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Abstract

In this dissertation, we study the application of empirical likelihood approach
and bootstrap technique in four problems. The empirical likelihood approach is
applied to get an improved estimator of the regression parameter in a logistic
regression model when values of a covariate for a subset of the study subjects
are missing at random. We also applied empirical likelihood technique in a finite
population framework to obtain a stable variance estimator of a ratio estimator
under two-phase sampling.

We develop two bootstrap sampling algorithms to draw robust inference on
the regression parameter under measurement error models with known error vari-
ance ratio. A weighted bootstrap procedure is also suggested to draw inference
on modeling exceedances over a threshold under one-way random effects model.

The thesis includes results from simulation studies for all four problems.
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Chapter 1

Introduction

This dissertation deals with the following problems:

(I) Inference on the slope parameter in a logistic regression when some values

of the covariate are missing but values of a surrogate variable are available.

(IT) Variance estimation for ratio and regression estimator under two-phase

sampling.

(ITII) Proposed two bootstrap procedures for the slope parameter under mea-

surement error model with known error variance ratio.

(IV) Use a weighted bootstrap procedure to estimate exceedances over a thresh-

old under one-way random effects model.

1.0.1 Problem I

Logistic models are often used to model the conditional mean of a binary response
Y with a covariate of interest X. That is, the conditional mean of Y'| X is modeled

as F(By+6,X) where B and (; are unknown parameters and F(z) = (1+e~%)"!L.



In such applications, values of the covariate X for a subset of the study subjects
may be missing; either the measurement is difficult or expensive to obtain. A
closely related variable Z may be used as a surrogate for the covariate X. For
example, in the Nurses Health Study described by Rosner, Willett, and Spiegel-
man (1989), the relationship between breast cancer Y, a binary variable and
long-term dietary saturated fat X was examined prospectively. The primary
data set consisted of a cohort of 89538 women, but instead of observing X, a
surrogate Z was observed, namely a self-administered questionnaire. To under-
stand the relationship between X and Z, 173 nurses became part of a validation
study, in which Y, X and Z were observed. The covariate X was not observed
directly, but diet was measured sufficiently often in the validation data set. for
one week at four different points in the year.

In Chapter 2 of the thesis, we consider a logistic regression with surrogate
covariate. Let Y denote a binary outcome variable, X be a covariate of interest
and P3(Y|X) = F(8X) be the logistic regression model for the conditional
distribution of ¥ given X, where 3 is a scalar parameter. The objective is to
obtain inference on the parameter § when some units of X are missing. The
data available for analysis consists of m observations {(Y;, X;, Z:),i € S} and
n — m observations {(Y;, Z;),i € Sp—m}, where the variables {Z;,i € S,} are the
surrogate variables for {X;,7 € S,} with S, = S,, U S,_n. We assume that the

validation set, S,,_,,, is a simple random sample from S,,.



1.0.2 Problem I1

It is often convenient and economical to collect certain items of information from
all units in the sample and other items of information from a subsample of the
units in the original sample. This technique known as two-phase sampling or
double sampling is useful in several ways. It is generally employed when it is
proposed to utilize the information collected in the first phase as supplementary
information in order to improve the precision of the information to be collected
in the second phase. Thus, in a survey that estimates the total wheat yield in a
given locality in Canada, one might use a large sample of n’ farms to estimate
the total area under wheat cultivation and a subsample of n farms to determine
the actual yield.

In this thesis, ratio estimation under two phase sampling is studied. Suppose
a simple random sample s’ of size n' is taken without replacement from a pop-
ulation of IV elements and z; alone is observed for all elements { € s'. A simple
random subsample s of size n is then drawn without replacement from s’ and y;
is observed for i € s. A ratio estimator of Y is Ji; = (§n/Tn)Tn = rin, where
Un and Z, are the means for s and T, is the mean for s’. Rao and Sitter (1995)
proposed a new linearization variance estimator that made a better use of the
sample data than the standard formula. They also obtained a jackknife variance
estimator and showed that these variance estimators performed well in track-
ing the conditional mean squared error. The use of the empirical likelihood,
Owen (1990, 1991), has become attractive in unifying methods involving the use

of auxiliary information in survey sampling. Chen and Qin (1993) employed the

3



empirical likelihood to use summary information on the auxiliary variables in im-
proving the customary estimator under simple random sampling. They showed
that the empirical likelihood estimator of the population mean was asymptoti-
cally equivalent to the linear regression estimator when the population mean of
the auxiliary variable was known (see also Hartley and Rao, 1968). In Chapter
3 of the thesis, we propose two alternative variance estimators. The first one
is based on a modification of the standard variance estimator and the second is
suggested by the empirical likelihood principle. A Monte Carlo comparison of

the proposed variance estimators with other estimators is also given.

1.0.3 Problem III

In educational and social studies, measurements are often subject to measure-
ment error, in the sense that a repetition of the measurements on the same
subject does not produce identical results. It is well documented in the litera-
ture that the use of statistical methods that ignore such measurement errors can
lead to wrong conclusions. For example, Goldstein (1979) demonstrated that a
conclusion could be reversed when a correction for the measurement error was
introduced in analyzing the data on social class differences in the educational
attainment of children aged 11 years. For a good review of the methods for deal-
ing with measurement errors, see Fuller (1987). Woodhouse, Yang, Goldstein,
and Rasbash (1996) proposed an adjustment for measurement error in multilevel

analysis.



In this thesis, we consider the structural equations model for n random vec-

tors Z; = (X;, Y:)T. It is assumed that for each i = 1...n, we have

_( X\ _ [ Uu &\ _ 41
&_<K>—<%J+<a>‘u+& (1.0.1)

where
(/rgi =a+ ,BU[,‘, (102)

and the U;’s are independently distributed with mean vector p and covariance

matrix 'y, with

2 g2
n= ( Z; ) and Ty = ( 70y 50[‘“ ) (1.0.3)

2 9
3 oy,

The &;’s are i.i.d. with mean vector 0 and variance-covariance matrix

Le = ( % f ) : (1.0.4)
We assume that for each ¢,
U; and &, are independent (1.0.5)
and
A? = 02/} is known. (1.0.6)

Let F' denote the common distribution of the Z;'s. By (1.0.1)-(1.0.6), the mean

vector pp and covariance matrix I'r are, respectively, given by

o= (58) () won

5



and

_ [ oxx(F) oxy(F)\ _ [ ot, + 7} Bof
I‘(F)_( e ) = 2ot bor ) (08

Expressions (1.0.1)-(1.0.6) represent the structural linear relationship with
known error variance ratio.

Gleser (1983) showed that the asymptotic results in a normal error func-
tional model, with the additional assumption that the first and second order
sample moments of the U; converge to finite limits as n — oo, were identical
to those of a bivariate normal structural model with normal distribution in the
Uyi. Kelly (1984) showed that the maximum likelihood estimators of the slope
parameter § and of the intercept parameter a under normal error model were
also the method of moments estimators for non-normal structural models when
A? was known. However, the sampling distribution of the slope parameter 3 was
skewed (see Anderson and Sawa, 1982). Large sample normal approximations
methods in obtaining inferences are not satisfactory for small samples. In view
of this, a bootstrap technique is proposed as an alternative method in dealing
with moderate sample sizes. Babu and Singh (1983, 1984) and Babu and Bai
(1992), among others, showed that the bootstrap sampling distributions incor-
porated the skewness of the true distributions. Linder and Babu (1994) studied
small sample behavior of the model-based bootstrap in the context of obtaining
inference about the slope parameter. In Chapter 4 of the thesis, we propose two
bootstrap procedures that incorporate skewness of the true sampling distribu-
tions. Theoretical justifications and Monte Carlo comparisons of the proposed

methods with the existing ones are also given.
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1.0.4 Problem IV

Random effects models are widely used in epidemiologic research to study the
degree of familial resemblance with respect to biological characteristics (see El-
ston, 1977) and in genetics to study heritability of selected traits in animal and
plant populations (see Smith, 1980). Solomon (1989) used the random effects
model to estimate the expected number of exceedances in systolic blood pres-
sure over a given threshold from a sample of 16 individuals. She adopted the

following balanced one-way random effects model:
yij=p+u;, =1,2,...,a, j=12,...,n (1.0.9)

where
u;; = v; + ey, (1.0.10)

with y;; being the j-th observation in the i-th class, x being an unknown pa-
rameter to be estimated and u;; being the random error associated with y;;.
Here u;; is assumed to be the sum of the random effects, v;, associated with i-th
class and random errors, e;;, associated with j-th observation for the i-th class.
The random errors e;; are independent, identically distributed with mean 0 and
variance o2 and the random effects v; are independent, identically distributed
with mean 0 and variance 03. Further, v; and e;; are uncorrelated so that the

variance-covariance structure of u;; is given by

2 2 R | .o ot
o, +0;, fort=4iand j=

2 for i =+¢ and j # j' (1.0.11)

v

E(ujupj) =<0
0 otherwise.

=~



Let h be a given threshold, and define

1 Yi; > h - =
Ii(h) = {o herwice,  20d T = D T, where T; = Y _ I;;(h). (1.0.12)

i=1 j=1

The goal is to estimate the average number of exceedances, E(T), defined as the

expected number of values that exceed a given threshold, its variance, Var(T)

and the probability of no exceedance, Pr(T = 0). In Chapter 5 of the thesis, we

propose a weighted bootstrap procedure to estimate these quantities. Theoretical

justifications and finite sample properties of the proposed bootstrap procedure
are also provided.

In this thesis, we are going to investigate (i) the empirical likelihood approach

to take advantage of information contained in the entire sample for problems I

and IT and (ii) the bootstrap approach to obtain robust methods for problems

III and IV. In the next two sections, we describe these two approaches.

1.1 The bootstrap

Efron (1979) introduced the bootstrap technique as a very general resampling
procedure for estimating the distributions of statistics based on independent
observations. The procedure is more widely applicable and has a more profound
theoretical basis than the Quenouille-Tukey jackknife (see Efron, 1982). Efron
(1979, 1982) considered a number of applications of the bootstrap method.

A formal description of the bootstrap is as follows: A random sample X =
(X1,Xa, ..., X,) from an unknown probability distribution F* has been observed

and we wish to estimate a parameter of interest T(X, F') on the basis of X. Let

8



F be the empirical distribution putting probability n=! on each of the observed
values X;, ¢ = 1,2,...,n. The bootstrap method consists of approximating
the sampling distribution of T(X, F) under F by T(X",F) under F. where
X* = (X{,X;,...,X;) denotes the random sample of size n from F. The
difficult part of the bootstrap procedure is often the calculation of the true
bootstrap distribution. Efron (1979) suggested a Monte Carlo approximation:
repeat realizations of X" by taking B independent random samples of size n
from F, say, X1, X5, ..., X 5. The sampling distribution of the corresponding
values T(X1; F), T(X3; F),... ,T(X%; F) is taken as an approximation to the
actual bootstrap distribution of T(X"; F). This approximation can be made
arbitrarily accurate by taking B sufficiently large.

For a wide class of statistics, T, and a wide class of distribution functions F
this approximation has a high degree of accuracy. It essentially corrects for the
skewness of the sampling distribution. See, for example, Bickel and Freedman
(1981), and Babu and Singh (1983, 1984).

Wu (1986) proposed a weighted bootstrap method in the context of classical
regression. Generally, the method entails first taking i.i.d. samples {¢;,i =

1,2,...,n} from an external population having mean 0 and variance 1 and then

generating bootstrap data by setting
yi=xTB +tie;, i=12,...,n, (1.1.1)

where x; is a p x 1 deterministic vector, 3 is the p x 1 vector of least squares

estimators of 3 and e; = y; — T 3. Liu (1988) suggested that another restriction



needed to be imposed on t;, namely, E(t}) = 1, to modify Wu's bootstrap
procedure so that it shared the usual second order asymptotic properties of the

classical bootstrap.

1.2 The empirical likelihood method

Empirical likelihood, introduced by Owen (1988, 1990), is a computer intensive
statistical method, but not as intensive as the bootstrap. However, instead of
applying an equal probability weight n~! to all data values, empirical likelihood
places arbitrary probabilities on the data points, say p; on the i-th data value.
The weights p;’s are chosen by profiling a multinomial likelihood under a set of
constraints. The constraints should reflect some extra knowledge on distribu-
tions. If extra information on distributions is available and can be expressed

as
E{gt(/Y)} _—'O, t = 1,2,...,(], (121)

where ¢,(:),t = 1,...,q are some known real functions. Then, the empirical

likelihood determines the p;’s by maximizing a multinomial likelihood []7_, p;

subject to
n n
> pi=1 and > pig(X:)=0, t=12...,4q (1.2.2)
i=1 i=1
Let Ay, Az,. .., Aq be the Lagrange multipliers corresponding to the g constraints.

Define A = (/\1, /\2, . ,/\q)T and g(JY,) = {gl(X,‘),gl(/Y,‘), N ,gq(/Yi)}T. The

optimal weights are
pi=n"{1+ATg(X)}Y, i=1,2,...,n (1.2.3)

10



where A is the solution of

. X;
Z#:o, t=1,2,... .q. (1.2.4)
i=1 1+ A gt(/Yi)

An attractive feature of the empirical likelihood approach is that it produces
confidence regions whose shapes and orientations are entirely determined by
the data and which have coverage accuracy at least comparable with those of
bootstrap confidence regions. Its coverage properties have been examined by
Hall and Scala (1990) and Diciccio, Hall, and Romano (1989) for the case of a
smooth function of a mean of i.i.d. random variables, by Owen (1991) and Chen
(1994) for the regression case and by Kolaczyk (1994) for the case of generalized
linear models. Note that the use of additional information in the bootstrap is

not straightforward.
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Chapter 2

Logistic regression model with
surrogate covariate

2.1 Introduction

Logistic models are often used to model the conditional mean of a binary response
Y with a covariate of interest X. That is, the conditional mean of Y|X is
modeled as F'(8y + 8, .X) where 3y and (3, are unknown parameters and F(r) =
(14 e™*)~. In such applications, values of the covariate X for a subset study
subjects may be missing; either the measurement is difficult or expensive to
obtain. A closely related variable Z may be used as a surrogate for the covariate
X. For example, consider the study done by Gladen and Rogan (1979). They
examine the disease risk due to body burden of accumulated chemical pollutants
in body tissues. Two classes of environmental pollutants which exhibit this
“accumulation” phenomenon are the metals, such as DDT's, PCB’s and PBB'’s.
Body burden is measured by the levels of the chemicals. For the metals, depot
tissues are teeth and bones. For the halogenated hydrocarbon, fat is the depot

tissue. The depot tissue is usually impossible or difficult to obtain from living
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subjects. As a result, a surrogate measurement is necessary, such as blood levels.
However, blood levels are usually lower than depot tissue and are affected by
nutritional or metabolic state of the individual. Use of such measurements is.
therefore, subject to criticism. One approach to this situation is to obtain the
data in the form of two independent samples. In the first sample (validation data
set) only the information on the response variable ¥ and the surrogate variable
Z are measured. While in the second one (primary data set) information on the
covariate X is measured in addition to the information on the response ¥ and
surrogate variable Z. The use of surrogate variables is common, particularly in
medical research, and there has been considerable discussion to identify “valid”
surrogates. For a review of the use of surrogate variables in clinical trials. see
Prentice (1989) and Wittes, Lakatos, and Probstfield (1989).

Although relatively few papers have addressed the missing value problem
specifically in the context of logistic regression, there are four general methods
for the analysis of incomplete data with surrogate variable that can be widely
used, namely, partial case, imputation, maximum likelihood and semi-parametric
methods. Perhaps the simplest approach to this problem is the partial case
method, which discards cases with missing values. This is the default method
used by most statistical software packages such as SAS and SPSS. Since we can
measure the outcome and surrogate variables for the discarded units, these units
still carry some information on the effect of the covariate. Hence, partial case
analysis is not efficient for not using all the available information. Especially,
large missing rate in the covariate can add up to a substantial loss of data. A sec-

ond general approach is to replace the missing values with reasonable estimates
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(imputed values) and then analyze the data. Several strategies to construct such
estimates have been suggested. However, estimates of the variance of the esti-
mated regression parameters from the artificially completed data set are invalid
in general. This is because variance estimates have to be corrected for variations
due to imputation. One solution to this problem is to assess this variance by
computing repeated estimates; following multiple imputation method, see Rubin
(1987) and Kalton and Kasprzyk (1986).

A third general approach is to parameterize the conditional probability rela-
tionship between X and Z through model P,(X|Z) and to maximize the likeli-

hood
LB, = [ Ps(VilX0Py(XilZ) [[ Pan(¥ilZ),

i€Sm I€Sn—-m

where Pg,(Yi|Z:) = [ Pa(Yi|X:)Pp(Xi|Z:)dX, B = (8o, 81), Sm and S,_,, de-
note the primary and the validation sets, respectively. However, this parametric
method is not generally used in applied work, in part, because misspecifica-
tion of the nuisance function P,(X|Z) can lead to an inconsistent estimator of
B. Moreover, except for some special cases, implementation of the likelihood
based approach is cumbersome; requiring either numerical integration to cal-
culate Pg,(Y|Z) and its derivative, or other complicated algorithms such as
expectation maximization (EM) and data augmentation algorithm. For more
details, see Schafer (1987) and Tanner and Wong (1987).

The fourth general method for analyzing incomplete data with surrogate

variable is to use a non-parametric kernel regression method on the validation
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data set S,_, to estimate the probability Ps(Y|Z) (see Carroll and Wand, 1991).
They proposed an estimate of 3 as a solution to

> Ss(vilX)+ > Hp(YilZ) =0,

1€Sm 1€Sn-m

where S3(Y'|X) was the score function of (Y]X) and Hs(Y|Z) was a kernel
regression estimate of (Y|Z). A semi-parametric estimate of 8 based on this
method was asymptotically normally distributed. Although this method is gen-
erally more robust than the others, it has the disadvantage of requiring a band-
width selection. Pepe and Fleming (1991) considered a similar problem with
discrete covariate Z. Stefanski and Carroll (1985) discussed the case in which
all the X;'s were unobserved while {Z;,7 € S,} were available.

Mak, Li, and Kuk (1986) assumed a model for P,(X|Z) and then proposed a
bias-corrected estimator of the form ﬁ [ — Co, where B ; was an estimator based on
the imputation method and ¢y was an estimate of bias obtained from a bootstrap
method. However, in their bootstrap procedure, the information on Y and Z in
the validation data set is not being used in the resampling process. Furthermore,
it is non-robust with respect to a misspecification of the conditional density
P,(X|Z). For these reasons, the resulting bootstrap procedure is questionable
and hence, can lead to an inefficient estimator.

In the present chapter, we propose an alternative estimator under a logistic
regression model with a surrogate variable using the empirical likelihood tech-
nique. This estimator is shown to be asymptotically normal and more efficient

relative to the partial, imputation and bootstrap estimators.
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Section 2.2 of this chapter presents the logistic regression model with sur-
rogate covariate and the three methods of estimation. In Section 2.3, a brief
introduction is given to the empirical likelihood and it is shown, explicitly, how
empirical likelihood can be applied to the present problem. Section 2.4 derives
the asymptotic variance of partial, imputation and empirical likelihood estima-
tors. Some simulation results that compare these methods are given in Section

2.5.

2.2 The Model

Let Y denote a binary outcome variable, X be a covariate of interest and
Ps(Y|X) = F(By + 5:1X) be the logistic regression model for the conditional
distribution of Y given X. In the remainder of this chapter. we consider the
case By = 0 and without lost of generality we let 3 = 3;,. The objective is to
estimate the parameter 3 when some units of X are missing. The data sets
available for analysis consist of m observations {(Y;, X, Z;),i € Sm} and n — m
observations {(Y;, Z;),t € Sp_n }, where Z; is the measurement on the surrogate
variable Z for the i-th unit, i € S, with S, = S;, U Sp_m- We assume that the

validation set, S,_n, is a simple random sample from §,.

2.2.1 Partial Case Method

The partial case method estimates the logistic parameter § by maximizing the

likelihood function of m complete cases of X, ignoring Z. This likelihood func-
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tion is written as
Ln(BIX1, ..., Xm) = H F(Bz:)%[1 - F(3z;)]'¥. (2.2.1)
i€Sm
In practice, the partial case estimate of 3, denoted by Bm, and its estimated

standard error can be computed by using some standard statistical packages.

2.2.2 Imputation Method

This method involves imputing missing values of X for units in S,_,, with pre-
dicted values obtained from a simple regression model X = a + bZ + <. where =
denotes a random vector with mean 0 and variance o2. That is, {X;,i € S,_n}

are imputed by
Xi=a+bZ, i=m+1lm+2. ... .n 2.2.2)

where @ and b are the least square estimators based on {X;, Z;;i € S,}. It
iIs common practice to treat these imputed values as if they are true values
and then compute the variance estimate of 3 using standard likelihood theory.
This procedure can lead to serious underestimation of the true variance of the
estimate when the proportion of missing values is appreciable. As a result. the
confidence interval based on the resulting estimate will have coverage probability
smaller than its corresponding nominal level since the method ignores errors in
the estimation of X from Z. To describe this method, consider the likelihood

function,

Li(BIXy, - s Xy Xmrs -, Xa) = [ F(B2:)[1 - F(Bz:))'™%, (2

1€Sn

to
[A™]
w
et
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where
- { T; i € Sm

BTl % i€Sum
The estimate of 3, denoted by B[, is then obtained by maximizing the like-
lihood equation (2.2.3). It can also be noted that the above estimator will be

biased due to imputation of X;'s.

2.2.3 Bootstrap Method

Mak et al. (1986) proposed a bootstrap procedure to estimate the incurred bias
B due to imputation. They suggested a bias-corrected estimator 3g = 3; — cq,
where ¢y was a correction for the bias induced by the bootstrap sampling. To
describe their bootstrap sampling, let G and H be the empirical probability
distributions with mass m~! each at {X;,i € S,} and {&; = Xi—a-bZ,ic Sm}s
respectively, where a and b are the least square estimators based on {X;, Z;;i €

Sl

1. Draw a sample {X},i € Sp,} from G and generate

Y =

1

{ 0 with probabilty 1 — F(8nX})
1 with probabilty F(3,.X}),

where 3, is the partial case estimator obtained from the logistic regression
analysis based on {Y;, X;;7 € Sp,}.
2. Draw a sample {¢},i € S,} from H and let {X; =a —bZ; +&!,i € S, }.

3. Then the “bootstrap sample " will consist of {Y;*, X}, Z;i € S} and

{Y*,Zr i€ Spm}-
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4. Compute 3, using the imputation method outlined in Section 2.2.2.

5. Repeat steps (1)-(4) above k times to obtain co = A~'3 5_ 31 — 3,
where B}" is the value of the estimator 3; computed on the A-th bootstrap

sample, h=1,... k.

Note that in their bootstrap algorithm described above, {Y;, X;;i € S,,_,,} are
not being used in the resampling procedure. It is often the case that the number
of units in S,_,, is much larger than the number of units in S,,; therefore. the

procedure can lead to an unstable variance estimator.

2.3 The empirical Likelihood method

For the present problem, we employ the empirical likelihood method to use all
the information from both S,, and S, _,, through the following constraint
> Se(YilZi) =0, (2.3.1)
{€5n
where Sg(Y'|Z) = Z[Y — F(6Z)] is the score function obtained from the likelihood
function
LOYy,. .. Yo Z1,. .. Za) = [ Fz)"[1 - F(82)]' . (2.3.2)
{€Sn
Here, the goodness-of-fit of the logistic regression model of Y on Z is not relevant.
The idea of fitting the above model is only to extract association between X and
Y through the associated information between Z and Y when X and Z are

correlated.
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2.3.1 The Proposed Method

We apply empirical likelihood method for the model P3(Y].X) = F(3X) by

maximizing the conditional likelihood

L(ply .. vmeSn) = H piv (233)
lesﬂl
with respect to p;, { = 1,... ,m subject to restrictions

Z pi=1 p;>0, i€S, and Z Se(YilZ:)p: = 0. (2.3.4)

i€Sm 1€ESm

where S¢(Y|Z) = Z[Y — F(8Z)]. The last restriction follows from the fact that

> Se(Yilzi) =o0. (2.3.5)
i€Sn
Then the maximum of log L(p;, p2, . .. . Pm|Sn) may be found via Lagrange

multipliers by letting
H=7) logpi+Xh (1 - p.) —mA ) piSi(YilZ).  (2.3.6)
iesnl iesm iESy"
where the \'s are Lagrange multipliers and 8 is the maximum likelihood estimator
of 8 obtained as the solution to the equation (2.3.5). Taking the derivatives with

respect to p;, we have

H
Op; Di
Hence,
Zpigli =m—-AN=0=XA=m (2.3.8)
i€Sm Opi
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Replacing Ay = m in (2.3.7), we have

_(i) L S (2.3.9)
P=\m) T¥ns,mzy PO 23

Now, the restriction from the third part of (2.3.4) is

_ . 1 S5(YilZy)
0= Z PiBg(¥ilZ) = <m> i; 1+ AaS(YilZi)

i€Sm

(2.3.10)
from which A; and hence the p;’s can be obtained . After obtaining the optimal
pi’'s, i = 1...,m we obtain the empirical likelihcod estimator of 3 from the
estimating equation
Sm(B) =m Y _ Ss(¥ilXpi = 0, (2.3.11)
i€5m
where Sg(Y|X) = XY - F(BX)].
The solution 3 to equation (2.3.11) can be evaluated by implementing a
root finding algorithm such as Brent’s method (see Press, Flannery, Teukolsky.
and Vetterling, 1993). In the next section, we consider the asymptotic variance

of Bg along with the other estimators.

2.4 Asymptotic variances

This section is devoted to the derivation of the asymptotic variance of Bm, B, and
Be. In addition, the asymptotic variance of the maximum likelihood estimator
will also be given for the case when all the X;’s, i € S, are observed. In the
rest of this chapter, the asymptotic results are obtained by letting m — oo

and n — oo such that m/n — &’ where &’ € (0,1). Further, we assume that
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there exists a positive constant C such that |X;| < C and |Z;| < C for all i.
The asymptotic distribution theory in a general case with density fy (y; 3) relies
upon the following assumptions (see Cox and Hinkley, 1974 and Pepe. Reilly.

and Fleming, 1994).

(a) The parameter space Q has finite dimension, is closed and compact, and

the true parameter value 3 is interior to Q.

(b) The first three derivatives of the log likelihood I(Y"; 3) with respect to 3
exist in the neighborhood, Ny, of the true parameter value almost surely.
Further, in such a neighborhood, n~! times the absolute value of the third
derivative is bounded above by a function of ¥ whose expectation exists.
The absolute value of the third derivative of the log likelihood [(Y"; 3) with

respect to 3 is bounded away from 0 in a neighborhood, Ny, almost surely.

(c) —E{(8*(Y;3)/5%3)} is finite and positive in the neighborhood, Vg, of the

true parameter 3.

It can be noted that for the model considered in this chapter, the above condi-
tions hold. The first and second derivatives with respect to 3 of the loglikelihood

[m(B)=log Lmn(B| X1, ..., Xm) defined in (2.2.1) are given by

2
> zily - F(Bz)), 0 ;’;‘3(,_,‘3) = - ) 2F(Bz:){1 — F(Bz:)].

t€ESm t€Sm

Am(B) _
B
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From standard likelihood theory, the asymptotic (unconditional) variance of 3,,,

Var(Bm), is then given by

Var(Bm) = — {E [azlm(ﬁ)J }—1

a5°
-1
- % {% > 22F(Bzi)[1 - F(ﬁxi)]} . (2.4.1)
1€5n

If all the X;'s, { € S, were observed, the maximum likelihood estimator of 3
could be obtained by maximizing the function L(3|X,, ..., X,) with respect to
8. We denote the resulting estimator of 3 by 3c. Then the asymptotic variance

of Bc is given by

-1
Var(e) = { S F(BzL - wa.-)l} | (2.4.2)

1€ESn

Turning to the asymptotic variance of B,, consider
Var(Br) = E{Var(8/|S.)} + Var{E(3/|5:)}. (2.4.3)
Since for large m, E(3;|S.) = 3 implies that Var{E(3/|S.)} = 0. Hence,

Var(8) == { %[ S F(Be)lL - F(6)] +3 B {#2F(52:)[1 - F(,asc.-)lﬂ} -

n
1€Sm t€Sn-—m

(2.4.4)

To establish the consistency of BE, we first obtain the consistency of BE, which
is the same as BE with the condition that the p;’s are fixed known constants. We

use the following result on estimating functions due to Foutz (1977).
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Theorem 2.1. There ezists a unique consistent solution to an estimating equa-

tion Sy, (B) given in (2.3.11) in a neighborhood Ny if
(i) |0Sm(B)/08| ezists and is continuous in a neighborhood Ny;

(11) m~195,,(8)/88 converges uniformly in probability to
E{m™'95,(8)/08} in Ny;

(17) with probability converging to 1, the quantity 8S,,(8)/03 evaluated at

the true parameter is negative as m — 0o:

(iv) E{Sm(8)} = 0.

The next two theorems are along the lines of Theorems 3.1 and 3.2 in Pepe.

Reilly, and Fleming (1994).

Theorem 2.2. An estimator Bg that satisfies equation (2.3.11) ezists and is
unique in a neighborhood No, with probability converging to 1 as m — o and
n — oo such that m/n — k' where k' € (0.1). Furthermore, 3g is consistent for

the true parameter 3.

Proof. First, we assume that the p;’s are fixed and let I3(Y|X) =
-0%*log L(B|X1,...,Xm)/08% In this case, the score function is Sn(3) =
m Y Sp(Y;|Xi)pi, where Sg(Yi|X:) = Xi[Y; — F(B8X;)]. Condition (i) of Foutz
above follows from assumption (b).

Consider m™'95,(8)/98) = -m~'Y ..o z}F(Bz:)[1 — F(Bz;)] which is

the average of independent and non-identically distributed random variables.
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Then, the Kolmogorov strong law of large numbers for independent non-
identically distributed random variables applies and yields m~!(9S,(3)/98) —
{~n"'Y s, TIF(Bxi)[1 — F(Bz,)]} & 0 as m — oo (see Serfling, 1980. p.27).
The pointwise convergence of 95,,(3)/98 can be extended to uniform conver-
gence on a neighborhood, Ny. This follows by noting that the assumption (b) is
satisfied for our model, i.e., 85,,(3)/98 has bounded derivative in a neighbor-
hood, Ny, almost surely and by the application of the dominated convergence
theorem to establish that E{/5(Y;|X;)} also has bounded derivatives. The point-
wise convergence of m~'9S5,,(3)/08 at the true parameter value together with
assumption (c) implies condition (iii) of Foutz.

Finally, turning to condition (iv) we note that

E{Sm(0)} = E{m ) _ Ss(Yi|X:)p:}

iésm
= > E{Ss(YilX.)}
€S
=0. (2.4.5)
O

Hence the result of Theorem 2.2 follows for p;’s fixed.

We now give the asymptotic variance of 3g in the following theorem.

Theorem 2.3. As m — o0 and n — oo such that m/n — k' where k' € (0,1),

mt/ 2([§E -~ B) converges in distribution to a normally distributed random variable
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such that for large m and n, E(Bg) = 0 and variance given by

i€S5n
1\ (1 — , N
+ (E) <;§‘ ; F(Bz;)[1 — F(ﬁm)])

[% > ziF(Bz:)[1 — F(Bzy)] - (% > mnF (Bl - F(,B:z:,—)])

i€S, i€Sn
) -1
_ ~'.‘z . _ ~. D)
x@X;mmlan}. (2.4.6)
I€ES,
Proof. Consider a second order Taylor series expansion of S,,(3g) around J.

Then we have

0= Sn(Be) = Sm(B) + asgﬁ(ﬁ)(éa — 3) + 0p(m™?),
so that
m'*(g ~ B) = [—m_lai,n#]_l{m‘”zsm(ﬁ)} + 0p(1).

Observe that m~'9S,(8)/06 = m™'>_,.s —1I3(Yi|X;) which is the mean of
independent and non-identically distributed random variables. It was previously
proven that m='85,(8)/08 — {—n"' Y527 F(Bz:)[1 - F(Bz;)]} & 0, which is
negative. Therefore, we look at the asymptotic distribution of S,,(3). Consider

Sm(B) =m Y Ss(YilXi)ps, (2.4.7)

i€ESm

which is the sum of independent and non-identically distributed random variables
with mean 0. Asymptotic normality of S,,(3) follows then from the Lindeberg-

Feller central limit theorem by noting that X = mX;[Y;— F(8X;)|p: with EX} =
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0 and for some v > 2, B 3 ™ E|X;|" = o(1) where B2, = 3" E(X;)? Upon
simplification, it is shown in the Lemma below that the variance of S, (3) is given
by expression (2.4.9). It follows that the asymptotic distribution of m!/2(3g — 3)

is normal with mean 0 and variance given by
- dSn(8)] 2 i
Var(v/mBg) = [_m‘l%} m~'War(Sm(8)). (2.4.8)
which is the desired result. O

Lemma 2.1. For large m and n, we have

Var(Sa(8)} = ()" Y aiF(B(1 - F(8z)] + m {% S 2R (3z,)

1€ESn 1Sy,
x[1 — F(Bz;)| ( Zrl-zF(ﬁI )1 - (%31‘1)])
iESn
-1
X (% Z SF(0z)1 - F(B:i)]> } . (2.4.9)
€S,

Proof. To prove the lemma, we use the standard formula,
Var{Sn(B)} = EVar(Sn(3)}|Ss] + Var[E{Sa(8)}IS..  (2.4.10)
First, consider

Sm(B8) =m Y wily: — F(Bz:)]p;

xGSm

= — Z zily — F(Bz:)][1 — A2S4(Yil Z)), (2.4.11)

lesm
and observe that by the strong law of large numbers n! Zies,. Se(Yi|Z;) 20,
since E[Sp(Y;|Z;)] = 0 and then by noting that S;(Y|Z) & Sy(Y|Z), we have
.m
E{Sn(B)|Sn} = — Z zi[y; — F(Bz;)]. (2.4.12)
N ies,
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It follows that

Var[E{Sn(8)}\S,] = (%)2 > ZiF(Bz;)[1 - F(Bz:)].

i€5n
Turning to E[Var{Sm(3)}|S.], consider

Sm(B) =m Y _ zi{y: — F(3z:)]p:

ESm

= (—f; Su-2Y Sé(mz,-)y:>

iI€Sm 1€Sm

i . T .
moz. iE€Sm

where

yi = zilyi — F(Bzy)], g =m~" Zyi"
o=y - F(6=)], Tn=mY g,

3 2 \-1 "y F2 -1 2
3* =(mS:.) iy, Si.=m E T,

(2.4.13)

(2.4.14)

(2.4.15)
(2.4.16)

(2.4.17)

i.e. the empirical likelihood estimator is asymptotically equivalent to the regres-

sion estimator (3, in the sense that m'/?(3z — 8,,) = 0,(1) (see Hartley and

Rao, 1967), and A, satisfy (2.3.10). Along the lines of argument given in Chen

and Qin (1993), it can be shown that

R 1 ”
Ao = [5 > Si(ilZ)

i€Sm
= O,(m~'?).

t€Sm

[;«% > Sa-(mz,-)} +o(m™"7%)

(2.4.18)



Hence, the conditional variance of S,,(3)|S, is given by

Var(Sn(8)iSa} = m () (1= 50)3;

., S,
= m? (%) (53. - ;—) , (2.4.19)

where py-.- and Sy-;- are the correlation coefficient and covariance between y*

and z*, respectively and S";f is the variance of y*. Taking expectation of (2.4.19).

we have

E[Var{Sn(8)ISa}] = m {% >~ R (Bri)[L - F(8z,)

iésn

- (% Z Tz F (B[l - F(ﬁn)])

iesﬂ

-1
x (l 2F(0:)[1 - F(9:,—)]> |
" s, (2.4.20)

Combining (2.4.13) and (2.4.20), we get

Var{Sm(8)} = (%)2 S 22F(Bz)[1 - F(Bay)] + m {% > 2R (Bz;)

1€Sy {€Sy

i€Sn

X <% Z Z2F(0z)[1 - F(():i)]> } : (2.4.21)

x[1 — F(Bz;)] - (% Z Tz F(8z)(1 - F(ﬁxi)])
i€5n

We note that the first component of the variance Var(83g) is the expected

information based on L(8|Xi,...,X,), the likelihood for observed data if
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{Xi,i € S,} were known. The second term is, therefore, the penalty induced for
not knowing {X,,i € S,_,}.
All of the above results regarding 3¢ assume that pi's are fixed. Define 3g

the same as Gg except the p;’s are replaced by their respective estimates

1
pi = (i> z ——, i€ Sn. (2.4.22)
m/ 1+ XS4(Yi|Z;)
Now, consider
m!'?(Bg — 8) = m'*(Bg — 8) + m'*(3g — B¢). (2.4.23)
By noting that the second term of the right hand side of (2.4.22) converges to 0 in

probability, we conclude that m!/ 2(53 — 3) has the same asymptotic distribution

as m!/%(Bg — B).

2.5 A Simulation study

We conduct a simulation study to investigate the properties of the estimators
studied in this chapter. In particular, the absolute bias and relative efficiencies
are considered for (a) the partial case estimator (8,), (b) the imputed estimator
(81), (c) bootstrap estimator (8g), and (d) the empirical likelihood estimator
(Bg). The values of (X, Z) are generated according to the following three differ-

ent models:

(I) Linear: X; = 1+ 2Z; + &; with Z; '~ Unif(0,2) and <; ~ vZ;N(0,0.25)

fori e S,.
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(II) Quadratic: X; = 2.0 — 2.0Z; + 2.0Z? + ¢; with Z; and <, are defined as in
Model I for ¢ € S,,.

(III) Linear-Quadratic: X; =1+ 2Z; +¢; for i € Sp, and X; = 1 + 22?2 + ¢, for

t € Sp_m with Z; and ¢; are defined as in Model 1.

Other parameters covered in this study are 3 = 1 and n = 5,000. The outcome ¥’
is generated from a Bernoulli random variable conditional on X, whereby ¥ =1
with probability (1 +exp{—08z)})~! and ¥ = 0 otherwise. Furthermore, for each
combination of the above parameter values, N = 200 independent samples are
generated for n = 5, 000 according to the above three models. A simple random
sampling of size m = 100, 200 and 500 are then taken without replacement from
these populations of n elements. This sampling is repeated for S = 50 times.
To run the bootstrap procedure with 200 simulations and 100 bootstrap samples
with § = 50 on a Sun SPARC station 20 model 712, with dual 75 MHZ super
SPARC CPU’s and 192 MB of RAM, 600 hours of CPU time are required. Hence,
to minimize the computer time, the bootstrap method is implemented only for
the Model III. The Mak's bootstrap estimator is computed based on B = 100
bootstrap samples. The absolute bias for each estimator is computed using the

following formula:

N S
1 s,n
Absolute blas(ﬁs n) = N3 E_ E— B - (2.5.1)

where ﬁf "™ is the estimator based on the method ¢t = m, I, B and E. The relative

efficiencies of 8,,, B and Bg are defined as the ratios of the mean square error
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of G to their respective mean square errors., i.e.,

Relative Efﬁciency(Bs',,) = %, where (2.5.3)
MSE(G;")
) ] XS
MSE(8;") = —= 3"~ 3)%, 2.5.
ISE(8;") = 35 ;(6 3)?, (2:5.4)

The results are reported in Tables 2.1-2.3. The simulation results show the
advantages of the empirical likelihood approach over its competitors on both
grounds: biasedness and efficiency. The absolute bias values under the Model [
are in the range of 0.068-0.167 for Bm, 0.348-0.381 for B, and 0.062-0.149 for
BE. While the efficiencies relative to B, are in the range of 3.003-17.720 for
5’m and 3.973-21.857 for ﬁE. Similarly, the absolute bias and efficiencies values
under Model IT have the similar pattern as in Model I. The absolute bias values
under the Model III are in the range of 0.079-0.155 for Bm, 0.140-0.160 for d,
0.055-0.094 for 3p and 0.036-0.076 for 3g. While the efficiencies relative to 3;
are in the range of 0.599-2.039 for Bm, 1.514-4.146 for BB and 2.753-10.250 for
Bg. There is a negligible absolute bias in 3¢ with greater relative efficiency over
all other estimators.

The empirical likelihood estimator performs well even when the relationship
between X and Z is not linear for i € S,_,,, whereas, the performance of the
bootstrap estimator in this case is rather poor. These results are encouraging and
imply that the proposed method is robust to misspecification of the relationship
between X and Z. It is interesting to note that the bootstrap estimator still

performs better than the imputed estimator.
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In summary, the method we have proposed is a useful alternative to the
standard procedure and it is not as computationally intensive as the bootstrap
method. The computations can be carried out with an existing maximization

subroutine such as Brent's method.
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Table 2.1: Absolute bias and efficiencies of three estimators relative to J3; for
n = 5,000. S = 50 and NV = 200 under linear model X; = 1.0 + 2.0Z; + =, for

i € S,.

Absolute bias

Rel. Efficiency

m ,Bm B[ BE Bm JE

100 0.167 0.381 0.149 3.003 3.973
200 0.118 0.348 0.102 4.838 6.586
500 0.068 0.355 0.062 17.720 21.857

Table 2.2: Absolute bias and efficiencies of three estimators relative to B, forn =
5,000, S = 50 and N = 200 under quadratic model X; = 2.0-2.0Z;+2.0Z? +¢;

forie S,.

Absolute bias

Rel. Efficiency

m Brm G; Be Bm Be

100 0.195 0.357 0.171 1.521 1.915
200 0.112 0.371 0.095 6.745 9.351
500 0.074 0.317 0.063 11.121 15.143

Table 2.3: Absolute bias and efficiencies of three estimators relative to 3; for
n = 35,000, S = 50, B = 100 and N = 200 under linear model X; =1+ 2Z, + =,
for ¢ € S;, and quadratic model X; =1+ 222 + ¢, for { € Sy_p.

Absolute bias

Rel. Efficiency

m Bm Bl BB BE Bm Bs BE

100 0.155 0.160 0.094 0.076 0.599 1.514 2.7533
200 0.122 0.153 0.071 0.049 0.996 2.693 6.513
500 0.079 0.140 0.055 0.036 2.039 4.146 10.25
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Chapter 3

Variance estimation under
two-phase sampling

3.1 Introduction

In survey sampling, we are often interested in estimating the mean value of a
characteristic Y of a particular population when the information on the auxiliary
variable X, correlated with Y, is already available or can be easily observed.
For such situations, the estimation for the mean value of Y through ratio and
regression techniques has been discussed in the literature for two different cases
(see Cochran, 1977) (1) Single-phase case: When the population mean of the
characteristics X is already known and the information on Y is observed for
units in a sample of size n; (2) Two-phase case: When the population mean of
the characteristics X is not known and it is estimated by taking a large random
sample of size n’ and observing X, then drawing a subsample of size n observing
Y.

Two-phase sampling is generally employed when it is economically feasible

to take a large preliminary sample in which an auxiliary variable X, correlated
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with a characteristic of interest Y, is measured alone. The initial sample gives
an estimate Z, of the population mean X, while the subsample in which Y
is measured is employed to estimate the population mean ¥ through ratio or
regression estimation using .. For example, in a survey that estimates the
total wheat yield in a given locality in Canada, one might use a large sample of
n' farms to estimate the total area under wheat cultivation and a subsample of
n farms to determine the actual yield.

Chen and Qin (1993) employed the empirical likelihood method to use sum-
mary information on the auxiliary variable at the estimation stage. Benhin and
Prasad (1997) extended the empirical likelihood to double sampling when two
auxiliary variables were available.

Turning to variance estimation under the ratio method, Rao and Sitter (1995)
proposed a new linearization variance estimator for a ratio estimator that made
better use of the sample data than the standard textbook formula. They also
obtained a jackknife variance estimator and concluded through a simulation
study that their conditional and unconditional variances had better properties
than the standard formula (see Sukhatme and Sukhatme,1970). Subsequently,
Sitter (1997) extended this method to regression estimation along the same lines
as ratio estimation. He showed under a model proposed by Dorfman (1994)
that the resulting variance estimators were design-unbiased and approximately
model-unbiased. For more information on variance estimation under two-phase
sampling under model-based approach, see Dorfman (1994).

This chapter considers a new variance estimator for ratio estimation based

on the empirical likelihood approach under simple random sampling without
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replacement both in single and two-phase sampling. We will use this approach to
choose the probability weights under constraints formulated from the information
on the auxiliary variable.

In Section 3.2 and Section 3.3, we review variance estimators available for
ratio estimation in single and double sampling. The proposed variance estimator
is derived under each case using empirical likelihood. We extend the empirical
likelihood method to regression estimation in Section 3.4. A simulation study to
examine the unconditional and conditional repeated sampling properties of the

proposed variance estimator in two phase sampling is presented in Section 3.5.

3.2 Variance estimator of the ratio estimator
under single-phase sampling

Suppose that a population consists of .V distinct units with values (y;, r;), where
r; >0 (i =1,...,N). Denote the population means of Y and X, respectively,
by Y and X. To estimate ¥ under simple random sampling of size n ., it is
customary to use the ratio estimator §., = (§/%)X, where § and 7 are the
sample means of y and r. The variance of j., is approximated by (Cochran.
1977, p. 155) and given by

1 1

Vi(Grs) = <; - N) S%, (3.2.1)

where S% = (N —1)"1 Z;IL D?, D; =Y, - RX; with R = Y/X. Two commonly

used estimators of V(7,,) are

- 1 1 _ 1 1 )Z' 2 ,
vo(Jrs) = (E - N) s3 and v (§) = <; - N) <;> s2, (3.2.2)
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where

1 9 2
35 = m— de =s, — 2rsgy + r'si, (3.2.3)
i€s

with r = §/Z, di = y; — rz;. Although the original motivation for v,(r) =
v1(Frs)/ X? as a variance estimator of the ratio R is the unavailability of X, it is
not clear that v;(g,s) is indeed worse than vo(y,s) (see Cochran, 1977 and Rao
and Rao, 1971). Chen and Qin (1993) applied the empirical likelihood approach
in conjunction with summary information on the auxiliary variable in improving
the customary estimator under simple random sampling. They showed that
the empirical likelihood estimator was asymptotically equivalent to the linear
regression estimator when the population mean of the auxiliary variable was
known (see Hartley and Rao, 1968). To use the empirical likelihood method as

described in the previous chapter, we maximize the empirical likelihood
L(F)=]]p (3.2.4)
i=1

where p; = P(Y = y;). The p;’s are subject to 0 < p; < 1and >\ p; = L.

With these weights an empirical likelihood estimator for S is given by

sylel) =) pid?. (3.2.5)
=1
The resulting empirical likelihood variance estimator for j,, is
_ 1 1Y , 2
v3(Frs) = SN sa(el). (3.2.6)
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3.3 The two-phase sampling procedure

Assume that a simple random sample s’ of size n' is selected without replacement
from a population of NV units and z; is observed for i € s’. A simple random
subsample s of size n is then selected without replacement from s’ and y; is
observed for i € s. Several estimates of ¥ = Z:\;l Y;/N can be formed. The
simplest is the usual biased ratio estimate with the population mean X replaced
by its estimates I, given by §r; = (§n/Zn)Tn = riy, where j, and T, are the

means for s and z, for ¢’

3.3.1 The ratio estimator and some preliminary results

The estimator §,, is design-consistent for Y, i.e., plim; (g, — Y) = 0, where 7
n—o0
denotes the probability space generated by the sampling scheme. The variance

of §.; is approximated by a standard formula and is given by

V(grt) = (% - TL_> SD <$ - .—/i},—) Syg, (331)

where

N
) 1
S3 = N_IZD2 S2 — 2RS,, + R*S2, S;z——N_IZ(yi—
i=1

N
1 _ _
2 . —
5 N _1 Z(’:=  Say = N1 ;(z,- - X))y —Y),

with D; = y; — Rz; and R = Y/X. Note that if ' = n, (§#n/Zn)Zn = §a and

so (3.3.1) reduces to (1/n ~ 1/N)S2, which is the variance of §, under simple

random sampling in single phase sampling. It is observed that if n' = N, the
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estimator is the ratio estimator under single-phase sampling, and the variance
reduces to the approximate formula for its variance. It follows that the estimate
-+ based on two-phase sampling is more efficient than the estimate 7, based on

simple random sampling when no auxiliary variable is used, if
202 .
R*S? - 2RS,, <0,

ie., if

C

Pz >

o =

1

where p;, is the population correlation coefficient between r and y, and C, and
Cy are population coefficients of variation of z and y, respectively. A design-

consistent estimator of the variance estimator of ., is given by

_ 1 1 5 1 1 "
vo(Tre) = (; - ;) Sg+ (;l—, - T\f) Sy (3.3.2)
where
st = ! ng st = ! Z(y—y )? (3.3.3)
d n—lies i y n_lies i n/ «J.

with d; = y; — rz;. The second term in vo(F,¢) is obtained by using the sample

variance s to estimate the population variance S2.

3.3.2 Linearization variance estimator

Rao and Sitter (1995) proposed a linearization variance estimator of ,, that

made better use of the sample data than the standard one, vy. They first ex-
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pressed S as

S, = ,V_lz(yz

1 2
= ¥ Z(y,- — Rz; + Rz — RX)?

- N— - Z{ — Rz;)? + 2R(y; — Rz;)(z; — X) + R*S?}

= 5%+ .2RSDI + R%S2, (3.3.4)

where S}’) and Sﬁ were the corresponding population variances of D; and z;, Sp.
was the population covariance between D; and z;. Then the sample variance of

2 T ( )
Sy 'Sd L ‘Sd.'t res b 3‘3‘8

where s3, s4; and s2 are the sample analogues of S}, Sp, and S2 based on
subsample s. It follows from (3.3.4) and (3.3.5) that an alternative estimator of

Sf, that makes more use of the sample data is obtained by using

i fn’)2

i€s’

. 9 . . . . . - .
in place of s7. The linearization variance estimator of j,; is

_ 1 1 1 1 1 1 2
v1(Jrt) = (; - V) s2+2 (;17 - V) TSdr + (E - V) TS, (3.3.6)

This variance estimator is also design-consistent. We can rewrite (3.3.1) using

(3.3.5) as
_ 1 1), 11 1 1\ ,, _
=| - - — 21 — — — S — ; 3.
vo(Fre) (n N) +~<n’ N)rsdz+<n/ N)rsx (3.3.7)

41



3.3.3 Jackknife variance estimator

Another approach to variance estimation is to use a jackknife technique. Rao
and Sitter (1995) proposed a jackknife method which entailed recalculating .
with the jth element removed for each j € s’ and then using the variance of
these n’ jackknife values, §..(j). Clearly, deleting unit j will affect , and §,
only for j € s but not for j € s’ — s, while it will affect £+ for all j € s'. Thus.
they defined

grt(j) = {gn(j)/fn(j)}fn' (J)

for all j € s', where

£.0j) = etk if jes 05 = Mhboif jes
A if jes —s, YnlJ Jn if jes —s,

and Z,:(j) = (n'Zp —z;)/(n' — 1) for all j € s'. Now the usual jackknife method
to gr(j) will yield the following variance estimator:

nl

~ - > {Gee(d) = e} (3.3.8)

Ui (Fre) = n et

This jackknife estimator ignores the finite population corrections 1 — n/N and
1-n'/N.

For a nonlinear parameter § = g(Y'), a jackknife variance estimator is ob-

tained by replacing §-(j) and §r in (3.3.8) by 6,:(j) = g(¥re(j)) and b,¢ = g(re)-

A linearized version of vy, for large n, is obtained by noting that

—r (A - Wl (um) i jes

Gre(J) — Gre = (3.3.9)

—r (2= if jes —s,



and assuming Z.(j)/Za(j) = T /Zn in (3.3.9). From (3.3.8) and (3.3.9), we get

- 2 9 - ; P22
0y (Goe) = (f_:_") % 4 9 (I—"> [odz | % (3.3.10)

n n I, n’ n'

Ignoring the finite population corrections and comparing (3.3.9) and (3.3.10).
it now follows that v; is also design-consistent for V(j.) since Z,/Z, = 1 for
large n. It also follows from (3.3.9) and (3.3.10) that another design-consistent
linearization variance estimator, when the finite population corrections are not
ignorable, is given by

L (E\1 1Y, 1 1\ [En I 1\ 5.,
va(Gre) = E TN sg+2 TN E rSqgr + v res;.

(3.3.11)

Rao and Sitter (1995) noted that if the finite population corrections could be
ignored, v; should perform well conditionally given, Z,//Z,, since it was asymp-
totically equivalent to v,.

In the next section, we propose two alternative variance estimators. One of
them is a modification of vy while the other one is suggested by the empirical
likelihood principle. Both utilize the information collected in the first phase as
supplementary information in order to improve the precision of variance estima-

tor of population characteristics.

3.3.4 The empirical likelihood for the double sampling

Since no auxiliary information is available beyond the initial sample s’, we max-

imize the empirical conditional likelihood given by

L(sls) =[] m (3.3.12)

i€s
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subject to

pi 20, ZP;‘ =1 and Zpiwi =0, (3.3.13)
i€s i€s

with w; = z; — £,». Then the empirical likelihood-based estimator for the sample
variance s;‘; and sample covariance s, are obtained by replacing n~! with the

pi’s in the plug-in estimator, i.e.

syel) =) pily — 9)° (3.3.14)
soy(el) =D pilzi — )(3i — 9)- (3.3.15)
i€s

We use arguments of Rao and Sitter (1995) to obtain the variance estimator of

gre. First we observe that 3.~ D; = 0 and that S is expressed as

N
1
- - N2
Sp = N -1 ;(Y’ )
1 .
T N-1 ;(Yi— VRS AT
N
= —1¢ P_2R(X; - XNV - Y) + RY(X,; - )%
= S 2RS y + RS2, (3.3.16)

where S, is the population covariance between z; and y;. Thus vo(F,,) in (3.3.2)

can be re-expressed as

UO(yrt) = (; - N) 33 - 2r (; - -T7> Szy + T (; - ;) Sg- (331{)

The resulting variance estimator based on empirical likelihood is given as

va(Fre) = (l - %) sa(el) — 2r (l - nl) sey(el) + 12 (l - %) 572.(3.3.18)

n n
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Intuitively, one would expect the variance estimator based on the empirical
likelihood to be more efficient than the Rao-Sitter estimator, since it makes use
of extra information, i.e., the knowledge of the mean of a subsample of .

An alternative variance estimator of V(g,,) can also be obtained. We note
that when the y;’s are exactly proportional to x;’sfori =1,... ,N.ie.. y; = kz;,
with & as a constant, then the variance V' (§,.) reduces to (1/n'—1/N)k2S2, which
could be estimated by k*(1/n' — 1/N)s?. Putting y; = kz; in (3.3.2), we get

vo(Fre) = k*(1/n’ — 1/N)s2, which is less efficient than k*(1/n' — 1/N)s?. In

oot}

view of this, we propose a modified estimator of vy given by

1 1\, (1 1Y ,s° |
U3(grt) = <.‘r—1, - ;) Sy + ('— - V) 83—. (3319)

/ 2
n S:

Note that v3(7,) reduces to k%(1/n' — 1/N)s"? when y; = kz;.

3.4 The regression estimator

In this section, we will consider the extension of the ratio method of estimation in
two-phase sampling to the case of linear regression estimation under the empirical
likelihood framework. To this end, consider the two-phase sampling scheme
described in Section 3.2. The simple linear regression estimator for two-phase

sampling defined by
Yr = Yn + b(fn’ - fn)y (341)

where b = s.,/s2 is the least square regression coefficient of y; on z; based on

s. This estimator is design consistent for Y. A design consistent linearization

45



variance estimator of ¢, is given by the standard formula

_ 1 1\ , 1 1),
vo(fir) = (— - —) syt (; - ﬁ) s (3.4.2)

where s, = (n —1)7! d? and s2 are the sample variances of d’ = y; — §j —
d' \ y i Y Yy

i€s 't

b(z; — Z,) and y;. Alternatively, vg(#ir) can be expressed as

1 1 5 1 1 2 (1 1y ,
vo(fr) = (; - 'N-) sy —2b (; - ;) Sgy + b <; - ;) s2. (3.4.3)

Sitter (1997) proposed three variance estimators for regression estimation along
the same lines as the ratio estimation. The linearization and jackknife variance

estimators in this case are given, respectively, by

ul@e) = (G- %) sk + (7 — %) 02, (3:44)
and
Py 2 2 - 1\
sk e 2,3, 42 (2, ~En)? .
vi(y) =4+ %+ {(n—x)sg} > ies i TR (3.4.5)

where k; = 1/n + (z; - £,)*/{(n — 1)s2}, and

21 ;.?'aj . b dia;(z; — Tn) |
R_n{ng(l—’%‘)?n’—lz 1-k&) , (3.4.6)

JEs

with a; = {n(z; — Z,)(Zv — Zn)}/{(n — 1)s2}.
Also, noting that the first two terms on the right hand side of (3.4.5), and
comparing these to (3.4.4), a linearized version of v,(%.) when the finite popu-

lation corrections are not ignorable is given by

(1 1Y, (1 1) %2
=\ -w)e i w)

T — En | > = dP(z; — Z5)?
— E —_—— 4+ R. 4.7
+{m—nﬁ}j@ T-kE (3:47)
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In a similar motivation as in Section 3.3.4, a variance estimator for 7, based on

the empirical likelihood approach is

1 1) , 1 1 (1 1Y ,
'U3(glr) = (; — N) 6;(61) -2 (— - n—) sxy(el) + b (; — ;) Sy . (348)

n

where sg(el) and s;,(el) are defined, respectively, by (3.3.14) and (3.3.15).

3.5 A Simulation study

We study the finite sample properties of various variance estimators through a
simulation study. We adopt the model and parameter settings used by Rao and

Sitter (1995). The model we consider is

2

1
yt = ;Bri + ri/ i,

where ¢; 2 N(0,0%), x; nd gamma(a, b) and ¢; and z; are independent of each
other. Thus the mean, the variance and coefficient of variation of z are given
by p: = ab, 0% = ab? and C; = 0, /u; = a~'2, respectively. Furthermore, the
mean and variance of y are p, = By, and o? = 3%02 + p.0?, and the correlation
between r and y is p = 8o /0,.

We confine our simulation study for n = 20, »’ = 100, and n = 80. n’ = 400.
We generate R = 10,000 independent two-phase random samples according to
the above model with 3 = 1.0 and p; = 100 and o and o, chosen to match
specified values of p and C,. Here, we ignore the finite population corrections
since the two-phase samples are generated from an infinite population. The

Monte Carlo estimator of true mean squared error of g, is computed using

MSE(g Z G — py)?, (3.5.1)
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where gﬁf’ denotes the value of §,, for the ¢t-th Monte Carlo run. The Monte

Carlo estimate of mean squared error of a specified estimator say v is computed

using
R
1
MSE(v) = & > (W — MSE(g..))* (3.5.2)
t=1

Table 3.1 gives the values of MSE(v)/MSE(vy) for v = vy,... ,vs and v;
for different values of p and C; where for convenience, v; = v;(gr¢), t =0.... ,4
and v; = v(§r¢). It is clear from Table 3.1 that v, is substantially more efficient
than other variance estimators. On the other hand, v; is more efficient than v,
vy and vy only for C, = 1.4,1.0,0.5,0.33 and p = 0.8 and substantially more
efficient than vy for all values of p and C;. Note that v; is more efficient than
vg only for large n = 80 as the factor Z,//Z, = Z,(j)/Za(J) = 1 becomes more
stable.

We also investigate the conditional properties of each variance estimator
along the lines of Rao and Sitter (1995). The 10,000 simulated samples are
first ordered on the values of Z,//Z, and then grouped into 20 successive groups
each containing G = 1,000 samples. For each group, the simulated conditional
mean squared error of 7, and conditional mean of v,,t = 0,... ,4 and v, are

calculated, respectively,
R 1 &
MSE. = g;{gﬁf’ —1,}* and Ew, = z g}; 9. (3.5.3)

For each of the 20 groups, the values of E v, for t = 0,... ,4, Ev; and MSE,

are plotted against the group averages of Z,//Z, for 12 selected values of p and
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C:. Figures 3.1-3.12 with n’ = 100 and n = 20 show these results. The case
n’ = 400 and n = 20 produce similar plots and therefore were omitted. It is clear
from these plots that vy, vy, v3, vy and v, perform well in tracking the conditional
MSE when Z,//Z, is between 0.9 and 1.4 with v, and v slightly better, i.e. they
exhibit a similar pattern to the conditional MSE. However, v, is able track the
conditional MSE only when %, /%, is near 1. This means that with a balanced
design, v does not deviate much from the conditional MSE.

It is noticed that v, v,,v3, v4 and v; perform poorly in tracking the condi-
tional MSE when Z, /Z, < 0.9 and also when Z,/Z, > 1.4. Whereas, vy leads
to significant overestimation of conditional MSE when %, /%, < 0.9 and lead
to significant underestimation when £, /Z, > 1.2. Thus, all things considered,
vy, U2, U3, U4 and v; behave more closely to the conditional MSE than do vg.

The simulation study suggests that the proposed variance estimator v4 pro-
vides more stable standard errors for ratio estimation. It has a competitive
conditional performance, having smallest unconditional MSE. The commonly

used estimator vy fails on both grounds.
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Table 3.1: Mean square error of vy, ve, v3, vy relative to vg.

n =20, n' =100

n =280, n' =400

C. C,
p 14 1.0 0.5 0.33 14 10 0.5 0.33
MSE(v)/MSE(vq)
0.9 0.51 0.54 0.63 0.67 0.52 0.55 063 0.66
0.8 0.73 0.77 0.84 0.88 0.72 0.76 0.84 0.88
0.7 0.82 0.86 093 094 0.85 0.8 092 0.94
MSE(v2)/MSE(uvg)
0.9 0.55 0.57 0.64 0.68 0.53 0.55 0.63 0.65
0.8 0.87 0.86 0.86 0.87 0.74 0.78 0.83 0.87
0.7 0.98 094 098 094 0.89 0.88 093 0.94
MSE(v;)/MSE(vp)
0.9 0.89 0.77 0.73 0.74 0.61 0.58 0.65 0.67
0.8 1.62 1.24 1.01 1.00 0.85 0.8 0.87 0.89
0.7 1.86 1.35 1.18 1.07 1.03 0.98 095 0.96
MSE(v3)/MSE(vy)
0.9 0.52 0.63 0.79 0.90 0.57 0.63 081 0.88
0.8 0.65 0.71 0.82 0.85 0.66 0.71 0.84 0.93
0.7 0.67 0.78 0.88 0.92 0.73 0.75 0.90 0.95
MSE(vg)/MSE(vg)
0.9 0.42 048 0.59 064 046 0.49 0.60 0.63
0.8 0.60 0.66 0.75 0.78 0.61 066 0.78 0.85
0.7 0.64 074 085 0388 0.71 0.74 0.87 0.91
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Figure 3.1: Conditional means E vy, Ecv1, Ecve, Ecvs, E.vq, Ec.v; and conditional
mean squared error (M SE,) of §,.; versus group average Z,s/Z, with n'=100 and
n = 20.
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Figure 3.2: Conditional means E v, E.vy, Ecv2, Ecvs, Ecvs, Ecv; and conditional
mean squared error (M SE,) of §,,versus group average T, /%, with n’=100 and
n = 20.
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Figure 3.3: Conditional means E.vq, E vy, E.va, E.v3, E.vy4, E.v; and conditional
mean squared error (M SE;) of §,,, versus group average I, /%, with n'=100 and
n = 20.
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Figure 3.4: Conditional means E vy, E vy, E.vq, E.v3, E vy, E.v; and conditional
mean squared error (M SE,) of g, versus group average I, /I, with n'=100 and
n = 20.
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Figure 3.5: Conditional means E.vg, E.vy, Ecva, E v3, E.v4, Ecv; and conditional
mean squared error (M SE,) of g, versus group average Z, /T, with n'’=100 and
n = 20.
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Figure 3.6: Conditional means E vy, E.v1, E.va2, Ecvs, Ecvs, Ecvj and conditional
mean squared error (M SE.) of . versus group average T, /Z, with n'=100 and
n = 20.
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Figure 3.7: Conditional means E vy, E.v;, E vy, E.v3, E.v4, E.v; and conditional
mean squared error (M SE,.) of §., versus group average I,/Z, with n’=100 and
n = 20.
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Figure 3.8: Conditional means E vy, E.v,, Ecv2, Ecvs, Ecvy, E.vj and conditional

mean squared error (M SE,) of §,, versus group average %,/ /%, with n'=100 and
n = 20.
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Figure 3.9: Conditional means E vg, E v, E v, E.v3, E.vs, E.v; and conditional
mean squared error (M SE,) of §,; versus group average Z,/Z, with n'=100 and
n = 20.
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Figure 3.10: Conditional means E. vy, E.v,, E.va, E.v3, E.v,, E.v; and con-
ditional mean squared error (M SE.) of §,, versus group average Z, /I, with
n'=100 and n = 20.
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Figure 3.11: Conditional means E vy, E.vy, E.vs, E.v3, E.v4, Ecv; and con-
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Chapter 4

Bootstrap method for
measurement error model

4.1 Introduction

It has been generally recognized that true measurements of a characteristic are
often difficult to observe but they are observed with measurement errors. In view
of this, considerable effort has been expended on the development of methods
of analyzing data which are contaminated with measurement errors. In this
chapter, we consider a model that is related to measurement errors. This model
can be viewed as a generalization of the simple regression model, which takes into
account random measurement errors on both the dependent and independent
variables.

More precisely, we assume that two random variables U, and U, are observed
subject to measurement error, both are related by U, = a + 3U;, where a and
B are unknown parameters. Further, we assume that actual observed values are
X =U,+6éand Y = U; +¢. The pairs (4;, ¢;) are independently distributed for

different ¢'s, and J; and €; may or may not be independent of each other although
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they are independent of (Uy;, Us;). When U; and U, are assumed to be unknown
constants, the model is known as a functional model, whereas if the [/};’s are
independent random variables with the same distribution the model is known as
a structural model. Fuller (1987) provided more details on these models.

It is well-known (see Kendall and Stuart, 1979 and Riersel, 1950) that if o
and ¢ are normally distributed, then a and 3 are unidentifiable if and only if '}
and U, are constants or U; and U, are normally distributed. Hence, assuming
normal errors and without further information, & and 3 cannot be estimated in
the functional model or in the structural model. However, if the error variance
ratio A> = ¢2/0} is known then both a and 3 can be estimated consistently
when o7, 07 and o7 are finite. The above assumption is often satisfied if X and
Y represent similar characteristics measured in the same units, in which case
A2 = 1. In other instances, information from another independent sample, such
as a preliminary study, often provides a suitable value for A2. In the functional
case where the U};’s are true unknown values, Solari (1969) pointed out that the
solution of maximum likelihood equations was a saddle point. Birch (1964) and
Barnett (1967) obtained the maximum likelihood solution when both o and
o? were known. For a comprehensive coverage of this work and related topics
on this subject, see for example Fuller (1987), Gleser (1981), and Chan and
Mak (1983) on a multivariate model. Lindley and El-Sayyad (1968) and Zellner
(1971) considered a Bayesian approach to these models.

Much of the interest has been focused on the estimation and testing pro-

cedure of §. Little investigation has been devoted to bootstrap procedure for
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estimating the standard error and confidence interval for 3. The sampling dis-
tribution of the regression estimator § is skewed (see Anderson and Sawa, 1982).
As a result, the large sample normal approximation as well as the likelihood ra-
tio chi-square approximation performs poorly for small samples. In contrast, the
bootstrap sampling distribution incorporates the skewness of the true sampling
distributions. This feature is referred to as the second-order correctness of the
bootstrap. Babu and Bai (1992) obtained a two-term Edgeworth expansion for 3
for a linear functional error-in-variables model. They showed that by using these
expansions the bootstrap approximation of the sampling distribution was supe-
rior to the classical normal approximation. Linder and Babu (1994) proposed
a bootstrap procedure based on the residuals for functional measurement error
model with known error variance ratio and symmetric errors. However, their
method is cumbersome, in part, because it involves calculations of correction
factors so that the first two moments of the bootstrap estimator 3* match with
the usual estimates of the first two moments of /3 Moreover, implementation
of this approach requires a different correction factor for each parameter. Kelly
(1984) considered the structural model with known error variance ratio from the
influence function of 8 and obtained an estimate of the variance of 3. She noted
that this method performed poorly, as the influence function estimate of the
variance was biased.

In this chapter, we investigate the classical and a weighted bootstrap methods
for the structural relationship model with known variance ratio for an arbitrary
error distribution. Wu (1986) first proposed the weighted bootstrap in the con-

text of the classical regression problem. In this procedureiid. {¢;,i=1,2,...,n}
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observations are drawn from an external population having mean 0 and variance
I, independent of the original data. For the second order accuracy of the boot-
strap estimator based on this method, Liu (1988) suggested another restriction
on the external population, namely that third central moment of ¢; must also
be equal 1. This chapter is divided into three main sections. In Section 4.2,
the method of moments is used to estimate the parameters and some prelimi-
nary results on asymptotic properties of the estimators are also given. Section
4.3 reviews the Linder and Babu method and describes the proposed bootstrap
methods along with their asymptotic properties. In Section 4.4, the results of a

simulation study are given.

4.2 The Structural Model

Consider the structural equations model for n random vectors Z; = (X;, Y;)T. It

is assumed that for each : = 1...n, we have
_ /Yi _ Uli 61' _ . 49
Zi_<K>—<U2i>+(€i>—U‘+€" (4.2.1)
Uz = a+ BUy,, (4.2.2)

where the U;’s are independently distributed with mean vector p and covariance

matrix [y, with

131 UIQJ 605
H2 8 oy,

The random variables §;’s are i.i.d. with mean vector 0 and covariance matrix

Te = < % 02 ) : (4.2.4)

O¢
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such that
A\ = 02/0} is known. (4.1

Further, we assume that for each ¢,
U; and §; are independent. (4.2.6)

Let F' denote the common distribution of the Z;'s. By (4.2.1)-(4.2.6), the

mean vector g and covariance matrix I'r are, respectively, given by

—_ [ & (F) \ _ o o
wE) = ( “:(F) ) B < a+,}3ul ) (4.2.7)
and
_ [ oxx(F) oxy(F) \ _ o2 + o2 302 ‘
F(F) = ( XX O'::(F) ) = ( 0 8 ﬁzdg,lU_*l- 03 ) . (428)

If we substitute for U; and U, from (4.2.1) into (4.2.2), we obtain
(4.2.9)

t=1,...,n.

Yi =« +,81Y1‘ +€i _ﬁdiy

This is not a classical regression model since here, X is a random variable which

is correlated with the error term (¢ — 34). From (4.2.3)-(4.2.8), we have
(4.2.10)

Covp(X,e — B8) = —Bo3,

which is 0 only if 62 = 0, the case corresponding to the simple regression situa-

tion, or in the trivial case # = 0. Thus, the existence of errors in both {/; and

U, poses a problem quite distinct from that of conventional regression model.
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4.2.1 The method of moments estimators

The parameter vector 6 = («, B)T can be written as a functional of the unknown

distribution function F (see Kelly, 1984) by letting

a=a(F)=py(F) - B8(F)px(F), (4.2.11)
B =B(F)
1

= so E) v (F) = Noxx(F) + {loxv (F) = Nooxx(FI + 0%y ()},

(4.2.12)

where by definition,

pr(F) = [ [ dF(z.)
oxx(F) = [ [#dFG@.y) - [ [/ xdF(r,y)},

and the other quantities are defined in a similar fashion. Note that 3(F) may

be rewritten as

B(F) = h(F) + [R*(F) + \}]'/?, (4.2.13)
with
b= h(F) = goerslovy (F) = ¥oxx(F)}. (4.2.14)

Here and in what follows, for any sequences { H;} and {R;}, we use the notation

H=n"! i: H;, Suyr=n7! i(H,- - H)(R; - R). (4.2.15)

i=1 =1
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Let F, denote the sample distribution function corresponding to F. Denote the

sample mean and covariance matrix, respectively, by

u(F,) = ( ;-f )and [(F,) = ( Sxx :59:: ) . (4.2.16)

Under the model defined by (4.2.1)—(4.2.6), the method of moments estimator

of 8(F) = (a(F),B(F))T is given by

0(Fn) = (a(Fu), B(Fa))", (4.2.17)
where
ad=a(F,) =Y - 3(F,)X, (4.2.18)
B8 = B(Fa) = h(Fy) + (h*(F,) + A2, (4.2.19)
with
h = h(F,) = 251” {Syy — A2Sxx}. (4.2.20)

By the law of large numbers, & and ,3 are consistent estimators for a and 3.
respectively, for all distribution functions F with finite second moments. When
F’ is bivariate normal, 6(Fy,) is the maximum likelihood estimator of @(F) (see

Kendall and Stuart, 1979).

Theorem 4.1. Let the model defined by (4.2.1)-(4.2.6) hold with known error

variance ratio A* > 0 and suppose that X and Y have finite sizth moment. Then

(i)
g

Er(B - B) =—2nuf1 Y

{ps — Npgy - 2hz } + O(n7?). (4.2.21)
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(%)

- 62
2 = 1 Vson (DR — N2
Er (8 — 0B) i (R 22 {104 + N prao + 21 (2R — A?)
—4h(piz — Nuz)} +0(n73). (4.2.22)

(iii) If the joint distribution of X and Y are symmetric, i.e.,

U3o = Moz = Hi2 = po1 = 0, then,

1 8 ’ ) )
Ep(B-p)’ = 32 (m) {106 — A°e0 — 3A%(pas — N py)
1

—6h[p1s + A*psy — 22%u33) + 12h% (pas — Apgo) — 8h* 33 }

+0(n™?) (4.2.23)

where p,, = E(X — px)*(Y — py)®.
Proof. See Appendix A. O

The expression in (4.2.22) can also be derived from the influence function for 3 :
the details are given in Kelly (1984). To get an idea of the magnitude of the
bias of 3, we consider that the population follows a standard bivariate normal

distribution, so that

1
#(z,y) = ————=exp | —-——=(z? — 2pzy + y?)| ; 4.2.24
(@9) = == o0 | =57 i (229

and

Moy = M2 = f3o = po3 =0, oo = poe2 =1, a1 = p3 = 3p,

pe2 =1+2p", 4o = pioa =3, pag = paz = 3+ 12p% and pg3 = 9p + 6p°.
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This yields

- h 1 4 1-p°
500 = o (- ) (57) oo e

Denoting the first and second order approximation of the relative bias of ;3 by

)

un

BI(B) and Bg(B), respectively, we have

s ErB) =8 . h 1-p

To a second approximation, the relative bias of 3 can, therefore, be expressed as

Ba(8) = B1(B) (1 - i) . (4.2.27)

n

Equation (4.2.27) shows that the contribution of the second and third order
terms to the relative bias of 3 is 4/n times the value of the latter to a first
approximation. Unless n is small, the contribution can he considered negligible.

Comparing (4.2.21) and (4.2.22), we see that both the bias and the variance

of 3 are of order n~!.

Hence, for n sufficiently large, the bias is negligible as
compared to the standard error which is of the order n~/2.

The exact sampling behavior of the estimator 3 defined in (4.2.19) cannot
be obtained easily. Therefore, it seems necessary to use large sample theory to
develop an approximation of the distribution of 3. We now give the asymptotic

normal distribution of the estimators for the slope 8 and intercept ¢, under the

general structural linear relationship (4.2.1)-(4.2.6).

Theorem 4.2. Let the model defined by (4.2.1)-(4.2.6) hold with known error

variance ratio A> > 0 and X and Y have finite sizth moment. Then, as n — oo,
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1. n'/2(@ - @) 4 N(0,), for 8 = (&, 3)T, where

> — o (B2 + A + piZa —p1Tan
— 192

and

22 =

32 i |
T Y A4 2ua0(2h° — /\2 — 4h 22 )
4“%1(}12 + /\2) {#04 At /J_-( ) (13 — A /le)}

2. Furthermore, £ converges in probability to X, where

$ = [&§(B2 +A%) + (25, —ﬂlizz]

6= /(B +N), e=Yi—a-3X, m=n"Y Oy
i=1

32

= — 45 -)*02‘2_2__“~ 22~
T L Ao+ 228 = ) = (s = i)}

with Uy; is defined in (4.3.1) and fi.5 is a plug-in sample moment estimate.

and is given by

frs = nt Z?:l(){i - .?)T(Y; - Y’)s'

Proof. We note that Syy, Sxx and Syy are asymptotically unbiased and from

Kendall and Stuart (1979), we have the following results

Varp[Syy] = n7 (pos — 1d3), Varr[Sxx] =n" (e — 13),
Varp[Sxy] = n™ (a2 — 13,), Covp[Syy, Sxy] = n" (13 — poapnn),

Covup[Sxx,Sxy] = n"'(u31 — t20p11), Covr[Syy, Sxx] = n™ (pas — poapia)-



Because the sample moments are converging in probability to their respective
population moments, we can expand 3 using a Taylor series expansion about J

to obtain
3 =8+ B(h +X)"V2(h - k) + 0,(n7), (4.2.28)
or equivalently,
n'/2(8 - 8) = n'2B(h — h)(h? + 3*)"2 4 0, (n"172), (4.2.29)

which implies that the limiting distribution of n!/2(3 — 3) is the same as that of
nY/28(h — h)(R® + A2)~1/2. The asymptotic variance of & is given by

1
EZ[Syy — A2Sxx] (
Var{Sxy] 2
E%[Sxy] B Er[Sxy]|Er[Syy — A2Sxx]
(Covr[Syy, Sxy] — A*Covr[Sxx, Sxv])}
1

~ 4nud {131[boa — 12 — 2X% (122 — poapag) + A (pao — 135)]
Hi1

+ 4h2#%1(#22 — p11) = 2p11 (o2 — N pao)

Varg[Syy] - 2/\2€ovp[5'yy, Sxx]

Varp(h) = B? {

+/\4Va7‘p[5x_\f]) +

X [/113 — Ho2l411 — /\2(#31 - #20#11)]} + O(n—g)

1 2 2 ] =9
= i {#04 + Mg + 2u22(2R% — N?) — 4h(pys — /\“#31)} +0(n™7).
11

Hence the asymptotic variance of 3 is given by

=2

V'arp(B) = E?_/i—pVarp(/Az) +0(n™?).

Turning to Varg(&), consider

G=Y -8X =a+BUy+¢ - B0 +3)

=a— (8- B + 5+ 0y(n7h),

73




where ¥ = £ — 3§ and hence the distribution of n'/2(& — a) has the same distri-

bution as that of n'/2[5 — (3 — 8)u,)]. This yields

Varg(a) = Varg(s — (8 - 8)p1)

=03(8% + A?) + uiVare(8), (4.2.30)
and

Covp(a, B) = Covplt — (B — B)m), (8 — 3)u1)]

= —u, Varp(3). (4.2.31)

To show the asymptotic normality of n'/2(§ — @) and the consistency of
3, we note that @ is a continuous differentiable function of the U-statistics
(X,Y,Sxx, Syy, Sxy). Thus by Theorems 8 and 9 of Arvesen (1969), the de-

sired results follow. O

Because ¥ is a consistent estimator of ¥, it follows that
t =n'?8%(3 - 8) (4.2.32)

1s approximately distributed as a N (0, 1) random variable. In practice it seems
reasonable to approximate the distribution of (4.2.32) with the distribution of
Student’s ¢ with n — 2 degree of freedom. Instead of using n‘ligg to estimate
Varg(B), one could use a jackknife procedure. The next section describes a

jackknife procedure.
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4.2.2 Jackknife Variance Estimation

In this section, we give the jackknife variance estimator for 8 (see Kelly, 1984).
Let é_i be an estimator of  with the i-th observation (X}, Y;) omitted and define

the pseudo values

-~

6, =nf — (n-1)6_,. (4.2.33)

The jackknife estimator of 8 is

~

0(.) =n"! Z éi. (4.2.34)

The jackknife estimator of the variance-covariance matrix of 0 is

. n—1 - - - -
= 6; — 0,8, —06.,". 4.2.
Br=—=> 16: -6, ol (4.2.35)

Since & and 8 are continuously differentiable functions of the U-statistics
(X.Y,Syx, Syy,Sxy) and when Er(X*) < o0 and Er(Y*) < o0, by Theorem
9 of Arvessen (1969), we have

~

nE; -2 50 as n— oo (4.2.36)

4.3 The Linder and Babu Method

Linder and Babu (1994) proposed a bootstrap method where resampling was
done by taking a sample with replacement from the residuals and then repeating
this a number of times to match the usual variance estimates. However, in such
resampling method, one needs to modify the residuals and the usual bootstrap

variance estimator.



Let Ul,- and Ug,‘ denote the fitted values U;; and Us;, respectively. We re-
quire, for every ¢, that \2 = (¥; — Ur_,i):'/(.X'i - Ul,-)"’, which in turn requires the
redefinition of the fitted values,

Ui =X + ri/(A+ lﬁl)v

U2i=d+BUli=Yi—/\€i/(x\+|B|), (4.3.1)

wheree; = Y; —a — B.Y,;
The residuals (X; — U, Y — U’gi) underestimate the true error, i.e. the mean
squared of the residuals are asymptotically negatively biased for variances &3

and 672, respectively. This results from the fact that

n

s? =67 =) e/(n(\+5%) (4.3.2)

1

is a consistent estimator for o3, see Kendall and Stuart (1979). Hence, to esti-
mate the error variances consistently, the residuals are adjusted by multiplying
with the correction factor d, = (A + |8])/(A% + 3%)V/2, resulting in a set of
“pseudo” residuals

ri = —ei/(/\2 + BQ)I/'.”

2 Aav1/2 4.3.3
$; = /\6,’/(/\" + 62)1/" = —Ar;. ( )

We now describe the Linder and Babu bootstrap algorithm

1. Given data set (X;,Y;),i = 1,...,n and the estimator 8 as defined in
(4.2.19) for slope, compute the fitted values (U, Us),i = 1,... .n using
(4.3.1).

2. Resample 47 with replacement from the set cn{r1,...,Tn}, where r; are

given (4.3.3) and ¢, = BS&[,I/Sxy.
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Independently of (2), resample €} with replacement from the set ¢, {s,.... .

Sn}, where s; are given by (4.3.3) and ¢, is the same as in step (2).

Obtain bootstrap estimate 3* which is the analogue of 3 as in (4.2.19)

from the replicate data (X;,Y;*).

Repeat steps (1)-(5) above B times, where B is large, typically between

100 and 1,000.

Calculate estimates of Varg(3) by
B
var.(ﬁ B-1) IZ 3,,—,
b=1

In the b-th run, calculate the bootstrap-t, defined as
ty = (B; — B)/\/ &*(8*),

where [3’; is the analogue of 3 computed in b-th bootstrap sample and

@‘(ﬁ‘) is the bootstrap estimate of the variance of 3* given by
$*(3*) = var,(3*) + n~!

where ¥ = 4A834s%kur (32 + A2)~49~* and

n~1SD* — 6A232st
kur = = —
(5 + 25t

with SD* = = j111/8 and s? given by (4.3.2).

4
111’



Remark: Linder and Babu (1994) noted that under this bootstrap procedure
the usual variance estimator given in Step 6 above was not a proper estimator
of Varg(8). Hence they suggested to use *(3*) = var.(3") + n~'¥. The
computation of ¥ involves the fourth moment of residuals. To avoid this “after”
correction, we propose two new bootstrap procedures where the usual bootstrap

variance estimator is a valid estimator of Vargz(3).

4.3.1 The Proposed Bootstrap Procedure

The bootstrap procedure proposed here for the structural model differs from the
classical method in that it does not resample the data (X, ¥;) directly. Instead
it starts with an estimating function for the parameter and independently resam-
ples residuals in that function. We assume the conditions in Theorem 4.1 hold
and that A has a first order continuous derivative around h = h{1o2, ttag, t11)-

By a multivariate Taylor series expansion of A, we have

7 1 ~ 2/ A : ~ -
h=h+ 5#1_11{(#02 — o2) = A*(fr20 — pa0) — 2h(fi11 — p11)} + Op(n™h)

1 .. . . -
=h+ 3/1111{#02 = /\2ﬂ20 - 'Zh#u} + Op(n l)- (4.3.4)

We re-express (4.3.4) as

+ 2‘)‘U1,'(E'i - 6—‘) - ‘)‘Y,BUH 6 — S)} + Op(n'l)

=h+ —u LY A+ Op(n7Y), (4.3.5)
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where 4; = (Y, - V)2 - A% X; - X2 —2n(X; - X)(Y; = Y)and vy = 3 - h.
Define

L=(Yi- V)= N(X; - X)* - 2h(X, - X)(Yi - ¥)
= (&; — £)% = A2(4; — 6)? — 2h(&; — (6 — §)

+ 250(¢: — &) — 2980(6; - §). (4.3.6)

where 4 = 8 — h. Equation (4.3.5) suggests that our bootstrap estimator for h

is
7« 1 ]‘ ~t ~ -2 b
Rt = h+ —piu Z Az, (4.3.7)
and using (4.2.12) that for 3 is
B =h" + (R* + %), (4.3.8)

where 4}, = n7' "0 (X} - X)(Y - Y). Note that S0 4, = 0. We now

describe the resampling algorithm for the slope parameter in the structural linear

relationship (4.2.1)—(4.2.6).

1. Given a data set (X;,Y;), i =1,... ,n and the estimator (4.2.19) for the

slope of the model, compute the fitted values (U;, Us) using (4.3.1).

2. Resample &7, with replacement from the set {r;,... ,r,}, where r; are

1!

given in (4.3.3).

3. Independently of step (2), resample £} at random with replacement

from the set {si,...,sn}, where s; are given in (4.3.3).
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4.

(V1]

~I

8.

Compute A; = (&1 — £)2 — A¥(87 — 8)? — 2h(; — &)(87 — 6) + 230 (e7 —
8) — 24800(5; - §).

Compute
7. I 1 -x ~=2 - 1=
h*=h+ o HHn Z A (4.3.9)
3 =h" + (R + A2, (4.3.10)

where 2}, =n" 'S L (X7 - X)(Yr - Y).

Repeat steps (1)-(5) above a large number of times, B, to obtain

., Bg-

. Calculate estimate of Varg(8) with

var.(8*) = E.(8" — E.3%)%, (4.3.11)

where E, denotes expectation with respect to bootstrap sampling which

can be approximated by

[\/]m

var.( (B - 1 -t - (3() (4.3.12)
b=].
where ﬁ(‘) = Zle 8;/B.
In the b-th run, calculate the bootstrap-t:
By — 5 b=1,...,B (4.3.13)

t; =
v vars(6y)
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where varj(3;) is the jackknife variance estimator of 3; given by

n

vars(6;) = = ; 1 Z( 30 _ 3)? (4.3.14)

i=1

with B,: @ being the estimator of the same functional form as ,3", but com-
puted from the reduced sample of size n — 1 obtained by omitting the i-th

observation.

The asymptotic distribution of the bootstrap estimator proposed above is

given in the following two theorems.

Theorem 4.3. In the structural relationship (4.2.1)~(4.2.5), we assume E(X°+
Y®) < o0. Then, n'/2(3* — 3) converges in distribution to a normal random
variable with zero mean and variance 222, where 3° is the bootstrap estimator of

3 resulting from the proposed resampling procedure in Section 4.3.1. and Sas as

defined in (4.2.28).

Proof. Let A" = p! S A? where ;i; is defined in step (4) in the proposed

1

bootstrap procedure above and write

*

Y

.
11

tr

h* =h+

: (4.3.15)
11

=
-
o
o)

1

We observe that A* is the mean of an i.i.d. sample with population mean A,

where 4 = n! Z;;l fii. Then, by the central limit theorem, we have

Va(A® - A) 4 N(0,52), (4.3.16)
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with
2 1 n - 0
UA:;._EI(AI.—A)

I~ 2 I
= Z A2 42
n <
=1
= [lgq4 + /\4[140 + 2[!22(2/12 — /\2) - 4h(/113 - /\2/131) + op('n,"l) (4317)
By the law of large numbers £}, LN fi11 and by Slutsky’s theorem, we have

va(h® —h) £ 9—}-\/ﬁ(j* ~ 4) (4.3.18)

“H11

which implies that

= o
dag

vkt — k) S N ). (4.3.19)

ot

We conclude that n‘/z(;’;‘ - B) converges to N (0, Ts,) in distribution by the

delta method (see Bishop, Fienberg, and Holland, 1975). O

Theorem 4.4. Assume the conditions of Theorem 4.3 hold. Then, under the

proposed sampling procedure described in Section 4.3.1,

(i) EF[E.(8* - B)] = —Er(B - 8) + O(n™2).

In addition, if the joint distribution of X and Y is symmetric. we have
(i1) Er[E.(8° - B)* = Er(8 - 8)* + O(n"?) and
(ii) EflE.(" - 6)*] = Er(8 - 8) + O(n?),

where E, represents erpectation with respect to the distribution induced by boot-

strap sampling described in Section 4.3.1.

Proof. See Appendix B. a
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4.3.2 The Weighted Bootstrap

Wu (1986) proposed a weighted bootstrap method in the context of classical
regression Generally, the method entails first taking i.i.d. samples {¢;;¢{ =
1,2,...,,n} from an external population having mean 0 and variance 1 and then

generating bootstrap data by setting

yi=x!B+tie;, i=12,...,n, (4.3.20)

1

where x; is a p x 1 deterministic vector. 3 is the p x 1 vector of least squares
estimators of B and e; = y; — £T3. Liu (1988) suggested that another restric-
tion needed to be imposed on ¢; namely, E(¢}) = 1. to modify Wu’s bootstrap
procedure to share the usual second order asymptotic properties of the classical
bootstrap. We begin by using the idea of the weighted bootstrap to construct a
bootstrap procedure in the context of measurement error model. We describe be-
low the weighted resampling algorithm for the slope parameter in the structural

linear relationship (4.2.1)-(4.2.6).

1. Generate D;,i = 1,...,n;ii.d. random variables with gamma distribution

having density gp(z) = [p?/(q—1)!|z97 '€ ™P*[{;50}, where p = 2 and ¢ = 4.

2. Compute the bootstrap data, fori =1,... ,n
figs) = fioz + t:[(Yi = ¥)? — ftea], (4.3.21)
fas) = iz + t[(Xi — X)? = a0, (4.3.22)
A = o + [~ XY - ) ~ ful, (4.3.23)

where t; = D; — E(D;).
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=1

Obtain bootstrap estimates fi3 = n7' S0, s, fige = n ' 0 ol and

i =0t 439 computed from the bootstrap data it s and

,le(li) , respectively.

Obtain bootstrap estimates h* and B‘ along the lines of h and 3

Repeat steps (1)-(5) above a large number of times, B. to obtain
Bt .85
Calculate estimate of standard error of B‘ with

var(B) = E,(3" — E.B8%), (4.3.24)

where E; denotes expectation with respect to the weighted bootstrap sam-

pling which can be approximated by

B
var(8") = (B-1)""> (B - 81))% (4.3.25)
b=1
where 57, = 3,_, 5;/B-
In the b-th run, calculate the bootstrap-¢, defined as
B -8

v vard(5;) |

where var,(B;) is the bootstrap variance applied to b-th bootstrap sample

t; = b=1,...,B, (4.3.26)

and given by

[N

2 B = 2 12
vary(By) = ————— ti A7 (4.3.27)
dnfy, (h? + A?) ;
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Asymptotic properties of the weighted bootstrap estimators are given in the

next two theorems.

Theorem 4.5. In the structural relationship (4.2.1)-(4.2.5), we assume E(X®+
Y$) < oo. Then, n'/2(3* — B) converges in distribution to a normal random

variable with zero mean and variance $.,, where 3* is the bootstrap estimator of

-

8 resulting from the proposed resampling procedure in Section 4.3.2 and Ta» is

as defined in ({.2.28).

Proof. Consider

. 1 )
h* Afaze) — = (fro2 — Nfia
20) Yim 02 fao)
1 - LN ;5 o~
= 24 (ﬂoz - ’\2/-‘00 - 9h#11) 57 (fioa — A fiag — 2hf11y).
2 (%1 <1

or equivalently, we have

Lo ) , 1 .
LI = A \2nt _9hnt _ o — A2 fon — 2

h* —h TR (g2 — A”f1ag — 2hiy;) 2, Moz A%fiag — 2hjiyy)

1 -~ ~ 2/~ -~ 1/ ~% - [1'11

= 2~_{(#02 — fto2) — A (a9 — fiao) — 2h(y; — fn1)
11
1

+ 2# Nfizg — 2hfu) — m(#oz — AN fizg — 2hfiyy).

Since fi}, is the mean of i.i.d samples, by the law of large numbers 47, B o

and by Slutsky’s theorem, we have

Vn(h* —h) £ Qi;{(uoz foz) — A*(f130 — fia0) — 2h(f2}; — i)} (4-3.28)
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and

2

Ei(fig2 — f02)* = n™ (104 — £39),
Ey(f159 — f120)* = n™ (frao — 232),
E(afy — fn) = n—l(ﬂzz - [L%l)v
Ey(fig2 — f02) (30 — fra0) = 1™ (fia2 — flo2fi2o),
E(fg2 — fo2)(1y ~ fnn) = 27 (fius — flozfinn),
Ei(f59 — foo)(fy) — fun) = n”~ (s — froofinr)-
We have

.- 1
valht - h) S N(0, 4—7&?;),

Hig

(4.3.29)
(4.3.30)
(4.3.31)
(4.3.32)
(4.3.33)

(4.3.34)

(4.3.35)

with 63 is given by (4.3.17). We conclude that n!/2(3* — 3) converges in dis-

tribution to NV (0, £,2), where ¥, is given by (4.2.28) by the delta method (see

Bishop, Fienberg, and Holland, 1975).

a

Theorem 4.6. Assume the conditions of Theorem 4.5 hold. Then, under the

proposed weighted sampling procedure described in Section 4.3.2.

(i) Er[Ei(B* — B)] = Er(B - B) + O(n"2),
(ii) Ep[E(B8" — 8)%] = Er(8 — 8)* + O(n™?),

(iii) Ep[Ei(8* — B)*] = Er(B — B)* + O(n™3),

where E, represents the expectation with respect to the distribution induced by

bootstrap sampling described in Section 4.3.2.

Proof. See Appendix C.
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4.4 A Simulation Study

This section describes a simulation study which compares the performance of
thie proposed resampling methods to various other methods. Along the lines of
simulation study done by Linder and Babu (1994), a total of 12 different cases are
used to generate data sets from (4.2.1) and (4.2.2) withn =20,30,a=1,3=2
and A? = 1. The Uy;’s are generated according to the following four “design”

distributions:
1. Uniform(1.5,8.5),
2. Normal(5,4),
3. (5-v2) + V2W, where W is chi-square(1),
4. (2/3)N(4,2.5) + (1/3)N(7,26) (mixture normal).

For each design, independent pairs of errors (§;, ¢;) are generated according to

the following distributions:
1. N(0,0.48),
2. Double exponential(0.49) i.e. with density f(6) = 1.02exp(—|4]/0.49),

3. Contaminated normal: 0.1V(1.8,0.84) + 0.9N(-0.2,0.04)

Ut
—~

4. “Moderate” heteroscedastic normal: (d;,¢;) ~ {0.4N(0,1);i=1,...,
{0.6N(0,1);i=6,...,10}, {0.8N(0,1);i=11,...,15},
{N(0,1);i = 16, ...,20} for n = 20 and (6;, ;) ~ {0.4N(0,1);i =1,... 6},
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{0.6N(0,1);i = 7,...,12}, {0.8N(0,1);i = 13,...,19}, {N(0.1);i =
20,...,25}, {N(0,1);i = 26,... .30} for n = 30.

5. “Heavy” heteroscedastic normal: (&;,¢;) ~ {NV(0,1);¢ = 1.....10},
{2.0N(0,1);7 = 11,...,20} for n = 20 and (d;,s;) ~ {N(0,1);¢ =
,15}, {2.0N(0,1);¢ = 16,...,30} for n = 30.

For every case, Monte Carlo expectations are computed based on .V = 10, 000
simulations. Within each simulation, Monte Carlo expectations with respect to
bootstrap are computed based on B = 1,000 bootstraps. The absolute bias of

B and the confidence intervals for 3 are calculated as follows:

1. Normal Approx. : Absolute bias = N~! Ef:;l |B. — B|. Large sample

confidence interval for the linear structural error model:

8+ Z1-a/2\/ UGTF(B)

where z;_q/2 is the 1 — a/2 percentile of the standard normal distribution

and var(B) = n~1%,, with £, given by (4.2.28).

For the next three bootstrap methods, the absolute bias of 13 is computed

as (NB)™ 52aL1 2y [Bns — Bl-

2. LINDER & BABU: The 100(1 — a) % confidence interval for 3 is given
by

5 ,+(LB) [ 4+(LB
[ 1( a/)2 varg(0 a(/2 Y\/var ([3]
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where t;(/[‘zB) and tI(_La% are the percentiles of the histogram of the Studen-

tized values

«(LB) _ (Bb' - 3) '
&(3;)

. PROPOSED METHOD 1: The 100(1 — a) % confidence interval for 3

-
[ - tl( l/,\/varp -t “(! )\/varp(ﬁ ]

where ¢ (1) and ¢, (1) o2 T€ the percentiles of the histogram of the Studentized

¢y b=1,....B.

is given by

values

t;(1) =_M1 b=1,.... B,

var;(5;)
and var}(ﬁg) is the jackknife variance estimator of 3 in the b-th bootstrap

sample and given by (4.3.27).

. PROPOSED METHOD 2: The 100(1 — a) % confidence interval for 3

[A - tI( 3!/2\/1)0,7'5‘(,3 - ta(/z,,) ’Uan(B)] ,

where t a(/zz) and ¢, (2 ~as2 are the percentiles of the histogram of the Studentized

is given by

values
@ _ _(B; —B)
vV vary(B;)

and vart(Bg) is the bootstrap variance estimator of 3* in the b-th bootstrap

ty b=1,...,B,

sample and given by (4.3.27).
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For each of NV = 10, 000 simulations, we compute 90%, 95% and 99% confi-
dence limits for 3 and their lower and upper tail frequencies (in percents). The
tail frequencies represent tail probabilities and hence, the coverage probabilities
of the confidence intervals. We also compute the confidence lengths (median).
The following summaries are reported in Tables 4.1-4.14 and are calculated ac-
cording to the above methods.

LOW: Error rate in the lower tail defined by

Normal Approx. : % I, . (8)/N, where Liy = (8;—za,2\/ vars(3;). o0).
The three bootstrap methods are given by Z (3)/N, where L; = (8; —

£ C)‘/2\/va7';.~(ﬁ,-), 00) and I 4(-) in an indicator function defined by

1 zeAd
IA(x)z{

0 otherwise.

UP: Error rate in the upper tail defined by

Normal Approx. : v, Iy, (8)/N, where
Uin = (—oo,[ii + 30/2\/varp(Bi)). The three bootstrap methods are given by
Siry Iy, (B)/N, where U; = (—00, B; — t;, ,\/varr(5:)).

CP: The coverage probability defined by

Normal Approx. : Z:\;l Ic.y(B)/N, where Cin = (Bi—za/2\/ vars(3:), Bi+
Za/2 Uan(Bi)). The three bootstrap methods are given by Z:\il Ic,(B)/N

where C; = (8 € (B; — t]_ a/z\/vm'p(ﬁz ). Bi — ta/2\/ varg(B;)) with tloae =

«(LB) ,+(1) (2) «(LB) ,+(1) «(2)
t 1—ay2 bio a2 and £, /2 and ta/2 to/a ta/2 and taya-

LGT: The median length of confidence intervals.
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4.4.1 Summary of findings and conclusions

Table 4.15 reports the summary of the findings from Tables 4.1-4.14. For n = 20
the coverage probabilities for 90% are in the range of 81.23-87.55% for Normal
Approx., 86-89.94% for Linder and Babu’s method, 89.93-91.78% for proposed
method 1 and 89.65-93.56% for proposed method 2. For 95%, they are in the
range of 87.33-92.64% for Normal Approx., 92.86-95.16% for Linder and Babu's
method, 94.98-97.32% for proposed method 1 and 93.60-97.03% for proposed
method 2. For 99% coverage probability, they are in the range of 94.65-97.66%
for Normal Approx., 98.22-99.07% for Linder and Babu’s method, 98.88-99.33%
for proposed method 1 and 97.72-99.54% for proposed method 2. Similarly, the
coverage probabilities for n = 30 are in the same range.

The obvious conclusion to be drawn from Tables 4.11-4.14 is that the tradi-
tional large sample intervals are not corrected for the skewness of the distribu-
tion of 8. Its coverage probabilities are understated by their respective nominal
rates. Our bootstrap procedures perform well throughout even in comparison
with the normal theory estimates in normal situations, i.e., they have better
coverage accuracy than the normal approximation. The tail errors rates show
that all bootstrap methods result in heavier upper tail indicating a skewed dis-
tribution of 3 with a long tail to the left. This suggests that the use of bootstrap
histograms to construct confidence interval is more appropriate. The weighted
bootstrap tends to have inflated coverage probabilities and have long lengths,
the reason being that the jackknife is not resistant to extreme values and per-

haps data should be trimmed before jackknifing. It is not surprising that Linder
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and Babu’s method does well here since they applied a correction factor in the
bootstrap which makes their methods less appealing than ours, see remark on
page 78. Another disadvantage of this method is that it is substantially more
computer intensive than our proposed methods .

For the case of heteroscedastic errors, we present simulation results only
for the case of uniform design with normal error distribution. These results
appear to be robust against heteroscedascity and are enough to suggest that
our methods are ahead compared to others in attaining their respective nominal

coverage levels, as Tables 4.13-4.14 show.
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Table 4.1: Comparison of tail coverage, coverage (%), length of confidence inter-
vals and absolute bias of 3. The design is uniform with normal error distribution
for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n l-o|LOW UP CP LGT BIAS

NORMAL 20 090 | 443 8.76 86.81 0.539 0.139
APPROX. 095 | 239 576 91.85 0.642 0.139
099 | 056 251 96.93 0.844 0.139

30 090 | 476 7.539 87.65 0.441 0.112

095 | 241 458 93.01 0.526 0.112

099 | 055 204 97.41 0.691 0.112

LINDER 20 090 | 3.29 758 89.13 0.583 0.196
& BABU 095 | 1.70 3.75 94.55 0.718 0.196
099 | 048 0.82 98.70 1.025 0.196

30 090 | 3.03 824 88.73 0.455 0.163

095 | 1.54 4.30 94.16 0.554 0.163

099 | 0.39 1.00 98.61 0.769 0.163

PROPOSED 20 090 | 1.34 7.56 91.10 0.643 0.196
METHOD 1 095 | 0.55 3.82 95.63 0.794 0.196
099 | 0.11 0.87 99.02 1.122 0.196

30 090 | 1.29 864 90.07 0.492 0.163

095 | 046 4.52 95.02 0.601 0.163

099 | 0.07 1.20 98.73 0.833 0.163

PROPOSED 20 090 | 2.67 7.25 90.08 0.605 0.132
METHOD 2 095 | 1.17 4.79 94.04 0.714 0.132
099 | 0.26 198 97.76 0.946 0.132

30 0.90 | 319 6.92 89.89 0.474 0.107

095 | 1.49 4.38 94.13 0.556 0.107

099 | 030 192 97.78 0.723 0.107
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Table 4.2: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is uniform with double exponential
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-a|{LOW UP CP LGT BIAS

NORMAL 20 090 | 5.00 857 86.43 0.526 0.143
APPROX. 0.95 | 246 543 92.11 0.627 0.143
099 | 0.60 208 97.32 0.824 0.143

30 090 | 471 739 8790 0.435 0.115

0.95 | 231 448 93.21 0.518 0.115

099 | 0.46 153 98.01 0.681 0.115

LINDER 20 090 | 381 7.29 88.90 0.563 0.199
& BABU 095 | 1.87 342 94.71 0.686 0.199
099 | 045 0.64 9891 0.966 0.199

30 090 | 3.17 7.86 88.97 0.446 0.165

0.95 | 1.59 4.14 94.27 0.541 0.165

099 | 0.41 0.69 9890 0.740 0.165

PROPOSED 20 0.90 | 1.44 7.11 91.45 0.623 0.199
METHOD 1 095 | 0.60 3.23 96.17 0.761 0.199
099 | 0.11 0.56 99.33 1.065 0.199

30 090 | 1.25 8.00 90.75 0.486 0.165

095 | 049 426 95.25 0.589 0.165

099 | 0.11 0.78 99.11 0.807 0.165

PROPOSED 0.90 | 2.65 6.85 90.50 0.590 0.132
METHOD 2 095 | 1.20 4.18 94.62 0.694 0.132
099 | 0.33 149 9818 0.920 0.132

30 0.90 | 3.08 6.51 90.41 0.469 0.108

0.95 | 1.51 4.07 9442 0.550 0.108

099 | 0.22 129 9849 0.714 0.108

V]
o
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Table 4.3: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is uniform with contaminated normal
error distribution for NV=10,000 simulations and B=1,000 bootstrap samples.

METHOD n l-«|LOW UP CP LGT BIAS

NORMAL 20 090 | 6.72 6.99 86.29 0.069 0.018
APPROX. 095 | 3.82 4.17 92.01 0.082 0.018
099 | 1.36 1.50 97.14 0.108 0.018

30 090 { 6.74 6.49 86.77 0.058 0.015

095 | 3.61 3.74 92.65 0.069 0.015

099 | 1.05 1.28 97.67 0.091 0.015

LINDER 20 090 | 490 5.16 89.94 0.077 0.022
& BABU 095 | 249 235 95.16 0.094 0.022
099 | 0.60 0.60 98.80 0.133 0.022

30 090 | 515 5.29 89.56 0.063 0.019

095 | 245 2.69 94.86 0.076 0.019

099 | 0.65 0.59 98.76 0.105 0.019

PROPOSED 20 0.90 | 3.85 4.69 91.46 0.082 0.075
METHOD 1 095 | 1.95 210 9595 0.100 0.075
099 | 045 0.46 99.09 0.142 0.075

30 0.90 | 433 491 90.76 0.065 0.070

095 | 2.05 245 9550 0.079 0.070

099 | 043 0.55 99.02 0.109 0.070

PROPOSED 0.90 | 497 5.38 89.65 0.076 0.016
METHOD 2 095 | 3.05 3.35 93.60 0.089 0.016
099 | 1.14 1.14 97.72 0.117 0.016

30 090 | 526 5.59 89.15 0.062 0.014

0.95 | 3.07 3.23 93.70 0.073 0.014

0.99 | 093 1.17 97.90 0.095 0.014

(O]
o
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Table 4.4: Comparison of tail coverage, coverage (%), length of confidence inter-
vals and absolute bias of 3. The design is normal with normal error distribution
for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1-a(LOW UP CP LGT BIAS

NORMAL 20 090 | 530 9.83 84.837 0.543 0.148
APPROX. 095 | 296 6.74 90.30 0.647 0.148
0.99 | 0.83 3.15 96.02 0.850 0.148

30 090 | 545 8.50 86.05 0.440 0.115

0.95 | 2.89 5.57 91.54 0.525 0.115

099 | 079 2.20 97.01 0.689 0.115

LINDER 20 090 | 341 763 88.96 0.628 0.207
& BABU 0.95 | 1.87 3.97 94.16 0.768 0.207
099 | 054 0.76 98.70 1.080 0.207

30 0.90 | 3.20 8.69 88.11 0470 0.168

095 | 1.78 440 93.82 0.575 0.168

099 { 053 0.92 98.55 0.808 0.168

PROPOSED 20 0.90 | 1.43 7.75 90.82 0.674 0.207
METHOD 1 095 | 0.75 3.99 95.26 0.836 0.207
099 | 0.12 0.81 99.07 1.192 0.207

30 090 | 1.57 894 89.49 0.508 0.168

095 | 063 4.75 94.62 0.623 0.168

099 | 0.10 1.06 98.84 0.872 0.168

PROPOSED 20 0.90 | 2.59 7.21 90.20 0.659 0.141
METHOD 2 095 | 1.20 4.50 94.30 0.791 0.141
099 | 0.22 1.52 98.26 1.110 0.141

30 090 | 3.22 6.93 89.85 0.503 0.110

095 | 1.40 4.29 94.31 0.597 0.110

099 | 0.34 142 98.24 (.807 0.110
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Table 4.5: Comparison of tail coverage, coverage (%), length of confidence inter-
vals and absolute bias of 3. The design is normal with double exponential error
distribution for V=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l-alLOW UP CP LGT BIAS

NORMAL 20 090 | 494 9.36 85.70 0.549 0.155
APPROX. 095 | 245 6.09 9146 0.655 0.155
099 | 0.71 252 96.77 0.860 0.155

30 0.90 | 512 7.73 87.15 0.439 0.116

095 | 268 4.80 92.52 0.524 0.116

099 | 0539 1.61 97.80 0.688 0.116

LINDER 20 0.90 | 339 7.23 89.38 0.608 0.220
& BABU 095 | 1.65 3.62 94.73 0.750 0.220
099 | 040 0.60 99.00 1.074 0.220

30 0.90  3.35 8.03 88.62 0.462 0.172

095 | 1.69 3.96 9435 0.561 0.172

099 | 0.44 0.72 98.84 0.778 0.172

PROPOSED 090 | 1.38 7.01 91.61 0.603 0.220
METHOD 1 095 | 0.65 3.50 9585 0.733 0.220
0.99 | 0.15 0.63 99.22 1.053 0.220

30 090 | 1.39 8.22 90.39 0.502 0.172

0.95 | 0.55 4.17 95.28 0.610 0.172

099 | 0.10 0.71 99.19 0.844 0.172

PROPOSED 20 090 | 2.05 6.21 91.74 0.673 0.153
METHOD 2 095 | 098 3.64 9538 0.810 0.153
099 | 0.15 1.17 98.68 1.145 0.153

30 090 | 269 5.81 91.50 0.501 0.112

095 | 1.14 3.35 95.51 0.597 0.112

0.99 | 0.23 0.99 98.78 0.802 0.112

o
o




Table 4.6: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is normal with contaminated normal
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1-a|LOW UP CP LGT BIAS

NORMAL 20 0.90 | 697 7.83 85.20 0.072 0.019
APPROX. 095 | 426 4.96 90.78 0.086 0.019
099 | 147 201 96.52 0.113 0.019

30 090 | 659 7.55 85.86 0.058 0.015

095 | 3.89 4.54 91.57 0.070 0.015

099 | 1.21 1.66 97.13 0.091 0.015

LINDER 20 0.90 | 471 542 89.87 0.084 0.018
& BABU 095 | 242 280 94.78 0.104 0.018
0.99 | 0.58 0.51 98.91 0.149 0.018

30 090 | 4.70 5.82 89.48 0.065 0.019

0.95 | 2.25 2.87 9488 0.080 0.019

099 | 0.66 0.72 98.62 0.111 0.019

PROPOSED 20 090 | 3.74 4.75 91.51 0.090 0.050
METHOD 1 095 | 1.76 239 95.85 0.111 0.050
099 | 034 046 99.20 0.161 0.050

30 0.90 | 414 539 90.47 0.068 0.037

095 | 1.93 2.60 9547 0.083 0.037

0.99 | 0.50 0.68 98.82 0.117 0.037

PROPOSED 090 | 460 5.32 90.08 0.085 0.018
METHOD 2 095 | 2.77 3.34 93.89 0.102 0.018
099 | 0.72 1.05 98.23 0.139 0.018

30 0.90 | 472 5.51 89.77 0.059 0.014

095 | 2.63 3.09 94.28 0.071 0.014

099 | 0.86 0.96 98.18 0.100 0.014

b
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Table 4.7: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is chi-square with normal error dis-
tribution for ¥=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 768 9.89 8243 0.364 0.106
APPROX. 095 | 487 7.00 88.13 0.434 0.106
099 | 1.58 3.43 9499 0.571 0.106

30 090 | 7.10 9.62 83.28 0.319 0.090

095 | 417 6.34 89.49 0.380 0.090

099 | 1.40 291 95.69 0.499 0.090

LINDER 20 090 | 391 6.51 89.55 0.457 0.142
& BABU 095 | 1.94 3.35 94.71 0.565 0.142
099 | 037 0.76 98.87 0.812 0.142

30 090 | 333 7.67 89.00 0.376 0.126

095 | 1.76 4.03 94.21 0.462 0.126

0.99 | 0.39 0.92 98.69 0.648 0.126

PROPOSED 090 | 245 6.20 91.35 0.502 0.142
METHOD 1 095 | 1.06 3.15 97.32 0.629 0.142
0.99 | 0.21 0.68 99.11 0.914 0.142

30 090 | 231 7.74 89.95 0404 0.126

095 | 1.06 4.19 94.75 0.501 0.126

099 | 0.25 1.03 98.72 0.709 0.126

PROPOSED 20 0.90 | 2.62 494 9244 0.555 0.116
METHOD 2 095 | 1.13 2.67 96.20 0.706 0.116
099 | 0.12 0.57 99.31 1.198 0.116

30 090 | 2.78 5.12 92.10 0.442 0.091

0.95 | 1.18 2.77 96.05 0.547 0.091

0.99 | 0.15 0.65 99.20 0.828 0.091

()
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Table 4.8: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is chi-square with double exponential
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 7.29 9.83 82.88 0.345 0.102
APPROX. 095 | 446 6.61 8893 0411 0.102
099 | 1.55 3.00 9545 0.540 0.102

30 090 | 7.07 861 84.32 0.292 0.084

095 | 412 549 90.39 0.348 0.084

099 | 1.32 2.03 96.65 0.457 0.084

LINDER 20 090 | 404 643 89.53 0419 0.136
& BABU 0.95 | 222 3.20 94.58 0.517 0.136
099 | 0.59 0.65 98.76 0.742 0.136

30 090 | 339 649 90.12 0.340 0. 117

095 | 1.72 3.13 95.15 0.417 0. 117

099 | 040 0.53 99.07 0.584 0. 117

PROPOSED 20 090 | 2.76 5.79 91.45 0459 0.136
METHOD 1 095 | 1.29 295 95.76 0.574 0.136
0.99 | 033 0.56 99.11 0.835 0.136

30 090 | 266 6.20 91.14 0.361 O0.117

095 | 1.05 3.27 95.68 0.449 0.117

099 | 0.23 0.59 99.18 0.642 0.117

PROPOSED 090 | 2.77 433 9290 0.509 0.121
METHOD 2 095 | 1.39 242 96.19 0.639 0.121
0.99 | 0.24 0.53 99.23 1.042 0.121

30 090 | 273 390 93.37 0418 0.091

095 | 1.20 1.72 97.08 0.523 0.091

099 | 0.15 0.26 99.59 0.812 0.091

o
o
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Table 4.9: Comparison of tail coverage, coverage (%), length of confidence inter-
vals and absolute bias of 3. The design is chisquare with contaminated normal
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1-ao|LOW UP CP LGT BIAS

NORMAL 20 090 | 9.24 9.53 81.23 0.048 0.014
APPROX. 095 | 6.16 6.51 87.33 0.057 0.014
099 | 2,52 283 94.65 0.075 0.014

30 090 | 7.84 8.10 84.06 0.040 0.011

095 | 5.04 4.87 90.09 0.047 0.011

099 | 2.06 1.66 96.28 0.062 0.011

LINDER 20 090 | 496 5.13 89.91 0.063 0.018
& BABU 095 | 241 2.47 95.12 0.078 0.018
099 | 051 0.42 99.07 0.111 0.018

30 090 | 4.77 4.78 90.45 0.048 0.014

095 | 2.49 2.07 9544 0.059 0.014

099 | 0.63 0.37 99.00 0.082 0.014

PROPOSED 20 0.90 | 3.91 4.58 9151 0.069 0.049
METHOD 1 095 | 1.87 2.05 96.08 0.088 0.049
099 | 0.39 0.32 99.29 0.128 0.049

30 090 | 420 4.47 91.33 0.051 0.048

095 | 2.04 195 96.01 0.036 0.048

099 | 0.52 0.3¢ 99.14 0.090 0.048

PROPOSED 20 090 | 3.76 3.96 92.28 0.076 0.016
METHOD 2 095 | 1.76 1.67 96.57 0.097 0.016
099 | 0.26 0.20 99.54 0.169 0.016

30 090 | 4.01 3.85 92.14 0.054 0.011

095 | 2.14 1.81 96.05 0.067 0.011

099 | 047 030 99.23 0.100 0.011
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Table 4.10: Comparison of tai{ coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is mixture normal with normal
error distribution for V=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-—a|LOW UP CP LGT BIAS

NORMAL 20 090 | 5.78 10.04 84.18 0.538 0.148
APPROX. 095 | 3.34 681 89.85 0.642 0.148
099 | 1.00 3.20 95.80 0.843 0.148

30 090 | 552 843 86.05 0.441 0.117

095 | 288 559 91.53 0.526 0.117

099 | 0.7 228 96.95 0.691 0.117
LINDER 20 090 | 365 7.77 88.85 0.616 0.208
& BABU 095 | 201 3.88 94.11 0.765 0.208

099 | 049 074 98.77 1.111 0.208

30 090 | 298 846 88.56 0.475 0.169

095 | 1.61 435 94.04 0.581 0.169

099 | 048 090 98.62 0.819 0.169

PROPOSED 20 0.90 | 1.77 7.81 90.42 0.680 0.208
METHOD 1 095 | 0.74 4.03 95.23 0.845 0.208
099 | 0.14 073 99.13 1.210 0.208

30 090 | 145 876 89.79 0.513 0.169

095 | 064 460 94.76 0.632 0.169

099 | 017 1.07 98.76 0.885 0.169

PROPOSED 20 090 | 265 6.84 90.51 0.675 0.142
METHOD 2 095 | 1.26 424 9450 0.818 0.142
099 | 022 1.27 9851 1.178 0.142

30 090 ; 3.03 6.64 90.33 0.511 0.111

095 | 140 4.00 9460 0.610 0.111

099 | 039 142 98.19 0.828 0.111
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Table 4.11: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is mixture normal with error dou-
ble exponential distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 590 943 84.67 0.519 0.147
APPROX. 095 | 3.15 6.18 90.67 0.618 0.147
099 | 0.69 248 96.83 0.813 0.147

30 090 | 540 796 86.64 0.428 0.115

0.95 | 287 4.61 9252 0.510 0.115

099 | 061 154 9785 0.670 0.115

LINDER 20 090 | 3.85 7.12 89.03 0.581 0.207
& BABU 095 | 1.92 3.56 94.52 0.715 0.207
099 | 031 0.71 9898 1.027 0.207

30 090 | 3.39 8.05 8856 0.453 0.166

095 | 1.83 3.68 9449 0.550 0.166

099 | 047 0.67 9886 0.762 0.166

PROPOSED 090 | 1.74 6.92 91.34 0.639 0.207
METHOD 1 095 | 074 3.36 9590 0.789 0.207
099 | 007 0.60 99.33 1.126 0.207

30 090 | 1.65 8.16 90.19 0.490 0.166

095 | 071 3.77 9552 0.597 0.166

099 | 0.14 0.75 99.11 0.823 0.166

PROPOSED 20 090 | 2.48 6.05 91.47 0648 0.144
METHOD 2 095 | 1.10 3.48 9542 0.783 0.144
099 | 0.20 1.02 9878 1.125 0.144

30 090 | 2.72 554 91.74 0.492 0.110

095 { 1.15 3.15 95.70 0.586 0.110

099 | 030 0.84 98.86 0.794 0.110

[$%]
o
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Table 4.12: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is mixture normal with contaminated
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 7.32 7.8 84.88 0.071 0.019
APPROX. 095 | 435 4.93 90.72 0.084 0.019
099 { 1.64 1.97 96.39 0.111 0.019

30 090 | 6.15 6.58 87.27 0.061 0.016

095 | 3.63 4.03 92.34 0.073 0.016

0.99 | 140 1.36 97.24 0.095 0.016

LINDER 20 0.90 | 481 5.25 89.94 0.083 0.024
& BABU 095 | 232 269 9499 0.102 0.024
0.99 | 0.52 0.53 9895 0.147 0.024

30 090 | 442 5.20 90.38 0.068 0.020

0.95 | 236 2.60 95.04 0.083 0.020

0.99 | 059 0.50 9891 0.115 0.020

PROPOSED 20 090 | 3.61 4.61 91.78 0.088 0.093
METHOD 1 0.95 | 1.83 2.17 96.00 0.110 0.093
0.99 | 031 0.42 99.27 0.159 0.093

30 090 | 3.83 4.88 91.29 0.070 0.066

095 | 1.95 2.37 95.68 0.08 0.066

0.99 | 044 043 99.13 0.121 0.066

PROPOSED 20 0.90 | 4.66 5.26 90.08 0.085 0.017
METHOD 2 0.95 | 2.68 3.05 94.27 0.101 0.017
0.99 | 0.85 099 98.16 0.139 0.017

30 090 | 466 496 90.38 0.069 0.015

0.95 | 260 2.82 94.58 0.081 0.015

099 | 0.83 0.87 98.30 0.109 0.015
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Table 4.13: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is uniform with “moderate” het-
eroscedastic normal error distribution for N=10,000 simulations and B=1.000
bootstrap samples.

METHOD n 1-a;LOW UP CP MED-LGT BIAS

NORMAL 20 090 | 472 T7.73 87.55 0.395 0.102
APPROX. 095 | 245 491 9264 0.471 0.102
099 | 1.01 240 97.66 0.619 0.102

30 090 | 559 7.72 86.69 0.343 0.090

095 | 291 4.80 92.29 0.408 0.090

099 | 068 1.78 97.54 0.537 0.090

LINDER 20 090 | 420 735 88.45 0.418 0.131
& BABU 095 | 2.24 3.81 93.85 0.511 0.131
099 | 0.66 0.88 98.46 0.715 0.131

30 090 | 3.67 7.71 88.62 0.362 0.100

095 | 1.99 3.98 94.03 0.439 0.100

099 | 056 1.05 98.39 0.601 0.100

PROPOSED 20 090 | 245 7.07 90.48 0.452 0.131
METHOD 1 095 | 1.05 3.70 95.25 0.554 0.131
0.99 | 0.28 0.84 98.88 0.776 0.131

30 090 | 229 7.77 89.94 0.382 0.100

095 | 1.05 4.14 94.81 0.463 0.100

099 | 015 1.13 98.72 0.636 0.100

PROPOSED 20 090 | 439 205 93.56 0.422 0.093
METHOD 2 095 | 212 0.85 97.03 0.494 0.093
099 | 049 0.23 99.28 0.648 0.093

30 090 | 3.82 6.82 89.36 0.367 0.084

095 | 2.12 4.22 93.66 0.431 0.084

0.99 | 042 155 98.03 0.559 0.084
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Table 4.14: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is uniform with “heavy” heteroscedas-
tic normal error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—a|LOW UP CP MED-LGT BIAS

NORMAL 20 090 | 419 994 85.87 0.847 0.234
APPROX. 095 | 223 6.82 90.95 1.009 0.234
099 | 038 3.03 96.59 1.326 0.234

30 090 | 3.80 9.00 87.20 0.685 0.180

095 | 1.58 6.08 92.34 0.817 0.180

099 | 0.21 251 97.28 1.073 0.180

LINDER 20 090 | 435 879 86.86 0.862 0.402
& BABU 095 | 260 4.54 92.86 1.060 0.402
099 | 0.8 093 98.22 1.520 0.402

30 090 | 2.63 10.23 87.14 0.680 0.236

095 | 1.49 565 92.86 0.827 0.236

0.99 | 0.39 137 98.24 1.140 0.236

PROPOSED 090 | 1.08 8.99 89.93 0.984 0.397
METHOD 1 0.95 | 0.45 457 94.98 1.199 0.397
0.99 | 0.07 0.77 99.16 1.669 0.397

30 090 | 050 10.69 88.81 0.761 0.236

095 | 0.17 597 93.86 0.924 0.236

099 | 0.01 147 98.52 1.264 0.236

[\
o

PROPOSED 20 0.90 | 1.08 899 89.93 0.975 0.227
METHOD 2 095 | 0.45 4.57 94.98 1.159 0.227
0.99 | 0.07 0.77 99.16 1.571 0.227

30 090 | 1.90 8.21 89.89 0.743 0.173

095 | 0.66 5.46 93.88 0.876 0.173
099 | 0.06 223 97.71 1.149 0.173
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Table 4.15: Summary of coverage (%), length of confidence intervals and absolute
bias of 3 for Tables 4.1-4.14.

CP LGT BIAS
METHOD n l-a«a

MIN MAX MIN MAX MIN MAX

NORMAL 0.90 | 81.23 87.55 0.048 0.847 0.014 0.234
APPROX. 0.95 | 87.33 92.64 0.057 1.009 0.014 0.234
0.99 | 9465 97.66 0.075 1.326 0.014 0.234

30 0.90 | 83.28 87.90 0.040 0.685 0.010 0.180

0.95 | 89.49 93.21 0.047 0.817 0.010 0.180

0.99 | 9569 98.01 0.062 1.073 0.010 0.180

LINDER 20 090 | 86.86 89.94 0.063 0.862 0.180 0.402
& BABU 0.95 | 92.86 95.16 0.078 1.060 0.180 0.402
0.99 |98.22 99.0v 0.111 1.520 0.180 0.402

30 0.90 | 87.14 9045 0.480 0.680 0.140 0.236

0.95 | 92.86 95.44 0.059 0.827 0.140 0.236

0.99 | 98.24 99.07 0.082 1.140 0.140 0.236

PROPOSED 20 0.90 |89.93 91.78 0.069 0.984 0.490 0.397
METHOD 1 0.95 | 94.98 97.32 0.088 1.199 0.490 0.397
0.99 | 98.88 99.33 0.128 1.669 0.490 0.397

30 090 |88.81 91.33 0.051 0.761 0.037 0.236

0.95 {93.86 96.01 0.036 0.924 0.037 0.236

0.99 | 98.52 99.19 0.090 1.264 0.037 0.236

PROPOSED 20 0.90 |89.65 93.56 0.076 0.975 0.016 0.227

o
o

METHOD 2 0.95 | 93.60 97.03 0.089 1.159 0.016 0.227
0.99 | 97.72 99.54 0.117 1.571 0.016 0.227

30 090 |89.15 93.37 0.054 0.743 0.011 0.173

0.95 | 93.66 97.08 0.067 0.876 0.011 0.173

0.99 {97.71 99.59 0.095 1.149 0.011 0.173




Chapter 5

One-way random effects model:
To estimate exceedances over a
threshold

5.1 Introduction

Random effects models, also known as variance-components models. are widely
used in several different fields of research. In epidemiologic research, they are
commonly used to measure the degree of familial resemblance with respect to
biological characteristics and in genetics these models play a central role in es-
timating the heritability of selected traits in animal and plant populations. A
comprehensive review of the developments in the area of variance components
can be found in Khuri and Sahai (1985), Sahai, Khuri, and Kapadia (1985).
Donner (1986), Searle, Casella, and McCulloch (1992) and Box and Tiao (1992).

In the usual analysis of the random effects model, the random effect term and
the error term are assumed to be independently and normally distributed. The

main objective in these analysis usually centers on the estimation of the vari-
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ance components or some functions of them. Several methods, namely, Hartley
and Rao (1967), Searle et al. (1992), Harville (1977), Rao and Kleffe (1988)
have been proposed to estimate variance components. Townsend and Searle
(1968), Harville (1977), Rao and Kleffe (1988), and Chaubey (1984) dealt with
the minimum variance quadratic unbiased estimators of variance components
(MINQUE). MINQUE estimation requires no distributional properties of the
random effects or error term in the model. However, the estimators obtained by
MINQUE are functions of a priori values. For inference on the ratio of variance
components, see Spjgtvoll (1968), Seely and El-Bassiouni (1983), Harville and
Fenech (1985), Khuri and Littell (1987). Prasad and Rao (1988) considered the
situation in which the random effects and errors were not necessarily normally
distributed and used the weighted jackknife method to obtain robust inference
on the ratio of variance components.

Solomon (1989) used the random effects model and assumed normality on
both components to estimate the expected number of exceedances and other
quantities in systolic blood pressure over a given threshold from a sample of
16 individuals. She used parametric approach to this problem. However, her
method has some limitations. It requires theoretical calculations, approxima-
tions and depends heavily on the distributions of random effects and random
errors. In this chapter, we propose a weighted bootstrap procedure to estimate
these quantities where in which minimal theoretical calculations are needed and
inferences obtained are robust to distributional assumption on the random effects

term and error term.
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In Section 5.2, we review Solomon’s method on estimation of exceedances
over a threshold in a balanced random effects model. In Section 5.3, we propose
a weighted bootstrap procedure along with theoretical justifications are also

provided. A Monte Carlo study is presented in Section 5.4.

5.2 The Model

Consider the following unbalanced one-way random effects model

(4]
[AV]
—
~—

Vi =p+uy, =1,2....a, j=12,...n; (5.

where

~~
(]}
o
o

S’

uij = Ui + €,

with y;; being the j-th observation in the i-th class, u being an unknown param-
eter to be estimated and u;; being the random error associated with y;;. Here u;;
is assumed to be the sum of the random effects, v;, associated with i-th class and
the random errors, e;;, associated with j-th observation for the i-th class. The
random errors {e;;} are assumed to be independent, identically distributed with
mean 0 and variance o2 (i.e.e;; > (0,02)) and the random effects {v;} are inde-
pendent, identically distributed with mean 0 and variance o2 (i.e.v; wd (0,02)).
Further, {v;} and {e;;} are uncorrelated so that the variance-covariance structure

of u,; is given by

o2+ 02 fori=1and j=j
E(u,-,-u,-:]-:) = 0’3, for i = ¢ and ] # jl (523)
0 otherwise.
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Let h be a given threshold value, and define

1 Yij > h a n, )
i(h) {0 otherwise an ; where ; i(h). (5 )

The goal is to estimate the average number of exceedances, E(T), defined as the
expected number of values that exceed a given threshold. its variance, Var(T)
and the probability of no exceedance Pr(T = 0). In this chapter, we propose
a weighted bootstrap procedure to estimate these quantities. Theoretical justi-
fications and finite sample properties of the proposed bootstrap procedure are
also given.

Solomon (1989) assumed a balanced (n; = n for all i) one-way random effects

model with v; % N(0,02), e;; o N(0,02) and derived the following expressions:

1. The expected number T of exceedances over a threshold & is given by

E(T) = n® (“ — h) , (5.2.5)

ag

with the variance

Var(T) = nd (“ — h) (1 ) (“a;h» {1+(n-1p}, (5.2.6)

ag
where
@, (B2, 655 p = %) - @ (432) ]
Y (=N Y =) B, (527

with @,(-) denoting the standardized bivariate normal distribution func-

tion with correlation p.
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2. The probability of observing no exceedances is given by

Pr(T =0) =/_: (z) {«p (7;”>}ndx, (5.2.8)

where @(- ) and ®(- ) denote the standard normal probability density and distri-

bution function, respectively, v = (h — u)/0y, T = 0¢/0,, and 0? = 2 + o2,
The estimates of (5.2.5)-(5.2.8) can be obtained by replacing u, o> and o2
by their respective maximum likelihood estimators and the integral (5.2.8) can
be evaluated by numerical approximation using these estimates. Note that this
method requires theoretical calculations and approximations and heavily de-
pends on the normality assumption on v; and e;;.
In the next section, the use of a weighted bootstrap is considered to estimate

the above parameters.

5.3 The Proposed Method

The use of the bootstrap method for estimating the unknown distribution of
pivotal quantities to obtain robust confidence intervals for unknown parameters
has become an important topic of recent statistical research both in theory and
applications. For detailed discussions on this subject, we refer readers to Efron
(1982, 1987) and Wu (1986). In this section, we explore a weighted bootstrap
procedure (see Wu, 1986 and Liu, 1988) to estimate the expected number of
exceedances by noting that the above model is unbalanced and warrants the
use of a bootstrap procedure suitable for non-i.i.d. models. In the context of

drawing inferences for regression models, Wu (1986) suggested a modification to
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the classical bootstrap procedure to accommodate the non-i.i.d. nature of the
model by drawing i.i.d. observations from an external population having mean
zero and unit variance. Liu (1988) proposed to draw i.i.d. observations {¢;} from
a population with £t; = 0 and Et} = Et} = 1. This modification made Wu's
bootstrap procedure share the usual second order asymptotic properties of the
classical bootstrap for i.i.d. models.

To apply Liu’s weighted bootstrap procedure to our problem, we need the

following notation:

I oo 1 o |1
- _ L g = — iy, Gp=1— ————  (5.3.1)
U N;J.;yu Y niJZ:;y] i 1+ mA

(5.3.2)

|

N=in,—, and A = -

i=1

Q
° o

Then our bootstrap procedure involves the following steps:

1. Generate t; from any distribution with mean 0 and variance n;A(1 — &4 )2,
ie., t; nd (0, n,—A(l — &;)*) and ¢;; from any distribution with mean zero
and variance 1l,i.e., t;; ‘ad (0,1)fori=1,--- ,a, j=1,---,n;. Heret; and

t;; are generated independently.
2. Compute the bootstrap data
Y, = B+ (G — 1) + tily — qafi — (1 — da)p].

3. Compute the bootstrap estimator T* = ¢! S, T7, where
=t 1 y>h
T =Y I'(h), I.(h)= i
' ; 5 ii(h) {0 otherwise,
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and the bootstrap variance of T using
Var T") = (a- 1) Y (7 - )2

4. Obtain the proportion of individuals with no exceedances using

#{v;<hi=1...,a)=1,... ,n}

Pr.(j—" =0)= v

w

. Independently replicate steps (1)-(3) B times, where B is large, and cal-
culate the corresponding estimates T(l), o ,T(‘B), Var,(l)(flr"), e,

Var.sy(T*) and Pr.qy(T* = 0),... , Pr.g)(T* = 0).

6. The bootstrap estimator of E, (’Z:"‘) can be approximated by 1:(‘) =
B2 (b), its variance by Var.. )(T‘ B'y 2 1va7':(b)(T ) and
Pr.y(T* = 0) by B-' Y2, Pry(T* = 0).

The histogram of the B estimates for f’(‘b) for b=1,...,B is used to form
the 100(1- 2a)% confidence interval (’.f_"L(a),’.lE'U(a)), where Z:"L(a) = CDF(a).
f:u(a) = CDF(1 - a) and

#{T(b) sb=1,...,B}
B

CDF(z:) =

Theorem 5.1. Suppose the one-way random effects model (5.2.1)-(5.2.3) hold.
Then

1. EF[Ex(y:])] =H,

!

o2 +02+0(™'), fori=1andj=j
2. Ep[Cov.(y};, yi5)] = ¢ 02+ O(a™?), fori=1 and j # j'
0 otherwise,
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where Cov.(y};, yiy) = Eu(yj; ~)(y5; — i) and E, and Er represent expectation
with respect to the distributions induced by beotstrap sampling and the model.

respectively.

Proof. Since the expected values of ¢; and ¢;; are zero, we immediately have the
first result.

In the following proof, we assume that ¢2 and 02 < oo and the n;’s are fixed
for: =1,...,a. Furthermore, we assume that there exists positive constants M/
and m such that n; < M for all i and n; > m for all i. In view of & and A being

consistent estimators of a and A, respectively, it can be easily verified that

Ep[Var.(y;;)] = (1 = a.)?AEr(§i. — 2)* + Erlyij — cifi. — (1 — o))

+ O(a™h). (5.3.3)

Now, consider the first term of right hand side of equation (5.3.3)

Er(§i. — 8)° = Er(§i. — p)* = 2Ep(§i. — p)(f2 — 1) + Ep(fi — p)?
2 03 ny 2 03 1 0 [ 52 0’3
(%) -5 (2 E) ey (2 F)
=<ag+ ‘)_cﬁa (5.3.4)
We will show that C; and C; are of order O(a™!)
1\2
C, < (—) (M?ao? + Mad?)
ma
(MY (2 0\
T \m Ty M) a
=0(a™"). (5.3.5)
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Similarly,

IA
to

o (2)(2-2) ()
m n; a
a—l

O(a™), (5.3.6)

and Eg(g;. — f1)? = (02 + 02/n;) + O(a™!). To evaluate the second term of right

hand side of equation (5.3.3), consider

Erly; — oi§i — (1 — ai)]? = Varp(yi; — i)

2 2
2 2 O, 2 2 g,

=02+ 02 - 2 (o—;+—5) + aj (a;+—e>
n n;

il
N
Q
o to
I

i
o, ,—\q
n
!
.-: lf\ql.) leqgg.-; |Nl

o

n;
2 o2 1 B 2
= - - < | — 1 — o
Ue +Tli (1—&;‘) ( a)
=a? (5.3.7)

Therefore, combining (5.3.4) and (5.3.7) we have the desired result for { = i’ and

J =J'. Turning to Er[Cov.(y;;, ys;s)] for i = i' and j # j'. we have

EF[COUF(yi‘jv yi"j’] = ni(1 — &)’ AEp(i. - £)*+0(a™")
=n(l — )*A (cf?, + £ + O(a‘l)) +O0(a™")

1

% _ +0(a-1)> +0(a™Y)

n,(l - CY,')'
=02+ 0(a™). (5.3.8)

=ma—afA<

a
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5.4 A Simulation Study

To study the relative performance of the proposed resampling method. we con-
sider the actual population originally given by Solomon (1989). This population
consists of a = 25, n; = 16 for all ¢ with p = 91.70. The following distributions

are considered for {v;} and {e;;}:

—

. v; ~ N(0,26.86) and e;; ~ N(0,52.02),

SV

. v; ~ 0.1N(0,26.86) + 0.9V(0, 52.02) and
ei; ~ 0.1N(0,26.86) + 0.9N(0, 52.02),

3. v; ~ Cauchy and e;; ~ Cauchy,
4. v; ~ Exp(1) and e;; ~ Exp(1).

We then generate 1,000 sets of {v;} and {e;; } according to these four distributions
with number of bootstrap B=1,000.

The results are given in Tables 5.1-5.4. For the case when the random effects
and random errors are both independently normally distributed, the expected
value of T is 6.626 for Solomon method, 6.520 for bootstrap method and 6.624
for true value. Its variance is 22.013 for Solomon method, 22.869 for bootstrap
method and 22.846 for true value. The probability of no exceedance is 0.078
for Solomon method, 0.083 for bootstrap method 0.098 for true value. It is ob-
served that the Solomon and bootstrap methods perform well in tracking the
true values of the average number of exeedances, variances and the probabilities

of no exceedances; while the bootstrap performs slightly better than the Solomon
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method in tracking the variance. It is not surprising that the Solomon method
is doing well here since the variance components are normally distributed. How-
ever, similar results do not hold for other distributions, like Cauchy and expo-
nential, where the bootstrap method performs better than the Solomon method
in tracking their respective true values.

Turning to the coverage probability for E(T), the percentile method for boot-
strap confidence intervals is considered and the coverage probabilities are con-
sistently below the respective nominal rates. We try some modifications in con-
structing the confidence interval in a transformed scale. However, the changes
had little effect on the coverage probabilities.

To summarize, the maximum likelihood yields good results provided both v;
and e;; are independently normally distributed. However, the bootstrap method
is a good competitor in obtaining point estimates even when v; and e;; are not
independently normally distributed. The question of constructing confidence

intervals needs further study and this is under investigation.
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Table 5.1: The number of exceedances, its variance and probability of no
exceedance for the model with v; ~ N(0,26.86) and e;; ~ N(0,52.02) for
t=1,...,25,5j=1,...,16, N=1,000 simulations and B=1,000 bootstrap sam-
ples.

Method E(T) Var(T) Pr(T =0)

True Value 6.624 22.846 0.098
Solomon 6.626 22.013 0.078
Bootstrap 6.520 22.869 0.083

Table 5.2: The number of exceedances, its variances and probability of no ex-
ceedance for the model with v; and e;; ~ 0.1N5(0,26.86) + 0.9NV(0,52.02) for
t=1,...,25,5=1,...,16, N=1,000 simulations and B=1,000 bootstrap sam-
ples.

Method E(T) Var(T) Pr(T =0)
True Value 6.566 16.627 0.046
Solomon 6.565 16.119 0.056
Bootstrap 6.402 18.399 0.053
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Table 5.3: The number of exceedances, its variance and probability of no ex-
ceedance for the model with v; and e;; ~ Cauchyfori=1,...,25 j=1,...,16.
N=1,000 simulations and B=1,000 bootstrap samples.

Method E(T) Var(T) Pr(T =0)
True Value 3.997 18.874 0.135
Solomon 7.518  12.120 0.244
Bootstrap 4.702  19.699 0.103

Table 5.4: The number of exczedances, its variance and probability of no ex-
ceedance for v; and e;; ~ Exp(l) for i = 1,...,25 j = 1,...,16, ¥N=1,000
simulations and B=1,000 bootstrap samples.

Method E(T) Var(T) Pr(T =0)
True Value 1.454 8.020 0.469
Solomon 1.279 5.795 0.248
Bootstrap 1.750 10.276 0.373
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Chapter 6

General discussion and topics for
further research

In this dissertation, we have treated four problems, namely,

(D

(IT)

(III)

(IV)

Inference on the slope parameter in a logistic regression model when values
of the covariate X for a subset of the study subjects may be missing but

values of a surrogate variables are available.

Use of empirical likelihood to obtain variance estimator of the ratio and

regression estimator under two-phase sampling.

Two bootstrap methods are proposed to obtain robust inference on regres-
sion parameter for measurement error model with known error variance

ratio.

A weighted bootstrap procedure is suggested to estimate exceedances over

a threshold under one-way random effects model.
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In Chapter 2, we studied the problem of estimation in logistic regression with a
surrogate covariate. We regarded the sample units in the validation set S,_,, as
being simple random sampling from S,,, where S, is the set containing both vali-
dation and primary sets. We then derived an asymptotic variance of the empiri-
cal likelihood estimator. This asymptotic variance has two components. The first
component represents the expected information based on L(3|X;. X5, ... .X,).
the likelihood for the observed data if P(Y|X) was completely known, while the
second term represents the penalty for not having observed X for i € S,,_,». The
simulation results suggested that the empirical likelihood should be adopted over
the three existing estimators. The usefulness of the empirical likelihood method
relies on the fact that it is robust for any misspecification of the model P(X|Z).
This problem is also known as covariate measurement error in the literature,
since we can regard Z; as observed value of X; for { € S,,_,, measured with
error.

As a further research on this problem, we would like to extend the results
of this chapter to the case where the surrogate covariate is measured more than
once on the same unit.

In Chapter 3, we considered ratio estimation under two-phase simple ran-
dom sampling. We proposed two new variance estimators, namely, the empirical
likelihood estimator v4(f:s) and the design-based estimator v3(#;s). The variance
estimator v4(%;s) was substantially more efficient than the standard variance es-
timator and the ones proposed by Rao and Sitter (1995). Whereas, The variance

estimator v3(g,s) was more efficient than the ones proposed by Rao and Sitter
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only for certain case. We have restricted our considerations to the case of simple
random sampling without replacement on both phases. Sometimes even if X is
unknown, it may be cheaper to obtain information on all units of the population
of a second auxiliary variable Z, which is highly related to X, but remotely
related to Y compared to X. For discussion on this type of situation in the
empirical likelihood framework, see Benhin and Prasad (1997).

In Chapter 4, we proposed two bootstrap procedures for slope parameter
under a linear structural relationship with known error variance ratio. The goal
was to choose a correct bootstrap technique so that the first three bootstrap
moments of 3* equaled the first three moments of 3. In the first bootstrap.
we required an assumption that the joint distribution of X and Y was sym-
metrically distributed, however, this assumption was not needed in the second
weighted bootstrap method. The methods presented here were simple and at-
tractive in contrast to the Linder and Babu bootstrap procedure. Perhaps most
importantly, it circumvented calculating the correction factors that were required
in the Linder and Babu method in estimating the bootstrap variance. Our simu-
lation results showed that the proposed bootstrap procedures were able to track
to their respective nominal levels and were robust to heteroscedasticity, in par-
ticular, the weighted bootstrap. These results are encouraging and worthwhile
to investigate the case where X and Y are measured with replications.

Turning to Chapter 5, we discussed the use of bootstrap in a one-way ran-
dom effects model. We developed a weighted bootstrap algorithm to mimic the

variance-covariance structure as in the original model. An example on blood
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pressure was used to illustrate the application of this bootstrap procedure. The
bootstrap estimates performed well in tracking the true respective values. How-
ever, the coverage probabilities failed to track their respective nominal rates.
We have no theoretical argument to explain why the coverage probabilities per-
formed poorly. We tried some transformations, but the changes had little effect

on the coverage probabilities. It is in our intention to investigate this further.

124



Bibliography

Anderson, T. W., and Sawa, T. (1982). Exact and approximate distributions
of the maximum likelihood estimators of a slope coefficient. J. Royal Statist.

Soc., Ser B, 44, 52-62.
Arvesen, J. N. (1969). Jackknifing U-statistics. Ann. Statist., 40, 2076-2100.

Babu, G. J., and Bai, Z. (1992). Edgeworth expansions for errors-in-variables

models. J. Multivariate Anal., 42, 226-224.

Babu, G. J., and Singh, K. (1983). Nonparametric inference on means using

bootstrap. Ann. Statist., 11, 999-1003.

Babu, G. J., and Singh, K. (1984). On one term Edgeworth correction by Efron’s

bootstrap. Sankhyad, 46, 219-232.

Barnett, V. D. (1967). A note on linear structural relationships when both

residual variances are known. Biometrika, 54, 670-672.

Benhin, E., and Prasad, N. G. N. (1997). Empirical likelihood estimation in

two-phase sampling using two auxiliary variables. Unpublished manuscript.

125



Bickel, P. J., and Freedman, D. (1981). Some asymptotics theory for the boot-

strap. Ann. Statist., 9, 1196-1217.

Birch, M. (1964). A note on the maximum likelihood estimation of a linear

structural relationship. J. Amer. Statist. Assoc., 59, 1175-1178.

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete Multi-

variate Analysis: Theory and Practice, MIT Press, Cambridge.

Box, G. E. P., and Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis.
John Wiley and Sons, New York.

Carroll, R. J., and Wand, M. P. (1991). Semiparametric estimation in logistic

measurement error models. J. R. Statist. Soc. B, 53, 573-585.

Chan, N. N., and Mak, T. K. (1983). Estimation of multivariate linear functional

relationships. Biometrika, 70, 263-267.

Chaubey, Y. P. (1984). On the comparison of some non-negative estimators of

variance components. Commun. Statist. B: Simul. and Comp., 13, 619-633.

Chen, J., and Qin, J. (1993). Empirical likelihood estimation for finite pop-
ulations and the effective usage of auxiliary information. Biometrika, 80,

107-116.

Chen, S. X. (1994). Comparing empirical likelihood functions and bootstrap

hypothesis tests. J. Multivariate Anal., 51, 277-293.



Cochran, W. G. (1977). Sampling Techniques, third edition, John Wiley and

Sons, New York.

Cook, M. B. (1951). Bivariate k-statistics and cumulants of their joint sampling

distribution. Biometrika, 38, 179-195.

Cox, D. R., and Hinkley, D. V. (1974). Theoretical Statistics, Chapman and
Hall, London.

Diciccio, T., Hall, P., and Romano, J. (1989). Comparison of parametric and

empirical likelihood functions. Biometrika, 76, 465-476.

Donner, A. (1986). A review of inference procedures for the intraclass correlation

in one-way random effects model. Int. Statist. Review, 54, 67-82.

Dorfman, A. H. (1994). A note on variance estimation for the regression estima-

tor in double sampling. J. Am. Statist. Assoc., 89, 137-140.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann.

Statist., 7, 1-26.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plons,

Society for Industrial and Applied Mathematics, Philadelphia.

Efron, B. (1987). Better bootstrap confidence intervals (with discussion). J.

Amer. Statist. Assoc., 82, 171-200.

Elston, R. C. (1977). Estimating “heritability” of a dichotomous trait. Biomet-

rics, 33, 232-233.



Foutz, R. V. (1977). On the unique consistent solution to the likelihood equation.

J. Am. Statist. Assoc., T2, 147-148.

Fuller, W. A. (1987). Measurement Error Models, John Wiley and Sons, New
York.

Gladen, B., and Rogan, W. (1979). Misclassification and the design of environ-

mental studies. Am. J. Epidem., 109, 607-616.

Gleser, L. J. (1981). Estimation in a multivariate “error in variables” regression

model: large sample results. Ann. Statist., 9, 24-44.

Gleser, L. J. (1983). Functional, structural and ultrastructural errors-in-variable
models. Proc. Bus. Econ. Statist. Sect., American Statistical Association,

Washington, DC, pages 57-66.

Goldstein, H. (1979). Some models for analysing longitudinal data on educational

attainment (with discussion). J. R. Statist. Soc. A, 142, 407-442.

Hall, P., and Scala, B. L. (1990). Methodology and algorithms of empirical
likelihood. Int. Statist. Rev., 58, 109-127.

Hartley, H. O., and Rao, J. N. K. (1967). Maximum likelihood estimation for

the mixed analysis of variance model. Biometrika, 54, 93-108.

Hartley, H. O., and Rao, J. N. K. (1968). Covariate measurement error in

generalized linear models. Biometrika, 55, 547-557.

128



Harville, D., and Fenech, A. (1985). Confidence intervals for a variance ratio. or

for heritability, in an unbalanced linear model. Biometrics. 41, 137-152.

Harville, D. A. (1977). Maximum likelihood approaches to variance components

estimation and to related problems. J. Amer. Statist. Assoc.. 72, 320-338.

Kalton, G., and Kasprzyk, D. (1986). Imputing for missing surveys responses.

Survey Methodology, 12, 1-16.

Kelly, G. (1984). The influence function in the errors in variable problem. Ann.

Statist., 12, 87-100.

Kendall, M. G., and Stuart, A. (1979). The Advanced Theory of Statistics, 4th

edition, volume 2, Griffin, London.

Khuri, A. I., and Littell, R. (1987). Exact tests for the main effects variance
components in an unbalanced random two-way model. Biometrics, 43, 545-

560.

Khuri, A. I, and Sahai, H. (1985). Variance components analysis: A selective

literature survey. Int. Statist. Review, 14, 1261-1350.

Kolaczyk, E. (1994). Empirical likelihood for generalized linear models. Statistica

Sinica, 4, 199-218.

Linder, E., and Babu, G. J. (1994). Bootstrapping the linear functional rela-

tionship with known error variance ratio. Scand. J. Statist., 21, 21-39.

129



Lindley, D. V., and El-Sayyad, G. M. (1968). The Bayesian estimation of a linear
functional relationship. J. R. Statist. Soc. B, 30, 190-202.

Liu, R. Y. (1988). Bootstrap procedure under some non-i.i.d. models. Ann.

Statist., 14, 1697-1708.

Mak, T. K., Li, W. K., and Kuk, Y. C. (1986). The use of surrogate variables

in binary regression models. J. Statist. Comput. Simul., 24, 245-254.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single

functional. Biometrika, 75, 237-249.

Owen, A. B. (1990). Empirical likelihood confidence regions. Ann. Statist.. 18,
90-120.

Owen, A. B. (1991). Empirical likelihood for linear models. Ann. Statist, 19.
1725-1747.

Pepe, M. S., and Fleming, T. (1991). A general nonparametric method for
dealing with errors missing or surrogate data. J. Am. Statist. Assoc., 86.

108-121.

Pepe, M. S, Reilly, M., and Fleming, T. R. (1994). Auxiliary outcome data and

the mean score method. J. Statist. Plan. Inference, 42, 137-160.

Prasad, N. G. N., and Rao, J. N. K. (1988). Robust tests and confidence intervals
for error variance in a regression model and for functions of variance compo-
nents in an unbalanced one-way model. Commun. Statist. Theory Meth., 17,

1111-1133.

130



Prentice, R. L. (1989). Surrogate endpoints in clinical trials: definition and

operational criteria. Statist. Med., 8, 431-440.

Press, W. H., Flannery, B. P., Teukolsky, S. A.. and Vetterling, W. T. (1993).
Numerical Recipes in C: The Art of Scientific Computing, 2nd edition, Cam-

bridge University Press, New York.

Rao, C. R., and Kleffe, J. (1988). Fstimation of Variance Components and

Application, North-Holland, Amsterdam.

Rao, J. N. K., and Sitter, R. R. (1995). Variance estimation under two-phase
sampling with application to imputation for missing data. Biometrika, 82.

453-460.

Rao, P. S. R. S., and Rao, J. N. K. (1971). Small sample results for ratio

estimators. Biometrika, 58, 625-630.

Riersgl, O. (1950). Identifiability of a linear relation between variables which are

subject to error. Econometrica, 18, 375-389.

Rosner, B., Willett, W., and Spiegelman, D. {1989). Correction of logistic re-
gression relative risk estimates and confidence intervals for systematic within-

person measurement error. Statist. Med., 8, 1075-1093.

Rubin, D. B. (1987). Multiple Imputation for Non-Response in Surveys, John
Wiley and Sons, New York.

Sahai, H., Khuri, A. [, and Kapadia, C. H. (1985). A second bibliography on

variance components. Commun. Statist. A, 14, 63-115.

131



Schafer, D. W. (1987). Covariate measurement error in generalized linear models.

Biometrika, 74, 385-391.

Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components.
John Wiley and Sons, New York.

Seely, J. F., and El-Bassiouni, Y. (1983). Applying Wald’s variance component

test. Ann. Statist., 11, 197-201.

Serfling, R. J. (1980). Approzimation Theorems of Mathematical Statistics, John

Wiley and Sons, New York.

Sitter, R. R. (1997). Variance estimation for the regression estimator in two-

phase sampling. J. Am. Statist. Assoc., 92, 780-787.

Smith, C. A. B. (1980). A review of inference procedures for the intraclass

correlation in one-way random effects model. Ann. Hum. Gen., 21, 363-373.

Solari, M. E. (1969). The maximum likelihood solution of the problem of esti-

mating a linear functional relationship. J. R. Statist. Soc. B, 31, 372-375.

Solomon, P. J. (1989). On components of variance and modelling exceedances

over a threshold. Austral. J. Statist., 31, 18-24.

Spjetvoll, E. (1968). Confidence intervals and tests for variance ratios in unbal-

anced variance components models. Ann. Statist., 11, 197-201.

Stefanski, L. A., and Carroll, R. J. (1985). Covariate measurement error in

generalized linear models. Ann. Statist., 13, 1335-1351.

132



Sukhatme, P. V., and Sukhatme, B. V. (1970). Sampling Theory of Surveys with

Applications, second edition, Iowa State University Press, Ames.

Tanner, M. A., and Wong, W. H. (1987). The calculation of posterior distribu-

tions by data augmentation. J. Am. Statist. Assoc., 82, 528-540.

Townsend, E. C., and Searle, S. R. (1968). Best quadratic unbiased estima-

tion of variance components from unbalanced data in one-way classification.

Biometrics, 27

Wittes, J., Lakatos, E., and Probstfield, J. (1989). Surrogate endpoints in clinical

trials: definition and operational criteria. Statist. Med., 8, 415-425.

Woodhouse, G., Yang, M., Goldstein, H., and Rasbash, J. (1996). Adjusting for

measurement error in multilevel analysis. J. R. Statist. Soc. A, 159, 201-212.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in

regression analysis. Ann. Statist., 14, 1261-1350.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, John

Wiley and Sons, New York.

133



Appendix A

Proof of Theorem 4.1

We first obtain the bias of A by writing A in terms of bivariate k-statistics. That
is,

A SR 2.

h = 11 (#02 - A #20)

1 2
= ;kﬁl (Ko2 — Aka)

where k., = n(n — 1)7!,, for r,s = 0,1 and A\? = ¢%/0?. By a multivariate

Taylor series expansion around h = il(l\?og, kag, k11), we have

I 1 -1 1 -2 1 -3 ~2y

h=h+ ah‘,u hl + Sh‘.u hg + 3/\111 h3 =+ Op(n I (.—\01)
where

hy = (koz - Noz) - /\2(k20 - 'ﬁ?zo) — 2h(ky, - fiu),
hy = —[(koz - Roz)(’\’u - Ku) - )\z(kzo - Rzo)(’»’u - Hu) — 2h(ky ~ fi11)2],

hs = (ko2 — Ko2) (k11 — K11)? — N (kag — Kao)(kir — k11)? — 2h(ky — K1),
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and the x’s are the respective population cumulants. Now. we have the first

central moment of h given by

Eg(h—h) = —%x;f(n[(oz)] — A%k[(20)] — 2R&[(11)%)

+ 2RiM{R[(02)(11)] — AK{(20)(11) - 2As[(11)7]} + O(n™").

-

where
’c[(aa,)r(ﬁﬁl)s] = EF[(kaa’ — Kaa') (Kgpr — ’cﬂﬁ’)s]y r+s<3.

The evaluation of the terms on the right-hand side involves heavy algebra. We
use the method of bivariate k-statistics and product cumulants. The relevant
formulae have been tabulated by Cook (1951) . Using these formulae and writing

in terms of cumulants, we have

U 7 ]' —_ 1 - -
Ep(h. - h) = —%Kuzal,g + :)72_/{“3 (azn + a3z + a4~) + O(n 3),

<

where

. 2
a1x = K13 + 2K2k11 — AP(Ra1 + 2R20k11) — 2h(Kas + Kagkez + RY,).
2,
Q2x = Kag + dKaaKg2 + 6K13K11 + KoaRao + 2K{, + 2Ko3Ka)
+ BKg2k]; + 2K0yK
2 Lo 2 .
a3x = —A* (K42 + 5Kagkag + BK31K1) + Kaokoz + 283, + 2K30K 2
.2 2
+ 6!\.20/\.11 + 2K20K02),
@ax = —2h(K33 + 6Kaok11 + 3KK13 + 3K31Ko2 + 3Ka1K12 + K3gKos.
3
+ 2/‘211 + ﬁlizofcogl'cu).
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In virtue of the following identities given by Cook (1951)

K20 = H20,
K11 = H11,
K30 = K30,
K21 = Ho21,

Ko = Hdo — 3it30,

K31 = M31 — 3ft2ok11,

K2 = H22 — HaoHo2 — 2H11,

Kso = tso — 10u30400,

K41 = pa1 — 43011 — 610120,

K32 = M32 — H3okoe2 — Bpa1i1n — 3paokii2,

Keo = feo — L54aopio0 — 103y + 113,

Ks1 = fs1 — Sptaopnn — 10pa1 90 — 10uaoptar + 30p3gu1,

K4z = [a2 — Mooz — 8uarpir — dpizopt12 — Optaapiag — 6#31
+ Gu3opoz + 24pa0pd),

K33 = M33 — 3M31f02 — f30fo3 — pazpt1l — 212

— 3pzott02 + 18paopipon + 12443,

the bias of A can be written in terms of moments as

. 1 _ I _
Ep(h—h) = —%#112 {s — Nug — 2hpn} + Wﬂlls(a’lu + @3y + Qay)

+0(n™?),
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where

Qou = fag — 2p13011 — 2Mostiar — Hoaloa — 4uts + 2p2s3) .
gy = —A*(pa2 = 2pz1p01 — 2ua0ft12 — paopar — 43y + 2ua07)),
asy = —2h(p33 — 3poopnr — Bpiopey + 2#:1"1)-

Upon simplification, the bias of A is given by

-~ 1 - 9 -2
Ep(h —h) = —%#112 {#13 = Auz — Qhu'zz} +O0(n77).

Turning to the second central moment of A, by squaring (A.0.1) then taking
expectation with respect with F', we have

- 1 1 -
Ep(h - h)2 = 4—nﬁl_12b1,; - Wﬁiﬁs (bz,c + bg,< + b4,; + b5,c + be,c) + O(TL 3).

where

bix = Koq + 263, — 203 (Kan + 263,) + M (Kyo + 2K39)
— 4hr13 + Kozk1r — A (K31 + Kagkn1)] + 4R% (Koo + Koakao + KYp),

bax = K15 + 8K13K02 + KoK + 4Ko3K10 + 8»{3‘2/{11,

bsx = ~2A%(Ka3 + 8Kzok11 + 2Ka0K13 + 2R3y Koz + 4Kar Ko + 4K3, + dRaghgakyy),

bix = —4h[Ka4 + BRookoa + BK13K11 + Kogkag + 2KT. + 2Ko3Ka21 + BRoakS,
+ 2R§2K20 — A (Kap + 5KaoKag + BK31K11 + Kagkoz + 2K3, + 2K30K12
+ 6Kagk2, + 2K3K02)],

bsx = A (k51 + 8K31K20 + 4Ka0k11 + dkgokar + 8K3gK11),

bex = 4h*(Ka3 + 6K2aK11 + 3K20K13 + 3Kgaks, + 3Ka1K12 + K30Ko3
+ 2k3; + 6K0k02611),
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or in terms of moments, we have
7 2 1 -2
Ep(h—h)" = ntu by +O(n77).

where by, = poq + A*pag + 2p22(2h% — A2) — 4h (13 — A213,). In a similar fashion.

the third central moment of A is
Ep(h - h)* = 8%»:;13 (c1x + C2x + C3x + Cax + C3x) + O(n72),
where
Cix = Kos — A\PKeo + 12(Koqko2 — M rgokag) + 4(&83 - /\6,«:3’0)
+ 8(kg2 — A°K3,),
o = =3\ (Kaq — AN*Raz) + dKoa (ko2 — ANrag) + 8k11 (K13 — A’ka1)
+ 4(k3, - AZI{%I) + 83, (Koz — Akag),
cax = —6h[r15 + AN Ks) + 8(Ri3koz + AMKarkag) + 4k (Keg + A Kao)
+ 4(Kozk12 + A Kaghay) + 8ri1(Kga + /\4rc§0) — 2X%(K33 + 8Kaak1y
+ 2K0K13 + 2K31K02 + 4Ka1K12 + 4K + dRgakagry )],
Cqp = 12/12[524 - /\2"242 + SKa2(Ko2 — /\2520) + 6Ky (K13 — )\2/{31)
+ Koakag — A Kaoror + 2(k}, — N2k2)) + 2(Ko3ka — A K3gkia)]
+ 647 (ko2 — A*Kag) + 202k (Ko2 — A%kag),
C5x = —8h3[n33 + 6Kaak11 + 3Ka0k13 + 3Ko2K31 + 3K12K21 + KoaKkao
+ 2K3, + BKgara0k11)-

Hence, we have

. 1 _
Er(h-h)* = 8?‘“1_13 (Cip + C2u + Cayu + Cap + Csu) + O(n73),
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where

Ciu = pos — 3ptoattor — Bugy + 203y — (10 — ptaoiing — 6uzg + 2u3y).
Cop = —3A%[piag — Hoapta0 — dpiozpia; — 2panptor — 2035 + 2uds g
- /\g(lhtz — Haokoz — 430112 — 290 piag — 2#51 + 2#§oﬂ02)],
C3u = —6h[p1s — poapny — 2p13p02 — Bpoaprs + 2gai11
+ A st — paonr ~ 23190 ~ Spgopa + 2p3011)
= 2X%(pa3 — parpten — Ho3fso = Hazfti — ftiafar — Maofis + 2pigapaofiry )],
Cap = 12h%[pag — 2p13p1; — 2p03pt0; — faaptor — 4p3s + 2p0op?,
— A (a2 ~ 2u31011 — 2pzoptrs — fazpian — 4u3; + 2pua0pd))],

Csp = —8h,3[y33 — 3211 — Optiopgy + 2#?1]'

Upon simplification, the third central moment of A is

. 1 ) ~
Er(h - h)} = 87“‘_13 (clu+ch, +ch, +ci, +¢5,) +0(n™3), (A0

where

Ciu = Hos — 6ugs — A5 (ueo — 613,),
Cop = _3/\2[#24 — 4dpo3pa — 2#%2 - /\2(ﬂ42 — 4pzop2 — 2#%1)]»
C3y = —6h[p1s — Gpgaps + M (s, — 611304221 )
— 2% (33 — pospso ~ Suiapar)],
Chu = 12h%[uag — 2po3pan — 42y — N (142 — 2us0p12 — 4p3,)),

Cs, = —8R%[u33 — Bpuyapa).
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If the joint distribution of X and Y is symmetrically distributed, we have

H30 = Moz = W12 = uo1 = 0 which in turn results

ch, = tos — 6133 — A°ueo,

Coy = =32 [p2q — N pga),

c3, = —6h[us + M(ust — 20 %us3),
Cfm = 12h2[#24 - /\2#42],

CIS;; = —8h3ﬂ33-
Substitute these values into (A.0.2), we get

Ee(h— ) = =
8n?

—2/\2/.t33] + 12}12(#24 - /\2/.14;_)) - Shsugg} + O(Tl_3).

e {pos — A pgo — 3A*(p2g — Nuga) — 6h[u1s + M s,

Hence, the proof of Theorem 4.1 follows by noting that 3 is a continuous function

of h and

96 h 3
— =14+ = = = -
oh Vh?+ X2 VA2 422
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Appendix B

Proof of Theorem 4.4

Define

Al = (X; = X)(Y7 = ¥) - iy and note that E.(n™" ) Aj) =0.

Then, h* can be re-written as

I I 1 ~% A~ *
h*=h+ 2_ 11#122'1

iuu (Z A+ Z 4'ZA ) (B.0.1)

Taking expectation of (B.0.1) with respect to the distribution induced by boot-

l\D

njiy
strap sampling described in Section 4.3.1 we have 7, E.A7 = 0. The bias of
h* is given by
E.(h* —h) = —l‘ﬁ—lg (ﬂls — Az — 2ilﬂ°°) :
2n’ ! -

Hence,

Aig — Qhﬂzz} + Op(n-z),

L. 3 )
E.(8 -08)=- _ -
(B 8) Qnﬂfl ,—h2 gy {um
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which yields part (i) of Theorem 4.4 with the remark that 3, {11, f13, ft3; and

fizz are \/n consistent estimates of 3, u;, m13, 3 and poo, respectively. To

establish part (ii) of Theorem 4.3 consider the second moment of A* about h.

Se o -2 1o A (A
E.(h* = h)" = in o#u (E A; ) l:l + 2#1112 +#11'(—2)—‘}
n n
1 - = s & 1 1 1 P - 12 A
= E, {E;#uz (E AP+ AiAj> + %3#113 (E APA,;
§n 1* 1% A 1 ~ — §n 1#2 A2 En 1% 1+ A2
125,k

+2n:A;2AjAk+ 3 .4;.4;/3@.,)}

ik i=j k1

1 P N - - by 9 7 7 ~ N
= Eulf{um + Mo + 2[22(2h — N?) — dh(fiyz — N fiar)}

+ O0,(n7?%).
Therefore,

. T\9 1 - : 7 2 I 2
Ep[E.(R" ~ h)*] = 4_nﬂ112 {#04 + Xpigo + 2pm(2h — N?) — dh(p3 - )\"#31)}

+ O(n7?).

Now, the required result follows along the lines of the argument given in the

proof of part (i). As for the third moment of 2* about k, we have

N N 1
E.(h* —h)* = 8n s o {ﬂos — 37 f1ag + 30 s — 80

—6h(f11s — 2A\% 133 + Mfis))

+12R2 (124 — A2fig2) — 8&3,133} +0,(n7?).
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Hence,

. 1 .
Ep(E.(h* — h)*] = 87““3 {106 — 3A%pag + 3N g2 — APpueo

—6h(115 - 2/\21133 + )\451)

+12h% (g — N paz) — 8h%usz } + O(n™%).

The rest of the proof follows using earlier arguments.
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Appendix C

Proof of Theorem 4.6

Let

where 7, =n ' S0 Y, r,s = 0,1 with

ﬂa(zl) = fgg + t:[(Y: — Y)? — fia),
-~ (1)

fizg) = oo + t[(Xi — X)? — faa0],

i =y + (X = )Y = V) — an,

and t,,...,t, being i.i.d. random variables chosen completely independent of
data X;'s and Y;’s such that Et; = 0, Et? = Et} = 1. Consider a multivariate
Taylor expansion of h* around h = il(/lgo, o2, f111), we have

VY DURT S P URS ST s
h* =h+ ;#111}‘1 + ;#uzhz + 3#113}13 + Op(n™7)

&

or equivalently,

O DUNTURE DUV S )
Wo—h= 5“111h1+§“112h2+3”113h3+0p(" %) (C.0.1)
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hi = (g2 — fo2) — A*(f30 — fi0) — 2h(f2], — fAn1),

hy = —[(a5, — fo2) (25, — A1) — A3 — fi20) (A3, — fin) — 2h(3}, — finy

hy = (fge — flo2) (&) — £11)? = A2 (39 — f120) (2], — £1)* — ‘2il(ﬁ11 - ).

Note that the following can be easily verified

Ey[(Ag2 — f102)] = 0,

E[(A50 — f220)] = 0,

E(a — )] =0,
Ey[(a30 — f120)*] = n" (i2a0 — i230),
E[(f252 — f102)*] = 07 (froa — f132),

Ef(ay — pu)) =n" (e — 43)),

2

Er[(52 — f102)’] = n™*(fios — 3ftoafinr + 2figo),
E(it30 — f120)*] = n7%(ft60 — 3fzaoiits + 2130,
E[(a7; — 11)°] = n™% (i3 — Bfaaafiu + 243,),
Ei[(Ag2 — f02) (30 = fi20)] = n™" (a2 — floafizo),
Ei[(5; — Bo2)(A1y — u)] = n ™ (s — fo2iin),
Ei(a39 — f20) (211 — 1)) = n_l(ﬂsl = f20f11),
Ey{(ii5y — f102)* (152 — fro2)] = n7%(as — floafor — 2fzafan + 2figfizo),
E(igs — f02) (30 — f20)%] = n7%(fran — faofizo — 2do2floo + 2230 f202),
El(fgy — fo2)* (A1) — An)] = 72 (s — foafin — 2afior + 200 f11),
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2

Ei[(f30 — f120)*(f25; — 211)] = n 7 (f1s1 — faofiny — 2fiz1 floo + 20304011).
E(f52 — fro2)(251 — i11)?] = n 72 (froa — floaflor — 231 finy + 2(320011)

E[(A3 — fiao) (271 — A11)?]) = 07 (fae — frzafian — 2fafiny + 20200001),

2

Ey[(fge — f02) (A3 — fi20)(2}; — u1)] = n7%(fas — fa2ftn — flizfloo — fi31 /202

+ 2f102fl20fi11)-

The bias of A* under the weighted bootstrap procedure is obtained by taking

expectation on both sides of (C.0.1)

I x 7 1 -~ ~ -~ 7 - -2
Ei(h™ —h) = —%ﬂuz {ﬂls — Nfigy — 2h#22} +Op(n™).

As for the second central moment for fz‘, it is given by

I * I\2 1 P B N - - 2 2 - 9 -2
Ey(h" — h)* =E#u’ {#04 + M fiag + 2/122(2R° — A?) — 4h(iy3 - /\'#31}‘1" Op(n™")

The third central moment of A* is given by

64#

1p

. N 1 o R R R . R a
E,(h* - h)* = S?p“:’ (c" + c'z'“ + cg“ + cf{“ + 6'5',,) + Op(n 3.

1

Cly = fos — 6[‘33 - ’\6([‘60 - 6[‘%0)’

~1

C2I‘ = —3/\2[#24 - 4/_203[121 h 2[1%2 - /\2(ﬂ42 - 4/'230/112 - Qﬂgl)]‘

Al

€3y = —6h[i1s — 6fozfir2 + A (zs1 — Bi30fizn)

- 2’\2([‘33 - /3'03/230 - 5/:‘12/}'21)11

1

Il

12h%[flag — 2fa03fa1 — 40335 — N (fao — 2f30ft12 — 4423))],

Al

&5, = —8h*[fis3 — Bfui2fia1]-

The rest of the proof follows along the lines as in Appendix B.
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