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We invcstivate in thi thesis ‘the propcrtleo and the extremal
) - , K 7
structure of the range of a vector measure. Eet v be a measure deflned
7 - . . - ¥
onag - algebra A of sets and with its values in a rgdl Hausdorff o

.
or

quasi - cvgplete locally convex space XL, and let ) be a finite positive

s . X . »

» “'

measureyon A tHdt controls v, f.e. v z7%.

v -~ .2 ?

Let v h&ve”any prOpefﬁy hereditarily if it is possessed by
the rcstriction vA of v to‘every A € A, Intendlng Lllpounoff s theoren

to. 1nf1n1Le dimgmbxona, we obtaln some ncceabary and suff1c1ent con-

-

ditlonb for ‘v to havc heredltarilv convex range, e.g. vhen v is semi-

convex, i,e.,when, for every A e - there exists B e A, B <A such

compact rnnge 1f and only 1f the non—ntom1L part cf* v is semi-ccnvex.

These may be compared w1th a thcorem of Kingman and Robertson. When

X is Banach the ‘range - of - is proved to be relatlvelv compact if and

»onIy if there exibts a sequence {x } in X and a sequerice {Ai} of sets

~in A such thac the series I x1 AA» converges to .v uniformly on A,
o : Yy ‘

This extends “the necessity part of the following rebult of Bolker to
Banach SpdceS'; Vhen X is finite-dimens onal, a compuct'convex set in
X 1s_theﬁelosed convex-hull of thevr1ng of a measure if and only if it

'isAthg;lggi :in tﬁe HauedorffmCtriC of fin1t0 suns of begments.

. Let Kb tlc losed convex hull of the ran of v. ver 7
e the ¢ e »~J/ ge §€ y

Aextreme”point of.K is proved to}be strongly extreme, cad that it is a

éupport—point of K when X is Baunach. When X ‘has a weak¥-separabla-dual -

N

and v isvdon-a;omic, we obtain the following extension ofﬁdno;her theOrem '

-

"y

" that v(B) (1/2) v(A) and v is prbved to have hcredlcurgly yeaAly s



of Lis 'rnﬁofi, who puoved lt Ln finite dlmenslons‘ A point of X 1s.an

- . R e

extreac point of K if and only if it is assumed by V once 1nd only once. -

Yhea X is a Fréchet spaCe, we find a sufficicnt condltlon (Lhat'alwuys
“holds in finite dimensions) under which the set of cx@rcmh,ppints of K-
. . -, . - v

by

A3

is closed.
. . Ncm——
‘N' ~ The exposed points of the range of.v are proved to be strougly
oxposed. An element x' of the Jual X' of X is proved to expose the

“range of V if and enly it the signed measure x'ev = v, and when X is

Banach this ylelus a_ thecienm of ybhakKov. If K is a weakly ccumpact
' ’ /1 ’ o ’ R
convex set in a Banach space X ‘of which, every exposed peint is otronvly

N

exposed, we prove that the functionals x' € X"thac'expose K form a
residual G bubs t of X' whenever lt ib dense in X'. This y1leS the

'

-_following'theorem due to B{J. Walsh: When X is Banach the functionals
___x' & X' for which x'ev = v form.a LuSlduaL-6 Subsﬁéhof_ng”.. B
Y:\\'L%Uevfurt:her.Study properties of v as-a hap_rélative to the

Frcchet leodym Lopology on. A 1nduccd by any control meacur of v, and

prove that every finite dlmensional non—atomic mcasure is open and

'xmo1otone whereas an arbitrary fmnite dlmensional mcasure is biquotlent.

(vi) . o .
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CHAPTER T

"

TXTRODUCTION

- ’ v o N . ' ‘
1. 1Introduction. The p-esent thesis is devoted to the- properties of

the range of a vector r:asure together with its éxtremal Structure.
" We alse obtain here scne properties of the measyre as a mop relative to

" .
A suitable topology on its domain. . ’ '

Let v be a measure defined on a ¢ ~ algebra A of subsets of
some set § and with values in a real Hausdorff locally convex space X.

>

ed by some finite pesitive measure : on A

.

Ve assume v to be contr
. /a » : : O ) .
(i.e.‘v z A) which, accgrding to the theorem of Bartle - Dunford -

~Schwartz [3], ‘is alwvavs the case when X is pormed. Let A itselt denote
5 S

. i

the quctient o.-'algebanof A nedulo the ¢ - ideal of v-null sets.
We first study in section 3 the properties of v as a map. -
Let p be the Fréchet - Nikodym metricé on A‘induced by X, viz. c(A,B)'= ,f;

‘A(A A B) for every A, B € A. The topology induced by this metric on

A is indcpéndeng'of the choiéc,of A and " v: A > X' is .continuous relative.
14 . v ) .

‘to this topology. ‘

N

When.-v is finite-dimensional and (purely) atemic, asAbroveﬂ

by Halmos [14] and Marczewski and Sikorski [31], A is.compqé},,aadjio"

v becomes closed. 1In case v is_finite-dimensional and non-atonic, we

prove in Theorem 3.6 that v is always open.. An arbitrary finite-

dimensional measure is proved in Theorem 3,7'tb‘bé‘alyayé biquotient.
The ‘measure v hhs_beeﬁ called by Halmos [15, p.417] seni-

convex if for every A ¢ A there exists B € A, B < A such that



.

.

'

’ At : e

. - . . 1
’ . . S

v(B) = (1/2) v(a). In‘Propo§ition 3.8 we prove that a semi~convex,

measure is always weakly monotone. A finite—dimensional\non—atomig‘ )

- .
4 -

measure is shown, on the other hand, to be monotone.

- , . - »
We next 1nvéet1gate in’ section 4 properties of the range o(/ ) .

v. The first tesult.in th1s direction is due to, L1apounoff [27], who

proved that the’ range of every f1n1te—d1mens1onal measure o.is compact, -
. . ; e
and it is further convex when v.is non-atomic. Several simpler proofs

of ths theorem have 51nce apoeared, See e.g. Halmos [15] and

’

Llndenstrauss 130] Later, Liapounoff,[ZS] gave'anIanmple in E to
show that the asbove results dg not. hold 1n infinite diﬁrh51ons 1n

genera1'- : : p _

-

Let v have any property P hered1tar11\ if 1t holds for the\
LN

restriction vA of v to every Seé”z € A. For every x' in the dual X'

of X, let fx' denote the Radon7§i'odym derivative of x'-v relative to -/

. 3 "o y . ’ ]

A+ Extending Liapounoff's theoréh\to infinite ‘dimensions, K¥ngman and
g ‘ . ( — , R he

o _ v G G
Robertson [21] proved that v has hereditarily convex and hereditarily Exk\\’/
weakly compact range if and only if the'subspacc'{f S §' € X' } of

Li(l).is thin [21]. 1In Theoren 4.2 ve glve some necessary and suffi-
I

cient conditions for v to have heredltarily convex range, e.g.’the'

semi-convexity of.v, and the range of - v 1i)hered1tar11y weak]y compacf

_ accordihg to Theorem 4.3 if and only if the non-atomic part of v is

seﬁifeohvex. When X is °  ach, we furthef obtain in Proposltion 4.4 .
a éufficient‘condition”for‘the range of vAto be’ closed. | | '7

| In cohnectlon wlth L13pouoofx s theorcm Bart]ei Dunfbrd‘end
Scliwartz [3] proved,‘on the other hand, the rahge of_v to be reiativeiy o
weakly compact whenever X ie Banach}‘ Thispreﬁains valid for a~quas?ﬁ"
comgaete X‘ae.proved by 1wedd1e‘[44]; For Some fﬁrther re;hlts_in thi#

. - . . N

v S
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'dlrectiOn see Lew [26] ,and Hoffman Jérgensen [17]. When X ts Banach ok

~

\
and v is a Bochner integral with respect to.a finite posxtlve measure

“ ) “

-

" Uhl [46] proved that v has relatfyelv c\mpact range. E ‘y g?”\‘

f . .-

Let X be Banach and ],vl, be the Pettis norm of v soviz)

sup {’[v(EU]] : E € A} In Theorem 4. 5 we prove that the range oﬁ'

s

viA-o X is relatively conpact if and only if there existq ‘a sequ ace

i}
~-

{x b iq X and a sequence {A } in A such that the SCrlEo‘ RN

. P ~ - o, ) . o i=] 1
A} . a . r
s &f

converges to vV in the Pettls norm. It follows Lnﬁg the rev"e of v ig

. heredltarlly compact if and onlv if its non-atomic part is semi-

convex gnd has. a representation as above . i

4 § .
i\ggn case of f1n1te dlmen siong, Bblkex

'.4

follow1ng chdracterization of the nnJe of a moas“r';'\§'r¢:ydcf
convex set K is the clo%cd convex hull of/Ehn ¥ange of a

only if it is the llmlt in tke Hau orff zetric uf«finiLeksUms_of

%

_ segégnts tbrﬁuyh the orlgln » Accordlng to Lheorer 4.5, tiiz nece
N ’ € . ’

b
(34
5
.
M
d

s

of Bolker thcorem renalns vall fn,infinite din:e
° Y

hapter 111 19 devoted to the CVtremul strugrur.: SIS

range«ﬁf/a meaqure. In this'direction, a;ain it 'was Liapeureis

\
[27, th. 3] who provad Qr finite- dlmenqlonal non-atvmic measurcs
.

that a p01nt of the range of VvV .is its extreme polnt 17 and onlw

is assuned by v onl) once.-

' -

Let X'* denote the algebrnic>dua1 of X' and det T no rhe
weak integral map [6, p. 32} 2 1+ s ¢ dv of Lm'(})'to_x'#. Let
/-— . 5 ) .

further To be the restrictio%_of T 'tc-the seL P of functiciis cinc

\

ﬁfor which 0 < ¢ = 12X - almost ever)wherc. T5“1T~(P).ibiihi~

X ) - closed convex hull-of \(A) and we eall Lhe exdrene 905325
N . '\u "

.~

]

‘e
’
+

L
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A

of T, (P) -the -extreme points
- : . 9 N

\- . .
of the vange of V.

In Propusiticn 5.1 we prove that a point in X'¥ is an gxtreme
point of .the range of v if and gnly if it ’'is,assumgd by. T,. once -and
. . . o . ,‘ - . P
only once on chavacteristic functions of sets in A.

i A , . . . .
result of Kluvidnek [24, th. 2] folTows as a cﬂrollarXi‘ The range of

The following -
- e

- +

- . e < ~ A 1
a controlled measure v contains all of its extvemé points. 1In ’
. ~ e .

/ . o ¢
Proposition 5.2 we aobtain the following extension of Li pounoff's 3

o | -

result:- When X'’is weak* - scparable,’ a point in X is an extrepe

1]

point of- the range of a non-atomic measure Vv if and only if it is. = '+-
assumed by v once and only once. . ‘ L
‘ ‘ ‘. . ‘ . - N
When X is quasi-complete, évery extreame point of the range &\
b > E N o :

of v is proved in Proposition 5.3 to be strongly extreme, and it is
. S R , v L - R
further found in Proposition 5.5%to be .a support point of the closed

‘convex hull of " (A) when X is Banach. These properties dg not_hold

for arbitrary weakly compact convex sets even when X is tl or 32

(37 p. 75; 7, p. 160]. ‘ When X iseFréchet, the set of extreme point

.

“

of the range is further proved in Preposition 5.7 to be closed When

| ! | . : ! Nz
. g . . . . C . ) 7RG
T, is fopen relatiye to the L, A) - norm'toﬁgiogy on its domain,~as ¥

- ».

'is alvays the casé\?hén X is finBtevdimensional.
Conffhg now to éﬁposedeﬁdints, we prove in Propoéition“6.3

that when X is quasi-complete, the range of v-and its closed convex

N . o

hull have the samefexposed:points, which in turn are found'inyThcorem' ‘(/‘

6.4 to be strongly expesed. This again does not hold for arbitrary

™~

weakly - compact cog%ex'sets even in 22,[29, p. 145). In Theorem 6.7

we ‘extend.’a result of Husain and Tweddlé [18] on extreme points of the

range of rgstrfctions of v to their cxposedupoid7§; : N
R & o v



N . . - . 3 -

* " Finally, in section 7 we investigate the set of functionals

x' € X' that expose the rangg of v. In cohnection withlthe Bartdé -,

./k-,v
L Dunford - Schwartz theorem on the existcnce of a .control measure,

Rybakov [39] has proved the folloving 1nterest1ng result:’ Wheﬁ K is
N . \! .
Banach; there always exis;s an x' € X' such tha: the ¢ ‘gned rmoasure
x'ov I v, Ihls result has in turn been strengthened bv N;151 % ﬁﬁjqﬁrg
< Q ! . " -~
-showed that the futictionmals. x! €XX47for vﬁioh;f%éraboyo walde form .

residual Gé set in X' relative to the norm topology

. . Av#-. ' A . . ,1? ) X - )5
ST e show in Lemma 6.1'that : functlona}/{' e X' exnosos the
| S G‘ . \ o R , :
%  renge of v if and:only bfis'f) Z Vv, ‘and the Rybakov’theorem i .
. 2

LR , - . P ‘ © . ,

dpduced,fﬁom this lemﬁﬁl When a weakly cempact conyvey s-ot it s ot
Banach space: X has each of its exposed points strongly expeoscd. ¢ .. ¥
§ ) ? ) ' p T, ' N R
prove in Theorem 7.2 that the set of exposing functionals' of i ir

¥esidual in X vhenever they are dense in X'! Thig yields, In

] ' o . . . R - . R ~ . 3 | L
" dcular, the =z2bovd theorem of Walsh. When X is q®asi-complc.o, o

obtaln in Propo 1t1on 7.4, a sufficient condition far the ranv. o
ﬁ ' / . . . -:?1 . - y l )
) v ﬁé‘have exposing f“nCtIQRﬁig in terms of the Jkaey —~ topodory

1\‘) N ; . .

N, B . o N R . -
n(X,"', X;), where X, is the linear span of the closcj/convax Daltowed

VA, et



« -4 R
2. Terminology and Notations

.’.’—.\ ——

2.1. When X is a topological épdce, thevséz\%f Lﬁl.non—void elosed
. A \ﬁ [

subsets of X is denoted by‘2x kf X and Y are topologlcal Spacea, a

cy \ K * )

o

-

@%y’f': Y - 2_ is said ‘to be lowcr sem1 contlnuouﬁ [25 p. 173] if for

N \ - ¢
every y e Y and for everybopen subsct U of X for which f(y) nU =2 ¢~
. 4T . . ‘ ; '
there exists a neighborhood V:of y such that f(z) n y = ¢ for every
‘ : . . o ) ' . .
ze V. . - . ' .

fhe Vietoris ( or flnlte) tooologv [37] on 2 is generated .

by basic open sets, of the form "y
n : ; )
{F ¢ 2 <+ Fec u Ui , aad F n_Ui 2.4 for 1 £ 1 < n},
. . i=} . . : C. : :
] wheré?U. is én'open subset of X for 1 <'1 < n. ‘y." SR

.

\

-

When (A ) is a net of subsets of]a topologlcal space Ka the.

lnnlt superior (or limit 1nfer10r) [25, pp. 333, 337] of (\ ) is
\

defined to be_the set of all x € X such that every neighborhood of x

N Y . o , _ :
intersects the net frequently.(respectively eveatually), and it is

"

denoted by‘LsAﬁ‘(respectiveiy:LiAn).

. When (X p) is a metrie space; the distance of a.pointfx € X

é

~

from a non—v01d set A c X is denoted by p(x,A). The Hausdorif distance |

o -[25, p. 214] d(A B) between two boundcd eleqﬁgﬁh'A B of 2X is .

-
defined to be .the maxxmum of the following two numbers.h

max {p(a B) : 4 € A} 9hpd-v, ‘max {p(b,A) :.b € B}.

- We shall call A « 2 the.Hausdorf. vittoof ¢ sequence {An}in X qf -

d_(An,A)-»> 0. - - -

When X and Y are topological spaces and f : X ~ Y is con-

N

t1nuous and«bnizylf is said to be ‘open if f(U) is open whenever U-is

o



P

L

opeu in X. Thé ~ip f is further called biguotient [34] if for every

S e

y € Y and for ever¥’conen cover U of kiy} there cxists a’ neighborhood

NG #&- " N .
of y that is CUVLlLu oy finitely many f(U), U e U. When f is not onto,

©

 we still call f cren or bijuotient if it is so with respect to the

-

rel1t1ve topoxo" on x(X)

The map f is further called monotone {49] if g1 preserves
k : : T ‘

»condéctcd.sets,-and’yeakly‘mohotcne [49].if f-l{y} is connected for \-

oo w2
every y < Y. A
/

% | g

. . S . ;. o
2.2. ,Ye denote by v, throughout this thesis, a wmeasure (i.e. a count-

N S .- R ' ' o ;
T~ ably additive ot function) defined on a o - alpgebra A of suﬁé;ts'of
a set S, and witu values in a Hausdorff locally conve§"space (L.C.S.‘),»Y

g ) : »
X over -the ficld_R o reals.

Ihé.ccntiﬁucus'dual of X Will be deunoted by X'. For every
1 4

x" € X' the firit2 sizned neasure x"ov (denoted. by vx,)_has a bounded

range, and so the range of v(ﬁ)'ishyeakly'bbunded. . By Mackey's

N

'.thcorem L7, p. 70], ic is thus'bonnded. When X is Banach, the
- Pettis—norm of v is defined to be sup {}|v(E)]]-% E ¢ A} and denoted

by !lvllp. Further, the variatien [12, p. 97] and the semi-variation

[12,‘5. 320]'of.v arc denoted by lvi‘and llvll respectively.

The closc. <oavex hull of thi;:ﬁhge of v will be denoLed by _'v

K. ‘According to Mz 'ur's thedrem [7 p.671, thlS set ds the same for

all topologles en X compatlble with the dualltv (\ X' ) Nhen K is

(uasi complete [7 p 9}, the set K is weakly compact as proved by

5
~

Tweddle [66].v
o :
The measure v : A X is sald to be controllcd [11] if there

exfists a finite'positive measure A on A (caLled a control measure of

-



¢
-

v) such tﬁat v = A. For X Banach, vvwas'originﬁlly defined to be

controlled [8] by A if lim |[v||®) = 0-and  1lim A(E) = O.
A(E) > 0 | -~ |IvllE~0

This; héwever, is équivalent to the above definition when X is Bamach
as is clear from tthPettié.theorem-[12;_p. 318] and [12, p. 321, lem.

5]., It méy be further o§3erved'that v 1s controlled_even'if there

-
)

gxi;ts a finite gbsitive measure A for ﬁhibh‘v<%X . For, if N is a

' mgiiméi disjoint clasé of v — null sets in A that arevndt A - null,
then Nvis éountable; 50 that‘ité’;hion N belongs to A?.énd the restric-
tion of X to the compiement of X clearly congrols Q. The measufe v’is

" assumed to be controlled (by 1) throughout this thesis.

. - ‘ . . - ' . ‘1"?‘ ‘ )

» We shall denote by A itself th¢ quotient ¢ - algebra of A
'y : . . ‘ -

modulc v - nuRi.sets. On this new A thy

. . : : y

.by A is defined to be p(A,B) = 2(A A B), A, B é A." The topoiogy

Fréchét—Nikodymimetric induced

— »

"induced on A by‘p will be denoted By‘1%, for it is independent of the -

choice of the control measure.. ’ . ' .
N ) .

ER)
L

The restriction of v to A € A will be denoted by v i.e.

.

A
' T~
- ”

’vA(E) = v(A n E) for evéry_E e A. A set A€ Ais sald to be an atom .
of v if'v(A) # 0 and for every B € A, 3~C'A, either v(B) = 0 or .

v(A \ B) =_0.. The measﬁre v is said .to be atomic if S is the union

‘of dtoms of v, and non-atomic. if it has no atoms. When v is controlled, .

it has the same atoms as its control measure’}, and.so.v can have at -

‘most countab1y many.atoms,\s;y*(Ai)ieN.v If S?l=- ] 'Ai ang Sn.=;S.} Sa;

D i - 1€N
then va~='vs “and vy #,vs are called the ggphic and n-atfémic partéo
. : Pa . «“n . : R .

4.v.‘ . - . . 3 # . » ) . L vu ’ . ) : .
“of v respectively [15, p. 417]. The o - algebras Aa ={EcA:E C'Sa}‘

o and.An‘=v{E evA : E C'Sn}will;bg called the.atonmic, andlﬂgp~GCOmic
X . | S _ ——————



'

parts of A r‘agectively. The measure v is-said to be semi-convex

[15, p. 417] if for every A € A there exists‘B €A ,‘B < A for which ,
v(B) = (1/2) v(A). & :

‘ ' ‘We call a‘mcmber A € A an element of v if the range of VA
is cbﬁ;éihed in a segmeet.wiehﬂzerc as\ene of its end points.‘ The

measure V is called elementarv if S is the union of elements of v,

and v is non-elementory if it has no elements. If A and B are two

elements of v such that the ranges of Va an% Yy are contained in two
. ’ . b K
. distinct rays through zero, then A B, is clearly a v - null set. 1If

v

v is controlled, the family‘of-alllmeximal elements of v is at most
countable, say {An ine N}. If E = U{An':;n € N} and EC denotes the

E E

complement of E, then v_ and v_c are called the elementary and non-

elementary parts of v respectiVely.

v2.3. The spaces L1 (A) and L NeY) will be denoted by I.1 and L

respeetively
We shall denote by P the set of all extendec real-valued

.A - measurable functlons f defined on S for uhlch f(s) e [0,1] for

S
'

"\ - almost every's € S. Unless otherwise stated P is assumed to have.
@ . . .

the topology of L1 -eﬁormf *The‘set,P 1s-convex'and it iS’compaCt
relative tq the weak* ;'tobology 0( L ) 1[21] On P the 1nduced

: O(Ll;Lm) - topology 1s Hausdorff and coarser .than the weak* - topoleg§
and‘so the-twa cdincide We further emplov‘P° to denote the set of all
echaracteristlc functlons XE of sets E « A. Then P, 1s,ehe setvof,‘
‘extreme points 8P [211 - §; ‘

~ The-algebraic dual of X' is dehoted by X' . Since i : v,

the signed measure Vo << A for every:x' €. X", and so



' 1
1 0
th) c L, ('[vx..[) < I.J (l\:x.!'); Thus, for each f € L we may define the

o

weak integral [ f 4., as in {6, p. 32], to be the linear functional on -

X' such that (x", / £ dv) = £ dvx, for every x' € X'. Following tj/

Lindenstrauss [30], we denote by T the map from L_ to X'* for which

[

T, (f) = 5 fév o, fe L o

'The‘$ange of T is not always cent lned iz X {E{ r. 33]. It_féllows .
‘ : . S e ‘ .

from the Radon Nikodym Theorem that T i: ceatirucus relative to the -

3

RIEEEIETC ST & N -3 DU

. The set T r) is_thjs_cleagly the c(X'* ,X") = closed convex

9
hull of v@A);\ It may be observed that T (P) = K if and ply if K is_”

weakly compact. _Forvif T () = xf’;;g;‘;zt is g (X"*,X") - compaci. - ¢

As is well knbvn,'(X,O(X,XY))»is'liuearly'and hozmecmorphically embedded

wo k¥ + topologies C(Lm,i

in (X'*,G(X'*,x')), and so K is ccmpact relative to tiie foduer tdpology.

v,Thé converse may be verified without'difficuity.‘ When X is
completé, K is weakly compact [44), and so T () = X. 7 :

' The restriction of T to'® w:ll be denoted by‘To. Since 7,
. , . ‘ ‘ 5

‘is continuous relativé to thé. weak* - topologies c(Lm,L]) and c(X'#% X")

pe

and P is weak* - compact nd coﬁvéx, for every 2 € T,(T) the ret
R T N e el _ L
T, "{a} has extreme points by Krein - Milman thecrem. For every a’in

“the range of v, it is easy to see that every characteristic fuucrion
. . I ’ . . o

)
Caad

‘in T, 1{a} is an extreme point of this level. We shall say
possesses property (*) if the extreme points of T, ‘{a} arc .only
N v : ‘ ‘ . . ’ B
characteristic functions for every a € v(A).

2.4. A set in X is called a byperplane if ;c'is the level of seae

‘non-zerc ' € X', and it is said to support a set A © X at », < A if

ce

-



- the o(X'*,X"') - clbsed convex hull of v(A) the extrene points of_the4

“

s not identically zero on A and (x,x') % (%.,x") for every x ¢ A.
N . ' . - ‘

The point x, is then called a support poiuc [23] of A.

"When v : A > X is a measure, we call the extreme points of

range of v. When A < X is convex and closed, X, € A is called a
v . ) -

strongly extreme point [9; b.f97], or a denting point([37],df‘A, if

Xo is not in the closed convex hull of (A \ V) for any heighﬁdrhood \'E

of - xo rélativé.to A. AR ’ : .

"~ For cvery set A C X, a ppint x, < A ds cél}ed an exposad
point [29]) of A if there is an x' éqx"such that (x,x') < (xo,x") .
for every x G‘A, X ¥ Xo, or, equivalently, if there cuists an x' ¢ X'

and a real number e for which the hyperplane H = {x e X : £¢%") = a}

sgggorté A at x, and A n H.= {x,}. Morecover, X, € A is called a

-v,strohglx;expdsed'gpigi [29] of A if fheré’exists an x' ¢ X' such:that

“

(1) (x,x") < (x,,x") whenever X ¢ A and X * Xo, and (ii) for every
netvgfn) in A, (xn,xi)-+ (xax') implies that X - xé..

We shall dénote By e*ﬁ A, sﬁ ext A, exp A and st exp A the
"sets of eiirége, stroﬁgly exﬂ;}mé, egpbsedﬁénd‘stfongly exposcd‘?oincs‘
éZfiA_rgspectivqhy, It is_§lear fﬂab-;t exp A.C exp A for ény séc
A <;")v(,,x'lhcreasj.'ﬁ is easy to vefify ghac»whenever A i$ convex,
fexp;A‘F ext A. When A>i$ fugther ﬁloscd. it may be_vérifiéd‘without
difficulfy that ‘st ext-A ¢ ext A and st exp AvC.sg ext A,

? .‘ , a 5 o ‘, .
-~



CHAPTER IT

v

MEASURE AS A MAP AND ITS RANGE

. : .o ' . ) : . <
3. Measuréias:a map. Jn this section we assumb, except in Proposition

o~ .ot ’
- 3.1 and Lemma 3 5, X to be a quasi comnlete L.C.5. and v : A =~ X to be

(

a Weasure, controlled by Av e L.

‘Let Scb.1 denote the unit bdll of L_ w1th the topolcgy of Ll.
c . ’

p

'PROPOSITION 3.1. If K is weakly compact, then the restrictiéon of' T

to S, , is continuous and has its range.contained in X.
s 4 ) o ) [

~

Proof: _Since K is weakly compact, we have T(P)'; K (see_§2) and so

M . . . . ' ¢

4
(S, ;) = T(PA— P) = T(P) - T(P) = K%~ K ¢ X. We shall first assume
’ ) ) .

X to be normed. If T, = T| “is not centinuous_at some, element £

1
R 4 =51
of S ,, then there exists € > 0 and a sequence {fn} in S_
. > : - . . i >

convergingbto f in L -,ﬁorm;'such thatf||T f-'— T fll 2 ¢ for evety

1
n. According to temma 5 in [12, p 3211 there exists-a 6 > 0 such

that ||v||(E) <. €/8 whenever E e A and A(E) < 6, where llvll denetes

L 2

the'semi—variation'of V.. Since {f } > f in measure, there exists, by-

‘Egoroff's theorem, a subsequence {f } of {f } convurgiug to f£. almost

uniformly. Hence there exists a set E € A such that A(E) < 8. and

'{fm} - f‘uniformlyeon the complement EC of %A ‘As the weak integral

efsevery felL is ip’X,end'it coincides with its DUnfordJSchwartz
Y , S - . e :

integral [12; p.i323}, weihavek f_‘ R ' ; » o S (

o

12
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Hre - Tl o 1] 7 (6 -0 avl] + || s (E -0 avl] -
E - E )
<. ess sup |f (9) = f(b)l ]|»||(E) + ¢
s € E 7
) ess  sup |f (s) - f_<s>| NG
s ¢ ES , mo R v .
e 2 €/8 + ess sug lﬁg(s) - £(s)]-1Ivl] (8).
: . s € E Hl-. . . i
‘ >~
Since ess sup If (s) - f(s)l >0 as W m,'welhavé 3
se E - ' ’
l!Tlfm —-Tlfll < ef2 eventually, contrarx}to the hypothesis.
Ihus, Tl : S, 1 -+ X is continhous when X is normed.
QD' " " In the general cﬁsé, let p be a continuods semi-norm on X

~and XP be the quotient normed space X/ p-l {0} .  Let the measure #

vp :‘A - Xp bc.defined By Vp (A) = the equivalence,cldss of v(A) in

.Xﬁ for A € A. NOY' if £, feS, and lI:n f||l > 0, then

p(TAf = T.f) » 0 by the above. vSinée this is true for every p, ’

.

| ilfn‘4 Tlf:in ;hg-topology of‘x;'comp%gtigg»t?gopro?f.

v
[

Remark Even wh%? X is Banach, the map T need not be contlnuous on all
of L_ . For example, lct Y be a Hilbert space WICh a complete ortho—

‘hormal-basis {en :n 21}, S =="[0 1], A the o - algcbra of Borel

%

subsetsvofgi) A the Lebesgue measure on'A and Al (1/2 ,vl/2n 1]
for n =1. Modifying the gxémple of [6, p- 81,;ex..11], let (.

-\)(E)""= L ZE.‘A(E n An) e E € A. Then v E»\, and it is easy to -

see that the scquence fh'= nx (n = 1,2,...) converges to zero in
S o S N N : R
Ly while,llrfn 1= 1 for every n. ’ |

" ' .. _ ~

- -13
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;o
We recall that T; denotes the restriction of the map ¥

to P.

~
. \\

LEMMA 3.2. If v is a finite signed measure, then, for every sequence

[xn}4of elements of the range of T, comverging to the real number x, .

L]
-

the sequence {Tg-l {xn}T converges to To—}’{x} in the Hausdorff metric
. P
qp\z .
+ = ' ' : : @
Proof: Let S, S, denote a Hahn - decomposition of S relative to v .

and let 8 = v(S+), a =v(S ). Then we have TO(P)-= co v (4) = [a,8],
f\ghd soa <& < 8. It will clearly suffice to provethat'1

b4

-1 -1 ~ S /
d(T, ~ {x}, T, {y}) < |x - y| for every y € {«,B81].

‘We shall first prove that 2 _
S o
- SUP.{d(é,_To—l {y}) = ¢ ¢ lfo_l {x}} < |x - y|-
Let é‘ebTo—l {x}. We shall show that there exists o dﬁégg'
) . , P

li

v} e‘To—l.{y} such that ||y - @lk = |x ‘,Yl-
If y = x, we may take = 4. Suppose that x > y. ‘Then

X > a, and‘we put
! . ’ .
- X -y o

o . P | o+ o g ¢.)-
v : o] o _ -
Then we have . .y = L—2 ¢ 4+ X=X y -
. : X - a . X - S\
. . .

N

, and since

a <y < x, both -i—;%i and .E—E—% are-between 0, and 1. Thus

.
C s
-

| < '
Moreover, . R \\\_ . s "\\\ ,‘ S

% is a convex combination of ¢ and Xg™ » whence-y € P

5

wexr SR @0y,

x - a).
od .

L _ ) _ x»‘— » “ -*.4.—..7:“'
e ol = T Sl

x -,




X - a

= =L U0 - @-¢) av)
s s

= ~§—}i§/{ S ¢dv - a} = ‘i—f—g (x -a) = x-y.

Suppose next that x < y-. Then x < 8, and we put

w=¢+§:—;‘ O, -

P
[l .
I

inétead - It fOllOW° as above that v e P, T (¢)-= y and }|¢ -

¥y - x. Thus (1) holds; and by interchanging x and y we obtain

-~
S e J

(2 - . sup { d(¢,To_1{x}) : g'e To-l{y}} < [x - y!.

From {1) and (2) it follow57£hat d(T,. {%f To fy}) < [x —:y].

This completes the proof of the }emmé

EEQ?OSITIQE 3.3. If the range of v is finite-dirensicnal, then T,

. . : . . v

is open.

Qe

Proof: Let P A Rk, and suppose that v(A) =,(vl(A),v9(A),.g@vk(A))

[

a2
for eyvery A e A. Furtherslet_Tf = (T ¢ TZ,,... Tk‘) for C“Cf)‘.{ P,
S ) o 6*‘“ o
‘'so that Ti¢'= Sob dvi for every ¢ € P and 1 < i x k. Supﬂaq that
' ‘ %p v

some scquence {yn, of elements “of To(P) converges to y o, (P), We

claim that the sequence (TQ_ {y }} cdnvcrges to To “in the
, n : ke .

. -
Hauvsdorff metric on 2 .

Let, for'every n, v =

y

n
n-f ¥, we haye}{yﬁ,i} -+ yi‘for.gachvl, 1= ?;v;iﬂ. Vi is a finite
signod‘measurc‘:nd Ti(Q) =/ dvi.for every ¢ é;P,‘ue haQe
-1 -1, e Since the cocration W
a(r, 1 Lyi}) » 0 by Lenma 3.2. Since the cperaticn. ¥

“n,i i s
. '))v

(A,B) > A » B is coatiruous relat ive to the Hausdorff moiric on 2.,

& N s ' .

..\ . Since
i=1 % 7 )

15
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K kKo
o1 My, b, o0 1T, TNy ) >0,
= i=1

ie.. ar. My 1,7 My > 0Ly

\,Now,/ifffzmis,not open, there exists an open subset'U‘of P

such that T.(U) is not open in K,'i.e. there exists a sequehce»{xn}

of elements in K \ To(U) converging to an element x of To(U). There
thus exists ¢ ¢ To-l{x} n g,'ahd since U is open, there further
exisis € > 0.such that the closed ball S(2,c) < U. For every natural
nunber n, we then have d(¢,To_1{xn}) 2 g, whence :
: s § -1 PO P o
(T, {x},Te {xn}).E d(s,T, (xn}) 2 €

which contradicts the above. Hence the propesition.

[
-

PROPOSITION * 3.4. If X is quasi-complete, v'posséssesnpropefty (*)

and T, is open relative to 'the L

1 - norm [ﬁeak?].topology on P and

the giﬁen [weak] togology‘on K, So'iéfv relative to Tv on A and:the

above topology on its raﬁge. A .

Q.

‘Prapf: When (An) is a net of subsets of a topological space E, the

: \3imi£ superiof [2§] of (Aé) is defined to be the éet of all x in E
‘s ch that eve;y neighborhéod of x intersectsAthgbnef freéucntly; and
denoted by_LsAa. I; follows .from Héjck [13f Prqp. 1]*iha§ a.

| c ptinqous mﬁb’f oﬁ E to é tppological space F is'opén’if, anq'oﬁly
,if; fof EQerY'n?t’(yn)‘of elémenté of F édnverging to y € %~§e have

‘>f~l{§Tié Lsf_I{yn}; For any net (An) of subsets of P, we shall denoié

the iimeg-sdpe%ior of (An) relative to t,he'Ll - nofm E:?'the_weﬁk*

o

16
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B ’ , 1
LOpOlUUiLb ‘on P by % A ad Ls®a .respectively .. - )
ST <o . -
A . - . ! ‘/‘ - -
As X is qu&éi—cuﬁpiﬂtﬁg To(P) = K. lLet first T, bL opun

2

:ela:ivcvtgfrfe weak* « topolo.v an P and the WLdk topology on K., “

)
Aé

Let'(xn) be a net of elements :n (A) which converges weakly to-an)

AN L ; L . -1
clement x of v{A). Since T, is open, we have T, {x} T, {x 1.
, » : “n
- 7
. ) Yo )
‘qlnCL (T {x })15 a net of we: - coempact cpnvex sets converging .to
the weak* - compact convex set T, x}, dccording to Jerison [19], . -

[ - ' ,o
"fwe have Ls*T, l{'x‘} = co {Le* ext

o (*); we have ext T, {x 1 —<;\\”

\

8

i.e. {

'

&)

-1 S .
» '{xn}}. As v possesses property

e

¢ A,V(E) ='xh} for every n, énd_so‘

{x} co (Ls*{xE. A v(h) = xﬁl)' According to,Milman'§”

13 ‘1( ‘ . - ’ . - .
theorem_[ZO, p. 132] we have ext To. ix} ¢ Lsn{xEv: E ¢ A,ngl’= xn}, _
i : SN

XE‘? Ee A,y(ﬁp = ;}:C LS*{XE ' F e A,V(E) = xn}.} (u.

. As the weak* — topology coincides with the Ll - topology opﬂPO? we

'/continuous,_we have

obtain - { Xg :E ; v_l{k}} c Ls{xE'; Eev {x b},

and since (Po,ll || ) can be 1dent1f1ed with @, T ), we get ! ot

-1, -1 . - . CoT .
v {x} ¢ Lsv {xn}. Further,V¥since v is continuous, we. have -
-1 -

sthl{xn} < v {x}, and so the required equality h?}ds,

4

Let now T bL open relalee to the Ll —VCOpOiOPy on P Aud
the given topology ‘on-K, and let the net (\ ) of . elements of \(\)

converge ‘to the element x of v (A) relatlye to thL glvenvtopology

-1

of .K. Since T, is open, we, . have T {x} = LsT _{xh}. Since the.

_ wcak* - topology is coatser than the Ll -~ norm topology, and T, is

\-\



(\ ’ . iy
Loy,

1

=1 L -1 toremp L .-
T, {x} = Ls T, ‘{gn) < Ls*T, {xn1 < T,

and so we still have To—l{x} = Ls*To—l{xn}. Hence we get, as proved

: RN -1 -1 . . - . . N L i
above, v {x} = Lsv ‘{xn}, and so v is open by Hijek's thueoven.
. \‘ o . . - mn 2 -~

This complete§ the proof of the proposition.

—~

LEMIA 3.5. jIg'v'is_éemi;convei3 then the extreme points of evcryq

) - [3 > »
«level of T, are characteristic functions.

- .. | S .

. ' " " -
Proof: Let a € To(P), ebTo—}fa}, $ d Po.. We need to show that

¢ 1is not an extreme point ofHTo_l{a}.

As % 1is net a characteristic function, theré exists a

non-null set Ae A and. a real number &. such that 0 < g < %, and

e ¢ 1-ck¢ on'é,' Since v is semi-convex, there exisis B « A,
B < A such that v(B) =(1/2) v(A). Let . o
PLTE T e XA 0 TN E xg t ey

.o

Since ¢ is boundéd:by € and 1 - £-on A, ¢l and ¢2 € P. Morcover,
. P . pTTer

b

s

e

[}

T ()

l‘dy = I.¢ dv‘— € v(B) +-s v(A \ B)

S ¢ dv —“E';(l/Z)V(A)<+ e ~(L/2yv@)

/

Feav=a T

s

[}

 »Simi1af1y,1To($%§~= a. -Clearly, ¢ =(1/2)(¢i + ¢,), wherd ¥, « ¢,

£ - o

‘since they differ on “the uon-null

¢

set A. Hence % cannot be an extreme
pdint'§f'To-}{a}. _ - R

,According to Haimos'{lS], eVery noﬁ—atomic fiﬁite—dimonA

N \ . : .
" sionadl measure is semi-convex, and so it clearly possesses property

(*y: We thus.géﬁ-thé followiﬁg tﬁeotem from bepdsitions 3.3 and 3.4:

- . . : . " .

T : - . . ‘ 3 - - . " . . . -

‘ ©a ) - . )

18
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o . . 4('. . .
RQQEEES\ The abéve Lhcorem need-nobwhold i

v any su?siﬂgech:ofv{An}

THEOREM 3.7. Every fini;e;dimensional

THEOREH 3.6. Every Linite-dinensi

Al nonkatomic measnure is copen.

% .

N

% -
gﬁcneral when X is infinite

-dimensional.  The follouln0 example was suogpoted to me by Professor
J.L.B: Caﬁlen. Let S = [ l 1], A be 1hc g - algebra of\;>kel subsets

of S, X the Lebesgue‘measure on A and X = 'l [0,1]. Define the measure’

v : A» X by 7 i - : o T
: v(A) = \ n[0,1] + A(A n [ 1,01 0,11 A A

%hen v is . clearly controlled by ) hence(npn—atomlc. Lec ' R
] R

[0 1 - lln] for cvery n 2 2, and A= [ -1,0]. Then ‘
S i o !
Ilv(A“) - y(AF*{l - 0, anq;it is clear that A cannot be the limit of

. . élr." 1
nzz ’ l.e.' ' I.b\)ﬂ g\){:.\‘n);

easure 1s biquotient.

o

- Proof: Let v'be a finite-dimensional measure and A.be‘a_controlr‘

a

‘measure for v. Clcarly, v and \ have the same atoms. We denote. the

htoﬁié_and non—étomic parts of A (6t v) by Ai’ An‘(feépéttive}y v

-

, vn)g -For every A ¢-A; le_t_Aa and An dencte the atomic and#non-atcmic

parts of A respéctively. Let further Ra and Rn denote the ranges of
Va and gh respectlvely.

- Now .the product topology on Aa x An is clearly indugéd by
‘ : : \ ‘ . 3 - N ) . ) N / . . .
the foliéwing metric: - o C I B

K o((A.,‘B);(‘c,D))’ = 2(AAC)+ A(B A D), \ R

for‘eVEry (A,B), (C,D) « wﬁh x An.

19
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Defing h: A~ Aa x An by L(A) = (Aa’An) fdrlc cry A e A. Imrther
dcfing g : Aa x-An > Réx*ﬁ?n and f : > Xby g =v, van’
f(x,y) = x+ y for - € Ro>»yeR.. Then v = £ © g o h, and so

according to Michael [34], it would suffice to prove that the maps:f,
g and h éfe biquotient.

First, h is an isometry. Since each A € A has the unique

i ,: » . Y
J,}\(AaABa)b+ ,\(AnABn) - | .

decomposition A=A U A , A € A, A € A , h is one to one.’
: - a n’ a ‘a’ “n n A T

Moreover, if A and B are in A, then

0 (h(A),0(B)) = o((AL,A),(B,,B)) -

Il

o

| . A((Aa {;Ba) U (An AiBn))'= A(A A B).ﬂ C .

_According to Halmos [14, lem. 3] Aq is compact. Since Va

is continuous on Aa’ it is biquotient. On: the other hand, v, is

'open:by Theorem 3.6. Thus ya.and v are bothvbiquqthnt,‘aud it

follows from Theorem 1.2 of Michael [34] thatvg'is‘biquotiént.

‘Finally, the set Ra is Cléa 5 compact, and. since v is Z(}

finite-dimensional, agcafdiﬁgvtq Liapounoff's theorem R is also

. éompact. Thus Ra x’Rn'is compact, and since f/isvcontinuous on it,
it-is biquotient. This completes the proof. of the theorem.

TSNS

" Let, for every pair of élemégis A and B of A
A(A \B) = 0,“Then'sv isﬂa'partial‘order_on’Avand (A;ﬁv) is éicomplete

‘ lattice [16, p. 169]. If.can also;bg‘vépifigd that theidfdcr Sv )
is indepe.n‘dent'of. the }ho‘ice of A. If C 'is a chain for < ; then the

N : . e BN , S
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order topblogy [A]‘of C coincides with the one induécd'by\]‘ on C.

Indeed, if C e;C‘and (Ci,CZ) is an open interval containing C, Uyn{

T

on pﬁttink r é41/2 min{l(Cé X C),x(C \ Cl)}; Qe have
B(Cf) 2 (De C:A(DAC) <r}c ’(cl,cz).

On the other.hand,.for every C £ C and r > 0, if & = 1/2 'min{\(C),r},
and Ciy, Cé e ( are such .that

C1 <A C <l C2 > A(cC ::cl) < 3 and K(CZ \‘C) f &y
) . : -8 Y

we havé-(CI,Cz) c 8(C,r).

PROPOSITION 3.8.  Every scmi-convex measure is weakly monotone.
—_— 7 .

:Esggﬁ: Let v be a scmi;qbnvcxvmeasurg with A as its,¢cntr6l neasure.
Lg; A;and:B.Sefgny tw; distinéﬁ'eiegen;$<in A,such-that”v(Agﬂé.w(B).
Hencé v(A \ B) = v(ﬁ \‘A) = x say; Sinée-ﬁ;is semi¥con§ex; oné can
" find, as ;nlschmeti [41,_p. 1851 chains C‘¥ {CG :MQ e [0,1]} and:
Dié {DO ;.0 e [0,1]} ofvsubséts éf Av\ B_aﬁd é’\LA‘respégtive;y with

the folﬂdggpg properties: - C, = Do = &, C1 = A\ B, Dl = B \'4A,

C_ <. C82 if and only if 8y < 027 | - ‘ .

Lif s if o 3 and
D9 {v D02 1ffdnd oyly if %y < €, and’,

v(Cé)ﬁ: fx = v(Do)'for every ¢ ¢ [0,1].
The maps 6 -> C8 and ¢ ~ DB are clearly'iSOmorphisms of‘the

v

chain [0,1] onto the chains .{ and D respcctiveiy, and so they - are
also homeomorphisms relative to the chain topolégies. 'As:;he opera-

" tions of union and difference are cogtinuous on A x A relative to the
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product topology T, » T\ [16, p. 168], the map 6 » I, = (A.\ Ca u. DO’

+9 € [0,1] is continuous. Heiice E =4{EO 7 0 ¢ [0,1]} is a connected

subset. of A. Further, for every 0 ¢ [0,1] we have

-~

~ a')" = v(a) - v(c) + v(D,) = vi(a), th.le

~Eo =4, Ef = (AN (A \'g)).u_(B \ A) = B. Thus any pw; dis;incﬁ
eleménts of v_l{v(ﬁ)} are ‘contained in a connectcd.éubsq; of this
level; and so QTI{V(A)} is conﬁeéted for every A €'A;, Tﬁis completes

the proof of the proposition.

Every_non—atomic finite dimensional mecasure is serni-convex,
according to Halmos [15],iwhénce weakly monotone by Proposition 3.8.
A Lo B . »_'.r;,_‘v " . . )
On the other hand it is‘openl(TheoreE 3.6) and so with the help of

Nhybufnv[49], we ﬁave, 

COROLLARY : 3.8.1. Every non—atomic finite dimensional measure is

monotone. .
: ’ g0
r:"

Remark: The converse of ?fopds%tion 3.8. doés"not‘h§ld»in_generai, as

is evident from any non-zero measure on A = {¢,S}. For an example

of a meaSure.in infiniie dimensions, whicﬁ,is'weqkly_mopotone withoﬁt
being'semifgfnvéx, let A be the o] —'aigebra Qf ﬁo;el sugséts of

g < [0,1],‘;( = 1';1“_[0,1]; 'am‘i. defi;ge v Ao -.X:by V(E) = Xg for cvery’ '/.
Ee A, It ishegsy'to.éee that v is hos—gtomig ana one - .to ;IOhé,
\whence_weakly mdnotoné._'ﬁéwever, it is:not semiqcoﬁvgx, fé: we‘haye -
v'v(S) =

\

Xg whereas v does not assume CL/Z)'xS anywhere.
 “In infinite dimensions, a non-atomic measure is not always -,

1

Qeakly monotone. In the example following Theorem 3.6 it may be



P

easily verified thdt‘V—l{Xto‘l]} = {[-1,0],[0,1]} which is not
4

connected, i.e. v 1s not weakly monotone.

4, Ranpe of a measure. 1In this section, X is assumed to be Banach
unless otherwise stated. Also v : A » X continues to be controlled.:

If P is arpropetti.of,measures, v is said to possess P hepggitarilz'

-

if vA possesses P for every A é A.

-

LEMMA 4.1. Let X be.any L.C.S..and v : A - X a controlled measure.

If v pbsses?ea_property (*), then the range of,v'islconvex, closed or

'wégkly'compact if énﬂ:only if it is hereditari1y so.

Proof: Let A e A. We shall denote the set {$ € P 20 < <

ﬁ///8§ PA’ ang thc restriction of T, Fo PA‘by TA' Then IA : PA - X
is_élso‘coﬂtinuous relative to the weak* - topology on its domain’and_
" ' ' ' ' . \
the o(X"*,X') - topology on its range. . As‘PA'is‘convex and 'I‘A is

lineaf,»TA(?A).is conyex and it clearly contains QA(A).'

|

) Suppose‘first‘that v(A) is convex, x,y € vA(A), D < t<1

and z =’tx_+ (1 - t)yf Since X,y € TA(PA)’ Qe have'z_evTA(?A)?_

»We.claim that z ¢ VA(A); Clearly, .it will suffice to prove that there

A

‘éxists Ee A, E ¢ A such that'x%Qé“TA’l{z}. Now the set P

[ ’

A is linear, so that T

' compéct andiconvex and T A—;{z} is also weak#*-

compact and convex, whence it has some extreme point ¢ by Krein--.

Milman theorem. Sﬁppose that ¢ ¢ P,. As x,y € v (A) also, we have

zev ). Since ¢»= 0’a.e. on AS we have T,(¢) = TA(¢)'= z. As v has

‘the property (*' ¢ ¢ ext To—l{z} and so there exi%f distinct members

is weak*- .
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. -1 ) v Ao 2 by A : R =
bl,.¢2 of T, {2z} such that 1/2 (fl + VZ)' Then we have ol .

. IS . J

e ‘ . o , ) v A
&, = 0 on A7, so that ¢1 = &, oa A, otherwise they will be equal on

T2 2

{z}. Similarly

. .— ) : ) ,' ) _1
S. Hérgovgr, TA(¢1) = T°(¢l) =z, i.e. ¢1 € TA

. , -1 | -1 N
¢2 €T, {z}, so that ¢ d ext T, {z}. Thus ext T, Az} < Pt, )

proving the claim.

Let, 'now, v(A) be closed in the given topology of X, and

-

' letv(xh)_be a net in VA(A) conveféing to x € X. Then (xn) cohvefges
Vg‘l . . _. ‘ - - .
weﬁkly, and since (X,0(X,X") is embedded in (X'*,0(X'*,X')) (see §2)

we have (xn) + x relative to the latter topology. With PA and TA as

.ayoye,_the set IA(PA> is o (X'*,X") - gu@p;cg, an¢.since xn i_vA(A); /
c.TA(PA),forveach n, xletTA(PA).. As the!net (&n)bés.cont§ine§ in
Q(A), we have ﬁ € v(A)f It fo}iows again, as above, th%t X € vAcA).

“ Fiﬁally? suppose that v(A) is‘ueakly cempact énd.(xn) is a

. . . , {
net of elements of v, fA). As:vA(A) < v(A), there exists a subnet

A

(xm) of (x&) which convefges weakly to soﬁe x erv{A).‘ As in the

previous proof, we have x € TA(PA) and it,foliowsvo%ce again that
o -

x

x € uAQA). Since the converses are obvious, this completes the proof

of tﬁe lemma.. *
v ' N

o

THEOREM * 4.2. A controlled measure v with values in a L.C.S. X has
LU _ . _ : _ Hues A i

,‘herédiCarilyfconvex rahgé'if and only if any one of the following

"holdsyfl : B 'v_ | ‘ o

: "(a) v is semi - ccnvex. . : .

(b)” Fpr‘eveiy‘a é;T,(P),‘exth,fl{a} c P....

. A(e) v'possésses propérty (*) and has'écnvex_tahge;‘



Lne. 4

Proof: It is obvious trat if v has hcrcditarily coanvex range, v is
then semi-convex, The impllcatloa\§a) implies (b) was proved in

Lemma 3. 5 It would suffice to prove that (b) mellCS (c), for when -

,(c)‘holds then it follows from Lemma. 4.1 that v has hcred;tarlly

convex range.

Suppose v satisfies (b). It then clearly has property (%*).

.-

H ,d’v:. . - - ) ] .
~Let a &€ To(P). Since ext T, l{a}'.c P,, it follows from tliz Krein-Milman

theorem that a e To(P°), i.e. To(P) € To(P,) = v(A).  As the reverse
inclusién is obvious, we_ha&e v(A) = To(P). Since P is convex and
Te' is affine, the set v(A) is convex. This completes the brodf of

the theoren. : e

*For any cqntrolled‘measune v, we rccall»than‘va and vy

2§;Ldﬁnote its atomic and non-atomic parts reépectivcly..

THEOREM 4.3. A controlled measure v with values in.a L.C.S. has

,hereditarily weakly compact’fangevif and only if' one. of the following
holds:

(a) v“_is semi-convex.

(b): va.possésses,propertyb(*) and has weékly compact range. -

 “2£29£:{ Since Ya'has‘héreditarily compact rénge [lé],-it:foilows*thét‘

'.-v has h¢reditéri}y weakly c@mbact<rénge if énd only if vn'ha§'
bhergAitarfly weakly‘cbmpact range. Thﬁsvit suffiéé# t§ proﬁe ﬁhe‘;
theofeﬁlfdr vy and we may as Qeli;éssume'v'=vn.

Let v hhve»hereditarily;wéakly compact range, and let A € A. -

As OA(A) is wéakly compact and (X,d(X,X‘)) is embedded  in (xf*,o(x’*,x ))

& ‘ . . . ' . ‘»7, : ’
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s o
(see 52) the set vA(A)'is equally compact in the latter topology. As
observed in thev‘proof of Lemma 4.1, the map TA :‘PA’—>*("'° i's cont inuous

>1n the weak* - topo]oFy on its domaln and thc c(X'*,X") - topology on

its range, and so Q = {v (A)} is weak* - closed. As v is non-

EecA, EcA)

atcmlcf so are X aqd AA:and the Sét-(P°)A {XE':

is weak* - dense in PA [21, lem. 3]. Since Q c1egrly'coﬁtains (Po)A

we have Q = PA’

whence v, (A) = TA(Q) - TA(PA), t.c. v, (A) is convex.

)
- Hence v has herestarlly convex range, ‘and so is scmi- convex.

Now suppoae that (a) holds Then ext T, '{a} IS ‘or
each ae To(P) by Theorem 4.2, and S0 v clearly has propert/ (*).
As 1n ‘the proof of (b) 1mplles (c) .of 1heorem 4.2, we have v(A)
T (P) and since T,(P) is o(X'%, X ) - compact and (X o(x X') is
'embedded in (X'*\\YX'* X' )), it folloxs that v(A) is Wcakly comnact
If (b) holds then v has hercdltarily wbakly compact rdnge

- by Lemma 4.1. This completes the proof of the theorem.

 From the above theorem we obtain

COROLLARY 4.3.1. A controlled measure v with values in a L.C.S. s
) semi—convex'if and ociy if eny‘of'theqfoflowing holds: |

S (a) v is non~étomic and h5;5$ hereditarily weckly compact.
range. | |

k(b)’ v is ncn;atomic;.pcisesses‘property (*) and hae weaklyv
compact range, | “

W

“Remark: A subsﬁace‘N of Ll(A)lisvcalled thin if for everyinonénuil
set A ¢ A there exists’'a non-zero function ¢ € L_(A) such tﬁét ¢ =

a.e. on the complemcnt of Aand J ¢ £ dx =0 for each'f € N. :Givcn»a



measure v : A > X controlled by A, the subspace Nv =:{§;;;2j: x' e X'}
; . . " . :
of Ll(A) has been pfoycd by Kingman and Robertson [21] (see also -

Wegmohn [48]) to*be thin if and only if the range of v is,hereditaoily)
"oonvex ono heréditécily weakly compact; The Sobspace Nv is thusvthin:
if and only if v is semi-convex, and so;?acoafaing to Theorems 4,2 and
4.3,’Nv‘is thin if{ani_only if the range of v is hereditarily convex,
or equivalently, if ond only if v is non—atomiciand i§§ range 1is
Hereditarily weakl? cempact. )

PROPOSITiOﬁ :4.4; ~If X is Banach, v’possessos properoy_(f), a'nd_T°

is open,‘then.thé raogo'of v is norm closed.

\
8 dax

ngggﬁl Since. T° is open and v“possLsses propcrtv (*), v is open by Prop—
osition 3.4, On 1dent1fylng A.with P,, the maps T’1 : K~ 2‘-and
. )

Q‘l : V(A) P 'are then lower scmi- continuous (l.s.c, ) {25, p. 174].
Since K and/}ié) have thc induced norm topology of Y they afe met—i'
risable, and so are naracompdot Since_v and T, aro<cbotinuous and .
their domains aré complete metric soaoes; v_l{;(A)j and T°_¥{*},
‘are oomplgie for évéry.A € A ahd;x ¢ K. ‘As_proved'by Michael f331
" there ék1§£ l;s.c.;maps £: K~ 2F and g : v(A) > 2P° such that £(x)

is a compact subset of To {x} for. every x € K, whlle g(v(\)) is a

compact subset of v~ {v\A)} for every A € A. vDefine h: K - ZP’by

h(x) f(x) v r(x) if x ¢ v(A)f - /5

n;

£(x) if x €K\ v(A).

Then h(i)‘ié compact'for every x € K.
" Now let {xn}:be a sequence of elements oﬁ-Q(A)Tponvgfging

:6;#0, and:hssﬁme'théﬁ,x°>l v(A). Then h(x,) = £(x,) and éinoe f is

~



3 Wr o+ ) at
Ak
I 3
o N N
AR
‘ . R
- B ~ .. | .
R S S
l.s.c., we have, accordlng.to bLEor§kL"ﬂ42]
R

'Thug we nave n(xo) = Llf( \ I Llh( n

2
+- o~

For, if not then thérc exl'ts a senucn

[ ¥ S
. ) i g ' n' %
- *', . L " J ,,cv-,‘- R -~ ) x
oW, .

for, every R,'and IIXE - ‘f ~0 fcr some b € P., Since P0 (gftlosed
' o a"z( ST S ‘

in P, 4 € P,, say 6 = XE (E ewA)¢vanQYSo‘xor 11m xn‘ = 3;.
: ' o S ) R W k P

= T,(#) = v(E), contradicting x;f A fAccording to [25 p 337] s
we thus have = ot Tafe *%ﬁ#ﬁ ) \
- ry&n - - ’ )
Lsh(x ) Ls{£(¢) v g(xn)} ‘Lsf(xn) U Lsg(xn)
4 = Lsflx) = £(xo) = h(xo). B S
. Hencg we have'h(xo) c'Lihtxn) c Lsh(xn) = h(x,), so that L
= Tih(x ) = , o . ' v
h(x,) Llh(xn) _ Lsh(xn)i_ . o

Thﬁs {h(x )} is;a sequence id'ZP converging to hix,) in -
the. Vletorls topologv [32], and so {h(x ) : n.2 0} is'a compact
subset of 2 _ Slnce h(x ) is compact for every n, accordlng:to

'chnaQI [32] ‘the set C = ngb h(xn) is a c0mpact'subset of P. ,

Chopsing xE ‘€ g(xn) (c h(xn)) for eée:y n 2 1, the se uence{xE } is
. . n . , K . k“. . ) . P ' n

" contained in C, and so it has a subsequence {x,. } which ¢ verges to
‘ : 9 XE > |
o _ _ Bt

- some element ¢ of C. ‘But then, P, being a closed subset of P,»¢v:\?);

" " and so i . Thus, we. have X, = lim x_ = lim T, (xF ) = T (¢)
’ ‘ T°¢ e v(A) : - My ' 'nk
a ccntradittion. This completes the p:oof of che'prdposition;'

When X is finitc4dimensional and v is non-atomic, -then 1t

possesseslﬁroperty (*) by . Lewma 3.5, and T, 1s open by Proposition 3.3.

. '

[



This gives

- COROLLARY  4.4.1. (Liapounoff) The range of ecvery finite dimensional

non-atomic measure is a closed set.

Remafk: thn X is 1nf1n1tL dimensional and T, ‘is open rﬂlagive to ﬁhe
weak* and weak topologies, v(A) HLEd not be weakly closed even if

v posses property (*) In the seccnd example followiné Corollary_B.S.l;
both v and Tonare clearly one %>to:— one. Purther, since (P,u*) is
ccmpact,"T° : (P;w*5p+ (K,w) is‘a homeomofdhism;> As vi(A) ='P°,'we ﬁave
K = Eg P, = P; Since X is non- atomLc; accordxng to [21, lcﬁ. 31, P, is'
weak* - dLnsc in P,  hence O(LI,L ) - dense in P (sce 32). Ag P =z Py,

the latter set cannot.be weakly closed.

THEOREM 4.5. If X is Banach, Lhen the range of a measure v : A » X ic

relatively compact if, and only if, there exists a sequence {xn} in X

[[iae BN 1

and ‘a sequence {An} in A such that'the series x X . converges to

1 n An
Vv in the Pettis norm.

o

Proof: Let us first prove the sufficiency part. Supgose that v has the

=

'deve representation. - Let, for evefy_n; Voo x ‘xixi .
DS : i=} ’_ ) i L
It is then clear that v (A) is compact. By hypothesis,"

'l[vh r‘V’£"= sup {llv (E) - v(E)f{ Ee Al > 0 as™n +>m,‘nnd~so

(v *), v(A)) > 0. Hence, it follows that dv_(V),¥¢) -~ 0.

Since’v (A),is‘compac; for every n, so'is,CYEjlfi;e. v'has‘rélétively _
compact range.

‘i/ Now let (&) be conpact.._Then the

'VEJES.v(A)_is also
: ; : NS 4 R
compact. Wg shallﬂfirst prove that v is the liﬁittigfthe‘Pettis.norm

29
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o ‘ ) {/
of a sequence of clementary measures each of which has a finite number
of elements. ' L
Let us first assume that X has a Schauder . baSiS, say

{ei :. i > 1)}. ‘According to [40, p. 115], there exists a sequence of

[y

'glements {xi'} of X' such that for every x in X we‘hdve

o
X = Z x,"(X)e, , where the series converges uniformly on every ’
j=1 i . v ,
. } .. /
compact subset of X.  Thus
' 53
n - '> . ~ ) —
sup llx- & x."(xe.|| >0 as n > «,
: . i i
- xeK . i=1 s o

.
W . )

v

,Let, for each natural number n,
. )

n~Ms

u (E) =

. " ’ ’
. X v(E) e, , E f Al

1
Cleaf%y, un'is A“figife dimensionél'measute4<<x, and as y(A)H% X,
we obtaini' v ‘ -

lve- unllp = sup {llv(E)A- “h<E)II : F e.A} + 0 as n > W."f s

N . .7% . T - . -
Now, for every‘'n, there exists, by Radon-Nikodym theorcm, a

fhnctiqn g, * S - X such that un(E) = f By d\.. for cach E € A. Also, |
: _ E ’ Sl
. » \
there exiSts.aISimple'functiQn fn : S -+ X such that - {
S HE () - g (s)] ax < 1/n:
. n n"7,
Let,_fornéyery n, vn(E),= s fn dx for every E € A, Then_vn is an

E ' ) :
o

elémentary measure with finitely maﬂ} elements. HMoreover, for.every n,
LT ' : '

IR

n

- “nllp' §up,{l| é £, a; - é g, dA||.r E‘e A}

' _ :sﬁé {I“L\(fn'-_gn) dar|} : E e A}
E _
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ST - g“H d\ < 1/n.

ol
We thus have’ ,

o " 5
T [ [ | P T I [P TR S VAR BN
N ~ ‘ , . T

]

In case X .does not hLav2 a basis, sjnce K_ is compact, there

-

exists {10, p 99] a .one- to-one contlnuous affine map %/of K Lnto a.

~

r
Hilbert space H. WG ma/ further, assume that g(0) = Q. For, if uot /"
" then it may be replaced by the map x [+ g(x) - g(0). . .
wa Kl = g(K) is also conpact and its closecd linear,span

is a separable Hllbert space whlch may be denoted bv H icseli. DéfineJ
u, :.A-*'H by w(E) = g-v(E) for L eaé._ Clearly, p is a measure,
3 - B . - ) . : =

. : . , L . '
u(A) < Kl’ and as H has a basis, there exists, by above, a sequence of

elementary. measures un‘: A>H (n > 1) with finitely many elements

" such th’atv I lun - ul I p > 0 as rﬂ* w, As d(l‘n(A) ,u(A) 0, the set
C = u(A)‘}J‘n'LVJ_1 un(A) is compacgsee [32]. Denote the exteasion of
h =g to C by h itself. /“"

Define, for n 2.1, vn.: A-+ X by v (E) l\m ( ) for .E ¢ A

Then v is a measure. Moreover, for any x' ¢ X', x'-h'is continuous

on the compact set C, hence uni%?}m1y~continuous. As []un.— UIL-» 0,

we thus have ||x'-h-01n *11){]p»> 0, 1.e..|]x'-6;n -vb)[|?~>'0.

‘Since the norm and weak-topologies coincide on the compact set h(C),

we then have [Ivn'— v[[p»» 0. As the measures v, are clearly elementary,

this prbves the:asscrtion for general X.

'Io'prove that v, has the required representatipn, there exiétslu~
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: .. -

by above, an elementary meisure v, with fé:ithly many elements such

is a measQre

- that v - ylllp < 1/2. Since‘v.l has %OTpact range, v - v,

-,

with relatively compact range, and so there agaip exists an elementary
. e ! .

e

. N | i) . i ‘,; L Q
- measure v, with finitely many elements such that® || (v - vl) - vzllp < >
C a2 s e e ' .o : . :
1/2” . Continuing indefinitely, we find a sequence {vn} of elementary
measurés, each with finitely many elements, such that
1 ' o )
. ) ' e+l _
§ Tlv - ¢ oo |l < 1/2 o for cvery n.
: . itlp .
i=1 » : :
. But then the series: z v~ converges to v in the Pettis norm. By
. n=1 ' ’ ' '
x.. o ' ' \ o ‘ b ‘er? . !
" defimition, for each n we have v = Iox ", A , where
T n . n,i A
: 3 i=1 : n,i
. R v . ‘ - . Lo
{x , :1<i<snlecX and {A ., :1<4i<k} is a partition of S.°
n,i T _— S, i n .
: o L kn p . E o
It is clear that :the series L L. X s A - converges to v in.
: L n,i A . . ; ,
. n=1- i=1 n,i

the Pettis norm. This Complétes the prdof.of the theorem.

-

e . .

Although we first proved the~follb&ing-resﬁlt, it eéﬁallyb

follows%éfdm the above theorem. -
T Ty A : :
COROLLARYQ%@.S.I. 'The .range of Qgis relatively compact if and only if

. V’éan_be dppfoximated arbitrarily in the Pettis norm by TT

elementary. measure with finitely many elements.

[£4

If v is a Bochner integral relative to some finite positive

Ay

4.

measure -A, then it clearly has a representation-as in Theorem 4.5, and’

so we have - e

Py

-

"COROLLARY 4.5.2. ‘(Uﬁl, [46]). A measure has relativé}y compact range
' ' - N S . SN L : S '
whenever it is a Bﬁihner integral relatfvg to some finite positive

A
£



o »
vmea§ure; . . ’ T

'\.

o
Since the atomic part of v alwvays has a hereditarily compact
- ' . S : . :
range| (see [14]), the above theorem zives, with the help of Theorem '
> > - o > p A

. s

: { ' o o o
- .

COR OILARY 4:313." A measure v'haS'Aetgditarily coﬁpact rﬁnge if and
only if its ncn atomlc part Vo is, reﬂ%qsont tle as 1n TH rem- 5,5, and
v is either semi-convex, or has property (%) and,a‘closed raugg.

N

Bolker {5] proved that a:compact convei set'in finite |

dimcnsions is the closed convex hull of the raﬁgu of a menasure if'and A
. ‘,\:‘ .y

only if it is the Hausdorff llmlt of finite sums of segnencs t!rough

the'origin. According to Theorem 4.5, the ﬁe!l%s;ty part of this

..{

N

.theorem remains valid in infinite dimensions:

COROLLARY 4.5.6; If a compact convex set in X is‘the'closed convegx

~

hull of the range of a measure, then it is the qausdorff limlt of

finlte sums of bggments thrOugh the origin.

- : | e
.Problem: It would be interesting to investigate the hypotheses under

which the sufficiency part of Bolker's theorem remains valid in infinite.

' . , ‘ ' s . .
dimensions. : : 4 _ : : N S S

o

Remark: There exist measures; even with f1n1te varidtlfﬁ whﬁse ranges

S

are relacively compact but are not BOLhner 1nte"1J1 see Rieffél
[38, p.-486] for ah ‘example in C
There furgher exist measqreS'gith‘compact tdnge,‘even 1n

finite dimensions, that are non—ulementnry,‘and S0 in th;lr repxeSLnta~

vi{on (of Theorem 4.5) the sets (A ) cannot be aluays made dlSJOlnt. As

N

"33
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%

proved by Rickert [36, th. 1], there exists a non-atomic measure v whose

, L o R .2 o U
‘range is the closed unit disk K in R". Suppose v is elemcntary. Thea
there clearly exist a non—tfivial scgment J with zero as one of its end

‘points,~and a‘set,Kl such'that K.= J + Ki; wtthoﬁt loss -of geﬁerali;y,
agfuﬁe that J is along the posltiveﬁx—axis.' Since the poiﬁt.(Ogl) = b
e K, thgre exist:arg O'Qﬁd xi € Kl suchAﬁhac p = a(l;O) + Xg- if-

a > 0; then Xy = (ﬂa,l),‘so that Xy ¢ K. On the otheér Hahd,-as 9 € J,

w
el
Pl

_wé have 0 + xl'e K, a contradiction. In case a = 0, *l = b € K. Since

J is non-trivial, thexe;exiéts B > 0 such that (8,1) = B5(1,0) + b =

B(1,0) + X,

€ K, which is not possible.

8 5

We recall that a measure v W1th values in a Banach space is

 said to be-o-finjte if its variation |v| is so,.

- +PROPOSITION - 4.6. If X is an infinite‘dimensional_Banach”spacé, then

ge

ijfthe clesed convex hull of the range of every o-finite measure with
_values in X has empty interior.

v

Proof: ‘Letfv A > X be.a measure with its yariati\n u o-finite. There

then exists an 1ncrea5lng sequcnce {S }of sets whose union is S such
~ that the restriction u of H to S is fipite for every n. vDefine

‘TnL: P - X by T£(¢) = [ ¢ dv .’., 1:%”6 P, for every‘n."Siﬁée-X
n ]

3 (A) = K (oay) for every n.

N

is Banach, Ty (P) =-K, and T (P) _;;_

. o
let us first con51der the case when X is reflexive.

a \a'

Accordlng to the well known thegrem of Phillips [35, p. 130], each

S

v, 1is a. Bochner integral wiﬁbﬁrespect to u . Hence, by corollary
n . ,

"every n. Since_Sﬁ‘* b. we havé
i : : T

i

34
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A(Sﬁ) -+ 0, where * is a control measure of v. Thus, !fvll (Ss) » 0.

' ;e { ; :
For every n we have Kn < K. Moreover, for every % < P, we have
s ' ’ ’

U ) ' ' : ' ' c
Hre ~1 4] = 11 seav -7 ¢ avll =1| s ¢av]] =z ivl] 5 »o,
n ' : - : n
) S S D .
- n _ n :
. : » ' . ’ ] ‘
whence the sequence {Kn} converges to K.in the Hausdorff metric.
Since Kn is compact for each n, so is X. As X is infinite dimensional,
aCcording to Riesz's the5¢em, the interior of K is empty.

Now let X be non-refllexive and, if poésiblc,'K have an
interior point x. ‘Then there cxists € > 0O such that the closed ball
S(x,e) < K, and since it is convex, it is weakly closad by Hazur's"
theorem [20, p. 154]. ©n the other hand, X being Banach, X is

‘weakly cempact, and so S(x,€) is also weakly compact. This is;‘howéver,

“not possible, since the closed unit ball of a non-reflexive spacc of

infinite dimensions cannot be weakly compact. . C e
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EXTREMAL STRUCTURE OF THE RANGE OF A MEASURE

?

(=4

Extreme poihts,of the range. We assume in this section X to be
U e o ' S e

quasi-complete, except for Propositicn 5.1." The measure v : A X 13;7

assumed to be controlled as before. We recall that the extreme points

of the range are defined to be those of its o(X'*,X"') - closed convex

" hull, i.e. of To(P).

EROPOSITION 5.1. A point a € X'* is an extreme point of v(A) if and
only if To_l{a} is a singleton. which belongsufo’Po. ’ ’
/ . " ‘ .. . \ -~

Proof: Let a be an extreme point of-v(A). We shall first prove that

To_l{a} c Po. Let, if possible, ¢.¢ P \ P, and To(¢) = a.. Then there

ekist an € > O and. a set E e'A_such that ¢ <-%, 3(E) > 0 and’
v .  es¢sl-e.  a a.e. on"E.

HUe may further assume that v(E) # 0. For, as v = X, the set E is not

RSV nuli and_So cdntains a set E. ¢ A for which v(El) z O,VAnd sincc~

1

A(El) 5'0, fhe set E may be replaced by El. Now define'(bl and ¢2 by
: - ¥ . . . N o ‘

'fl(é) - ¢2(s) = ¢(é) on the complementvEc of E, while ¢i(s) = ¢(s)‘; €

and @2(5)‘= $(s) + ean E; Then ¥ éﬁd.¢2 arc.iu'P-due to (1) and they

differ oﬁ‘the ndn—null set E. Moreover,

To(@l) - i %1 av = f § dv +./ (¢ ~€).dv = s ¢,dv.; e v(E) = a -ev(E),
RS EC E VR T , . :
and‘Similarly T;(¢2) = a4+ e v(E). But then, av=(l/2)(To(¢l) + T°(¢2)),
> .

36



and since v(E) # 0, we have To(bl)‘x T°(¢2);iso that aHV ext T,(P), a
" contradiction.f

' -1 . . y . ’
Further, if T, ~{a} contains.two distinct clcments, say XA
: La ;

‘and Xy we have- A(A & B) >+ 0, so that w;=(1/2)(xx + xé) £ P,, but since
-1 . ?—1 e
b ¢ T, {a} this 1is again a contradlctlon. llence T, {a}l is a singleton.

_ Conversely,.suppose T, {a} = {XA} for some A € A Now, if
-a ~(1/2)(T () + T, (w)) fOf P, W n_P; then To(x ) = T, ((l/’)(D + ')),

and so, accord;ng to the hypothesls, A ~(l/2)(¢ +’;) Y a.e. But then
e b ,
it is easy to see that ¢ = = xAAa.e{, and so T () = (i) = a, so

‘that ae ext’To(P). Thlb completes the. pr0uf of tag Progc>1 ica.

COROLLARY Stlll. The range of cvery controlled measuré_:cntxins all
o ST N i y 2

of its extreme points. s Py

This corollary Has been recently éscabliichod Ly Xlu -Jueck
SR : I :

.124,'th.'2] for a wider class of megsures'called "elosed
measurésu' We aIsovobtain from Prdpbsition 5.l'the ;oLlcwinF*extunsion

‘of Theorem 3 of Liapounoff [27] to infxnlte dlmenalonb, h““cu‘ln turn
B . B (‘V"‘ .
has been, proved recenLly by Tweddle [45] for semi- conth mea sures,
5 | | B -;g .
COROLLARY 5.1.2, If v pbésesses propefty,(*), thenfa point 1 € X'*

is an extreme poidfiof the'range“§£ voif aﬁdionli-if 9—1{5};15 a

singletdn.

; -

For, ?iven A € A, sluce v(A) = a 1f and onlv 1f To (x )
the necesaity of the condition follows tr1v1qlly, and Lf v {a} {A}
since ext T° {a} c Po; we have ext To {a} = {xA}, so chat To fa};=""

co. {XA} é {XA}’ and s0-a € ‘ext v(A) ;" . .}. FJ ‘

T



In the absence of preperty (*) we have, on the other hand,

“i’

the following
| | N
PROPOSITION 5.2. If the dual of X is weak® - suparable and v is non-

atomic, then a point a € X is an extreme point of the range of v if and

Sl
¥

-égiy if v—l{a}‘i$ a;sing1eton.

.?tééf; The‘PgEessify 325}ﬁe conditioq follows frgm Propdsition 5.1 as
.before. o °
Leﬁ C#;'} be a sequence of elements of'x"fhat i§ wcék* -
dense in X'. As u§ﬁ51, ue'denoée B} RU the preduct of countably mény
: : Y - ’ N
cdpies of R; W%th the pfqduct topology. Define the map"n : X > R by

'n(x) = (;"(x),..;;xn'(x),.;..),‘ x e X.

:ihgn n is linear; If n(x) 0 for some X ¢ \ then xﬁ'(x)v= 0 for g;éfy
n, and sincg'{xn'}ris wveak® —'dgnse in X' we have x'(x’ = 0 for evéry,'
k E'X} i.e. xv= 0. ‘It'méy'be éasily vefif?ed tﬁat n i#kcontiauods
;elative to the weak—toéology ;n X énd theiirdducc tépolbgy Qn‘Rm.

Deéine u A . by u(E) = n,u(E) E € A, .Furthef;‘fof .

‘each n, define ﬁ A~ R by ‘

Fa(B) = G Tou(E) s Tou(E),0,0, . )

Clearly, y and My are measures . Moreover, for every E ¢ A we have

n

o LT 0) = 9 A eeeeennf 8 du, 0,0,0000
1 ‘ _ n - . .

B (E)[* u(E) Deflne T PP > R by Tn(é) = [ & dun for évbfy 8 € P.

Now suppose that v—l{a}‘= {A} for $o¢é A € A.As n is one-to-

";one, we.havg_u_l{n(a)} = {A}. For each n let

n

o a =y @), e ek, (2),0,0, 1),

38



: 7 ' _ 39

. : ' e
and P = T “1{a.}. We claim that ﬁP oy To_l{a}. For clearly
m_ ~n o = n ~
T, {a} ¢ Pn‘for all n, while if & ¢ Pn:fcr every n, then S ¢ dvx, =
. ) \ k

x k(a)_fo_r'.all k, and sﬂnce {k'k}is'hcak*vé dense  in X', we have
e d dv,x') = f $-dvx} = k'(a) for every x' ¢ X', so that T,($) =

S & dv = a. If Cn = Pn n P, for each n, then Cn ¥ To—l{a} n P,

. by above. By hypothesis, {E e A : v(E) = a} = fx\}, and so Ch ¥ {XA}.

As (P, w*) 4 mpact the SLquence {L } converges ‘to {AA}

‘

in the Vietorls topology on the pover set of P [32].. If W is any

'closeé weak* - neighbngl

od«of;xA_relatlve‘to_P, then Cn < W eventually.

. : : . \ 5 . ' PR
Since v is noa-atomic, P is non-atomic. As u, 1s further finite~

dihgpsional, it possess é‘property (*) by Lemma 3;5, and sco Cn = ext Pn'
- / . . - -

Since W'is closed, convex 1n¢fgbnpains.Cn eventually, W equally contains

P, i.e. (Pn}*+'{xA} relative to the Vietoris topology, whence.

n
-1

LsPh = LiPn = {xA}.' Since {P:} 3 T; ra} we havé LsP = To_l{a},

"and so To—l{a} = {XA}. But then a e ex 34 v(A) by. Prop051t10n 5 1. This

completes the proof of the proposition.

PROPOSITIOV 5.3. If X isfquasi—complete and v : A > X is a measure,
then every extreme point of 1tb range is btrongly ettreme.

Proof: We first’show'ihaﬁ“tﬁe sets of exposed and strongly'expose&‘

points of P relative to the L, - norm topology coincide with P,.

1

. . Let'A € A, Then f = XA = Xpe is in L, and so
- : :

{¢ € Ly (¢,f) =79 £ d\ = A(A)}

1 Now,.if ¢ € P, we have

is;é h&perpldﬁg df L
(4,6) = Fo.dr -/ ¢ dh <), while (x,,0) = A(A),
) - A ) Ath.. ) . . . . .
e
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i.e., H supports P at Xpr Moreovcr; when ¢ € H n P,:we havc

- fc.¢ = f (1 -¢)dx , so that

A A | | B | ¥

$ = Xy A a.e., and we have H n P = {xA}. Hence XA is an exposed point

of P. To show further that xA is strongly exposed, let {¢n} be a

- scquence of elements in P such that (¢n,f) > (xA,f). Since the latter
ts-equal to A(A), we have
. ) 0 " . r ."
IIXA,7 ¢nl]i =/ Q- ¢n)'dx + fc ¢n dr = A(a) -'(¢n’f) 0,
SLA A - ,
<

14
~

so that XA € st exp P. ‘Hence
P, ¢ st exp P c exp P ©c ext P ¢ P,

the last inclusioh'being dbéerved”in.SZ. This proves the assertion.

e 'J Now let a € ext K, and assume that'a ¢ st ext K. Theﬁ there
.exists‘a,neigﬁborhqod V of a reiative,to K ;uch that a e Eg'(K \.V).'
Hénce, thefe_exiSts a net txn),of.eleﬁentg ofkco_(K_\ V)'conve;ging to‘ 

- | : kan} . | ' 'kn ” " » . o
: at LeF xp = j§1  an;j,én’j , an,j ? 0{- r i é“’j =1 énq‘. 8 ‘I\jysk

an‘j € (K\V) for -all j and n. Sinte X is quasi-complete; T.(P) =K

b

(see §2) and so for every j and ‘n there existqubn'j € P such that
To(¢n’j) =a, g Let, for every n,
’ )
. ”'kn
' - R L
_¢n j:l I\',j. ¢n)j

Since P isvconvéx; it contains-each‘¢n; add since P is'weak*_— compéét,
- there exists a sObnet (&m) Of’(¢h) that convérges‘to somé })2n P;, As
. To i (B,w*) + (K,w) is continuous, To(4 ) » Te(p) weakly, while

T°(¢n) = xﬁ > a byvassumptiqn, sb that é‘é T (9). Sihce.a ¢ ext K,
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there cxists, by Proposition 5.1, a set A € A such that & = XA A —a.e.

. . -1 . <
However, the met (¢ ) is in co T, (K '\ V) by construction, and so XA !
o . ' : -1 { , _.ﬂ) L
is ir the weak* - cicsure of co T, ‘(XK \ V). As-moted in §2, the.
weak* aund G(Lt,yw) - tbpologies coincide 09 P, and so XA is ‘also in the

U(Llilq) - closed convex_hull of T.,_l (K W V). . But the latter is the

&

samé és the Li - cloned convex hull of Toﬁl (K \>V) by Mazur's theorem
(20, p. 154], so x, € €0 T "L (K\ V) = S0 (2 \ T°"1°(q)), as V ¢ K.
: : , R _ ,

: : : - \ :
Since T, is continucus (see Proposition 3.1), T, 1 W) is-a»Ll -

heighborhood'Qf xA.re1ati$q to P. This means ‘that X o ¢ st,ext P, whiie,

~ by the assertion made at the Bcginning of the préof, X, € st exp P «

A

vst ext P, a contrudiction.; Hence the proposition.
LEMMA 5.4. If X is quasi-complete and v : A > X is a measure, then the

weak topology coincides with the given one on the set of extreme

“points of the range.

"Proof: ‘What we neced to show is thét the weak topology on ext K is
finer than the given topology. Let (xi) be a net in-ext K converging

. weakly to an‘element x in e;t’KL Phere then-exist, by Proposition 5.1,
E., E € A such that T;—l.{x.}:= {x.'} for every i and T5~1{x} = {x.}.
i’ . . i Ei - ‘ ] “E
Since X is quasi-complete, T,(P) = K (see §2) and as. (P,u%) is weak*-
compact-and T, & (P,w*) - (K,w) is continuous, it is biquotieat.

BN

According to Michael [34, ﬁrop. 2.2] there cxists a subnet (x,) of

i

(xi)vSuchlthdt,xE‘ Xfx " Since the weak* ~ topology coincides with-the

E°
l »Ll - norm topology on P,, HxE *'xélll »>.0. . But then, according to o
Proposition:3.1, T, is equallyjcontinuous.relative to the L, - norm

1

- ' ‘ . oA
VA o . : :
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topology on P and the given tqa!logy on K, and so T°(XE ) > Tolx,) in >
: ’ ' . w\. j : "
- the given topology of K, i.e. (xj) -+ x in the given topology. Thus

every weakly convergéﬁﬁ)net in ext K has a subnet converging in the

given topblogy. Hence the lemma. . , ‘ . : R

PROPOSITION = 5.5. 'yX_is Banach, every extreme point of the ;ange'of

' # . "
v ‘is a support point of its closad convex hull.

Proof: The closed linear-'span of the range of v is a Banach space,

which may be dénoted by X itself. Now K is weakly éompact‘and convex,
, . - S

b % so according to_Aﬁir‘and Lindenstrauss [1, th, 4] wé«have K = Zg‘(exp K),

)y ~whence it follows from Milman's theorem [20, p. 132] that the set exp K
() ' is weakly dense in the set ext K. Hence exva'is norm dense in ext K
0 by Lemma S.4. .

. .Let x-¢ eﬁtfx. Then there exists é'seﬁuence {xn}‘of exposed

ﬂ} 3. -points of K such that {lxh - x|]» 0. Let S* denote the closed unit

3‘5311 of X'. ' For every n there exists xnf € S' exposing Kiat'xn} As
R ,“K;is thqwcldsed linear span of the weakiyjccmpact set K, according to
oo T oA . ’ T ) o

. JAmir and Lindenstrauss [1, th. 2], the sequehge‘{xn'} containsna:sub_
~ sequence {xm'}'which is weak* - convergent ;6 some x' € S'. We claim
Y . ; ° ‘. E N . .
(PR that x' supports K at x. For let, for every m, Bm = suplfm' (K)
’ Sl ) ‘
\ ,

(= xﬁ'(xm)) and v = x"(%), B = sup x"(K). It clearly suffices.to
; o ‘ L ‘ R

.Apfbve that y = B. S .

. ) X R . . w* . ‘ o . .
! S Lo Sincewfxm'} -~ x', we have xm'ov(A) > x'ev(A) for every

" AeA. It follows from Vitali-Hahn-Saks theorem [12, p. 158] that’

“o 1im |x: Yeu|(E) = O uniformiy in m. Since x , X € ext K, there
' m - m D
A(E) - 0 ‘
a ‘ ‘;"' exist unique sets Em,'E in‘A sucﬁ:that x, = Q(Em) for each m, and’

| : 'i- .



x = v(E). As the sequénce {v(Em)} of extrecme points of K converges

to'v(K) € é¥c K, there exists, =s in the proof of Lemma 5.4, a sub-

1A

sequence {v(Ei)} of {V(Em)} sgch-that llXEi - XElll > o, if?‘

A(Ei A E) » 0. Thus lim ]Xi'dv](g) =0 uniformly in i, so that
: X(E) - 0 S :

lxi'ﬂv(Ei) - x.%v(E) |

Ixi'cv(Ei)_— xifov(E)i + ixi'°?(5) -vx'ov(E)I

tA

- §° ' . + 1 -io‘; : - J \ i > )
!xi v[ (Ei A E) fxgheu(B) = x"sv(E)] ~ 0,
whghce {Bi} -> X'-g(E) = y. As the finife'signed measufe x"-y has -

compact range, it assumes its supremum and so. there exists an F € A

such that x'-v(F) = max x'-u(A) = max x*(K) = 2. Now assuie 7 <38.

L . R R w¥x
Then there exists a .6 > 0 such that v + 8§ < §. Since {xi'} - x',

we ‘have 1im xi'ov(F)'= x'ov(F) = ?, and so Exi'oo(F) - 3] < (f2) s
. i N i N

eventually, whereas Isi‘— y| < (1/2) § evcncuallyff Thus, we have,
eventually, - o : \
By <y + (1/2) 8 < 8- (1/2) 6 < x Tev(F)

which contradicts the definition of Si’ Thus vy = &, and s0 x'

supports K at x. Hence the propesition.

N

PROPOSITION 5.7. Let X be Fréchet, vi:A->Xa measufe, and' T, be

open.: Then the extreme points of the range of v form a closed set.

Proof: Let {xn} be a sequence in the set ext K, converging to some

x € X. Since X is clearly quasi—complcte,.K‘= To(P) is weakly compact

»
’

(seé §2), hcnée closed in the giV?ﬁQtopdlbgy, and. so x € K. According
to Prdposition 5.1, for each n there exists a unique En € A.such that

xn'ﬂ v(EﬂO. As Pvand K are metrisable, and T, : P -~ K-is open,

43
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according to Sikorski [42, v] = we have To {\} T, -1 '\ }— Li {XP }

and so the sequence {XE‘} is couvergent, say to ) € P. Since Xg € P~

3

n S |
for every n and P, is closed in P, & € B,, and so there exists E ¢ A

Xg+ We then have T,  {x} ='{XE) and so x ¢ ext K by.

[/

such that ¢

Proposition-.5.1, completing thc proof.
‘The above propbsition vields, with the help of Proposition 3.3,

CGROLLARY 5.7.1. .The extreme points of the range of every finite-

dimensional measure form . a close«d set. : ' - : 4
&

-Remark:,, When X is infinite dimenéional; the extreme points of the
R . " - . . . .

range of v do not form a closed set in general. fn the example
considered after  Theorem 3.6 it‘may.be easily verified that
K (= cov(A)) = {5 + “-XIO,ll':.¢ ¢ P, 0 <asxll,

a‘nd A ] . N > : . | “x . .v . 3
o y . wr
& " . . ex't K = {XA ‘:l A C [0,1], < A(A) < 1} Y] {X + ([0 l]

A« [0,11, \(A) > 0).
Thus,-ext K contains Lhe converoent bequence {y[0 I - (l/hQ]} whose
limit x[0 1]_15 not. in ext K. ‘ . : : i»
'y B I . /
,-’v. 3 )

6. Exposéd points of the range: In lemas 6.1 and 6.2 of'this section, -

>

X is any L.C.S., in lemma 6.3 and Theorem 6.4 it is Quasi—céﬁplete

and 1n the rest of the suction, X is assumed to be a Banach space..’

We recall that for every x' € X', Vot denotes.the re,

n.

measure x'ov. . : ’ e

- o L. L : . - S C 4
v//x . : . R i
) oo . ] . ) G

Lo ’ . - : . : . S C S
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LEMMA -6.1. If v ;: A~ X is.a measure, vhere X is a L.C.S., an x' € X'

exposes the range of v if and only if any of the following conditions
¢ N ) ‘ > )
‘holds: . !

a) The real measure Vo = V. : .
. ‘ I ‘ : g
? t

b) The real measure Ux' as$éumes its maximum only once.

‘

e

uppose that x' € X' exposes v(A) at x,. Let 8 = max x'ov (A)
={x € X : (x,x") = 8}: Then HB n v(A) = {x,}. Since vx,'<< v,
L 4 . — Sk

we need to verify only that v << Vo Assume that lv*;](N) =1 for

) : A . ) K "“ - ) H . -
seme N ¢ A, but ¥ is not v - null. Let S, S be . Hahn-decomposition

: + +o + = e
for_vx,, and N = Nn S, N =NnS . Thenw N and N cannot”be both

N v + * i ) 7 .
v - null. If N is not  v- = null, there exists Nl c A, Nl < N+ such

that u(N1)‘¢ 0, .and siﬂce.ﬁl (C-N) is Vo - null, we.ha&e
8 .= max Vo . A)Y = (v(s )\x ) = (v(S+ \ Nl);x'), :i.e.' H8 n V(A).

'Nl), which is not

. +A',
contains the distinct ppints_v(s.) and v(bf \
possible. In case N is not v - .pull, there similarly exists a

Qx' - null set Vl-e A,-Nl c N such'that"v(N,) x 0, and then

B8 - mam v ; (A) (V(Sf),s'?

(v(S+ D.Nl), x"),- which agaln leads to

It

s a'céhﬁrédi;tlon. Hence.N is v'-.null, so that (a) holds.
" Now let - (a) hold fér x'. ;Hith 3, S+‘aﬁd S~ aszefore,
g = v ,(b ) : Let E be- any\gif in A for which Y ,(h) = 8. Then
,(S ) = v ,(b) 1nd SO v .(%//\ E) = Vo (E \ S ). These must be

+ :
zcro since S \vE is purely Ver T positive and E \ § 1is purely

RV ncgative. But tth ChLbe sets are vx, - null, and since Vx' E
x .

they are also v - null whencg E A& S la v = null, prov1ng that (b)

:holds.

x,

S

In case x' satisfies (B),:we(hay§7v(A) n g% = {v(Sf)},
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. L
and since HB clearly supports v(A), x' exposes V(A) at v($+), This
completes the proof of the lemma.

a g e . :
COROLIARY 6.1.1. - (Rybakov [39]). 1If X is Banach and v :§9;} X is a

measure, then there exists an x' e-X' such that Vot z v.

Proof: We firstly observe that-exp K c exp v(A). For if x ¢ ewp K

thén x‘e ext K so that x ¢ v(A) by Corollary 5.1.1. Let H be a
xhyperplane of support of K such that Hn K {x} Since V(A) < K and
X e v(A) n H 1t follows thdt'H cqually supports v(A) at x, sé
:{x} c vCA) nHcKnH= {x}, i.e. v(A) n H = {x}, whence‘x €. exp v(A)f

No&_acéording to the Theofeﬁ 4 of‘Amir and Lindehstrguss {11, K hés
" at least one exposed p;int. Hénce exp v(A) = &, so there exists an
x' e X! éxposing v(A), énd the resuit'follows from Lemma 6. 1.

LEMMA 6.2. If B‘is a closéd éonvex‘set‘in‘p L.é.é.,‘A < B and A,,B
have the same éupporting h;perpianes,‘tﬁen exp B < exp“A and st exp B
< st exp A. |

Morcoyer, if B is weakly compact and ext B,; A,Vthen A aﬁdh

B have the same expoéed points.

25292: let b ¢ exp B. Then there exists a hypérplaﬁe H of supbort of
stuch that ﬁ-n B = {b}. By hypothesis, H equally:suppérts A, so ve
have ' ¢ #HnAcHnB.={b}, i.e. Hn A< {b}, and b e;exp’A.

| 1f b € st exp B, then.b € exp.;j\héﬁce b e éxp.A by above.” . -
Let H,= {x e X3 (3,x')v=‘m} be é supporting h&perpiane'of A such that
 ﬁ4ﬁ A= {b}, and let (a )'be a.nefvin A such théx‘(a ,x') - (b'xf).
>51nce a € B for every n, and b is a strongly exVOsed point of B, we

5

have (a ) > b, so that b € st exp A. . //



L4

As for the sccond part, we need to show that éxp A < exp 8.

Leé a € exp A and H beva‘supporting imyperplanc of.A such that H n A ='{a}.
Then ﬁ is by.hypothesis equally supportéd by U, and Bn His a‘hbn—voidb
»ueékly»compﬁcé convex set. Now ext (B n H) é ext é (sece, e.g. [18,

lemma 2])  whereas e#t B < A by h&pothesis, so that ext B n H ¢ A.

Thus ext (B n H) c AnH-= {a} whence B n U= co fa}. = {a}. llence

a e'éxp B. ' This completes the proqﬁ of the lemma.

PROPOSITION 6.3. If X is quasl-cunplete and v : A > X is a measure,

then v(A) and K have the same exposed poxnts.

IR o

Proof: ,EQen if X is a L.C.S. the sets v(A) and K have the same

supporting hyperplanes. For-if 3' € X' and R®_,, a*, denote the

sup x'oV(A) and inf x'ev(A) respectively, we have

x"(K) = :c'_('co v(A))‘,_= co rf'oV(f‘\)_é [ e300,

>

l - vron . . :
‘wﬁgnce,ﬁxi = sup x"(K). Thus, every x' ¢ X' has the same supremum on
v(A) and K, and thé assertion follows.
f.Furthcr, since X is quasi—compléte, the set K_is:wedkly»

LICEE .
vt Ip

‘S nce ext K < v(A) by_Corollary 5.1.1, it follows from

4 . P

Y fg;gt K and v(A) have the same ekposcd points. b
oy "f;";

o

exposed polnts of v(A) andqi are strongly exposed.

25225:. Let us firstgprbvé the inciusion exp v(A) < st-exp K. Let
v(A) € exp v(A), The;:th§~' exists<;n x' € X'.whigﬂ,expoéeS'y(A)'at-
v(A) . According:to,Lémg; , We have vx,-£ v.  Let A ='|ox,[f
SupboSeﬁthat tgh) is § net in:Kvsuch‘that-(xn,x?) +'(v(A),$‘) =B {;

v
o

- . S

If X is qua51—complete and v ;‘A > X is a meusure, then «&he

47
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#

. + v;— C 4 ) L ‘ +
Let S, S  be a Hahn-deconposition of S relative to Vre Then A A S
" is v - null by Lemma 6.1. Since X is quasi—compthe, K is weakly
compact and T,(P) = K (sce §2), so for every n there exists $, € P

for théh T°(¢é) = x_ . Then (x ,x'" = (S ¢ dv,x'). = [ by Ve

Let v:. , v;. be the positive and negative variations of v .. Then

Il

s IXA - ‘bnl di f [XS+ -."bn' da

i

S =) da+ £ p d)
S+ . n® - 'S n

ash - s

- X
.S .

m)

dv
n

—(x,')+0

il
™
><

’ ’

.Since To : P> X is continuopsvrelative'to the'Ll,— noro oy-Proposition
3.1, T°(¢ ) » TO(XA), er; (xg)_+ Q(A); so that v(A) € St cXp K; whenee
exp v(A) <. st exp K. - R | | | |
As observed in the proof of Propositioo 6. 3, the eets K and
v(Aiihéve the.;eme,Supporting hyperplanes) and so by Lemma 6;2, we
v ) o _ N

have St exp K c st exp v(A).ﬁ We thus have -

ot

exp v(A)bc st exp K ¢ st expev(A) C‘exp v(A), i.e.

exp v(A), = st expiK T St exp v(A), s'nd ‘since exp_v(A)

W
©
X
o
=~
o
<

A Proposition 6 3, this proves the theorem. - o - ' B
: LR — ~ : ' '

In the rest ¢ :his section, we extend some of the results

of Husain and Tweddle [18] on extreme polnts to exposed poian. The

; proof of the following proposition.is a modification of theirs. From

‘now‘on'x is assumed to be Banach.

1 . -
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If A and B;are compact. convex subsets of a L.C.S., exth A {

-

is defined [18] to be the set of extréhe points x of A for which there

exists some extreme point y of B such that x + y ¢ ext (A + B). The

sets exp_, A, st exp, A and st ext_ A may be defihed adalogousl .
© B Pp ' : may y

o

B

PROPOSITION 6.5.. If A and B are two weakly compact convex sets in a

Badééh space X, t,henvst‘expB A is a Qeakly dense subset of ext A.

Proof: let C = co st expy A. We shall first prove that A+ B = C + B.
Suppose that x € st exp (A + B). Then there exist a ¢ A and

b € B such that x = a + b. There further exists x" ¢ X' strongly

exposing A + B at x. It then AoTToOuws essily that x' stronély‘exposes

.

-~ A at-a and B at b respectively, whence a ¢ st expy A, and so X € st expB_A

+ B. Thus,st.exp (A + B) < st expy A+BcC+ B,"SAsgC@ghd B zre

" weakly compact and convex, so is €+ B, and since . C < A we have

"o st exp (A+ B) ¢ C+ B < A+ B. Since A + E is weakiy compﬁct and

N -

bconﬁex,lachrding to Troyénski-[43,‘¢or;'7];we,haﬁelzz st exp (A + B) =
: A + E'and éovA + B =C+ B. Thus;A = C by‘the'caA;ellation léw in. ‘
\ ii8;f1em; ]]é@hcuce A= co sk‘exps A. Tﬁe-;esuit.now followé from
Miimaufﬁ'theopcm. o

. Ui . o |
- Since ext A‘contains the sets st ext A, exp A and st exp A,
'and_st expB'A is contained in cach of‘exfB A, st exts A and expy A’&e

N .:‘l{\'g “”u.
: = N
have | HIR

COROLLARY 6.5.1. If A and’B are two Qeaﬁiy comfaét convex sgts in X,\ S

A
. :

'then'cxté'A is a weakly dense subset of ext A, and the'saﬁ%;
"replucing exggby exp, St exp and st ext.

.




fad

”.ATS 1.1, there ex&st F ‘G'e A F c A, G < A ~such that x

"hfv(E) if- and only 1f it exposes K

3

e ..
LEMMA 6.6. If v : A X is a measure and A ¢ A, then we have

H{v(E n A) : v(E) ¢ exp v(A)} < exp vA(A) c {v(E n.A) : v(E)‘é expv(A)ff.

‘Proof: Let K = ‘co v(A), Kl = E;'vA(A) and'K2 = co oAé'(A)L‘ Then by - -
»Proposition 6;3 we have exp o(A)'='exp;K and exp v (A) = exp Kl;~ To

.prove'the_first”inelusion let E € A be such that v(E) c exp K It

' is'easthofseefthat K = k +. K2 and that an x' ¢. X' exposes. K at

at v(E n A) and K, at v(E n A )

1 2

'.respectlvely. Thus Vv(E n A) e exerl.

€ exp K . Then there.

To prove the second inclusion, let x 1

. . coe . .“/ v . ’ l
.exists-an x' ¢ X' which expoSéSuKl“at,xl. Let

S

=»{x'e K : (x,x") = max x'(K)},

Kyt
‘and
B ) = . e " ' = <!
KZ,x' {xe K2 .‘(x,x ) 'max x (K )1

It 1s easy to see that max x (K) .max X (K ) + max x (K ), and since

'5exposes K

l'at X;» 1t follows that K ! T X + K ;. Since Kx,.
45‘ - .

i 1. 2,x
is weakly compact and conyex, it has some extreme point y, and it is.

p]
24

.eqoally_an extreme_gplht of K (see, e.gﬁ:[18, lem. 2]). ‘Then there

. .,' : i " ) . . .
exists x, € eith .., such that y = xl + x2 According to Corollary "

I

1= v(F) and

f@b noted in the proof -of Propositlon 5.5, exp K is norm- -
51 :
densé*ln ext K and so there exlsts a sequence {y }. in exp K converging

o

tq‘y Actording to Corollary 5.1.1. there exists Hn € A such that

;i,yh = v(H ) fBr each n. 'As T, : (P,w*) > (K,w).1s‘biquotient,>£hefe»“

“Jc;exists; as. in the proof of Lemma 5.4, a subsequence {v(Hm)}‘of

50



'.XFU Gl{l') 0‘))':}:0- Hm » Fu-G _i..n -IA.

. ) ’ . N ‘ “ l.ﬁ/ '
{V(Hn)} Suco Fhat5||xﬂ
. A f ' .L, : 5'1: A ‘
) ¢
Since the operatﬂ%n (A B) -+ A n B is coutlduous -on A s A rel1tive to
the : product topology’ []6, p 168] we have H nA> (FuGn A=F,

Due Lo ‘the contlnuity of v ,we pct l[v(H /\ A)‘*'J(P)l[ > 0. Since

3

v(Hm) € exp K for every m, it follows that xi'= v(F)e{v(E’n‘A);:
v (E) € exp K}_»~completing'thefﬁﬁoof. ' >
e ' v i ) - ; .

.~ THEOREM: 6.7:' If cxp'v(KSQis weakly closed, then For, eyery,A~e A,
We‘v have'};" ’ 3 E o KJ ' ‘ ’ 5 i . . . , .._ E
e, (A) = ((E 0 D) vE) € exp v T

Proof Accordlng to Lemma ‘6. 6 1t sutflces to prove that the set on*the

i ’ s

‘ right hand‘side ib norm c]osed , Let v(E ) €. pr v(A);Eo; evecy:n and
suppose that l|v(F n A) - xII +.0. fhe set exp “(\) is, by hypothesis,
a Wcakly closed subset of the .weakly compaét set k, awdvso it 'o wcakly

' oompact. ~Since ‘the norm andbweak topologies coincldo og exp v (A) by
'Lemma 5 4, this set is furtber noxm. cbmpaot.v Héoce toefe exiots a
subs;quence {v(E, )} of {v(F )} converging in. thevnorm to some v(E) €

exp v(A). As ln the previous proof nhere exists a,subsequence
(v (E - 0, i.e. I-:_'j > E, and S0, -

j)] of {v(h )} suuh that IIXE - Xl

b'll
J -

as before, E, nA~E n A, As v is continuous, ‘we have-

|lv(Ej nA) - v(E n A)ll » 0. But ghoh,‘by hypothesis, !lV(Ej i A)’f:X'L*
o 0 and so we have x = v(E n A) Sinte'v(R) e exp v(A), this cohggetes"
the proof of the theorem. ' &

RN
SN

Remark: When exp Q(A).ié not weakly closed, the qbove-chéorom need noﬁj
) hold even for a finite dimensidnal measure. “Let Vl'be alnonéatomioxl’v.'

1
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. . s . . fte) ) .
measure defined or the g - algebra of Borel subsets of A - [3,1],

, o 9
whose range is the closed unit disk im R™ (see Rickert [36]), and let
v, be another non-ateomic measure deflned on the a — algebra of Borel

subsets of B = [1, 2] whoae range IS the segmunt from (0, 0) vo (1, 0)

Let A be the g - algebra of norel subsets of [0 2], and dctlne the

measure v A_+ R2 by »(E) = v (E nA)+v (E n B), E € A The range

S _
of v is the convex hull of {x : {xl <1y u {x: |Jx~-1f < 1}. Now,.

- (0,1) is an exposed point of yA(A) and it is easy to see that (0,1)

is not of the form v(E n A) for any exposed point v(E) of the range

of v. ' .

7. Residuality of exposing functionals. In this section X'is assuned

to be Banach up to Theorem 7.2 and in Propcsitions 7.3 and 7;4jit is

Aqﬁasi-complete. If X is a weakly compact convex set in X, we let

Koo = {x e K: (x,x') = max x"{X)},

and we define g ¢ X' > R ‘to be the map

[}

pK(xf) :digm Kx' - .;‘ x"g X'.

Pl

: LEMMA 7.1. For any wéakly’compact cbnvéx set K, the map pK is .

continuous at. every x" in X' whlch sttongly etposes K.

”Prdoff Let x"e'X'~be a stroﬁgly eprsing.functiohal of K. Theﬁ Kx'-

. , . R ’
is a 51n01eton and so pK(x') 0. Suppose that pk is not continuous
at x'. Thcn there exlsts g >- 0 and a sequence {x '} conVLrgino to x'

for whichfpx(xn') > ¢ for every n. vThus, for each n, there exist a

" and b in K_ , such that ||la_-b_ || = (/2) ..
: nox , n o ; o

n

. . Since K is weakly compact, {an} contains, by. Eberlein's
. ) _ o . Lo

L
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i

_contrary'to the choice of ah's and b 's. ~Henc

.set of strongly exposing funCtionals of K is dense in X ‘then the set

. theorem [40, p. 187],a subsé§::;;;—;;;\} wvhich convergeS'weakly’tu scme

i

poidt*?‘i%§g.“ Similarly, {bn } contains a subsequence {bn } which

s ot i ' ' i,
ii;qO” : I ; . J

‘converges weakly to some point b in K. Let us denote the seqhgnces

€ . . .

(an- } zmd'{bn 1 é%&ply by{a,} and {b } . Since |]x,' f'x'll + 0,

i Pny j i *3
R | BRE -
and-K is bounded, we have sup ‘|x.'(x) - x"(x)| -~ 0. Hence the chuence
- xeK - Y I '

J'(K)} of conpact lntervals converges to thL conpact 1ntnrval X (K)

in the Hausdorff metric. . If B, = sup x ."(K) and B = sup x'(K), then we

3

have'Bj > 8. Moreover,

‘[x_'(aj) —bi'(é.)l < sup {| '(x) --x (x)l X € K}‘+ o,

and since {aJ} + a weakly,‘we have X (aJ) *vx (a), whencc, x (a ) > x'(a).

But'then,»fér-every j,we have ?j s.Kx t> SO Fh;t xjf(aj) = pj, 3nd so’

J
' X'(a) s lim Bj = 8. ﬂ?urthe;"since k'(éj) *‘g'(ﬁ)'éhd x! sttgngly_
exposes K at a, we have [Iaj’— al] -+ 0.
By, %ﬁsxmilar argumenc, .one obtalns x'(b) = B'and ][bj - bl
aﬁﬁh“ L . SRR

‘Hfgg; Since x )~xposes K, we have a = b, so-tbit l|aj - bjll > 0,.

N
3

' P is continuous at x'.

)

THEOREM 7.2.. If K is a weakly compact convex set in X such that t

i

% © of exposing functionals of K is residual in X'.

a3

‘ Furthef, if every exposing functioﬁal-of K is strongly

exPoaing, then they form a G& Seé_residual in X'.
..ﬁ\ . N
3.

Proof: “Let C denote the set of points:of continuity of ' and let

53
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X ' and X_' be the sets of exposing aund strongly exposing functionals
e S ’ o ! . 3 B .

of K in X'. Since X 'is, hy ‘hypothesis, dcni_ in X' and py vanishes

'

at every p01nt of X ‘; QK ig zero at every point where it is continuous.
: ‘ 3 G, < . | '
But then x' efyoses ﬁ whénever 0 (x ) = 0. We thus have, with the
help of Lemma 7. 1,
X'ccaex '
s e ' - »
,Since,the:points_of continﬁi:y of ‘any real‘ﬁalucd function
form a Gd set, Xe' coﬁﬁains the dense GG set C; énd so Xe' is residual
in X'. In casgﬁxg? c Xé';-we have Xé' = C, whence tle second part of
the thedrcm.
In-case of ﬁhe’rénge'of a measure v, according to Corollary
6.1.1 there exlsta at least one x,' € X' which exposes v(A)\‘ For any

‘other functional x’ € X' it is easy to yerify (éee [39]) that all b

.couutably many elements in the segmcnt'f}om Xo' to x' expose v(A), jnd
so Xe' is dense in X'. It was proved in Theorém 6.4.. that Xé’c X;.. = (

Hence, the.above theorem gives

COROLLARY 7.2.1. _be‘the range of a méasﬁre, its eiposing functibnals:

form a feéidhal Gsléet in X'.

. ',"i‘i Lo -
With the help of ‘Lemma £.! ‘this cproliary/yields in turn

.

COROLLARY ~7.2.2. (Walsh [47]): For’QQery_measute‘v, those

* which x'fw z v form a residual G<S set in X'. ;._.,

-,&-

Since the 1ntersection of counLably many residual subéets’df

X' is again residual in X', we furthur obtatn‘

- COROLLARY 7.2.3. '(Drewnowski [11, th. 3.4)) If-{vn},is_é_sequenCE“of_
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meosufes with velues'in.X, theﬁ thosevgﬁ%G.X' for which x'°vh oy
'. for‘every n form'a'reﬂsidualfc6 set in X',

RemarF‘ The theorem of Ualsh, or even Rybakov 5 theorem does not
"hold in éeneral when X is not Bandch. In fact there exiSt even con-
trplled measures wlth values.id/:éseparablelFréehet space for wﬁich
évbakov's‘thepreﬁ does not hold Let, for example X b product of
countably nany copies of the real line with @he product topology, e J
S = [0 2], A" be the. g - algebra of Borel subs§te of S and A = (‘Eh ,'5%;1]
for n = 0,1,2,...' . -For every E < A let J(E) (\(E n oA ))

where A is the chesgue measure on A , Then v iAo Xis a measure

r

eontrolled by ‘A and, clearly, v(A) =_% il "[O, -%—n]',." As observed
' : C ' SR¥r -n o :

by Klee [22,Kp. 961, K has nolexpOéed pdints.‘ It follows from Lemma 6.1

that Rybakov's théorem cannot hold for this v.

. Frem now on we. assume X to be quab1—complete Let X be the

lineer‘span of K and X, ‘be the dual of X,. The Jackey t0pology

n(X,"' Yo) for the. duallty (XO,X ) is the topology of unlform convergence
on convex, circled and O(XO,XQ ) - gompact subsets_of X° {20, p. 173].
The polar of a se't_A_C'X° iefdefined to be the following subset of X,':

‘A? = {x' € X," : sup |(x,x )| < 1}
o ' X€A
we prove the follow1ng propoeitlon for-the exlstenue of ‘a

bounded Mackey*neighborhood of zero in Xo needediln'the next one,

"PROPOSITION 7.3. If v i A > X is fllﬁ:rolled measure, then the

epaee (X' ,m(Xo',X,)) is’notmoble.' ’



‘Proqu Let v have a control measure A. As X is quasi-complete, K is

. i N

c(x,x') —~ compact, and so according to the Hahn-Banach theorem, f/is.

equal]y a(Xo,X ,‘—4comﬁaét. Thus'K1 = K - K is convex, circled and
. \- - : .

o(ko, 'y - cornpac§ Tﬂe@kt V. ;.'Kle is’%refore a zero neighborhood

7

_for the Waqkev t:%ology %h_gza .L'mllsuffice to prove L at- V is

[
Hackey—bounded toglthen X!

o SlnCe v A, we have vx,
.

idénf&fy vx,-with its Radon—Nikpd?m defivatibe Qith'respeét' |
thi. Define f ;: X,' » L (&}be f(x') = X" for every - x-;é'xo',eand
lét';he range'of f be denoted by Lo.A We claim th;t f(V) = S,, where ‘
é; is thé‘eaosed‘unit ballugifLo; anQythat f is one-to-one. 4
. . -~
For every x'”e.k:f\we have
@ el = e =8, - = s e,

xeKy

wﬁéﬁce x' % V if and onlv if llf(x )Ill l, aﬂa so ka);=

Further, 1f f(=') =0, thqn x* vanishes on' the range of v. S;nce the
‘1inéar spgh'of‘v(A)»is all of_Xo; x' = 0, and so-ﬁ ié one—to—bne.' Thus,
g =f 'is"a map fromn L;tonto X.'. |

- | Next , we clalm.that g is contlnuous relative to the O(Ll’L')

- .topology on L, and the G(X sXo ) - topology on be. let

=
I
o B

{x' e X' : l(xj;xf)l < 1}, where x5 ¢ X, for each j. Since K
1 . : :

3 » , '
is weakly compact, T(P) = K (see §2), T(L;) is then the linear sPan of K,
and so is equal tc Xo. Thus, for every j, there exists an clement ¢j~:

dfylb such that X5 =7 ¢j dv. Thed

U = n {p e Ly ¢ l J 4’.

] | v jdu' < 1.}



G

‘.

is clearly a O(LL,LD) - neighborhcod of zero in L,. Ef‘vx, € U, since
'. ‘ .

g(vx,) = x', for each j*we havg (xj,x') = (f ¢j dv,x') = f ij dv‘,,

éL that x' ¢ W, i.e. g(U) ¢ W. Hence g is continuous.’
Since Sy = £(V) is bounded and g is one—to—one, linear and

continuous, V = g(S,) is o(X,",X,) - bounded, and so Hackey-bcunded.

: %

This completes the préof of the‘ppopOSItioh.

a
. -

PROPOSIFRON 7.4. If X is quasi-complete, thosa x' in ¥X.,' that expose
the range of v are residual in eQery bounded m(Xo';Xo) - neiéhbothood

of zero that constitutes a Baire space.

Proof: let £, V, 5 o and L, be as in tﬁp prévious proof. 'As we saw

there, we have f(V) = S,, and so £ is continuous relative to the fﬁf
, . - . .u‘

y "

Yoty
. g o : O ‘
Mackey-topology on X,' and the Ll'~ norn topology on its range 'L,.
‘Let W be a bounded lackey-neighborhood of zero (the existence. of

‘which follows from Proposition 7.3) that constitutes a Baire space,

and let K' = f(W). Then according to Walsh [47] the set of ﬁll

n

Xo' € W for which Vx1 << v , for every x' ¢ W is a resideal G
- . o . '
in W, and.since W is ‘absorbinz, we aave Ver N9 bx' for .every x's X',
. 3 M _
1.e."y'<§ v*; for such x5. [fhe conclusion now follows from Lerma 6.1.
. o
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