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Figure 3.1 Alignment of RF (0, 0, 1, 1) for lower bounds

with values that contradict the order
of the values found from the oracle.

2 The Reward Hypothesis + poorly designed Reward Functions = value functions
misrepresenting main objectives.
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» Faulty reward functions incentivize agents to follow a faulty policy, assigning higher
values to state-action pairs that the human stake-holders had not intended for. We want
the optimal policy of the agent to be aligned with what stakeholders had intended.

Kendall Tau Score

» The bottom 1st percentile
was not aligned to any slight
degree.

q«(s,a) = mgx qr (S, a)
 The purpose of this project is to understand alignment of human designed reward
functions.
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Results (I)

Setting up the Environment

How does trajectories quality influence alignment? Conclusions
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e Avery well-designed
We set up our environment as a 4x4 grid world of 0.8 reward function has e Humans may not create perfectly aligned reward functions. \
a Hungry-Thirsty Domain (Singh, Lewis, and - alignment roughly =1 e Humans are worse at designing reward functions that align with values in lower-
Barton 2009). Within our testbed, we have an ; | ; performing trajectories.
article of food and water, and walls between i ; : through all bounds « This work can assist in understanding how to design more aligned reward
squares. Our agent is placed at a random square itk Al A v | 3 ' e Only 5% of the RF functions.
at the beginning of every trajectory. 0.0] - ' e Further understanding reward functions leads to further development of RL,
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Agents state is determined by

assisting in creating alignment between agent and human preferences.

Figure 2.1 Lower-performing trajectories alignment data.

Objective: Stay satiated at as many time steps
as possible
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