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Abstract 
 
Resonance is at the heart of sensing and characterization tools in all fields of science. A 

nanoresonator has achieved the remarkable resolution of a proton mass. The coupling of a 

micromechanical oscillator to an optical field in a high finesse cavity has allowed sensitive 

probing even in the quantum regime. Such techniques rely on the frequency shift and or 

amplitude change of a very narrow-band resonator. The key to obtaining a narrow 

bandwidth of response lies in overcoming the damping effects, considered detrimental in 

the context. The primary aim in the design of resonators has been to minimize all 

dissipative effects thus. Unavoidably, dissipation is always introduced both from viscous 

friction with the fluid media and internal losses of the material, and is maximized at 

resonance. We take an alternative view of the role of dissipation in resonance and the 

information it conveys pertaining to a system. We explain the condition of maximization 

of dissipation at resonance as a variational problem dependent on phase, the phase 

appearing from an arbitrary path. We look at both mechanical and electrical resonance 

platforms and try to study the importance of dissipation in such systems in defining 

resonance altogether.  

 
The underlying phenomenon of standing waves is re-explored to explain the elusive 

resonance amplification from a radically alternate perspective using a path integral 

approach similar in form to Feynman’s quantum theory.  Standing wave definition from 

the aspect of phase   in time and space is considered. We comment on resonance 

amplification factor from a hypothesis-formulated in terms of measured   in space. This 

time-phase evolution in space is explained as a continuous accumulated phase within the 

physical bounds of a resonator. The importance of the evolution of phase   and its role in 

the origin of standing waves at resonance is highlighted.  Comparison of theoretical results 
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and experimental data show an excellent match. In addition, the fundamental treatment 

makes the formulation applicable to all resonating systems in a general way. 

 
We study a nanostructured mechanical resonator and show that when multiple coupled 

oscillators are involved, in the limits of continuum breakdown, inherent randomness in 

interactions with the media molecules can no longer be neglected leading to an additional 

non-continuum energy scale. The two energy scales compete in bringing long-range order 

over an inherent randomness and we show that such interplay can be explained by 

generalized Gibbs measure. The implication of such competing dynamic scales in the limits 

of continuum breakdown is profound revealing an extraordinary exponential amplification 

phenomenon. The work tries to highlight this in the context of an apparent dynamic range 

magnification of gas kinematic viscosity, making it a suitable parameter for gas 

characterization even in normal atmospheric conditions. 

 
We introduce photothermal electrical resonance spectroscopy of physisorbed molecules on 

a semiconductor nanowire resonator combined with infrared (IR) for molecular recognition 

of femtograms of adsorbed molecules exploiting dissipation signature at electrical 

resonance. The technique exploits the combination of very low thermal mass of the 

nanowire and high number of surfaces states on the nanowire for detection. We highlight 

that dissipation driven transition at play a crucial role in surface state population and de-

population.  

 
We show that dissipation itself can be used as a measuring tool in the resonator-based 

devices. The new paradigm of dissipation-based sensing introduced in this work can be 

utilized in a broad range of fast, inexpensive, hand-held measuring devices.  
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Preface 

The thesis is paper based with an Introductory and Conclusion chapter binding the results. 

It is organized into five sections as follows –  

Section I. is the introductory chapter. It reviews the concept of resonance in the light of 

complex response function. The importance of the imaginary part of the response function 

as a measure of the dissipated energy is explained. A variational principle approach to 

understanding dissipation as a functional of phase  , dependent on arbitrary paths in a 

system is also introduced.   

 
Section II. is a monograph communicated for publication as Arindam Phani, C. W. Van 

Neste and Thomas Thundat, “Standing wave revisited: accumulated phase and resonance 

amplification”. It reviews resonance in the light of standing waves.  

Contribution to the paper: A.P designed, characterized and performed all experiments. 

C.V.N was involved in experimental design. A.P and T.T were involved in study design, 

data interpretation and theoretical analysis, and wrote the manuscript. All authors discussed 

results and commented on the manuscript. 

 

Section III. has been published as Arindam Phani, Vakhtang Putkaradze, John E. Hawk, 

Kovur Prashanthi and Thomas Thundat, “A nanostructured surface increases friction 

exponentially at the solid-gas interface” in Scientific Reports 6, Article number: 32996 

(2016). It addresses a surprising effect brought about by nanostructuring a surface of a 

macro resonating system.  

Contribution to the paper: A.P synthesized, characterized, designed and performed all 

experiments. J.E.H wrote machine interface codes in LabVIEW and K.P was involved in 

study design. A.P, V.P, and T.T were involved in study design, data interpretation and 
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theoretical analysis, and wrote the manuscript. All authors discussed results and 

commented on the manuscript. 

Section IV. is published as Kovur Prashanthi, Arindam Phani, and Thomas Thundat, 

“Photothermal electrical resonance spectroscopy of physisorbed molecules on a nanowire 

resonator” in Nano Lett., 2015, 15 (8), pp 5658–5663. It introduces a new platform of 

using a semiconductor nanowire combined with infrared (IR) for molecular recognition of 

femtograms of adsorbed molecules exploiting dissipation signature at electrical resonance. 

Contribution to the paper: Authors have equal contribution. K.P and A.P. were involved 

in study design and data interpretation. Experiments were conceived by T.T. All authors 

were involved in study design, data interpretation and theoretical analysis, and wrote the 

manuscript. All authors discussed results and commented on the manuscript. 

 

Section V.  concludes and summarizes the overall thesis and also gives a brief account on 

the future aspects of the present work.  

 

Bibliography  presents a comprehensive list of literature relevant to the work presented 
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“My heart sings at the wonder of my place 
In this world of light and life; 
At the feel in my pulse of the rhythm of creation 
Cadenced by the swing of the endless time. 
I feel the tenderness of the grass in my forest walk, 
The wayside flowers startle me: 
That the gifts of the infinite are strewn in the dust 
Wakens my song in wonder. 
I have seen, have heard, have lived; 
In the depth of the known have felt 
The truth that exceeds all knowledge 
Which fills my heart with wonder and I sing.”                  

------ Rabindranath Tagore 
 
  

 
“If you want to find the secrets of the universe,  
think in terms of energy, frequency and vibration.”          
                                                                                                ------ Nikola Tesla 
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Fig 2.7|  A. The match of experimental measured data to theoretical fit obtained from equation (6). 

The standard wave reflection amplification factor 2  obtained with the condition of 0r  

as in a standard definition of wave is highlighted. The background color inlay represents the 

complex wave field in 2D as a function of accumulated phase r . B. Simulated plots of the 

complex potential vs the real potential as a function of r . The generic higher amplification 

character with higher accumulated phase is evident. 

 

Fig 2.8|  Resonance breaks the electron cloud symmetry at the SW frequency creating a nonlinear 

dependence of the potential explainable through the condition (4) and the phase dependent solution 
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of (5), the deformation being dependent on the accumulated phase. The condition  

r
r 2  

makes the electron cloud deformation extreme. The higher asymmetric electron cloud takes a 

higher finite time to make its effect felt as a function of space in the metal lattice, hence the 

accumulated phase. The greater overlap of electron cloud changes the charge distribution in space 

making them static charges rather than moving charges as in the usual case of 0r . The 

medium thus appears non-isotropic to the perturbation or wave, with the functional form of r  

being a measure of the non-isotropicity.  The distributed charges leads to more storage of energy 

and lesser dissipation for reduction in charge flow. The stored energy corresponds to the imaginary 

part of the solution of (5) which when plotted in phase space makes evident the accumulated phase 

that diverges out in spirals rather than collapsing onto the real axis forming a circle or an ellipse.  

 

Fig 3.1|  Experimental Schematic with key result. (a) A typical measured graph of dissipation 

(top) and an artist’s impression of a nanostructured resonator surface interacting with gas molecules 

(bottom). (b) Amplitude response graphs for a nanostructured surface for three measurements of 

increasing viscosity of ambient gas (black, red, green) showing the exponential variation of the 

dissipation D on viscosity (inset). (c) Amplitude response graphs for a bare surface for similar three 

measurements of increasing viscosity of ambient gas (black, red, green) showing the linear 

variation of D on viscosity (inset). The blue dotted lines joining the amplitude peaks in (b) and (c) 

represent the same relative change in amplitudes in both cases. 

 

Fig 3.2|  Damping with varying media conditions. (a) Results of experiments for a wide range 

of viscosities for different gases at a fixed temperature, and also temperature dependence for a 

single gas. 2 orders of magnitude deviation from Stokes’ theory shown with a Red arrow. Panels 

(b) and (c) show the effective magnification of dynamic range of    as a measurement parameter, 

where 3 orders of dissipation enhancement as compared to a bare surface are highlighted. 

 

Fig 3.3|  Observed absolute relative frequency changes ff .  Resonance frequency f

measured in dry air at normal temperature and pressure conditions for the lowest drive 

input. All variations in frequency correspond to the expected values with orders of 

magnitude of 610 .  

 

Fig 3.4|  Damping for a single vapor concentration vs normalized changes resonance 

amplitude.  (a) Shows high sensitivity of the dissipation for a nanostructured resonator vs an 

equivalent resonator with a non-structured surface. Dashed blue line shows exponential fit 
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corroborating to our theory. As a representative for detailed analysis check Fig 3.S3 for data points 

(i) and (ii). (b) The corresponding frequency variations, commonly used as a measuring parameter, 

shows substantial enhancement for nanostructured case, and remains in the order of ppm. (c) The 

variations of velocity are linearly proportional to the change in amplitude, with the slope being very 

close to 1, as expected.  

 

Fig 3.5|  Illustration of the mechanism for spontaneous out-of-phase rod dynamics enhancing 

dissipation. (a) Illustrating in-phase motion of the rods, only the friction of the motion parallel to 

the resonator contributes to dissipation. (b) Two incidents of out-of-phase motion of the rods create 

a strong motion transversal to the resonator, enhancing the dissipation. The potential function 

   defining the energy of a given state, having the minima at 0 and   with the 

potential barrier separating the two states (the in-phase and out-of-phase) being E . (c) Compiled 

graphical comparison of experiment and theoretical analysis. 

 

Fig 3.6|  Experimental Schematic.  

 

Fig 3.S1|  FE-SEM image of nanostructured QC with embedded scale-bars. 

 

Fig 3.S2|  XRD-analysis of nanostructured QC. 

 
Fig 3.S3|  Conductance vs Frequency response of the Nanostructured QC resonator for small 

changes in input drive energy.  

 

Fig 3.S4|  Accuracy analysis of measured data. 

 

Fig 3.S5|  A representative set of dissipation measurements for different gas media as done in 

sequence. Note that each graph is obtained as a concatenated fit of multiple readings similar to that 

presented in Fig 3.S3 above. 

 

Fig 4.1|  (a) Schematic representation nanowire resonator with equivalent electrical circuit model 

(please refer to section 1b, Supplementary Information) and the concept of coupling electrical 

resonances of the nanowire with optical excitation for high selectivity and high sensitivity chemical 

sensing, (b) SEM images of BFO nanowire, (c) dissipation (D) IR spectrum of adsorbed molecules. 

Electrical resonance frequency of the nanowire changes due to molecular adsorption, enabling 

detection of fg  levels of adsorbed mass. Resonant IR excitation of adsorbed molecules produce 
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large changes in the dissipation of nanowire resonator due to population-depopulation of surface 

states by thermally generated carriers. 

 

Fig 4.2|  (a) Typical time response curve for low thermal mass and high thermal mass systems. (b) 

Thermal response sensitivity of nanowire resonator with low thermal mass analyzed at SRF as a 

function of external drive. Inset shows normalized changes in dissipation  0DD as a function of 

relative changes above room temperature. (c) Time response )(  variations as a function of heat 

energy  Q  floor corresponding to external drive; subsequent variations in normalized dissipation 

 0DD of the nanowire resonator for the same energy fluctuations. Electronic state distribution in 

a material typically follows Boltzmann distribution and hence their variations as a function of 

energy all follow logarithmic trends, evident from thermal responses. 

 

Fig 4.3|  Electrical resonance of the nanowire resonator without and with adsorbed RDX molecules. 

The dissipation of the nanowire resonator also changes as a function of molecular adsorption. Inset 

of Figure 3 show higher magnification in the region of interest. Dissipation change proportional to 

adsorbed mass. 

 

Fig 4.4|  (a) Dynamic dissipation of the nanowire resonator with RDX molecules adsorbed on its 

surface and irradiated by IR. (b) Normalized dissipation  0DD response of the nanowire 

resonator as a function of its response time. The selectivity in detection is through to the unique 

spectral absorption characteristics of the adsorbates in the mid-IR region. A variation in internal 

dissipation of the nanowire resonator is reflected by its dynamic dissipation in proportion to the 

small temperature changes due to IR absorption by adsorbates. The dynamic dissipation of the 

nanowire resonator with adsorbed molecules (without IR irradiation) served as the reference signal.  

 

Fig 4.5|  (a) PERS of RDX molecules adsorbed on nanowire (b) comparison PERS and FTIR 

spectroscopy of RDX molecules. The peaks on the measured PERS matches very well with the 

FTIR spectra of the analyte molecules. The observed high spectral resolution (linewidth) in PERS 

of the nanowire resonator is due to its extremely low thermal mass and fast response time ns 

significantly reducing thermal broadening compared to FTIR. FTIR absorbance   photon count; 

Dissipation from IR absorption is a complementary response in terms of phonon induced heat.  

 

Scheme 4.1|  Equivalent RLC circuit model for nanowire resonator (with typical RLC 

values; R ~ Ω, L ~10-7 H and C ~ nF) 
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Fig 4.S1| Variation of electrical series inductance (a) and series capacitance (b) of the nanowire 

resonator as a function of frequency. Variation in inductance is insignificant at resonance whereas, 

a clear capacitance variation is seen at resonance. 

 

Fig 4.S2|  (a) Electrical resonance response of nanowire resonators with various lengths of 

nanowires. (b) Dissipation and resonance frequency response of nanowire resonators obtained for 

various nanowire lengths. 

 

Fig 4.S3|  Variation in dissipation (a) & capacitance (b) obtained for the nanowire resonator without 

and with RDX molecules. The order of shift is in KHz to even minute quantities of adsorbates of 

the order of fg. 

 

Fig 4.S4|  Variation in dissipation (a), series capacitance (b) obtained for the nanowire resonator 

with RDX irradiated at different IR wavelengths.  

 

Fig 5.1|   Eigenstate response at a shallow potential of an energy well. 

 
Fig 5.2|   Eigenstate response at a deep potential of an energy well. 
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Forward 

The subject of resonance originates from the study of oscillating systems in classical 

mechanics, philosophically describing dynamics in a potential well, like in a gravitational 

or a harmonic field binding a particle elastically to origin. It is central to many physical 

theories in electromagnetism, optics, acoustics, and quantum mechanics, among others. 

Resonance pertains to motion in a general sense, as in physical displacement in a 

mechanical system or distribution of charge in an electrical case. Resonance amplifies a 

small external action by orders of magnitude, while matching the frequency of the external 

action to a characteristic frequency of the system. This amplification character is exploited 

in multitude of ideas both in the classical and quantum regime. Resonance has been the 

key to high sensitive and high accuracy sensing in the past few decades. At its heart is a 

mechanical resonator, which is driven with the characteristic resonance frequency in order 

to sustain the motion with the least amount of driving force. The natural goal in such a 

design is the generation of stable, large amplitude, narrow band oscillations closely 

approaching the linear (harmonic, or single frequency) regime. The forcing is usually 

provided through a feedback mechanism, ensuring compensation of energy losses every 

cycle in order to maintain the constant amplitude. Evidently, the energy losses are 

deleterious, as higher dissipation leads to broadening of resonance and lowering of 

amplitude, increasing the need for a higher compensating force, thus decreasing the overall 

efficiency of the device. Such losses must be accounted for in designing a sensitive sensor 

platform. Thus, it becomes imperative to understand the nature and origin of this loss. From 

the aspect of sensor design, dissipation has always been looked upon as something 

unwanted and thus a primary strategy is to get rid of dissipation effects altogether.  
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The general equation of motion of a driven resonator expressed in a conventional 

force balance form (inertial, elastic/compliance, friction/damping and drive) is  

 tACosxx x  
2

0  

where the overdots denote derivatives with respect to time,   the dissipation coefficient 

related to the Q-factor and 0  the resonant frequency given by
m
k

0 relating the 

compliance/stiffness to the mass of the resonator. The above equation is the most favourite 

for people working with resonator based sensing. However, there is more to resonance 

beyond this equation. In the most general form for the sake of analysis, the drive component 

is considered a real quantity that has an amplitude A  and a frequency chosen to be close 

to the resonance frequency 0 . Systems with feedback adjust A  and   in time by 

maintaining the amplitude of oscillation x  constant. Scaling down to the micron scale 

typically increases 0  to order of hundreds of kHz or even to tens of MHz.  More so, it is 

important to note that the dissipation coefficient   typically increases slower than 0   

when the scale of the system is brought down. Recent trend has been to miniaturize the 

resonators to increase the sensitivity. Also, focus on design and operation of such devices 

has been on obtaining minimum possible dissipation achievable at that scale. Generally, 

one attempts to eliminate friction with ambient gas by conducting experiments in high 

vacuum and low temperatures. While that seems to be an accepted method, the need for 

high vacuum has been questioned. Theory predicts that at ultra-thin scales, where the mean-

free path of the ambient gas molecule is greater than the characteristic length of the 

resonator, the continuum assumptions breakdown. At such scales, random molecular 

interactions take effect. As an example, the gain in Q-factor by going from moderate to 

high vacuum is little, as has been further confirmed by experiments too. That brings us 
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back to the fundamental question of the undergoing physical phenomenon that causes 

dissipation.  

Dissipation is central to every motion, since there is always an inherent randomness 

between events at the molecular scale. As a child, we have all at some point of time played 

with rubber strings in the form of mechanical resonators stretched between two fingers. 

We may recall that when plucked, the string vibrates with maximum amplitude fixed by 

the displacement produced by the act of plucking and a frequency essentially depending 

on the length and stiffness of the string. The more we keep it stretched higher is the 

frequency. The other fundamental observation in such a playful resonator is the gradual 

diminishing of the amplitude of vibration in time, which is attributed to mechanical 

damping. Now what happens if we keep on reducing the size of the string? It is a common 

observation that the time it takes to stop vibrating goes down and thus must be related to 

change in damping losses. It becomes customary to understand why the system should 

damp at all. It turns out to be due to the volume of the fluid in contact with the surface of 

the string, which it displaces and drags along while in motion. The molecular motion in the 

fluid is central to the cause of damping. It was Einstein’s celebrated work on Brownian 

motion in 1905, that introduced the concept of molecular motion as heat. His relation, 

KTD , relating diffusion coefficient D  of a Brownian particle to its mobility  , 

provided a very good basis for experimentally verifying that Brownian motion is in fact 

related to the thermal motion of molecules. It turns out that this relation is obtained from 

the equation of motion by equating the energy dissipated by a particle in motion under 

Stokes drag - vd6  to the thermal energy .KT  Dissipation in a general sense thus 

originates from time dependent random collision events at the molecular scale. In fluids, it 

is from the momentum transfer between molecules on collision, viscosity being a measure 

of the momentum transfer. In electrical system, it is from scattering of free electrons at the 
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lattice centers, the damping coefficient being the resistance. In all cases, the loss of energy 

from the aspect of a source is a gain or absorption of energy from the point of view of the 

system. This has another significance in terms of information content. Since any random 

event is not invariant under a time reversal ,tt   information related to the random time 

events or collisions is inherently encoded in the dissipation. Dissipation is thus a gold mine 

of information on random events involved in any motion and remains unutilized or 

overlooked.  

Scope and Objective of Thesis 

In this work, we show that studying dissipation at resonance, is a way to tap to the 

dissipation-encoded information, since the resonance condition of motion is a unique state 

where dissipation is maximized. The goal of this work is to understand the role of 

dissipation in resonance more fundamentally. We highlight the fact that resonance is not 

possible without dissipation. In our study, we try to demonstrate that it is possible to use 

the dissipation as a signature for sensing. This is, to our knowledge, the first time that 

sensing with dissipation has been demonstrated.  

We introduce a variational principle approach in interpreting dissipation by 

considering any small displacement x  in the complex plane as,                                                     

     txitxtx   

with x  and x   as the real and imaginary parts of an absolute displacement. The slope 

of x  in time, giving the velocity x  is given by   xx tan  , where   is the phase. 

The evolution of x  in motion corresponds to changes in   tan . A large change in slope 

corresponds to a rapid change in effective x , which means x   changes more rapidly 
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compared to x , leading to higher dissipation in the system. With this consideration, a 

measure of the dissipated energy or the work done on the system for a displacement x , 

translates to                                      

path
x

path
xxxI

j
  

over any arbitrary path j  in which the motion takes place and where x
ix    is the phase 

functional corresponding to a path j . Dissipation is thus introduced as a variational 

problem where the integral I , representing accumulative action of dissipative forces, is 

maximized at the condition of resonance.  

The inherent maximization property of dissipation at resonance has a profound 

significance in terms of understanding the nature of dynamics in a generic potential well. 

Physically it means that a particle undergoing a motion in a potential well is drawn to the 

potential well minima at resonance. Dissipation promotes this transition. Resonance 

frequencies or Eigen solutions in general thus define the potential minima’s allowable in a 

system and dissipation corresponds to the cumulative sum of energy lost by a particle 

undergoing motion to attain that potential minima.  
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Organization of thesis  

Section I.  Role of Dissipation in Resonance: A Variational Principle Approach – is 

the introductory chapter. It reviews the concept of resonance in the light of complex 

response function. The importance of the imaginary part of the response function as a 

measure of the dissipated energy is explained. A variational principle approach to 

understanding dissipation as a functional of phase  , dependent on arbitrary paths in a 

system is also introduced.   

 
Section II.  Standing wave revisited: accumulated phase and resonance amplification 

- reviews resonance in the light of standing waves. The underlying phenomenon of standing 

waves is re-explored to explain the elusive resonance amplification from a radically 

alternate perspective using a path integral approach similar in form to Feynman’s quantum 

theory.  The monograph carefully reconsiders standing wave definition from the aspect of 

phase   in time and space, and comments on resonance amplification factor from a 

hypothesis-formulated in terms of measured   in space. This time-phase evolution in space 

is explained as a continuous accumulated phase within the physical bounds of a resonator. 

The importance of the evolution of phase   and its role in the origin of standing waves at 

resonance is highlighted.  Comparison of theoretical results and experimental data show an 

excellent match. In addition, the fundamental treatment makes the formulation applicable 

to all resonating systems in a general way. More specifically, the fundamental question 

concerning resonance - How does the amplification come about and what determines the 

amplification factor of a resonant system in the light of dissipation is addressed. An in-

depth discussion of the argument of dissipation driven transition of a particle to a potential 
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well minima is presented in the light of the amplification factor or the efficiency of the 

transition as the ratio of the stored to the dissipated energy.  

 

Section III.  A nanostructured surface increases friction exponentially at the solid-

gas interface - addresses a surprising effect brought about by nanostructuring a surface of 

a macro resonating system. The key observation points of the research are the following:  

 A drastic deviation from the age-old Stokes linearity law of friction drag with 

respect to media viscosity change.  

 A dense array of nanostructures on a surface with spacing comparable to mean free 

path of air molecules, can bring about such deviation, greatly enhancing frictional 

drag by orders of magnitude.  

 The deviation in particular follows an exponential law with respect to changes in 

the kinematic viscosity.  

 The profound amplification effect can be utilized in designing new age sensors and 

can also be the basis of further fundamental studies of nanoscale flows at solid-gas 

interfaces.  

The Stokesian regime of very low Reynolds number typically deals with a continuum 

energy scale governed by the long range viscous interactions. The work in this monograph 

shows that, when multiple coupled oscillators are involved, in the limits of continuum 

breakdown, inherent randomness in interactions with the media molecules can no longer 

be neglected leading to an additional non-continuum energy scale. These two scales 

compete in bringing long range order over an inherent randomness and we show that such 

interplay of energy scales can be explained by generalized Gibbs measure. The implication 

of such competing dynamic scales in the limits of continuum breakdown is profound 

revealing an extraordinary amplification phenomenon. The work tries to highlight this in 

the context of an apparent dynamic range magnification of gas kinematic viscosity, making 

it a suitable parameter for gas characterization even in normal atmospheric conditions. The 

results obtained from this work can be extended to other physical systems where such 
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competing scales can be in play in Nature. One such example can be the hierarchical micro-

nanostructures on wing-cuticles of insects, where the role of many such structures is still 

not known. 

 

Section IV.  Photothermal electrical resonance spectroscopy of physisorbed molecules 

on a nanowire resonator - introduces a new platform of using a semiconductor nanowire 

combined with infrared (IR) for molecular recognition of femtograms of adsorbed 

molecules exploiting dissipation signature at electrical resonance. The technique exploits 

the combination of very low thermal mass of the nanowire and high number of surfaces 

states on the nanowire for detection. Researchers always try to avoid surfaces states as they 

cause noises in the system during normal working of a semiconductor. Most of the surface 

states effects are very small for bulk systems.  Because of the large surface-to-volume ratio 

of a nanowire, they play a significant role in nanowire electrical properties. Dissipation 

driven transition at play is studied here in the light of surface state population and de-

population. The results obtained from this work can be extended in determining the density 

of surface states in a semiconductor material resonantly from dissipation signature. 

 

Section V.  Conclusion and Discussions - summarizes the overall thesis and research 

progress done so far and also gives a brief account on the future aspects of the present 

work.  

 

Bibliography  presents a comprehensive list of literature relevant to the work presented.  
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I. Role of Dissipation in Resonance: A Variational Principle  
         Approach 
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1.1 Understanding Resonance  

The concept of resonance originates from the study of oscillating systems in classical 

mechanics. Philosophically, it caters to dynamics in a potential well, like in a gravitational 

or a harmonic field binding a particle elastically to origin. Resonance is central to many 

physical theories in electromagnetism, optics, acoustics, and quantum mechanics, among 

others. Resonance amplifies a small external action by orders of magnitude, while 

matching the frequency of the external action to a characteristic frequency of the system. 

This amplification character is exploited in multitude of ideas both in the classical and 

quantum regime, mostly in sensing and characterization. Standing waves are at the heart 

of explaining the phenomenon with resonance treated as eigenvalue solutions (standing 

waves) of an eigenfunction (wavefunction or quantized energy state of a potential well) in 

the quantum analogue. The classical eigenstate becomes a function of the external force 

(repulsive action) that balances the attractive potential forces towards the center of the well.     

 
Fig 1.1| Resonance and wavefunctions in a potential well;  

the classical case being in the limit of n .   
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At the turn of the 20th century, understanding particle dynamics from the aspect of a wave 

description became central in linking two seemingly scale-disjoint classical and quantum 

fields with a broad applicability from atomic to cosmological scale in a general sense. The 

phenomenon of resonance was the backbone. Historically, formulations starting from 

Plank’s work on energy of resonators and Bohr’s description of an atom to Heisenberg’s 

idea of quantization map bear justice to this. Schrödinger’s description of quantum 

numbers as eigenvalues of the wavefunction is the forerunner in the field. Interestingly, the 

time dependent form of Schrödinger’s wavefunction, similar in form to a non-linear wave 

equation, yields from the classical à la the Hamilton-Jacobi equation. In another historic 

work, de Broglie introduced the concept of electrons having the wave property though 

being a fundamental particle of matter. A little later, Feynman introduced a path integral 

approach connecting quantum mechanical behavior with such classical ideas as the 

Lagrangian or in particular, the indefinite integral of the Lagrangian in describing general 

Hamilton’s principle. All such seminal ideas bear testimony to some quantum phenomenon 

or measurements, though was argued against by Lamb. Incidentally, the classical regime 

was explained as a special case of quantum in the limit of n , where n  is the number 

of energy levels or eigenstates. Some recent expositions rekindle interests in reconsidering 

the fundamentals in the context of classical resonance description. Here in the introduction 

chapter of this thesis we will expound a mathematical framework discussing properties of 

response function that describes classical resonance and simultaneously highlights the 

importance of dissipation in a general sense. Understanding the origin and role of 

dissipation will be our guide in binding the results obtained for different resonating 



P a g e  | 4 
 

systems, crucial in understanding the resonance process in general. An exhaustive 

bibliography at the end of the thesis follows, citing relevant research work. 

Resonance amplification has always been studied in the light of improving quality 

factor (Q-factor) of response in order to achieve higher frequency sensitivity crucial in 

sensor or filter designs. The Q-factor is defined as the ratio of the stored to dissipated 

energy per cycle of motion at resonance. Resonance pertains to motion in a general sense, 

as in physical displacement (mechanical) or distribution of charge (electrical), and hence 

in order to understand resonance it is required to understand general motion itself from the 

aspect of response theory. The goal of response theory is to understand the reaction of a 

system to outside influences like an applied force, electric and magnetic fields, or an 

applied pressure. A brief mathematical primer on response function is necessary to form a 

better understanding of complex dynamics involved in resonance conditions.  

We start by explaining, what is meant by an outside influence on a system.  E.g., if 

a shearing force is applied to a fluid, its response is to move; the viscosity determines how 

much it moves. If a temperature gradient is applied, the response is for heat to flow; the 

amount of heat is determined by the thermal conductivity. If a potential gradient is applied 

across a wire, the response is a flow of current; the resistance determining the magnitude 

of current. Such flow problems in physics are generally studied in terms of a time 

independent constant external influence. Resonance on the other hand occur from time 

dependent external influences and hence we will restrict our discussions to time dependent 

oscillating actions. As we will see, by studying the response of the system at different 

frequencies, we learn important information about what is going on inside the system itself.  
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1.2 Forces in Classical Dynamics and Response Function 

Consider a simple dynamical system with some generalized coordinates  txi  that depend 

on time. When left alone, these coordinates obey Newton’s laws giving equations of motion 

for unit mass of the form, 

  0 x,xgx ii  . 

where  x,xg   is a function dependent on the displacement and the rate of displacement 

defining the system. The dynamics described by the above equation in general need not 

always be Hamiltonian i.e., where the sum of the kinetic and potential energies

constantVT  ,  T  being the kinetic energy and V  the potential energy in usual 

notations of classical mechanics. Indeed, often, or in almost all cases, frictional forces need 

to be accounted for, since in all dynamics, there are inherent losses involved. The deviation 

from a Hamiltonian thus stems from the non-conservative frictional forces inherent in any 

motion. The outside influence arise from perturbing the system by the addition of some 

driving forces  tFi , where the equations of motion become, 

   tFx,xgx iii                                                     (1) 

In the expressions above  txi  are dynamical degrees of freedom exhibited by the motion.  

This is what we solve for in general in understanding the dynamics of the system. In 

contrast,  tFi  are not dynamical since they are forces that are under our control, like 

someone pulling on the end of a spring or an external potential source connected to an 

electrical line. In many cases, the outside influence can be a random force  ti  leading to 

stochastic dynamics. The random force in general is a stochastic process randomly 

changing in time. Such random external forces  ti  cause random physical processes and 
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can be independent of  tFi , like in Brownian dynamics, and the problem reduces to 

solving a Langevin type equation for  txi  and  txi  that are stochastic. Here in our 

discussions, we will focus on classical non-stochastic equations only. Implications of 

stochastic interactions and its relation to general dynamics at resonance will be elucidated 

in the conclusion chapter (section V), with reference to results that are presented in sections 

III and IV of this thesis. First, let us discuss the dynamics that is dependent on  tFi  where 

the time dependence can be decided or is known.  

It would be useful to have a concrete example at the back of our mind in 

understanding dynamics at resonance from the general equation of motion (1). For this, we 

take the case of a simple harmonic oscillator with sinusoidal forcing   tieFtF 
0 . We 

also include a friction term, proportional to damping coefficient  , with which the kernel 

 x,xgi   in (1) can be expanded in terms of dissipation and harmonic components giving, 

 tFxxx  2
0 ,                                                    (2) 

0  being the characteristic undamped fundamental harmonic frequency of the system. We 

will discuss this model in detail and comment on the evolution of the dissipation term x .  

It is necessary to determine the response function or Green’s function,  tt   of 

this system at an elapsed time t  , which effectively solves for the dynamics of the system. 

It follows that if the form of  tF  is known, then the motion is given by 

      tdtttFtx  




                                               (3) 

The standard method to determine  t  is through an inverse Fourier transform in   
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   



 tiedt 

  
2

 

where, the Fourier transform is obtained in terms of  , the external influence or drive 

frequencies giving the spectral density of response   . Using the above form of  t , 

the equation of motion (2) reduces to,  

         tFtFωχeωiγωtd
π

dω ttiω 








   2
0

2
2

                    (4) 

This has a solution if  d  gives a delta function of the form   
 


  det ti

2
1 , obtained 

when                                             2
0

2
1







i
.                                              (5)  

This is independently deducible for a drive function in a general complex form   tietF   

in  .  In is interesting to note that the generalized response function is complex in natural 

form and not a real quantity. There is a whole lot of simple physics in the complex response 

function in   given by equation (5) which we will explain below and that can be carried 

over to more complicated systems in a general sense. It is useful to express the response 

function       ImiRe   as  

        i  

where the real and imaginary parts have different interpretations and physical significances 

in terms of the dynamical information. Let’s look at these in turn.  

 Imaginary Part: The imaginary part of    can be expressed as  

          
2
i  

                          titi eetdti  


   

2
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                              ttedti ti  




 
2

, 

where  *  is the complex conjugate of   . It is evident that the imaginary part of 

   is a component of the response function that is not invariant under a time reversal

tt   . The physical significance being that the imaginary     encodes dynamical 

information of time dependent interactions during motion. In other words,     knows 

the arrow of time. The forces involved in bringing about the imaginary part of the response 

function are non-conservative and thus typically originate from processes that result in 

energy dissipation in a system. Dissipation thus plays a key role in the response dynamics 

and we will discuss in detail the origin of dissipation in a forthcoming section.  

 Real Part: Similar analysis as above also deduces to 

      ttedt ti  




  
2
1 , 

as a time invariant part, that does not care about the arrow of time.  It is the reactive part 

of the response function and corresponds to the storage components in the system and is 

an even function since      . It is called the reactive part since it represents the 

reaction to external action. The physical significance is that the reactive/stored energy part 

corresponding to any motion encodes the total energy or the Hamiltonian of the system at 

any moment in time.  

The fact that the imaginary part knows the arrow of time is crucial in understanding 

the importance of dissipation in any motion that directly follows from the mathematical 

properties of the response function. So, first let us discuss in detail the mathematical 

properties of the relations expressed above in relation to motion.  
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1.3 Causality 

One of the biding laws of all motion is that it cannot affect the past. This statement of 

causality demands that any response function must satisfy  

   0t    for all 0t . 

For this reason, the response function   is often referred to as the causal Green’s function 

or retarded Green’s function. The causality requirement has the following property for the 

Fourier expansion    



 tiedt 



 2
 : for 0t , the integral can only be enforced 

by completing the contour in the upper-half plane, the exponent becoming 

     t  ii  leading to the result   0t . Of course, the integral is given by the 

sum of the residues inside the contour. So for the response function to vanish for all ,t 0  

the response function    should have no poles in the upper-half plane. In other words, 

causality demands that    is analytic for all 0Im . From the physics aspect, it means 

that the response function should not have any singularity i.e., an unbounded response.  

The fact that   is analytic in the upper half plane means that the real and imaginary 

parts,   and    are related, and are given by the Kramers-Kronig relations. We derive 

the relations below to understand the nature of the response function in general, crucial in 

understanding resonance.  

1.4 Kramers-Kronig relations and Resonance 

To gauge the dynamics in   or in Fourier space, it is required to understand the behavior 

of the response function   at all points in the upper-half plane or in a general sense in the 
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interval   , . Invoking analyticity of   in the upper-half plane following the 

condition of causality, it is required to compute the integral  

 
   



  ,
ω

d
i

f
C








       1                                (6) 

Here, the contour C skims over the real axis, with bounds at infinity. The function  f  

in essence gives the relation between   and    of a general response function in (5).  

 
Fig 1.2| Contour integral giving  f  in the upper-half plane. 

 
It is clear from (6) that the integral diverges at   , denoting the resonance frequency 

for a harmonic oscillator in general. So in order to avoid the singularity, the contour of the 

integral running into the complex plane needs to be deformed, either just above the 

singularity along  i  or just below the singularity along  i . This is equivalent to 

shifting the position of the singularity to    on the real axis, represented in the 

figure above by the white annular area around the singularity point  . Invariably, the 

shifted positions    give different results for the integral in (6). Invoking Cauchy’s 

residue theorem, the effective response function can be determined using,  

        ifif
2
1                                      (7) 
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as the difference of the results about the singularity  , while the principal or the average 

value of the two functions, either side of the discontinuity, deducing to, 

    
 







 




 





d
i

ifif  P1
2
1                       (8)  

Here P denotes the principal value of the integral. The physical meaning of the principal 

part is revealed from the real and imaginary parts of the denominator in the integrant

   i1 , 

      2222
1









 








i

i
                       (9) 

As evident, the sum of   if   and   if   in (8) isolates the real part in (9) above. 

In essence, the real part    represents a smooth function going through zero that has 

been obtained by suitably truncating a small segment of   1 , symmetric about the 

divergent point  , plotted below for 1  (the point of singularity) and different  ’s.  

 
Fig 1.3| The real part of function (9) representing   . 
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As 0 ,    becomes a rapidly varying function in   at the 0  crossing. We can also 

see the meaning of the imaginary part of (9) when plotted for 1  and different  ’s.  

 
Fig 1.4| The imaginary part of function (9) representing    . 

 
As 0 ,     tends towards a delta function as expected from (5) and (7). For a finite 

 ,     is a regularized version of the delta function. Using equations (7) and (8)  

 
 

 





 

















 





d
i

if  P1                              (10) 

From the condition of causality, the integral in (6) has to be zero since    has no poles 

in the upper-half plane, and is also equivalent to   if  . This means that   0  if , 

or from (10)                             

 
 







 




 





d
i

 P1                                          (11) 

Of importance is the factor of  “ i ” in the denominator giving the complex form of response 

function as in (9), the real and imaginary parts of which has been plotted above. Obtaining 

the real and imaginary parts gives,  
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   
 







 




 





dImRe  P1                          (12) 

and                                         

                                                 
 







 




 





dReIm  P1                       (13) 

These are the Kramers-Kronig relations and they follow from the condition of causality. 

The importance of the relations is that the dissipative imaginary part of the response 

function     is determined in terms of the real part   , and vice-versa, though the 

relationship in non-local in frequency space. That is, either has to be known for all 

frequencies to reconstruct the other.  

Another way of writing these relations to reconstruct    directly from (5) is to 

consider the integral 

 


















d
i

Im
i
1                                            (14) 

where the “ i ” in the denominator considers integration just below the real axis. Here 

takes the meaning of the dissipation constant   in (2) and (5) describing motion. Using 

equation (7) and (8) once again,   

      
 

 


































d
i

Im
i

Imd
i

Im
i

11 P  

              ReiIm                                          (15) 

Thus, knowing the dissipative part of the response function, the entire response function 

   can be reconstructed.  
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This singular mathematical property of the imaginary or the dissipative term is 

actively considered in resonance analysis. The imaginary     is called the dissipative or 

absorptive part of the response function, with   being the coefficient of absorption. From 

the aspect of the source or external action,   represents the damping coefficient.     is 

also known as spectral function containing information about the density of states in the 

system that take part in absorptive processes. These will be further discussed later.  

1.5 Resonance and Dissipation  

Now that a mathematical primer on the complex response function and its properties has 

been discussed, let us rewrite (15) in the form of       ImiRe   giving the 

main result describing resonance response from equation of motion (2) as, 

 
 







 




 





d
i

Im1                                         (16) 

The above result represents the spectral response or the Fourier space response of a general 

motion described by equation (2) with    denoting the damping or the annular area of 

the contour deformation satisfying the condition of causality. The entire point of avoiding 

the point of singularity in the contour integral is to get a real function continuous through 

0  giving a measure of the stored energy component that is tangible. The singularity makes 

the response function complex, the imaginary part giving a measure of the lost energy that 

is not perceivable. It is only at resonance, that the imaginary part is reflected as a spectral 

peak denoting the absorption density. As pointed before, the entire response of the system 

can be reconstructed if the imaginary part of the response function is known. Thus 

obtaining the Fourier space response of a system for harmonic analysis in essence 
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investigates equation (16) in a physical experiment involving a resonator. The magnitude 

of   is dependent on the random processes as an inherent part of the motion. This would 

be elucidated more in the conclusion section, once we discuss in detail experimental 

findings involving random effects in sections III and IV.  

As has been established before, (16) can be solved if  d  is a delta function and 

since it can be represented in the form of      
 det ti2 , (16) reduces to, 

  2
0

2
1







i
                                           (17) 

Let us understand the physics involved in the above result. Firstly, the equation above can 

be analyzed from the point of view of susceptibility of motion, i.e.,  0  giving  

  2
0

10


                                                   (18) 

Evidently, the observable change by a time independent perturbation of the system, i.e., a 

static force would give                                  

2
0

Fx                                                          (19) 

or the spring deformation for an external force F as expected, following the equation of 

motion (2).  

For time dependent perturbations the structure of the response function needs to be 

analyzed in the complex   plane vide discussions in Sections 1.2 and 1.3 above. The 

poles are at the solution points of 02
0

2  
**

i . Solving the quadratic using 

Sridhacharya’s formula gives,  
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4
2

22
0 


 

i
*

                                        (20) 

Note: 
*

 can be both positive and negative. The positive and negative frequencies are the 

result of properties of the Fourier transform that refer to the clockwise (-ve) and anti-

clockwise (+ve) sense of rotations of the complex exponentials in the imaginary plane.   

 

There are three different regimes that we can consider separately, 

 Underdamped: 422
0   . In this case, the poles have both a real and imaginary 

part and they both are on the lower half plane. This agrees to the general discussion 

on causality before – Section 1.2, signifying that the response function remains 

analytic in the upper-half plane.  

 Overdamped: 422
0   . Here, the poles lie on the negative imaginary axis and 

neither are on the upper-half plane. This condition is also consistent with causality.  

 Critically damped: 422
0   . The single pole in this case is on the negative 

imaginary axis, also consistent with the condition of causality.  

 

Further, a few mathematical steps gives the real and the imaginary parts of the response 

function, which when plotted, physically represent the energy associated with the motion, 

and allows us to gain some intuition about the response at resonance. From (17) it follows,                                  

 
  22222

0

22
0









Re                                           (20) 

This represents the real or the stored component of the system corresponding to the 

potential function or the potential well of the system in which the oscillations take place. 
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Parallel can be drawn in terms of Hamiltonian analysis where this real part corresponds to 

the total energy of the system at any point in time. Physically, the higher the functional 

value of  Re , more the system responds to a frequency. As discussed before, the real 

part being time invariant, the function is even or mirror symmetric about 0  in 

frequency space as revealed in the figure plotted.  

 
Fig 1.5| The real, reactive part of response function for underdamped case of a harmonic 

oscillator, plotted with 40   and 20.  

Similarly, the imaginary part from (17) reduces to 

 
  22222

0 






Im                                         (21) 

The imaginary part is most interesting, representing the dissipative part of the response 

function. As clear from the plot of the underdamped case above, it is an odd function that 

peaks at 0  , the frequencies where the system vibrates naturally. Unlike the real 

part that crosses through 0  at the natural frequencies, the imaginary part peaks. This 

character makes the imaginary part most interesting in terms of the dissipation in the 

system, signifying that the system is most efficient in absorbing energy at the peak 
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frequency. It must be noted here that Im  is proportional to  , the frictional coefficient. 

However, as 0  , Im  does not become 0 ; instead it tends towards two delta functions 

at 0  .  

 
Fig 1.6| The imaginary, dissipative part of response function for underdamped case of a harmonic 

oscillator, plotted with 40   and 20.  

 

1.6 Dissipation maximization and its relation to Im  

Dissipation can be understood by computing the energy absorbed by the system and its rate 

is given by    tx tF
dt

dW
 . In a true sense, the vector product of the force and the velocity 

gives the rate of work done. Here let us assume for the time being that they are vector-

collinear.  Non-collinearity would only add a pre-factor in the result depending on the 

vector angle between the two. Expanding it in terms of the response function, we get,  

        td  tFtt
dt
dtF

dt
dW

 




  



P a g e  | 19 
 

                                             tFei d tdtF tti

-









  


 

2
 

                                                         






  







 FFe idd t  i
22

          (22) 

Let us now drive the system with a force of a specific frequency  , as usually done in 

experiments, so that 

   tieReFtcosFtF  00                                         (23) 

It is crucial that we make the force real here at this stage of formulation following the 

reality of force (or source) to abide by the analytic properties of response function as 

discussed in Sections 1.2 and 1.3 before. A more detailed formulation dependent on 

complex forcing can be developed, that essentially would give non-linear response 

functions. Here, we restrict ourselves to linear responses only for simplicity of presentation 

and for making a fundamental point on the nature of dissipation. Taking the Fourier 

transform, the driving force is 

        02 F F                                    (24) 

Using (24) in equation (22) we get,  

     titititi ee ee  F i
dt

dW   0                    (25) 

This is an oscillating function in time and it is more useful to take an average over a cycle, 

    


 






2

0

2

02
iF

dt
dWdt

dt
dW                        (26) 

The over-bar represents the average. Now from discussions in sections above,  Re  is 

an even function while  Im  is odd. Using this property, from (26) we can write 
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                                                Im F
dt

dW
 2

02                                                (27) 

i.e., the work done is proportional to  Im . We have derived this result on general 

grounds only from the even/odd property of the real/imaginary parts and not the exact form 

of the response function.  

For a damped harmonic oscillator we can use the explicit form (21) and the result 

above in (27) to derive the important result 

   2
222

0

2
2

02





 

 F
dt

dW



                                       (28) 

This is maximum when the harmonic oscillator is driven at its natural frequency, 0 . 

As the treatment above illustrates, the imaginary part of the response function gives us the 

frequencies at which the system naturally vibrates. In essence, the system absorbs energy 

most efficiently at these frequencies.  

1.7 A variational principle approach of Dissipation 

It is interesting that dissipation maximizes at the condition of resonance and not elsewhere 

i.e, for driving frequencies   way off from 0 . For such off-frequencies, dissipation is 

much less compared to the real or the stored energy in the system. This is the physical 

significance of general Lagrangian and Hamiltonian analysis with the assumption that 

dissipation is negligible. The physics behind it being the assumption that the generalized 

motion  txi  with an external influence following equation (2) is typically small, making 

the  txi  also small to an extent that the dissipation force ix  and its variation with motion 

can be neglected.  
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For considering the stored or the real component of the energy, the real part of the 

response function    is crucial, obtained as a contour integral over the real axis as in 

equation (7) with the points of singularity truncated. It is analogous to computing the 

Hamiltonian VTH   of a system, where T  is the kinetic energy and V  is the potential 

energy in usual notations. H gives a measure of the energy of the system that is responsible 

for giving the real response. As has been discussed before, higher the real part of the 

response function, more the system responds to an external action. This fact can be 

reflected upon from the mathematical properties of     Re , that is continuous and  

Fig 1.7| The Real and Complex part of response function and Energy 
 

mirror symmetric and has a 0  crossing about the center or resonance frequency. At 

resonance, the real energy is either kinetic 2
2
1 xT   or potential 2

2
1 xV   every half 

cycle, the other being equal to 0  in that half cycle. This is the physical significance of zero 

crossing of   .  On the other hand,     is not mirror symmetric and does not have a 
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0  crossing. In fact the imaginary part is never 0 . It peaks at the resonance frequency, the 

function approaching the nature of a delta function in the limit 0 .  

In all experiments, resonance is analyzed in terms of a measurable amplitude and phase as 

     iA  and         tan 1  respectively as plotted below.  

 
Fig 1.8| The amplitude and phase response at resonance. 

 

The amplitude response resembles the complex part of the response function. Close to the 

resonant frequency, they overlap, signifying that response goes more in-phase near the 

peak. Indeed, the phase has a zero crossover at resonance. The net dissipated energy from 

the imaginary part of the response is obtainable as the area under the     curve.  
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Fig 1.9| Comparison of the imaginary and widely used amplitude response. 

The condition of maximization of dissipation at resonance could be explained by analyzing 

general motion in terms of the evolution of velocity x , dissipation being proportional to it. 

In a general sense, x  is the slope of the displacement x  vs time at every point on the 

displacement curve. When x  is relatively small, the slope   tandtdxx   is equal to 

the angle  . The evolution of the slope as a function of drive frequency   needs 

consideration in resonance analysis.  

The condition of linearity holds in the small angle approximation only. Another 

way to look at this is considering the series expansion form of the slope function, 

    ... tanf 
2835
62

315
17

15
2

3

9753 
         for 

2


x           (29) 

where   is in radian measure. For values close to 2 , approximation even with 5th term 

(9th power in  ) of the expansion series, deviates off from the actual slope -   tan  as 
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shown. Higher order power terms are necessary to follow the slope close to 2  , which 

is the phase condition of the output response with respect to the driving force at resonance.  

 
Fig 1.10| Approximation graphs of series expansion of   tan  in orders of  . 

The key to understanding this deviation is noticing how   varies with motion in a system. 

For small relative displacements x  with respect to external action, the variation in   is 

also negligible as clear from the phase response in Figure 1.8. This is true for drive 

frequencies way off from the resonance frequency. However, near resonance, as the phase

2  ,   tan  is a rapidly changing function tending to   . In effect,     also 

changes sharply for added dissipative effects. The amplitude change on the other hand, is 

a relatively slow varying function in   in comparison (Fig. 1.9), and follows the peak of

   , while the real part    approaches zero. One way to interpret the complex 

response function is considering the small displacement x  in the complex plane as,                                                     

     tx itxtx                                                (30) 
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with x  and x   as the real and imaginary parts of the absolute displacement x . The 

slope of x  in time x  thus becomes   xx tan  . The evolution of x  corresponds 

to changes in   tan . A large change in slope corresponds to a rapid change in effective 

x , which means x   changes more rapidly compared to x , leading to higher dissipation 

in the system. With this consideration, a measure of the dissipated energy or the work done 

on the system for a displacement x , translates to                                                

         

path
x

path
xxxI

j
                                           (31) 

over any arbitrary path j  in which the motion takes place. The integral I  becomes a 

functional of x , where xx    denotes a continuous closed curve in the complex plane, 

representing changes in dissipative force with respect to a varying  displacement x  over 

a path. I  in essence, is the accumulative action of dissipative forces, where the integral 

over a path inherently incorporates the time. Another way of interpreting the accumulative 

action I  is the   
paths

ntdisplacememomentum , dissipation originating from momentum 

transfer between interacting bodies or particles. Functionals in general, are variable values 

which depend on a variable [     f tan   here] running through a set of functions ( x  

here, that is dependent on an arbitrary path x  and  ), or on a finite number of such 

variables which are completely determined by a definite choice of these variable functions. 

Dissipation being maximum at resonance following the analysis of section 1.5 above, 

fundamentally becomes a variational problem where the integral I  is maximized, i.e., 

0I   and 0I 2 .  
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Fig 1.11|  The evolution of x  or x  in the real and complex plane as a function of path jx  

The mention or consideration of an arbitrary path is crucial here. As has been 

pointed out before, dissipation, that has its origin in the imaginary part     of the 

response function   , is not invariant under a time reversal tt   . The physical 

significance being that the imaginary     encodes dynamical information of time 

dependent interactions during motion. In other words,     knows the arrow of time. The 

physical significance of this time encoded information is the generic molecular scale 

interaction or collision processes that sum up to give the net dissipated energy in the 

system. Resonance is the condition when it is maximized. Dissipation, being a frequency 

dependent process, is invariably related to time as an inverse relation usually termed the 

relaxation time. This relaxation time is intertwined to   in terms of an arbitrary path 

allowable in the motion. The physical quantity that links time and phase is wavelength, a 

parameter that defines a wave in a general sense. Dissipation thus provides a way to link 

particle motion to a wave character at the condition of resonance. From the aspect of wave 

character resonance can be defined as Eigen state solutions or Standing wave solutions. 
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The next chapter goes in-depth into discussing this paradigm as a single monograph 

communicated for a publication.    

Dissipation in general is a path dependent process and the integral I gives a 

measure of the dissipated energy evolving in relation to the functional x  that is path 

dependent as discussed above. Interestingly, variational problems dealing with finding the 

extrema (maxima) of a functional, relate to finding a function that generates a closed curve 

with maximum area. Area is related to shape of an object in real space. In the case of 

dissipation, we are considered with finding the functional form x  that maximizes the 

area on a complex plane. In essence, x  represents the evolution of x  or momentum 

transfer that is a function of shape, making dissipation inherently dependent on shape of 

the object in motion in real space. From the condition of resonance and response function, 

the integral I is maximum for 2  , where 2  is dependent on a finite number of 

arbitrary paths - x  each generating a closed curve x . Now,   can be approximated as 

a summation of functionals   
paths

x , where close to resonance the slope denoting the 

velocity x  deviates from the condition of linearity as explained before in Figure 1.9, 

making resonance a unique state of motion.  

1.8 Application of the variational principle approach in practical dissipation  
studies at resonance 

 

The inherent maximization property of dissipation at resonance as revealed by the analysis 

above has a profound significance in terms of understanding the nature of dynamics in a 

generic potential well. Studying dissipation at resonance gives a unique opportunity to 
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understand the general dynamics of a system. When dissipation is maximized in 

accordance to     going to a peak, the stored energy in the system saturates with no 

variation as understood from the real   ’s 0  crossing, and maximum change is for the 

dissipated energy. Physically from the system’s perspective, it means that at resonance, the 

system is drawn to the potential well minima, dissipation promoting such a transition from 

a higher potential energy state, work being done on the system. From the perspective of 

the external action that drives the system to resonance, dissipation is the energy lost in 

achieving the potential minima. The resonance frequencies or Eigen solutions in general 

are the potential minima allowable in a system. For a particle undergoing resonance in a 

particular Eigen state (Eigen mode) under an external action, dissipation corresponds to 

either the cumulative sum of energy lost by a particle to attain the potential minima or 

alternatively, the energy needed by a particle to escape the metastable minima and 

transition to a another Eigen state of lower potential energy. Thus from an alternate 

perspective, dissipation in conjunction with the stored energy at resonance, prevents the 

escape or transition of a particle from the potential minima intended to be achieved by an 

external action. An in-depth discussion of this argument is presented in the Section II 

where, the efficiency of this transition is discussed in the light of amplification factor or Q-

factor at resonance as the ratio of the stored to the dissipated energy. The importance of 

phase  accumulated in space and its role in the origin of standing waves at resonance has 

been proposed.  

Dissipation can also promote transition between multiple potential wells or 

degenerate states in a system predominantly at the nanoscale, where the generic 

assumptions of continuum breaks down. Sections III and IV goes into in-depth study of 
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such effects presenting two published monographs with relevance to transitional effects 

brought about by dissipation. The monographs describe the utilization of dissipation 

properties at resonance in the design of novel sensitive sensors.  
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Abstract:   

Resonance amplification is attributed to standing waves formed by the superposition of a 

forward and a reflected wave, which accounts for an amplification that is only 2 times the 

amplitude of individual waves. However, in most cases achieved amplification or Q at 

resonance is much higher than 2. In fact, resonance amplification is always studied in the 

light of achieved high Q for high frequency sensitivity. What leads to a high Q or a higher 

amplitude at resonance is never paid attention to. In this paper, we revisit the fundamentals 

of the origins of standing waves. We carefully reconsider standing wave definition from 

the aspect of the phase   in time and space, and comment on the resonance amplification 

factor from a hypothesis-formulated in terms of measured   in space. This time-phase 

evolution in space, we explain as a continuous accumulated phase r  within the physical 

bounds of a resonator. This we attribute to the apparent non-istropicity of space to the wave 

in resonance condition. Such an argument allows for the consideration of stored energy in 

a medium through which a wave tries to propagate, leading to a high Q. Comparison of our 

theoretical results and experimental data show an excellent match. In addition, the 

fundamental treatment undertaken here makes the formulation applicable to all resonating 

systems in a general way. 

mailto:phani@ualberta.ca
mailto:thundat@ualberta.ca
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2.1 Introduction 

The concept of resonance originates from the study of oscillating systems in classical 

mechanics, philosophically describing dynamics in a potential well, like in a gravitational 

or a harmonic field binding a particle elastically to origin. It is central to many physical 

theories in electromagnetism, optics, acoustics, and quantum mechanics, among others. 

Standing waves are at the heart of explaining the phenomenon (1, 2), resonance being 

treated as eigenvalue solutions (standing waves) of an eigenfunction (wavefunction or 

quantized energy state of a potential well).  Understanding dynamics from the aspect of a 

wave description became central in linking the two seemingly scale-disjoint fields - 

classical and quantum with a broad applicability from atomic to cosmological scale in a 

general sense. Historically, formulations starting from Plank’s work on energy of 

resonators (3) and Bohr’s description of an atom (4) to Heisenberg’s idea of quantization 

map (5)  bear justice to this. Schrödinger’s description of quantum numbers as eigenvalues 

of the wavefunction (6) and de Broglie’s wave-particle duality being the forerunner in the 

field (7, 8). Interestingly, the time dependent form of Schrödinger’s wavefunction, similar 

in form to a non-linear wave equation, yields from the classical à la the Hamilton-Jacobi 

equation (9–11). Feynman’s path integral approach connected quantum mechanical 

behavior with such classical ideas as the Lagrangian or in particular, the indefinite integral 

of the Lagrangian in describing general Hamilton’s principle (12, 13). All such seminal 

ideas bear testimony to some quantum phenomenon or measurements, though being argued 

against by Lamb (14). Some recent expositions relevant to both classical and quantum 

fields (15–20) rekindle interests in reconsidering the fundamentals in the context of 

classical resonance description. Hence, this revisit, where we reconsider the fundamentals 
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of wave functions and standing waves. We focus on results of electrical resonance in an 

open-ended wire, with relevance to our recent advances in single-wire power transmission 

(21–23). We re-explore the underlying phenomenon of standing waves and explain the 

elusive resonance amplification from a radically alternate perspective using a path integral 

approach similar in form to Feynman’s quantum theory.   

Resonance amplifies a small external action by orders of magnitude, while matching 

the frequency of the external action to a characteristic frequency of the system. The 

amplification character is exploited in ideas like in a resonant vibrating nanostring or 

graphene membrane (24, 25), or in micro/nano cantilevers (26–28) and extreme states in 

bridge resonators (29). The standing wave character finds applications in ordered capillary 

wave states (30, 31), in X-Ray standing wave techniques (32), and in dissipation sensing 

and spectroscopy (33) or even in quantum oscillators (34, 35). Resonance amplification 

has always been studied in the light of improving Q-factor for achieving higher frequency 

sensitivity. However, what leads to the higher Q or a higher amplitude at resonance is never 

paid attention to. Surprisingly, literature discussing standing waves and resonance together 

is not many and that too not directed towards explaining the resonance amplification factor, 

most crucial in describing the resonance character or the generic curvature of the potential 

energy well that drives the dynamics. A standard wave description of dynamics necessitates 

the condition that the curvature of the potential asymptote vanish locally )0( 2  , 

stemming from translational and rotational invariance. This invokes the stationary phase 

condition 0  (36), with   a phase factor in time and space, central to any wave 

description. In an earlier work, the importance of Brownian noise phase in manipulating 

resonance Q was introduced (37). We carefully reconsider standing wave definition from 
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the aspect of   in time and space, and comment on the resonance amplification factor from 

a hypothesis-formulated in terms of measured   in space. This time-phase evolution in 

space, we explain as a continuous accumulated phase within the physical bounds of a 

resonator. Comparison of our theoretical results and experimental data show an excellent 

match. In addition, the fundamental treatment undertaken here makes the formulation 

applicable to all resonating systems in a general way. More specifically, we address the 

fundamental question concerning resonance - How does the amplification come about and 

what determines the amplification factor of a resonant system?  

The relevance of the question has its roots in the familiar standing wave (SW) 

definition in physics texts – as the superposition of a forward wave F  and its reflected 

counterpart R (reflected off a fixed or open boundary), both travelling with the same or 

almost the same velocity but in opposite sense (direction/time) in a homogeneous isotropic 

space. The resulting SW appears to be stationary in space r  and oscillating in time t ,  r

representing a 1D space dimension. Mathematically, a linear superposition of two waves 

can give a SW amplitude that is ‘2’ times the amplitude of individual waves. A finite wave 

velocity in the medium, though large, would restrict the SW packets to be incoherent in 

time in the strictest sense. Such a consideration renders the superposition argument weak 

in explaining resonance amplification by orders of magnitude in practical experiments even 

when energy is continuously pumped into the system, e.g., in classical mechanical 

resonators and in electrical resonant lines (38), since an inherent phase difference at the 

input cannot be overlooked altogether. Herein lies the relevance of the question from the 

fundamental aspect of a wave definition and wave reflections at resonance.   
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2.2 Waves in isotropic space and phase of a wave 

Let us first consider what constitutes a wave in the standard definition. From wave theory 

(39), a travelling wave   can be derived as a solution of the homogeneous wave equation 

,tt
2 aav 2 for a generalized amplitude   ,tra and a constant velocity v , more generally 

as solutions of the normal form 0a (   aa 2 ),   and   representing curves 

called characteristics or advanced/retarded variables in the  tr,  plane. The derived   is 

often termed as a wavefunction. The 

imposition of a constant v  in the wave 

equation must satisfy the Laplacian 

02 a  at every point on the 

characteristics, demanding  tr,  and 

 tr,  constants. Physically this means a 

priori assumption of isotropic space, 

which has had profound implications on the properties of   ’s in  tr,  derived from the 

wave equation above. These can be reflected upon from the realization of a family of 

regular curves in  tr, , viz.,    with  , an arbitrary constant (Fig. 2.1). By a 

continuous deformation of ] , [   the   curves, within the family of characteristics, 

can continuously warp/bend, maintaining uniformity and continuity for the isotropic 

assumptions. The physical significance of the family of curves  is a distribution of phase 

fronts in  tr, , all supporting travelling wavefunctions with a constant velocity .v  This in 

essence defines emanating travelling waves in all directions from a point source that is 

independent of the medium. As a necessary condition for the solvability of the wave 
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equation that gives the family of travelling waves, a phase front within the family of curves 

defined by   cannot be a tangent to the characteristics, like when 0  or  , 

giving trivial solutions 0a  and 0a  on constants   and   respectively. By its 

nature, tt
2 aav 2  is hyperbolic and so from chain rule the characteristics may be 

reduced to  tr      and  tr      in  tr, , with the generalized condition 

v  ,   being the angular frequency of perturbation/wave and   (wavenumber) 

describing the number of cycles the wave or perturbation completes per unit distance r  it 

travels. The intersection points of   and   in  tr,  defines the wavefunction   completely 

as a function of the curves  , giving   i
F ae  and  i

R ae  as a non-trivial solution 

pair of 0a  in the generalized complex form. A linear superposition of  ’s on phase 

fronts   and   describing a SW, indeed gives an amplitude that is ‘2’ times the 

amplitude  tra ,  of the individual waves following the identity 

  Re2  i
RFSW ea  . Intrinsically, the condition of a constant phase front   

implies 0 r  from the assumptions of isotropic and homogeneous space as discussed 

above, forcing this limit. We introduce an alternate hypothesis stating that SW  is not a 

result of superposition as above, rather it originates from the condition of an accumulated 

phase  

r
rr 0 , that is accrued in the path of a wave at resonance, and we 

corroborate this with experimental results. We establish a fundamentally new SW function 

r  dependent on r , that explains the general resonance character and predicts the 

elusive amplification factor of resonance. We quantitatively match the theoretical 
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predictions to time domain measurements in experiments. Interestingly, we are also able 

to deduce the standard superposition theory result of ‘2’ as a particular solution from our 

formulation with a certain generalized condition of the stationary phase 0r , which is 

inadvertently imposed in the standard definition of reflection waves.    

 

2.3 Phase from the consideration of non-isotropic space  

We begin by noting that the family of phase fronts   on which a wavefunction   is 

expressed, incorporates two descriptions: the spatial phase rs     and a temporal phase  

tt    , all, which is required to 

reconstruct a wave’s envelope in 

),( tr . These parameters demand 

rotation and dilatational invariance 

 const,  for each complete 

cycle as demanded for the case of 

isotropic and homogenous media. 

This imposes the equivalence of s  

and t  2  radians, giving 0  

or an even multiple of 2 . Mathematically, it implies that  iae  reduces to a 

oscillating field with a maximum amplitude of a  at every point in ),( tr , and that the 

separation of spatial and temporal phases over each cycle tsr    is equal to 0 (  

being a constant), giving the condition of stationary phase 0 
r

rr   over a 
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traversed wave path r . This is Fermat’s principle of least action in the most general form 

enforced for a travelling wave, satisfying a constant propagation velocity v . Now let us 

reconsider, that for a SW, the condition 0r  might be a convoluted assumption in an 

attempt to associate a unique constant velocity to it. This is because the SW appears 

stationary in space (stationary state) from a relativistic frame. Our point of departure is a 

more holistic definition of this phase front   accumulated along the wave path. This when 

considered in a broad sense, is analogous to a sum of contributions from each path having 

a phase  tr,  proportional to classical “action”  
T

trrLS ,,   for a Lagrangian L  (2, 12). 

The summation over paths will constitute a time period 2T  for one cycle at 

resonance in the case of a SW. Normally, the condition 0r  is equivalent to an 

“action” minimization 0 S , ensuring the physical process of a wave travelling in space. 

In contraire, the starting point of our argument - 0r  for the case of a SW, need not 

enforce that condition. Physically, our argument would assert a non-isotropic space 

enforcing a non-equivalence of the spatial and temporal phases along the wave path that 

would manifest as non-constant coefficients (39), here, as non-constant wavenumber r  

and phase velocity rv  in a relativistic frame. In context, the phase fronts would transform 

to a family of non-regular curves with variable gradient in space as,   ,rrrr  

where r  can be a deformation function in r , giving 0 r . We will elaborate on the 

general nature of r  and its connection to resonance in the next section. It must be noted 

here though, that the wave equation for a generalized real amplitude  tra ,  with a constant 

velocity ,v  has a family resemblance to other differential equations in physics like the heat 
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equation, diffusion equation and the hydrodynamics of incompressible and irrotational 

fluids; the constant v  translating to appropriate physical property constants. The basis of 

this similarity is the Laplacian 02 a  with small a  approximation. In resonant 

condition however, it is known that 02 a  and linear  a  in r , as in the measured 

logarithmic electrical potential along length in a helical coil (21, 23) or typical non-linear 

displacement field in a microcantilever (40). Clearly, such generic nonlinear amplitude 

fields cannot in the absolute sense support the travelling wave argument with a constant  

v . We therefore theorize that a2  in the SW condition should be a general function of 

r , with the characteristic variables r  and rv  functions of r  in space. The physical 

significance being a non-isotropic space from a relativistic frame of reference. The 

resulting wave function  rafr   will thus be a solution of the general class of an 

inhomogeneous wave/Telegrapher’s equation   ,f  acaa a rttt   2222   with 

 rf  denoting imaginary source functions in space similar to Huygens’s secondary 

sources and   denoting a generalized wave-damping factor. A comprehensive solution to 

the equation of this form is beyond the scope of this treatment, for which readers may refer 

to advanced mathematical treatments. Our goal is to reflect on the generalized functional 

form of r  in terms of r  that can describe a SW, and establish its connection to motion 

or amplitude at resonance.  

 

2.4 Phase at resonance 

We start by considering oscillatory motion as a single complex-valued amplitude function  

 ixea , with a real-valued positive deflection x  in 1D and a generalized time phase   
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describing the evolution of motion in time, the results being extendable to 3D. It is 

important at the onset to reflect on the nature of   as time phase only, since it originates 

as a parameter in the solution of the Euler-Lagrange equation of motion 

ti
nn eXxxx  0
2   , with overdots denoting complete derivatives in time. At the 

condition of resonance, the oscillations in x  attains a maxima nx  at n  , the thn  

eigenfrequency corresponding to system properties, 0X  and   being the amplitude and 

frequency of the external action. Understanding the evolution of time phase   in relation 

to damping factor n  for different eigenmodes (37) is crucial since their ratio denotes a 

timescale that is needed by the system to attain steady oscillations at n . In essence, it 

gives the response time phase t    of the oscillations with respect to the external drive 

phase t  . The generalized amplitude response in   from the equation of motion above 

becomes  





i
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In general for all n , in the limit of n  , the complex amplitude nnn iXa 0  and 

the unwrapped phase  2  nn  (  n 0,1,2...), physically signifying a time phase 

change at resonance. Nevertheless, it is required to understand here, what an eigensolution 

means in terms of wave perturbation in  tr,  and how n  relates to the generalized phase 

fronts   of the wave definition above. Answering the former would directly lead to the 

latter.  

This may be explained by considering resonance as an eigenvalue problem of an 

oscillating surface containing the characteristics   and  , the surface acting as a space-

time fabric and its local deformations constituting a wave. For pure harmonic oscillations, 

the customary eigenfunction expansion form of the homogenous wave equation reduces to 

022  aa n , with eigenfunctions as non-trivial solutions that satisfy the boundary 

condition   0a ,   being the corresponding eigenvalue of the problem. Eigenvalues 

exist for 02 n  and for n  real, namely an infinite number. In the simplest case, each 

eigenvalue has an associated eigensolution. In general, vnn    denotes the thn  

eigenvalue. The real character of   within conditions of homogeneity signify absorption 

free or non-dissipative oscillations within the boundaries   0a . The boundaries in 

essence are nodal lines or curves on which displacements are stationary, while tangents at 

the points of intersections in  tr,  trace out the family of regular phase fronts   in space-

time that can support a travelling wave. The eigenvalue corresponding to a boundary is 

thus analogous to the parameter ‘wavenumber’ in a wave description (both represented as 

  here for consistency). By definition, it is a constant for an eigensolution n  at 
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resonance, otherwise denoting infinite wave vectors with corresponding different 

wavelengths. For a generalized complex  a , Green’s theorem gives the spectral density 

  1* daa  (analogous to 

probability density) or the energy 

density in between the nodal bounds, 

  representing the surface density of 

nodal lines in  tr,  with   denoting 

the isogonal angles between them at 

the point of intersections. Higher eigenmode thus have a lower energy density between the 

bounds. Essentially, the nodal lines exhibit bounds of a plane of uniform local curvature in 

a homogeneous isotropic space with   denoting the density of eigenfunctions or allowable 

wave solutions. Travelling waves from a freely oscillating scalar point source satisfy the 

condition of infinite eigenfunctions, whence ,0  and thus the local tangent to a 

boundary at the point of intersection in the plane coincide with a constant curve of the form 

   (Fig 2.3). In general, the magnitude of   in radians for m  intersecting nodal 

lines, is given by m  (39) and may be looked upon as the time phase which from (3) 

reduces to 2m  for the fundamental eigenmode 0n . We restrict our discussions here 

with respect to fundamental mode only relevant to experiments conducted. 

2.5 The condition of accumulated phase and physical significance 

The condition of stationary phase, i.e., the derivative of the phase r  accumulated along 

the wave path 0
r

r is satisfied for infinite eigenfunctions (travelling waves) where 
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indeed the tangent to nodal lines coincide with the constant phase fronts. Evidently, this is 

not valid at the fundamental, more specifically the case of quarter SW, since it is 

understood from (3) that t    changes by 2  with respect to the external action phase 

t   that created the perturbation in the first place. This signifies that the number of nodal 

lines gets restricted to two at the open-end bound of the system.   essentially is a time 

phase by definition without a spatial character. Resonance condition introduces that spatial 

character to originate in  tr, . Since the wave has a travelling character at the source point, 

the tangents to the nodal lines should coincide with a constant phase front to initiate a 

travelling wave at 0r , but gradually should transform to orthogonal boundaries in r   

(Fig 2.4), by a continuous deformation of the phase front describable by non-regular curves 

  rrrr    as discussed before. Physically, at resonance, the space-time  tr,  fabric 

can be viewed to be infinitely 

stretched at the source end while 

infinitely compressed at the open-

end boundary, r  being a 

compressional factor in r . Such a 

condition arises in the quarter SW 

condition because the path of the 

wave or perturbation is curtailed by 

a compression of the physical 

space, allowing only a fraction of an oscillation in space. Consequently, the condition of 

stationary phase need not be enforced in r , since the wave path as should have been 

followed by that initial perturbation in space is never completed. In other words, the 
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accumulated phase  
2

1

r

r
r  for a path may and should deviate from the mathematical 

condition of minima that interprets least action. Going by this argument, a SW envelop 

may emerge as a perturbation in space with gradual accumulated time phase over the 

physical bound of a resonator, giving 2  
final

initial

r

r
rr  (limit case) following (3) or 

more generally 2  inendr  (leaky resonance with multiple eigenmodes - less 

spectral density at higher mode), with r  continuously differentiable in r . The argument 

of an accumulated phase in space would mean that the perturbation constituting a wave 

would gradually change from a propagating state to a stationary state in space (in the 

medium) depending on the functional form of r  in path  
pathsall

rrrr finalinitial
 

21 ; 

21 rr   representing an infinitesimal path.     

 

2.6 The standing wave function in terms of accumulated phase 

Enforcing the above-argued condition 0
final

initial

r

r
r  and invoking Hamilton’s variational 

principle in a general sense, resonance can be defined as an integral sum of complex valued 

amplitudes ra corresponding to accumulated phases  
2

1

r

r
r in the medium for a path 

21 rr  . A net classical SW wavefunction in space thus emerges  

      
final

initial

r
r

r

i
r ex 

 0 ,                                                        (4) 

 



P a g e  | 45 
 

 
Fig 2.5|  Implications of accumulated 

phase and the resulting standing 

wave description:  A. The case of a 

travelling wave in isotropic space, 

where   and v , both are constants 

giving  v , a constant for a 

general propagating wave. B. The 

accumulated phase renders the medium 

non-isotropic in space, signifying that 

the perturbation would take a longer 

time to traverse in space (time dilation), 

which in other words would mean that 

the perturbation was slowing down in 

space. Relativistically, to the wave its 

velocity remains constant, while the 

effective path length l  contracts 

(length contraction) because of the 

accumulated phase r . From an 

inertial frame however, l  appears 

expanded. It thus enforces the 

condition that   and v  both become 

functions of r  from an observers frame of reference outside, and should be related hyperbolically to 

satisfy the condition   rr v , the resonance frequency or the eigensolution defining the SW case. C. 

Under the conditions of accumulated phase, the familiar wavenumber  2  in a propagating wave 

reduces to a propagation factor iri l   2    , with 4
paths all

l  in case of a quarter SW with 

i   analogous to the compressional or deformation factor  r  in our generalized definition. Since i   

compresses in r , i   gradually increases with r  giving the very essence of a wave having to go through 

more number of cycles to travel the same physical length space l  losing its propagation quality and 

transforming to a standing or stationary state. Alternatively, the perturbation seems to slow down in space 

with a gradual reduction in phase velocity rv . This fundamental change in the wave description on 

consideration of the accumulated phase r  at sub-wavelength scales implying the SW function (4), has 

profound implications in general. 



P a g e  | 46 
 

as an accumulated sum of perturbation histories ri
r exa 

0  in space, the SW envelop 

representing “the entire motion” in a time period T  corresponding to a path 

. rr finalinitial   Mathematically, (4) is closely similar to Schrödinger’s wave function in 

Feynman’s path integral form (12), here describing a time independent SW envelope in the 

classical limit. For the fundamental eigenmode, the time dependent oscillation envelop 

reduces to ti
r

r

i
tr eex

final

initial

r 0 0,















 


 , 0  describing the fundamental eigenfrequency. The 

phase proportional to classical ‘action’ S  (Planck units) in Feynman’s path integral form, 

translates to a generalized accumulated phase function here, elucidating the resonance 

character (mode shape) in the classical regime (Fig 2.5).  

 
2.7 Significance of accumulated phase in resonance amplification factor α  

In case of resonance in an electrical wire (the specific case we study here), the action 

accounting for a response amplitude x  translates to a measurable electrical potential rV  

effected by a charge distribution in the wire. Using (4) and the fact that x  can be 

represented in terms of a  as  iaex , the measurable potential rV  in r  would be given 

by the solution of the Laplacian  

                  rie
r
V

V






2

21
,                                                (5) 

considering that the perturbations from the external action are restricted to  ,Y  plane and 

the wave envelope extends along r (Fig 2.5). The solution of the differential equation (5) 

which we propose is a classic Cauchy problem with    inVrV cos, 00   and 

   inVr
t
V

sin, 00 



, in  being the measurable phase at the input and  t,00 VV   is the 
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potential at the input. We subject our hypothesis to test in experiments with a straight wire 

connected to a grounded source at one end, tuned to the SW frequency of the wire, while 

kept open/free at the other end. The results in Fig. 2.6 support our hypothesis of 

accumulated phase and its role in the origin of SW profile. It is clear that the solutions to 

(5) is in a general complex form rr ViV    describing a complex potential well or 

commonly a generalized potential in physics, with   2) (Re nrr qVV   and the 

  nrr qqVV )  (Im   for the thn eigenmode, continuously differentiable in r ,  tq  and 

 tq  being generalized coordinates and velocities at every point of the trajectory of motion 

in configurational space. From the aspect of a complex generalized potential it is easier to 

invoke Hamilton’s variation principle in configuration space, which in our case constitutes 

the SW envelop (Fig 2.5), the trajectory of motion not necessarily resembling an unique 

path finalinitial rr   over which SW function r  is defined. In our definition (4), 

 
pathsall

rrrr finalinitial
 

21 , 21 rr   being small infinitesimal paths in configurational 

space. Here lies the significance of our path integral formulation. The complex nature of 

the potential solution of (5) results in a generalized complex Hamiltonian 

rr V iVq 







 2

2
1 H  for unit mass, describing the dissipative system at resonance 

condition with a real spectrum (41). It is understood that rV  in general, contributes to the 

accumulated phase factor  rrr VV 1tan  in the SW envelop r  in (4). From the 

aspect of energy, the real part of H  within the square brackets account for the stored 

component, typically a function of the eigenvalues r  of the SW function, while the 
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imaginary part represent the dissipated component, a function of rv  in the  tr,  plane. 

Evidently both the real and imaginary parts of H  are functions of r  from (5) and would  

follow the generalized condition of  2  nr  for the thn eigenmode (  n 0, 1, 

2...). When plotted in phase space (Fig 2.6), the imaginary part of the solution of (5) in r  

traces out diverging spirals elucidating the resonance character of amplification in a general 

sense. It must be pointed out here that the spiral nature in general also represents the phase 

space evolution in time, r  essentially being a time phase tn   for the thn eigenmode. 

The phase-space spirals (Fig. 2.6) also reveals the general amplification character at 

resonance. This can be expressed in terms of amplification factor   as the ratio of the 
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energy stored to loss in r  from the generalized Hamiltonian H . The emergence of   as 

measured in our experiments for varying r  (Fig. 2.7) can be represented as a cumulative 

sum of rr v  in r , where r  and rv  are related hyperbolically as depicted in Fig. 2.5.  

From results discussed earlier (21) we can deduce the magnification factor  





final

initial

rr
final

initial

r

r

r

r
rr ev  2 ,                                            (6) 

plotted in Fig. 2.7, elucidating the general amplification character as a function of the 

accumulated phase. Here, 0 2  rr v is the effective space compression factor in r  as 

perceived by the wave. In the limit of 0r , inadvertently imposed by the argument of 

a travelling wave, 2 , reducing to the standard wave reflection theory result.    

 
Fig 2.7|  A. The match of experimental measured data to theoretical fit obtained from equation (6). The 

standard wave reflection amplification factor 2  obtained with the condition of 0r  as in a 

standard definition of wave is highlighted. The background color inlay represents the complex wave field in 

2D as a function of accumulated phase r . B. Simulated plots of the complex potential vs the real potential 

as a function of r . The generic higher amplification character with higher accumulated phase is evident.  
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2.8 Physical analogy of accumulated phase in the wire  

A small potential applied at one end of a wire breaks down the electron-cloud symmetry 

inside the metal wire with respect to the positive charge centers in the metal lattice           

(Fig. 2.8). For a time dependent potential, this symmetry breakdown oscillates in time and 

for small enough values of 0r , the breakdown in electron cloud symmetry is also 

small, leading to uniform scattering at each cross section resulting in an uniform resistance. 

Resistance is reflected in broadening of   or the width of resonance in frequency space, 

 essentially being a measure of the scatterings of free electron with the deformed electron 

cloud. In result, a constant propagation factor   emerges, where   v   is a 

fundamental condition defining the wave that propagates with a phase velocity v . The 

assumption of this constant scattering resistance, restricts rV  to be linear from the possible 

solutions of the Laplacian 02

2






r
Vr . As a direct result, the solution corroborates to Ohm’s 

law of resistances in a wire. Also, both   and v  become constants at resonance condition 

when   is a constant as discussed before. For the oscillations to follow the applied 

potential (external action) in phase with no magnification, the condition of stationary phase 

has to be satisfied closely i.e.,  

r
r 0 . Resonance breaks this symmetry leading to 

equation (5) as a function of accumulated phase. 
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Fig 2.8|  Resonance breaks the electron cloud symmetry at the SW frequency creating a nonlinear dependence 

of the potential explainable through the condition (4) and the phase dependent solution of (5), the deformation 

being dependent on the accumulated phase. The condition  

r
r 2  makes the electron cloud 

deformation extreme. The higher asymmetric electron cloud takes a higher finite time to make its effect felt 

as a function of space in the metal lattice, hence the accumulated phase. The greater overlap of electron cloud 

changes the charge distribution in space making them static charges rather than moving charges as in the 

usual case of 0r . The medium thus appears non-isotropic to the perturbation or wave, with the 

functional form of r  being a measure of the non-isotropicity.  The distributed charges leads to more 

storage of energy and lesser dissipation for reduction in charge flow. The stored energy corresponds to the 

imaginary part of the solution of (5) which when plotted in phase space makes evident the accumulated phase 

that diverges out in spirals rather than collapsing onto the real axis forming a circle or an ellipse.  
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2.9 Conclusions and Discussions  

By correctly predicting the resonance amplitude from our treatment, we conclude that the 

SW amplitude r  at a point in space is a result of summation of perturbations over all time 

deducible through the generalized accumulated phase  
final

initial

r

r
rr   in space, integrating 

all the perturbation histories. Our model also deduces the standard superposition result 2  

of the wave reflection theory. It is paradoxical that from our argument, a seemingly 

classical phenomenon like a SW can be explained by an equation that is equivalent in form 

to the quantum equations formulated by Feynman, while the classical à la the Hamilton-

Jacobi equation propounds a non-linear wave equation similar to Schrödinger’s quantum 

form with an additional potential term dependent on the wave function. Our treatment here 

tries to bridge the two in terms of a generalized approach of accumulated phase considering 

a non-isotropic space in the resonance condition as perceived by a wave that tries to 

propagate through the medium from the source. In a broader context, we can extend the 

notion of dissipated energy as our perception of the visible universe, radiations from events 

in the past. The fundamental assumption of non-isotropicity in a resonance/cyclical model 

of the universe would allow the consideration of a stored energy component in the vast 

cosmos. This may provide clues to unravelling the riddles of dark matter and dark energy.  

 

2.10 Discussion on single wire electrical power transfer using resonance 

The underlying physics in all forms of energy transfer is the potential gradient between 

two points in space. Science have exploited this common paradigm to transfer energy 

efficiently, meant to flow from higher potential to lesser potential in a medium. From its 

inception electrical energy flow using wire as a medium has also followed the same 
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fundamental ideology (42). At the turn of century, conversion from direct current (DC) 

single wire power-lines to AC mode posed a fundamental limitation due to unavoidable 

spatial and temporal phase dependence restricting efficient energy transfer. Traditionally 

alternating (AC) electrical power has been transmitted through two wires where one serves 

the equipotential line and other the common ground wire. However, an alternate approach 

for transferring electric energy may be using a single wire using resonance. Resonance 

allows the generation of this gradient even in a single wire, which this communication 

establishes from the first principle. At the onset, it is essential to point out that this should 

not be confused with the commonly used single wire transmission where the earth acts as 

a return path, as envisaged by Tesla in late 1800’s. In true single wire electrical 

transmission, there is no secondary wire. Tesla’s coinage - “transmission through one 

wire,” has remained elusive and a subject of interest among few researchers since his 

pioneering experiments. Nearly all subsequent demonstrations of his single wire 

transmission or variations thereof, are qualitative and require high driving voltages, making 

power transfer to devices unsafe near people. However through resonance a large gradient, 

proportional to the amplification factor  , can be generated between two ends . A load 

connected in series in between this gradient can drive real power. This brings us back to 

the fundamental question of the necessity of a physical return path for transferring electrical 

energy from one point to the other. The basic idea of such energy transfer relies on 

transferring real power through a conducting medium to a load, which is maintained at the 

same potential gradient as that of the two wires employed in such power transmission. 

Essentially, in electrical terminology it involves considering a load in parallel to the two-

port output, where the two ports; source and the load by virtue of the connection made thus, 
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maintain a constant potential gradient allowing the flow of energy. Considering a load in 

parallel necessitates that the gradient in potential be a real quantity for maximum power 

transfer. At resonance however, the gradient is a function of the phase gradient in space as 

established in the discussions below and is independent of the phase angle. In fact higher 

the phase angle, higher is the amplification or the storage to dissipated energy internally.  

A higher phase gradient thus becomes a marker of increased efficiency of transfer.  

The phase gradient is a result of variance in spatial impedance in electrical 

terminology. Impedance behaves like an incompressible fluid. In fluids, you can transfer 

power by an applied pressure as in hydraulic systems. The viscosity of a fluid stores the 

information of relative displacement of molecules corresponding to the applied pressure, 

and sum of all the relative motions is perceived on the other end as an action or flow. 

Therefore, viscosity is out of phase to the flow in time and hence acts like a memory 

element. In electrical system, the flow element is current, hence the memory element is the 

capacitance storing the information of flow i.e the charges. Thus, the displacement of 

charges is same as fluid motion in hydraulics. Capacitance can maintain the information so 

long the voltage is present and if it oscillates in time, the charges oscillate too. The 

displacement of charges thus results in the power transfer rather than the flow itself. The 

amplification factor as a function of accumulated phase in space thus dictates the efficiency 

of energy transfer in the single wire power transmission technique (21 – 23).  
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Abstract: According to Stokes’ law, a moving solid surface experiences viscous drag that 

is linearly related to its velocity and the viscosity of the medium. The viscous interactions 

result in dissipation that is known to scale as the square root of the kinematic viscosity 

times the density of the gas. We observed that when an oscillating surface is modified with 

nanostructures the experimentally measured dissipation shows an exponential dependence 

on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, 

amplifying the dissipation response exponentially for even minute variations in viscosity. 

Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous 

viscosity making dissipation an ideal parameter for analysis of a gaseous media. We 

attribute the observed exponential enhancement to the stochastic nature of interactions of 

many coupled nanostructures with the gas media.  
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3.1 Introduction 

Solid-gas interface interactions are central to physical processes such as adsorption, 

catalysis, oscillatory dynamics, stochastic interactions relevant to thermodynamics, atomic 

and molecular manipulation, viscous drag on nanoparticles and many other fields(43–48). 

Dissipative effects from viscous drag, originating from the solid-gas interactions, play an 

important role in recent advances in micro-nano resonator technology(49–56). Viscosity in 

general is related to momentum transfer originating from collisions of fluid molecules with 

surfaces. Thus, viscous friction(57), is always present resulting in energy loss (dissipation), 

unless the motion occurs in absolute vacuum, which is a theoretical abstraction. The 

general premise of studying viscous friction at micro- and nano-scales in the continuum 

assumption has been Stokes’ drag equation(58, 59), which states that the damping losses 

are proportional to the viscosity of the fluid when the other flow parameters such as 

velocity and length scale are held constant. However, this law of friction starts showing 

deviations at the nanoscale, prompting the need to understand the role of viscous 

interactions at nanoscale interfaces arising from the solid-fluid interactions(50, 60–77).  

To elaborate on the flow of fluid at the nanoscale in the Stokes flow regime, the 

physical length scale a  is of the orders of nanometers and the typical velocity u  is of the 

order of mm or µm per sec. In such systems, viscous forces dominate over inertial forces, 

as expressed by the dimensionless Reynolds number


ae u
 ,   being the media’s 

kinematic viscosity, with 1e , and where 



  , the ratio of  , the dynamic viscosity 

and  , the density of the fluid. For uniformity in all further discussions the term viscosity 

has been used to mean kinematic viscosity  . This very low Reynolds number regime is 
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most relevant for vibrating nanomechanical oscillators or surfaces modified with nanoscale 

structures, where the effective flow is across nanostructure boundaries. Since the viscous 

terms dominate the inertial terms in this Stokes regime, the equation of motion shows a 

linear dependence on velocity, and the dissipation terms are proportional to viscosity. For 

an incompressible fluid motion without external forces, the Stokes equation is   

0u  p



1 ,                                                    (1) 

with 0u  inside the fluid and 0u  on the solid-fluid interface, where   is the Laplace 

operator,  is the fluid density assumed constant and p  is the pressure. In this 

approximation, the viscous drag on any finite object moving through the fluid will be 

proportional to the velocity of the object and the viscosity, with a coefficient depending on 

the object’s shape. It should be noted that the shape coefficient may depend weakly on e  

due to Oseen’s corrections as we shall utilize below for the case of a cylinder moving 

through the flow. Nevertheless, the main dependence of the friction force acting on an 

object in Stokes’ approximation must be linear (or almost linear) in viscosity and velocity. 

The effect of viscous drag in the Stokesian regime can be studied by the measure of 

damping experienced by a mechanical resonator, where the motion generates oscillatory 

flows at the interface. The damping can be characterized by the Q-factor of the resonator, 

proportional to the inverse of the rate of decay of vibrations per period. Energy loss from 

viscous drag reduces the Q of the system, which depends on the interactions of the 

resonator surface with the medium.  

For liquids, the variations in viscosity can be significant, by several orders of 

magnitude. For gases, however, that variation is much smaller. This is because the mean 

free path of molecules in gases (~67nm in normal conditions) is large compared to the 
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inter-molecular distances (~ 3 – 4nm  in the same conditions) and the interaction forces 

between molecules decay rapidly with increasing distance. The values for gas viscosity 

thus tend to be small and change relatively little as compared to liquids. In addition, the 

dynamic range of variation for kinematic viscosity between different gases is relatively 

small, within an order of magnitude. For example, viscosity of H2 is sec8 Pa while that 

of CO2 is sec8.14 Pa . Viscosities of gases also show little variation with 

temperature(57).  

This small dynamic range of gas viscosity limits observable variations in interactions 

with a surface, since its effect on dynamical change is correspondingly small. We shall also 

note that oscillating shear flows over a surface lead to power-law dependences of drag on 

viscosity, which is also a slowly varying function. Thus, viscosity is not used as a parameter 

in characterizing vapors or gas media and in most sensing applications. Instead, most 

resonator sensors in air rely on resonator frequency shift induced by mass loading as a 

reliable sensor parameter. A resonator with a high resonance frequency, operating in 

vacuum can detect single molecules in special circumstances. In general, atto-gram 

sensitivity can be observed with micro and nanoscale mechanical resonators in high 

vacuum. The higher loss in energy due to fluid drag at the nanoscale necessitates operation 

in vacuum to increase the Q of resonance in order to obtain a high resolution in frequency 

variations. However, it has been reported that the improvement in Q at higher vacuum for 

nano-cantilevers is rather moderate(49, 60, 62). This would suggest that it is difficult to 

use the change of gas viscosity as a measuring tool, whether by a macro- or a nano-scale 

device.  
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3.2 Objectives and key results of the work.  We report that in contrast to existing 

results for single oscillators at the nanoscale, modifying an oscillating surface with a forest 

of nanoscale features, like vertical slender nanorods or nanobristles (Fig 3.S1), magnifies 

viscous interactions with the ambient media by up to three orders of magnitude as 

compared to the non-modified (bare) surface. This was observed with surface 

nanostructures having typical spacing between them in the order of 50-60 nm (Fig 3.1a), 

which is around the mean free path  mfp  of the gas phase molecules. As far as we are 

aware of, the studies of enhancement of dissipation from such surface nanostructuring has 

not been addressed in the literature. More interestingly, we observe an enhancement 

showing an exponential sensitivity to viscosity change, drastically deviating from the linear 

dependence as predicted by the premise of Stokes’ theory and its modifications.  

Figure 3.1| Experimental 

Schematic with key result. (a) 

A typical measured graph of 

dissipation (top) and an artist’s 

impression of a nanostructured 

resonator surface interacting 

with gas molecules (bottom). (b) 

Amplitude response graphs for a 

nanostructured surface for three 

measurements of increasing 

viscosity of ambient gas (black, 

red, green) showing the 

exponential variation of the 

dissipation D on viscosity (inset). (c) Amplitude response graphs for a bare surface for similar three 

measurements of increasing viscosity of ambient gas (black, red, green) showing the linear 

variation of D on viscosity (inset). The blue dotted lines joining the amplitude peaks in (b) and (c) 

represent the same relative change in amplitudes in both cases.  
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3.3 Experimental design.  A schematic of the experimental realization (Fig. 1a) in the 

context of studying such surface nanostructuring effect in a quartz crystal (QC) oscillator 

is shown along with the key result (Fig 3.1b). Use of macroscopic, commercially available 

QC oscillators offers many advantages such as easy readout, simplicity, high base Q-factor 

in air, large surface area for increased molecular interactions, and low cost. The nanoscale 

modification of QC surface combines the advantages of both nano and macro devices and 

serves as a bridge between the nano and macro world. The closely spaced nanostructures 

increase the mechanical interaction between gas molecules and surface, leading to an 

exponential dependence on viscosity, as we report.  

In contrast, the change observed for an unmodified bare surface is consistent with the 

Stokes’ equation, and is orders of magnitude smaller. For small variations in the kinematic 

viscosity, Stokes’ theory predicts the linear change (see schematic on Fig 3.1c). Our 

measurements of the response of the bare QC surface (Fig 3.2b) attests to solutions of 

Stokes’ equation for an oscillating surface (Stokes’ second problem(78)), which predicts 

damping rates D as slow varying nonlinear functions of media properties. Typically for 

shear flows, D  scales as   where vibrations generate thick viscous layers(66, 72, 76), or 

as   when the viscous layers are thin9,19,36. In the Stokesian regime in air, the viscous 

layer is thin and hence the relative change in   ,D  can be approximated with a high 

accuracy as 






 







2
1

D
D

 for small (few per cent) relative changes in  and  , 

relevant to media characterization. For more general functions of   ,D  involving higher 

order terms, the changes in 
D
D would still remain linear in small relative changes of 
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parameters. More complex theories based on Stokes’ flows can be derived, and they all 

point to a linear dependence of dissipation on small relative changes in the ambient media. 

This contradicts our results for nanostructured resonators, which we will analyze below in 

detail.  

 
3.4 Measured quantities and presentation of results.  All our results are presented 

in terms of the dissipated to stored energy per cycle at resonance as  
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      (2)  

from simultaneous measurements of f  and   in an experiment (Fig. 1a) where xFvisc 


  

is the viscous drag force,   the damping factor and where 02 f is the resonance 

frequency in sec-1, T  being the time period of oscillations. The motion in this case is 

assumed to be along the x direction with x  and x denoting the 1st and 2nd order time 

derivatives respectively.  

We note here, that the obtained D  from experimental impedance analysis and 
Q
1

obtained independently from the Lorentzian fit (see Fig 3.S3 in Supplementary materials) 

are identical with accuracy to an order of 10-7 (Fig 3.S4 in Supplementary text). This serves 

as an additional verification of the accuracy of our measurements. Therefore, we can 

consider both D  or 
Q
1

 as identical. It is easier to cast the results in terms of D  since it is 

easier to analyze the total dissipation in the system as the linear addition of internal 

dissipation and that originating from boundary media interactions.     
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3.5 Experimental results of dissipation enhancement for nanostructured  
            interface.   

Our work reports an exponential sensitivity of dissipation for various gas media with a 

nanostructured resonator, which is drastically different from previous results. The 

enhancement effect was studied in detail by conducting systematic experiments for various 

media conditions (Fig 3.2a), allowing a dynamic range of up to 30% variations in kinematic 

viscosities. The experimental kinematic viscosities for different media conditions were 

computed using literature reference and has been included in the supplementary materials 

(S5). Previous works report similar surface nanostructuring effects, attributing enhanced 

sensitivity to increased surface area for higher molecular adsorption and mass loading on 

an oscillator(80, 81). Our approach of dissipation analysis reveals a drastically different 

paradigm, namely, the exponential change in damping for even few percent relative 

changes in media kinematic viscosity   (Fig 3.2a). The data in  Fig 3.2 includes the change 

of viscosity corresponding to different gas media and also due to change of temperature(57) 

in the same gas media. A crucial result is the observed exponential dependence of 

dissipation on temperature of a fixed gas as well, as shown in Fig 3.2a, with data collapsed 

on to the same normalized scale of kinematic viscosity change. For a detailed experimental 

setup and operation, refer to the section Experimental Methods below. All normalized x-

axis scales represent relative changes of corresponding ‘variable’ as in 






 

minvariable
variable . The 

observed enhancement effect of nanostructuring is shown to resolve viscosity changes 

substantially better compared to non-nanostructured surfaces at even normal atmospheric 

conditions (Fig 3.2b, 3.2c), effectively broadening the detection range of the otherwise 

narrow range of viscosities of gases. In comparison, the resonance frequency variations of 
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the resonator are orders of magnitude lower (Fig 3.3). Error bars shown on all experimental 

data points represent 5% of absolute variation. It is also interesting that the change in 

damping is drastic for even modest changes in the resonance amplitude a  (Fig 3.4), making 

the dissipation response strongly non-linear, even though the resonator itself is operating 

in the purely linear regime. For a standard linear resonator, the dissipation would have 

varied proportional to the resonance amplitude. In contrast, nanostructuring of the surface 

creates a drastic exponential decrease with the resonance amplitude. 

 
Figure 3.2| Damping with 

varying media conditions. (a) 

Results of experiments for a wide 

range of viscosities for different 

gases at a fixed temperature, and 

also temperature dependence for a 

single gas. 2 orders of magnitude 

deviation from Stokes’ theory 

shown with a Red arrow. Panels 

(b) and (c) show the effective 

magnification of dynamic range of 

  as a measurement parameter, 

where 3 orders of dissipation 

enhancement as compared to a bare 

surface are highlighted. 
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Figure 3.3| Observed absolute relative frequency changes ff .  Resonance frequency f measured in 

dry air at normal temperature and pressure conditions for the lowest drive input. All variations in frequency 

correspond to the expected values with orders of magnitude of 610 .  

 
We note here that the dissipation has contributions from resonator’s internal friction, 

and friction with external media as extDDD  int . It is known that friction with external 

media ( extD ) depends on both shape factor and media-boundary interactions. For small 

amplitudes, extD  is the dominating factor for a nanostructured resonator surface as 

revealed in the experimental results (Fig 3.4). However, for higher resonance amplitudes, 

the boundary-media dissipation component becomes small, and the internal dissipation 

intD can no longer be neglected, exhibiting a residual dissipation in our system. This 

residual dissipation has been included in the exponential fits of Fig 3.4 of all presented data 

related to the amplitude dependence. In the enhancement case shown on Fig 3.2, this 

residual dissipation intD  is negligible compared to the boundary-media dissipation term.  
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Figure 3.4| Damping for a single vapor 

concentration vs normalized changes 

resonance amplitude.  (a) Shows high 

sensitivity of the dissipation for a 

nanostructured resonator vs an 

equivalent resonator with a non-

structured surface. Dashed blue line 

shows exponential fit corroborating to 

our theory. As a representative for 

detailed analysis check Fig 3.S3 for data 

points (i) and (ii). (b) The corresponding 

frequency variations, commonly used as 

a measuring parameter, shows 

substantial enhancement for 

nanostructured case, and remains in the 

order of ppm. (c) The variations of 

velocity are linearly proportional to the 

change in amplitude, with the slope being 

very close to 1, as expected.  

 

 

 

 

 

3.6 Limiting Sensitivity: Relevance to sensing applications.   

Our work shows that nanostructuring a surface allows probing the most fundamental 

physical aspects of ambient gases, such as its continuity, using a macro-device, acting as a 

bridge between the nano and macro world. Such active non-continuum probing resolves 

the changes in viscosity better for magnified viscous effects at the interface, effectively 

broadening its dynamic range (Fig 3.2b). We show experimentally that such enhanced 

resolution cannot be achieved with non-modified surfaces (Fig 3.2c).  
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It is imperative to provide an estimate of the maximum possible sensitivity achievable 

by a measuring device, based on such nanostructuring, using dissipation as an observable 

parameter. Such an estimate is most relevant for cases of a non-adsorbing analyte in very 

low concentrations such as highly volatile organics. As the data shows (Fig 3.3), using 

frequency as a measuring parameter for the sensor in normal conditions is challenging in 

such a case as it is orders of magnitude smaller and does not follow any established trend 

for small changes in media. It is also known that for dominant boundary-media viscous 

interactions the resonance frequency is not independent of the damping forces. So, 

deducing changes in the media through resonator’s dynamics solely from the aspect of 

resonance frequency shift can be difficult where the adsorption effects are small. In our 

work, for high enough changes in relative humidity, the observed change in the resonance 

frequency is in the parts per million order conforming to previous works(80, 81). On the 

other hand, damping shows the relative change of several orders of magnitudes, making 

the damping in surface nanostructured resonators to be approximately 108 – 109 times more 

sensitive to ambient changes compared to the frequency shift (i.e., factor of 102 – 103 in 

dissipation vs 10-6 in frequency).  

To elaborate on this point, the changes in dissipation are expected to come from the 

probability of molecular interactions and fluctuations in a cell bounded by the 

nanostructure walls, and this method does not necessitate adsorption of the molecules on 

the resonator to effect a change in resonator's behavior. Let us consider the volume space, 

marked in yellow in Fig 3.5, contained in-between adjacent nanorods (cell), and suppose 

  is the concentration of an added analyte expected to induce a change in the perceived 

media. Then, at each point in time, the probability that a cell would have an analyte  
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Fi g u r e 3. 5| Ill ust r ati o n of t h e 

m e c h a nis m f o r s p o nt a n e o us o ut -of -

p h a s e  r o d  d y n a mi cs  e n h a n ci n g 

dissi p ati o n.  ( a) Ill ustr ati n g i n-p h a s e 

m oti o n of t h e r o d s, o nl y t h e fri cti o n of 

t h e m oti o n p ar all el t o t h e r es o n at or 

c o ntri b ut es t o dis si p ati o n. ( b) T w o 

i n ci d e nt s of o ut-of -p h as e m oti o n of t h e 

r o d s cr e at e a str o n g m oti o n tr a ns v er s al t o 

t h e r es o n at or, e n h a n ci n g t h e dissi p ati o n. 

 T h e p ot e nti al f u n cti o n  d efi ni n g 

t h e e n er g y of a gi v e n st at e, h a vi n g t h e 

0mi ni m a at  a n d wit h t h e 

p ot e nti al b arri er s e p ar ati n g t h e t w o 

st at es (t h e i n -p h a s e a n d o ut -of -p h a s e) 

Eb ei n g . ( c) C o m pil e d gr a p hi c al 

c o m p aris o n  of  e x p eri m e nt  a n d 

t h e or eti c al a n al ysis.  

 

 

m ol e c ul e i n it is P1 , .10 Pa n d n ot t o h a v e t h at m ol e c ul e is  Aft er a c h ar a ct eristi c 

vis c o us ti m es c al e  2Lm  , t h e m ol e c ul es of t h e a n al yt e will es c a p e t h e c ell, m a ki n g t h e 

me v e nts t h at ar e s e p ar at e d b y  ti m e a p art st ati

mnT 

sti c all y i n d e p e n d e nt. Aft er a n el a ps e d ti m e 

 ne n c o m p assi n g  i n d e p e n d e nt e v e nts of g oi n g i n/ o ut of a c ell ( e q ui v al e nt t o o n e 

ne v e nt fr o m  i n d e p e n d e nt c ell s), t h e pr o b a bilit y of a c ell n ot t o e xp eri e n c e t h e eff e ct of 

0 P n = 1 - a( )
n
= e - a ¢T t mpr es e n c e of a n a n al yt e m ol e c ul e will b e  1 ass u mi n g  

1 n

a n d 

. fT n 1 F or a t y pi c al ti m e s c al e of o n e Q C p eri o d at r es o n a n c e, , t h e 

n u m b er of c ell s t h at ar e a cti v el y e x p eri e n ci n g t h e eff e ct of a n al yt e m ol e c ul es b e c o m es 
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   mnrrs NeNN mn 


1  for  0 , with rN  being the total number of 

cells per unit area. The limit sensitivity of the system, as measured by concentration of 

molecules, is then given as 
m

n

r

s
N
N




 . With the current experimental apparatus, 

measurement accuracy of D  is guaranteed to be better than 0.02% which gives 5102   

(~10 parts per million - ppm) for 10mn   typical to our system. However, the 

accuracy of the measurement of D , as shown in the Supplementary Section 3.S3, fits the 

alternative measurement of the width of Lorentzian within 10-7, (Fig 3.S3 and 3.S4), giving 

the expected minimum concentration measurable with this setup to be 10-8 (~10 parts per 

billion - ppb), if one were to assume that the accuracy of the measurements illustrated in 

Figures 3.S3 and 3.S4 persisted for all experiments. In principle, the limit of the accuracy 

is given by mean average fluctuation of number of molecules in a cell (about %3  for 

310  molecules in a cell between nearest neighbor rods), taken for 810rN  independent 

cells 2/ mm , giving an estimate of 910  (ppb). Of course, such idealistic experiment to 

perceive variations in ppb level will require much more accurate measurements from the 

aspect of electrical impedance accuracy, though not unachievable; and may require 

controlled conditions such as low temperature etc. This limiting value of measurable 

concentrations is of great importance for design of devices that can achieve ppb accuracy 

even at normal conditions.  

 
3.7 Theoretical analysis of the results.   

We shall now focus on a theoretical understanding of the system to explain the 

experimental results obtained. For a plausible explanation of the exponential dependence 



P a g e  | 72 
 

of the dissipation on parameters, we suggest the following theory based on dynamical 

transitions between two co-existing states at resonance, in-phase and out-of-phase motion 

of nanostructures with the motion of the resonator base. We base this theory on the 

assumption that most of the dissipation comes from the out-of-phase motion, with the 

transition between the states occurring due to the stochastic transitions between the 

multiple steady states and Stochastic Resonance (SR) effect(82–84). Indeed, such a 

consideration of stochastic transition is relevant since the nanostructure dimensions and 

distances between them are smaller than the mfp of the gas phase molecules. 

State I: In-phase motion of nano-structures. It is well known that the resonator motion 

would generate oscillating flows at the interface, i.e. nanostructure boundaries in our case, 

with 610~ e and the corresponding dynamic viscous length scale(85) 

,m~ 6

0
102 




  which is much greater than both the width nmw 6050~   between 

a nearest neighbor nanostructure, and also the mfp of the gas molecules. Thus, due to shear 

flow, the viscous interaction from each nanorod would extend laterally over many 

neighboring nanorods on the surface, resulting in a strong bias towards the in-phase steady 

motion of the nanorods with the base (Fig 3.5a), similar to swimming microorganisms(86, 

87), clustered stereocilia during spontaneous oscillations of hair bundles in cochlear outer 

hair cells(63), or Kuramoto oscillators(88). The resulting viscous friction between the rods 

from the oscillating-flow would then account for the energy loss in the form of damping in 

experiments. This loss energy scale can be estimated as the work of friction force per period 

of oscillation(85), given by fCLW /2 2u , where  eC  4.7log2  is the 

Oseen’s drag coefficient correction for low e  flow past a rigid cylinder(85) with L  and 
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d  as defined in Fig 3.1a and u  being the characteristic flow velocity. This energy 

dissipation expression essentially leads to Stokes-like drag formulations(52, 60, 62, 64, 69, 

71, 79), predicting a linear dependence of dissipation D  on the small relative changes in 

viscosity  . This predicted result is expressed graphically in Fig 3.2a by the gray dash-

dotted line highlighting the 2 orders of magnitude deviation from experimental results. We 

also studied more complex considerations of Stokes flows with off-set boundaries to 

account for the nanostructured surface, leading to a similar, essentially linear estimate of 

resonator friction dependence on viscosity. However, our experimental results deviate 

significantly from this Stokesian regime. Thus, there must be another state of the system 

with drastically enhanced dissipation. This other state, at resonance, we can relate to with 

the out-of-phase motion of the nanostructures.  

State II: Out-of-phase motion.  Because of inherent randomness in the system, a 

spontaneous off-phase motion of some neighboring pairs of nanorods generating flow 

transversal to the resonator plane may occur (Fig 3.5b). With first order approximation, let 

us consider the volume space 2LwV   bounded by counter-moving walls of the nanorods 

(cell) (Fig 3.5). The in-phase moving walls of the cell do not change the volume contained 

between them and thus generate no additional flow velocity. The out-of-phase motion leads 

to an effective volume change between two such nearest neighbors as  SUdtdV , 

thus generating velocity U  of the gas, with 2wS   being the cross sectional area of the 

cell normal to the surface of the crystal (Fig 3.5), w  being the distance between rods. This 

would account for localized energy of the fluid moving in the out-of-phase cell as  

22UVE    ,     (3)                                                                                 
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  being the gas density, assumed constant for incompressible flow. For the typical 

dimension of the nanorods and operational vibrational amplitude nma 4~  (See 

Supplementary Section S7), the mean free path of the molecules is anml  67* . Since 

the resonance amplitude is comparable with the intermolecular gas distances  nm43 , 

there is a high rate of impact between the molecules and the nanostructures. In addition, 

the impacted molecules are much more likely to collide with another nearest neighbour 

nanorod than another molecule. We can approximate this fact by positing the effective 

amplitude of motion of molecules to be *laeff   . With this consideration, we can 

approximate the time rate of volume change for off-phase motion as 

effeff afwLafSdtdV  || ,   (4) 

LwS ||  giving the cross-sectional area in the direction parallel to the crystal surface      

(Fig 3.5) and f  being the frequency as defined before. This time rate of change of the 

volume may cause the gas to move in and out of the domain bounded by the walls with a 

typical velocity wafL
S

dtdVU eff


. It thus follows from equations (3) and (4), that 

the energy gain necessary to go from in-phase to out-of-phase motion with the base is 

223 faLE eff . As the distance between the rods is comparable to molecular mfp , the 

lubrication-type friction caused by impacts between the molecules can be considered small 

compared to that arising from the stochastic interactions with the walls. Thus, the main 

contribution to dissipation can be assumed to be originating from the friction encountered 

by the rods themselves(75, 85).  
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Transition between the states due to stochastic dynamics.  The existence of these two 

states, representing the two possible steady states of the system at resonance, can be 

considered as the first step towards a more complex theoretical analysis. In reality, there is 

a continuum of states corresponding to the intermediate configurations of flow. The states 

can be viewed in terms of effective variable   representing the on and off-phase transition 

of an individual cell, with 0  being the in-phase state and    being the out-of-phase 

state. Then, E  is the energy barrier the system needs to overcome in order to transition 

from the in-phase to the out-of phase state, as schematically illustrated by a double-well 

potential on Figure 3.5, the minima of the potential representing the two possible states. 

The transition between the states is driven by the molecular impacts which are much faster        

(~picosecond) compared to both the time scale of oscillations of the crystal (~microsecond) 

and the resonance of the nanorods (~ nanosecond). The dynamics of the transition between 

the states can then be modeled in terms of stochastic dynamics of a bi-stable system(82–

84) with the noise intensity   (i.e., the noise autocorrelation function) being proportional 

to W , which is precisely the viscous loss due to the molecules impacting the rods.  

 
3.8 Key result on the Theoretical Analysis and relevance to experimental data.   

For detailed theoretical analysis to be undertaken later, one will proceed with finding a 

stochastic dynamics model of motion between the different states. Such a model will 

necessarily include the dynamical assumptions of the state   as a function of generalized 

time, the potential    describing the energy of a given state, a periodic forcing and a 

noise. Such theory will be crucial for understanding of the dynamics close to the resonance, 

however, for now, we would like to postpone such detailed discussions for subsequent 
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work when the nature and functional form of different terms is more clear.  Here, we take 

a more general approach and outline the results that will be common for such models, and 

which are of relevance to our experiments. The primary ingredient of the theoretical model 

is the potential function    defining the energy of a given state, having the minima at 

0 and   with the potential barrier separating the two states being E  (Fig 3.5) as 

we have illustrated Then, independent of the exact functional form of the chosen   , 

the noise-induced hopping between the states may be described in the form of Kramers rate 

(89, 90) 

 






 



exprK ,      (4) 

as long as the potential    satisfies the above constraints of being a smooth function 

with two given minima. Surprisingly, this general fact is sufficient to provide an excellent 

explanation of all available experimental data. Indeed, with the majority of the states being 

in the in-phase state, Kramers’ law, coupled with the assumption of a finite lifetime of the 

off-phase state, leads to describing the number of cells in the off-phase state following the 

Gibbs probability distribution as  
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This is precisely the consequence of the existence of two states as estimated above, with 

W playing the role of the amplitude of the noise   in (4). The exponent in square 

brackets above incorporates parameters of the integrated multi-scale resonator into a single 
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dimensionless constant 
22

4
1
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
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a
w

C
fLK


where waeff  , effa  being the effective 

amplitude of motion of molecules on impact with the rods as described before.  

Now, assuming that most dissipation comes from the in-phase energy scale, with the 

off-phase energy scale resulting in the enhancement as a function of minute media viscosity 

  variations, from (5) above we obtain  

,exp
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with 0D  being the dissipation for the smallest kinematic viscosity in the experiments. 

While much needs to be done to derive a complete stochastic dynamics model from the 

first principles, we believe that this preliminary result coming from rather general 

assumptions leads to some encouraging insights. Indeed, the theoretical prediction (6) is in 

agreement with the exponential experimental trend presented on Fig 3.2a and 3.2c, 

providing an excellent match to the data with no fitting parameters. The best fit of the graph 

in Fig 3.2a provides 15.9K  and theoretical prediction (6) yields 1.9K  where we have 

taken nma 4  from experimental data analysis (supplementary materials S7). The high 

value of the dimensionless parameter K determines the amplification or scaling factor Ke

for unit changes in 


 , showing exponential sensitivity to small variations in viscosity in 

our experiments. In the absence of surface nanostructuring, the system ceases to have a 

second stable state where expressions (4) and (5) are no longer valid, and a continuum 

energy scale similar to W , relevant to the system, can explain the linearity in response 

for small relative variations in flow parameters(52, 62, 79). This is confirmed by our 

experiments (Fig 3.2b) where indeed, for a bare surface, the motion is in the continuum 
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regime and expected change in dynamics from Stokes’ drag is linear, e  being a slow 

varying function on media kinematic viscosity  . 

The theoretical prediction (6) for small changes in motion is further substantiated by 

the exponential dependence of dissipation on resonance amplitude (Fig 3.4). If we assume 

the simplest linear dependence of effa  on a , from (6) we arrive to the exponential 

dependence of D on 
a
a  (supplementary materials S8), shown with the dashed line as an 

experimental best fit in Fig 3.4. Here a  in the denominator is the resonance amplitude 

obtained for the lowest input drive energy. More sophisticated models of dependence of 

effa  on a  with higher order terms can be derived by considering collisions of gas phase 

molecules and the nanorods varying as a power law, essentially leading to the same results. 

The most interesting fact is the apparent higher exponential rate of change of dissipation 

as a function of 
a
a  for the surface with nanostructures having diameter and width lesser 

than the mfp of the gas phase molecules (Fig 3.4 Crystal 1). We shall note that the system 

with larger nanorods separated by a larger distance experience slower decay of D  with the 

amplitude (Fig 3.4 Crystal 2). While the experimental limitations do not allow us to test 

the continuously changing dimensions of the nanorods, we believe that these results 

illustrate that, as the dimensions slowly increase with respect to the mfp, the effect of 

dissipation enhancement correspondingly diminishes, eventually yielding a linear 

dependence on viscosity as expected by Stokes’ theory (Fig 3.4a).  Thus, even preliminary 

analysis for our system based on quite general assumptions are of substantial interest, and 

further elaboration of the theory will be considered in details in our upcoming work.  
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3.9 Discussion on time and length scales.   

We shall note that, the probabilistic consideration of interactions at the solid-gas interface, 

because of the nanostructures, inherently incorporates two non-dimensional scaling 

parameters: a time scale ratio 
n

mfL






2
 and the other a spatial scale ratio 














2

a
aeff . The orders of magnitude of these two scale ratios gives a measure of 

separation of the two energy state basins considered in our model. Here, m  is the 

molecular motion time scale related to the kinematic viscosity   and n  is the time scale 

of motion of the surface or the nanorods. The ratio 11 mn   signifies the extent of 

collisions with gas molecules experienced by a nanorod per period of its motion or the rate 

of molecular fluctuations within a cell bounded by nearest neighbor nanorods. We have, 

typically, 1  for our system, that changes depending on the grafting density on the 

surface. Their product K  (~10 for typical order of magnitudes in our system) 

affords a large change of  p  in (5) with respect to small changes in media defining the 

sensitivity. Theoretical estimate based on the physics of statistical fluctuations of the 

number of molecules in a cell bounded by the nanorods gives limiting sensitivity of the 

order of parts per billion (ppb) concentrations even at normal temperature and pressure 

conditions, on the introduction of an analyte, which can in principle be achieved by this 

method. Our experimental results demonstrate measurement sensitivity of the order of ppm 

as presented (Fig 3.2a, 3.2c), when a single analyte is introduced in the system with a carrier 

gas.  
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3.10 Conclusions.   

Damping in nanomechanical resonators has traditionally been regarded as an impediment 

to sensitivity. We show that for oscillating surfaces modified with nanoscale structures, 

dissipation offers a wealth of information on the nature of mechanical interactions of 

molecules with surfaces. We also present a theoretical model based on two bi-stable states 

and two energy scales, showing encouraging agreements with experiments. We envision 

that a future development of theoretical studies incorporating ideas of Stochastic 

Resonance will be of particular interest. We believe that in the future, the analysis of 

dynamics of multitude of coupled nanostructures in complex gas mixtures may play an 

important role in non-adsorption based, physical detection of chemicals.  

 
3.11 Materials and Methods  

3.11.1 Surface Nanostructuring.   

In our experiment, we use a standard AT cut QC from International Crystal Manufacturing 

(ICM) Co. Inc. (USA) as a test platform. First step involves sputter coating a nm10  thick 

ZnO seed layer only on one electrode surface using a mask, the coated area contributing to 

the effective response change in our case. We used hydrothermal(80) process for growing 

the ZnO nanorods on the sputter coated surface. The involved chemicals are: Zinc nitrate 

hexahydrate ( , 98%) and Ammonium hydroxide (28 wt% in 

water), purchased from Sigma–Aldrich. The crystals are put in  solution 

with its pH being modified to 10.6 by adding 2.3 ml of the ammonia solution. The solution 

is put in an oven at 90°C for 3hrs and the pH of the solution is constantly maintained by a 

sealed environment reaction vessel. The 3hr growth gave us our desired dimensions. After 

OHNOZn 223 6)(  3NH

OHNOZn 223 6)( 
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hydrothermal growth, the crystals were rinsed with de-ionized water and ethanol, and then 

dried in a vacuum oven. Estimations verified through Field Emission Scanning Electron 

microscopy (Fig 3.S1) show a mean nanorod length of  %10611 nm  with mean 

diameters  of the order of %1043 nm . The dimensions and growth kinetics strongly 

depends on the seed layer thickness and average roughness. Nanorod density measured at 

different locations is 218   nanorods per 2m  giving a typical area coverage of about 

%12  per 21 m of electrode surface area. Such a coverage density is essential to effect limit 

sensitivity ~ parts per billion as has been discussed in supplementary information. 

 
3.11.2 Flow system for analyte introduction.   

A schematic of experimental procedure as shown (Fig 3.6) allows varying of ambient 

media properties in the flow cell by the introduction of various gas molecules using carrier 

gas (dry-air) bubbling, with flow maintained at 50 sccm - standard cubic centimeters per 

minute for all cases. The variance in the media properties is achieved through 0.1 wt% 

analyte-water mixtures or by controlled temperature variations in the same dry air 

environment. The relative humidity for all experiments with different analytes and 

temperature is maintained at 5%. For same percentage by weight analyte solutions in water 

and the fixed flow rate, the relative change in kinematic viscosity is unique to an analyte 

depending upon the relative vapor pressures. For calculations on mixture viscosities in 

experiments refer section in supplementary information.  

 

 

 

L

d
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3.11.3 Impedance measurement.   

The nanostructure modified QC is driven into shear mode vibration and the dynamic 

dissipation factor as in our analysis (Eq. 1) is measured as an electrical impedance 

parameter ss
s

s

s

s c
cX







 



1

, where   is the drive frequency,  s  is the 

equivalent series resistance and sc  is the equivalent series capacitance. At resonance (Eq. 

1) ss
QC

c
f

D  
 2max  gives the measure of dissipated energy. The measurements are 

done employing Agilent 4294A Impedance Analyzer with nominal impedance accuracy of 

%08.0 at 100Hz. Drive signal from analyzer’s internal oscillator is swept over a 

moderately low bandwidth (5 kHz) with the sweep time of 30 sec for viscosity dependence 

experiments. Variations of impedance parameters monitored as a function of the drive 

frequencies, reflect the equivalent impedance based mechanical dissipation in the system. 

 
Figure 3.6| Experimental Schematic   
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Supplementary Materials 

S1.   FE-SEM of nanostructured surface 

 

 

Figure 3.S1| FE-SEM image of nanostructured QC with embedded scale-bars.  

 

S2.   XRD analysis of nanostructured surface: 

Fig 3.S2 presents the XRD analysis of ZnO nanorods grown on QC. All the diffraction 

peaks could be indexed to hexagonal phase of ZnO with polycrystalline grain orientations 

(JCPDS: 36-1451). No characteristic peaks from other impurities are detected, which 

indicates the purity of grown ZnO nanorods. The Au (200) peak corresponds to Au layer 

on QC. Since the ZnO nanorods are polycrystalline in nature, the piezoelectricity of ZnO 

nanorods is insignificant due to mutual cancellation of induced strain, therefore, less likely 

to impact the dynamic response of the QC resonator. 
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Figure 3.S2| XRD-analysis of nanostructured QC.  

 

S3.   Measured data accuracy analysis and estimation 

Conventional models1–4 regard the QC as an electrical resonator obeying the equation of a 

driven damped simple harmonic mechanical oscillator  

)cos(2
0 tAxxx                                                  (S1) 

where we have denoted resonant frequency effmk0 , k the stiffness,   the effective 

dissipation coefficient and effm  the effective mass with A and  , the drive amplitude and 

frequency respectively. In the electrical analogue,  acquires the meaning of electric 

charge ,  the relative resistance  per unit inductance   and spring stiffness defined 

as ck 1 with c  being the capacitance.  

 

The simultaneous measurement of damping factor   and resonance frequency QCf  allows 

the estimation of non-dimensional damping D as 
QCf

D max
 . We shall note here that the 

dissipation  is measured directly from the experiments as illustrated in Fig 3.1a in main 

x
q  

D
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text, whereas -factor is estimated from the width of the Lorentzian peak of the amplitude 

response (Fig 3.S3 below). From general theory, one expects that, independent of the type 

of measurement, Q=1/D. This is substantiated by the plot of normalized values of Q  vs 

D1 , with data points lying on a straight line with slope 1 (Fig 3.S4). The highest intercept 

value, and deviation of the slope from 1, obtained in the fits corresponds to the accuracy in 

the experiments ~ .10 7  This attests to the high accuracy of our experiments. 

 

 
Figure 3.S3| Conductance vs Frequency response of the Nanostructured QC resonator for small 

changes in input drive energy.  

 

Figure 3.S3 shows the Lorentzian fit for a particular measurement giving an estimate of 

the Q-factor. Data points for the Q factor and dissipation D from experiments have been 

analyzed in this way to estimate measurement accuracy, as represented in Fig 3.S3 above 

and for generating Fig 3.2a in the main article.  

Q
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Figure 3.S4| Accuracy analysis of measured data. 

 

S4.   Dissipation responses for different gas media  

 
Figure 3.S5| A representative set of dissipation measurements for different gas media as done in 

sequence. Note that each graph is obtained as a concatenated fit of multiple readings similar to 

that presented in Fig 3.S3 above. 
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S5.   Estimation of gas mixture viscosities  

There are two possible ways to bring about a change in the viscosity   as a function of the 

media properties. One way is to change the medium, for example by saturating the air with 

the vapor of a chemical up to a particular concentration level (ppm levels in our case), or, 

alternatively, replacing the air altogether by another gas. In the case of complete 

replacement, the effective variation in   of the medium is relatively easier to compute 

following 
















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


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








 airdry

vapour

vapour

airdry

airdry

vapour












                                   (S2) 

For mixtures however, it is more complex. The changes in viscosity m  in a mixture can 

be estimated from well-established theoretical and experimental work on the subject5–9. 

For a complex vapor mixture of air and volatile chemicals, air molecules of the fluid 

medium around the nanorods are replaced by molecules of the vapor, depending upon its 

partial vapor pressure and hence its number density and molar mass, which results in an 

effective change in kinematic viscosity  . The experimental viscosity mixture of up to 

3 components m  may be calculated using6  
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with ix  being the mole fraction of component i  determinable from the vapor pressure at 

normal temperature and pressure conditions, i  being the vapor density of component i . 

The diffusion coefficient imD of component i  into a mixture of 2 and 3 is defined as 
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as derived from Maxwell’s equations for diffusion6. The diffusion coefficient of two 

component mixture is derivable from10 
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where, p  is the pressure in atm. , M is the molar mass, T is the absolute temperature in 

Kelvin and  2112 21     is the average collision diameter. Also, c  is the 

temperature dependent collision integral and is assumed to be 1 in our calculations 

considering non-interacting molecules. The values of i  are obtained from literature data8 

or computed based on molar volume and density. 

 

S6.   Estimation of gas viscosity at different temperatures 

The variation of kinematic viscosity as a function of temperature is expected and has been 

a subject of interest for many years. The kinematic viscosity of air for different 

temperatures as in our experiments are computed from11 using 120 as the Sutherland’s 

constant. 

 

S7.   Estimation of vibration amplitude at 5mV drive from impedance measurement 

The key to understanding our results and theoretical formulation lies in the fact that in the 

parameter regime we are operating, which is indeed described in Reference3, the amplitude 

is proportional to the measured conductance G ( )Re(Y , the Admittance). More precisely, 

from equation (2) in Reference3, page 4519 and using our notation, (see also Appendix 

section in Reference4) we conclude that Ga  . Thus, the quantity aa  is exactly equal 

to GG . In our experiment (using their notation), G is measured with a ppm accuracy by 

the impedance analyzer as 

fu
V

u
V

G  22
  ,                                                      (S6) 

where V is the drive voltage across the crystal, f is the frequency at resonance, u is the 

lateral displacement ( a  in our case) at the crystal surface, u  is the lateral speed, and 

q

q

d
eA 26

  is a crystal factor.  The consideration of conductance G , the )Re(Y is valid 

here since the entire analysis is done with respect to magnitudes at zero phase at resonance.  

 

The crystal shear amplitude or lateral surface amplitude a  in our representations of   

resonance amplitude can be estimated from impedance measurements as has been 
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discussed in literature3,4 using appropriate parameters. A quick calculation using values for 

our used crystal:  2610084.4 mAq
 (equivalent electrode surface area, with %12  per 

2m  (Fig 3.S1) coverage with nanorods), 22
26 1054.9  Cme 3 and mdq

610333     

1
6
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 002337.0
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Cmm

 .                   (S7) 

 From measured conductance 3105.18~ G S (Fig 3.S3) at 5mV input drive, and at 
resonance MHzf 972.4 ,  

nmnmmau 4~9.310521.7
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

.               (S8) 

The final factor of 21  is for considerations of the motion of the nanorod with respect to 

its center axis as relevant to our oscillating nanorod theoretical model. This is the estimate 

used in our theoretical model, providing the excellent match to the experimental data 

without the need of fitting parameters.    

 

S8.   Explanation of exponential amplitude dependence   

Equation (2) in text can also explain the exponential nature of D  with respect to the 

changes in the amplitude at resonance. If we assume the simplest possible linear 

dependence azwaeff  , with a  being deviation from the smallest resonance 

amplitude for the lowest input drive energy, equation (2) yields, for small changes of a  
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where 







 12 z

w
aK , z  being a non-dimensional fitting parameter in experiments and 

0D  being the dissipation for the smallest amplitude. Further development of the theory can 

be done, assuming more accurate expression for effa  that is nonlinear  in 






 

a
a , giving 

essentially the same results.  
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Photothermal electrical resonance spectroscopy of physisorbed molecules 
on a nanowire resonator 
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Canada. 
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ABSTRACT: Mid infrared (IR) photothermal spectroscopy of adsorbed molecules is an 

ideal technique for molecular recognition in miniature sensors with very small thermal 

mass. Here, we report on combining the photothermal spectroscopy with electrical 

resonance of a semiconductor nanowire for enhanced sensitivity, selectivity, and simplified 

readout. Wide band gap semiconductor Bismuth Ferrite (BiFeO3, BFO) nanowire, by virtue 

of its very low thermal mass and abundance of surface states in the band gap, facilitates 

thermally induced charge carrier trapping in the surface states, which affects its electrical 

resonance response. Electrical resonance response of the nanowire varies significantly 

depending on the photothermal spectrum of the adsorbed molecules. We demonstrate 

highly selective detection of mid IR photothermal spectral signatures of femtogram )( fg  

level molecules physisorbed on a nanowire by monitoring internal dissipation response at 

its electrical resonance. 

 

KEY WORDS: Nanowire sensors, nanowire resonators, photothermal spectroscopy, 

infrared sensor, molecular recognition, temperature-induced dissipation in nanowires 
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4.1     Introduction  

Nanosensor platforms such as nanowires1–5 and nanocantilevers6,7 are topics of active 

research because of their potential as a miniature sensor platform with unprecedented 

sensitivity for applications ranging from health-care to national security. In general, 

molecular adsorption-induced changes in nanosensor physical properties serve as the 

sensor signal. Imparting chemical selectivity for small molecule detection to these sensor 

systems for reversible detection has been a challenge. Commonly used method of using 

immobilized chemoselective coatings often results in high false positives due to the generic 

nature of reversible chemical interactions. Hence, developing concepts that do not require 

immobilized chemical interfaces are very attractive. One such technique that exploits the 

very high thermal sensitivity of a bi-material microcantilever is photothermal cantilever 

deflection spectroscopy where IR excitation of adsorbed molecules and the subsequent 

non-radiative decay results in mechanical bending of the cantilever8–10. Nanomechanical 

deflection of the cantilever as a function of excitation wavelength shows the molecular 

vibrational characteristics of the adsorbates9,10. This nanomechanical spectrum is 

complementary to that obtained with conventional IR spectroscopies such as FTIR.  

Thermo-mechanical detection of spectroscopic signals does not rely on Beer-Lambert 

principle, and, therefore, the relative intensities of the peaks are complementary to that of 

conventional IR spectra.  However, the locations of the peaks (energy, h ) match very well 

with that of conventional spectroscopies, making nanomechanical spectroscopy highly 

selective and sensitive. Another advantage of the technique is that it works for physisorbed 

molecules, making sensor regeneration at room temperature easy 9,10,8.  
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The sensitivity of detection in the nanomechanical spectroscopic technique depends on the 

thermal mass of the sensor. Therefore, lowering the thermal mass of the detector could 

result in superior sensitivity in chemical sensing. Since a nanowire has a very small thermal 

mass, it can be an ideal sensor for photothermal spectroscopy. However, measuring 

nanomechanical bending of a nanowire caused by bi-material effect is very challenging 

using optical readout techniques. In general, monitoring nanomechanical motion of 

nanostructures such as nanoribbons and nanocantilevers, effected by small temperature 

changes, require complex and bulky equipment7,11–13.  

 
In this letter, we introduce a method of combining photothermal spectroscopy of 

physisorbed molecules on a semiconductor nanowire with its electrical resonance response 

for unprecedented selectivity and sensitivity. This technique, therefore, combines the 

selectivity of mid IR spectroscopy and sensitivity offered by electrical resonance 

phenomenon. Wide band gap materials such as bismuth ferrite (BiFeO3 or BFO) have high 

density of surface states in their band gap, which are filled up to the Fermi level14–16. Due 

to the high surface-to-volume ratio of a BFO nanowire, its electrical properties are 

significantly influenced by the electrical nature of the surface states17,16. Changing the 

temperature of the nanowire modulates the occupation of these surface states. Since the 

thermal mass of a nanowire is extremely small, absorption of very small quantities of heat 

can result in large changes in its temperature and in turn cause changes in the carrier 

population/depopulation of the surface states. Alternatively, small internal changes in heat 

from phonon excitations can effect similar repartitioning of surface states. This fact can be 

used to an advantage where by illuminating the nanowire with pulsed light, we show, can 

modulate the population-depopulation of these surface states depending on excitation and 
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relaxation of molecular vibrations of the adsorbed molecules. A slight variation in 

temperature from non-radiative relaxation induces changes in the surface state population 

further changing the electrical properties of the nanowire, which can be detected by 

monitoring the electrical resonance response of the nanowire.  

 

Figure 4.1| (a) Schematic representation nanowire resonator with equivalent electrical circuit 

model (please refer to section 1b, Supplementary Information) and the concept of coupling 

electrical resonances of the nanowire with optical excitation for high selectivity and high sensitivity 

chemical sensing, (b) SEM images of BFO nanowire, (c) dissipation (D) IR spectrum of adsorbed 

molecules. Electrical resonance frequency of the nanowire changes due to molecular adsorption, 

enabling detection of fg  levels of adsorbed mass. Resonant IR excitation of adsorbed molecules 

produce large changes in the dissipation of nanowire resonator due to population-depopulation of 

surface states by thermally generated carriers. 
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4.2 Experimental Technique 

A schematic of our photothermal electrical resonance spectroscopy (PERS) technique is 

illustrated in Figure 4.1. A suspended BFO nanowire (3-20µm in length with a radius of 

100 nm) electrically connected to metal (Pt/Ti) electrodes forms the electrical nanowire 

resonator (Figure 4.1a).  A scanning electron microscopy (SEM) image of BFO nanowire 

is shown in Figure 4.1b. Any change in the electrical properties of the nanowire changes 

the electrical resonance frequency of the circuit. The electrical resonance frequency of a 

nanowire also changes due to molecular adsorption (capacitive loading) as well as from 

changes in temperature due to optical excitation of the adsorbed molecules (surface state 

population-depopulation). However, these changes in the electrical resonance frequency 

are too small for high sensitivity detection.  We have realized that though the changes in 

resonance frequency are small, the resonance response of dissipation is extremely sensitive 

to changes in temperature changes. Only dissipation shows significant variations due to IR 

excitation of adsorbed molecules on the nanowire resonator. We record this dissipation 

signatures at electrical resonance of nanowire as a function of incident mid IR wavelengths, 

and they correspond to a dissipation spectrum (photothermal electrical resonance spectrum 

or PERS) unique to excited vibrational states of physisorbed molecules (Figure 4.1c).   

 
4.3 Analysis of Results 

A nanowire behaves analogous to an electrical series RLC resonant circuit (Figure 4.1a) 

with effective inductance L  and a non-ideal capacitance C , showing resonance frequency

LC
f res

2
1

   in the MHz regime as measured (See Supplementary Section 1).  The 
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corresponding response timescale, 
resf
1

  (tens of ) as obtained from the resonance 

analysis, essentially becomes the timescale of changes in electrical characteristics due to 

increased thermal energy of Q  arising from phonon-assisted transitions. Cantilever-

based photothermal sensors, having higher thermal mass, are typically slow  ms and they 

fail to track T at a fast enough timescale  ns . Electrical resonance of nanowires makes 

that fast tracking  ns  possible and has the effect of enhancing the detection of heat changes 

arising from phonon-transitions internally. The very low thermal mass of the suspended 

nanowire effectively results in a high rate of change in temperature 






T  as a function of 

time. In essence, the energy from any phonon relaxation gets dissipated internally and it is 

possible to monitor the dynamic dissipation at resonance as a ratio of energy dissipated to 

energy of excitation per cycle. This dimensionless quantity known as dissipation (in 

electrical terms it called D-factor) can be measured for different IR incident wavelengths. 

The dissipation (or D-factor) has been used earlier as a sensor signal for differential 

detection of volatile chemicals.18,19 A detailed discussion on the electrical definition of D-

factor is presented in Supplementary Section S1. 

 
Absorption of IR energy resonantly excites vibrational states of molecules physisorbed on 

the nanowire. Non-radiative decay of these excited states cause thermal changes through 

multi-phonon relaxation processes. Such phonon-induced changes in heat Q  depend on 

the thermal-mass PmC ( m  being the mass and PC the thermal heat capacity) and result in 

a measurable temperature change PmCQT  , scaling inversely with the detector 

thermal mass. In all conventional forms of detection, measurable T  relies on the change 

ns
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in electrical property arising from this Q . Inherent limitations on timescale responses thus 

poses a fundamental limit to the detection sensitivity of Q  over thermal noise originating 

from any such phonon interaction process. At bulk scales, the overall response time is long 

and it demands a high Q  or multiple non-radiative relaxations integrated over time to 

produce a steady state electrical property change. However, in a very low thermal mass 

nanosystems like nanowire, thermal changes can be significant and at a very small 

timescale. An electrical property change in a semiconductor nanowire is predominantly 

brought about by the distribution of carriers in its electronic states. A change in Q  which 

can bring about a change in the carrier distribution by populating vacant higher electronic 

states with thermally induced carriers, would change its electrical property.  

 
4.4 Surface State Density and significance in dissipation response 

The importance of surface-states in modulating responses of bulk semiconductor materials 

through surface charges was addressed in the early 1970’s by Lagowski and Gatos20,21. 

Catalan’s review reveals prospects on similar grounds in semiconductor BFO 22. Phonon 

de-excitations are usually in the form of a cascading multi-phonon assisted relaxation 

process reflected as internal dissipation23–25 and is attributed to phonon-phonon interactions 

or scattering. Defects in bulk or on the surface enhances it significantly26–28 and they play 

a crucial role at the nanoscale as in our method. For a system with high surface state 

density, there is a higher probability of coupling phonon relaxation energy  phononQ  in 

promoting a charge carrier to an allowable vacant surface states above the Fermi level; 

traditionally termed charge capture or carrier trapping26–28, which we exploit to our 

advantage by monitoring through electrical resonance. In the electrical domain, such carrier 
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repartitioning into different allowable surface states reflect a dominant capacitive reactance 

( CX ) change, as revealed in our experiments. The electrical parameter definitions are given 

in Supplementary Section 1. 

 
4.5 Significance of  low thermal mass 
 
Higher thermal mass sensors have slow response time  ms~  as compared to low thermal 

mass systems as illustrated in Figure 4.2a, and hence their usual steady state electrical 

property change, used as a measurement signal, fails to track T  at a fast enough 

timescale. The dependence of external excitation energy resS fRiQ 2  ( SR being the 

equivalent series resistance) on resf , gives the relative thermal sensitivity QQTT   

of the nanowire electrical resonance as a function of relative timescale response   at 

electrical resonance, showing an enhanced exponential sensitivity (Figure 4.2b), where 

resf1 .  Such an increased sensitivity at timescales of the order of tens of ns in energy 

space, as evident more in Figure 4.2c makes sensitive discrimination of Q  possible even 

at normal conditions. Since the thermal-mass of the nanowire resonator is negligible, T

can be significantly greater than the thermal noise. The measured normalized dissipation 

 as shown in Figure 4.2b (inset) & 2c shows the temperature-induced effective 

changes in internal losses at the same timescale. The nanowire thus serves as an extremely 

sensitive thermal sensor and an electrical resonator platform, enabling recognition of 

adsorbed molecules through monitored variations in its dynamic impedance parameters.  

 

 

)( 0DD
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Figure 4.2| (a) Typical time response curve for low thermal mass and high thermal mass systems. 

(b) Thermal response sensitivity of nanowire resonator with low thermal mass analyzed at SRF as 

a function of external drive. Inset shows normalized changes in dissipation  0DD as a function 

of relative changes above room temperature. (c) Time response )(  variations as a function of heat 

energy  Q  floor corresponding to external drive; subsequent variations in normalized dissipation 

 0DD of the nanowire resonator for the same energy fluctuations. Electronic state distribution in 

a material typically follows Boltzmann distribution and hence their variations as a function of 

energy all follow logarithmic trends, evident from thermal responses.  
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4.6 Demonstration of IR dissipation IR spectroscopy 

To demonstrate the capabilities of the sensor platform, we have chosen commonly 

investigated explosive, cyclotrimethylene trinitramine (RDX) as model system. Since these 

explosive molecules bind to surfaces very easily, they remain on the nanowires for longer 

periods enabling repeated measurements. The changes in resonance frequency of a 

nanowire due to the adsorption of RDX are presented in Figure 4.3. As mentioned earlier, 

both resonance frequency and dissipation vary as a function of molecular adsorption due 

to mass loading (inset of Figure 4.3). A detailed analysis of experimental data on other set 

of nanowire resonators with similar trend has been presented in Supplementary Section S2. 

The higher surface area of a nanowire coupled with higher number of surface states 

promotes unprecedented mass resolution in detection. Adsorbed mass on the nanowire 

resonator from the resonance response shift and corresponding capacitance change is 

calculated as a function of charge donation or transfer from the adsorbed chemical species29 

of unknown mass and is estimated to be of the order of fg10 . This estimated mass is also 

verified within the same order of magnitude  fg60 , assuming fractional two dimensional 

(2D) surface exposure of the nanowire to L4.0 droplet (used in experiment). The factor 

of variation between the measured capacitance change and the surface area exposure 

estimation may be accounted for the non-uniform and different evaporation kinetics of 

solvent on the surface of the nanowire and the substrate (See Supplementary Section 3). It 

is possible that RDX adsorption on the nanowire cannot be in the form of a continuous 

layer, instead would be in the form of discrete islands on the nanowire surface and hence 

monolayer assumption would tend to overestimate the adsorbed mass. The technique thus 
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also opens up a novel way of estimating adsorbed mass from electrical property variation 

through dynamic dissipation study at resonance. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3| Electrical resonance of the nanowire resonator without and with adsorbed RDX 

molecules. The dissipation of the nanowire resonator also changes as a function of molecular 

adsorption. Inset of Figure 3 show higher magnification in the region of interest. Dissipation change 

proportional to adsorbed mass. 

 
The variation in the amplitude of dissipation corresponding to IR absorption wavenumbers 

of RDX is shown in Figure 4.4a. The normalized dissipation, 0DD (corresponding to each 

IR wavenumber) as a function of relative timescale response,  (Figure 4.4b) reveals 

an exponential nature of thermal response, where the change is from excited thermal 

phonons, which couple to the surface states of the nanowire through multi-phonon assisted 

relaxation processes. The higher dissipation as a function of IR is from phonon induced 

T  analogous to more effective internal dissipation as clear from Figure 4.2. In essence, 
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the thermally induced carrier repartitioning within the surface states change the way energy 

from external electrical drive gets dissipated and stored in the nanowire resonator per cycle 

of its oscillation at resonance. This resonance response variation, typical of the nanowire 

system employed, provides deeper insights on the thermal response characteristics (please 

refer to Figure 4.2), which is exploited here as a basis for our unique way of receptor free 

IR chemical discrimination. In electrical terms, the variations in the dissipation are from 

the changes in the effective capacitance of the nanowire. An increasing capacitance 

decreases the capacitive reactance, CX  (See Supplementary Section 4) and thus stores less 

energy per cycle. Effectively the dissipation increases showing higher dissipation. The 

variation in the capacitive reactance, affecting the nanowire response, reflects the 

variations in the charge state of surface energy levels of the semiconductor nanowire.  It is 

believed that the observed increase in surface capacitance is a result of an increase in 

surface charge carriers (electrons or holes) in the unoccupied surface states of the BFO 

nanowire by multi-phonon process and  has been reported previously for MOS thin 

films23,24. 

   
A systematic recording of the variations in dissipation as a function of incident IR 

wavelengths gives the spectrum of the adsorbed species, bringing selectivity.  

Experimentally observed spectrum of RDX molecules adsorbed on nanowire is presented 

in Figure 4.5a. Dissipation spectra as a function of IR wavelengths for the nanowire without 

the adsorbed analyte molecules becomes the reference or background signal in our analysis 

and is used for background corrections. Figure 4.5b shows comparison of PERS and FTIR 

spectra. The observed peaks in the dissipation signature match the FTIR spectra peak 

positions, showing selectivity and sensitivity of this approach. The line-widths of the 
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dissipation spectrum are much sharper and are primarily due to the low thermal mass and 

high electrical resonance frequency of the nanowire. Usually, the broadening of the peaks 

in conventional solid and liquid phase IR spectra is caused by the relaxation and dephasing 

of the vibrational excited states and indicates the complex fast dynamic interaction of the 

molecule with its environment. The high inherent nanowire resonance frequency along 

with the low thermal mass has the advantage of faster dynamic response as evident from 

discussions and results (Figure 4.2) and is reflected in the obtained spectra as unique sharp 

peaks with a significant low linewidth broadening compared to FTIR spectra (Figure 4.5b). 

  

 
Figure 4.4| (a) Dynamic dissipation of the nanowire resonator with RDX molecules adsorbed on 

its surface and irradiated by IR. (b) Normalized dissipation  0DD response of the nanowire 

resonator as a function of its response time. The selectivity in detection is through to the unique 

spectral absorption characteristics of the adsorbates in the mid-IR region. A variation in internal 

dissipation of the nanowire resonator is reflected by its dynamic dissipation in proportion to the 

small temperature changes due to IR absorption by adsorbates. The dynamic dissipation of the 

nanowire resonator with adsorbed molecules (without IR irradiation) served as the reference signal.  
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Figure 4.5| (a) PERS of RDX molecules adsorbed on nanowire (b) comparison PERS and FTIR 

spectroscopy of RDX molecules. The peaks on the measured PERS matches very well with the 

FTIR spectra of the analyte molecules. The observed high spectral resolution (linewidth) in PERS 

of the nanowire resonator is due to its extremely low thermal mass and fast response time ns 

significantly reducing thermal broadening compared to FTIR. FTIR absorbance   photon count; 

Dissipation from IR absorption is a complementary response in terms of phonon induced heat.  

 

4.7 Conclusion 

In conclusion, combining electrical resonance of a BFO nanowire with mid IR 

photothermal effect allows molecular recognition of fg  levels of physisorbed molecules 

on a single BFO nanowire. IR excitation of the physisorbed molecules increases the 

temperature of the nanowire due to its low thermal mass. Because of the presence of high 

density of surface states on the nanowire, changes in temperature promotes carrier trapping 

which in turn changes the electrical resonance parameters of the nanowire. The BFO 

nanowire system described here utilizes the internal dissipation due to IR absorption by the 

adsorbed molecules and opens new opportunities for detecting minute amounts of surface 

adsorbed molecules on similar nanomechanical resonating platforms using dissipation as 
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the parameter. With optimization, this method provides exciting opportunities in 

developing a sensitive platform with superior selectivity performance. 

4.8 Materials and methods 

4.8.1  Preparation of BFO nanowire resonator: 

BFO nanowire resonators with various electrode spacing are fabricated directly on pre-

patterned substrates by electrospinning technique as reported in our previous work17. A gas 

injection system (GIS) available with motorized flexible xyz -drive was used for in situ 

platinum metal contact to these nanowires (RAITH150).  The residues of explosive 

molecules of RDX was deposited on the nanowire resonator using the droplet evaporation 

method.  

 
4.8.2 Chemicals:  

The standard explosive RDX samples were purchased from AccuStandard, Inc. (New 

Haven, CT) and used without further purification. The standard concentration of each 

explosive is 1000 μg/mL in MeOH:ACCN (1:1) as indicated by the manufacturer. 

 
4.8.3 Dynamic impedance IR spectroscopy setup:  

The IR radiation (pulsed at 200 kHz ) from the quantum cascade laser (QCL) (Daylight 

Solutions UT-8) was focussed on the nanowire resonator. The laser peak power was in the 

range of 100–800 mW depending on the wavelength of operation. For UT-8, the peak 

power was 400 mW at 8.2 m  wavelength. The specified average power for this laser was 

up to 20 mW . The wavenumber of IR source was fixed at a specific value (range: 1630 

1cm  to 1150 1cm ) and the corresponding dissipation parameters were measured. The 

impedance parameters of the nanowire resonator were measured using an Agilent 4294A 
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impedance analyzer having a frequency range of 40 Hz to 110 MHz with nominal 

impedance  accuracy: +/-0.08 % at 100 Hz . The excellent high quality factor (Q) or D 

accuracy enables reliable analysis of low-loss components. The inherent high dynamic 

range of the equipment allows evaluation under actual operating conditions. A fixed ac test 

signal level ~ 50 mV  was employed as input drive voltage for all the impedance 

measurements. 

4.8.4 FTIR spectroscopy:  

The explosive residues were characterized using a standard FTIR Thermo Scientific 

Nicolet Contihuμm infrared microscope with a potassium bromide (KBr) beam splitter and 

a MCT-A (narrow band 650 1cm  cut-off) detector microscope in reflection mode. The 

number of registered scans was 200 with resolution of 4 1cm . 

 

 

 

 

 

 

 

 

 

rmsV
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ASSOCIATED CONTENT 

Additional details on the electrical resonance of nanowire resonators, definitions of the 

electrical parameters, a detailed analysis of experimental data on other set of nanowire 

resonators and calculations of adsorbed mass on nanowire using electrical resonance. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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Supplementary Information:  

S1.         Equivalent circuit model for the nanowire resonator 

The device behaves as a typical electrical series RLC circuit as shown in Scheme 1a where 

its typical component values drive it to a resonance frequency of the order of tens of MHz. 

sss LCR  &  , are representations of equivalent components as measurable through the 

impedance analyzer. The nanowire suspends freely in air at a height of 100 nm from the 

substrate surface and hence the air capacitance airC , as seen by the two electrodes, does not 

show a dominant effect in determining the resonance frequency of the equivalent circuitry. 

Also typical value of the substrate capacitance substrateC   along with the contact resistances 

2cR  at the electrodes, exhibits a resonance frequency in the order of few KHz only, with 

no nanowire drawn between the electrodes. This ensures that our device response at the 

MHz frequency regime is that of the nanowire and not dominated by changes on the 

substrate or the changes in medium around it. The effective dominant dissipation change 

used in our study can be explained in terms of the ratio of the lost to stored energy through 

its frequency dependant effective complex impedance parameters. The response of the 

nanowire resonator recalls to mind the response of a non-ideal capacitive element 

following Scheme 1b where, it is well known that at SRF, the capacitive and inductive 

reactance values become equal  and the device becomes 

predominately resistive ( ),  being the self-resonating frequency (SRF). The 

inductance sL  variation, in one of the employed fabricated nanowire resonator, as a 

function of frequency (Figure 4.S1a) is negligible as is evident from its response curve, 











 SL

S
C LX

C
X 



1

SR 
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conclusively implying that the reactance change of the resonator circuit tends to be 

dominantly capacitive. Following the same argument, the capacitance response of the 

nanowire resonator (Figure 4.S1b), indeed also exhibits maximum variation at SRF 

justifying the series equivalent model (Scheme 4.1b). Evidently, in such a non-ideal 

capacitive element at SRF, the storage of energy per cycle is through its capacitive 

reactance  while the dissipation is through its effective frequency dependent series 

resistance component sR . 

The observed electrical resonance response of the employed nanowire resonator, 

promptly recalls the characteristics of a non-ideal capacitive element with an effective 

inductance in series. At the self-resonating frequency (SRF), resf 2  , the capacitive 

reactance  CX  and inductive reactance  LX  exactly compensate each other 











 sL

s
C LX

C
X 



1  making the device predominately resistive or dissipative. In 

effect, the storage of energy in such a non-ideal capacitive element at SRF is through , 

per alternating cycle, while the dissipation is through its effective frequency dependent 

series resistive component .  and  are representations in terms of the impedance 

parameters obtained from the impedance analyzer used in our study. Essentially, the ratio 

of the energy lost to that stored per cycle becomes a critical and sensitive measure of the 

quality of resonance. This ratio, commonly referred as the dissipation or D-factor 

(dimensionless) is given by  

ss
s

s

C

s CR
C

R
X
RD 




1
 

CX

CX

SR SR CX



P a g e  | 118 
 

The variations of resonance characteristics of the nanowire resonator are sensitively 

reflected by D-factor responses when subjected to external parameter variations, in turn 

reflecting changes in its internal dissipation. It should be noted, that for high enough 

temperature changes, sR  change can be significant in metal nanowire resonator as well 

reflecting similar dissipation trend.  

 

Scheme 4.1| Equivalent RLC circuit model for nanowire resonator (with typical RLC 

values; R ~ Ω, L ~10-7 H and C ~ nF) 

 

Figure 4.S1| Variation of electrical series inductance (a) and series capacitance (b) of the nanowire 
resonator as a function of frequency. Variation in inductance is insignificant at resonance whereas, 
a clear capacitance variation is seen at resonance. 
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S2.           Electrical resonance of nanowire resonators  

Electrical resonance measurements have been performed on nanowire resonators in a wide 

range of frequencies (ranging from 20-50 MHz). The resonances for different nanowire 

designs measured at room temperature are presented in Figure 4.S2a. The resonance 

frequencies of nanowire resonators exhibit a decreasing trend as a function of increasing 

nanowire length (electrode spacing) whereas the dissipation response is just the reverse. 

The variation of electrical resonance frequency and dissipation of nanowire resonators as 

a function of the nanowire length is presented in Figure 4.S2b. The observed variations can 

be attributed to the increasing capacitance (decreasing capacitive reactance (XC)) as a 

function of decreasing electrode spacing which effectively is the length of the nanowire. In 

essence it is the predominant variation of electrical length at the nanoscale that governs the 

operational SRF.  

 

Figure 4.S2| (a) Electrical resonance response of nanowire resonators with various lengths of 
nanowires. (b) Dissipation and resonance frequency response of nanowire resonators obtained for 
various nanowire lengths.  
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S3.          Dissipation response due to the adsorption of molecules 

 
As discussed earlier, the effective dissipation (D) is the ratio of dissipated to stored energy 

per cycle  

              
T
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CT
R

X
R

D ss

s

s

c

s                                      (i) 
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1T , being the time period of a cycle. 
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
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
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DCCCRD SiSSi ii  

A quick analysis of the obtained data (Figure 4.S3) shows an increase in effective 

capacitance on adsorption of RDX molecules by a factor of 1.038 following equation (i). 

Increase in capacitance corresponds to an effective decrease in capacitive reactance, which 

leads to reduced storage of energy per cycle of response thus leading to a higher dissipation 

at its SRF as also clear from equation (i) above. The shift in SRF on adsorption may be 

attributed to the effective complex variation in resonator elements (dominant real part 

variation of complex permittivity), This observed response agrees to an earlier report where 

it was envisaged that the dissipation variations can be a useful indicator of the change in 

dipole-dipole interactions caused by the adsorption of a volatile chemical onto the polymer 

film employed in the studyS1. They related the higher dissipation at the device’s SRF to the 

maximum efficient transfer of energy at the natural resonance frequency of molecules 

binding to the polymer. Such efficient energy transfer was conclusively associated to lower 

energy storage at SRF in their developed sensor system. 
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Figure 4.S3| Variation in dissipation (a) & capacitance (b) obtained for the nanowire resonator 
without and with RDX molecules. The order of shift is in KHz to even minute quantities of 
adsorbates of the order of fg. 
 

S3.1         Adsorbed RDX mass calculation  
 

a)  From electrical resonance of the nanowire resonator 
 

From the dynamic impedance parameter variations using equation (i),  

CVCQ
nFC

1210512.8
48.4038.0




 

Now charge of an electron is Ce 1910602.1    

Therefore, Number of electrons 7103134.5 



e
QN e  

Now charge contribution per atom from individual sites of H1 H2 and N2 in RDX  e84.0 . 

There are 3 such sites in a RDX molecule S2.  

Hence the number of atoms taking part in charge change  

7
, 101085.2

84.03



 e

RDXatoms
N

N  

 

Therefore, weight of RDX can be calculated as 
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b) From surface coverage 

Typically, in monolayer coverage, it is considered that the total number of atoms in 1 cm2 

is about 1015 atoms/cm2. However, for adsorbed mass calculations, authors consider that 

only fraction of RDX droplet is exposed to effectively half the nanowire surface. Therefore, 

the fraction of half the surface area of nanowire to the total area covered by 0.4 μl droplet 

on the substrate surface (as measured from the droplet stain) multiplied with concentration 

of RDX molecules in the solution used gives the estimated mass of adsorbed molecules. 

Diameter of nanowire = 100 nm, Length of nanowire = 3 µm 

Concentration of RDX molecules: 1000 μg/mL 

Volume of droplet (RDX) = L4.0  

Hence effective mass of analyte in gLgLL  4.0/14.04.0   

Droplet diameter on surface =2mm (measured) 

Area of droplet on substrate:  26
232
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)102(
4

md 






  

Area of nanowire:  269 10310100 mld NW
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Assuming only top surface of nanowire is covered with droplet, area exposed 
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Hence the estimated adsorbed mass is  6
6
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104.0
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   =  60 fg 
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 S4.             The variation in dissipation due to IR absorption by molecules  

The overall dissipation rise as a function of IR wavelengths (Figure 4.S4a), on absorption 

by the adsorbed analyte, predominantly becomes a function of the effective series 

capacitance change (higher capacitance and lower capacitive reactance – dominant 

imaginary part variation of complex permittivity reflecting more loss) (Figure 4.S4b). The 

capacitance variation is due to excited phonon relaxation induced carrier separation 

amplified by the higher density of surface states.  

 

Figure 4.S4|  Variation in dissipation (a), series capacitance (b) obtained for the nanowire resonator 
with RDX irradiated at different IR wavelengths.  
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V. Conclusions and Future prospects of the work 

5.1 Conclusions 

In conclusion, we draw attention to the fact that dissipation is crucial to resonance in light 

of the foregoing sections. Essentially, dissipation is present in all motion in general, 

originating from a time/phase lag between displacement and the cause of the displacement, 

i.e., an external action. In an electrical system, displacement takes the form of charge 

distribution while the external action is a voltage or potential. In either case, resonance is 

the particular condition of motion, where dissipation goes to a maximum under the 

influence of time dependent external forces and is thus inherently a variational problem 

concerning the system’s dynamics. This stems from the path dependence of non-

conservative dissipative forces. Resonance in essence, maximizes dissipation by the 

judicial selection of paths that minimizes the net time lag, each path corresponding to a 

certain time/phase lag between the displacement and the external action. The key to 

understanding the maximization process is that the dissipative forces originate from 

fluctuations or random interactions processes with a zero mean and delta-correlated in time. 

The zero mean of random Gaussian processes means that the information generated from 

such a random process is non-local in time domain. However, they add up in the frequency 

space maximizing the resonance width usually denoted by  . In most experiments, a 

measure of dissipation or the dissipation rate   is obtained as an inverse of time required 

for the oscillations to die down to e1  times the maximum amplitude. Alternatively, in the 

frequency space response, it is obtained as the width of the resonance peak in units of 

frequency bandwidth f or 1t . 
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All the discussions in the foregoing sections can be put to perspective, by invoking 

Kramer’s rate law with relevance to Gibb’s measure, in the most generalized way 








 



 expr ,  

where, r  describes the escape rate of an oscillating system from a metastable potential 

minima in units of 1t  or f , over a local barrier height  , the pre-factor   having the 

units of 1t . Dynamics at the metastable minima represents the resonance condition 

(eigenstate) having different time rate of escape depending on the coordinate r  of the 

minima with respect to the energy well minima 0  as shown below.  

 

 
 

Fig 5.1|  Eigenstate response at a shallow potential of an energy well. 
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Fig 5.2|  Eigenstate response at a deep potential of an energy well. 
 

Apart from the external driving forces  tF  and the harmonic forces  
dr

rd
  inside the 

potential well that drives the system to resonance, dissipative forces in the form of a linear 

damping force rM   and a fluctuation force  tR  from random interactions with the 

media adds to the dynamical conditions. These forces gets introduced to Newton’s equation 

of motion in the form of a Langevin equation,  

 
   tR

M
tF

M
r

dr
rd

M
vr  ;vr 111




   , 

where the fluctuation force  tR  would typically have a Gaussian probability distribution 

with zero mean -   . t 0  In the most generalized sense, the energy equivalence of the 

fluctuation forces on the system results in the energy barrier  . The energy scale of the 

damping forces dependent on the media viscosity   gives an inherent noise floor  (in 

equation above) from the viscous interactions at every eigenstate.  
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The amplitude of resonance rA  is a function of the depth of the quadratic 

metastable potential minima r , dependent on the curvature of the energy well at r . As 

represented in the figures above, at the transition state, the angular frequency of vibrations 

changes to b  with a much smaller amplitude. Here  c,ac,a r
dr
d

M
 2

2
2 1

  is the squared 

angular frequency at the minima a  and c , and   r
dr
d 

M bb  2

2
2 1

  denotes the squared 

angular frequency at the transition state, both dependent on the functional form of the 

potential energy function  r , with M  being the mass. The frequency or eigenvalue thus 

runs on the curvature of the potential function, with  c,ar  in general representing a 

metastable energy level where a classical resonator undergoes resonant vibrations under 

the influence of the external action, when tuned to the Eigen state frequency c,a . Clearly, 

bac   .   in essence, represents the energy scale that originates from the random 

fluctuation interactions of the system with the media around, more profound at the 

nanoscale as revealed by results in sections III and IV. Escape rate from resonance, in 

essence, denotes the damping rate or the frequency bandwidth   with center at r , outside 

which the system is driven to an off-resonance state or to a transition state of vibrations. 

Clearly, a shallower depth (small curvature) yields a higher dissipation rate a  with respect 

to deeper eigenstate yielding a much smaller dissipation rate c . The energy scale   

from random fluctuation effects imposed on the system determines the dissipation rate.  

Considering all the above relations in perspective, we conclude that at resonance 

the dynamical coordinate of a system is forced to relax to one of the metastable minima or 
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eigenstate of a system by the external action  tF . The system stays at the minima for a 

length of time until eventually the accumulated action of the random forces  tR  

proportional to a dissipated energy scale has a finite probability proportional to e  

driving it off the minima coordinate. In such a condition, when the accumulated action is 

equal or greater than   the system ceases to resonate any longer. The barrier height   

thus allows the maintenance of the resonance condition, with r  giving the frequency 

bandwidth of resonance. In the limit of  , the exponential factor above reduces to 

1  when r . Kramer’s historic seminal result yields for the prefactor,  

b
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
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
  

which, becomes relevant to resonance analysis with units of 1t . Here   is the damping 

coefficient giving rise to the viscous losses proportional to   in the equation of motion. 

This result for the prefactor describes the spatial-diffusion-controlled dissipation rate of a 

particular Eigenstate at moderate to strong friction  , as represented in the Figure above. 

For strong damping it further reduces to  






2
ba ,  

which reduces to a relatively small r  for b  . Further, it can be seen that ra 

yields a result that is widely used as the Q-factor of resonance. 

Conventional approaches tries to minimize   by controlling vacuum and or the 

temperature for reducing the damping effects as much as possible to achieve higher 

frequency sensitivity. However, it turns out that the effects that one has always attempted 



P a g e  | 129 
 

to get rid of, has all the time dependent interaction information since the dissipation rate 

embodies the arrow of time. Our work shows the relevance and importance of the energy 

scales   with respect to   in terms of information content, which can be exploited with 

better relevance to interpreting interactions with a media. The time rate of lag at resonance 

is inherently linked to the two energy scales in terms of phase, which evolves from the path 

of the dynamical coordinate change bmimima rr  . A detailed discussion in section I & II 

highlights the relevance of the accumulated actions of the paths and energy transitions in 

terms of the phase   and the Q i.e., amplification factor of resonance.  

Sections III and IV discusses in length, the dissipation assisted transitions between 

closely coupled eigenstates relevant to design of novel dissipation based sensors. We have 

developed a new way of interpreting resonances for sensing using dynamic dissipation. 

Our approach opens up new avenues for the development of miniature nanoscale sensors. 

We believe that the introduced understanding of dynamical scale-separation will be 

extremely useful for future design of nano-scale resonators from a fundamental fluid-

matter interaction viewpoint. The broad appeal of our method is its universality, as it is 

able to detect minute changes in the surrounding media. Nature may be using this paradigm 

(dissipation) as sensory signals for environmental perception in biological systems. The 

implications of induced multi-scale response dynamics through active nanoscale features 

is huge, especially reminiscent of cilia in biological systems at all scales. A possible 

mechanistic side to sensory perception by biological organisms, opened up by our analysis, 

would be a great breakthrough in biological and life sciences.  
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5.2 Future prospects 

Dissipation inherently encodes path dependent process information. It stores the history of 

dynamic interactions in the resonance width   as an accumulated action of dissipative 

forces. Dissipation thus should not be neglected since it offers a wealth of information 

hitherto not utilized in dynamic analysis. Detailed studies on the closely coupled 

eigenstates can reveal the density of states of a system in question. Dissipation analysis at 

resonance conditions would pave the path for such determination. The fluctuation 

dependent energy scale   as revealed from this study can be exploited to design further 

novel dissipation based sensing and engineering applications, like resonant energy 

harvesting. In a generic perspective, a new field of dynamic resonant analysis can emerge 

in terms of measurement of phase at resonance that inherently encodes time interaction 

information. The information encoded in phase is huge and we envision the possibility of 

fundamental progress in understanding rate kinetics of chemical reactions from the phase 

information.  

The fundamental result discussed in section II with consideration of non-isotropic 

space can be extended in the future in developing a resonance model of the universe. Our 

perception of the visible universe is dependent on the radiated component of the energy 

from events in the past. Radiation accounts for the dissipated component. A resonance 

model would allow the consideration of a stored energy in the vast cosmos, which may 

provide clues to unravelling the riddles of dark matter and dark energy in the future.  
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Appendix I: MATLAB code for estimation of viscosity of gas 
mixtures 
 
% The dependence of the diffusion coefficient on temperature for gases 

can be expressed using Chapman–Enskog theory (predictions accurate on 

average to about 8% 
%  
% D=\frac{1.858 \cdot 10^{-

3}T^{3/2}\sqrt{1/M_1+1/M_2}}{p\sigma_{12}^2\Omega} 
% where 
%  
% 1 and 2 index the two kinds of molecules present in the gaseous 

mixture 
% T is the absolute temperature (K) 
% M is the molar mass (g/mol) 
% p is the pressure (atm) 
% \sigma_{12}=\frac{1}{2}(\sigma_1+\sigma_2) is the average collision 

diameter (the values are tabulated[4]) (Å) 
% ? is a temperature-dependent collision integral (the values are 

tabulated[4] but usually of order 1) (dimensionless). 
% D is the diffusion coefficient (which is expressed in cm2/s when the 

other magnitudes are expressed in the units as given above[3][5]). 
e=2.718 
T=23; %degree Celcius 
RH=46; 
pws = e*( 77.3450 + 0.0057*(273.15 + T) - 7235 / (273.15 + T) ) / 

(273.15 + T)^8.2; 
pw=(RH/100)*pws;    % ambient air partial pressure at room temparature 

with 46% RH 
pt=1;               % total pressure 1 atm; 

  

  
M1= 28.965;     %gm/mole -- Dry Air 
M2= 18.015;     %gm/mole -- Water Vapor 
M3= 46.07;      %gm/mole -- Ethanol 
M4= 215;        %gm/mole -- Petroleum Ether 
M5 = 29.099;    %gm/mole -- 46% RH ambient air     
M6 = 84.16;     %gm/mole -- Cyclohexane 
M7 = 60.10;     %gm/mole -- 2-Propanol 
M8 = 58.08;     %gm/mole -- Acetone 
M9 = 32.04;     %gm/mole -- methanol 
M10 = 124.08;   %gm/mole -- DMMP 

  
rho1= 1.19312; 
rho2= 0.9899*rho1;      %100% RH 
rho3= 1.59*rho1;        %ethanol        
rho4= 2.5* rho1;        %Petro Ether 
rho5= 0.99958*rho1;     %Ambient air - 46% RH 
rho6= 2.9*rho1;         %cyclohexane 
rho7= 2.1*rho1;         %2-Propanol 
rho8= 2*rho1;           %Acetone 
rho9= 1.11*rho1;        %Methanol 
rho10= 2.72*rho1;       %DMMP 
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T = 296;      %kelvin 
P = 1;        %atm  

  
sigma1 = 32.8947;        % Dry Air Angstrom collision diameter 
sigma2 = 32.872;         % Water Vapor Angstrom collision diameter 
sigma3 = 33.85;          % Ethanol Angstrom collision diameter 32.8985 
sigma4 = 47.2789;        % Petroleum Ether Angstrom collision diameter 
sigma5 = 33.872;         % Ambient air 46% RH 
sigma6 = 33.87;          % cyclohexane 
sigma7 = 33.65;          % 2-Propanol 
sigma8 = 33.877;         % Acetone 
sigma9 = 33.809;         % methanol 
sigma10= 39.38;          % DMMP 

                         
Ome=1;                  %assuming no interaction 

 
sigma12=1/2*(sigma1 + sigma2); 
sigma13=1/2*(sigma1 + sigma3); 
sigma14=1/2*(sigma1 + sigma4); 
sigma15=1/2*(sigma1 + sigma5); 
sigma16=1/2*(sigma1 + sigma6); 
sigma17=1/2*(sigma1 + sigma7); 
sigma18=1/2*(sigma1 + sigma8); 
sigma19=1/2*(sigma1 + sigma9); 
sigma110=1/2*(sigma1 +sigma10); 

  
D12= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M2)))/(p*(sigma12^2)*Ome); 
D13= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M3)))/(p*(sigma13^2)*Ome); 
D14= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M4)))/(p*(sigma14^2)*Ome); 
D15= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M5)))/(p*(sigma15^2)*Ome); 
D16= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M6)))/(p*(sigma16^2)*Ome); 
D17= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M7)))/(p*(sigma17^2)*Ome); 
D18= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M8)))/(p*(sigma18^2)*Ome); 
D19= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + (1/M9)))/(p*(sigma19^2)*Ome); 
D110= ((1.858*10^-3*T^(3/2))*sqrt((1/M1) + 

(1/M10)))/(p*(sigma110^2)*Ome); 

  
mu1 = 184.6*10^-6;      %Dry Air at 23C 
mu2 = 120*10^-6;        %Water Vapor at 23C 
mu3 = 138.255*10^-6;    %Ethanol at 23C 83.5 
mu4 = 174.6*10^-6;      %Petro Ether at 23C 
mu5 = 184.4*10^-6;      %Ambient air at 23C 
mu6 = 102.385*10^-6;    %Cyclohexane at 23C 
mu7 = 120.99*10^-6;     %2-Propanol at 23C 
mu8 = 123.23*10^-6;     %Acetone  
mu9 = 165.579*10^-6;    %Methanol 
mu10= 98.011*10^-6;     %DMMP 0.5309*dry air 

  
n21= 0.003;         %water vapor  
n31= 0.007;         %ethanol - dry air 
n41= 0.0309;        %Petro Ether - dry air 
n51= 0.0028;        %ambient air 46% RH - dry air 
n61= 0.0129;        %cyclohexane - dry air 
n71= 0.006;         %2-Propanol 
n81= 0.023;         %Acetone 
n91= 0.0132;        %methanol 
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n101=0.0000133;     %DMMP  
 

n12=1/n21; n13=1/n31; n14=1/n41; n15=1/n51; n16=1/n61; n17=1/n71; 

n18=1/n81; n19=1/n91; n110=1/n101; 

  
k=1; 

  
mu12= (mu1/(1+(n21*((1.385*mu1)/(D12*rho1))))) + 

(mu2/(1+(n12*((1.385*mu2)/(D12*rho2))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu2=k*(mu12-mu1)/mu1 

  
mu13= (mu1/(1+(n31*((1.385*mu1)/(D13*rho1))))) + 

(mu3/(1+(n13*((1.385*mu3)/(D13*rho3))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu3=k*(mu13-mu1)/mu1 

  
mu14= (mu1/(1+(n41*((1.385*mu1)/(D14*rho1))))) + 

(mu4/(1+(n14*((1.385*mu4)/(D14*rho4))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu4=k*(mu14-mu1)/mu1 

  
mu15= (mu1/(1+(n51*((1.385*mu1)/(D15*rho1))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu5=k*(mu15-mu1)/mu1 

  
mu16= (mu1/(1+(n61*((1.385*mu1)/(D16*rho1))))) + 

(mu6/(1+(n16*((1.385*mu6)/(D16*rho6))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu6=k*(mu16-mu1)/mu1 

  
mu17= (mu1/(1+(n71*((1.385*mu1)/(D17*rho1))))) + 

(mu7/(1+(n17*((1.385*mu7)/(D17*rho7))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu7=k*(mu17-mu1)/mu1 

  
mu18= (mu1/(1+(n81*((1.385*mu1)/(D18*rho1))))) + 

(mu8/(1+(n18*((1.385*mu8)/(D18*rho8))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu8=k*(mu18-mu1)/mu1 

  
mu19= (mu1/(1+(n91*((1.385*mu1)/(D19*rho1))))) + 

(mu9/(1+(n19*((1.385*mu9)/(D19*rho9))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu9=k*(mu19-mu1)/mu1 

  
mu110= (mu1/(1+(n101*((1.385*mu1)/(D110*rho1))))) + 

(mu10/(1+(n110*((1.385*mu10)/(D110*rho10))))) + 

(mu5/(1+(n15*((1.385*mu5)/(D15*rho5))))); 
delmu10=k*(mu110-mu1)/mu1 

  
sigma35=1/2*(sigma3+sigma5); 
sigma53=1/sigma35; 
n35=n31/n51; 
n53=1/n35; 
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D35= ((1.858*10^-3*T^(3/2))*sqrt((1/M3) + (1/M5)))/(p*(sigma35^2)*Ome); 
D53= ((1.858*10^-3*T^(3/2))*sqrt((1/M5) + (1/M3)))/(p*(sigma53^2)*Ome); 
mu35= (mu3/(1+(n53*((1.385*mu3)/(D35*rho3))))) + 

(mu5/(1+(n35*((1.385*mu5)/(D35*rho5))))); 
D51= ((1.858*10^-3*T^(3/2))*sqrt((1/M5) + (1/M1)))/(p*(sigma15^2)*Ome);  
D31= ((1.858*10^-3*T^(3/2))*sqrt((1/M3) + (1/M1)))/(p*(sigma13^2)*Ome); 
 

% mixture with water vapor (3 component mixture) 
mu1m=mu1/(1+((1.385*mu1)/(1*rho1)*((n31/D13)+(n51/D15)))) + 

0.7*mu3/(1+((1.385*mu3)/(n31*rho3)*((n31/D31)+(n35/D35)))) + 

0.23*mu5/(1+((1.385*mu5)/(n51*rho5)*((n31/D51)+(n35/D53)))) 
delmum1=(mu1m-mu1)/mu1 

 
 

Appendix II: MATLAB code for simulating oscillating 
Standing Wave patterns with accumulated phase  
 
close all; 
clear all; 
radian=pi/180; 
Phif=90*radian; 
Phii=0*radian; 
delphi=(Phif-Phii); 
Phi=linspace(0.1,90,101); 
f=2.750542*10^6; 
% x=linspace(0,0.0012,101); 
% ff=(1+x)*f; 
w=2*pi*f; V0=0.341; alpha0=cos(delphi); 

  
c=2.998*10^8; 
mu=4*pi*10^-7; 

  
R=V0/0.009; 
I0=0.009; 
E0=V0/0.6; 

  
d=0.1524; %m physical dimension of coil 
N=210; 
r=0.060325;   %m diameter of coil 
C=pi*r; 
l=sqrt((d/N)^2+C^2); 
Len=(N*l); 
qlambda=c/(4*f); 
frac=qlambda/Len; 

  
dlen=1/Len; 
dtheta=(delphi)*radian*dlen; 
theta=linspace(dtheta,0,101); 

  
alpha=(cos(theta)); 
beta=sqrt(w).*[cosh(theta)+sinh(theta)]; 
v=sqrt(w).*[cosh(theta)-sinh(theta)]; 
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zeta=sqrt(beta.^2+alpha.^2); 

  

  
lambda=(v)./(f); 
Q1=2*(cumsum(exp((2./lambda.*theta)))); 

  

  
%////////////// propagating wave generator////////////////////// 
t=linspace(0,60e-8,260); 
a1=linspace(0,qlambda,101); 
[x1,y]=meshgrid(a1,-1:0.1:1); 
k1=2*pi/qlambda; 
z1=(exp(i*k1*x1)); 

  
%//////////////quarter wave generation///////////////////// 
k=0.25*(2*pi./(lambda)); 
a=linspace(0,lambda,101); 
[x,y]=meshgrid(a,-1:0.1:1); 
z=imag((Q1).*exp(-i*(k.*x))); 

  
transwave = VideoWriter('C:\PHANI\Work\Standing Wave\Science 

paper\Simul\propwave.avi'); 
    open(transwave); 

  
%/////////// prop wave figure //////////////////////// 
figure 
for n=1:length(t) 
surf(x1,y,real(z1.*exp(-i*w.*t(n))),'FaceAlpha',0.75); 
view(3) 
zlim([-1.5 1.5]) 
xlim([min(min(x1)) max(max(x1))]); 
ylim([min(min(y)) max(max(y))]) 
shading interp 
currframe=getframe(gcf); 
writeVideo(transwave,currframe); 
close(transwave); 

  
standwave = VideoWriter('C:\PHANI\Work\Standing Wave\Science 

paper\Simul\standwavequarter.avi'); 
    open(standwave); 

  
% //////////////  quarter standing wave figure  /////////////////////// 
figure  

  
for n=1:length(t) 
surf(x,y,real(z.*exp(-i*beta.*v.*t(n))),'FaceAlpha',0.75); 
view(3) 
zlim([-220 220]) 
xlim([min(min(x)) max(max(x))]); 
ylim([min(min(y)) max(max(y))]) 
shading interp 
currframe=getframe(gcf); 
writeVideo(standwave,currframe); 
end 
close(standwave); 
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