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Abstract

To meet the demands of safety, quality and efficiency, process monitoring is

of great importance. However, a serious problem exists in the industry: too

many alarms are raised for operators to handle. Consequently, techniques need

to be developed in order to reduce nuisance and false alarms to an acceptable

level. Motivated by this, my thesis focuses on alarm systems improvement,

specifically the development of data-driven techniques for the analysis and

design of alarm systems.

Developed methods are based on either process data or alarm data, the two

types of data mainly used in alarm systems. Three problems are considered.

First, a univariate alarm signal filtering technique is discussed. The design

of an optimal alarm filter for the best alarm accuracy, namely, minimizing

a weighted sum of false and missed alarm rates (probabilities), is presented.

Moreover, a sufficient condition for moving average filters being optimal lin-

ear alarm filters is also provided. Second, alarm flood pattern analysis based

on multivariate alarm data is addressed. A modified Smith-Waterman algo-

rithm considering time stamp information is proposed for alarm flood pattern

matching. Third, the application of a new multivariate statistical analysis

technique, the principal component pursuit (PCP) method, to process moni-

toring is thoroughly discussed. An optimal scaling method is proposed as the

preprocessing step. A coordinate descent algorithm is provided to search for

the optimal scaling vector, whose global convergence is proved. After multi-



variate process modeling, a PCP-based fault detection and diagnosis approach

is introduced.

An industrial project on a major extraction process in Alberta to improve

its alarm system is described. Based on the historical data, a predicted reduc-

tion on the alarm rate by applying a variety of alarm system rationalization

techniques is estimated. A significant improvement on the alarm system is

expected.
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Chapter 1

Introduction

1.1 Motivation and Background

In large industrial plants, faults may occur within any of their thousands

of components and therefore result in unsatisfactory performance, equipment

failures, and even hazardous accidents. According to [1], petrochemical plants

on average suffer a major accident every three years that leads to devastating

consequences. Moreover, it costs industries billions of dollars annually due

to unplanned shutdown, equipment damage, performance degradation and

operation failure.

To meet the demands of safety, quality and efficiency, process monitoring

is of great importance. Alarm systems play an important role in industry. An

online survey conducted by the International Society of Automation (ISA) in

2008 indicated that “what automation industry observers and practitioners

felt that near-term trends were going to be showed that alarm management

and security scored at 14%, one of the top 5 technologies that the facility

would rely on” [109]. As defined in [15],“an alarm is some signal designed to

alert, inform, guide or confirm, and an alarm system is a system for generating

and processing alarms and presenting them to users”. A detailed description

of an alarm system is provided in [58]. An alarm system may include an alarm

generating part in the basic process control system (BPCS) and safety instru-

mented system (SIS), the alarm log, and the communicating part to operator

via a human machine interface (HMI). There are also some external systems

that are of importance to the alarm system including an alarm historian. The

schematic of an alarm system is shown in Fig. 1.1.

According to the alarm management lifecycle described in [58], control

engineers are mainly involved in the “monitoring and management of the
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Figure 1.1: Alarm system dataflow [58].

change loop”. This loop is triggered when the alarm system is working as

designed while the monitoring and assessment requirements are not achieved;

so new techniques should be adopted to improve the performance of the alarm

system.

Nowadays, hardware and software advances, in particular the modern dis-

tributed control system (DCS) technique, make it easy to access almost every

process variable that can be measured; this provides the alarm system with

more process data. However, the modern DCS also makes it easy to add

alarms without significant effort, cost, or justification, which makes alarm

management more challenging. It is shown in [93] that an average operator

takes about 10 minutes to process and respond to an alarm, so EEUMA Guide

and ISA Standard [58, 93] suggest that an operator should not receive more

than six alarms per hour. To find more detailed alarm performance met-

rics and their target values, one can refer to the “alarm performance metrics

summary” section in [58]. There is a large gap between these performance

requirements and the reality observed in industry. In practice the number of

alarms an operator receives per hour is in the magnitude of tens, hundreds

or even thousands. A majority of these alarms are false or nuisances. As

described in [87], “end users are swamped with alarms, only some of which

2



require any real action to be taken”. Too many false and nuisance alarms only

distract the operator from operating the plant, which can cause critical alarms

to be ignored, and lead to distrust of the alarms by operators. Some incident

cases reported in [15] also support the statement that serious faults which may

cause incidents are probably disguised by false and nuisance alarms in alarm

floods. As a result, there exist strong industrial needs and major potential

economic benefits for better interpreting and managing the alarms, as well

as redesigning the alarm systems to reduce false and nuisance alarms and to

avoid alarm floods.

As this thesis mainly focuses on data-driven techniques, it is necessary to

clarify the data related to alarm management. There are two types of data

that are informative and accessible resources for alarm management: process

data and alarm data [62].

Process data are process variable measurements. They are usually stored

in a database. An example of a segment of process data extracted from a

process database is shown in Fig. 1.2.

Figure 1.2: A segment of process data extracted from the database.

The historical process data is a valuable resource for model identification,

controller design, and performance analysis. In industry, most of control re-

lated alarms are raised based on process data. One process variable or a

function of several process variables provides the alarm system with an alarm

signal. Alarms are usually raised when the corresponding alarm signal exceeds

a predetermined limit.

Alarm data is a set of text messages generated by the DCS and stored in an

alarm log. When an alarm is raised, a message is generated. Usually an alarm

message contains several fields of information: time stamp, namely, the time

instant when the message is generated, tag name, tag identifier, e.g., ‘PVHI’,

‘PVLO’, ‘OFFNORM’, and other information such as the priority, the value

of the process variable, the trip point and so on [62]. The tag name plus tag

identifier reflects what type of alarm occurs, and the time stamp reflects when

it occurs. An example of a segment of alarm data extracted from an alarm

3



log is shown in Fig. 1.3.

Figure 1.3: A segment of alarm data extracted from the database.

To clarify the relationship of process data and alarm data, a simple example

is provided. Assume that there are only two process variables, x1 and x2, in

an alarm system. For each process variable, two thresholds (an upper limit

and a lower limit) are set. Under normal situations, the process variables

should operate between their upper and lower limits. In other words, when

their values are larger (smaller) than their upper (lower) limits, PVHI (PVLO)

alarms will be raised, while alarms will be cleared when the process variables

return to their normal regions between their upper and lower limits. Hence,

there are a total of 4 types of alarms: x1.PVHI, x1.PVLO, x2.PVHI, and

x2.PVLO. Fig. 1.4 shows the generation of these 4 types of alarms according

to the process variables x1 and x2. At the instant that a process variable

exceeds a threshold, a red bar is plotted on the corresponding alarm plot.

For example, the process variable x1 crosses the upper limit at 30s, hence a

red bar is shown at 30s on the alarm x1.PVHI plot. Table 1.1 provides the

corresponding alarms in the log.

1.2 Literature Survey

1.2.1 Guides and the Standard on Alarm Management

The topic of alarm management draws much attention from related industrial

societies. In 1998, a contract research report for the Health and Safety Ex-

ecutive was prepared by Bransby Automation Ltd [15]. This report surveyed

alarm systems in chemical and power industries, justified the value of im-

provement on alarm systems, and summarized the best practice at that time.

From this report, the Engineering Equipment & Materials Users’ Association

(EEMUA) developed a guide on alarm systems. The revised version from 2007

became a document widely accepted in industrial alarm practice and design

[41]. This guide covered topics on alarm system philosophy, design principles

of alarm systems, implementation issues, measuring performance, managing

4
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Table 1.1: Alarm message log.
Tag Name Tag Identifier Time Stamp

x2 PVHI 5s
x2 PVHI 12s
x2 PVHI 15s
x2 PVHI 20s
x1 PVHI 30s
x1 PVHI 40s
x1 PVHI 44s
x2 PVHI 45s
x1 PVHI 48s
x2 PVHI 53s
x2 PVHI 57s
x2 PVHI 64s
x2 PVLO 67s
x2 PVLO 69s
x1 PVLO 71s
x2 PVLO 71s
x2 PVLO 73s
x1 PVLO 74s
x1 PVLO 76s
x2 PVHI 82s
x1 PVLO 83s
x2 PVHI 85s
x1 PVLO 86s
x2 PVHI 88s
x2 PVHI 90s
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improvement programs, and purchasing of new alarm systems.

The standard on Management of Alarm Systems for the Process Industries

developed by ISA [58] is seen as a milestone in the field of alarm management,

since it is the first standard in this field. The importance of the standard

has been emphasized in many articles such as [50, 87, 101]. The standard

dealt with the development, design, installation, and management of alarm

systems in process industries to improve safety, quality and productivity. This

standard is now being popularized in North America.

The documents mentioned above outlined alarm strategy development,

as well as provided alarm performance metrics and the recommended target

values. However, only the direction was made clear and the targets provided;

technical details in order to reach these goals were not discussed.

1.2.2 Technical Work

Due to the great demand from industry, some research work has been done

in the field of alarm management. The goal of these studies is to make alarm

systems more accurate, swifter, and more informative, since the end users

are operators who expect accuracy when alarm systems alert them to real

abnormalities without significant delay, and instruct them to act appropriately

via the HMI in a way that is easy to understand.

Most of the studies can be classified into three major topics: univariate

alarm analysis and processing, multivariate alarm analysis and processing,

and alarm system visualization and operator overload analysis. Regardless

of the correlations between tags, univariate signal analysis and processing

focus on only one tag at a time. Techniques are proposed to make the alarm

operation on this single tag as accurate and swift as possible. In contrast,

multivariate studies emphasize the relationship between tags. Problems such

as plant connectivity analysis, alarm correlation and propagation analysis are

considered. These two topics are from the alarm system point of view, while

the third topic is from the end users’ perspective. Such problems as how to

estimate the workload of an operator, as well as how to present the detection

result of the alarm system to operators and engineers are studied.

Univariate Alarm Analysis and Processing

In [60] and [61], a general framework for univariate alarm systems was pro-

posed. In this framework, the three most important metrics are false alarm
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rate (FAR), missed alarm rate (MAR), and average detection delay (ADD).

Receiver operating characteristic (ROC) curves are recommended to analyze

the tradeoff on FAR and MAR with respect to the threshold. As discussed in

[61], three main techniques to improve the alarm performance are deadbands,

delay timers, and filters. The guideline to set a proper deadband was dis-

cussed in [55]. Reference [82] focused on the relationship between deadband

and chattering alarms. The papers [3, 115] systematically discussed the delay

timer design based on these three metrics. The design of alarm limit based

on historical process data was studied in [51].

The filter design problem in univariate alarm system is closely related

to the abrupt change detection in the statistical process control community,

whose goal is also to adopt different signal processing techniques, especially

filtering techniques, to detect abrupt changes of the signal. Instead of FAR

and ADD, ARL0 and ARL1 are used to measure the performance, where

ARL0 indicates the average run length when a process is in control, and ARL1

indicates the average run length when a process is out of control. Actually,

there is a straightforward relationship between ARL0 and FAR; moreover,

ADD and ARL1 are the same.

The tools most utilized for univariate statistical process monitoring are

different kinds of control charts. The basic control chart, Shewhart chart,

was firstly proposed by Walter A. Shewhart in 1920s. As the most classical

univariate statistical monitoring strategy, the Shewhart chart is often intro-

duced at the very beginning in textbooks [14, 32]. Note that 2 sigma or 3

sigma, sigma being the standard deviation, is often set as the control limit

for measurements, and false alarm rate is approximately calculated under the

Gaussian distribution assumption. Some additional action rules for the She-

whart chart were devised by Western Electric [43] which can be considered

as simple signal processing methods on the process signals. For example, the

third rule can be considered as filtering the maximum/minimun value of the

latest 8 samples and its threshold is the operating point.

Some popular advanced control charts include cumulative sum (CUSUM)

chart and the exponentially weighted moving average (EWMA) chart. These

advanced control charts filter a process signal by certain linear or nonlinear fil-

ters, and then compare the filtered signal to a threshold. ARL0 and ARL1 are

the metrics most researchers focus on. The CUSUM chart was first proposed

8



by Page in 1954 [88]; it is in the form of a nonlinear filter

gn+1 = max

(
gn + log

pΘ1
(Xn)

pΘ0
(Xn)

, 0

)
,

where log
pΘ1

(Xn)

pΘ0
(Xn)

is the log-likelihood ratio (LLR) of abnormal and normal

cases. This form is convenient for theoretical analysis, while the following

simplified form is more practical:

gn+1 = max (gn + Xn+1 − K, 0) .

EWMA, also called geometric moving average, is in an infinite impulse re-

sponse (IIR) filter form

gn+1 = (1 − λ)gn + λXn+1.

Considering variance instead of mean change, EWMS (exponentially weighted

mean square) or EWMV (exponentially weighted mean variance) are studied.

Research on the advanced control charts mainly includes evaluation of met-

rics, setting the parameters to improve performance, removal of assumptions

such as i.i.d. and modification of existing methods, as well as combining these

control charts with certain intelligent methods. An approach to approximate

the probability distribution of ARL1 by discretization was provided in [16]. A

recent work [118] extensively studied the distributions of ARL0 and ARL1 by

considering the CUSUM signal as a Wiener process. A similar work was done

for EWMA in [94] with the assumption of normal distribution by a numerical

method. A comprehensive analysis of ARL0 considering both independent

and autocorrelated observations for EWMS and EWMV was provided in [80].

But the result was approximated and was under the assumption of normal

distribution. In [100], the optimal weights for EWMA were designed in the

sense of the minimum ARL1 with a fixed control limit under the i.i.d. and nor-

mal distribution assumptions. In [16], a new objective function was provided

while considering the quality impacts on run length. The shift size was ran-

dom but following a known normal distribution, and the optimal parameters

for EWMA and CUSUM for different distributions of shift size were listed

in a table. In [106], an adaptive threshold for CUSUM was designed. The

threshold was calculated by Monte Carlo experiments at each step. Certain

combinations of artificial neural network (ANN) and CUSUM or EWMA were

attempted in [31, 108]. The ANN was used as a residual generator and the
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generated residue was filtered by CUSUM or EWMA. A comprehensive sum-

mary and analysis on CUSUM-type and generalized likelihood ratio (GLR)

algorithms were provided in [8]. We can see that most of the results were

under Gaussian distribution or exponential family distribution assumption.

Multivariate Alarm Analysis and Design

It was shown in [51] that a large number of unimportant alarms fall within

three categories: standing alarms, repetitive alarms, and consequence alarms.

Univariate alarm design techniques mentioned above are effective on standing

alarms and repetitive alarms, especially for bad alarm tags.

Under steady operating conditions, the alarm rate can be effectively re-

duced to a manageable level thanks to these techniques. However, in abnor-

mal situations, it is still very difficult to eliminate alarm floods though these

techniques can suppress some of the alarms. The remaining alarms are mainly

consequence alarms. Recently, the connection between alarm flood and plant

incidents is thoroughly discussed from industrial perspective in [10]. The au-

thors claimed that alarm floods usually occur when the plant state changes.

Univariate approaches such as bad tag management and static rationalization

can hardly have any effect on mitigation of alarm floods.

Compared with standing and repetitive alarms, consequence alarms are

more complicated and more difficult to manage. Multivariate alarm analysis

and design concern the relationship between alarms, which is appropriate for

analysis and reduction of consequence alarms.

Multivariate analysis and design can be classified into two categories: quan-

titative methods, and qualitative methods.

Multivariate statistical process control (SPC) methods are popular and ex-

tensively studied quantitative methods. The methods often use the principal

component analysis (PCA) technique as a modeling tool, and the T2 and Q

statistics of the PCA model are often used for alarm generation – details can

be found in [32] and the references therein. In [66], it was shown by simulation

results on Tennessee Eastman process that the PCA method could improve

the accuracy of the performance of the alarm system. PCA-based abnormality

diagnosis was proposed and analyzed in [63, 96, 97]. In these references, the

angle and distance between the principal subspaces for historical and current

multivariate process data were similarity factors by which similar historical

segments were screened to help experts make their decisions. The methods
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were validated on a simulated continuous stirred-tank reactor model and the

Tennessee Eastman process. Automation on abnormality diagnosis discussed

in these references can greatly reduce the operators’ workload when alarm

floods occur and thus is a rational resolution for alarm flood problems. Other

techniques were proposed to quantitatively determine the abnormal operating

region for alarm generation including the parallel coordinate envelope tech-

nique [57], and a dynamic process simulator-based method [105]. The former

technique is intuitive and easy to understand, but the operation region can

only be determined by rule of thumb; the latter technique requires an exact

dynamic model of the plant, and only considers a noise-free situation, which

is not practical.

Intelligent alarm processing was introduced as a traditional quantitative

method in [64, 111] and attempted to present a clear picture of the global

situation. A rule-based framework was provided. When alarms are raised,

the system will decide the fault pattern following these rules. This alarm pro-

cessing method is commonly used in transmission and distribution systems

[21, 103]. A significant problem for such kind of alarm processing methods is

how to create knowledge bases for different systems [112]. In one implementa-

tion mentioned in [103], there were more than 15,000 rules (called chronicles

in the paper), which were mainly based on human expert experience on the

specific system. Some connectivity modeling tools such as signed digraphs

(SDG) are helpful for abnormality propagation path searching and hence for

setting up the rule database [104]. However, such tools are still knowledge-

based methods, which usually require involvement of expert, and are very time

consuming to implement.

To reduce analysis time, data mining techniques are a good choice. Such

data-driven techniques as Granger causality [48] and transfer entropy [9, 39]

capture process connectivity based on process data. However, the results are

usually not very reliable and used only for verification of the knowledge-based

connectivity modeling.

Other researchers attempted to directly detect the connection among alarm

tags based on alarm data. Event correlation analysis approaches were dis-

cussed in [85, 86, 117]. If the consequential relationship of two alarms is fixed,

correlation analysis approaches work well. For example, in [85] the correlation

analysis method can easily find an alarm sequence caused by a daily routine

operation. However, if the relationship varies in different abnormal situations,
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analysis on the whole alarm event sequences instead of pairs of alarm tags

is more suitable. Some pioneering work has been done on the application of

sequential pattern mining to consequence alarm suppression [33, 45, 46, 54].

In [33, 54], the authors modified the generalized sequential patterns (GSP)

algorithm [99] to search for frequent alarm sequences (patterns) in the histor-

ical alarm records. They emphasized that aside from the chronological order,

triggering time was also very important, so that time stamps of alarms were

considered in order to add time constraints in their algorithm. They also

pointed out that a potential use of the pattern analysis result was dynamic

alarm suppression. Since one alarm pattern is usually related to a specific un-

derlying abnormality, all of the alarms in a certain pattern can be temporarily

suppressed when the corresponding abnormality is detected. In [45, 46], the

authors set up Automatic Alarm Data Analyzer (AADA) automatons and

alarm-sequence automatons to represent the frequent alarm sequences in his-

torical alarm records. However, it was also mentioned that one of the deficien-

cies of the algorithm was the lack of robustness to disturbances, e.g., similar

alarm sequences with only one different alarm were recognized as different

alarm sequences.

Alarm System Visualization and Operator Workload Analysis

Visualization is a practical issue in alarm systems. An ineffectively visualized

HMI hinders the transfer of information from the alarm system to operators.

Even if the alarm system can make decisions accurately and swiftly, namely,

the end users, the operators, can hardly benefit from the alarm system. Vi-

sualization of historical data is also significant for the alarm rationalization

group to understand the performance of the alarm system.

The parallel coordinate technique [57] is a good practice on process data

visualization, which aligns many process variables in a single coordinate. The

additional benefit of 3D visualization was justified in [53]. The study measured

the reaction time and processing time to handle problem situations in 3D

visualizations. Compared with 2D, the results showed an advantage for 3D

representation. The authors of [45] further discussed how to design 3D process

control objects.

A series of visualization tools to represent historical alarm data were pro-

posed in [65]. High density alarm plots, alarm similarity color maps, and run

length distribution plots were developed.
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An operator behavior model was established in [78], and then a simulator

based on the model was used to evaluate the performance of an alarm sys-

tem. This work provided researchers with a new perspective on alarm system

evaluation.

1.2.3 Implementation of Alarm Management Techniques

An alarm management tool box was introduced in [11, 70]. Nuisance alarm

reduction via existing DCS functions such as filtering, time delay, and dead

band was discussed. However, in these papers, the only method for choosing

the algorithm was practicing several algorithms simultaneously and selecting

the one with the best performance. In [77], a software was introduced to re-

solve nuisance alarms. Some simple rules were used to determine whether an

alarm was a nuisance, and subsequently the control limit would be dramati-

cally changed to keep the alarm activated in a nuisance alarm case.

1.2.4 Summary

After going through a survey of the existing literature, we find that there

is overwhelming evidence for the univariate alarm signal processing problem;

however these results mainly concentrate on several fixed forms of control

charts. Although some papers study the optimal setting of the control chart

parameters, the results are often derived under the normal distribution as-

sumption.

In the multivariate case, rule-based alarm pattern analysis has been de-

veloped and applied to some power systems, but the research on data-driven

techniques is still quite limited.

1.3 Thesis Contributions

The major contributions in this thesis that distinguish it from other work are

listed below:

1. Provided a performance index to measure alarm accuracy, and developed

a procedure for optimal linear alarm filter design.

2. Proved that under certain conditions, moving average filters are optimal

linear filters in terms of high alarm accuracy.
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3. Proposed a novel similarity index and a corresponding modified Smith-

Waterman algorithm for event sequences with time stamps to measure

the similarity of two alarm flood sequences.

4. Pointed out the importance of scaling in the PCP technique, and pro-

posed a novel and convergent algorithm to optimize the scaling param-

eters in the sense of low coherence to improve the quality of the data

matrix.

5. Provided an easy and practical method to detect oscillation tags based

on alarm data.

1.4 Thesis Outline

This thesis has been prepared according to the guidelines from the Faculty

of Graduate Studies and Research (FGSR) at the University of Alberta. The

rest of the thesis is organized as follows.

Chapter 2 is concerned with univariate alarm filter design. We present

the design of an optimal alarm filter for the best alarm accuracy, minimizing

a weighted sum of false and missed alarm rates (probabilities). It turns out

that the general form of such optimal alarm filters is the so-called LLR filters,

which can be highly nonlinear and difficult to implement in practice. With

fixed filter structures (FIR), design of optimal linear alarm filters is studied,

and a numerical optimization procedure is proposed. Some key elements in

the optimal design include the use of characteristic functions from probability

theory to facilitate computation of the objective function, and a differential

evolution (DE) algorithm for optimization (the optimization problem is non-

convex and with small gradients). A sufficient condition for moving average

filters being optimal linear alarm filters is also provided.

Chapter 3 is concerned with alarm flood pattern analysis which is helpful

for root cause analysis of historical floods and for incoming flood prediction.

In this chapter, a data driven method for alarm flood pattern matching is pro-

posed. An alarm flood is represented by a time-stamped alarm event sequence.

A modified Smith-Waterman algorithm considering time stamp information is

proposed to calculate a similarity index of two alarm floods. The effectiveness

of the algorithm is validated by a case study on real industrial data from a

major refinery process.
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Chapter 4 discusses the application of a new statistical analysis technique,

the principal component pursuit, to process monitoring. A new scaling prepro-

cessing step is proposed to improve quality of data matrices for low coherence.

An algorithm is proposed for optimal scaling vector search. The convergence

of the algorithm to a global optimal point is also proved. A residual generator

and a post-filter suitable for PCP generated process models are also provided.

The post-filtered residual represents the fault signal, which makes the fault de-

tection, isolation, and reconstruction procedure simple and straightforward. A

numerical example is also provided to illustrate the PCP-based process mod-

eling and monitoring procedure.

Chapter 5 describes an alarm system rationalization project on an indus-

trial oil-sand extraction plant. The project is still in progress, and the first

stage, univariate alarm rationalization, has finished. Delay timers and filters

have been designed for the alarm tags that occur frequently (bad tags). An

alarm data based oscillation detection method has also been provided to de-

tect oscillation tags in the historical data set. Because of its simplicity, the

method is also very easy to be implemented online.

Finally, Chapter 6 draws concluding remarks for this dissertation and

presents some future work.
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Chapter 2

Optimal Univariate Alarm

Signal Processing: Filter Design

and Performance Analysis∗

2.1 Overview

In this chapter, filtering techniques on univariate alarm signals are investi-

gated. In light of the tradeoff between accuracy and interpretability, we mainly

focus on linear filters. An algorithm is provided for optimal linear filter de-

sign on alarm signals to minimize the weighted sum of false and missed alarm

rates. The relationship between moving average filters, a kind of popular

filters commonly applied, and optimal linear alarm filters is scrutinized.

2.2 Problem Formulation

Usually an alarm system follows some fault detection module that generates a

residual signal. From the alarm processing perspective, we view the residual

signal as the raw alarm signal, denoted by x[k]. It is assumed that x[k] has

two modes, normal and abnormal; and it may experience a variation from the

normal mode to the abnormal mode when abnormality or fault occurs. An

alarm filter is a system that processes this alarm signal for a better alarm

activation.

Since swiftness is important for an alarm system, i.e., the detection delay

should be reasonably small, we focus on the class of finite memory causal

∗A version of this chapter has been published in [29], and a short version has been published
in [28].
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filters of length N :

y[k] = f (x[k], x[k − 1], · · · , x[k − N + 1]) . (2.1)

Then we can determine whether there exists abnormality by comparing the

filtered signal y[k] with a threshold (usually named a trip point in industry).

The goal of alarm filter design is to find a fixed length alarm filter as well as its

threshold that improves the accuracy of the alarm system–reducing the false

alarm rate (FAR) in the normal case and the missed alarm rate (MAR) in the

abnormal case. We do not consider the transient phase since it lasts a short

amount of time compared to the stationary phase. Although very important

in the analysis of detection delay, the transient phase can be neglected in FAR

and MAR calculations. As a result the objective function to be optimized is

as follows:
J(f) = c1P (f(xk:k−N+1) > yt | normal mode)

+c2P (f(xk:k−N+1) < yt | abnormal mode) ,

where yt is the threshold of the filtered data, and P (·) denotes the probability.

The objective function is a weighted sum of FAR and MAR when the length

of the filter is fixed at N . Usually, both weights c1 and c2 are positive. More-

over, not the absolute values but the ratio of them affects the solution of the

optimization problem. As a result, without loss of generality, we fix the sum

of c1 and c2 to be 1.

Generally, the computation of the objective function requires the joint

probability density functions (PDFs) of the discrete time series x[k]. For

simplicity, here we assume that x[k] is independent, and it is identically dis-

tributed on the normal mode and abnormal mode, respectively; thus we take

the PDFs of x[k] in the normal condition and abnormal condition as pn(x) and

pa(x), respectively. Correspondingly, the filtered signal y[k] has PDFs pY n(y)

and pY a(y) in the two conditions. Notice that the filtered signal is still identi-

cally distributed, but it is no longer independent because the computation of

y[k] uses historical data of the alarm signal x[k]. The expression of objective

function can be written as:

J(f) = c1

∫ +∞

yt

p
Y n

(y)dy + c2

∫ yt

−∞
p

Y a
(y)dy. (2.2)

The optimization problem described by (2.2) without any constraint is a clas-

sic classification problem. The optimal classification is obtained via the log-

likelihood ratio. A concise proof is given in [72].

The structure of the filter may be complicated if complicated PDFs are

considered. While the industry prefers a filter with simple structure that is
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easy to understand and implement. As a result, the optimal filters in the

sense of fixed simple structures are also worth studying. In this paper, we will

focus on linear filters. Moreover, because of the swiftness consideration we

mentioned above, the finite impulse response (FIR) filters will be discussed.

As a result, we constrain the structure of filter (2.1) as follows:

y[k] =

N−1∑

i=0

θix[k − i], (2.3)

where θi are filter parameters. These filter parameters and the threshold yt

are what we will design.

Obviously, if we exchange the values of θi and θj , the distribution of filtered

data y[k] does not change. Therefore the value of the cost function will not be

affected (but there will be influence on the detection delay). Moreover, if we

simultaneously divide the θi’s and the threshold yt by a positive number, the

value of the cost function will not be affected. As a result, we can fix θ0 at 1,

and constrain θ1 to θN−1 in the [-1, 1] hypercube without loss of generality.

However since we fix the first filter parameter to be positive, we should

determine whether higher or lower than the threshold means abnormality. As

a result, a slight modification is needed on the objective function:

Jm(θ) = min (J(θ), J1(θ)) , (2.4)

where
θ = [θ1, θ2, · · · , θN−1, yt]

T ;

J(θ) = c1

∫ +∞
yt

p
Y n

(y|θ)dy + c2

∫ yt

−∞ p
Y a

(y|θ)dy;

J1(θ) = c1

∫ yt

−∞ p
Y n

(y|θ)dy + c2

∫∞
yt

p
Y a

(y|θ)dy.

Linear filters are easy to implement on industrial systems. Moreover, if, by

scaling, we take the sum of all filter coefficients to be 1, the filtered signal has a

similar physical meaning to the original one, since in this case the steady-state

gain of the filter is 1.

2.3 Optimal FIR Filter Design

Linear filters are most commonly used filters in industry. One of the most

popular filters, the moving average filter in which all data are weighted the

same, is included in this set. It can be proven that moving average filter is

the linear least square filter to a stationary signal with i.i.d. zero-mean noise,

which means it can minimize the energy of noise of the filtered signal.

Intuitively a smaller noise means a better classification. However a ques-
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tion is whether the moving average filter is always an optimal linear filter in

the sense of minimum false and missed alarm rates, namely objective function

(2.4). If both normal and abnormal data follow Gaussian distributions, Gaus-

sianities are kept by the filtered data, so that the objective function (2.4) only

depend on the variance of the filtered data. Thus moving average filter is the

optimal linear filter that provides the minimum objective function (2.4) over

all linear filters. In general case, however, the answer is no. A very simple

counterexample is given as follows.

Example 2.1. The PDFs of normal and abnormal data are:

pn(x) =






0.01 x ∈ (−11,−1) ∪ (1, 11)
0.4 x ∈ [−1, 1]
0 elsewhere

;

pa(x) =





0.01 x ∈ (−9, 1) ∪ (3, 13)
0.4 x ∈ [1, 3]
0 elsewhere

.

The distributions of the normal and abnormal data are shown in Fig. 2.1.
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Figure 2.1: Distributions of normal and abnormal data of the counterexample.

Consider the case that length N is 2, and weight ratio is 1, which means we
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emphasize MAR and FAR equally. We find that the moving average filter

performs worse than some other linear filters and both the MAR and FAR are

about 16%, which are 6% higher than the MAR and FAR just using raw data.

As a result, the optimal linear alarm filter design is not so trivial. Two

questions we ask are: first, how to design an optimal FIR alarm filter; and

second, in what cases is the moving average filter necessarily optimal? In

this section, we focus on the first problem. The main difficulty is to calcu-

late the PDF of y[k] in objective function (2.2) from the PDF of x[k], since

for any optimization algorithm evaluating objective function is a necessary

step. The calculation of PDF of linear combination of independent random

variables requires multiple integral operations. In probability theory, charac-

teristic functions are often used to simplify the computation in this case. The

characteristic function is actually a kind of Fourier transform of the PDF, and

because time domain convolution is equivalent to frequency domain multipli-

cation, the number of times of integration will be greatly reduced when N is

large, e.g., 10 or 15.

Applying the characteristic function idea on objective function (2.4), we

obtain that

J(θ) = c1
2π

∫ +∞
yt

∫ +∞
−∞ ϕn(t)

N−1∏
i=1

ϕn(θit)e
−jxtdtdx

+
c2

2π

∫ yt

−∞

∫ +∞

−∞
ϕa(t)

N−1∏

i=1

ϕa(θit)e
−jxtdtdx.

J1(θ) =
c1

2π

∫ yt

−∞

∫ +∞

−∞
ϕn(t)

N−1∏

i=1

ϕn(θit)e
−jxtdtdx

+
c2

2π

∫ +∞

yt

∫ +∞

−∞
ϕa(t)

N−1∏

i=1

ϕa(θit)e
−jxtdtdx

where

ϕn(t) =

∫ +∞

−∞
pn(x)ejxtdx,

ϕa(t) =

∫ +∞

−∞
pa(x)ejxtdx.

To optimize objective function (2.4), many optimization algorithms, con-

ventional and heuristic, are available. Since the optimization problem is not

convex or even unimodal, a heuristic method is more suitable.

A swarm algorithm called the differential evolution (DE) algorithm is ap-

plied to search in the filter parameter space to find one set of optimal θis. The
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algorithm is a popular heuristic optimization algorithm which has received

intensive attention in the last two decades. The algorithm is able to handle

nonlinear and multimodal objective functions. Details about the DE algo-

rithm can be found in [102] and the references therein. As to the optimization

of the threshold, we use a line search. The reason is twofold. On one hand,

the value of the objective function changes quite slow when the threshold is

far from the central regions of the two distributions. A region where the vari-

ation of the objective function is very small is difficult for optimization. On

the other hand, the line search on threshold can reduce the computational

burden. The procedure is shown below.

Algorithm 1 Optimal linear filter search.

1: Obtain the expressions of characteristic functions of PDFs for normal and
abnormal cases.

2: Initialize (N − 1) × p (usually p is in the range of [5,10]) agents of N − 1
dimension vectors (filter parameters) in the [-1, 1] hypercube.

3: Line search the optimal threshold for each agent and calculate objective
function (2.4).

4: while A prescribed bound of iteration numbers doesn’t reach do

5: Compute the agents’ potentially new positions by DE mutation and
crossover.

6: Line search the optimal threshold for each potentially new positions and
calculate objective function (2.4).

7: If the objective function for a potentially new position is lower than its
original position, update the agent’s position.

8: end while

9: outputs: filter coefficients θis and threshold yt.

To obtain the PDFs of normal and abnormal data, the segmentation

method provided in [115], which is based on a non-parametric statistic, is

firstly used to separate the signal into normal and abnormal parts. Then the

PDFs can be calculated based on the data. If there is prior knowledge on

the distributions, parametric estimation can be done. Otherwise, the Gaus-

sian kernel technique is applied, since the characteristic functions of PDFs in

the Gaussian kernel form are very easy to calculate. If the PDFs computed

from different abnormal segments of one process variable are inconsistent, the

optimization procedure will be performed based on the worst case, namely,

the value of the objective function equals the largest among those using all

abnormal PDFs, to obtain a conservative optimal filter. Since the method is a

data-driven one, if there is no sufficient abnormal data, the method can only
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guarantee the performance when an abnormality exists in the historical data

set.

The determination on filter length N is dependent on the swiftness re-

quirement of the system, such as operators’ reaction time, equipment safety

demands, and so on. After the PDFs and filter length are determined, we can

run the procedure to obtain the optimal filter coefficients.

At the end of this section, we provide two examples to illustrate our

method.

Example 2.2. The normal and abnormal data respectively follow logistic

distributions:

pn(x) =
e−x

(1 + e−x)2
;

pab(x) =
e−(x−2)/2

2(1 + e−(x−2)/2)2
.

The general optimal filter (LLR filter) is

y[k] =
k∑

i=k−N+1

(
0.5x[i] + 2 ln

1 + e−x[i]

1 + e−(x[i]−2)/2
+ ln 2 + 1

)
,

whose structure is complicated. Then we set the filter length N to be 5 and

apply the procedure mentioned above to search for an optimal FIR filter. The

number of agents is 28. We find that optimal filters with all different c1 to c2

ratios are very close to the moving average filter, but with different thresholds.

This illustrates the good performance of moving average filters. Performance

curves of raw data, the optimal FIR filter, and the general optimal filter are

shown in Fig. 2.2. The performance of the optimal linear filter we obtained

is better than using raw data, but not as good as the general optimal filter.

This is expected since an optimal linear filter is just suboptimal in the general

sense.

Example 2.3. Here we continue to use the PDFs in Example 2.1. The fil-

ter length N is 5. The number of agents is 28, and we initialize the first

agent to the moving average filter to guarantee that the performance of ob-

tained optimal filters is no worse than the moving average filter. The optimal

performance curve we obtained is shown in Fig. 2.3. We can find that the

performance using raw data is better than the moving average filter in some

cases, but worse in other cases. The optimal linear filter performs better than

both of them according to the optimal performance curve. The performance
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Figure 2.2: Performance curves of raw data and optimally filtered data for
Example 2.2.
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Figure 2.3: Performance curves of raw data, moving average filtered data, and
optimal filtered data for Example 2.3.
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curve via the general optimal filter can almost reach the ideal point, namely,

the origin, while the optimal linear filter cannot get such a good performance.

Moreover, when the ratio of c1 to c2 is far from 1, the optimal linear filter is

inclined to the moving average filter. For example, when the ratio is 19, the

four filter parameters are in the range of 0.98 to 1. But in the case that the

ratio is close to 1, optimal linear filter are inclined to using the raw data only.

When the ratio is 1, the four optimal linear filter parameters we obtain are all

no larger than 0.01.

2.4 Moving Average Filter v.s. Optimal Lin-

ear Filter

It is shown in Section 2.3 that the moving average filter is not necessarily

the optimal linear filter. However the moving average filter is popular in

industry. As a result, it is important to find out the relationship between

the moving average filter and the optimal linear filter, particularly to find out

some sufficient conditions under which the moving average filter is optimal

among all FIR filters. To discuss this problem, a constraint is added: the

threshold is between the mean values of normal and abnormal distributions.

Firstly, an lemma is introduced:

Lemma 2.1. The moving average filter is optimal among all FIR filters with

fixed length N , if pn(x) and pa(x) are symmetric and unimodal, and for any

parameter set {θ0, θ1, · · · , θN−1}, the cumulative distribution functions (CDFs)

of the normal and abnormal distributions satisfy:

F N
n (x|θ0, θ1, · · · , θN−1) ≤ F N

n

(
x| 1

N
, 1

N
, · · · , 1

N

)
x > µn

F N
n (x|θ0, θ1, · · · , θN−1) ≥ F N

n

(
x| 1

N
, 1

N
, · · · , 1

N

)
x ≤ µn

F N
a (x|θ0, θ1, · · · , θN−1) ≤ F N

a

(
x| 1

N
, 1

N
, · · · , 1

N

)
x > µa

F N
a (x|θ0, θ1, · · · , θN−1) ≥ F N

a

(
x| 1

N
, 1

N
, · · · , 1

N

)
x ≤ µa

(2.5)

The definition of unimodal is given in [7]: a PDF f(x) is said to be uni-

modal if there exists a mode m ∈ Ω such that f(x) ≤ f(y) for all x ≤ y ≤ m

or for all m ≥ y ≥ x.

This lemma is intuitively obvious, since a better alarm filter should con-

centrate probability to the mean. The mathematical proof is as follows:

In the case that µn < µa, the objective function is:

J(θ) = c1(1 − F N
n (ŷt|θ0, θ1, · · · , θN−1))

+c2F
N
a (ŷt|θ0, θ1, · · · , θN−1).
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ŷt is the optimal threshold for the parameters (θ0, θ1, · · · , θN−1). Noticing

that ŷt is between µn and µa, we have

J(θ) ≥ c1(1 − F N
n

(
ŷt| 1

N
, · · · , 1

N

)
)

+c2F
N
a

(
ŷt| 1

N
, · · · , 1

N

)
≥ J

(
{ 1

N
, · · · , 1

N
}
)
.

In the case that µn > µa, it can be proved in the same way.

Thus, the moving average filter is optimal among all FIR filters with fixed

length N . �

Then based on Lemma 2.1, we can get a sufficient condition under which

the moving average filter is optimal. In the condition, the concept Log-

concave is used. Log-likelihood concavity is a very important concept in

non-parametric statistics. Log-concave probability distributions constitute a

broad class, including uniform distribution, normal distribution, logistic dis-

tribution, Gamma distribution with the shape parameter no less than 1, and

so on. Details about log-likelihood concavity can be found in [7] and the

references therein. Theorem 2.1 is as follows:

Theorem 2.1. The moving average filter is optimal among all FIR filters in

the sense of minimum weighted sum of FAR and MAR, if the PDFs of normal

and abnormal cases pn(x) and pa(x) are symmetric and log-concave.

Proof : Consider an FIR filter with fixed length N :

y[k] =

N−1∑

i=0

θix[k − i].

Without loss of generality, the sum of the filter parameters θi’s is fixed to be

1. Thus the mean value is unchanged after filtering.

Fn(x) and Fa(x) denote the CDFs of the raw data in the normal and ab-

normal cases respectively. F N
n (x|θ0, θ1, · · · , θN−1) and F N

a (x|θ0, θ1, · · · , θN−1)

denote the CDFs of filtered data via an length N FIR filter with parameters

{θ0, θ1, · · · , θN−1}. The CDFs for filtered data via the moving average filter

are F N
n

(
x| 1

N
, 1

N
, · · · , 1

N

)
and F N

a

(
x| 1

N
, 1

N
, · · · , 1

N

)
. µn and µa denote the mean

values of normal and abnormal data. Since we fixed the steady gain at 1, the

raw data and filtered data share the same mean value.

Since a log-likelihood concave distribution is always unimodal [56], to prove

Theorem 2.1, we only need to prove that inequalities (2.5) always hold if

pn(x) and pa(x) are symmetric log-concave. It can be proved by mathematical

induction.
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Basis: In the case that N = 2, (2.5) is satisfied.

We rewrite the filter as follows:

f2(z) =
1

1 + a
+

a

1 + a
z−1.

So that

F 2
n

(
x| 1

1 + a
,

α

1 + a

)
=

∫ +∞

−∞
Fn

(
t

a

)
pn((1 + a)x − t)dt,

and
∂F 2

n

∂a
=

∫ +∞
−∞ − t

a2 pn

(
t
a

)
pn((1 + a)x − t)dt

+
∫ +∞
−∞ xFn

(
t
a

)
p′n((1 + a)x − t)dt

=
∫ +∞
−∞ − t

a2 pn

(
t
a

)
pn((1 + a)x − t)dt

+
∫ +∞
−∞

x
a
pn

(
t
a

)
pn((1 + a)x − t)dt

=
∫ +∞
−∞ tpn(x − t)pn(x + at)dt

=
∫ +∞
0

t(pn(2µn + t − x)pn(x + at)
−pn(x + t)pn(2µn + at − x))dt

=
∫ +∞
0

t det(A(x, t))dt,

where

A(x, t) =

[
pn(2µn − x + t) pn((2µn − x + t) − (1 − a)t)
pn(x + t) pn((x + t) − (1 − a)t)

]
.

Consider the case that x > µn. Obviously, 2µn − x + t < x + t, and

det(A) = 0 if a = 1. For any a < 1 and t ≥ 0, (1 − a)t ≥ 0. According to

[7], as long as pn(x) is log-concave, det(A) ≥ 0. So the partial derivative of

F 2
n w.r.t. a is no less than 0 when a < 1. For the same reason, the partial

derivative of F 2
n w.r.t. a is no larger than 0 when a > 1. As a result,

F 2
n(x|θ0, θ1) ≤ F 2

n(x|0.5, 0.5) x > µn.

The following three inequalities in (2.5) can be similarly proved.

Inductive step: If in the case of N = k, (2.5) holds, then also in the case

that N = k + 1, (2.5) holds.

The filter with length k + 1 can be written in the form of the combination

of raw data and filtered data via length k filter:

fk+1(z) = θjz
−j + (1 − θj)

k∑

i=0,i6=j

θiz
−i.

So
F k+1

n (x|θ0, · · · , θk)

=
∫ +∞
−∞

pn( t
θj

)

θj
F k

n

(
x−t
1−θj

| θ0

1−θj
, · · · ,

θj−1

1−θj
,

θj+1

1−θj
, · · · , θk

1−θj

)
dt.
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For convenience, let

F k
n

(
x| 1

k
, 1

k
, · · · , 1

k

)
= F̂ k

n (x),

F k+1
n (x|1−θj

k
, · · · ,

1−θj

k
, θj ,

1−θj

k
, · · · ,

1−θj

k
) = F̃ k+1

n (x|θj),
F k

n (x|θ0, θ1, · · · , θk−1) = F k
n (x),

F k+1
n (x|θ0, θ1, · · · , θk) = F k+1

n (x).

Thus
F̃ k+1

n (x|θj) − F k+1
n (x)

=
∫ +∞
−∞

1
θj

p
(

1
θj

)(
F̂ k

n

(
x−t
1−θj

)
− F k

n

(
x−t
1−θj

))
dt

=
∫ +∞
(1−θj)µn

1
θj

(
p
(

x−t
θj

)
− p

(
x−2(1−θj)µn+t

θj

))

·
(
F̂ k

n

(
t

1−θj

)
− F k

n

(
t

1−θj

))
dt.

According to the assumption in the case of N = k,

(
F̂ k

n

(
t

1 − θj

)
− F k

n

(
t

1 − θj

))
≥ 0

for any t ≥ (1− θj)µn. Moreover, a symmetric unimodal distribution satisfies

p
(

x−t
θj

)
− p

(
x−2(1−θj)µn+t

θj

)
≥ 0 ∀t ≥ (1 − θj)µn, x ≥ µn;

p
(

x−t
θj

)
− p

(
x−2(1−θj)µn+t

θj

)
≤ 0 ∀t ≥ (1 − θj)µn, x < µn.

Thus
F̃ k+1

n (x|θj) ≥ F k+1
n (x) x ≥ µn;

F̃ k+1
n (x|θj) ≤ F k+1

n (x) x < µn.

As a result, for x ≥ µn,

F k+1
n (x) ≤ F̃ k+1

n (x|α0)

F̃ k+1
n (x|α0) ≤ F̃ k+1

n (x|α1)

F̃ k+1
n (x|α1) ≤ F̃ k+1

n (x|α2)
...

where the sequence {α0, α1, α2, · · · } is
{
θj ,

1−α0

k
, 1−α1

k
, · · ·

}
.

Obviously, the sequence
{
αi − 1

k+1

}
is a geometric sequence with common

ratio − 1
k
. So the sequence {αi} will converge to 1

k+1
, and then

lim
j→∞

F̃ k+1
n (x|αj) = F̂ k+1

n (x).

So F̂ k+1
n (x) ≥ F k+1

n (x) for any x ≥ µn. For the same reason, F̂ k+1
n (x) ≤

F k+1
n (x) for any x ≤ µn. The proofs of the third and forth inequalities in (2.5)

are obtained in the same way.
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To sum up, if the moving average filter with length k is the optimal FIR

filter with length k, then the moving average filter with length k+1 is optimal

among all FIR filters with length k + 1.

Since both the basis and the inductive step have been proved, it has now

been proved by mathematical induction that Theorem 1 holds for all filter

lengths. �

Remark 1. In the proof we add a constraint: the threshold is between the mean

values of normal and abnormal distributions. The constraint is reasonable

because a linear filter is mainly applied in the case of mean changes, and it

is not acceptable if the high (low) threshold is higher (lower) than the mean

value of abnormal case or lower (higher) than the mean value of normal case.

Moreover, the segmentation method provided in [115] also confirms this, since

only the segments with the mean larger than the threshold are treated as

abnormal data.

Remark 2. It is well known empirically that the moving average filter is not

good at removing outliers. Many outliers manifest themselves as a heavy tail

on the PDF. According to [7], an important property of a log-likelihood con-

cavity distribution is that it at most has an exponential tail. As a result, the

sufficient condition in our theorem seems to be consistent with the experience.

Remark 3. In the proof, the log-likelihood concavity condition is only used in

the basis step of the mathematical induction, and in the rest of the proof only

symmetry and unimodality are required. As a result, for normal and abnormal

distributions that are symmetric unimodal but not log-likelihood concave, as

long as we can prove that in the case of length 2 the moving average filter

is optimal, we can say that the moving average filter is optimal for all filter

lengths.

Remark 4. The threshold and the filter coefficients of the optimal linear filter

may be coupled to each other. However, according to the proof of Theorem

1, as long as the sufficient condition is satisfied, for any fixed threshold, the

moving average filter is always optimal. This property is important, since

changing filter coefficients is often preferable than tuning the threshold in

practice.

A consequent issue is how to test the sufficient condition based on data

set. There are some well developed tests for unimodality and symmetry, such

as Wilcoxon signed rank test and Kolmogorov-Smirnow test for symmetry
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Figure 2.4: Flow rate signal.

[44, 95] and dip test for unimodality [49]. However the test for PDF log

concavity is very hard. As discussed in [7], since a log-concave PDF implies a

log-concave CDF and an increasing hazard rate (IHR), the CDF log concavity

test and IHR test are often used for PDF log concavity analysis. According

to [35], up to now there is no method to determine whether or not the PDF

is log-concave from data.

2.5 Case Study

To illustrate the procedure, the proposed method is applied to a flow rate

process variable from a petrochemical process.

Firstly, we adopt the segmentation method provided in [115] to separate

the signal into normal and abnormal parts. In our case, the signal is separated

to two segments: a normal part followed by an abnormal part. Since the

effects of the transient state can be neglected in the FAR and MAR analysis,

we further pick out the stationary part of each segment to meet the i.i.d.

condition. Fig. 2.4 and 2.5 show the original signal and the kernel estimated

PDFs of the normal and abnormal parts.

The second step is to test whether the distributions of both segments are
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Figure 2.5: Kernel estimated PDFs of the normal and abnormal parts.

Table 2.1: Gaussianity tests results.
JB Test Lilliefors Test

Normal Abnormal Normal Abnormal
Gaussian False True False True
p-value 0 0.1832 0 0.3555

Gaussian, since there is extensive discussion on alarm filter design methods in

the Gaussian case. The Jarque-Bera test and Lilliefors test are conducted to

make the decision. Unfortunately the data cannot pass both the tests. Table

2.1 shows the results using Matlab functions jbtest and lillietest. We can find

that the normal part can never pass the test; thus it is non-Gaussian. As to

the abnormal part, although the hypothesis of Gaussian distribution cannot

be rejected at the 5% significance, the p-values are not high for both tests.

Since the Gaussianity test cannot be passed, we need to move to the third

step: test whether the condition provided in Theorem 1 is satisfied. If this

is the case, moving average filters are the optimal FIR filters. Otherwise, we

have to use the procedure provided in Section 2.3 to design an optimal FIR

filter.

To test the symmetry of the data, we apply the Kolmogorov-Smirnow

test. The Kolmogorov-Smirnow test is designed to compare the distributions
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of two data sets. Both the abnormal and normal data can pass the test, and

the optimal medians and p-values are shown in Table 2.2. The IHR test is also

carried out. The test that was proposed in [89] is based on the normalized

spacings. In the ideal case, the normalized spacings should be a decreasing

series for IHR distributions. Thus the probability that the previous terms

in the normalized spacing series is greater than the latter ones is used to

determine whether the distribution has an increasing hazard rate. Although

IHR cannot guarantee that the PDF is log-concave, it is a necessary condition.

Both parts pass the IHR test. The logarithm functions of the kernel estimated

PDFs are shown in Fig. 2.6. The IHR test result, as well as the log PDF curves

in Fig. 2.6, is in favor of PDF log concavity. So we approximately reach the

conclusion.
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Figure 2.6: Logarithm of kernel estimated PDFs of the normal and abnormal
parts.

Since the conditions in Theorem 1 are satisfied, a moving average filter

is an optimal FIR filter. We fix the length of the filter at 3. The FAR and

MAR of the raw signal, the moving averaged signal, and the filtered signals

via two other randomly selected FIR filters are shown in Fig. 2.7. For any

threshold between the means of normal and abnormal data, both the FAR and

MAR of the moving averaged data is lower than the other three cases. When
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Table 2.2: Symmetry test results.
Normal Abnormal

Symmetric True True
Optimal median 29.04 35.00

p-value 0.8617 1

the moving average filter is used, we have tried different thresholds and find

that the false alarms are less than the case of using raw data or other linear

filters. For example, when the threshold is set to be 33, the moving average

filtered signal gives 5 alarms, with the first 4 false alarms; three of them last 2

samples and the other one lasts only 1 sample. The last alarm represents the

real abnormality and it is standing for the whole abnormal period. However,

when using the raw signal and threshold 33, 107 false alarms take place in the

first 3000 samples that are under normal situation, and the alarm is raised 17

times during the abnormal period because the alarm is interrupted when the

signal falls below the threshold.
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Figure 2.7: Performances of different alarm filters.
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Chapter 3

Pattern Matching of Alarm

Flood Sequences by a Modified

Smith-Waterman Algorithm∗

3.1 Overview

In this chapter, we address the alarm flood pattern matching problem based on

alarm data. All alarms raised in an alarm flood form an alarm flood sequence,

which is a typical event sequence with time information. A modified Smith-

Waterman algorithm suitable for the alignment of alarm flood sequences for

the purpose of evaluating their similarities is proposed. An industrial case

study illustrates the validity of this proposed technique.

3.2 Problem Description

As mentioned in Section 1.2.2, among three main categories of unimportant

alarms, consequence alarms are the most complicated ones. We focus on the

problem of consequence alarms in this chapter, but our problem formulation

is somewhat different from [33, 45, 46, 54]. We consider the alarms during

one alarm flood as one alarm flood sequence, and compare the alarm flood

sequences of different floods. Similar alarm flood sequences usually relate to

the same kind of underlying abnormality; so by clustering similar alarm flood

sequences we can find out flood pattern candidates. Then experts can analyze

these pattern candidates to determine real flood patterns and their root causes

which will be shown to the operators when a new flood with high similarity

∗A version of this chapter has been published in [30].
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to a certain flood pattern is forthcoming. Since the purpose is clustering

similar alarm sequences instead of identifying exactly the same sequences, the

deficiency of the method provided in [45, 46] can be avoided.

The goal is very similar to [63, 96, 97] that made use of process data for

abnormality diagnosis. However, in this chapter, we use alarm data rather

than process data to measure the similarity of different abnormalities.

Approximate sequence matching techniques can be applied to calculate

similarities of alarm flood sequences. However, current approximate match-

ing techniques rarely consider time stamp information of each element in the

sequence, since they are mainly designed for text pattern and biological se-

quences matching. Our main contribution is modifying the formulation of the

Smith-Waterman algorithm by adding time stamp information, and propos-

ing a modified Smith-Waterman algorithm suitable for alarm flood pattern

matching.

3.3 Preliminary on Sequence Data Mining

Brief Survey on Sequence Data Mining

Sequence data is studied in many application domains such as intrusion de-

tection [52, 69], customer purchases pattern mining [23], text pattern match-

ing/detection [6, 34], biological sequences matching/detection [2, 98], and so

on. Since purposes and natures of input data in different applications are

not the same, there are a variety of problems formulations, e.g., exact or

approximate matching of sequences [2, 6, 34, 98], frequently repeated sequen-

tial pattern-mining [79, 99], abnormal sequences detection[52, 69], and so on.

Here we would only offer some discussion on the research topics related to the

application of alarm sequences analysis.

Frequently repeated sequential pattern-mining tries to discover short sub-

sequences that are frequently appear in a large sequential database. An ex-

haustive survey was provided in [79]. In the survey, algorithms were classi-

fied into three categories: apriori-based, pattern-growth, and early-pruning

algorithms. Because of the different techniques used, the algorithms have

different memory and time consumptions. The pioneering work on conse-

quence alarms suppression [33, 45, 46, 54] apply frequently repeated sequential

pattern-mining techniques.

Anomaly detection is another extensively discussed topic. The objective
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of anomaly detection is to identify abnormal sequences or subsequences from

normal ones. The survey paper [24] provided a structured overview of the re-

search and categorized the techniques to three distinct frameworks: sequence-

based anomaly detection, subsequence-based anomaly detection, and pattern

frequency-based anomaly detection. The problem of anomaly detection is dif-

ferent from ours, since in our situation, all the events appear in the sequences

are alarm events that indicate abnormalities. However, the problem formu-

lation of sequence-based anomaly detection is very similar to the one of this

chapter. The only difference is that in anomaly detection, the training data

set is a set of normal sequences, and they mainly focus on the test sequences

that are not similar to any cluster of normal sequences. While in our problem,

the training data set is a set of abnormal sequences, namely, alarm floods,

and we mainly focus on the test sequences that may belong to one or several

clusters (patterns) in the training set.

In the framework of similarity-based techniques for sequence-based anomaly

detection, a key point is similarity measurement. Many similarity measure-

ment techniques are based on approximate matching. The topic of approxi-

mate matching is extensively discussed in [83] and the reference therein. As

defined in [83], “approximate matching is modeled using a distance function

that tells how similar two strings are”. A first such distance function, edit

distance, was proposed in [73], which is the minimum number of insertions,

deletions, and substitutions to make two sequences equal. To increase flexi-

bility of setting different penalty weights on insertion, deletion and substitu-

tions, variations of the edit distance are proposed in [98] and [84], together

with corresponding dynamic programming algorithms. From then on, such

fast algorithms as BLAST and FASTA [4, 75] were designed to decrease the

time consumption, but the objective function, namely, the distance function,

was not changed. A similar idea applied to real valued time series is dynamic

time warping [75]. It is proposed to measure the distance between two real val-

ued time series. Although some researchers also tried to apply it to symbolic

sequence matching [2, 92], they had to firstly convert a symbolic sequence to

a meaningful real valued time series. Compared with such statistical model-

based techniques as Markov model and hidden Markov model [47, 116], the

approximate matching technique is more suitable for sequences that are not

very long, since it does not require large amount of data to model statistical

properties of the sequences.
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Brief Introduction of the Smith-Waterman Algorithm

The Smith-Waterman algorithm was first proposed in [98]. Its objective is “to

find a pair of segments, one from each of two long sequences, such that there

is no other pair of segments with greater similarity (homology)” [98].

The Smith-Waterman algorithm is a local sequence alignment method.

Before discussing the algorithm, we first introduce the concept of local align-

ment. Given a pair of symbolic segments, one from each of two symbolic

sequences, we can equalize the length of the two segments by inserting gaps

(symbol ‘-’) in one or both of them (if the two segments have the same length,

we can also choose to insert no gap). Then each symbol in one segment has

a corresponding symbol in the other segment at the same position. This is

called alignment. Since the two symbolic segments are two contiguous subse-

quences of the two symbolic sequences, respectively, the alignment on the pair

of segments is called local alignment of the two sequences.

For example, consider two symbolic segments:

X = [4 5 4 6 7]
Y = [6 6 7 4].

An alignment of this pair of segments is:

X ′ = [ 4 5 4 6 7 − ]
Y ′ = [ 6 − − 6 7 4 ].

The two aligned segments have the same length 6. Each symbol in aligned

segment X ′ has a corresponding symbol in the aligned segment Y ′, and the

two symbols compose a symbolic pair. For instance, the first symbolic pair of

the aligned segments X ′ and Y ′ is (4, 6) and the second pair is (5,−).

Obviously, for one pair of segments there are a huge amount of different

alignments since gaps can be added arbitrarily. Consider the example men-

tioned above, we can also align the pair of symbolic segments as:

X ′
1 = [ 4 5 4 6 7 − − ]

Y ′
1 = [ 6 − 6 − − 7 4 ],

or:
X ′

2 = [ 4 5 4 6 7 ]
Y ′

2 = [ 6 − 6 7 4 ].

As a result, a scoring system is required to differentiate good alignments from

bad ones, and the similarity of the two symbolic segments should depend on

the optimal alignment.
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For a symbolic pair (a, b) in a pair of aligned symbolic segments, where

a and b are two symbols, e.g., two discrete events, two letters, two nucleic

acid bases, if neither a nor b is the gap symbol ‘-’, a similarity score function

s(a, b) : Σ × Σ → R, where Σ is the alphabet of the concerned sequences, is

provided. The value of the similarity score function s(a, b) is positive for a

match (a = b), and is non-positive for a mismatch (a 6= b). Usually, a uniform

score for all matched pairs (kept at 1) and a uniform negative score µ for all

mismatched pairs are chosen if there is no additional prior information on the

symbols.

For a symbolic pair (a, b) including a gap symbol ‘-’, the similarity score

is always negative as a penalty of inserting a gap. The value is related to l,

the number of contiguous gap symbols prior to the current gap. In [88], if l is

0, it is called opening a gap, which suffers a heavier penalty. In the case that

l > 0, it is called extending a gap, and a lighter penalty is used. In the case

that opening a gap is not of greater significance, a uniform penalty value δ for

all l is preferred, since it can simplify the algorithm. Therefore, the uniform

penalty value δ is used in this chapter.

The similarity score of an alignment is the summation of all the similarity

scores of its symbolic pairs. The similarity score calculation of the aligned

segments X ′ and Y ′ is shown below.

Rewrite the alignment:

X ′ = [ 4 5 4 6 7 − ]
Y ′ = [ 6 − − 6 7 4 ].

By using the uniform gap penalty value δ = −0.4 and similarity score function

s(a, b) =

{
1, if a = b
−0.6, if a 6= b

we can calculate the similarity score of this alignment as:

s(4, 6) + δ + δ + s(6, 6) + s(7, 7) + δ
= −0.6 + (−0.4) + (−0.4) + 1 + 1 + (−0.4)
= 0.2.

The higher the similarity score is, the better the alignment is. The align-

ment of a segment pair that have the highest similarity score is the optimal

alignment of this pair, and the corresponding similarity score is defined as the

similarity index of this segment pair.
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Given concepts of alignment and the similarity index of a segment pair, it

is easy to formulate the local alignment problem.

Consider two symbolic sequences with arbitrary lengths:

A = [a1 a2 · · · aM ]
B = [b1 b2 · · · bN ],

where am, bn ∈ Σ, m = 1, 2, · · · , M , n = 1, 2, · · · , N . Ai:p and Bj:q denote

segments, or called contiguous subsequences, of A and B, respectively:

Ai:p = [ai ai+1 · · · ap];
Bj:q = [bj bj+1 · · · bq].

I(Ai:p, Bj:q) denotes the similarity index of the segment pair (Ai:p, Bj:q). The

goal of the local alignment problem is searching for the optimal segment pair

whose similarity index is the highest among all segment pairs. This highest

similarity index is then defined as the similarity index of the two sequences

A and B, which is denoted by S(A, B). The only exception is that the two

sequences are totally different, and all the segment pairs have a negative sim-

ilarity index. In this case, S(A, B) is set to be 0, which means no similarity

at all. In a nut shell, the optimal local alignment of sequences A and B is the

optimal alignment of the optimal segment pair of two sequences, and the sim-

ilarity index S(A, B) of these two sequences can be expressed by the following

equation:

S(A, B) = max
1≤i≤p≤M,1≤j≤q≤N

(I(Ai:p, Bj:q), 0).

The Smith-Waterman algorithm provides a procedure to find out the similarity

index S(A, B) and the corresponding local alignment.

The Smith-Waterman algorithm generates an index matrix H whose el-

ement Hp+1,q+1 denotes the maximum positive similarity index of segment

pairs ending in ap and bq, respectively. If there is no positive similarity index,

Hp+1,q+1 = 0. In other words,

Hp+1,q+1 = max
1≤i≤m,1≤j≤n

(I(Ai:p, Bj:q), 0).

When one or both of the segments are empty, the segments pair similarity

index is 0. As a result, H1,q = 0, and Hp,1 = 0 for any p and q.

Hp+1,q+1 can be recursively calculated by the following equation with a

uniform gap penalty δ:

Hp+1,q+1 = max
{

Hp,q + s(ap, bq), Hp,q+1 + δ, Hp+1,q + δ, 0
}

, (3.1)
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Equation (3.1) is somewhat different from the one provided in [88], since a

uniform gap penalty is used here. In the review article [66], the authors

described the algorithm by the same equation as equation (3.1) except the

sign of δ, since in that paper δ was set a positive value and a minus sign was

then used before the penalty term.

Based on equation (3.1), a dynamic programming algorithm can be easily

developed to solve this optimization problem. The algorithm is described by

the following steps:

1. Build a matrix H ∈ R(M+1)×(N+1), and initialize the first row and column

of H to be 0.

2. Calculate the other entries in matrix H from upper left to lower right

by equation (3.1).

3. Find the highest value in the matrix H . This value is the similarity

index of the two sequences (S(A, B)).

4. Go backward from this highest value until meet an entry with value 0.

The path shows the optimal local alignment (detailed in the following

example).

As an example consider two sequences A = [1 2 1 4 1] and B = [1 3 2 1 1 2 3].

The penalty of a gap is δ = −0.4; the match score is 1; and the penalty for

mismatching is µ = −0.6. The matrix H and the optimal local alignment are

given by Fig. 3.1. The calculation of H is straightforward. For instance, the

calculation of H6,6 is based on the values of H5,5, H5,6 and H6,5. Since the fifth

symbols in both sequences are ‘1’, we should calculate the values of H5,5 + 1,

H5,6 + δ and H6,5 + δ. They are 3.2, 1.6, and 1.4, respectively. So the value of

H6,6 should be the largest positive value among them, namely, 3.2.

The backward path search is based on the H matrix calculation. Since

H6,6 has the largest value in the matrix, the path search should begin at this

entry. Since the value of H6,6 is H5,5 + 1, we should go back from H6,6 to H5,5

instead of H5,6 or H6,5. Then we find that the value of H5,5 is calculated from

H4,5, so we should go back to H4,5. Continuously do this until we meet the

first 0 entry at H1,1. Now the whole path is obtained. The entries of the path

are underscored in Fig. 3.1.

Then we go forward the path to complete the optimal local alignment. For

each diagonal move, add a corresponding symbol in both aligned segments.
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For instant, the path start at H1,1 and moves to H2,2; so the first symbol in

the aligned segments should be a1 and b1, namely, ‘1’ and ‘1’, respectively. For

each horizontal move, add a corresponding symbol in the aligned segment of

B, and add a gap in the aligned segment of A. For instant, the second move

in the path is a horizontal one, so the second symbol in the aligned segment

of B is b2, namely, ‘1’, while the second symbol in the aligned segment of A

is a gap. For each vertical move, add a corresponding symbol in the aligned

segment of A and a gap in the aligned segment of B. Following these rules,

we finally reach the optimal local alignment: [1 − 2 1 4 1] and [1 3 2 1 − 1] .

 

 

H1 51 5 !

" ! " " " ! " #

!

Figure 3.1: Local alignment result.

3.4 Modified Smith-Waterman Algorithm for

Alarm Flood Pattern Matching

The alarm flood pattern matching problem is to calculate a certain similarity

index between alarm floods, and determine which floods should be classified

in one group (pattern) based on the similarity index. The common segment

of alarm floods in a pattern may be used as a symptom of this kind of alarm

floods to determine whether a incoming flood belongs to that pattern.
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If we use a unique symbol to denote each alarm type, finding the similarity

index and common segment of alarm flood sequences is very similar to the goal

of approximate matching. Particularly, a good sequence matching algorithm

for alarm sequences should have the following properties:

1. Tolerant to some irrelevant alarms occurring in one or both of the alarm

sequences.

2. Somewhat tolerant to ambiguity of order.

The reason why the first property is required is obvious. Standard approx-

imate matching algorithms considering gap and mismatch can achieve this

requirement very well. As for the second property, it is possible that several

strongly connected alarms are raised almost simultaneously, but the order of

them in alarm sequences varies from time to time. Moreover, because of ran-

dom detection delay, one alarm may be rasied after its cascaded alarms. As a

result, when the time stamps of two alarms are close, the order of these two

alarms is not so important. In other words, we should make the order of these

alarms vague.

In the approximate matching area, a similar topic is swap. A few papers

focus on this topic such as [36, 76]. However they discuss the sequences without

time stamps. In [33, 54], the authors considered time constraints. However

the pattern-growth methods are for frequent sequence mining, but not for

approximate pattern matching. Moreover, hard time constraints instead of

soft ones are concerned in those methods. Thus those methods are not suitable

for our problem. As a result, it is necessary to propose a modified approximate

matching algorithm that is suitable for alarm flood pattern matching.

We assume that the alphabet of alarm types is

Σ = 1, 2, · · · , K.

The size of the alphabet is K. This assumption is only for convenience (with-

out loss of generality) since we can map any finite alphabet to this one. A

time-stamped alarm sequence is defined as follows:

A = a1 a2 · · · aM ;
am = (em, tm), m = 1, 2, · · · , M,

where em is the alarm type, namely an integer from 1 to K, and tm is the time

stamp of the alarm am.
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The essential idea of the modification on the Smith-Waterman algorithm

for the time-stamped alarm sequence is to redefine the similarity score of

a symbolic pair s(a, b) to a similarity score of a time-stamped alarm pair.

In order to explain this new similarity score clearly, two new concepts are

introduced: ‘time distance vector’ and ‘time weight vector’.

A time distance vector is defined for each alarm in an alarm sequence. The

time distance vector for the m-th alarm am is as follows:

dm = [d1
m d2

m · · · dK
m]T ,

dk
m =

{
min

1≤i≤M
{|tm − ti| : ei = k} , if the set is not empty;

∞, otherwise,

for k = 1, 2, · · · , K.

(3.2)

An entry dk
m in the time distance vector dm carries the information of the

time gap between the m-th alarm and the nearest alarm on the time axis with

alarm type k. If there is no type k alarm in the alarm sequence, namely ei 6= k

for all i ∈ [1, M ], the time gap is ∞. Obviously, since the m-th alarm has the

alarm type em, dem
m is zero.

Then we define a time weight vector for each alarm in an alarm sequence.

The time weight vector for the m-th alarm is as follows:

wm = [w1
m w2

m · · · wK
m ]T

= [f(d1
m) f(d2

m) · · · f(dK
m)]T ,

(3.3)

where f(�) : R 7→ R is a time weighting function with respect to the time

distance dk
m. A function that satisfies the following conditions can be used as

f(�):

1. Monotonically decreasing on the positive axis.

2. f(0) = 1, f(∞) = 0.

As a result, the em-th entry of the time weight vector wm is 1, since dem
m is

zero. If one type of alarm, say the j-th type, is raised very close to the m-th

alarm on the time axis, the j-th entry in wm has a large value almost 1. On

the other hand, if one type of alarm does not exist in a neighborhood of the

m-th alarm on the time axis, it will get a low weight in vector wm, and the

weight will go to zero if the time gap approaches ∞. After applying the time

weight vector, one alarm event does not belong to a single alarm type, but is

attributed to all alarm types with different weight. We take the simple alarm
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sequence shown in Fig. 3.2 as an example. In this alarm sequence, we have

four alarm events belong to alarm types 1, 3, 2, and 4, respectively. By using

kernels instead of impulses to represent alarms on the time axis, we can vague

the order of the second and third alarms. In this case, the second alarm event

is considered as an alarm attributed to type 2 and 3 with high degrees but

attributed to type 1 and 4 with low degrees.

0 5 10 15 20 25 30 35 40
Time

Type 1 Type 4Type 3 Type 2

Figure 3.2: Alarm sequence represented by time weight vector.

In the following example and case study provided in this chapter, when

we do the sequences matching on a pair of time-stamped alarm sequences, we

choose the scaled Gaussian function

f(x) = e−
x2

2σ2 (3.4)

as the time weighting function for the first sequence, and for the f(�) of the

second sequence,

f(x) =

{
1, if x = 0
0, if x 6= 0

. (3.5)

The reasons why we choose two different time weighting functions for the two

sequences are twofold. Firstly, the time difference is a relative but not absolute

concept; so only blurring the order of one sequence actually can affect both
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sequences. Secondly, if we use the scaled Gaussian function for both sequences,

one matching pair may be counted more than once when several alarms are

closely raised, which leads to a false high similarity index.

Now we redefine the similarity score s(a, b) for a time-stamped alarm pair

((ea, ta), (eb, tb)) . In the classical Smith-Waterman algorithm, the similarity

score function is a two-value function. The only possible values are the match

score 1 and the mismatch penalty µ. In the modified algorithm, we define the

similarity score function value as a linear combination of the match score and

mismatch penalty, and the linear combination ratio is according to the time

weight vectors wa and wb of the two alarms:

s((ea, ta), (eb, tb)) = max
1≤k≤K

[wk
a × wk

b ](1 − µ) + µ, (3.6)

Substituting the redefined similarity score for the original one in equation

(3.1), the Smith-Waterman algorithm is modified to a time-stamped sequence

approximate matching algorithm that is suitable for alarm flood pattern match-

ing.

The modified algorithm has the following properties:

1. The largest similarity index of any two sequences with lengths M and

N , respectively, is min(M, N).

2. If two sequences with the same length M have identical alarm sequences,

the similarity index is M , regardless of time stamps.

3. If the scaled Gaussian function is used as the time weighting function, a

larger σ leads to a larger or equal similarity index. If σ = 0, the modified

algorithm reduces to standard Smith-Waterman algorithm.

4. The similarity calculation is not commutative, i.e., S(A, B) 6= S(B, A).

According to the first property, we can normalize the similarity index to be

between 0 and 1. The second property states that if the alarm sequences are

the same, the normalized similarity index is 1. Property 3 gives some hints on

how to choose the time weighting function. The fourth property means that

the calculated similarity index of sequence A to sequence B may not equal

to that of sequence B to sequence A. To fix this problem, we choose the

greater one as the similarity index of the pair of sequences. The reason why

we choose the greater one is that we want to discover as many similar alarm

flood candidates as possible.
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At the end of this section, we provide a simple example to illustrate the

modified algorithm. Consider two time-stamped alarm sequences A and B:

A = (4, 0), (1, 3), (3, 5), (1, 7.5), (2, 8), (3, 13), (1, 20);
B = (1, 0), (3, 1), (2, 4), (1, 4.2), (4, 7), (3, 9), (2, 12.5).

The alphabet is Σ = {1, 2, 3, 4} with the size K = 4; and the lengths of both

sequences are 7, i.e., M = 7. For the alarm sequence A we need to calculate 7

time distance vectors since there are 7 alarms, and each vector should consist

of 4 entries since the size of the alphabet is 4. Since the alarm type of the

first alarm is e1 = 4, the fourth entry of d1 is 0. The nearest alarm with alarm

type 1 occurs at time instant 3, so d1
1 = 3 − 0 = 3. Similarly, d2

1 = 8 − 0 = 0

and d3
1 = 5 − 0 = 0. We can complete all the 7 time distance vectors in the

same way to reach the following result:

[ d1 d2 · · · d7 ] =




3 0 2 0 0.5 5.5 0
8 5 3 0.5 0 5 12
5 2 0 2.5 3 0 7
0 3 5 7.5 8 13 20


 .

Element-wisely calculate the time weighting function (3.4) of the distance

vectors, the time weight vectors are obtained:

[ w1 w2 · · · w7 ]

=




0.325 1.000 0.607 1.000 0.969 0.023 1.000
0.000 0.044 0.325 0.969 1.000 0.044 0.000
0.044 0.607 1.000 0.458 0.325 1.000 0.002
1.000 0.325 0.044 0.001 0.000 0.000 0.000


 .

Setting the algorithm parameters δ = −0.4, µ = −0.6, the matrix H for

similarity index of alarm sequences A to B and the optimal local alignment

is shown in Fig. 3.3. The calculation is very similar to the classical Smith-

Waterman algorithm that we introduced in Section 3.3. The only difference is

the calculation of similarity score. For instance, when we calculate the value

of H5,4, we need to get the similarity score of the 4th alarm in sequence A

and the 3rd alarm in sequence B. We know that the time weight vector of

the 4th alarm in sequence A is w4 = [1 0.969 0.458 0.001]T . For the second

sequence B, the time weight vector of the 3rd alarm is [0 1 0 0]T using the

time weighting function (3.5). Do the element-wise multiplication of these two

vectors and pick up the largest element, which is 0.969, we can calculate the

similarity score as: 0.969× (1+0.6)−0.6 = 0.951. Then the value of H5,4 can
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be calculated by the following equation:

H5,4 = max
{

H4,3 + 0.951, H4,4 − 0.4, H5,3 − 0.4, 0
}

= 2.951.

Since the time difference of the 4-th and 5-th alarms in sequence A is small,

our algorithm can swap them to match the 3-rd and 4-th alarms in sequence

B as shown in Fig. 3.3(b). While the algorithm will not do the same for the

5-th and 6-th alarms in sequence A to match the last two alarms in sequence

B, because the time gap of these two alarms is large. Then we repeat this

procedure to calculate the matrix H for the similarity index of B to A which

is shown in Fig. 3.4.( 1 , 0 ) ( 3 , 1 ) ( 2 , 4 ) ( 1 , 4 . 2 ) ( 4 , 7 ) ( 3 , 9 ) ( 2 , 1 2 . 5 )0 0 0 0 0 0 0 0( 4 , 0 ) 0 0 0 0 0 1 0 . 6 0 . 2( 1 , 3 ) 0 1 0 . 6 0 . 2 1 0 . 6 1 . 3 7 0 0 . 9 7 0( 3 , 5 ) 0 0 . 6 2 1 . 6 1 . 2 0 . 8 1 . 6 1 . 2 9 0( 1 , 7 . 5 ) 0 1 1 . 6 2 . 9 5 1 2 . 6 2 . 2 1 . 8 2 . 5 5 1( 2 , 8 ) 0 0 . 9 5 1 1 . 2 2 . 6 3 . 9 0 2 3 . 5 0 2 3 . 1 0 2 2 . 8( 3 , 1 3 ) 0 0 . 5 5 1 1
 

 

. 9 5 1 2 . 2 3 . 5 0 2 3 . 3 0 2 4 . 5 0 2 4 . 1 0 2( 1 , 2 0 ) 0 1 1 . 5 5 1 1 . 8 3 . 2 2 . 9 0 2 4 . 1 0 2 3 . 9 0 2( a ) S i m i l a r i t y t a b l e H2 61 6 : ( 1 , 3 ) ( 3 , 5 ) ( 1 , 7 . 5 ) ( 2 , 8 ) ( 3 , 1 3 )S c o r e : 1 1 0 . 9 5 1 0 . 9 5 1 0 . 4 1 4 . 5 0 2: ( 1 , 0 ) ( 3 , 1 ) ( 2 , 4 ) ( 1 , 4 . 2 ) ( 4 , 7 ) ( 3 , 9 )AB !

" " " " ! " #( b ) O p t i m a l l o c a l a l i g n m e n t
Figure 3.3: Local alignment result by modified Smith-Waterman algorithm.

It can be found that in this example, the similarity indices of A to B and

B to A are close to each other; and the optimal local alignments are the same.

Usually this is the case. Finally, we obtain the normalized similarity index of

the two sequences:

S(A, B) =
max(4.502, 4.584)

min(7, 7)
= 0.655.

3.5 Case Study

The proposed method is applied to data from a hydrocracking unit of a typical

refinery process consisting of equipment such as furnaces, pumps, compressors,
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Figure 3.4: B to A similarity table H .

separation drums, etc. In the alarm data over a period of 9 months, there are

totally 506 alarm tags and each alarm tag may have several different alarm

identifiers such as ‘PVLO’, ‘PVHI’, ‘PVLL’ or ‘PVHH’. As a result, the alarm

data includes more than 1,000 types of alarms. Thanks to the good basic

alarm rationalization performance that process control engineers have done,

the process has a good normal alarm statistics, namely under 6 alarms/h. The

main concern is alarm floods when some abnormalities or events take place.

Our pattern matching technique is suitable for this kind of alarm event data,

since it is easy for us to identify the alarm flood periods simply by counting

the alarm frequency in the event data. According to the definitions of alarm

flood in [41, 58], we identified 39 alarm floods over this period. The lengths

of the 39 alarm flood sequences vary from 10 to 297 alarms.

We first preprocess the 39 alarm flood sequences by merging the alarms

with the same alarm type and occurring within 5 seconds (5 seconds off-

delay timer) to eliminate chattering alarms. The rationality and effect of the

preprocessing is thoroughly discussed in [54]. Then the proposed algorithm

is applied on each pair of preprocessed alarm flood sequences to calculate

the normalized similarity index. Finally we obtain a 39×39 similarity matrix

which is show in Fig. 3.5 in a color map format. The results are obtained

when we set δ = −0.4, µ = −0.6, and σ2 = 4. In the color map, the darker

the color the more similar the two sequences are. All the diagonal entries in

the color map are black, i.e. have the value 1. It is expected, since properties

1 and 2 of the proposed algorithm guarantee that the normalized similarity
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index of two identical alarm sequences is always 1. We can also find some pairs

with high similarity (normalized similarity index is greater than 0.6) such as

(1, 14), (26,36), (24,30) and so on. It is confirmed by the site engineers that

the found similar pairs are reasonable.
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Figure 3.5: Similarity color map.

Fig. 3.6-3.8 show the alignment of several pairs of alarm sequences, which

can give us a clearer picture of the algorithm. For the first pair (floods 1

and 14), no swap is needed to get the optimal alignment. In this case, the

modified algorithm works similar as the standard algorithm. In the second

pair (floods 26 and 36), the modified algorithm finds that if we shift the alarm

‘001.PVHI’ by 2 seconds, a better local alignment can be obtained, which can

increase the similarity of the two alarm flood sequences. For the third pair

(floods 24 and 30), a lot of alarms are raised almost simultaneously. In this

case, the order of the sequence is of little significance, therefore the original

Smith-Waterman algorithm cannot handle it. But the modified algorithm can

discover the similarity between the two sequences since it is insensitive to the

sequence, to some extent.

Finally, we cluster the floods using single-linkage method [108]. This clus-
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14 

002.PVHI 14:08:48 

028.OFFNORM 14:17:06 

029.OFFNORM 14:18:48 

030.OFFNORM 14:20:18 

030.OFFNORM 14:27:34 

031.OFFNORM 14:28:24 

032.OFFNORM 14:29:05 

033.OFFNORM 14:29:29 

034.OFFNORM 14:30:03 

035.OFFNORM 14:30:45 

036.OFFNORM 14:31:10 

037.OFFNORM 14:31:45 

038.OFFNORM 14:32:15 

039.OFFNORM 14:37:23 

040.OFFNORM 14:37:57 

041.OFFNORM 14:38:18 

1

028.OFFNORM 08:49:22

029.OFFNORM 08:50:15

031.OFFNORM 08:50:36

032.OFFNORM 08:50:56

033.OFFNORM 08:51:14

034.OFFNORM 08:51:25

035.OFFNORM 08:53:11

036.OFFNORM 08:53:23

037.OFFNORM 08:53:40

038.OFFNORM 08:54:18

Figure 3.6: Alarm flood sequences alignment (flood 1 and 14).

tering method is also applied in alarm data correlation analysis to cluster

related types of alarms [8, 109]. Fig. 3.9 shows the clustered similarity color

map. Setting the threshold at 0.6, the groups we obtain from the 39 floods are:

(16, 21, 17, 20), (15, 19, 25), (4, 11), (5, 7, 13, 39), (26, 36), (24, 30), (1, 14).

If we decrease the threshold, the first three groups and the 4th and 5th groups

merge. After clustering, we can obtain the characteristic subsequence(s) of a

flood group according to the optimal alignment of alarm flood sequence pairs in

the group. For example, for the first group (16, 21, 17, 20), we can find the fol-

lowing characteristic subsequence: [‘046.PVHI’, ‘046.BADPV’, ‘047.BADPV’,

(‘048.OFFNORM’ and ‘047.PVHI’), (‘046.PVHI’ and ‘046.BADPV’)].

We have also tried the classical Smith-Waterman algorithm on the same

alarm data set to make a comparison. It is easy to prove that the similarity

indices obtained by the modified algorithm are no smaller than the ones cal-

culated by the original algorithm, since the optimal alignment of the original

algorithm always falls in the feasible region (but not necessary the optimal

one) of the modified one.

In the case study, there is no obvious discrepancy on the similarity indices

between the modified and the original Smith-Waterman algorithms for the
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36 

057.PVHI' 16:06:56 

058.OFFNORM 16:08:03 

059.OFFNORM 16:08:05 

061.OFFNORM 16:08:05 

062.OFFNORM 16:08:06 

001.PVHI 16:09:03 

063.PVLO 16:09:04 

066.OFFNORM 16:09:05 

065.OFFNORM 16:09:05 

064.OFFNORM 16:09:05 

001.PVLO 16:13:40 

26

495.PVLO 16:23:45

001.PVHI 16:25:51

057.PVHI 16:28:04

058.OFFNORM 16:28:15

059.OFFNORM 16:28:17

061.OFFNORM 16:28:17

062.OFFNORM 16:28:18

063.PVLO 16:29:16

066.OFFNORM 16:29:17

065.OFFNORM 16:29:17

064.OFFNORM 16:29:17

001.PVHI 16:31:01

307.PVHI 16:31:17

307.PVHH 16:31:17

308.OFFNORM 16:31:21

233.PVLO 16:31:23

496.PVHI 16:31:24

373.OFFNORM 16:31:28

043.PVLO 16:31:33

 

Figure 3.7: Alarm flood sequences alignment (flood 26 and 36).
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2 42 4 7 . P V L O 0 5 : 3 3 : 3 62 4 5 . P V L O 0 5 : 3 3 : 3 62 4 9 . O F F N O R M 0 5 : 3 3 : 3 63 0 3 . P V H I 0 5 : 3 3 : 3 62 8 9 . O F F N O R M 0 5 : 3 3 : 3 61 6 6 . P V L O 0 5 : 3 3 : 3 62 4 6 . O F F N O R M 0 5 : 3 3 : 3 62 4 8 . P V L O 0 5 : 3 3 : 3 62 6 7 . O F F N O R M 0 5 : 3 3 : 3 62 6 1 . O F F N O R M 0 5 : 3 3 : 3 62 5 0 . P V L O 0 5 : 3 3 : 3 61 7 5 . O F F N O R M 0 5 : 3 3 : 3 63 0 5 . O F F N O R M 0 5 : 3 3 : 3 60 2 9 . O F F N O R M 0 5 : 3 3 : 3 60 3 0 . O F F N O R M 0 5 : 3 3 : 3 62 6 3 . O F F N O R M 0 5 : 3 3 : 3 60 2 8 . O F F N O R M 0 5 : 3 3 : 3 61 6 7 . O F F N O R M 0 5 : 3 3 : 3 61 6 8 . O F F N O R M 0 5 : 3 3 : 3 61 7 6 . O F F N O R M 0 5 : 3 3 : 3 61 7 7 . O F F N O R M 0 5 : 3 3 : 3 62 5 8 . O F F N O R M 0 5 : 3 3 : 3 62 6 0 . O F F N O R M 0 5 : 3 3 : 3 62 7 7 . S E T M A N 0 5 : 3 3 : 3 62 8 3 . O F F N O R M 0 5 : 3 3 : 3 62 9 2 . O F F N O R M 0 5 : 3 3 : 3 62 4 0 . O F F N O R M 0 5 : 3 3 : 3 61 6 9 . O F F N O R M 0 5 : 3 3 : 3 64 1 1 . O F F N O R M 0 5 : 3 3 : 3 61 7 0 . O F F N O R M 0 5 : 3 3 : 3 71 7 8 . O F F N O R M 0 5 : 3 3 : 3 7

3 00 0 2 . P V H I 1 7 : 1 3 : 2 54 1 1 . O F F N O R M 1 7 : 1 7 : 3 81 1 6 . B A D P V 1 7 : 1 7 : 5 99 3 . P V L O 1 7 : 2 0 : 5 61 1 6 . B A D P V 1 7 : 2 4 : 5 02 9 0 . O F F N O R M 1 7 : 2 7 : 2 01 1 4 . B A D P V 1 7 : 2 7 : 2 02 4 7 . P V L O 1 7 : 2 7 : 2 02 4 5 . P V L O 1 7 : 2 7 : 2 02 4 9 . O F F N O R M 1 7 : 2 7 : 2 03 0 3 . P V H I 1 7 : 2 7 : 2 02 4 6 . O F F N O R M 1 7 : 2 7 : 2 02 4 8 . P V L O 1 7 : 2 7 : 2 02 6 1 . O F F N O R M 1 7 : 2 7 : 2 02 5 0 . P V L O 1 7 : 2 7 : 2 01 7 5 . O F F N O R M 1 7 : 2 7 : 2 00 3 0 . O F F N O R M 1 7 : 2 7 : 2 02 6 3 . O F F N O R M ' 1 7 : 2 7 : 2 01 6 7 . O F F N O R M 1 7 : 2 7 : 2 01 6 8 . O F F N O R M 1 7 : 2 7 : 2 01 7 0 . O F F N O R M 1 7 : 2 7 : 2 01 7 6 . O F F N O R M 1 7 : 2 7 : 2 01 7 7 . O F F N O R M 1 7 : 2 7 : 2 01 7 8 . O F F N O R M 1 7 : 2 7 : 2 02 5 8 . O F F N O R M 1 7 : 2 7 : 2 02 6 0 . O F F N O R M 1 7 : 2 7 : 2 02 8 3 . O F F N O R M 1 7 : 2 7 : 2 02 5 9 . O F F N O R M 1 7 : 2 7 : 2 02 6 2 . O F F N O R M 1 7 : 2 7 : 2 04 1 3 . B A D P V 1 7 : 2 7 : 2 11 6 6 . B A D P V 1 7 : 3 2 : 1 51 6 6 . B A D P V 1 7 : 3 4 : 2 1
 

Figure 3.8: Alarm flood sequences alignment (flood 24 and 30).
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Figure 3.9: Clustered similarity color map.
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alarm sequences whose chronological orders are very clear, e.g., flood 1 and

flood 14 shown in Fig. 3.6. More than 90% alarm sequence pairs in our case

study are in this case. However, the similarity indices of the remaining ones

using the modified algorithm increase obviously. For example, the similarity

index of floods 24 and 30 shown in Fig. 3.8 decreases from 0.63 to 0.46 if the

modified algorithm is replaced by the original one. Another typical example is

floods 7 and 13 as shown in Fig. 3.10. The similarity index generated by the

modified algorithm is pretty high (0.9), while reduced to 0.68 by the original

algorithm. The reason of this reduction is the segments marked by red boxes

in Fig. 3.10. The time intervals of these three segments are very short, so the

orders of the alarms affect the original algorithm much more than the modified

algorithm. In this group, a low-flow alarm leads to a low pressure. Then the

low pressure affects three sequential pressure variables to be abnormal almost

simultaneously. In total we can find 9 more pairs of alarm sequences whose

similarity indices are greater than 0.6 by the modified algorithm.

7
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Figure 3.10: Alarm flood sequences alignment (flood 7 and 13).

The modified algorithm can find more similar floods than the classical

one, since the modified similarity indices are always no less than the original

one. This is the main advantage of the modified algorithm: decreasing the

probability of false negative. It can get more similar flood pairs and discover

similarities that the original algorithm cannot find, such as floods 1 and 14,
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and floods 7 and 13. Meanwhile it may also be a disadvantage, since it may

introduce more false positive similarities. Since the goal of our work is to

construct a pool of similar flood group candidates to aid the engineers or

experts, emphasizing more on low false negative rate is reasonable.

Moreover, the modified algorithm introduces a new control parameter: the

variance of the scaled Gaussian weighting function. The modified algorithm

converges to the classical one when the variance approaches 0. When the

variance is very large, the order information is totally discarded, and the

algorithm only counts the common alarms in the two floods. As a result,

this control parameter affects the matching result. Choose other weighting

functions instead of the Gaussian function may further impact the result.

Although it makes the algorithm more flexible, it also increase the difficulty

to handle the algorithm. Weighting function selection and its relationship

to the distribution of detection delay are still open questions of the modified

algorithm.

Another disadvantage of the modified algorithm is its heavier computa-

tional burden. The calculation of classical Smith-Waterman similarity indices

of all the flood pairs in this case study finished in 0.3 second using Matlab,

but it takes about half a minute to finish all the calculation for the modified

algorithm. The main reason is the calculation of similarity score. In the orig-

inal algorithm, only one Boolean calculation is required, but in the modified

algorithm, K multiplication operations, where K is the size of the alphabet,

and one maximum operation are necessary. As a result, the computational

complexity for one flood pair is O(MNK) (the classical Smith-Waterman al-

gorithm’s complexity is O(MN)), where M and N are the length of the two

floods, respectively. When there are Q floods in the historical data, the simi-

larity indices of Q(Q−1)/2 flood pairs are required, so the total computational

burden is O(MNKQ2). However, the processing time is acceptable since this

analysis is off-line.
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Chapter 4

Application of the Principal

Component Pursuit Technique

to Process Fault Detection and

Diagnosis∗

4.1 Overview

In the previous chapter, we studied consequence alarms based on alarm data,

which is one way to discover the connections between different alarm tags. In

this chapter, we focus on multivariate process data. As mentioned in Section

1.1, aside from a single process variable, a function of several process variables

may also be used as an alarm signal. For example, the deviation of the set

point and the flow rate of a pump can be used as an alarm signal to mon-

itor the performance of the pump. A classical technique for designing such

linearly combined alarm signals based on process data is the principal compo-

nent analysis (PCA). Recently, a new statistical analysis technique, principal

component pursuit (PCP), has been proposed. It is also named robust PCA

due to its robustness to outliers. In this chapter, the application of PCP to

abnormality detection and diagnosis is examined from training data prepro-

cessing to residual signal post-filtering.

∗A version of this chapter has been submitted to Automatica, and a short version has been
published in [27]
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4.2 Preliminary on Principal Component Pur-

suit

Background

PCP has recently been introduced and discussed in several references [17,

25, 26, 114, 119]. PCP is not sensitive to outliers since it only concerns on

number of outliers instead of their magnitudes as classical PCA. Therefore, an

advantage of PCP over classical PCA lies in its enhanced robustness against

outliers. Moreover, the new technique outperforms other robust PCA methods

with regards to computational complexity and technical constraints imposed

on original problems.

The PCP technique stems from compressed sensing [20, 37], which reveals

a surprising message: the minimum number of data needed to reconstruct a

signal may overcome the limitation imposed by the Nyquist-Shannon criterion

if the signal is sparse in a certain sense. Inspired by this idea, a matrix com-

pletion method was proposed to recover a data matrix from only a few entries

[18]. Furthermore, the pioneers focused on a more challenging problem: re-

covering a low rank data matrix contaminated by gross errors in several of its

entries. A novel approach, the PCP technique, was then developed in [17, 25].

The essential idea of the PCP technique is to replace the original non-convex

optimization problem of the matrix rank and the count of non-zero entries

by a convex optimization problem of the nuclear and ℓ1 norms. In [25, 26],

deterministic conditions for the equivalence of the two optimization problems

have been provided. Statistical counterparts are available in [17]. While these

conditions are relatively mild, they greatly depend on the coherence of the un-

contaminated data, which was first introduced in compressed sensing [19] and

then adopted to the problems of matrix completion and PCP [17, 18]. Gen-

erally speaking, the smaller the coherence indices, the lower the requirement

on the completeness of the signal/matrix.

The PCP technique has found successful applications in the area of image

processing, e.g., video surveillance [17, 91] and face recognition [113]. There

are also some attempts to apply PCP to latent sematic indexing [81]. Apart

from these areas, PCP has the potential to be applied to a broader range of

problems including that of process monitoring, which is studied in this chap-

ter. In [59], a preliminary comparison between process monitoring approaches

based on PCA and PCP has been given. It can be concluded that the PCP
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technique is promising in process monitoring because the PCP-based method

can overcome most of the shortcomings of PCA-based methods. Despite this,

in-depth research on the application of PCP to process monitoring still re-

mains open.

Problem Formulation and Main Result of PCP

Suppose L0 ∈ R
n1×n2 is a low rank data matrix. S0 ∈ R

n1×n2 is a sparse

perturbation matrix. M is the sum of L0 and S0, namely, the observed data

matrix. The goal of PCP is to recover L0 from M, which is formulated as the

following optimization problem:

minimize rank(L) + λ‖S‖0 (4.1)

subject to L + S = M.

Here, L and S are the decision variables to be solved. ‖S‖0 is the 0 norm of

S, namely, the number of non-zero entries in S. The optimal solution of L

and S are good estimations of the low rank data matrix L0 and the sparse

perturbation matrix S0, respectively.

In the context of process monitoring, M represents the measurement data

matrix of a multivariate process with n2 measurement signals. Each row

represents an observation vector, and n1 samples are collected in total. The

measurement data matrix M is contaminated by outliers, namely the outlier

matrix S0, and the data matrix L0 is the outlier-free data matrix, namely M−
S0. Solving the optimization problem in (4.1) is the procedure of recovering the

outlier-free data matrix L0 from the contaminated measurement data matrix

M.

The optimization problem in (4.1) is very difficult to solve. However, the

authors of [17, 25] pointed out that the ℓ1 norm is a good replacement of the

0 norm and the nuclear norm is a good substitute for the matrix rank. As a

result, the original optimization problem in (4.1) can be modified as follows:

minimize ‖L‖∗ + λ‖S‖1 (4.2)

subject to L + S = M.

This is a convex optimization problem, which can be solved efficiently and

reliably by a variety of algorithms such as the alternating direction method

[17]. Nevertheless, is the solution to problem (4.2) a good approximation
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of problem (4.1)? In other words, is the solution to problem (4.2) a good

approximation of the low rank matrix L0 and sparse matrix S0? A positive

answer is important, since it makes no sense to use the solution to problem

(4.2) for the purpose of data recovery if this is not the case.

Theorem 1.1 in [17] answers this question. In the theorem, the concept of

coherence is used. The coherence of a subspace is defined in [18]:

Definition 4.1. Let Ω be a subspace of R
n of dimension r and PΩ be the

orthogonal projection onto Ω. Then the coherence of Ω is defined to be

µ(Ω) =
n

r
max
1≤i≤n

‖PΩei‖2, (4.3)

where ei is the i-th standard basis vector.

Suppose the singular value decomposition (SVD) of the rank-r matrix L0 is

given by L0 = UΣVT , where U ∈ R
n1×r and V ∈ R

n2×r. The SVD used here

is different from the conventional one. Since L0 is a low rank matrix, there

are some zero singular values of the matrix. So, Σ used here is a diagonal

matrix only including these non-zero singular values, and matrices U and V

only include their columns that correspond to non-zero singular values. This

compact expression keeps all of the information in the conventional SVD. The

coherences of the column and row spaces of L0, namely, U and V, are:

µ(U) =
n1

r
max ‖PUei‖2;

µ(V) =
n2

r
max ‖PVei‖2.

(4.4)

The mutual-coherence of U and V can also be defined as:

µ1 =

√
n1n2

r
‖UVT‖∞. (4.5)

Since the matrices U and V are the orthonormal basis of the corresponding

subspaces, we have that

PU = UUT ;
PV = VVT ;
UTU = VTV = I.

Then, equation (4.4) can also be written as

µ(U) =
n1

r
max ‖UUTei‖2 =

n1

r
max ‖UTei‖2;

µ(V) =
n2

r
max ‖VVTei‖2 =

n2

r
max ‖VTei‖2.

(4.6)

58



Denote the maximum value of µ(U), µ(V) and µ1 by µ, Theorem 1.1 in [17]

can be expressed as follows:

Theorem 4.1. Suppose L0 has coherence index µ, and that the support set,

namely, the set of non-zero positions in the matrix, of S0 is uniformly dis-

tributed among all sets of cardinality m. Then, there is a numerical con-

stant c such that with a probability of at least 1 − c max(n1, n2)
−10, PCP with

λ = 1/
√

max(n1, n2) is exact, provided that

rank(L0) ≤ ρr min(n1, n2)µ
−1 log−2(max(n1, n2)),

and m ≤ ρsn1n2.
(4.7)

In other words, the matrix L0 can be exactly recovered with a probability

of nearly one. The probability converges to one when the size of the matrix

goes to infinity, whose convergence rate is related to numerical constants ρs

and ρr.

Remark 5. According to Theorem 4.1, the condition for the equivalence of

optimization problems in (4.1) and (4.2) is related to the coherence µ. The

lower the µ is, the milder the condition is.

4.3 Process Model Building Based on PCP

To build a process model, there are two steps. The first step is preprocessing

the data matrix to make it more suitable for PCP analysis; and the second

step is applying PCP to the preprocessed data and finding out the process

model, namely the row subspace of the outlier-free data matrix L0. Since the

second step has been extensively discussed in the PCP literature, we mainly

focus on the first step: data preprocessing.

4.3.1 Scaling in Data Preprocessing

Preprocessing is an important but commonly overlooked step in PCA-based

methods. A main issue in preprocessing is scaling. Variables in different

units, e.g., meters or centimeters, should be scaled. Variables in the same

unit or in different types of units are also usually scaled if their variances are

very different. Currently, the simplest yet most widely used scaling method is

normalization, namely, dividing each variable by its standard deviation.

However, there is debate over the effect of scaling on data quality. Specif-

ically, how can one guarantee that the distortion induced by scaling is always
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acceptable? Although some papers try to answer this question [12, 110], their

statements are solely based on case studies; thus we believe that a definite

and general conclusion has not yet been illustrated.

Intuitively, the PCP technique should not be influenced by variable scal-

ing, since neither the rank nor the sparsity of a data matrix changes after

scaling. However, this is not true. The PCP technique can recover the low

rank and sparse matrices when the conditions in (4.7) are satisfied. However,

ill scaling may greatly increase the coherence index and violate the conditions.

Consequently, PCP may fail to recover the data matrices even if the rank and

sparsity do not change. An example is shown below.

Example 4.1. A numerical example is studied. The data set has 35 variables

and 1000 samples. So, L0 and S0 are 1000 × 35 matrices. The underlying

rank is 5, i.e., rank(L0) = 5, and 5% of data are outliers. Time trends of the

original signals (only the first seven and last seven variables) are shown in Fig.

4.1. There are some scaling issues, particularly with the third and last four

variables. The variances of these five variables are extremely large, leading to

large values of µ(V) and µ1. The PCP result is far from the real L0 and S0

we used to set up the example. By using the normalized data, µ(V) decreases

from almost 7 to 2.4. µ1 also decreases from greater than 10 to less than 6.

PCP can reach a correct result for the normalized data. By using other scaling

parameters we can further decrease µ(V) to about 1.2 and µ1 to less than 5.

As a result, we may decrease the coherence of the data matrix and improve

PCP performance by optimizing the scaling parameters. In recent years, a

similar topic has been extensively discussed in the area of compressed sensing

[40, 42]. The fundamental idea is to minimize the coherence between the dic-

tionary matrix and the projection matrix by selecting appropriate projection

matrices. However, to the best of our knowledge, no work addresses this idea

in the context of PCP-based process monitoring. The reasons may be twofold:

firstly, the projection matrix in compressed sensing is an arbitrarily designed

matrix while the data matrix in PCP is not designable; secondly, current ap-

plications of PCP are mainly in the field of image processing, where scaling is

not a serious problem.

Given the observed data matrix M = L0 + S0 ∈ R
n1×n2, each column

denotes a process variable, and each row represents a sample. Since we usu-

ally have sufficient historical data, the observed matrix has more rows than
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Figure 4.1: Time trend plots of the original signals.
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columns, i.e., n1 > n2. Denote the scaling vector by x = [ x1 x2 · · · xn2
]T ,

xi 6= 0 for i = 1, · · · , n2, and we have the SVD of the outlier-free matrix:

L0 = UΣVT , thus the scaled outlier-free matrix is:

Ls = UΣVTD(x).

Analogously, we have the SVD of the scaled matrix: Ls = UsΣsV
T
s , where

Us ∈ R
n1×r, Vs ∈ R

n2×r. The left null space of L0 is the same as that of Ls.

As a result, µ(U) = µ(Us), since

r

n1

µ(U) = max ‖UUTei‖2 = max(diag(UUT ))

= 1 − min(diag(I − UUT ))
= max(diag(UsU

T
s ))

=
r

n1
µ(Us).

However, µ(V) 6= µ(Vs).

Since µ(U) cannot be altered by scaling, and the upper bound of µ1 is√
rµ(U)µ(Vs) [18], a rational way to decrease coherence is to minimize µ(Vs)

by optimizing the scaling vector x.

4.3.2 A Coordinate Descent Algorithm for Data Scaling

To solve the optimization problem mentioned above, a coordinate descent

algorithm is proposed. Due to some convenient properties of the objective

function, the algorithm can ultimately converge to a global optimal point, as

shown later. According to the previous discussion, the objective function to

be minimized can be chosen as follows:

J(x) =
r

n2
µ(Vs) = max(diag(VsV

T
s )) (4.8)

In order to simplify the problem, we need to rewrite the objective function

as an explicit expression with respect to x. The key is to find out an explicit

expression of Vs with respect to x. Ls can be expressed as follows:

Ls = UΣVTD(x)

= UΣ
(
VTD(x)2V

)1/2 (
VTD(x)2V

)−1/2
VTD(x).

Note that UΣ
(
VTD(x)2V

)1/2 ∈ R
n1×r is a full column rank matrix. So its

SVD is:

UΣ
(
VTD(x)2V

)1/2
= Us1Σs1V

T
s1,
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where Us1 ∈ R
n1×r, Vs1 ∈ R

r×r. thus:

Ls = Us1Σs1

(
VT

s1

(
VTD(x)2V

)−1/2
VTD(x)

)
.

We know that the SVD of Ls is UsΣsV
T
s , and notice that

(
VT

s1

(
VTD(x)2V

)−1/2
VTD(x)

)(
VT

s1

(
VTD(x)2V

)−1/2
VTD(x)

)T

= I,

so
Us = Us1; Σs = Σs1;

VT
s = VT

s1

(
VTD(x)2V

)−1/2
VTD(x).

(4.9)

As a result, the objective function can be rewritten as:

J(x) = max
(
diag

(
D(x)V

(
VTD(x)2V

)−1
VTD(x)

))

= max
(
diag

(
V
(
VTD(x)2V

)−1
VTD(x)2

))
.

Let y denote [ x2
1 x2

2 · · · x2
n2

]T . The optimization problem can be ex-

pressed as:

minimize J(y) (4.10)

subject to y > 0,

where

J(y) = max
(
diag

(
V
(
VTD(y)V

)−1
VTD(y)

))
. (4.11)

Before introducing the algorithm, one assumption is added to the matrix

V:

Assumption 1. Matrix VVT cannot be transformed to a block diagonal matrix

by row and column switchings. In other words, let vk denote the k-th column

of VT , thus for any partition that divides the set of indices {1, 2, · · · , n2} into

two subsets {i1, i2, · · · , if} and {j1, j2, · · · , jg}, the following inequality always

holds:

[ vi1 vi2 · · · vif ]T [ vj1 vj2 · · · vjg ] 6= 0.

If such a partition exists, it is easy to prove that the i1-th, i2-th, · · · , ini-

th diagonal elements of the matrix V
(
VTD(y)V

)−1
VTD(y) only depend on

yi1, yi2, · · · , yif and the other diagonal elements only depend on yj1, yj2, · · · ,
yjg . So, the original problem can be decoupled into two smaller optimization

problems with decision variable sets {yi1, yi2, · · · , yif} and {yj1, yj2, · · · , yjg},
respectively. As a result, when the assumption cannot be satisfied, we can

separate the original optimization problem to several decoupled subproblems,
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each of which satisfies the assumption, and then solve these subproblems one

by one.

The coordinate descent algorithm applied in this chapter involves an inner

iteration loop and an outer iteration loop. The outer loop is described in

Algorithm 2, and Algorithm 3 provides details of the inner loop. Several new

symbols are introduced for the description of Algorithm 3:

y\i = [ y1 · · · yi−1 yi+1 · · · yn2
]T ;

V\i = [ v1 · · · vi−1 vi+1 · · · vn2
]T ;

Qi(y) = VT
\iD(y\i)V\i;

qi(y) = vT
i Qi(y)−1vi;

Ai(y) = V\iQi(y)−1VT
\iD(y\i);

Bi(y) = V\iQi(y)−1viv
T
i Qi(y)−1VT

\iD(y\i),

for i = 1, 2, · · · , n2.

Algorithm 2 Optimal Scaling Search

1: initialize: y0 = 1.
2: calculate J(y0).
3: while J(y) does not converge (|J(yk) − J(yk−1)| > e) and a prescribed

bound of number of iterations doesn’t reach do

4: calculate yk+1 from yk by Algorithm 3;
5: end while

6: outputs: y and J(y).

The algorithm can converge to a global optimal solution under some mild

conditions, as shown in Section 4.4.

To apply the proposed algorithm, we need to know the matrix V. However,

what we have is the contaminated data matrix M rather than the outlier-free

matrix L0. In order to obtain V, we may use M to estimate V, and use the

approximation for optimization.

Example 4.2. We continue with Example 4.1. An approximate space basis

V is obtained using the observed data. Then, the coordinate descent algo-

rithm proposed above is performed. The algorithm stops when the value of

objective function of two consecutive outer iterations is smaller than 10−10.

The algorithm converges to the global optimal point 1/7 in less than 30 outer

iterations. After this optimization, µ(Vs) decreases from almost 7 to 1. µ1 also

decreases dramatically. We then apply Algorithm 1 in [17] to the well scaled

data matrix and standard normalized data matrix. The number of iterations
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Algorithm 3 Inner loop of Algorithm 2

1: initialize: ŷ = yk.
2: for j=1 to n2 do

3: calculate q = qj(ŷ), A = Aj(ŷ), and B = Bj(ŷ);
4: calculate Γ = max

1≤t≤n2−1
(γt), where

γt =
eT

t Aet

eT
t Bet + q − eT

t Aetq
,

for t = 1, 2, · · · , n2 − 1;
5: update the j-th element of ŷ by:

(
max

{
Γ, eT

j ŷ
}

+ eT
j ŷ
)
/2;

6: end for

7: outputs: ỹ = ŷ, and yk+1 =
ỹ

max
1≤j≤n2

(ỹej)
.

of the algorithm to converge using the well scaled data is smaller than using

the standard normalized data.

4.4 Algorithm Convergence

The main convergence result will be proven by starting a few lemmas.

Lemma 4.1. There exists a partition to divide the set of indices {1, 2, · · · , n2}
into two subsets {i1, i2, · · · , if} and {j1, j2, · · · , jg}, such that

ET
i VVTEj = 0,

where
Ei = [ ei1 ei2 · · · eif ],
Ej = [ ej1 ej2 · · · ejg ],

if and only if this partition satisfies the following equation with respect to Vs:

ET
i VsV

T
s Ej = 0. (4.12)

This lemma shows us that original variables can be divided into two groups

that are independent if and only if the same partition can also divide the

scaled variables into two independent groups. Because of this lemma, we can

convert Assumption 1 with respect to V to the one with respect to Vs, and
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then simplify the proofs of the following lemmas and the main theorem by

excluding many cases that Assumption 1 does not hold. A proof of Lemma

4.1 is provided in Appendix A.

Lemma 4.2. The objective function satisfies

r

n2
≤ J(y) < 1.

This lemma provide a lower bound and an upper bound of the objective

function. It will be shown later in Theorem 4.2 that the lower bound is tight

in most cases. A proof of Lemma 4.2 is provided in Appendix A.

The third lemma provides four useful properties of Algorithm 3 that will

mainly be used in the proof of Lemma 4.4.

Lemma 4.3. In each inner iteration, namely, steps 2 to 6 in Algorithm 2,

only the j-th element of ŷ may change. Moreover, let ŷ0j and ŷ1j denote the

value of the j-th element of ŷ before and after updating, respectively. Let ŷ0

and ŷ1 denote the value of ŷ before and after updating, respectively. Let

di(y) = eT
i V(VTD(y)V)−1VTD(y)ei,

for i = 1, 2, · · · , n2. The inner iteration has the following four properties:

1. ŷ1j ≥ ŷ0j. The equality holds if and only if J(ŷ0) = dj(ŷ0).

2. di(ŷ0) ≥ di(ŷ1) for all is other than j.

3. J(ŷ0) ≥ dj(ŷ1). The equality holds if and only if J(ŷ0) = dj(ŷ0).

4. J(ŷ0) ≥ J(ŷ1). The equality holds if and only if there exists such an

index o ∈ {1, · · · , n2} that J(ŷ0) = do(ŷ0) = do(ŷ1)

A proof of Lemma 4.3 is shown in Appendix A.

Based on Lemma 4.3, the fourth lemma points out that the objective

function does not increase or stay at a value before the lower bound is reached.

Lemma 4.4. For each outer loop, namely, steps 3 to 5 in Algorithm 2,

J(yk) ≥ J(yk+1). For each n2 loops, the decreasing is strict, i.e., J(yk) >

J(yk+n2−1) unless J(yk) = r
n2

, which is the lower bound of the objective func-

tion.

A proof of Lemma 4.4 is shown in Appendix A.

Finally, the main result of convergence can be introduced.

66



Theorem 4.2. The coordinate descent algorithm proposed in this chapter,

namely, Algorithms 2 and 3, converges to a global optimal point whose objective

function equals
r

n2

provided that: for any i rows of the matrix V whose spanned

space has a rank, denoted by ňi, smaller than i and n2, 1) there are more than
(r − ňi)n2

r
rows that do not lie in the row space of these i rows; 2) the rank

of the spanned space of these i rows and any other r − ňi rows that do not lie

in the row space of these i rows is r.

In order to prove this Theorem, two cases are considered: the algorithm

does not converge to a boundary point; and the algorithm converges to a

boundary point. In the former case, the proof of convergence is similar to

the proof of Lyapunov stability theory. The algorithm can be considered

as a discrete time dynamic system. The objective function (4.11) minus its

lower bound provided in Lemma 4.2 can be considered as an energy function.

Moreover, Lemma 4.4 shows that the energy function decreases unless the

lower bound is reached. In the latter case, the problem is more complicated,

since the reduction in each iteration may be larger than but converge to 0.

That is why the two conditions are provided in Theorem 4.2. It can be proven

that the latter case never occurs if the two conditions hold. A detailed proof

of Theorem 4.2 is provided in Appendix A.

4.5 Fault Detection and Diagnosis

In Section 4.3, the modeling procedure is discussed. A main purpose of build-

ing process models is process monitoring, namely, fault detection and diag-

nosis (FDD). Applications of PCA to FDD are extensively discussed, e.g.

[22, 32, 90]. A PCA generated process model determines two subspaces: the

principal component subspace (PCS) and the residual subspace (RS). A mea-

surement is decomposed by projecting it to the two subspaces. The ℓ2 norm

of the projection in RS (the residual vector) is called the squared prediction

error. Another statistic, T 2 statistic, describes the variation of a process in

the PCS. Control limits of these two indices are provided for fault detection

[22].

The PCP generated model also provides PCS and RS. VVT denotes the

PCS and V⊥VT
⊥ is the RS. The projections of a measurement in the two
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subspaces are usually determined by an optimization problem:

minimize ||x̃|| (4.13)

subject to x̂ + x̃ = x

V⊥x̂ = 0,

where x is the measurement, x̂ and x̃ are its projections in PCS and RS,

respectively. When the ℓ2 norm is used in the objective function, the optimal

solution is the orthogonal projection, which is the projection used in PCA

methods. However, in the case that sparse outliers exist, ℓ1 norm, which is a

heuristic of 0 norm, is a better choice. Moreover, since the fault cardinality

is usually small, the sparsity of the residual can still hold in the abnormal

case. One question that must be answered is whether the solution obtained by

minimizing the ℓ1 norm can well estimate the sparse residual vector. According

to [38], a key point to guarantee the equivalence of the sparse solution and the

minimal ℓ1 norm solution is that sparse vectors cannot lie in the complement of

the RS, namely, the PCS. This is also the requirement of PCP decomposition,

and the reason why we search for optimal scaling parameters. As a result, the

RS of the well-scaled data rather than the original data should be used for

residual vector calculation.

In the PCP-based method, we will only use the residual vectors x̃ in fault

detection. The main reason why we avoid using the outlier-free vector x̂ is

the stationary requirement of that vector. Only when the outlier-free signal

is statistically stationary do the variation tests, such as the T 2 test, make

sense. However, the stationary requirement usually cannot hold in practice,

especially when the process works at several different operating points.

As stated in [59], the main advantage of applying the PCP-based fault

detection, isolation, and reconstruction approach is its simplicity. All three

purposes can be reached simultaneously. A fault is detected and isolated

on a certain variable when the corresponding residual is non-zero, and the

null hypothesis that the non-zero samples are outliers is rejected. x̂ is the

reconstructed fault-free and outlier-free vector. In order to distinguish between

outliers and faults, certain univariate post-filter should be applied to each

residual variable. Because of the existence of outliers, also called impulse

noise in the signal processing literature, distributions of residual variables

in the fault-free case have heavy tails. As a result, a generalized median

filter is a good choice [13, 71]. The design of this post-filter is based on an
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assumption that abnormality or fault continues for several consecutive samples

in a univariate signal, while outliers appear sparsely in one sample.

Example 4.3. We continue with Examples 4.1 and 4.2. 200 more samples

are generated in the original PCS with 5% outliers. Three faults are added:

1. from the 161st sample, the 3rd variable cannot be updated, so the mag-

nitude stays at the value of the 160th sample;

2. the 101st to 120th samples of the 5th variable have an offset of −4;

3. from the 31st sample, an offset of 800 is added to the 35th variable.

Using the optimized scaling vector and the corresponding PCS and RS we

obtained in Example 4.2, we solve the optimization problem in (4.13) for each

sample. Finally the residual signal is obtained. Since the residual is the

summation of faults and outliers, it is hard to distinguish the faults from it.

But the filtered signal via a generalized median filter provides a clear view of

the faults. The time trends of the faulty signals (only the first seven and last

seven variables, blue dash curves) and the corresponding residual signals (red

solid curves) are shown in Fig. 4.2. Because of the interconnections among

process variables, many of them diverge from their operating point in faulty

case thought indeed the fault is on only one of them. For example, in the

interval from the 101st sample to the 120th sample, we can observe changes

on many of the signals, but no residual signal except the one of x5 diverges

from 0. So that we can detect this fault, and locate it on process variable

x5 simultaneously by PCP-based fault detection and diagnosis. The residual

signals of PCA are also provided in Fig. 4.3. We cannot directly isolate

and identify the faults according to these residual signals. If we apply the

PCA-based isolation and reconstruction method proposed in [22], we need to

try 35+ 35!
2!×33!

= 630 different combinations, since two independent faults may

occur simultaneously. If the cardinality of faults further increases, the number

of combinations increases dramatically, which leads to a large computational

burden.
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Figure 4.2: Time trend plots of the faulty signals and filtered residual signals.
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Figure 4.3: Filtered PCA residual signals.
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Chapter 5

Application of Alarm

Management Techniques to an

Industrial Alarm

Rationalization Project

5.1 Overview

In this chapter, we describe an industrial alarm rationalization project that

is still in progress. Univariate alarm rationalization on bad tags has been

finished. First, the top 50 bad alarm tags were identified according to their

alarm counts in the historical alarm data. Then, delay timers were designed

based on the alarm data of the top bad tags. Filter design and alarm limit

tuning were also done based on the process data corresponding to the top

bad tags. An oscillation detection technique based on alarm data was also

provided to detect oscillation tags. By applying these techniques, more than

60% of historical alarms could be suppressed.

5.2 The Industrial Plant and Its Alarm Sys-

tem

The alarm rationalization project is carried out at an oil-sand extraction plant.

The feed of the extraction process includes oil sand slurry, cold water and

hot water. The mixture is then separated into three layers by the primary,

secondary and tertiary separation cells connected in series. The top layer,

namely, the bitumen froth, is the main product. The middle layer, which is
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called middlings, is recycled back into the process. The bottom layer, which

is mainly composed of sand and clays, is the tailings.

Process variables are measurements on a vast range of flow rates, temper-

atures, levels, pressures, and so on. Analog alarm tags are generated corre-

sponding to these process variables. Aside from these analog alarm tags, there

are many digital alarm tags as well, such as communication alarm tags for the

field bus.

Four segments of half-month historical alarm data were examined. We

found that the average alarm rate is higher than 1 alarm per second, which

is much higher than the recommended value in the ISA standard, during all

of these four periods. Although the top 50 bad tags listed in different periods

were different, they shared many common tags. Moreover, more than half of

the alarms were from the top 3 bad alarm tags. Because of this situation, it

is necessary to perform bad alarm tag management as the first stage.

5.3 Delay Timer and Filter Design on Bad

Tags

5.3.1 Delay Timer Design

There are two kinds of delay timers: on-delay timer and off-delay timer. Gen-

erally speaking, on-delay timers are good at avoiding fleet alarms, and off-delay

timers can lock the alarm indication when repeat alarms are raised. The main

design parameter of a delay timer is its length.

Based on the historical alarm data, specifically the alarm (ALM) messages

and the return to normal (RTN) messages in the alarm log, a practical and

effective method to design the length of off-delay and on-delay timers was

developed in Section 5.6 in [65]. For a certain tag, time differences between

each ALM message and the following RTN message are calculated. When

an on-delay timer with length k is implemented, the reduction of the alarm

count equals the amount of time differences lower than k. Then, a curve of

alarm count deduction with respect to the length of the on-delay timer can be

plotted for the on-delay timer design. Analogously, the length of the off-delay

timer can be designed based on the time differences between RTN messages

and the following ALM messages.

By adopting this method, the top 50 alarm tags during the four periods

were analyzed. An interesting range of length of the delay timers is from 1
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Figure 5.1: Off-delay timer analysis of Tag1.CFN (left) and Tag2.CFN (right).

second to 60 seconds. The detection delay will be too great if an on-delay

timer that is too long is applied, and standing alarms may be introduced if

the length of the applied off-delay timer is too large. We discovered that

many bad tags could be mitigated by applying a 10- to 30-second off-delay

timer, especially a group of “change from normal” (CFN) alarm tags. Plots of

remaining alarm count v.s. length of off-delay timer for two CFN alarm tags

are provided in Fig. 5.1 as examples. The alarm counts of the two tags could

be reduced to about 15% with 30-second off-delay timers.

5.3.2 Filter Design and Alarm Limits Tuning

Since filter design and alarm limits tuning are based on process data, we only

focused on the analog alarm tags in which delay timers were not effective. For

some of these tags, we could only obtain data in the normal situation. If this

was the case, we only focused on the distributions of the data in the normal

case and their false alarm rates.

Compared with limits tuning, filtering is preferred since changing alarm

limits requires much paper-work and demands very solid reasons.

According to the distributions of the data, we found that filtering tech-

niques should be effective for most of the tags. Generalized median filters

were selected. This kind of filters is the generalization of moving average fil-

ters, as well as the generalization of median filters. The advantages of moving

average filters have been analyzed in Chapter 2; they are optimal linear filters

under certain conditions. However, we also mentioned that moving average

filters are sensitive to outliers. In other words, performance quality decreases

when the distributions have heavy tails. Conversely, median filters are good
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at rejecting outliers. As a result, generalized median filters, the combination

of median filters and moving average filters, inherit the advantages of both

median filters and moving average filters. As a result, the generalized median

filters are good at suppressing noise as well as rejecting outliers. The design

parameters of a generalized filter are two lengths, l and n. Denote the original

alarm signal by x(k) and the filtered signal by y(k). The expression of the

filtered signal is as follows:

y(k) =

l−n∑
i=n+1

x̃i

l − 2n
,

where {x̃1, x̃2, · · · , x̃l} is the sequence, {x(k − l + 1), x(k − l + 2), · · · , x(k)},
sorted in descending order.

The effects of adding generalized median filters are obvious. For example,

the low alarm of a flow rate tag was raised 470 times during a period of

about 40 hours. The low limit was 1000. Based on the alarm event log, all of

these alarms should be false alarms. The signal is shown in Fig. 5.2 and its

histogram is shown in Fig. 5.3. This distribution is typical with both noise

and outliers. By adding a generalized median filter, both the false alarm rate

and the alarm count can be reduced by about 80%.

Generalized median filters reduced the alarm counts significantly for most

of the analog alarm tags that we focused on. One exception was a level control

tag, which was among the top 5 bad tags during one of the four periods. We

found that the distribution of the data had a peak very close to 15 which is

the low alarm limit of this tag (the range of the variable is from 0 to 100).

Because of this peak, low alarms of this tag were repeatedly raised and cleared.

The performance could hardly be improved without alarm limit tuning. We

attempted to decrease the limit slightly to 14. The alarm count would decrease

dramatically by more than 90%.

5.4 Alarm Data-Based Oscillation Detection

5.4.1 Motivation

Oscillation is an abnormal phenomenon in process industries. As mentioned

in [107], “the common causes for oscillation include sticky control valves, oscil-

latory external disturbances, loop interaction and aggressive control”. In our

project, we also encountered situations during which oscillation was present.
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Figure 5.2: Time trend of a flow rate tag.

−500 0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

Figure 5.3: Histogram of the original data.
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Because of oscillating process signals, alarms were repeatedly raised. The time

differences between one ALM message to the next RTN message, and between

one RTN message to the following ALM message, were mainly decided by the

period and magnitude of the oscillation. A band-stop filter would be effec-

tive if the frequency of the oscillation was known. Unfortunately, it is very

difficult to predetermine such a frequency band; and in fact, the oscillation

frequency of one process variable may vary from time to time. Delay timers

are also not a good solution for the repeated alarms caused by an oscillation,

since the length of the delay timer has to be very large if the frequency of

the oscillation is not very high. Moreover, the cause of an oscillation may be

totally different from the cause of the mean value drift on the same process

variable. Therefore, the alarm system needs to be able to distinguish between

different phenomena.

There is a lot of valuable research on oscillation detection based on process

data, such as [74, 107]. However, oscillation detection based on alarm data is

also necessary in some circumstances, notably in our project. The reason is

twofold. First, compared with the process data of hundreds or even thousands

of process variables sampled every minute, the alarm data has a much smaller

size and is easier to handle. As a result, detecting oscillating process variables

by alarm data and then analyzing the process data of such variables provide a

practical solution. Second, it may be impossible to obtain the “real” historical

process data from the industrial database. Usually, historical data is stored

after down sampling in consideration of computer space limitations. In our

project, the down sampled period was 1 minute. Because of the frequency

alias, the process data sometimes failed to provide the correct frequency infor-

mation of an oscillation. For example, in one of the tags that we focused on,

one oscillation whose period was about 45 seconds according to alarm data

became 3 minutes in the down sampled process signal.

5.4.2 Detection Algorithm

Within alarm data, we can obtain the time stamps of ALM and RTN messages

of a certain tag. In an ideal oscillation, the time gaps between two consecu-

tive ALM messages, as well as those between two consecutive RTN messages,

should be the same. Moreover, they should equal the period of the oscillation.

In practice, such strict equalities do not hold due to the influence of noise.

However, in the case that the signal to noise ratio is not small, variation be-
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tween the time gaps is not too large. This was the case in our project, since

the magnitude of the oscillation must be large enough to exceed the alarm

limit. As a result, an alarm data-based oscillation detection algorithm was

developed. Denote the time instances of the k-th ALM message and RTN

message for a certain alarm as ta(k) and tr(k), respectively. Two types of

time gaps can be defined as:

ga(k) = ta(k) − ta(k − 1);
gr(k) = tr(k) − tr(k − 1).

Within the period where variations of both ga(k) and gr(k) are small, which

can be measured by the standard deviation to mean ratio in a sliding window,

an oscillation should occur. So, we can define the following two signals:

OALM(k) =

√
k∑

i=k−l+1

(ga(i) − µa(k))2

lµa(k)
,

ORTN(k) =

√
k∑

i=k−l+1

(gr(i) − µr(k))2

lµr(k)
,

(5.1)

where

µa(k) = 1
l

k∑
i=k−l+1

ga(i),

µr(k) = 1
l

k∑
i=k−l+1

gr(i).

When both signals are smaller than a prescribed threshold, an oscillation is

detected.

5.4.3 Detection Results

The algorithm was run on the historical alarm data we obtained. A sliding

window with a length of 5 was used. Two typical oscillation tags and their

oscillation periods were captured. Alarms repeated during the oscillation pe-

riods, which significantly increased alarm counts. If the oscillation detection

method is used, only the first four repeated alarms would be raised, then a

single standing oscillation alarm could replace all of those following during

that oscillation period.

A segment of one oscillation tag is shown in Fig. 5.4. The red curve

denotes the process signal and the blue line indicates the alarm status. From
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Figure 5.4: Process signal and alarm data of an oscillation tag.

one ALM message to the following RTN message, i.e., when an alarm is raised,

the alarm status is assigned a value of 3 (see the blue line). Its value is set to

be zero from one RTN message to the next ALM message. The alarm count,

namely, the number of ALM messages, is 51. OALM and ORTN signals are

shown in Fig. 5.5, which shows three periods of oscillations. Notice that the

horizontal axes of the two curves are not time axes; they indicate the index

k in equation (5.1). In Fig. 5.6, two different kinds of repeated alarms of

the same tag are shown. Obviously, the first segment is not an oscillation

while the second should be. Our algorithm successfully distinguished these

two situations.

5.5 Estimated Effect on the Alarm System

In summary, recommendations for the bad tags management stage were as

follows: 1) a list of bad tags in which an off-delay timer or an on-delay timer

of 30 seconds may be applied was provided; 2) generalized median filters were

recommended on several process variables; 3) the low alarm limit of one tag

should be slightly decreased; 4) analog alarm tags should be suppressed by

design in the case of oscillations; 5) one tag should be shelved because it was
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Figure 5.6: Alarm data of an oscillation tag in which both oscillation-induced
repeated alarms and other repeated alarms exist.
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Figure 5.7: Contributions of different techniques on alarm count reduction.

caused by a device for which maintenance was required.

The alarm count could be reduced by about 60% if these recommendations

were taken on the historical alarm data. A pie chart in Fig. 5.7 shows the

contributions of different techniques on alarm count reduction.
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Chapter 6

Concluding Remarks and

Future Work

The purpose of the work reported in this thesis is to develop techniques and

tools for alarm system design and analysis that can be applied to the im-

provement of alarm systems. In light of the current “data rich, information

poor” situation, we focus on data-driven techniques. Both process data and

alarm data are considered; and both univariate data-based and multivariate

data-based methods are proposed.

6.1 Major Thesis Contributions

In Chapter 2, we present the design of an optimal alarm filter for maximum

alarm accuracy, minimizing a weighted sum of false and missed alarm rates

(probabilities). Alarm signal filtering is a univariate process data processing

technique. The main function is to improve the quality of the alarm signal.

With fixed filter structures, the design of optimal linear alarm filters is studied,

and a numerical optimization procedure is proposed. Some key elements in

the optimal design include the use of characteristic functions from probability

theory to facilitate computation of the objective function, and a differential

evolution (DE) algorithm for optimization (the optimization problem is non-

convex and with small gradients). A sufficient condition for moving average

filters being optimal linear alarm filters is also provided, which gives engi-

neers an idea of when moving average filters can necessarily improve alarm

performance.

Chapter 3 is concerned with alarm flood pattern analysis, which is helpful

for root cause analysis of historical floods and for incoming flood prediction. In
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this chapter, a multivariate alarm data-driven method for alarm flood pattern

matching is proposed. A modified Smith-Waterman algorithm considering

time stamp information is proposed to calculate a similarity index of alarm

floods and uncover the connections between consequence alarms. The effec-

tiveness of the algorithm is validated with a case study on real industrial data

from a major refinery process.

Chapter 4 discusses the application of a new statistical analysis technique,

principal component pursuit, to process monitoring. A new scaling prepro-

cessing step is proposed to improve quality of data matrices for low coherence.

An algorithm is proposed for the optimal scaling vector search. The conver-

gence of the algorithm to a global optimal point is also proved. A residual

generator and a post-filter suitable for PCP-based process models are also pro-

vided. The post-filtered residual represents the fault signal, which makes the

fault detection, isolation, and reconstruction procedure simple and straight-

forward. A numerical example is also provided to illustrate the PCP-based

process modeling and monitoring procedure.

In Chapter 5, an alarm system rationalization project on an industrial oil-

sand extraction plant is discussed. Delay timers and filters are designed for

the tags with frequent alarms (bad tags). An oscillation detection method

based on alarm data is also provided to detect oscillation tags in the historical

data set.

6.2 Directions for Future Work

Alarm management is still a relatively new direction in academia. This section

focuses on future research directions that could be pursued.

Alarm Flood Analysis

Alarm flood analysis is an area that requires further studies. In this thesis,

we provide an alarm data-based pattern matching technique for alarm flood

pattern analysis. However, DCSs can also log another type of event, operator

actions, aside from alarm events. Alarm flood sequences are greatly correlated

with operator actions. Correct actions may stop a flood very quickly, while

incorrect actions may further escalate the abnormality. As a result, alarm

flood analysis considering both alarm events and operator actions is worth

developing. Moreover, the outcome of the analysis can be used not only for
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root cause analysis, but also for workflow mining. The best actions against

different alarm flood patterns may be discovered when operator action data

are incorporated. Another issue is how to combine data-driven methods and

expert knowledge-based methods in alarm flood analysis. Computers and

human beings are good at different tasks: computers are adept at large scale

data processing, while the strength of human is the ability to make decisions

on a case by case basis. The alarm flood analysis technique can be significantly

improved if data-driven methods and knowledge-based methods come together

to create a more superior integrated method.

PCP on Process Monitoring and Abnormality Management

Research on the application of PCP to process monitoring is still in its infancy

stage. In this thesis, the relationship between the incoherence index and

performance of the PCP algorithm is emphasized, and an optimal scaling

vector design scheme is provided to minimize the incoherence. However, the

quantitative relationship between the incoherence index and the properties of

the PCP algorithm, e.g., its convergence ratio, the probability of obtaining

an accurate solution, and so on, still needs further analysis. Moreover, PCP

analysis has currently been discussed in the linear static situation. How to

extend it to dynamic nonlinear situations is still an open question. Many

techniques have already been proposed in the field of PCA to deal with similar

issues. Dynamic PCA and nonlinear PCA techniques have been extensively

discussed in [67, 68]. As a result, research on PCP may adopt such ideas from

the PCA literature, such that dynamic and nonlinear PCP techniques may be

developed.

Univariate Alarm Analysis and Design Based on Process and Alarm

Data

Generalized median filtering and alarm data-based oscillation detection tech-

niques are verified as effective univariate alarm processing techniques in the

real industrial project described in Chapter 5. However, further theoretical

analysis is required. Compared with that on moving average filters, theoretical

analysis on generalized median filters is more difficult due to its nonlinearity.

Alarm data-based oscillation detection methods work well in high signal-noise-

ratio cases, but significance level analysis is still necessary for the threshold

setting.

84



Implementation

Another important issue is how to integrate advanced techniques developed

in this area and apply them to real industrial processes. Collecting alarm

system analysis tools in a toolbox is a good idea. Preliminary attempts have

been done in [5]. To implement online techniques, e.g., online alarm flood

pattern matching and online oscillation detection, the involvement of a DCS

programmer may be necessary. Alternatively, the online techniques may be

integrated into existing alarm management platforms such as “Alarm Man-

ager” developed by Honeywell-Marikon. Since the end users of these online

tools would be operators, design on HMI is sometimes as important as the

techniques themselves. Therefore, topics discussed in [53] are notable for fur-

ther studying.
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Appendix A

Proofs of Lemmas and the Main

Result in Chapter 4

A.1 Proof of Lemma 4.1

Necessity: Let Ep = [ Ei Ej ]. We have

E−1
p = ET

p .

Since

ET
i VVTEj = 0,

we obtain that

ET
p VVTEp =

[
Ci 0

0 Cj

]
,

where

Ci = ET
i VVTEi, Cj = ET

j VVTEj.

As a result, there exists a unitary matrix T such that

ET
p V =

[
Vii 0

0 Vjj

]
T, (A.1)

where
ViiV

T
ii = Ci, VjjV

T
jj = Cj,

VT
iiVii = I, VT

jjVjj = I.

Substituting (A.1) and (4.9) into (4.12) yields

ET
i VsV

T
s Ej

= ET
i D(x)EpE

T
p V(VTEpE

T
p D(x)2EpE

T
p V)−1VTEpE

T
p D(x)Ej

= [ ET
i D(x)Ei 0 ]

·
[

Vii(V
T
iiE

T
i D(x)2EiVii)

−1VT
ii 0

0 Vjj(V
T
jjE

T
j D(x)2EjVjj)

−1VT
jj

]

·
[

0

ET
j D(x)Ej

]
= 0
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The proof of sufficiency is similar. We only need to swap V and Vs, and

change D(x) by D(x)−1 in the necessity proof. �

A.2 Proof of Lemma 4.2

Since J(y) is the maximum value among the n2 diagonal entries of matrix

VsV
T
s , it can be proved that

n2J(y) ≥ trace
(
VsV

T
s

)

= trace
(
VT

s Vs

)

= trace(Ir×r) = r.

So that

J(y) ≥ r

n2
.

The equality holds only if all of the diagonal entries are the same.

Vs⊥ denotes a normalized orthogonal basis of the null space of Vs. Let

vi
s denote the i-th column of Vs

T , and vi
s⊥ denote the i-th column of Vs⊥

T .

Since

[ Vs Vs⊥ ]

[
VT

s

VT
s⊥

]
= I,

we have

vi
s
T
vi

s = 1 − vi
s⊥

T
vi

s⊥ ≤ 1,

for i = 1, · · · , n2. Since vi
s
T
vi

s is the i-th diagonal entry of matrix VsV
T
s , all

of the diagonal entries of this matrix are less than or equal to 1. As a result

J(y) ≤ 1. The equality holds only if there exists an index o such that vo
s⊥ = 0.

Thus

vo
s
Tvi

s + vo
s⊥

Tvi
s⊥ = vo

s
Tvi

s = 0,

for i = 1, · · · , n2, i 6= o, which means that

eT
o VsV

T
s [ e1 · · · eo−1 eo+1 · · · en2 ] = 0.

According to Lemma 1, this equation contradicts Assumption 1. Thus there

is no such index o. In other words, J(y) < 1. �

A.3 Proof of Lemma 4.3

1) Since in step 2 to step 6 of Algorithm 2, only the j-th element of ŷ changes,

A(ŷ0) = A(ŷ1), B(ŷ0) = B(ŷ1), and q(ŷ0) = q(ŷ1). As a result, we can use
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the symbols q, A, B, Γ, and γt in steps 3 and 4 of Algorithm 2 without any

confusion. Consider the following equation with respect to any vector y > 0:




dj(y)
d1(y)

...
dj−1(y)
dj+1(y)

...
dn2

(y)




= diag







eT
j

eT
1

...
eT

j−1

eT
j+1

...
eT

n2




V(VT D(y)V)−1VT D(y)




eT
j

eT
1

...
eT

j−1

eT
j+1

...
eT

n2




T



= diag

([
vT

j

V\j

]
(vjyjv

T
j + VT

\j
D(y\j)V\j)

−1[ vjyj VT
\jD(y\j) ]

)

= diag

([
vT

j

V\j

]
(vjyjv

T
j + Qj(y))−1[ vjyj VT

\j
D(y\j) ]

)

(A.2)

Since only the j-th element changes in one iteration, we only need to

consider the change of di(y)s with respect to ŷj. So, the di(y)s can be denoted

as di(ŷj)s without confusion.

If the matrix V\j is not full column rank, there exists a non-zero column

vector w that V\jw = 0. Since

[ vj VT
\j ]

[
vT

j

V\j

]
= I,

we have

vj(v
T
j w) = w.

So V\jvj = 0, which means that Assumption 1 is violated. As a result, the

matrix V\j must be full column rank. Then, matrix Qj(y) is invertible. The

vector vj must be non-zero because of the same reason. Thus, we can apply

the matrix inversion lemma in (A.2) to get di(ŷj)s.



dj(ŷj)
d1(ŷj)

...
dj−1(ŷj)
dj+1(ŷj)

...
dn2

(ŷj)




= diag

([
vT

j

V\j

]
(Qj(ŷ) + vj ŷjv

T
j )−1

·
[

vj ŷj VT
\j

D(ŷ\j)
])

= diag

([
qŷj

qŷj+1
∗

∗ A− ŷj

qŷj+1
B

])
;

(A.3)

Since vi 6= 0 for i = 1, 2, · · · , n2, we have q > 0, diag(A) > 0, and

diag(B) ≥ 0. It can be proved that dj(ŷj) is a strictly monotonic increasing
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function in its domain ŷj ∈ (0, +∞); and di(ŷj) is a monotonic decreasing

functions in its domain ŷj ∈ (0, +∞) for i = 1, · · · , j − 1, j + 1, · · · , n2.

Moreover, for any i = 1, · · · , j − 1, the solution of dj(ŷj) = di(ŷj), namely,

qŷj

qŷj + 1
= eT

i

(
A − ŷj

qŷj + 1
B

)
ei,

is

ŷj =
eT

i Aei

eT
i Bei + q − eT

i Aeiq
= γi.

For any i = j + 1, · · · , n2, the solution of dj(ŷj) = di(ŷj), namely,

qŷj

qŷj + 1
= eT

i−1

(
A − ŷj

qŷj + 1
B

)
ei−1,

is

ŷj =
eT

i−1Aei−1

eT
i−1Bei−1 + q − eT

i−1Aei−1q
= γi−1.

Since V\j is full column rank, we can prove that diag(A) ≤ 1 by following

the same line in the proof of Lemma 2. Moreover, if there exists an index

o that eT
o Aeo = 1, then eT

o Beo 6= 0. Otherwise do(ŷj) = 1 for ŷ0j . Thus

J(ŷ0) = 1, which contradicts Lemma 2 stating that J(y) < 1. As a result,

γt ∈ (0, +∞) for t = 1, · · · , n2 − 1. Hence, 0 < Γ < +∞.

If max
1≤i≤n2

(di(ŷ0j)) 6= dj(ŷ0j), there exists an index o 6= j that do(ŷ0j) >

dj(ŷ0j). Thus γo > ŷ0j if o < j, or γo−1 > ŷ0j if o > j. As a result,

max{Γ, ŷ0j} = Γ > ŷ0j.

Therefore,

ŷ0j <
Γ

2
+

ŷ0j

2
= ŷ1j <

Γ

2
+

Γ

2
= Γ.

On the other hand, if max
1≤i≤n2

(di(ŷ0j)) = dj(ŷ0j), γt ≤ ŷ0j for t = 1, · · · , n2 −
1. Thus, max{Γ, ŷ0j} = ŷ0j. Therefore,

ŷ1j = (max{Γ, ŷ0j} + ŷ0j)/2 = ŷ0j.

The proof of property 1) is completed. Moreover, the updated value ŷ1j is in

the range (0, +∞) as long as ŷ0j ∈ (0, +∞).

2) Since ŷ1j ≥ ŷ0j, and di(ŷj) is a monotonic decreasing function for i =

1, · · · , j − 1, j + 1, · · · , n2, di(ŷ0j) ≥ di(ŷ1j) for i = 1, · · · , j − 1, j + 1, · · · , n2.

The proof of property 2) is completed.
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3) If max
1≤i≤n2

(di(ŷ0j)) 6= dj(ŷ0j), then ŷ1j < Γ. Hence, there exists an index

o 6= j such that the solution of equation do(ŷj) = dj(ŷj) is greater than ŷ1j.

Since dj(ŷj) is monotonically increasing and do(ŷj) is monotonically decreas-

ing, do(ŷ1j) > dj(ŷ1j). From property 1), we have do(ŷ0j) ≥ do(ŷ1j), which

implies do(ŷ0j) > dj(ŷ1j). Consequently,

max
1≤i≤n2

di(ŷ0j) > dj(ŷ1j).

On the other hand, if max
1≤i≤n2

(di(ŷ0j)) = dj(ŷ0j), ŷ0j = ŷ1j . As a result,

max
1≤i≤n2

di(ŷ0j) = dj(ŷ0j) = dj(ŷ1j).

The proof of property 3) is completed.

4) It follows from property 2) that

di(ŷ1j) ≤ di(ŷ0j) ≤ max
1≤t≤n2

(dt(ŷ0j)),

for i = 1, · · · , j − 1, j + 1, · · · , n2. From property 3), we have,

dj(ŷ1j) ≤ max
1≤t≤n2

(dt(ŷ0j)).

As a result,

max
1≤t≤n2

(dt(ŷ0j)) ≥ max
1≤i≤n2

(di(ŷ1j)).

Next, we show that max
1≤t≤n2

(dt(ŷ0j)) = max
1≤i≤n2

(di(ŷ1j)) if and only if there

exists an index o such that

do(ŷ1j) = do(ŷ0j) = max
1≤t≤n2

(dt(ŷ0j)). (A.4)

max
1≤t≤n2

(dt(ŷ0j)) = max
1≤i≤n2

(di(ŷ1j)) if and only if there exists an index w such

that

dw(ŷ1j) = max
1≤i≤n2

(di(ŷ1j)) = max
1≤t≤n2

(dt(ŷ0j)). (A.5)

Case 1: dw(ŷ1j) = dj(ŷ1j). Then, equation (A.5) becomes

dj(ŷ1j) = max
1≤i≤n2

(di(ŷ1j)) = max
1≤t≤n2

(dt(ŷ0j)). (A.6)

According to property 3), equation (A.6) holds only if

dj(ŷ0j) = dj(ŷ1j) = max
1≤t≤n2

(dt(ŷ0j)), (A.7)
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which is further equivalent to ŷ1j = ŷ0j by using property 1). So that equation

(A.6) holds if and only if equation (A.7) holds.

Case 2: dw(ŷ1j) 6= dj(ŷ1j). Assume that equation (A.5) holds. Then, it

follows from property 2) that

dw(ŷ0j) ≥ dw(ŷ1j) = max
1≤t≤n2

(dt(ŷ0j)) ≥ dw(ŷ0j),

which implies that

dw(ŷ1j) = dw(ŷ0j) = max
1≤t≤n2

(dt(ŷ0j)). (A.8)

Conversely, if equation (A.8) holds, then according to property 3) we have

dw(ŷ1j) = max
1≤t≤n2

(dt(ŷ0j)) ≥ dj(ŷ1j);

and according to property 2) we have

dw(ŷ1j) = max
1≤t≤n2

(dt(ŷ0j)) ≥ di(ŷ0j) ≥ di(ŷ1j)

for all i 6= j.

Therefore,

dw(ŷ1j) = max
1≤i≤n2

(di(ŷ1j)),

and thus equation (A.5) holds. The proof of property 4) is completed. �

A.4 Proof of Lemma 4.4

According to property 4) of Lemma 3, each inner iteration does not increase

the objective function. The scaling step, step 7 of Algorithm 2, does not affect

the objective function, i.e., dj(ỹ) = dj(yk+1) for j = 1, · · · , n2. Therefore,

J(yk) ≥ J(yk+1). If J(yk) = J(yk+1), in each inner iteration J(ŷ0) = J(ŷ1) =

J(yk). There are two cases in which this situation may occur:

Case 1: The set O = {o|do(yk) = J(yk)} = {1, · · · , n2}. This is the case that

the global lower bound
r

n
has been reached.

Case 2: The set O = {o|do(yk) = J(yk)} ⊂ {1, · · · , n2}. In this case we define

two other index sets: O⊥ = {1, · · · , n2}\O, and Om = {o|do(yk+1) = J(yk)}.
For any index j ∈ O⊥, function dj(ŷ) may increase only in the j-th inner

iteration based on property 2) of Lemma 3. So in the j-th inner iteration,

dj(ŷ0) ≤ dj(yk) < J(yk) = J(ŷ0). According to property 3) of Lemma 3,
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dj(ŷ1) < J(ŷ0) = J(yk). According to property 1) of Lemma 3, ŷ0j < ŷ1j.

Again, because of property 2) of Lemma 3, after the j-th inner iteration,

dj(ŷ) does not increase, so dj(yk+1) < J(yk). As a result, O⊥
⋂

Om = ∅, and

eT
j yk < eT

j ỹ for all j ∈ O⊥. Therefore, Om ⊆ O.

If Om = O, for any i ∈ O, in the i-th inner iteration di(ŷ0) = J(yk), hence

ŷi0 = ŷi1. Therefore, eT
i yk = eT

i ỹ for all i ∈ O. Make a partition on the

indices {1, · · · , n2} into O and O⊥. We have matrices EO, and EO⊥
whose

columns are the standard basis vectors corresponding to the index sets O and

O⊥, respectively. Let

VO = ET
OV, VO⊥

= ET
O⊥

V,
DO(y) = ET

OD(y)EO,
DO⊥

(y) = ET
O⊥

D(y)EO⊥
,

R(y) = VTD(y)V.

It can be proved that

DO(ỹ − yk) = 0, DO(ỹ) = DO(yk),
DO⊥

(ỹ − yk) > 0.

So,

ET
o




d1(ỹ)
...

dn2
(ỹ)


 = diag

(
VOR(ỹ)−1VT

ODO(ỹ)
)

= diag
(
VO

(
R(yk) + VT

O⊥
DO⊥

(ỹ − yk)VO⊥

)−1
VT

ODO(yk)
)

= ET
o




d1(yk)
...

dn2
(yk)


+ diag

(
VOR(yk)−1VT

O⊥

(
VO⊥

R(yk)−1VT
O⊥

+DO⊥
(ỹ − yk)−1

)−1
VO⊥

R(yk)−1VODO(yk)
)

.

(A.9)

According to Lemma 1 and Assumption 1,

VOR(yk)
−1VT

O⊥
6= 0.

Then

ET
o




d1(ỹ)
...

dn2
(ỹ)


 6= ET

o




d1(yk)
...

dn2
(yk)


 ,

which contradicts that eiyk = eiỹ for all i ∈ O. As a result, Om ⊂ O.

In case 2, the set Om in the k-th outer iteration is the set O in the k+1-th

outer iteration. The size of O is at most n2 − 1, and the size of Om must

be strictly smaller than the size of O. Therefore, case 2 can keep at most

n2 − 2 consecutive outer iterations. As a result, J(yk) > J(yk+n2−1) unless

J(yk) =
r

n2
. �
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A.5 Proof of Theorem 4.2

For convenience, we define the following domains first:

Do = {y| max
1≤i≤n2

eT
i y = 1, min

1≤i≤n2

eT
i y > 0};

D = {y| max
1≤i≤n2

eT
i y = 1, min

1≤i≤n2

eT
i y ≥ 0};

D1 = {y| max
1≤i≤n2

eT
i y = 1, min

1≤i≤n2

eT
i y = 0}.

Do is the original domain of our optimization problem. The objective function

and Algorithms 1 and 2 are well defined in this domain. Lemmas 4.1 to 4.2

are proved and thus valid in this domain. However, it is not a compact set.

D is an extension of Do to its boundary, so that D is a compact set. D1 is

the relative complement of Do in D.

Let function g : Do → Do denote the combination of all operations done

in one outer iteration. In other words, yk+1 = g(yk). Hence, the reduction of

the objective function in one outer iteration is defined as:

∆J(y) = J(y) − J(g(y)).

For simplicity, g(t) and ∆J (t)(y) denote the operations done in t outer itera-

tions and the reduction of the objective function in t outer iterations, respec-

tively. In other words,

g(t)(yk) = yk+t;

and

∆J (t)(y) = J(y) − J(g(t)(y)).

In the domain Do, all of the functions defined above are continuous. However,

they may not have limits on the boundary, namely, D1.

Consider case 1: there exists a scalar ǫ > 0 such that for any finite index

k, there exists a finite index k̃ greater than k which satisfies:

min(yk̃) ≥ ǫ.

Then there must exist a subsequence {lk}∞k=0 of the sequence {0, 1, 2, · · · } with

min(ylk) ≥ ǫ for k = 0, 1, 2, · · · . Define the following domain:

G
ǫ = {y|min(y) ≥ ǫ, max(y) = 1}.

It can be proved that G
ǫ ⊂ Do; and ylk ∈ G

ǫ for k = 0, 1, 2, · · · .
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Assume that J(y) does not converge to r/n2. According to property 4)

of Lemma 4.3, the sequence {J(yk)}∞k=0 monotonically, yet may not strictly,

decreases. So, there must exist a value β > r/n2 such that J(yk) ≥ β for

k = 0, 1, 2, · · · . The set G
ǫ
β = {y|J(y) ≥ β,y ∈ G

ǫ} is a compact set, and

ylk ∈ G
ǫ
β for k = 0, 1, 2, · · · . Since the function ∆J (n2)(y) is continuous in

G
ǫ
β, the minimum of ∆J (n2)(y) in the compact set G

ǫ
β exists. According to

Lemma 4.4, it must be greater than 0. Denote the minimum by δ, so that

∆J (t)(y) ≥ δ for t ≥ n2. Since lk+n2
− lk ≥ n2, J(yl0) − J(yl⌈n2/δ⌉

) ≥ 1,

where ⌈n2/δ⌉ is the smallest integer that is no less than n2/δ. As a result,

J(yl⌈n2/δ⌉
) < J(yl0) − 1 < 0, which clearly contradicts the assumption that

J(yk) ≥ β > r/n2 for k = 0, 1, 2, · · · . As a result, the assumption is false,

and the algorithm must converge to an global optimal point whose objective

function values r/n2.

Then, consider case 2 in which the sequence {min(yk)}∞k=0 converges to 0.

In other words, {yk}∞k=0 converges to a subset of D1. We need to extend the

definition of J(y) in domain D1 and that of ∆J (t)(y) as well.

For a point in D1, a set of indices B is defined by: B = {b|yb = 0}, and

the other indices belong to the set: B⊥ = {1, 2, · · · , n2}/B. Let EB⊥
denote

the matrix whose columns are the standard basis vectors corresponding to the

index set B⊥. We can further divide set B into two subset: Bo and Br. Bo

is the set of all indices b ∈ B such that the b-th row of matrix V is in the

row space of ET
B⊥

V. Then, we can define EBo and EBr similarly. Denote the

cardinalities of Br, Bo and B⊥ by nBr , nBo and nB⊥
, respectively. Denote

the rank of ET
B⊥

V by r1 which is smaller than or equal to min(r, nB⊥
). Then,

there exists an invertible matrix TB such that




ET
B⊥

ET
Bo

ET
Br


VTB =




V11 0

V21 0

V31 V32


 ,

where V11 ∈ R
nB⊥

×r1 and V32 ∈ R
nBr×(r−r1) are full column rank matrices.

The objective function of a boundary point along a certain direction λ =

[ λ̃
T

λ̂
T

]T = [ λ̃1 · · · λ̃nBo
λ̂1 · · · λ̂nBr

]T can be defined as:

JB(y|λ) = lim
α→0+

J(yB(α|λ)), (A.10)

where

yB(α|λ) = y + αEBoλ̃ + αEBrλ̂,
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for all direction vectors in the domain:

Lo = {λ|max(λ) < ∞, min(λ) ≥ 0, ‖λ̂‖0 ≥ (r − r1 + 1)}.

Since J(yB(α|λ)) is the maximum of n2 bounded rational fractions with re-

spect to α, its limit at 0+ exists. However, the limits along different directions

may be different. Similarly, we can define the function ∆J (t) along direction

λ on the boundary points:

∆J
(t)
B (y|λ) = lim

α→0+
∆J (t)(yB(α|λ)). (A.11)

It can be derived that

J(yB(α|λ)) = max



diag








V11 0√
αV21 0√
αV31 V32





([
V11

TD(ET
B⊥

y)V11 0

0 V32
TD(λ̂)V32

]

+

[
α
(
V21

TD(λ̃)V21 + V31
TD(λ̂)V31

) √
αV31

TD(λ̂)V32√
αV32

TD(λ̂)V31 0

])−1

[
V11

TD(ET
B⊥

y)
√

αV21
TD(λ̃)

√
αV31

TD(λ̂)

0 0 V32
TD(λ̂)

]))
.

(A.12)

Hence,

JB(y|λ)
= max

(
diag

(
V11(V11

TD(ET
B⊥

y)V11)
−1V11

TD(ET
B⊥

y)
)
,

diag
(
V32(V32

TD(λ̂)V32)
−1V32

TD(λ̂)
))

.
(A.13)

The objective function (A.13) equals the larger one between two terms. The

first term is only related to matrix V11 and the non-zero elements in vector y;

and the second term is only related to matrix V32 and the direction vector λ̂.

Since our algorithm starts from the point 1, the algorithm will never approach

a boundary point whose objective function (A.13) approaches values greater

than J(1) along all directions λ ∈ L0. As a result, we do not need to consider

such boundary points in our proof. The boundary points whose corresponding

matrix V11 is a square matrix are such points, since their objective functions

(A.13) equal 1. So that nB⊥
< r1. In this case, because of condition 2) in

Theorem 4.2, the rank of any h rows in V32 is min(h, r1). So that when more

than r − r1 + 1 elements in λ̂ approach 0, the value of

max
(
diag

(
V32(V32

TD(λ̂)V32)
−1V32

TD(λ̂)
))
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approaches 1. Therefore, we can further constrain the domain of direction λ:

L = {λ|max(λ) < ∞, min(λ) ≥ 0,

max
(
diag

(
V32(V32

TD(λ̂)V32)
−1V32

TD(λ̂)
))

≤ J(1)
}

.

Thus, the minimums of ∆(t)JB(y|λ) for any finite integer t with respect to λ

in the domain L exist. In case 2, there must exist at least one point and an

associated direction λ ∈ L in D1 such that

∆J
(t)
B (y|λ) = 0, (A.14)

for all finite integers t, and the algorithm will ultimately converge to such a

point or a set of such points. Any boundary points in which Lemma 4.4 still

holds cannot satisfy equation (A.14). So, we need to scrutinize Lemmas 4.2

to 4.4 for the boundary points with their associated directions λ.

First, notice that if a continuous function f(α) is well defined and equal to

or greater than 0 in the domain (0, +∞), then lim
α→0+

f(α) ≥ 0. As a result, all

properties in Lemmas 4.3 and 4.4 using “greater than or equal to” symbols,

such as ŷ1j ≥ ŷ0j, J(ŷ0) ≥ dj(ŷ1), hold for boundary points. Since J(ŷ0) ≥
J(ŷ1) in every inner iteration, J(y) ≤ J(1) < 1 in the whole optimization

process. So, Lemma 4.2 holds automatically.

Then, look into the other properties in Lemma 4.3. There are two cases in

the j-th inner iteration: j ∈ Br and j ∈ B⊥ ∪ Bo.

Considering the case j ∈ Br first, we rewrite equation (A.3):




dj(ŷj)
d1(ŷj)

...
dj−1(ŷj)
dj+1(ŷj)

...
dn2

(ŷj)




= diag







αq
ŷj
α

αq
ŷj
α

+1
∗

∗ A −
ŷj
α

αq
ŷj
α

+1
αB





 . (A.15)

Suppose j is the w-th index in the set Br. Let V31\w, V32\w, and EBr\w denote

the matrices by removing the w-th row from V31, and V32, and EBr respec-

tively. Let v31(w) and v32(w) denote the w-th column of VT
31 and VT

32, respec-

tively. It will be proved after the j-th iteration that j ∈ Br, lim
α→0+

ŷ1j/α < ∞,

which means that the inner iteration cannot remove elements from the set Br.
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Let λ̂\w = lim
α→0+

1
α
ET

Br\wŷ0, thus max(λ̂\w) < ∞. We have

αq(α) =

[ √
αv31(w)

v32(w)

]T







V11 0

V21 0√
αV31\w V32\w




T

D






ET
B⊥

ŷ0

ET
Bo

ŷ0
1
α
ET

Br\wŷ0






·




V11 0

V21 0√
αV31\w V32\w






−1 [ √
αv31(w)

v32(w)

]
.

(A.16)

Since J(ŷ0) ≤ J(1) < 1, ‖ 1
α
ET

Br
ŷ0‖0 ≥ r−r1+1. Thus, ‖ 1

α
ET

Br\wŷ0‖0 ≥ r−r1.

Moreover, any r− r1 rows in matrix V32\i are independent under condition 2)

in Theorem 4.2. So, the following matrix is invertible and positive definite:

lim
α→0+

VT
32\wD(

1

α
ET

Br\wŷ0)V32\i.

Since the matrix V11 is full rank, and ET
B⊥

ŷ0 > 0, the following matrix is also

invertible and positive definite:

lim
α→0+

VT
11D(ET

B⊥
ŷ0)V11 + VT

21D(ET
Bo

ŷ0)V21.

So, 0 < lim
α→0+

αq(α) < ∞. Similarly, we can find that

0 ≤ lim
α→0+

diag(A(α)) ≤ 1,

lim
α→0+

diag(αB(α)) ≥ 0.

Moreover, if there exists an index o that lim
α→0+

eT
o A(α)eo = 1, then lim

α→0+
αeT

o B(α)eo 6=
0. The reason is the same as the one provided in Lemma 4.3. Then,

lim
α→0+

1

α
γt =

lim
α→0+

eT
t A(α)et

(1 − lim
α→0+

eT
t A(α)et) lim

α→0+
αq(α) + lim

α→0+
αeT

t B(α)et

< ∞

Then, the proof of Lemma 4.3 on the boundary points is the same except that

property 1) should be modified as: lim
α→0+

ŷ1j

α
≥ lim

α→0+

ŷ0j

α
. The equality holds if

and only if lim
α→0+

J(ŷ0) = lim
α→0+

dj(ŷ0).

Then, consider the case that j ∈ B⊥
⋃

Bo. Similarly, we can define V11\w,

V21\w, EB⊥\w, and EBo\w by removing the w-th row from the original matrices.

Let v11(w) and v21(w) denote the w-th column of VT
11 and VT

21, respectively. If
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j ∈ B⊥,

q(α) =

[
v11(w)

0

]T







V11\w 0

V21 0√
αV31 V32




T

D






ET
B⊥\wŷ0

ET
Bo

ŷ0
1
α
ET

Br
ŷ0






·




V11\w 0

V21 0√
αV31 V32






−1 [
v11(w)

0

]
(A.17)

Notice that V11\w is still a full column rank matrix. Otherwise, the first term

in objective function (A.13) equals 1. As a result, the following matrix is

invertible and positive definite:

VT
11\wD(ET

B⊥\wŷ0)V11\w. (A.18)

So, 0 < lim
α→0+

q(α) < ∞. Similarly, we can find that

0 ≤ lim
α→0+

diag(A(α)) ≤ 1,

lim
α→0+

diag(B(α)) ≥ 0.

Moreover, if there exists an index o that lim
α→0+

eT
o A(α)eo = 1, then lim

α→0+
eT

o B(α)eo 6=
0. The reason is the same as the one provided in Lemma 4.3.

For the case that j ∈ Bo,

q(α) =

[
v21(w)

0

]T







V11 0

V21\w 0√
αV31 V32




T

D






ET
B⊥

ŷ0

ET
Bo\wŷ0

1
α
ET

Br
ŷ0






·




V11 0

V21\w 0√
αV31 V32






−1 [
v21(w)

0

]
(A.19)

Similarly,
0 < lim

α→0+
q(α) < ∞

0 ≤ lim
α→0+

diag(A(α)) ≤ 1,

lim
α→0+

diag(B(α)) ≥ 0.

And if there exists an index o that lim
α→0+

eT
o A(α)eo = 1, then lim

α→0+
eT

o B(α)eo 6=
0. Then, the whole proof procedure is the same as Lemma 4.3. Moreover,

according to equation (A.12), dj(ŷ0) = 0 if j ∈ Bo. In other words, properties

1) can be simply expressed as lim
α→0+

ŷ1j > lim
α→0+

ŷ0j.
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Then, go to Lemma 4.4. lim
α→0+

ŷ1j > lim
α→0+

ŷ0j for j ∈ Bo. Thus, Bo ⊂ O⊥.

Suppose that yk is a boundary point approached along direction λ. Denote it

by yB(α|λ). According to the modified Lemma 4.3 on the boundary points,

we have

0 < lim
α→0+

ET
O⊥




ET
B⊥

ET
Bo

ET
Br




T 


EB⊥
(ỹ − y)

EBoỹ − αλ̃

1
α
EBr ỹ − λ̂


 < ∞. (A.20)

Let G(yB(α|λ)) denote the matrix

G(yB(α|λ)) =




I 0 0

0 I 0

0 0
√

αI






ET
B⊥

ET
Bo

ET
Br


VR(yB(α|λ))−1VT

·




ET
B⊥

ET
Bo

ET
Br




T 


I 0 0

0 I 0

0 0
√

αI




(A.21)

The following equations can be easily verified:



I 0 0

0 I 0

0 0
√

αI






V11 0

V21 0

V31 V32


 =




V11 0

V21 0√
αV31 V32



[

I 0

0
√

αI

]
; (A.22)




I 0 0

0 I 0

0 0 1√
α
I








V11 0

V21 0√
αV31 V32



 =




V11 0

V21 0

V31 V32




[

I 0

0 1√
α
I

]
. (A.23)

Substitute equations (A.22) and (A.23) into equation (A.21),

G(yB(α|λ)) =




V11 0

V21 0√
αV31 V32










V11 0

V21 0√
αV31 V32




T

D






EB⊥
y

αλ̃

λ̂






·




V11 0

V21 0√
αV31 V32






−1 


V11 0

V21 0√
αV31 V32




T

(A.24)

Define the following diagonal matrices:

KB(α|O)

= ET
O




ET
B⊥

ET
Bo

ET
Br




T 


I 0 0

0 I 0

0 0
√

αI






ET
B⊥

ET
Bo

ET
Br


EO;

(A.25)

KB(α|O⊥)

= ET
O⊥




ET
B⊥

ET
Bo

ET
Br




T 


I 0 0

0 I 0

0 0
√

αI






ET
B⊥

ET
Bo

ET
Br


EO⊥

.
(A.26)
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We have
KB(α|O)ET

O

= ET
O




ET
B⊥

ET
Bo

ET
Br




T 


I 0 0

0 I 0

0 0
√

αI






ET
B⊥

ET
Bo

ET
Br


 ;

(A.27)

KB(α|O⊥)ET
O⊥

= ET
O⊥




ET

B⊥

ET
Bo

ET
Br




T 


I 0 0

0 I 0

0 0
√

αI








ET

B⊥

ET
Bo

ET
Br



 .
(A.28)

Thus,

VOR(yB(α|λ))−1VT
O⊥

= ET
OVR(yB(α|λ))−1VTEO⊥

= KB(α|O)−1ET
O




ET
B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET
B⊥

ET
Bo

EBr


EO⊥

KB(α|O⊥)−1;

(A.29)
VO⊥

R(yB(α|λ))−1VT
O⊥

= ET
O⊥

VR(yB(α|λ))−1VTEO⊥

= KB(α|O⊥)−1ET
O⊥




ET

B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET

B⊥

ET
Bo

EBr



EO⊥
KB(α|O⊥)−1;

(A.30)

DO⊥
(ỹ − yB(α|λ)) = KB(α|O⊥)ET

O⊥




ET
B⊥

ET
Bo

ET
Br




T

D






EB⊥
(ỹ − y)

EBoỹ − αλ̃

1
α
EBr ỹ − λ̂






·




ET
B⊥

ET
Bo

ET
Br


EO⊥

KB(α|O⊥);

(A.31)

DO(yB(α|λ)) = KB(α|O)ET
O




ET

B⊥

ET
Bo

ET
Br




T

D








EB⊥

y

αλ̃

λ̂












ET

B⊥

ET
Bo

ET
Br



EOKB(α|O).

(A.32)
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Substitute equations (A.29-A.32) into equation (A.9),

ET
o




d1(ỹ)
...

dn2
(ỹ)


−ET

o




d1(yB(α|λ))
...

dn2
(yB(α|λ))




= −diag


ET

O




ET
B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET
B⊥

ET
Bo

ET
Br


EO⊥

·


ET

O⊥




ET

B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET

B⊥

ET
Bo

ET
Br



EO⊥

+


ET

O⊥




ET
B⊥

ET
Bo

ET
Br




T

D






EB⊥
(ỹ − y)

EBoỹ − αλ̃

1
α
EBr ỹ − λ̂








ET
B⊥

ET
Bo

ET
Br


EO⊥




−1


−1

·ET
O⊥




ET
B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET
B⊥

ET
Bo

ET
Br


EO

· ET
O




ET
B⊥

ET
Bo

ET
Br




T

D






EB⊥
y

αλ̃

λ̂








ET
B⊥

ET
Bo

ET
Br


EO


 .

(A.33)

According to equation (A.20),

lim
α→0+

ET
O⊥




ET
B⊥

ET
Bo

ET
Br




T

D






EB⊥
(ỹ − y)

EBoỹ − αλ̃

1
α
EBr ỹ − λ̂








ET
B⊥

ET
Bo

ET
Br


EO⊥

> 0. (A.34)

According to equation (A.24),

lim
α→0+

ET
O⊥




ET
B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET
B⊥

ET
Bo

ET
Br


EO⊥

≥ 0. (A.35)

Since Bo ⊂ O⊥, the diagonal matrix

ET
O




ET
B⊥

ET
Bo

ET
Br




T

D






EB⊥
y

αλ̃

λ̂








ET
B⊥

ET
Bo

ET
Br


EO > 0. (A.36)

Because of equations (A.34-A.36), equation (A.33) is a zero vector if and only
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if

lim
α→0+

ET
O




ET
B⊥

ET
Bo

ET
Br




T

G(yB(α|λ))




ET
B⊥

ET
Bo

ET
Br


EO⊥

= ET
O




ET
B⊥

ET
Bo

ET
Br




T

·



[

V11

V21

]
(VT

11D(EB⊥
y)V11)

−1

[
V11

V21

]T

0

0 V32(V
T
32D(EB⊥

y)V32)
−1VT

32




·




ET
B⊥

ET
Bo

ET
Br


EO⊥

= 0.

(A.37)

If

V21(V
T
11D(EB⊥

y)V11)
−1VT

11 = 0, (A.38)

then

rank

([
V11

V21

])
= rank

([
V11

V21

]
(VT

11D(EB⊥
y)V11)

−1

[
V11

V21

]T
)

= rank
(
V11(V

T
11D(EB⊥

y)V11)
−1VT

11

)
+ rank

(
V21(V

T
11D(EB⊥

y)V11)
−1VT

21

)

= rank(V11) + rank(V21)
(A.39)

It can be proved that equation (A.39) holds only if V21 is a zero or empty

matrix. If it is a zero matrix, it means that several columns in the outlier free

data matrix are zeros, which contradicts Assumption 1. So, V21 must be an

empty matrix, i.e., Bo = Ø, if equation (A.39) holds.

If there exists a partition on set B⊥ with the corresponding matrices Eζ

and Eξ that

ET
ζ V11(V

T
11D(EB⊥

y)V11)
−1VT

11Eξ = 0,

Denote the numbers of rows of Eζ and Eξ by nζ and nξ, respectively. If nζ =

rank(ET
ζ V11) or nξ = rank(ET

ξ V11), the value of the objective function (A.13)

is 1. If nζ > rank(ET
ζ V11) and nξ > rank(ET

ξ V11), condition 2) in Theorem

4.2 cannot be satisfied. As a result, B⊥ ⊆ O or B⊥ ⊆ O⊥. Analogously,

Br ⊆ O or Br ⊆ O⊥.

Now there are only three possibilities of set O: Br, Br

⋃
B⊥, and B⊥.

Firstly, if O = Br, JB(y|λ) = (r − r1)/nBr . However, according to condition

1) in Theorem 4.2, (r − r1)/nBr < r/n2, which contradicts Lemma 4.2. So,

O 6= Br. Secondly, if Bo 6= Ø, B⊥ ⊆ O⊥. Otherwise, equation (A.37) holds

only if equation (A.38) holds, which is impossible when Bo 6= Ø. Then, the

proof of Lemma 4.4 on boundary points is the same as the original Lemma
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4.4. There is only one case left: B⊥ = O, Br = O⊥, and Bo = Ø. If this is

the case, ET
B⊥

ỹ = ET
B⊥

y. Thus, max(ỹ) = max(ET
B⊥

y) = 1. Then, yk+1 = ỹ.

Since we have proven that

lim
α→0+

1

α
EBr ỹ > λ,

our coordinate descent algorithm diverges from instead of converges to the

boundary point in this case.

To sum up, under the condition provided in Theorem 4.2, the case that the

algorithm converges to a set of boundary points never happens. As a result,

our coordinate descent algorithm always converges to the global optimal point

r/n2 when the condition is satisfied. �
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