| > t),

then there would be more area under Qp
X(t) so the area under [α−1(t/2)]p−1,

which is equal to 2
∞∑
n=0

αp−1
n , would have to decrease to compensate. Also,

there can be difficulty in establishing that a given model satisfies the strong

mixing condition with the required decay of mixing coefficients. Still, this is
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an important result for verifying our basic assumptions.

Another result in mixing area is given by Thanh, Yin and Wang [35,

Theorem 3.11], whom considered MSLLN for double indexed and randomly

weighted sums of mixing processes. Generally, they considered ρ∗-mixing

types, which is defined as follows.

On the probability space (Ω,F , P ), let A and B be two sub-σ-algebras of

F . We denote by L2(A) the space of all square integrable and A-measurable

random variables. The maximal coefficient of correlation is defined by

ρ(A,B) = sup
f∈L2(A),g∈L2(B)

|corr(f, g)|.

Let {Xn, n ≥ 1} be a sequence of random variables. For a subset S of N =

{1, 2, ...}, σ(S) means the σ-field generated by {Xn, n ∈ S}. For n ≥ 1, define

ρ∗n
.
= ρ∗(X,n)

.
= sup ρ(σ(S), σ(T )), where the supremum is taken over all pairs

of nonempty finite sets S, T of N such that dist(S, T ) = inf
s∈S,t∈T

|s − t| ≥ n.

The sequence {Xn, n ≥ 1} is said to be ρ∗-mixing if ρ∗n → 0 as n→∞.

Theorem 3.6 Let 0 ≤ r < 1, and let N be a positive integer. Let 1 ≤ p < 2,

and let {Xn, n ≥ 1} be a sequence of mean zero strictly stationary random

variables such that ρ∗(X,N) ≤ r. Suppose that {Ani, n ≥ 1, 1 ≤ i ≤ n} is

an array of random variables such that, for each n ≥ 1, the sequence An =

{Ani, 1 ≤ i ≤ n} satisfies ρ∗(An, N) ≤ r, and

n∑
i=1

E(|Ani|q) = O(n) for some q >
2p

2− p
. (3.18)

If E|X1|2p < ∞, and {Ani, n ≥ 1, 1 ≤ i ≤ n} is independent of {Xi, i ≥ 1},
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then

lim
n→∞

1

n
1
p

n∑
i=1

AniXi = 0 a.s. (3.19)

Notice that the above Theorem looked at the the moments of Ani and

Xi separately. However, if we look at the moment of products, we find by

Hölder’s inequality that E|AniXi|
2p
3−p < ∞ and 2p

3−p ∈ [1, 4), so some heavy-

tail situations are allowed. However, the ρ∗-mixing condition does not allow

long-range dependence situations, since

∞∑
k=1

E[X1Xk] =
∞∑
j=0

N∑
k=1

E[X1XjN+k] ≤ N
∞∑
j=0

rj <∞.

A new MSLLN for outer products of multivariate linear processes with

long-range dependence and heavy tails is studied in [20]. A new decoupling

property is proved that shows the convergence rate is determined by the worst

of the heavy tails or the long-range dependence, but not the combination.

This result used to obtain Marcinkiewicz Strong Law of Large Numbers for

stochastic approximation (Theorem 3.2). The result is as follows.

Theorem 3.7 Let {Ξl} and
{

Ξl

}
be i.i.d. zero mean random Rm-vectors such

that Ξl =
(
ξ

(1)
l , ..., ξ

(m)
l

)
, Ξl =

(
ξ

(1)

l , ..., ξ
(m)

l

)
, E[|Ξ1|2] < ∞, E[|Ξ1|2] < ∞

and max
1≤i,j≤m

sup
t≥0

tαP (|ξ(i)
1 ξ

(j)

1 | > t) <∞ for some α ∈ (1, 2). Moreover, suppose

matrix sequences (Cl)l∈Z, (C l)l∈Z ∈ R(d+1)×m satisfy

sup
l∈Z
|l|σ‖Cl‖ <∞, sup

l∈Z
|l|σ‖C l‖ <∞ for some (σ, σ) ∈

(
1

2
, 1

]
,

Xk, Xk take form of (3.4), Dk = XkX
T

k and D = E[X1X
T

1 ]. Then, for p
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satisfying p < 1
2−σ−σ ∧ α

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s.

Remark 3.4 This theorem actually shows the MSLLN for Dk−E[Dk], where

Dk =

 xkx
T
k yk+1xk

yk+1x
T
k y2

k+1

, which is more than required, so we can throw

out the unneeded columns.

3.5 Experimental Results

In this section we now verify our results of the previous section experimen-

tally in the stochastic approximation setting discussed in the introduction. In

particular, we use power law or folded t distributions.

Power law distribution: A random variable ξ obeys a power law with

parameters β > 1 and xmin > 0, written ξ ∼ PL(xmin, β), if it has density

f(x) =
β − 1

xmin

(
x

xmin

)−β
∀ x ≥ xmin

Note that E|ξ|r =

 xrmin( β−1
β−1−r ) r < β − 1

∞ r ≥ β − 1
.

Folded t distribution: A non-negative random variable ξ has a folded t

distribution with parameter β > 1, written ξ ∼ Ft(β), if it has density

f(x) =
2Γ(β

2
)

Γ(β−1
2

)
√

(β − 1)π

(
1 +

x2

β − 1

)−β
2

∀ x > 0.

Note that E(|ξ|r) exists if and only if r < β − 1.
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Experimental results in this section are divided in two parts.

3.5.1 Heavy-Tailed Cases

Assume N = 1 in (3.3), dimension is d = 2 and {(x(1)
k , x

(2)
k , εk)

T , k = 1, 2, ...}

are i.i.d. random vectors so linear algorithm (3.2) reduces to:

hk+1 = hk+µk(xkyk+1−xkxTk hk) = hk+µk(xkx
T
k h+xkεk−xkxTk hk). (3.20)

For consistency and performance, we always let x
(1)
k , x

(2)
k and εk be indepen-

dent. The runs are always initialized with h1 = (101, 101)T and, for testing

purposes, the optimal h = (1, 1)T is known.

Example 3.1 Let x
(1)
k , x

(2)
k ∼ PL(xmin = 1, β) and εk = ε′k − E(ε′k) with

ε′k ∼ PL(x′min = 0.01, β). The normalized errors in 100 trial simulations,

{h(i)
n }100

i=1, are averaged rh =
1

100

100∑
i=1

|h(i)
n − h|
|h1 − h|

and given in the Table 3.1 in

terms of gain parameter χ, distributional parameter β and sample size n.

Table 3.1: Algorithm performance-Power Law

n=100000 n=750000 n=1500000
χ\β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5
0.6 0.0864 0.0314 0.0169 0.0707 0.0243 0.0115 0.0548 0.0203 0.0099
0.7 0.0525 0.0190 0.0098 0.0487 0.0159 0.0067 0.0457 0.0141 0.0056
0.75 0.0397 0.0151 0.0082 0.0449 0.0137 0.0051 0.0456 0.0114 0.0042
0.8 0.0326 0.0136 0.0105 0.0448 0.0111 0.0038 0.0402 0.0087 0.0031
0.85 0.0314 0.0168 0.0549 0.0398 0.0085 0.0082 0.0324 0.0070 0.0035
0.9 0.0344 0.0719 0.2445 0.0438 0.0118 0.0764 0.0272 0.0079 0.0341
0.95 0.0902 0.3047 0.6631 0.3739 0.0897 0.3068 0.0248 0.0519 0.1963
0.98 0.2226 0.5733 1.0154 0.9219 0.2302 0.5251 0.0374 0.1488 0.3930
1 0.3876 0.8062 0.6631 1.1891 0.3745 0.6925 0.0662 0.2596 0.5644

The Marcinkiewicz threshold, M = 2
(β−1)

, corresponding to β = 3.5, β = 4

and β = 4.5 are respectively M = 0.8, 0.67 and 0.57. Our theoretical re-

sults prove convergence above this threshold. While the results in Table 3.1
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are obviously still influenced by (heavy-tailed) randomness, one can see that

convergence does appear to be taking place as one moves from n = 100, 000

through n = 750, 000 to n = 1, 500, 000 when χ > M and it is less clear that

convergence is taking place when χ < M . Furthermore, our (as well as prior)

theoretical results predict rates of convergence that increase in χ. Indeed, in

the case β = 4 our theoretical results suggest that χ ≈ 1 should result in a rate

of convergence n0.33|hn−h| → 0 a.s. while χ = 0.85 should only result in a rate

of convergence n0.18|hn−h| → 0 a.s. Conversely, Table 3.1 demonstrates that

χ = 0.85 performs better, which seems to contradict the theory. However, this

paradox is explained by the exploding constants discussion of the introduction

and, in fact, points out that more refined theory, involving functional results,

is needed. The proper way to use our theoretical results then is to predict the

best χ (lowest value of rh) in the range of (M, 1] i.e. in (0.8, 1], (0.67, 1] and

(0.57, 1], respectively for our three β’s.

Table 3.2: Best fixed χ-Power Law

n=100000 n=750000 n=1500000
β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5

Best χ 0.85 0.8 0.75 0.85 0.85 0.8 0.95 0.85 0.8
Resulting γ 0.05 0.13 0.18 0.05 0.18 0.23 0.15 0.18 0.23

The best χ’s, corresponding to the smallest value of rh for β = 3.5, β = 4

and β = 4.5 and 3 different sample sizes, as well as the γ corresponding to

the theoretical rate of convergence o(n−γ) are summarized in Table 3.2. In

all cases, the best value for χ is in the predicted range. As we explained, a

faster decreasing gain is appropriate for a heavier-tailed distribution, which is

also confirmed by Table 3.2. Notice also that the best χ increases in n, a

phenomenon consistent with our exploding constants and the initial condition

effect discussion, which suggests that we might do better by letting χ increase
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in k, perhaps starting at M and heading towards 1.

Table 3.3: Increasing χ comparison-Power Law

β 3.5 4 4.5
Best χ 0.0248 0.0070 0.0031

Increasing χ 0.0240 0.0068 0.0030

Table 3.3 compares values of rh between our best fixed and increasing

χ = χk when the sample size is n = 1, 500, 000. For clarity, our gain at step

k is now µk = µ0k
−χk . In this increasing case, the initial χ is (β-dependent)

Marcinkiewicz threshold (when k = 0) and χk increases as k → 1, 500, 000.

For simplicity, we just took χk = tanh−1(a+ bk+ ck2) and estimated a, b and c

via least squares with the data points (k = 0;χ = M), (k = 100, 000;χ = 0.8),

(k = 750, 000;α = 0.85) and (k = 1, 500, 000;α = 0.85) in the β = 4 case.

(In the other cases, we followed the same plan using the best χ for a given n.)

The result show improved performance over the best constant χ.

Now, we repeat the previous example with a different distribution. Since

the results are consistent with those of the previous example, we will keep our

discussion to a minimum.

Example 3.2 Let x
(1)
k , x

(2)
k ∼ Ft(β) and εk = ε′k−E(ε′k) with ε′k ∼ Ft(β). The

simulation results for three β’s: 3.5, 4 and 4.5 with corresponding Marcinkiewicz

thresholds, M = 2
β−1

, 0.8, 0.67 and 0.57 are given in Table 3.4 with sample

sizes: n = 50, 000, 100, 000 and 750, 000.
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Table 3.4: Algorithm performance-Folded t

n=50000 n=100000 n=750000

χ\β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5

0.6 0.0958 0.0345 0.0221 0.0929 0.0336 0.0177 0.0590 0.0195 0.0104

0.7 0.0697 0.0245 0.0138 0.0661 0.0216 0.0112 0.0318 0.0120 0.0064

0.75 0.0599 0.0204 0.0113 0.0556 0.0173 0.0089 0.0336 0.0099 0.0050

0.8 0.0505 0.0172 0.0103 0.0439 0.0140 0.0075 0.0374 0.0076 0.0038

0.85 0.0399 0.0145 0.0098 0.0341 0.0118 0.0063 0.0339 0.0058 0.0029

0.9 0.0312 0.0133 0.0087 0.0278 0.0100 0.0057 0.0265 0.0048 0.0024

0.95 0.0275 0.0241 0.0097 0.0245 0.0089 0.0060 0.0205 0.0039 0.0021

0.98 0.0347 0.0475 0.0212 0.0274 0.0117 0.0121 0.0179 0.00371 0.0032

0.99 0.0404 0.0583 0.0295 0.0310 0.0149 0.0172 0.0173 0.00373 0.0048

1 0.0486 0.0700 0.0413 0.0369 0.0205 0.0249 0.0170 0.0039 0.0077

A summary of of best χ result is given in Table 3.5. Again, a smaller β

corresponds to heavier tails and larger best χ. Moreover, as we predicted the

best χ for β = 3.5, β = 4 and β = 4.5 in the range of (0.8, 1], (0.67, 1] and

(0.57, 1], respectively. Best χ’s increase in sample size.

Table 3.5: Best fixed χ-Folded t

n=50000 n=100000 n=750000

β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5

Best χ 0.95 0.9 0.9 0.95 0.95 0.9 1 0.98 0.95

γ < 0.15 0.23 0.33 0.15 0.28 0.33 0.2 0.31 0.38

Table 3.6 shows the performance of algorithm improves by going to an

increasing χ when n = 750, 000. Again, χ starts at Marcinkiewicz threshold
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Table 3.6: Increasing χ comparison-Folded t

β 3.5 4 4.5
Best χ 0.0170 0.00371 0.0021

Increasing χ 0.0166 0.00364 0.0019

for each choice of β and increases a function of sample size 1 ≤ n ≤ 750, 000.

The function is χ = tanh−1(a′ + b′n + c′n2) and coefficients a′, b′ and c′ are

estimated with least square method.

3.5.2 Combined Heavy-Tailed and Long-Range Depen-

dence Case

If we take N = 1 and dimension d = 1, we have (xk, yk+1) =
∞∑

j=−∞

Ck−jΞj, in

which Cj = (cj, cj)
T and Ξj = (ξ

(1)
j , ξ

(2)
j )j∈Z are i.i.d.. Hence, xk =

∑
j∈Z

ck−jξ
(1)
j

and yk+1 =
∑
j∈Z

ck−jξ
(2)
j , where ξ

(2)
j = hξ

(1)
j + aj and {aj}’s are i.i.d. zero mean

random variables. This relation between ξ
(1)
j and ξ

(2)
j is due to the fact that

yk+1 = xkh + εk and εk =
∑
j∈Z

ck−jaj. We consider {cj = |j|−σ}, for j 6= 0 and

σ ∈ (1
2
, 1], c0 = 1. The linear algorithm (3.2) reduces to:

hk+1 = hk + µk(xkyk+1 − x2
khk) = hk + µk(x

2
kh+ xkεk − x2

khk). (3.21)

The initial and optimal values are h1 = 401 and h = 1.

Example 3.3 Let ξ
(1)
j ∼ PL(xmin = 0.01, β) and aj = fj − E(fj) with

fj ∼ PL(x′min = 0.01, β). The simulation is done for one-sided process and

since in computer we cannot technically do infinite sum, we assume summa-

tion over the range of (0, 500, 000). Similarly, the normalized errors in 100

trial simulations, {h(i)
n }100

i=1, are averaged and results for different χ’s, β’s and
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sample sizes n are presented in the following tables. The assumed σ is 0.65.

The Marcinkiewicz threshold, M = 1
α
∨ (2 − 2σ), corresponding to β = 4,

β = 4.5 and β = 5 is 0.7. Hence, predicted ranges for χ’s with smallest rh will

be (0.7, 1]. Simulation results are provided in Table 3.7 with summary of best

χ in Table 3.8. It worth noticing that the convergence does not seem to take

place below the Marcinkiewicz threshold and the best χs are in the predicted

ranges and the normalized error decreases as β increases.

Note that by considering σ = 0.65, the maximum of 2 − 2σ and 1
α

for all

β = 4, 4.5 and 5 is 2 − 2σ, hence we do not expect much change in the χ

as β changes. In addition, the rate of convergence for all considered β’s is

determined by γ < χ+ 2σ − 2.

Table 3.7: Algorithm performance for LRD-HT cases with σ = 0.65

n=100 n=5000 n=10,000

χ\β 4 4.5 5 4 4.5 5 4 4.5 5

0.6 0.010917 0.006166 0.004508 0.013172 0.007826 0.005897 0.012465 0.007359 0.005527

0.7 0.000665 0.000237 0.000132 0.000958 0.000414 0.000262 0.000881 0.000377 0.000238

0.75 2.98e-05 7.88e-06 6.49e-06 9.77e-05 3.15e-05 1.70e-05 8.79e-05 2.83e-05 1.52e-05

0.8 1.02e-05 7.76e-06 6.39e-06 5.19e-06 3.80e-06 3.11e-06 4.72e-06 3.30e-06 2.69e-06

0.85 9.91e-06 7.77e-06 6.41e-06 5.01e-06 3.91e-06 3.21e-06 4.38e-06 3.37e-06 2.76e-06

0.9 9.93e-06 7.79e-06 6.45e-06 5.20e-06 4.12e-06 3.39e-06 4.54e-06 3.50e-06 2.86e-06

0.95 1.00e-05 7.90e-06 6.55e-06 5.63e-06 4.42e-06 3.62e-06 4.73e-06 3.65e-06 2.98e-06

0.98 1.01e-05 7.99e-06 6.61e-06 5.97e-06 4.69e-06 3.86e-06 4.88e-06 3.77e-06 3.08e-06

1 1.02e-05 8.04e-06 6.65e-06 6.28e-06 4.91e-06 4.03e-06 5.02e-06 3.89e-06 3.19e-06
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Table 3.8: Best fixed χ-Power Law, LRD with σ = 0.65

n=100 n=5000 n=10000
β 4 4.5 5 4 4.5 5 4 4.5 5

Best χ 0.85 0.8 0.8 0.85 0.8 0.8 0.85 0.8 0.8
Resulting γ 0.15 0.1 0.1 0.15 0.1 0.1 0.15 0.1 0.1

3.6 The Proof of Theorem 3.1

Part a) Step 1: Reduce rate of convergence to convergence of a transformed

algorithm.

Letting ηk =
(
k+1
k

)γ − 1, setting gk = kγ
(
h̄k − h

)
and using (3.13), one finds

that

gk+1 = gk +
1

kχ

(
b̂k − Âkgk

)
+ ηkgk, (3.22)

where

b̂k = (k + 1)γ
(
b̄k − Ākh

)
and Âk =

(
k + 1

k

)γ
Āk. (3.23)

However, we have by Taylor’s theorem and assumption that

1

nχ

n∑
k=1

ηk‖A‖ ≤
γ

nχ

n∑
k=1

k−1 → 0, as n→∞. (3.24)
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Step 2: Show MSLLN for new coefficients i.e. 1
nχ

n∑
k=1

(Âk − A) → 0, and

1
nχ

n∑
k=1

b̂k → 0 as n→∞.

∥∥∥∥∥ 1

nχ

n∑
k=1

(
k + 1

k

)γ (
Āk − A

)
− 2γ

nχ

n∑
k=1

(
Āk − A

)∥∥∥∥∥
=

∥∥∥∥∥ 1

nχ

n∑
k=2

k∑
j=2

[(
j + 1

j

)γ
−
(

j

j − 1

)γ] (
Āk − A

)∥∥∥∥∥
≤

n∑
j=2

[(
j

j − 1

)γ
−
(
j + 1

j

)γ]
1

nχ

(∥∥∥∥∥
n∑
k=2

(
Āk − A

)∥∥∥∥∥+

∥∥∥∥∥
j−1∑
k=2

(
Āk − A

)∥∥∥∥∥
)

≤ 1

nχ

∥∥∥∥∥
n∑
k=2

(
Āk − A

)∥∥∥∥∥
[
2γ −

(
n+ 1

n

)γ]

+
n∑
j=2

[(
j

j − 1

)γ
−
(
j + 1

j

)γ](
j − 2

n

)χ
1

(j − 2)χ

∥∥∥∥∥
j−1∑
k=2

(
Āk − A

)∥∥∥∥∥
which goes to zero by assumption and the Toeplitz lemma. By Taylor’s theo-

rem

∣∣∣∣∣ 1

nχ

n∑
k=1

(k + 1)γ
(
b̄k − Ākh

)
− 1

nχ(n+ 1)−γ

n∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣
=

1

nχ

∣∣∣∣∣
n−1∑
k=1

n∑
j=k+1

[jγ − (j + 1)γ]
(
b̄k − Ākh

)∣∣∣∣∣
≤ 1

nχ

n∑
j=2

γjγ−1

∣∣∣∣∣
j−1∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣
≤ γ

nχ

n∑
j=2

jχ−1 1

(j − 1)χ−γ

∣∣∣∣∣
j−1∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣ , (3.25)

which goes to zero by the Toeplitz lemma.

Step 3: Convergence of gk, hence the rate of convergence of h̄k follows

from the Proposition 3.1 with b = 0, ĥk = gk, h = 0 and ηk =
(
k+1
k

)γ − 1. �
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Proposition 3.1 Suppose {Âk}∞k=1 is a symmetric, positive-semidefinite Rd×d-

valued sequence; A is a (symmetric) positive-definite matrix; χ ∈ (0, 1); θ ∈

(χ, 1]; ηk ≤ η̄
kθ

; η̄ > 0 and

ĥk+1 = ĥk +
1

kχ
(b̂k − Âkĥk) + ηkĥk for all k = 1, 2, ...; (3.26)

1

nχ

n∑
k=1

(b̂k − b)→ 0 and
1

nχ

n∑
k=1

(Âk − A)→ 0. (3.27)

Then, ĥn → h
.
= A−1b as n→∞.

Notation: To ease the notation in the sequel, we will take the product

over no factors to be 1 and the sum of no terms to be 0. For convenience, we

let:

νk := ĥk − h, Yk := Âk − A, zk := b̂k − Âkh. (3.28)

Proof. Step 1: Show simplified algorithm with Ak’s replaced converges.

We note
1

nχ

n∑
k=1

zk → 0 and will show νk → 0, by proving uk → 0 and wk :=

νk − uk → 0, where

uk+1 =

(
I − A

kχ
+ ηkI

)
uk +

zk
kχ

+ ηkh subject to u1 = ν1. (3.29)

By induction, we have:

un =
n−1∏
l=1

(
I − A

lχ
+ ηlI

)
u1 +

n−1∑
j=1

Fj,nzj +
n−1∑
j=1

F̄j,nh for n = 1, 2, ... (3.30)
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where  Fj,n = 1
jχ

∏n−1
l=j+1

(
I − A

lχ
+ ηlI

)
F̄j,n = ηjj

χFj,n forj = 1, 2, ..., n− 1, n = 2, 3, ...
(3.31)

Hence,by (3.30), (3.31) and Lemma 3.2 i, ii)

lim
n→∞

|un| ≤ lim
n→∞

∥∥∥∥∥
n−1∏
l=1

(
I − A

lχ
+ ηlI

)∥∥∥∥∥ |u1|

+ lim
n→∞

∣∣∣∣∣
n−1∑
j=1

Fj,nzj

∣∣∣∣∣+ lim
n→∞

∣∣∣∣∣
n−1∑
j=1

F̄j,nh

∣∣∣∣∣ = 0. (3.32)

Step 2: Transfer stability from A to blocks of Ak.

Define the blocks nk = b(ak)
1

1−χ c := max{i ∈ N0 : i ≤ (ak)
1

1−χ}

Ik = {nk, nk + 1, · · · , nk+1 − 1}
(3.33)

for k = 0, 1, 2, ... and the block products

Uk =
∏
l∈Ik

(
I − Âl

lχ
+ ηlI

)
andVj,k =

nk+1−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
1

jχ
Yj. (3.34)

For the Uk’s we have

∏
l∈Ik

(
I − Âl

lχ
+ ηlI

)
=I−

∑
l∈Ik

Âl
lχ

+
∑
l∈Ik

ηlI +
∑

l1,l2∈Ik
l1>l2

(
Âl1
lχ1
− ηl1I

)(
Âl2
lχ2
− ηl2I

)

−
∑

l1,l2,l3∈Ik
l1>l2>l3

(
Âl1
lχ1
− ηl1I

)(
Âl2
lχ2
− ηl2I

)(
Âl3
lχ3
− ηl3I

)
+· · · (−1)k

∏
l∈Ik

(
Âl
lχ
− ηlI

)
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so

‖Uk‖ ≤

∥∥∥∥∥I −∑
l∈Ik

Âl
lχ

∥∥∥∥∥+
∑
l∈Ik

ηl +

∥∥∥∥∥∥∥
∑

l1,l2∈Ik
l1>l2

(
Âl1
lχ1
− ηl1I

)(
Âl2
lχ2
− ηl2I

)∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∑

l1,l2,l3∈Ik
l1>l2>l3

(
Âl1
lχ1
− ηl1I

)(
Âl2
lχ2
− ηl2I

)(
Âl3
lχ3
− ηl3I

)∥∥∥∥∥∥∥
+ · · ·+

∏
l∈Ik

∥∥∥∥∥Âllχ − ηlI
∥∥∥∥∥ . (3.35)

However, we know that
∑

j1>j2>···>jk aj1aj2 · · · ajk ≤
1
k!

(∑
j aj

)k
for aj ≥ 0 so,

it follows that

∑
l1,l2∈Ik
l1>l2

∥∥∥∥∥Âl1lχ1 − ηl1I
∥∥∥∥∥
∥∥∥∥∥Âl2lχ2 − ηl2I

∥∥∥∥∥
+

∑
l1,l2,l3∈Ik
l1>l2>l3

∥∥∥∥∥Âl1lχ1 − ηl1I
∥∥∥∥∥
∥∥∥∥∥Âl2lχ2 − ηl2I

∥∥∥∥∥
∥∥∥∥∥Âl3lχ3 − ηl3I

∥∥∥∥∥+ · · ·+
∏
l∈Ik

∥∥∥∥∥Âllχ − ηlI
∥∥∥∥∥

≤
nk+1−nk∑
m=2

(∑
l∈Ik

(
‖Âl‖
lχ

+ ηl

))m

m!
.

As a result, we find by (3.35) that

‖Uk‖ ≤

∥∥∥∥∥I − A∑
l∈Ik

1

lχ

∥∥∥∥∥+

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥+
∑
l∈Ik

ηl

+

nk+1−nk∑
m=2

(∑
l∈Ik

(
‖Âl‖
lχ

+ ηl

))m

m!
. (3.36)
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Now, let λmin and λmax be the smallest and biggest eigenvalues of A and define

a′ = a
1−χ , where a > 0 is chosen small enough that

a′ ≤
{

2

λmin + ‖A‖
,

1

d‖A‖
,

λmin
e1(d‖A‖)2

}
. (3.37)

Then, by (3.33) and the fact that

1

1− χ
(n1−χ

k+1 − n
1−χ
k ) ≤

∑
l∈Ik

1

lχ
≤ 1

1− χ
((nk+1 − 1)1−χ − (nk − 1)1−χ)

we have limk→∞
(∑

l∈Ik
1
lχ
− a′

)
is in the range of

(
lim
k→∞

n1−χ
k+1 − n

1−χ
k − a

1− χ
, lim
k→∞

n1−χ
k+1 − n

1−χ
k − a

1− χ
+
n1−χ
k − (nk − 1)1−χ

1− χ

)
,

so by Taylor’s theorem

lim
k→∞

∣∣∣∣∣∑
l∈Ik

1

lχ
− a′

∣∣∣∣∣ ≤ lim
k→∞

{
1

1− χ
∣∣n1−χ
k+1 − n

1−χ
k − a

∣∣+
1

(nk − 1)χ

}
= 0, (3.38)

which also implies

lim
k→∞

∑
l∈Ik

ηl ≤ η̄ lim
k→∞

nχ−θk

∑
l∈Ik

1

lχ
= 0. (3.39)

For arbitrary ε > 0 one finds some Kε > 0 by (3.38) and (3.37) such that

∥∥∥∥∥I − A∑
l∈Ik

1

lχ

∥∥∥∥∥ = max

{
‖A‖

∑
l∈Ik

1

lχ
− 1, 1− λmin

∑
l∈Ik

1

lχ

}
≤ 1− λmina′ + ε for all k ≥ Kε. (3.40)
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Moreover, we can use Lemma 3.3 of Appendix, (3.28), (3.27), (3.38), (3.39),

Taylor’s theorem and the fact d‖A‖a′ < 1 and to obtain a K ′ε ≥ Kε such that

nk+1−nk∑
m=2

(∑
l∈Ik

(
‖Âl‖
lχ

+ ηl

))m

m!
≤
nk+1−nk∑
m=2

(
d‖A‖

∑
l∈Ik

1

lχ
+ d‖

∑
l∈Ik

Yl
lχ
‖+

∑
l∈Ik

ηl

)m

m!

≤ e1+3ε (d‖A‖a′ + 3ε)2

2
for all k ≥ K ′ε. (3.41)

Therefore, by (3.40), Lemma 3.2 iii), (3.36) and (3.41) one finds

‖Uk‖ ≤

∥∥∥∥∥I − A∑
l∈Ik

1

lχ

∥∥∥∥∥+
∑
l∈Ik

ηl +

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥+

nk+1−nk∑
m=2

(∑
l∈Ik

(
‖Âl‖
lχ

+ ηl

))m

m!

≤ 1− λmina′ + 3ε+ e1+3ε (d‖A‖a′ + 3ε)2

2
∀ k ≥ K ′ε. (3.42)

Furthermore, using the fact that a′ < λmin
e1(d‖A‖)2 and making for ε > 0 small

enough, we find from (3.42) that, there exists a 0 < γ < 1 and an integer

k1 > 0 such that

‖Uk‖ ≤ γ for all k ≥ k1. (3.43)

Step 3: Convergence of remainder wn along a subsequence using block sta-

bility of Ak.

By (3.26), (3.28), (3.30) and wk := νk − uk → 0

wn+1 =

(
I − Ân

nχ
+ ηnI

)
wn −

1

nχ
Ynun for n = 1, 2, · · · (3.44)
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so it follows by (3.44) that

wn =
n−1∏
l=nk

(
I − Âl

lχ
+ ηlI

)
wnk

−
n−1∑
j=nk

n−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
Yjuj
jχ

∀ n ≥ nk. (3.45)

In particular,

wnk+1
= Ukwnk −

∑
j∈Ik

Vj,kuj for k = 0, 1, · · · , (3.46)

where Uk is defined in (3.34) and

Vj,k =

nk+1−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
1

jχ
Yj. (3.47)

By Lemma 3.2 v) and (3.47) we obtain,

‖Vj,k‖ ≤
nk+1−1∏
l=j+1

∥∥∥∥∥
(
I − Âl

lχ
+ ηlI

)∥∥∥∥∥ ‖Yj‖jχ
≤

∏
l∈Ik

(
1 +
‖Âl‖
lχ

+ ηl

)
‖Yj‖
jχ

j,k
� ‖Yj‖

jχ
for j ∈ Ik, k = 0, 1, . . .(3.48)

Therefore, by (3.43), (3.48), (3.34), (3.46), and (3.28) we have

| wnk |
k
� γk−k1 | wnk1 | +

k−1∑
l=k1

γk−l−1
∑
j∈Il

‖A‖+ ‖Âj‖
jχ

| uj | ∀ k ≥ k1. (3.49)

In addition,

∑
j∈Il

‖A‖+ ‖Âj‖
jχ

| uj |= ‖A‖
∑
j∈Il

1

jχ
| uj | +

∑
j∈Il

‖Âj‖
jχ
| uj |,
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so using Lemma 3.2 iv), (3.32), (3.38) and finally applying Toeplitz Lemma,

we obtain

lim
l→∞

∑
j∈Il

‖A‖+ ‖Âj‖
jχ

| uj |= 0. (3.50)

Moreover, since

k−1∑
l=k1

γk−l−1 =
1− γk−k1

1− γ
k
� 1 for all k = k1, k1 + 1, · · · (3.51)

it follows from (3.49), (3.50), (3.51) and the Toeplitz Lemma with al,k =

γk−l−11k1≤l≤k−1 and xl =
∑

j∈Il
‖A‖+‖Âj‖

jχ
| uj | that

lim
k→∞

| wnk | ≤ lim
k→∞

γk−k1 | wnk1 |

+ lim
k→∞

k−1∑
l=k1

γk−l−1
∑
j∈Il

‖A‖+ ‖Âj‖
jχ

| uj |= 0. (3.52)

Step 4: Use wnk → 0 to show block convergence maxn∈Ik |wn| → 0.

Now, we return to (3.45) and find for n ∈ Ik

|wn| ≤
n−1∏
l=nk

(
1 +
‖Âl‖
lχ

+ ηl

)
|wnk |+

n−1∑
j=nk

n−1∏
l=nk

(
1 +
‖Âl‖
lχ

+ ηl

)
‖Yj‖
jχ
|uj|

≤
∏
l∈Ik

(
1 +
‖Âl‖
lχ

+ ηl

){
|wnk |+

∑
j∈Ik

‖Yj‖
jχ
|uj|

}

≤
∏
l∈Ik

(
1 +
‖Âl‖
lχ

+ ηl

){
|wnk |+

∑
j∈Ik

‖Âj‖+ ‖A‖
jχ

|uj|

}
. (3.53)

Finally, by (3.53), (3.52), Lemma 3.2 v), and (3.50) we obtain

lim
k→∞

max
n∈Ik
| wn |= 0. � (3.54)
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Part b) By (3.13) and (3.28), zk = kχ(νk+1 − νk) + Ākνk. Averaging, then

reordering the sum, we have

1

nχ

n∑
k=1

zk =
1

nχ

(
n∑
k=1

kχ(νk+1 − νk) +
n∑
k=1

Ākνk

)

= νn+1 −
1

nχ

n∑
k=1

(kχ − (k − 1)χ)νk +
1

nχ

n∑
k=1

Ākνk

so

∣∣∣∣∣ 1

nχ

n∑
k=1

zk

∣∣∣∣∣ ≤ | νn+1 | +
n∑
k=1

kχ − (k − 1)χ)

nχ
| νk |

+
n∑
k=1

kχ−1

nχ
‖Āk‖k1−χ | νk | . (3.55)

The second and third terms on the RHS of (3.55) converge to 0 by the Toeplitz

lemma with an,k = kχ−(k−1)χ

nχ
, xk = |νk| and with an,k = kχ−1‖Āk‖

nχ
, xk = kχ−1|νk|

respectively. �

3.7 Appendix

We first establish our promised comparison on our conditions.

Lemma 3.1 lim sup
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk − A)

∥∥∥∥∥ = 0 implies
1

nχ

n∑
k=1

kχ−1‖Āk‖ is bounded

in n.

Proof. By Lemma 3.3 (to follow) and the fact that
n∑
k=1

kχ−1 ≤ nχ

χ
, one finds

that
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1

nχ

n∑
k=1

kχ−1‖Āk‖ ≤
d

nχ

∥∥∥∥∥
n∑
k=1

kχ−1Āk

∥∥∥∥∥
≤ d

nχ

∥∥∥∥∥
n∑
k=1

kχ−1(Āk − A)

∥∥∥∥∥+
d

nχ
‖A‖

n∑
k=1

kχ−1

≤ d

nχ

∥∥∥∥∥
n∑
k=1

kχ−1(Āk − A)

∥∥∥∥∥+
d‖A‖
χ

. (3.56)

Noting
k∑
j=2

(jχ−1−(j−1)χ−1)=kχ−1−1, setting C=
d‖A‖
χ

+sup
n

d

nχ

∥∥∥∥∥
n∑
k=1

(Āk − A)

∥∥∥∥∥<
∞ and interchanging summation order, we have

1

nχ

n∑
k=1

kχ−1‖Āk‖ ≤
d

nχ

∥∥∥∥∥
n∑
k=2

k∑
j=2

(jχ−1 − (j − 1)χ−1)(Āk − A)

∥∥∥∥∥+ C

≤ d

nχ

∥∥∥∥∥
n∑
j=2

(jχ−1 − (j − 1)χ−1)
n∑
k=j

(Āk − A)

∥∥∥∥∥+ C.(3.57)

However, by Taylor’s theorem (j1−χ − (j − 1)1−χ) ≤ (1 − χ)(j − 1)−χ, so by

(3.57) we have

1

nχ

n∑
k=1

kχ−1‖Āk‖

≤ d
n∑
j=2

(j1−χ − (j − 1)1−χ)

j1−χ(j − 1)1−χ · 1

nχ

∥∥∥∥∥
n∑
k=j

(Āk − A)

∥∥∥∥∥+ C

≤ d
n∑
j=2

(j − 1)−χ(1− χ)

j1−χ(j − 1)1−χ .
1

nχ

(∥∥∥∥∥
n∑
k=1

(Āk − A)

∥∥∥∥∥+

∥∥∥∥∥
j−1∑
k=1

(Āk − A)

∥∥∥∥∥
)

+ C

≤ 2d(1− χ)
n∑
j=2

1

j2−χ

(∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk − A)

∥∥∥∥∥+

∥∥∥∥∥ 1

(j − 1)χ

j−1∑
k=1

(Āk − A)

∥∥∥∥∥
)

+ C
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This final term is bounded by the Toeplitz lemma and our hypothesis. �

We give our list of technical bounds used in the proof of Proposition 3.1.

Lemma 3.2 Assume the setting of Proposition 3.1; and Fj,k, F̄j,k, Ik, {zk}∞k=1

and {Yk}∞k=1 are as defined in (3.33), (3.31) and (3.28). Then, following are

true:

i) lim
n→∞

∥∥∥∥∥
n−1∏
l=1

(
I − A

lχ
+ ηlI

)∥∥∥∥∥ = 0

ii) lim
n→∞

∣∣∣∣∣
n−1∑
j=1

Fj,nzj

∣∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣∣
n−1∑
j=1

F̄j,nh

∣∣∣∣∣ = 0

iii) lim
k→∞

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥ = 0

iv)
∑
l∈Ik

(
‖Âl‖
lχ

+ ηl

)
k
� 1 for all k = 0, 1, · · ·

v)
∏
l∈Ik

(
1 +
‖Âl‖
lχ

+ ηl

)
k
� 1 for all k = 0, 1, · · ·

Proof. i) We know
∥∥I − A

lχ
+ ηlI

∥∥ is the maximum eigenvalue of
(
(1 + ηl)I − A

lχ

)
and

0 ≤

∥∥∥∥∥
n−1∏
l=1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ ≤
n−1∏
l=1

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥ .
Let λmin > 0 be the minimum eigenvalue of A; recall from the statement

of Proposition 3.1 that ηk ≤ η̄
kθ

and θ > χ; and fix l∗ large enough that:

1 + ηl− λmin
lχ

> 0∀ l > l∗. Using the fact that
∏
l

(1 + xl) ≤ exp

(∑
l

xl

)
, one
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finds

n−1∏
l=l∗

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥ ≤
n−1∏
l=l∗

(
1 +

η̄

lθ
− λmin

lχ

)
≤ exp

(∫ n−1

l∗−1

η̄

xθ
dx−

∫ n

l∗

λmin
xχ

dx

)
≤ exp

(
D +

η̄

1− θ
(n− 1)1−θ − λmin

1− χ
n1−χ

)
n
� exp

(
−λmin
2− 2χ

n1−χ
)

for some D ∈ R. Hence,

n−1∏
l=l∗

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥→ 0 as n→∞. (3.58)

ii) ‖(rχ+ηrr
χ−(r−1)χ)I−A‖ ≤| (rχ−(r−1)χ) | +η̄rχ−θ+‖A‖ ≤ 1+η̄+‖A‖

is upper bounded ∀r > 1 since χ ∈ (0, 1). Hence, by (3.31) we have

‖Fr−1,n − Fr,n‖ =

∥∥∥∥∥
n−1∏
l=r+1

(
(1 + ηl)I −

A

lχ

)[
1

(r − 1)χ

(
(1 + ηr)I −

A

rχ

)
− 1

rχ
I

]∥∥∥∥∥
≤

∥∥∥∥∥
n−1∏
l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ 1

rχ(r − 1)χ

× ‖(rχ + ηrr
χ − (r − 1)χ)I − A‖

r,n
� 1

rχ(r − 1)χ

∥∥∥∥∥
n−1∏
l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ (3.59)

for all r = 2, 3, ..., n − 1, n = 3, 4, .... Letting λ denote an arbitrary eigen-

value of A, setting Lc =
{
l : λ

lχ
− 1− ηl ≥ c

}
, noting that

∥∥(1 + ηl − λ
lχ

)
I
∥∥ ≤(

λ
lχ
− 1− ηl

)
∨ exp

(
ηl − λ

lχ

)
and defining constant C=̇

∏
l∈L1

(
λ
lχ
− 1− ηl

)
×
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exp
(∑

l∈L0
λ
lχ
− ηl

)
we have that

∥∥∥∥∥
n−1∏
l=r+1

(
1 + ηl −

λ

lχ

)
I

∥∥∥∥∥ ≤
∏
l∈L1

(
λ

lχ
− 1− ηl

)
× exp

 n−1∑
l=r+1,l 6∈L0

ηl −
λ

lχ


≤ C exp

(
n−1∑
l=r+1

η̄

lθ
− λ

lχ

)
r,n
� exp

(
− λmin

2− 2χ
{n1−χ − (r + 1)1−χ}

)
(3.60)

and it follows from (3.60), the fact that the eigenvectors of A span Rd and the

principle of uniform boundedness that

∥∥∥∥∥
n−1∏
l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ r,n
� e−

λmin
2−2χ

{n1−χ−(r+1)1−χ}. (3.61)

It follows by (3.31), (3.59) and (3.61) that

n−1∑
r=2

(r − 1)χ‖Fr−1,n − Fr,n‖
n
�

n−1∑
r=2

1

rχ
e−

λmin
2−2χ

{n1−χ−(r+1)1−χ}

n
� e−

λmin
2−2χ

n1−χ
∫ n

2

1

tχ
e
λmin
2−2χ

t1−χdt

n
� 1 ∀n = 3, 4, ... (3.62)

Next,
n−1∑
j=1

Fj,nzj =
n−1∑
j=1

Fn−1,nzj +
n−1∑
j=1

(
n−1∑
r=j+1

Fr−1,n − Fr,n

)
zj and

∣∣∣∣∣
n−1∑
j=1

n−1∑
r=j+1

(Fr−1,n − Fr,n)zj

∣∣∣∣∣ ≤
n−1∑
r=2

‖Fr−1,n − Fr,n‖

∣∣∣∣∣
r−1∑
j=1

zj

∣∣∣∣∣ .
Therefore, by assumption, (3.31), (3.62) and Toeplitz’ lemma with
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xr =
1

(r − 1)χ
|
r−1∑
j=1

zj | and an,r = (r − 1)χ‖Fr−1,n − Fr,n‖

we have:

∣∣∣∣∣
n−1∑
j=1

Fj,nzj

∣∣∣∣∣ ≤ ‖Fn−1,n‖

∣∣∣∣∣
n−1∑
j=1

zj

∣∣∣∣∣+

∣∣∣∣∣
n−1∑
j=1

n−1∑
r=j+1

(Fr−1,n − Fr,n)zj

∣∣∣∣∣
≤ 1

(n− 1)χ

∣∣∣∣∣
n−1∑
j=1

zj

∣∣∣∣∣+
n−1∑
r=2

‖Fr−1,n − Fr,n‖

∣∣∣∣∣
r−1∑
j=1

zj

∣∣∣∣∣→ 0.(3.63)

as n→∞.Turning to the second limit in ii), we have by (3.31) and (3.61) that

n−1∑
j=1

‖F̄j,n‖
n
�

n−1∑
j=1

j−χe−
λmin
2−2χ

{n1−χ−(j+1)1−χ}jχ−θ. (3.64)

However,

n−1∑
j=1

1

jχ
e−

λmin
2−2χ

{n1−χ−(j+1)1−χ} n
� e−

λmin
2−2χ

n1−χ
∫ n

1

1

tχ
e
λmin
2−2χ

t1−χdt

n
� 1 (3.65)

for all n so the second limit in ii) follows by the Toeplitz lemma.

iii) Since

1

lχ
=

1

nχk
+

l−1∑
r=nk

(
1

(r + 1)χ
− 1

rχ

)
∀ l ∈ Ik,

one has that

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥ ≤ 1

nχk

∥∥∥∥∥∑
l∈Ik

Yl

∥∥∥∥∥+

∥∥∥∥∥∥∥
∑
r<l
r,l∈Ik

(
1

(r + 1)χ
− 1

rχ

)
Yl

∥∥∥∥∥∥∥ .
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Hence, by Taylor’s theorem

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥ ≤ 1

nχk

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥+

∥∥∥∥∥∑
l<nk

Yl

∥∥∥∥∥


+

nk+1−2∑
r=nk

rχ − (r + 1)χ

rχ(r + 1)χ

∥∥∥∥∥∥
∑
l<nk+1

Yl −
∑
l≤r

Yl

∥∥∥∥∥∥
≤ 1

nχk

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥+

∥∥∥∥∥∑
l<nk

Yl

∥∥∥∥∥


+
∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥+

∥∥∥∥∥∑
l≤r

Yl

∥∥∥∥∥
 , (3.66)

where the summations all start from l = 1 and stop at l = nk−1, r or nk+1−1.

Furthermore, by the hypothesis and (3.33) we have that

lim
k→∞

max
r∈Ik

1

rχ

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥ = 0 (3.67)

and the first two terms on the RHS of (3.66) go to zero. Moreover, by (3.33)

∑
r∈Ik

1

r
≤ log

(
nk+1 − 1

nk − 1

)

= log

(
b(a(k + 1))

1
1−χ c − 1

b(ak)
1

1−χ c − 1

)
→ 0 as k →∞ (3.68)

due to the fact that

1 ≤ b(a(k + 1))
1

1−χ c − 1

b(ak)
1

1−χ c − 1
≤ (a(k + 1))

1
1−χ

(ak)
1

1−χ − 2
=

(k+1
k

)
1

1−χ

1− ( 2
ak

)
1

1−χ
→ 1 as k →∞.
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In addition, by assumption, (3.67) and (3.68)

∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥ k
�
∑
r∈Ik

1

r

1

nχk

∥∥∥∥∥∥
∑
l<nk+1

Yl

∥∥∥∥∥∥→ 0 as k →∞

and

∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∑
l≤r

Yl

∥∥∥∥∥ ≤∑
r∈Ik

χ

r

1

rχ

∥∥∥∥∥∑
l≤r

Yl

∥∥∥∥∥→ 0 as k →∞

Hence, the last term on the RHS of (3.66) goes to zero too.

iv) By Lemma 3.3, the fact that ‖B‖ ≤||| B |||≤
√
d‖B‖ for a matrix with

rank d, iii) and (3.38) we have

∑
l∈Ik

∥∥∥∥∥Âllχ
∥∥∥∥∥ ≤ ∑

l∈Ik

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Âllχ
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ √d

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
l∈Ik

Âl
lχ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ d

∥∥∥∥∥∑
l∈Ik

Âl
lχ

∥∥∥∥∥
≤ d

∥∥∥∥∥∑
l∈Ik

(Âl − A)

lχ

∥∥∥∥∥+ d‖A‖
∑
l∈Ik

1

lχ

≤ d

∥∥∥∥∥∑
l∈Ik

Yl
lχ

∥∥∥∥∥+ d‖A‖
∑
l∈Ik

1

lχ
k
� 1 for k = 0, 1, 2, ... (3.69)

Moreover, by (3.39)
∑
l∈Ik

ηl ≤ η̄
∑
l∈Ik

1

lθ
→ 0 as k →∞.

v) This follows by iv) and the fact that

∏
l∈Ik

(
1 +
‖Âl‖
lχ

+ ηl

)
≤ exp

(∑
l∈Ik

‖Âl‖
lχ

+ ηl

)
k
� 1, ∀ k = 0, 1, ... � (3.70)

The following lemma is taken from Kouritzin [21].
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Lemma 3.3 Suppose m is a positive integer and {Mk, k = 1, 2, 3, ...} is a

sequence of symmetric, positive semidefinite Rm×m-matrices. Then, it follows

that

j∑
k=1

|||Mk |||≤
√
m

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
j∑

k=1

Mk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ , ∀j = 1, 2, 3, ...
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Chapter 4

Research Status and General

comments

This chapter contains a summary of the research contribution of this thesis

and a brief introduction to the authors’ future goals. The research proposed

in this chapter is related to the results in chapters 2 and 3.

4.1 Current Contribution

In chapter 2 we studied the Marcinkiewicz strong law, for outer products

two two-sided linear processes with matrix sequences of coefficient that could

decay slowly enough that linear processes demonstrate long-range dependence

while the outer product could have heavy tails. In particular, the heavy tail

and long-range dependence phenomena for outer products of linear processes

were handled simultaneously and a new decoupling property was proved that

showed the convergence rate was determined by the worst of the heavy tails

or the long-range dependence, but not the combination. The main result

114



was applied to obtain Marcinkiewicz strong law of large numbers for non-

linear functions of partial sums of stochastic processes, autocovariances and

stochastic approximation.

In the next chapter almost sure convergence rates for linear stochastic ap-

proximation algorithms were studied under the assumptions that were implied

by the Marcinkiewicz strong law of large numbers, which allows the coefficients

of the stochastic approximation algorithm to have heavy tails, long-range de-

pendence or both. It seems that we are the first to consider processes that are

simultaneously heavy-tailed and long-range dependent in stochastic approx-

imation. Finally, corroborating experimental outcomes and decreasing-gain

design considerations were provided to verify results experimentally in the

stochastic approximation setting.

4.2 Future Research

The next phase of this research will be concentrated on showing the optimal-

ity of obtained Marcinkiewicz strong law of large numbers results in previous

chapters in a polynomial sense. This means that we cannot achieve a polyno-

mially better rate than what we already obtained by Marcinkiewicz strong law

of large numbers results. To achieve this goal, following steps are of interest:

1) Obtain functional non-central limit theorem for outer product of linear

processes with heavy-tailed and long-range dependence.

2) Transfer functional non-central limit theorem from the coefficients of

stochastic approximation algorithm to its solution.
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Hence, the result of immediate interest to the author is at first deriving func-

tional non-central limit theorem for outer product and sample auto-covariance

functions of linear processes with long-range dependence and innovation of in-

finite fourth moment and finally use these results to get functional non-central

limit theorem under stochastic approximation setting.

Before describing the mentioned steps in more details, we explain weak

types of convergence briefly and give a short literature review.

For statistical inference in time series, it is usually necessary to rely on

asymptotic convergence results such as law of large numbers and the central

limit theorem. In fact, the central limit theorem is one of the most useful tools

for studying the asymptotic distribution of estimators (e.g., kernel type density

estimators, econometric estimators). The central limit theorem provides con-

ditions ensuring that the standardized sum of a sequence of random variables

has approximately the standard normal distribution, in large samples.

Theorem 4.1 Suppose {Y1, Y2, · · · } is a sequence of i.i.d. random variables

with E[Yi] = µ and V ar[Yi] = σ2 <∞. Then as n approaches infinity,

√
n

((
1

n

n∑
i=1

Yi

)
− µ

)
d−→ Z ∼ N(0, σ2).

A generalization of the central limit theorem is called functional central limit

theorem, or weak invariance principle, which has found application in studying

the asymptotic distribution of estimators. Doob in 1949 asked whether the

convergence in distribution held for more general functionals, thus formulating

a problem of weak convergence of random functions in a suitable function

space. The functional central limit theorem can be viewed as a generalization

of the central limit theorem to metric spaces other than finite-dimensional

116



Euclidean spaces.

Theorem 4.2 Suppose Sn =
n∑
i=1

Yi where {Y1, Y2, · · · } is a sequence of i.i.d.

random variables with E[Yi] = µ, V ar[Yi] = σ2 <∞ and define the stochastic

process X(n) by

X
(n)
t =

Sbntc − E[Sbntc]√
n

∀ 0 ≤ t ≤ 1

Then, X
(n)
t

d−→ Bt where B is Brownian motion with diffusion coefficient σ.

Finite variance has been an essential property of the deriving process in

all the foregoing results which without this, there is no central limit theorem

in the usual sense. To get the idea what might happen instead, we require

to define the class of stable distributions. A random variable Y has a stable

distribution if for any n, there exist independent copies of Y as Y1, Y2, · · ·Yn

and real sequences {an, bn}, where an > 0, such that Sn = Y1 + Y2 + · · · + Yn

has the same distribution as anY + bn. The distribution is called strictly

stable when bn = 0. It turns out that we necessarily have, an = n
1
α for

some 0 < α ≤ 2. Above all, members of the stable class can be negatively or

positively skewed around a point of central tendency. Distributions having this

property for an (not necessarily with bn = 0) are called stable with exponent

α or α-stable.

In the recent years, the asymptotic behavior of random variables with

heavy tails which arise naturally in various models, for example in financial

data, has been investigated increasingly. The oldest result in this direction is

the stable limit theorem whose proof can be found in Feller [41]. This theorem

states that a suitably normalized sum Sn =
n∑
i=1

Yi of a sequence (Yi)i≥1 of i.i.d.
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random variables with regularly varying tails of index α ∈ (0, 2) converges in

distribution to an α-stable random variable.

Theorem 4.3 If Sn =
n∑
i=1

Yi, and Y1, Y2, · · ·Yn are i.i.d. random variables in

the domain of attraction of a non-degenerate strictly stable law with parameter

α and E(Y1) = 0 for α > 1, then

Sn

n
1
αL(n)

d−→ Z, as n→∞

for a slowly varying L. Z has a so-called stable distribution.

If convergence to an α-stable law takes the place of the usual central limit

theorem, the next step is the existence of a corresponding functional central

limit theorem. The functional version of this result is due to Skorokhod [110]

and gives the convergence in distribution of the process {Sbntc}t≥0 in the space

D[0, 1] of cádlág functions on [0, 1] (equipped with the Skorokhod topology

J1) to an α-stable Lévy process.

Note: cádlág is a french acronym standing for “continue á droit, limites

á gauche”, by way of explanation i.e., functions that may contain jumps, but

not isolated points, such as to be discontinuous in both directions. cádlág

functions are right continuous with left limits.

Theorem 4.4 (functional non-central limit theorem) Let X and {X(n), n =

1, 2, , · · · } be elements of D[0,1]. Consider the normalized partial sum process

X(n) ∈ D[0,1] such that

X
(n)
t =

1

n
1
αL(n)

bntc∑
i=1

Yi.

Then, (under a regularity condition) X
(n)
t

d−→ Xt as n → ∞, where {Xt} is

the stable Lévy process with X1 belonging to α-stable law, and the convergence
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holds on the Skorokhod space D[0, 1], equipped with the Skorokhod J1 topology.

Resnick [100] in 1986 gave a new proof of this result using a powerful

idea based on the convergence of a sequence of point processes. Davis and

Resnick [24] applied this idea to the more complex situation of linear sequences

of the form Xi =
∑
j∈Z

cjYi−j, where (Yi)i are i.i.d. random variables with

heavy tails. However, Avram and Taqqu [5] showed that this result cannot

be extended to a functional convergence result in the Skorokhod topology

J1; on the other hand, if the coefficients (cj)j have the same sign, then the

functional convergence holds in the Skorokhod topology M1. Recently, Balan,

Jakubowski and Louhichi [6] presented a similar functional convergence result

for a linear sequence whose coefficients do not necessarily have the same sign

on Skorokhod space equipped with the S topology introduced by Jakubowski

[59].

4.2.1 Functional Non-Central Limit Theorem for Outer

Product of Linear Processes

The following almost sure convergence under some proper conditions was es-

tablished in Chapter 2

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s. for p <
1

2− σ − σ
∧ α ∧ 2,

for some α > 1 and (σ, σ) ∈
(

1
2
, 1
]

where Dk = XkX
T

k and {Xk}, {Xk}

are both two-sided linear processes. Now, we would like to investigate the

weak invariance principle for {Dk} when they have heavy tails and long-range

dependence. The limit distributions of linear processes generated by i.i.d.
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noises have been extensively studied. See, for instance, [3], [24], [25], [62], [5],

[55], [54], [129], [7] and [93]. However, the functional convergence of outer

products of linear processes with heavy tails and long-range dependence has

not been fully investigated in a general form. Hence, we would like to show

under proper conditions on coefficients and innovations of linear processes we

have following conjecture

a) If σ > 1− 1
2α

, 1 < α < 2

1

n
1
α

bn.c∑
k=1

(Dk −D)
D−→ Y.

where {Yt}t∈[0,1] are stable processes with index α (1 < α < 2) with

sample paths in the spaceD[0,1] equipped with some appropriate topology

(e.g., S topology).

b) If 1
2
< σ < 1− 1

2α
, 1 < α < 2

1

n2−2σ

bn.c∑
k=1

(Dk −D)
D−→ C [Uσ(.)]

where Uσ is a Rosenblatt process and the convergence is inD[0,1] equipped

with J1 topology.

It is notable that the case a) represents heavy-tailed dominant situation and

case b) represents long-range dependence dominant one.

This work is motivated by the paper “Sample autocovariances of long-

memory time series ” by Horváth and Kokoszka [54] and “On functional lim-

its of short- and long-memory linear processes with GARCH(1,1) noises” by

Zhanga, Sinb and Lingc [133].
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Horváth and Kokoszka [54] studied the asymptotic distribution of normal-

ized sample autocovariances of processes with long-memory and infinite fourth

moment and proved that the sample autocovariances based on the intensity of

dependence converges in distribution to either stable distribution with index

α or Rosenblatt process.

On the other hand, Zhanga, Sinb and Lingc [133] investigated the long-

memory linear processes but with GARCH (1,1) noises of tail index 2α (1 <

α < 2) in a functional sense. They showed that the autocovariances converge

to functionals of either α-stable processes or Rosenblatt process again based on

how much long-range dependent is present in the model. The weak convergence

was established on the space of cádlág functions on [0, 1] with S or J1 topology.

4.2.2 Stochastic Approximation Algorithm and Func-

tional Non-Central Limit Theorem

Marcinkiewicz strong law of large numbers for stochastic approximation algo-

rithm with decreasing gain has been discussed in Chapter 3. Technically, what

was shown was the transfer of Marcinkiewicz strong law of large numbers from

the partial sum of linear algorithm’s coefficients ( {Ak} and {bk} ) with heavy

tails or/and long-range dependence to the solution of stochastic approxima-

tion algorithms with decreasing gain, hk+1 = hk + 1
kχ

(bk − Akhk). Namely,

nγ|hn − A−1b| → 0 a.s. for the γ < (χ − 1
α

) ∧ (χ + 2σ − 2) when χ ∈ (0, 1),

α ∈ (1, 2) and σ ∈
(

1
2
, 1
]
. Now, we would like to obtain functional non-central

limit theorem for the solution of stochastic approximation algorithm in order

to demonstrate that attained rate of convergence is optimal in the polynomial

sense; which is obtaining weak convergence to a non trivial process at the

121



boundary.

The ultimate goal is deriving functional non-central limit theorem for outer

product of linear processes with long-range dependence and heavy tails under

stochastic approximation setting. However, the fist step is investigating the

transfer method under the sole heavy-tailed phenomenon. This work is moti-

vated by the paper “On the interrelation of almost sure invariance principles

for certain stochastic adaptive algorithms and for partial sums of random vari-

ables” by Kouritzin [22] and “Functional Convergence of Linear Processes with

Heavy-Tailed Innovations” by Balan, Jakubowski and Louhichi [6].

Kouritzin [22] established almost sure invariance principles and showed

that if {Ak, k = 1, 2, 3, · · · } and {bk, k = 1, 2, 3, · · · } are processes satisfying

almost sure bounds, then {hk, k = 1, 2, 3, · · · }, the solution of the stochastic

approximation adaptive filtering algorithm hk+1 = hk + 1
k
(bk − Akhk) for k =

1, 2, 3, · · · also satisfies an almost sure invariance principle of the same type.

On the other hand, Balan, Jakubowski and Louhichi [6] considered the

functional convergence of partial sums of linear processes with heavy-tailed

innovations and gave necessary and sufficient conditions for the finite dimen-

sional convergence to an α-stable Lévy motion in the case of summable coef-

ficients. However, we have to take into consideration that this work considers

the partial sum of linear processes not the outer products of linear processes.

Now, we would like to prove if the normalized sum of coefficients satisfies

the functional non-central limit theorem,

A(n) D−→ XA, b(n) D−→ Xb
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on the Skorokhod space D[0,1] equipped with some suitable topology, where

A
(n)
t =

1

nχ−γ

bntc∑
k=1

(Ak − A) and b
(n)
t =

1

nχ−γ

bntc∑
k=1

(bk − b), t ∈ [0, 1]

with {XA
t , X

b
t } being stable Lévy motion processes with index α (1 < α < 2)

and when {Ak}∞k=1 are symmetric, positive semidefinite random matrices, A is

a positive definite matrix, {bk}∞k=1 are random vector, b is a vector, χ ∈ (0, 1)

and γ = χ− 1
α

then the solution of above stochastic approximation algorithm

with step size µk = 1
kχ

, also converges on the Skorokhod space D[0,1] to a

stable Lévy process with some type of drift. In other word, H(n) D−→ Y , where

H
(n)
t = nγ|hbnt+1c − A−1b| and Yt is a non-symmetric stable Lévy process.
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