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Abstract

As a dialect of declarative languages, logic programming possesses the
distinct property of separating declarative semantics from operational
semantics. Despite its prominent features such as logical variables, bi-
directional data flow and functional invertibility, the runtime behavior of
non-deterministic logic programs is far too complicated and too difficult
to control. Another major shortcoming of logic programming paradigm is
the utilization of ‘flat-natured’ first-order constructor terms. With function
evaluation, higher-order programming is possible for functional languages,
whilst the expressive power of first-order logic languages in this count is
severely restricted. Attention is drawn to integrate logic programming with
a restricted class of first-order functional programming through an explicit
treatment of equality. In this thesis, we propose a conditional term rewriting
system which serves as the bridge to combine these two paradigms in a purely
logical framework. The completeness and minimality characteristics of such
system under a subset of classic equality, namely E.-equality, are further
investigated. A major contribution of this proposed system is the existence
of an efficient implementation scheme which is readily portable to existing

Prolog systems.
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Chapter 1

Introduction

This chapter outlines the motivation and objectives of the thesis, and some
basic concepts of logic programming. The overview presented is far from
complete and it only serves the purpose of allowing the thesis to be self-
contained. Interested readers are referred to [Hog84, Kow74, Kow79, Llo84]

for details of logic programming.

1.1 Motivation

Based on Von Neumann’s model of computing, the center stage of
conventional computer architecture is the sequential data flow between a
central processing unit and its memory. Imperative programming languages

tailored for such models suffer from what has been called “Von Neumann



Bottleneck”. Since each program state is dependent on the state of its
associated memory cells, exploitation of parallel execution is hindered by the
sequential data transfer inherited from its underlying computer architecture.
More critically, the control components used to alter programn states must be
embedded and mingled with their logic counterparts, resulting in a drastic
increase of programming complexity. When compared with imperative
languages, the most appealing feature of declarative programming languages
is the distinction between what the output of a given program will be and how
the output is obtained. Decoupling logic from control reduces programming
complexity, promises higher expressive power and improves the possibility of
parallelism. Two major schools of declarative languages, Logic Programming
and Functional Programming, lay their foundations on sound mathematical
logic to simplify their syntactic and semantic constructs. The most popular
form of logic programming is based on first-order logic while functional
programming traces its origin to lambda calculus. Even though these two
paradigms exhibit different programming properties, each of them provides
many exclusive but complementary features which makes it worthwhile to
combine them under one roof. In particular, lambda calculus can be dealt
with as a first order theory with equality. Attention is drawn to formalize
both in a purely logical framework, which combines logic programming with
a restricted class of first-order functional programming through an explicit

treatment of equality.

(3]



The technique for solving systems of equations has been commonly used
in equational logic programming. In the context of equation solving, two non-
ground terms are unifiable if there exists a variable substitution such that the
substituted terms are equaled in a well-defined framework. This seemingly
simple definition can be viewed as a notion of E-unification [Plo72]with two

open-ended questions:

o How to establish the equivalence between different terms?

e What kind of framework is suitable for proving equality of two different

terms?

1.2 Objectives

Equivalence between different terms is traditionally defined by an equational
theory, which in turn, consists of a set of equations. The left hand side
(L.H.S) of each equation is ‘semantically the same as’ its corresponding right
hand side (R.H.S). Equation solving can now be characterized as unification
modulo an equational theory, through a prescribed operational semantics.
Recent research in amalgamating functional and logic programming has
emphasized the existence of a complete and efficient operational semantics
for certain restricted classes of equational or functional languages. Almost all

these proposed languages rest upon the classical first-order equality axioms



of reflexivity, symmetry, transitivity and substitutivity. Inspired by the latter
question, another area of research has been focused on non-trivial equality
theory opulent enough to capture the intuition of first-order functional
programming so that an efficient implementation exists.

The work attempted in this thesis is divided into two parts. The first
part (Chapter 2, 3) is an overview of various aspects concerning combination
of logic and functional programming. Chapter 2 presents current issues
regarding the operational semantics for a resulting language. Chapter 3
is devoted to the discussion of a restricted equality theory, namely E.-
equality [You88)], and an efficient reasoning mechanism for this particular
equality. theory. Chapter 4 and 5 constitute the latter part of the thesis,
which proposes a conditional term rewriting system under E.-equality. The
operational semantics is a version of extended unification based on Outer-

Narrowing [You88]. The primary objectives of the proposal are:

1. to investigate the completeness and minimality of the proposed

conditional term rewriting system under E.-equality.

to define an extended unification mechanism for such system.

o

3. to define an efficient implementation scheme which can be easily

incorporated into existing Prolog interpreters/compilers.



1.3 Theory of Logic Programming

As a direct outgrowth of research in automatic theorem proving, in particular
the development of Resolution Principle [Rob65], the fundamental idea of
logic programming is to materialize the concept of using “predicate logic
as a programming language with sound theoretical foundations” [Kow74].
Realization of logic programming language as a tool to axiomatize and
infer over a given problem domain is justified by its special features such
as separation of declarative and operational semantics, non-deterministic
program execution and manipulation of partial data structures through
logical variables. Its intelligibility is further reinforced by the procedural
interpretation of Horn-clause subset of first-order predicate logic. Although
we are concentrated on Horn clause logic in this thesis, the notion of logic
. programming is by no means restricted to this modest subset. Horn clause
programming must be extended in various directions in order to fully compile
with the broader view of logic programming:. deduction as operational
semantics for programs represented by formulae of a well-defined logical

system.

1.3.1 Syntax

In the programming environment, the usual meaning of syntax refers to the

way in which elements of a specific alphabet are put together to form an



admissible language construct. Similar to first-order theory, an alphabet A
consists of four mutually disjointed classes of symbols: variables, constants,
functors and predicates. The building blocks of logic programs are terms and
atoms. A term is either a variable, a constant or inductively defined as an
n-ary function f(ty,...,t,) where ‘f’ is a functor and t;,...,t, (n 2> 1) are
terms. An atom is an n-ary predicate p(ty,...,t,) where ‘p’ is a predicate
symbol and t;,...,t, (n > 1) are terms. The basic syntactic constructs of

(generalized) first-order logic programs are clauses of the formn
Hl,...,HmbBl,...,Bn

where

Hy,...,Hy and By,...,B, (m 2 0,n > 0) are atoms.

Each clause is implicitly quantified by an universal quantifier, so that the

aforementioned clause is equivalent to
Vx H,...,Hn « By,...,B,

where

X is the set of free variables appearing in the clause.

The scope of a variable is bound to the clause containing it. Speaking

of Horn clause programming, Horn clauses are restricted to those clauses



with at most one atom on the left hand side of the connective symbol “«"
(i.e. with m < 1). These clauses can be further classified into two categories,

program clauses and goal clauses. A program clause takes the form of

H « By,...,B, (n2>0)

The atom H is called the conclusion or head of the clause, whilst B;,..., B,
are collectively referred as the antecedent or body of the clause. Program
clauses are also known as rules, whereas special cases of such clauses with
empty body (i.e. n = 0) are known as assertions. A set of program clauses,
whose heads are atoms with the same predicate symbol and arity, define a
procedure for that particular predicate symbol. A logic program is just a set
of program clauses (or procedures) whose inference system is triggered by a

given goal clause. A goal clause has the form of

*_'Bla'“’Bn (HZO)

Each B; (i = 1,...,n) is called a subgoal of the goal clause. An empty
or null clause is a special goal clause with no body at all. Null clauses
are traditionally interpreted as contradictions. Fig 1.1 is an example of a
trivial Prolog program. The predicate grandson(X,Y) denotes that X is the

grandson of Y, and son(X,Y) means that X is tl.e son of Y.

-~1



grandson(X, Y) « son(X, Z),son(Z, Y)
son(Joseph,Terry)
son(Terry,Louis)

? grandson(Joseph,Y)

Figure 1.1: A trivial Prolog program

1.3.2 Semantics

The study of programming language semantics deals largely with
interpretation, truth and meaning of the program constituents. In the
context of logic programming with predicates as basic constituents, every
n-ary predicate denotes an n-ary relation over the Herbrand Universe. The
semantics of a logic program P defines a set of n-tuples < ty,...,%, > as the
denotation (or meaning) of predicate symbol ‘p’. Three different kinds of
semantics are developed for logic programs: operational semantics, fizpoint
semantics and model-theoretic semantics. The denotation of ‘p’ defined by
operational semantics is a set of n-tuples < t1,...,t, > such that p(t,...,ts)

is provable from P through a sound inference system.

Do(p) = {< t1y..+,tn > P F plt1y...,tn)}
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Viewing from another angle, a continuous and monotonic transformation 7p
which maps a set of clauses to ground clauses, is associated with each logic
program P. In light of fixpoint semantics, the denotation of ‘p’ is a set of
n-tuples < t;,...,to > such that p(ty,...,t,) belongs to the least fixpoint
(ifp) of Tp.

De(p) = {< t1,-. s ta >[ p(t1,.. ., tn) € lip(7p)}

In model theoretic semantics, the denotation of ‘p’ is a set of n-tuples

< t1,...,tn > so that p(t1,...,t,) is a logical consequence of P.

Dm(p) = {< t15.-0ytn >|P l=p(t1,...,tn)}

These three semantics are shown to be equivalent [VEK76] even though they

define seemingly distinct meanings for a given logic program:

Operational the set of atoms that can be derived from the
program

Fixpoint the least fixpoint of the program transformation
operator

Model-Theoretic the set of atoms that are logically implied by

the program



1.3.3 Procedural Interpretation

The informal declarative meaning of a program clause H « B,,..., By is “H
is implied by B, and ... and B,”. It only describes the logical relationships
among constituents of a clause. Without procedure interpretation of Horn
clauses and an efficient implementation, realization of logic as programming
language will be infeasible. Procedural interpretation views the above clause
as a procedure definition whose name is H and the body By,..., B, as a set
of procedure calls. The procedure H is invoked by a procedure call G; in
the goal statement « Gi,...,Gn. To execute H, each B; must be resolved

through a series of procedure invocations.

1.3.3.1 Unification

Unification plays an important role in resolution, which is the single inference
rule used in (trivial) logic programming. To begin with, the concepts of

substitution, unifier and most general unifier are introduced. A substitution

is a finite set of the form
6 = {Xl/Sl, e ,Xm/Sm}

where

X1, .+ .,Xnm are distinct variables and each s; (i=1,...,m) is a term

with x; # s;.

10



Each element x;/s; is called the binding for xi. Composition of two
substitutions 6 = {x1/s1,...,Xm/sm} and ¥ = {yi/t1,...,¥n/ta} is the

substitution
6. ¢ = {Xl/Sll,b,. . -sxm/smll)a)'l/tl'l .o -a}'n/tn}
with

xi/siYy being deleted if x;=s1%, and y;/t; deleted if

Yj € {xls- . 'axm}-

The application of a substitution é to an atom A, denoted by 6A, is the
process of replacing all variables of A that appear in § by their respective
bindings. Two atoms A and B are unifiable if there exists a substitution é
such that §A = éB. The substitution § has a special name called the unifier
for A and B (in general, a substitution 3 is called a unifier for a set of atoms
S if 9S is singleton). A unifier § is the most general unifier (MGU) for A and
B if there exists a substitution v for every unifier ¢ for A and B such that

¢ = 6 - 1. The process of finding a (most general) unifier for these atoms is

labeled as unification.

1.3.3.2 Resolution Principle

Refutation is basically a form of resolution coupled with pattern matching

unification. The notion of resolvent is incorporated in both resolution and

11



refutation [Rob65, CL73]. Given two clauses C; and G, if there is an atom

A in C; and its complement B is in C,, then the resolvent of C; and C; is

6[(C - {A}) U (G, - {B})]
where

§ is the most general unifier of A and B.

A refutation of a set of clauses S is a finite sequence Sy, . .., S, of clauses such

that

1. Each S; (1 £ i £ n) is either in S or is a resolvent of any two clauses

in Sl, e ,Si—l-
2. S, is a null clause.

The null clause is traditionally interpreted as contradiction, which means
that S is inconsistent. By the Resolution Theorem [Rob65], S is unsatisfiable
if and only if there is a refutation of S. This leads to the Resolution Principle,

which is the root of logic programming.

Theorem 1.1 (Resolution Principle) Given two clauses C; and G, a

resolvent of Cy and C; is a logical consequence of them.



1.3.3.3 Model Of Execution

Refutation only states the conditions of a sequence Sy, ..., S, needed to refute
a set of clauses S. It doesn’t specify what sequence it is or how to obtain such

a sequence. A general refutation proof procedure is:

1. Arbitrarily select a subgoal G; from the goal G :— G, ..., G, as the

next subgoal to solve.

2. Arbitrarily select a clause C : H « B,,..., B, from the set of program

clause P whose head H is unifiable with G;.
3. Obtain the most general unifier é of G; and H.

4. Replace G in G by B,,...,B,. Apply the unifier § to it to obtain a
new goal 5(G1, ceny Gi—h Bl, ceey Bn, Gi+1, ceey Gm)

5. Repeat steps 1-4 until either

(i) The goal is a null clause (i.e. the refutation succeeds) or

(ii) No clause can be selected in step 2 (i.e. the refutation fails).

This general proof procedure has dual functionalities. It possesses the ability
to prove the inconsistency of a set of clauses S, and to find the variable
substitution leaciing to a refutation. There are many refutation procedures

rested upon different refinements of Resolution Principle. One such method

13



is SL-Resolution for Definite Clauses or SLD-resolution. SL stands for Linear
Resolution with Selected Function. The selected function, also known as the
Computation Rule, imposes a restriction on how to select the next subgoal
(in step' 1). The value of this function for a goal clause is an atom named

selected atom of the goal clause. The refutation process can also be visualized

as an AND/OR search tree:

1. The root is the initial goal statement « Gy, ..., Gp.

2. An OR-branch, which links an atom with the head of a clause, is

constructed for each clause H « By,..., B, whose head His unifiable

with the selected subgoal G;.

3. An AND-branch is constructed to connect the body Bi,...,B, of a

clause with its corresponding head H.

Compiling with procedural interpretation of Horn clauses, an OR-branch
depicts the unification between a subgoal G; and the head of an applicable
procedure H, an AND-branch manifests the execution of procedure H through
a series of procedure invocations designated by the conjunction of its body

B, and ... and B,. Fig1.2 illustrates the AND/OR proof tree for executing

the ‘grandson’ program in Fig 1.1

14



? grandson(Joseph,Y)
X= JM\
son(X,Z) son(Z,Y)

(z= Terry/\aﬂ fw = Louis)

son(Joseph,Terryj son(Terry,Louis)  son(Joseph,Terry) son(Terry,Louis)

Figure 1.2: AND/OR proof tree of a logic program execution
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Chapter 2

Functional Logic Languages

Although logic programming and functional programming are basically
declarative in nature, there are fundamental differences between them.
Despite their essential and stylistic discrepancies, each of them provides many
special and complementary features which makes it worthwhile to integrate
them under one roof. This section outlines and compares their characteristics,

and provides some general ideas of combining these two paradigms into a

unified framework.

2.1 Logic versus Functional Programming

A program is non-deterministic if it admits more than a single legitimate

computation resulting in (possibly) multiple solutions. Pure Horn clauses

16



logic programs are inherently non-deterministic. Visualizing the computation
as an AND/OR search tree, it has more than one branch (either AND-
branch or OR-branch) originating from a tree node. Such branching has

two contributing factors:

e the body of a goal is considered as a set of atoms, and the order of
procedure invocations, designated by these atoms, can be arbitrary

(AND branch).

e arbitrary selection of candidate clause whose head is unifiable with a

given goal (OR branch).

SLD-resolution, which imposes a computation rule for subgoal selection,
does not prune the non-detérministic characteristic of logic programs. Non-
deterministic logic l.anguages reveal the capability of separating logic from its
| control counterpart. This exclusive feature admits opportunities for parallel
execution. Two forms of parallelism, OR-parallelism and AND-parallelism,
are commonly exploited. One reason of non-det;arminism in logic languages
is the possible application of several candidate clauses to solve a single atom
(of a goal). OR-parallelism is simply the concurrent invocation of all these
clauses. AND-parallelism exploits the fact that conjunction of procedure
calls (in a goal) can be executed in parallel.
Similar to the case that no restriction is imposed on the execution order,

pure logic languages also make no explicit commitment as to the input and

17



output of a clause. Variable substitution extracted by unification can be
divided into two parts: input substitution contains a set of bindings for
variables appearing in the clause head, and output substitution contains a set
of bindings for variables appearing in the goal. Unlike imperative languages,
which delimit input and output parameters of a procedure, input and output
substitutions are not fixed (even for the same clause). Their compositions
are determined by both a goal and the clause head, and variable bindings
are generated without regard of the origin of the variables. Logic languages
are trivially functional invertible as a result of the bi-directional data flow.

During resolution, non-ground terms can be supplied as input to a clause
or obtained as output binding. Variables appearing in these non-ground
terms can be partially instantiated by a predicate application and later on
further instantiated by other predicate applications. Variables of this nature
are called logical variables. Data structure containing logical variables, also
known as partial data structure, can now be used to represent possibly infinite
data structure without explicitly identifying all the elements.

Computation in functional languages consists in the evaluation of a term
to its corresponding value defined by a sequence. of function applications.
Equivalence between a term and its value reinforces the concept that
functional programming can be based on first-order equational logic [CM79,
HO82, BG86] and suggests the use of equations in defining a functional

program. A functional program is typically written in the form of equations

18



used as left-to-right rewrite rules. The evaluation mechanism is reduction,
which matches an expression against the left hand side of an equation,
obtains bindings for variables in the equation, and replaces the expression
by corresponding right hand side of the equation. The rewriting process
continues until the expression is irreducible (i.e. contains only constants or
constructors). Reduction differs from unification in that variable bindings
are only generated for those variables appear in the matched equation, which
implies unidirectional flow of information from the expression to an equation.
Coping with mathematical definition of function, functional program denotes
proper many-to-one mapping. A functional program is deterministic in
the sense that it only admits a single answer for each function evaluation.
Functions in functional program are treated in the same way as partial
data structures are treated in logic program. As first class objects, they
can be passed as parameters of functions or returned as values of function
applications.

Benefited from the well-known Church-Rosser property, repeatly
rewriting the leftmost redex of an expression always leads to a normal
form (if it really exists) [GHT84]. Indeed, searching is unnecessary in
the evaluation of functional programs. Absence of exhaustive navigation
simplifies computation complexity and enables flexible runtime control (such
as parallel execution). In contrast, a search process is mandatory in proving

a goal from a set of clauses. The runtime behavior of non-deterministic

19



logic programs is far more complicated and more difficult to control. Since
logic languages are functional invertible (as a result of non-directional input-
output), a program can be specified without any control information. The
lack of control information leads to certain undesirable runtime behaviors
such as redundant computation and non-terminating evaluation. However,
this very same factor contributes to the enhancement of the expressive
power of logic languages. Coupling with the capacity to handle partially
instantiated data structures, a single logic program can perform the same task
as several functional programs. The situation is further cokmplicated by the
fact that logic programming is inherently first-order. All function symbois are
then considered 'flat’ in nature. They are only used as constructors for data
structures rather than as defined function applications. Treating functions
as first class object, functional languages possess the ability to define higher-
order functions. In analogue to abstract data type in imperative languages,
related functions are now realized as a specific instance of a generic function.
The expressive power of functional languages is, on this count, greater than
typical logic languages.

Life will be much easier if any language is definitely superior to the
others. That is n;>t the case for functional and logic languages. Their
similarities and discrepancies are best explained by the fact that they employ
different operational semantics on top of comparable logical frameworks.

Horn clause logic programming uses a restricted subset of first-order predicate



logic, whereas functional programming uses an equational form of logic.
Function evaluation is carried out through pattern matching reduction, which
treats equations defined by a functional program as left-to-right rewrite
rules. Since predicates can be rewritten as functions, it appears at first
sight that functional languages should be as expressive as logic languages.
This viewpoint is shadowed by the fact that function deﬁniti.on is a function
symbol attributed with a desirable ‘interpretation’. In addition, unification-
based resolution employed by logic languages subsumes pattern matching
reduction, making logic languages more expressive than functional languages.
Taking advantage of their declarative nature and all these programming
features, amalgamation of logic and functional languages can be achieved
through integration of their underlying logic and discovery of a suitable

operational semantics for the unified framework.

2.2 Operational Semantics

The technique of adding an equational flavor to Horn clause logic is
widely used in amalgamating functional and logic languages. The origin of
their discrepancies is partially addressed to the use of different operational
semantics. Procedural semantics of logic languages is unification-based
resolution, whereas the evaluation mechanism of functional languages is

pattern matching reduction. Narrowing, which combines unification with



term rewriting, serves as the bridge of integration. This section outlines the

notation used throughout the thesis and provides some insights of reduction

and narrowing.

2.2.1 Preliminaries

The well-known notations and concept of algebra are adopted from [Hul80,
HO80]. The set of terms composed from a set of function symbols F and a
set of variables V is labeled as T(F,V). The subterms within a given term
are formally referenced by their occnrrences. An occurrence is a (possibly
empty) sequence of positive integers, indicating the relevant position (from
the outermost principal functor) of a subterm. The set of occurrences for a

term A, denoted by O(A), is defined as a finite subset of Z* where

1. £ € O(A)
2. ue0(A) & i-u€cO(f(Ay...,An) (1<i<n)

§ is the empty sequence and i - u is the concatenation of i and u. For example,
the set of occurrence for the term f(g(X),Y) is {£,1,1- 1,2}, and the subterm
g(X) is addressed by occurrence u = 1. O(A) s partially ordered by the prefix
ordering: (i) u < v iff there exists a ‘w’ such that v=u-w (i.e. w =u —v)
(ii) u and v are disjoint iff u £ v and v £ u. The subterm of A at occurrence

u, denoted by A/u is



1. Aif u=¢
2. Aj/v if Aisof the form f(A;,...,Ap)andu=i-v (1<i<n)

The set of variables appear in A is denoted by V(A) and the non-variable
subset of O(A) is denoted by O(A). If u € O(A), then the resulting term of

replacing the subterm A/u by another term B, written as Afu « B] is
1. Bif u=¢§
2. f(Ay,...,Aj[ve B),...,Aq) if A=f(Ay,...,A)) andu=i-v

Recall that a substitution is a mapping from V to 7(F,V). For every
substitution &, the set of variables affected by & is D(6) = {x | 6(x) # x} and
the set of variables introduced by é is Z(6) = Uyep(s) V(6(x)). The restriction
of § to a subset of variables W, denoted by § T W, is defined as

(TW)(z)=6(z) if zeW
(6TW)(z)=z  otherwise

Intuitively, variable substitution application will only affect the variables
designated by W. An equational theory E is a finite set of equations, whereas
the E-equality (=g) is the finest congruence closed under instantiation and
generated by E. For any equation A = B in E and any arbitrary substitution

4, =g contains all pairs < §A,§B > such that §A = 6B.
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Definition 2.1 Eztending E-equality to substitution, 6§ =g 8 iff for all

variable z  6(z) =g 0(z).

Definition 2.2 A substitution é is more general than 0 under E, denoted by

6 <g 0, iff there exists another substitution v such that ¢ -6 =g 6.

Let A and B be two terms, V = V(A) U V(B) be the set of variables that
appear in these two terms, W be a finite set of variables containing V and
Ue(A, B) be the set of all E-unifiers of A and B. A set of substitutions I is

a complete set of unifiers of A and B away from W iff
1.VéeE D@B)CVandZI(6)NnW=40
2. ¥ C Ug(A, B)
3. V6 € Ug(A,B) 30 € T such that (0 <g 6) TW

These basic restrictions require all substitutions in £ must be an E-unifier
of A and B; and for every unifier § of A and B, there exists an unifier 8 in
% which is more general than 6. X is said to be minimal if it satisfies the

further condition that no two unifiers in & are comparable,

4. VE0ET 6#0= (628)TW



2.2.2 Reduction

Reduction is an evaluation process which matches an expression against the
left hand side of a rewrite rule, obtains variable bindings for the rule and
replaces the expression by corresponding right hand side of the rule. Each

rewrite rule is a directed equation of the form

ax — Px

with no extra variable on the right hand side (i.e. V(8k) € V(ax)). The set

of rewrite rules defines a term rewriting system R.

Definition 2.3 A term A is reduced to another term B at a non-variable
occurrence u, written as A —, 4 B, iff there exists a rewrite rule oy — B in

R and a substitution § for ay such that A/u = §(ax) and B = Afu «— 6(f)]

A —[y) B is also written as A — B if no confusion arises. A sequence of
reduction A —[y, ko] A1 = *** —[us_1.kay) B is called a reduction derivation.
It is also written as A =y k) B where [U,K] denotes the sequence of [u;, k;].
The one-step reduction relation — associated with R is the relation over
T (F,V) which contains R and is closed by substifution and replacement.

The transitive-reflexive closure of —x is denoted by —z. Note that =g



is not the same as reduction derivation. There could be more than one
derivation from A to B for any relation A <z B. The equational theory of

R is obtained by replacing ‘=" with ‘="

Eg. 2.1,
Given a T.R.S,,
a—b
a—c
b—d
c—d

The relation a=xd can be achieved through either a — b — d or

a—c—d.

A term A is in —% normal form iff it cannot be further reduced in R. A
substitution is normalized if all of its substitutes are in normal forms. A
term can be reduced in many different ways Depending on which subterm is
being rewritten and which rewrite rule is selected, the —# normal form (if

exists) may not be unique. A reduction relation —p I

Noetherian if there is no infinite reduction sequence for all the

terms



Confluent  iffor all terms A,B,C A =g B and A =% C iff there

exists a term D such that B S D and C =D

A term rewriting system R is noetherian (confluent) iff —x is noetherian
(confluent). R is canonical iff it is confluent and noetherian. Such system
admits a unique — normal form for all the terms. This property facilitates
a decision procedure for equational theories as two terms are equal iff they

have the same — % normial formal.

2.2.3 Narrowing

The basic idea of narrowing is to combine unification with term rewritirg.
Informally, narrowing a term is applying to it the minimum substitution such

that it is reducible and then reduce it.

Definition 2.4 A term A is narrowed to another term B at a non-variable
occurrence u, written A ~, k5 B, iff there exists a rewrite rule ay — By in
R and a most general unifier § for A/u and ar such that §(A/u) = é(ax)
.and B = §(Alu «~ Bi).

A sequence of narrowing A ~[ue ko) A1 ~* *** “Huu_1kac1.on_1) B 15 called
a narrowing derivation. It is also written as A—\'»[U,K,p] B where [U, K, p)

denotes the sequence of [u;, k;, pi] and p = pp1 - - - po. The notion of ~z, ~a

o
-1



and ~+r normal forms are analogous to those of reduction. Narrowing differs
from reduction in two major aspects: (i) existence of more than one ~p
normal form is possible (even for canonical rewriting systems) (ii) narrowing
can be used to solve the variables of a non-ground expression.

Given a canonical term rewriting system, every term must have an
unique normal form [HO80]. The relationship between a term and its
normal form is traditionally a many-to-one mapping instead of a more
restrictive one-to-one mapping. A simple proof procedure is made possible
through this property: two terms are equal iff they can be reduced to an
identical canonical normal form. Narrowing is essentially a hybrid inference
mechanism combining reduction with unification. Their characteristics and
inter-relationship are well-established in Hullot’s landmark paper [Hul80].
Under the same canonical setting, a narrowing derivation is associated with

each reduction derivation or vice versa. For any reduction derivation of
5(A) S An

with § being a normalized substitution, there exists a corresponding

narrowing derivation
A=B “:’[U,K,p] B,

where v is a normalized substitution such that ¥Bp = A, and yp <g §
The ultimate goal of unification is to construct a (most general) unifier for

two terms A and B. In parallel with unification, narrowing can also be used



to obtain the E-unifier of two terms, A and B, modulo a given equational
theory E through repetitive narrowing of A and B. Another elegant result
from [Hul80] is the completeness characteristic of narrowing for a canonical
system. A complete set of E-unifiers for any two unifiable terms exists, and

each such substitution can be enumerated through narrowing.

2.3 Narrowing Strategies

In the context of term rewriting systems, the intended semantics of a function
symbol can be specified by more than one rewrite rule. Even if each rule
defines a single function, a term can be narrowed at different occurrences
using (possibly) different rules. It can have more than one normal form
depending on which subterm is narrowed and which rewrite rule is applied.
“This highly non-deterministic property is costly, unfavorable and often leads
to redundant computation of comparable solutions. A number of narrowing
strategies have been employed to rectify this undesirable characteristic.
This section presents the fundamental notions of two different strategies,
innermost narrowing and outermost narrowing [DV87). It is shown that using
any strategy alone is inadequate in the sense that complete set of minimal
unifiers cannot be enumerated effectively.

When a term is rewritten, new subterms may be introduced through

instantiation. One source of redundancy is addressed to subsequent



narrowing of these newly instantiated subterms. Hullot applied the
concept of basic narrowing [Hul80] to redress the problem. The idea
of basic narrowing is to rewrite non-variable occurrences of the original
term only. Given a term A, each narrowing derivation is based on O(A)
and narrowing step on the introduced subterms is avoided. Using basic

narrowing as a stepping stone, Refy extended it to normalized narrowing

[Ret87](i.e. normalize the term after each narrowing step) which computes

the basic occurrences while preserving the completeness.

Informally, innermost narrowing selects an innermost occurrence of a
term as the next candidate to rewrite. Given a term A, a subterm at
occurrence u € O(A) is innermost if all subterms at occurrences v > u are
in normal form. Intuitively, innermost narrowing of a term f(t1y..oyta)
means that the function ‘f’ is applied to the corresponcing normal forms
of all the subterms t,...,t,. Using the terminology of impérative
programming, innermost, narrowing is the analogy of pass by value procedure
invecation. The term f(¢,...,%,) is treated as a procedure invocation
in which all the parameters ty,...,t, are evaluated before the procedure
‘f” is executed. Although repetitive rewriting ‘of identical subterms is
avoided, it is generally undesirable to evaluate all the subterms before
the function is applied (especially for a more general non-terminating
rewriting system). Consider a trivial definition of the if-then-else statement:

{if(true, X, Y) — X, if(false, X, Y) — Y}. The intention of these rules is to

30



rewrite either X or Y (but not both) pending the truth value of the first
argument. Narrowing both of them opens the door for potential problems

such as unfruitful computation and non-terminating derivation.

Eg. 2.2,,

Given a T.R.S,,

if(true, X,Y) = X
if(false,X,Y) = Y
f(0) — £(£(0))

Narrowing a term if(true, 0, f(0)) at the innermost occurence
leads to infinite derivation of the subterm f(0). Notice that
this derivation does not even contribute to the narrowing of the

original term (i.e. it is an unfruitful computation).

Outermost narrowing handles the problem in a different manner. It selects
an outermost ¢ ccurrence as the next candidate to rewrite. Given a term
A, a subterm at occurrence u € O(A) is outermost if it is narrowable and
for all narrowable occurrences v € O(A) either u<v or u<>v. The
subterms of f(t1,...,%,) are narrowed when necessary after the function

‘" is applied. Similar to call-by-name procedure invocation, the term
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f(t1,...,ts) is ‘simplified’ when possible regardless the ‘value’ of all the
subterms. Consider the previous example, the term if(true,0,{(0)) is now
correctly narrowed to ‘0’ without evaluating f(0). Notice that if there is no
unfruitful and infinite innermost derivation, innermost narrowing is in general
more efficient than outermost narrowing because it avoids narrowing identical
copies of the subterms. Despite its capability to get around unnecessary
computation, outermost narrowing is an incomplete strategy. More precise,
outermost or innermost narrowing alone may not generate complete set of
unifiers for two unifiable terms. As noted by Fribourg [Fri85], conventional

function definitions are ‘incompleted’ and denote ‘partial functions’.
Eg. 2.3.,
Given a T.R.S.,

multi(pred(0),0) — 0
multi(X,1) — X
pred(1) — 0

Unifying multi(pred(X),X) with 0, innermost narrowing leads to
multi(pred(X), X) ~+(x/1} multi(0,1) ~+ 0

while outermost narrowing leads to

32



multi(pred(X), X) ~+(x/0} 0

Uncomparable results, {X/1} and {X/0}, are generated which
signifies that employing innermost or outermost narrowing alone

is inadequate.
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Chapter 3

Ec-Equality Theory

3.1 Equality Theory

The relationship between different terms is conventionally established
through a set of equations. Informally, the left hand side of an equation
is considered ‘semantically the same’ as its corresponding right hand side.
These equations collectively define an equational theory E. The piece of
puzzle that remains to be solved is to prove the equality between different
terms within a well-defined framework. The proof is traditionally confined

to classical equality theory described by the axioms:

Reflexivity Vx x=x

Symmetry Vxy x=y—=y=x
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Transitivity Vxyz (x=y)A(y=2z)—=x=2

Substitutivity Vx;...x.Vy1...yn (Xi=y1)A... A (X =yn) =
f(x1y...,%a) =f(y1,...,yn) for all function

symbols ‘f’.

The theoretical formalism of classic equality is particularly difficult to handle
despite its simplistic notation and elegant semantics. The success of Prolog-
like logic languages is largely accredited to the avoidance of equality, resulting
in an efficient implementation of the underlying operational semantics. A
key to combine logic and functional languages is to overcome this ‘flat’
nature of Prolog-like languages. Ordinary syntactic unification is modified
to accommodate the semantics of defined function symbols. It is generally
preferable to employ equational reasoning in extended unification. E-
unification [Plo72] provides a basis to incorporate equality into resolution.
Equation solving can now be conceived as a notion of unification modulo
an equational theory. The observation that functional languages can be
formalized by equational first-order logic suggests a generalized method
to unify logic and functional languages by readmitting equality to SLD-
resolution [vVEL84, vEY87]: transform some initial goals to a set of equations
and solve the equations instead. Program execution is now composed of two
different stages: equation generation and equation solving. Given a logic

program, the first stage is to construct an SLD-derivation from some initial
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goals to a set of equations E'. i.e. to show that

EUEq = 3E'

where E is an equational theory defined by a set of equations and Eq is
an equality theory. The second phase is to prove consistency of the newly
generated set of equations by means of SLD-resolution. It is normally carried
out by resolving the set of equations with those in E and Eq. Substitutions

for the variables, § in the initial goals are produced to prove that

EU Eq |= V§(E)

This approach is a generalization of (extended) unification. Ordinary
unification is obtained if the equational theory E is empty and the equality
theory Eq is {Vx x=x}. If Eq is the standard equality theory and E is
non-empty, then the inference system is one of the extended unification
[Kor83, GM84, DV87, LPB*87). Taking to the extreme, Eq can be any theory
specifying relations other than equality. It becomes one of the constraint

soiving languages [JL87] when augmented with a suitable ‘solving’ system.
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3.2 E.Equality

Until recently, equality theory employed in extended unification is restricted
to classic equality. Taking into consideration the intended semantics
of functional programming, variants of classic equality theory have been
proposed hoping that a practical and efficient manipulation of such equality
may exist. One stream is to distinguish function applications from the
constructor symbols that are used as data structures [Fri85, 0'D85, LPB*87].
This section discribes a variation of equality based on the division of
functional symbols, named E.-equality. This subset of classic equality has
a distinct characteristic in which complete set of minimal E.-unifiers always
exists for a constructor-based term rewriting system.

Given a term rewriting system R, the set of function symbols F is
classified into two disjointed categories: defined function symbols F4 and
constructors F.. A defined function symbol is the outermost principal functor
appearing on the left hand side of a rule and constructors are the remaining

functors used to build the data structures.

Eg. 3.1,

Given a T.R.S.,

f(h(X)) - g(X)
g(X) = 1(X)

3

L d



The defined function symbols are ‘g’ and ‘f’, while the constructor

symbols are ‘h’ and ‘I’

A constructor term is either a constructor or a term composed of constructors
and variables only. The set of constructor terms is denoted by T(F., V). A
term that contains at least one defined function symbol is called a function
term. The equality relation is defined as a subset of classic equality which

captures the semantic notion that function applications on constructor terms

are equaled to their values.

Definition 3.1 Two terms A and B are E.-equivalent, denoted A =g, B iff

there exists a constructor term C such that A=g C and B=g C

For any confluent rewriting system, =g is the symmetric closure of =, and
the Church-Rosser property suggests that A = C and B = C. Hence, proof
procedures based on reduction can also be used to prove E.-equality. Two
terms are Ec-equivalent iff there they reduce to a common constructor term.
A term A may even not E.-equivalent to itseif if A cannbt be reduced to
a constructor term or it is trapped in an infinite derivation. Analogous to
E-equality, two terms A and B are E.-unifiable iff there exists a E.-unifier §

such that 6A =g, 6B. Differs from [Fri85], an E.-unifier may contain function
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terms rather than compose of constructor terms only. Comparison of E.-
unifiers are the same as in E-equality. Obviously, =g_ is a subset of =g
in which each congruence class must contain a (unique) constructor term.
Despite the elegant semantics of E.-equality, a complete set of minimal E,-

unifiers may not exist for a general rewriting system R.

Eg. 3.2,
Given a T.R.S.,
gX,Y)-X

f(g(X, Y)) — f(X)
f(a) = b

Infinite number of E.-unifiers exist for f(Z) and f(a).

8o = {Z/a}
61 = {Z/g(a, Y1)}

b = {Z/g(g(. .. g(g(a, Ya), Yao1) .. .), Y1)}

oooooo

It is obvious that each §; is a Ec-unifier of f(Z) and f(a). For each

consecutive pair of unifiers §;_; and §;, there exists an arbitrary



substitution 7 for Y; such that 76; T {Z} =g &1 T {Z}. In other
words, 6; is more general than the preceding unifier é;_;. Thus,

complete and minimal set of E.-unifiers does not exist for such a

system.

Notice that in this example
X=gg(X,Y1)=c ... =cg(g(-..8(g(X,Yn), Yn-1)...), Y1) =g ...

and the left hand side of the rule f(g(X,Y)) — f(X) is narrowable at

occurrence of u = 1 (i.e. at the function symbol ‘g’). Hence,
f(Z) =& f(g(Z, Y1) ... =k f(g(e(. .. &(g(Z, Yn), Ya-1)..), Y1) =5 ...

with each Y; being unspecified, making it impossible to obtain the ‘minimal’
unifier for f(Z) and f(a). The problem is sufficiently resolved when no different
nonvariable part of the left hand side of any rule may have a common

instance. It is also known as nonambiguous or superposition free in the

literature.

Definition 3.2 A term rewriting system is left linear if no variable appears

more than once in the left hand side of any rule

Definition 3.3 A term rewriting system R is non-overlapping if there is no
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critical pair in R (i.e. for any two rules o; — fB; and aj — B;, aifu and o;

(u € O(es)) have no common instance except when u =¢ and i = j)

These two properties are syntactically checkable and guarantee the confluence
property without resorting to the termination property. Non-existence of
‘minimal’ E.-unifier is lifted if R is further restricted to a constructor-based
term rewriting system. In [Hul80], the stepping stone for any complete proof
procedure is an unique canonical normal form of a term, which may not
exist in R. Although R may be non-terminating, a similar procedure is
made possible under E.-equality. Equivalence between ‘undefined’ terms are

effectively purged since these terms are not equaled to any single term at all.

‘Definition 3.4 A term rewriting system is constructor-based if it is left-
linear, non-overlapping and no defined symbols appearing in the inner part

of the left hand side of any rule.

3.3 Complete set of Minimal E.-unifiers

This section presents completeness and minimality characteristics of Ee-
unifiers for equational theory described by a constructor-based term rewriting

system. More precisely, a complete set of minimal E.-unifiers always exists



for such system. A slightly more general notion of normal form, named S-
normal form, is introduced in [You89]. The set of S-normal forms includes all
irreducible function terms in addition to the set of constructor terms. Two
terms are E,-equivalent iff they are both E,-equivalent to a common S-normal
form. A fundamental difference between E,-equality and E-equality lies in
the treatment of undefined (or irreducible) function terms. An irreducible
function term is still Ey-equivalent to itself. Indeed, =, is a subset of =g,.
Completeness results holding for E,-equality should also be valid for the
slightly more restrictive setting of Ec-equlaity. The theorems and lemmas
presented in the following sequels are adapted from [You89] and refer to
the literature for their proofs. For technical purpose, assume ‘H’ is a new

constructor not in F.

Theorem 3.5 For any E.-unifier of r A and B, there ezists a narrowing

derivation
H(Aa B) “:’[U,K,p] H(Cl, Cz)

where & is the most general unifier of the constructor terms Cy and C, , and

T is an Ec-unifier of A and B so that 6p <g 71V

The theorem states that for any Ec-unifier, a more general E.-unifier can be

obtained from narrowing. The complete set of E.-unifiers £ for A and B can



be enumerated through all narrowing derivations originated from H(A,B).

Consider a narrowing derivation of
H(A’ B) “ugkawo] **° M un—tkam1,Pn-1] H(Cl’ 02)

where § is the most general unifier of C, and C;. Since R is left-linear,
every substitute in any p; TV must be extracted from the left hand side
of a rule. By the non-overlapping property of R, none of these substitute
unify with the head of any rule. In other words, all the substitutes p;
and é§ are normalized. For each E.-unifier in ¥, all substitutes obtained
as such are also normalized. Two unifiers are comparable by <g iff they are
comparable by < (for example, f(Y) < f(g(X))). Complete set of E.-unifiers
is best manifested by a digraph with distinct; components. Each distinct
sub-digraph (component) represents the < ordering of comparable solutions.
A unique lower bound (subject to variable renaming) always exists for any
such ordering. Uncomparable unifiers are trivially denoted by single-noded
sub-digraphs. Hence, the set of all lower bounds plus all the uncomparable
E.-unifiers (single-noded sub-digraph) form a complete and minimal set. An
example of digraph representation of complete set of minimal Ec-unifiers is

demonstrated in Fig 3.1.

Theorem 3.6 Complete and minimal sets of E,-unifiers always ezist for any

E.-unifiable terms.
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Complete set of minimal unifiers

Figure 3.1: Digraph of complete and minimal set of E.-unifiers
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The theorem only claims the existence, not finiteness, of complete sets of

minimal E-unifier.

Eg. 3.3.,

Given a T.R.S.,

f(c(X)) — £(X)
f(d) — e

An infinite number of uncomparable E.-unifiers {X/d}, {X/c(d)},
{X/c(c(d))}, ... exists for {(X) and e.

3.4 Outer-narrowing

Two examples in the previous chapter (Eg. 2.2 and Eg. 2.3) suggest the need
of an efficient means to interleave innermost and outermost narrowing: if an
inner rewriting is subsequently followed by an outer rewriting, then it must
contribute in certain ways to the reducibility of that outer rewriting. Inspired
by this principle, an outer-narrowing derivation is defined as a sequence of
narrowing steps such that any later narrowing step at some outer occurrence
cannot be preformed earlier using the same rule at the same occurrence.
This essential requirement is the Quter-Before-Inner property of any outer-

narrowing derivation.
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Eg. 3.4.,
Given a T.R.S.,
add(X, 1) — succ(X)

pred(1) — 0

succ(0) — 1

The narrowing sequence of
add(pred(X), Y) ~(x/1} add(0, Y) ~»¢y 1) succ(0) ~ 1

does not constitute an outer-narrowing derivation as the second
narrowing step involving the rule add(X,1) — succ(X) can be
carried out right at the very beginning. However, it can be

rearranged to a similar outer-narrowing derivation
add(pred(X), Y) ~(y/1} succ(pred(X)) ~¢x/1) succ(0) ~ 1

which generates the same solution.

Conceptually, all narrowing derivations for a given term are partitioned into
disjointed equivalent classes. Two derivations are in the same class if they
generate comparable solutions. In other words, for any two solutions (say é

and ) so generated in these two derivations, either 7 <g 6 or 6 <g 1. The



idea behind outer-narrowing is that an unique outer-narrowing derivation,
which produces the most general substitution, exists for each class. All other
narrowing derivations within the same class can then be ‘rearranged’ to the
outer-narrowing derivation that represents the entire class. Complete set
of unifiers is computed by enumerating all outer-narrowing sequences which
are the proxy for different classes of narrowing derivation. Left-linearity
of constructor-based rewriting system guarantees solo appearance of any
variable on the left hand side of a rule; No such restriction is imposed on the
corresponding right hand side. Different ‘copies’ of a subterm are created
when it unifies with a variable on the left kand side and ‘distributed’ to the
same variable on the right hand side of the same rule. The terminology of
residue map is introduced to keep track of all these ‘copies’ of a subterm for a
precise description of the rearranging procedure. Note that the residue map

is a set of residues since identical copies of a subterm can be created.

Definition 3.7 If a term A is reduced to another term B at occurrence u
using the k** rule, then the residue map for reduction with respect to the

rewriting system R is defined as follows,



ax(v") € V(R),
u-w-(v=0") | ax(v")=B(w), if v>u
r[A —py Blv = 4 v <o, v =u-v"

0 if u=v

v otherwise

\

Definition 3.8 The residue map for narrowing with respect to the rewriting

system R is n[A ~y k8 Blv = r[6A = Blv for all v € O(A)

The definition of residue map seems much more technical than the underlying
intuition. When a term A is rewritten at occurrence u, all outer subterms
are unaffected and their occurrences remain unchange. Subterm at any
inner occurrence v (u < v) still ‘resides’ in the resulting term B iff A/v
itself is ‘untouched’ during the rearrangement process. The most common
way to achieve this, without loss of generality, is unifying either A/v or its
superterm with a variable in the left hand side of a rule. Residue of such
subterm can easily be located graphically by tracing the arrows in Fig 3.2.
As a remark, if the inner part of the left hand side of some rule ax — Sk
contains a defined function ‘f’, any term that is narrowable using the k! rule
may also be narrowable at an inner occurrence using the rules that define
‘>. In such a case, a term is narrowable at two different but dependent

occurrences u and v (say v < u) Non-overlapping property ensures that
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Figure 3.2: Residue Map

each narrowing derivation generates uncomparable solutions (see [You89] for
details). Omitting any one of them may result in loss of a legitimate solution.
However, constructor-based term rewriting systems eliminate such possibility
so that the completeness and minimality results are still preserved after the

rearrangement process.

Lemma 3.9 Given a constructor-based term rewriting system, suppose a

term A is narrowable at occurrence u

A M[uvjrpll B M[v.k,pz] Dl



If A is also narrowable at v (v<u) using the k** rule such that

arfu —v # Afu, then there ezists a narrowing derivation
A~y igy) C ~uas,) De

where U =n[A -~y Clu, J be the rule indezes of all j such that

6261 < pap1, and there exists a substitution T with (D) = D,.

The lemma is in principal a formalization of Outer-Before-Inner property.
Consider the case when u<>v, the residue map for narrowing
U =n[A~xs] Clu is the singleton {u}. Unlike Lemma 3.9, only one

redex can be selected from this set. i.e.

A M[“vj-P!] B M[V,k,pg] Dl

A~y s €~ Do

Since the only possible link between two independent subterms is shared
variable, the essential difference of these two derivations is the order in which
variable substitutions are introduced. It simply implies that the composite
substitutions must be identical (i.e. 6,6, = pp;). Thus , the resulting terms
must be equaled (i.e. D; = D,). This property is similar to the independence
of computation rule of Prolog. The branching factor for a set of independent

redexes is one, making it possible to fix a selection rule for outer-narrowing.
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Lemma 3.10 Suppose A ~uk.p] B i) D where v <>u and v is
lezicographically less than u, then there ezists a narrowing derivation

A ~pis) C ~uksy) D such that 6261 = papr.

To transform any narrowing derivation to its corresponding outer-narrowing
derivation, Lemma 3.9 and Lemma 3.10 are repeatedly applied . Since
narrowing is'complete for E.-equality, completeness of outer-narrowing under
E.-equality is trivial if the normal form of each term is then constrainted to

a constructor term.

Theorem 3.11 Given two terms A and B, for any narrowing derivation
H(Av B) = Ao “{ug ko.p0] Ay~ ... “Hunotkn-1/n=1] An = H(G, CZ)

such that C, and C are constructor terms unifiable by a most general unifier

T, there exists an outer-narrowing derivation
H(A’ B) = AO’ ~*vg,jo,00] Al' ~ s My 1dme16m-1] Am' = H(Dh D2)

such that D, and D, are constructor terms unifiable by a most general unifier

0 so that 86,1 ...60 < TPn-1.--po.

Non-overlapping property of constructor-based rewriting systems plays a key

role in establishing the minimality result of outer-narrowing. Theorem 3.11
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shows that complete set of Ec-unifiers is effectively enumerated through
outer-narrowing, and §3.3 suggests that the substitutes of each unifier are
normalized. Again, two unifiers are comparable by <g iff they are comparable
by <. Given two independent outer-narrowing derivations, branching will
eventually occur leading to uncomparable solutions. That is exactly where
non-overlapping property enters into the picture. Assume the two outer-
narrowing derivations branch at the ih step (i.e. up = v, kn = jn, pn = &

and Ap = By for 0 <h <L i):
H(A,B) = Ao ~lug,ko,00] A1~ - “uneiknaipaa] An = H(C, G)

H(A’ B) = Bo M[vo,.io'so] Bl ~ . M[Um—lvjm—hsm-l] B = H(Dl’ D2)

1. Along with left-linearity, which guarantees that all substitutes of
an Ec-unifier are extracted from the left hand side of some rule,
uncomparable solutions are generated if the term A; is rewritten at the
same occurrence (u; = v;) but with different rules (i.e. A;/u; = Bi/v;

but k; # ji).

2. Consider the case if A; is narrowed at two different but dependent
occurrences (say u; and v; with u; < v;), and the k*® rule is used to
narrow the outer occurrence y; so that the function symbol contained

in oy coincides with that of B;/v; (i.e. ay/(vi — u;) = Bj/v;). Since

[4]]

o



Bi/v; is also reducible, so B;(v;) € F4. Hence, ay;/(vi — u;) € Fy, which

contradicts with the constructor-based restriction.

. Consider the general case for which A; is narrowed at two different
but dependent occurrences (with u; < v;). As mentioned before, the
narrowing step at an inner occurrence v; must in some way contribute
to the reducibility of the outer occurrence u;. Since A;/u; is a function
term (say f(t1,...,tn)) and Cl,_ C,, Dy, D, are constructor terms, the

function symbol ‘f’ must be narrowed at a later narrowing step. Assume
Ai ~ui ko i) Ai+1 e Mung knat on-t) An

Bi ~uigisi™ Bt ~uini] Bi+1 ™ -+« um_1.im1 Sme1] Bm

so that vi=u; and By(v;) =‘f' = A;j(w;)). By outer-before-inner
property, no defined function symbol may appear in ax. The only
possible way to narrow A; (or B;) at two dependent occurrences
(u; < v;) is that B;/v; or its superterm unifies with a variable in a.
By Lemma 3.9, outer-before-inner rearrangement is possible for the
narrowing derivation H(A, B) = By ~» By = H(Dy, D;), i.e. contradicts

with the initial assumption that it is an outer-narrowing derivation.
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Theorem 3.12 Given two unrelated outer-narrowing derivations of two

unifiable terms A and B,
H(Av B) = Ao “*[ug,ka,00) A~ ... Muntkn—1,/n=1] Ap = H(Cl? Cﬁ)

H(A’ B) = A R A 7Y | A~ L vm=11im—1:6m—-1] An' = H(D, D,)
where C; and €. s.. .ctor terms unifiable by a most general unifier r,
and Dy and ™- - - uctor terms unifiable by a most general unifier 9 so

that Tpn_1...py wni ¥opm_y...6 €+ not compare by <g.

Since outer-narrowing subsumes all other narrowing derivations and the
solutions obtained as such are uncomparable, complete set of minimal E.-

unifiers is effectively enumerated through outer-narrowing.
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Chapter 4
Conditional Rewriting System

In this chapter, we propose a conditional term rewriting system that can
be implemented efficiently. This system is heavily inspired by the work
of [You88]. Confining to E.-equality, the completeness and minimality
characteristics of the proposed system are investigated. We further define
an extended unification scheme that can be easily incorporated into existing

Prolog systems.

4.1 Syntax

Syntax of the proposed conditional rewriting system is similar to that of
Horn clause logic programs. The building blocks are constants, variables,

predicates and functors. The functors F are further divided into disjointed
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sets of constructors F. and defined function symbols F4. Notions of atoms,
terms and constructor terms are carried over from preceding chapters. A

basic rewrite rule is of the form

| = r:=Py,...,P,

where

l'and r are terms, Py,..., P, (n > 0) are predicates.

Py,..., P, are collectively referred to as the condition for which I is rewritten
to r. A rule without any condition is an unconditional rewrite rule. A
legitimate conditional term rewriting system C is a set of such rewrite rules

which complies with the following two constraints:

1. The unconditional portion of each rewrite rule constitutes a

constructor-based term rewriting system.

2. For each rule in C, no extra variable is introduced in the condition

Py,...,Py.

An n-ary predicate is treated as a boolean function which maps its arguments
to a set of special constructors {true, false}. The condition Py,..., P,
representing the predicate and(P;,and(...,and(P,-;,P,)...)), denotes a
form of cascading the special boolean function and which is then interpreted

as



and(X, false) — false
and(false, X) — false

and(true, true) — true

Hence, a rewrite rule | — r:-P,...,P, is nterpreted
as| — r:— Py = true,..., P, = true. Intuitively, the left hand side !/ is
rewr:tten to its corresponding right hand side rif all the predicates Py, ..., P,

are rewritten to true. A fact P is just the syntactic sugar of an unconditional
rewrite rule P — true, and a Horn clause of the form H: —-B,,...,B, is
interpreted as H — true : — B; — true,..., B, — true. This configuration
permits co-existence of both conditional rewrite rules and Horn clauses, and

amalgamates them within a purely logical framework.

4.2 Completeness

The system described in §4.1 is an instance of type III, conditional
rewriting system [BK86]. It is proved confluent without resorting to the
termination property. Since the system may not even terminate at all,
all those elegant completeness results for canonical term rewriting systems

[Fay79, Hul80, Kap84] may not be applicable in this context. Without loss
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of generality, our discussion is ccucentrated on rewrite rules with at most one

predicate appearing in the condition.

Definition 4.1 A term A is (conditionally) reduced to B, written A —¢ B,
iff there exists a rule ] — r : — P in C, a non-variable occurrence u of A and

a substitution & such that Afu=46l, SP5ctrue and B = Afu « ér).

The conditional rewriting relation —¢ associated with C is the finest relatior.
over 7(F,V) containing C and closed under substitution and replacement.
The reflexive and transitive closure of —¢ is denoted by —=¢. It is
well established that a term rewriting svstem possesses the Church-Rosser
property iff it is confluent. Since classic E-equality “=g” is equi..lent to
the symmetric closure of rewriting relation “5" [HO80], equality between
two different terms can be verified through Church-Rosser property of the
underlying system. In particular, A =g B iff there exists a term C such that
A= C and B 5 C. Reduction, which amounts to one-sided simplification,
cannot generate variable bindings for a given goal statement. Instead,
narrowing is employed to obtain the substitution that satisfies the given

goal.
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Definition 4.2 A term A is (conditionally) narrowed to B, written A ~+s I,
iff there exists a rule | > r: — P in C, a non-variable cccurrence u of A
and a most general unifier §' for A/u and | (i.e. §'(A/u) = §'l) such that
§'P ~agn true, §=106"-8 and B =6(Alu« r]).

As mentioned b-fore, all those elegant completeness results may not hold
for non-terminating rewriting systems. The major hurdle is the existence
of nen-normalizable solutions in these systems. An implication of Hullot’s
resuit, {Hul80] is that in absence of termination, narrowing is still complete
with respect to normalized sclutions for confluent term rewriting systems.
[GM86] further suggests that under a stronger notion of level-confluence,
conditional narrowing is complete with respect to normalized solutions that
are not “dependent” on some other non-normalizable solutions (even in the
presence of extra variables). Stealing an example from [GMS86], consider
the following level-confluent term rewriting system in the presence of extra

variables,

Eg. 4.1,

Given ¢ T.R.S.,

h — <(h)
f(a) = b: - X = d(X)
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Naive conditional narrowing is not even complete with respect to
normalized solution, although C |=g §(f(Z)) = b with § = {Z/a}.
This requires narrowing t» compute the non-normalized solution

v = {X/h} for the introduced variable, which is generally

impossible under E-equality.

Observe that the substitute for any extra variable is only used during proof
construction but never contributed to the normalized output solution {Z/a}.
This kind of dependency is sufficiently pruned if no extra variable is allowed,
so that any non-variable substitute must be extracted from the left hand
side of a rule. 1:i such a case, naive conditional narrowing is complete with

respect to normalized solution [LPB*87].
Eg. 4.2,
Given a T.R.S.,

h — d(h)
f(X) = b : = X = d(X)

Although C =g 6(f(Z)) = b, conditional narrowing cannot yield

the pon-normalizable solution § = {Z/h}.



In summary, in absence of termination, conditional narrowing is in general

incomplete for confluent rewriting systems confined to E-equality.

4.2.1 E-equality vs E.-equality

In this section, we focus our investigation on a subset of E-equality, namely
Ec-equality, in quest of the completeness results for conditional narrowing.
Recall that A =g_ B iff there exists a constructor term C such that A =¢ C
and B =g C. From now on, we refer io a “system” as a conditional term
rewriting system described in §4.1. To illustrate the difference betwezn E-

equality and E.-equality, consider the following two systems:

Eg. 4.3.,
Given a T.R.S,,
h — d(h)
d(X) — a
f(X) — g(X)

Given a goal 76(f(X)) = (g(d(X)))

1. Under E-equality, C kg 6(f(X))=6(g(d(X))) with
§ = {X/h} or § = {X/a}.



2. Under Ec-equality C =g, §(f(X)) = 6(g(d(X))) with
6 = {X/h} or § = {X/a}.

In both cases, although conditional rewriting cannot produce the
non-normalizable solution (i.e. {X/h}), it is still complete in the

sense that h =g a.
Eg. 44.,
Given a T.R.S.,

h — d(h)
f(X) — g(X)

Given a goal ?6(f(X)) = §(g(d(X)))

1. Under E-equality, C =g 6(f(X)) = 6(g{d(X))) with
6 = {X/h} since f(h)— g(h) — g(d(h)) (i.e f(h) =g
g(d(h))). Again conditional narrowing cannot generate this

solution.

Under Ec-equality, although f(h) — g(h) — g(d(h)), the

o

substitution 6§ = {X/h} does not constitute a solution as
g(d(h)) isn't a constructor term. In fact, for any non-

normalizable substitute t, it can be a solution only if a



rule of the form t — d(t) is in C. Further narrowing of t
results in a non-terminating derivation which implies that

t is not Ec-equivalent to any constructor term (thus even

itself). Hence, C fg, 6(f(X)) = 6(g(d(X)))

In this case, conditional narrowing is complete under Ec-equality

but not under E-equality.

Completéness of narrowing is best manifested by its ability to enumerate all
the correct answers of a given goal. Tackling this issue from the opposite
direction, we analyze characteristics of the solution set under E-equality.
By definition, a substitution & is an Ec-unifier of two terms A and B if both
SA and 6B are rewritten to an identical constructor term. Theoretically,
the solution néed not be a constructor term, and it can even be a non-
normalizable term. In aslightly more general setting, {You88] implies that if a
solution §; is non-normalizable, then another solution é; which is normalized
must also exist such that 8, <g §;. It accounts for the fact that the solution
set can never consist of non-normalizable terms only. The solution set
can now be viewed as a partition of distinguished equivalent classes. Two
solutions are in the same class iff they are comparable by <g. Within
each class, there exists a normalized solution which is more general than

all the others. It doesn’t matter if a non-normalizable solution exists or
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not. What really matters is the co-existence of a most general normalized
solution which can be enumerated through narrowing. Conditional rewriting
system is essentially an unconditional rewriting system augmented with
condition solving. A candidate rule (i.e. a rewrite rule whose left hand side
is unifiable with a function term) is applied only if its associated condition
P is resolved. Since naive conditional narrowing is complete for confluent
rewriting systems (with respect to normalized solutions) [LPB*87] and outer-
narrowing subsumes naive narrowing, we claim that conditional narrowing
under Ec-equality is complete for the conditional rewriting systems described

in §4.1.

Claim 4.3 For any sct of E.-unifiers T of two terms, A and B, there ezists

a conditional narrowing derivation

H(Av B) ?[U.K.E] H(Ch C2)

where C, and C; are constructor terms unifiable by a most general unifier ¥

such that 5 - 0 is an E-unifier for A and B with v-0 <g + T V(A, B).

Our claim is justified by the fact that any such system C can be transformed to
an equivalent unconditional rewriting system R. The systems are equivalent
in the sense that any two terms are unifiable in C iff they are unifiable in

R, and the solution set can be enumerated effectively in both systems. The
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principal transformation technique is derived from [DP88, GM87]. For any

conditional rewrite rule

where

Z is the set of variables appear in | which allows subterm

distribution from I to r.

A new function symbol P’ ¢ F is introduced. The above rule is then replaced

by two unconditional ones:

I(x) — P'(x, P(x))

P'(x,true) — r(x)

Recall that the unconditional portion of C is constructor-based and each P’
is a new function symbol. After all the rules are transformed, the resulting

system must also be an unconditional constructor-based system.

Eg. 4.5.,

Given a system C,



L(x) = n(x) : — Pi(%)
]2()?) — 1‘2()_() P - Pg(i)

l() — r3(x)
it is transformed to an unconditional system R,

h(x) — P/(x, P\(%))
P,'(x,true) — ri(%)
(%) = P,'(%, Py(%))
P,/(%,true) — ry(%)

k(%) = r3(%)

Consider the above example, if Pi(X) cannot be narrowed to true, () is
‘irreducible’ in C. At a first glance, the unconditional counterpart of C seems
to have a different outcome: ;(z) is now rewritten to P,’(%, P;(x)). Observe
that Py’ is a defined symbol, making P;’(%, P;(%)) a function term rather
than a consiructor term. The semantics of Ec-equality guarantees that I;(z)
is also ‘irreducible’ in R. If P;(%) is solvable, then P,’(%, Py(g)) is rewritten
to Py'(%,true). Hence, /(Z) is narrowable to r;(Z) in both C and R. As
Py’ is a distinct function symbol defined by exactly one rule, the solution
set for X must be identical in both systems. Analogue to §3.3, the non-
variable substitutes of any Ec-uniﬁer so obtained thru conditional narrowing

are normalized, leading to the following claim.
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Claim 4.4 Complete and minimal sets of E.-unifiers always ezxists for any

two E.-unifiable terms.

4.3 Extended Unification

The heart of traditional logic programming is resolution-based syntactic
unification. In contrast to conventional procedural programming paradigm,
pattern matching with no specific input/output mode enhances functional
reversibility. The syntactic nature, on the other hand, limits the scope
of logic programming to first-order languages. The key to any successful
functional logic language is an extended version of naive unification scheme
which allows function evaluation within first-order ‘predicates’. Fig 4.1
presents a simplified syntactic unification algorithm without occurs check.
Two terms, A and B, are dereferenced to their corresponding ‘values’ before
unification. If either one of them is a free-variable, it is then bound to
the remaining term. If both A and B are function terms with the same
principal functor and same arity, then their corresponding argument pairs
are successively unified; otherwise, the inference system halts and returns
with failure. Execution of a logic program is initiated by a given goal.
The computation mimics ‘a proof construction which generates the required

substitution as a side effect’. A version of such solver algorithm is depicted
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syntactic.unify(A, B)

dereference(A)
dereference(B)

if ( A is a variable )

{
6={A/B}uUb

return(success)
if ( Bis a variable )

0={B/A}UG

return(success)

lf( A=f(A1,---,An) andB:f(Bl’“"Bn))
{

fori=1ton

{
if not( syntactic_unify(A;, B;) )
return(failure)

return(success)

}

return(failure)

}

Figure 4.1: Syntactic unification without occur check
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in Fig 4.2. It is well known as ‘ABC algorithm’ [vE82] since the algorithm
is divided into (A) subgoal selection, (B) unification and (C) backtracking
handling. The function select() returns a subgoal from a set of unsolved
predi'cates as the currently activated call. The set of candidate clauses,
whose heads are potentially unifiable with current call, is generated by
clauseGenerator(). Successive clauses of this collection are enumerated by
the function nextClause() which are then unified with the activated call. The
resolvent is obtained if unification succeeds; otherwise, the function reset()
restores all mandatory information required to explore alternative searching
paths.

In §4.2.1 we shown that narrowing is complete for conditional rewriting
systems under Ec-equality. Its operational semantics follows the trails
of outer-narrowing which subsumes all other narrowing strategies. The
inference mechanism must abide with two essential properties: (i) leftmost
subgoal selection and (ii) outer-before-inner term rewriting. Although
unsolved subgoals are treated as an unordered set in general unification
scheme, leftmost selection rule is generally employed in most Prolog systems.
An implication of outer-before-inner rewriting is that any narrowable outer-
occurrence of a function term must be rewritten before its inner occurrence
is narrowed. This property can easily be incorporated into existing
syntactic unification by means of outermost-to-innermost scanning. For

any two function terms A and B, function symbol matching starts from
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naive_olve( G)
{
A:if (G=nil)
return(success)
else

{
curCall « select(G)
curGen « clauseGenerator(curCall)

B: curClause « nextClause(curGen)
if ( curClause # nil )
{
if ( syntactic_unify(curCall, head(curClause)) )

{
G « resolvent(G, curClause, 6)
goto A

}

else goto B

}
C: if ( curBak = nil )
return(failure)
else
{
reset(curBack)
goto B

}

Figure 4.2: Naive ABC algorithm




outermost functor to innermost functor. Unification succeeds if A and B
are syntactically unifiable; otherwise, i:hey must disagree at some occurrence
u. In this case, the process is suspended and replaced by outer-narrowing
of A/u and B/u. If they can be narrowed to two syntactical unifiable
constructor terms, then A and B are unifiable and unification resumes.
Extended unification fails if any one of A or B cannot be rewritten to a
constructor term, or even, their corresponding ‘fully narrowed’ terms are
non-unifiable. Obviously, syntactic unification must be distinguished from
extended unification, and outer-narrowing within extended unification is like
activating a mini-Prolog inside a proof construction. The modified unification

scheme and solver algorithm are presented in Fig 4.3 and Fig 4.4 respectively.

Eg. 4.6.,

1. unify(f(Y), f(g(X)) always succeeds.

2. unify(f(g(X), f(h(X)) leads to functor conflict at u =1
(since the outer function symbol *’ is identical}. it is
then suspended and replaced by successive outer-ue.rrowing
of the subterms g(X) and h(X). If g(X) and h(X) are
narrowed to syntactical unifiable constructor terms, then

unify(f(g(X), f(h(X))) resumes and succeeds.



=1

[3V]

unify(A, B, syntactic_unify)
{

derelerence(A); dereference(B)
if ( A is a variable )

= {A/B}uU¥
return{success)

}

if ( B is a variable )

{
§={B/A}uUS

return(success)

}
if (A= f(Ay,...,As) and B = f(By,...,By) )
{

fori=1lton
if not( unify(A;, B;, syntactic_unify) ) goto > £XT
return(success)
}
NEXT:
if ( syntactic_unify ) return(failure)
else

{

[narrowed, A’] «— solve(A)
if not(narrowed) . turn(failure)
[narrowed, B'] « solve(B)
if not(narrowed) return(failure)
return(unify(A’, B', true))

}

Figure 4.3: Extended unification scheme




solve(G)

{
A: lf‘ - .’li] )
o ,ucceSS, G)

el..

curCall « select(G)
curGen « clauseGenerator(curCall)

if ( curGen = nil )

{

if ( curCall is a rewritten term )
return(success. curCall)

1

3

B: curClause «— nextClause(curGen)
if ( curClause # nil )
{

if ( unify(curCall, leftHandSide(curClause), false; )

{

G « resolvent(G. curClause. 6)
goto A

}

else goto B

C: if ( curBak = nil )
return(failure)
else

{

reset(curBack)
goto B

} .

Figure 4.4: Solver algorithm




Recall that the system is complied to the resirictions imposed in §4.1 so that
the unconditional portion of C constitutes a constructor based term rewriting
system. Although this modified unification scheme can be used in a slightly
more general setting of equation solving, incorporating it into a practical
programminy, language °s relied on the constraints of C. Remember that a
fact P is just ths syntactic sugar of. P -+ true and is treated like any other

function terms. I3 has two affects on the extended unification scheme:

1. Givenarvlel— r: — P, the wuiwon 2 is proved before I is rewritten
to r. If a subggcal ?G is uvnifiable with I, the coherent treai.uent of

rewrite rules and predicates allows us to replace ?G by ?P,r.

2. Since computation is initiated by a goal statement, one of the
arguments of unify(A,B), at any time, must be extr.acted from the
left hand side of some rule. Assume B is always selected as such, non-
overlapping property of C guarantees that B must not unifiable with
the left hand side of any rule. i. .ase of functor conflict, unify(A,B)

n . s to outer-narrow A only (instead of both A and B).
The simplied proof procedure incorporating these two effects is as follows:

1. Select the leftmost subgoal G, from the goal G:— Gy,..., Gy as the

next subgoal to solve.



[91]

2. Arb'trarily select a rewriterule [ — r : — Py,..., P, from C whose left

hand side | is potentially unifizbic with Gi.

3. Obtain the most general unifier é of G, and I when

(a) I and Gy are syntacticaily unifiable.
(b) I and G, disagree on function symbol at occurrence u

(1) Suspend the unification of | and G;.

(ii) Outer-narrow G;/u to a constructor term and syntactically

unify it with I/u.

4. Replace Gy/uin G by Py,..., Py, r. Apply the unifier 6 to it to obtain

a new goal §(i'1,...,Pn, Gifu « 1], Gs,..., Gn).

5. Repeat steps 1-4- until either

(a) The goal is a null clause or
(b) No clause can be selected in step 2 or

(c) In step 3b, G, cannot be narrowed to a constructor term which is

syntactically unifiable with I/u.

Before presenting an example to illustrate the proof construction procedure,

the notations used in the following example are explained. If there is a functor



conflict, [A;B] is used to denote the process of outer-narrowing A and then
syntactically unifying the ‘fully narrowed term’ with B. The predicate in bold

face is the currently activated call of a goal statement.

Eg. 4.7,

Given a system C,

a(X) = b(X) : — ¢(X)
b(X) = d(X) : — e(X)
f(d(X))

o(X)

e(X)

? f(a(X))

? [a(X); d(X)]

7 [e(X),b(X); d(X)]
? [b(X); d(X)]

? [e(X),d(X); d(X)]
7 [d(X); d(X)]

7{}



An important contribution of this extended unification scheme under E.-
equality is the existence of efficient and feasible implementation. In this
setting, equality of twu -erms is proved by outer-narrowing them all the
way to two constructor terms before syntactic unification is attempted (if
the constructor terms really exist). A major impediment of E-equality is
the cross-unification of intermediate results. Any underlying implementation
must account for this aspect and ‘store up’ all intermediate results for future
consideration. The improvement is best illustrated in Fig 4.5. Under E-
eqvality, proving Ag =g By leads to subsequent cross-unification of A; and
B;. All the intermediate results, (Ag, A1, A2, A3) and (Bo, By, B}, must be
stored for future consideration of A; =g B;. On the other hand, E.-equality

required syntaciic ui:* .ation of Az and B, in order %o establish A¢ =g, Bo.



(a) E-equality

(b) Ec-equality

Ay

Bo

By

Each arrow represents a narrowing step, and the dotted line
denotes possibly cross-unification of two (intermediate) terms

Figure 4.5: Improvement over cross-unification




Chapter 5

Functional Logic Pregramming

This chapter describer wirious implementation issues of the extended
unification scheme, ir: : . ‘icuiar, porting such scheme to existing Prolog
systems. We choose Waterlce Unix Prolog (WUP) as the target language
since it adequately demonstrates general concepts of memory organization,
data structures and control mechanism used in most systems. The first part is
an introductory ovetview of WUP to help understand fundamental techniques
regarding Prolog implementation. Readers interest in more in-depth analysis
should refer to [Hog84, Cam84]. The second part is devoted to incorporating
extended unification into WUP resulting in & modified language named FLP

(an acronym for Functional Logic Programming).
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5.1 Overview of WUP

Waterloo Unix Prolog (WUP) is a Prolog dialect writter in C under
UNIX! operating system [Che84]. Its most noticeable features are
separate compilation, adaptable runtime support, Prolog clauses database
management and modular programming. This integrated environment
allows the users to edit, execute, develop and debug large Prolog
programs. Adaptable runtime support, specifically tailored to certain
programming environments, together with separate compilation enhance
incremental program development without sacrificing portability of the
system’ Prolog clauses management coupled with modular programming
facilitates sophisticated yet flexible means to maintain various components
of large Prolog programs. Each program is partitioncd into modules or
disjointed set of clauses. These modules reside in different files, directories
and even file systems. Applying the same concept in Modula-2 [Wir82],
users can implicitly or explicitly export a module making it ‘accessible’ or
‘visible’ to the other modules. The entire collection of modules are organized
into a tree-like hierarchical structure. WUP also defines and controls several

module searching strategies to enumerate the set of candidate clauses whose

heads are unifiable with a given predicate.

1UNIX is a Trademark of Bell Laboratories
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5.1.1 Memory Management

Conventional implementations of programming languages divide program
memory into two different segments: data segment and control segment. The
data segment or heap is created before program execution. It contains the
codes of a program, usually in a compiled or compacted byte-code format,
which are accessible by the compiler. Control segment, which expands or
retracts dyramically; stores necessary information to locate the computation
path and to identify variable bindings along the path.

The runtime structure of WUP is made up of three stacks: runtime stack,
copy stack and trail stack. Runtime stack performs same tasks as control
segment. A stack node is cr--:ted whenev . he activated call successfully
unifies with the head of any <:ndi-late clause. Two types of object, stack
frame and environment, which censtitute a stack node are pushed on tep of
the stack. The stack frame maintains na+*gation information of the matched
clause-head pair. Its size depends on whether it is a detc: :on:.tic ncde or
non-deterministic node (see §5.1.3). The environment, with size equals to
the number of unique variables in the matched clause records the binding
of each variable. The copy stack is essentially a heap containing codified
version of all the clauses. Clauses defining the same predicate (i.e. same
name and arity) are compiled and linked together according to their textual

appearancs: in the program. However, the copy stack is not exactly a
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heap since it dynamically saves newly created terms at runtime (see §5.1.2).
Trial stack records pointers to the newly bound variables which must then
reset upon backtracking. By the nature that all deterministic stack nodes
(including the associated environment) beyond the most recent backtracking
point are successively poped during the course of backtracking, only those

variable bindings below the most recent non-deterministic backtracking node

are recorded.

5.1.2 Data Structure

The primitive construct of WUP internals or kernicl is PC_WORD. It is a
structured record with two field., a tag and a value. T2 i1g field identifies
what kind of object a PC_WORD represents. Depend:ag on the tyse and
the context a PC_WORD is being used, the value field stores either an
inieger, a Joating point number, a character constant or a pointer to another
PC_WORD. The declaration and molecular structure of a .WORD is
illustrated in Fig 5.1.  Control information retaines in the runtime stack
are defined as collections of PC_ZWORD. Prolog clauses are preprocessed
(parsed and compiled) into corresponding clusters of PC.WORD before they
are linked up and placed onto copy stack. Fig 5.2 shows the PC_WORD

representation of a variable functor clause head. Structured objects (functors

or lists) are also reprzsented by 2 continuous series of PC_WORD. A related



ty}{)cdef struct pc_word

int tag;
union word

{
int ival;
float fval; TAG WORD

struct pc_word *ptr;
char *sval;

Figure 5.1: Declaration and molecular structure of PC_.WORD

issue is the assignment of these structured objects to a free variable. Current
Prolog implementations focus on two different approaches: structure sharing
and structure copying. Structure sharing, as suggested by its name, allows
the newly created objects to share a common skelet::n (eg. [X | Y]). The
skeleton, acting as the proxy of a structured term, is usually embedded within
an input program. Program memory is substantially reduced by sharing the
skeleton of program codes rather than creating new ones every time a variable
is bound. Each structured ob ject is represented by two pointers: one directs
to the skeleton and the other points to its binding environment. Only two
pointers are instantiated whenever a free variable unifies with a structured

term. However, a structured term may contain deeply nested sub-term



CLAUSE_HEAD ® CLAUSE_HEAD
CALL_SKEL

. INJJM_VAR

FUNCTOR

Figure 5.2: PC_WORD represertation of a clause head

manifested by a long chain of PC_ZWORD. Despite rapid term construction,
& :ssing such a terxﬂ is inefficient as successive dereferencing is inevitable.
Our target system, WUP, uses the alternative structure copying approach.
During unification, a variable ma; bind to a free variable, a ground structure,
a constant or a non-greund structure. In the first two cases, the stack node
stores a single pointer to the ground structure or the variable. A constant is
assigned directly to the appropriate variable environment. In the last case,
a new copy of non-ground structured object is created and placad on the
copy stack. A pointer to this newly constructed object is then assigned to
the free variable involved in unification. Extra memory is allocated to create
multiple occurrences of these objects from their original codes. Although

term construction is expensive (in terms of space and time), the term is
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readily accessible without a long chain of dereferencing.

Backtracking consists of cutting variable linkage created during
unification and restoring necessary information to explore untried
alternatives. Any reference to the retracted stack nodes results in dangling
pointers. The following restrictions concerning pointer assiznment are

imposed to avoid dangling pointers:

1. Since t... -iacks are poped in a Last-In-First-Out fashion, pointers
withir: .h- same stack must originate from higher order address to

lower order address.

2. When a free variable unifies with a structured object, the object is
copied onto the copy stack. A pointer is emanated from the variable
environment to this newly created object. The copy stack must then

reside below the runtime stack.

A simple memory layout of the copy and runtime stacks is depicted in Fig 5.3

5.1.3 Control Mechanism

WUP adapts typical left-to-right depth-first searching scheme which is
commonly employed by most existing Prolog systems. The proof procedure
is based on Van Emden’s ABC algorithm [vE82] (see Fig 4.2). This algorithm

assumes the data structure of a proof tree. A stack node (stack frame and
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Lowest Order

Copy
Stack
Growing
/
/
Stack F :
i N ik Node
Runtime Environment )
Stack
Growing
\
Highest Order

Figure 5.3: Memory layout of copy stack and runtime stack
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environment) is pushed onto the runtime stack whenever unification succeeds.
A sequence of stack nodes, from the root (i.e. the initial goal) up to current
node, is retained in order to carry out necessary tree traversing. The minimal

information stored in a stack frame consists of:

1. A pointer ‘CALL’ to indicate the subgoal call of the clause causing
creation of the current node. Remaining unsolved subgoals (i.e. to the

right of current call) within the same clause are accessible through this

pointer.

2. A stack frame pointer ‘FATHER’ to denote the parent frame of the
current node. It maintains fundamental structure of the entire proof
tree. If all the subgoals within the same clause are solved (i.e. the
CALL field of the current node is nil), traversing will continue with

untried subgoal of its FATHER.

Non-deterministic computation occurs if current call is unifiable with more
than one candidate clause. Under such circumstances, necessary information

to explore untried alternative clauses is stored in the proof tree The current

node is now marked as potential backtracking point. For whatever reason’

unification fails, all nodes from the current one down to the most recent
backtracking point are poped. The stacks and environment are reseted before
unification with alternative clause is attempted. A stack node must maintain

additional traversing information in order to accommodate these actions:
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3. A pointer ‘NEXTCL’ to retrieve the chain of untried alternative
candidate clauses. Backtracking results in successive unification with

these clauses.

4. A pointer ‘BACK’ to indicate previous backtracking point. A series
of backtracking is made possible with the help of a global variable

‘CurBack’, which denotes the most recent backtracking point.

5. Two pointers ‘RESET’ and ‘COPY’ to record the top of trail stack
and runtime stack respectively. During backtracking, variable bindings
referenced beyond RESET are undo, and segments of copy stack are

poped according to the value of COPY.

Obviously, the size of a non-deterministic stack frame is much larger than its
deterministic counterpart. For the sake of memory utilization, an interpreter
or compiler should have two different kinds of stack frame. The deterministic
and non-deterministic stack frames of WUP are depicted in Fig 5.4.

The unification algorithm used in WUP is a table-driven routine without
‘occurs check’. This table, as shown in Fig 5.5, is a two-dimensional array.
Its index are varicus possible argument types of a goal call and the head of
a clause. The entries of this table are constants which designate different

actions required for successful unification.



Frame Pointer
Deterministic Non-Deterministic

CALL CALL
TYPE / FATHER . TYPE / FATHER
MODULE MODULE

COPY

BACK

NEXTCL

RESET

Figure 5.4: Deterministic and non-deterministic stack frames

5.2 Implementation of FLP

Incorporating extended unification requires modest modification to both the
underlying data structures and the proof procedure of WUP. As a very first
step, the PC_ZWORD representation of each rule is modified to include the

target rewritten term (R.H.S.). A new data type ‘RULE’ is introduced
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S - always Succeed
FV - Free Variables
AH - Assign to Head
AC - Assign to Call

UF - Unify Functors
CH - Copy to Head
CC - Copy to Call
SC - Simple Comparison

Figure 5.5: Unification table

CALL| Free | Void | Int |Atom | Char | End |Const| Var |Const| Var
HEAD Var | Var |Const {Const |Const| List | List | List | Func | Func
vie |Fv| s |AH | AH | AH | AH | AH | CH | AH | CH
veoid |s|sf{s|s|s|s|s|s|s]s
c‘;‘;ﬁ'{n Ac|sjisc|F|F|F|F|F|F]|F
cuom |ac|s | F|sc|F|F|F]|F | F | F
Quracter | aoc| s | F | F |sC| F|F FlF|F
Endl I;;‘{ ac|s | F|F|F|sc{F|F|F|F
Constant | ac | s | F | F | F | F |U[UL|F|F
Vaible | pc | s | F|F|F|F|U|U|F|F
omsant | cc | s | F | F|F|F|F[F UF | UF
Yariable | pc! s | F | F | F | F | F | F |UF|UF
F - always Fail UL - Unify Lists
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CLAUSE_HEAD # CLAUSE_HEAD

CALL_SKEL

NUM_VAR

FUNCTOR

RULE

Figure 5.6: PC_WORD representation of a modified clause head

to differentiate it from normal subgoal call. As illustrated in Fig 5.6, the
last PC_.WORD points to the internal representation of a rewritten term.
Similar to WUP, a stack node is pushed onto the runtime stack when the
left hand side of a rewrite rule matches current call. After all subgoals of
the condition are solved, rewriting proceeds to select as current call the
right hand side rewritten term designated in the stack node. In the case
of functor conflict, extended unification does not continue with the condition
of the candidate clause. The usual inference procedure is suspended and a
‘pseudo’ stack node containing the suspended rule is pushed on top of the

runtime stack. The pseudo node, also referred as conflicting node, denotes
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a potential unification rather than matched clause-head pair. The next step
is to locate the exact position of functor conflict. For example, if current
call is f(d(X)) and the left hand side of a rule is f(e(X)), then they disagree
at occurrence u = 1. Taking advantage from non-overlapping property, only
the conflicting subterm of current call (i.e. d(X)) is narrowed. The conflicting
subterm is now selected as the upcoming current call. Current call of this
nature is labeled as a RULE rather than a normal subgoal call. After it is
fully narrowed to its normal form, syntactic unification with the conflicting
left hand side subterm (i.e. (X)) is attempted. Since syntactic unification is
carried out at a later stage, reference to the conflicting left hand side subterm
must a.iso be stored in the stack frame. Extended unification resumes with
the suspended rule if syntactic unification succeeds, which signifies that the
rewrite rule is reaily a candidate clause. Analogue to backtracking in trivial
Prolog implementations, a global variable named ‘CurConflict’ represents the
most recent conflicting node. A stack frame must accommodate sufficient
information to retrieve the chain of successive conflicting nodes. Fig 5.7
shows the structure of an extended stack frame.

Minor adjustment of the proof procedure is required on two different
portions of ABC algorithm: unification routine and handling of rewritten
terms. The extended version distinguishes between syntactic unification and
extended unification. The discrepancy is easily redressed by introducing a

new boolean variable ‘syntactic.unify’. If the variable is set to true when



Deterministic

CALL

TYPE / FATHER

MODULE

PROC

TERM

LASTCF

CONFLICT

Figure 5.7: Modified version of runtime stack frames

Frame Pointer

Non-Deterministic

CALL

TYPE /FATHER

MODULE

PROC

TERM

LASTCF

CONFLICT

COPY

BACK

NEXTCL

RESET
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functor conflict occurs, which stands for syntactic unification, the algorithm
then returns with failure; otherwise, the inference procedure is suspended and

a pseudo node is created. A simplified version of these changes is depicted

in Fig 5.8.
where
CurCall is the current call
tproc is the suspended rewrite rule
ht is the conflicting subterm of left hand side of
tproc
ct is the conflicting subterm of current call

RewriteRuleOf() is a function returning right hand side of a

rewrite rule

SetCurCall() is a function setting the given argument as

current call

As an example, assume the current call is f(d(X)) and the candidate clause
is f(e(X)) : — g(X). Fig 5.9 shows the content of a simplified pseudo node
after it is pushed onto the runtime stack.

Notice that the current call can now be a normal subgoal or a rewritten

term of type RULE. Unification fails if a given subgoal has no candidate
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if ( functor conflict )

if ( syntactic_unify )
return(failure)

/* Set up stack frame information */

if ( more than one candidate clause )
set up backtracking information (COPY,BACK,NEXTCL,RESET)

set up compulsory information (FATHER,TYPE,MODULE)

set up conflicting node information
{
CallOf(CurFrame) « CurCall
ProcOf(CurFrame) « tproc
RewriteTermOf(CurFrame) « RewriteRuleOf(tproc)
ConflictOf(CurFrame) « ht
LastCF(CurFrame) « CurConflict
CurConflict ~ CurFrame
SetCurCall(ct)

Figure 5.8:-Simplified version of functor conflict handling
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Runtime Stack

PROC g(X)
REWRITE
; Pointer to previous
LASTCF R Conflicting Node
CONFLICT e(X)
CurCall =d(X)

Figure 5.9: Pushing a pseudo stack node onto runtime stack
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if ( unify )
if ( (IsRule(CurCall) && syntactic_unify )

CurProc « ProcOf(CurFrame)
syntactic_unify « false

} } |
else if ( (IsRule(CurCall) && CurConflict )
{

syntactic_unify « true
unify(CurCall, ConflictOf(CurConflict))

}

Figure 5.10: Modified proof procedure to handle rewritten terms

clause. A normal form is reached when no candidate clause responds to a
rewritten term (of type RULE). Syntactic unification with the conflicting
subterm, as indicated in the most recent conflicting node, is attempted
thereafter. If syntactic unification succeeds, the most recent conflicting node
represents a real matched clause-head pair. The process then continues with
the suspended rewrite rule. An essential fraction of this modification is shown
in Fig 5.10.

where

IsRule() is a function testing if the given argument is a

rewritten term



ProcOf() is a macro for accessing the rewrite rule stored in the

given frame

ConflictOf() is a macro for accessing the conflicting subterm

stored in the given frame

A conflicting node is ‘conceptually transformed’ to a real stack node whenever
its associated syntactic unification succeeds, or it is poped accordingly
otherwise. Within this framework, modification of backtracking is next to
none. A major consideration is retrieving the pointer to previous conflicting
node when the most recent conflicting node is poped. Fig 5.11 is an example

simulating the runtime stack for the following program.

Eg. 5.1.,
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CurFrame CurConflict
l |
CALL f(a(X)) “|cALL fal))
PROC dX) PROC dX)
REWRITE REWRITE
LASTCF LASTCF
CONFLICT | b(X) > CONFLICT | b(X)
! CALL aX)
CurFram
UrFRME TREWRITE | b(X)
CurCall = f(a(%)) CurCall = a(X) CurCall = ¢(X)
(a) (b) (c)
CurConflict CurFrame
1 L
CALL faC)) CALL f(a(X)) CALL fa(X))
PROC dX) PROC dX) PROC dX)
REWRITE REWRITE REWRITE
LASTCF LASTCF LASTCF
CONFLICT | b(X) CONFLICT | b(X) fe- CONFLICT | bX)
CALL a(X) Cmplme CALL aX)
REWRITE { b(X) - REWRITE | b(X)
CALL o(X)
REWRITE
|___ Syntactic
Unifiction
X=1 X=1 X=1
CurCall = ¢(1) CurCall =b(l) = CurCall = d(1)
(e) (6]

(d)

Figure 5.11: Runtime stack simulation of a program execution -
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Chapter 6

Conclusion

6.1 Summary

As a dialect of declarative languages, logic programming posses the distinct
property of separating declarative semantics (what the output will be) from
operational semantics (how to obtain the output). Despite its prominent
features such as logic variables, bi-directional data flow and functional
invertibility, the runtime behavior of non-deterministic logic programs is far
too complicated and too difficult to control. Another major shortcoming
of logic programming paradigm is the solo utilization of ‘flat-natured’ first-
order constructor terms. Every term is syntactically equaled to itself only,
but nothing else. Without functicn evaluation, higher-order programming is

inhibited and the expressive power of logic languages is severely restricted.
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In this thesis, we propose a conditional term rewriting system which serves
as the bridge to combine logic programming and functional programming
paradigms in a purely logical framework. The completeness and minimality
characteristics of such system under a restricted subset of equality, namely
Ec-equality, is further investigated. An important contribution of the
proposed system is that an effective and efficient implementation scheme
always exists and the scheme is readily portable to existing Prolog systems.
We start by reviewing the basic concepts of logic programming and functional
programming. Chapter 2 describes the similarities and differences among
these two languages. Their discrepancies trace back to the use of different
operational semantics on top of comparable logical frameworks. The key to
successful amalgamation is addressed to two aspects: an equality theory rich
enough to capture the underlying semantics of both paradigms and a suitable
operational semantics for the united framework. Fundamental notions of
pattern-matching reduction and unification-based resolution are presented in
the first two chapters. Different strategies for a hybrid inference procedure,
namely narrowing, are also introduced. Chapter 3 introduces E.-equality
which is a subset of classical equality theory. Restricted to a special class of
confluent rewriting system, complete set of minimal Ec-unifiers always exists
for two Ec-unifiable terms. Accompany with this framework is an effective
and efficient narrowing strategy called outer-narrowing which enumerates

the complete set of minimal E.-unifiers. It is essentially a competent method
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to interleave outermost narrowing with innermost narrowing strategies. A
conditional term rewriting system is proposed in Chapter 4. This system,
which is an extension of unconditional constructor-based rewriting system,
is heavily inspired by the work of [You88]. We informally investigate
the completeness characteristics of such system and claim that complete
set of minimal Ec-unifiers always exists. We further suggest an extended
unification scheme, mimicing the outer-narrowing strategy, as part of a

complete inference procedure. The major advantages of this system are:

1. Complete set of minimal E.-unifiers exists for two E.-unifiable terms.

Conditional narrowing is, in general, an incomplete
inference procedure for unrestricted term rewriting systems.
A serious impediment is the existence of non-normalizable
solutions. In quest of completeness results, current research
focuses on canonical (terminating and confluent) systems
which alleviate the problem through the notion of unique
canonical normal form. Although the confluence property
is essential for correlating ‘=’ with ‘=g’, the terminating
requirement seems to be too restrictive. Another
area of research concentrates on the distinction between
defined function symbols and constructors. A subset

of classic equality is established between ‘meaningful’ or
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‘normalizable’ terms. We informally show that conditional
narrowing is complete for the proposed system, when

confined to E.-equality.
2. Efficient implementation of the proposed system is feasible.

By the definition of E.-equality, two terms are equaled
iff they are (conditionally) narrowed to two unifiable
constructor terms. Cross-unification between intermediate
results is irrelevant. In terms of implementation, it
is unnecessary to ‘store’ and ‘cross-checking’ all these
intermediate terms. Substantial amount of memory are
saved and the programming complexity is greatly reduced.
Computation is relatively less expensive (in terms of space

and time) than other similar systems.

Chapter 5 concentrates on the implementation issues of an extended
unification scheme. Equally important is the fact that incorporating this

extended scheme to existing Prolog systems requires minimal effort.

6.2 Future research

The conditional rewriting system proposed in this thesis can be used as a

stepping stone to develop more general yet sophisticated systems. Future
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research is addressed on two different but dependent areas:

1. Relax the conditions of the constructor-based system described in §4.1
to form another special class of rewriting system. An important aspect
is the completeness and minimality of such system under Ec-equality.

As a very first step, each rewrite rule can be generalized to
l=r:—=P 3¢

with ‘c’ being a constructor term. A collection of these rules constitutes
another instance of type III, system. This system is less restrictive
than our system in the sense that the condition is now narrowed to
any constructor term. Future consideration can be directed towards
confluent systems that are more general than type Ill, system (for

example, ‘c’ may not be a normal form).

2. Under E.-equality, a term equals to itself only if it is narrowed to
a constructor term. Irreducible function terms and the terms that
are trapped in infinite derivations are considered ‘undefined’ in this
framework. Another open area of research is to study the effect of
a more general equality theory on these terms. [You89] introduces
the notion of E,-equality to manipulate irreducible function terms.
The remaining question is how to handle terms that are trapped in

non-terminating narrowing derivations. The suggested theory must



provide a coherent environment for all the cases. Ad hoc treatment
of a particular case (such as irreducible term) is inadequate. The
requirement of constructor-based conditional rewriting system may be

banished if an elegant equality is discovered.

Alongside with these two areas of research is the search of a suitable inference
mechanism. The operational semantics must be complete in the sense that
complete set of minimal unifiers (if exist) is effectively enumerated. Further

investigation is emphasized on a feasible and efficient implementation of such

inference system.
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