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Abstract 

Rotating machines are widely used in industrial applications, such as driving motors in elevators 

and gearboxes in wind turbines. Machines in these applications often operate under varying speed 

conditions due to variable operation demand, ever-changing environment conditions and so on. As 

time goes on, machines in service would be inevitably deteriorated. When the deterioration is 

accumulated to a certain level, faults may occur. Faults if not detected timely and maintained 

properly would result in the shutdown of a machine, then economic loss and even catastrophic 

disasters. To avoid these unexpected consequences, fault diagnosis, whose goal is to detect the 

occurrence and then classify the type and the severity of a fault, is of vital importance. 

Deep learning is widely used for fault diagnosis in the current big data era thanks to its automation 

nature and capability of processing massive data. However, performances of deep learning-based 

fault diagnosis are highly influenced by speed variation. Models perform well under constant speed 

conditions may fail under varying speed conditions. Specifically, when deep learning is adopted 

for fault diagnosis, we input condition monitoring data which are usually vibration signals to a 

deep learning model. The model performs fault feature learning and pattern recognition, and 

ultimately outputs diagnosis results. The problem is that speed variation induces additional features 

to vibration signals, and unfortunately, features induced by speed variation are often overlapped 

with features of faults. This increases the difficulty of learning sensitive fault features and thus 

impedes the fault diagnosis performances. Therefore, how to address the effects of speed variation 

is a key concern to facilitate deep learning-based fault diagnosis under varying speed conditions. 
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The objective of this research is to develop deep learning models that can address the effects of 

speed variation, and ultimately achieve effective fault diagnosis for rotating machinery that 

operated under varying speed conditions. This research includes three topics. First, considering 

that rotating speed is frequently required for effective fault diagnosis but sometimes is not feasible 

to be measured, a new deep learning model named many-to-many-to-one bi-directional long short-

term memory (MMO-BiLSTM) is proposed to extract rotating speed from vibration signals. The 

proposed model can work like a virtual speed meter, that is, automatically output synchronized 

rotating speed corresponding to given vibration signals. Second, a new deep learning model named 

speed normalized autoencoder (SN-AE) is proposed for fault detection under varying speed 

conditions. The proposed model automatically removes speed variation induced amplitude 

modulation in vibration signals and thus achieves better fault detection performances. Given that 

a fault being detected, the last topic aims to classify the type and severity of this fault. An auxiliary 

branch named speed adaptive gate (SAG) is proposed for existing deep learning models to improve 

their fault classification accuracy under varying speed conditions. The proposed SAG addresses 

speed induced fault information imbalance and therefore yields higher fault classification 

accuracies. Both the second topic and the third topic require the rotating speed as an auxiliary input. 

The rotating speed can be measured or extracted from the first topic. 

This research would promote the frontier of deep learning-based fault diagnosis, especially for 

varying speed conditions. The outcome of this research could serve as a good reference for 

engineering practitioners in industrial applications for a better maintenance. This research only 

considers the varying speed condition. The load is assumed constant. In the future, we will 

investigate the fault diagnosis of rotating machinery under varying load conditions. 
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1 

 

1. Introduction 

This chapter consists of three sections. Section 1.1 introduces the background, including 

prognostics and health management (PHM), fault diagnosis, deep learning, rotating machinery, 

and operation conditions of rotating machinery. Section 1.2 provides a detailed literature review 

of existing speed extraction methods, deep learning-based fault detection methods, and deep 

learning-based fault classification methods. Sections 1.3 and 1.4 provide the objectives and 

organization of this thesis, respectively. 

 

1.1 Background 

1.1.1 Prognostics and health management 

We often have the following experience. A newly bought device, for example, a car, works well 

in the first few years. It runs smoothly, the noise and vibration levels are low, and the gas 

consumption is fair. However, as time goes on, for example, after 10 years, the car does not work 

as expected any more. It consumes more gas per mile, the car cabinet becomes noisier, and it even 

sometimes breaks down on the road. This worsening of service performance is known as 

performance degradation [1], [2]. Performance degradation is often experienced by rotating 

machines, usually due to fatigue and/or wear [3]. Fatigue occurs because rotating machines are 

often subjected to variable loads. Wear exists in between contacting surfaces if they have relatively 

micro and/or macro motions. 
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The performance of a machine often degrades gradually, as shown in Fig. 1.1. We acknowledge 

that machines might break down suddenly in some cases [4]. Sudden failures are usually induced 

by certain reasons such as excessive load, and often studied using statistical methods. This thesis 

focuses on only gradual degradation. A machine in its early commissioning stage is often in a 

healthy state, but over time its degradation begins and accumulates. In the healthy state, a machine 

performs its intended function adequately. When the degradation is accumulated to a certain level, 

a fault is initiated. A fault refers to an abnormal state or a defect at the component, equipment, or 

subsystem level (ISO 103003-226/ASTM standards). A machine with a fault is said to be in the 

faulty state. A machine in the faulty state can still perform its intended function, but not adequately 

or with reduced performance. If the fault is not dealt properly, it will continue to grow. Growing 

faults weaken the functioning of a machine and finally lead to the failure of the machine. Failure 

means that the machine is broken down and cannot perform its intended function at all. 

 

Fig. 1.1: Typical degradation process of machines [1], [2]. 
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Failure of a machine results in unexpected shutdown of the entire machine, followed by economic 

loss and even catastrophic disasters [5]. For example, on April 29, 2016, a European EC225 Super 

Puma Helicopter crashed due to the fatigue fracture of a planet gear located in the transmission 

gearbox of the main rotor. All 13 people on board were killed in this disaster [6]. A very recent 

example is the Ohio train derailment. On February 3, 2023, a Norfolk Southern freight train 

carrying hazardous materials derailed in East Palestine, Ohio, United States. Tons of toxic 

chemicals were spilled out of the train, and polluted nearby lands, waterbodies, and even the 

atmosphere. More than 5,000 people had no choice but to get evacuated from their homes. 

Numerous fishes were killed. One reason to this disaster is the overheat failure of the wheel bearing 

[7]. Definitely we do not want either the economic loss or any fatality to happen. Timely and 

proper maintenance actions should be taken to avoid the occurrence of failures.  

Existing maintenance strategies are broadly three types: run-to-break, preventive maintenance, and 

predictive maintenance [8]. Run-to-break is a traditional method. Machines simply run until they 

break down. This gives the longest operating time between shutdowns, but breakdowns are 

occasionally catastrophic, with severe consequences for safety, production loss, and repair loss. 

The loss is not only induced by the failure of the machine, but also machines connected to it. This 

can substantially exaggerate the loss. Preventive maintenance is carried out at regular intervals to 

assure a very small likelihood of failure between repairs. The advantage of this approach is that 

most maintenance can be planned in advance, and catastrophic failure is greatly reduced. The 

disadvantages are that intensive labor is required to perform regular checks and maintenance, and 

thus can be costly. Predictive maintenance is also referred to as condition-based maintenance 

(CBM), or more broadly, PHM. We predict potential failures through regular or case-sensitive 

condition monitoring and conduct maintenance at an optimum time. PHM is free from the 
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disadvantages of either run-to-break or preventive maintenance. It is being recognized as the most 

efficient strategy for implementing maintenance in many industries [8], and more accepted in 

engineering practices. A recent report shows that the PHM market will rise from USD 2.6 billion 

to 3.9 billion from 2019 to 2025 [9]. In this thesis, we focus on PHM. 

The goal of PHM is to provide preventive solutions to improve the reliability, maintainability, 

safety, and affordability of machines [10]. PHM uses information extracted from condition 

monitoring data to assess the health state of a machine and drives maintenance operations 

accordingly [11]. Fig. 1.2 shows the main components constituting a typical PHM structure, from 

data acquisition to decision making [11], [12], [13].  

 

Fig. 1.2: Typical structure of PHM [11], [12], [13]. 

 

Data acquisition involves collecting and storing condition monitoring data for a system of interest. 

The condition monitoring data refers to the data collected with sensors installed in and/or outside 
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a machine, such as the vibration, temperature, acoustic emission, acoustic pressure, and oil debris. 

PHM requires the condition monitoring data relevant to machine health state, so that they can 

indicate the machine health state through successive fault diagnosis and prognosis [12]. Data 

preprocessing involves converting collected raw data into clean data [14]. It ensures, or at least 

increases the chance, that reliable and useful data is used for future analysis. Data preprocessing 

includes but not limited to outlier removal, denoising, segmenting, concatenating and 

normalization [14].  

Fault diagnosis and fault prognosis are the two major phases of PHM [8]. Fault diagnosis aims to 

identify the occurrence of faults and pinpoints the causes of faults. Fault prognosis aims to predict 

the remaining useful life (RUL) of a machine based on the current health state and historical 

condition monitoring data. Fault diagnosis is a prior step for prognostics. Maintenance concerns 

refer to factors that should be considered when making maintenance decisions, such as the degree 

of maintenance degree, maintenance cost, availability of maintenance personnel and maintenance 

facility, and so on [12]. Decision making involves selecting the optimum maintenance option for 

the machine of interest. This is an integrated process that should comprehensively consider the 

results obtained from diagnosis, prognosis, and maintenance concerns. The selected maintenance 

option should provide a detailed guide for implementing the maintenance, such as the degree of 

maintenance, personnel, and logistic support. The maintenance action is then implemented 

accordingly [12]. 

In this thesis, we focus on fault diagnosis only. Other components of PHM will be studied in the 

future work. A further discussion of fault diagnosis is given below. 
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1.1.2 Fault diagnosis 

As described in Section 1.1.1, the goals of fault diagnosis are to identify the occurrence of a fault, 

and then identify the root cause of the fault. Thus, fault diagnosis includes two specific tasks: fault 

detection and fault classification. 

Fault detection aims at achieving the first goal, i.e., identifying whether a fault has occurred in a 

machine or not. If a fault could be detected before it propagates to a failure, timely maintenance 

strategies could be implemented so that the failure would be prevented.  

Fault classification aims at achieving the second goal. Fault classification has two subtasks: 

identify fault types and identify fault severities. The fault type refers to what fault has occurred at 

what component of a machine, e.g., gear tooth pitting and bearing inner race crack. The fault 

severity refers to the degradation level of a fault. Determination of fault types and severity levels 

helps to better understand the root cause and the threat of the fault. This could be useful for making 

maintenance decisions. The severity level of a fault is often quantitatively measured as incipient 

(or minor), medium, or major [12]. The severity level of a just initiated fault is incipient or known 

as minor. A fault that approaches failure is regarded as a major fault. The severity level between 

the incipient and major is medium. The fault severity level is positively correlated with the machine 

performance degradation level. The more severe the fault is, the more the machine performance is 

degraded. 

Fault diagnosis is important because it is a preliminary step for predictive maintenance. Useful 

diagnosis together with successive prognosis must enable proper maintenance, as shown in Fig. 

1.3. An underlying request here is that faults must be successfully diagnosed before propagating 

to failures. Moreover, adequate time should be available for successive actions including prognosis 
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and maintenance to prevent the failures. Therefore, fault diagnosis should be conducted as early 

as possible.  

 

Fig. 1.3: Primary request for fault diagnosis: Enabling proper maintenance [13]. 

 

Fault diagnosis involves building maps among the information obtained in the condition 

monitoring data space (e.g., vibration signals) or their features and machine faults in the fault space 

[3]. An underlying mechanism is that the data reflects the health state of machines. Theoretically, 

faults can be detected because they introduce unique signatures to condition monitoring data, e.g., 

impulses, higher energy, higher noise, and/or higher temperature. Faults can be classified because 

signatures of different fault types and different fault severities are different. As an example, in gear 

faults, tooth wear modulates the amplitude of vibration signals, while tooth root crack induces 

impulses to vibration signals. Furthermore, a machine in different degradation levels excites 

different fault signatures. These are further reflected in different types of condition monitoring 

data, as shown in Fig. 1.4. As time passes, an initiated fault can introduce changes in acoustic 

emission, followed by vibrations, particles in the lubrication oil, noise, and heat. Because of strong 

sensitivity to faults and convenience of collection, the vibration signals are the most frequently 
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used condition monitoring data for fault diagnosis [8], [15]. In this thesis, the vibration signals are 

used as the primary condition monitoring data. 

 

Fig. 1.4: Examples of condition monitoring data for fault diagnosis [2]. 

 

Mapping data and faults is a challenging task as the condition monitoring data including vibration 

signals contain not only fault information, but also other information. Essentially, vibration signals 

of a machine are comprehensive responses of multiple excitation sources including the information 

about the health state, machine operation condition, environment noise, resonance properties of 

machine systems, and the transmission properties between the fault location and the sensing 

location and so on [8], as shown in Fig. 1.5. Changes in vibrations induced by these sources are 

often overlapped. Sometimes the fault information is quite weak compared to other information 

such as environment noise. The secret of a successful fault diagnosis is then to preserve fault 

related information from condition monitoring data while mitigating the effects of other sources 

as much as possible. Among these sources, the operation conditions, especially the varying speed 

condition, play a crucial rule [8], and thus they are the focal point in this thesis. More information 

about the varying speed conditions is given in Section 1.1.5. 
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Fig. 1.5: Illustration of excitation sources of measured signals [8]. 

 

The existing fault diagnosis methods broadly have three categories: physics based, data-driven, 

and hybrid methods [3], [13], [16], as shown in Fig. 1.6. Descriptions of these methods are given 

separately in the following. 

 

Fig. 1.6: Classification of fault diagnosis methods [16]. 

 

Physics based, also known as model based, methods follow a top-down manner [16], i.e., the map 

between the condition monitoring data is built from machine faults to data. The maps are built 

using explicit mathematical models that are derived manually. These models are built according 
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to physical mechanisms of faults with sufficient assumptions and simplifications. A well-built 

mathematical model provides theoretically expected signatures of certain faults. If we could find 

expected fault signatures in the collected condition monitoring data, we can conclude that the fault 

is diagnosed. For example, rolling element bearings generally have four fault modes, i.e., inner 

race fault, outer race fault, roller fault and cage fault. Each fault excites a specialized characteristic 

frequency in the spectrum of vibration signals, i.e., ball pass frequency inner (BPFI), ball pass 

frequency outer (BPFO), ball spin frequency (BSF) and fundamental train frequency (FTF) [8]. If 

we can find a characteristic frequency, e.g., BPFI, in the spectrum of a collected vibration, a 

corresponding fault, inner race fault, is diagnosed. 

Physics-based methods further include dynamic modeling, vibration modeling and other physical 

models from the perspective of how the mathematical model is built. Dynamic modeling simplifies 

machines into rigid masses that are connected through massless springs as well as damping. Faults 

can be modeled as the changes in one or more of these three components, and/or excitation forces. 

Equations of motion are then derived according to the Newton’s Law. The equations are often 

solved using numerical methods. The results are vibration signals, such as the displacement, 

velocity, acceleration, and their angular counterparts. The expected fault signatures are then 

revealed in results like accelerations. More on dynamic modeling can be found in [17], [18] and 

Chapter 8 of [8]. Vibration modeling builds analytical equations for vibration directly without 

deriving dynamic equations. The primary assumption is that the vibration of machines is the 

summation of infinite terms of sinusoidal signals. Expected faults can be modeled as certain 

changes in the amplitude and/or frequency of certain terms. More on vibration modeling can be 

found in [19] and Chapter 2 of [8]. The abovementioned two modeling methods are directly or 

indirectly based on the Newton’s Law. Besides them, physical methods relying on other theorems 
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such as the fatigue analysis can also be used for machinery fault diagnosis. Two commonly used 

fatigue theories are the S-N curve and the Paris’ Law. They are frequently utilized for structure 

health condition monitoring and fatigue life prediction [20], [21]. 

Physics-based methods can be developed into the “expert system”. If the knowledge gained by the 

abovementioned mathematical models and the successive reasoning process are coded in a 

computer, and the computer conducts fault diagnosis automatically, it can be said that we have 

built an expert system [5]. 

Physics-based methods are easy-to-interpret and are effective if a correct and accurate model is 

built. However, explicit mathematical modeling might be infeasible for complex systems because 

it would be very difficult or even impossible to build mathematical models for such systems [3]. 

Advantages and disadvantages of physics-based methods are summarized in Table 1.1. 

Data-driven methods follow a bottom-up manner [16], i.e., the map between the condition 

monitoring data and faults is built from data to machine faults. The map is automatically learned 

from the condition monitoring data, without explicit mathematical modeling. Data-driven based 

fault diagnosis often consists of five steps, i.e., data acquisition, data preprocessing, feature 

extraction, feature selection, and fault detection or fault classification, as shown in the left panel 

of Fig. 1.7. Data acquisition and data preprocessing are introduced in Section 1.1.1. They are 

identical to those for PHM. Here, signal processing techniques such as filtering, Fast Fourier 

Transform (FFT), Short-Time Fourier Transform (STFT) and Wavelet Transform (WT) are 

usually used to preprocess data. For the convenience of narrative, data collected from a healthy 

machine is known as healthy data, otherwise, it is known as faulty data.  
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Fig. 1.7: Frameworks of data-driven fault diagnosis methods [22]. 

 

Feature extraction refers to extracting the fault-sensitive indicators from condition monitoring data. 

The extracted indicators are also known as features. Commonly used features include root mean 

square (RMS), kurtosis, and variance. Signal processing methods such as time-domain analysis, 

frequency-domain analysis and time-frequency domain analysis are frequently used to extract 

features [5]. The feature extraction process is often time consuming as case-dependent knowledge 

and studies are required to select appropriate signal processing tools among several possibilities 



13 

[3]. Feature selection is to select independent and better ones from all the candidate features. 

Feature selection is necessary as some extracted features are bad features which would deteriorate 

fault diagnosis performances, and more importantly, features may exist that are correlated with 

each other. For correlated features, only one feature is needed, otherwise, fault diagnosis would be 

biased to the trend indicated by these features, not mention that more computation time is required. 

Techniques such as the Principal Component Analysis (PCA), Independent Component Analysis 

(ICA); and Best Subset Selection (BSS) are often used for feature selection. The well selected 

features are then used for fault diagnosis algorithms to conduct fault detection or fault 

classification. Note that even the process for fault detection and fault classification is the same, the 

their exact features are often different.  

Data-driven fault diagnosis methods can be further categorized as conventional data-driven 

methods and deep learning-based methods in terms of how the abovementioned five steps are 

implemented, as shown in Fig. 1.7. Conventional data-driven methods conduct feature extraction, 

feature selection and fault diagnosis separately. The features are handcrafted and required to be 

carefully selected for every single task. The fault diagnosis algorithms are often machine learning 

algorithms but exclude deep learning. More information about the machine learning and deep 

learning is given in Section 1.1.3. Machine learning algorithms like Support Vector Machine 

(SVM); K-Nearest Neighbors (KNN), Decision Tree (DT) and Artificial Neural Network (ANN) 

are often used here. Deep learning-based methods conduct feature extraction, feature selection and 

fault diagnosis simultaneously in a single step using deep learning algorithms. Deep learning-based 

methods are end-to-end methods. We simply input condition monitoring data to a deep learning 

model, which automatically returns fault diagnosis results.  
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In comparison, conventional data-driven methods need intensive expert knowledge and labor for 

feature extraction and feature selection, making them less favorable for massive data. Deep 

learning-based methods automatically fulfil these steps in a single process with limited or even 

without manual interference or expert knowledge. Thus, they are good for massive data. Moreover, 

deep learning-based methods conduct feature extraction, feature selection and fault diagnosis 

simultaneously. An overall optimum of all steps can be expected. Conventional data-driven 

methods can only obtain a local optimum for each single step, but the overall optimum is not 

guaranteed [16], [23]. Detailed comparisons of conventional data-driven methods and deep 

learning-based methods are shown in Table 1.1. 

Meanwhile, with exponentially more condition monitoring data collected from increasingly 

complex rotating machinery, fault diagnosis has already entered the era of big data [5], [24]. In 

such an era, we have strong demands for intelligent methods to deal with massive data to 

automatically mine complex nonlinear relationships between the faults and condition monitoring 

data [5], [25]. Deep learning, an emerging technique that can learn hierarchical representations of 

raw data and any complex relationships between faults and raw data [26], [27], is ready to solve 

such problems. Indeed, deep learning has been successfully used in computer vision [28], natural 

language processing [29], autonomous driving [30], and human health diagnosis [31]. Therefore, 

deep learning has been attracting more and more attention in the PHM community. In this thesis, 

we focus on deep learning-based fault diagnosis. More information about deep learning is given 

in Section 2. 

Hybrid methods use physics-based and data-driven methods simultaneously. Hybrid methods are 

welcomed because the physics-based and data-driven methods often mutually assist each other. 
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Firstly, physics-based methods sometimes require data-driven methods to determine their 

parameters. For example, Paris’s Law often uses linear fitting to determine the stress intensity 

factor range and material parameters [21]. Secondly, data-driven methods can achieve better 

performances if proper physical knowledge is informed. For instance, in unsupervised learning-

based fault detection, we do not have faulty data in the model development stage. The developed 

model knows nothing about the faulty state. However, by hand, we already know how fault 

signatures look like theoretically through mathematical modeling. If such knowledge is well 

informed to a fault detection model, its detection performance can be improved [32]. Indeed, the 

physics informed data-driven method is a promising research topic in the context of PHM [33] and 

other domains such as geophysics and molecular simulations [34]. This thesis does not cover 

hybrid methods.  

Table 1.1: Summary of rotating machinery fault diagnosis methods [14], [16]. 

Methods Advantages Disadvantages 

Physics based 1) Deterministic and precise 

2) Requires little data 

3) Good interpretability 

1) Difficult to be implemented 

2) Requires complete knowledge of 

system behaviors 

3) Less feasible for complex system 

Data-driven Conventional  1) Simple and ease to be 

implemented 

2) Fair interpretability 

3) Feasible for complex systems 

1) Requires fair amount of data 

2) Requires intensive labor work 

and expert knowledge 

Deep learning-

based 

1) Simple and ease to be 

implemented 

2) Feasible for complex systems 

1) Requires massive data 

2) Poor interpretability 

Hybrid 1) Can be used with a lack of certain 

data 

2) Accurate performances 

3) Fair interpretability 

1) High complexity of 

implementations 

2) Requires both expert knowledge 

and data 
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1.1.3 Deep learning 

Deep learning is a subsect of machine learning (ML), which is used for many but not all approaches 

to artificial intelligence (AI) [26], as shown in Fig. 1.8. AI refers to the simulation of human 

intelligence in machines. It is programmed to think like humans and mimic their actions. In the 

early days of AI, people coded the rules, and the computers automatically run the rules. An 

example is the knowledge base. People hard-coded knowledge or rules about the world in formal 

languages. A computer automatically makes reasoning in these formal languages using logical 

inference rules. The application of knowledge bases in the context of fault diagnosis is an expert 

system as indicated in Section 1.1.2.  

Machine learning is a subset of AI that gives computer the ability to learn without explicit 

programming. It often refers to the automation of learning process from features. Fig. 1.9 shows 

that how machine learning works compared to traditional approaches, i.e., non-machine learning 

approaches. The machine learning “learns” rules from data and answers (also known as labels), 

while conventional approaches program given rules to obtain answers. Note that even we do not 

need to hard-code knowledge in machine learning, the features are often handcrafted. A machine 

learning algorithm often has a shallow structure, such as the two-layer ANN, logistic regression 

(LR), support vector machine (SVM), decision tree (DT), and principal component analysis (PCA). 

The application of such machine learning algorithms in the context of fault diagnosis is the 

conventional data-driven approaches as indicated in Section 1.1.2.  

Deep learning is a subset of machine learning that uses a cascade of multiple layers of nonlinear 

processing units for feature extraction and transformation. Each successive layer uses the output 

from the previous layer as the input. The “deep” here simply means that the number of layers in 
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the model is deep. When deep learning is used for fault diagnosis, it is known as deep learning-

based approaches as described in Section 1.1.2. The deep learning-based fault diagnosis is the 

focus of this thesis. 

 

Fig. 1.8: Venn diagram showing the position of deep learning in machine learning and artificial intelligence [26]. 

 

 

Fig. 1.9: How machine learning is different from conventional approaches [35]. 

 

Deep learning models are even not all, but pretty much artificial neural networks (ANNs) with 

deep layers. An exception is the graphical model, such as the deep belief network [26]. In this 

thesis, we utilize the ANN based deep learning models only. The ANN is briefly introduced below. 
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Fundamentals of deep learning including ANNs are given in Chapter 2 and are briefly introduced 

below. 

An ANN is a network-like machine learning model that consists of inter-connected artificial 

neurons, or units. The neurons are often organized in layers. ANNs might have different structures. 

Three typical ANN structures are feedforward neural network (FNN), convolutional neural 

network (CNN) and recurrent neural network (RNN) [26]. In the FNN, the neurons between two 

successive layers are fully connected. The information flows in the forward direction and flows 

among the layers only. Two typical FNNs are multilayer perceptron (MLP) and autoencoder (AE). 

MLP is the most fundamental neural network and is often used for simple regression or 

classification tasks. AE is a network that tries to reconstruct its input and is often used to learn 

dimension-reduced representations of the input. CNN is more compact than FNN. The layers of a 

CNN are not fully connected. The neurons of a preceding layer are only mapped to neurons at 

certain locations of a successive layer. A widely used variant of CNN is residual network (ResNet). 

CNN is often used to process structured data such as images and sequential data. RNN allows 

information flowing not only among layers but also within layers. A widely used variant of RNN 

is the long short-term memory (LSTM) network. RNN is naturally specialized for time series 

learning.  

Deep learning models, put simply, are neural networks with deep structures or more layers. For 

FNNs, a deep learning model must have at least two hidden layers. The reason for going deep is 

that deep models can achieve better performance in the current big data era compared to 

conventional machine learning methods, as shown in Fig. 1.10. The conventional machine learning 

methods refer to machine learning excluding deep learning. 
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Fig. 1.10: Performance of deep learning and conventional machine learning [26]. 

 

Deep learning can be categorized into supervised learning, unsupervised learning, and 

reinforcement learning from the perspective of data used for training, as shown in Fig. 1.11. This 

categorization also works with machine learning. 

Supervised learning uses labeled data to train algorithms. Labeled data contain a tag or label, 

referring to the exact or true value. The labeled data is in pairs (𝑋, 𝑌), where 𝑋 is the independent 

variable that becomes the input of a deep learning model, and 𝑌 is the label of 𝑋 that the output of 

the deep learning model attempts to predict. For example, the label can be whether a vibration 

signal indicates a fault or not, or the crack length of an aluminum plate at certain loading cycles. 

The label can be categorical or continuous. If the label is categorical, it can be said that the deep 

learning model fits a classification problem, otherwise, a regression problem. Supervised learning 

can achieve advanced performance, but the label might be expensive to obtain and even may not 

be obtained. Commonly used supervised learning models are CNN and RNN. In the context of 

fault diagnosis, supervised learning is often used for fault classification. 
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Fig. 1.11: Deep learning categories in terms of data used. 

 

Unsupervised learning uses unlabeled data to train algorithms. Unlabeled data do not contain a tag 

or label. Unsupervised learning tries to make sense by extracting features or patterns on its own. 

It is often used to reduce the dimension of raw data, or cluster the inner patterns of raw data. 

Unsupervised learning does not require expensive labels, but the performance of unsupervised 

learning often might not satisfy the case-wise requirements in applications. Examples of 

unsupervised learning models include the AE and extreme learning machine (ELM). In the context 

of fault diagnosis, the unsupervised learning is usually used for fault detection.  

Reinforcement learning (RL) trains an algorithm with a reward system. Given the environment 

states, an RL agent/algorithm tries to perform best actions to maximize the rewards. The 

mechanism of determining what actions should be taken is named as the policy, which will be 

learned/optimized. The reward is related to the goal of the RL task, for example, winning the go. 
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A widely used RL model is the deep Q-learning network (DQN) [26]. However, we found few 

studies on using RL for machinery fault diagnosis [36] and prognosis [37]. It may be promising 

for maintenance decision making but is out of the scope of this thesis, and thus will not be covered. 

Deep learning approaches can also be classified into classic deep learning and transfer learning 

according to whether to transfer knowledge from one model to another, as shown in Fig. 1.12. In 

the classic deep learning, different learning systems learn separately from different domains. The 

domain can be simply interpreted as the task, such as gearbox fault classification under constant 

speed conditions. The knowledge from different domains is not shared. While transfer learning, 

given source domain(s) and a target domain, it aims to improve the learning in the target domain 

using the knowledge in both the source domain(s) and target domain. This process is said of 

transferring knowledge from the source to the target. In the context of fault diagnosis, transfer 

learning is promising for scenarios wherein the source domain has a large amount of labeled data, 

but the target domain has limited or even no labeled data [38]. Such scenarios include transferring 

knowledge across operation conditions or health states of a single machine [39], across machines 

in a fleet [40], and transferring knowledge from simulated data or experimental data to field data 

[41]. More on transfer learning for machinery fault diagnosis can be found in review papers [42], 

[43]. A prerequisite for a successful transfer learning is that the model must perform sufficiently 

well in the source domain. This means, the classic deep learning models must perform well 

inherently. In this thesis, we focus only on the classic deep learning. Transfer learning will be 

studied in the future. For simplicity, deep learning refers to classic deep learning unless otherwise 

stated in this thesis. 
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Fig. 1.12: Deep learning categories in terms of whether knowledge is transferred across domains. 

 

As indicated in Section 1.1.2, fault diagnosis has two tasks, i.e., fault detection and fault 

classification. When deep learning is applied for fault detection, it is deep learning-based fault 

detection. Similarly, applying deep learning for fault classification is deep learning-based fault 

classification. Deep learning-based fault detection is usually an unsupervised learning problem. 

The above-mentioned AE, and the extreme learning machine (ELM) and the restricted Boltzmann 

machine (RBM), and their variants can be applied to fault detection. A detailed review of deep 

learning-based fault detection is given in Section 1.2.2. Deep learning-based fault classification is 

often a supervised learning problem. The abovementioned RNN and CNN, as well as FNN and 

ResNet, and their variants are often used for this purpose. A detailed review of deep learning-based 

fault classification is given in Section 1.2.3. 
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1.1.4 Rotating machinery 

PHM has diverse application areas, such as buildings like skyscrapers and bridges [44], electronic 

devices such as batteries and circuits [45], and machinery. In this thesis, we focus on the machinery, 

more specifically, fault diagnosis of rotating machinery. 

According to the type of motion, machinery can be categorized as rotating machinery and 

reciprocating machinery. Rotating machinery is a type of machines that are composed of at least 

one rotating part and certain nonrotating parts [46]. The rotating part conducts rotary operations, 

and the nonrotating parts are often stable. For example, a gearbox is a rotating machinery, whose 

rotating parts are the shafts and gears, and nonrotating parts are the housing. Rotating machinery 

is widely utilized in both the industry section and our daily life. To name a few, wind turbines, 

generators, gas turbines and pumps are used industrial applications, and gear transmission systems 

in watches and motors in coffee blenders belong to daily usages. Reciprocating machinery is a 

type of machines wherein at least a part conducts reciprocating motion such as the cam and linkage 

[46]. Widely used reciprocating machines include vibration shakers, reciprocating pumps, and 

piston engines. The reciprocating motion is often driven by a rotating machine. For instance, the 

cam is often driven by a motor. Fault diagnosis of reciprocating machinery is another topic of 

PHM [8], [47]. This is out of the scope of this thesis.  

Usually, compared to other components in a machine, rotating components are more frequently 

subjected to faults due to their increasingly complex structures and increasingly more harsh serving 

conditions [5], [8]. For example, in wind turbine, the failure of the rotating parts (gearbox, 

generator, and yaw system) occupies 22% of wind turbine failures [48], as shown in Fig. 1.13. We 

acknowledge the electronic system, control system, sensors, blades, and brakes also have high 
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failure rates. They are out of the scope of this thesis but within the sub-field of PHM of electronic 

systems [45] or structure health monitoring [44]\. In this thesis, we focus on only rotating 

machinery.  

  

Fig. 1.13: Failure occurrence rates of main components of wind turbines [48]. 

 

1.1.5 Operation conditions of rotating machinery 

1.1.5.1 Operation conditions 

The operation conditions of rotating machinery refer to its rotating speed and load, or equivalently 

torque, subjected to it. The speed and load can be constant, or they can vary. Being constant means 

the speed (or load) remains unchanged over time. To vary means the speed (or load) changes over 

time. When the speed is constant, the load can be constant or varying, and vice versa. If both the 

rotating speed and load of a machine are constant, it works under stationary conditions, otherwise 
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it works under nonstationary conditions. In this thesis, the speed refers to the rotating speed, and 

may alternatively be shown as speed, rotating speed, and sometimes speed signals. 

In industrial applications, there are machines working under constant speed conditions, such as 

asynchronous motors and generators. There are also machines that work under varying speed 

conditions. For example, the driving motor of an elevator needs to frequently start, run forward or 

reverse, and stop to allow passengers onboard, reach intended floors and allow passengers offboard. 

Fig. 1.14 illustrates its rotating speed profile in a whole working course. We can see that the 

rotating speed experiences acceleration, becomes constant and then slows down. This speed 

variation is repeated once a new working course is initiated. 

 

Fig. 1.14: Rotating speed profile of the driving motor of an elevator [49]. 

 

Another example of varying speed conditions is a wind turbine, powered by the wind. Because of 

the random nature of wind flow, the resulting rotating speed of a wind turbine is random. Fig. 1.15 

shows the measured rotating speed of a wind turbine served in a Swedish wind farm for about four 

years. The condition monitoring data including rotating speed were collected every 12 hours. Each 
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measurement lasted for about 1.28 s. Each circle in the figure represents the average rotating speed 

of a 1.28 s long measurement. We can see that the rotating speed of the wind turbine varied 

randomly in between 700 rpm and 1200 rpm. 

 

Fig. 1.15: Rotating speed of a wind turbine that served in Sweden. A circle represents the average speed of a 1.28 s-

long measurement. Data credit [50]. 

 

For machines working under varying speed conditions, the load can be either constant or varying. 

For example, a drive conveyor system usually works under varying speed and constant load 

conditions. An elevator can work under varying speed and constant load conditions in a single 

lifting course if the passengers are unchanged. However, a wind turbine usually works under both 

varying speed and varying load conditions. In this thesis, we focus on the varying speed conditions. 

We assume that the load is constant. The varying load condition coupled with a constant or varying 

speed condition will be studied in the future. 
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1.1.5.2 Effects of rotating speed variation 

Rotating speed variation introduces additional amplitude modulation (AM) and frequency 

modulation (FM) to vibration signals [15], [51]. The AM (FM) refers to that the instantaneous 

amplitude (frequency) of a signal is altered in a certain manner due to external effects. The AM 

and FM effects can also be introduced by faults [52]. The AM and FM effects induced by speed 

variation and faults are often overlapped. The overlapped effects if not distinguished, might lead 

to false alarms and/or missing alerts in fault diagnosis. In addition, a byproduct of FM is that speed 

variation leads to frequency smearing in the frequency domain of vibration signals [51]. Event 

frequencies no longer dominate at specific values such as the constant speed conditions but 

distribute in a wide range. Fault related frequencies which are critical fault signatures are mixed 

with fault unrelated frequencies. These exaggerate the difficulty of fault diagnosis. Detailed effects 

of speed variation on deep learning-based fault detection and fault classification are discussed in 

Chapters 4 and 5, respectively. 

1.1.5.3 Methods to obtain rotating speed 

For machines operated under varying speed conditions, the benefits of knowing the rotating speed 

are at least three-fold. First, the speed is an important condition monitoring indicator. We need to 

monitor the real-time rotating speed of a machine to avoid overhauling its rated speed. This is often 

dangerous. This is critical for wind turbines. If the rotating speed of a wind turbine reaches a certain 

limit, the blades should be moved away from the wind direction, or simply the blades should be 

held still to reduce the rotating speed of wind turbines to assure safety. Second, speed signals can 

facilitate fault diagnosis as they contain information related to machine health state [53]. Third, 

there are cases wherein the rotating speed is necessary, such as the control system of servomotors. 
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The instantaneous rotating speed is feedbacked to the control system to assure the moving and 

positioning accuracy of the servomotor.  

Because the rotating speed is so important, we focus on how to obtain the speed signal in this 

thesis. The existing methods to obtain rotating speed are broadly categorized into two types: (1) 

directly installing speed sensors to measure speed [54] and (2) indirectly extracting speed from 

frequently used condition monitoring data such as vibration signals [55]. Direct measurement of 

speed is straightforward and reliable. This approach does not require much expert knowledge or 

complex algorithms to calculate the speed from the measured signals. Widely used sensors for 

speed measurement include encoders and key phasor transducers. However, sometimes it is not 

possible to install speed sensors due to constrains posed by the structure of target machines and/or 

environment space. Even when it is possible, installment of speed sensors can increase the 

condition monitoring cost as we need not only the speed sensors, but also data acquisition systems 

to read and process the sensor data [55]. Indirectly extracting speed from vibration signals is cost-

effective and free-from space constraints. It is cost-effective because we do not need to buy speed 

sensors but instead taking advantages of existing vibration sensors. An assumption which does 

hold herein is that most condition monitoring systems collect vibration data. It is free-from space 

constrains as vibration sensors are easier to install and has limited requirements of the geometric 

environment. Vibration sensors are usually adhered to the static surfaces of a machine through the 

glue, paraffin, magnet, and sometimes screw, instead of working with rotating shafts like speed 

sensors. However, indirect speed extraction needs complex algorithms. The accuracy of speed 

extraction highly depends on the algorithm design. Literature review on rotating speed extraction 

is given in Section 1.2.1.  
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1.2 Literature review 

This section provides a literature review on the methods for extracting rotating speed from 

vibration signals, deep learning-based fault detection and deep learning-based fault classification. 

1.2.1 Extraction of rotating speed from vibration signals 

Rotating speed extraction is also referred to instantaneous angular speed or frequency extraction 

or estimation. It refers to techniques that subtract rotating speed from condition monitoring data 

such as vibration, current and acoustic signals. Signals collected by speed sensors such as encoders 

are not included. For these signals, the speed can be easily found by counting the number of 

impulses or peaks in such signals. The available speed extraction methods can be broadly classified 

into two categories, i.e., signal processing based methods and deep learning-based methods. 

Detailed reviews of these methods are given below separately. 

1.2.1.1 Signal processing based methods 

Signal processing based speed extraction refers to using signal processing techniques to subtract 

speed related harmonics from vibration signals. The harmonics are either the speed or its multiples. 

The signal processing based speed extraction further includes phase demodulation based methods 

and time frequency representation based (TFR based) methods. 

Phase demodulation based methods 

Phase demodulation based methods determine the speed by demodulating the phase of vibration 

signals. The diagram of a standard phase demodulation based method is shown in Fig. 1.16 (a). 
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The raw vibration signal is first transformed to the frequency domain with the use of Fourier 

transform. The frequency spectrum is examined manually to select a proper frequency band that 

contains the single speed-related harmonic. A band-pass filter is then applied to filter out a signal 

corresponding to the selected frequency band from raw vibration data. The filtered signal must 

contain only a mono-component otherwise successive phases cannot be correctly calculated. Next, 

Hilbert transform is performed to the filtered signal to obtain its analytical form, and then the 

instantaneous phase and the rotating speed could be obtained [56]. Bonnardot et al. [57] used this 

method to extract the rotating speed of a four-stage fixed-shaft gearbox from its acceleration 

signals. The obtained speed was then used to resample the acceleration to the angular domain. 

Combet et al. [58] applied the standard phase demodulation method to extract the rotating speed 

of a two-stage helical reduction gearbox used in a wastewater treatment site from its acceleration 

signals. The extracted speed helped in the time synchronous averaging (TSA) of acceleration 

signals and ultimately facilitated the diagnosis of pitting faults of the gearbox.  

The standard phase demodulation based method can fail when the speed fluctuates largely such 

that the spectra of vibration signals are smeared [55], [56]. The bandpass filter cannot return a 

mono-component signal, which is a must for a successful phase demodulation based speed 

extraction. For this case, the so-called iterative strategy, shown in Fig. 1.16 (b), can be utilized. 

First, a rough speed is estimated using either the above standard phase demodulation approach 

[59], the TFR based method (to be introduced later) [60] or others. Second, the rough speed is used 

for the angular resampling of the signal. The speed fluctuations in the resampled signal are 

mitigated. Third, another standard phase demodulation course can be applied to extract the refined 

speed [55]. 
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In addition to band-pass filters, signal decomposition methods can also be utilized to obtain the 

mono component signal, such as the empirical mode decomposition (EMD) [61] and Hilbert 

vibration decomposition (HVD) [62]. To obtain the demodulated phase, the Teager Kaiser Energy 

Operator (TKEO) [63] can also be used in conjunction with the Hilbert transform. 

 
(a) 

 
(b) 

Fig. 1.16: Diagram of phase demodulation based speed extraction: (a) Standard method and (b) Iterative method 

[55], [56]. 

 

Time frequency representation based methods 

Time frequency representation based (TFR based) methods attempt to track a harmonic component 

from the TFR of a vibration signal. The tracked harmonic is usually the speed or its multiples. The 

general process of TFR based method consists of two steps as illustrated in Fig. 1.17. First, the 

TFR of the raw vibration signals is generated. Second, a ridge or curve tracking method is utilized 

to track the harmonic component. The tracked harmonic is believed to be the speed or its multiples 

which is also known as the instantaneous frequency (IF). As such, efforts have been made for both 

steps to ensure a successful TFR based speed extraction algorithm. 
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For the first step, i.e., to obtain a clear TFR, Urbanek et al. [64] extracted the rotating speed of a 

wind turbine from the STFT of its vibration using a simple maximum tracking method. Peng et al. 

[65] used a Chirplet transform with a polynomial kernel for non-linear speed estimation of a rotor 

system. Gryllias et al. [66] utilized complex shifted Morlet wavelets to determine the instantaneous 

speed of a rotor system. In the second step, i.e., to track speed-related harmonic from TFR, Schmidt 

et al. [67] incorporated priori probabilistic knowledge about the instantaneous frequency of the 

target system to increase the robustness of the maxima tracking in the STFT for the speed 

extraction of a planetary gearbox. Iatsenko et al. [68] used an improved dynamic path optimization 

method to estimate the candidate path that best represents the speed component from the STFT.  

 

Fig. 1.17: Illustration of TFR based speed estimation: (a) Vibration signal, (b) TFR of the vibration signal and (c) 

Extracted speed from the TFR [69]. 
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Either the phase demodulation based or the TFR based methods can achieve good speed extraction 

performances if they are carefully designed. However, both need to select case-sensitive 

parameters for every single piece of vibration signal to obtain either the mono-component signal 

or the clear TFR or the proper ridge tracking algorithm. Therefore, intensive expert knowledge 

and workload are required. Alternative methods free from these drawbacks are deep learning-based 

methods. They are reviewed in the following. 

1.2.1.2 Deep learning-based methods 

Speed extraction pertains to a sequence-to-sequence (seq2seq) learning problem, where a model 

learns from the inputs which are sequences or time series and outputs sequences too. The sequence 

and time series are taken equivalently and are used interchangeably in this thesis. The seq2seq 

learning has verified applications like speech recognition and linguistic translation. Commonly 

used models for seq2seq learning include CNN based models, RNN based models, and attention 

based models [70], [71]. Prabhavalkar et al. [72] compared the performances of these methods for 

speech recognition, and that found that their performances were comparative. Sutskever et al. [73] 

proposed a multilayered Long Short-term Memory (LSTM) to map the input sequence to the vector 

of a fixed dimensionality, and then another deep LSTM was used to decode the target sequence 

from the vector. This model showed impressive performance in translating English to French.  

The abovementioned successes of seq2seq learning inspired us to seek possibilities of extracting 

rotating speed from vibration signals with the use of it. Unfortunately, we failed to find direct 

studies supporting this idea when this thought was initiated. However, the literature of the field of 

driving monitoring using smartphones contains rich and closely related studies [74], [75], [76]. 

Suppose a mobile phone or smartphone is adhered to a car. The smartphone collects data including 
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acceleration, gyroscope, and global positing system (GPS) data using embedded sensors. The 

sensory data can be used to estimate the condition of the car or the road. Fazeen et al. [75] used 

patterns of acceleration signals to estimate car running conditions like safe acceleration, extreme 

acceleration, safe deceleration, and extreme deceleration, and road conditions like bump, pothole, 

and uneven, rough, and smooth surfaces. This work pertains to a classification problem. It is 

different from the speed extraction, a regression problem. Hsu et al. [77] used the GPS data to 

estimate the altitude of a car, indicating whether a car was driving on or off a viaduct. The altitude 

was estimated with a dynamic Bayesian network. This study is similar to speed extraction, but the 

GPS data is a value type data, while the vibration data used for speed extraction is waveform data.  

Another relevant study is by Gu et al. [78]. They proposed an LSTM model named the many-to-

one LSTM (MO-LSTM) for car running speed extraction. The MO-LSTM considered acceleration 

and gyroscope signals as the input and outputted corresponding car running speed. The 

acceleration and gyroscope signals were collected using sensors embedded in a smartphone 

adhered to the car front window. Their study resembles the task to extract rotating speed from 

vibration signals of rotating machinery. However, even the reported MO-LSTM performed well 

in extracting the running speed of cars, although it suffered from the following two limitations. 

First, the speed information was only learned in the forward-time direction, but the backward-time 

direction was ignored. Second, the labeled speed was only utilized at a single timepoint but the 

remaining (𝑛 − 1) points were not used in a window of length 𝑛. In this thesis, the labeled speed 

means the real speed used in the modeling training. The length of the window represents the time 

length of the LSTM model. As a result, the speed information mining ability, and thus the speed 

extraction accuracy of the reported MO-LSTM model, leaves room for improvement when applied 

to extract rotating speed from vibration signals of rotating machinery. 



35 

1.2.1.3 Summary of existing studies 

As reviewed in Sections 1.2.1.1 and 1.2.1.2, signal processing based speed extraction methods 

need intensive expert knowledge and labor. The deep learning-based methods are free from these 

limitations and therefore will be used in this thesis. The reported deep learning model, MO-LSTM 

[78], takes raw vibration signals as the input and provides directly the car running speed as the 

output. It resembles the task to extract rotating speed from the vibration signals of rotating 

machinery, and thus can act as a baseline model. However, the reported MO-LSTM did not 

adequately exploit speed-related information in vibration signals, thus leaving room for improving 

the speed extraction accuracy. Deficiencies of the reported MO-LSTM will be addressed in this 

thesis as the first research topic which is defined in Section 1.3 in detail. 

1.2.2 Deep learning-based fault detection under varying speed conditions  

Fault detection is usually understood as an unsupervised learning problem [79]. Only healthy data 

is available for developing fault detection models. This is fair, especially for newly commissioned 

machines. For these machines, the healthy data accumulates quickly, but we do not have a chance 

to collect the faulty data before a fault occurs. Furthermore, operating under faulty states is often 

not allowed by asset managers, but instead they want a fault detection algorithm ready before the 

occurrence of a fault, so that once a fault emerges it could be detected right away.  

Fault detection is often achieved by first constructing a health indicator (HI) using either signal 

processing methods, conventional data-driven methods, or deep learning methods. The HI is 

compared with a predefined threshold to determine whether a fault has occurred or not. If the HI 

is smaller than the threshold, the machine is considered as healthy, otherwise faulty. An HI is a 

scalar that is supposed to be able the reveal the health state of a machine. It often has a smaller 
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value when the machine is healthy and a larger value if the machine is faulty. In this thesis, only 

deep learning-based fault detection methods are reviewed. Reviews on other methods can be found 

in [80], [81]. Existing deep learning-based fault detection methods can be categorized as residual 

based and feature based according to where the HI is extracted from. The residual based methods 

extract the HI from residuals, while the feature based methods extract the HI from features. They 

are introduced separately below.  

Residual based methods first build a deep learning model to reconstruct its input or predict a few 

steps ahead of its input. The input is often the condition monitoring data such as vibration. The 

reconstruction or prediction error is known as residual. The residual is then used to construct HIs. 

The HI is ultimately applied to fault detection. The HI here is often simply the root mean square 

(RMS) of the residual [82], [83], or others such as the harmonic to noise ratio [32]. Commonly 

used deep learning models for data reconstruction include the AE and its variants, RNN and its 

variants, and ELM. Reddy et al. [82] used a 11-layer deep AE for fault detection in a large flight 

data. The input to the AE was the raw condition monitoring data including 13 modalities such as 

the actuator position, load, motor current and motor temperature. The RMS of the reconstruction 

residual was used for fault detection. Chandra et al. [84] used an AE shaped LSTM (AE-LSTM) 

network to reconstruct electrocardiography (ECG) signals. The RMS of the reconstruction residual 

was used for anomaly detection in ECG signals. The AE-LSTM was also used for the anomaly 

detection of sensor data in [85]. Maya et al. [86] reported an ensemble LSTM model to reconstruct 

the inputted condition monitoring data. The median of the reconstruction error of a sample served 

as the HI for the fault detection of a plant equipment. Dervilis et al. [87] used an AE with radial 

basis functions to reconstruct the inputted frequency response function (FRF) data. The Euclidean 

distance of the reconstruction residual was used to detect possible crack faults of wind turbine 
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blades. Chen et al. [32] used a 3-layer LSTM to predict one step ahead of its input, which was the 

raw vibration data. The harmonic to noise ratio of the prediction residual was used for the fault 

detection of gearboxes.  

Feature based methods first build a deep learning model to extract the health condition related 

features from condition monitoring data. The features are often the activations of a certain layer of 

the deep learning model. The extracted features are then used to construct the HI using PCA, one-

class classifier (OCC), or others. The AE, ELM, and their variants are usually used for feature 

learning. Michau et al. [88], [89] used a deep ELM to learn the features of inputted data. The 

features, which were the activations of the bottleneck layer of ELM, were inputted to an OCC to 

detect the faults of a generator rotor in a power plant. The inputted data was the 320-dimentional 

condition monitoring data including the rotor flux, partial discharge, and end winding vibration. 

Mao et al. [90] used a stacked AE to extract the common features of bearings. The extracted 

features were then processed using a support vector data description (SVDD) model for bearing 

fault detection. SVDD is a variant of the support vector machine (SVM) and worked like an OCC 

in [90]. Chen et al. [91] trained a CNN-shaped AE in a generative-adversarial (GAN) manner to 

detect faults of wind turbines. The model consisted of two parts, a generator and a discriminator. 

The generator was used to reconstruct the inputted data which was the spectra of raw vibration. 

The discriminator worked like an OCC to detect the occurrence of faults. 

The abovementioned methods illustrate general pipelines of deep learning-based fault detection 

regardless of operation conditions, but pretty much about constant speed conditions. In the 

following, a specific review on fault detection under varying speed conditions will be provided. 
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The key to fault detection of rotating machinery under varying speed conditions, in addition to 

extracting fault sensitive HIs, is to address the effects induced by speed variation. As both speed 

variation and faults introduce AM and FM effects to vibration signals, and their effects are often 

overlapped in HIs. Effects of speed variation if not addressed, can lead to false alarms and/or 

missed alerts in fault detection [8], [52], [92]. Regarding when to address the effects of speed 

variation, the existing deep learning-based fault detection methods under varying speed conditions 

can be roughly classified into three types, i.e., pre-modeling methods, in-modeling methods, and 

post-modeling methods. The modeling herein means building a deep learning model for fault 

detection. Pre-modeling methods refer to addressing the effects of speed variation in prior, which 

is often achieved by preprocessing vibration signals using signal processing techniques. In-

modeling methods refer to addressing the effects of speed variation by the deep learning model 

itself. Raw vibration data is inputted to the deep learning model. Post-modeling methods refers to 

inputting raw vibration data to a deep learning model for processing first, and then a subsequent 

step is applied to address the effects of speed variation. These three types of methods are reviewed 

separately below. 

1.2.2.1 Pre-modeling methods 

Pre-modeling methods address the effects of speed variation with the raw data using signal 

processing methods. The preprocessed data is then used by deep learning models or other models 

for fault detection. The FM can be removed with the widely used computed order tracking [93], 

[94]. The existing studies on removing AM are relatively limited. The recent studies [52], [92] 

usually follow the following thought. That is, divide the vibration with a certain form of its 

envelope, which is believed to show the AM effect. This method, however, may remove fault 



39 

signatures too as pointed out in [52]. Not mention that we need to carefully design a proper envelop 

for each piece of vibration signal.  

1.2.2.2 In-modeling methods 

In-modeling methods address the effects induced by speed variation by a deep learning model 

itself. The input of the deep learning model is the raw condition monitoring data. Martin-del-

Campo et al. [50] learned a set of shift-invariant dictionaries for the sparse representations of 

vibration signals of wind turbines using dictionary learning. The Euclidean distance between the 

dictionary of vibration signals of unknown health states and that of the healthy state was taken as 

the HI for fault detection. The vibration data was collected every 12 hours over about 46 

consecutive months. Each vibration sample lasted for 1.28 s. The rotating speed of the wind turbine 

varied between 700 rpm and 1200 rpm in the 46 months but was almost constant for each 1.28 s 

long vibration sample. The shift-invariant dictionaries were claimed to be independent of speed so 

that the effects of speed variation were removed. However, in [50], the distance between 

dictionaries contains not only the mechanical health states of wind turbines, but also the 

approximation errors for solving the nondeterministic polynomial-time hardness (NP hard) 

dictionary-learning problem. These errors can lead to false alarms in the detection. In addition, the 

dictionary needs to be learned and updated for any newly collected vibration data. This would 

exponentially increase the computation load.  

Instead of using dictionary learning, Liang et al. [95] reported a sparse AE based method for pump 

fault detection. The pump worked under slightly fluctuating speed conditions (90 – 105 rpm). The 

sparse AE was utilized to reconstruct 15 types of condition data such as the temperature, speed, 

overall vibration, and pressure. The Mahalanobis distance (MD) of the reconstruction residual was 
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taken as the HI to detect possible faults of the pump. Jiang et al. [96] conducted a similar study, 

wherein a denoising AE was used for wind turbine fault detection based on the supervisory control 

and data acquisition (SCADA) data. However, in [95], [96], the effects of speed variation were not 

specifically considered and how the effects of speed variation were addressed were not explicitly 

indicated. When the speed fluctuated largely, their performances may be questioned. Additionally, 

in their studies, the inputted data was the value-type data, not the waveform vibration. Therefore, 

the fault detection performance of [95], [96] over the vibration data needs further investigation. 

1.2.2.3 Post-modeling methods 

Post-modeling methods address the effects induced by speed variation after deep learning 

modeling. One pipeline involves the use of a deep learning model to learn features from raw data 

first, and then remove the effects of speed variation from the features. Luo et al. [97] trained a 

stacked AE to select impulsive vibration segments of a machine tool under different working 

conditions, i.e., milling, drilling and so on. A set of speed independent features, namely, the 

operational natural frequencies, were manually extracted from the impulsive vibrations using the 

so-called dynamic identification algorithm. An HI was constructed based on the similarity of these 

features and was further used to detect faults of machine tools. However, as reported in [97], we 

need to manually extract features from impulsive vibration signals, making it less preferable in the 

big data era due to the intensive labor for feature extraction. 

Another pipeline of post-modeling is to use a speed adaptive threshold for fault detection. We do 

not address the effects of speed variation in either the raw data, or the deep learning model, or the 

constructed HI, but design a threshold that changes with speed. Zhao et al. [98] employed a 

denoised AE to reconstruct the SCADA data of a wind turbine. The RMS of the reconstruction 
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residual was taken as the HI. An adaptive threshold series was manually designed to compensate 

the effects of speed variation and worked with the HI to detect faults of wind turbines. This method 

may be exhausting as we need to design an adaptive threshold for every single HI. The problem is 

that we might have multiple HIs for a single machine. 

1.2.2.4 Summary of existing studies 

Obviously, more labor work and expert knowledge are required for the pre-modeling and post-

modeling methods. As such, in this thesis, we will focus on the in-modeling methods. As reviewed 

above, reported in-modeling methods are mainly based the AE and its variants [95], [96]. These 

studies address the effects of speed variation automatically with value-typed data. While we 

checked their performances with the waveform-type vibration, we found the resulting HI is still 

affected by speed variation. The resulting fault detection performance under varying speed 

conditions is therefore not as good as constant speed conditions. We address this problem in this 

thesis in detail as the second research topic, which is defined in Section 1.3. 

1.2.3 Deep learning-based fault classification under varying speed conditions 

Fault classification is usually understood as a supervised learning problem [38], [99]. It requires 

adequate labeled data for model development. Deep learning-based fault classification simply 

takes raw vibration data as the input to a deep learning model, which outputs the fault types directly. 

To date, deep learning models, such as the AE, restricted Boltzmann machine (RBM), FNN, CNN, 

ResNet and RNN and their variants were widely employed for fault classification of various 

rotating machines like bearings, gears, rotors, motors, computer numerical control (CNC) 

machines, wind turbines, and compressors. To name a few, Ince et al. [100] utilized a one-

dimensional 1D-CNN to classify the faults of a motor. The input data was the current signal, and 
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the output was the fault type, i.e., either healthy or bearing cage fault. Shao et al. [101] used a deep 

AE to extract fault features from acceleration signals of a fixed-shaft gearbox. These features were 

then utilized for fault classification of that gearbox. More examples can be found in review papers 

[16], [38], [79], [99], [102], [103], [104]. 

In addition to using raw data directly, the raw data is sometimes transformed to other domains 

such as the frequency domain before being processed by deep learning models to alleviate the 

learning difficulty. Janssens et al. [105] employed a CNN to classify the faults of bearings. The 

fault types to be classified included the inadequately lubricated, outer race fault, imbalance, and 

combined faults. The data inputted to the CNN was the discrete Fourier transform spectra of 

acceleration signals. Jia et al. [25] used a stacked AE to conduct fault classification of bearings 

and planetary gearboxes. The input data was also the spectra of raw acceleration signals. 

The abovementioned methods illustrate the general pipelines of deep learning-based fault 

classification regardless of operation conditions. They for sure work well under constant speed 

conditions, but the fault classification performances cannot be guaranteed because of speed 

variation when applied to varying speed conditions [94]. In the following, a specialized literature 

review on deep learning-based fault classification under varying speed conditions will be provided. 

Similar to fault detection, the existing methods for rotating machinery fault classification under 

varying speed conditions based on deep learning are also categorized as pre-modeling methods, 

in-modeling methods, and post-modeling methods, according to when to address the effects of 

speed variation. They are reviewed separately in the below. 
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1.2.3.1 Pre-modeling methods 

Similar to fault detection, pre-modeling methods for fault classification address the effects of speed 

variation in prior. Existing pre-modeling methods for rotating machinery fault classification under 

varying speed conditions are broadly two pipelined. One type of pre-modeling methods is to 

preprocess non-stationary vibration signals such that the preprocessed signals can be well 

classified by deep learning models that were developed for constant speed conditions. The basic 

idea behind is to suppress the effects of speed variation on vibration signals. For example, Rao et 

al. [94] and Ma et al. [106] converted nonstationary vibration signals to stationary signals using 

order tracking and generalized demodulation, respectively. The obtained stationary signals were 

then inputted to a 5-layer FNN to classify faults of bearings and a fixed-shaft gearbox [94] and a 

deep ResNet to classify faults of a planetary gearbox [106], respectively. Wei et al. [107] divided 

vibration signals using corresponding speed signals to normalize the amplitudes of vibration 

signals. The normalized vibration signals were processed using an 11-layer CNN to classify the 

faults of a rotor system.  

Another type of pre-modeling methods is to use time frequency representations (TFRs) of vibration 

signals. The TFRs instead of the raw time series or spectra are inputted to deep learning models 

for fault classification. Widely used TFRs include Short Time Fourier Transform (STFT) and 

Wavelet Packet Transform (WPT). For instance, Du et al. [108] inputted STFT of vibration signals 

to a CNN for the fault classification of bearings. Diego et al. [109] inputted WPTs of vibration 

signals to a CNN to classify fault types of a helical gearbox. However, different TFR parameters 

such as WPT decomposition layers would lead to different classification results. Some of these 

parameters are considered better than others. To address the effects of TFR parameters, Han et al. 
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[110] and Yuan et al. [111] suggested ensemble CNNs to fuse multi-level WPTs. That is, vibrations 

signals were decomposed into multiple WPTs with different decomposition levels. Each WPT was 

inputted to a single CNN for feature extraction. The extracted features of all CNNs were then fused 

to classify the faults of a planetary gearbox [110] and a wind turbine blade [111], respectively. 

Zhao et al. [112] shared the same idea, but instead of fusing the features extracted with a deep 

leaning model as in [110], [111], they fused the WPT coefficients directly. The fused coefficients 

were inputted to a deep ResNet for the fault classification of a planetary gearbox.  

1.2.3.2 In-modeling methods 

In-modeling methods provide an end-to-end fault classification scheme, i.e., the deep learning 

model takes raw vibration data as the input and outputs the final fault classification results. It does 

not require to either preprocess the raw data or post-process the classification results. An et al. 

[113] reported an LSTM model based on the so-called infinitesimal method. They borrowed the 

idea of finite element analysis (FEA). That is, cut a vibration sample collected under varying speed 

conditions into many short and sequential segments. The speed in each short segment was assumed 

constant. These short segments were fed into an LSTM model sequentially for bearing fault 

classification. However, this method broke the continuity of speed variation and might lead to 

abrupt jumps in learned features thus misclassification, especially for largely varying speed 

conditions. Liu et al. [114] introduced a multi-scale kernel ResNet, which integrated three branches 

of ResNets with different kernel sizes. It took raw non-stationary vibration signals as the input and 

directly outputted the fault classification results of a motor. Even the work in [114] has shown 

demonstrated performances with rotating machinery fault classification, it still suffers from 

following drawbacks. First, effects of speed variation on fault classification performances of deep 
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learning models are not unfolded. Second, how to address the effects of speed variation is not 

specifically investigated. 

1.2.3.3 Post-modeling methods 

Post-modeling methods address the effects of speed variation after training a deep model. For fault 

classification under varying speed conditions, post-modeling methods are pretty much based on 

transfer learning. The knowledge learned under one or more speed conditions (source domain) is 

transferred to another speed condition (target domain). Effects of speed variation are either 

mitigated or balanced during the transfer. For fault classification, transfer learning is preferable 

when the source domain has a large amount of labeled data, but the target domain has no or limited 

labeled data. 

The transfer learning is often achieved through the following three steps [115]. Firstly, a deep 

learning model is trained in the source domain. Then the well-trained model is transferred to the 

target domain in either the instance, or feature, or the parameter level. Finally, the transferred 

model is fine-tuned in the target domain to adapt to the new speed condition. The fine-tuned model 

is used for fault classification in the target domain. We acknowledge that there are transfer learning 

techniques such as the domain adaption which do not train a model in the source domain first and 

fine-tune it at post in the target domain [116]. Instead, they train a model for the source domain 

and the target domain in a single step. Herein they are still counted in the post-modeling methods 

for the purpose of simplicity. Shao et al. [117] presented a transfer learning strategy based on a 

CNN for rotor fault classification under different speed conditions. The CNN was trained with a 

massive amount of labeled data under 2000 rpm (source domain). The learned parameters were 

used to initialize a same CNN in the target domain. The initialized CNN was then fine-tuned with 
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a limited amount of labeled data under 3000 rpm (target domain). The fine-tuned CNN was applied 

to classify rotor faults under 3000 rpm. Cao et al. [39] reported a domain-share CNN to conduct 

fault classification under varying speed conditions (target domain) through transferring knowledge 

of constant speed conditions (source domain). The transfer was realized with a term named 

maximum mean difference (MMD). It measured the distribution discrepancy between the source 

domain and the target domain. The MMD was added to the loss function of the source domain 

with a certain weight and was minimized through training. The domain-share CNN obtained fair 

fault classification accuracies for bearings and gearboxes in [39].  

1.2.3.4 Summary of existing studies 

Based on literature review in the above, the advantages and disadvantages of the existing deep 

learning-based fault classification methods are summarized and shown in Table 1.2. This summary 

also holds true for the deep learning-based fault detection methods when applicable.  

Pre-modeling methods address the effects of speed variation in prior. The learning difficulty of 

successive deep learning models is reduced. Deep learning models for constant speed conditions 

could be directly adopted herein. However, intensive expert knowledge is needed to design proper 

signal processing methods to preprocess the data to address the effects of speed variation, and 

heavy labor work is required to implement such signal processing work. Post-modeling methods 

here refer to transfer learning methods for fault classification. A prerequisite of a successful 

transfer learning task is that the model must perform sufficiently well in the source domain. If a 

model does not perform well in the source domain, it will never have a chance to perform well in 

the target domain. The model in the source domain is essentially the model obtained in the in-

modeling methods. Therefore, improving the in-modeling methods would contribute to a better 
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transfer learning task. Besides, the transfer learning may be exhausted when we are asked to 

transfer to many speed levels. We need to conduct the transferring for every single speed level. 

Indeed, the transfer learning is more frequently utilized to transfer knowledge across machines in 

or beyond a fleet in real applications for either fault detection [40] or fault classification [38], [118]. 

We do not focus on transfer learning in this thesis. 

Table 1.2: Summary of existing deep learning-based fault detection and fault classification methods for rotating 

machinery under varying speed conditions 

Category Description Advantages Disadvantages 

Pre-modeling 1) Effects of speed variation 

addressed in raw data 

2) Input to deep learning 

models is preprocessed 

data 

1) Reduced learning difficulty 1) Intensive expert knowledge 

and labor work required 

In-modeling 1) Effects of speed variation 

addressed automatically by 

a deep learning model 

2) Input to deep learning 

models is raw data 

1) End-to-end learning 

2) Effects of speed variation 

are addressed automatically 

1) Difficult to design the deep 

learning model 

Post-modeling 1) Effects of speed variation 

are addressed in the output 

of deep learning models 

2) Input to deep learning 

models is raw data 

1) Reduced learning difficulty 

if signal processing based 

methods adopted 

2) Promising for cases 

wherein the speed 

conditions of the source 

domain and the target 

domain are different if 

transfer learning is adopted 

1) Intensive expert knowledge 

and labor work required if 

signal processing based 

methods adopted 

2) Performances rely on that 

of the source domain if 

transfer learning is adopted 

3) May be exhausted when 

there are too many speed 

levels to transfer 
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The in-modeling methods are difficult to realize because the deep learning model needs to be 

carefully designed to address the effects of speed variation within the model. However, it does 

provide an end-to-end learning scheme among these three types of learning methods. We will 

focus on the in-modeling methods for fault classification in this thesis. The existing in-modeling 

methods [114] even showed encouraging performances with rotating machinery fault classification 

under varying speed conditions, they did not unfold the effects of speed variation on the fault 

classification performances of deep learning models, and also did not specifically address the 

effects induced by speed variation. We address these drawbacks in this thesis in detail as the third 

research topic which is defined in Section 1.3. 

 

1.3 Research objective 

The overall objective of this thesis research is to develop new deep learning models or improve 

the existing deep learning models for effective fault diagnosis of rotating machinery operated 

under varying speed conditions. Machines of interest are typical rotating machines such as 

bearings, gearboxes, and rotors. Condition monitoring data to be used is vibration. Based on the 

literatures reviewed in Section 1.2, we have the following three sub-objectives: 

• Develop a deep learning model to extract the rotating speed from vibration signals. 

• Develop a deep learning model to conduct fault detection of rotating machinery under 

varying speed conditions. 

• Develop a deep learning model to conduct fault classification of rotating machinery under 

varying speed conditions. 
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To achieve the three sub-objectives, we have completed three research topics. They are defined in 

the following.  

• Topic # 1 focuses on speed extraction. In Topic #1, a deep learning model named many-

to-many-to-one bi-directional long short-term memory (MMO-BiLSTM) is proposed for 

this purpose. Limitations of the reported MO-LSTM model [78] are addressed. The 

proposed model consists of two parts: the many-to-many BiLSTM part (BiLSTM part) and 

the many-to-one LSTM part (LSTM part). The BiLSTM part learns speed related 

information from vibration signals in both forward-time and backward-time directions. The 

final speed is successively extracted via the LSTM part from the information learned by 

the BiLSTM part. The performance of the proposed model is validated using an internal 

combustion engine dataset, a rotor system dataset, and a fixed-shaft gearbox dataset. The 

results show that the proposed model achieves a higher speed extraction accuracy than 

reported models. Details of this topic are given in Chapter 3. 

• Topic #2 focuses on fault detection. In Topic #2, a deep learning model named speed 

normalized autoencoder (SN-AE) is proposed for rotating machinery fault detection under 

varying speed conditions. Limitations of reported AE models [95], [96] are addressed. The 

proposed SN-AE consists of two branches, i.e., an AE branch, and a speed normalization 

(SN) branch, The input of the SN branch is the speed signal. The output of the SN branch 

is to multiply the vibration to normalize its amplitude to remove the effects of speed 

variation. The normalized vibration is then inputted to the AE branch for fault detection. 

Case studies over a planetary gearbox dataset, a fixed-shaft gearbox and a bearing dataset 
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validate the effectiveness of the proposed SN-AE. Details of this topic are provided in 

Chapter 4. 

• Topic #3 focuses on fault classification. In Topic #3, an auxiliary branch named speed 

adaptive gate (SAG) is proposed for the existing deep learning models to improve their 

fault classification accuracy for rotating machinery under varying speed conditions. 

Drawbacks of reported CNN and ResNet [114] are addressed. The proposed SAG is an 

auxiliary branch for existing deep learning models. It takes speed signals as the input. The 

output of the SAG multiplies existing deep learning models to control the information flow 

in these models. The SAG values change adaptively with speed, such that the fault 

information imbalance induced by speed variation is mitigated. Case studies with two 

baseline models, i.e., a CNN and a ResNet, over two experimental datasets, i.e., a planetary 

gearbox dataset and a fixed-shaft gearbox dataset, show the effectiveness of the proposed 

SAG and its superiority over the existing methods. Details of this topic are shown in 

Chapter 5. 

Relationships among the three topics are illustrated in Fig. 1.18. Topic #1 extracts the rotating 

speed from vibration signals which are measured from a rotating machine. The extracted speed 

together with vibration signals are used for the model development of Topic #2 and Topic #3. 

Topic #2 focuses on fault detection. If a fault is detected, Topic #3 will identify its type and its 

severity through fault classification. Note the speed used in Topic #2 and Topic #3 can also be 

measured besides the extracted through Topic #1. 



51 

 

Fig. 1.18: Relationships among research topics in the presented thesis. 

 

Primary assumptions for this thesis are listed as follows. 

• The load condition of the interested rotating machinery is constant. 

• The amount of vibration signals is balanced across fault types and speed. 

• Adequate data is available. 

The presented research work reported in this thesis promotes the frontier of deep learning-based 

fault diagnosis, especially for varying speed conditions. The effects of speed variation are 

addressed to some extent for deep learning-based fault diagnosis. Researchers in this field can take 

this thesis as a baseline to get promoted. Engineering practitioners may use the proposed methods 

in this thesis in their applications. 
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1.4 Thesis organization 

This thesis consists of 6 chapters. Chapter 1 provides the background, literature review and 

objective of this thesis research. Chapter 2 describes the fundamentals of deep learning. Chapters 

3 through 5 display materials regarding research Topics #1 – #3, respectively. Chapter 6 

summarizes the entire thesis research and suggests future work.  

This thesis is written following the paper-based template and satisfies the minimal formatting 

requirements of the University of Alberta. 
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2. Deep learning fundamentals 

Chapter 1 has briefly introduced the concept of deep learning. This chapter will provide 

fundamentals of deep learning, including artificial neural networks, typical deep learning models 

and how to build a deep learning model. The introduced models in this chapter will be used in 

Chapters 3, 4 and 5 as needed.  

 

2.1 Artificial neural network 

As introduced in Section 1.1.3, popular deep learning models are pretty much based on artificial 

neural networks (ANNs). As such, this section will first provide fundamentals of ANNs, such as 

the structure of an ANN and how to train an ANN. 

2.1.1 Structure of neural networks 

An ANN is a network-like machine learning model that consists of inter-connected artificial 

neurons. The artificial neurons are brain-inspired systems which are intended to replicate the way 

that we humans learn. The connection between a pair of neurons has a connection weight. Each 

neuron represents a mapping between multiple inputs and a single output. The output of a neuron 

depends on the sum of the inputs and an activation function. Fig. 2.1 illustrates the diagram of a 

single neuron. Suppose it has 𝑛 inputs 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇, and weights connected each input are 

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇. The sum of weighted inputs is, 
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𝑧 = 𝑤𝑇𝑥 + 𝑏                                                               (2.1) 

where, 𝑏 is a constant referring as the bias. It allows the activation function to be shifted to the left 

or right, to better fit the data.  

 

Fig. 2.1: Diagram of a single neuron. 

 

The activation function is often a nonlinear transform of the sum 𝑧. It defines how the weighted 

sum of the input is transformed into an output,  

𝑎 = 𝜎(𝑧)                                                                (2.2) 

where, 𝜎 refers to the activation function and 𝑎 is the output of the neuron. The output of this 

neuron can be the input of successive neurons, or simply the output of the whole ANN. Usually 

used activation functions are the linear, rectified linear unit (ReLU) and sigmoid functions. They 

are mathematically represented as, 

𝜎(𝑧) = {

𝑧              Linear
max(0, 𝑧)     ReLU

      
1

1+𝑒−𝑧
          Sigmoid

                                                 (2.3) 

The linear activation has the least nonlinearity, the sigmoid activation has the highest nonlinearity 

and the ReLU is in the middle. Besides these three commonly used activation functions, there are 
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other types of activations such as the Gaussian, exponential linear unit (ELU) and hyperbolic 

tangent (tanh). See [26] for details.  

Neurons in an ANN are organized in layers. Fig. 2.2 illustrates the structure of a simple but 

commonly used ANN, the feedforward neural network (FNN). It consists of four layers. The first 

layer is the input layer, the last layer is the output layer, and other layers are hidden layers. 

Information flows in one way only, as shown in arrow directions. Each neuron receives 

information only from neurons in the previous layer. The inputs to each neuron are weighted 

outputs of neurons in the previous layer.  

 

Fig. 2.2: Structure of a feedforward neural network. 

 

The MLP can have different number of hidden layers. If an MLP contains less than two hidden 

layers, we say it is a shallow neural network. If an MLP has two or more hidden layers, it is deeded 

as a deep neural network (DNN), which is the most popular deep learning model. 
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2.1.2 Training of neural networks 

An ANN can be considered to be a mapping from R𝑛 to R𝑚, i.e., from  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 to 

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚)𝑇 . Here, n is the number of input variables and m is the number of output 

variables. For a neural network with a fixed structure, the connection weights uniquely define a 

specific mapping. Thus, a specific neural network can be considered as a function, though not in a 

mathematical form. Given the input 𝑥, the function can be written as 𝑓(𝑥, 𝜃), where 𝜃 refers to the 

collection of all weights and biases in the neural network. For simplicity, weights and biases 

together will be briefed as weights hereafter. 

An ANN is designed and trained to make it behave in a certain way. For given inputs, 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 , it should provide outputs that are close to the expected output 𝑦 =

(𝑦1, 𝑦2, … , 𝑦𝑚)𝑇as much as possible. This is achieved through the optimization of the connection 

weights. The optimal weights are obtained with the use of data. The process of finding optimal 

weights with data is the so-called neural network training. The training is essentially a process of 

“learning” knowledge from data. The learned knowledge is stored in the neural network, 

specifically, reflected by the values of weights. Training a neural network requires three key 

gradients, i.e., dataset, loss function, and optimization method. They are introduced briefly below. 

2.1.2.1 Dataset 

A dataset is a set of input data and sometimes corresponding expected output data 𝑦. An entry of 

x and y is called a sample or an observation. A dataset often contains more than one sample. The 

expected output y is also known as true value, real value, or label. A dataset with labels provided 
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is a labeled dataset, otherwise an unlabeled dataset. Hereafter, we will take the labeled dataset as 

an example to proceed.  

Prior to training, a dataset is often split into nonoverlapped subsets, including a training set and a 

test set, and sometime a validation set. The training set is the data used to train the neural network 

to find the optimal weights. The test set is to test the performance of a well-trained neural network 

over never seen data in the training set. The performance refers to how good a neural network 

achieving its intended goal. Commonly used performance metrics are the accuracy for 

classification tasks and the mean square error (MSE) for regression tasks. The validation set if 

exits is utilized before testing for the purpose of optimal hyperparameter selection. 

Hyperparameters are parameters that are necessary for a neural network, but cannot be learned 

through training, such as the number of layers, number of neurons and type of activation functions. 

Optimal hyperparameters are usually selected through trial and error. That is, train neural networks 

with different hyperparameter values, and compare their performances over the validation set, and 

optimal hyperparameter value is returned when the validation performance is the best.  

2.1.2.2 Loss function 

Given input 𝑥, a loss function measures the discrepancy between the output of a neural network 

�̂� = 𝑓(𝜃, 𝑥) and the corresponding label 𝑦. If the values of y are continuous, the loss function is 

often a quadratic function, 

𝐿 =
1

2
(𝑦 − �̂�)2                                                               (2.4) 

If the values of 𝑦 are categorized, the loss function is often a cross-entropy function,  

𝐿 = −�̂� log(𝑦) − (1 − �̂�) log(1 − 𝑦)                                            (2.5) 
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If a dataset contains multiple samples, the overall loss is the average loss of all samples.  

Training a neural network is to minimize the loss function over the training set and returns optimal 

parameters 𝜃∗. Note it is not enough to minimize the training loss only. The ultimate goal is to 

minimize the loss over the test set. The problem is that a small training loss does not guarantee a 

small test loss. This can be interpreted with the following analogy. Suppose a student is taking a 

course and he/she wants to get an “A”. He/she works hard to learn from the textbook, lectures, and 

tutorials (training), and thus can solve the problems in the textbook correctly (training loss 

minimized). Even these bring high chances but not assure that he/she will perform well with the 

final exam (test loss minimized) which is necessary to be graded an “A”, because of possible 

mental stresses, difficulty levels of the exam problems and so on. Indeed, in real applications, we 

care more or even only care about model performances over the test set as this illustrates how a 

model will perform after launched.  

The ability of a model to perform well over the test set is called the generalizability. Good 

generalizability means that both the training loss and the test loss are small. Poor generalizability 

may be caused by underfitting or overfitting. Underfitting means a model does not fit the training 

data well. It occurs when both the training loss and the test loss are large. To mitigate underfitting, 

one can increase the model complexity or even design new model structures. Overfitting means a 

model fits the training data too much. It occurs when the training loss is sufficiently small, but the 

test loss is large. We can gather more training data, reduce the model complexity, or add 

regularizations to avoid overfitting. The regularization is defined as “any modifications to a 

learning algorithm that is intended to reduce its test error but not its training error” [26].  Often 
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used regularization methods include penalizing parameters (e.g., adding L1 norm or L2 norm to 

the loss function), adding noise to inputs, outputs or weights, dropout, and early-stop [26].  

2.1.2.3 Optimization method 

Training a neural network is essentially an optimization problem. The loss function is the target 

function to be optimized. However, the loss function is usually nonconvex and has multiple 

minima, and thus difficult to be optimized, especially when the number of layers is deep. The 

generic approach to minimize the loss function is the gradient decent method, which is usually 

organized in a back propagation manner for neural networks. The back propagation contains a 

two-pass procedure: 

• Forward pass: The current parameters 𝜃 are fixed, and the predicted values �̂� = 𝑓(𝜃, 𝑥) 

are calculated. 

• Backward pass: The errors 𝛿 = 𝑦 − �̂� are computed, and back-propagated layer by layer. 

The back propagated errors are then utilized to calculate the gradient 
𝜕𝐿

𝜕𝜃
 for each parameter. Details 

of finding the gradient can found in Chapter 11 of [119]. The gradient is used to update the 

parameter iteratively following the gradient descent manner as follows, 

𝜃(𝑟+1) = 𝜃(𝑟) − 𝜀
1

𝑁𝑡
∑

𝜕𝐿𝑖

𝜕𝜃

𝑁𝑡
𝑖                                                    (2.6) 

where, 𝜀  is a hyperparameter referring to the learning rate, 𝜃(𝑟)  are the parameter values at 

iteration 𝑟, 𝐿𝑖 is the loss of sample 𝑖 in the training set, and 𝑁𝑡 is the number of training samples 

used to update the parameters at a single iteration. In the context of deep learning, the iteration is 

also called the epoch. The number of samples 𝑁𝑡 of each epoch can have multiple options. If 𝑁𝑡 =

1, i.e., only a single training sample is used at a time, the optimization algorithm is called the 
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stochastic descent or online method. If 𝑁𝑡 = 𝑁, i.e., the entire training set is used at a time, the 

optimization algorithm is called the batch or deterministic method. The stochastic method often 

returns unstable updates, while the deterministic method may overwhelm the CPU or GPU 

memory. A trade-off is the so-called minibatch method, which uses more than one but less than all 

the training samples to update the parameters at a time. Typical batch sizes range from 32 to 256, 

and better to be the power of 2. 

The gradient descent method can be slow. Reasons can be improper initial values, improper search 

directions or improper learning rate. They are essentially the three key ingredients for gradient 

based optimization [120]. Efforts have been made to accelerate the training from all these three 

aspects and are briefly introduced below.  

The initial parameter values are typically drawn randomly from a Gaussian or uniform distribution. 

Using either the Gaussian or the uniform distribution does not affect much but the scale of the 

initial distribution matters [26]. Good options for the initial scale include the normalized 

initialization and sparse initialization. The former one initializes weights of a fully connected layer 

with 𝑛 inputs and 𝑚 outputs using a scale of √
6

𝑚+𝑛
. The later one assures exactly 𝑘 non-zero 

wights to avoid extremely small weights when the layers become large. One more method, named 

layer-wise-greedy-pretraining which was proposed by Hinton [121], can also be adopted for 

initialization. This method consists of two steps. The first step pretrains two successive layers to 

reconstruct the input of the first layer. The learned weights are to initialize the parameters in the 

successive finetuning step. 
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The search direction is related to the gradient. We can simply use the current gradient as the search 

direction as shown in Eq. (2.6). One modification is the momentum [26]. It preserves past 

directions for the current move to avoid instability induced by current gradient. A variable 𝑣 is 

introduced to accumulate an exponentially decaying moving average of past gradients and 

continues to move in their directions, 

𝑣(𝑟+1) = 𝛼𝑣𝑟 − 𝜀
1

𝑁𝑡
∑

𝜕𝐿𝑖

𝜕𝜃

𝑁𝑡
𝑖                                                       (2.7) 

𝜃(𝑟+1) = 𝜃(𝑟) + 𝑣(𝑟+1)
                                                                    (2.8) 

where, 𝛼 ∈ [0,1] is a hyperparameter that determines how much past gradients affect the current 

direction. 

The learning rate has a significant impact on model performances and need to be carefully set for 

every single model. Usually, the learning rate is a fixed constant ranging from 0.001 to 0.1. A large 

learning rate can speed up the training but also bring risks of missing the optima or even leads to 

non-convergence. A small learning rate can somewhat assure convergence but may converge to 

local optima, and the convergence speed is slow. One modification is to decay the learning rate in 

in terms of epochs [122]. A larger learning rate is adopted at early epochs to speed up the training 

and decay this value at late epochs to avoid missing the optima. Another modification is to use 

different learning rates for different parameters. The rationale is that the loss function is often 

sensitive to some directions in the parameter space and insensitive to others. For this purpose, quite 

a few algorithms like the AdaGrad, RMSProp, and Adam were designed to adaptively assign 

different learning rates for different parameters [26].  

 



62 

2.2 Typical deep learning models 

As introduced in Section 1.1.3, neural networks have three typical structures. They are the 

feedforward neural network (FNN), convolutional neural network (CNN) and recurrent neural 

network (RNN). The definition and general structure of the FNN has been introduced in Section 

2.1. Here, we will not repeat the description of the FNN, but a special FNN, the so-called 

autoencoder (AE) will be introduced. After that, structures of the CNN and the RNN will be 

introduced.  

2.2.1 Autoencoder 

An autoencoder (AE) is a neural network that attempts to copy its input to output [26]. During this 

process, a new representation with lower dimensions than raw input signals can be learned. The 

new presentation is also referred as features extracted from the input. A typical structure of an AE 

consists of an input layer, a hidden layer, and an output layer, as shown in Fig. 2.3. The input layer 

and the hidden layer form the encoder part. The hidden layer and the output layer form the decoder 

part.  

 

Fig. 2.3: Typical structure of an autoencoder [7]. 
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The encoder learns features or a new representation of the input. For each measured signal 𝑥𝑚 

from a dataset {𝑥𝑚}𝑚=1
𝑀  of rotating machinery, the encoder vector ℎ𝑚 is defined as, 

ℎ𝑚 = 𝑓𝛉(𝑥𝑚)                                                           (2.9) 

where, 𝑓𝛉 is the encoder function and 𝛉 is the weight and bias matrix in the encoder part. The 

decoder part reconstructs the raw data, 

�̂�𝑚 = 𝑔
𝛉′

(ℎ𝑚)                                                        (2.10) 

where, 𝑔𝛉′ is the decoder function and 𝛉′ is the weight and bias matrix in the decoder part. The 

parameters 𝛉 and 𝛉′ are determined by minimizing the following loss function, 

𝐿 (𝛉, 𝛉′) =
1

2
‖𝐱 − �̂�‖2                                                (2.11) 

where, 𝐱 = {𝑥𝑚}𝑚=1
𝑀  and  �̂� = {�̂�𝑚}𝑚=1

𝑀 . 

The AE is going be used in Chapter 4 for fault detection.  

2.2.2 Convolutional neural network 

A convolutional neural network (CNN) is a type of neural networks that uses convolution 

operation in at least one of its layers [26]. It is specialized for processing data with grid-like 

topology, like 1D time series data and 2D image data. Based on the topology of data, CNNs can 

be categorized as 1DCNNs and 2DCNNs. In the field of PHM, 1DCNNs are widely employed as 

we often encounter with 1D vibration signals. In this thesis, the term CNN refers to 1D-CNN if 

not specifically indicated. A CNN is usually composed of three types of layers, i.e., convolutional 

layers (Conv), pooling layers, and fully connected layers, as shown in Fig. 2.4(a). The 

convolutional layer is the layer the uses the convolution operation. Suppose we have a time series 

vector 𝒙 ∈ 𝐑1×𝑛 as the input, the output of the convolution layer is [26], 
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𝒙𝒄 =  𝐊 ∗ 𝒙 + 𝒃                                                         (2.12) 

where, * denotes the convolution operator, 𝒃 ∈ 𝐑𝑚×1 is the bias vector, 𝐊 ∈ 𝐑𝑚×𝑘 is the kernel 

matrix, and 𝒙𝒄 ∈ 𝐑𝑚×𝑛 is the feature matrix learned by the convolutional layer. Here, the integer 

m refers to the number of kernels which is also known as number of channels, and k refers to the 

size of the kernel. The process of convolution operation is illustrated in Fig. 2.4(b). The 

convolution operation enables sparse interactions, parameter sharing and equivariant 

representation, and thus brings benefits of invariance to data translation, and reduced network size 

[26], [123]. 

 

Fig. 2.4: Convolutional neural network: (a) Typical architecture, (b) Convolution operation, (c) pooling operation 

and (d) Basic building block [38], [123]. 

 

A convolutional layer is often followed by a batch normalization (BN) layer and a rectified linear 

unit (ReLU) activation layer [123], 

 𝒙𝒏 =  𝐵𝑁(𝒙𝒄)                                                             (2.13) 

𝒙𝒓 = 𝑅𝑒𝐿𝑈(𝒙𝒏)                                                           (2.14) 

(b) 

(BN + ReLU) 

(c) (d) 

(a) 
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where, xn and xr are the outputs of the BN layer and the ReLU layer, respectively. Their 

dimensions are identical to 𝒙𝒄. The BN layer is to speed up the convergence and improve the 

generalization [124]. The ReLU layer is to prevent possible gradient saturation [125]. These three 

layers form a basic building block for CNNs, as shown in Fig. 2.4(d). 

A pooling layer down-samples its input along the spatial dimensionality,  

𝒗 = 𝑝𝑜𝑜𝑙(𝒉)                                                              (2.15) 

where, the 𝑝𝑜𝑜𝑙 indicates the pooling operation, which is illustrated in Fig. 2.4(c). The pooling 

operation replaces the output of the pooling layer with nearby statistic of the input, such as the 

maximum, minimum and average [26]. The pooling layer outputs length-shortened data, and thus 

reduce computation load for successive layers. A fully connected layer flattens features learned by 

preceding layers including the convolutional layer. It is identical to the layers in an FNN. 

A CNN may suffer from the performance degradation problem when it goes very deep. The 

residual network (ResNet), a variant of the CNN, has been developed to address this problem 

through shortcut connections. Fig. 2.5 shows the typical building block of a ResNet. It is composed 

of two branches, i.e., a residual branch and an identity branch [124]. The residual branch is shown 

as the two convolutional layers. The identity branch is shown the shortcut connection. The residual 

branch learns a non-linear mapping, the so-called residual 𝐹(𝑥), from the input 𝑥. The identity 

branch provides an identity mapping of the input 𝑥. The overall mapping learned by the ResNet 

building block is [124], 

𝐻(𝒙) = 𝐹(𝒙) + 𝒙                                                       (2.16) 

The ReLU activation is then applied to 𝐻(𝒙) before going to the next layer, 
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𝒙𝒓 = 𝑅𝑒𝐿𝑈(𝐻(𝒙))                                                         (2.17) 

Note that the Eq. (2.16) requires a same dimensionality of 𝐹(𝑥) and 𝑥. If not satisfied, a linear 

projection or zero padding to 𝑥 can be performed to match the dimension of 𝐹(𝑥) [124]. In this 

thesis, the linear projection will be adopted wherever needed. For simplicity, the identity will be 

always written as 𝑥 even such actions taken. 

 

Fig. 2.5: Typical building block of the ResNet [124]. 

 

Both the CNN and the ResNet will be used for fault classification in Chapter 5. 

2.2.3 Recurrent neural network 

Recurrent neural networks (RNNs) are a family of neural networks for processing sequential data. 

In a sequence, one data point is related to previous data points. FNNs do not consider the 

dependency among data points. RNNs are designed to address this problem. They store the states 

or information of previous inputs to generate the next output of the sequence. The typical structure 

of RNNs is illustrated in Fig. 2.6. Visually, RNNs have connections not only among layers, but 

also within layers, as compared to FNNs which only have connection among layers. In Fig. 2.6, ℎ 

is the hidden state, 𝑜 is the output, 𝐿 is the loss, 𝑈, 𝑉 and 𝑊 refer to weights to be learned.  
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Fig. 2.6: Typical structure of a recurrent neural network [26]. 

 

An RNN usually suffers from the gradient vanishing or gradient exploding problem when dealing 

with long-term sequences. To address this problem, the long short-term memory (LSTM) model, 

which is a variant of the RNN, is developed with the use of gating mechanism [126]. An LSTM 

cell contains three gates as shown in Fig. 2.7. The three gates include a forget gate, an input gate, 

and an output gate. The three gates work with the inputs, which include the current data 𝑥𝑡 , 

previous cell state 𝑐𝑡−1 and previous cell output 𝑎𝑡−1, to an LSTM cell to determine the states 𝑐𝑡 

and output of the cell 𝑎𝑡. The state and the output of the current LSTM cell can go to a successive 

LSTM cell. 

The forget gate determines how much information to be forgotten from the previous cell state. The 

forget gate is obtained as follows,  

𝑓𝑡 = 𝜎(𝑊𝑓[𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                 (2.18) 
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where 𝑊𝑓  is the weight matrix of the forget gate, 𝑏𝑓  is the bias vector, and 𝜎  is the sigmoid 

function. The forget gate 𝑓𝑡 is a matrix with all entries ranging from 0 to 1.  

A candidate cell state for current time is calculated through a 𝑡𝑎𝑛ℎ function,  

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐[𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑐                                                  (2.19) 

where 𝑊𝑐 is the state weight matrix and 𝑏𝑐 is the corresponding bias vector.  

 

Fig. 2.7: Construction of an LSTM cell [26]. 

 

The input gate decides how much information of the candidate state to store in the cell, 

𝑖𝑡 = 𝜎(𝑊𝑖[𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                    (2.20) 

where 𝑊𝑖 is the input gate weight matrix and 𝑏𝑓 is the bias vector.  

The state of the LSTM cell is then determined as, 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × �̃�𝑡                                                     (2.21) 

where the operation × means the element-wise multiplication. 



69 

The output of the LSTM cell is based on the cell state. The output gate determines how much 

information to output from the cell state, 

𝑜𝑡 = 𝜎 (𝑊𝑜[𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑜                                                 (2.22) 

where 𝑊𝑜 is the output gate weight matrix and 𝑏𝑜 is the bias vector. The output of the LSTM cell 

is then determined as,  

𝑎𝑡 = 𝑜𝑡 × tanh (𝑐𝑡)                                                    (2.23) 

An LSTM model is a sequence of LSTM cells, as shown in Fig. 2.8(a). LSTM cells at different 

time points share the same parameters, i.e., same weights and biases. The number of LSTM cells, 

𝑛 , also the number of time points, is defined as the window size. In Fig. 2.8, 

𝑥𝑗(𝑗 = 𝑡 − 𝑛 + 1, … , 𝑡 − 1, 𝑡) represents the inputted data at time j, 𝑐𝑗 and 𝑎𝑗 denote the cell state 

and activation at time 𝑗, 𝑣𝑗  means the real (label) output at time j, and 𝑣𝑗  means the estimated 

output at time j, which is equal to the activation of the corresponding LSTM cell, that is,  

𝑣𝑗 = 𝑎𝑗                                                                   (2.24) 

where 𝑎𝑗 is calculated with Eq. (2.23).  Given the real output 𝑣𝑗  at time 𝑗, the loss function of the 

LSTM model is,  

𝐿(𝛩) =
1

𝑛
∑ (𝑣𝑗 − 𝑣𝑗)

2
𝑗                                                     (2.25) 

where 𝛩 denotes the parameter set of the LSTM model, which contains all the weights and biases 

of the model.  

The LSTM models can be classified into many-to-many (MM), one-to-many (OM) and many-to-

one (MO) modes according to model structures. The model shown in Fig. 2.8(a) follows an MM 
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mode. In this model, the outputs of LSTM cells at all time points are employed to build the loss 

function (Eq. (2.25)). If we only keep the input at time point (𝑡 − 𝑛 + 1) in Fig. 2.8(a), the model 

becomes an OM mode. If only the output of the LSTM cell at current time 𝑡 is considered, the 

model structure is an MO mode, as shown in Fig. 2.8 (b). The loss function of the MO mode is 

then changed to,  

𝐿(𝛩) = (𝑣𝑡 − 𝑣𝑡)2                                                        (2.26) 

   

(a)                                                                                       (b) 

Fig. 2.8: Examples of LSTM models: (a) Many-to-many mode and (b) Many-to-one mode [26]. 

 

The LSTM model can also be classified into the unidirectional LSTM model and the bi-directional 

LSTM (BiLSTM) model. Models shown in Fig. 2.8 are unidirectional LSTM models. The 

information flows in the forward time direction only. The BiLSTM allows information flowing in 

both the forward time direction and the backward time direction. An example of the BiLSTM 

model is given in Fig. 2.9. The “LSTM F” and “LSTM B” are LSTM cells in the forward time and 

backward time directions, respectively. For the forward time direction, the LSTM cell state 𝑐𝑗 and 

activation �⃗�𝑗 are the same as a unidirectional LSTM model. For the backward direction, the LSTM 
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cell state 𝑐𝑗 and activation �⃖�𝑗 can also be determined using Eqs. (2.22) and (2.24) but in a reverse 

direction. The output of a BiLSTM model is the merge of the forward activation �⃗�𝑗  and the 

backward activation �⃖�𝑗. The merge operation can be max, min, average, multiply and concatenate.  

For the simplicity of description, hereafter if not specified the LSTM model means a unidirectional 

LSTM model by default. The LSTM is going to be used in Chapter 3 for speed extraction. 

 

Fig. 2.9: Illustraioin of a bi-dierectional LSTM [26]. 

 

2.3 Building a deep learning model 

Sections 2.1 and 2.2 provide fundamentals of deep learning models. This section will provide a 

general guideline of how to build a deep learning model to resolve tasks. The recipe of building a 

deep learning model usually consists of following steps, i.e., define the problem, collect data, 

choose model, preprocess data, split data, compile model, train model, evaluate model, freeze, 

modify or choose new model and apply the model [26], [127], as shown in Fig. 2.10. 
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Define the problem: Identify what is the problem to be solved. Is it a supervised learning or 

unsupervised learning problem? Is it a regression problem or classification problem? A good 

understanding of the problem will guide us to collect data and choose models. 

Collect data: Collect data as much as possible. If we are working on a supervised problem, most 

efforts will be devoted to collecting labels. 

 

Fig. 2.10: Flowchart of building a deep learning model [127]. 
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Choose model: Choose a model that best fits the problem and the collected data. Designing a new 

model is also possible but it is always encouraged to try out on-shelf models first.  

Preprocess data: Select relevant data. Clean selected data. Reshape the data to fit in the model 

structure. Segment the data. Convert the data into other domains and so on.  

Split data: Split the data into a training and a test set, and sometimes a validation set. 

Compile model: Configure the loss function. Select the optimization algorithm. Assign the 

learning rate and more. 

Train model: Train the model to learn parameters with the training set. 

Evaluate model: Evaluate the trained model with the validation set if we have one. If not, the test 

set can be used over here. 

Freeze, modify or choose new model: Check whether the evaluation of the model is successful. 

If yes, save the algorithm for future prediction purpose. If not, modify or choose new algorithms, 

again train, and evaluate the model. Repeat the process until the best model is found. Freeze the 

best model. Sometimes, we may need to collect more data to improve the performance of deep 

learning models. 

Apply model: Apply the frozen model to newly collected data.  

This thesis will follow the above process to design proper deep learning models for speed 

extraction, fault detection and fault classification for rotating machinery that operated under 

varying speed conditions, respectively. 
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3. A deep bi-directional long short-term memory model for 

automatic rotating speed extraction from vibration signals 

This chapter focuses on rotating speed extraction from vibration signals. It is the research Topic 

#1 as introduced in Section 1.3. A deep bi-directional long short-term memory model is proposed 

for speed extraction in this chapter. The extracted speed can be used in Chapter 4 and Chapter 5 to 

facilitate fault detection and fault classification, respectively. Materials of this chapter have been 

published in a journal paper [128] and a referred conference paper [129]. 

 

3.1 Introduction 

Rotating machines like wind turbines often work under varying speed conditions. The rotating 

speed is not only an important condition monitoring indicator for, but also facilitates the fault 

diagnosis of these machines [69], [130]. As reviewed in Section 1.2.1, available methods for speed 

extraction broadly include two types, i.e., signal processing based methods and deep learning-

based methods. Comparably, signal processing based methods needs intensive expert knowledge 

and working load to design and implement case sensitive signal processing algorithms to obtain 

either the mono-component signal or the clear TFR and the ridge tracking algorithm. As such, 

researchers are exploring alternative methods which are free from these drawbacks, such as the 

deep learning approach. However, the existing deep learning model, i.e., the MO-LSTM model 

[78], even performs well in the car running speed extraction, but still suffers from the following 
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deficiencies: (1) the speed information was only learned in the forward-time direction but the 

backward-time direction was ignored, and (2) the labeled speed was only utilized at a single time 

point but remaining (𝑛 − 1) points were not used in a window of length 𝑛. Here the labeled speed 

means the real speed used in the modeling training. In this chapter, the speed measured by speed 

sensors will be taken as the labeled speed. The length of the window means the time length of the 

LSTM model. As a result, the speed information mining ability, and thus the speed extraction 

accuracy of the reported MO-LSTM model, leave room for improvement when applied to extract 

speed from complex signals, for example, the vibration signals of rotating machinery. 

This chapter proposes a new many-to-many-to-one bi-directional LSTM (MMO-BiLSTM) model 

to overcome the above-mentioned deficiencies. Compared to the reported MO-LSTM model, the 

proposed model learns speed related information from vibration signals in both forward-time and 

backward-time directions with the use of BiLSTM and utilizes labeled speed at all time points in 

a window through an MM manner. We have spotted a few studies which also used BiLSTM but 

in other application domains. For example, Huang et al. [131] used a BiLSTM for the intensity 

modulating and direct detection of high-speed passive optical networks but in a MO manner. 

Laranjeira et al. [132] employed a BiLSTM for indoor scene recognition through an MM manner. 

Buoy et al. [133] used a BiLSTM for word segmentation through an MM manner. Jiang et al. [134] 

proposed a new model structure named global-local BiLSTM for disulfide bonding state prediction. 

In the global-local BiLSTM. the protein chain is first cut into consecutive short segments. Each 

short segment is inputted to a BiLSTM layer to learn local features. The outputs of these BiLSTMs 

are inputted to a successive BiLSTM layer to learn global features. This structure is like the LSTM 

model used in [113] for machinery fault classification. The difference is that in [113] the LSTM 

not the BiLSTM was utilized. However, in these works, the MM or MO BiLSTM models were 



76 

used for classification tasks, not for regression tasks as in our case. Besides, these models only 

employed a sole MM or MO structure. While in our proposed MMO-BiLSTM model, we first use 

an MM structure to utilize the labeled speed at all time points, and then use an MO structure to 

further improve the speed extraction performance and thus can yield stronger information learning 

ability. 

Effectives of the proposed MMO-BiLSTM is validated with three case studies including an 

internal combustion engine dataset, a rotor system dataset, and a fixed-shaft gearbox dataset. Major 

contributions of this chapter are as follows. 

(1) A new deep learning model is proposed to extract rotating speed from vibration signals.  

(2) A two-stage training strategy is developed to train the proposed model.  

The rest of this chapter is organized as follows. Section 3.2 presents the proposed MMO-BiLSTM 

model. In Section 3.3, three case studies including an internal combustion engine dataset, a rotor 

system dataset and a fixed-shaft gearbox dataset are displayed to verify the effectiveness of the 

proposed model. Discussions are provided in Section 3.4. Conclusions of this chapter are drawn 

in Section 3.5. 

 

3.2 Proposed MMO-BiLSTM model 

This section introduces the structure and training strategy of the proposed MMO-BiLSTM. It is 

based on the deep learning model of LSTM, whose fundamentals have been provided in Section 

2.2.3. 
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3.2.1 Model structure 

As described in the introduction of this chapter, the reported MO-LSTM learns information only 

in the forward direction. However, the backward-time direction also contains useful information. 

In the speed extraction task, either in the forward-time or in the backward-time direction, the 

extracted speed should change smoothly. Therefore, the speed at the next time point would also 

“influence” the speed of the current time point by suppressing abrupt jumps. Therefore, learning 

in both forward and backward-time directions would reveal more speed related information to 

improve the speed extraction accuracy. As such, we suggest using the BiLSTM for the speed 

extraction. Besides, the reported MO-LSTM follows a many-to-one (MO) mode which only 

utilizes the speed of a single time point. To use more speed information, we suggest using the 

many-to-many (MM) mode. In this way, the speed at all time points in a window are involved in 

the training process.  

Given above considerations, we proposed an MMO-BiLSTM model for speed extraction in this 

chapter. It consists of two parts, the BiLSTM part and the LSTM part, as shown in Fig. 3.1. The 

BiLSTM part contains five layers. They are the Layer 0 – Layer 5, i.e., the Input → BiLSTM → 

BiLSTM → Average → Dense → Dense. This part assures the model to learn speed related 

information from vibration signals in both forward-time and backward-time directions. The LSTM 

part contains Layer 6 and Layer 7, namely the LSTM layer and the Output layer. The LSTM part 

extracts the refined speed from the information learned by the BiLSTM part in the forward-time 

direction. Therefore, the overall model forms a many-to-many-to-one (MMO) structure.  
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Fig. 3.1: Structure of the proposed MMO-BiLSTM model. 

 

The input of the model are the multi-channel vibration signal sequences {𝑥𝑗}𝑠 (𝑗 = 𝑡 − 𝑛 +

1, … , 𝑡 − 1, 𝑡; 𝑠 = 1,2, … , 𝐹). Here, 𝐹 represents the number of channels of vibration signals, and 

𝑣𝑡 is the measured speed, which is taken as the real or labeled value in this model. The output of 

the model at time 𝑡 is the extracted speed 𝑣𝑡. The output dimension of each layer is also shown in 

Fig. 3.1. For example, the output dimension of Layer 4 is (M, n, 256), where the first entry (M) is 

the number of data samples, the second entry (n) is the number of time points within a window, 

i.e., the window size, and the third entry (256) is the number of the neurons of this layer. The 

output dimension of Layer 6 is (M, 32), which means the output of this layer is in 2D. For 2D 

outputs, the first entry also means the number of data samples and the second entry is the number 

of neurons of this layer. 



79 

3.2.2 Training strategy 

A two-stage training strategy is proposed to train the proposed MMO-BiLSTM model, as shown 

in Fig. 3.2. In the first stage, the BiLSTM part is pre-trained via a supervised learning manner. The 

supervised pre-training is different from the traditional unsupervised pre-training [135], [121], 

[136], [137], which intends to obtain dimension-reduced features. Instead, the proposed supervised 

training forces the model to learn speed related information with an unchanged dimension. Besides, 

the pre-training process is an MM learning process, which means the labeled speed at all time 

points in a window will be utilized.  

In the second stage, the weights and biases of the BiLSTM part will firstly be initialized with the 

corresponding weights and biases that learned from the first stage. Then the BiLSTM part will be 

fine-tuned, and the LSTM part will be trained simultaneously to obtain the refined speed via a 

supervised and MO manner. The way that the LSTM part extracts speed from the information 

learned by the BiLSTM part mimics the process of predicting a variable with its historic data, 

which is an effective way to conduct prediction and has been successfully used in wind speed 

prediction [138].   

Compared to the reported MO-LSTM model, where the MO mode and unidirectional LSTM are 

used, the BiLSTM, MMO and a two-stage training strategy are employed in the proposed MMO-

BiLSTM model. The MM enables the proposed model to utilize all the speed labels in a window, 

while the reported MO-LSTM model utilizes the speed label at only a single time point in a 

window due to MO. The BiLSTM enables the proposed MMO-BiLSTM model to learn speed 

related information in both forward-time and backward-time directions, while the reported MO-
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LSTM model learns information only in the forward-time direction as it uses LSTM. Therefore, it 

is promising that our proposed model will have stronger speed information mining ability. 

 

Fig. 3.2: Two-stage training strategy for the proposed model. 

 

The mean absolute percentage error (MAPE) will be used to evaluate the speed extraction accuracy 

of the proposed model. The definition of the MAPE is as follows,  

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝑣𝑖−�̂�𝑖

𝑣𝑖 |𝑇
𝑖                                                           (3.1) 

where 𝑣 denotes the extracted speed by the model, 𝑣 denotes the labeled speed, i.e., the measured 

shaft rotating speed and T is the number of the time points of the speed. The CPU time per epoch 

for model training will be employed as another performance metric. It measures the training speed 

of a model. 
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3.3 Case studies 

This section presents three case studies to extract the rotating speed of three commonly used 

rotating machines separately. They are an internal combustion engine, a rotor system, and a fixed-

shaft gearbox. 

3.3.1 Case study 1: Internal combustion engine dataset 

3.3.1.1 Dataset description 

The engine dataset was collected from a 4-cylinder internal combustion engine by the author and 

colleagues in 2016 at Chongqing University, Chongqing, China. The schematic of the experiment 

setup is shown in Fig. 3.3. Five acoustic sensors named S1-S5 were installed 1 m away from the 

surfaces of the engine to collect acoustic pressure signals. The acoustic pressure signals have the 

same nature as vibration thus will be taken as vibration signals in this chapter. The speed of the 

output shaft of the engine was measured with a speed sensor named T1 which was an encoder. The 

sampling frequency was 51200 Hz.  

The rotating speed of the engine was controlled by a dynamometer via a manual speed control 

knob. The designed speed profiles include constant (between 700 rpm and 2400 rpm with a step 

size of 100 rpm), running up (700 rpm to 2400 rpm) and running down (2400 rpm to 700 rpm). 

For each speed profile, two tests were conducted. Each test lasted for 10 s for the constant speed 

cases, and about 80 s for the varying speed cases. Note that the measured speed is slightly different 

from the designed speed profile due to randomness of operating environment and machine capacity. 

The measured speed of two tests of a single speed profile is also different as the speed was 

controlled manually. 



82 

 

Fig. 3.3: Schematic of the internal combustion engine experiment rig. 

 

The data is preprocessed to make them proper for an LSTM model before the implementation of 

speed extraction. The vibration signals and the speed signals are preprocessed synchronously. 

Steps to preprocess the data are listed in the following.  

Step 1: Low-pass filter and down-sample data to a new sampling rate of 256 Hz. The new sampling 

rate assures that up to third order harmonics of the highest speed are contained in the down-

sampled signals.  

Step 2: Segment the raw data into segments with a length of 2 s, or equivalently, 512 data points. 

For the engine dataset, we get 300 segments. 

Step 3: Randomly split down-sampled segments into a training set and a test set by a ratio of 8:2. 

Step 4: Shift each segment with a window size of n and overlapping of (𝑛 − 1). We get (513-n) 

shifted samples from each segment. As a result, 300 segments × (513-n) samples/segment = 300 

× (513-n) samples are obtained in total. Generally, the longer the window size is, the higher the 

accuracy the LSTM model will achieve [139]. But a larger the window size needs substantially 

more CPU time to train the model. In this chapter, the window size is set as 𝑛 = 80. Then 129900 
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samples are obtained for the engine dataset. The shifted vibration samples will be the input to the 

LSTM models, and the shifted speed samples will serve as the labeled speed.  

The training set will be used to train the models to obtain the optimized weights and biases. When 

the model is trained, the test set will be applied to evaluate the performance of the model. To 

further check the performance of the model, the trained model will be used to extract speed from 

newly obtained vibration data. This process mimics the real applications that using the developed 

model for speed extraction from newly collected vibration data as a machine keeps operating. For 

the engine dataset, we have two new applications, i.e., the application 1 and application 2. Each 

application corresponds to a varying speed profile, either running up or running down. The 

application data will be preprocessed with Step 1 and Step 4.  

3.3.1.2 Model setting 

The proposed model was programmed with Python in the framework of Tensorflow, and trained 

in Google Colaboratory [140] with one GPU used. The Adam [141] is taken as the optimization 

method. Usually, hyperparameters of deep learning models are determined manually or by 

parameter searching methods such as the grid search, random search, and model based 

hyperparameter optimization [26].  In this chapter, the hyperparameters are determined manually 

after many trials. For example, for the learning rate 𝛼, we tried four values, i.e., 0.0001, 0.001, 

0.01 and 0.1. The one with the lowest training error and relatively fast convergent speed is chosen. 

As a result, we get the following hyperparameters: the learning rate is 𝛼 = 0.001; the exponential 

decay rate for the first moment estimates is 𝛽1 = 0.9; the exponential decay rate for the second 

moment estimates is  𝛽2 = 0.999; and the batch size is 512. The maximum epoch for pre-training 

is 300 and for fine-tuning is 100. The specific epochs are determined by an early stopping rule. 
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Early stopping is a commonly used strategy to avoid overfitting in the training [26]. It stops the 

training process when the validation error begins to rise with some patience such as after certain 

epochs. The patience is set as 20 epochs in this chapter. We have implemented the reported MO-

LSTM model as a benchmark under the same computing environment described in this paragraph. 

The hyperparameter values of the reported MO-LSTM model are selected in the same way 

described in this paragraph. After selection, same hyperparameters listed above are used for the 

MO-LSTM except that the maximum epoch for training is set to be 400 as the reported MO-LSTM 

uses only one-stage training. 

3.3.1.3 Results 

For the engine, we intend to extract the engine rotating speed from the vibration signals measured 

by five acoustic sensors. The speed extraction performance of the reported MO-LSTM model and 

the proposed MMO-BiLSTM model is shown in Table 3.1.  The speed extraction error, namely, 

the MAPE of the proposed model is substantially decreased compared to the reported model in the 

test set (from 3.15% to 1.03%), application 1 (from 4.38% to 1.27%) and application 2 (from 5.68% 

to 1.29%). The relative reduction percentages are 67.30%, 71.01% and 77.29%, respectively. The 

test set measures the performance of the model with existing data, while the two applications 

measure the performance when applying the model to newly collected data. The way to use both 

the test set and applications mimics the process of how we employ deep learning models in real 

applications, that is, train a model and test it with historical data and apply it to new data.  

The extracted speed of the two applications is shown in Fig. 3.4. Each application represents a 

typical speed profile of the engine. The application 1 corresponds to the running down and the 

application 2 corresponds to the running up speed profile. In Fig. 3.4, some parts of the speed are 
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zoomed in for a closer observation.  The zoomed in parts are named (I) for high-speed operation 

and (II) for low-speed operation. The extracted speed curves by the proposed MMO-BiLSTM 

model are closer to the real speed than the reported MO-LSTM model, which means the proposed 

MMO-BiLSTM model has stronger speed mining ability than the reported MO-LSTM model.  

The Fig. 3.4 also illustrates that the accuracy of the extracted speed in low-speed (less than 1000 

rpm) operation is lower than that of the high-speed operation, especially for the reported MO-

LSTM model. This may be because that higher speed brings higher energy to the machine, thus 

more speed-related energy will be contained in the machine’s vibration. Given the ambient 

environment (i.e., fixed environment noise), the SNR of the vibration signal would then increase 

with the increase of speed. For a deep learning model, it is easier to learn from cleaner (higher 

SNR) data. As a result, the speed extraction accuracy of both the reported MO-LSTM model and 

the proposed MMO-BiLSTM model for low-speed operation is lower than that for high-speed 

operation. However, for the low-speed operation (see zoomed in parts (II) in Fig. 3.4), the proposed 

MMO-BiLSTM model can still track the real speed relatively well, but the reported MO-LSTM 

model cannot. This means the proposed model can work well even with low SNR vibration signals. 

Table 3.1: Speed extraction results of the engine dataset. 

Model 
Reported  

MO-LSTM 

Proposed  

MMO-BiLSTM 
Relative reduction 

CPU time (s) 8 24/21* - 

MAPE 

Test set 3.15% 1.03% 67.30% 

Application 1 4.38% 1.27% 71.01% 

Application 2 5.68% 1.29% 77.29% 

* Means the CPU time of the pre-training and fine-tuning  

 

From Fig. 3.4, we can observe slight fluctuations in the extracted speed curves either by the 

reported MO-LSTM or the proposed MMO-BiLSTM compared to the real speed curves. This may 
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be caused by noise in the vibration signals. Noise induces fluctuations to the input (vibration) of 

the models. Consequently, fluctuations occur in the output (extracted speed) of the models. The 

fluctuations can be eased by some curve smoothing strategies, like weighted moving average [142].   

 
(a) 

 
(b) 

Fig. 3.4: Speed extraction results of the engine dataset: (a) Application 1 and (b) Application 2. 

(II) 

(I) 

(II) 

(I) 
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Table 1 also shows that the proposed MMO-BiLSTM model needs more time to train per epoch 

than the reported MO-LSTM model. For the reported MO-LSTM model, the CPU time per epoch 

is 8 s, while the proposed model needs 24 s (pre-training) or 21 s (fine-tuning) per epoch. The 

reason is that the proposed model has more trainable parameters (734,465 parameters) than that of 

the reported model (394,945 parameters). 

3.3.2 Case study 2: Rotor system dataset 

3.3.2.1 Data description 

The rotor system dataset was collected by author’s colleagues in 2017 using a rotor system 

simulator from the University of Electronic Science and Technology of China, Chengdu, China 

[143]. The experimental setup of the rotor system and the schematic of sensor locations are shown 

in Fig. 3.5. Two accelerometers were installed on the bearing housing to the right side to measure 

the vertical and horizontal accelerations. Two displacement transducers were placed between the 

flange and weight plate to measure the displacement in vertical and horizontal directions. One 

tachometer was installed near the motor to measure the rotating speed of the shaft. The sampling 

frequency was 10240 Hz.  

The rotating speed of the rotor was controlled by an automatic control system. Two speed profiles 

ranging between 300 rpm and 2000 rpm were designed. Both speed profiles contain linear up, 

sinusoidal and linear down parts, but the amplitudes of the sinusoidal parts are different. For each 

speed profile, 40 repeating tests were conducted. Each test lasted for about 14 s. The rotor system 

dataset is preprocessed in the same way as the engine dataset as in Case 1. After preprocessing, 

we get 242480 samples, and two more applications, i.e., application 1 and application 2.  
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Fig. 3.5: Experimental setup of the rotor system. 

 

3.3.2.2 Results 

For the rotor system, we intend to extract the rotating speed of the rotor shaft from four-channel 

vibration signals including two channels of accelerations and two channels of displacements. The 

model parameters are the same as the engine case. The speed extraction results of the proposed 

model and the reported model are shown in Table 3.2. The extracted speed of the two applications 

is shown in Fig. 3.6. Detailed observations are given below. 

Table 3.2: Speed extraction results of the rotor system dataset. 

Model 
Reported  

MO-LSTM 

Proposed  

MMO-BiLSTM 
Relative reduction 

CPU time (s) 28 53/61* - 

MAPE 

Test set 1.50% 0.69% 54.00% 

Application 1 2.21% 1.27% 42.53% 

Application 2 2.97% 1.50% 49.50% 

* Means the CPU time of the pre-training and fine-tuning 
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       (a) 

 
    (b) 

Fig. 3.6: Speed extraction results of the rotor system dataset: (a) Application 1 and (b) Application 2. 

 

The MAPEs of the proposed MMO-BiLSTM model are 0.69%, 1.27% and 1.50% for the test set, 

application 1 and application 2, respectively. These values are all smaller than their counterparts 

(II) 

(I) 

(I) 

(II) 
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of the reported MO-LSTM model, i.e., 1.50%, 2.21% and 2.97%, respectively. Compared to the 

reported MO-LSTM model, the speed extraction errors of the proposed MMO-BiLSTM model are 

reduced by 54.00%, 42.53% and 49.50%, respectively. But the proposed model costumes about 

double time per epoch of the reported MO-LSTM model to train. 

For a closer observation of Fig. 3.6, some parts of it are zoomed in. See those named (I) and (II). 

The two applications represent two typical speed profiles of the rotor system. Both the reported 

model and the proposed model can track the speed trend well, but the proposed model tracks the 

real speed closer than the reported model. From Fig. 3.6, we can also observe that the speed 

extraction accuracy of both the reported MO-LSTM and the proposed MMO-BiLSTM for the low-

speed (less than 400 rpm) operation is lower than that for the high-speed operation. But the 

proposed MMO-BiLSTM model tracks the real speed better in low-speed operation than the 

reported MO-LSTM model (see zoomed in parts (II) in Fig. 3.6). These observations are like the 

engine dataset as seen in Case 1. 

3.3.3 Case study 3: Fixed-shaft gearbox dataset 

3.3.3.1 Data description 

The fixed-shaft gearbox dataset [144] was collected at the University of Alberta, Edmonton, 

Alberta, Canada in 2018 by the author and author’s colleagues. The test rig is shown in Fig. 3.7(a). 

It consists of a drive motor, a bevel gearbox, a 1st stage planetary gearbox, a 2nd stage planetary 

gearbox, a 1st stage speed‐up fixed-shat gearbox, a 2nd stage speed-up fixed-shaft gearbox, and a 

driven motor. The rotating speed of the gearbox was controlled by a variable frequency drive. The 

gearbox of interest is the 2nd speed-up gearbox (marked in a rectangle). The fixed-shaft gearbox 

has three shafts, i.e., an input shaft, a middle shaft, and an output shaft, as shown in Fig. 3.7(b).  
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(a) 

 
(b) 

 
(c) 

Fig. 3.7: Experimental setup for the fixed-shaft gearbox dataset: (a) Test rig, (b) Schematic of the fixed-shaft 

gearbox and sensor locations and (c) Simulated faulty gears with crack severities increasing from left to right. 

 

Four accelerometers were installed to collect the vibration data. Three of them were mounted on 

the bearing housing of the middle shaft in the horizontal, vertical and gear meshing directions, and 

one was mounted on the gearbox top cover. An encoder was installed on the shaft of the load motor 

to pick up its rotating speed. The output shaft of the gearbox was connected to the load motor shaft 
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via a coupler. The speed of the output shaft thus equaled to the motor speed. The speed of the 

middle shaft was then calculated according to the transmission ratio between the middle shaft and 

the output shaft.  

Data with different health states under different speed conditions was collected. The health states 

include the healthy state and the faulty states with five severity levels of tooth root cracks, as shown 

in Fig. 3.7(c). The crack was manually induced. The speed varies continuously, i.e., running up to 

180 rpm and then going down. For each case, 5 repeating tests were conducted. Each test lasted 

about 60 s. The sampling frequency was 25600 Hz. An example of the collected vibration signal 

and its corresponding speed signal is given in Fig. 3.8. 

Only healthy data is used in this chapter. Faulty data is going to be used in Chapter 4 and Chapter 

5. All the four channels of vibration will be used for speed extraction. The gearbox dataset is 

preprocessed in the same way as the engine dataset and the rotor system dataset. After 

preprocessing, 255037 samples are obtained. Also, two applications, i.e., application 1 and 

application 2, will be applied. 

 
Fig. 3.8: Example of collected data of the fixed-shaft gearbox: (a) Speed and (b) Acceleration. 

 

(a) Speed  (b) Acceleration  
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3.3.3.2 Results 

For the fixed-shaft gearbox dataset, the goal is to extract the rotating speed of the middle shaft 

from four-channel vibration signals. Table 3.3 displays the speed extraction results of the reported 

model and the proposed model with the gearbox dataset. The MAPEs of the proposed MMO-

BiLSTM model are 2.03%, 2.05% and 1.97% with the test set, application 1 and application 2, 

respectively. These values yield corresponding reductions of 25.61%, 37.56% and 29.44 % over 

the speed extraction errors of the reported MO-LSTM model. Still, the proposed model consumes 

about double time per epoch to train. 

Table 3.3: Speed extraction results of the fixed-shaft gearbox dataset. 

Model 
Reported  

MO-LSTM 

Proposed  

MMO-BiLSTM 
Relative reduction 

CPU time (s) 30 53/60* - 

MAPE 

Test set 2.03% 1.51% 25.61% 

Application 1 2.05% 1.28% 37.56% 

Application 2 1.97% 1.39% 29.44% 

* Means the CPU time of the pre-training and fine-tuning  

 

Different from the engine and the rotor system, the fixed-shaft gearbox operates in a relatively 

narrow speed range of 100 rpm – 180 rpm, but with heavy load applied. As a result, some 

unexpected shocks would happen in the gear meshing process. Fig. 3.9 illustrated the extracted 

speed curves of the two applications. Some parts of this figure are zoomed in which are named (I) 

and (II) for a closer observation. It can be observed especially from Fig. 3.9 (b) that some 

unexpected jumps occur in the extracted speed by the reported model, but smoother speed that 

closes to the real speed curves are tracked by the proposed model. This means our proposed MMO-

BiLSTM model outperforms the reported MO-LSTM model with the fixed-shaft gearbox dataset. 
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(a) 

 
(b) 

Fig. 3.9: Speed extraction results of the fixed-shaft gearbox dataset: (a) Application 1; and (b) Application 2. 

 

Also different from the engine dataset and the rotor system dataset, the speed extraction accuracy 

of the gearbox dataset is similar in the low-speed operation and in the high-speed operation. The 

(I) 

(II) 

(I) 

(II) 
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reason may be that the gearbox operates in a relatively narrow speed range (max speed/min speed 

= 1.8), while the engine and the rotor system operate in a quite wide speed range (max speed/min 

speed = 3.4 and 6.7, respectively). For the gearbox, the SNR difference caused by speed variation 

in such a narrow range may be not large enough to influence the speed extraction accuracy. 

Overall, the speed extraction results of the proposed MMO-BiLSTM model with the three typical 

rotating machines imply that, the proposed model can successfully extract rotating speed from 

vibration signals of different rotating machines and outperforms the reported MO-LSTM model. 

These machines can operate under different speed and load conditions. Therefore, we believe our 

proposed deep learning model is effective to extract rotating speed from vibration signals and can 

be applied to other rotating machines.  

 

3.4 Discussion 

In the proposed and the reported models, several model structures, namely, LSTM, BiLSTM, MM, 

MO and MMO, and a two-stage training strategy (TS) are used. To understand why the proposed 

MMO-BiLSTM model performs better than the reported MO-LSTM model, separate contributions 

of these model structures and the training strategy to the speed extraction accuracy are evaluated 

with the above three datasets. Models formed by feasible combinations of these structures and the 

training strategy are listed in Table 3.4, wherein the LSTM+MO is exactly the reported MO-LSTM 

model and the BiLSTM+MM+MO+TS is the proposed MMO-BiLSTM model. Note that in Table 

3.4, LSTM-M (BiLSTM-M) and LSTM-O (BiLSTM-O) mean the LSTM (BiLSTM) model 

pertaining to a MM structure and a MO structure, respectively. The second layer of LSTM+MO 
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and LSTM+MM+MO is a Dense layer while others are not. As according to our trials, with this 

Dense layer kept the LSTM+MO and the LSTM+MM+MO perform better for speed extraction. 

Table 3.4: Feasible models composed of different structures. 

Model Layers 

LSTM + MO  

(Reported MO-LSTM) 
Input → Dense → LSTM-M → LSTM-O → Dense → Dense → Output 

LSTM + MM Input → LSTM-M → LSTM-M → Dense → Dense → Output 

BiLSTM + MO Input → BiLSTM-M → BiLSTM-O → Dense → Dense → Output 

BiLSTM + MM Input → BiLSTM-M → BiLSTM-M → Average → Dense → Dense → Output 

LSTM + MM + MO Input → Dense → LSTM-M → LSTM-M → Dense → Dense → LSTM-O → Output 

BiLSTM + MM + MO 
Input → BiLSTM-M → BiLSTM-M → Average → Dense → Dense → LSTM-O → 

Output 

LSTM + MM + MO + 

TS 

Pre-training: Input → LSTM-M → LSTM-M → Dense → Dense → Output 

Fine-tuning: Input → LSTM-M → LSTM-M → Dense → Dense → LSTM-O → 

Output 

BiLSTM + MM + MO 

+ TS (Proposed MMO-

BiLSTM) 

Pre-training: Input → BiLSTM-M → BiLSTM-M → Average → Dense → Dense → 

Output  

Fine-tuning: Input → BiLSTM-M → BiLSTM-M → Average → Dense → Dense → 

LSTM-O → Output 

 

The speed extraction performance of these models with the engine dataset are shown in Table 3.5. 

The results with the rest two datasets, namely, the rotor system dataset and the fixed-shaft gearbox 

dataset illustrate the same trend as the engine dataset thus not shown. Table 5 shows that, 

(1) All the models achieve higher speed extraction accuracy than the reported MO-LSTM 

(LSTM+MO) model. 

(2) When the MM is employed, the accuracy is substantially improved than MO no matter the 

LSTM or BiLSTM is used. The MM consumes similar CPU time as the MO per epoch. 
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(3) The BiLSTM achieves higher accuracy than LSTM with either MM or MO used, but the 

BiLSTM consumes more CPU time than LSTM per epoch. 

(4) Without TS, the MM+MO (i.e., MMO) structure performs relatively poor with either 

LSTM or BiLSTM used. When the TS is employed, the speed extraction accuracy is 

substantially improved, especially for the BiLSTM case. 

(5) Overall, the BiLSTM + MM + MO + TS, i.e., the proposed MMO-BiLSTM model 

performs the best in terms of the speed extraction accuracy. 

Given the comparison results of these structures, we would like to suggest that if one has 

sufficient computation resources and prioritizes the speed extraction accuracy, the proposed 

MMO-BiLSTM model is preferred. If we want a trade-off between the accuracy and the 

training time consumption, only using the MM is preferred. Only Using BiLSTM is not 

suggested as it consumes much more training time than the MM but does not bring significant 

gain in the accuracy compared to the MM.  

Table 3.5: Speed extraction performances of different models with the engine dataset. 

Model 
CPU time 

(s) 

MAPE (%) 

Test set Application 1 Application 2 

LSTM + MO  

(Reported MO-LSTM) 
8 3.44 4.33 6.65 

LSTM + MM 9 1.70 1.27 2.12 

BiLSTM + MO 23 1.99 1.99 3.40 

BiLSTM + MM 24 1.05 1.22 1.92 

LSTM + MM + MO 12.5 2.71 3.51 2.75 

BiLSTM + MM + MO 21 2.28 2.93 3.55 

LSTM + MM + MO + TS 9/12.5* 2.80 1.73 2.01 

BiLSTM + MM + MO + TS (Proposed 

MMO-BiLSTM) 
24/21* 1.03 1.28 1.29 

* Means the CPU time of the pre-training and fine-tuning 
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3.5 Summary and conclusion 

This chapter presents a deep learning model, i.e., the MMO-BiLSTM, to automatically extract a 

machine’s rotating speed from its vibration signals. The performance of the proposed MMO-

BiLSTM is evaluated with three typical rotating machines, including an internal combustion 

engine, a rotor system, and a fixed-shaft gearbox, and compared with the reported MO-LSTM 

model. From the results, we can conclude that, 

(1) The proposed MMO-BiLSTM can successfully extract the rotating speed of rotating 

machines directly from their vibration signals and achieves higher accuracy than the 

reported MO-LSTM model. Therefore, it is promising that the proposed model could work 

like a virtual speed sensor to automatically “measure” the speed from vibration signals. 

(2) For the speed extraction task, the MM structure outperforms the MO structure, and the 

BiLSTM performs better than the LSTM. The MMO with BiLSTM performs the best when 

the proposed two-stage training strategy is taken. 

In this chapter, the proposed model is trained with the historical vibration and speed data of a 

machine and can only extract the speed of the same machine. In the future, we will investigate to 

train the proposed model with historical data of one machine (e.g., motor) but apply it to another 

similar machine (e.g., rotor system) by using techniques like transfer learning [115], [145]. This 

could be very useful for those machines that speed information is in demand, but the speed sensors 

are difficult to be installed due to physical space and/or cost limit. 
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4. A speed normalized autoencoder for rotating machinery 

fault detection under varying speed conditions 

This chapter focuses on the fault detection of rotating machinery that operated under varying speed 

conditions. It is the research Topic #2 as defined in Section 1.3. A speed normalized autoencoder 

is proposed for fault detection of rotating machinery under varying speed condition. The proposed 

model requires the speed as an auxiliary input in addition to the vibration. The speed utilized in 

this chapter can be measured or extracted from Chapter 3. When a fault is detected with a machine, 

the type and the severity of the fault is going to be identified in Chapter 5. Materials of this chapter 

have been published in a journal paper [146]. 

 

4.1 Introduction 

Rotating machinery in service usually deteriorates over time due to variable internal or external 

excitations. When the deterioration is accumulated to a certain level, we say a fault is occurred. 

Faults if not detected and addressed early may lead to the failure of a machine. Failure would result 

in unexpected shutdown which further results in economical and/or moral loss. Fault detection has, 

thus, been introduced as an effective way to prevent the occurrence of failure [3].  

Fault detection is usually understood as an unsupervised learning problem. Only healthy data is 

allowed for the development of fault detection algorithms. A typical unsupervised deep learning 

model, the autoencoder (AE) and its variants were widely used. For example, Zhao et al. [98] 
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employed a deep AE to detect wind turbine faults. Reddy et al. [82] utilized a deep AE to conduct 

anomaly detection and fault disambiguation of flight data. Luo et al. [97] trained a sparse AE for 

the fault detection of a machine tool. Malhotra et al. [85] and Chen et al. [147] used an AE-shaped 

long short-term memory (AE-LSTM) model for anomaly detection of sensors and wind turbines, 

respectively. Yu et al. [148] and Jana et al. [149] utilized a convolutional autoencoder (AE-CNN) 

for fault detection of industrial processes and sensors in structural health monitoring, respectively. 

Spyridon et al. [150] suggested an AE based generative adversarial network for fault detection of 

a chemical industrial system. 

While utilizing AEs for fault detection, we often follow a reconstruction procedure [151], as shown 

in Fig. 4.1. Firstly, healthy data is used to train an AE to reconstruct its inputs. The AE can be 

trained through the widely used backpropagation algorithm [26], or probabilistic learning [152], 

[153], or the generative-adversarial manner [150], [154]. The well-trained AE is then employed to 

reconstruct newly collected data with unknown health states. The difference between the 

reconstructed input and the input is defined as the reconstruction error, which is also known as the 

residual. The residual is then inputted to a successive detection module which will identify whether 

the newly collected data indicates a fault or not. The detection module can be a simple health 

indicator calculated from the residual, such as the harmonic to noise ratio [32] or the widely used 

root mean square (RMS) [82], [83].  

Faut detection algorithms must adapt to dynamic environments [155]. This is critical for rotating 

machines since they usually work under varying speed conditions. Speed variation introduces 

amplitude modulation (AM) and frequency modulation (FM) to vibration signals [51]. The AM 

and FM effects can also be introduced by faults [52], [92]. Their effects are often overlapped [8]. 
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The overlapped effects if not distinguished, may lead to false alarms and/or missed alerts in fault 

detection [92]. The above-mentioned AEs for fault detection did not consider the effects of speed 

variation. Their performances cannot be guaranteed for varying speed conditions. 

 

Fig. 4.1: Procedure of fault detection based on data reconstruction [151], [152]. 

 

The focus of this chapter is to improve the fault detection performance of AEs for rotating 

machinery that operated under varying speed conditions. The key is to address the effects induced 

by speed variation. Once the effects of speed variation are removed, the resultant false alarms 

and/or missing alerts could be avoided. The fault detection performance would be improved 

accordingly. As reviewed in Section 1.2.2, exiting models [95], [96] for fault detection under 

varying speed conditions did not indicate how the effects of speed variation were addressed. 

Moreover, the employed data were the value-type data in [95], [96], rather than the waveform data 

as the vibration in our case. The waveform data is much more complicated than the value-type 

data [3]. Effects of speed variation on value-type data and waveform data is also different. 
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Therefore, the fault detection performance of the models employed in [95], [96] over the vibration 

data needs further investigation. 

The goal of this chapter is to design an AE model that can remove the effects of speed variation 

automatically from vibration data, and ultimately improve its fault detection performance. To 

achieve this goal, we propose a new deep learning model named the speed normalization 

autoencoder (SN-AE). The idea is to design an auxiliary branch for the AE to remove the effects 

of speed variation automatically. Specifically, an auxiliary branch named speed normalization (SN) 

is designed to learns a SN function, which further normalizes the vibration data to removes the 

effects of speed variation. The normalized vibration is then processed by the AE for fault detection. 

The idea to normalize the vibration using a certain function with respect to speed is indeed inspired 

by [52], [92]. Through normalization, the effects of AM induced by the speed variation could be 

removed. Once the effects of AM are removed, the fault detection performance could be improved 

as the false alarms and/or missing alerts induced by speed variation could be eased. In this chapter, 

we will focus on the AM only. The FM will be not considered for now. Indeed, based on our 

evaluation, the FM has limited impact on the fault detection performance. Th details are given in 

Section 4.5.1.  

Indeed, the primary goal of the proposed model is to remove the speed induced variations in data. 

For the purpose of removing variation in data, we have spotted a few related works in other 

domains. For example, Ren et al. [156] proposed a variation-normalized AE for person re-

identification in photos shotted by street cameras. In [156], the variation-normalized AE removes 

all variations in photos while sustains person-related common features, so that a same person in 

different photos could be re-identified. However, this model may fail in our case as we only want 
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to remove speed induced variations in data but to sustain fault related variation in the meantime. 

In the domain of medical health, Rong et al. [157] developed a deep adversarial model to remove 

batch effects in liquid chromatography mass spectrometry-based metabolomics data. So that the 

metabolism changes induced by disease would be well estimated. The changes were then used to 

indicate the occurrence of certain diseases. This model is not appreciated in our case as it will also 

remove fault related variations intra batches, and thus leads to incorrect detection. 

In this chapter, the typical deep AE as used in [82], [98] will taken as the baseline. The AE is 

selected as it is widely adopted for fault detection, and the variants of the AE such as the sparse 

AE [95], [97], denoising AE [96], AE-LSTM [85], [147] and AE-CNN [148], [149] are among the 

state-of-the-art methods for fault detection. Without loss of generality, the proposed SN will be 

developed based on the typical AE, and the whole package will be applied to these advanced 

variants to show its generalizability and superiority.  

Given a fixed AE, how to select the hyperparameters of the SN branch that returns the best speed 

effects removal performance and then superior fault detection performances remains a problem. 

The hyperparameters in this chapter refer to that regarding the structure of the SN branch only. We 

assume the hyperparameters of the baseline AE are already well selected. Existing strategies such 

as the grid search [26], random search [26], Bayesian optimization [158] and differentiable 

architecture search [159] select hyperparameters whilst minimize the mean square error of the 

reconstruction of the validation set (VMSE). The VMSE measures how well a model reconstructs 

its input. A minimal VMSE may guarantee a good reconstruction performance but cannot assure 

a good speed effects removal performance. As the scale of the learned SN function can vary across 

hyperparameters. A smaller VMSE may be because of relatively smaller SN values, not better 
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speed effects removal performance. To address this problem, we propose a new measure, i.e., the 

correlation coefficient between the health indicator and the speed of the validation set (VCOR), 

for the hyperparameter selection for the SN branch. The rationale is that if the effects of the speed 

variation are removed, the health indicator should be independent from the rotating speed. The 

VCOR should approach zeros, otherwise would be large. 

The effectiveness of the proposed SN-AE as well as the proposed VCOR is validated with three 

case studies. The case studies correspond three typical rotating machines, i.e., a planetary gearbox, 

a fixed-shat gearbox and a rolling element bearing, respectively. Results show that the proposed 

SN significantly improves the fault detection performances of the baseline AE, as well as its 

variants. Major contributions of this chapter are as follows: 

(1) Proposed a new deep learning model SN-AE for rotating machinery fault detection under 

varying speed conditions. 

(2) Proposed a new hyperparameter selection measure VCOR for the SN branch of the 

proposed SN-AE model. 

The rest of this chapter is organized as follows. Section 4.2 introduces the baseline AE. Details of 

the proposed SN-AE are given in Section 4.3. Case studies are conducted in Section 4.4. 

Discussions are made in Section 4.5. Conclusions are drawn in Section 4.6. 

 

4.2 Baseline models 

This section provides a brief introduction the AE model that is going to be the baseline model in 

this chapter. More knowledge of the AE has been provided in Section 2.2.1. The deep AE 
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employed in [82], [98] is selected as the baseline model in this chapter, as it features a typical AE 

structure, as shown in Fig. 4.2. The baseline AE consists of an input layer, multiple hidden layers, 

and an output layer. The hidden layer in the middle is named as the bottleneck layer. The AE is 

used to reconstruct the inputted vibration data. The RMS of the reconstruction residual is taken as 

the HI for fault detection. As indicated in the Introduction, the fault detection performance of the 

baseline AE is deteriorated by speed variation. We will address this problem in this chapter. 

 

Fig. 4.2: Structure of the baseline deep AE [98]. 

 

In this chapter, the area under the receiver operator characteristic curve (AUC) [160] will be used 

to measure the fault detection performance. The receiver operator characteristic curve is created 

by plotting the true positive rate and false positive rate at all feasible threshold settings. Suppose a 

test set contains 𝑁  faulty (negative) samples and 𝑃  healthy (positive) samples. At a certain 

threshold, 𝑇𝑃 samples out of the 𝑃 healthy samples are detected as healthy and 𝑁𝑃 samples out of 

the 𝑁 faulty samples are missing alerted. The true positive rate and the false positive rate are found 

with, 

True positive rate =  
𝑇𝑃

𝑃
                                                  (4.1) 
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False positive rate =  
𝑁𝑃

𝑁
                                                 (4.2) 

Calculate the true positive rates and the false positive rates at all thresholds. The receiver operator 

characteristic curve can be plotted with the false positive rate as the x-axis and the true positive 

rate as the y-axis. The AUC is the area under the receiver operator characteristic curve, which can 

be found using the numerical integration. The AUC provides a comprehensive measure by 

integrating false positive rates and true positive rates and is widely used in the context of fault 

detection [32], [160]. The value of AUC varies from 0 to 1, and the larger the better. An AUC of 

1 means that the model performs perfectly. No false alarms or missing alters occur. An AUC of 

0.5 corresponds to a coin flip. An AUC of 0 means that all faults are not altered, and all healthy 

states are falsely alarmed. 

 

4.3 Proposed speed normalized autoencoder (SN-AE) 

4.3.1 Structure of SN-AE 

As mentioned in the Introduction, existing methods for rotating machinery fault detection under 

varying speed conditions are either not able to address the effects of speed variation, or address in 

a manual and separate manner. The goal of this work is to remove effects of speed variation 

automatically to improve the fault detection performances of AEs. The proposed idea is to learn a 

speed-related normalization function automatically through the training of AE with a proper design 

of the model structure. The normalization function is to multiply the vibration to remove or 

mitigate the AM effects. In this chapter, a deep learning model named speed normalized 

autoencoder (SN-AE) is proposed to implement the proposed idea.  
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The structure of the proposed SN-AE is illustrated in Fig. 4.3. It consists of two branches, i.e., an 

AE branch, and a speed normalization (SN) branch. The AE over here is identical to the baseline 

AE. It is going to reconstruct the data inputted to it. The SN branch is an auxiliary neural network 

that is going to learn a speed normalization function 𝑔(𝒔, 𝛉𝒔). It takes the speed signal 𝒔 as the 

input. The 𝛉𝒔 refers to trainable parameters of the SN branch including the weights and biases. 

The 𝑔(𝒔, 𝛉𝒔) is going to normalize the vibration signal 𝒙 prior to being processed by the AE. The 

normalized vibration is, 

𝒙𝑛 = 𝒙𝑔(𝒔, 𝛉𝒔)                                                                (4.3) 

The normalization operation in Fig. 4.3 is represented by a cross “×”. Herein, it refers to the 

multiplication operation which can be element-wise, sample-wise or others.  

 

Fig. 4.3: Proposed speed normalized autoencoder (SN-AE). 

 

The normalized vibration 𝒙𝒏 is inputted to the AE for reconstruction. Suppose the mapping of the 

AE is 𝑓(.). The reconstructed normalized vibration is, 
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𝒙𝑛 = 𝑓(𝒙𝑛, 𝛉𝒙 ) = 𝑓(𝒙𝑔(𝒔, 𝛉𝒔), 𝛉𝒙)                                              (4.4) 

where, 𝛉𝒙 is the set of trainable parameters of the AE branch. The reconstruction of the input 

vibration 𝑥 is the inverse normalization of �̂�𝑛, 

�̂� =
�̂�𝑛

𝑔(𝒔,𝛉𝒔)
=

𝑓(𝒙𝑔(𝒔,𝛉𝒔),𝛉𝒙)

𝑔(𝒔,𝛉𝒔)
                                                       (4.5) 

The inverse normalization operation is represented by a divide symbol “” in Fig. 4.3. It refers to 

the inverse operation of the normalization adopted in Eq. (4.5). 

The loss function is the mean squared error of the reconstruction of the vibration, 

𝐿(𝛉𝒙, 𝛉𝒔) =
1

2
(𝒙 − �̂�)2                                                         (4.6) 

Plug Eq. (4.5) into Eq. (4.6), we get,  

𝐿(𝛉𝒙, 𝛉𝒔) =
1

2
(𝒙 −

𝑓(𝒙𝑔(𝒔,𝛉𝒔),𝛉𝒙)

𝑔(𝒔,𝛉𝒔)
)

2

                                                (4.7) 

Trainable parameters of the AE branch 𝛉𝒙 and the SN branch 𝛉𝒔 are optimized by minimizing the 

loss function,  

𝛉𝒙
∗ , 𝛉𝒔

∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛉𝒙,𝛉𝒔
𝐿(𝛉𝑥, 𝛉𝑠)                                              (4.8) 

where, 𝛉𝒙
∗  and 𝛉𝒔

∗  are the optimized parameters. As described in Section 2.1.2, this is an 

optimization problem and is usually achieved by gradient based methods. We first find the gradient 

of the loss with respect to parameters, and then update the parameter with a certain learning rate 

𝜀, 

𝛉𝒙 = 𝛉𝒙 + 𝜀
𝜕𝐿(𝛉𝒙,𝛉𝒔)

𝜕𝛉𝒙 
                                                         (4.9) 
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𝛉𝒔 = 𝛉𝒔 + 𝜀
𝜕𝐿(𝛉𝒙,𝛉𝒔)

𝜕𝛉𝒔 
                                                       (4.10) 

The optima 𝛉𝒙
∗  and 𝛉𝒔

∗ are gradually approached when the updating in Eq. (4.9) and Eq. (4.10) 

meets certain rules. We can also introduce other updating schemes such as the momentum and 

Adam to speed up the convergence [26]. The process to optimize the parameters is the so-called 

model training. Note the parameters for the SN branch and the AE branch are trained 

simultaneously. Eq. (4.9) and Eq. (4.10) only provide the general scheme of the gradients. Exact 

gradients with respect to certain parameters (e.g., the connection weight between the first neuron 

of the first layer and the first neuron of the second layer of the SN branch) can be found with the 

backpropagation algorithm [26].  

The reconstruction residual of the normalized vibration 𝒙𝑛 instead of that of the raw vibration 𝒙 is 

adopted to build the health indicator. That is, the RMS of the (𝒙𝑛 − �̂�𝑛) not the(𝒙 − �̂�) will be 

utilized for fault detection. Because the effects of the speed variation are expected to be removed 

or mitigated in the residual of normalized vibration, but still preserved in that of the raw vibration. 

For simplicity, hereinafter and in Fig. 4.3, 𝑔(𝒔, 𝛉𝒔) and 𝑓(𝒙𝒏, 𝛉𝒙 ) are written as 𝑔(𝒔) and 𝑓(𝒙𝒏), 

respectively. 

The proposed SN-AE is supposed to work because it will remove or at least mitigate the AM 

effects induced by speed variation through normalization like reported works of [52], [92]. Better 

performances can be expected as the proposed SN-AE is to be able to automatically remove the 

effects of speed variation (i.e, AM) and conduct fault detection as a whole. Compared to existing 

deep learning models such as the AE and its variants, the SN-AE can address the effects of speed 

variation while the existing cannot, and thus better fault detection performance can be expected. 

Compared to existing works [52], [92] on removing the effects of speed variation, the proposed 
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SN features at least two merits. First, the SN is more labor-friendly as it is realized automatically. 

Second, the proposed SN conduct the normalization and fault detection as a whole and thus an 

overall optimum can be expected, which generally yields a better performance [26]. 

In addition to the typical AE as shown in Fig. 4.3, the baseline model can also be the advanced 

variants of the AE, such as the sparse AE [95], [97], denoising AE [96], AE-LSTM [85], [147] 

and AE-CNN [148], [149]. Performances over these models will also be evaluated in case studies 

to show the superiority of the proposed method. 

4.3.2 Structure of SN branch 

The SN branch is a neural network that intends to learn an SN function. It takes the speed signal 

as the input and outputs corresponding SN value. The SN function is learned automatically during 

the training of the SN-AE. The learned SN function normalizes vibration signals to remove speed 

variation effects. 

In this chapter, the CNN is adopted for the SN branch. The intuition is that the CNN preserves 

local information of speed through moving kernels, which is going to normalize nearby vibration. 

The adopted structure for the SN branch is shown in Fig. 4.4. It has a typical 1D-CNN structure 

consisting of several convolutional (Conv) layers and a global average pooling (GAP) layer at the 

end. The GAP is applied across channels not the time points to preserve the data shape. The 

activation functions are the commonly used ReLU expect for the last layer, with which a Sigmoid 

activation is adopted to limit the range of the SN function 𝑔(𝒔) within (0, 1). Hyperparameters 

such as the number of convolutional layers (𝑛𝑙), kernel size (𝑘𝑠) and number of channels (𝑐ℎ) will 

be analyzed in case studies in the next section. 
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The learned SN function 𝑔(𝒔) will multiply the input vibration through an element-wise manner. 

Suppose we have a vibration data sample 𝒙 = {𝑥𝑖}𝑖=1
𝑛  and a corresponding speed data sample 𝒔 =

{𝑠𝑖}𝑖=1
𝑛 , where 𝑛 refers to the number of data points (or length) of the sample. Element-wise 

multiplication requires that 𝑔(𝒔) has a same dimension as 𝒙, i.e., 𝑔(𝒔) = {(𝑔(𝒔))
𝒊
}

𝑖=1

𝑛

 ∈ 𝐑𝑛. The 

normalized vibration is, 

𝒙𝑛 =  𝒙 𝑔(𝒔) = {𝑥𝑖(𝑔(𝒔))
𝑖
}

𝑖=1

𝑛

                                               (4.11) 

  

Fig. 4.4: Structure for SN branch. 𝑛𝑙 – number of convolutional layers, 𝑘𝑠 – kernel size, 𝑐ℎ – number of channels. 

 

The SN function 𝑔(𝒔) is expected to decrease with respect to speed like the signal processing 

methods [52], [92]. Such that the effects induced by speed variation would be removed. In the next 

section, we are going to evaluate the performance of the proposed SN-AE over three experimental 

datasets. 

We acknowledge there may be better structures for the SN branch. Other possible structures can 

be a feedforward neural network like the AE, or a recurrent neural network, or others. But 

comparison of different networks is not the focus of this chapter. Once the effectiveness of 

proposed SN-AE with a CNN-shaped SN branch is validated, we can easily explore other possible 

implementations for the SN branch in our future studies. 
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4.3.3 Hyperparameter selection for SN branch 

As indicated in the Section 4.1, existing hyperparameter selection strategies use the VMSE as the 

measure to guide the selection [26], [158], [159]. The best hyperparameters are selected when the 

VMSE are minimized. The VMSE can be applied to the baseline AE. Since it measures the 

reconstruction performance of the AE. A smaller VMSE generally yields a better fault detection 

performance [161]. For the proposed SN-AE, we need to care about the speed effects removal 

performance as the SN is proposed for this purpose. A minimal VMSE may guarantee a good 

reconstruction performance but cannot assure a good speed effects removal performance. As the 

scale of the learned SN function can vary across hyperparameters. A smaller VMSE may be 

because of relatively smaller SN values, not better speed effects removal performance. To address 

this problem, we propose a new measure, the Pearson correlation coefficient between the health 

indicator and the speed with the validation set (VCOR), for the hyperparameter selection for the 

SN branch. The rationale is as follows. The VCOR measures the linear dependency between two 

variables. Its absolute value is in between [0, 1]. Hereinafter, the VCOR refers to its absolute unless 

specifically indicated. A larger VCOR indicates that two variables are more likely correlated, 

otherwise less correlated. Based on our evaluation, the health indicator returned by the baseline 

AE and the speed are highly correlated, and the VCOR is large. Such phenomenon can be observed 

in case studies of this chapter. Remember the goal of the proposed SN is to remove the effects of 

speed variation. Once such effects are removed, the correlation between the health indicator and 

speed is supposed to be mitigated, and thus the VCOR would be smaller. A better fault detection 

performance can be expected accordingly. 
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In this chapter, the scope of the hyperparameter selection is limited to the SN branch only, that is, 

the number of layers (𝑛𝑙), kernel size (𝑘𝑠) and the number of channels (𝑐ℎ), for the SN branch. 

For simplicity, let 𝚲 = {𝑛𝑙, 𝑘𝑠, 𝑐ℎ}  herein and after. We assume the baseline model already 

performs well with the reconstruction task and its hyperparameters are fixed. The widely used grid 

search method [26] will be adopted together with the proposed measure VCOR to conduct 

hyperparameter selection for the SN branch. We acknowledge there are many advanced 

hyperparameter searching methods, such as the random search [26], Bayesian optimization [158] 

and differentiable architecture search [159]. Since the hyperparameter search method is not the 

focus of this chapter, we choose the grid search due to its simplicity. Once the proposed searching 

measure, i.e., the VCOR, is verified effective, it is supposed to be applicable with other searching 

methods. Detailed steps of hyperparameter selection using the grid search incorporating the 

proposed VCOR are given below. 

Step 1: Configure a validation set which contains healthy data only which is never used in the 

model training or model testing. 

Step 2: Reconstruct the validation set with a well-trained SN-AE with a certain combination of 

hyperparameters in 𝚲. 

Step 3: Calculate the health indicator, i.e., RMS of the reconstruction residual or error (𝑒𝑟𝑟), of 

every single sample in the validation set. 

Step 4: Calculate the mean speed (𝑠𝑚) of every single sample in the validation set. 

Step 5: Calculate the correlation coefficient between 𝑒𝑟𝑟 and 𝑠𝑚 with the following equation, 
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VCOR =  𝑐𝑜𝑟𝑟(𝑒𝑟𝑟, 𝑠𝑚) =  
∑ (𝑒𝑟𝑟𝑖−𝑒𝑟𝑟̅̅ ̅̅ ̅)(𝑠𝑚𝑖−𝑠𝑚̅̅ ̅̅ )𝑁𝑉

𝑖

√∑ (𝑒𝑟𝑟𝑖−𝑒𝑟𝑟̅̅ ̅̅ ̅)2 𝑁𝑉
𝑖 ∑ (𝑠𝑚𝑖−𝑠𝑚̅̅ ̅̅ )2 𝑁𝑉

𝑖

                        (4.12) 

where, 𝑒𝑟𝑟̅̅̅̅̅ and 𝑠𝑚̅̅ ̅̅  refer to the average of 𝑒𝑟𝑟 and 𝑠𝑚, 𝑁𝑉 means the number of samples in the 

validate set and 𝑐𝑜𝑟𝑟 refers to the function to find correlation coefficient. 

Step 6: Repeat Steps 2 – 5 to find VCORs for all candidate hyperparameter combinations in 𝚲. 

Step 7: Select optimal hyperparameters for the SN branch. The optimal hyperparameters 𝚲∗are 

returned when the absolute value of the VCOR is minimized, 

𝜦∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜦VCOR                                                        (4.13) 

Given the above description of the proposed SN-AE, an overall flowchart of using the proposed 

SN-AE to conduct fault detection is given in Fig. 4.5. The overall method consists of three stages 

including a training stage, a validation stage, and a test stage. In the training stage, we train the 

proposed SN-AE using the training set to optimize the parameters 𝛉𝒙 and 𝛉𝒔, of the SN-AE for 

each hyperparameter combination in 𝚲. The optimal parameters 𝛉𝒙
∗  and 𝛉𝒔

∗ are reached when the 

loss 𝐿(𝛉𝑥, 𝛉𝑠) is minimized. In the validation stage, we conduct optimal hyperparameter selection 

for the SN branch. The optimal hyperparameters are obtained when the correlation coefficient 

between the RMS of the reconstruction residual of the normalized vibration and the mean of the 

speed, i.e., the VCOR over the validation set, is minimized. In the test stage, the selected model is 

used to conduct fault detection over the test set. The RMS of the reconstruction residual is taken 

as the health indicator. The health indicator is compared with a predefined threshold to determine 

the health state of a machine. If the health indictor is small than the threshold, the machine is 

deeded healthy, otherwise faulty. As mentioned in Section 4.2, in this chapter, we do not provide 
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a specified threshold but try all feasible thresholds, and use an integrated performance measure, 

i.e., the AUC [32], [160], to show the fault detection performance of the proposed SN-AE. 

 

Fig. 4.5: Overall flowchart of the proposed fault detection method. 
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4.4 Case studies 

This section presents three case studies to validate the effectiveness of the proposed SN-AE over 

three different experimental datasets, respectively. The datasets used include a planetary gearbox 

dataset, a fixed-shaft gearbox dataset and a bearing dataset. 

4.4.1 Case study 1: Planetary gearbox dataset 

4.4.1.1 Dataset description 

The planetary gearbox dataset was collected in 2021 at Tsinghua University, Beijing, China by the 

author and colleagues [162]. The teg rig is shown in Fig. 4.6. It consists of motor, a planetary 

gearbox, and a magnetic power break. Three accelerometers were mounted on the planetary 

gearbox to collect its acceleration signals from the vertical, lateral and the horizontal direction, 

respectively. A current sensor was used to collect the current signal of the motor. An encoder was 

installed in between the motor and the planetary gearbox to measure the rotating speed. 

The data was collected under multiple health states and multiple speed conditions. The health states 

contain 16 states including the healthy state, bearing fault, ring gear fault, sun gear fault and 

planetary gear fault, and different fault severities, as shown in Fig. 4.7. The speed conditions 

include constant speed conditions and varying speed conditions. The constant speed condition 

contains five speed levels of 300 rpm, 600 rpm, 900 rpm and 1500 rpm. The varying speed 

conditions changes the speed continuously in between 300 rpm and 1500 rpm. Ten repeating tests 

were conducted for each health state and each health condition. Each test lasted for 60 s. The 
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sampling rate was 20 kHz. An example of collected speed signal and corresponding acceleration 

signal is given in Fig. 4.8. 

 

 

Fig. 4.6: Planetary gearbox test rig. 

 

In this chapter, only the healthy data is going to be used to train the model. The data collected 

under an incipient fault, i.e., the planet gear tooth root crack, is going to serve as the faulty data to 

test the performance of models. The vibration in the vertical direction and speed signal are to be 

used. Other data will not be used. The data is preprocessed in the following steps before being 

further processed by deep learning models.  

(1) Low-pass with a cut-off frequency of 2.5 kHz and then down-sample data from 20 kHz to 

5 kHz for both the acceleration and speed signals. 

(2) Segment data into short samples with a length of 2000 data points (0.4 s) without overlap.  

(3) Delete outliers to balance the distribution across speed. The outliers here are defined as 

samples with rare speed values (i.e., outside the range of 300 rpm – 1500 rpm) or samples 

with corrupted speed collection. 

Magnetic 
powder break 

Planetary 
gearbox 

Induction 
motor 
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(4) Split the data into a training set, a validation set and a test set. The training set and the 

validation set contain healthy data only. The test set contains half healthy data and half 

faulty data. 

(5) For the training set and the validation set, the data is further segmented into a shorter length 

of 250 data points (0.05 s) to speed up the training process. 

 

 
Fig. 4.7: Seeded faults of planetary gearbox: (a) Ring gear tooth missing, (b) Sun gear chipped tooth, (c) Sun gear 

tooth missing, (d) Planetary gear tooth root crack, (e) Planetary gear chipped tooth, (f) Planetary gear tooth missing, 

(g) Planetary bearing inner race crack (hereinafter, bearing race crack means the crack width = 0.4 mm), (h) 

Planetary bearing inner race fault (hereinafter, bearing race fault means induced crack width = 2 mm), (i) Planetary 

bearing outer race crack, (j) Planetary bearing outer race fault, (k) Planetary bearing rolling element fault, (l) Input 

shaft bearing inner race crack, (m) Input shaft bearing inner race fault, (n) Input shaft bearing outer race crack and 

(o) Input shaft bearing outer race fault. Seeded faults are marked in red rectangles. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o) 
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The preprocessed data is configured as shown in Table 4.1. The training data and the test data have 

different lengths. The training data is shorter to reduce the model scale and ultimately speed up 

the training. The test data is longer to assure that at least one cycle is experienced, and the tooth 

fault is meshed once. Such configuration is realized as follows. The number of neurons of the input 

layer of the AE branch is identical to the data length of the training set, i.e., 250. In the training 

stage, the SN-AE directly uses the training set. In the test stage, a test sample is firstly split into 

consecutive sequences without overlap which have the same length as the training data. Each 

sequence is reconstructed with the well-trained AE separately. Reconstructed sequences belonging 

to a same test sample are concatenated. The concatenated sequence is then compared with the test 

data to find the reconstruction residual, which is further used for fault detection. The validation set 

is utilized in a same way as the training set and thus will not be detailed. 

 
Fig. 4.8: Example of collected data of the planetary gearbox dataset (Healthy): (a) Speed and (b) Acceleration. 

 

Table 4.1: Summary of the planetary gearbox dataset (Continuous varying in between 300~1500 rpm). 

Sub-set # of samples Sample length 

Training set (Healthy only) 2428 250 (0.05 s) 

Validation set (Healthy only) 1620 250 (0.05 s) 

Test set (Healthy + Faulty) 129 + 129 2000 (0.4 s) 

 

(a)  (b)  
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4.4.1.2 Model setting 

The baseline AE contains five layers as follows,  

• Number of layers: 5. 

• Numbers of neurons: 250 (Input) – 128 – 64 – 128 – 250 (Output). The number of neurons 

of the input layer and the output layer is identical to the training data length. For the 

planetary gearbox dataset, it is 250. 

• Activations: Linear for the output layer and ReLU for others. 

The proposed SN-AE consists of two branches, i.e., the AE branch and the SN branch. The 

structure of the AE is identical to the baseline AE as detailed above. The SN branch is a CNN-

shaped network. We will explore the impacts of hyperparameters regarding the SN structure by 

trying out several feasible values as follows.  

• Number of layers 𝑛𝑙: 1, 2 and 3 

• Kernel size 𝑘𝑠: 3, 5, 7 and 9  

• Number of channels 𝑐ℎ: 4, 8, 16 and 32  

Given these values, we have 48 feasible hyperparameter combinations. Other hyperparameters 

regarding the model training are as follows. The batch size is 64. The maximum epoch is 300. The 

optimization method is the Adam [26]. The learning rate is 0.0002. The models were coded in 

Python using the framework of Keras and run at Google Colab. Five repeating trials were 

conducted for each case. Results are shown below.  
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4.4.1.3 Results 

The fault detection performance of the baseline AE and the proposed SN-AE with different 

hyperparameters are evaluated. The AUC [160] is used to measure the fault detection performance, 

which provides a comprehensive measure of false positive rates and true positive rates for fault 

detection. The results with the test set are given in Fig. 4.9. The curve shows the average AUC of 

five repeating trials. The error bars are the corresponding standard derivations. A range in between 

two vertical dash lines contain results of four kernel sizes of 3, 5, 7 and 9 with a certain number of 

channels. Four consecutive ranges cover results of a certain number of layers. Major observations 

from Fig. 4.9 are listed below. 

(1) The AUC of the bassline AE is 0.6863±0.0206. The highest AUC of the proposed SN-AE 

is 0.9704±0.0087 achieved at (𝑛𝑙 = 3, 𝑐ℎ = 32, 𝑘𝑠 = 9). The lowest AUC of the proposed 

SN-AE is 0.8101±0.0866 returned when (𝑛𝑙 = 2, 𝑐ℎ = 4, 𝑘𝑠 = 3). The proposed SN-AE 

archives significantly higher AUCs regardless of the optimization of hyperparameters of 

the SN branch.  

(2) The number of layers of 𝑛𝑙 =  2 is preferred out of 3 candidate numbers of layers, as it 

returns relatively stable and fairly high AUCs. The number of channels of 𝑐ℎ =  32 is 

preferred out of 4 candidate numbers of layers, as it features fairly high AUCs. When 𝑛𝑙 <

3 and 𝑐ℎ <  16, a lager kernel size (𝑘𝑠) is preferred, otherwise no clear clues are observed 

from Fig. 4.9. 
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Fig. 4.9: Fault detection performance of the proposed SN-AE over planetary the gearbox dataset. 𝑛𝑙 – number of 

layers of the SN branch, 𝑘𝑠 – kernel size and 𝑐ℎ – number of channels. 

 

4.4.1.4 Hyperparameter selection for SN branch 

Following the proposed strategy in Section 4.3.3, we calculate the correlation coefficient VCOR 

between the health indicator and the speed of the validation set for hyperparameter selection for 

the SN branch. The resultant absolute VCOR of each hyperparameter combination is shown in Fig. 

4.10(a). The VMSE of the reconstruction residual is shown in Fig. 4.10(b) for comparison. The 

AUC is also shown for references. The results including the VCOR and the VMSE are the average 

of the five repeating trials. The error bars are not shown for a better readability of the figures. 
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From Fig. 4.10(a), we can see that the VCOR of the validation set generally shows a reverse trend 

as that of the AUC. A smaller VCOR generally returns a larger AUC, and vice versa. This indicates 

the feasibility of using VCOR to conduct hyperparameter selection for the SN branch.  

From Fig. 4.10(b), we can see that the VMSE of the validation set even sometimes illustrates a 

reverse trend as that of the AUC, but there are many scenarios wherein this trend does not hold 

(e.g, 𝑛𝑙 = 3). This means the VMSE is less favorable for the hyperparameter selection for the SN 

branch, as mentioned in Section 4.3.3.  

The largest VCOR is obtained with the baseline AE, and as expected, the AUC is the lowest. For 

the proposed SN-AE, the smallest VCOR is pinpointed with a dash arrow in Fig. 4.10(a). For 

comparison, the highest AUC with the test set is also marked but with a solid arrow. We did the 

same work for the Fig. 4.10(b). Corresponding values are summarized in Table 4.2. We can see 

that the hyperparameters selected by the proposed VCOR returns an AUC of 0.9535, which quite 

approaches the highest AUC of 0.9704 and is significantly higher than the baseline AE of 0.6863. 

This means that using the proposed measure VCOR of the validation set, we can select a good SN-

AE for the purpose of fault detection. 

The AUC returned by the minimal VMSE is 0.8635. It is also significantly higher than that of the 

baseline AE, but much smaller than the one selected by the proposed VCOR. This shows the 

superiority of the proposed VCOR hyperparameter selection for the SN branch. In the following, 

the SN-AE with hyperparameters of (𝑛𝑙 = 2, 𝑐ℎ = 32, 𝑘𝑠 = 7) selected by the proposed VCOR 

is used for further analysis. 
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(a) 

 
(b) 

Fig. 4.10: Hyperparameter selection for the SN branch of the proposed SN-AE over the planetary gearbox dataset: 

(a) Proposed VCOR and (b) Existing VMSE. 
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Table 4.2: Hyperparameter selection for the SN branch with the planetary gearbox dataset.  

Selection method AUC VCOR VMSE Hyperparameters 

Highest AUC with the test set 0.9704 0.2996 0.5329 (3, 32, 9) 

Existing VMSE 0.8635 0.3563 0.5278 (1, 32, 5) 

Proposed VCOR 0.9535 0.1041 0.5311 (2, 32, 7) 

Notes: 1. The hyperparameters are in the form of (𝑛𝑙, 𝑐ℎ, 𝑘𝑠). 2. AUC of the baseline AE is 0.6863. 

 

4.4.1.5 Learned SN function 

The learned SN function 𝑔(𝑠) is shown in Fig. 4.11. The hyperparameters are selected by the 

proposed VCOR, i.e., (𝑛𝑙 = 2, 𝑐ℎ = 32, 𝑘𝑠 = 7). The SN function out of other hyperparameters 

are not shown for simplicity. We can see that the 𝑔(𝑠) decreases with speed as expected. Such 

decreasing trend removes the effects induced by speed variation.  

 

Fig. 4.11: Learned SN function of the proposed SN-AE over the planetary gearbox dataset with selected optimal 

hyperparameters of (𝑛𝑙 = 2, 𝑐ℎ = 32, 𝑘𝑠 = 7). 

 

To illustrate effects of speed variation on the health indicator, we plot the health indicator, i.e., the 

RMS of the normalized reconstruction residual versus the speed, as shown in Fig. 4.12. The 

corresponding receiver operator characteristic curve is also shown for reference. We can see that, 



126 

(1) In Fig. 4.12(a), the health indicator shows a clear increasing trend with speed. This means 

the health indicator constructed by the baseline AE is affected by the speed variation.  

(2) In Fig. 4.12(b), the increasing trend induced by speed is pretty much mitigated, compared 

to the baseline AE as shown in Fig. 4.12(a). This means the effects of speed variation are 

successfully removed with the proposed SN-AE.   

(3) The amplitude of health indicator of the SN-AE (Fig. 4.12(b)) is much smaller than that of 

the baseline AE (Fig. 4.12(a)). This is because the vibration amplitude is reduced when 

applying the SN function. This does not matter for fault detection as we do not care about 

the absolute value of health indicators but the care about the relative values.  

  
(a)                                                                                          (b)  

  
(c)                                                                                      (d) 

Fig. 4.12: Health indicator versus speed over the planetary gearbox dataset: (a) Baseline AE, (b) Proposed SN-AE 

with selected hyperparameters of (𝑛𝑙 = 2, 𝑐ℎ = 32, 𝑘𝑠 = 7), (c) Receiver operator characteristic curve for (a), AUC 

= 0.6863 and (d) Receiver operator characteristic curve for (b), AUC = 0.9535. 
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4.4.2 Case study 2: Fixed-shaft gearbox dataset 

4.4.2.1 Dataset description 

The fixed-shaft gearbox dataset [144] was collected at the University of Alberta, Edmonton, 

Alberta, Canada in 2018 by the author and author’s colleagues. This dataset contains acceleration 

signals and speed signals of a fixed-shaft gearbox with different health states under varying speed 

conditions. The health states include the healthy state and the faulty state with five severity levels 

of tooth root cracks. See more information of this dataset in Section 3.3.3.  

In this chapter, data under the healthy state and the faulty state with the most incipient tooth root 

crack (shown in the very left panel of Fig. 3.7(a)) will be used. Only a single channel of vibration, 

i.e., the vertical direction, will be adopted. The data with the most incipient tooth root crack fault 

is taken as the faulty data. The fixed-shaft gearbox dataset is preprocessed in a same way as that 

for the planetary gearbox dataset. The resultant dataset is summarized in Table 4.3. The samples 

are evenly distributed across speed. 

Table 4.3: Summary of the fixed-shaft gearbox dataset (Continuously varying in between 50 ~ 180 rpm). 

Sub-set # of samples Sample length 

Training set (Healthy only) 510 256 (0.2 s) 

Validation set (Healthy only) 340 256 (0.2 s) 

Test set (Healthy + Faulty) 110 + 110 512 (0.4 s) 

 

4.4.2.2 Results 

The hyperparameters for the SN-AE model are the same as that for the planetary gearbox dataset, 

expect that the number of neurons of the input and the output layers is changed to 256 to fit in the 

fixed-shaft gearbox dataset. The fault detection performances are shown in Fig. 4.13. Similar 
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trends as that of the planetary gearbox dataset are observed. The largest AUC is 0.9252±0.0043, 

achieved at (𝑛𝑙 = 3, 𝑐ℎ = 8, 𝑘𝑠 = 9). The lowest AUC is 0.9047±0.0098, returned by (𝑛𝑙 =

3, 𝑐ℎ = 4, 𝑘𝑠 = 7). They are both significantly improved from 0.8652±0.0071, which is obtained 

by the baseline AE. The hyperparameters has limited impacts on the fault detection AUC for the 

fixed-shaft gearbox dataset. Therefore, less layers, less channels and smaller kernel sizes are 

preferred to reduce the computation load. 

 
Fig. 4.13: Fault detection performance of the proposed SN-AE over the fixed-shaft gearbox dataset. 𝑛𝑙 – number of 

layers of the SN branch, 𝑘𝑠 – kernel size and 𝑐ℎ – number of channels. 

 

Likewise, we also conducted hyperparameter selection for the fixed-shaft gearbox dataset. The 

results of both the proposed VCOR and the existing VMSE are given in Fig. 4.14. The selected 

hyperparameters are summarized in Table 4.4.  
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(a) 

 
(b) 

Fig. 4.14: Hyperparameter selection for the SN branch of the proposed SN-AE over the fixed-shaft gearbox dataset: 

(a) Proposed VCOR and (b) Existing VMSE. 
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We can observe similar trends as that of the planetary gearbox dataset. The difference is that the 

VMSE returns quite good fault detection performance. A problem observed with the proposed 

VCOR is that even the VCOR always shows a reverse trend with the AUC, the amplitude of 

the VCOR with 𝑛𝑙 > 1 is relatively large. Nevertheless, this does not prevent the proposed VCOR 

from returning high fault detection AUC for the fixed-shaft gearbox dataset, as shown in Table 

4.4. The learned SN function of the proposed SN-AE with selected hyperparameters of (𝑛𝑙 =

1, 𝑐ℎ = 32, 𝑘𝑠 = 9) by the proposed VCOR is shown in Fig. 4.15. The corresponding health 

indicator versus speed is shown in Fig. 4.16. Like the planetary gearbox dataset, the increasing 

trend in the health indicator which is induced by speed variation, is removed, and the learned SN 

function decreases with speed as expected. 

Table 4.4: Hyperparameter selection for the SN branch with the fixed-shaft gearbox dataset. 

Selection method AUC VCOR VMSE Hyperparameters 

Highest AUC with the test set 0.9252 0.3856 0.2709 (3, 8, 9) 

Existing VMSE 0.9166 0.5846 0.2668 (2, 16, 7) 

Proposed VCOR 0.9227 0.0370 0.2827 (1, 32, 9) 

Notes: 1. The hyperparameters are in the form of (𝑛𝑙, 𝑐ℎ, 𝑘𝑠). 2. AUC of the baseline AE is 0.8652. 

 

Fig. 4.15: Learned SN function of the proposed SN-AE over the fixed-shaft gearbox dataset with selected 

hyperparameters of (𝑛𝑙 = 1, 𝑐ℎ = 32, 𝑘𝑠 = 9). 
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(a)                                                                                      (b) 

 
(c)                                                                                   (d) 

Fig. 4.16: Health indicator versus speed over the fixed-shaft gearbox dataset: (a) Baseline AE, (b) Proposed SN-AE 

with selected hyperparameters of (𝑛𝑙 = 1, 𝑐ℎ = 32, 𝑘𝑠 = 9), (c) Receiver operator characteristic curve for (a), AUC 

= 0.8652 and (d) Receiver operator characteristic curve for (b), AUC = 0.9227. 

 

4.4.3 Case study 3: Bearing dataset 

4.4.3.1 Dataset description 

The bearing dataset [163] is an open access dataset which was released by professionals with the 

Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada in 2018. 

The dataset can be accessed at http://dx.doi.org/10.17632/v43hmbwxpm.1. It contains acceleration 

signals and speed signals collected from rolling element bearing test rig with different health states 

under varying speed conditions. The experimental setup is shown in Fig. 4.17. The health states 

include healthy, faulty with an inner race defect and faulty with an outer race defect. The speed 

http://dx.doi.org/10.17632/v43hmbwxpm.1
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varied continuously in between 900 – 1500 rpm. An example of collected speed signal and 

corresponding vibration signals is shown in Fig. 4.18. The collected data is preprocessed in the 

same way as that for the planetary gearbox dataset. The resultant dataset is summarized in Table 

4.5. Over here, the faulty data is the data collected with the outer race fault. 

 

Fig. 4.17: Experimental test rig for the bearing dataset [163]. 

 

  

(a)                                                                          (b) 

Fig. 4.18: Example of collected data in the bearing dataset: (a) Speed and (b) Acceleration. 
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Table 4.5: Summary of the bearing dataset (Continuously varying in between 900 ~ 1450 rpm). 

Sub-set # of samples Sample length 

Training set (Healthy only) 558 250 (0.05 s) 

Validation set (Healthy only) 372 250 (0.05 s) 

Test set (Healthy + Faulty) 190 + 190 500 (0.1 s) 

 

4.4.3.2 Results 

The same hyperparameters as that for the planetary gearbox dataset are adopted over here for the 

bearing dataset. The proposed SN-AEs with all 48 hyperparameter combinations as well as the 

baseline AE are trained and tested separately. Five repeating trials are conducted for each case. 

The fault detection AUCs are shown in Fig. 4.19.  

 

Fig. 4.19: Fault detection performance of the proposed SN-AE over the bearing dataset. 𝑛𝑙 – number of layers of the 

SN branch, 𝑘𝑠 – kernel size and 𝑐ℎ – number of channels. 
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Still, similar trends as that of the planetary gearbox dataset and the fixed-shaft gearbox dataset are 

observed from Fig. 4.19 for the bearing dataset. The AUCs of the proposed SN-AE are all higher 

than that of the baseline AE, which is 0.9278±0.0106. The maximum AUC of the proposed SN-

AE is 0.9982 ± 0.0011 obtained when ( 𝑛𝑙 = 2, 𝑐ℎ = 16, 𝑘𝑠 = 3 ). The minimum AUC is 

0.9649±0.0089 returned by (𝑛𝑙 = 1, 𝑐ℎ = 32, 𝑘𝑠 = 7). Like the planetary gearbox dataset, the 

AUC becomes stable when 𝑛𝑙 > 1. 

Like the planetary gearbox dataset and the fixed-shaft gearbox dataset, we also conducte 

hyperparameter selection for the bearing dataset. The results are shown in Fig. 4.20 and Table 4.6. 

Like the fixed-shaft gearbox dataset, both the proposed VCOR and the existing VMSE return quite 

high AUCs, which approach the highest AUC with the bearing dataset. The proposed VCOR 

performs slightly better. 

Table 4.6: Hyperparameter selection for the SN branch with the bearing dataset. 

Selection method AUC VCOR VMSE Hyperparameters 

Highest AUC with the test set 0.9982 0.1149 0.4354 (2, 16, 3) 

Existing VMSE 0.9975 0.1288 0.4351 (2, 8, 7) 

Proposed VCOR 0.9981 0.0462 0.4354 (3, 4, 3) 

Notes: 1. The hyperparameters are in the form of (𝑛𝑙, 𝑐ℎ, 𝑘𝑠). 2. AUC of the baseline AE is 0.9278. 

 

The learned SN function and the health indicator versus speed for the bearing dataset are shown 

in Fig. 4.21 and Fig. 4.22, respectively. Still, the learned SN values follows a declining pattern 

with the speed. The increasing trend in the health indicator (Fig. 4.22(a)) is removed with the 

proposed SN-AE (Fig. 4.22(b)).  
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(a) 

 
(b) 

Fig. 4.20: Hyperparameter selection for the SN branch of the proposed SN-AE over the fixed-shaft gearbox dataset: 

(a) Proposed VCOR and (b) Existing VMSE. 
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Fig. 4.21: Learned SN function over the bearing dataset with selected hyperparameters of (𝑛𝑙 = 1, 𝑐ℎ = 4, 𝑘𝑠 = 3). 

 

  

(a)                                                                                         (b) 

  

(c)                                                                                      (d) 

Fig. 4.22: Health indicator versus speed over the bearing dataset: (a) Baseline AE, (b) Proposed SN-AE with 

selected hyperparameters of (𝑛𝑙 = 3, 𝑐ℎ = 4, 𝑘𝑠 = 3), (c) Receiver operator characteristic for (a), AUC = 0.9278 

and (d) Receiver operator characteristic for (b), AUC = 0.9981. 
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4.4.4 Comparisons 

The following comparisons are made to show the superiority of the proposed SN-AE over existing 

methods for rotating machinery fault detection under varying speed conditions. 

First, the SN-AE is compared with reported signal processing methods [52], [92] on speed effects 

removal. Following [52], [92], the vibration signal is divided by its peak envelop and then 

multiplied by the average envelope to remove the AM effects induced by speed variation (AM 

Removal). The normalized vibration signals are then processed by the baseline models for fault 

detection. 

Second, the whole package of the proposed SN is applied to four variants of the AE, which are 

among state-of-the-art methods for fault detection. Details are given below. 

• Sparse AE [97], [95]: The model structure is identical to the baseline AE. An L1 

regularization with a penalty coefficient of 0.0001 is applied to the activations of the 

bottleneck layer to inject sparsity to the model. 

• Denoising AE [96]: The model structure is identical to the baseline AE. The white noise 

of 10 dB is added to the input of the model to enhance the robustness of the AE. 

• AE-LSTM [85], [147]: The AE-LSTM contains two fully connected (FC) layers and two 

LSTM layers as follows: Input – FC (16) – LSTM (32) – LSTM (32) – FC (16) – Output. 

The numbers within the brackets are the number of neurons. 

• AE-CNN [148], [149]: The AE-CNN contains 3 convolutional (Conv) layers and 2 pooling 

layers as follows: Input – Conv (𝑐ℎ =  32, 𝑘𝑠 =  3) – Max pooling (1/2) – Conv (𝑐ℎ =

 16, 𝑘𝑠 =  3) – Up-pooling (2/1) – Conv(𝑐ℎ =  32, 𝑘𝑠 =  3) – Output. The max pooling 
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layer down-samples data to halve its length. The up-pooling layer up-samples data to 

double its length. 

Hyperparameters for training these models are the same as the baseline AE. The AUC is still taken 

as the fault detection performance measure. The average and standard derivation (Std) of AUCs 

of five repeating trials are given in Table 4.7. We can see that,  

(1) With the reported AM removal method [52], [92] adopted, the resultant AUCs are 

improved across all models, but are smaller than that of the proposed SN for most cases 

except the case of AE-CNN over the bearing dataset. This means removing AM effects 

does help in improving fault detection performances of existing models, and our proposed 

SN outperforms existing AM removing methods. 

(2) For the baseline AE and its variants, the proposed SN can significantly improve their fault 

detection performance, which validates the generalizability of the proposed SN. 

(3) The proposed measure VCOR selects better models that return higher AUCs than that of 

the existing VMSE for most cases expect the case of AE-LSTM over the bearing dataset. 

This means the proposed hyperparameter selection measure VCOR generally outperforms 

existing counterparts. 

Over here, only one set of hyperparameters for the AE and its variants are tried. It is obvious that 

better results may be obtained if hyperparameters of these baseline models are properly selected. 

This work was not conducted as comparisons among these baseline models are not the focus of 

this chapter. Instead, the focus is to show the effectiveness of the proposed SN branch for these 

models. It is reasonable to believe that if the performances of baseline models are improved, their 
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counterparts with the proposed SN branch applied will be improved accordingly. More discussions 

about this problem are given in Section 4.5.2. 

Table 4.7: Comparison of the proposed SN-AE with exiting methods for fault detection: AUC. 

Model 
Hyperparameter 

selection 

Planetary gearbox Fixed-shaft gearbox Bearing 

Average Std Average Std Average Std 

Baseline AE - 0.6863 0.0206 0.8652 0.0071 0.9270 0.0084 

AM Removal + 

Baseline AE 
- 0.7631 0.0251 0.9175 0.0217 0.9386 0.0418 

Proposed SN-AE 
VMSE 0.8635 0.0109 0.9166 0.0048 0.9975 0.0008 

Proposed VCOR 0.9535 0.0044 0.9227 0.0107 0.9981 0.0008 

Spares AE - 0.6984 0.0148 0.8474 0.0143 0.9274 0.0063 

AM Removal + 

Spare AE 
- 0.7772 0.0243 0.9005 0.0254 0.9576 0.0056 

Sparse AE + 

proposed SN 

VMSE 0.9137 0.0026 0.9100 0.0167 0.9971 0.0010 

Proposed VCOR 0.9561 0.0012 0.9225 0.0289 0.9985 0.0009 

Denoising AE - 0.6936 0.0154 0.8582 0.0189 0.9286 0.0063 

AM Removal + 

Denoising AE 
- 0.7771 0.0238 0.8469 0.0160 0.9314 0.0064 

Denoising AE + 

proposed SN 

VMSE 0.7809 0.0980 0.9154 0.0197 0.9795 0.0322 

Proposed VCOR 0.8455 0.0955 0.9212 0.0228 0.9795 0.0322 

AE-LSTM - 0.7232 0.0013 0.8359 0.0110 0.9466 0.0268 

AM Removal +  

AE-LSTM 
- 0.7809 0.0233 0.8627 0.0319 0.9568 0.0093 

AE-LSTM + 

proposed SN 

VMSE 0.7232 0.0013 0.8359 0.0110 0.9946 0.0020 

Proposed VCOR 0.9147 0.0098 0.9087 0.0194 0.9475 0.0052 

AE-CNN - 0.6064 0.0113 0.7859 0.0054 0.9532 0.0052 

AM Removal +  

AE-CNN 
- 0.7162 0.0247 0.8034 0.0023 1.0000 0.0000 

AE-CNN +  

proposed SN 

VMSE 0.6064 0.0113 0.7721 0.0140 0.9715 0.0038 

Proposed VCOR 0.8170 0.0035 0.8149 0.0249 0.9860 0.0025 

Note: VMSE (VCOR) corresponds to results selected with such hyperparameter selection measure. 

 

To this end, we have evaluated the fault detection performance of the proposed SN-AE and its 

variants over three experimental datasets. Results have shown that the proposed SN-AE is effective 

for rotating machinery fault detection under varying speed conditions, and the SN branch can be 

generalized to the variants of the AE. 
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We acknowledge the hyperparameters selected using the proposed VCOR are not perfect. As seen 

in all case studies, a smaller VCOR generally returns a higher fault detection AUC, but not strictly. 

Possible reasons are as follows.  

First, the proposed SN-AE only removes the AM effects induced by speed variation in vibration 

signals. The VCOR measures how much such effects are removed. However, the vibration signals 

are not only affected by speed variation, but also load variation and environment noise and more 

[8]. Effects of these factors sometimes are dependent. Removing the effects of speed variation may 

exaggerate effects of others. As such, when the speed effects are moved the most, i.e., the VCOR 

is the smallest, the fault detection AUC is not guaranteed to be the highest.  

Second, the hyperparameter selection is conducted over the validation set. Specifically, the optimal 

hyperparameters (or also the optimal model) are selected when the VCOR over the validation set 

is the smallest. The selected model is applied to the test set to conduct fault detection. An 

underlying assumption herein is that the selected SN-AE model which has the best speed variation 

effects removing ability over the validation set will perform well over the test set too. This is 

generally true but not strictly. Because the validation set only contains healthy data. This means 

the VCOR selects a model removing most speed variation effects with healthy data. However, the 

test set contains both healthy and faulty data. When the selected model is applied to the test set, 

the speed variation effects can be well removed with the healthy data but not guaranteed with the 

faulty data. As the faulty data features different patterns from healthy data. As such, a smallest 

VCOR over the validation set is not guaranteed to achieve the best speed variation removing 

performance over the whole test set, and thus is not guaranteed to yield the highest fault detection 

AUC over the test set.  
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However, the proposed VCOR generally returns models that foster just next to best fault detection 

AUCs and performs more stable than the existing VMSE. Therefore, we believe that the proposed 

VCOR for hyperparameter selection for the SN branch is effective for fault detection. 

 

4.5 Discussion 

This section provides discussions on five remaining concerns regarding the proposed SN-AE, 

including why the proposed SN-AE works, the impacts of hyperparameters of baseline models, 

training time requirements, structure for the SN branch, and limitations of the proposed SN-AE. 

4.5.1 Why proposed SN-AE works  

The proposed SN-AE works for fault detection because it normalizes the amplitude of raw 

vibration data to remove the speed induced AM effects. This is like the reported works of [52], 

[92] wherein the vibration amplitude is also normalized with a certain normalization function to 

remove the effects of speed variation to facilitate the fault detection and fault severity assessment. 

Our work differs from the reported works of [52], [92] on the designing of the normalization 

function. In [52], [92], the normalization function is manually designed using signal processing 

techniques, while in our proposed SN-AE, it is automatically learned. We believe that automatic 

learning returns better normalization functions than manual design, thanks to its performance 

guided nature. Accordingly, better fault detection performance has achieved as shown in Table 4.7. 

The proposed SN-AE only removes the AM effects but does not alter the FM effects yet. Fig. 4.23 

shows the speed, waveform, and spectrogram of a vibration signal of the planetary gearbox, and 

its normalized counterparts. Detailed observations are given below. 
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(a)                                                                                        (b) 

  
(c)                                                                                       (d) 

  
(e)                                                                                (f) 

Fig. 4.23: Normalized vibration and its spectrogram of a piece of data in the planetary gearbox dataset: (a) Speed 𝒔, 

(b) Normalization function 𝑔(𝒔), (c) Raw vibration 𝒙, (d) Normalized vibration 𝒙𝑛  =  𝒙𝑔(𝒔), (e) Spectrogram for 

(c) and (f) Spectrogram for (d). 

 

The normalization function 𝑔(𝑠) in Fig. 4.23 (b) is obtained using linear interpolation with the 

learned SN function shown in Fig. 4.11. Specifically, Fig. 4.11 shows the learned SN function 

𝑔(𝑠), which is with respect to speed 𝑠. Fig. 4.23 (a) shows a speed signal 𝑠(𝑡) which is with respect 
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to time 𝑡 . The SN function showing in Fig. 4.23 (b) is obtained by plugging 𝑠(𝑡) into 𝑔(𝑠), 

yielding the 𝑔(𝑠(𝑡)). Since the 𝑠(𝑡) and 𝑔(𝑠) do not have explicit formulas, it is not feasible to 

conduct the plugging analytically. Instead, the plugging is implemented through linear 

interpolation in Fig. 4.11 to finally get the 𝑔(𝑠(𝑡)) which is shown in Fig. 4.23 (b). 

The normalized vibration in Fig. 4.23(d) is the element-wise product of raw vibration in Fig. 4.23(c) 

and the SN function in Fig. 4.23(b). We can see the amplitude variations in the normalized 

vibration are pretty much removed as compared to the raw vibration. Still remaining amplitude 

fluctuations may be caused by load variation and other possible factors that affect the amplitude 

of vibration signals [8]. However, the spectrograms of the raw vibration and the normalized 

vibration are similar as shown in Fig. 4.23(e) and (f). Therefore, we say the SN-AE only removes 

the AM effects but does not remove the FM effects. 

To foster a complete solution to rotating machinery fault detection under varying speed conditions, 

we may use the matured order tracking [93] to resample the vibration to remove the FM effects 

first, and then apply the proposed SN-AE to the resampled signals to remove the AM effects. 

Results are given in Table 4.8. The resampling rate of order tracking is 720 pulses per revaluation. 

The AUCs are those selected with the proposed VCOR when applicable. We can see that, 

removing FM effects using order tracking does help in improving the fault detection performance 

with the baseline AE (e.g., from 0.6863 to 0.8713 for the planetary gearbox dataset), but the 

contribution is less than that of removing AM effects using the proposed SN-AE (e.g., from 0.6863 

to 0.9535 for the planetary gearbox dataset). Removing both AM and FM effects does not bring 

clear benefits compared to removing the AM effects only. This may be because that in the present 

fault detection task, the employed heath indicator (i.e., RMS of the reconstruction residual) is more 
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sensitive to the amplitude of vibrations while less sensitive to the frequency changes. We thus 

empirically conclude that the AM effects outweigh the FM effects in the context of fault detection. 

While implementing fault detection tasks, we may only need to consider the AM effects. 

Table 4.8: Fault detection results over the planetary gearbox dataset with order tracking applied (AUC). 

Model Planetary gearbox Fixed-shaft gearbox Bearing 

Baseline AE* 0.6863 ± 0.0206 0.8652 ± 0.0071 0.9270 ± 0.0084 

Proposed SN-AE* 0.9535 ± 0.0044 0.9227 ± 0.0107 0.9981 ± 0.0008 

Order tracking + baseline AE 0.8713 ± 0.0214 0.8785 ± 0.0177 0.9328 ± 0.0106 

Order tracking + proposed SN-AE 0.9476 ± 0.0180 0.9302 ± 0.0310 0.9438 ± 0.0076 

* Raw signals are used. Order tracking is not applied. Results are identical to case studies. 

 

4.5.2 Impacts of hyperparameters of baseline models 

In case studies, the baseline AE uses a fixed group of hyperparameters. This may raise a doubt that 

the results are ad-hoc. To show that the proposed SN-AE is robust to hyperparameters of the 

baseline AE, we evaluate its performances with different numbers of neurons for the AE as follows.  

• Setting 1: Input – 64 – 32 – 64 – Output. 

• Setting 2: Input – 256 – 128 – 258 –Output. 

Recall the default setting used in the case studies is of Input – 128 – 64 – 128 – Output. The number 

of neurons for the input and output is either 256 or 250 depending on the input data length. Results 

with these settings are shown in Fig. 4.24. For demonstration and simplicity purposes, only results 

of the planetary gearbox dataset are shown. We can see that the number of neurons affects the 

AUCs of the baseline AE and the proposed SN-AE simultaneously. The AUCs of the proposed 

SN-AE are improved from the baseline AE regardless of the number of neurons of the AE branch. 
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Fig. 4.24: Fault detection performance of the proposed SN-AE with different hyperparameters for AE branch over 

the planetary gearbox dataset. 

 

4.5.3 Training time requirements 

More training time is required for the proposed SN-AE because it has a larger model scale. Table 

4.9 lists the training time of the SN-AE over different datasets. We can see that the proposed SN-

AE requires at least 30% more training time, and up to three times of that for the baseline AE. The 

selected model also consumes significantly more training time. However, considering that the 

training process can be completed offline, the training time is not a critical problem if one has 

sufficient computation power. In real applications, we care more about the test time. For case 

studies in this chapter, the test time follows the same trend as the training time. The proposed SN-
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AE consumes as much as 0.2 s, compared to about 0.05 s out of the baseline AE. Such a short time 

would not be a big problem in real applications. 

Table 4.9: Training time requirements for the proposed SN-AE. 

Dataset Baseline AE (s) 
Proposed SN-AE (s) 

Range Selected 

Planetary gearbox 35.58 48.71~100.35 76.70 

Fixed-shaft gearbox 8.78 11.73~30.11 15.79 

Bearing 15.92 20.68~47.25 33.40 

Note: 1. Hyperparameters for the AE branch are the default of Input – 128 – 64 – 128 – Output. 2. “Selected” means 

the model selected using the proposed VCOR. 

 

4.5.4 Structure of SN branch 

In this chapter, the SN branch uses a convolutional neural network, which is generally complex, 

and thus has greatly increased the computation load as shown in Table 4.9. Besides, the learned 

SN function (Fig. 4.11, Fig. 4.15 and Fig. 4.21) are relatively simple and smooth. As such, there 

is a need to explore simpler structures for the SN branch. 

The results in case studies (Fig. 4.9, Fig. 4.13 and Fig. 4.19) have shown that even an SN branch 

consisting of a single convolutional layer with the least number of channels and smallest kernel 

size can return significantly better fault detection performance than the baseline model. This means 

that it is not a must to use complex structures for the SN branch to obtain superior fault detection 

performances. Therefore, it is feasible and promising to explore simpler structures for the SN 

branch. 

4.5.5 Limitations 

One obvious limitation is that the speed signals are mandatory for the proposed SN-AE. For 

scenarios wherein the speed signals are not available, the SN-AE is not applicable. 
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In this chapter, the proposed SN has been applied to the AE and its variants. The proposed SN is 

supposed to be applicable for any deep learning models that follow a data reconstruction-based 

fault detection procedure as shown in Fig. 4.1. However, the SN only works when we follow a 

reconstruction-based procedure. As shown in Fig. 4.3, a same SN function learned by the SN 

branch is multiplied by the input and divided by the output of the baseline model. This requires 

that the time stamps of the input and the output of the baseline model should be identical. This 

requirement is satisfied when the baseline model is implementing a reconstruction task in the 

context of fault detection. 

A remaining problem is that how the SN branch learns the expected SN function lacks 

mathematical support. Like most of the current deep learning models, this is a black box that needs 

further exploration to look inside to unfold the working mechanism. With the advances of the 

theory of deep learning, this problem might be solved accordingly.  

The proposed VCOR is for the hyperparameter selection of the SN branch only. It essentially 

measures the degree of how much the effects of speed variation is removed. It is not appropriate 

for the selection of other hyperparameters like the number of neurons of the AE and the learning 

rate. As these hyperparameters are dependent from removing effects of speed variation but 

regarding of the reconstruction performance of the model. Besides, we only selected 

hyperparameters for the SN branch. We did not conduct hyperparameter selection for the AE 

branch, not mention for the whole SN-AE model. If we could figure out a way to select 

hyperparameters for the SN branch and the AE branch together, even better fault detection 

performances can be expected as an overall optimum of hyperparameters of both branches could 

be achieved. 
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4.6 Summary and conclusion 

To improve the fault detection performance of the baseline AE for rotating machinery under 

varying speed conditions, we proposed an improved deep learning model named SN-AE. It uses 

an SN branch to normalize the vibration to remove the AM effects induced by speed variation 

before the vibration being processed by the AE. Effectiveness of proposed SN-AE is validated 

over three datasets. Major conclusions are drawn below: 

(1) The proposed SN-AE significantly improves the fault detection performance of the 

baseline AE. 

(2) The proposed SN-AE works because it removes AM effects induced by speed variation.  

(3) It is promising to use correlation coefficient between the reconstruction error and the speed 

as the performance measure to select hyperparameters for the SN branch of the proposed 

SN-AE.  

(4) Removing AM effects contributes more to better fault detection performances than 

removing FM effects under varying speed conditions. 

In this chapter, we only used the convolutional neural network for the SN branch. In the future, we 

will explore simpler structures for the SN branch to ease the computation load. 
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5. Speed adaptive gate for improving fault classification 

accuracy of deep learning models for rotating machinery 

under varying speed conditions 

This chapter focuses on fault classification of rotating machinery that operated under varying speed 

conditions. It is the Topic #3 as defined in Section 1.3. An auxiliary branch named the speed 

adaptive gate is proposed for existing deep learning models to improve their fault classification 

accuracies under varying speed conditions. The speed extracted in Chapter 3 can be used here as 

the input to the proposed auxiliary branch. The purpose of fault classification in this chapter is to 

find the type and severity of an occurred fault that has been detected in Chapter 4. Materials of this 

chapter have been documented in a submitted journal paper [164] and a published conference 

paper [165]. 

 

5.1 Introduction 

Rotating machines like motors, generators, gearboxes, and wind turbines are often subjected to 

faults in industrial applications. When a fault has occurred, a natural concern is to identify the root 

cause and the severity of the fault. This is often a fault classification problem in the context of fault 

diagnosis. Fault classification is usually understood as a supervised learning problem. Labeled data 

including vibration data and corresponding health states are needed. Deep learning models like the 

deep feedforward neural network (FNN), convolutional neural network (CNN), residual network 
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(ResNet) and recurrent neural network (RNN), and their variants are widely employed for the fault 

classification of various rotating machines, like bearings, gears, rotors, motors, CNC machines, 

wind turbines, compressors and more [38], [99], [104]. 

As reviewed in Section 1.2.3, even reported works [114] have shown demonstrated performances 

with rotating machinery fault classification under varying speed conditions, they still suffer from 

the following drawbacks: (1) Effects of speed variation on fault classification performances of 

deep learning models are not unfolded and (2) how to address the effects of speed variation is not 

specifically investigated. 

In this chapter, we will address the above-mentioned drawbacks and finally improve the fault 

classification accuracy of exiting deep learning models for rotating machinery under varying speed 

conditions. To achieve the goal, we firstly investigate the effects of speed variation on the fault 

classification performances of deep learning models. Existing understanding of effects of speed 

variation is from the perspective of signal processing. Such understanding is hard to be perceived 

by deep learning models. We propose to analyze the effects of speed variation from the perspective 

of deep learning. We find the fault information in vibration signals is imbalanced with speed, i.e., 

higher speeds excite more fault information. We further find that, due to the imbalance, the fault 

classification accuracy of deep learning models is not constant but increases with speed. To address 

the speed variation induced fault information imbalance, we then propose an auxiliary branch 

named speed adaptive gate (SAG) for existing deep learning models. The idea behind is to use an 

SAG to balance the fault information usage. The SAG takes the speed signal as the input. It 

controls the information flow of deep learning models in terms of speed, such that the effects of 

speed variation are mitigated. Effectiveness of the proposed SAG is validated with two baseline 
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models, i.e., a CNN and a ResNet [114], [123], over two experimental datasets, i.e., a planetary 

gearbox dataset and a fixed-shaft gearbox data. The CNN and the ResNet are selected because 

they are strong baselines for time series classification [123], and are among state-of-the-art models 

for machinery fault classification [114]. Major contributions of this chapter are summarized below.  

(1) Investigated the effects of speed variation on vibration signals from the perspective of deep 

learning and found that speed variation would lead to fault information imbalance in 

vibration signals. 

(2) Proposed a speed adaptive gate (SAG) for existing deep learning models to address the 

speed induced fault information imbalance. 

The rest of this chapter is organized as follows. The baseline models are introduced in Section 5.2. 

Section 5.3 analyzes effects of speed variation and presents the proposed SAG. Case studies of the 

proposed SAG for CNNs and ResNets are conducted in Section 5.4 and Section 5.5, respectively. 

Discussions are made in Section 5.6. Conclusions are drawn in Section 5.7. 

 

5.2 Baseline models 

This section briefly introduces the baseline CNN and the baseline ResNet. Fundamentals of CNNs 

and ResNets have been provided in Section 2.2.2. 

(1) Convolutional neural network (CNN) 

In this chapter, for the rotating machinery fault classification task, the model shown in Fig. 5.1 

will be a baseline CNN model. The architecture and hyperparameters of the baseline CNN are 
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adopted from state-of-the-art models as seen in [114], [123]. The structure of the baseline CNN is 

as follows: 

• 5 convolutional layers with numbers of channels of (32, 32, 32, 64 and 64) and 

corresponding kernel sizes of (5, 3, 3, 3 and 3). 

A max pooling layer is adopted before the second convolutional layer to halve the data length. A 

global average pooling (GAP) layer is adopted before the fully connected layer to prevent possible 

overfitting.  

 

Fig. 5.1: Baseline CNN model [114], [123]. 

 

(2) Residual Network 

ResNets are a special kind of CNNs, which feature an additional shortcut connection [124]. 

Fundamentals of ResNets have been given in Section 2.2.2. ResNets were initially introduced to 

address the performance degradation problem in the training of very deep networks for image 

classification [124], but later show competitive performances with time series classification [123], 

including the fault classification in PHM [166]. In this chapter, a ResNet adopted from [114], [123] 

will serve as another baseline model for rotating machinery fault classification. The architecture 

of the baseline ResNet is exhibited in Fig. 5.2. It has a same primary architecture as the baseline 

CNN but has two additional shortcut connections.  
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Fig. 5.2: Baseline ResNet model [114], [123]. 

 

As described in Section 5.1, the baseline CNN and ResNet do not consider the effects of speed 

variation when applied for fault classification. Next, we will attempt to address this problem and 

ultimately improve their fault classification performances under varying speed conditions. 

 

5.3 Proposed speed adaptive gate (SAG) 

This section firstly analyzes the effects of speed variation, and then presents details of the proposed 

SAG, which is designed to address such effects. 

5.3.1 Effects of speed variation 

From the perspective of signal processing, effects of speed variation are usually interpreted as 

additional amplitude modulation (AM) and frequency modulation (FM) in collected vibration 

signals. However, when deep learning models process vibration signals, the models do not 

“understand” what the AM and the FM are. They only perceive signals as discrete values. To make 

the effects of speed variation “understandable”, in this chapter, we will attempt to analyze the 

effects of speed variation from the perspective of deep learning. 
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Taking a rotating machine with a localized fault as an example, fault related information contained 

in vibration is often revealed as impulses [8]. The impulses are excited once or more in every 

single revolution [18]. In an identical sampling period, the amount of fault related information or 

impulses, is proportional to revolutions, thus proportional to rotating speed. An example of 

collected acceleration signals from a planetary gearbox which suffers from a tooth missing fault 

in the planet gear is given in Fig. 5.3. We can observe that within the sampling period of 4 s, the 

acceleration signal under 600 rpm contains more impulses than that of the 300 rpm, say, about 10 

impulses versus 5 impulses. Besides, the amplitude of impulses under 600 rpm is also larger. 

 
(a)                                                                                    (b) 

Fig. 5.3: Experimental acceleration signals of a planetary gearbox with a tooth missing fault in a planet gear: (a) 300 

rpm and (b) 600 rpm. 

 

Based on above reasoning and observations, we suggest a term named “speed induced fault 

information imbalance” to describe the effects of speed variation from the perspective of deep 

learning. The term is defined as that the amount of fault information in vibration signals varies 

with the speed. Specifically, higher speeds excite more fault information in vibration signals in an 

identical sampling period, which future includes two sides: 

• Amplitude side: Higher speeds increase machine vibration amplitude (as well as amplitude 

of fault signatures), making defects more evident. 
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• Frequency side: Higher speeds increase the occurrence frequency of fault signatures, which 

increases the number of fault signatures. 

Both sides can be illustrated by a global level measure like the RMS. However, the RMS is not 

used to measure the degree of the information imbalance in this chapter. As the RMS is not only 

affected by the fault information imbalance, i.e., speed, but also fault types. Different fault types 

may result in different RMS values with an identical speed. Therefore, in this chapter, we suggest 

simply using the speed to measure the degree of fault information imbalance. 

The definition of fault information imbalance is inspired by a similar term in deep learning, i.e., 

the class imbalance [167], which indicates the inequality of data amount of classes. Given the 

speed induced fault information imbalance, our hypothesis here is that deep learning models will 

bias to conditions with more fault information like the class imbalance problem. Correspondingly, 

the fault classification accuracy of higher speeds would be larger than that of lower speeds, that is, 

accuracy would increase with speed. In this chapter, we do not have a clear boundary for low or 

high speed conditions. We use lower or higher to illustrate relative speed levels within a dataset. 

5.3.2 Proposed SAG 

Here introduces the proposed SAG, and how to apply SAG to baseline models, i.e., SAGed models. 

5.3.2.1 Building block 

Given that the fault information is imbalanced due to speed variation, the motivation is to address 

such imbalance problem. The idea is to balance the information usage in term of speed. 

Specifically, if deep learning models process samples unequally, and preferably, speed adaptively 

and with more emphasis on lower-speed conditions, the effects of speed induced fault information 
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imbalance might be mitigated, and the fault classification accuracy of deep learning models would 

be improved. To implement this idea, in this chapter, we propose an auxiliary branch SAG to 

multiply existing deep learning models. The SAG is supposed to adaptively regulate the 

information flow in deep learning models in terms of speed to balance the information usage. 

The building block of the proposed SAG for CNNs (SAG-CNNs) is shown in Fig. 5.4. The SAG, 

𝐺(𝒔), and routes to SAG, are in red color. Contents in black color are a copy of the basic building 

block for CNNs as shown in Fig. 2.4. The output of the ReLU layer 𝒙𝒓 is multiplied (shown as 

"×") by the SAG 𝐺(𝒔). The output of the building block for SAG-CNNs then becomes, 

𝒙𝒓 = 𝑅𝑒𝐿𝑈(𝑮(𝒔) × 𝒙𝒓).                                                            (5.1) 

 

 
Fig. 5.4: Proposed speed adaptive gate for CNNs: Building block. 

 

The building block of the proposed SAG for ResNets (SAG-ResNets) is illustrated in Fig. 5.5, 

wherein SAGs are in red color, and the basic building block for ResNets (same as Fig. 2.5) is in 

black color. Different from SAG-CNNs which has only one SAG, we have two SAGs for ResNets, 

i.e., 𝐺𝑅(𝒔) and 𝐺𝐼(𝒔). Each multiplies a branch of the ResNet. The overall mapping of the building 

block for SAG-ResNets is, 
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𝐻(𝒙) = 𝐺𝑅(𝒔) × 𝐹(𝒙) + 𝐺𝐼(𝒔) × 𝒙.                                            (5.2) 

 

 

Fig. 5.5: Proposed speed adaptive gates for ResNets: Building block. 

 

For either SAG-CNNs or SAG-ResNets, the SAGs are originated from the auxiliary inputted speed 

signal 𝒔, and then learned through neural network layers. For SAG-ResNets, layers to learn the 

residual gate and identity gate are named LayerR and LayerI, respectively, to distinguish from 

each other. The type of layers could be convolutional layers, fully connected layers, or others. The 

multiplication operation between SAGs and baseline models could be elementwise, scalar, or 

others, depending on the type of layers of the SAG branch.  

The SAGs are to regulate the information flow of baseline neural networks. The values of SAGs 

control how many portions of fault information to be used. They are expected to adaptively change 

with speed. As such, different portions of fault information would be used under different speed 

conditions. It is worth to mention that using SAGs to regulate information flow is inspirited by the 

gating mechanism employed in the Long Short-term Memory (LSTM) [126] and the Highway 
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Network (HN) [168]. In these works, the gates are learned from the input 𝒙 itself, while our 

proposed SAGs are explicitly learnt from speed 𝒔, thus being speed adaptively. 

The weights and biases of the SAG branches are trainable and will be automatically learned while 

training the whole deep learning models i.e., SAG-CNNs or SAG-ResNets. Values of SAGs are 

between 0 and 1 thanks to the sigmoid activation function. Hopefully, the learned values of SAGs 

will be larger when the speed is lower and smaller when the speed is higher. In this way, more 

emphasis is given to lower speeds to balance the speed induced fault information imbalance. The 

fault classification accuracy is supposed to be improved accordingly. These guesses will be 

empirically validated in case studies. 

5.3.2.3 SAGed models 

With the SAG building blocks as shown in Fig. 5.4 and Fig. 5.5, we can build SAG-CNNs and 

SAG-ResNets by stacking them as needed. Deep learning models with SAG added will be shorted 

as SAGed models. To configure SAGed models, we shall consider at least the following aspects:  

• Structure of the SAG branch. 

• Location to apply the SAG. 

The structure of the SAG will be determined in reference to [126], [168] for the purpose of 

straightforward to implement in this chapter. That is, we are going to use same convolutional layers 

as the baseline models, but with less layers. We understand there may be better, at least simpler 

structures for the SAG. However, this is not the focus of this chapter. Our thought is that if the 

current structure which is straightforward, not specifically designed and easy-to-implement, does 

work, the effectiveness of our proposed SAGs would be solid. Readers can explore better 



159 

structures without doubt of possible ineffectiveness. The location of SAGs will be analyzed as it 

is a critical parameter to apply SAGs. Next, we will give two examples of applying SAG to 

baseline models, including the locations of the SAG. 

(1) SAG-CNN 

Given above-mentioned considerations, we suggest the structure of the baseline CNN with SAGs, 

i.e., SAG-CNN, as shown in Fig. 5.6. The baseline CNN (Same as Fig. 5.1) is in black color. The 

SAGs are in red color. Three tentative SAGs, G1, G2 and G3, are suggested for the baseline CNN 

to regulate its information flow at different locations. The G1 multiplies the baseline CNN at 

shallower depth, G2 is for middle depth and G3 is for deeper depth. The multiplication operation 

here is elementwise. We will evaluate the effects of SAG locations and the number of SAGs by 

applying either one or more of these three SAGs. 

 

Fig. 5.6: SAGs for the baseline CNN: SAG-CNN. 

 

In this chapter, networks to obtain SAGs have similar structures as that of the baseline CNN, but 

with following differences. First, the batch normalization (BN) layer is not adopted, as we want to 

reserve the variations of speed across batches. Second, the information flow of the SAGs is not 
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consecutive, e.g., the G2 is not directed to G3. As such, the diversity of SAGs is expected. Third, 

the average pooling instead of max pooling is used to mitigate small fluctuations in speed signals. 

The number of layers to obtain G1, G2 and G3 are the same to assure a same learning ability of 

each gate. The dimensionalities of G1, G2 and G3 can be different and are identical to their 

counterparts in the baseline CNN. 

(2) SAG-ResNet 

Following the same thoughts for building SAG-CNNs, we have the structure of SAG-ResNets as 

shown in Fig. 5.7. The baseline ResNet (Same as Fig. 5.2) is in black color. The SAGs are in red 

color. The SAG-ResNet possesses four tentative SAGs, i.e., GR1, GI1, GR2 and GI2. Among them, 

GR1 and GR2 multiply residual branches, and GI1 and GI2 multiply identity branches. GR1 and 

GI1 are applied at lower depth and GR2 and GI2 are for deeper depth. Performances of applying 

either one or more of these four SAGs will be checked in case studies. 

 

Fig. 5.7: SAGs for the baseline ResNet: SAG-ResNet. 
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The overall flowchart of using the proposed SAG-CNN or SAG-ResNet for rotating machinery 

fault classification is illustrated in Fig. 5.8. The vibration data and the speed data is firstly 

preprocessed and split into a training set and a test set. Each set contains both vibration and speed. 

The training set is used to training the model. The test set is to test the performance of the trained 

model. The fault classification results of the test set are to be analyzed to gain insights of the 

proposed model. Performances of the proposed SAG-CNN and the SAG-ResNet will be evaluated 

in Section 5.4 and Section 5.5, respectively. 

 

Fig. 5.8: Flowchart of using the proposed SAGed model for rotating machinery fault classification. The SAG-CNN 

is illustrated as an example.  

 

5.4 Case studies with SAG-CNN 

This section presents two case studies including a planetary gearbox dataset and a fixed-shaft 

gearbox dataset to validate the effectiveness of the proposed SAG for CNNs. Comparisons are 

made with a method for the class imbalance problem named cost-sensitive loss [169], and a method 

of utilizing speed for fault classification [170], to highlight the superiority of our proposed SAGs 

from multiple perspectives.  
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5.4.1 Case study 1: Planetary gearbox dataset 

5.4.1.1 Dataset description  

The planetary gearbox dataset was collected by the author and colleagues in 2021 at Tsinghua 

University, Beijing, China [162]. Detailed introduction has been provided in Section 4.4.1. Healthy 

sates of this dataset are summarized in Table 5.1. In this chapter, data with all health states will be 

used for fault classification. Still, only the vertical vibration will be employed. 

Table 5.1: Health states of the planetary gearbox dataset. 

Health sate ID Health state Numbering in Fig. 4.7 

1 Healthy - 

2 Ring gear tooth missing (a) 

3 Sun gear chipped tooth (b) 

4 Sun gear tooth missing (c) 

5 Planetary gear tooth root crack (d) 

6 Planetary gear chipped tooth (e) 

7 Planetary gear tooth missing (f) 

8 Planetary bearing inner race crack (g) 

9 Planetary bearing inner race fault (h) 

10 Planetary bearing outer race crack (i) 

11 Planetary bearing outer race fault (j) 

12 Planetary bearing rolling element fault (k) 

13 Input shaft bearing inner race crack (l) 

14 Input shaft bearing inner race fault (m) 

15 Input shaft bearing outer race crack (n) 

16 Input shaft bearing outer race fault (o) 

Note: Bearing race fault (crack) means seeded crack width = 2 mm (0.4 mm). 

 

For the planetary gearbox dataset, we have 80 measurements (5 repeating tests × 16 health states) 

in total. Speed profiles of each measurement are close but slightly different as the speed was 

manually controlled with the knob of the converter. All the measurements are preprocessed 

following similar works [110], [114] to fit in the CNN as follows. 
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(1) Low-pass filter and down-sample data including both acceleration and speed. For the 

planetary gearbox dataset, the data is down-sampled from 20 kHz to 5 kHz. 

(2) Segment data into short samples with a length of 2000 data points (0.4 s).  

(3) Delete outliers to balance the distribution across speed values. The outliers here refer to 

samples with rare speed values which are pretty much outside the range of 300 rpm – 1500 

rpm. 

(4) Randomly split the samples into a training set and a test set with a ratio of 8:2. 

(5) Normalize the dataset. The vibration is normalized with the average and the standard 

derivation of the training set. The speed is divided by the maximum of the training set. 

After preprocessing, the resultant dataset is summarized in Table 5.2. Out of the 10447 samples, 

80% are in the training set and 20% are in the test set. The number of samples is evenly distributed 

across health states and speed. 

Table 5.2: Summary of the planetary gearbox dataset. 

Speed conditions # of health states # of samples Sample length 

Continuously varying 

(300 ~ 1500 rpm) 
16 10,447 2,000 data points (0.4 s) 

 

5.4.1.2 Model setting 

For the baseline CNN and the proposed SAG-CNN, the hyperparameters are in reference to [114], 

[124] as follows. The learning rate follows a decaying scheme [26], i.e., initial learning rate = 

0.001, divided by 10 every 50 epochs. The maximum epoch is 150. The batch size is 256. The 

optimization method is the Adam [26]. The models are programmed in Python with Keras and run 

in Google Colaboratory [140] with one GPU utilized. 
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5.4.1.3 Results  

(a) Accuracy 

The fault classification accuracy of the proposed SAG-CNN over the planetary gearbox dataset is 

shown in Fig. 5.9. The curves are the average accuracy of five repeating trials. The error bars show 

the standard derivations (std). The red solid curve represents the results of the proposed SAG-CNN 

wherein the gates are learned from speed (speed gated). The dash curve shows results of models 

with a same structure as SAG-CNN, but the Input2 is replaced with vibration (vibration gated). 

Reasons to have this curve are as follows. First, the SAG-CNN is more complex than the baseline 

CNN. A larger complexity often contributes to a better performance [26]. To tell whether the 

performance gain of the proposed SAG-CNN is contributed by the proposed SAG or the model 

complexity, we eliminate speed from the model but sustain the model complexity, that is, replace 

Input2 from speed with vibration. Second, using vibration to obtain gates somewhat reimplements 

how gates are learned in LSTM [126] and HN [168]. The dash curve thus provides a reference of 

how well these reported gates perform with fault classification of rotating machinery that operated 

under varying speed conditions. 

In Fig. 5.9, NA means gates are Not Available, corresponding to results of the baseline CNN. The 

G1 means only G1 is applied, G123≡G1+G2+G3 means three gates G1, G2 and G3 are applied, 

and so on. Fig. 5.9 shows that, 

(1) With the SAG applied, the fault classification accuracy is improved compared to the 

baseline CNN. This means our proposed SAGs are helpful for improving the fault 

classification accuracy of the baseline CNN. 
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(2) The speed gated always has higher accuracies than that of the vibration gated. This means 

learning gates from speed works better than that learning from vibration as in [126], [168]. 

In the following we will focus on the speed gated only.  

(3) For SAG-CNNs, the highest accuracy is 98.65% when G123 applied, followed by 98.63% 

(G1 applied) and 98.62% (G2 applied). These values are significantly higher than the 

classification accuracy of 95.16% out of the baseline CNN.  

(4) With a single gate applied, G1 and G2 foster higher fault classification accuracies than that 

of G3. This means applying gates close to the output layer of the CNN is not favorable. 

Applying multiple gates sometimes results in relatively worse performances, especially 

when G3 is included. As such, applying a single SAG is preferred. 

  

Fig. 5.9: Fault classification results of the proposed SAG-CNN over the planetary gearbox dataset. NA-Baseline 

model. 

 

Considering that more gates would consume more training time as shown in Table 5.3 and the G1 

consumes least training time while achieves just next to the highest accuracy (See Fig. 5.9), the 
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results of G1 will be analyzed in the following. Results of other gates are similar and thus not 

shown to reduce the scale of this chapter. 

Table 5.3: Training time consumption of the proposed SAG-CNN over the planetary gearbox dataset. 

Model NA (Baseline) G1 G2 G3 G12 G13 G23 G123 

CPU time (s) 143 179 182 199 206 221 224 242 

 

To show the stability of the proposed SAG, the loss of one trial during the training process is given 

in Fig. 5.10. We can see that before 100 epochs, the proposed SAG-CNN is more fluctuated with 

the test set. After 100 epochs, both the baseline and the proposed become stable. This means both 

models can be well converged during the training over the planetary gearbox dataset. 

             

(a)                                                                               (b) 

Fig. 5.10: Training and test loss over the planetary gearbox dataset: (a) Baseline CNN and (b) Proposed SAG-CNN 

(G1). 

 

To understand the main hits and misses of the classification, the confusion matrix of one trial of 

the baseline CNN and the proposed SAG-CNN (G1) is shown in Fig. 5.11. We can see the 

proposed SAG-CNN improves the classification accuracy for all classes. The main miss of both 

models is the health state 6, i.e., planetary gear chipped tooth. 
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(a) 

 
(b) 

Fig. 5.11: Confusion matrix of the proposed SAG-CNN over the planetary gearbox dataset: (a) Baseline CNN and 

(b) Proposed SAG-CNN (G1). See Table 5.1 for fault types corresponding to the class numbers. 
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(b) Effects of speed variation on fault classification accuracy 

As discussed in the Section 5.3, the fault classification accuracy of the baseline CNN is supposed 

to increase with speed due to fault information imbalance. The proposed SAG is expected to 

address this problem. We plot the accuracy versus speed of the baseline CNN and the SAG-CNN 

(G1), as shown in Fig. 5.12. Only the result of G1 is shown for simplicity. Since the speed varies 

continuously, it is infeasible to calculate the fault classification accuracy at a single speed value. 

We instead calculate the classification accuracy of samples within a speed range as follows.  

Step 1: Calculate the average speed of each sample in the test set. 

Step 2: Find the range of the average speed calculated in Step 1. For the planetary gearbox dataset, 

the speed range is 300 rpm – 1500 rpm. 

Step 3: Equally split the speed range found in Step 2 into certain subranges. Over here, the speed 

is split into the following 5 subranges: [300, 600), [600, 900), [900, 1200) and [1200, 1500].  

Step 4: Categorize the samples in the test set into corresponding subranges in terms of the average 

speed of each sample.  

Step 5: Calculate the classification accuracy of each subrange. 

Step 6: Plot the accuracy of each subrange versus the mid-speed of this range. 

 

Fig. 5.12: Accuracy versus speed of CNNs over the planetary gearbox dataset. 
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We can observe that the fault classification accuracy of the baseline CNN generally increases with 

speed. This validates our hypothesis that the accuracy would increase with speed due to fault 

information imbalance. An unexpected decline is observed at the end. Possible reasons are 

analyzed in the Section 5.6.2. We can also observe that with the SAG applied, the fault 

classification accuracy is improved across the whole speed range, but the accuracy under lower-

speed conditions is improved more than that of higher-speed conditions. Visually, the curve of the 

proposed SAG-CNN is more flattened than that of the baseline CNN. This means effects of speed 

induced fault information imbalance is mitigated. However, a slight increasing trend between the 

accuracy and speed is remained. Reasons are discussed in Section 5.6.3. 

(c) Leaned SAG values 

As indicated in Section 5.3, the learned SAG values are supposed to be larger for lower-speed 

conditions and vice versa. Fig. 5.13 shows SAG values versus speed of the proposed SAG-CNN 

over the planetary gearbox dataset. Each point in the figure represents a sample in the test set. The 

x-axis represents the average speed of this sample. The y-axis presents the average gate values 

learned for this sample. Still only the result of the G1 is shown for simplicity. We can see that the 

SAG values do decrease with speed as expected. 

  

Fig. 5.13: Average SAG values of SAG-CNN (G1) over the planetary gearbox dataset. 
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5.4.1.4 Comparisons 

Here gives the comparisons of the proposed SAG-CNN with two related methods. One is for the 

class imbalance problem and the other is about speed utilization. 

(a) Comparison with reported method for class imbalance problem 

As mentioned in Section 5.3, the definition of the speed induced fault information imbalance is 

inspired by the class imbalance problem. A natural thought is to compare the proposed SAG with 

existing methods for the class imbalance problem. Reported methods to such problem can be 

categorized into two types, i.e., data-level methods and algorithm-level methods [171]. Data-level 

methods modify the data while algorithm-level methods modify existing algorithms. Considering 

that our proposed SAGs modify existing deep learning models and thus pertain to algorithm-level 

methods, we are going to compare SAGs with reported algorithm-level methods.  

Cost-sensitive methods are among popular algorithm-level methods for the class imbalance 

problem [172]. Cost-sensitive methods modify the loss function of deep learning models. We 

manually assign higher costs to minority classes by incorporating class-wise weights. The cost-

sensitive loss (CSL) used in [169] will be adopted in this chapter thanks to its simplicity and 

interpretability,  

𝐿𝑐𝑠 = 𝑤(𝑥) ∙ 𝐿(𝑥)                                                               (5.3) 

where, 𝐿(𝑥) is the loss function of a deep learning model given input 𝑥,  𝐿𝑐𝑠 is the modified loss 

function, i.e., the cost-sensitive loss, and 𝑤(𝑥)  is the cost-sensitive weight. In [169], 𝑤(𝑥)= 

𝑤(𝑐|𝑥)=
max{𝑛𝑐}𝑐=1

𝐶

𝑛𝑐
, wherein, 𝑐 is the class, 𝐶 is number of all classes and 𝑛𝑐  is the number of 
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samples of class 𝑐. To fit in the speed induced information imbalance problem, the cost-sensitive 

weight is modified as, 

𝑤(𝑥) = 𝑤(𝑠|𝑥) = (
max{𝑠∈𝐒}

𝑠
)

𝛼

                                                (5.4) 

where, s is the average speed of sample x, and 𝐒 is the set of average speed of all samples. 

Considering that the effectiveness of cost-sensitive weights is case dependent, we introduce an 

hyperparameter 𝛼 to control the power of 
max{𝑠∈𝐒}

𝑠
 to seek possibly better results. 

The cost-sensitive loss will be applied to the baseline CNN. The hyperparameters are the same as 

that for the baseline CNN as shown in Section 5.4.1. The fault classification results with different 

𝛼 values are shown in Table 5.4. We can see that, the best result (bolded fonts) of the CNN+CSL 

is only slightly better than that of the baseline CNN, but significantly worse than that of the 

proposed SAG-CNN. The CNN+CSL consumes similar training time as baseline CNN. This is 

fair as applying CSL does not change the model scale. The above observations indicate that our 

proposed SAG outperforms the reported CSL method over the planetary gearbox dataset. 

(b) Comparison with reported speed utilization method 

In the proposed SAG, the speed signal is directly utilized. This brings a potential benefit that fault 

related information embedded in speed signals [53] would contribute to a better fault classification 

performance. Speed signals were also utilized in a reported model named stacked auto-encoder 

deep convolutional neural network (AE-CNN) [170] but in a different manner. In our proposed 

SAGed models, the gates (information) learned from speed signals multiply the information 

learned from vibrations. In AE-CNN [170], fault related information contained in vibration and 

speed is firstly mined via a CNN and an AE separately and then concatenated for fault 
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classification. We are going to compare our proposed SAG with the this reported AE-CNN model 

to show the speed utilization efficiency of our proposed model. 

The fault classification results of the reported AE-CNN [170] over the planetary gearbox dataset 

are given in Table 5.4 too. Different AE structures as shown in Table 5.4 are tried to avoid possibly 

ad-hoc results. We can observe that, reported AE-CNNs achieve significantly higher fault 

classification accuracies than that of corresponding baseline models, but still slightly lower than 

the proposed SAG-CNN. However, the reported AE-CNNs consume at least twice training time 

of that of the baseline CNN, while the proposed SAG-CNN spends only about 20% more time 

than the baseline CNN. This means that the proposed SAG-CNN is superior to the reported AE-

CNN with higher fault classification accuracies and less strict training time requirements. Please 

be advised the training time of the reported AE-CNNs is the summation of three parts, i.e., pre-

training of CNN, pre-training of AE and fine-tuning of AE-CNN. 

Table 5.4: Comparison of the proposed SAG-CNN with CNN+CSL and AE-CNN over the planetary gearbox 

dataset. 

Model Model Structure 
Accuracy 

CPU time (s) 
Average Std 

Baseline CNN [114], [123] -  95.16% 0.54% 143 

CNN+CSL [169] 

𝛼=0.1 95.33% 0.31% 144 

𝛼=0.3 95.27% 0.31% 147 

𝛼=0.5 95.05% 0.50% 147 

𝛼=1.0 93.92% 0.69% 144 

𝛼=2.0 88.56% 1.00% 145 

AE-CNN [170] 

1024-512-32-512-1024 97.55% 0.55% 394 

1024-256-32-256-1024 97.87% 0.54% 355 

1024-128-32-128-1024 97.75% 0.32% 337 

1024-256-64-256-1024 97.38% 0.48% 350 

1024-256-16-256-1024 97.32% 0.32% 347 

Proposed SAG-CNN  G1 98.63% 0.28% 179 
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5.4.2 Case study 2: Fixed-shaft gearbox dataset 

5.4.2.1 Dataset description 

The fixed-shaft gearbox dataset [144] was collected by the author and colleagues at the University 

of Alberta, Edmonton, Alberta, Canada in 2018. Detailed information of this dataset has been 

provided in Section 3.3.3. In this chapter, data under five faulty states will be used. Only a single 

channel of vibration, i.e., the one in the vertical direction, is going to be used in this chapter. The 

fixed-shaft gearbox dataset is preprocessed in a same way as that for the planetary gearbox dataset. 

After preprocessing, we get 7116 samples as shown in Table 5.5. 

Table 5.5: Summary of the fixed-shaft gearbox dataset. 

Speed conditions # of health states # of samples Sample length 

Continuously varying 

(Up and down within180 rpm) 
5 7116 1024 data points (0.4 s) 

 

5.4.2.2 Results 

Over here, the hyperparameters are the same as that for the planetary gearbox dataset, except that 

the batch size is halved as we have less samples in the fixed-shaft gearbox dataset. The fault 

classification results of the fixed-shaft gearbox dataset are briefly given below. 

(a) Accuracy 

The fault classification accuracy of the proposed SAG-CNN over the fixed-shaft gearbox dataset 

is given in Fig. 5.14. We can observe similar trends as that of the planetary gearbox dataset. The 

proposed SAG-CNN (speed gated) outperforms the baseline CNN. This means our proposed SAG-

CNN are effective with the fixed-shaft gearbox dataset. The highest accuracy is 90.01% achieved 
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when G1 applied, compared to 87.37% out of the baseline CNN. Likewise, the results with G1 

applied will be analyzed in the following. 

  

Fig. 5.14: Fault classification results of the proposed SAG-CNN over the fixed-shaft gearbox dataset. NA-Baseline 

model. 

 

The training and test losses over the fixed-shaft gearbox dataset are shown in Fig. 5.15. Both are 

relatively stable. The confusion matrix is shown in Fig. 5.16. We can see that the major misses 

with the baseline CNN, i.e., the Classes 1 and 3, are better classified with the proposed SAG-CNN. 

                

   (a)                                                                                 (b) 

Fig. 5.15: Training and test loss over the fixed-shaft gearbox dataset: (a) Baseline CNN and (b) Proposed SAG-CNN 

(G1) 

 



175 

  

(a)                                                                                        (b) 

Fig. 5.16: Confusion matrix over the fixed-shaft gearbox dataset: (a) Baseline CNN and (b) Proposed SAG-CNN 

(G1). 

 

(b) Effects of speed variation on fault classification accuracy 

Likewise, the relationship between the accuracy and the speed over the fixed-shaft gearbox dataset 

is shown in Fig. 5.17 to show the effects of speed variation on the fault classification accuracy of 

deep learning models. For the fixed-shaft gearbox dataset, similar trends are observed as that of 

the planetary gearbox dataset. Compared to the baseline CNN, the increasing trend is flattened. 

This means that the proposed SAG does address the speed induced fault information imbalance 

with the fixed-shaft gearbox dataset. 

 

Fig. 5.17: Accuracy versus speed of CNNs over the fixed-shaft gearbox dataset. 
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(c) Leaned SAG values 

The learned SAG values over the fixed-shaft gearbox dataset are shown in Fig. 5.18. Only results 

of G1 are shown for the purpose of simplicity. The SAG value decreases with speed as expected. 

 

Fig. 5.18: Average SAG values of SAG-CNN (G1) over the fixed-shaft gearbox dataset. 

 

5.4.2.3 Comparisons 

The performance of the proposed SAG-CNN is also compared with the reported CNN+CSL and 

AE-CNN. The results are shown in Table 5.6. Compared to the CNN+CSL, the proposed SAG-

CNN achieves significantly higher accuracy. Compared to the AE-CNN, the proposed SAG-CNN 

achieve slightly better accuracy but consumes much less training time. 

 

5.5 Case studies with SAG-ResNet 

Section 5.4 has validated the effectiveness of the proposed SAG when applied to the CNN, i.e., 

SAG-CNN, with two case studies. This section will conduct the same work to show the 

effectiveness of the SAG when applied to the ResNet, i.e., SAG-ResNet. 
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Table 5.6: Comparison of the proposed SAG-CNN with CNN+CSL and AE-CNN over the fixed-shaft gearbox 

dataset. 

Model Model Structure 
Accuracy 

CPU time (s) 
Average Std 

Baseline CNN [114], [123] -  87.26% 0.72% 118 

CNN+CSL [169] 

𝛼=0.1 87.37% 0.54% 118 

𝛼=0.3 87.57% 0.36% 116 

𝛼=0.5 87.04% 1.32% 116 

𝛼=1.0 86.99% 1.41% 115 

𝛼=2.0 86.19% 1.31% 119 

AE-CNN [170] 

1024-512-32-512-1024 89.00% 0.66% 283 

1024-256-32-256-1024 89.02% 0.99% 281 

1024-128-32-128-1024 89.21% 0.62% 278 

1024-256-64-256-1024 88.60% 0.57% 278 

1024-256-16-256-1024 88.85% 0.50% 278 

Proposed SAG-CNN  G1 90.01% 0.96% 132 

 

5.5.1 Case study 1: Planetary gearbox dataset 

The same planetary gearbox dataset and the same hyperparameters as that for the SAG-CNN are 

adopted for the SAG-ResNet. The classification accuracy is shown in Fig. 5.19. Comparison 

results with reported methods are shown in Table 5.7. For the reported methods [169], [170], we 

simply replace the baseline model from the CNN to the ResNet. Similar trends as that for the SAG-

CNN are observed. The proposed SAG-ResNet archives higher accuracy than that of the baseline 

ResNet, the reported ResNet+CSL and the reported AE-ResNet. This means that the proposed 

SAG-ResNet works with the planetary gearbox dataset. For tentative SAGs for the ResNet, the 

GR1 is preferred as it achieves significantly high accuracy (Fig. 5.19) while has a simpler structure 

as shown in Fig. 5.7). 
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Fig. 5.19: Fault classification results of the proposed SAG-ResNet over the planetary gearbox dataset. NA-Baseline 

model. 

 

Table 5.7: Comparison of the proposed SAG-ResNet with ResNet+CSL and AE-ResNet over the planetary gearbox 

dataset. 

Model Model Structure 
Accuracy 

CPU time (s) 
Average Std 

Baseline ResNet [114], [123] -  94.94% 0.43% 181 

ResNet+CSL [169] 

𝛼=0.1 94.96% 0.60% 190 

𝛼=0.3 94.87% 0.48% 187 

𝛼=0.5 94.76% 0.57% 185 

𝛼=1.0 93.84% 0.51% 173 

𝛼=2.0 88.88% 0.72% 187 

AE-ResNet [170] 

1024-512-32-512-1024 97.13% 0.28% 467 

1024-256-32-256-1024 97.55% 0.40% 425 

1024-128-32-128-1024 97.22% 0.51% 429 

1024-256-64-256-1024 97.53% 0.29% 430 

1024-256-16-256-1024 97.18% 0.35% 429 

Proposed SAG-ResNet GR1 98.39% 0.33% 208 
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5.5.2 Case study 2: Fixed-shaft gearbox dataset 

Likewise, the same fixed-shaft gearbox dataset and the same hyperparameters as that for the SAG-

CNN are adopted. Results are provided in Fig. 5.20 and Table 5.8. Still, similar trends as that for 

the SAG-CNN are observed. The proposed SAG-ResNet outperforms the baseline ResNet, the 

reported ResNet+CSL and the reported AE-ResNet with the fixed-shaft gearbox dataet. Still, the 

GR1 achieves the best performance. 

 

Fig. 5.20: Fault classification results of the proposed SAG-ResNet over the fixed-shaft gearbox dataset. NA-

Baseline model. 

 

To this end, we have validated the effectiveness of the proposed SAG with CNNs and ResNets 

over a fixed-shaft gearbox dataset and a planetary gearbox dataset, respectively. The results 

empirically show the generalization of the proposed SAG across different deep learning models 

and different rotating machines. Hopefully the proposed SAG would work with other deep learning 

models like the feedforward neural network and the recurrent neural network, and other rotating 

machines like pumps, generators, bearings, and rotors. 
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Table 5.8: Comparison of the proposed SAG-ResNet with ResNet+CSL and AE-ResNet over the fixed-shaft 

gearbox dataset. 

Model Model Structure 
Accuracy 

CPU time (s) 
Average Std 

Baseline ResNet [114], [123] -  87.36% 1.00% 127 

ResNet+CSL [169] 

𝛼=0.1 87.60% 0.95% 128 

𝛼=0.3 87.64% 0.77% 127 

𝛼=0.5 88.03% 0.99% 129 

𝛼=1.0 87.75% 0.72% 126 

𝛼=2.0 85.88% 1.09% 126 

AE-ResNet [170] 

1024-512-32-512-1024 89.42% 1.09% 311 

1024-256-32-256-1024 89.33% 0.64% 320 

1024-128-32-128-1024 89.30% 0.76% 309 

1024-256-64-256-1024 89.26% 0.72% 305 

1024-256-16-256-1024 89.42% 0.88% 313 

Proposed SAG-ResNet GR1 90.13% 0.79% 146 

 

5.6 Discussion 

5.6.1 Why proposed SAG works 

Our proposed SAG works because it adjusts the learning emphasis regarding of speed. Such that 

the speed induced fault information imbalance is mitigated. This is like the reported work (e.g., 

CSL [169]) for the class imbalance problem wherein the emphasis is adjusted in terms of classes. 

In our proposed SAGed models, the emphasis is adjusted through SAG values, which are 

automatically learned in the training of SAGed models. The automation process outperforms 

reported methods for class imbalance like CSL wherein the emphasis is manually assigned. 
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To interpret how the information is balanced, we analyze the learned features within the deep 

learning model before and after the SAG applied. Only the SAG-CNN over the planetary gearbox 

is shown for illustration purpose. A 60 s long measurement is preprocessed (Ring gear tooth 

missing; including 131 samples with a length of 0.4 s after preprocessing) and then inputted to a 

well-trained SAG-CNN (G1). This measured vibration and speed, learned SAG, learned features 

before and after the SAG applied, and the spectrograms of the features are shown in Fig. 5.21. 

At the location of G1, both the SAG and the features contain 32 channels. The SAG of all channels 

is shown. Each curve corresponds to a channel. The features of channel #24 is randomly selected 

for illustration purpose. We can see that the amplitude of the features is relatively flattened or 

balanced after SAG applied. This means that the SAG mitigates the effects of speed in the 

amplitude side. After SAG applied, the spectrogram (STFT) of the features is like that before SAG 

applied. This means the SAG does not address the effects of speed in the frequency side, otherwise 

the harmonics in the STFT of the features after SAG applied should be flattened, not the current 

speed ones that change with speed. In a word, the proposed SAG works because it balances the 

information in features, but only in the amplitude side while the frequency side is not addressed.   

More explanations over here are as follows. First, the reason to show the STFT of features is for 

the interpretation of readers not the deep learning models. Second, frequency aliasing is observed 

in the STFT of features. This is because that the pooling layer in the model (See Fig. 5.6) down-

samples the data without preceding low-pass filtering. 

Another reason to facilitate the performance of the proposed SAG is the use of speed. This is 

evidently supported by the results that speed gated outperforms vibration gated as shonw in Fig. 

5.9, Fig. 5.14, Fig. 5.19 and Fig. 5.20. Considering that the reported speed utilization method (AE-



182 

CNN and AE-ResNet) [170] also achieves competitive performances, we can infer that properly 

using speed signals does help improve the fault classification performances of existing deep 

learning models. 

 

Fig. 5.21: Interpretation of how SAG works. The features of channel #24 are illustrated as an example. 
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Given that the proposed SAG only addresses the effects in the amplitude side, and the order 

tracking, a widely used signal processing technique which can balance the number of fault 

signatures in samples by resampling the time signal into order domain [94], [106], is able to  

address the effects in the frequency side, a possibly complete solution to the problem of rotating 

machinery fault classification under varying speed conditions is to integrate them. That is, 

resampling the signal using order tracking first, and then the resampled signal is processed by deep 

learning models for fault classification. The results of the baseline CNN and the proposed SAG-

CNN over the planetary gearbox dataset are shown in Table 5.9 for illustration purpose. Only the 

SAG applied at the location of G1 is discussed over here as it achieves the best performances 

among all locations as seen in the case studies. The resampled dataset is as follows. The number 

of samples is 7534 with a sample length of 2880 data points. The resampling frequency is 360 

points per revolution.  

Table 5.9: Fault classification accuracy of the proposed SAG-CNN (G1) over resampled data using order tracking 

with the planetary gearbox dataset. 

Data Model Accuracy Standard derivation 

Raw signal 

(Time domain) 

Baseline CNN 95.16% 0.54% 

Proposed SAG-CNN 98.63% 0.28% 

Resampled signal 

(Order domain) 

Baseline CNN 96.84% 0.29% 

Proposed SAG-CNN 99.12% 0.13% 

 

We can see from Table 5.9 that, with the order tracking adopted, both the baseline CNN and the 

proposed SAG-CNN outperform their counterparts with the raw vibration data. This means that 

using order tracking to balance the number of fault signatures does help in improving the fault 

classification accuracy. With the resampled data in the order domain, the proposed SAG-CNN 
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achieves higher accuracy than that of the baseline CNN. This is because the proposed SAG further 

addresses the effects in the amplitude side.  

 

5.6.2 Unexpected accuracy decrease with planetary gearbox dataset 

In Fig. 5.12, the accuracy of the baseline CNN over the planetary gearbox dataset shows an 

unexpected decreasing trend when speed > 1200 rpm. Possible reasons may be in the data side or 

the model side. We will examine both in the following. 

(a) Data side 

Here checks whether the reason is due to the data or not. To understand why the data with speed > 

1200 rpm results in smaller fault classification accuracy, we double check the spectrogram of 

collected vibration as shown in the top right panel of Fig. 5.21. The outstanding curves are 

harmonics of the speed and are supposed to reveal the fault signatures [8]. We can see that even 

the harmonics are strong with speed > 1200 rpm, the background noise is even stronger than 

neighbors, making the fault signatures less obvious. Such phenomenon can be quantitatively 

measured using the signal-to-noise ratio (SNR). Fig. 5.22 shows the SNR of this measurement 

over time. The SNR over here is the logarithm of the ratio between the spectra power of the 

harmonics to the residual spectra power. The harmonics are extracted using the maximum tracking 

algorithm from the spectrogram [55]. We can see that the SNR with speed > 1000 rpm is smaller 

than its neighbors, making the data harder to be learned, and thus resulting in the unexpected 

decreasing trend in such a speed range (> 1200 rpm). The relatively lower SNR may be because 

that the structure resonance of the gearbox is excited within this speed range. 
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Fig. 5.22: SNR of a measured vibration of the planetary gearbox. 

 

(b) Model side 

Here checks whether the unexpected trend is caused by the model or not. Different 

hyperparameters for baseline models are tried out for fault classification. For illustration purpose, 

only the results of the baseline CNN are shown in Fig. 5.23. The tried hyperparameters are as 

follows. 

• Setting 1: 5 convolutional layers with numbers of channels = (16, 16, 16, 32, 32) and kernel 

sizes = (5, 3, 3, 3, 3) 

• Setting 2: 5 convolutional layers with numbers of channels = (64, 64, 64, 128, 128) and 

kernel sizes = (5, 3, 3, 3, 3) 

Recall that the default setting in case studies is an CNN consisted of 5 convolutional layers with 

number of channels = (32, 32, 32,64, 64) and kernel sizes = (5, 3, 3, 3, 3). We can see that the 

decreasing trend at the end is observed with all settings but is eased when the model scale is larger 

(Setting 2). This means that a larger model can alleviate the effects of SNR. 
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Given above discussions, we can conduct that the unexpected accuracy decrease at the end is 

because of the relatively smaller SNR of the vibration data. Such decreasing trend can be alleviated 

through larger models. 

An interesting observation from Fig. 5.22 is that the SNR of the vibration signal under lower speeds 

is generally smaller than that of higher speeds. This may be because that, given ambient noise, 

larger speed would induce more fault related energy to the vibration. The SNR of the vibration 

will increase accordingly. A common sense is that it is often more difficult to learn fault features 

from more noisy (lower SNR) data [26]. Such that the fault classification accuracy with lower 

SNR data, i.e., under lower speed condition, would be smaller. Therefore, the speed induced SNR 

difference is another reason for the overall accuracy increase in terms of speed. 

 

Fig. 5.23: Accuracy versus speed of the baseline CNN over the planetary gearbox dataset with different 

hyperparameter settings. 

 

5.6.3 Remaining increasing trend in accuracy 

As noted in the results of all case studies, even the speed induced fault information imbalance is 

somewhat addressed, the fault classification accuracy is not as expected to be evenly distributed 

across speed. A slight increasing trend is still observed between the speed and the accuracy. One 
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possible reason is that the SNR of vibration signals increases with speed as shown in Fig. 5.22. 

The SNR of data with lower speeds is smaller and thus hard to be classified. Another possible 

reason, as mentioned in Section 5.6.1, is that the proposed SAG only addresses the effects of speed 

variation in the amplitude side, while the frequency side is not addressed. The fault information 

imbalance due to the frequency side may lead to lower accuracy for the lower speeds. 

5.6.4 Limitations 

An obvious limitation of the proposed SAG is that the speed is mandatory. The SAG is, thus, not 

applicable when the speed signals are not available. We only considered the constant load 

condition. For the varying load conditions, we may simply switch the auxiliary input from the 

speed to the load. How and why a load adaptive deep learning model may work need further 

exploration. In this chapter, the SAG has been applied to CNNs and ResNets. It may also be applied 

to other deep learning models like the LSTM [113]. 

 

5.7 Summary and conclusion 

In this chapter, we firstly investigate the effects of speed variation from the perspective of deep 

learning, and then propose an SAG for existing deep learning models to address the effects of 

speed variation for the task of fault classification of rotating machinery under varying speed 

conditions. The effectiveness of the proposed SAG is empirically validated with two baseline 

models including an CNN and a ResNet over two experiment datasets including a planetary 

gearbox dataset and a fixed-shaft gearbox dataset. Major conclusions are drawn as follows,  
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(1) Speed variation induces fault information imbalance in vibration signals, which further 

deteriorates the fault classification accuracy of deep learning models, especially under 

lower-speed conditions. 

(2) The proposed SAG addresses the speed induced fault information imbalance problem and 

thus improves the fault classification accuracy of baseline deep learning models. 

(3) To achieve better fault classification performances, a single SAG is preferred, and the SAG 

is better to be added to early layers of deep learning models. 

(4) Speed signals matter. Properly utilizing speed signals as an auxiliary input to deep learning 

models can improve their fault classification accuracy. 

In the future, we are going to explore simpler structures for the SAG and address the effects of 

SNR difference due to speed variation. How to automatically address the effects of the frequency 

side, i.e., more frequent fault signatures with higher speeds, will be another future work. One 

possible solution is to integrate the order tracking into the baseline CNN or ResNet to remove such 

effects automatically.  
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6. Summary and future work 

This chapter summarizes the work of this thesis and suggests works that deserve future 

investigation. 

 

6.1 Summary 

Rotating machinery is often subjected to faults. Fault diagnosis is to detect the occurrence of a 

fault and identify the root cause of an occurred fault. The outcome of fault diagnosis facilitates 

predictive maintenance. Such that, unexpected machine shutdown can be avoided, the uptime is 

increased, and ultimately the maintenance cost is reduced. Deep learning is an emerging and 

promising tool that could enable automated fault diagnosis and is capable of processing massive 

data, and thus attracts increasing attentions nowadays. Considering that rotating machinery usually 

operates under varying speed conditions, this research focuses on deep learning-based fault 

diagnosis for such conditions. The machinery of interest is the typical rotating machinery such as 

gearboxes, bearings, and rotor systems. Major works of this thesis are summarized as follows. 

Rotating speed extraction from vibration signals: Rotating speed is not only an important 

condition monitoring indicator, but also contributes to effective fault diagnosis. For scenarios 

wherein the speed cannot be measured, we often need to extract speed from vibration signals. 

Existing speed extraction method, the many to one long short-term memory (LSTM) model, did 

not adequately exploit the information in vibration, thus leaving room for improving its speed 
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extraction accuracy. To address this problem, we proposed a deep learning model named many-

to-many-to-one bi-directional long short-term memory (MMO-BiLSTM) to automatically extract 

rotating speed from vibration signals. The proposed model consisted of two parts, i.e., a many-to-

many BiLSTM part and a many-to-one LSTM part. The BiLSTM part learned information from 

vibration signals in both forward-time and backward-time directions. The LSTM part future 

enhanced the speed extraction accuracy of the BiLSTM part. The two parts were trained separately 

with a two-stage training manner. Case studies over an internal combustion engine dataset, a rotor 

system dataset, and a fixed-shaft gearbox dataset showed that the proposed MMO-BiLSTM could 

effectively extracted speed from vibration signals. The percentage speed extraction errors for the 

three datasets were 1.03%, 1.50% and 1.51%, yielding relative error reductions of 67.30%, 54.00% 

and 25.61% over the reported MO-LSTM model, respectively. 

Fault detection of rotating machinery under varying speed conditions: Rotating machinery 

often works under varying speed conditions. Fault detection is effective to prevent machine 

failures. Existing autoencoder based (AE-based) fault detection methods did not address the effects 

of speed variation, and thus performed poorly under varying speed conditions. To address this 

problem, we proposed a new deep learning model named speed normalized autoencoder (SN-AE). 

The SN-AE consisted of two branches, i.e., a speed normalization (SN) branch and an AE branch. 

The SN branch took the speed signal as the input. It automatically learned an SN function, which 

further normalized the vibration signal to remove the effects of speed variation. The normalized 

vibration signal was inputted to the AE branch for fault detection. Case studies were conducted to 

detect faults of three typical rotating machines including a planetary gearbox, a fixed-shaft gearbox 

and a rolling element bearing. Results showed that the proposed SN-AE successfully removed the 

effects of speed variation, and achieved detection performances (i.e., area under the receiver 
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operator characteristic curve) of 0.9535, 0.9227 and 0.9981 for the three datasets, respectively. 

Corresponding relative performance improvements over the baseline AE model were 38.93%, 6.64% 

and 7.67%, respectively. 

Fault classification of rotating machinery under varying speed conditions: Once a fault is 

detected, the very next step is to classify the type and the severity of this fault. Knowing the 

information of the type and the severity of an occurred is critical for successive maintenance 

decision making. Existing deep learning models such as convolutional neural networks (CNNs) 

and residual networks (ResNets), for fault classification did not unfold the effects of speed 

variation on the fault detection performances and did not address such effects specifically. To 

address these problems, we firstly investigated the effects of speed variation from the perspective 

of deep learning. We found that the fault information in vibration signals was imbalanced due to 

speed variation. The imbalance made the fault classification accuracy of existing deep learning 

models changing with speed, specifically, increasing with speed. We then proposed an auxiliary 

branch named speed adaptive gate (SAG) for existing deep learning models to address the speed 

induced fault information imbalance. The SAG took speed signals as the input. It controlled the 

information flow of deep learning models in terms of speed, such that the effects of speed variation 

were mitigated. Case studies with two baseline models, i.e., a CNN and a ResNet, over two 

experimental datasets, i.e., a planetary gearbox dataset and a fixed-shaft gearbox dataset, validated 

the effectiveness of the proposed SAG for fault classification under varying speed conditions. 

Results showed that the proposed SAG achieved fault classification accuracies of about 95.51% 

and 90.07% for the two datasets, yielding relative improvements over existing deep learning 

models of about 3.64% and 3.16%, respectively, and the unexpected increasing trend between the 

accuracy and speed was eased. 



192 

Major contributions of this thesis are summarized as follows. 

• A deep learning model to automatically extract rotating speed from vibration signals was 

developed. The developed model used the BiLSTM and followed a many-to-many-to-one 

learning mode. The developed model exploited more speed related information in the 

vibration signals and thus achieved higher speed exaction accuracy. 

• A deep learning model for effective fault detection of rotating machinery under varying 

speed conditions was developed. The developed model removed the amplitude modulation 

effects induced by speed variation, and thus improved the fault detection performance of 

existing deep learning models. 

• A deep learning model for effective fault classification of rotating machinery under varying 

speed conditions was developed. The developed model mitigated the information 

imbalance induced by speed variation, and thus promoted the fault classification accuracy 

of existing deep learning models. 

 

6.2 Future work 

Based on the research of this thesis, we suggest three research topics for future study as follows. 

Fault diagnosis under varying load conditions 

The load is assumed constant in this thesis. This limits the application scenarios of the methods 

proposed in the thesis. Indeed, there are scenarios wherein the load changes over time like the 

speed in industry. For example, the motor of an elevator may experience varying load when the 

passengers are getting on board and off board.  Load variation often leads to amplitude modulation 
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of vibration signals, and slight speed fluctuation [173], [174], [175]. The speed fluctuation furthers 

induce frequency modulation in vibration signals. This is somewhat alike the effects induced by 

speed variation.  

Fault diagnosis under varying load conditions may be achieved by simply adopting methods 

proposed in the presented thesis. We only need to change the auxiliary input from the speed signals 

to the load signals. A challenge is how to obtain the load signals, which is even more difficult than 

to obtain speed signals. To this end, the further work for fault diagnosis under varying load 

conditions may need to be carried out without access to load signals. An even more aggressive 

scenario is that the speed and the load vary simultaneously. The variations of them can be 

dependent or independent. How to carry out fault diagnosis with such a scenario is also worth 

future exploration. 

Multi-sensor fusion for fault diagnosis 

In Chapters 4 and 5, only a single channel of vibration signals is used for fault diagnosis. This is 

an obvious limitation as we did not use all available data and thus leave room for the improving 

the fault diagnosis performances. In condition monitoring systems and/or experimental tests, 

multiple sensors are often used to collect diverse condition monitoring data. The multiple-sensor 

data can be of a same type but from different measurement locations of a machine, and/or different 

types, such as acceleration, acoustic, and current. It is straightforward to use data collected by all 

sensors for fault diagnosis. More sensors often mean more information, which is believed to 

contribute to a better performance than a single sensor [176], [177]. However, it is not guaranteed 

that the more sensors the better. Different sensors or sensors at different installation locations are 

different in sensitivities to faults. Besides, information abundancy may exist among sensitive 
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sensors, which would deteriorate the fault diagnosis performance of a deep learning model [178], 

[179]. A possible future work is to design proper fusion algorithms that can select sensitive and 

independent sensors while use the information collected by all sensors as much as possible. 

Interpretation of deep learning-based fault diagnosis 

In Chapters 3 – 5, we proposed three deep learning models for rotating speed extraction, fault 

detection and fault classification, respectively. The performances of these models were validated 

with certain case studies. However, we do not know, mathematically, why such good performances 

are achieved. For example, in our proposed SN-AE, we know the SN-AE works because it learns 

a speed normalization function, which normalizes the vibration to remove the effects of speed 

variation. The fault detection performance is improved accordingly. However, we do not know, 

theoretically, why such a speed normalization function can be learned. This may raise doubts that 

the good performances were ad-hoc. Indeed, even deep learning has achieved admirable success 

in not only the field of PHM, a common concern which is also a fundamental problem is that why 

deep learning works lacks solid theoretical support, or simply, remains a black box. Indeed, the 

situation is that if a deep learning model can return a sufficiently good performance such as high 

accuracy with a limited number of case studies, we then claim it effective.  

We acknowledge that the interpretation of why deep learning-based fault diagnosis works is quite 

challenging and may pretty much rely on the breakthrough in the field of deep learning research. 

We still suggest it as a future work because it is of vital importance, otherwise we may face with 

one more pitfall as seen in the history of deep learning [26]. 
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