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Abstract 

The most common fatigue problem in steel structures is fatigue cracking caused by 

distortion. Although methods of repair for structures that suffer from distortion induced fatigue 

do exist, our ability to assess the resistance of existing structures is lacking. Consequently, it is 

difficult to assess whether structures with details that are known to be prone to distortion induced 

fatigue should be rehabilitated or not; costly repairs are often executed without knowing whether 

these rehabilitations are necessary.  

An investigation of prediction methods for web gap stresses indicated that the governing 

web gap stress is a function of several parameters (e.g. lateral stiffness of the flange, stiffness of 

the stiffener, magnitude of the differential displacement, and several other factors that have been 

identified to affect the stresses developed in the web gap) and a simple method of analysis that 

incorporates all these parameters does not exist. 

In this study the web gap stress prediction equation was built upon the knowledge gained 

in earlier projects and finite element investigation to develop an accurate method of assessing 

resistance to distortion induced fatigue and to develop a model that can assess the stress in details 

subjected to distortion induced fatigue. Dimensional analysis approach is used to obtain the 

equation to calculate the magnitude of stress in these details as a function of geometrical 

variables and applied loads. The results of this research will be used to assess the fatigue 

resistance of these details in order to extend the service life of aging bridge steel structures 

without compromising their level of safety.  
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Although the proposed empirical equations are analytically more complicated than the 

previously used equations to calculate the stress, they predict the stress in the web gap within 20 

percent and cover a wide range of parameters which almost includes all the steel multi-girder 

bridges with bend plate diaphragm. Considering all the complexity in the web gap details, this is 

an acceptable accuracy for the stress calculation. 

Linear elastic fracture mechanics approach, used in this study to investigate fatigue 

behavior of the web gap detail, proved that even though the fracture in the detail is a 

mixed-mode fracture, Mode I is the governing mode for these details.  
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Chapter 1 

 

Introduction 

 

 

1.1. Motivation 

Canada has well-developed and countrywide transportation system such as roads, rails and 

bridges; but almost 50% of Canadian highway bridges were built prior to 1970 to cope with 

increasing demand arising from a strong growth in population, increased urbanization, and 

increased car usage (Gagnon et. al. (2008)). These bridges have reached or are nearing the end of 

their service life. Fatigue of steel highway and railway bridges is a common problem with aging 

infrastructures, which results in important overall economic losses, either from costs of repair or 

loss of use of the structure. Therefore, with ageing of our bridge infrastructure it is crucial to 

assess current bridges more accurately both to avoid unnecessary expenditures and to make sure 

they are in a safe operating condition. 

In multi-girder steel bridges, to transfer lateral loads and distribute live loads among the 

girders, diaphragm members are used at the location of transverse stiffeners welded to the girder 

web. Prior to 1985, connection between these diaphragms connection stiffeners and the girder 

tension flange was rarely provided to avoid a potential load fatigue prone detail. Therefore, the 

gap between the tension flange and the stiffener leaves the girder web unstiffened in the 

connection detail. This gap is known as "Web Gap". While applying cyclic traffic loads which 

are not uniformly distributed among girders, there is always a differential deflection between two 

adjacent girders. This differential vertical deflection causes a racking motion in the diaphragm 

connecting the two girders. This rotation is resisted by a couple of horizontal forces and results 

in cyclic out-of-plane distortion and large stress ranges in the web gap. This intense stress 

gradient accelerates initiation and propagation of cracks in both longitudinal and vertical 
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directions in that region. These cracks are the most common fatigue deficiency in highway and 

railway bridges. It is estimated that 90% of all fatigue cracking is the result of out-of-plane 

distortion at fatigue prone details (Connor & Fisher, 2006). Longitudinal web gaps are also 

presented in most gusset plate connections. These details are designed for lateral bracing and 

also reported as a distortional-induced fatigue prone detail (Fisher, 1990). Further explanation 

and details about this problem is discussed in Chapter 2. 

1.2. Objectives and Scope 

There are many factors that affect web gap stresses which are discussed in the following. 

These factors make the stress assessment in the details subjected to out-of-plane stress even more 

complicated. Although many researchers have investigated the local stress due to out-of-plane 

deformation in the web gaps, a method to find the magnitude of distortional stresses is still not 

well developed. Moreover, it has been shown that the stress is very difficult and expensive to 

predict from field investigations and experimental studies. Therefore, a simple and 

comprehensive method should be developed to assess the stress in the web gap details. This 

method has to consider the most significant parameters affecting the stress magnitude in the 

details and to be applicable to any multi-girder steel bridges with these web gaps. 

Loading, material properties, geometrical configuration, residual stresses, and initial 

imperfections of the component subjected to cyclic loading are some of the factors affecting the 

performance of the steel structures. The more information we have in this regard, the more 

accurately we can assess distortion-induced fatigue prone details. Material properties and 

geometrical details can be obtained by experimental tests and measurements. For the details 

subjected to stress-induced (load-induced) fatigue loading, the stress range is also a known 

factor. Therefore, from simple approaches such as S-N fatigue life prediction curves, the details 

can be assessed and the remaining life can be predicted. Without using a simple method such as 

fatigue curves, it is costly to assess and evaluate the fatigue resistance of the details. For the 

details subjected to distortion induced fatigue, current S-N fatigue curves cannot be used as they 

do not account for parameters affecting these fatigue prone details. Even with a fatigue curve for 

distortion induced fatigue, the details still have to be investigated to obtain the stress range. 

Therefore, first of all, the magnitude of the stress in the web gap should be obtained to be able to 

assess the fatigue life of the detail. In addition the suitable S-N fatigue curve should be 
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developed for the details prone to distortion induced fatigue, in future researches as well, as 

engineers are still left without guidance when evaluating an existing bridge with distortion 

induced fatigue. 

The objectives of this research are to develop a model that can assess the stress in details 

subjected to distortion induced fatigue and to investigate the fatigue life of the web gap details 

using fracture mechanics. The results of this research will be used to assess the fatigue resistance 

of these details in order to properly assess the service life of aging bridge steel structures without 

compromising their level of safety. Finite element (FE) analysis will be conducted to perform 

parametric study and obtain the stress states in the details. The results will be compared to 

existing experimental findings of former experimental researches to develop and verify the 

equation to evaluate the web gap stress. 

In this study, steel multi-girder bridges with staggered bend plate diaphragm are assessed. 

The angle of skew is assumed to be zero. Therefore, the girders are considered as none-skewed. 

This makes the calculation more straightforward. Moreover, in future studies the effect of the 

skew angle can be investigated and a modification factor can be proposed. 

The distortion induced fatigue (or fatigue due to cyclic out of plane movements) problems 

present many challenges in the fatigue assessment, when it comes to evaluating the magnitude of 

stress in the detail, the crack initiation and growth behaviour, and to assess the repairing 

technique. Although, there are numerous researches in this area, the web gap stress in steel 

multi-girder bridges cannot be accurately calculated yet without a detailed FE analysis and 

having a simple and comprehensive approach to evaluate fatigue resistance of the detail 

considering all the mentioned parameters, is still lacking.  

Based on the knowledge gained in earlier projects on steel members with stress induced 

fatigue cracks, the main objective of this research is to develop an accurate method of assessing 

resistance of details subjected to distortion induced fatigue. Calculating the stress in these details 

is considered as the initial step of this assessment.  

The main scope of the research is to develop a simple, but comprehensive method to predict 

the structural stress in the web gap details. This will be used in combination to a proper S-N 

curve to assess the fatigue life of the details prone to distortion induced fatigue. The results of 
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this study will propose guidelines to be considered in the assessment of steel details subjected to 

out-of-plane deformation under cyclic load. 

 

1.3. Methodology 

 

The literature review in Chapter 2 indicates that the governing web gap stress is a function 

of several parameters (e.g. lateral stiffness of the flange, stiffness of the stiffener, magnitude of 

the differential displacement, and several other factors) and a simple method of analysis that 

incorporates all these parameters does not exist. Therefore, a method to predict the maximum 

web gap stress in multi-girder steel bridges is developed at the first step of this research. This 

method includes parameters such as lateral and torsional stiffness of the tension flange, stiffness 

of the stiffener, diaphragm spacing, and web gap stiffness 

In the next step, detailed FE models of full-size girders that mimic the experimental tests 

described in references (Hartman et al, 2013) will be constructed using ABAQUS 13. These 

models will serve as global models for further detailed analysis. To reduce modeling time and 

cost, local models of the web gaps will be developed. Refined mesh will be used in these models 

to determine the localized strains and stresses at that region. The boundary conditions in the local 

models are based on the analysis results from the global models. Obtained stresses and strains 

from the local models will be used in order assess the accuracy of the proposed equation. The 

local model will be used to assess the fatigue life of details subjected to distortion induced 

fatigue. It should be noted that data from other available experimental test results (D’Andrea, 

Grondin, & Kulak, 2001; Fraser, Grondin, & Kulak, 2000) and field measurements (Jajich, 

Schultz, Bergson, & Galambos, 2000; Severtson, Beukema, & Schultz, 2004) will be used to 

evaluate the proposed web gap stress prediction model.  

In the parametric study stage, geometric dimensions are varied according to Chapter 5. 

These ranges are selected to cover the common web gap dimensions and global bridge 

geometries reported in the bridge inventories (Berglund & Schultz, 2001). 
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1.4. Organization of Thesis 

 

This thesis consists of 7 chapters including Introduction which is included in the Chapter 1.  

In Chapter 2, a brief background of distortion induced fatigue, details prone to this problem, 

models used in order to calculate the stress in these details, and parameter affecting the 

magnitude of this stress are presented. It should be noted that the background of fracture 

mechanics approach which is used in fatigue life assessment of the web gap, dimensional 

analysis, design of experiments, and regression methods are presented in the thesis body and in 

the corresponding chapters and prior to their applications. In addition, theories of plates and 

shells used in order to obtain the web plate stiffness in steel multi-girder bridges and the required 

calculations are presented in Appendix A.  

Finite element modeling techniques are discussed in Chapter 3. A comprehensive finite 

element model of a steel bridge with three 9.1 m girders is created. This model was constructed 

in order to serve as the global model for the sub models used in this study to investigate the 

behavior of the web gap details. This chapter also includes the experimental tests results as well 

as the analytical results used to verify the finite element modeling procedures. 

Using the mentioned global model developed in Chapter 3, the fatigue life of the web gap 

detail is assessed using fracture mechanics and the findings of this investigation is compared 

with the observed life of the detail. These results which are presented in Chapter 4 confirm the 

accuracy of the modeling procedure once again and provide a better understanding of the 

governing failure mode of the cracks prone to distortion induced fatigue. 

Chapter 5 includes a brief background of dimensional analysis and its application in 

structural engineering field. The dimensionless π-parameters used in the experimental design are 

formed in this chapter and the results of the scale independency study required for dimensional 

analysis are also included here. 

 The screening study for each dimensionless parameter was conducted in Chapter 6 to obtain 

a better idea for the influence of each dimensionless parameter on the response function (the 

magnitude of stress in the web gap). Using the information gained from the screening study, the 
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experiments were designed to generate data using finite element analysis for regression analysis. 

Non-linear exponential regression applied on the data and the empirical web gap stress 

prediction equations are developed in Chapter 6. This chapter also provides the assessment of the 

proposed equations using two experimental programs at University of Alberta and University of 

Kansas, as well as a finite element study at University of Minnesota which was validated using 

field measurements and monitoring. 

The last chapter (Chapter 7) includes a summary of the work, conclusions obtained from this 

study, in addition to some recommendations for further studies.  

The appendixes are presented at the end of the thesis. Appendix A includes the method used 

to calculate and obtain the web plate stiffness at the web gap detail. Appendix B and C present 

the models dimensions and results of the finite element analysis for the screening study and the 

design of experiments, respectively.  
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Chapter 2 

 

Background and Literature Review 

 

2.1. Fatigue in Structural Engineering 

Most engineering structures and machines such as bridges, cranes, drilling equipment, etc., 

are under dynamic load such as traffic load, reciprocal and rotational load. Fatigue in these 

structures is the weakening of the material by initiating micro-cracks and propagating the cracks 

in their structural members caused by these repeatedly applied loads. These cracks propagate 

further by continued application of cyclic load and cause the failure of the member and 

eventually, in the worse cases, the failure of the structures themselves. Depending on the applied 

load, the location and the deformation of the fatigue prone detail, fatigue can be divided in two 

categories, load-induced fatigue and distortion induced fatigue. The most common fatigue 

problem in steel structures is fatigue cracking caused by distortion which is introduced in the 

following section. 

In terms of fatigue life which is simply defined as the number of load cycles, or more 

specifically stress cycles, that the member sustains before failure, there are high cycle fatigue and 

low cycle fatigue. There is no distinguishing number of cycles that can specify these types of 

fatigue. High cycle fatigue is characterized by low amplitude high frequency elastic strains. For 

instance, tuning fork under a strike vibrates at several cycles a second and eventually it maintain 

the original shape. Conversely, low cycle fatigue is characterized by high amplitude low 

frequency plastic strains.  Fatigue in a thin aluminum bar under bending can be considered to be 

low cycle fatigue as it deforms the bar plastically and after some load plastic deformation 

remains in the bar. 
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2.2. Distortion Induced Fatigue 

As it is mentioned in previous section, distortion induced fatigue is the most common 

fatigue problem in steel structures specifically multi-still girder bridges built prior to 1985 

(Fisher, Fisher, & Kostem, 1979). It is mostly caused by out-of-plane distortion in the structural 

member because of the nature of three-dimensional stress developed in the member. In another 

words, the life of a detail prone to distortion induced fatigue is shorter than another member with 

the same material and under the same stress range but under load induced fatigue load. 

In multi-girder steel bridges, to transfer lateral loads and to distribute live loads among the 

girders, diaphragm members are used at the location of transverse stiffeners welded to the girder 

web. Prior to 1985, connection between these transverse stiffeners and the girder tension flange 

was rarely provided to avoid a potential fatigue prone detail. Therefore, the gap between the 

tension flange and the stiffener leaves the girder web unstiffened in the connection detail. While 

applying cyclic traffic loads which are not uniformly distributed among girders, there is always a 

differential deflection between two adjacent girders. This differential vertical deflection causes a 

racking motion in the diaphragm that connects the two girders. This rotation is resisted by a 

couple of horizontal forces and results in cyclic out-of-plane distortion and large stress ranges in 

the web gap. This intense stress gradient accelerates initiation and propagation of cracks in both 

longitudinal and vertical directions in that region. These cracks are the most common fatigue 

deficiency in highway and railway bridges to the extent that Connor and Fisher (Connor & 

Fisher, 2006) estimated that 90% of all fatigue cracking is the result of out-of-plane distortion at 

fatigue prone details. Longitudinal web gaps are also presented in most gusset plate connections. 

These details are designed for lateral bracing and also reported as a distortion-induced fatigue 

prone detail (Fisher, 1990). Figure 2- 1 and Figure 2- 2 illustrate the location of the web gap in 

multi-girder bridges and in lateral gusset plate connections, respectively. 
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a) b) 

Figure 2- 1: a) Web gap distortion, b) Differential deflection of two adjacent girders. 

 

Figure 2- 2: Lateral gusset plate connections distortion. 

 

2.3. Web Gaps in Multi-Girder Bridges 

In this study the web gap details in steel multi-girder bridges are considered as details prone to 

distortion induced fatigue, and are investigated further. These details are located in web plate 

adjacent to the girder flanges. They are mostly in top portion of web in negative moment 

segments of the girders and in the bottom portion of the web plate in positive segments of the 

girders. Because of the short length of this gap and the relatively huge out of plane distortion 

which should be transferred to the web plate, the large vertical in plane stress as well as out of 
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plane stress are created in the web gap. The locations of the maximum and minimum stresses are 

at the top and bottom parts of the web gap. In another words, for web gaps located in positive 

moment segment of the girder, the cracks can possibly located at stiffener to web weld toe and 

top of bottom flange to web weld toe. This can also occur at top web gaps. This is well described 

in Figure 2-3. For the negative moment segments of the girder, the locations of the maximum 

and minimum stresses are below the top flange and web weld toe and top of the stiffener and 

web weld toe. This high cyclic stress magnitude in the detail leads the detail to be cracked at 

these locations. This crack sometimes propagates through the thickness of the web and 

sometimes the propagation stops and doesn’t continue through the web thickness. The most 

common shapes of the cracks are shown in Figure 2-3. The initiation and propagation of these 

cracks as well as fatigue assessment of these details are described in Chapter 3.  

 

 

 

Figure 2- 3: Location of a web gap in positive moment segments of the girder and possible location of cracks 

 

 

(Girder Partial Cross Section) 
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2.4. Parameters Affecting Web Gap Stress 

There are many factors that affect web gap stresses which are discussed in this section. 

These factors make the stress assessment in the details subjected to a complex out-of-plane stress 

distribution. Loading, material properties, geometrical configuration, residual stresses, and initial 

imperfections of the component subjected to cyclic loading are some of the factors affecting the 

performance of the steel structures. 

In general, the parameters affecting the web gap stress can be divided in two groups 

depending on their relative location to the web gap. These two groups are named as local 

parameters and global parameters.  

Although weld geometry, weld deficiency, and residual stress affect the magnitude of the 

stress and the fatigue life of a crack, they are not included in this study. 

2.4.1. Local Parameters 

Geometrical dimensions of web plate, tension flange, and stiffener directly affect the 

magnitude of the vertical stress as well as the magnitude of the web gap distortion. These 

parameters are presented in this section. The practical ranges of these parameters are presented in 

the following chapters. 

2.4.1.1. Web Gap Length 

Web gap length can be considered as one of the most critical parameters to assess the web 

gap stress. The longer the web gap, the more flexible the detail and it can absorb the distortion 

and deform easier.  

2.4.1.2. Web Thickness 

This parameter is also one of the principal parameters in web gap stress calculation. The 

thicker the web plate, the stiffer the web gap will be. This decreases the deformability of the web 

gap which creates higher stress at weld toes in the detail (Li and Schults 2005). Web thickness 

and web gap length can also be combined to form a unique parameter named web gap plate 

stiffness. 
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2.4.1.3. Tension Flange Lateral and Torsional Stiffnesses 

Depending on the positive or negative moment segment of the girder, a web gap can be 

either located in the top portion of the web and below the top flange, or, in the bottom portion of 

the web and above the bottom flange. When the transverse stiffener is pulled by the diaphragm 

plate or cross brace frame as a result of differential deformation, the web gap is both under 

lateral deformation and longitudinal rotation. The mentioned deformation and rotation are 

transferred to the tension flange. In the case where the top flange is in tension and the web gap is 

in the top portion of the web plate, as the top flange is totally constrained in the concrete deck, 

the boundary condition at the flange can be considered as a fixed support. In such a case, the 

deformation and rotation do not transfer to the tension flange and the stiffness of the top flange 

does not affect the stress in the web gap detail. 

In the positive segment of the girder where the bottom flange is in tension, the web gap is 

located in the bottom portion of the web plate. In this case, the bottom flange plays a significant 

role in deformation of the web gap. A main portion of the transformed lateral displacement from 

the transverse stiffener is transferred to the bottom flange as it is not laterally supported at the 

web gap location. The rotation of the bottom part of the web gap also creates torsion in the 

bottom web gap (Severtson et. al. 2004). Therefore, the lateral torsional stiffness and out of 

plane bending stiffness of the bottom flange are also very important parameters in the web gap 

stress calculation. The stiffer the bottom flange, the more rigid the boundary condition it 

provides for the bottom part of the web gap. This results in higher stress in the web gap detail. 

The tension flange lateral and torsional stiffnesses can be calculated using the dimensions of the 

flange plate including flange plate thickness, flange plate width, and the transverse stiffener 

spacing. 

 

2.4.1.4.  Transverse Stiffener Stiffness 

Transverse stiffener stiffness is also an important parameter and has significant effect on the 

stress in the web gap detail. The transverse stiffener is directly attached to the web plate and 

creates a stress concentrated prone detail at the connection. A thin plate for the stiffener increases 

the concentrated stress in the web plate. This is because the load from the transverse stiffener is 
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applied in a very small area in comparison to a thicker stiffener plate. Stiffener in comparison 

with the web plate is relatively rigid and without a noticeable deformation transfers the rotation 

created by differential deflection of adjacent girders. The effect of the transverse stiffeners is not 

studied anywhere in the literature. This will be discussed further in the following chapters. 

 

2.4.1.5.  Diaphragm and Cross Brace Frame Stiffness 

Diaphragm plate and cross frame members are present for construction purposes, to transfer 

lateral loads and, to some extent, distribute live loads among the girders. The load created by 

differential deflection between the two adjacent girders resulting from these live loads is 

transferred by diaphragm plates or the cross brace frames to the web gap and results in distortion 

in the detail. 

If the diaphragm plate and cross brace frame members are flexible, less rotation from the 

differential deflection is transferred to the web gap and this deferential displacement mostly 

deforms the diaphragm plate or cross brace frame member itself. In other words, the adjacent 

girders would deform almost independently which reduces the magnitude of distortion in the 

web gap, significantly.  

2.4.2. Global Parameters 

These parameters indirectly affect the magnitude of the web gap distortion. They play a 

significant role in the magnitude of the differential deflection which is transformed to the web 

gap by diaphragm plate or cross frame brace. 

 

2.4.2.1. Girder Spacing 

Differential deflection is transferred and becomes web gap distortion by almost a rigid 

rotation of the diaphragm plate as shown in Figure 2-1. Therefore, the girder spacing can be 

another important parameter in web gap stress calculation. This parameter can be inherently 
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considered as diaphragm stiffness and has the same effect on the web gap distortion. The longer 

the girder spacing the less rotation in the diaphragm and less distortion in the web gap detail.  

2.4.2.2.  Deck Thickness 

Deck thickness has a direct effect on the magnitude of differential deflection. Even though a 

very thick or an almost rigid deck can reduce the differential deflection, a small rotation is still 

created in the diaphragm plate or the cross brace frame. Therefore, if the differential deflection is 

a known parameter and is already available, the effect of stiffness of the bridge deck has already 

been considered in the calculation and there is no need to investigate this parameter any further.  

 

2.4.2.3. Span Length 

Span length is also one of the primary bridge characteristics used to calculate the deflection 

of the bridge girders. Therefore, it is very important in order to find the differential deflection 

between two adjacent girders and consequently calculate the web gap distortion and stress 

magnitude. Longer span length results in more flexible girders. These girders have higher 

differential deflection under none uniform distributed load. 

 

2.4.2.4. Angle of Skew 

Hassel et al. (H. L. Hassel, Hartman, Bennett, Matamoros, & Rolfe, 2010) and (H. Hassel, 

Bennett, Matamoros, & Rolfe, 2012) examined the relationships between skew angle (0°, 20°, 

and 40°), cross-frame spacing (at 2.29 to 9.14 m (7.50 to 30.0 ft.)), and stresses on distortion-

induced fatigue susceptibility using numerical models. The cross-frame configurations examined 

included staggered perpendicular to the girder line as well as parallel to the support skew. Equal-

leg angle cross-frame elements were selected for skewed bridges on the basis of both slenderness 

ratio and stiffness. Connections between girder webs and flanges as well as girder webs and 

connection plates were modeled with 15.9 mm welds and were rigidly connected with surface-to-

surface tie constraints. It was found that, although in every model the 20° skew resulted in the 
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highest web-gap principal stresses, no clear trend was established between skew angle and web-

gap stress. 

 

2.4.2.5. Bracing Spacing, Types, and Configurations 

Wang et al (Wang, Yan, & Cheng, 2013) established numerical analysis models (using the finite 

element solver, ANSYS) of a three-span (25, 35, and 25 m) continuous curved steel girder bridge 

with five welded plate girders spaced at 2.7m to investigate the fatigue stress at the web gaps. 

Cross frames were placed in the radial direction every 5m in the longitudinal direction of the 

bridge. They applied five different AASHTO fatigue truck load cases (AASHTO, 2007) but only 

presented the results of load case I (the last axis of AASHTO fatigue truck was located at cross-

frame I longitudinal). Different web gap length, web thickness, curvature radius, and cross-frame 

layout (X and K) were investigated to find web gap deflection and vertical bending stresses in 

different web gap height at various locations. They found that under applied loads, different out-

of-plane distortion occurred at various positions in web gaps, and the web gap was subject to 

double curvature; both the bottom web gap at middle span area and the top web gap at support 

were poor fatigue details, however, only the top web gap at support was poor fatigue detail in 

straight bridge. It was also found that out-of-plane bending stresses in X layouts were a little 

higher than in layouts with K cross-frames. 

One of the most common bracing systems for I-shape-girder bridges is a discrete torsional 

system consisting of cross frames with a K- or X-configuration. These braces are usually 

fabricated from angles or of solid diaphragms constructed with channel-type sections for ease in 

attachment to girder stiffeners. In addition, solid plate (plate diaphragm) or channel diaphragms 

are used in some bridges. Top or bottom lateral truss bracing (a relative brace system) may be 

needed as temporary bracing during construction or permanent bracing to mainly resist wind 

loads (Chen & Duan, 2014). 

Web gaps in multi-girder bridges are subjected to a transverse load applied through the 

stiffener at one end of the web gap which is resisted at the other end by tension flange. Top and 

bottom of the web gaps have the highest tension and compression stresses and most of the 

fatigue cracks are discovered in these locations (Connor & Fisher, 2006). 
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Keating & Fisher (1985) performed several field studies of various bridge details to 

determine the stresses and out-of-plane distortions in the web gap. The web distortion between 

the end of the stiffener and the flange ranged from 0.013 mm to 0.025 mm under service loading 

conditions and the measured bending stresses in the web gap ranged from 10 MPa to 97 MPa. 

Furthermore, all strain measurements taken in the web gaps showed that reverse curvature 

bending was present. The field investigations indicated that the relatively high stress levels in the 

gap region usually caused cracking within the first ten years of the service life of the bridges. 

They found that cracks initiated at the web gap boundaries, where the maximum bending 

stresses, induced by the relatively small deformations are located. 

Fisher (1990) investigated fatigue cracks in the web gaps of bridge girders at the connection 

of transverse beams, too. Transverse beams were connected to the girders through stiffeners 

which were not connected to the girder flanges. The cracks had developed due to out-of-plane 

deformation of the web gaps. The strains in the web gap were measured using strain gauges. The 

strain measurements indicated that the transverse beam was pushing the web out-of-plane and 

the web gap was subjected to double curvature (Fisher 1990). 

Castiglioni, Fisher, & Yen (1988) presented a numerical investigation of web gaps subjected 

to out-of-plane displacements in multi-girder steel bridges. A parametric study was carried out to 

determine the effects of web gap length and web thickness on web gap stress. They found that 

increasing the web gap length and decreasing its stiffness may decrease the stresses in the web 

gap enough to reduce the probability of developing distortion induced fatigue cracks in these 

areas.  

Shifferaw & Fanous (2013) conducted field testing and numerical studies to examine the 

behaviour of web-gap distortion of a skewed multi-girder steel bridge. They found that the 

shorter web gap resulted in higher vertical and principal strain due to increased bending by 

diaphragm forces in the web. They also found that by connecting the transverse stiffener to the 

top flange of the girder the out-of-plane distortion can be effectively reduced. 
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2.5. Web Gap Stress Assessment  

 

The magnitude of distortional stresses has been shown to be difficult to predict from field 

investigations and experimental studies
 

(Jajich, Schultz, Bergson, & Galambos, 2000). 

Fisher et al., (1979) assumed that web gaps behave like a short, rotationally fixed beam 

undergoing lateral distortion δ. By using the slope deflection equation an approximation for the 

relationship between differential deflection, Δ, an approximation of distortional stresses in the 

web gap was obtained. It was assumed that the deep diaphragm undergoes a rigid body rotation 

about its base, and the relatively thin web gap takes up all out-of-plane deflection. The assumed 

relationship between δ and Δ is shown in Figure 2- 4. 

 

 

Figure 2- 4: Diaphragm Rotation 

The stress due to rotation of the ends of the web gap has also been neglected under the 

assumptions to drive the equation. By using Equation (2-1) the maximum out-of-plane web gap 

stress in vertical direction can be calculated. 

𝜎𝑤𝑔 =
3𝐸𝑤

𝑔2
𝛿 =

3𝐸𝑤

𝑔2
(
ℎ𝛥

𝑆
) (2-1) 

where E is Young’s modulus, w is the thickness of the web, h is the depth of the 

diaphragm, S is the girder spacing, 𝑔 is the length of the web gap and Δ is the differential 

deflection between adjacent girders, as shown in Figure 2- 1 and Figure 2- 4. Web gap stress is 

not necessarily well predicted by Equation 1 even if differential deflection is known. This is 

because the diaphragm, stiffeners and surrounding structural elements such as bridge deck and 
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tension flange are also involved while transferring differential deflection to the girder web. For 

the web gaps at the bottom portion of the web, near the bottom flange, the out-of-plane 

deflection of the lower flange which depends on the lateral stiffness of the bottom flange can 

accommodate most of the diaphragm rotation and allow the web gap to rotate further. This 

rotation decreases the maximum web gap stress in the web gap by modeling the web gap more 

flexible. 

In 1998 the Minnesota Department of Transportation (Mn/DOT) funded a research study 

to instrument and monitor Bridge #27734 (I94/1694) to determine the stresses in the web gap of 

the bridge which was subjected to distortion induced fatigue (Jajich et al., 2000). It was found 

that obtained web gap stresses from the field measurements were 2 to 2.5 times larger than the 

flange stresses. No clear relation between web gap stresses and the flange stresses was reported.  

They developed a detailed FE model of the web gap region and validated it using field 

measurements. To validate the FE model, they obtained the stress from the model at the same 

location of the mounted strain gauges in the field and compared it with the stress obtained from 

measured strain multiplies by Young’s modulus. They found good agreement between the FE 

results and field measurements. They found that Equation (2-1) predicted much higher maximum 

stresses than the measured one. They recommended using Equation (2-2) to calculate the 

maximum stress in the web gap. In this equation it was assumed that all of the differential 

deflection between girders is transferred into the diaphragm rotation and yields a rotation of θ 

equal to Δ/S. This simple assumption neglects the effect of distortion in the web gap. 

𝜎𝑤𝑔 =
2𝐸𝑤

𝑔
(
𝛥

𝑆
) (2-2) 

 

The terms used in Equation (2-2) are the same as the parameters described for 

Equation (2-1). For the mentioned bridge, this equation gave much more realistic results for 

maximum web gap stress (72MPa) than Equation (2-1) (1021MPa), and correlated well with 

their FE analysis (83MPa) and field measurements (56MPa). This equation was based on field 

data taken from the aforementioned bridge which was a three-span bridge with staggered bent-

plate diaphragms and a skew angle of 60°. The problem with using this estimation is that, this 

equation is suitable for bridges whose geometry and support conditions near a diaphragm 
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connection closely resemble the Bridge #27734 (I94/1694) which had staggered bend-plate 

diaphragms with skewed configuration.  

To overcome this problem, Berglund & Schultz (2001) used a three-dimensional FE 

model of the entire bridge validated with field measurements conducted by Jajich et al. (2000) to 

study the influence of various parameters on the differential deflection of adjacent bridge girders. 

They investigated the effect of girder spacing, angle of skew, main span length, concrete deck 

thickness, adjacent span length and diaphragm depth. It was observed that the maximum value of 

Δ/S mainly depends on skew angle and span length. 

To determine the relevance of Equation (2-2) to other steel multi-girder bridges in the 

Mn/DOT inventory, Severtson et al. (Severtson, Beukema, & Schultz, 2004) instrumented two 

additional bridges (Bridge #27796 which was a five-span bridge and had a 45.5° skew and 

staggered cross-brace diaphragms, and Bridge #62028 which was a non-skew bridge and had 

five spans with no-staggered bent-plate diaphragms) to monitor the distortional fatigue response. 

Again, the stresses and differential deflections found by field study could not be well predicted 

by Equation (2-1), and Equation (2-2). The main reason is that the mode of out-of-plane 

deformation of these bridges was different from that assumed by previous prediction methods. 

They found that the web gap stress was primarily generated by rotation of the top of the web gap, 

θt, and rotation of the bottom of the web gap, θb (Figure 4). With the assumptions of linear beam 

theory, and considering the web gap as a fixed-fixed isotropic beam, the slope deflection 

Equation (2-3) was recommended as an idealized representation of this system. 

 

 

Figure 2- 5: Rotation of Top and Bottom of the Web gap. 
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𝜎𝑤𝑔 =
𝐸𝑤

𝑔
(2𝜃𝑏 + 𝜃𝑡 + 3

𝛿

𝑔
) (2-3) 

 

By creating a FE model of a portion surrounding an instrumented diaphragm of Bridge 

#27796, and normalizing the values θt and θb by Δ/S, Equation (2-3) was simplified to 

Equation (2-4). Values of 1.7 and 0.9, were proposed for the normalized rotations θt / (Δ / S) and 

θb / (Δ / S), respectively. In their FE models, only one parameter was varied at a time. For 

example, to investigate the effect of web gap length, all the other geometrical parameters 

remained constant. Web gap length was varied from 1.7 in to 3.3 in. The web thickness was also 

varied from 0.4 in to 1.7 in. They also investigated three different span lengths (100, 112, and 

124 ft.). To find the relation between 𝛥 and 𝜎𝑤𝑔, they applied various differential deflection to 

the girders and found the maximum web gap while all the geometric parameters remained 

constant. The magnitude of differential deflection was varied between one-half and twice the 

amount measured during truck testing in order to simulate a variety of loading conditions. They 

found that web thickness, w, has the largest influence on web gap stress, while girder spacing, S, 

has the least effect. 

 

𝜎𝑤𝑔 =
3.5𝐸𝑤

𝑔
(
𝛥

𝑆
) (2-4) 

 

As the accuracy of Equation (2-4) relative to field measurements was not significantly 

affected by neglecting the web gap distortion (𝛿), this equation neglected the influence of lateral 

deflection of the web gap, δ. Previously, the neglected web gap deflection was accredited as the 

major cause of the out-of-plane distortion of the web gap (Fisher et al., 1979). The effect of 

cross-braces on differential deflection in addition to bent-plate diaphragms was also investigated. 

Severtson et al. (2004) found that the use of cross-braces significantly reduces maximum 

differential deflection. Therefore, they recommended a modification factor for reducing the 

deflection prediction for bridges with cross-brace diaphragms. 
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Li and Schults (Li & Schultz, 2005), from the same research group, performed FE 

analyses of the aforementioned bridges. The FE results were verified with the field 

measurements. They studied the sensitivity of diaphragm stress response to prototypical 

variations of typical diaphragm and bridge parameters. In their FE study, only one parameter was 

varied at a time to investigate its effect on the maximum web gap stress. They proposed a refined 

calibration of the constant coefficient (C in Equation (2-5)) in the stress formulas proposed by 

Jajich (Jajich et al., 2000) and Severtson (Severtson et al., 2004) for similar bridges 

𝜎𝑤𝑔 = 𝐶
𝐸𝑤

𝑔
(
𝛥

𝑆
) (2-5) 

The magnitude of C is highly sensitive to bridge and web gap geometrical parameters. 

They recommended using average value of 2.25 and 2.75 for C for bridges similar to the Bridge 

#27734 (I94/1694) with bent-plate diaphragms and Bridge #27796 with cross-brace diaphragms, 

respectively. They also studied the effect of lateral deflection of the web gap, δ, in the prediction 

and found that neglecting δ does not significantly reduce the accuracy of the stress prediction 

equation, except for extreme cases of short web gap lengths, very thin and very thick web 

thicknesses. They recommended neglecting δ in the stress prediction equation until a more 

comprehensive investigation of this parameter can be made. Although their web gap stress 

prediction formula was calibrated for some specific bridges, the prediction results are still 

sometimes different from the FE models up to 220%.  

To find the relation between differential deflection and web gap distortion, Li & Schultz 

(2005) applied different differential deflection values. In these models, all the geometrical 

parameters of web gap and the girders remained the same. By increasing the differential 

deflection, it is expected to get higher web gap distortion. Investigating the FE results of the 

work done by Severtson et al. (Severtson et al., 2004) and Li and Schults (Li & Schultz, 2005)
 

showed an opposite trend. Therefore, these results are not reliable to investigate the ability of 

mentioned models for predicting the maximum web gap stress as a linear relation between 

differential deflection and web gap distortion was assumed in these models. Moreover, the web 

gap stress prediction models should be able to predict the results from other research programs as 

well.  
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The magnitude of web gap stress cannot be easily assessed with these simple assumptions as 

several various parameters are affecting this stress. Although these equations are simple to used, 

assuming the beam behavior for a thin plate subjected to a double curvature would lead to totally 

unrealistic results for the stress calculation. Therefore, a closer look and assessment is needed in 

order to resemble the behavior of the web plate in the web gap location. As the web plate has 

very thin wall, it can be considered as shell or a thin plate which goes under the double curvature 

distortion. The theory of plates and shell is studied in order to get a better assessment of the 

behavior of the web plate in the web gap region. The results of this study and the method to 

resemble the stiffness of the web plate are presented in Appendix A. 

 

2.6. Introduction to Dimensional Analysis 

 

As it was mentioned in the previous sections, the magnitude of the stress in the web gap 

detail is influenced by several parameters. The influence of these parameters should be 

considered simultaneously in order to investigate the overall behavior of the detail. These 

parameters are explained in detail in Chapter 5.  

When the response function is unknown and the relations among the parameters are 

complicated, dimensional analysis can be a method to obtain the response function. This method 

has been proven very efficient and reliable in engineering and science fields. The most 

well-known application of the dimensional analysis is in hydraulic engineering area. It was 

utilized in order to drive the Darcy–Weisbach equation which relates the pressure loss, length of 

pipe, friction, to the average velocity of the fluid flow for an incompressible fluid (Darcy 1857).  

In structural engineering this method has also been used occasionally. For instance, 

DiBattista et al. (2002) utilized this method to develop simplified equation to predict the 

behavior of sleeper-supported piping system. The results from this approach predict the results of 

the experimental data as well as the FE results, reliably. The description of the dimensional 

analysis method is presented in Chapter 5.  
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Chapter 3 

 

Finite Element Modeling Techniques and Procedures 

3.1. Experimental Program 

The experiment was conducted at Kansas University (Hartman et al, 2013). A 9.1-m 

(30-ft) long three-girder test bridge was constructed and tested. The girders were spaced at 1.5 m 

and connected with X-type cross frame braces at the two simple support locations and at 

mid-span. A total of 12 test trials were performed with varying load ranges. Static loading was 

applied to the bridge correlated with the upper bound load of 267 kN from the first test trial in 

their physical test sequence. Loading was applied at mid-span over the interior girder and was 

applied at rates varying between 1.0 – 2.0 Hz. For each test trial, data for girders maximum 

deflection, girders lateral deflection, girders bottom flange normal bending stress and uncracked 

and cracked web gap strains as well as the number of cycle for crack initiation and propagation 

were collected.  

 

3.2. Bridge Description 

The dimensions and the detail of the bridge and connections are presented in Figure 3- 1 

and Figure 3- 2. The girders are comprised of a 16 x 279 mm top flange, 6 x 876 mm web, and 

25 x 279 mm bottom flange. All girders were supported on rollers to minimize axial forces with 

a center-to-center span length of 8.7 m between supports. 
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Figure 3- 1: Dimensions of the bridge at cross frames section (Hartman et al (2013)) 

 

Figure 3- 2: Girder span (Section A-A) and load application (Hartman et al (2013)) 

 

3.3. Loading and Instrumentations 

Cyclic loading was applied to the bridge by a MTS 201.70 actuator. A 25-mm thick steel 

plate was also centered on the bridge deck to distribute the applied concentrated force. In the 

static loading test (Trial #1) 267 kN downward load was applied to the middle girder and the 

girders maximum deflection, girders lateral deflection, girders bottom flange normal bending 

stress and uncracked and cracked web gap strains as well as the number of cycle for crack 

initiation and propagation were recorded. 

The strain in the web gap was measured using five different strain gauges which are 6 

mm long. The locations of these strain gauges are shown in Figure 3-3.  

A 

A 
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Figure 3- 3: Location of the strain gauges in the web gap (Hartman et al (2013)) 

 

3.4. Experimental Measurements 

Although the results of several tests are available for this experimental program, most of 

them are for retrofitted web gap details. Therefore only the first trial of these tests would be 

useful for this study. In this trial, a 267 kN concentrated force was applied and the corresponding 

measurements were reported. Under this load, the 2 mm and 0.8 mm girder deflections are 

measured for the mid spans of middle girder and the side girders, respectively. These deflections 

lead to 1.2 mm differential deflection for the two adjacent girders. The mid span normal bending 

stress for the bottom flanges are also calculated based on the measured strains. For the middle 

girders the normal bending stress at the bottom flange is found to be equal to 29.6 MPa and for 

the side girders are 8.3 MPa and 9.7 MPa for the south side girder and the north side girder 

respectively. The girders deflection and the calculated stress are summarized in  

Table 3- 1. Strain in the web gaps were also measured for both the north and the south 

girders and presented in this table. 
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Table 3- 1: Experimental measurement of the girders for the deflections, web gap and bottom flange stresses 
Girder Δi (mm) σn (MPa) ɛ3, σ3 (µɛ, MPa) ɛ4, σ4 (µɛ, MPa) ɛ5, σ5 (µɛ, MPa) 

North 0.8 9.7 -705 285 352 

Center 2.0 29.6 N/A N/A N/A 

South 0.8 8.3 -839 522 556 

 

where Δi is the maximum deflection for the corresponding girder, in millimetres, σn is the 

girder maximum bottom flange stress, in MPa, and ɛ3 , ɛ4  , and ɛ5 are the measured vertical 

strains in the web gap at strain gauge location of 3, 4, and 5 according to Figure 3-3. These 

measurements are for 267 kN applied load. 

 

3.5. Finite Element Model of The Bridge 

ABAQUS 6.13 is used to create the 3D finite element model of the three-girder bridge 

with cross frame braces. As shell elements are much more computationally efficient in many 

cases then solid elements would be and the model is a detailed model with more than hundred 

parts including girders, connectors, stiffeners, etc., it was decided to use shell elements. This 

model is used as a global model for a more refined model of web gap called sub-model to 

investigate the stress in the detail more accurately and efficiently. 

4-node doubly curved thin shell element (S4R) is used to mesh different parts of the 

model using reduced integration, hourglass control, and finite membrane strains.  

In order to represent the real material properties in the model, cyclic material properties 

used in this model. The steel strain-stress relationship is best described by Ramberg-Osgood 

equation presented in Equation (3-1). 

 

𝜀 =
𝜎

𝐸
+ (

𝜎

𝐾′
)1/𝑛′

  
(3-1) 
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where, 𝐸 is the Young’s modules, 𝐾′is the cyclic strength coefficient, and 𝑛′ is the cyclic 

strain hardening exponent which are obtained from an experimental program at University of 

Alberta (Wang .Y, 2010) and presented in Table 3- 2. 

 

Table 3- 2: Experimental results of cyclic material properties used in finite element models (Wang .Y (2010)). 

Parameter 𝐸 (GPa) 𝐾′ (MPa) 𝑛′
 

Value 213 727 0.150 

 

The plastic strain used in the plastic material properties in finite element models are 

calculated based on Equation (3-2). In this equation, ε, is defined in Equation (3-1). 

 

𝜀𝑝𝑙 = 𝜀 −
𝜎

𝐸
  (3-2) 

 

Using the mentioned cyclic material constants the Stress-Strain curves are obtained based 

on both elastic strain and plastic strain. These relations are graphed in Figure 3-4.  

 

Figure 3- 4: Steel Strain-Stress Relationship Used in FEA. 
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The steel material used in the models has Young’s modules of 200 GPa and Poisson’s 

ratio of 0.3. The girders are simply supported at both ends of the bottom flanges. The bridge deck 

is also modeled as homogeneous shells with the concrete material with Young’s modules of 

25 GPa and Poisson’s ratio of 0.16. It was decided to use shell element for the bridge deck 

because the thickness to both sides length ration of the deck were less than 5% and using shell 

element does not reduce the accuracy of the results. There was no crack reported for the concrete 

slab and the 267 kN load is not high enough to cause any damage to the concrete slab. Therefore, 

the elastic material behaviour can represent the real concrete behaviour in this model. 

The top and bottom flanges are rigidly tied to the web plate to create the girders. Surface 

to surface tie method is also used to connect the stiffeners to web and bottom flanges, gusset 

plates to stiffeners, and cross frame members to gusset plates. The same method is used to model 

the slab connections to top surfaces of the top flanges.  

Piers are also modeled by simply supported boundary condition which restricts the 

displacements of the ends of bottom flanges in perpendicular directions to girders longitudinal 

direction. The concentrated load is applied to the center of the slab. To distribute the load and 

represent the load actuator, the 267 kN load is applied to a rigid plate which is centered and 

connected to the slab. This also helps to faster convergence in the model as it reduces the very 

high stress concentration under the load. 

General static procedure and direct solving method is used to analyze the model. Large 

displacements and deformations are also taken into account in the model analysis.  

In this model, welds are not modeled for connecting the details as the main purpose was 

to use the results of the model for the sub-model. This saves a significant computational time in 

the model.  In contrast, the detailed model including the welds with a refined mesh is used for the 

sub-model to investigate the stress in the web gap more accurately. There are several methods to 

model the welds in the detail which are investigated and compared in the following sections. 

Some of these methods are used only for shell elements. 

The finite element model of the bridge is shown in Figure 3- 5. This model is named 

Global Model and will be referred to the same name for the rest of this chapter. 
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Figure 3- 5: Finite element model of the three girder steel bridge 

 

 

3.6. Verification of The Bridge Finite Element Model 

After applying 267 kN concentrated force to the center of the bridge, the girders 

deflection are calculated as well as the maximum normal bending stress in each bottom flange of 

the girders. The results of the finite element model and comparison of them with the 

experimental measurements are presented in Table 3- 3. 

Table 3- 3: Finite element results and experimental measurement of the girders for the deflections and bottom 

flange stresses 
Girder Δ Experiment (mm)  Δ FEA (mm) σ Experiment (MPa) σ FEA (MPa) 

North 0.8 0.77 9.7 9 

Center 2.0 1.99 29.6 30 

South 0.8 0.78 8.3 9 

 

The results of the finite element analysis are also presented in Figure 3- 6 and Figure 3- 7. 

The vertical deformation is scaled 100 timed.  
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Figure 3- 6: Scaled vertical deflection of the bridge under 267kN load 

 

 

Figure 3- 7: Scaled vertical deflection of the bridge under 267kN load at the middle cross frame section 
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3.7. Finite Element Model of The Web Gap 

To investigate the stress in the web gap detail a model with fine mesh is used in which 

more details including the welds are also modeled to provide more accurate results.  In order to 

save computational time, a technique called “Sub-Modeling” is used for the detail. To use this 

method, it is needed to have a global model to provide the initial boundary conditions for the 

sub-model. The global model for the web gap sub-model is the verified full scale finite element 

model of the three girders bridge. Details of the location, mesh size, as well as the boundary 

condition for the sub-model is presented in the following section. 

 

3.7.1. Sub-Model of The Three Girders Bridge 

The sub-model of the web gap detail includes a portion of web plate, stiffener, and top 

flange as it is shown in Figure 3- 8.  This detail is found in both sides of the bridge for the north 

and south girders.  

 

Figure 3- 8: Location of the web gap model (sub-model) and different components of the model  

The gusset plate and the cross 

brace member are removed 

from the shown section. 
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Boundary condition for the web gap sub-model is applied by the interface nodes between 

global model and the sub-model itself. Interface nodes are the nodes from which the sub-model 

is detached from the global model. The displacement and the rotation of the interface nodes are 

extracted from the global model and are applied to the sub-model as an initial loading condition. 

This boundary condition is shown in Figure 3- 9. The density of these nodes depends on the 

elements size of each component. Both displacements and rotational degrees of freedom for each 

interface node in the sub-model are tied to the nodes in the global model. 

 

 

Figure 3- 9: Location of interface nodes connecting the sub-model to the global model. 

 

In the sub-model there are only two fillet welds connecting the components together. One 

welds the stiffener to the web plate and the other one connects the web plate to top flange. The 

fillet welds have 5 mm weld throat thickness. These welds are shown in Figure 3- 10. There are 

several techniques to model the weld in finite element models which are explained and compared 

in the following section. Then according to this investigation, the most suitable technique will be 

selected and used to model the weld in the sub-model. 
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Figure 3- 10: Fillet welds in the web gap location. Left figure shows the cross section of the girder at the web gap. 

 

3.7.2. Weld Modeling Techniques 

In welded details in steel structures under cyclic loading cracks most likely initiate at 

weld toes which are highly stressed zones. At these critical points which are named hotspots, it is 

difficult to determine the local stress states and standard fatigue criteria are very difficult to 

apply for fatigue life prediction. Therefore, the stress state in these regions should be well 

defined using appropriate finite element models. To create these models, the details under 

investigation should be modeled as accurate and realistic as possible. This includes the welds 

geometry as well. Depends on the method used, sometimes the geometry of the welds are 

modeled and sometimes only the stiffness or the effect of them in the detail is modeled. 

If solid elements are used in the model, the welds are usually modelled since the 

geometry and stiffness of the welds can be easily modelled using solid elements. In contrast, in 

shell elements models, it is not easy to model the welds and it requires some modelling effort in 

which the stress value at welded regions can be dependent on the weld modeling technique. In 

simple shell element models in which the stress distribution is not significantly influenced by the 

Transverse 
Stiffener 
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local stiffness of the joint, the welds do not need to be modeled. In multi girder steel bridges, the 

stresses in the web gap details are affected by bending stress and because of stress concentration 

effects emanating from nonlinear deformation (out of plane double curvature deformation) the 

welds should be modeled and the stiffness of the weld should be taken into account. There are 

several modeling techniques to model the welds in the details and are presented in the following. 

 

3.7.2.1. Rigid Links Method 

This technique was proposed by Fayard, Bignonnet, & Van (1996) to find hot spot stress 

at the weld toes. It is used when using shell elements in the finite element model and it only 

models the local rigidity of the weld joints. Using this technique, weld toe stress is directly found 

from element’s centers of gravity instead of the surface stress extrapolation which is the most 

common way to calculate the stress. This method is well described in Figure 3- 11 for single-side 

weld modeling. In this figure, the plates are also shown for better explanation as well as the shell 

elements (the bold lines with dots representing the elements nodes). 

 

Figure 3- 11: Single-side weld modelling with rigid links  Proposed by Fayard et al. (1996), (Aygül, 2012) 
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The lengths of adjacent shell elements, E1 and E2, should be selected correctly to 

represent the location of weld toes. The common nodes of these elements are used to link each 

element by rigid links. These links are shown by the dark pink color lines in the figure. 

 

3.7.2.2. Oblique Shell Elements Method 

In this method which is proposed by Niemi (1995), the weld joint is modeled using 

oblique shell elements. These elements are able to represent both the stiffness and geometry of 

the welds. As it is shown in Figure 3- 12, the length of inclined shell elements should be chosen 

in a way to represent the weld toes locations. The thickness of oblique shell elements is also 

equal to the throat thickness of welds. 

 

 

Figure 3- 12: Weld modeling using oblique shell elements proposed by Niemi (1995), (Aygül, 2012) 
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3.7.2.3. Increased Thickness Method 

Another method to model weld in models with shell elements is using the shell elements 

with variable thickness in the intersection region of welded joints. In this method the geometry of 

the weld is not modeled and only the stiffness is taken in to the consideration. Depending on the 

mesh size in the weld location, the thickness can gradually (linearly) increase from “t” to “t+a” 

where, t, is the plate thickness and, a, is the weld throat thickness. These dimensions and the 

method are described by Niemi (1995) and Figure 3- 13. 

 

Figure 3- 13: Modelling welds using shell elements with increased thickness (Aygül, 2012) 

 

3.7.2.4. Solid Elements Method 

Solid elements are the most accurate and simplest elements to model both shell and solid 

bodies. Using this method, both the dimension and stiffness of the weld is modeled and detailed 

geometry can be represented by this method. The only issue with this type of elements is the 

computational cost of it in comparison with shell elements. 
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To optimize the model, it is also common practice to use a combination of shell and solid 

elements in the model but this technique needs some extra considerations. This is because 

connecting these elements can lead to some numerical error in the model as the shell elements 

have 5 degree of freedom and the solid elements have only 3 degree of freedom in each node. 

This can cause some convergence issues in the model. There are some techniques to connect 

shell elements to solid elements in numerical models. Instead of connecting the connecting shell 

directly to the solid surface, it can be connected to another shell surface perpendicular to the 

connecting shell surface. The width of this shell surface is equal to the thickness of the 

connecting surface and the length of it is the same as the length of the connecting surface and the 

solid part. The thickness of this surface can be chosen in a way to provide a relatively rigid 

surface to transfer the bending moments and the rotations to the solid elements. There is another 

method called Multi Point Constraint (MPC). The MPC equations are needed to be generated to 

transfer rotation from shell elements to solid elements which involve time consuming and work 

effort. 

 

3.7.2.5. Comparing the weld modeling techniques 

In a study conducted by Akhlaghi (2009), the mentioned weld modeling techniques are 

investigated and the accuracy of the weld toe stress computing are compared to the results from 

the experiments performed to evaluate the fatigue resistance of a bridge detail. In this study the 

structural hot spot stress (SHSS) approach was used to calculate the stress in the weld toe. The 

weld was modeled using 3 different modeling techniques: solid elements (Model 1), oblique 

shell elements with a thickness equal to weld throat thickness (Model 2) in which the geometry 

and stiffness of the weld were modeled, and shell elements with an increasing thickness 

(Model 3). In addition, a shell model was also investigated in which the weld were not modeled 

at all and the shell elements were tied together (Model 4). It was found that the model with solid 

elements computes the stress in the weld toe more accurately. The model with shell elements 

with an increasing thickness also provided very acceptable results. In contrast, the other two 

models, the model without any weld and the one with oblique shell elements, had unacceptable 

and unrealistic stress in the weld toe. The results of the hot spot stress calculated using these 

models are presented in Table 3- 4. 
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Table 3- 4: Comparison of computed and measured structural hot spot stresses (Akhlaghi, 2009) 

Model 

Hot Spot #1 Hot Spot #2 

SHSS 

(MPa) 

Ratio of SHSS 

value to solid 

element model  

Ratio of SHSS 

value to 

measurement  

SHSS 

(MPa) 

Ratio of SHSS 

value to solid 

element model  

Ratio of SHSS 

value to 

measurement  
Solid Elements 

(Model 1) 
230  1.00  1.14  268  1.00  1.43  

Oblique Shell 

Elements (Model 2) 
126  0.55  0.62  72  0.27  0.38  

Shell Elements with 

Varying Thickness 

(Model 3) 

158  0.69  0.78  223  0.83  1.19  

Shell Elements with 

No Weld (Model 4) 
873  3.80  4.32  848  3.16  4.51  

Measurement 202 0.89 1.00 188 0.70 1.00 

 

Hot Spot #1 and Hot Spot #2 are for the stresses at two different weld toe locations. As it 

is shown in the table, the model with shell elements with an increasing thickness to model the 

weld (Model 3) predicts the results very well. Therefore, it is decided to use this technique in the 

sub-model. 

Therefore, using shell elements with an increasing thickness to model the weld, the web 

gap geometry is as shown in Figure 3-14. The red dashed lines symbolically represent the 

thickness of the web plate at different sections. The web gap is divided to four sections. The top 

section which is 8 mm long has thickness of 279 mm which is as thick as the flange width. The 

second section from top which is 5 mm long (the size of the weld throat thickness) has thickness 

of 11 mm. The longest section which is the web plate itself has the thickness of 6 mm and the 

last section with 5 mm length has thickness of 8.5 mm which is the thickness of the summation 

of web plate thickness and half of weld throat thickness. Half of weld throat thickness is added to 

the web plate as there is only one weld at the detail. The weld has a triangular cross section and 

an average of the weld throat thickness is taken in to consideration according to Figure 3-13. In 

this figure there are two welds at the joint and the thickness is increased by two times of half of 

weld throat thickness.  
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Figure 3- 14: Different thicknesses of the web plate shell elements at the web gap to represent welds 

 

3.7.3. Sub-Model Finite Element Results  

After applying the load boundary condition to the sub-model, the vertical stress in the 

web gab, deformation of the web plate is calculated and compared with the experimental 

measurements (Table 3-1). The stress obtained from FE analysis at the corresponding strain 

gauges location is the average stress calculated from the stress in the elements at the location of 

the strain gauges. For instance to obtain the strain in the web gap at location of strain gauges 

number 3, 4, and 5 the average of strains for a 6 mm long elements strip is taken in to account. 

The results are presented in Table 3-6. The calculated stresses are based on the measured strain 

in the experimental program. The strain for the specific location is simply multiplied by steel 

Young’s Modulus (200GPa). 
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Table 3- 5: Experimental measured stress and analytically calculated stress in the web gap 

 Measured Strain, ɛ  (µɛ) Calculated Stress, σ.E (MPa) Vertical Stress From FEA 

Web Gap North Girder South Girder North Girder South Girder North and South 

Strain Gauge 3 -705 -839 141 168 162 

Strain Gauge 4 285 522 57 105 135 

Strain Gauge 5 352 556 70 112 134 

 

3.7.3.1. Sub-Model Mesh sensitivity Analysis 

To study the effect of the mesh size and density on the stress calculation in the web gap, a 

mesh sensitivity analysis or a mesh convergence study is performed on the sub-model. As the 

model is a small finite element model and very efficient in terms of computational time cost, the 

mesh size is uniform in every component for mesh sizes as small as 0.5 mm. Therefore, the 

effect of having a coarse mesh in these models is omitted from the results. For smaller mesh 

density (0.2 and 0.1 mm) the web gap itself is meshed with fine mesh and the rest of the local 

model is meshed using 0.5 mm mesh size. The result of mesh sensitivity analysis is presented in 

Figure 3- 15 to Figure 3- 16. 

 

Figure 3- 15: Vertical stress vs. distance from stiffener weld toe for various mesh sizes 
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As shown in Figure 3- 15 the maximum vertical stress in the web gap at the weld toe 

highly depends on mesh size. The smaller the mesh size and the denser it is, the higher the 

calculated vertical stress. This maximum vertical stress is located at the stiffener weld toe and is 

plotted in Figure 3- 16. 

 

 

Figure 3- 16: Maximum Vertical Stress at Weld Toe vs. Mesh Size 

 

Another method to compare the stress at weld toe is Hot Spot Stress (HSS). This is 

recommended by BSI standards (BSI, 2014). According to this guideline, The HSS can be 

obtained by Equation (3-3). It recommends that for stress analysis based on measured strains or 

FEA of a relatively fine mesh model, quadratic extrapolation from stresses on the plate edge at 

distances 4 mm, 8 mm and 12 mm from the weld toe should be used. 

 

𝐻𝑆𝑆 = 3𝜎4𝑚𝑚 − 3𝜎8𝑚𝑚 + 𝜎12𝑚𝑚  (3-3) 

 

Using this equation, the HSS for different mesh sizes are calculated and compared in 

Figure 3- 17, and Table 3- 6. 
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Table 3- 6: HSS calculation for different mesh sizes using Equation (3-3) 

Mesh Size (mm) 𝝈𝟒𝒎𝒎 (MPa) 𝝈𝟖𝒎𝒎 (MPa) 𝝈𝟏𝟐𝒎𝒎 (MPa) HSS (MPa) 

4 280 159 59 422 

2 265 148 53 404 

1 288 163 55 430 

0.5 295 169 56 434 

0.2 297 169 52 436 

 

 

Figure 3- 17: HSS at stiffener weld toe for different mesh sizes 

 

Although stress distribution pattern changes slightly at the weld toe by varying the mesh 

size and density, the vertical stress along the web gap 2 mm away from the weld toe varies with 

the same pattern for mesh sizes smaller than 2 mm. The difference between these stress 

distributions while using different mesh sizes and densities is presented in Figure 3- 18 and 

Figure 3- 19 for 0.2 mm and 1.0 mm mesh sizes. 
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Figure 3- 18: Stress distribution in the web gap using 0.2 mm mesh size 

 

 

 

Figure 3- 19: Stress distribution in the web gap using 1 mm mesh size 
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3.7.3.2. Vertical Stress Distribution in The Web Gap 

In web gap details, maximum stress occurs in vertical direction and the Von-Mises and 

maximum principal stress are mostly governed by the vertical stress. In addition, the approach 

used to calculate the vertical stress using HSS methods is already developed in the literature. 

Therefore, it was decided to use vertical stress as the representative of the stress state in the detail 

in this study. 

The distribution of the vertical stress in the web gap is also presented in Figure 3-20. As 

it is shown in this figure, the maximum tension stress is located in the weld toe at the transverse 

stiffener and the web plate connection weld as it was originally expected. The maximum 

compression stress is also located at the weld toe near the weld connecting the web plate to the 

top flange. 

 

Figure 3- 20: Web gap vertical stress distribution  

 

To investigate the effect of the welds in the web gap detail, another sub-model is also 

created for the web gap without any weld modeled. The vertical stress along the path shown in 

Figure 3- 21 is monitored for both sub models (with and without weld modeled). The path is 

defined along the web gap and is started from top flange center line to transverse stiffener. 
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Figure 3- 21: The path used in the web gap to monitor the variation of vertical stress in web plate 

 

In this chapter, the FE modeling procedure and different weld modeling technique were 

investigated to obtain a reliable and accurate FE model for further study. According to the 

findings from this chapter, it was decided to use shell elements with an increasing thickness to 

model the weld at the web gap detail in the following chapters. The cyclic material property is 

also used to define the material properties in FE models. 1 mm mesh size at the web gap seems 

to provide accurate results and there is no need to have finer mesh in the detail as it does not 

influence the results. Therefore, 1 mm local mesh and smoothly growing global mesh is used in 

the web gaps for both models used in parametric studies and the design of experiments. The path 

shown in Figure 3-20 is used to calculate HSS for the models in the following chapters by 

obtaining the stresses at 4, 8, and 12 mm away from the weld toe at the transverse stiffener to 

web connection.  
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Chapter 4 

 

Fatigue Assessment of Web Gap Detail 

 

4.1. Fatigue Life Assessment Methods 

There are generally two methods to assess fatigue life of a detail. First one is using the 

conventional S-N curves method which is mostly based on experimental test. The second method 

is using fracture mechanics approach. These methods have some limitations and assumptions of 

which the assessor must be aware before utilizing them. These methods are explained in the 

following sections and the application of them to assess the fatigue life of web gap details in 

multi-girder steel bridge is discussed. 

4.1.1. S-N Curve  

For the details subjected to stress-induced (load-induced) fatigue loading, the stress range 

is a known factor. Therefore, by means of simple approaches such as S-N fatigue life prediction 

curves, the details can be assessed and the remaining life can be predicted. In this method, first of 

all, the magnitude of the stress in the web gap should be obtained in order to assess the fatigue 

life of the detail. Then by using the appropriate and already developed S-N curve, the life of the 

detail can be estimated.  

In S-N curves graphs, the X-axis is the logarithmic scale of cycles to failure (N) and the 

Y-axis is the magnitude of applied cyclic stress ranges (S). Different steel design codes have 

developed their own S-N curves which are somehow very similar to each other. The differences 

between theses curves are the number of categories, the slope of the graphs, and the constant 

amplitude fatigue limit (CAFL) for each graph. CAFL is the horizontal portions of the S− N 

curves and it means if the stress ranges applied to a detail are lower than this value for the 

specific detail, it does not taken into account for fatigue life calculation and if all the applied 

stress ranges are less than the CAFL for the detail, the fatigue life is infinite for the detail. 
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Canadian Highway Bridge Design Code CAN/CSA S6-11 (CSA-S6, 2014) provides S-N 

curves for very common details and categorizes them from “A” to “E”. Category A represents 

the highest fatigue strengths and category E represents the lowest fatigue strengths.  

Although the S-N curves in Canadian Highway Bridge Design Code are very similar to 

S-N curves used in AASHTO, there are some differences as well. For example, fatigue curves in 

AASHTO have a constant amplitude fatigue limit for each fatigue category which can lead to an 

overestimation of the fatigue life prediction when the majority of the applied stress ranges are 

below the CAFL. In contrast, the Canadian Highway Bridge Design Code does not have these 

constant lines for its detail categories. Instead, each graph has two portions, one with a slope of 

m = 3 used above the CAFL which continuous with the second portion with a slope of m = 5 

which is used below the CAFL. Using these curves includes the effect of small applied stress 

ranges into fatigue life calculation. The S-N curves in Canadian Highway Bridge Design Code 

and AASHTO are presented in Figure 4- 1 and Figure 4- 2, respectively. In Figure 4- 1, the 

dashed line represents the CAFL for each category and only A, C, D, E1 categories are graphed.  

These curves are obtained from a regression analysis of several comprehensive full-scale 

tests and graphed as the mean minus two standard deviations from the mean. There are some 

shortcomings according to Josi & Grondin (2010). For instance, the failure criteria such as the 

number of cycles to first detection of a crack, specific length of a crack, multiple detection of 

multiple cracks, etc. is not clearly defined. Crack initiation and propagation lives are not 

distinguished for a detail in the corresponding S-N curves. Therefore, the remaining life of 

details with an existing crack is vaguely predictable and S-N curves approach only provides 

reasonable approximation for new structures for the similar details as the ones used to develop 

the fatigue curves. The current slope used for S-N curves (m = 3) is not applicable to all details 

as it is found that some details follow smaller slopes than 3 (Stephens, Fatemi, Stephens, & 

Fuchs, 2000). In addition, assuming straight lines even for log-log plot is not a realistic trend for 

fatigue behavior of the details. In addition, the suitable S-N fatigue curve is not yet developed for 

the details prone to distortion induced fatigue too and the engineers are still left without guidance 

when conducting an evaluation of an existing bridge with distortion induced fatigue. For the 

details subjected to distortion induced fatigue, current S-N fatigue curves cannot be used as the 
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experimental test conducted to obtain these curves as they do not represent the details prone to 

distortion induced fatigue . 

 

Figure 4- 1: S-N curves according to Canadian Highway Bridge Design Code (CSA-S6, 2014) 

 

Figure 4- 2: S-N curves according to AASHTO (AASHTO 2014) 
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4.1.2. Fracture Mechanics 

 

Fracture mechanics is a branch of continuum mechanics and according to Harris (1995), 

Fracture Mechanics as an engineering discipline which quantifies the conditions under which a 

structure, or part thereof, fails due to the growth of a crack. This approach does not need to take 

into account the prior history of the investigated component. Therefore, it is an appropriate but 

sometimes expensive and challenging tool to investigate the current condition of a detail and 

predict the remaining life it. Fracture mechanics accounts for the crack initiation and propagation 

stages, separately which makes it useful for assessing the new structures as well to find the life of 

the detail prior to formation of any crack. The methods to obtain the crack initiation life and 

propagation life are presented in the following sections. 

 

4.1.2.1. Crack Initiation Life 

 

Crack initiation life can be determined using empirical correlation approaches such as 

stress-based approach, strain-based approach, and energy-based approach. In high stress low 

cycle fatigue problem such as web gap detail under distortion induced cyclic load, the initiation 

life of the detail is not a main concern as it does not take numerous cycles to form and grow a 

crack to a visible size. Therefore, Just a brief review of the crack initiation life calculation is 

brought in this section. 

 Although energy-based approach is the most accurate and reliable method for details 

with complex stress and strain fields, it requires more complex computations and is very time 

consuming. For welded details which have localized high stresses and drastic changes in stress 

fields, According to Chen, Grondin, & Driver (2005), the strain-based method provides more 

accurate results than the stress-based method. Therefore, it is decided to utilize strain-based 

method to calculate the crack initiation life of web gap detail in steel multi-girder bridges. 
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Generally strain-based method uses the measured strain in the detail and by knowing the 

fatigue material properties, calculates the crack initiation life. According to                        

Stephens et al. (2000) strain-based method is a very suitable method for low cycle fatigue of 

ductile materials and low to high cycle fatigue where small plastic strains exist. Based on the 

strain-based method, crack initiation life can be calculated using Equation (4-1). 

 

𝛥ɛ

2
=  

(𝜎′
𝑓)

2

𝜎𝑚𝑎𝑥𝐸
(𝑁𝑖)2𝑏 +

𝜎′
𝑓ɛ′

𝑓

𝜎𝑚𝑎𝑥
(𝑁𝑖)𝑏+𝑐

  (4-1) 

 

where 
𝛥ɛ

2
 is the strain amplitude (

ɛ𝑚𝑎𝑥−ɛ𝑚𝑖𝑛

2
) in the detail, 𝜎𝑚𝑎𝑥 is the maximum local 

stress accounting for plasticity, 𝜎′
𝑓 is fatigue strength coefficient, ɛ′

𝑓 is fatigue ductility 

coefficient, 𝑏 is fatigue strength exponent, 𝑐 is fatigue ductility exponent, and finally 𝑁𝑖 is the 

number of initiation cycles. 

The crack in web gap detail initiates either in the weld body or at the weld toe where the 

transverse stiffener is connected to the web plate (Fisher, 1978). Some cracks in the web gap 

detail are also reported in the literature located at the weld toe near the tension flange but the 

crack at transverse stiffener weld toe location is almost inevitable in web gap details prone to 

distortion induced fatigue (Fisher, 1978). 

In order to use Equation (4-1) the proper material properties for the steel should be 

obtained. The material properties used in this study are for weld metal obtained in an 

experimental program conducted at University of Alberta (Josi & Grondin, 2010) and presented 

in Table 4- 1.  

Table 4- 1: Crack Initiation material properties (Josi & Grondin, 2010) 

Crack Initiation Parameters 

𝜎′
𝑓 630 MPa 

ɛ′
𝑓 0.34 

𝑏 -0.059 

𝑐 -0.63 
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4.1.2.2. Crack Propagation Life 

 

There are several parameters defined as the fracture criteria such as Energy release rate 

parameter (G), crack-tip-opening displacement (CTOD), J-Integral, and stress intensity factor 

(K). J-Integral and stress intensity factor (K) are the most common parameters as can be obtained 

using finite element analysis. In this section these parameters are briefly explained. 

4.1.2.2.1.  Crack-Tip-Opening Displacement (CTOD) 

 Crack-Tip-Opening Displacement (CTOD) is an empirical parameter and can be found 

by performing experimental tests. In order to find this parameter, the magnitude of the crack tip 

should be measured. It is almost impractical for structural tests with limited equipment to 

measure the actual crack tip itself. To measure the crack tip opening, some test procedures are 

developed. The standard test to find CTOD is performed by three-point bending on a single-

edge-notched specimen. These tests are usually done on materials with plastic deformation 

before the failure. The plastic deformation of the material at the crack tip allows the tip of a 

crack to stretch and open for measurements. The specimen has visible crack in the middle where 

bending moment and deformation are maximums. When the load is being applied, the crack tip 

plastically deforms until a critical load is reached. The magnitude of the load in which the 

fracture occurs and the opening of the crack mouth are recorded. Knowing the crack length and 

the dimensions of the specimen, and by assuming that the specimen halves are rigid and rotate 

about a hinge point, the crack tip opening can be calculated. Moreover, by monitoring the 

magnitude of the applied load and the crack tip opening, one can realize if the specimen is 

fractured in a brittle or in ductile manner. 
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4.1.2.2.2. J-Integral Approach 

Any system in thermodynamic equilibrium tends to maintain its energy equilibrium. If 

under a certain condition this energy equilibrium changes or is disrupted, the system retains its 

energy equilibrium by releasing the excessive energy and decreasing the energy level. In the 

state of non-equilibrium, a crack can occur and propagate to release the excessive energy and to 

regain the equilibrium state. Therefore, the critical conditions for fracture can be defined as the 

point where crack growth occurs under equilibrium conditions, with no net change in total 

energy  (Anderson, 2005). 

As it was discussed previously, there are basically two types of materials in terms of 

fractural behavior; brittle and ductile. This is based on the amount of energy that the material 

needs to develop a crack. For example materials such as glass do not need much energy to grow 

a crack when the crack is initiated in the system. The energy stored in the body of material with 

brittle fracture behavior is a function of two independent variables: the displacement of the load, 

and the area of the crack. Linear elastic fracture mechanics (LEFM) theory can be applied and 

utilized for materials with brittle fracture behavior. This is because the material still behaves in 

an elastic manner even though it is in plastic phase very close to the crack tip location. 

Therefore, fracture analysis of these materials can be fairly simple. On the other hand, for the 

material with ductile behavior, it is needed to consider the plasticity theory. This makes the 

calculation and fracture analysis of the crack challenging. To overcome this issue and as an 

alternative approach for performing the fracture analysis for ductile materials, the J-Integral 

energy approach is widely used.  

The J integral is a line integral (path-independent) around the crack tip and mostly used 

in problems with large plastic zone around the crack tip. This is relatively large compared to 

dimensions of specimen. When the crack grows, J-Integral represents the rate of change of the 

net potential energy which is a measure of singularity strength at the crack tip.  

In the J-Integral approach, crack grows when the energy at the crack location exceeds a 

certain amount known as the critical energy. The magnitude of the critical energy depends on the 

material properties. The energy method was first introduced by Griffith (1921). He basically 

proposed an energy-based failure criterion and compared the work required to break atomic 
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bonds to the strain energy released as a crack grows. Griffith performed experimental tests on 

glass and his theorem provides excellent agreement with experimental data for brittle materials 

but not for ductile material such as steel. His method predicts an infinite magnitude for stress at 

crack tip when linear elastic material property is used. In reality, material at the crack tip goes 

into a plastic phase before crack grows. Therefore, plasticity around the crack tip must be 

considered in these materials. There are mainly two assumptions for Griffith energy balance 

approach:  

1. Work for the formation of crack must be done against the cohesive forces of the 

molecules on either side of the crack; 

2. If the crack opening is greater than a very small distance called the “radius of 

molecular action”, the energy per unit area is a constant of material, called its surface 

tension. 

This is all about utilizing the concept of work and energy. Work which is a mechanical 

form of energy has a physical definition. The work is calculated by multiplying the force by the 

amount of movement of an object in the direction of the applied force. As the magnitude of the 

force and the displacement can vary during the load application, the amount of work is calculated 

using Equation (4-2). 

 

𝑊 = ∫ 𝐹. 𝑑𝑥  (4-2) 

 

where 𝑊, is the total work done on the object, 𝐹, is the magnitude of the force, and 𝑑𝑥, is 

the instantaneous displacement of the force. This equation can be represented in terms of stress 

and strain simply by dividing and multiplying the right hand side of the equation by the volume 

of the object. Equation (4-3) presents the work in terms of stress and strain. 

𝑊 = 𝑉 ∫ 𝜎. 𝑑ɛ  (4-3) 

  

𝜎 = 𝑓(ɛ)  (4-4) 
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where, 𝜎 is the stress which is a function of strain as shown in Equation (4-4), and ɛ, is 

the corresponding strain in the system. 

As strain and stress are used in this equation, the work calculated in Equation (4-3) is 

equal to strain energy, 𝑈 which is presented in Equation (4-5). 

 

𝑊 = 𝑈 = 𝑉 ∫ 𝜎. 𝑑ɛ  (4-5) 

 

The integral in Equation (4-5) is called strain energy density which is defined as strain 

energy per unit volume and is represented in Equation (4-6). 

 

𝑊′ = 𝑈′ = ∫ 𝜎. 𝑑ɛ (4-6) 

 

𝑊 = 𝑈 = 𝑈′ × 𝑉 (4-7) 

 

where, 𝑈′ is strain energy density and for linear elastic material in uniaxial tension is 

calculated using Equation (4-7). Figure 4- 3 graphically represents the calculation of 𝑈′, for 

linear elastic material. 

 

𝑈′ =
1

2
𝐸ɛ2 (4-8) 

 

To calculate the strain energy, Equation (4-7) can be simply substituted in Equation (4-8). 
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Figure 4- 3: Strain Energy Density Calculation for Linear Elastic Material 

 

In order for a crack to propagate to a certain length, 𝑎, the atomic bonds should be broken 

along the crack length. The amount of work needed for the crack propagation to length of 𝑎 is 

equal to the energy required to break the atomic bonds along the crack length which can be 

calculated using Equation (4-9). 

 

𝐸𝑏𝑜𝑛𝑑 = 2𝛾𝑠𝑎𝐵 (4-9) 

 

where 𝛾𝑠, is  the energy required to break atomic bonds per unit surface area, 𝑎, is the crack 

length, and 𝐵, is the crack width or the member thickness in case the crack is a complete through 

thickness crack. 

Griffith defined a failure criterion in which the elastic energy is related to the atomic bond 

energy. This relation is shown in Equation (4-10). 
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𝜎𝑓 = √
𝐺𝑐𝐸

𝜋𝑎
 (4-10) 

 

where 𝜎𝑓, is the remote stress at failure for the crack with length of "𝑎", 𝐸, is the material 

modulus of elasticity (Young’s modulus), and 𝐺𝑐, is the energy release rate which is defined as 

the magnitude of energy required to break atomic bonds per unit surface area (𝛾𝑠) multiplied by 

two which is shown in the following equation: 

 

𝐺𝑐 = 2 × 𝛾
𝑠
  (4-11) 

 

Critical energy release rate is a material property which is independent of the applied 

loads and the geometry of the body. As soon as the energy release rate in the material exceeds 

critical energy release rate, the crack propagates. Energy release rate is obtained experimentally 

and is defined in Equation (4-12). 

 

𝐺𝑐 = −
𝜕𝑈(𝛥, 𝐴)

𝜕𝐴
 (4-12) 

 

where 𝑈, is the potential elastic energy in the body available for crack growth, and 𝐴, is 

the crack area. Elastic material behavior is the main assumption to find 𝐺.  

Using the energy release rate parameter, the failure load in which the crack grows can be 

obtained. This parameter is only valid when LEFM is used for fracture analysis. In order to 

investigate the inelastic material behavior, J-Integral approach is used. J-Integral calculates the 

rate of change of net potential energy with respect to crack propagation per unit thickness of 

crack tip for a non-linear elastic material. In other words J-Integral is the energy flow into the 

crack tip. It is also an indication of the singularity strength at the crack tip for the case of 

elastic-plastic material behavior. The J-Integral can be obtained using Equation (4-13). 
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𝐽 = ∫ (𝑊 𝑑𝑥2 − 𝑡𝑖

𝜕𝑢𝑖

𝜕𝑥1

 

𝛤

𝑑𝑠) (4-13) 

 

where 𝑥2 and 𝑥1 are the coordinate directions, 𝑊 is the strain energy density which is a 

function of 𝑥2 and 𝑥1 , 𝑡𝑖 is the surface traction tensor and defined in Equation (4-14), 𝛤 is the 

closed path (curve) on which the integral is being taken along, and 𝑢 is the displacement vector. 

 

𝑡𝑖 =  [𝜎]. 𝑛𝑖 = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] . 𝑛𝑖 (4-14) 

 

where [σ] is the Cauchy stress tensor, and 𝜎𝑖𝑗 is the component of the stress tensor. 

For isotropic, perfectly brittle, linear elastic materials, the J-integral can be directly 

related to the fracture toughness if the crack extends straight ahead with respect to its original 

orientation (Yoda, 1980). Fracture toughness is a material property which can be obtained by 

experimental test and is defined as the ability of the cracked material to resist the propagation of 

the crack or the material fracture.  

As Griffith theory is not very practical for engineering problems with large plastic zone, 

Irwin (1965) proposed and developed energy release rate concept. He found that the plastic zone 

develops at the crack tip for both ductile materials and brittle materials. By increasing the 

magnitude of the applied load, the plastic zone grows and leads to reduction of the stresses and 

displacements near the crack-tip. This was the introduction to Stress intensity factor parameter 

which is presented in the next section.  

 

 

 

https://en.wikipedia.org/w/index.php?title=Strain_energy_density&action=edit&redlink=1
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Displacement_vector
https://en.wikipedia.org/wiki/Cauchy_stress_tensor
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4.1.2.2.3. Stress Intensity Factor 

In fracture mechanics, to evaluate the stress near the crack tip which is caused by the 

remote applied stress, a factor called Stress Intensity Factor (SIF) is used. This factor is a 

function of the magnitude of the remotely applied stress, crack length, the geometry of the detail, 

and the location of the crack in the detail. SIF can be calculated using Equation (4-15). 

 

𝐾 = 𝜎𝑖𝑗(𝑟, 𝜃)√2𝜋𝑟 ×
1

𝑓𝑖𝑗(𝜃)
+ 𝛾(𝑟, 𝜃) (4-15) 

 

where 𝐾 is the stress intensity factor, 𝑟 is the distance from the crack tip, 𝜎𝑖𝑗 is the stress 

distribution around the crack, 𝑓𝑖𝑗 is a dimensionless quantity that is a function of the remote 

applied load and the geometry of the body containing the crack. 𝛾 is also a higher order function 

of 𝑟 and 𝜃. 

Stress intensity factor is defined for all three modes of fracture; opening mode (Mode I), 

in-plane shear mode (Mode II), and out-of-plane shear or tearing mode (Mode III). The 

corresponding stress intensity factor for these modes are 𝐾𝐼, 𝐾𝐼𝐼, and 𝐾𝐼𝐼𝐼, respectively. These 

modes are illustrated in Figure 4- 4 and defined in Equation (4-16) to (4-18). 

 

Mode I Mode II Mode III 

Figure 4- 4: Various Loading Condition and Modes in Fracture Mechanics (Aygül, Al-Emrani, Barsoum, & 

Leander, 2014) 
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𝐾𝐼 = lim𝑟→0 𝜎𝑦𝑦(𝑟, 𝜃)√2𝜋𝑟,                    when 𝜃 = 0  (4-16) 

 

𝐾𝐼𝐼 = lim𝑟→0 𝜎𝑦𝑥(𝑟, 𝜃)√2𝜋𝑟,                    when 𝜃 = 0  (4-17) 

 

𝐾𝐼𝐼𝐼 = lim𝑟→0 𝜎𝑦𝑧(𝑟, 𝜃)√2𝜋𝑟,                    when 𝜃 = 0  (4-18) 

 

In these equations, it is assumed that the crack is in the X-Y plane. By knowing the 

magnitude of the stress intensity factor for a specific crack and under a known loading scenario, 

the stresses near the crack tip can be calculated. For example the stresses near crack tip (r), in 

direction of 𝜃, and only under crack opening Mode I is presented in Figure 4- 5. 

 

 

Figure 4- 5: Stresses near the Tip of a Crack in an Elastic Material (Anderson, 2005). 

 

Finding the stress intensity factor (in this case, KI) is the most challenging part.  For 

several specimens with predefined simple geometry and location for the crack, the empirical and 

closed form solutions to calculate K were derived and are available in the literature. For instance, 

for an existing through crack in a semi-finite plate with an edge crack subjected to a remote 
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tensile stress, the closed form solution for stress intensity factor for Mode I is presented in 

Equation (4-19). 

𝐾𝐼 = 1.12 𝜎√𝜋𝑎            (4-19) 

 

In case of a complex problem, one needs to either perform experimental tests or conduct 

numerical analysis to estimate the stress intensity factor for a given crack and loading condition. 

It should be noted that the obtained stress intensity factor would only be valid for the same 

specimen with exactly the same crack size and shape, at the same location. In case the crack 

propagates, the obtained stress intensity factor is not valid anymore and it should be estimated 

again.  

When the stress intensity factor is calculated, it is compared with the critical stress 

intensity factor (𝐾𝑐𝑟) to assess the crack failure. This occurs when 𝐾𝑖 (corresponding stress 

intensity factor for the fracture mode) is equal or greater than 𝐾𝑐𝑟. Despite of 𝐾𝑖, which is a 

function of applied load and geometry, 𝐾𝑐𝑟 is a measure of material resistance and is already 

obtained for most of engineering materials.  

In case of having mixed mode crack opening and fracture, the failure criterion is 

presented in Equation (4-20). 

 

𝐾𝑀𝑖𝑥𝑒𝑑−𝑀𝑜𝑑𝑒 = 𝐺𝑐 = 𝐾𝐼
2 + 𝐾𝐼𝐼

2 +
𝐸′

2𝐺
𝐾𝐼𝐼𝐼

2

                     (4-20) 

 

where 𝐺𝑐 is the energy release rate, 𝐸′=
𝐸

(1−𝜈)2 for plane strain and 𝐸′ = 𝐸 for plane stress, 𝐸 is 

the material Young's modulus, 𝜈 is the Poisson's ratio, and 𝐺 is the shear modulus.  
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4.1.2.2.4. The Relation between G and J-Integral, K 

 

Irwin (1965) found that LEFM can be used to calculate the energy required for fracture 

and crack propagation, even for materials with relatively small plastic zone at the crack tip.  

Therefore, using this assumption, the fracture energy (strain energy release rate) can be obtained 

from stress intensity factor. For instance, for opening mode (Mode I) the energy release rate can 

be calculated using Equation (4-21).  

 

𝐺𝑐 = 𝐺𝐼 =
𝐾𝐼

2

𝐸′
  (4-21) 

 

where 𝐾𝐼 is the stress intensity factor for Mode I, 𝐸′=
𝐸

(1−𝜈)2 for plane strain and 𝐸′ = 𝐸 for plane 

stress, 𝐸 is the material Young's modulus, and 𝜈 is the Poisson's ratio, and 𝐺 is the shear 

modulus.  

By using linear elastic assumption for the crack growth, the energy release rate is equal to 

the J-Integral as well. This relationship is presented in Equation (4-22).  

 

𝐺𝑐 = 𝐽 − 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 =
𝐾𝑐

2

𝐸′
  (4-22) 
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4.1.2.2.5. Crack Propagation Life Calculation 

 

In this study linear elastic fracture mechanics (LEFM) approach is used. In order to 

calculate the crack propagation life, the following equation proposed by Klesnil and 

Lukas (1972) is used.  

𝑑𝑎

𝑑𝑁
= 𝐶. (∆𝐾𝑚 − ∆𝐾𝑡ℎ

𝑚)  (4-23) 

 

where 
da

dN
 is crack growth rate in the stable propagation stage, ∆K is the stress intensity factor 

range, ∆K𝑡ℎ, C and m are material constants which can be determined for a material by 

experimental tests and recording crack growth and corresponding number of cycles for each 

crack growth step. 

In a web gap detail in steel multi-girder bridges, the crack first propagates in the weld 

material and continues into the base metal which is highly affected by the welding process and 

the material constants used for crack propagation life is different for these zones. Table 4- 2 

presents the material properties for weld and Heat-Affected Zone (HAZ) in base metal. These 

material properties for Mode I are obtained from experimental programs at University of Alberta 

(Josi & Grondin (2010) and Chen et al. (2005)). These Material properties are used in this study 

to calculate the fatigue life of the crack in web gap detail. 

Table 4- 2: Crack propagation material properties for weld and base metal for Mode I (Chen et al. (2005) and 

Josi & Grondin (2010)) 

 Weld Material Base (HAZ) Material 

C 3.87 × 10−13 3.54 × 10−13 

m 3.0 3.0 

∆K𝑡ℎ 60 60 
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Knowing the stress intensity factor of a crack in the detail and integrating Equation (4-23) 

the number of cycle needed for a crack to grow to certain length – crack propagation life - can be 

calculated. This integration is shown in Equation (4-24). 

 

𝑁𝑝 = ∫
1

𝐶.(∆𝐾𝑚−∆𝐾𝑡ℎ
𝑚 )

𝑑𝑎
𝑎𝑓

𝑎𝑖
  (4-24) 

 

where 𝑁𝑝 is the number of stress cycle needed for the crack to grow from 𝑎𝑖 to 𝑎𝑓, 𝑎𝑖 is 

the initial length of the crack, 𝑎𝑓 is the final length of the crack, ∆K, ∆K𝑡ℎ, C, and m are the same 

as defined previously in Equation (4-23). 

Stress intensity factor for crack at weld toe in web gap detail in steel multi-girder bridges 

must first be found first to investigate fatigue life of the detail. It can be obtained by either 

experimental tests or finite element analysis. Experimental programs are very costly for this 

purpose. Therefore, it is decided to use FEA approach to find stress intensity factor for crack at 

each step of crack propagation phase and calculate the crack propagation life.  

In order to find the propagation life of a crack, it is needed to define the initial size of the 

crack as well as the final crack size. There is no precise and fixed definition for the crack initial 

length. The initial crack size reported in the literature ranges from 0.01 mm to 1 mm. In web gap 

detail, the crack initiation and initial stage of crack propagation life is very short and crack grows 

to a visible size very fast. This is because of the high stress gradient and the huge distortion in 

the web gap. Therefore, the initial size of the crack does not really affect the crack propagation 

life and it is decided to use 0.1 mm as a crack initial size. As the crack grows, the web becomes 

more flexible and this reduces the stress range magnitude which leads to a longer fatigue life. 

The final crack size is equal to the length of the crack at which the crack stops growing or 

the experiment is terminated and the crack length is measured.  ∆𝑎, or the crack propagation 

increment, can be defined in several ways. It can be defined as a constant value or a variable 

parameter. For instance, Equation (4-25) presents a simple way to find a constant value for ∆𝑎.  
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∆𝑎 =
𝑎𝑓−𝑎𝑖

𝑁
   (4-25) 

 

where 𝑎𝑓 is the final crack size, 𝑎𝑖 is the initial crack size, and 𝑁 is the number of increments 

that is defined by the assessor. ∆𝑎 can be variable while crack grows. This is because, at the 

initial stages of crack growth crack propagates very fast and the smaller crack increments leads 

to a more accurate result for cycle counting. This trend changes when crack reaches the final 

stages of crack propagation as it takes numerous cycles for a crack to grow an increment and 

having variable crack growth increments saves calculation time. This is correct when the crack 

eventually stops after reaching a certain length and does not propagate anymore. For specimens 

in which the crack has an unstable crack growth the initiation life and initial stages of crack 

propagation are longer than the final stages. In this type of crack, the specimen fractures unstably 

when the crack reaches a certain length, namely the critical length. The crack in the web gap 

detail eventually stops after it reaches a certain length and does not propagate anymore if the 

crack propagates toward the center of the web plate. In this study, the variable crack propagation 

increments are used for crack growth analysis. 

In the following section the FEA approach used in this study to obtain stress intensity 

factor for web gap detail is presented. First of all, the stress intensity factor for a benchmark is 

obtained using FEA and compared with the stress intensity factor found using the corresponding 

empirical equation to verify the modeling approach. Then, using the same approach, the stress 

intensity factor for the web gap detail with an initiated crack is calculated for different crack 

propagation stages. These results will be used to obtain the crack propagation life of the crack in 

the detail. 

 

4.2. Verification of FE Models to Calculate SIF  

 

The FEA software ABAQUS 6.13 is used to calculate the stress intensity factor for a 

benchmark model. This verifies the crack modeling technique as well as SIF calculation for 

future FE models. The benchmark model is a 2D model containing an edge crack.  This is 
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selected as the analytical equation for this model is driven and is available in the literature. 

Therefore, it can be used to evaluate the SIF calculation.  

 

4.2.1.  SIF for Edge Crack in Finite Plate 

 

The geometry of the model is shown in Figure 4-6 and the SIF for Mode I can be 

calculated using Equation (4-26). This equation is valid for (
ℎ

𝑏
) ≥ 1, and(

𝑎

𝑏
) ≤ 0.6. Therefore, 

the dimensions are selected in a way to satisfy these conditions. For the bench mark, ℎ is equal to 

100 mm, 𝑏 is equal to 40 mm, and the 20 mm crack is located at the mid height of the plate. The 

thickness of the plate is 1 mm. The linear elastic material properties for steel with Young’s 

modules of 200 GPa and Poisson’s ratio of 0.3 is used in this model. 

 

Figure 4- 6: Edge crack in a finite plate under uniaxial stress 

 

  

(4-26) 

  

 

The plate is modeled using homogeneous solid second-order elements (CPE8) and the 

crack tip including the integral contour region is meshed using sweep method. A 100 MPa tensile 

uniform stress is applied to the both top and bottom edges of the plate as shown in Figure 4-6.  
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A mesh convergence study is also performed for the model and it is decided to use 

0.5 mm mesh size. The mesh density for the model and the deformed shape of the model under 

applied load are shown in Figure 4-7. 

  

a) b) 

Figure 4- 7: a) Mesh density and b) deformed shape of the plate under uniaxial load 

 

For the given dimensions, crack length, and the remote applied stress and by using 

Equation (4-26), the stress intensity factor for Mode I is calculated and compared to the SIF 

obtained from finite element analysis in Table 4-3. 

Table 4- 3: SIF calculated using Equation (4-26) and Obtained form FEA 

 SIF Calculated Using Equation (4-26) SIF Obtained From FEA 

SIF 2253.15 2211.91 

 

As it is shown in Table 4- 3 there is only 1 % difference between the SIF calculated using 

the Equation (4-26) and SIF predicted by the FEA which confirms the agreement of the two 

methods. 
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4.3. Fatigue Life Investigation of Web Gap Detail 

 

In this section, the finite element model of the web gap detail from experimental work 

conducted at University of Kansas (Hartman et al, 2013) is used to investigate the fatigue life. 

The 3D finite element model of the three-girder bridge with cross frame braces was created in 

ABAQUS 6.13. This model is used as a global model for a more refined model of web gap called 

sub-model to investigate the stress in the detail more accurately and more efficiently. This 

sub-model is used in order to save computational time as only the region containing the crack is 

needed to perform fatigue analysis. The global model and the location of the web gap are shown 

in Figure 4- 8. Further details of the modeling procedure and boundary conditions used for web 

gap detail are presented in Chapter 3. 

 

4.3.1. Initial Crack Life 

 

According to the finite element analysis performed in Chapter 3, and using          

Equation (4-1) and crack initiation material properties presented in Table 4- 1, the crack initial 

life (the number of cycle needed to initiate the crack) is calculated and presented in this section. 

The maximum stress in the web gap detail obtained from finite element results 

(Chapter 3) is 434 MPa at the transverse stiffener weld toe location and the corresponding strain 

is 0.005. Using Equation (4-1) leads to the total fatigue crack initiation life of 8,340 cycles. The 

calculation of the crack initiation life is presented in Appendix A. 

Base on the experimental program conducted at University of Kansas (Hartman et al, 

2013), on the same detail, the initial crack was visible at the weld toe after 15,000 cycles. The 

difference is from the size of the detected crack and the interval of the visual crack inspection 

which was at every 5,000 cycles. In the experimental observation, the crack was initiated in 

earlier stages than it was detected and became visible. Therefore, the reported 15,000 cycle 

includes some propagation cycles as well. 
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4.3.2. Initial Crack Location 

  

Stress intensity factor is highly affected by the location of the crack in the web gap. In an 

ideal web gap detail in which there is no deficiency and imperfection in the weld material, the 

crack initiates at the weld toe at transverse stiffener location. Then it propagates toward the 

centroid of the web plate. Figure 4-8 shows the location of crack initiations.  In this figure, the 

global and local models are shown using shell elements in Figure 4-8 a. It must be noted that in 

order to investigate the crack growth in 3D, solid element must be used. Therefore, at the 

location of the web gap (local model) the model is replaced with a solid element and the shell 

elements are tied to the solid elements and the crack is inserted in the solid element model. The 

solid portion of the model is shown in Figure 4-8 b. The crack location is shown with red line. In 

reality, the weld is not perfect and this imperfection leads the crack to initiate in the weld body 

itself. Therefore, the effect of location of the initial crack on the stress intensity factor for these 

two locations should be investigated. The result of this investigation is presented in this section.  

According to the experimental results and observations (Hartman et al, 2013), the crack 

was initiated in the vertical stiffener weld body in the web gap. This crack location is shown in    

Figure 4-9. 

In this section, two crack locations are investigated; Location 1, which is at the weld toe 

and Location 2, which is at the weld body. These locations are shown in Figure 4-8 and 

Figure 4-9. 

A semi-circle crack with the radius of 0.1 mm is inserted in these crack locations and the 

stress intensity factors at the crack tip along the cracks edges are computed. The method and 

procedure to compute the stress intensity factor are explained in the following section. 
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a) 

 

b) 

Figure 4- 8: a) The global model and the location of the web gap, b) the initial crack location in the web gap 

(Location 1) 

 

Transverse Stiffener 

Web Plate 

Initial Crack 

Location 
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Figure 4- 9: Initial crack location in web gap detail at weld body as reported in the experiment (Location 2). 

 

 

4.3.3. Using FRANC3D to calculate SIF and J-Integral 

 

The stress intensity factor is defined for the crack tip. When the crack is 2D (semi-circle 

crack) the stress intensity factor is a function of the crack tip location along the edge of the crack. 

This makes the calculation of the stress intensity factor even more challenging. Using FE 

analysis the stress intensity factor along the crack edge can be obtained. 

In order to calculate the crack propagation life of a crack, it is needed to grow the crack 

incrementally (crack propagation step). At the end of crack propagation at each increment the 

stress intensity factor should be calculated. This process must be performed until the crack 

reaches the final crack size. This is doable if the crack stays in the same plane and follows the 

same semi-circle shape as the user can define new crack with the only bigger radios. For 

example, for the second step, the radios would be equal to the initial crack size plus a crack 

propagation increment (𝑟2 = 𝑎𝑖 + ∆𝑎).  

0.2 mm 
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In web gap detail the crack has a 3D profile. Therefore, only the initial crack can be 

defined and the crack propagates in the direction of the highest stress at the crack tip along the 

edge comparing the crack growth criteria that are previously described. Assessing the fatigue life 

of the web gap detail would be impractical if the crack propagation is done manually for this 

detail. This is because after the first crack growth increment, the crack propagates out of the 

plane in which the initial crack was inserted. An alternative solution for this problem is to use a 

software package that propagates the crack and calculate the stress intensity factor for each 

increment automatically. FRANC3D is one of the most reliable crack analysis software and is 

used in this study to propagate the crack and perform fracture analysis. 

FRANC3D is developed at Cornell University started in the late 1980’s to perform 

fracture analysis and crack growth analysis in complex 3D structures. 

FRANC3D is a software package that can insert a crack in to a model, generate suitable 

mesh, and extract the model for analysis. It does not perform finite element analysis itself and 

needs to utilize a FEA package such as ABAQUS, ANSYS, and NASTRAN to run the cracked 

models in order to obtain the stress around the crack tip. This procedure is explained in the 

following section.  

In order to perform the fracture analysis, a 3D model of the web gap detail with 

appropriate boundary conditions, material properties and applied load is created and meshed in 

ABAQUS. This model is imported to FRANC3D for the next steps. A semi-circle crack with the 

initial radius of 0.1 mm is inserted in the weld body at the vertical stiffener location. Then the 

crack model is remeshed in FRANC3D. This cracked model is exported to ABAQUS to perform 

the finite element analysis to calculate the stress in the model. Then, the results imported back 

into FRANC3D to calculate the stress intensity factors at crack tip along the crack edge. The 

crack propagates using the crack propagation criteria including critical energy release rate for the 

material defined in FRANC3D. The model with the new crack is meshed again in FRANC3D 

and imported to ABAQUS for analysis. This procedure continues till the crack reaches the final 

length and stops propagating. These steps are graphically presented in in Figure 4-10. 



72 

 

 

 

Figure 4- 10: Steps to compute stress intensity factor using FRANC3D and ABAQUS. 

 

 

 

C: Fracture Analysis 

A: Create and mesh the model -ABAQUS 

B: Insert the initial crack, 𝑎0 – FRANC3D 

D: Post processing results – FRANC3D or EXCEL 

 
1: Remesh the model – FRANC3D 

2: Compute the stress intensity Factor – FRANC3D 

4: Propagate the crack, ∆𝑎– FRANC3D 

5: Remesh the model – FRANC3D 

6: FE analysis – ABAQUS 

3: Save the results for the step – FRANC3D 

n steps 
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4.3.3.1. SIF for Initial Crack at Weld Toe (Location 1) 

Using FRANC3D, the stress intensity factor is computed for the semi-circle crack with 

radios of 0.1 mm at weld toe in transverse stiffener in the web gap detail.  The crack geometry 

and points for which the stress intensity factors are computed are shown in Figure 4- 11. For 

these crack tip points the stress intensity factors for Mode I, Mode II, Mode III, and J-Integral are 

computed and the results are presented in Table 4-4. Mixed mode fracture effect is also 

calculated manually using Equation (4-20) for the mixed mode fracture and presented in 

Figure 4-15. 

The stress intensity factors for Mode I, Mode II, Mode III, the effect of mixed-mode 

fracture (𝐾𝑀𝑖𝑥𝑒𝑑−𝑀𝑜𝑑𝑒),  and J-Integral at crack tip along the crack edge at Location 1 are 

graphed and shown in in Figure 4-12 to Figure 4-16. 

 

Figure 4- 11: Semi-circle crack geometry and points along the edge for SIFs and J-Integral calculation. 

Table 4- 4: Fracture analysis results of the semi-circle crack at the weld toe (Location 1) 

 Point D
1
 KI KII K111 J-Integral 

1 0.06 3097 168 373 39 

2 0.19 2491 429 400 24 

3 0.31 1987 664 251 15 

4 0.44 1747 761 67 12 

5 0.56 1747 738 -106 12 

6 0.69 1985 600 -287 15 

7 0.81 2456 349 -427 24 

8 0.94 3048 62 -388 38 

                                                           
1
 D is the normalized distance from point A.  

A 

1 

2 

3 

4 5 

6 

7 

8 

B 
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Figure 4- 12: Stress Intensity Factor for Mode I for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld Toe 

(Location 1) in Web Gap Detail. 

 
Figure 4- 13: Stress Intensity Factor for Mode II for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld Toe 

(Location 1) in Web Gap Detail. 
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Figure 4- 14: Stress Intensity Factor for Mode III for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld 

Toe (Location 1) in Web Gap Detail. 

 

 

Figure 4- 15: Stress Intensity Factor for Mixed-Modes for 0.1 mm Semi-Circle Crack at Transverse Stiffener 

Weld Toe (Location 1) in Web Gap Detail. 
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Figure 4- 16: J-Integral Value graphed for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld Toe 

(Location 1) in Web Gap Detail. 

 

4.3.3.2. SIF for Initial Crack at Weld Body (Location 2) 

The same procedure is performed for crack at the transverse stiffener weld body 

(Location 2) to obtain stress intensity factors for Mode I, Mode II, Mode III, and J-Integral. The 

results for the crack at this location are presented in Figure 4-17 to Figure 4-21. The effect of 

mixed-mode fracture is also calculated using Equation (4-20) for the mixed mode fracture and 

presented in Figure 4-20. 

The effect of each mode of fracture on stress intensity factor can be obtained from these 

graphs. As it is shown in Figure 4-12 and Figure 4-17, Mode I has the highest stress intensity 

factor magnitude among the other modes. This shows that the crack opening mode (Mode I) is 

the governing fracture mode in the web gap detail at the beginning stages of crack propagation. 

Although the crack shows the same behavior at both crack locations, the magnitude of stress 

intensity factor is highly affected by location of the crack. At the weld toe (Location 1) the stress 

intensity factor for Mode I is almost 3 times higher than the crack at the weld body (Location 2). 

This is the main reason why most of the cracks at web gap locations and under distortion induced 

fatigue occur at the weld toe. 
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Figure 4- 17: Stress Intensity Factor for Mode I for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld 

Body (Location 2) in Web Gap Detail. 

 

 

Figure 4- 18: Stress Intensity Factor for Mode II for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld 

Body (Location 2) in Web Gap Detail. 
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Figure 4- 19 : Stress Intensity Factor for Mode III for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld 

Body (Location 2) in Web Gap Detail. 

 

 

Figure 4-20: Stress Intensity Factor for Mixed-Modes for 0.1 mm Semi-Circle Crack at Transverse Stiffener 

Weld Body (Location 2) in Web Gap Detail. 
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Figure 4- 21: Stress Intensity Factor for Mode I for 0.1 mm Semi-Circle Crack at Transverse Stiffener Weld 

Body (Location 2) in Web Gap Detail. 

 

As it is shown in Figure 4-15 and Figure 4-20 for 0.1 mm semi-circle crack at both 

locations (weld toe and weld body) the mixed-mode fracture toughness is mostly governed by 

Mode I fracture. 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

J
-I

n
te

g
ra

l 
(k

J
/m

2
) 

Normalized Distance Along the Crack Edge 



80 

 

4.3.4. Crack Propagation Life 

 

Based on the experimental results obtained from work at University of Kansas    

(Hartman et al, 2013), the crack initiated at weld body at the transverse stiffener (Location 2). 

Therefore, the initial crack is decided to be located at Location 2 (weld body) to resemble the 

experimental test.  

To investigate the crack propagation life of the detail, the semi-circle crack with initial 

radius of 0.1 mm is inserted in the weld body of the web gap detail. The crack propagates with 

0.01 mm crack propagation increments for the first 100 crack propagation steps until it reaches 

1.1 mm crack length. The crack propagation increment increased to 0.02 mm, 0.05 and 0.1 for 

next 300 steps (100 steps for each crack propagation increment size). A crack propagation 

increment size of 0.5 mm is selected for the step size until the end of the analysis in which the 

crack eventually stops propagating. The analysis performed according to Figure 4-10. 

In total 412 crack propagation steps are conducted and the stress intensity factor for each 

crack increment is recorded. The stress intensity factors for Mode I, Mode II, and Mode III at 

crack tip along the crack edge for step 412 are graphed and shown in Figure 4-22 to Figure 4-24. 

As it is shown in Figure 4-25, Mode I has the most significant effect on the mixed mode 

failure. Although Mode II and Mode III increase the magnitude of the fracture toughness, the 

trend of the graph is mostly governed by Mode I.  
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Figure 4- 22: Stress Intensity Factor for Mode I at Step 412 at Crack Tip Along the crack edge in Web Gap 

Detail. 

 

Figure 4- 23: Stress Intensity Factor for Mode II at Step 412 at Crack Tip Along the crack edge in Web Gap 

Detail. 
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Figure 4- 24: Stress Intensity Factor for Mode III at Step 412 at Crack Tip Along the crack edge in Web Gap 

Detail. 

 

 

Figure 4- 25: Fracture Toughness for Mixed-Modes at Step 412 at Crack Tip Along the crack edge in Web Gap 

Detail. 

-500

-400

-300

-200

-100

0

100

200

300

400

500

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

S
tr

es
s 

In
te

n
si

ty
 F

a
ct

o
r 

K
II

I 
(M

P
a
.√
𝑚
𝑚

) 

Normalized Distance Along the Crack Edge 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

𝐾
M

ix
e
d

-M
o

d
e
 (

M
P

a
.√
𝑚
𝑚

) 

Normalized Distance Along the Crack Edge 



83 

 

 

The crack shape and profile at the end of the propagation stage are presented in         

Figure 4-26 to Figure 4-29. As it is shown in Figure 4-32, the crack propagation length and 

directions matched very well the experimental observation. The experimental measurements are 

also shown in Figure 4-32.  

 

 

Figure 4- 26: Final crack length and shape at the web gap detail obtained from FEA. 

 

Figure 4- 27: Final crack length and shape at the web gap detail obtained from FEA. 
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Figure 4- 28: Through thickness crack in the web plate obtained from FEA. Web plate solid elements are 

removed for the crack presentation purpose. 

 

The crack stops before turning into a complete through thickness crack and as it is shown 

in Figure 4-28, only 70% of the web plate is cracked.  

Figure 4-31 shows the stress intensity factors versus crack length. It is graphed for three 

different directions of crack propagation, Right, Left, and through thickness directions of crack 

propagation. These directions are shown in Figure 4-30. 
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Figure 4- 29: Two different views of the crack profile through the web plate. Solid elements are removed for the 

crack presentation purpose.  

 

 

Figure 4- 30: Left, right, and through thickness Crack tip directions. 
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When the stress intensity factor for a crack is obtained for each crack propagation 

increment, the crack propagation life can be calculated and the number of cycle to reach the final 

crack length can be counted using Equation (4-24). In this equation and for this study, ∆𝐾=𝐾 as 

it is assumed that at the end of each cycle, the load is removed completely and there is no stress 

reversal effect. 𝐾 is graphed in Figure 4- 31 versus the crack length. The crack propagation life 

calculation (𝑁𝑝 counting ) can be done either in Excel or in FRANC3D by using the material 

crack propagation properties as mentioned which are presented in Table 4- 2. In total, after 

54,021 cycles the crack reaches to the final length of 13 mm, 21 mm, and 22 mm in thickness, 

right, and left directions, respectively. 

The cycles needed to propagate the crack for an increment is counted and is graphed in 

Figure 4-33. As it is shown in this figure, at the beginning of the crack propagation stages, for 

the first 25,000 cycles, the crack only propagates 1mm to 3 mm at each direction. Almost 80% of 

the crack propagation occurs from 25,000 to 40,000 cycles. The crack growth rate slows down 

for the rest of the increments and eventually it stopes propagation at 54,021 cycles. 

 

Figure 4- 31: Stress Intensity Factor along the crack at different directions of the crack propagation. 
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Figure 4- 32: Experimental test and crack observation (Hartman et al, 2013) and comparisan with the FE model. 

 

Figure 4- 33: Number of propagation cycles versus crack length for right, left, and through thickness crack tip 

Obtained from FEA. 
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The total fatigue life of the crack can be obtained by simply adding the initiation life and 

propagation life of the detail. This leads to a total life of 62,361 (54,021+8,340) cycles. 

The experimental results show that the crack stabilized after about 65,000 cycles 

(including crack initiation life) at about 29 mm long. It should be noted that there is no 

imperfection modeled in the FE model of the web gap and this can be a reason that there is 

slightly difference between the experimental results and finite element analysis results.  

As it is presented in this chapter, fracture mechanics is a powerful tool to investigate the 

behavior of the cracks in web gap detail and can calculate its life even with the very complex 

stress gradient in the vicinity of the crack. 

Although fracture mechanic approach provided an accurate result for crack propagation 

life, it was very costly in terms of time. Creating, meshing, and analyzing 412 models took two 

weeks of non-stop computational process. It should be noted that all of these modeling, and 

analyzing processes were conducted automatically. Otherwise, it is almost impractical to perform 

this investigation manually and step by step. If the crack size or the location changes, this 

process should be performed again even for exactly the same web gap detail. Therefore, it is 

decided to develop an empirical equation in order to predict a representative stress magnitude in 

the web gap detail in steel multi-girder bridges and find the relation between this stress and the 

fatigue life of the detail. This approach is explained and presented in Chapter 5.  
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Chapter 5 

 

Parametric Studies Using Dimensional Analysis 

 

 In steel multi girder bridges, web gap stress calculation is fairly complicated as its 

magnitude is affected by almost all geometrical parameters in the bridge girder, diaphragm plate, 

and cross brace. Therefore, evaluating stress in the detail is not straightforward. Several attempts 

have been made to derive a general equation that calculates the stress in the web gap but still 

only a detailed Finite Element (FE) analysis of the bridge that includes exact boundary 

conditions of the detail can predict this stress. For such a complex problem it is preferable to 

drive an empirical equation to include all the parameters affecting the stress in the detail. Thus, 

data should be collected and analyzed and the equation should be developed such that it closely 

approximates the observed behavior of the detail.  

 The objective of this chapter is to derive dimensionless parameters that can be used to 

develop an empirical equation that calculates the stress in the web gap details in the girders of 

multi-girder bridges. This equation is developed using the Response Surface Methodology 

(RSM) and data generated by FE models described in this chapter. 

 

 

5.1. Response Surface Methodology 

The Response Surface Methodology (RSM) uses mathematical and statistical models in 

order to construct a structured approach to obtain the response functions. It, statistically, looks 

into the relationships between several explanatory variables and at least one response variable. 

The objective of utilizing this method is to optimize the response i.e. (output variable) which is 

influenced by several independent input variables or factors. The first step involved with this 

method is designing a set of experiments that yield adequate and reliable measurement of the 

response. After running the experiments, a mathematical model should be determined using 
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regression analysis which best fits the data collected from the experiments (Khuri & Cornell, 

1996). 

The mathematical relationship between the response and the factors is known as a 

response function. For instance, assuming that the true value of the response, , depends upon k 

factors, X1, X2,…, Xk, such that (DiBattista, 2002): 

 = 𝜙(X1, X2,…, Xk)  (5-1) 

 

where, ϕ is the true response function. The response function can be represented in different 

forms. The most common one is linear or first order form. Polynomial functions are also very 

common for higher accuracy. This is usually done by obtaining data from the design experiments 

and evaluating the constants for the response function using an error minimization method such 

as least squares method. Using a polynomial expression for the response equation is useful for 

continuous function as it does not require prior knowledge of the exact form of the response 

equation. However, these functions cannot be truly obtained because of the experimental errors. 

In addition, as they are calculated using one set of data only, a second source of error is 

introduced to the calculation (DiBattista, 2002). 

If a polynomial expression is used, it may be necessary to include many terms in the 

prediction equation to make a reasonable representation of the response surface, especially in 

case of large number of factors (DiBattista, 2002) which makes the equation more complicated 

as it needs higher number of coefficients. The number of coefficients in a complete second-order 

prediction equation can be obtained using the following relation (Khuri & Cornell, 1996):  

𝑝 =
(𝑘 + 1)(𝑘 + 2)

2
 (5-2) 

 

where, 𝑝, is the number of regression coefficients, and 𝑘, is the number of factors. 

For complex problems which have several factors involved, polynomial regression needs 

a huge number of coefficients in order to predict the response. For instance, if there are 5 factors, 
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based on the equation, 21 coefficients are required. This yields a very long equation which is 

difficult to derive and use. 

An alternative solution to this issue will be a more compact form of the prediction 

equation that uses nonlinear regression form with less number of coefficients. Nonlinear 

equations can take many different forms which provide the most flexibility to fit the curve to the 

data. Although nonlinear regression reduces the number of coefficients and makes the prediction 

equation more compact, its solution is more difficult to obtain compared to the linear regression 

one. However, using a computer can overcome this difficulty.  

 Equation that evaluates stress in the web gap is complicated and involves many 

geometrical dimensions thus it cannot be determined using a simple linear regression. Therefore, 

a nonlinear regression is used in this research in order to determine the equation that can predict 

maximum stress in the web gap. For the multi girder bridges web gap problems maximum stress 

in the web gap is considered as response while all other geometrical dimensions are considered 

as factors. In this chapter, the factors are selected properly and the response is predicted using a 

suitable regression method in the following chapter. 

5.2. Design of Experiments 

 

Physical and analytical experiments are used for better understanding of the web gap 

stress prediction problem. Experimental design is a process that combines expert knowledge of 

subject area with appropriate statistical techniques to allow an optimal amount of useful data to 

be obtained in the most efficient possible manner (Box, Hunter, & Hunter, 1978). This will be 

discussed in more details in Chapter 6. 
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5.3. Selection of the Parameters Affecting the 

Response Equation 

As it is described in chapter two, the web gap stress is a function of several parameters 

(e.g. lateral stiffness of the flange, stiffness of the stiffener, magnitude of the differential 

displacement (𝛥), and several other factors that have been identified to affect the stresses 

developed in the web gap). Therefore, to develop a prediction equation for stress in the web gap, 

it is necessary to study a set of parameters that reflects a variety of realistic loading conditions 

and geometric configurations for the detail. In total there are 17 parameters which are likely 

governing the behavior of the prediction equation. These parameters are: 

𝑤: Web Thickness 

𝐿: Diaphragm Spacing 

ℎ: Stiffener Height 

𝑏𝑠: Stiffener Width 

𝑡𝑠: Stiffener Thickness 

𝑏𝐹: Tension Flange Width 

𝑡𝐹: Tension Flange Thickness 

𝑔: Web Gap Length 

𝐸: Young’s Modulus 

𝐺: Shear Modulus 

𝑆: Diaphragm Length (Girder Spacing) 

𝑡𝐷: Diaphragm Thickness 

ℎ𝐷: Diaphragm Height 

𝐴𝑋: Cross Section Area for Diagonal Member in Cross Frame Diaphragms 

α: Angle Between Cross Frame Diagonal Member and Vertical Member 

𝜎𝑤𝑔: Web Gap Stress 

𝛥: Differential Deflection 

The effect of concrete deck stiffness (concrete slab thickness) is seen in differential 

deflection parameter. If the slab is rigid, there would not be any differential deflection between 
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the adjacent girders. Moreover, as HSS approach is used to calculate the stress in the detail, the 

effect of weld geometry and size is not included in this parametric study. 

Although the relation between some of these parameters such as Young’s Modulus (𝐸) 

and the web gap stress is proven to be linear, the interaction of other parameters are not very well 

established. It is known that for example increasing the web gap length decreases the web gap 

stress and increasing the web thickness increases the web gap stress but what if both the web gap 

length and web thickness vary at the same time i.e. web gap length increases and web thickness 

decreases. Therefore, an experiment should be performed in order to study the effects of these 

changes as well. The simplest type of experimental design is ‘first-order’ experiment design, 

which is generally used in conjunction with first-order regression. In this case, only two levels of 

each factor are required, because the resulting prediction equation is planar. Of course, such a 

design is useful only for problems whose response surface is approximately planar within the 

region of interest (DiBattista, 2002). For this class of experiments the most common form is a 2𝑘 

factorial design which requires 2𝑘 design points, where 𝑘 is the number of factors. This type of 

experimental design (first-order) may not be able to identify the approximate shape of the 

response function within the range of interest as each factor is sampled at only two levels. 

Therefore it is not possible to observe any curvature that may occur in the response surface.  

To overcome this issue and to establish a response function which represents any possible 

curvature, at least three levels of the factors must be sampled and response equation should be at 

least a second-order polynomial. The approach with three levels is called 3𝑘 factorial 

experimental design. As it is mentioned previously, 3𝑘 design points are required, where 𝑘 is the 

number of factors. In web gap stress problem, if a 3𝑘 factorial design approach is used, in which 

𝑘 is equal to 17, experiments will be impossible to perform due to the size of the problem. 

Therefore, alternate factors that reduce the number of the actual factors must be selected to 

represent the practical and physical characteristic of the detail without eliminating effects of the 

actual factors from the response equation. This study uses non-dimension factors as alternative 

factors.  

Stiffness of a member is an important parameter which needs to be determined in the 

design stage. Instead of different geometrical dimensions for each member connected in web gap 
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in multi-girder bridges, the corresponding stiffness of the member is utilized to develop the non-

dimensional factors so-called π-parameters. For the web gap detail, the stiffness of each 

component is listed below in Equations (5-3) to Equation (5-8). 

𝐾2
𝑊𝐸𝐵

 =  (
𝜋4

4
)

𝑤3𝐸(𝐿2 + ℎ2)2

𝐿3ℎ3𝑆𝑖𝑛2(
𝑔

ℎ
𝜋)

 (5-3) 

 

𝐾𝐷𝐼𝐴 =  
ℎ𝐷𝑡𝐷𝐺

𝑆
+

𝐸𝑡𝐷ℎ𝐷
3

4𝑆3
   𝑂𝑟   

2𝐴𝑋𝐸

𝑆
𝐶𝑜𝑠2(∝) 

(5-4) 

 

𝐾𝑆𝑇𝐹 =  
𝑏𝑠𝑡𝑠𝐺

ℎ𝑠
+

𝐸𝑡𝑠𝑏𝑠
3

4ℎ𝑠
3  (5-5) 

 

𝐾𝐿𝐵𝐹 = (4)
𝐸𝑡𝐹𝑏𝐹

3

𝐿3
 

(5-6) 

 

𝐾𝑇𝐵𝐹 = (
1

3
)

𝑏𝐹𝑡𝐹
3𝐺

𝐿
 

(5-7) 

 

where,  

𝐾𝑊𝐸𝐵: Web plate Stiffness 

𝐾𝑇𝐵𝐹: Bottom Flange Torsional Stiffness 

𝐾𝐿𝐵𝐹: Bottom Flange Lateral Stiffness 

𝐾𝐷𝐼𝐴: Diaphragm Stiffness 

𝐾𝑆𝑇𝐹: Stiffener Stiffness 

𝜎𝑤𝑔: Web Gap Stress 

𝑔: Web Gap Length 

𝛥: Differential Deflection 

 

2(1 + 𝜗) =  
𝐸

𝐺
 (5-8) 

                                                           
2
 This equation is obtained using shell and plate theory and driven in Appendix A. 
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In these parameters, variation of shear modulus, 𝐺, and Young’s modulus, 𝐸, will not be 

considered in the behaviour as the material of the bridge girders is regular structural steel and 

these parameters are almost constant for most of the constructed bridges. Therefore, they need 

not be included in the parametric study. Variation of Poisson’s ratio, 𝜈, which is a dimensionless 

measure, has also a constant value for all types of steel and will also be excluded in the 

parametric study. Using the mentioned parameter (defined in Equations (5-3) to (5-8), web gap 

length, differential deflection, and web gap stress), the number of factors reduced from 17 to 8. 

Therefore, only 𝐾𝑊𝐸𝐵, 𝐾𝑇𝐵𝐹, 𝐾𝐿𝐵𝐹, 𝐾𝐷𝐼𝐴, 𝐾𝑆𝑇𝐹, 𝜎𝑤𝑔, 𝑔, and 𝛥 will be investigated in the 

parametric study. Still considering 8 factors for parametric study would require the analysis of 

almost twenty thousand FE models. To reduce this to a manageable number, it is beneficial to 

implement dimensional analysis, which is a process that eliminates extraneous information from 

a relation between quantities. This approach is well described with several applicable examples 

by Taylor (Taylor, 1974) and summarized in this chapter. 

 

5.4. Dimensional Analysis - Obtaining the π-

parameters 

Dimensional analysis offers a method for reducing complex physical problems to the 

simplest (that is, most economical) form prior to obtaining a quantitative answer. "The principal 

use of dimensional analysis is to deduce from a study of the dimensions of the variables in any 

physical system certain limitations on the form of any possible relationship between those 

variables. The method is of great generality and mathematical simplicity” (Bridgman, 1931). 

Consider that the behavior of a given physical problem is governed by a set of 𝑛 

quantities 𝐴1, 𝐴2, . . . 𝐴𝑛 , that includes the entire variables essential (factors) to the solution of the 

physical problem. The response 𝑦 to mechanical load can be expressed as a homogeneous 

function which is a function with multiplicative scaling behaviour: 

𝑦 = 𝐹(𝐴1, 𝐴2, . . . 𝐴𝑛) (5-9) 
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In order to establish this function, it is necessary to vary all the quantities to find their 

influences on the solution. The higher number of parameters, the more models required for 

analysis. To make this analysis more practical, the number of parameters can be reduced by 

means of the Buckingham π theorem. The theorem states that if there is a physically meaningful 

equation involving a certain number n of physical variables such as in the forgoing example, then 

the original equation can be rewritten in terms of a set of 𝑝 = 𝑛 − 𝑘 dimensionless parameters 

𝜋1, 𝜋2, . . . , 𝜋𝑝 constructed from the original variables where, k is the number of physical 

dimensions involved and it is obtained as the rank of a particular matrix. Based on this theorem, 

the response function can be recast in terms of dimensionless independent π − parameters as: 

𝑦 = 𝐺(𝜋1, 𝜋2, . . . , 𝜋𝑝) (5-10) 

The importance of this transformation is that the scale effects can be controlled in an 

experimental or numerical modeling program and the number of parameters that must be 

considered is reduced by 𝑟, in which 𝑟 is the rank of the dimensional matrix. This can result in a 

significant saving of cost and effort.  

In order to perform dimensional analysis, first, the dimensions for each individual 

variable should be found, and then, the π − parameters can be defined more conveniently. 

Using fundamental units of mass (𝑀), length (𝐿), and time (𝑇), the dimensional matrix for the 

variables is as shown in the following: 

Table 5- 1: Dimensions for the Variables (Dimensional Matrix) 

Variable 𝑴 𝑳 𝑻 Dimension 

𝐾𝑊𝐸𝐵: 1 0 -2 [𝑀𝑇−2] 

𝐾𝑇𝐵𝐹: 1 2 -2 [𝑀𝐿2𝑇−2] 

𝐾𝐿𝐵𝐹: 1 0 -2 [𝑀𝑇−2] 

𝐾𝐷𝐼𝐴: 1 0 -2 [𝑀𝑇−2] 

𝐾𝑆𝑇𝐹: 1 0 -2 [𝑀𝑇−2] 

𝜎𝑤𝑔: 1 -1 -2 [𝑀𝐿−1𝑇−2] 

𝑔: 0 1 0 [𝐿] 

𝛥: 0 1 0 [𝐿] 

The values in this table are based on the unit of each parameter. For instance, the unit for 

g is [L
1
] (Length). Therefore, [M] is zero, [L] is one, and [T] is also zero. 
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The Buckingham π theorem provides a method for computing sets of dimensionless 

parameters from given variables, even if the form of the equation is still unknown. However, the 

choice of dimensionless parameters is not unique: Buckingham's theorem only provides a way of 

generating sets of dimensionless parameters, and will not choose the most 'physically 

meaningful’ ones. These parameters should be selected in a way to consider the effect of the 

entire factors on the response function and no matter how these parameters are selected; they 

must be scale independent as well. 

The rank of the dimensional matrix shown in Table 5- 1 is also very important to obtain 

as it directly reduces the number of parameters in the parametric study. The dimensional matrix 

for this problem has rank two. Therefore, six independent dimensionless (8-2=6) π −

parameters must be defined to represent all 8 variables. 

For the web gap details in multi-girder steel bridges, the parameters chosen are presented 

in Equations (5-11) to (5-16).  

 

5.4.1. π1: Relative Parameter of Web Plate Stiffness 

and Transverse Stiffener Stiffness 

This parameter is very important in calculation of stress in the web gap as the stress in 

this zone is affected directly by the stiffness of the web plate and the transverse stiffener. If there 

is a flexible web plate, it deflects and dissipates the energy. Therefore, the magnitude of the 

stress in the web gap reduces. This deflection obviously, is affected by the transverse stiffener 

stiffness as well. Relatively rigid stiffener plate transfers the displacement directly to the web 

plate without any reduction and significantly increases the web gap stress as it has almost a rigid 

rotation. The relative Stiffness of Web Plate to Transverse Stiffener should be considered as a 

dimensionless parameter and is defined in Equation (5-11). 

 

𝜋1 =
𝐾𝑊𝐸𝐵

𝐾𝑆𝑇𝐹
=

4𝑤3(𝐿2 + ℎ2)2ℎ𝑠
3

𝐿3ℎ3(4𝑏𝑠𝑡𝑠ℎ𝑠
2𝐺/𝐸 + 𝑡𝑠𝑏𝑠

3)𝑆𝑖𝑛2(
𝑔

ℎ
𝜋)

 (5-11) 
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5.4.2. π2: Relative Parameter of Web Plate Stiffness 

and Bottom Flange Torsional stiffness 

This parameter is also very important in the web gap stress prediction equation because 

the bottom flange provides a support for the web gap and works as a spring boundary condition 

and has rotation due to bottom flange torsional flexibility too. The bottom flange rotation helps 

the web gap distort and dissipate higher energy. Therefore, if there is a rotationally fixable 

bottom flange connected to web plate, it accommodates the distortion of the web plate and 

basically reduces the web gap stress. The dimensions of the Web Plate stiffness and Bottom 

Flange Torsional stiffness do not match and to make the π-parameters dimensionless, the 𝜋2 

parameter is modified accordingly by multiplying the relative stiffness by 𝐿2. The relative 

modified Web Plate Stiffness and Bottom Flange Torsional stiffness is presented in 

Equation (5-12).  

 

𝜋2 =
𝐾𝑊𝐸𝐵. 𝐿2

1000𝐾𝑇𝐵𝐹
=

𝑤3(𝐿2 + ℎ2)2

1000ℎ3𝑏𝐹𝑡𝐹
3𝑆𝑖𝑛2(

𝑔

ℎ
𝜋)

 (5-12) 

 

5.4.3. π3: Relative Parameter of Web Plate Stiffness 

and Bottom Flange Lateral Stiffness  

 

This parameter is very similar to the 𝜋2 parameter. The only difference is that the 

dimensions of Web Plate Stiffness and Bottom Flange Lateral stiffness are the same and by 

simply dividing Web Plate Stiffness by Bottom Flange Lateral stiffness the 𝜋3 parameter is 

formed. 𝜋3 is presented in Equation (5-13). 
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𝜋3 =
𝐾𝑊𝐸𝐵

𝐾𝐿𝐵𝐹
=

𝑤3(𝐿2 + ℎ2)2

ℎ3𝑡𝐹𝑏𝐹
3𝑆𝑖𝑛2(

𝑔

ℎ
𝜋)

 (5-13) 

 

 

5.4.4. π4: Relative Parameter of Transverse Stiffener 

Stiffness and Diaphragm Stiffness 

 

This parameter is selected to study the effect of Diaphragm Stiffness as it has a 

significant role in transferring the deferential deflection between two adjacent girders and 

magnitude of distortion to the web gap detail. This deflection is transferred to the web gap 

through the transverse stiffener. This parameter is presented in Equation (5-14). 

 

𝜋4 =
𝐾𝑆𝑇𝐹

𝐾𝐷𝐼𝐴
=

2ℎ2 + (1 + 𝜈)𝑏𝑠
2

2𝑆2 + (1 + 𝜈)ℎ𝐷
2 ∗

𝑏𝑠𝑡𝑠𝑆3

ℎ𝐷𝑡𝐷ℎ𝑠
3 (5-14) 

 

 

5.4.5. π5: Relative Parameter of Differential 

Deformation and Web Gap Length 

 

To obtain the magnitude of stress at web gap location, it is needed to measure magnitude 

of the differential deflection of the adjacent girder. If a bridge is investigated experimentally, its 

behavior is generally tested in a displacement control conditions where the differential 

displacement between the two adjacent girders is recorded. π5 is a well-established 

dimensionless parameter which includes this measurement. The web gap length (𝑔) is also a 

known parameter for the detail. This parameter is presented in Equation (5-15). Unlike other so 
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far mentioned parameters which are function of the bridge geometrical dimensions only, π5 is 

the only parameter that includes the loading scenario. 

 

𝜋5 =
𝛥

𝑔
 (5-15) 

 

 

5.4.6. π6: Relative Parameter of Stress in Web Gap and 

Web Gap Stiffness 

 

This parameter relates the stiffness of the web plate and the magnitude of the stress in the 

web gap and can be considered as the output of the regression analysis. This parameter which is 

selected to be dimensionless as well is presented in Equation (5-16). 

 

𝜋6 =
𝜎𝑤𝑔. ℎ

100𝐾𝑊𝐸𝐵
=

𝜎𝑤𝑔𝐿3ℎ4

100𝐸(𝐿2 + ℎ2)2𝑤3
𝑆𝑖𝑛2(

𝑔

ℎ
𝜋) (5-16) 

 

 

The first five π − parameters are the inputs in the new factors set for the experimental 

design and 𝜋6 is obtained as output or the response function. Although these parameters are not 

unique and can be defined anyhow as long as they are dimensionless, they should have 

meaningful physical definitions. 

To assess whether all the 17 parameters which have significant effect on response 

function are taken into account the scale independency test must be performed on π −

parameters. This is because the set of π − parameters is not unique and can be chosen anyhow 

as long as there is a meaningful and physical definition for each individual π − parameter. If 
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varying the scales of the factors does not affect the response, the selected π − parameters are 

adequately chosen. To conduct this test, identical π − parameters are selected and the 

geometrical dimensions are scaled for each model. This should be done in order to get the same 

identical π − parameters. The response for these two cases (the obtained 𝜋6 for each model), 

must remain the same. This can be performed for several scales in which the geometrical 

dimensions are varying within reasonable and practical ranges. After it is assured that π −

parameters are scale independent, the experimental program can be designed for the problem.  

 

5.5. Scale Independency Test 

In order to perform the test, the experimental test data performed at University of Alberta 

(D’Andrea, Grondin, & Kulak, 2001; Fraser, Grondin, & Kulak, 2000), is used the initial input 

data (Table 5- 2) for the FE models and to calculate the identical π − parameters. This model is 

named “Base Scale”. 

Table 5- 2: Geometrical Dimensions Used in the Experimental Program at University of Alberta 

Parameters 𝑔 𝑤 ℎ 𝑏𝐹 𝑡𝐹 𝐿 𝑆 ℎ𝑆 𝑡𝑆 𝑏𝑠 𝑡𝑑 ℎ𝑑 

mm 50 9.5 914 254 16 1700 1000 864 10 100 9.5 686 

 

The FE model used to predict the web gap stress and to calculate 𝜋6, includes two 

girders, stiffeners, as well as bending plate diaphragm as shown in Figure 5- 1. 

 

Figure 5- 1: FE Model (Base Scale) Used to Calculate the π-parameters. 
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The members are modeled as homogeneous shells and governed by cyclic material 

properties defined in Chapter 3. The girders are simply supported at both ends of bottom flanges. 

To simulate the effect of bridge concrete deck, a rotation equivalent to the magnitude of 

differential deflection divided by girder spacing is applied to both top flanges. Mesh sensitivity 

analysis is performed to obtain an optimal density that ensures consistency of results and 

efficiency of computation time. Results of the sensitivity analysis are summarized in the      

Table 5-3. The size of the mesh used in the web gap, the region of interest, is called “local mesh 

size” while “global mesh size” refers to the one used for the rest of the model. Various densities 

for local and global meshes are studied (Model 1 through Model 7). Additionally, in Model 8 and 

Model 9, mesh is gradually increased for both web gap and other parts of the model to reduce the 

computation time further without affecting results. The differential deflection of 0.31 mm 

measured experimentally is applied to the middle of one girder during this sensitivity analysis. 

The magnitude of the stress (𝝈𝒚𝟏) that corresponds to the experimental strain produced by the 

deflection is calculated and compared with the Models predictions (Table 5- 3).  

Table 5- 3: Results of Mesh Sensitivity Analysis. 

Model Local Global Mesh Size 
𝝈𝒚𝟏 (MPa) 𝝈𝒚𝟐 

MPa 
𝝈𝒚𝟑 
MPa 

𝝈𝒚𝟒 
MPa 

Running 

Time Exp FE 

Model 1 10 mm 10 mm 

85 

1 1 1 1 30 sec 

Model 2 5 mm 5 mm 17 15 13 13 2 mins 

Model 3 2.5 mm 2.5 mm 30 22 21 20 14 mins 

Model 4 2 mm 2 mm 35 24 22 22 1 hr. 17 mins 

Model 5 2.5 mm 5 mm 33 24 22 22 6 mins 

Model 6 1 mm 5 mm 56 29 29 28 6 mins 

Model 7 0.5 mm 5 mm 86 32 33 33 7 hr. 30 mins 

Model 8 0.5 to 5 mm 5 mm 86 32 33 33 34 mins 

Model 9 0.5 to 5 mm 10-40 mm 86 31 33 33 17 mins 

 

In Table 5- 3, 𝜎𝑦1, 𝜎𝑦2, 𝜎𝑦3, and 𝜎𝑦4 are the vertical stresses in the web gap for four 

preselected locations at the stiffener location (behind of the stiffener), 10 mm below the stiffener 

weld and 10 mm to the left and right of the stiffener at the weld level, respectively. These 

locations were picked and used as reference in order to make the comparison the stresses 

computed in each model. According to the results presented in the mesh sensitivity analysis, the 

growing mesh size of 0.5 to 5 mm is used for the web gap and 10 to 40 mm is used for the rest of 

model (Model 9). 
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The calculated parameters based on the dimensions presented in Table 5- 2 are shown in 

Table 5- 4.  

Table 5- 4: Calculated Factors for the Values Presented in Table 5- 2. 

Parameter Results Parameter Results 

𝐾𝑊𝐸𝐵 21693 𝜋1 0.27 

𝐾𝑇𝐵𝐹 42839341 𝜋2 1.46 

𝐾𝐿𝐵𝐹 10673 𝜋3 2.03 

𝐾𝐷𝐼𝐴 609534 𝜋4 0.13 

𝐾𝑆𝑇𝐹 81794 𝜋5 0.02 

 

Using the maximum vertical stress at the web gap detail obtained from the FF model the 

parameter 𝜋6 is calculated and the value 0.26 is obtained.  

FE models for eight other scales of the model are created with identical input π −

parameters. The geometrical dimensions and calculated parameters as well as obtained 𝜋6 from 

FE analysis are presented in Table 5- 5 and Table 5- 6, respectively. These parameters are chosen 

in a way to cover wide range for each parameter. For instance, web thickness, w, varies from 3 

mm to 21 mm and web gap, g, varies from 10 mm to 300 mm. To obtain identical π parameters, 

web gap length, g, web thickness, w, and web height, h, are initially chosen while the other 

geometrical parameters are calculated in a way to obtain similar π parameters. As a result, some 

of these calculated geometrical parameters do not really make sense in practical point of view 

and it should be noted that they are selected to provide variety of scales. The finite element 

models for Scale 1 to Scale 8 are shown in Figure 5- 2.  
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Table 5- 5: Geometrical Dimensions Used for Different Model Scales (mm). 

 
Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 

𝑔 120 100 150 80 300 200 10 300 

𝑤 13 13 14 12 21 20 3 21 

ℎ 700 984 1150 780 2000 1500 800 2000 

𝑏𝐹  189 262 221 255 225 244 195 225 

𝑡𝐹  12 17 14 16 14 15 12 14 

𝐿 1416 1970 1987 1740 1970 1844 1249 1866 

𝑆 1232 1049 1367 1083 2386 1609 812 1705 

ℎ𝑆 580 884 1000 700 1700 1300 790 1700 

𝑡𝑆 7 9 7 9 9 10 9 10 

𝑏𝑆 49 86 63 87 88 100 90 95 

𝑡𝑑 9 9 6 10 5 7 5 5 

ℎ𝑑  533 586 601 707 1300 1061 738 1112 

 

 

Table 5- 6: Calculated Parameters for Different Scales and Obtained π6 From Finite Element Analysis 

 
Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 

𝑲𝑾𝑬𝑩 11394 15796 7779 20554 8626 14411 19048 10139 

𝑲𝑫𝑰𝑨 320123 443816 218571 577487 242357 404905 535170 284873 

𝑲𝑺𝑻𝑭 42960 59560 29332 77499 32524 54338 71820 38230 

𝑲𝑳𝑩𝑭 5606 7772 3828 10113 4244 7091 9372 4989 

𝑲𝑻𝑩𝑭 15610049 41904803 20994302 42500098 22870341 33481448 20305120 24136311 

𝝅𝟏 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

𝝅𝟐 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 

𝝅𝟑 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 

𝝅𝟒 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

𝝅𝟓 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

𝝅𝟔 0.12 0.11 0.12 0.12 0.12 0.11 0.12 0.12 

 

 As it is shown in Table 5-6, for all the models 𝝅𝟏  to 𝝅𝟓 parameters are identical while 

slight discrepancies are found in the response or output (𝝅𝟔) parameter. The average value is 

0.12. Therefore, the set of these π − parameters can be considered as a scale independent and 

can be used in the parametric study. 
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5.6. Range of π-parameters for the Parametric Study 

 

An experimental program requires definition of its scope and limitations in advance. It 

should be clear that experiments are performed and valid for a certain range of parameters. There 

are generally two sources to define these ranges; the common practice or the practical point of 

view and the codes of standard.  In this section, the ranges of the geometrical dimensions used in 

the parametric study for multi girder steel bridges web gap are defined. 

The requirements given below are generally taken from AASHTO (Minervino, Moses, 

Mertz, & Edberg, 2004) and Canadian Standard Association (CSA-S6, 2006) and the range are 

defined in a way to cover wide ranges of variation for each parameter. 

According to Canadian Standard Association (CSA-S6, 2006) the slenderness of the 

flange and the slenderness of the web are both restricted to Class 1 and Class 2 sections. This is 

simply to prevent local buckling that may occur before the plastic moment of the beam or girder 

is attained. The minimum web thickness is taken as 1/2” to prevent and reduce potential warping 

during fabrication. 

Webs without longitudinal stiffeners must be proportioned such that ([C6.10.2.1.1]): 

ℎ

𝑤
≤ 150 (5-17) 

where, ℎ is the half of flange width or web height, and  𝑤 is the flange thickness or the 

web thickness. 

To permit at least 4 lines of bolts for field splices, AASHTO recommends minimum ¾” 

by 14” flange plate. 

The clearance of four to six times the web thickness specified between the end of the 

stiffener to web weld and the toe of the web to flange weld was also recommended in the code to 

reduce distortion induced stress in the web gap (CSA-S6, 2006).  

For plate girders, flange and web plate thickness AASHTO also recommends selecting 

values in 1/16” increments for thicknesses up to 1”. For thicknesses between 1” and 2 ½”, it 
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recommends the use of 1/8” increments while for thickness range between 2 ½” and 4” the ¼” 

increments is more suitable.  

The minimum flange width 𝒃𝑭  and flange thickness 𝒕𝑭 are limited to the following 

relations ([C6.10.2.2]). 

ℎ

𝑏𝐹
≤ 6 (5-18) 

 

𝑡𝐹 ≥ 1.1 𝑤  (5-19) 

 

For stability during shipping and erection the minimum compression flange width 𝑏𝐹 is 

([C6.10.3.4], [C6.10.2.2]: 

𝑏𝐹

𝐿
≤

1

85
 (5-20) 

  

𝑏𝐹

2𝑡𝐹
≤ 12 (5-21) 

 

Stiffener plate width to thickness ratio is limited to the following to prevent buckling of 

the plate at a stress below the yield point of the material (AASHO, 1965; AISC, 1963). 

 

𝑏𝑠

𝑡𝑠
≤

3000

√𝜎𝑦

 (5-22) 

 

For structural steel, this ratio is limited to 16. 

Although a maximum cross-frame or diaphragm spacing of 8 m has proven satisfactory 

in the past to provide girder stability and transfer wind loads, it is no longer mandatory in the 

code (CSA-S6, 2006). AASHTO recommends 7.5 m to 9 m maximum diaphragm spacing in 

positive moment segments and 4.5 m to 6 m maximum diaphragm spacing in negative moment 
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segments. For multi girder bridges, two intermediate diaphragms or cross braces per span is 

recommended as increasing the number of bracing system beyond this does not provide 

significant difference (CSA-S6, 2006). 

As a rule-of-thumb for the preliminary design of continuous structures, it is 

recommended to use a steel section depth of 0.033L, where L is the span length. This depth must 

not be less than 0.0285L ([C2.5.2.6.3]), (Minervino et al., 2004). 

AASHTO (2014) recommends that diaphragms or cross-frames for rolled beams and plate 

girders should be as deep as practicable, but with a minimum value of 0.5 of the beam depth for 

rolled beams and 0.75 of the girder depth for plate girders at least. 

Based on the restrictions and recommendations from AASHTO (2014) (Minervino, 

Moses, Mertz, & Edberg, 2004) and Canadian Standard Association (CSA-S6, 2006), the ranges 

of the geometrical dimensions used in this study are defined and presented in Table 5- 7. 

Table 5- 7: Ranges of Geometrical Dimensions Used in the Parametric Study 

Parameter Min Max 

𝒈 5 mm 150 mm 

𝒘 10 mm 25 mm 

𝒉 600 mm 5000 mm 

𝒃𝑭 250 mm 1000 mm 

𝒕𝑭 30 mm 60 mm 

𝑳 1000 mm 8000 mm 

𝑺 1200 mm 3600 mm 

𝒕𝑺 11 mm 45mm 

𝒃𝑺 100 mm 400 mm 

𝒕𝒅 10 mm 20 mm 

𝒉𝒅 300 mm 4500 mm 

𝑨𝑿 2000 mm2 10000 mm2 

α 60° 80° 
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After investigating the FE models, it was found that the diaphragm spacing parameter has 

almost no effect on the results when the spacing is relatively long. This is simply because the 

distortion of the web plate and twist of the bottom flange are not transferred beyond a certain 

point or even close to adjacent diaphragm. Therefore, if this parameter is not available, 1500 mm 

diaphragm spacing (75 mm each side of the transverse stiffener) seems to provide a reasonable 

results. This ensures consistency of all FE models as well. Within this distance, the web gap 

distortion and bottom flange torsional rotation diminish and the web plate and bottom flange do 

not get influenced by the differential deflection.  

To calculate the maximum and minimum stiffness, the parameters are selected based on the 

range of dimensions of the member affecting the stiffness. It should be noted that this method is 

not suitable to calculate the maximum and minimum value for π-parameters. For example, to 

calculate maximum value of π1, we cannot simply divide maximum of web plate stiffness 

(KWEB ) by minimum of stiffener stiffness ( KSTF)as the detail does not have maximum value for 

web plate stiffness and minimum value for stiffener stiffness. There must be a logical and 

practical relation between them to build the connection. Therefore, all the design criteria should 

be included in the calculations, simultaneously.  

 In order to get reasonable ranges for these π-parameters, some currently in-service steel multi 

girder bridges constructed prior to 1985 have been investigated to find the geometric dimensions 

of the web gap detail and the bridges. Data from this study is presented in Table 5-8. Although 

this table does not cover all the ranges of geometrical dimensions mentioned in Table 5-7, it is a 

good guide to consider the relative stiffness of the member in the experimental design.  
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Table 5- 9: References used for bridge inventory in Table 5-8. 

Bridge # Reference Bridge # Reference 

1 69021 14 66001 

2 19898 15 86802 

3 19897 16 49011 

4 9775 17 27106 

5 9452 18 19882 

6 27015 19 19816 

7 62045 20 19832 

8 66809 21 Adams, (2010) 

9 31023 22 Shifferaw & Fanous, (2013) 

10 55029 23 Zhao & Kim Roddis, (2007) 

11 69894 24 27796 (Li & Schultz, 2005) 

12 27734 25 Fisher, (1990) 

13 62702 26 Fraser et al., (2000) 

 

The numbers in Table 5- 9, indicate the bridge IDs in some Departments of Transformation in 

USA (Berglund & Schultz, 2001). 

Using the parameters in Table 5- 7, the ranges of factors and π-parameters are calculated and 

presented in Table 5- 10.  

Table 5- 10: Ranges of π-parameters Used in the Parametric Study 

Parameters Minimum Maximum 

𝑲𝑾𝑬𝑩 (N/mm) 2.E+05 2.E+04 

𝑲𝑫𝑰𝑨 (N/mm) 6.E+05 2.E+05 

𝑲𝑺𝑻𝑭(N/mm) 3.E+05 4.E+04 

𝑲𝑳𝑩𝑭 (N/mm) 1.E+05 2.E+04 

𝑲𝑻𝑩𝑭 (N. mm) 5.E+08 5.E+07 

𝝅𝟏 0.05 2 

𝝅𝟐 0.05 3.5 

𝝅𝟑 1 4.5 

𝝅𝟒 0.1 1.5 

𝝅𝟓 0 0.02 

 

All of these maximum and minimum limitations are increased and decreased, respectively, by 

20 percent to cope with the variability of the dimensions. 
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Chapter 6 

 

Design of Experiments and the Development of 

Prediction Equation 

 

 The goal of this research is to develop an equation to predict the magnitude of the stress 

in the web gap detail. This equation would be a fitted mathematical function with estimated 

coefficients.  The first step to develop this equation is to assume a general form for the function 

whose unknown coefficients can be estimated statistically. The predicted value of the stress 

obtained using this method is highly sensitive to the general form of the equation. Developing 

this equation requires a good understanding of the effects that each parameter can have on the 

output and the overall behavior of the system. Even if the general form of the equation is already 

known, there are infinite numbers of coefficient values obtained from regression analysis that 

can potentially be used. Therefore, the best sets of coefficients should be selected among these 

potential coefficients to predict the output closest to the actual values. 

Linear, quadratic, and exponential regressions are investigated for the web gap stress 

prediction problem and the results of the most accurate regression analysis are presented in this 

chapter. Least squares criterion is used in order to compare different sets of coefficients for each 

regression method. 

 A set of preliminary FE study of the web gap detail is performed to understand the 

behavior of the model, the effect of each individual parameter on the prediction results, and the 

general form of the prediction equation. This is mostly known as screening study which roughly 

clarifies the overall influence of each individual parameter in the prediction equation and gives 

the assessor a good idea about the preliminary form of the equation. This study is performed and 

presented in the following section. 

 To obtain appropriate and acceptable coefficients, numerous sets of experimental data are 

needed. The more data from experiment we have, the more accurate equation we can get from 
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the regression analysis and the obtained coefficients lead to more precise predictions. However, 

it is almost impractical to perform and run unlimited experiments and consider all the possible 

combinations among the parameters which results the perfect prediction equation. In addition, it 

is necessary to design experiments that are achievable and provide the satisfying results with 

minimal costs. 

 Experimental design or design of experiments (DOE) which is the process of designing 

and analyzing the experimental program using efficient and effective approach is utilized in this 

chapter to obtain the essential statistic data. This method combines the expert knowledge and 

statistical technique to optimize the number of the experimental data and to obtain reasonable 

and satisfying results. 

   

6.1. Screening Study 

 

Prior to performing any experimental program and design the experiments, all the variables 

must be considered individually to give an idea to the experimenter about the influence of these 

parameters on the overall behavior of the response function. In other words, only one variable or 

one factor is investigated at a time and all other variables are kept constant. This is also known as 

“one variable at a time” approach. This method helps choose the level of variation at which the 

variable is needed to be investigated. For instance if the variable shows a linear trend in this step, 

only two levels are considered for it, and if it shows any curvature trend, at least three levels are 

needed to represent the effect. Basically, the screening study intends to find the significance of 

each parameter on the output results or the response function. 

 

If the significance of all the parameters is linear, the experimental design would only be the 

first-order design where two levels of each factor are needed. This is also known as 2𝑘 factorial 

design, where 𝑘 is the number of factors. This approach does not present any possible curvature 

in the response surface. 
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If the experimenter expects a curvature in the response surface, the parameters or factors are 

required to be investigated in at least three levels. This approach is called 3𝑘 factorial design, 

where 𝑘 is again the number of all factors. This results in a significant growth in the number of 

required experiments. For instance, for the web gap stress prediction problem in which the 

number of factors is 5, 2𝑘 factorial design only needs 32 experiments. However, 3𝑘 factorial 

design requires 243 experiments. Therefore, it is necessary to understand the effect of each 

parameter on the response surface and consider the proper levels for the factors as it reduces the 

number of experiments significantly. If the response shows a linear trend for a specific factor and 

the experimenter uses three levels for the experimental design for that factor, the number of 

experiments is increased with no extra gain in the accuracy of the results. 

Using one factor at a time approach gives the assessor a good idea about the effect of each 

factor on the output (response surface) and indicates the levels required for each factor to 

construct the experiments.  

For the web gap stress prediction problem, screening study is performed for all 5 π −

parameters and the results are presented in this section. The ranges of the π − parameters are 

defined in Chapter 5 and the levels at which each parameter is considered, remained within the 

ranges.  

As the effect of the factors in the web gap stress prediction problem is not well established, 

it is decided to use  3𝑘 factorial design approach to observe the trend of the response surface 

influenced by each factor. Therefore, three levels for each parameter are selected for this 

screening study. These factors levels are presented in Table 6-1. 
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Table 6- 1: 𝝅-Parameters levels for parametric study 

 
Level 

Low Median High 
Factor  

π1 0.12
3
 1 2 

π2 0.12
 

1.5 3.5 

π3 1 2.5 4.5 

π4 0.1 0.8 1.5 

π5 0 0.01 0.02 

     

 

To perform the screening study, a base model is selected and the one factor at a time 

approach is used to obtain the preliminary idea about the effect of each parameter on the 

response surface. The base model is formed by using median levels for all π − parameters. 

Each parameter is varied by its three levels and the other parameters are kept the same as the 

base model. This reduces the number of screening study experiments to 11 models including the 

base model. The magnitudes of π − parameters for these models are presented in Table 6- 2. 

 

Table 6- 2: Set of variables for screening study of 𝝅-Parameters 

Model π1 π2 π3 π4 π5 

Base 1.00 1.50 2.50 0.80 0.01 

1
 

0.12
1 1.50 2.50 0.80 0.01 

2 2.00 1.50 2.50 0.80 0.01 

3 1.00 0.12
1 2.50 0.80 0.01 

4 1.00 3.50 2.50 0.80 0.01 

5 1.00 1.50 1.00 0.80 0.01 

6 1.00 1.50 4.50 0.80 0.01 

7 1.00 1.50 2.50 0.10 0.01 

8 1.00 1.50 2.50 1.50 0.01 

9 1.00 1.50 2.50 0.80 0.005 

10 1.00 1.50 2.50 0.80 0.02 

                                                           
3
 0.12 minimum values are used for the π1 and π2 instead of 0.05 (specified in Table 5-10) in this screening study 

as it was impossible to find the solution for dimensions for models 1 and 3. 

L: Lowest Level, M: Median Level, H: Highest Level 
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In Model 9 the first level of π5 is zero but it leads to an obvious value of zero for π6. 

Therefore, 0.005 is selected for the lowest value for 𝜋5 in this screening study.  

The finite element models used for the screening study are the same models as described 

in Chapter 5. The dimensions for each model were selected and calculated in a manner to obtain 

the corresponding π − parameters. Clearly, there is no unique solution for the dimensions set 

which leads to the same π − parameters. Therefore, some dimensions for each model were 

randomly selected and the remaining dimensions were calculated such that the goal π −

parameters were obtained. As the dimensionless parameters are complicated to be equal to a 

certain values simultaneously, an iterative approach is used to calculate the remaining 

dimensions of the model. These iteration procedures were performed in Microsoft Excel. The 

dimensions of these models are presented in Appendix B. These models were created and 

analyzed in ABAQUS and the results are presented in the following sections. For each π −

parameter the results of the base model (level M) and two other levels (H and L) for the 

parameter under consideration are graphed to represent the influence of the parameter on the 

response surface. The results for the influence of π1 to π5 on the response function (π6) are 

presented in Figure 6- 1 to Figure 6- 10. To calculate the π6 for each model, the vertical stress in 

the web gap detail is obtained from ABAQUS along the web gap detail. The stress is recorded 

from the weld toe at transverse stiffener and web plate connection for 12 mm toward the bottom 

flange. The stress at 4 mm, 8 mm, and 12 mm locations are used to calculate the HSS in the web 

gap detail according to Equation 3-1. This equation is presented in the following as well. 

 

𝐻𝑆𝑆 = 3𝜎4𝑚𝑚 − 3𝜎8𝑚𝑚 + 𝜎12𝑚𝑚  (3-1) 

 

Using the calculated HSS from the vertical stress at the web gap detail, a corresponding 

π6 is calculated for each model using Equation 6-1. This output (π6) for the model is compared 

with the outputs from other models. 
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𝜋6 =
𝐻𝑆𝑆 ∙ ℎ

100𝐾𝑊𝐸𝐵
 (6-1) 

 

where ℎ is the web plate height, and 𝐾𝑊𝐸𝐵 is the web plate stiffeness. 

 

6.1.1. Effect of 𝜋1 on the response (𝜋6) 

 

In order to find the influence of π1, which is the relative parameter of web plate stiffness 

and transverse stiffener stiffness, three levels are considered for π1(0.12, 1, and 2) in this 

screening study. The other π − parameters are maintained the same as the “Base Model”                

(π2 = 1.5, π3 = 2.5, π4 = 0.8, and π5 = 0.01). Therefore, Base model, Model 1 and Model 2 

are compared in this section. Figure 6- 1 shows the magnitude of π6 along the web gap using the 

stress at the web gap location and Figure 6- 2 presents the effect of π1 on π6 calculated form 

HSS using Equation 3-1.  

 

 
Figure 6- 1: Effect of variation of 𝝅𝟏 on 𝝅𝟔 
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Figure 6- 2: Effect of variation of 𝝅𝟏, obtained from HSS, on 𝝅𝟔 

 

 As shown in Figure 6-1 and Figure 6-2,  the output (π6) is highly sensitive to variation of 

π1. By increasing π1, π6 drops drastically and consequently the stress in the web gap detail 

decreases. As expected, this means that if the transverse stiffener is more flexible, it absorbs 

higher deflection and the web gap relatively experiences less load. 

 

6.1.2. Effect of π2 on the response (π6) 

 

This parameter relates the web plate stiffness and bottom flange torsional stiffness. It is 

expected to predict lower stress when there is a more flexible flange in the detail. This is because 

a flexible flange gives the web plate more flexibility to distort. To find the influence of π2 on π6, 

Model 3 and Model 4 are constructed and π2 is varied (0.12, 1.5, and 3.5) and the other 

parameters are again maintained the same as the Base model (π1 = 1, π3 = 2.5,  π4 =

0.8, and π5 = 0.01). 

The influence of  π2 is shown in Figure 6- 3 and Figure 6- 4. It is clear that by increasing 

 π2,  π6 decreases up to a certain point and after that it does not significantly affect the output. 

Although this parameter has some effect on the response function, it is not as considerable as  π1. 
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Figure 6- 3: Effect of variation of 𝝅𝟐 on 𝝅𝟔 

 

Figure 6- 4: Effect of variation of 𝝅𝟐, obtained from HSS, on 𝝅𝟔 
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6.1.3. Effect of π3 on the response (π6) 

 

To investigate the effect of  π3 on the response function, Model 5 and Model 6 are 

created. This parameter is the relative parameter of web plate stiffness and bottom flange lateral 

stiffness. In these models only π3 is varying in three levels (1, 2.5, and 4.5) and all the π −

parameters are the same as the ones for Base Model to be able to compare the results       (π1 =

1, π2 = 2.5,  π4 = 0.8, and π5 = 0.01). The results of this investigation are presented in Figure 

6- 5 and Figure 6- 6. Decreasing the bottom flange lateral stiffness increases the  π3 and 

consequently the response function (π6) decreases. The reason is that as the bottom flange 

becomes more flexible, the web gap can distort easier and the magnitude of the vertical stress 

reduces in the detail.  

 

Figure 6- 5: Effect of variation of 𝝅𝟑 on 𝝅𝟔 
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Figure 6- 6: Effect of variation of 𝝅𝟑, obtained from HSS, on 𝝅𝟔 

 

 

6.1.4. Effect of π4 on the response (π6) 

 

This parameter relates the transverse stiffener stiffness and diaphragm stiffness. To assess 

the influence of this parameter on the output results, Model 7 and Model 8 are constructed. In 

these models only π6 is different and is set equal to its three levels (0.1, 0.8, and 1.5) and the 

other four parameters are kept the same as the ones in Base Model                                             

(π1 = 1, π2 = 2.5,  π3 = 2.5, and π5 = 0.01). 

Having a flexible diaphragm in steel multi-girder bridges allows the two adjacent girders 

to deflect more independently and the lower distortion would be transferred into the web gap 

detail from the rotation of the diaphragm. This causes less vertical stress in the web gap and 

consequently, π6 decreases. This trend of the output is rationally expected and is clearly shown 

in Figure 6- 8. 
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Figure 6- 7: Effect of variation of 𝝅𝟒 on 𝝅𝟔 

 

 

Figure 6- 8: Effect of variation of 𝝅𝟒, obtained from HSS, on 𝝅𝟔 
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6.1.5. Effect of π5 on the response (π6) 

 

This is the final parameter investigated in the screening study. π5 is the only 

dimensionless parameter considered as the loading parameter. It represents the differential 

deflection between two adjacent girders in steel multi-girder bridges. In order to perform the 

study and realize the influence of this parameter, the “Base Model” is used and only three 

magnitudes of differential deflections are applied. These differential deflections create the three 

levels for π5 (0.005, 0.01, and 0.02). As the same model is used, obviously the other first 

π − parameters were kept unchanged (π1 = 1, π2 = 2.5,  π3 = 2.5, and π4 = 0.8).  

The results for this study are presented in Figure 6- 9 and Figure 6- 10. It is found that the 

response function varies linearly with changing π5. By increasing the magnitude of differential 

deflection, π5 increases and as it is shown in Figure 6- 10, π6 increases too. This is clearly 

because of the magnitude of distortion transferred to the web gap.  

 

Figure 6- 9: Effect of variation of 𝝅𝟓 on 𝝅𝟔 
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Figure 6- 10: Effect of variation of 𝝅𝟓, obtained from HSS, on 𝝅𝟔 
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developed by Genichi Taguchi (Cavazzuti, 2012), 𝐿18 21 × 37 can be the most efficient 

experimental design for the stress prediction problem in the web gap detail. Taguchi uses the 

following convention for naming the orthogonal arrays; 𝐿𝑎  𝑏𝑐, where 𝑎 is the number of 

experimental runs, 𝑏 is the number of levels of each factor, and 𝑐 is the number of variables. 

𝐿18 21 × 37 consists of one factor at 2 levels and up to 7 factors at three levels each. There are 18 

rows in this design of experiments. This method is being successfully implemented in diverse 

areas such as engineering and science. Using this method, the experiments needed for the stress 

prediction problem at web gap detail are summarized in Table 6- 3. In this table, “L”, “M”, and 

“H” indicate the lowest, median, and highest values for each π − parameter, respectively. Run 1 

to Run 18 is equivalent to Model 1 to Model 18 in this parametric study. 

Table 6- 3: Design of experiments for the stress prediction problem at web gap detail. 

Run 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝝅𝟒 𝝅𝟓 

1 L L L L L 

2 L M M M L 

3 L H H H L 

4 M L L M L 

5 M M M H L 

6 M H H L L 

7 H L M L L 

8 H M H M L 

9 H L L H L 

10 L L M H H 

11 L M L L H 

12 L H M M H 

13 M L M H H 

14 M M H L H 

15 M H L M H 

16 H L H M H 

17 H L L H H 

18 H H M L H 
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According to Table 6- 3, 18 finite element models are constructed and the results of this 

parametric study are presented in the following section. The dimensions of these models are 

presented in Appendix C. The dimensions for each model were selected and calculated in a 

manner to obtain the corresponding π − parameters. As it was previously mentioned there is no 

unique solution for the dimensions set which leads to the same π − parameters. Therefore, 

some dimensions for each model were manually selected and the remaining dimensions were 

calculated such that the goal π − parameters were obtained. The iteration procedures to 

calculate the dimensions were performed in Microsoft Excel. 

 

6.3.  Results of Parametric Study 

 

The results for the parametric study of all the 18 models are presented in this section. To 

calculate the π6 for each model, the vertical stress in the web gap detail is obtained from 

ABAQUS along the web gap detail. The same procedure as the one used in screening study is 

used to calculate the HSS in the web gap detail. Then, Equation 6-1 is used to calculate π6 for 

each model which is used in stress prediction equation for the web gap detail. 

 Vertical stresses at web gap detail along web plate are extracted from ABAQUS for each 

model. The stresses for Model 1 to Model 18 are presented in Appendix C from Figure A. 1 to 

Figure A. 18, respectively. The distance in these graphs are measured from the weld toe at 

transverse stiffener in perpendicular direction to longitudinal direction along the web plate. The 

path along which the stress is extracted for each model is also shown in Figure 3- 22. Using the 

extracted stress from finite element models, HSSs are calculated for each model and from the 

obtained HSS, π6’s are calculated. These results are presented in Table 6- 4. 
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Table 6- 4: Calculated HSS and 𝝅𝟔 for Models in Parametric Study. 

Run HSS (MPa) 𝛑𝟔 Run HSS (MPa) 𝛑𝟔 

1 372 0.33750 10 266 0.02520 

2 230 0.02694 11 549 0.53545 

3 199 0.01270 12 277 0.05792 

4 65 0.00219 13 132 0.00210 

5 54 0.00071 14 201 0.02761 

6 133 0.01114 15 152 0.00314 

7 65 0.00314 16 77 0.00100 

8 39 0.00041 17 55 0.00081 

9 17 0.00038 18 93 0.00087 

 

 

6.4. Prediction Equation Development 

 

Using the results of 18 finite element models obtained from the parametric study as well as 

the results of 11 models used in the screening study, a regression analysis is conducted in order 

to obtain the equation to predict stress in the web gap detail. Regardless of the method used for 

the regression analysis, the form of the prediction equation must be chosen in advance in order to 

calculate the optimal values for the unknown coefficients. The most common function forms of 

regression analysis are linear functions, polynomial function, and exponential functions. 

According to the screening study performed in the previous section for the stress prediction 

equation, the linear regression and linear combination of the dimensionless parameter do not 

properly represent the behavior of the detail and cannot provide accurate results for the 

regression analysis. The same argument is valid for polynomial regression analysis as for some 

dimensionless parameters such as π1 and π4 it is obvious that the trend cannot be described by 

polynomial functions. Therefore, it is decided to use exponential multi-parameter regression 
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approach to obtain the equation which best fits the experimental design results and provides the 

most accurate results for the predicted stress in the web gap detail. 

To obtain the coefficients, the residual errors are minimized by using the least squares 

techniques. The residual error is the difference between the obtained value from experiments or 

the observed value of the response, and the value given by the prediction equation. The 

coefficient of determination, R2, is the most common value that is used to compare the prediction 

models and the accuracy of the prediction. R2 is a number between 0 and 1. R2 = 1 means that 

all the variation in the response function is described in the prediction equation. There are several 

definitions for R2 among which the most common definition is used in this study which is 

presented in Equation (6-2). 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
 (6-2) 

 

where, 𝑅2 is the coefficient of determination for the prediction equation, 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is sum of 

squared residual error, and 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is sum of squared deviations of the observed values about the 

sample mean. 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  and 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 are defined in Equation (6-3) and Equation (6-4). 

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ∑(𝑌𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

= ∑(𝐸𝑟𝑟𝑜𝑟)2

𝑛

𝑖=1

 (6-3) 

 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑(𝑌𝑖 − �̅�)2

𝑛

𝑖=1

 (6-4) 

 

where, 𝑌𝑖 is the 𝑖𝑡ℎ observed value of the response variable, �̂�𝑖 is the 𝑖𝑡ℎ predicted value of 

the response variable, �̅� is the mean of observed values of the response variable, and 𝑛 is the 

number of observed values.  
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6.4.1. General Form of the Prediction Equation 

 

Based on the screening study performed in section 6.1 and the results of parametric study, 

several prediction equations were proposed and investigated. It was found that the equation with 

the exponential form provides the greatest value for R2. The general form of the prediction 

equation is presented in Equation (6-5).  

 

𝜋6 = 𝐴(𝜋1)𝐵(𝜋2)𝐶(𝜋3)𝐷(𝜋4)𝐸(𝜋5)𝐹 (6-5) 

 

where, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are the regression coefficients and 𝜋1 to 𝜋6 are the dimensionless 

parameter used as independent variables. 

The exponential regression analysis was conducted in Microsoft Excel in order to calculate 

the regression coefficients which minimize the prediction error and maximizes the R2.  It should 

be noted that regression coefficient F is manually set to 1 as its corresponding dimensionless 

parameter (𝜋5) demonstrated linear influence on the response function (𝜋6).  

 

6.4.2. Results of Regression Analysis 

 

The regression analyses were performed for two ranges of 𝜋6 as fitting one curve and 

getting the accurate results were not possible for this set of data. It is simply because the overall 

behavior of web gap influences the magnitude of the vertical stress in the detail. If the web gap is 

stiff enough to transfer the distortion to the bottom flange, the lateral and torsional stiffness of 

the bottom flange affects the boundary condition of the web plate at the web gap location. In 

contrast, if the web gap is very flexible, it absorbs all the distortion and lets the transverse 

stiffener deflect without influencing the bottom flange at all. This is taken into consideration by 

defining a limit for 𝜋6 for flexible and stiff web gaps. Web gaps with 𝜋6 less than 0.01 are 
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considered as stiff web gap details and the ones with 𝜋6 greater than or equal to 0.01 are defined 

as flexible web gaps. Therefore, two regression analyses are performed; one for flexible web 

gaps and one for stiff web gaps. The results are presented in the following sections.  

 

 

6.5. Prediction Equation for Stiff Web Gaps  

(π6 < 0.01) 

 

By performing the non-linear exponential regression analysis for the results which have π6 

less than 0.01 the regression coefficients and exponents are found for Equation (6-5). Using this 

regression result, Equation (6-6) and Equation (6-7) are obtained for π6 < 0.01. 

By combining Equation (6-7) and Equation (6-8) 𝐻𝑆𝑆 can be obtained from web plate 

stiffness of each member in the web gap detail. This relation is presented in Equation (6-9). 

 

     𝜋6 =  0.16 (𝜋1)−1.766 (𝜋2)−0.124(𝜋3)−0.257(𝜋4)−0.839(𝜋5)1        (6-6) 

 

(𝐹𝑜𝑟 π6 < 0.01) 

 

𝜋6 = 0.160 (
𝐾𝑊𝐸𝐵

𝐾𝑆𝑇𝐹
)−1.766(

𝐾𝑊𝐸𝐵. 𝐿2

1000𝐾𝑇𝐵𝐹
)−0.124(

𝐾𝑊𝐸𝐵

𝐾𝐿𝐵𝐹
)−0.257(

𝐾𝑆𝑇𝐹

𝐾𝐷𝐼𝐴
)−0.839(

𝛥

𝑔
)1 (6-7) 

 

(𝐹𝑜𝑟 π6 < 0.01) 

 

𝐻𝑆𝑆 =
100𝐾𝑊𝐸𝐵

ℎ
𝜋6        (6-8) 
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𝐻𝑆𝑆 = 16.0
𝛥

𝑔ℎ

(𝐾𝑆𝑇𝐹)1.766

(𝐾𝑊𝐸𝐵)−1.147
(

𝐿2

1000𝐾𝑇𝐵𝐹
)−0.124(𝐾𝐿𝐵𝐹)0.257(

𝐾𝑆𝑇𝐹

𝐾𝐷𝐼𝐴
)−0.839    (6-9) 

 

(𝐹𝑜𝑟 π6 < 0.01) 

 

 

where, 𝐾𝑊𝐸𝐵 is the web plate stiffness, 𝐾𝑇𝐵𝐹 is the bottom flange torsional stiffness, 𝐾𝐿𝐵𝐹 is the 

bottom flange lateral stiffness, 𝐾𝐷𝐼𝐴 is the diaphragm stiffness, 𝐾𝑆𝑇𝐹 is the transverse stiffener 

stiffness, 𝑔 is the web gap length, 𝛥 is the differential deflection between the two adjacent 

girders under investigation, ℎ is the web plate height, 𝐿 is the transverse stiffener spacing or 

diaphragm spacing whichever is smaller, and finally 𝐻𝑆𝑆 is the hot spot stress in vertical 

direction in the web gap detail. 

Figure 6- 11 represent the comparison between predicted responses by Equation (6-7) and 

the responses obtained from FEA. The regression coefficients (R2) for response predicted by 

Equation (6-7) is 0.95 which has reasonable accuracy with all the complication in the web gap 

stress prediction problem and limited number of experiments. 
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Figure 6- 11: Predicted response by Equation (6-7) versus the response obtained from FEA for stiff web gaps 

(𝝅𝟔 < 𝟎. 𝟎𝟏). 

 

 

6.6. Prediction Equation for Flexible Web Gaps 

(π6 ≥ 0.01) 

 

When π6 is greater than 0.01 the torsional and lateral stiffness of the bottom flange does not 

influence the magnitude of the vertical stress in the web gap. This can be explained as if the web 

gap is relatively more flexible than bottom flange, the distortion in the web gap is all absorbed in 

the web gap and the bottom flange does not get exposed to any deflection due to the load from 

the differential deflection. This is very well observed in the regression analysis. By performing 

the non-linear regression analysis, the regression coefficients for π2 and π3 are very close to 
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zero. Therefore, it was decided to set these coefficients to zero manually and perform the 

regression analysis once again to obtain the other unknown coefficients and exponents. These led 

to even more precise result for the stress prediction. The prediction equation obtained from the 

regression analysis for π6 ≥ 0.01 is presented in Equation (6-10) to Equation (6-11). 

Equation (6-12) is obtained by combining Equation (6-11) and Equation (6-12). 

 

     𝜋6 =  0.070 (𝜋1)−1.609 (𝜋2)−0(𝜋3)−0(𝜋4)−1.214(𝜋5)1        (6-10) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

 

𝜋6 = 0.070 (
𝐾𝑊𝐸𝐵

𝐾𝑆𝑇𝐹
)−1.609(

𝐾𝑆𝑇𝐹

𝐾𝐷𝐼𝐴
)−1.214(

𝛥

𝑔
) (6-11) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

 

𝐻𝑆𝑆 = 7.0
𝛥

𝑔ℎ
(𝐾𝑊𝐸𝐵)−0.609(𝐾𝑆𝑇𝐹)0.395(𝐾𝐷𝐼𝐴)1.214        (6-12) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

 

where, 𝐾𝑊𝐸𝐵 is the web plate stiffness, 𝐾𝐷𝐼𝐴 is the diaphragm stiffness, 𝐾𝑆𝑇𝐹 is the transverse 

stiffener stiffness, 𝑔 is the web gap length, 𝛥 is the differential deflection between the adjacent 

girders under investigation, ℎ is the web plate height, and finally 𝐻𝑆𝑆 is the hot spot stress in 

vertical direction in the web gap detail. 

Figure 6- 12 represents the comparison between predicted responses by Equation (6-11) 

and obtained FEA. The regression coefficients (R2) for the response predicted by Equation (6-

11) is 0.99 which indicates that almost all the variation in the response function has been 

considered and accounted for in the prediction equation. 
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Figure 6- 12 : Predicted response by Equation (6-11) versus the response obtained from FEA for flexible web 

gaps (𝝅𝟔 ≥ 𝟎. 𝟎𝟏). 

 

 

6.7. Assessment of the Proposed Prediction Equations 

 

The proposed equations (Equation (6-9) and Equation (6-12)) are based on finite element 

models with some reasonable assumptions. Although the stresses obtained from these equations 

are in good agreement with the observed stresses from finite element analysis, these equations 

should be verified against some experimental results and finite element model results available in 

the literature. Therefore, the results of three research studies available in the literature based on 

comprehensive experimental tests are used in this section to assess the accuracy of the proposed 

equations. 
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The results of the first experimental program used in this section to investigate the proposed 

equations are obtained from a comprehensive research program conducted at University of 

Alberta (D’Andrea, Grondin, & Kulak, 2001; Fraser, Grondin, & Kulak, 2000; G. Grondin & 

Kulak, 2010; G. Y. Grondin, Fraser, & D’Andrea, n.d.). The second experimental result is 

obtained from a research study performed at University of Kansas (Hartman et al, 2013) and 

finally the results of a field monitoring and finite element study of a bridge investigated at 

University of Minnesota (Li & Schultz, 2005) is also used for this purpose. These verifications 

are presented in the following sections. 

The results of the mentioned three experimental and numerical studies are evaluated by 

stress prediction equations proposed by others as well. These models are presented in Chapter 2 

(Fisher (Equation 2-1), Jajich et al. (Equation 2-2), Severtson et al. (Equation 2-4), and Li and 

Schultz (Equation 2-5)). 

 

6.7.1. Case Study I, Experiments Conducted at 

University of Alberta 

 

A series of full-scale tests at University of Alberta ((Fraser et al., 2000) and (D’Andrea et 

al., 2001)) on the specimens obtained from the St. Albert Trail Mile 5.09 Subdivision Bridge was 

performed to investigate the behaviour of distortion induced fatigue cracks in the steel 

multi-girder bridges. This Bridge had been replaced with a new structure in 1998 because of the 

large number of fatigue cracks and the substandard clearance between the roadway and the 

underside of the bridge. Eight full-size bridge girders with distortion-induced fatigue cracks from 

field service were tested under constant amplitude cyclic loading. The concrete slab was 

removed dismantling of the bridge. In order to simulate in the lab the in-situ composite girder 

properties determined during the field testing, the steel girders were reinforced with a steel wide 

flange section to bring the neutral axis of the reinforced section to as close as possible to the 

calculated value of the composite section. Each individual girder was tested with its diaphragms. 

Therefore, required stiffness to support the free ends of diaphragms was calculated to obtain the 

stress range and differential displacement in the laboratory test as representative of the field 
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measured conditions. A total of ten diaphragms were attached to each girder during the 

laboratory testing. The diaphragms on each side of the girders were staggered, which aggravated 

the distortion. Two stress ranges of 35 MPa and 50 MPa for midspan bottom fiber were used in 

their experimental program. LVDTs were mounted beneath the web of the girder and beneath the 

spring supported end of the diaphragm to measure the differential displacements at each 

diaphragm. The out of plane web distortion were also measured at the diaphragms located within 

the constant moment region. Because of limited number of instruments, all the data was not 

obtained for all the web gap details. In addition, some web gaps were repaired when the bridge 

was in service and some of them had already cracked. A total of 7 different test results are 

available from this experimental program which can be used to assess the web gap stress 

prediction models. They also examined the behavior of the web gap region using finite element 

analysis. The finite element models were developed and validated using strain measurements and 

displacements observed during the tests. The ability of the simple beam model used for the 

derivation of Equation (2-1) to predict the peak stress obtained from a finite element model was 

assessed through a comparison of stresses obtained from both procedures. They found that 

simplified calculation based on fixed-ended beam model (Equation 2-1) tend to overestimate the 

stresses in the web gap region by as much as 400% when the web gap distortion is measured 

from the experiment. However, it may predict less conservative web gap stresses as the stiffener 

and tension flange thickness increase. They also numerically investigated the effect of web gap 

length on the maximum web gap stress and found that increasing the web gap length to double 

length produced a 50% reduction in vertical stress both at the top and bottom of the web gap.  

The dimensions of the model and the results for the vertical stress obtained from both 

experimental measurements and finite elements investigation is presented in Table 6- 5 and 

Table 6-6.  

Table 6- 5: Geometrical Dimensions Used in the Experimental Program at University of Alberta 

Parameters 𝑔 𝑤 ℎ 𝑏𝐹 𝑡𝐹 𝐿 𝑆 ℎ𝑆 𝑡𝑆 𝑏𝑠 𝑡𝑑 ℎ𝑑 

mm 50 9.5 914 254 16 1700 1000 864 10 100 9.5 686 
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Using differential deflection of 0.31 mm and the equations presented in Chapter 2 the 

stress in the web gap is calculated and presented in Table 6- 6. As shown in this table, none of 

the equations predict the results accurately. 

 

Table 6- 6: Comparison of Peak Web Gap Stress Prediction Methods for St. Albert Bridge (University of Alberta) 

Peak Web 

Gap Stress 

FE Model 

Analysis
4
 

Fisher 

(Equation 2-1) 

Jajich et al. 

(Equation 2-2) 

Severtson et al. 

(Equation 2-4) 

Li and Schultz 

(Equation 2-5) 
Field Measurement 

𝜎𝑤𝑔 (MPa) 115 457 22 38 33 79 

Differential Deflection (Δ) = 0.31 mm. 

 

Using the dimensions from Table 6- 7 and Equation 5-3 to Equation 5-7,  KWEB,  the web 

plate stiffness, KTBF, the bottom flange torsional stiffness, KLBF, the bottom flange lateral 

stiffness, KDIA, the diaphragm stiffness, and KSTF, the transverse stiffener stiffness are calculated 

to obtain the π − parameters. These results are presented in Table 6-7. 

 

Table 6- 7: Calculated Factors for the Values presented in Table 6-5. 

Parameter Results Parameter Results 

𝐾𝑊𝐸𝐵 21693 𝜋1 0.27 

𝐾𝑇𝐵𝐹 609534 𝜋2 1.46 

𝐾𝐿𝐵𝐹 81794 𝜋3 2.03 

𝐾𝐷𝐼𝐴 10673 𝜋4 0.13 

𝐾𝑆𝑇𝐹 42839341 𝜋5 0.0062 

 

By using the dimensionless parameters calculated in Table 6-7, Equation 6-8 and 

Equation 6-10, 𝜋6 and the corresponding HSS are calculated as following. It should be noted that 

if the calculated 𝜋6 is less than 0.01 then the Equation 6-6 (For 𝜋6 < 0.01) should be used. 

Equation 6-10 is chosen first as it has less parameter to calculate and can be obtained faster than 

Equation 6-6.  

                                                           
4
 G. Grondin & Kulak (2010) 
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     𝜋6 =  0.070 (𝜋1)−1.609 (𝜋4)−1.214(𝜋5)    (6-10) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

𝜋6 =  0.070 (0.27)−1.609 (0.13)−1.214(0.0062) 

=     0.0425 

𝐻𝑆𝑆 =
100𝐾𝑊𝐸𝐵

ℎ
𝜋6 

 

       (6-8) 

𝐻𝑆𝑆 =
100 × (21693)

914
 × 0.0425 

=     101  𝑀𝑃𝑎 

 

This result is 14 percent less than the stress reported from the finite element analysis by 

Grondin and Kulak (2010) (115 MPa) and 22 percent greater than the experimental 

measurements by Fraser et. al. (2000) (79 MPa). 

 

6.7.2. Case Study II, Experiments Conducted at 

University of Kansas 

 

Research at University of Kansas (Hartman et al, 2013) has also been focusing on fatigue 

performance of web gaps subjected to out-of-plane distortion. This research program mainly 

investigates the efficiency of different repair and rehabilitation methods on performance of 

distortion induced fatigue prone details. They also numerically examined the relationships 

between skew angle, cross-frame spacing, and cross-frame configurations including staggered 

perpendicular to the girder line as well as parallel to the support skew on distortion induced 

fatigue susceptibility. It was indicated that several factors such as skew angle of the bridge, 

lateral brace placement, and geometry of the web gap affect the stresses in the web gap, thus 

making the stress prediction even more difficult. In addition, there was no clear trend established 

between skew angle and web-gap stress in their study. In addition,  Hartman et al. (Hartman et 
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al., 2010) constructed and tested a 9.1-m (30-ft) long three-girder test bridge (AISI Example 1)  

spaced at 1.5 m connected with X-type cross frames at the two simple support locations and at 

mid-span under fatigue loading. The purpose of their study was to investigate the web gap 

behaviour, and subsequently repair of distortion-induced fatigue cracks. A total of 12 test trials 

were performed with varying load ranges. Static loading was applied at midspan over the interior 

girder at rates varying between 1.0 – 2.0 Hz. For each trial test, crack growth, girder deflections 

as well as strains were monitored and data for girder maximum deflection, girder lateral 

deflection under different loads, girder maximum bottom flange stress and uncracked and 

cracked web gap strain as well as crack initiation and propagation life were collected. The results 

of their first trials for each girder are used to assess the stress prediction models as they were 

collected before applying any rehabilitation. In order to evaluate the results from this 

experiments and the predicted stress from the proposed equations, the stiffness of the cross brace 

for this experimental program is obtained using finite element analysis and the cross brace is 

replaced with a bend plate diaphragm with the same stiffness.  

The dimensions of the model and the results for the vertical stress obtained from both 

experimental measurements and finite elements investigation as well as models in Chapter 2 are 

presented in Table 6-8 and Table 6-9.  

 

Table 6- 8: Geometrical Dimensions Used in the Experimental Program at University of Kansas 

Parameters 𝑔 𝑤 ℎ 𝑏𝐹 𝑡𝐹 𝐿 𝑆 ℎ𝑆 𝑡𝑆 𝑏𝑠 𝑡𝑑 ℎ𝑑 

mm 45 6 876 279 16 1770 1500 831 10 127 9.5 657 

 

 

Table 6- 9: Comparison of Peak Web Gap Stress Prediction Methods for Experiment at University of Kansas 

Peak Web 

Gap Stress 

FE Model 

Analysis
5
 

Fisher 

(Equation 2-1) 

Jajich et al. 

(Equation 2-2) 

Severtson et al. 

(Equation 2-4) 

Li and Schultz 

(Equation 2-5) 

Experimental 

Measurement 

𝜎𝑤𝑔 (MPa) 434 1246 43 75 64 183 

Deferential Deflection (Δ) = 1.2 mm. 

                                                           
5
 HSS from FEA (Hartman et al (2013)) 
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Using the dimensions from Table 6- 8 and Equation 5-3 to Equation 5-7,  KWEB,  the web 

plate stiffness, KTBF, the bottom flange torsional stiffness, KLBF, the bottom flange lateral 

stiffness, KDIA, the diaphragm stiffness, and KSTF, the transverse stiffener stiffness are calculated 

to obtain the π − parameters. These results are presented in Table 6-10. 

 

 

Table 6- 10: Calculated Factors for the Values presented in Table 6-8. 

Parameter Results Parameter Results 

𝐾𝑊𝐸𝐵 6828 𝜋1 0.063 

𝐾𝑇𝐵𝐹 331183 𝜋2 0.47 

𝐾𝐿𝐵𝐹 108764 𝜋3 0.54 

𝐾𝐷𝐼𝐴 12533 𝜋4 0.33 

𝐾𝑆𝑇𝐹 45194847 𝜋5 0.0266 

 

Using the dimensionless parameters calculated in Table 6-7, Equation 6-8 and 

Equation 6-10, 𝜋6 and the corresponding HSS are calculated as following.  

 

     𝜋6 =  0.070 (𝜋1)−1.609(𝜋4)−1.214(𝜋5) (6-10) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

𝜋6 =  0.070 (0.063)−1.609 (0.33)−1.214(0.0266) 

=     0.611 

 

𝐻𝑆𝑆 =
100𝐾𝑊𝐸𝐵

ℎ
𝜋6 

 

       (6-8) 

𝐻𝑆𝑆 =
100 × (6828)

876
 × 0.611 

=     476  𝑀𝑃 
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This result is 10 percent higher than the stress reported from the finite element analysis 

by Hartman et al, (2013) (434 MPa).  

 

6.7.3. Case Study III, Experiments Conducted at 

University of Minnesota 

 

This study is well reported in Chapter Two and here only the dimensions of the model as 

well as the results of the study are presented. The dimensions of the finite element model used in 

this study were based on a bridge which was monitored in the field under service loading 

condition. These dimensions are presented in Table 6-11. 

 

Table 6- 11: Geometrical Dimensions Used in the Experimental Program at University of Minnesota 

Parameters 𝑔 𝑤 ℎ 𝑏𝐹 𝑡𝐹 𝐿 𝑆 ℎ𝑆 𝑡𝑆 𝑏𝑠 𝑡𝑑 ℎ𝑑 

mm 64 13 1000 300 32 1500 2819 936 10 100 10 800 

 

 

Table 6- 12: Comparison of Peak Web Gap Stress Prediction Methods for Experiment at University of Minnesota 

Peak Web 

Gap Stress 

FE Model 

Analysis
6
 

Fisher 

(Equation 2-1) 

Jajich et al. 

(Equation 2-2) 

Severtson et al. 

(Equation 2-4) 

Li and Schultz 

(Equation 2-5) 

Experimental 

Measurement 

𝜎𝑤𝑔 (MPa) 73 1265 56 98 63 29 

Deferential Deflection (Δ) = 1.94 mm. 

 

Stress obtained from their FE model at the location of strain gauges in the field and stress 

calculated from measured strain in the field are 41 MPa and 37 MPa, respectively. According to 

Table 6-12, the proposed equation by Li and Schultz (Equation 2-5) predicts the results of FE 

                                                           
6
 Li & Schultz (2005) 



142 

 

analysis accurately. Stress predictions using Equations 2-2 and Equation 2-4 are also in good 

agreement with the FE results. It should be noted that, these equations are calibrated and 

developed based on these field data and it is expected to predict the stress reasonably. In contrast, 

equation proposed by Fisher (Equation 2-1) it is not even close to the results by FE analysis. 

 

Using the dimensions from Table 6- 11 and Equation 5-3 to Equation 5-7,  KWEB,  the 

web plate stiffness, KTBF, the bottom flange torsional stiffness, KLBF, the bottom flange lateral 

stiffness, KDIA, the diaphragm stiffness, and KSTF, the transverse stiffener stiffness are calculated 

to obtain the π − parameters to evaluate the proposed equations in this chapter. These results 

are presented in Table 6-13. 

 

 

Table 6- 13: Calculated Factors for the Values presented in Table 6-11. 

Parameter Results Parameter Results 

𝐾𝑊𝐸𝐵 34481 𝜋1 0.46 

𝐾𝑇𝐵𝐹 210080 𝜋2 0.17 

𝐾𝐿𝐵𝐹 75396 𝜋3 0.67 

𝐾𝐷𝐼𝐴 51200 𝜋4 0.36 

𝐾𝑆𝑇𝐹 458752000 𝜋5 0.03 

 

Using the dimensionless parameters calculated in Table 6-11, Equation 6-8 and 

Equation 6-10, 𝜋6 and the corresponding HSS are calculated as following.  

 

     𝜋6 =  0.070 (𝜋1)−1.609(𝜋4)−1.214(𝜋5) (6-10) 

(𝐹𝑜𝑟 π6 ≥ 0.01) 

𝜋6 =  0.070 (0.46)−1.609 (0.36)−1.214(0.03) 

=     0.025 
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𝐻𝑆 =
100𝐾𝑊𝐸𝐵

ℎ
𝜋6 

 

       (6-8) 

𝐻𝑆𝑆 =
100 × (34481)

1000
 × 0.025 

=     86  𝑀𝑃𝑎 

 

This result is 18 percent higher than the stress reported from the finite element analysis 

by Li & Schultz (2005) (73 MPa).  

 

According to the results obtained from the proposed empirical equations for these three 

bridges, it can be concluded that these equations can confidently predict the stress at the web 

gaps in steel multi-girder bridges. In contrast to the available equations proposed by others, the 

obtained equations in this chapter include the effect of all the parameters in the detail. Although 

these equations are analytically more complicated than the previously used equations to calculate 

the stress, they predict the stress in the web gap within 20 percent and cover a wide range of 

parameters which almost includes all the steel multi-girder bridges with bend plate diaphragm. 

Considering all the complexity in the web gap details, this is an acceptable accuracy for the 

stress calculation. 
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Chapter 7 

 

Summary, Conclusions, and Recommendations 

 

 In this chapter, a brief summary of the study, conclusions obtained from the results, and 

some recommendations for practical application and further researches which can be conducted 

in this area are presented. 

   

7.1. Summary 

 

In multi-girder steel bridges, to transfer lateral loads and distribute live loads among the 

girders, diaphragm members are used at the location of transverse stiffeners welded to the girder 

web. Prior to 1985, connection between these diaphragms connection stiffeners and the girder 

tension flange was rarely provided to avoid a potential load fatigue prone detail. While applying 

the traffic load, the diaphragm rotates and this rotation is transferred to this web gap detail and 

causes distortion in the web plat. This makes the detail susceptible to distortion induced fatigue 

cracks. 

There are two approaches to assess the fatigue life of a detail; Fatigue S-N curves and 

Fracture Mechanics. Although fracture mechanics can accurately assess any detail, it requires 

expert’s knowledge and sufficient experience. It is also a very challenging and expensive 

approach when the crack is not 2D and possibly propagates out of the initiation plane as well 

(cracks with 3D geometry). Using fatigue S-N curves is a straight forward method which has led 

to acceptable results in fatigue life estimation if and only if the detail matches one of the already 

available detail categories and the stress range applied to the detail is obtainable. For web gap 

details there is no distortion induced fatigue curve developed. Even if the fatigue curves were 

already available for these types of fatigue problems, obtaining the corresponding stress for these 
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details is a challenge by itself. Obtaining the stress is not possible without using a comprehensive 

and reliable finite element analysis.  

There are several methods and models available to assess the magnitude of the stress in the 

web gap detail in steel multi-girder bridges. Most of them were developed based on some field 

measurements for a specific bridge or some experimental tests. Although some of these 

approaches can predict the stress in the web gap for the identical bridges with the same 

geometry, they cannot provide reliable results for even slightly different bridge configuration. 

At the initial step in this study, the available methods to calculate the magnitude of stress in 

details prone to distortion induced fatigue were investigated using finite element analysis. This 

provided a good assessment of the parameters that may influence the behavior of the web gap 

details and magnitude of the stress in the detail.  

Parameters affecting the web gap stress were divided into two categories; Local parameters 

and Global parameters. Geometrical dimensions of web plate, tension flange, and stiffener 

directly affect the magnitude of the vertical stress as well as the magnitude of the web gap 

distortion in the detail. These parameters are considered as local parameters. Global parameters 

indirectly affect the vertical stress in the web gap details. They play a significant role in the 

magnitude of the differential deflection which is transformed to the web gap by diaphragm plates 

or cross frame braces. Girder spacing, deck thickness, span length, angle of skew, and bracing 

spacing, types, and configurations are grouped as global parameters.  

Several finite element modeling techniques using different element types including shell and 

solid elements were investigated to find the optimum modeling technique which leads to reliable 

results. A comprehensive finite element model was created based on an experimental program 

conducted at University of Kansas (Hartman et al, 2013). Steel cyclic material behavior was used 

in this model which served as a global model in further investigations. Mesh sensitivity analysis 

is also performed and it was found that using 1 mm mesh size at the web gap and growing mesh 

density approach provide steady results in calculating HSS.  

Fatigue life of the web gap detail in the mentioned experimental program was assessed using 

fracture mechanics. The initiation life of the detail was obtained using crack initiation material 

properties presented in Table 4-1 and the maximum vertical stress obtained from the finite 
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element model. In order to investigate the crack propagation life of the detail, a semi-circle crack 

with the radius of 0.1 mm is inserted in the weld body and weld toe at the transverse stiffener and 

web plate weld. These are the locations of maximum vertical stress and the observed location of 

the crack initiation, respectively. The stress intensity factor was obtained from ABAQUS and the 

crack propagation procedure was performed in FRANC3D. The fatigue crack propagation life of 

the detail is obtained using the well-known equation proposed by Paris & Erdogan (1963) and 

crack propagation material properties presented in Table 4-2. 

Almost all the web gap detail dimensions including web thickness, diaphragm spacing, 

stiffener height, stiffener width, stiffener thickness, tension flange width, tension flange 

thickness, web gap length deemed to have a significant influence on the magnitude of web gap 

stress. The influence is understandable and predictable while dealing with only one of these 

parameters. If these parameters vary at the same time, the influence would be very complicated. 

To simplify the procedure of the investigation, dimensional analysis using Buckingham Pi 

theorem was utilized. This led to six dimensionless parameters. These parameters are presented 

in sections 5.4.1 to 5.4.6. 

A series of experiments was designed and conducted using finite element analysis in order to 

perform a parametric study and investigate the influence of each dimensionless parameter on the 

magnitude of web gap stress. Using non-linear exponential regression analysis of the obtained 

data from these experiments, two empirical equations were developed. These proposed equations 

predict the magnitude of the stress in the web gap. Two experimental test results and a finite 

element investigation verified the predicted results by these equations. These results were 

directly compared to FEA results reported in the literature. 

 

7.2. Conclusions 

 

According to a comprehensive investigation of the distortion induced fatigue problems and 

the results obtained from this study, numerous conclusions have been drawn. Some of these 

conclusions are presented in the following: 
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1- Fracture mechanics proved once again that it can be a very powerful and very reliable 

approach to assess the fatigue life of any details including the ones prone to 

distortion-induced fatigue cracks. Although fracture mechanics can assess these details 

accurately, it needs expert knowledge and sufficient experience. It is also a very 

challenging and expensive approach while dealing with cracks having 3D geometry. 

2- Based on the results presented in Chapter 4, the crack propagation mode in the web gap 

detail is a combination of Mode I, Mode II, and Mode III. Although Mode II and 

Mode III affect the direction of crack propagation, the governing mode of failure is 

Mode I which is the opening failure mode. This confirms the previous finding by others. 

3- The crack propagates in the web plate but the crack propagation rate in the web 

thickness direction is much lower than the rate in the girder longitudinal plane. In the 

assessed web gap detail, the crack did not turn into a complete through thickness crack 

and eventually stopped prior to be visible from the far side of the transverse stiffener. 

4- The available models and equations to predict the web gap stress are based on either 

limited experimental tests, or field measurements, or finite element results which are 

only applicable to certain bridge geometry and web gap dimensions. These methods do 

not take into account the effect of several important parameters which are previously 

mentioned in this chapter.  Therefore, a more comprehensive method considering all the 

influencing parameters is required to obtain this stress without any experimental test or 

finite element analysis. 

5- It is very expensive and almost impractical to design an experimental program to 

investigate all the parameters influencing the web gap stress in laboratory with realistic 

in-situ conditions. Only limited data would be available from these tests which should be 

full scaled to represent the actual behavior. Therefore, finite element analysis is an 

alternative to perform the experiments. 

6- Finite element model presented in Chapter 3 was verified with the experimental results 

and served as the global model. This proved the validity of the modeling technique in 

this study. It was shown that shell element is a powerful tool to model the bridge without 
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reducing the accuracy of the results. This made the analysis much faster and more 

efficient in terms of time and computational cost. 

7- Material properties represent the real behavior of the detail and directly influence the 

magnitude of the stress. This is even more significant while assessing the distortion 

induced fatigue problems as the strain in the detail drastically varies in the detail and the 

stress concentration is also a concern. Linear elastic material property leads to unrealistic 

prediction of stress in the web gap details. Therefore, cyclic material properties for steel 

obtained from a study at University of Alberta were used in this study which provided 

reasonable and realistic responses in the finite element models.   

8- Web plate stiffness, bottom flange stiffness (torsional stiffness and lateral stiffness), 

diaphragm stiffness, vertical stiffener stiffness, web gap length, magnitude of the 

differential deflection are shown to have influences in the magnitude of the stress in the 

detail. These parameters include all the local and global parameters.  

9- It was shown that the web gap stiffness has the most significant effect on the magnitude 

of the stress in the detail. As it is presented in Chapter 6, this parameter governs the 

overall behavior of the response function (web gap stress). 

10- Diaphragm stiffness and transverse stiffener stiffness are also critical parameters while 

assessing the web gap behavior. These are the members transferring the differential 

deflection into the web gap and impose out of plane distortion in the web plate. It was 

revealed that having a flexible diaphragm in steel multi-girder bridges allows the two 

adjacent girders deflect more independently and as a result lower distortion would be 

transferred in to the web gap detail through the diaphragm. This decreases the magnitude 

of the stress in the web gap. 

11- While dealing with a relatively rigid web gap located in the bottom of the web plate, the 

lateral stiffness and torsional stiffness of the bottom flange influence the magnitude of 

the stress as well. Bottom flange can be assumed as a boundary condition for the web 

gap plate. If the bottom flange is more flexible, the web gap can distort easier and the 

magnitude of the stress reduces in the detail.  
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12- Dimensional analysis is a great approach to investigate the behavior of almost any 

complex system. Using this method provides a good idea about the relation between all 

the influencing parameters and the response function. Although in web gap stress 

calculation problem the effect of each individual parameter can be rationally explained, 

it is challenging to describe the response when all these parameters are considered 

simultaneously. 

13- Data were generated using finite element analysis of the web gap detail with a 

reasonable boundary condition explained in Chapter 4. Non-linear exponential 

regression performed on the data and the stress (𝜎𝐻𝑆𝑆) is assessed by the following 

empirical equations: 

 

For the for stiff web gaps (π6 < 0.01): 

𝜎𝐻𝑆𝑆 = 16.0
𝛥

𝑔ℎ

(𝐾𝑆𝑇𝐹)1.766

(𝐾𝑊𝐸𝐵)−1.147
(

𝐿2

1000𝐾𝑇𝐵𝐹
)−0.124(𝐾𝐿𝐵𝐹)0.257(

𝐾𝑆𝑇𝐹

𝐾𝐷𝐼𝐴
)−0.839   (6-9) 

 

For the for flexible web gaps (π6 ≥ 0.01): 

𝜎𝐻𝑆𝑆 = 7.0
𝛥

𝑔ℎ
(𝐾𝑊𝐸𝐵)−0.609(𝐾𝑆𝑇𝐹)0.395(𝐾𝐷𝐼𝐴)1.214        (6-12) 

 

where, 𝜋6 =
𝜎𝑤𝑔.ℎ

100𝐾𝑊𝐸𝐵
, 𝐾𝑊𝐸𝐵 is the web plate stiffness, 𝐾𝑇𝐵𝐹 is the bottom flange torsional 

stiffness, 𝐾𝐿𝐵𝐹 is the bottom flange lateral stiffness, 𝐾𝐷𝐼𝐴 is the diaphragm stiffness, 𝐾𝑆𝑇𝐹 

is the transverse stiffener stiffness, 𝑔 is the web gap length, 𝛥 is the differential deflection 

between the two adjacent girders under investigation, ℎ is the web plate height, 𝐿 is the 

transverse stiffener spacing or diaphragm spacing whichever is smaller, and finally 𝐻𝑆𝑆 

is the hot spot stress in vertical direction in the web gap detail. 

The average regression coefficients (R2) for response predicted by these proposed 

empirical equations is 0.97 which has reasonable accuracy with all the complication in 
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the web gap stress prediction problem and limited number of experiments. They also 

predict the results of two experimental tests conducted at University of Alberta and 

University of Kansas as well as finite element results from the research program at 

University of Minnesota all within ±20 percent of the observed values. This gives a good 

confidence in the results obtained from these equations in comparison with other 

available models presented in Chapter 2. 

14- As long as the geometry of the bridge and the web gap detail is available and the 

differential deflection of the two adjacent girders are measured accurately, the magnitude 

of the stress can be calculated and used as a nominal stress or hot spot stress to estimate 

the remaining fatigue life of the detail. 

 

 

7.3. Recommendations 

 

The proposed equations are developed based on finite element analysis data and can be 

investigated further by field monitoring and some additional experimental tests which resemble 

the in-situ condition of the web gap to gain a higher degree of confidence in the results. Although 

measuring the maximum web gap stress in the field is almost impossible, field monitoring 

provides the most actual stress at web gap detail considering the in service bridges conditions. 

These results lead to more realistic finite element models representing the in-situ condition of the 

bridge from which the hot spot stress can be obtained and used in order to assess the proposed 

equations. 

As it was mentioned in the Chapter 2, angle of skew has shown to have some influence in 

the differential deflection, web gap distortion and consequently the magnitude of the stress in the 

web gap detail. This parameter needs to be investigated further and its effect should be included 

in the general response functions. 
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These proposed equations are derived for steel multi-girder bridges with bent plate 

diaphragms as the lateral load resistance system. There are numerous steel bridges with cross 

braces system instead of bent plate diaphragms. This system of bracing should also be 

investigated and the stiffness of the cross brace system should be related to an equivalent bent 

plate in order to use the proposed equations.  

These equations provides reliable results for the nominal stress in the web gap detail with a 

given geometry and loading but even by having these results, the engineers still need to evaluate 

the fatigue life of the detail. The available fatigue S-N curves are developed for details subjected 

to stress induced fatigue loadings. A comprehensive study is also required to develop the 

reliability based method for predicting the fatigue resistance of distortion-induced fatigue details. 

Although probabilistic models have been developed for stress-induced fatigue cracking, such 

models are not applicable to distortion induced fatigue. 
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Appendix A 

 

Obtaining the Web Plate Stiffness using Shell and Plate 

Theory 
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In this appendix, the stiffness of the web plate is obtained using shell and plate theory.  

Assume a thin plate which is simply supported at all edges and a concentrated load, Q, is applied 

on a finite area (u×v) at the shown location in Figure A.A- 1. 

 

 

 
 

a) 

 

b) 
Figure A.A- 1: a) Thin Plate boundary conditions. b) Location of the point load. 
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Energy method is used to calculate the distortion of the plate under the point load, Q. In order to 

obtain this distortion, the concentrated load is presented in the Sinusoidal format using Fourier 

series. This procedure is presented in the following.  
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Using Fourier series it can be rewritten as: 
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To have the concentrated load u and v should approach to Zero. 
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As it was mentioned previously, pin supports are assumed as the boundary condition for all the 

plate edges. These boundary conditions are shown in the following. 
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where, w is the distortion or deflection of the plate in Z-axis direction. Therefore, by means of 

Fourier series the best function that satisfies the boundary conditions and presents the deflection 

of the plate would be: 

 

   


























3,1 3,1

,
m n

mn
b

yn
Sin

a

xm
Sinwyxw


 

 

Potential energy for the system can is the difference between strain energy and the total work 

done on the system. Using this concept, the deflection of the plate can be obtained as a function 

of the applied load. 
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where, T is the potential energy for the system, U is the strain energy, and V is the total work 

done on the system. These values are defined as following: 
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where, D  is the flexural rigidity or is called the bending stiffness coefficient.  D  and the partial 

derivatives are defined as following: 
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The total work done on the system is also defined here: 
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To calculate the plate deflection (  yxw , ), the potential energy for the system should be 

minimized. Therefore,  0
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 yxw ,  is the deflection of the plate under a consecrated load ( Q ) at coordinate of (x,y). 
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 In web gap detail, the load is applied from stiffener and it cannot be simplified as a point 

load at the tip of the transverse stiffener. It has maximum value at this location but it decreases 

along the transverse stiffener. This condition is shown in  

Figure A.A- 2. In this figure, L is the diaphragm spacing or the distance between the adjacent 

stiffeners, whichever is the smallest. 

 The geometry of the web gap detail as well as the local coordinate system used for the 

loading is shown in Figure A.A- 3. 

 

 

 

 

Figure A.A- 2: Loading of the web plate and the location of the transverse stiffener. 
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Figure A.A- 3: Web gap detail and web plate dimensions. 

 

The applied load from the transverse stiffener can be assumed as an exponential function which 

is defined in the following: 
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where, C  is the load constant. Using Fourier series the load is presented in terms of Sinusoidal 

functions for a plate with dimensions of hL . 
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and 
2

L
 . 

Using integration of the load along the transverse stiffener (Y1) and calculating the deflection of 

the web plate at the transverse stiffener tip location (X1=0,Y1=0) for each load increment, the 

total deflection of the web plate can be obtained. These steps are shown in the following: 

 

   

 




















































 b

yn
Sin

a

xm
Sin

b

n

a

m
abD

b

n
Sin

a

m
Sin

t

YF

yxw
m n

s
YF







1 1
2

2

2

2

2
4

14

,
1

 

where,   1
,

Y
yxw  is the deflection of the web plate under  1YF  at location  yx, . 

To obtain the total deflection the integral should be taken for the above equation for point 






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
 gy

L
x ,

2
. 
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In this equation, ,,
2

, ha
L

g   and Lb  . 

By setting 1m , 3, and 1n , 3 which is the first two term of the series, the mentioned 

integration and the stiffness of the web plate can be defined as following the following: 
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The following trigonometric identity is used in order to simplify the web gap stiffness. 
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where, w  is the web thickness. 
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 can be neglected in the equation only to simplify the 

web gap stiffness equation. 
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Appendix B 

 

FE Models Dimensions for the Screening Study 
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Table A.B.1: Models Dimensions for the Screening Study. 

Model Base 1 2 3 4 5 6 7 8 9 10 

𝒈 40 85 45 40 40 46 27 64 32 40 40 

𝒘 25 10 25 18 25 25 20 24 25 25 25 

𝒉 1231 1170 777 946 1128 1099 998 1365 600 1231 1231 

𝒃𝑭 618 628 841 250 664 703 456 435 435 618 618 

𝒕𝑭 43 43 58 60 30 31 42 30 30 43 43 

𝑳 2004 6754 2933 1274 1929 1665 1744 1730 1078 2004 2004 

𝑺 1200 3600 1200 1991 1913 1416 1456 1200 1200 1200 1200 

𝒉𝑺 1191 1084 732 906 1088 1053 971 1301 568 1191 1191 

𝒕𝑺 45 27 33 29 45 20 23 16 42 45 45 

𝒃𝑺 231 194 108 100 206 323 369 262 176 231 231 

𝒕𝒅 10 20 10 10 19 11 15 20 20 10 10 

𝒉𝒅 937 1053 616 733 922 848 898 1195 500 937 937 

Δ 0.40 0.85 0.45 0.40 0.40 0.46 0.27 0.64 0.32 0.20 0.79 

𝑲𝑾𝑬𝑩 627229 17376 683423 226650 611993 461360 677047 238197 983226 627229 627229 

𝑲𝑫𝑰𝑨 784036 434407 427139 283313 764991 576700 846310 2381974 655484 784036 784036 

𝑲𝑺𝑻𝑭 627229 347525 341712 226650 611993 461360 677048 238197 983226 627229 627229 

𝑲𝑳𝑩𝑭 250892 6951 273369 90660 244797 461360 150455 95279 393290 250892 250892 

𝑲𝑻𝑩𝑭 1678764802 528397222 3920120568 2966857890 650649019 852675183 1372369582 475207561 762048247 1678764802 1678764802 

𝝅𝟏 1.00 0.05 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝝅𝟐 1.50 1.50 1.50 0.12 3.50 1.50 1.50 1.50 1.50 1.50 1.50 

𝝅𝟑 2.50 2.50 2.50 2.50 2.50 1.00 4.50 2.50 2.50 2.50 2.50 

𝝅𝟒 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.10 1.50 0.80 0.80 

𝝅𝟓 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.005 0.02 
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Appendix C 

 

FE Models Dimensions and the FEA Results for the 

Parametric Study  

(The Design of Experiment) 

 

 

 

 

 

 

 

 

 



172 

 

 

 

M1 to M18 represent Model 1 to Model 18 in the parametric study, respectively. 

 

 

Table A.C.1: Models Dimensions for the Parametric Study. 

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 

𝒈 92 90 80 61 24 41 27 21 50 

𝒘 13 25 25 23 17 14 13 17 22 

𝒉 1445 1419 1073 735 737 1183 879 714 622 

𝒃𝑭 291 474 495 332 519 262 250 385 389 

𝒕𝑭 45 33 30 51 36 16 60 36 60 

𝑳 2406 2429 2690 1196 1650 1222 1370 1398 1369 

𝑺 1200 1212 1279 1748 1200 1200 1458 1200 3600 

𝒉𝑺 1354 1329 993 674 713 1142 853 692 572 

𝒕𝑺 13 45 45 17 27 12 11 23 11 

𝒃𝑺 201 400 400 121 201 190 100 138 100 

𝒕𝒅 10 10 13 10 10 18 20 10 10 

𝒉𝒅 1267 1246 966 616 553 937 786 609 466 

Δ 0.92 0.90 0.80 0.61 0.24 0.41 0.27 0.21 0.50 

𝑲𝑾𝑬𝑩 15932 121164 168185 218225 556669 141307 182342 672837 275256 

𝑲𝑫𝑰𝑨 1327676 1262128 934359 272781 371113 1413065 911708 420523 91752 

𝑲𝑺𝑻𝑭 132750 1009427 1401345 218225 556669 141307 91171 336419 137628 

𝑲𝑳𝑩𝑭 15932 48466 37374 218225 222668 31401 72937 149519 275256 

𝑲𝑻𝑩𝑭 768583790 476514465 347751728 2600751273 1010631072 60323989 2759348955 876842416 4296058663 

𝝅𝟏 0.12 0.12 0.12 1 1 1 2 2 2 

𝝅𝟐 0.12 1.5 3.5 0.12 1.5 3.5 0.12 1.5 0.12 

𝝅𝟑 1 2.5 4.5 1 2.5 4.5 2.5 4.5 1 

𝝅𝟒 0.1 0.8 1.5 0.8 1.5 0.1 0.1 0.8 1.5 

𝝅𝟓 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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Table A.C.2: Models Dimensions for the Parametric Study. (Continued) 

Model M10 M11 M12 M13 M14 M15 M16 M17 M18 

𝒈 71 79 61 51 93 48 27 60 30 

𝒘 19 10 15 25 22 24 17 25 25 

𝒉 803 1001 1153 600 1183 836 600 600 1166 

𝒃𝑭 250 275 359 250 267 602 272 895 609 

𝒕𝑭 60 12 16 60 25 27 25 39 28 

𝑳 1768 1697 1896 1075 1702 1943 996 2392 1357 

𝑺 1200 1200 1420 1481 1307 1292 1200 2368 1320 

𝒉𝑺 732 922 1092 549 1090 788 573 540 1136 

𝒕𝑺 45 11 45 29 11 16 19 15 45 

𝒃𝑺 159 102 157 100 121 260 100 100 218 

𝒕𝒅 10 15 10 11 13 12 10 10 10 

𝒉𝒅 661 770 903 459 901 669 450 450 885 

Δ 1.43 1.58 1.21 1.03 1.86 0.96 0.54 1.20 0.60 

𝑲𝑾𝑬𝑩 84762 10262 55123 377518 86110 404475 462514 409447 1239968 

𝑲𝑫𝑰𝑨 470901 855180 574203 251679 861103 505594 289071 136482 619984 

𝑲𝑺𝑻𝑭 706352 85518 459362 377518 86110 404475 231257 204723 619984 

𝑲𝑳𝑩𝑭 33905 10262 22049 151007 19136 161790 102781 409447 495987 

𝑲𝑻𝑩𝑭 2137529540 19710877 56642561 3516879036 166363339 436424227 305713457 1561618399 652827929 

𝝅𝟏 0.12 0.12 0.12 1 1 1 2 2 2 

𝝅𝟐 0.12 1.5 3.5 0.12 1.5 3.5 1.5 1.5 3.5 

𝝅𝟑 2.5 1 2.5 2.5 4.5 2.5 4.5 1 2.5 

𝝅𝟒 1.5 0.1 0.8 1.5 0.1 0.8 0.8 1.5 1 

𝝅𝟓 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 
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a) 

 
b) 

Figure A.C. 1: Vertical stress distribution for Model 1(Run 1) a) in web gap detail, b) along the vertical path at 

web gap 
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a) 

 
b) 

Figure A.C. 2: Vertical stress distribution for Model 2 (Run 2) a) in web gap detail, b) along the vertical path at 

web gap 
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a) 

 
b) 

Figure A.C. 3: Vertical stress distribution for Model 3 (Run 3) a) in web gap detail, b) along the vertical path at 

web gap 
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a) 

 
b) 

Figure A.C. 4: Vertical stress distribution for Model 4 (Run 4) a) in web gap detail, b) along the vertical path at 

web gap. 
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a) 

 
b) 

Figure A.C. 5: Vertical stress distribution for Model 5 (Run 5) a) in web gap detail, b) along the vertical path at 

web gap. 
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a) 

 
b) 

Figure A.C. 6: Vertical stress distribution for Model 6 (Run 6) a) in web gap detail, b) along the vertical path at 

web gap. 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12

σ
2

2
 

Distence From Transverse Stiffener Weld Toe (mm) 

Model 6



180 

 

 
a) 

 
b) 

Figure A.C. 7: Vertical stress distribution for Model 7 (Run 7) a) in web gap detail, b) along the vertical path at 

web gap. 
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a) 

 
b) 

Figure A.C. 8: Vertical stress distribution for Model 8 (Run 8) a) in web gap detail, b) along the vertical path at 

web gap. 
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a) 

 
b) 

Figure A.C. 9: Vertical stress distribution for Model 9 (Run 9) a) in web gap detail, b) along the vertical path at 

web gap. 
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a) 

 
b) 

Figure A.C. 10: Vertical stress distribution for Model 10 (Run 10) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 11: Vertical stress distribution for Model 11 (Run 11) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 12: Vertical stress distribution for Model 12 (Run 12) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 13: Vertical stress distribution for Model 13 (Run 13) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 14: Vertical stress distribution for Model 14 (Run 14) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 15: Vertical stress distribution for Model 15 (Run 15) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 16: Vertical stress distribution for Model 16 (Run 16) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 17: Vertical stress distribution for Model 17 (Run 17) a) in web gap detail, b) along the vertical path 

at web gap. 
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a) 

 
b) 

Figure A.C. 18: Vertical stress distribution for Model 18 (Run 18) a) in web gap detail, b) along the vertical path 

at web gap. 
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