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Abstram

One biological principle that is often over' + 11nthe 1 of artificial neural networks
(ANNs) is redundancy: Redundancy is *» tp  esses within the brain. This
paper examines the effects of redundar AN"vs when given either a pattern
classification task or a function apps ::mat . ., Iw. different pattern classification
tasks were used: parity and encoder. ™+ . 1:on app oximation task simulated a robotic

arm trained to reach towards an obje * ‘ntw nw-naronal space. Initial results indicate that
there is an optimal level of redundancy n of probability of convergence, convergence
speed, and convergence efficiency. When this level of redundancy is used, redundant ANNs
learned the pattern classification problem much faster, and converged on a solution 100%
of the time whereas standard ANNs sometimes failed to leam the problem. Furthermore,
when overall network error is considered, redundant ANNs were significantly more accurate
than standard ANNs at performing the function approximation task. These results are
discussed in terms of the relevance of redundancy to the performance of ANNSs in general,

and the relevance of redundancy in biological systems in particular.
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Training Redundant Artificial Neural Networks:
Imposing Biology on Technology

Ccnnectionist networks first appeared in psychological research with James’ 1890

Selfridge’s (1959) Pandemonium, and McClelland's (1981) Sharks and Jets network; It
has not been until recently, however, that connectionist theories have had the opportunity
to be tested. With the advent of the modem computer, Artificial Neural Networks (ANNs)
have become an alternative modelling tool of brain function.

Recently there has been a considerable amount of debate generated over the
relevance of connectionist network's to cognitive science and cognitive neuroscience (e.g.
Lewandowsky, 1993; McCloskey, 1991; Seidenberg, 1993). Part of the debate centers on
the fact that many ANN design decisions are based on engineering principles and not on
biological principles. Consequently, there is often a trade-off between theoretical and
technological advances. To be effective cognitive models, however, ANNs should draw

on the characteristics of the brain, even though such design decisions may be counter-

intuitive from an engineering viewpoint (Dawson & Shamanski, 1993; Dawson, Shamanski,
& Medler, 1993). One biological characteristic that has often been overlooked in the design
of ANNs is redundancy: Redundaacy is the replication of processes within the brain.

cy in biological systems has been debated since the

nineteenth century when it was proposed that recovery of behavioural impairment resulting
from brain injury was facilitated by the replication of processes within the brain. Initial
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theories held that the two hemispheres of the brain duplicated cach other, and this was the

perform vastly different functions (e.g. Graham, 1990; Kandel, Schwartz, & Jessell, 1991
Nicholls, Martin, & Wallace, 1992) and, therefore, that initial theories of redundancy are

incorrect. Today, instead of lateralization, redundancy in the brain is viewed at two different

brain while the higher functions are represented throughout many arcas of the brain (Kandel,
Schwartz, & Jessell 1991). Therefore, although alternative cxplanations of functional
recovery exist (c.g. alternate strategies, vicarious functioning, diaschisis;for a review of
theories of recovery following brain trauma see Almli & Finger, 1992, and Marshall, 1984),
redundancy is still held as a viable theory of functional recovery.

Further neurophysiological evidence for redundancy comes from studics of paticnts
with hydrocephalus: A review of 279 patients aged 5 to 25 years who suffered hydrocepha-
lus onset within the first year of life showed normal psychological functioning even though
some patients had less than half the normal brain tissue mass (Berker, Lorber, & Smith,
1983; cited in Smith, 1984). In fact, Kolb and Whishaw (1990) state that as long as the
cortex maintains its integrity and connections, intelligence can remain unimpaired even
though the expansion of the ventricles may leave the cortex less than a centimeter thick.
Unfortunately, however, Smith (1984) reports that the onset of age-related mental
deterioration in such patients is more rapid and debilitating than in the normal population.
These results suggest that the normal brain is at least twice as large as it needs to be for
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immediate survival, and that the extra baggage of the normal brain only replicates functions
it already possesses. Furthermore, without these redundant processes, deterioration is rapid
and terminal. This notion is echoed by Glassman’s (1987) calculations of the brain's safety
factor using reliability theory which indicate that the most conservative estimate of brain size

is at least twice the minimum size required for short-term survival.

evidence for redundancy in the brain. Kovac, Davis, Matera, and Croll (1983) extensively
studied the nervous system of Pleurobranchaea californica, and found several physiological
systems that produced essentially the same behaviour; however, when combined, these

systems greatly enhanced the precision of simple and complex movements. Kovac et al.

connections from the command neurons to other elements of the command system and the

organization of synaptic inputs to different clements of the command system. Consequently,

redundancy within the command systems may bestow an increased input/output gradability
yielding greater accuracy in movement.

In a slightly different vein, Strehler and Lestienne (1986) analyzed the intracellular
recordings of 55 different single complex cells in area 18 of the visual cortex of a curarized
rhesus monkey presented with lines of varying intensities, lengths, widths, orientations, and
rate of travel. It was calculated that the probability of finding the number of redundant
doublings of coded information in the regularity of triplets of impulses triggered by specific
stimuli by chance was less than 1 in 2.5 billion. Therefore, Strehler and Lestienne concluded

h E__

jon about a stimulus is represented redundantly within the visual cortex.
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Similarly, Swindale (1986) noted that orientation selectivity in the visual cortex is
produced by more than one mechanism, and in more than one location. Citing evidence
from several experiments, Swindale explains that inactivation of the A layers of the lateral
geniculate nucleus removes all responding from the middle laye. s of the visual cortex. yet
leaves orientation selectivity in the upper cortical layers intact. Conversely, inactivating the
upper layers of the visual cortex via cooling leaves the orientation selectivity of the middle
layers unimpaired. These results contradict the previously held thought that oricntation
selectivity in the upper layers was simply a passive reflection of the responses of the middie
layers. Instead, these results suggest that there are redundant systems for oricntation
selectivity. The above presented neurophysiological evidence for redundancy in biological
systems is complemented by a sizable theoretical literature on the relevance of redundancy.
Most theoretical work on the relevance of biological redundancy has centered on
the factors surrounding the evolution of redundancy. One common assumption, as described
carlier, is that redundancy allows for recovery of function following brain trauma; however,
some theorists and neurophysiologists use this assumption as an argument against biological
redundancy. The argument follows the line that since brain damage is a rarely survived
event, it is unlikely to exert any natural selection pressure for neural spare capacity in
anticipation of brain damage (c.f. Glassman, 1987). This argument, however, assumes that
recovery of function is the main reason for redundancy, as opposed to being a side effect of
redundancy. If we assume for a moment that recovery of function is just a convenient side
effect of redundancy, then we can consider alternate evolutionary theorics.
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Calvin (1983) considered the problem carly hominids must have faced when trying
to knock prey down via a thrown object: The timing precision required to strike a target
ircreases eight-fold with a mere doubling of throwing distance. Consequently, the precision
of a single timing neuron becomes too crude to allow effective strikes at any significant
distance. In order to alleviate this problem, the brain may have evolved redundant timing
neurons (o increase the timing accuracy above the known accuracy of any single neuron
(Calvin, 1983). This increase in the number of timing neurons to compensate for an
otherwise deficient system is related to Swindale's (1986) hypothesis: It is easier to evolve
several crude mechanisms that work in parallel to perform a function than one especially
effective neural mechanism. Therefore, redundancy may have evolved not because brain
damage was anticipated, but because it was casier to replicate, and thus improve, what was
already present than to develop a single system beyond reproach.

A slightly different theoretical approach to redundancy comes from Leon (1992)
and Jacobson (1976). Leon reviewed the literature on filial learning in both animal and
human infants, and proposed that redundant structures within the brain allow the neonate
to lcam about its environment despite the degraded stimuli that it often encounters.
Furthermore, Leon noted that the nconate brain is far less developed than the adult brain,
despite the fact that the majority of survival leamning must occur within the first few months
of life; Leon suggests that redundant systems exist to assure leaming even with a degraded
nervous system. On the other hand, Jacobson (1976) considered the connections between
ncurons involved in a memory trace based on Hebb'’s model of the cortex, and defined
redundancy as "to mean the condition that pairs of cells joined along one effective pathway
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are joined again along another” (p. 150). Using mathematical calculations and assuming
initial random connections between neurons, Jacobson showed that redundancy is an
inevitable consequence of the connections within the cortex.

Redundancy is a viable biological property, but can it be effectively implemented in
ANNs? Redundancy has beer vaostly ignored in the design of ANNs. Recently, though,
there has been a flurry of connectionist research on using multiple nets to solve problems.
For exarmple, Baxt’s (1992) medical diagnosis network is based on two networks working
in parallel: one network is trained to classify positive examples of myocardial infarction,
and the other network is trained to classify negative examples. By combining their outputs,
Baxt has produced a network that has a hit rate of 97.50% and a false alarm rate of 1.63%.
Using similar principles, Tabary and Salaiin (1992) trained a neural network to keep the
upper bar of a simulated robotic bicycle horizontal while it moved over uneven terrain. To
accomplish this, they trained a "static” network to control the angles of the bicycle's forks
and a "velocity” network to control the speed of the bicycle. The combined networks allow
the bike to successfully adapt itself to the terrain as it moves across it. Both Baxt's (1992)
network and Tabary and Salaiin’s (1992) network are not truly redundant as defined earlicr,
but are more akin to different aspects of the same system working together, much like
episodic and semantic memory systems (see Tulving, 1972). Nevertheless, their multiple
nets suggest that smaller networks can be successfully combined to solve a larger problem.

Another form of computational redundancy widely studied today centers around
committee machines. Committee machines are based on the principle of using scveral
computers (or networks) at once to solve the same problem. The training algorithm for
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such machines is rather unique (see Schapire, 1990): Briefly, the first machine is trained
on one pattern set, and then subsequent machines are trained on new pattern sets composed
of equal amounts of correctly and incorrectly classified patterns that have been passed
through previous machines. Once trained, however, there is little agreement as to the best
way of combining the outputs of the different committee machines. Several alternatives
have been suggested, from a simple "winner-take-all” or "voting" strategy, to summing the
outputs, to calculating the mean output, to implementing a separate network to choose which
machine’s output is the most appropriate. Regardless of the combining strategy used, the
committee machines invariably perform better than single networks alone.

The above research examples have centered on improving the performance of ANNs
from an engineering perspective solely. For example, it is not clear that any of the output
strategics listed above, or even the training algorithms used for committee machines, are
biologically plausible. Furthermore, Baxt's (1992) network and Tabary and Salaiin’s (1992)
network necessarily have no basis in biological networks.

Constraints borrowed from biological networks, however, may have positive effects
on the performance of ANNs as illustrated by Izui and Pentland’s (1990) research on
redundant networks. Using biological redundancy as a model, they mathematically analyzed
the functional effects of one of the simplest forms of redundancy-- neuronal duplication.
Their mathematical calculations predict that redundant networks are more accurate, faster,
and more stable than standard nctworks. These predictions were confirmed by both a
feedforward neural network trained on the XOR problem, and a feedback neural network
trained on the travelling salesman problem. From these results, Izui and Pentland claim that
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the "highly redundant nature of biological systems is computationally important and not
Izui and Pentland’s research has laid the mathematical foundations of network redundancy,
their practical work requires expansion before redundancy is accepted as a useful addition
in ANN design. For example, larger problem sets should be considered as well as the
applicability of redundancy to different artificial neural network architectures.

The purpose of this current research is threefold: (1) To experimentally determine

if there is an optimal level of redundanc

'y in terms of network performance versus network
training; (2) To study the effects of redundancy on ANN leamning and performance on "toy"

pattern classification tasks; and (3) To study the effects of redundancy on a function

trained on several sizes of a difficult pattern classification task (i.c parity) while varying the
levels of redundancy from two to eight. The second experiment will compare the

performance of standard networks and redundant networks-- with levels of redundancy held

constant-- trained on two different types of pattern classification (PC) tasks (i.c. parity and

ized that the redundant networks will perform

better than the standard networks in terms of problem solving ability for the PC problems,
and in terms of overall network accuracy for the FA problem.



Experiment 1: Levels of Redundancy

There is no clear definition of exactly what is meant by redundancy. Jacobson
(1976) defines redundancy as being the case that pairs of cells are connected through more
than one pathway, whereas Izui and Pentland (1990) describe redundancy as the simple
duplication of neurons. Many more authors (e.g. Calvin, 1983; Swindale, 1986; Glassman,
1987) are inclined to say that redundancy is the duplication of complete subsystems within
the brain. The current experiments will adopt this last definition of redundancy.
Redundancy will be created by duplicating a standard network architecture several times,
and then combining the weighted output of these subnetworks to produce an overall
weighting the response is more akin to biological leaming as opposed to the more
Second, although no direct connections exist between each of the subnetworks, the

procedure of weighting the outputs may allow one subnetwork to influence the learning of
the other subnetworks. In other words, it may be possible that each of the subnetworks may
become specialized in solving a certain aspect of the problem posed (see Kovac et al., 1983).
Therefore, the redundant networks may be viewed as a collection of standard networks
working in parallel to solve a particular problem.

is the appropriate network architecture to compare the redundant networks to? If we create
should the redundant network be compared to the standard network with which it was
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created, or to a massively parallel network with M x N hidden units to equate the number of

by each hyperplane. Therefore, adding hidden units to a network is equivalent to placing
more hyperplanes within the problem space, which increases the chance of the output units
combining the correct hyperplane partitionings. Because the redundant networks are created
by duplicating a standard network, then each subnetwork is limited to the same number of

hyperplanes as the original standard network. This is equivalent to placing M hyperplanes

it copies of the original problem space. The massively parallel
network, however, places M x N hyperplanes within the original problem space. Therefore,
the redundant networks will be compared to the original standard networks to equate the
number of hyperplanes placed within the problem space. With this view of redundancy, it
is theorized that the redundant networks will leam by driving each subnetwork into a local

Adding redundancy to a network creates an interesting guestion from an engineering
viewpoint: Are the added hardware requirements of the extra processing nodes and
connections more than compensated for by an increase in performance? In other words,
can we trade simplicity for efficiency? From a biological
while keeping physical properties (¢.g. head size; Glassman, 1987) to a minimum. Both of
these approaches seek to find the optimal combination of performs

(e.g. precision of timing neurons; Calvin, 1983)

ace and efficiency.
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Consequently, the problem that now exists is to find the optimal level of redundancy
where the increase in hardware requirements is offset by an equal or greater increase in

performance. The performance of ANNs can be measured with three different metrics:

convergence. The first metric measures the probability of the network to converge on a
solution within a finite number of stimuli presentations. The second metric measures the
number of times a training set must be presented to the ANN before successful learing
occurs; this metric can be viewed as an indication of the theoretical speed of performance.
Direct comparisons between the standard and redundant ANNs can be made on both of
these metrics as the networks are theoretically working in parallel and, therefore, adding
extra subunits in the case of the redundant ANNs will not affect computational speed.

the network must make in

Finally, the third metric is a measure of how many computation
order to solve the problem presented-- in other words, processing efficiency. If sweeps to
convergence is used as a base rate of efficiency for the standard networks, then the
comparable efficiency of the redundant networks is calculated by multiplying the number
of sweeps by N, where N is the level of redundancy being used.

It has been estimated from reliability theory that the brain has at least two, and as
many as seven, different levels of redundancy (Glassman, 198
optimal level of redundancy for an ANN, the performance
varying levels of a difficult pattern classification task (i.c. 2- to 8-parity) will be compared
to the performance of ANNs with two to eight levels of n




Method

Network Architecture. The standard network architecture consisted of an input
layer, a hidden unit layer, and an output layer: The number of input units and hidden units
was equivalent to the size of the parity problem (e.g. ANNs trained on 3-parity had 3 input
units, 3 hidden units, and 1 output unit). Connection weights were randomly assigned from
arectangular distribution over the range [-1, +1), and processing unit biases were initialized

to 0. All biases and connections within the network were modifiable.

Decision Unit

Output Units
Hidden Units

Input Layer

was created by replicating the hidden unit layer
and the output unit layer a set number of times. Each of the replicated output units was
then connected to & Decision Unit, which acts as the redundant network's output unit. All
coanections leading into the Decision Unit are modifiable; therefore, the Decision Unit's
response is a weightod sum of the replicated output units. Figure 1 shows the redundant

network structure for an ANN with five levels of redundancy trained on a 3-parity problem.
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It should be noted that, as opposed to a three-layer' network, no connections exist directly
between each of replicated networks. Furthermore, each of the replicated networks was
initia'ized independent of the others. Connection weights were randomly distributed over
a larger range [-5, +5) to facilitate the theorized leaming strategy, and all unit biases were
set to 0. Seven different levels of redundancy were tested: 2, 3,4, 5,6, 7, and 8.

imuli. Parity is a linearly inseparable pattern classification task defined

by the number of active input units: If the number of 1's in the input pattern is odd, then the
output is 1, otherwise it is O (Minsky & Papert, 1969). A training set consists of 2" distinct
patterns (n is equal to the number of input units) comprised of all possible combinations of
0's and 1's; therefore, each training sct has equal numbers of positive and negative
examples of parity. ANNs were trained on 2-, 3-, 4-, 5-, 6-, 7-, and 8-parity problems which
had training set sizes of 2, 8, 16, 32, 64, 128, and 256 respectively.

ure. The network was trained with the backpropagation algorithm

t, Hinton, & Williams, 1986).

is sided by two parameters: momentum (a) and rate-of-leaming (). Momentum is a
technique for escaping local minima within the weight space by averaging the weight change
high-frequency variations of the emvor surface in the weight space . The rate-of-learning

' Theeu is liatle agresansat 0n how 10 count the layers within an ANN. In this paper, a layer consists of
the processing node and the consections leading into it; consequently, the input nodes are nor counted as a
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parameter is used to dictate how large a "step” to make when traversing the weight space.
For all parity problems, a=0.9, and n =0.1?

To train the network, a pattern was randomly sampled-- without replacement-- from
the pattern set and presented to the network. The network's actual output was then
compared to the desired output, and connection weights and unit biases were modificd
according to the GDR algorithm. If the absolute difference between the actual output and
desired output was less than 0.05 then a "hit" was recorded. One sweep of the network was
completed once all patterns were presented to the network. Training of the network
continued either until the maximum number of sweeps was completed (30,000) or until each
pattern in a sweep produced a hit. As the initial randomness of connection weight
assignment introduces considerable variability into network leaming, 10 networks-- each
with a different random start-- were trained for both the standard network and the redundant
network.

Resal 1 Di .

The performance of standard ANNs versus redundant ANNs was compared using
three measures: probability of convergence, sweeps to convergence, and total processing
steps to convergence. Because networks will occasionally take an inordinate amount of

time to converge on a solution, median scores are reported for both sweeps and steps (o

convergence.

2AMbough previous rescarch (Tesauro & Janssens, 1988) has shown that learning may be facilitaed for
more difficelt problems by adjusting the parameters & and 1), these parameters were held constant for all
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the seven different parity prob- Table 1. Median processing sweeps and sieps to convergence as
a function of parity and redundancy
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Similarly, when sweeps to convergence are considered, there is a general decrease
in sweeps with an increase in redundancy. Figure 2, which plots amount of processing over
levels of redundancy collapsed across parity size, shows that this decrease begins to asymp-
tote around five levels of redundancy, which suggests a floor effect. A slightly different
function appears with the total processing steps to convergence, as calculated by multiply-
ing the number of sweeps by the level of redundancy. This time, there is a slight cubic func-
tion (see Figure 2) with its lowest points being around four and five levels of redundancy de-
pending on the problem difficulty. When the number of processing steps is averaged across
all parity problems, networks with four levels of redundancy perform best, followed by net-

works with five levels of redundancy.

5000 -

Amount of Processing

—O@—Sweeps to Convergence
2000 —&—Steps to Convergence
1000 -
F H
0 v — ' v ' ' +
2 3 4 s 6 7 8
Level of Redundancy

Figare 1. Network porformence ia terms of processing speed and efficiency for each level of redundancy
averaged across perity problem size
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For difficult pattem classification tasks, redundant ANNs perform better than non-
redundant ANNSs in terms of probability of convergence, processing speed, and processing
efficiency. For the casier problems such as 2- and 3-parity, however, redundancy improves
processing speed but hinders processing efficiency. In terms of the finding the level of
redundancy where performance is balanced with efficiency, results suggest that ANNs with
five levels of redundancy are optimal. If fewer than five levels are used, convergence cannot
be guaranteed, while adding more than five levels does not increase processing speed but
does decrease processing efficiency. Therefore, all further experiments within this paper
will use ANNs with five levcls’ of redundancy.

One final note on the performance difference between the standard ANNs and the
redundant ANNs. As results indicate, standard ANNs failed completely to learn the larger
problem sets, whereas ANNs with five levels of redundancy always converged on a solution
regardless of problem set size. It is known that networks trained with the GDR have dif-
siarting parameters (¢.g. Tesauro & Janssens, 1988). Therefore, it is possible that the
differences in performance may be related to the diff
difference in starting statcs may account for some of the differences in performance, pilot
both redundant and standard networks.

by manipulating the

ces in initial network states:
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Experiment 2: Pattern Classification

Experiment 1 shows that redundancy improves the performance of ANNs trained on

one type of pattern classification task (i.c. parity); however, it is not known if these results
will generalize to other types of pattemn classification problems, or if redundancy will
improve the performance of networks with different architectures. Experiment 2 will look
at the effects of redundancy on the performance of ANNs trained on two different types of
difficult toy pattern classification tasks: the parity problem as in Experiment 1, and the n-

logan-n encoder problem. Furthermore, the effect of redundancy on the "traditional” ANN

ture (¢.g. Rumelhart, Hinton, & Williams, 1986) will be compared to the effect of
redundancy on a different ANN architecture (Dawson & Schopflocher, 1992).

The bacl ation algorithm using the GDR requires that processing units have

an activation function that is differentiable and monotonic, otherwise networks tend to fall
into a local minima where they assert that some property of the patiem space p is not true,
but fail to assert that some property of p is true (Rumelhart, Hinton, & Williams, 1986);

and Schopflocher (1992) have modified the GDR to allow traini

ng of processing units with

ric activation function, called - !ue units (Ballard, 1986). Value unit ANNs
Consequently, it is hypothesized that redundant ANNs will converge faster than standan
ANNs, and that value unit ANNs will perform better then integration device ANNs.
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. The standard networks used for the parity problem were

equivalent to those in Experiment 1. Connection weights, however, were randomized from
a rectangular distribution over the range [-2.5, +2.5] for integration device networks using
a sigmoidal activation function, or [-1, +1] for value unit networks using a Gaussian
activation function. Processing unit biases, regardless of activation function, were initialized
to zero. The standard networks for the encoder problems consisted of n input units, log.n
hidden units, and n output units, where n is equal to the size of the encoder problem.
Conncction weights for both integration device networks and value unit networks were

randomized over the range [-1, +1] and all biases were set to zero.

Decision Units

Output Units
Hidden Units

Input Layer
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same distribution as the standard networks: biases were set to zero. Furthermore, it should
be noted that for the encoder networks, the number of Decision Units was equal to n, the size
of the problem. As shown in Figure 3, which illustrates the redundant network architecture
for the 2-1-2 encoder problem, output units are only connected to their corresponding

Decision Unit. Therefore, as opposed to typical threc-layer networks, connections between

li. The 2-, 3-, 4-, 5-, 6-, 7-, and 8-parity training sets used 'n this

experiment were the same as those used in Experiment 1. The encoder problem, as defined
by Ackley, Hinton, and Sejnowski (1985), is onc in which a set of n orthogonal input
pattems are passed through logys hidden units and mapped onto a set of n orthogonal output
patterns. For this experiment, the encoder training sets consisted of 2, 4, 8, 16, 32, or 64
input patterns composed of a single 1 and filler 0's (¢.g. 1000,0100,001 0,000 1),
The output patterns and input patterns were equivalent.

using either the GDR for processing units with a sigmoidal activation function (Rumelhat,

were trained with the backpropagation algorithm

Hinton, & Williams, 1986), or a modification of the GDR for processing units with a
networks, the parameters for both the parity problems and the encoder problems were set at
a=0.9and n=0.1. Parameters for the value unit networks were a = 0 and 1} = 0.025 for

the parity problem®, and a = 0 and 7 = 0.05 for the encoder problems.

mmmﬁﬁﬂﬂhﬁgh value wnits occurred when W dacreased as pari
Hhﬂ-ﬂhpp:iqﬁﬁ-. mmmmmMWMMﬂn




21

Training of the ANNs proceeded as described in Experiment 1. A hit was recorded
if the actual output was 0.95 or higher when a 1 was desired, or 0.05 or lower when a 0 was
desired, and the maximum number of sweeps allowed was held constant at 30000 for all
networks. Training continued until all patterns in the set were leamed or until the maximum
number of sweeps was reached. As the initial random assignment of connection weights
introduces variability in leaming, each of the four different networks (i.c. standard
integration, standard value unit, redundant integration, redundant value unit) was trained
with different initial settings a total of 10 times. The minimum, median, and maximum
number of sweeps to convergence, and the number of ANNs reaching convergence were
recorded for each type of network.

Results and Di .

Pagity. Tabie 2 shows the minimum, median, and maximum number of sweeps re-
quired to reach convergence for the seven different parity problems: The number of
networks to successfully converge on a solution, if less than 10, is shown in parentheses next
tothe median. As can be seen, the redundant networks converged on a solution 100% of the
time while the standard networks often failed to converge on a solution even after 30000
sweeps. Furthermore, the redundast networks solved the problems faster (i.c. in fewer
sweeps) than the standard networks for both the integration device architecture and the value
wnit architecture for every size of parity problem. In fact, redundancy increased the average
speed of processing eight-fold, with 8 maximum increase of 25 times faster for the
imegration devices and 21 times faster for the value units: This advantage is most prominent

for the larger problem sets. In terms of processing efficiency (i.c. equating the networks by
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multiplying the standard network sweeps by I/N, where N = 5), the redundant networks only
outperform the standard networks as the problem difficulty increases.
When the different network architectures are compared, value unit networks clearly

outperform integration device
Table 2. Parity problem: Sweeps to convergence as a function of
networks. First, the standard Problem size, network architecture, and redundancy

value unit networks converged Network Architecture

on a solution 89% of the time kntcgration Device Vatue Unit

whereas the standard integra-

tion device networks only

found a solution 49% of the Modien 1299 9)

time and failed completely on 4,4,
the 8-parity task. Second, both
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problem faster than the standard integration device network trained on the 2-parity prob-
lem.

To assess the hypothesis that the individual networks within a redundant network
are being trained towards local minima as assumed in Experiment 1, the underlying structure
of a redundant integration device network trained on the 3-parity problem was analyzed.

This analysis indicates that

the entire petwork is not -
being trained towards a o
global minima, but that in-
dividoal petworks within

minima. For exampie, Fig-

lﬁ!t Aﬁmmw“d‘ﬁe&dﬂmnﬂt
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the decision unit are -7.42, -5.99, 6.36, 4.10, and 1.49 for Networks 0to 4 respectively. Net-
work 2 shows the most leamning with 5 of the 8 patterns actually falling within hit pa-
rameters, and it contributes the greatest amount of excitatory activation to the Decision Unit.
Network 3 also tends to classify the pattemns correctly; however, it is not as accurate as Net-
work 2 and this is reflected in its lower weighting. As a side note, the two patterns that Net-
work 2 fails to classify are correctly classified by Network 3, and vice versa. Network 0 ac-
tually has learned to classify the opposite parity problem (i.c. responding 1 for an even num-

ber of 1's in the input pattern); it contributes a strong inhibitory response to the Decision

positively, although this response is slight as indicated by the low weighting it has with the
Decision Unit. Network 1 is difficult to interpret, except as a possible agent against Network
4, as most of the network's responses are above 0.5 and there is a relatively strong inhibito-
ry weighting between it and the Decision Unit.

The above analysis supports the initial theory that redundant networks lcam by
driving the individual subnetworks into local minima, and then combining their weighted
outputs to produce the best response. Therefore, the design decision in Experiment | to
give the redundant networks a larger starting range for the weight parameters is validated.
starting range for the weights did facilitate leaming in standard integration device networks;
overly influence the performance of both standard and
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Encoder. Similar results are reported for the encoder problem. Table 3 shows that
redundant networks, regardless of architecture, converge on a solution faster than standard
networks. When the number

Table 3. Encoder problem: Sweeps to convergence as a function of
of processing steps arc taken problems size, network architecture, and redundancy

into consideration, however, —_— _

redundancy only aids the inte- —

gration device networks for the Kcgruion Device Value Uit

larger problem sets; On the
other hand, value unit net- 212
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value unit networks take ap-
proximately the same number of sweeps t0 solve the larger problems as they do on the
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smaller problems while the standard value units appear to plateau for the 16-4-16 encoder

problems and larger. Conversely, the number of sweeps to reach convergence for both the

When the number of patten presentations are considered (i.c. multiplying the number of
sweeps by the number of input patterns), all networks show a steady increase with problem
size; however, the increase is less for the redundant networks than for the standard networks
(c.g. 27 and 91 times for the value unit and integration device redundant networks versus
114 and 304 times for the respective standard networks). This suggests that redundant

networks may be more resistant to the scaling problem often reported in the literature (e.g.

Feldman-Stewart & Mewhort, 1994),

ANNs converge on a solution 100% of the time regardless of problem size, whereas the
standard ANNs often fail to reach convergence. When the networks are equalized for total
number of processing steps, as opposed to total network processing sweeps, the redundant
networks show the most advantage on the more difficult problems. Finally, in support of
problem and the encoder problem in every aspect.
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nent 3: Function Approximation

Experiment 1 and Experiment 2 have conclusively shown that redundancy can
improve the performance of ANNSs trained on difficult pattern classification tasks. The last

ion to be addressed is whether or not redundancy will improve the performance of

ANNs trained on a function approximation task. With function approximation (FA),
however, the number of sweeps to reach convergence is no longer an appropriate measure

of network performance:; therefore, performance will be evaluated via overall network error.

ction approximators require an invertible activation function,

suse of their non-monotonicity) are i iste for FA tasks (Dawson &

value units

ion device networks will be evaluated.

Schopflocher, 1992). Consequently, oaly integrat

ly well suited to neural networks is the control of

robotic limbs (c.f. McClelland, Rumelhart, & Hinton, 1986; Eckmiller, 1989; Walter &
Schulten, 1993; Zurada, 1992). Traditional robotic limb manipulation is achieved through

robot that can successfully reach towards an object that has been placed in front of it.
trigomometric fanctions in the step-by-step fashion that is required. Employing ANNS to
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Most research on robotic limb control via ANNSs has been motivated by the superior
performance of biological systems over the traditional robotic control algorithms (Walter
& Schulten, 1993). This advantage derives from the organization of topographic maps, such
as sensory and motor maps, within the brain (Churchland, 1992). Consequently, a common
approach to robotic limb manipulation is to use self-organizing neural networks (e.g.
Kuperstein, 1988; Eckmiller, 1989; Walter & Schulten, 1993). These ANNs normally use

a variation of Kohonen's algorithm for self-organizing maps (see Wasserman, 1989).

& Khorasani, 1990) that have successfully used the standard back-propagation algorithm to
learn the forward and inverse kinematics problem required for robotic limb manipulation.

It has been shown that ANNs successfully leam to control robotic limbs when
biological constraints are imposed on the learning algorithm used for training (c.g.
Kuperstein, 1988; Eckmiller, 1989; Walter & Schulten, 1993). Experiment 3 will consider
the network architecture. The ANNs will be trained on the inverse kinematics problem using
the back-propagation algorithm. The problem space is based on Churchlas
crablike robot which effectively maps the inputs from the robot’s two eyes onto the required

istic of redundancy is imposed on

I's (1992)

angular positions of the shoulder and elbow joints; therefore, the networks will be trained
to approximate the function that maps one stase space to another. It is hypothesized that

itecture will be more accurate than ANNs with a
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Meihod

Network Architecture. The standard network architecture was a two-layer network
with two input units, five hidden units, and two output units. Connection weights were
randomly assigned from a rectangular distribution over the range [-1,+1). Processing unit
tiases were initialized to zero. All connection weights and unit biases were modifiable.

The redundant network architecture was created by replicating the hidden unit layer
and the output unit layer of the standard network five times. Each of the replicated output
units was then connected to the comresponding decision unit via modifiable connections.
All connection weights within the redundant network were randomly assigned from the
range {-1,+1]) and biases were set to zero. Each replicated network’s initial state was
randomized independently. As can be seen in Figure 5, which illustrates the redundant
nctwork architecture for the simulated robotic arm, no direct connections exist between the
replicated networks nor between output units and decision units of different function.

Decision Units
Output Units rﬂ(
U R
Hidden Units
AT
\\\zzz
Input Layer

Figure S. Siamiated robotic arm network strectuse with S levels of seduadancy
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li. The simulated robotic arm was modelled after Churchland's

front of it (seec Figure 6). The

eyes were placed 6 units apart,
and cach arm segment was 7

robot’'s world was 14 units in
depth and 28 units in width. To

was placed randomly in front of

Figare 6. Problem space definition for the simulated robotic amm
area (i.c.grey area in Figure 6)

then a new position was randomly chosen. The grey semi-circle exists within the problem
space because the robotic arm joints were limited to a range of 0° to 180°. Inputs to the
network were the two angles ()1, ©) that the cyes subtended when converged on the object,
while the desired nctwork outputs were the angles (p, §) that the shoulder joint and elbow
joint made in order for the arm t0 contact the object. All angles were divided by 180 to fall
within the range of 090 1. The inputs could be considered two-dimeasional sensory-state

motor-state space coordinates. The actwork, therefore, leamns the appropristc mapping
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between the two state spaces (see also Zipser & Andersen, 1988). As the mapping of the two
state spaces forms a continuous function, there are an infinite number of input/outpt pairs;
however, practicality limited the training set to 50 randomly chosen pairs.

Inining Procedure. The network was trained with the backpropagation algorithm
using the GDR for processing units with a sigmoidal activation function (Rumelhart, Hinton,
& Williams, 1986). For the simulated robotic arm network, a=0.9, and n =0.1.

To train the network, a pattern was randomly sampled-- without replacement-- from
the pattern set and presented to the network. The network's actual output was then
compared to the desired output, and connection weights and unit biases were modified
according to the above algorithm. If the absolute difference between the actual output and
desired output was less than 0.001-- approximately 0.2°-- then a "hit” was recorded. One
sweep of the network was completed once all patterns were presented to the network.
Training of the network continued until 50,000 sweeps were completed.

To assess the network’s ability to leam the function approximation problem, total
network SSE was recorded at log,, intervals beginning with 100 sweeps and ending with
30,000 sweeps; therefore, 23 scores were recorded for each network. To assess the
actwork'’s accuracy, the final network responses for the shoulder (p) and elbow (¢) angle
for each pattern were recorded at the compietion of training. Again, as the initial
randomaess of connection weight assignment produces great variability in network leaming,
10 different nctworks were trained for both the standard network architecture and the
rodundant network architecture.



The means and standard deviations of the total network SSE for both the standard
and redundant networks trained on the simulated robotic arm are shown in Figure 7. As can

be seen, standard networks perform better than redundant networks in terms of mean SSE

when the number of processing sweeps is relatively small (e.g. < 1000). When the number
of sweeps is increased, however, the redundant networks clearly performs better than the

standard networks. Furthermore, variability in network responding decreases faster for the

20
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redundant networks thaa for the standard networks. In terms of equating the number of




33
afier X sweeps should be compared to the performance of the redundant network after X/N
sweeps, where N is the degree of redundancy (this is in contrast to the PC tasks as
convergence was not a criterion in the FA task). As Figure 7 shows, the redundant ANNs
produce poorer performance than the standard ANNs when the number of sweeps is
relatively small. When we compare 5,000 sweeps of the standard ANN with 1,000 sweeps
of the redundant ANN, the standard ANN has a SSE of approximately 0.24 whereas the re-
dundant ANN has a SSE of approximately 0.41. As the number of sweeps increases, the re-
dundant networks begin to perform as well as the standard networks (e.g. SSE of 0.21 at
10,000 sweeps and 0.22 at 2,000 for the standard and redundant ANNs respectively). The
difference between the two ANNS, however, increases dramatically in favor of the redundant
network when the number of sweeps is large. Figure 7 shows that the mean network SSE
for the standard network after 50,000 sweeps (approximately 0.16) is about four times
greater than the mean network SSE for the redundant network after 10,000 sweeps
(approximately 0.04). Furthermore, the smaller standard deviations of the redundant

networks show there is less variability in network responding.

To assess how accurate the networks were in reaching towards the target, two
different error measurements were calculated: angular emor of the shoulder and elbow
joints, and positional error (X,Y coordinate) of the robot’s hand. Figure 8 shows the two
the 10 redundant ANNs after 10,000 sweeps (to equate processing steps) and after 50,000
sweeps (to equate processing sweeps). The angular errors for the all three ANNSs show a
relatively positive correlation-- if the p is less than it should be, then ¢ will also be less, if
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p is overestimated, then ¢ is overestimated.  Although all networks had low mean errors

(e.g. standard network: 0.9° and -0.05° for p and ¢; redundant network [10,000): 0.46° and

Angular Joint Error _ Final End-Point Error
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and the redundant ANNs after 10,000 and 50,000 sweteps.
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0.83° for p and ¢; redundant network [50,000): -0.06° and -0.6° for p and ¢), the amount
of variability in responding was much greater for the standard network. As can be seen in
Figure 8, the redundant networks had less variability in their responding than the standard
networks as indicated by the tighter clustering of error points. Another way of viewing this
result is that the redundant networks are more stable in their responding than standard net-
works.

A close examination of the angular errors show that some of the angles were out as
much as 30° or more for the standard networks. This would seem to be an extreme failure
of the system to correctly reach the object. When these angles are used to compute the final
cartesian plane coordinates of the robot’s hand, however, the errors are not so extreme. In
fact, the maximal positional errors were limited to just under 4 units for the standard
networks, and under 2 units for the redundant networks. Again, both redundant ANNs were

closer to the desired target location than the standard ANNs. Finally, Figure 8 shows that

contrary to the angular errors, there were no real correlations between positional errors in

the X direction with al errors in the Y direction. This would suggest that the

network was not leaming the tri ions required to reach an object (as would

be indicated by small angular errors), but was leaming to map visuo-spatial coordinates to

ANN:s thaa for the standard ANNS, but the variability in responding is less for the redundant
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networks as well. In terms of efficiency, however, the redundant ANNSs only outperform
standard ANNs at the higher end of the sweep scale.

One criticism that can be re-raised at this point is that the redundant network has
five times as many hidden units as the standard network; therefore, it is not surprising that
redundancy provides better performance. Earlier work by Nguyen, Patel, and Khorasani
(1990; as cited in Zurada, 1992) suggests, however, that the performance of redundant net-
works may be better than standard networks with equivalent numbers of processing units.
Nguyen et al. trained two different networks, one a fully connected three layer network
(BP), and the other a modification of the BP network that symmetrically divided both layers
of hidden units so that the output nodes only received activation from half the total number
of hidden units (BPOS). Although the BPOS network required slightly more training sweeps
than the BP network to reach the same accuracy, the BPOS network had an overall shon-
er training time due to the smaller number of weight changes required. As the BPOS net-
work is similar to the redundant network in that both architectures limit the number of
connections, it may be possible to hypothesize that redundant networks should perform

better than standard networks with equivalent numbers of processing units.
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General Discussion

The results from both the PC problem and the FA problem confirm Izui and
Pentland’s (1990) mathematical analysis of redundant networks: Redundancy produces
faster convergence, more accurate results, and more stable networks than comparable
standard networks. In terms of the relevance of redundancy to the performance of ANNs
in general, redundant networks should be considered as a viable alternative to standard
networks. The initial cost of the extra hardware associated with redundancy is far out-
weighed by the savings in training, accuracy in responding, and network stability produced
by redundant processes. This improvement in performance may be due to individual
networks training towards not a global optimum, but an orthogonal local optimum, much as
Schapire’s (1990) leamning algorithm encourages. Indeed, analysis of the individual
networks within the redundant network showed that the networks are finding local
complimentary minima in the problem space; therefore, each individual network is being
trained towards a local optimum. Instead of developing one perfect algorithm or network,
we should consider combining smaller and simpler networks that have their own
specialization (see also Ballard, 1986).

These results have shown that there is another alternative to the combining
algorithms used by committee machines (¢.g. mean response, winner-take-all, median
respoase, etc.). The modifisble connections from the individual output units to the decision
unit allows the network to train itself. As opposed to taking the mean output response of
individual networks, which gives equal weighting 10 all networks, the amount of contribution
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Furthermore, all individual networks contribute to the final result, unlike winner-take-all or

median response methods. Consequently, the modifiable connections of the decision unit

have proven to be a functional alternative to those methods conventionally used while
preserving some semblance of biological systems.

Ironically, it is the modifiable connections of the decision unit that provide the

strongest line of argunent against the redundant network. Critics may claim that our

surprising that the redundant networks were able to converge on all PC problems, as a three-
layer network is capable of carving a problem space into an arbitrary number of distinct
regions (Lippman, 1987). The msponse to this criticism centers on the architecture of the
redundant network. Each of the subnetworks is an isolated unit that is capable, in theory,
of solving the problem on its own. In fact, Figure 4 shows that is indeed possible. This

architectural constraint is clearly different from the massive parallelism common to networks

differences between redundant networks and standard networks with equivalent numbers of
processing units. It is postulated that redundant networks will be more resistant to damage
and will genenalize better than standard networks as suggested by biological research (e.g.

unit allows us to speculate on the relevance
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specialization of each individual network within the redundant network is in line with
biological evidence from certain crustaceans whose movement is regulated via a set of
redundant command neurons, each specialized for a specific range of motion. "Specializa-
tion, which is made possible by redundancy, presumably increases the integrative flexibility
and effector repertoire of the command system” (Kovac, Davis, Matera, & Croll, 1983;
p.1535). Moreover, the specialization of one network for detecting the opposite parity can
be related to the parallcl ON and OFF channels leading from the retina to the visual cortex.
Normal vision requires the push-pull action of both channels, although Swindale (1986)
reports that a visual system with a blocked ON channel can still detect the onset of a dark
spot, and therefore the absence of a light spot. Similarly, the opposite parity detector
signifies the absence of odd parity by detecting even parity. Redundant information is

els of the visual system, and by the odd and even parity

carried by the ON and OFF chann
detectors of the ANN.

Other evolutionary theories are supported by the performance of the redundant ANN.
For example, the increased precision of the redundant network over the standard network on
the FA problem lends credence to Calvin's (1983) hypothesis about redundancy evolving
to increase the precision of a system. In fact, as the upper limit of network sweeps increases,
number of sweeps to train both the FA network and the PC network suggests that it is easier
to evolve several crude mechanisms working in parallel than one extremely effective
mechanism. Analysis of Figure 4, however, suggest that there may be an upper limit to the
amount of redundancy required for optimal performance. Theee of the subnetworks clearly
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show learning of the problem, whereas the responses of the other two subnetworks are
difficult to interpret. Too much redundancy may actually cause overleaming to occur and,
therefore, may be detrimental to network performance. This is also shown in Experiment
1 where learning efficiency was hampered by too much redundancy for the easicr problems.
The probiem of what level of redundancy to use may be analogous to the "Three Bears”
principle described by Scidenberg and McClelland (1989): too much or too little
redundancy, and the problem will not be solved efficiently.

Further research will consider the possibility of loss of redundancy accounting for
loss of functioning in patients with debilitating diseases. As stated earlier, it is widely held
that redundancy in the brain allows for functional recovery after brain damage (Almli &
Finger, 1992). It follows that loss of redundancy may cause loss of functioning. Modclling

cy via computer simulation has a distinct advantage over biological models, in that

precise ablations can be performed on artificial neural networks (see Hinton & Shallice,
1991; Farah, O'Reilly, & Vecera, 1993). Therefore, one can monitor the performance of

the ANN when specific connections are cut. Afier each connection is cut, it is expected that

there will be a slight decline in performance until the ANN has compensated for the missing

recovery is not immediate, but gradually improves (Marshall, 1984). Eventually, aftcr
enough redundant connections are cut, then recovery of function for the ANN should be

impossible.
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therefore, as redundancy decreases, variability in responding should increase. Monitoring
the variability changes should be an effective tool for estimating how much damage the
system has suffered, and should even predict when terminal drop will occur. A practical
application of this theory has already been hinted at by Patterson, Foster, and Heron, who
conclude that for assessing damage by Multiple Sclerosis, "variability is a more sensitive
indicator of visual pathway damage than the usual measure of mean” (1980, p.143). By
attempting to model this increase in vanability, we may be in a better position to understand

the underlying damage associated with such diseases as Multiple Sclerosis and Alzheimers.
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