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ABSTRACT

‘This investigation attempts to determine rational design
rules related to the overall stability of a structure and to the
stability of individual members. The effects of the vertical loads
actiﬁg on the deformed structure and on initially out-~of-plumb
members are investigated. The statistical chafacteristics obtained-
from measurements taken on out-of-plumb columns and walls in three
structures are used in the deri§ations of several expressions for the
different out-of-plumb effects. Statistical methods are used in
the development of appropriate design procedures to account for
out-of-plumbs; this constitutes the major contribution of the study.
The results of the study indicate that many of the procedures used

to account for stability in present design standards are generally

inadequate.
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CHAPTER 1

INTRODUCTION

Several factors are known to impair the strength and stability
of a structure. Among the most important is the so-called P-A effect.
The axial loads acting on the columns and load-carrying walls produce
additional moments and forces when acting through the lateral displace—
ment of the structure. The effect is particularly important in tall-
buildings. When thesé effects are taken into account in the structural
analysis of the building, the analysis is referred to as a ''second-
order analysis'". A great deal of time and effoft has been spent on
developing methods to account for the P-A effécts. The most recent
studies have been oriented towards the development of simple and
practical design techniques and an in depth examination of the forces
involved.

A second factor which affects the stability of structures
but has attracted very little attention until recently is the
initial out-of-plumbness of columns and load carrying walls. In-a
manner similar to the P-A effect, the gravity loads acting through
initially inclined members generate extra horizontal forces within
the structure. The out—of-plumb forces, so far, are either totally
neglected in design or improperly accounted for by using over-
simplified techniques. A thorough examination of the out-of-plumb
effects and the development of appropriate modifications of existing

design procedures, as well as new methods, therefore are warranted.



The main objective of this study is to propose rational
clauses for design standards which are related to the stability of
complete structures and individual members. In this respect, the
thesis is divided into two distinct sections: first, a’short section
“which deals with some limited aspects of the P-A effects and then a
-section on out-of-plumbs which constitutes by far the essence of the
study. Important measurements taken on steel columns and concrete
walls are presented and are used in statistical calculations. Simple
 *methods based on statistics are developedkto determiﬁe the naturé and
the significance of thé extra horizontal forces due to column and
‘wall out-of-plumbs. The transfer of these forces among the resisting
" elements of the structure is given speciél attention.

Although the procedures used for the determination of the
out~of-plumb forces should be applicable to many different framing
schemes, the investigation uses the core-braced structure as a model
for the computations. Basically, the structure consists of a concrete
‘core enclosed by an orthogonal steel framing system as shown in
Fig. 1.1. All connections are assumed to be pinned. The frame is
designed to carry a share of the vertical loads while the core has
the double function of supporting a portion of the vertical loads
~and stabilizing the structure against lateral forces.

The core-braced structure has been selected because of its
relatively common use in medium rise buildings and because the
requirements for the transfer of horizontal forces are relatively
severe. Other types of structures, with and without rigid conneétions,

" are discussed briefly.
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Core-braced structure (plan view)



The different horizontal forces present in structures are
classified and defined in Chapter II. Chapter III contains a review of
those methods of analysis for core-braced buildings which present a
reasonable estimate of the forces defined in the preceding section.
Tﬁe survey is limited to elastic first order and second order
methods. The distribution of the horizontal forces resulting from
the approximate second order analyses presented in Chapter III is
discussed in Chapter IV.

Chapter V reviews the existing literature and clauses in
design standards related to column and wall out-of~plumbs. Chapter
VI'presents the distributions and statistical characteristics of a
_sériés of out-of-plumb measurements taken on buildings under construc-
tion. Chapter VII is devoted to the derivation of’design equations
based on statistics for each resisting element affected by the out-
of-plumb forces. This is followed in Chapter VIII by examples of
applications which attempt to demonstrate the applicability of the
equations derived in the previous chapter.

Each individual out-of-plumb effect is calibrated in Chapter
IX against the corresponding wind load effect, in order to
determine its significance in design. Where appropriate, the recom-
mendations listed in Chapter V are compared with the results of the
techniques developed in Chapter VII.

Chapter X contains a general discussion while Chapter XI
consists of a brief summary and finally concludes by listing the

proposed clauses for design standards related to structural stability.




CHAPTER 11

HORIZONTAL FORCES

In a core-braced structure, horizontal forces must be
resisted at each beam-to-column connection and portions of these
forces must be transferred to the core if the integrity of the
structure is to be maintained. The magnitude and distribution of
the forces depend upon the relative stiffnesses of the columns and
the core, the stiffness of the connections, the characteristics of the
floor system, and the general arrangement of the structure.

Several types of horizontal forces must be resisted to
ensure the stability of a structure. For convenience, the forces
may be classified under three separate headings: first order forces,'
P-A forces, and forces due to column and wall out-of-plumbs.

)
2.1 First Order Forces

The forces normally considered in the design of the
individual members are those resulting from a first order analysis
of the structure. The structure is assumed to be subjected to
gravity loads alone or in combination with wind or earthquake loads.
In the analysis the response is assumed to be elastic and the
equilibrium equations are formulated on the undeformed structure(l).
Several methods which are applicable to core~braced systems and which
make use of elastic first order principles will be briefly described in

the next chapter.



The first order forces are more or less adequately
distributed among the stiffening elements depending on the type of

analysis used and the simplifying assumptions made.

2.2 P-A Forces

The assessment of the overall stability of a structure under
the action of applied loads is a major problem. In a first order
analysis, the stability effects are not considered since the equili-
brium equationé are formulated on the undeflected structure(l’z); The
:designer generally neglects these effects in the analysis to simplify
the calculations. The stability effects must ghen be indirectly accounted
for in design as will be discussed below.

The vertical loads, acting through the lateral displacements
of a structure, produce additional forces and moments,  Fig. 2.1 shows
a simple frame subjecteé to a lateral load, H, and vertical loads, P,
applied at the tops of the columns. The extra étorey moment, 2PA, the
corresponding fictitious shear, 2PA/h, the extra sway, and the
distribution of the additional moments and forces among the resisting
elements of the structure are called P-A effects(l’s). They are especially
significant in tall buildings where stability considerations very often
control the design(6). An analysis in which equilibrium is formulated
on the deformed structure, thus accounting for these effects, is called

a second order analysis.

2.3 Forces Due to Column Qut~of~-Plumbs

The unavoidable out-of-plumbs of the columns are among the

geometric imperfections which most significantly affect the stability
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Figure 2.1 Second-order effects on sway permitted frames



of a structure. Horizontal forces of value PAX/h and PAy/h in the
direction of the x and y axes are generated by the axial load P acting
on the inclined column shown in Fig. 2.2. These additional forces may
affect the integrity of the structure and provisions should be made
for their transfer. The extra moments and shears must be accounted
fof in the design of connections, floor diaphragms, and vertical
bracing systems. This is particularly important in tall core-braced
buildings where the vertical loads are high and the horizontal

‘forces from each column must generally be transferred to the core.

When the members of a frame are rigidly jointed, extra moments
are developed in the columns and girders by the initial out-of-plumbs
with the result that the force transfer requirement is reduced. This
particular case is not investigated in this report. If, however, the
columns are pin-connected, larger lateral forces are induced. These
forces must be transferred by the beam-to-column connections through
the floor systems to the central core.

While the direction and intensity of the extra P-A forces
are calculated directly from an analysis of the structure, the same
parameters related to the out-of-plumb forces are practically undefined.
Referring to Fig. 2.2, a column may be inclined along both the x and
y axes and the magnitude of the initial inclinatipns may vary between
zero and a value greater than the maximum prescribed erection tolerance(7).

The estimation of the out-of-plumb forces and their distri-
bution in a structure is complex and requires special consideration.
Similar to the P-A forces, the out-of-plumb forces affect the strength
and stability of tall buildings. For these reasons they should be

accounted for in design.
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CHAPTER TI1I

ANALYSIS AND DESIGN

This chapter is divided into three parts. The first
portion contains a review of the available methods of analysis appli-
~ cable to core-braced systems. Although the frame is generally simply
connected and depends entirely on the core for its stability, methods
are also presented which apply to moment resisting frames. The
application of approximate second order analyses 1s discussed in the
’seéond part. The last section presents an outline of the current design

procedures.

3.1' First Order Analysis

Practical analyses are generally characterized by a number
of appropriate structural and loading simplifications. It 1is

common practice to assume that the floor diaphragms are infinitely
rigid in their own planes, that the applied lateral locads are concentrated
at floor levels, that the joints are ideally rigid or pinned (as

‘appropriate), and that the core acts as a reinforced concrete flexural

element having a finite width. '

Depending on whether the frame systems offers significant

stiffness (rigid connections), a first order analysis is performed on

the whole structure or on the core alone,

10
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3.1.1 Two-Dimensional Analysis

In the case of structures symmetric in plan and subjected
to symmetrically applied horizontal loads, a two-dimensional analysis
is appropriate.
A framing system with negligible stiffness is assumed simply
connected and is designed to carry the appropriate share of the
vertical loads. The core, in turn, has the double function of supporting
vertical loads and resisting the horizontal forces by cantilever
action. If the frame possesses a significant stiffness, the above
assumptions may lead to an unconservative frame design(s). In this case,
the interaction between the walls and the frame results in a significant
. - . , (9,10) o
redistribution of the forces in the structure . As shown in Fig.
3.1, the frame tends to restrain the core in the top storeys and the
opposite occurs in the lower region. As a result, forces are created
that cannot be predicted by isolating the two systems.
When the frame plays a significant role in resisting the
lateral loads, all parallel bents in the structure may be placed side
. .. (9,10)
by side and linked together for analysis . The frame members are
modelled as linear elements while the core is simulated by a plane
. . (12) . :
shear-wall of equivalent strength and stiffness . The horizontal
loads acting on the resulting plane structure are then distributed:
. . . . (11)
among the elements according to their relative stiffnesses . Only
one-half or one-quarter of a symmetric structure need be analyzed.
In many cases, simplification can be achieved by replacing
the actual frame by an "idealized frame'" as shown in Fig. 3.2(a).

The areas and stiffnesses of the members in the idealized structure

are obtained by a "lumping" technique as described in Ref. 9. The model
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may be further simplified by using»fictitious link bars between the
frame and the core as shown in Fig. 3.2(b). These members of infinite
area are pinned and simulate the action of the floors in enforcing
equal lateral deformations on each of the load resisting elements(ll).
For structuréé having uniform properties over the heighf of the
building, various techniques which model thé structure as a continuum

1
( 2). For most practical structures, however, the member

are appropriate
properties change with height and a discrete approach is used which
generally necessitates the use of a large compﬁter. Computer programs
using stiffness matrices have been extended to:include interactiﬂg

(13,14 Standard plane frame programs may .also

shear-walls and frames
be used to analyze mixed structures if the core or shear-wall (with
appropriate coupling beams) is replaced by an "equiValent’wide

"(15’16). This simulation is particularly useful in cases where

column
the frame~core connections are rigid so that the width of the core

must be considered.

3.1.2 Three-Dimensional Analysis

A torsional analysis is required for symmetric structures
subjécted to eccentric lateral loads caused by wind or earthquake as
well as for structures asymmetric in plan.

If the torsional and lateral resistance of a structure
depends primarily on the central core, an analysis of the core acting

(17,18,19)

aloné may be appropriate . Studies of several existing core-

braced systems have indicated that a core, with properly interconnected
walls, is approximately 10 to 40 times as stiff in torsion as the

’ 20
perimeter steel frame, assuming that the frame is rigidly connected( ).
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I1f, in a special case, the frame system plays a definite role in
resisting the eccentric lateral loads, it should be included in the

analysis(la’Zl’zz).

3.2 Second Order Analysis

Stability effects have not been considered in the various
techniques described in the previous sections(l). The most important
stability or second order effect to consider in an elastic analysis
is the P-A effect describéd in section 2.2.

The extra P-A moments and shears can be determined by the
use of approximate of rigorous second order analysis procedures. A
rigorous second order analysis requires the use of a large and
expensive computer program which may include wide and stiff elements
(14)

such as cores

Approximate techniques, however, are generally more desirable

than a rigorous analysis. They are of three types:

.1. Amplification Factor

The momentsiand deflections determined by a first order

" analysis are multiplied by an amplification factor to simulate

the effects of the vertical loads acting on the laterally deflected
structure(zq). The factor has the form 1/(1-PA/Hh), where the terms
are defined in Fig. 2.1. The amplification factor technique is appro-
priate for hand calculations and can sometimes be very useful. However,
due to its simplicity, the technique is subject to some restrictions(za)

and does not allow directly for the trarsfer of second order forces;

which is »f prime concern in this thesis.
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2, Fictitious Horizontal Load

The action of a vertical load on a laterally deflected column -

can be simulated by a horizontal forece PA/h applied at the top of the

column. This concept has been developed and applied to multi-bay,

multi-storey frames for dynamic(zs) and static analyses(23’26).

The technique presented in references 23 and 26 is a versatile

method which could be used in the analysis of core-braced systems.

Since the procedure is recommended by the Canadian Standard 816.1—1974(36)

and is the subject of a discussion in the following chapter, the procedure

is detailed below:»

(a)

(b)

(c)

Perform a first order analysis of the structure under the
factored loads to determine the horizontal deflection,Ai,
at each floor level i,

As shown in Fig. 3.3, compute the artificial storey shears
which would produce column end moments equivalent to those

caused by the vertical loads:

' ZPi
' - Rnamnenend —-
Vi h, Ai+l Ai) 3.1
i
where
Vi = artificial shear at storey i due to sway forces,
ZPi = sum of factored column axial loads at storey i,
hi = height of storey i,
Ai = horizontal displacement of level i with respect to

the base of the structure.

Compute the resulting sway forces H; at each floor level:

HY = vio- ) (3.2)
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Figure 3.3 Sway forces due to vertical loads
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(d) Add the sway forces Hi to the applied lateral loadg and
reanalyse the structure.

(e) When the deflected shape at the end of a cycle is relatively
unchanged, the method has converged and the resulting forces
now include the P-A effect.

For practical structures, the convergence is fast and the first iteration
.prodhces acceptable results. Slow convergence is a sign that a structure
is excessively flexible and lack of convergencevindicates that the
structure is unstable(27).

Since the iterative procedure adds significantly to the cost
of the analysis, attempts have been made to reduce the computational
effort involved. A suitable deflection index is often used as a
basis for the first trial calculation of sway forces(27). if the
resulting deflections of the structure are less than the assumed
deflection index, a conservative estimate of the P-A effects has been
obfained and the results may be used in design. A similar but more
rational approach consists of computing the converged second order

deflections at each storey from the corresponding first order values

by using the amplification factor of method 1(28), thus
A = L (b, . -4) (3.3)
i P, (A, - A.) i+l i :
1 174+ i
V. h,
ii
where
Ag = relative second order lateral deflection of storey i

(top of storey with respect to bottom),
P = sum of factored column axial loads at storey i,

v = total first order shear at storey 1.
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Ouce Ag is obtained, the fictitious storey shears equivalent to the
converged V; of Eq. (3.1) are calculated by
np A"
Vo= 22 (3.4)
i
Equation (3.4) may be expressed in a more convenient form so that the
fictitious storey shears may be calculated directly from the first

order results:

v 1
vy 1 1 (3.5)
P, - A 5V
h,
1

The sway forces are then evaluated by Eq. (3.2) and applied at each
storey to give the con§erged second order forces and moments
directly.

It haskbeen suggested in Ref. 23 that where the vertical loads
act alone, the initial forces be computed on the basis of sway deflgc—
tions equal to 0.002 times the storey height. The initial deflections
are equal to the maximum out-of-plumbs permitted during erection of
the structure according to Ref. 7. This implies that the structure would
he erected with initial imperfections and that the vertical loads
acting through the corresponding lateral deflections would produce
initial P-A shears and forces. This will be discussed in detail in
Chapter V.

3. Simplified P-A Method

A method which allows a second order analysis to be

performed by using a first order computer program (without iteration)

: heon B (29)
has been presented recently .
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A fictitious "negative bracing" member having an area equal to

L
_om b
AO " 7 h E cos?a (3.6)

is added to the frame at each storey as shown in Fig. 3.4. In this
equation, IP is the sum of the factored column axial loads at a
specified storey, E is the modulus of elasticity of the columns, and

h, LO’ and 0 are defined in Fig. 3.4. The "braced" frame is analysed
by a gtandard first order program and the results obtained represent

the second order deflections, moments, and forces in the members.

The number of equations remains the same as for a first order solution
and the computer input is unchanged except for the addition of the

extré bracing members. The horizontal component of the force in the
bracing member of level i is the converged sway shear V; of the previous

technique.

3.2.1 Two-Dimensional Analysis

If the frame system lacks significant stiffness, the P-A
shears corresponding to the total gravity loads on the structures,
as well as those caused by wind or earthquake, must be resisted by
the core alone. The methods described in section 3.1 along with the
second approximate Eechnique of section 3.2 can be used in a second
order analysis. If the frame does possess significant rigidity, the
core-frame interaction must be considered. Again, an appropriate method
outlined in section 3.1 can be used jointly with an approximate

technique (no. 2 or 3) in a second order analysis.
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3.2.2 Three~Dimensional Analysis

The assessment of stability effects in three-dimensional
‘structures is complex(BO). The stability aspects of three~dimensional
building frames are discussed in Ref. 31, but among the analytical
methods presented, only a few apply directly to core-braced structures.
A figorous technique for a stability analysis is presented in Ref. 32
for structures similar to that of Fig. 1.1. It is assumed that the
core resists torsion, bending, and its share of the vertical loads,
and that the frame is pinned and resists only vertical loéds.

As for the plane case, the deflections computed from first

(14,22)

order three-dimensional analyses may be used to assess the

deflections, moments, and forces in a structure with the P-A effects

included(Bl).
3.3 Design

One option in designing for stability is the traditional
effective length or "K factor" method(7’33).
In this technique, the bending moments obtained from a first
- order analysis are used directly in the design of the girderé and the
moments and forces in the columns are adjusted through the interaction
equations to arrive at suitable column sections. In regular moment
resisting frames the P-A effects in the columns can be accommodated
indirectly by basing the member selection procedure on the sway
permitted condition(ze),
As applied to a core-braced stricture, a blind application

of this procedure is inappropriate. The presence of a stiff concrete

core is used to justify the assumption that the columns are sway
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prevented. The effective length factor for the columns is then equal

to or less than unity(ZB). In order to be consistent with this assumption,
the core must be designed to resist all of the P-A effects. The second
order effects in a core-braced building are properly accounted for by
applying the P-A forces to the whole structure (if the frame is

moment resistant) or to the core alone (if the frame is simply

connecte&) at each floor level(23’26’34). This procedure amounts to

a second-order analysis and may be performed using the techniques

described above.
When the P-A forces have been included in the analysis,

the columns and the core may be designed for the sway prevented

case(23’26’34) in which the effective length factor is equal to or

smaller than unity(ll).



CHAPTER IV

SECOND ORDER FORCE DISTRIBUTION

The use of an approximate second order analysis, as described

in section 3.2, results in an improper distribution of the horizontal

forces among the resisting elements.

It is intended in this chapter to formulate a simple technique

for the redistribution of second order horizontal forces to be used in

the design of connections and floor diaphragms.

4.1 Basic Force Transfer

structure,

1.

Three situations are encountered in a typical framed

They are schematically represented in Fig. 4.1:
Columns and beams in a bent develop their own resistance
to lateral loads.
In thé case of a regular unbraced frame with moment
resisting connections as shown in Fig. 4.1(a), no extra
shears are to be transferred by diaphragm action at the beam
level and extra forces need not be transferred through base
connections unless the columns have different stiffnesses
or carry different axial loads. The beams and columns in
this type of structure are subjected to extra P-A moments.
Any column splice should be desizned for an extra shear

since there is an increase in the shear within the columns.

24
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(b)

7 "H+3ZPA/h

Figure 4.1 Basic second order force transfer ;o
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2. A few columns only develop resistance to lateral loads.
Connection A for the simple frame of Fig. 4.1(b) must now
be designed for a shear of value PAA/h. The three other
connections, however, have to resist a force equal to H+PAA/h.
Since the shear resistance is assumed to be provided within
the bent, no additional diaphragm action is required.

3. Pinned frame relying on a stiffer structure for its stability.
Wheﬁ the columns in a bent are all simply connected and rely
on a bracing system in the plane of the bent for latéral
support, the forces are transmitted directly through the
beams and the connections to the vertical bracing system.

If the supporting system is not in the plane of the frame,
a horizontal force H+IPA/h must be transmitted by diaphragm
action as shown in Fig. 4.1(c). The joints at the base

must be designed for the appropriate PA/h shears.

4,2 Problems in Approximate Second Order Techniques

All horizontal fbrces and shears, such as axial loads in
beams, shears in columns,vand horizontal forces in joints are generally
incorrect if generated by fictitious storey forces applied at one
face of ‘the structure. This is due to the transfer of the second
order forces through a particular bent. Errors in the analysis could
be avoided by applying the extra shears for the individual columns
at the top of each column but this is an impractical solution.

Both the fictitious horizontal load technicue and the simplified

P-A method of section 3.2 have this limitation. The problem is clearly

demonstrated in Fig. 4.2 where the results of an exact and an
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approxitiat . second order analysis are compared for two .ifferent
column ¢nd conditions.,

In the case of a moment resisting f{rame, the sucar at the
base of a column is larger than the actual shear by a factor PA/h when
a simplified technique is used (Fig. 4.2(a)). 1In a simple frame,fthe
actual shear PA/h at the column base is not predicted by the approxi-

mate method (Fig. 4.2(b)).

4.3 Force Distribution by Free~Body Diagrams

Since correct second order moments, deflections, and column
"axial loads ére obtained from an approximate second order analysis,
the corresponding colum shears can be determined from a consideration
of column free-body diagrams. The contribution of each individual

column to the second order storey shear is calculated by equation (4.1),

Wil
g - LM PA (4.1)
h
where XM = the sum of the column end moments Mx and Mg shown
in Fig. 4.3.

Once the shears in the columns above and below a specific
floor in a plane frame are known, equilibrium of all the horizontal
forces acting on the floor, including the externally applied lateral
loads, can be ensured. The horizontal shears in the connections and
axial loads in the beams, calculated in this manner, are correctly
distributed. An example illustrating this procedure will be presented

in section 4.5.2.




Figure 4.3 Column free-body diagram (positive directions shown)
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4.4 Alternate Force Distribution Technique

This section presents an alternate method for the redistri~
bution of horizontal forces which gives nearly the same results as
the e#act'method but requires a reduced amount of calculation.

When the fictitious lateral load technique or the simplified
P—A’metﬁod has been used; the artificial shear at’each floor level is
a known quantity.  This shear is obtained from Eq. (3.1) in the
fictitious lateral load technique or 15 calculated as the horizontal
component of the fictitious bracing force in the simplified P-A
»Qethod.v Also known is the sum of the column axial loads at each storey,
since this quantity has been used in the analysis.

Regardless of the type of structure, thé extra P-A sheafs
in the columns, at a.specific storey, are proportional to the axial
loads in the columns. The arﬁificial shear Vi at storey i (the sum of
the individual column P-A shears for this storey) is then redistributed

among the columns according to the following equation:

P,
vio= —Lb— v (4.2)
j n, i
i
L P
j=1
where
Vs = ‘ghare of fictitious shear in column j
j = column index
;i = storey index
n, = total number of columns at storey i
Pj = factored axial load in column j
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The exact second order shear corresponding to the shear of Eq. (4.1) is

obtained by taking the alyebraic difference between the shear (in
Lo . . a ,

error) obtainéd in the approximate analysis, V', and the corresponding

shear, V', from Eq. (4.2).

o= v@ - v, (4.3)

As before, after the actual shears are calculated in the columns above
and below a specific floor level, the horizontal forces at each beam;to—
column connection at that ievel are calculated from the equilibrium df
the joint. An example of the application of this technique is given’ in
the next section.

The type of redistribution described above is only useful
in the design of beam-to-column connections, column splices, and floor

diaphragms for the extra forces produced by the sway of the structure.

4.5 Analysis of Framing Systems

In order to justify the application of the alternate distri-
bution technique described above, different structural systems have
been studied using the simplified second order technique of section
3.2(3). The results of the distributions have been compared with

the exact values.

4.5.1 Srtructural Systems

The simple three~bay, three-storey plane frame shown in
Fig. 4.4(a) was selected as the basic structure in this study. The
cress-sectional area of the structural members (except the bracing

members) were increased so that the effects of axial deformations were
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climinated. The gravity and lateral forces were slightly increased
from the design values for the frame in order to emphasize the P-A
effect. All loads were applied at the joints to simplify the study.
The different types of structures analysed were:

1. An unbraced frame with moment resisting connections (Fig.
4.,4(a)). The gravity loading was unsymmetrical and the
column stiffnesses varied.

2. A pin-connected frame braced by a steel truss (Fig. 4.4(b)).

3. A moment resisting frame with one Braced bay (Fig. 4.4(c)).

4, A pin-connected frame braced by a shear-wall (core)

(Fig. 4.4(d)).

4.5.2 "Example

The distribution of the P-A forces calculated by the above’
fachnique, as applied to the first two storeys of the braced frame
shown in Fig. 4.4(d), is given in detail in Fig. 4.5. The first order
forces and ﬁhe second order forces (before and after correction)‘aré
‘given for comparison. The horizontal components of the axial loads in
the fictitious bracing members are respectively 7.92 kips and 11.49 .
kips for the first and seégnd storeys. The force in the first storey is
lover since the base of the shear-wall is fixed. The column shears
‘calculated according to Eqé. (4.2) and (4.3) are summarized in Table 4.1.
The last column of the table lists the column shears calculated according
to Eq. (4.1), based on the results of the second order analysis.
The comparison shows that the alternate distribution technique applies

properly in this case.
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Fictitious«;hear Exact 2nd Order Shear

Columm | P,/LP, (Eqn. 4.2) (Eqn. 4.3) (Eqn. 4.1)
J J kips kips kips
1 0.248 1.96 -1.96 -2.00
4 0.134 1.06 ~1.06 -1.08
7 0.248 1.96 -1.96 -2.02
10 | 0.368 ‘ 2.92 50.00 49.94
2 0.254 ' 2.92 -2.92 ~2.96
5 0.111 1.28 ~1.28 -1.29
8 0.254 2.92 -2.92 ~-2.97
11 0.379 4;35 32.13 32.08

Sign convention given in Fig. 4.3.

TABLE 4.1 SHEAR DISTRIBUTION
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4}5.3 Results and Observations

The alternate technique was successtully applied to all the
structures described in Section 4.5.1. TFor all practical purposes;
the column shears calculated in this manner were found to be the same
as those computed by Eq. (4.1).

It has been observed that in a moment resisting frame.of
normal proportions, such as that shown in Fig. 4.4(a), the exact
second order horizontal forces aiffer only slightly from the corres-
ponding first order forces. Thus the first order horizontal forces
can bé safely used for the design of connections and floor diaphragms.
The horizontal force distribution for the second order forces can then
be avoided. However, if the fiétitious s;;;ey shears, V;, appear to
be relatively important ét some levels and if the column stiffnesses
differ significantly, the exact horizontal forces should be determined
at these levels.

Some discrepancies between the first and second order axial
loads in the columns adjacent to the fictitious bracing members are
observed in Fig. 4.5. The difference is explained by the presence of
the vertical components of the bracing member axial loads. These
forces are 2.2, 3.19, and 1.8 kips respectively for the first, second,
and third storeys of the structure. Although this effect has been
exaggerated in the example, it is still negligible, since the errors
account for less than one percent of the actual axial loads in the
colums.

As demonstrated in Fig. 4.2(b), the P-A shears in pin-
connected columns are not simulated by an approximate second order
analysis. They should therefore be distributed as described above

whenever the total storey shears are found significant.
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The axial loads in the actual bracing members of the trusses
shown in Fig. 4.4(b) and (¢) are not in error when an approximate
second order analysis is used. The exact distribution, in this case,
is predicted by the analysis and is a function of the relative stiffnesses
of the resisting elements at each storey. In this type of structure,
the fictitious bracing member should be placed in parallel with thé
actual bracing member in order to determine directly the amount of
shear to be distribpted among the columns.

The frame-shear-wall system of Fig. 4.4(d) exhibits the
same force distribution characteristics as the braced frame of

Fig. 4.4(b).



CHAPTER V

STABILITY INFLUENCE OF OUT-OF-PLUMBS

Very few studies have been conducted on the effects of
column and wall out~of—plumbs. North American data are virtually
non-existent but a few studies have been published in Europe (Sweden)
and in Russia, ‘where the influence of material and geometric imper-
fections has been investigated. It seems appropriate to review
the existing literature at this stage of the study in order to
introduce the many features peculiar to out-of-plumbs. In the first
three sections of this chapter, the basic design principles are
presented, a survey of column and wall erection tolerances is given,
and the degree of accuracy achieved in plumbing is discussed.

This information is useful to understand the final section, which
reviews the code recommendations of several countries on stability

and force transfer related to out~of~plumbs.

5.1 Basic Principles

It has long been recognized that columns and wall elements

(prefabricated or cast-in~place) are erected with unintentional

38
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deviétions from the vertical. Undesirable moments and horizontal
forces can result where out-of-plumb elements are subjected to vertical
loads.

Very few design codes adequately consider the stability of
tall buildings in view of the geometric imperfections of columns and
walls. In those design regulations which do consider the problem,

the effects of imperfections are considered principally in two different

ways(35):
1. The effect is assumed to be included among other uncertainties
and covered by the safety factor.
2. The effect of certain prescribed imperfections, such as

eccentricitigs or out-of-plumbs, is calculated and combined

with other actions by means of fictitious loads or added

eccentricities.

The two approaches above are generally used in combination
so that when a code prescribes a specific value for a geometric
imperfection, the value need not be representative of‘the imperfection
~itself. It may be that the prescribed value includes other uncertainties.
Moreover, it is possible that the effects of geometric imperfections,
such as member out~of-plumbs, cannot be correctly described by a simple
parameter due to the statistical nature of the imperfection.

Under the above circumstances, a comparison of the different
regulations must be performed with care. This 1s particularly true
when, for instance, regulations derived for precast concrete structures
are compared with equivalent regulations applied to steel structures.
The degreesof accuracy attained in the fabrication and erection of

steel and concrete members are remarkably different.
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In a design for the overall stability of a structure, all
load-bearing columns or walls are generally a§sém§§ktq legn”in
th?;S?T?WQ§EEEEEQQ;M§§M§PQWQ”in,Fig' 5.1(a). A similar critical
sitﬁation can be created for the dgsign of individual structural
components if the model assumed in Fig. 5.1(b) is used. The connections
and floor system at a specific level must be able to resist the hori-
zontal force resulting from accidental inclinations of the columné
above and below the flobr. The inclinations in the two storeys are
oriented so that the resulting forces add together.

On the basis of the models shown in Fig. 5.1, the calculations
reqﬁired to determine the forces produced by out-of-plumbs are simple
and generally conservative. For these reasons, such models have
formed the actual basis of several design prescriptions. It is
highly unlikely, however, that these idealistic ‘situations will occur
in practical structures. The random nature of the variable should

therefore be accounted for,

5.2 FErection Tolerances

In order to achieve a certain standard in construction, the
builders must comply with a set of specific erection tolerances.
These tolerances vary from code to code depending on a number of
factors.

The Canadian and American standards for steel construc-

., (7,36,33) . .
tion , for instance, recommend that all exterior columns of
multi-storey buildings be erected with ©n accuracy of 1 to 1000 but

not more than 1 inch towards nor 2 inches away from the building line

in the first 20 storeys plus 1/16 inch for cach additional storey up
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to:a maximum of 2 inches towards or 3 iuches away from the building
linef The columns adjacent to elevator shafts should also satisfy the
1 to 1000 limit but in addition should be out-of-plumb by no more than
1 inch in the first 20 storeys plus 1/32 inch for each additional
storey up to a maximum of 2 inches. All other columns are considered
plumb when the error does not exceed 1 to 500.

Tolerances for concrete columns and walls taken from four

37/ the Swedish SBN-825:21

different standards are given in Fig. 5.2
(Publ. No. 25) regulations are intended for precast columns, while the
Hus AMA~72 values shown are intended for both precast and casﬁ—insitu
coiumns and walls. The ACI (347-68) tolerances shown are valid for
cast-in situ work, while the British (BSI PD 6440) values are intended
for both cast-in situ and precast structures.

There is usually a difference between the actual dimensions
of an element and those specified. This difference is frequently much
larger than anticipated(38). For example, two studies carried out
within the past nine years, one in Britain and one in Denmark, showed
that with precast concrete units, the actual deviations in dimensions
could be as large as two to three times the tolerances specified. It
is dssumed that the deviations occurred despite serious efforts to
minimize. inaccuracies. This same observation could be applied to the
actual out-of-plumbs of steel columns and concrete walls.

In general, the standard of accuracy thought to be attainable
in building construction appears to be much higher than that actually
attained in practice(BB). Such a statement implies the need for designers,

specification writers, and constructors to be more realistic about

the situation. Designers may have to accept the present standard of
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inaccuracy as a '"fact of life" and design all facets of the building
in such a way that errors can be accommodated.

Specification writers as well, should not call for unneces-
sarily tight tolerances. This practice could lead to an excessive
number of rejectipns or to protracted arguments. From the viewpoint
of economy, it is often advantageous to specify the largest tolerance
which satisfies the structural, construction, functional, and esthetic
requirements. 1If the tolerance limits are too loose, these performance
criteria will not be fulfilled. On the otherlhand, if the tolerance
limits are too tight, the cost will increase. Iﬁ the extreme case it
may be physically impossible to satisfy the limits.

Finally constructors should reexamine their present pfactices

with a view to minimizing inaccuracies.

5.3 Accuracy in Plumbing

- Ref. 38 contains a review of the actual methods of plumbing
the columns in a structure and discusses the degree of accuracy
obiainable with each method. The methods depend upon the height
involved and the degree of exposure to wind.

Heavy plumb-bobs are used for heights up to 10 ft. Special
precautions, such as immersion of the bob in a liquid and protection
of the line against wind, are taken for heights up to 30 ft. The
accuracy of this method is thought to be *1/8" in 10 ft. For greater
heights, transits are generally used in plumbing by setting up the
instrument away from the element to be piumbed and elevating the
telescope to sweep the full height of the element. The accuracy

attained is *1/8" in 100 ft. A greater accuracy (*1/6 in 100 ft.)
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could be attained with special vptical piumbing devices.
in practice, however, the metinod used and the precision
obtained in plumbing determine only partially the final degree of
plumbness of the members. Rei. 39 illustrates this fact by attri-
buting the deviations from plumb to four causes:
1. Deviations in the horizontal placement of the columns.
2. Deviations in the lengths of the beams spanning between the
columns.
3. - Errors in measurement techniques.
4. The assembly procedure, where work at later stages of assembly
disturbs columns which have previouély been adjusted to their
"final" positions.
To this list might be added the initial crookedness of thé columns
themselves, as well as the adequacy of the hardware used for holding
the elements in position during assembly. Any corrections after the
crection stage described in item 4 are either impractical or, if
applied, could weaken the structure.
A study of differences in the out-of-plumbs of precast Qéll
panels during four stages of construction has been reported in Ref. 53.

The dispersion of the measurements was as follows:

Stage Description ‘ Standard Deviations*
1 Elements placed by crane 0.0050
2 Element position after plumbing 0.0011
3 Elements fixed in pesition with mortar 0.0014

Element position after floor slab above

has been placed 0.0016

\

* Appendix A gives a brief discnssion of the standard deviation and
cther essential statistical concepts.
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A similar observation has been reported in Chag;er 2 of Réf. 41 as
applied to steel structures: "It should be recognized that the diéplace—
ments of the structural steel frame change during the erection. That
1is, the displacements of a lowet storey are considerably affected

by the subsequent erection of storeys above it. Therefore, it is
important that the‘geometrical imperfections should be referred to

the finished structure, after including heavy floors, vertical

panels, etc."

5.4 Design Recommendations

The design recommendations for stability of structures
presented in this section are those directly related to structural

out-of-plumbs. Other stability considerations are not mentioned.

5.4.1 European Recommendations (European Convention for

Constructional Steelwork)
(40,41,42)

The ECCS maintains that for the columns in a
multi-storey frame to be considered braced, the bracing system should

be adequately designed to resist the direct effect of the factored hori-
zontal loads, plus the full destabilizing (P-A) effect of the factored
gravity loads acting on the swayed structure, plus the effects of an
assumed out-of-plumb equal to 1/200 of the height of each storey or of
the structure as a whole. The latter requirement refers to an extra set
of horizontal forces derived from a deformed structure such as that

shown in Fig. 5.1(a), where all columns lean in the same direction at

an angle of 0.005 Rad. The recommendations do not mention any specific
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requirements for the transfer of forces due to out-of-plumbs among the

resisting elements.

5.4.2 Canadian Recommendations

(7

The Canadian Standard 516-1969 contains specifications

" for the stabilization of individual columns but does not consider the
overall stability of the structure. It is specified that columns .
shall be braced in ordef to develop their full load carrying capacity.
The bracing must be proportioned to resist at least 2 percent of the
axial load in the column at the brace location unless a suitable
analysis is carried out to determine the appropriate strength and

(43)

stiffness of the bracing members The rigidity is assumed to be
sufficient if the strength requirements are met, but braces must be
securely anchoyed. For example, braces éhould not be attached to a
structure equivalent to that being braced unless the whole assemblage
is trussed in order to prevent concurrent-buckling(43).

The "2 percent rule" is also widely used in the United States.
This provision is based primarily on the results of the investigation
described in Ref. 44. The study assumed that the member to be stabilized
was an axially loaded column, two storeys in height, having an initial
crookedness of h/500 at mid-height, as shown in Fig. 5.3.

Under the assumption that an additional deflection equal to
the initial éut—of~plumb would occur as thebcolumn approaches the buckling
load, the étiffness of the supporting structure required to force the
column to buckle with a node point at the mid-height support was

determined and the equivalent support force computed. The lateral force

is approximately 2 percent of the axial force in the column. The North



48

P = Column axial load
K = Spring stiffness
F = Support force

Figure 5.3 Model for computation of bracing force
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American specifications for column bracing are then essentially based
on buckling considerations.

In view of the severity of the aésumprions involved, the
requirements have been relaxed somewhat in the recent standard S516.1~

1974 30)

to provide the designer with a more flexible approach based

on the maximum prescribed erection tolerances for columns. The bracing
requirement has thus been reduced from 1/50 of the column axial load
(2%) to either 2/1000 or 2/500, depending on the erection tolerance.

Ref. 36 also contains recommendations for overall structural
stability and design of floor diaphragms. It is stated that the sway
cffects produced by the vertical loads acting on the displaced structure
(second order effects) should not be less than those produced by the
vertical loads acting on the structure assumed displaced an amount equal
to the maximum out-of-plumbness consistent with the specified erecﬁion
tolerances(23’34). In other words, the structure must at least be
stabilized against a set of lateral loads computed from the model shown
in Fig. 5.1(a) inclined with a constant slope of 0.002 (1/500) Rad.

The deflected configuration of Fig. 5.1(b),in which the
column slopes are in opposite directions in adjacent storeys, mayA
produce local effects at a given floor level which govern the design of
beam-to-column connections, diaphragms and other elements(23). The
girders and their connections must be capable of transferring the
forces due to the column out-of-plumbs, along with the applied lateral
loads, to the bracing syétems. The provision does not clearly specify
whéther the second order (P-A) forces are considered to be included by

this procedure or must be transferred in addition to the two forces

mentioned above.



>0

5.4.3 British Recommendations

According to the British Standard Code of Practice(46)
(Addendum No. 1 1970 to CP 116) which relates té structures utilizing
précast load-bearing wall panels not less than a single-gtorey in
_height, both the local and general effects of the out-of-plumbs must be
téken into account in design. The code requires that, in the absence
of firm data, an allowance of 0.4/m (in.) at the top of a building
should be made for the calculation of the forces, where m is the number

of storeys in the building.

5.4.4 West German Recommendations

In the analysis of buildings according to the 1971 West German

(28,47)

code for reinforced concrete, DIN 1045 , the designer must consider

the global stability effects caused by horizontal loads, eccentric
gravity loads, and unintentional eccentricities of the vertical loads.

The latter are computed assuming an unintentional inclination of all

(34).,

vertical elements equal to

A 1
2 - s -L - (5.1)
55/ ht (in feet)
where ht = the total height of the building.

The individual floors must also be able to resist a horizontal force

resulting from accidental inclinations of the columns above and below

the floor of:

A
7? S L | (5.2)
110V 1 (in feet)
avg
where h = the average of the two storey heights.

avg
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Toe inclinacions in the two storeys are to be oriented so that the
resulting torees add rather than subtract (as per Fig. 5.1(h)).

The Germans; in fact, have adopted the concept described
in Fig. 5.1 but have introduced a new element in the form of a variable
which decreases the magnitude of the deflected slope in a non-linear

manner as the height of the structure increases.

5.4.5 Russian Recommendations

Since the Russian Standards were not directly available for
examination, some of the concepts in use in that country have been
e:tracted from selected publications(20’48’49).

The Russian designers are conscious of the fact that signi-
ficant forces from different second order sources are present in
structures and should be considered in design. They recommend, for
instance, that the horizontal forces due to column out-of-plumbs,
column eccentricities, inaccuracies of manufacturing, etc., be computed
and combined statistically. The resulting forces should in turn be
transmitted by the floor diaphragms to the bracing system to ensure
column stability.

Actual measurements of column deviations from the vertical
during erection in a number of structures built in Moscow between 1965
and 1970 reveal that forces due to column out-of-plumbs may be determined

(2
Ly(wo):

F = Pe (5.3)
where P = axial load on the column
¢ = total change in slope between two columns at their

intersection.
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A statistical analysis, based on measurements made on

skeletal-type concrete structures, predicts that an equivalent inclina-

tion for a group of n connected columns can be obtained by(so):

e - 1 (5.4)

The angle €1 in this expression is defined as the maximum inclination
of an individual element and is taken as three times the standard
deviation obtained from the field data. The prescribed value for
81(50) is 0.012 and has been criticized in Ref. 48 as being too large
and reflecting an insufficient standard of construction. However, the
significance of Eq. (5.4) has been confirmed in Ref. 48 from an
6bservation of 20,000 field measurements on prefabricated multi~storey
skeletal buildings.

In addition, an investigation of the forces created by n
ou;—of—plumb columns on the two structural models shown in Fig. 5.4

(48)

has shown the existence of a variable safety index The simple

.model of Fig. 5.4(a) represents the braced section of a floor diaphragnm
which is in turn restrained against lateral movement at its extremities.
Fig. 5.4(b) shows the same structure restrained at only one end. In
both cases, the slabs are loaded by seven concentrated forces at the
location of the transverse bents. Each of these bents contains 4vcolumns
for a total of 28 for the entire building.

The bending moment and shear force diagrams obtained from
field measurements are indicated by the shaded areas in Figs. 5.4(c) and

@) respectively. These diagrams are compared in the same figures with
the corresponding diagrams where the forces are calculatéd from the

expression F = 486/3 n derived from Eqs. (5.3) and (5.4). 1In this
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7

(c)

goP
!— T e .
3 n
If, 1<n<7,then, B=30 3on
if, 7€ n <28 then,3.0=p=1.7
1f,  n>28, then, B< 1.7 (d)

F = Force ' o ‘ |

6 = Safety Index

o = Standard deviation

P = Axial load in column
n = Number -of columns

(e)

Figure 5.4 Variable safety index
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expression, the numeral 4 represents the 4 unit loads from the 4 éolumns,
B is a variable safety index, 0 is the standard deviation of the measured
out~-of-plumbs (el = Bd), and n is the total number of columms in the
strﬁctﬁre. For the specific example shown in Fig. 5.4(a), the results
obtained from the field data are best approximated by the curve corres-
ponding’to 8628 with B = 1.7.

From this investigation it has been concluded that for
1<n<7, 8=3.0, for 7 < n < 28, B varies, and for n > 28, B < 1.7.
These results are tabulated in Fig. 5.4(e). |

An observation of the results of 70 such analyses has shown
that the use of the variable safety index described above gives for
the shears and moments an acceptable probability of not being exceeded
in the order of 97 to 99 percent. It will be dempnstrated in the
féllowing chapters that the safety index can be held constant and serve

the same purpose when other variables are considered.

5.4.6 Swedish Recommendations

)(46), hinged

In the Swedish concrete regulations (B7-1968
columns are assumed to be 0.7 percent (0.007) out—of-plumb. The
structural members serving as bracing (e.g. connections and floor
diaphragms) must be designed to resist horizontal forces taken as 0.7
percent of the axial forces on the columns.

In the study of the global stability of a structure, however,
the total horizontal force acting on the bracing structure is calculated
with the columns in one bent inclined at 0.7 percent and the columns

in the other bents at 0.35 percent. Thus, for a large number of bents,

the average inclination will approach 0.35 percent. This is to account
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for the probabilistic nature of the forces. The quantities 0.0035 and 0.0070
are, by definition, the initial slopes of the structure of Fig. 5.1(a).

For a design based on the imperfections specified by the
regulations, the imperfections should be considered to cause forces
which act in the most dangerous manner on the structure. 1In a
laterally braced building, for example,a configuration of interest for
the design of the slabs is that in which the floor systems deflect
alternately in opposite directions so that the cblumns form a zigzag
line (Fig. 5.1(b)).

The proposed supplement to sectionm 21 of the Swedish Building

(51)

" Regulations contains another set of design provisions written
specifically to account for the horizontal forces resulting from the
inélinatidn of vertical load bearing elements. The basic content of
this supplément is summarized in Fig. 5.5. Provisions are made for:
1. Forces at connections between floor diaphragms and vertical

elements (Fig. 5.5(a)).

PR
F = 0.017 P (5.6)

2. Forces in floor diaphragms at a specified level i (Fig. 5.5(b)).

' 0.024 P
F = ’Y(__.Q.Z__...__

. + 0.003 p) (5.7)
v 2ni
3. Equivalent horizontal loads on the entire structure
(Fig. 5.5(c)).
0.8
Ft = 0.015 yp(0.2 + ———) (5.8)
i m,n,
i1
where i = storey index
Y = factor accounting for tolerance requirements and degree

of control.
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P = total load on a vertical load bearing element.
p = load contribution in a vertical load-bearing element
from the floor above only
m, = total number of storeys above floor level i
n, = total number of load-bearing elements at storey i

It is intended that the loads F, Fi’ and Fti should be
combined with other anticipated loads, but not with each other.

Based on field measurements, a maximum inqlinétion of 0.015
was assumed for individual elements; 20 percent of this maximum value
was taken as a systematic variation and 80 percent was assumed to be’
random. Statistical results of measurements given in the next chapter
indicate that the assumed maximum variation is within the observed
values of the mean plus three standard deviations. Assuming a normal
distribution for the random variations, the value of the inclination was
taken to decrease (with a given probability of being exceeded) with the
square root of the total number of load-bearing elements, /”E;E;”.

The use of the factor Yy recognizes the fact that the
specification of tolerances combined with satisfactory control measures
can serve to improve workmanship and reduce the variations encountered.
For normally specified tolerances, Y is taken as 1.0, but it can be
reduced according to the expression:

0.0075 + Ad/h

Y o= 0.015 (5.9

where Ad/h is the maximum permissible deviation over the height of
the load-bearing elements. The value of Ad/h must be specified in the
construction drawings and assembly of the structure must be performed

under adequate control, so that the permissible deviation is not
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exceeded. The expression tor y is bascd on the assumption. that only

50 percent of the maximum deviation can be adjusted during assembly.
Ref. 52 gives the following expression for the horizontal

" force resuiting from the inclination of vertical load-bearing elements

in large panel'systéms:

b 0.5 p |
He = %50 W+ = 0 ) (5.10)
where He = equivalent uniformly distributedyload'acting over the

entire area of the external walls (kg/m?)

b = width of the building (m)

W = weight per cubic meter of the structure including
partitions

p = superimposea lbad on a typical floor (kg/mZi'

h = storey height (m)

The derivation of this expression is based on an allowable inclination
of 10 mm (0.4 in) per storey height, which is considered valid under
average assembly conditions. The value of He ié‘combined with the

wind load to calculate the horiZontal load trénsferred to the stiffening

walls.

5.5‘ Conclusions

The requirements of several design standards, which attempt
to account for instabiiity problems due to column and wall out-of-
plumbs, have been presented in this chapter. Most of the requirements
are simple in application; others are sllghtlybmore involved. Two

important conclusions are derived from this study:
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1. A statistical analysis is required to correctly represent
the actual problem.

2. Only consistently planned field measurements should serve
as the basis for the defivation of design equations.

These two observations will guide the course of this research program,

i




CHAPTER VI

MEASUREMENTS OF OUT-OF-PLUMBS

In the first pa:t of this chapter the results Qf measurements
on column and wall out-of-plumbs available in the published literature
are‘presented. Tﬁe second part introduces a program initiated for the
purpose,of this studyv to record out-of-plumb measurements on buildings
_under construction. Two tall core-braced buildings and one industrial
building were invéstigated. The results obtained on steel column

segments and cast-in situ concrete walls are presented and discussed.

6.1 Reported Measurements

~ The publishéd measurements refer mainly to precast concrete
structures. The results obtained from precast concrete éolumns can,
with a certain reserve, be compared with those obtained from measure-
meﬁts on steel columns. The order of magnitude of the out—of-plumbs
vand’other characteristics differ but several aspects are common to both.

Reéults of measurements on the state of plumbness of precaét

column eieﬁents and precast walls are presented in Tables 6.1 and 6.2
.reépectively. Both tables have been extracted from Ref. 37 where the
authors; original references are listed. Since the measurements were
taken on elements of different heights, the results are shown as two
values where possible. The first value represents the total relative
lateral displacement while the second (in brackets) expresses the

displacement per unit height. The initial displacement is defined as

60
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References Type of Walls Number of Arithmetic* Standard*
' and Locations Meagurements Mean Deviation
Suu** h o= 100" 117 - - 0.2 [2.5]
(Sweden)
Van den Berg . Facade Llement
(Sweden) (2 Measurements per 670 - 0.04 [0.4] 0.14 [1.3]
Element) :
h = 104"
Kiingberg Apartment Bldg. - - - - 1.6}
(Sweden) Hospital - - - - {1.s5]
Butler Cross Wall Elements !
(Britain) h'= 96" l
Block § !
Ground Storey 24 0.00 {o0.0] 0.11 [1.1]
First Storey 24 0.02 [0.2] 0.15 [1.7]
Second Storey 24 0.02 [0.2] 0.14 {1.5]
Third Storey 24 0.04 lo.4]- 0.09 [1.0]
Block T
Ground Storey 24 0.02 [o0.2] 0.19 [2.0]
First Storey 24 -0.03 [0.3] 0.19 [2.0]
Second Storey 24 0.02 [0.2] 0.21 [2.3]
Third Storey 24 0.03 [0.3] 0.12 [1.3]
Longitudinal Wall
Elements h = 98"
Block P
Ground Storey 24 0.04 [0.4) 0.13 [1.4]
First Storey 23 0.04 [0.5] 0.14 [1.5]
Second Storey 24 0.01 {0.1} 0.22 [2.3]
Third Storey 24 0.09 [0.9] 0.18 [1.9]
; External Wall
t Flement h = 96"
Fivst Storey 19 0.03 (0.3} 0.11 [1.2]
Second Storey 15 0.08 (0.8} 0.21 [2.2]
Third Storey 20 -0.07 [0.7] 0.17 [1.8]
Fourth Storey 15 -0.04 [0.4] 0.13 [1.3]
A il vdaes are given in inches cxcept those in brackets which

ave piven o kad. x 107,

** Abnolate values,

TABLE 6.2

OUT~-OF~PLUMBS MEASURED ON PRECAST CONCRETE WALLS
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the horizontal distance between a vertical line passing through the
base and the top of the element, as shown in Fig. 2.2.

Suu, in Table 6.2, did not consider the direction of thé
inclination of the elements, that is, only the absolute values of the
out-of-plumbs were recorded. The mean was not given.

P

Systematic variations in the out-of-plumbness of the élements,
that is, mean values diéferent from zero, indicate the tendency of
the elements to lean in the same direction. In studying the out-of~-
plumb variations of various elements it is preferable to specify
the direétion of the inclinations so that any possible systematic
variations can be observed. It is not necessarily exact to assume
that the measurements are symmetric about zero. The signs of the mean .
values in Tables 6.1 and 6.2 are given to indicate that the direction
of the inclinations was reported.

A study of initial deviations of precast reinforced concrete
columns in fifteen'industrial buildings located in southern Sweden is
presented in Ref. 56. Some of the buildings were completed while
others were under construction. The column lengths varied from 118
to 550 in. The deviations of the top of the columns from a plumb
line passing through their base was measured in two pérpendicular
directions.using>photogrammetric techniques.. The results are
summarized in the histogram of Fig. 6.1. All deviations were taken
as positive.

Out-of-plumb measurements on a multistorey braced steel
frame are given in chapter 2 of Ref. 41. The measurements were presented
in the‘form of histograms for longitudinal and transverse displacements

at specific storeys of the building. The calculated standard
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Figure 6.1 »Out-of—plumbs observed on precaét concrete columns (Ref. 56)
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deviations varied from 0.12 in. to 0.43 in., primarily because of
the small number of observations recorded. A significant portion of"

the data was found to exceed the prescribed erection tolerances.

The processing of more than 20,000 field measurements on
precast concrete columns in Russia resulted in a reduced angle* of
0.0047 Rad. fpr columh out—of—plumbs(ag). The population was found
to bebnbrmally distributed and to follow the predictions of Eq. (5.4).
Results of measurements on precast concrete columns are also pfesented
in Ref. 49 but the interpretation of the data is confusing.

The columns in three different reinforced concrete buildings
in the United States of America were measured to determine the
characteristics of the column ouf—of—plumbs(57). The purpose of this
investigation was to analyze the effect of such variations on the
unintentional eccentricity of loading for reinforced concrete columns.
An interpretation of the published results was required to derive the
values listed in Table 6.3. In the investigation, only the absolute
values of the variations were recorded.

It can be concluded from these surveys that the out-of-
plumb population generally follows a normal distribution and that the
orientation of the deviations is an important factor. When the
orientation of the deviations is accounted for, the mean of the

population has a tendency to be small and the standard deviation

ranges between 0.001 and 0.003 Rad.

% The exact nature of this variable is not well defined in
the original Russian publication.



Number of

Building Mean* Standard*
No. Measurements Deviation
(Rad.) (Rad.)
1 104 0.00274 0.00277
IT 36 0.00216 0.001
11T 106 0.00233 0.00152

* Absolute Values

TABLE 6.3

CONCRETE COLUMNS (REF. 57)

OUT-OF-PLUMBS MEASURED ON REINFORCED

66
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6.2 Buildings Investigated

A total of three buildings were investigated for the purpose
of defining the statistical characteristics éssociated with the
out-of-plumbs of steel columns and concrete walls.

Buildings A and B are tall core-braced buildings while
building C is a large industrial building  The results obtained in the
latter are used to verify if the’column out—of-plumb distributions and
statistical characteristics observed on core~braced buildings pertain
only to this type of structure.

The cross—section and dimensions of building A, a 27-storey
core-braced structure, are given in Fig. 6.2. The structure is
bisymmetrical and has a’central concrete core and 16 steel columns per
storey up to level number 14. The core width is reduced and two mofe
columns are added from this level to the roof. The storey heights are
uniform at 12 ft. with the exception of the first and last storeys
which are 20 ft. high. All connections are simple and are assumed
hinged. The composite floor system consists of steel beams, steel floor
deck, and concrete topping.

The layout of the 34-storey building B is given in Fig. 6.3.
The structure is non-symmetrical and has a rectangular core consisting
of nine orthogonal walls. The cross-section of the core is reduced
at storey No. 20 where wall No. 3 is removed. Storey heights and
column locations are given in Fig. 6.3. The connections are considered
to be hinged and the floor system has the same characteristics as the

floor system of building A.
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6.3 Method of Measurement

6.3.1 Column Measurements

The values of interest in this study are the deviationsvof
the columns from the vertical, after the/structure has been
completed A column does not take its final position until the
surrounding structure is definitely fixed in place. A reading taken
immediately after plumbing is thus meaningless.’ Since measurements
of the columns in their final positions are not generally recorded by
construction companies, additlonal measurements were taken by the
research staff For the structures under 1nvestigation, the out-of-
plumbs were measured during bullding erection after the columns had
been plumbed but before fireproofing had been applied. At this stage,
the structures were nearly complete and most of the dead load of the
building was in place.

In the case of building A, some measurements taken by the
surveyor on the construction site were used since they were taken with
a transit after the columns hao been bolted into place.

| A frame together with a string and a plumb bob was used to
measure the column out~ofjplumbs. The frame, shown in Fig. 6.4,
consists of a main mast wlth rigid arms at the top and bottom ends.
The plumb bob string is attached:to the upper arm while the bottom arm
supports a scale. The distance from the steel point on the upper atm‘
to the plumb bob string 1s exactly equal to the distance from the
steel point on the lower arm to the center of the scale. Since wind
does affect the readings, an aluminium wind guard was added to eliminate

this effect.
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The rod is placed against the column and the resulting out-
of-plumb is read directly off the scale (Fig. 6.4(b)). For wide flange
columns, the rod is held at the web centerline for the reading in one
direcfion and on the outside of the flange-to-web junction for the
second reading, when possible. These precautions are taken in order
to avoid the measurement of initial twists or other member defects
not associatéd with column out-of-plumbs. To avoid the measufement
of initial column curvature, the rod is extended to the full length

]

of the column, if possible.

6.3.2 Core-Wall Measurements

The instrument described above was also used to measure
the deviations of core~walls from plumg. Since a wall is not uniformly
out-of-plumb at every section, several measurements must be taken at
regular intervals along the wall. The out-of-plumb of the wall is

then. defined by the average of these values.

6.4 Results of Measurements

6.4.1 Column Qut-of-Plumbs

Two measurements were taken on each column along the x and y
axes, oriented as shown in Figs. 6.2 and 6.3. By definition, a value
is pésitive when the top of a column leans in the positive direction
of the axis. for statistical purposes, it is convenient to use the
non-dimensional form Ao/h to describe the out-of-plumbs. In this
mannef, column segments of different heights can be considered
together.

It is not realistic to present the measurements taken on

each column individually. The amount of data is too large and the analysis
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of individual variables has no significance. As an example, the
results of measurements taken on the columns in the top four storeys
of building A are given in Table 6.4. The magnitude and sign of

the results reflect the random nature of the geomegric imperfection.
. ! !

The means and standard deviations estimated from Eqs.

(A-14) and (A-16) 'of Appendix A were calculated for buildings A and B
in two orthogonal directions at each storey. These quantities,
obtained from less than 30 measurements at a time; are meaningless

for the present purposes. The absolute values of the means were found
to vary between 0.0001 and 0.0018 Rad. and the étandard deviations
between 0.00065 and 0.0025 Rad.

The probability densities* for the sample population of
column out-of-plumbs from building A are given in Table 6.5. The
frequency, fi, defined as the number of results falling in an interval
i, is given separately for the measurements in the x and y directions
and then for the total population. The resulting histograms can be
normalized by dividing the number of elements in a given interval by
the product of the total number of elements, n, and the width of the
interval, w. The frequency is then expressed as a percentage per
unit length and the area of each histograh is 1 or 100 percent,

The results of Table 6;5 for the total 916 measurements are
plotted in Fig. 6.5. The distribution has a mean, Zb/h, of )

-0.44 x 10™"* Rad. and a standard deviation, Gc, of 0.162 x 10™% Rad.

In this case, 13 percent of the measured out-of-plumbs exceed the

* Defined in Appendix A.
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FOR BUILDING A

Class fi 'fi/n'w

Delimitations ,

(x 10° Rad.) x Axis y Axis Total Total
~7.5 to -6.5 1 1 2 2.2
-6.5 to -5.5 0 1 1 1.1
~5.5 to -4.5 2 1 3 3.3

~4.5 to =3.5 2 3 5 5.5
-3.5 to -2.5 18 24 42 45.9
-2.5 to ~1.5 50 40 90 98.3

~1.5 to =0.5 98 100 198 216.,2

-0.5 to 0.5 144 144 288 314.4
0.5 to 1.5 77 77 154 168.1
1.5 to 2.5 35 30 65 71.0
2.5 to 3.5 19 31 50 54.6
3.5 to 4.5 8 5 13 14.2
4.5 to 5.5 2 0 2 2.2
5.5 to 6.5 2 1 3 3.3
6.5 to 7.5 0 0 0 0.0

Total 458 458 n=916

fi = frequency

w. = class width = 0.001 Rad.

n = sample dlmen51on (total number of measurements)
TABLE 6.5 FREQUENCY FUNCTION OF COLUMN OUT-QF-PLUMBS




75

V ONIQTING NI SERNTd-I0-100 NRNI0D GH¥NSYAW

%9 ATAVL

v xTpusddy ur paur3aqd

65T 80° T 09°T 8" 1 68°0 161 80 €0° T ¥ o
. U.ﬁmum
<10 2T 1- 80°0 05" 0- 16°0- €1°0 1 0- 2070 uesR
00°1- 00°2- 00°1- 00°2 € 1- 00°T 00" 1- 0070 8T
00°0 05 T- 00°1 00°2 L 0- 19°7 05 1- 00°2 LT
061 18°0- 00°2 09°2- 8570 00°0 05" 0- 09°2 9T
00°2 [8°0- 00°0 Lvg- 00°0 [8°0 | 00°0 00°0 ¢
= yL T- 8°0 00°0 18°0- 18°0- 26" 0- no" T v
v T 05 0- 1870 00°T- 00°0 ce'T- | z5'0- 00" 1- €1
18°0- 00°0 18°0- 00°1- 18°0- € 1- 70" T 00°T- 71
v T 00°T- w1 T- 00" 1- 00°0 €e"T- 96" 1 00" 1- T
00°0 00" 1- 09°2 05" 1- vl T- 00°2- 00°0 05" T- 0T
s 18°0- 18°0- 09°2- [8°0 18°0 70" 1 00°0 6
00°0 00°0 00" T- vl T- 26°0- 00°0 0570~ | 0" T- 8
050 180~ 050 1870 80" 1 vt 00°T 00°0 L
[9°€ 09°2- nLT- 18°0- 18°0- 09°2 2670 2670 9
00°0 06°T- vt T 05 0 w1 T- 0°0 70" - <z 0- ¢
09°2 00°1- 18°0- 05 1- vl T- 4G 0- 2670 <z°0 .
18°0- 05°0 v g- 05 0- 18°0 50" 0- 75" 0- <70 €
00°0 00°0 180 00°1- [8°0- 26°0- 26°0- 05" 0- z
09°2- g Y- 09°¢ ve'y 18°0- 1870 50" T- 60" 0 1
sTXV £ SIXY X sIXy 4 SIXV X sTxy £ STXY X sTXy & STXY X "ON
o5 <7 Y 17 uwnTo)
*ON 4A21038
i
- NUWMM mOH X NWWI uM@ESH&IMOlUﬁ,O ngOU

v




76

FOR BUILDING A

Class fi fi/nw
Delimitations
(x 103 Rad.) x Axis y Axis Total Total
-7.5 to -6.5 1 1 2 2.2
-6.5 to -5.5 0 1 1 1.1
~5.5 to -4.5 2 1 3 3.3
«4.5 to =3.5 2 3 5 5.5
-3.5 to ~2.5 18 24 42 45.9
-2.5 to ~1.5 50 40 90 98.3
~1.5 to -0.5 98 100 198 216.2
-0.5 to - 0.5 144 144 288 314.4
0.5 to 1.5 77 77 154 168.1
1.5 to 2.5 35 30 65 71.0
2.5 to 3.5 19 31 50 54.6
3.5 to 4.5 8 5 13 14.2
4.5 to 5.5 2 0 2 2.2
5.5 to 6.5 2 1 3 3.3
6.5 to 7.5 0 0 0 0.0
Total 458 458 n=916
fi = frequency
w = class width = 0.001 Rad.
n = sample dimension (total number of measurements)
TABLE 6.5 FREQUENCY FUNCTION OF COLUMN OUT-OF-PLUMBS
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preséribed tolerance of 1/500. The result was expected. Superimposed
on the histogram is the normal distribution* calculated from the given
meén and standard deviation. The area under both the histogram and the
normal curve is unity. A comparison of the two graphs indicates that
the out-of-plumb population can effectively be assumed normally
distributed.

Two more quantities characterize avdistribution,, As described
vin Appendix A, the skewness and the peakedness (kurtosis) of a distri—b
bution are defined by non~dimensional quantities. For the dist;ibption
of Fig. 6.5, the skewness factor is +0.14 indicating that the distri-
bﬁtion~is slightly skewed to the right. The kurtosis factor is 4.9,
indicating a distribution more peaked thania perfectknormal disﬁri-
bution with a kurtosis factor of 3.0.

Similar histograms aré given in Figs. 6.6 through 6.8 showing
the distributions of column out;of—plﬁmbs measured in buildings B, A
and B combined, and C. All populations are approximately’normally
distributed. The characteristics are quite similar in all cases and
are summarized in Table 6.6. The standard deviations given in Table
6.6 are comparable with those of Tables 6.1 and 6.2.

The probability densities of the absolute values of the
measurements for buildings A, B, A and B combined, and C are given in
Eigs. 6.9 through 6.12. The negative part of the normal distributions
of Figs. 6.5 to 6.8 is literally folded over and added to the positive
part. The distribution that results when the mean is zero or
reiatively close to zero is called a "half—normal" distribution. A

description of the half-normal distributio. is given in Appendix A.

* Definition given in Appendix A.
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Figure 6.9 Distribution of absolute values of column out-of-plumbs for
building A
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The corresponding statistical characteristics are listed
in Table 6.6. In this table, the values of the mean and standard
deviation are always positive and of the same order of magnitude,with
a resulting coefficient of variation (standard deviation/mean)
slightly lower than unity. The standard deviations of the half-normal
disﬁribﬁtions are 47 percent lower than the standard deviations of the
corresponding normal distributions. The measure of kurtosis, in the
order 6f 6.5, indicates that the half-normal distribution approaches

the exponential distribution characterized by a factor of 9.0.

6.4.2 Wall Out-of-Plumbs

In a manner similar to the column deviations, the wall out-
of-plumbs are conveniently expressed in the non—dimensiqnal form Ao/h,
where AO is the horizontal deviation of the top of the wall from a
plumb line passing through the base of the wall-and h is the-height
of the wall.

Several measurements are needed to define the out;of—plumb
ot a wall, A minimum of four measurements were takep at regulaf
intervalé along the walls. In some cases, up to 15 measﬁrements'were
necessary to define the out-of-plumbs of long walls. As an example;

- the values and locations of measurements taken at three adjacent storeys
in'buiiding A are given in Fig. 6.13. The sign convention adopted is
the same as that used for columns, that is, a value 1is positive when
the top of a wall leans in the positive direction of the axis.

The measurements taken on a cast-in-place reinforced
concrete wall are not totally independent of each other. 'This
observation is based on the fact that a wall is being cast in a contin-

uous form and that the chance of measuring large out of plumb variations
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Wall Out-of-Plumbs: Ag/h (X103 Rad.)

Figure 6.13 Typical core-wall measurements on building A
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within a short distance along the wall is remote. The average out-of-
plumb value of each individual wall tﬁerefore is used in statistical
manipulatibns. This, in turn, implies that the deviations of the
indiﬁidual walls forming a core are independeﬁt of each other, which
is a reasonable assumption.

Two out-of-plumb values are used to characterize a wall.

One is measured in the direction "perpendicular" to the plane of the
wall and is the average oﬁt—of~plumb discussed above. The second is
measured in the direction '"parallel"” to the plane of the wall and is
’ﬁhe average of the measurements taken at the two extremities. According
to this definition, the parallel out-of-plumb for wall No. 1 at storey 7
in Fig. 6.13 is (0.0026 + o')/z = 0.0013 Rad.

The average perpendicular and parallel wall out—of-plumbs,
as defined above, are given in Tables 6.7 through 6.10 for buildings
A and B. The measurements for building B were taken by the research
ﬁéam'but those for building A were supplied by the surveyor on the job
site. The results for the 5 storeys above level 22 in the latter were.
not available.

The perpendicular and parallel out-of~plumbs are plotted
separately on Figs. 6.14 through 6.19 for building A, B, and A and B
combined. The type of graph used is the same as for the column data.
Once again, each discrete distribution can be fitted by a normal
distribution.

The characteristics of each statistical distribution are
summarized in Table 6.11. The standard deviation can be taken as
0.0028 Rad. for both parallel and perpendicular out-of-plumbs. For

all practical purposes, a common mean value of 0.00028 Rad. can be



Out-of-Plumbs : x 10° Rad.

Storey Wall No.*
1 2 3 4
22 1.95 1.02 12.37 -4.,20
21 2.86 1.48 1.56 -1.54
20 ~-0.87 -0.87 0.69 0.72
19 2.60 -1.74 ~-1.74 5.79
18 0.12 2.11 5.64 0.00
17 ~5.82 - -6.57 -0.87 -0.93
16 2.93 -0.11 8.25 0.87
15 0.00 -0.22 3.91 -3.69
14 5.32 3.26 ~4.,12 -1.09
13 -1.20 ~-0.98 -0.22 1.95
12 -2.50 -1.52 ~-2.60 -2.60
11 0.87 2.17 3.47 0.87
10 ~-1.85 -0.98 2.17 0.22
9 0.43 0.87 -4.56 -1.95
8 2.93 ~0.22 5.43 0.43
7 -0.98 0.55 1.74 -2.17
6 0.14 -0.43 0.68 ~-0.65
5 2.92 0.36 -1.76 ~0.54
4 -4.,17 0.55 1.91 6.95
3 0.31 -0.28 1.74 -2.08
2 3.27 0.40 2.17 - =3.76
1 -4.,40 1.45 3.76 2.89

* Wall numbering given in Fig. 6.2.

TABLE 6.7 PERPENDICULAR WALL OUT-OF-PLUMBS FOR

BUILDING A




TABLE 6.8

PARALLEL WALL OUT-OF-PLUMBS FOR

BUILDING

A

Qut—of~Plumbs : X 10% Rad.

Wall No.*

Storey 1 2 3 4
22 -11.28 -10.42 0.00 -1.74
21 -1.30 0.00 0.00 1.74
20 0.00 1.74 0.43 -0.43
19 -0.43 ~-1.74 ~-0.43 0.43
18 4.34 4.34 0.87 3.04
17 -3.47 0.87 -1.74 -9.55
16 1.30 -0.87 -2.17 -0.87
15° -3.04 -0.87 1.74 2.60
14 0.43 0.00 1.74 -3.91
13 -2.60 -2.60 2.17 -2.60
12 3.04 3.04 -3.47 2.17
11 -0.87 -0.43 0.43 -1.74
10 -3.04 -2.17 -1.74 1.30
-9 1.30 2.17 1.74 2.17

8 1.30 -1.30 0.43 -0.87

7 6.51 0.87 1.30 3.47

6 -1.74 0.00 ~0.43 ~-0.87

5 1.08 -2.15 -0.54 2.15
4 7.29 0.00 0.00 0.00

3 3.13 0.00 2.60 -0.52

2 -0.87 -0.43 -0.87 1.30
1 -1.74 4.34 0.00 ~1.74

*# Wall numbering given in Fig. 6.2.
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Out-of-Plumbs : x 10% Rad.
Storey Wall No.*
1 2 3 4 5 6 7 8 9

34 -0.97 |-0.83 - 2.76 |-2.19 1.46 1.98 1.48 | -0.42
33 2.19 0.00 - 2.71 |-0.83 1.56 {~-1.67 {-2.37 | ~0.31
32 0.73 2.08 - 5.73 3.33 | -3.54 |-1.39 | -2.37 | -3.33
31 -0.26 1.67 - 1.70 1.67 0.42 0.52 {~-1.22 { -0.42
30 1.72 j-1.46 - 1.04 |~4.04 |-0.91 |-0.73 | -3.31 0.10
29 1.88 1.41 - -0.31 0.21 | -2.50 | -0.42 1.47 1-0.20
28 2.29 0.52 - 1.17 0.63 | ~3.44 1.98 1 -0.59 | -1.46
27 0.05 |~-1.25 - 0.68 [-1.15 [ -2.50 |~0.52 | -0.26 | -0.83
26 1.25 0.10 - 0.21 |~0.63 | -2,08 | ~3.44 1.87 1.04
25 0.05 |-0.21 - -2.71 }1-0.52 1.04 4,17 2.24 1 -1.67
24 0.89 0.96 - ~0.39 ]-2.92 1.35 7.29 1.82 6.94
23 0.63 1.82 - 2.08 {-3.13 |-1.88 0.31 {-1.30 } -0.21
22 2.08 0.21 - ~0.20 1.04 3.65 2.92 1 -0.63 1.9
21 0.94 0.28 - 0.76 |-2.08 | -1.87 1.98 | -2.27 2.71
20 0.68 0.26 - 4.69 |-1.88 | -1.46 1.25 5.00 | -1.04
19 ~-1.72 2.50 5.52 |-1.35 }-0.83 2.50 1.25 2.08 | -0.47
18 0.98 3.52 3.52 1.95 4.04 1.82 5.73 0.00 | -1.39
17 1.09 0.47 1.98 3.02 |-1.87 0.73 }~1.56 0.42 1.15
16 0.37 0.94 3.75 |-5.42 }-2.92 | -1.46 {-2.92 8.75 |-3.85
15 -0.99 1.20 2.50 1-0.73 0.00 1.65 {-2.92 | ~4.17 1.04
14 2.71 1.46 |~-0.52 |-2.78 |-2.08 0.83 }-2.19 0.00 {-0.83
13 2.73 [-0.59 0.91 4.43 0.39 {-1.25 2.73 0.52 1.04
12 -2.05 0.43 |-2.41 0.52 3.52 |-0.52 | -0.91 | -5.21 |-2.02
11 1.69 9.33 |-1.17 |-3.13 |-9.51 |-2.47 |-2.60 |-1.82 | -4.56
10 1.99 [-3.52 0.26 }-2.29 2.08 1.30 0.78 | -4.69 0.46

9 3.52 1.86 0.26 1.30 0.65 0.76 0.00 | -0.52 2.08

8 2.15 [~1.60 |-0.98 0.91 1.82 2.73 0.13 1.04 2.21

7 0.49 [-0.91 0.78 0.70 {-1.59 4,77 |~-4.43 | -1.56 2.73

6 -1.63 0.33 2.60 |-1.56 0.26 0.00 |~1.30 |-0.42 3.13

5 2.15 0.52 {-0.17 2.99 0.13 {-0.15 | ~3.,52 5.28 1-1.74

4 -0.62 0.62 2.40 }-0.91 |-2.21 0.91 1.17 {-0.91 2.41

3 -4.86 [-0.89 [~-1.09 |-1.04 0.00 0.52 |-0.13 0.13 0.70

2 3.99 |-0.07 |-0.35 |-2.74 |-0.65 |-1.17 |~0.52 |~0.78 | ~1.85

1 -1.39 {-0.05 |-1.27 |-1.04 {~1.31 |-1.56 |~0.52 |-1.69 1.62

*Wall numbering given

TABLE 6.9

in Fig. 6.3

PERPENDICULAR WALL OUT-OF-PLUMBS

FOR BUILDING B
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Out-of-Plumbs : x 10° Rad.

Wall No.*
Storey
1 2 3 4 5 6 7 8 9

34 -2.08 1-0.83 - 0.27 |-0.83 | -0.83 0.42 {-3.73 1 -0.42
33 4.17 1-0.20 - 4.17 | -2.92 | -3.75 | ~0.42 2.29 3.33
32 ~0.42 0.00 - 2.50 0.42 0.83 5.00 | -3.75 0.21
31 0.79 | -0.26 - 2.08 1.25 06.00 | -1.67 1.25 0.83
30 -1.04 1.46 - 0.21 2.29 0.21 | ~0.63 {~1.04 1.88
29 -3.33 |-2.50 - 5.83 2.08 1.04 0.63 | -0.21 0.21
28 -0.73 1.25 - 1.67 1.67 | -0.42 2.50 2.08 3.33
27 0.42 {-0.42 - ~-1.67 |-1.25 0.00 {-3.13 0.63 2.71
26 -2.50 0.42 - 2.92 3.75 1-0.21 0.00 | -1.67 0.42
25 -0.83 |-0.63 - 0.83 1-0.42 0.42 0.00 0.21 0.00
24 -2.50 2.08 - -0.83 0.00 0.42 2.08 2.50 4.17
23 1.67 |-0.42 - 2.08 1.67 |~1.46 0.83 2.08 0.83
22 0.00 |-0.63 - 0.00 {-0.21 6.67 1.04 0.21 1.67
21 0.94 0.28 - 0.76 |-2.08 |-1.88 1.98 0.42 1.88
20 ~4.17 4.17 - -0.83 1.25 0.42 1.04 1.67 1.46
19 -3.75 }-2.50 |-1.67 |-0.83 2.50 0.00 |~3.33 {-1.25{-2.29
18 -0.42 2.50 5.42 3.13 1.82 | -0.52 1.82 1.82 4.58
17 0.21 0.00 {-4.58 1.25 |-0.63 1.67 1.25 2.50 1.46
16 ~2.92 |-5.83 0.63 0.42 3.13 1.46 1.25 | ~1.67 0.83
15 0.63 2.08 {-1.67 2.92 0.00 ;-2.50 3.75 | -3.33 4.38
14 -0.83 1-0.21 1.67 2.92 0.42 2.92 2.50 2.921.0.83
13 2.08 |-1.56 0.78 {-0.52 |~0.52 3.80 3.38 0.00 2.08
12 -0.52 |-1.95 1.95 |-2.47 1 -0.52 |-2.60 |~2.21 | -0.65 1.43
11 0.00 ]-2.60 3.65 |-0.26 1.04 4.17 4.43 3.65 5.73
10 -1.04 4.43 1-1.95 |-2.21 |-1.56 0.65 1.69 0.26 2.08
9 -2.34 3.91 7 5.08 1.30 1.04 2.21 1.82 0.52 5.73
8 0.26 |-0.13 |-0.52 {~0.78 0.52 2.08 2.34 1.69 | -3.39
7 1.04 2.60 {-1.04 [-2.08 0.26 0.26 2.60 |-1.95 0.78
6 0.26 1.56 |-0.26 [-1.56 2.08 0.13 0.52 |-3.13 |-1.56
5 -1.78 |-5.73 0.26 4.69 0.78 1.30 |-0.78 {-1.56 0.78
4 2.08 0.71 2.08 1.41 |-0.31 2.19 0.91 |-2.40 1.04
3 -4.34 |-0.69 2.08 {-0.69 0.00 [-1.52 0.43 |~-1.30 |-2.60
2 -0.17 }-0.35 3.47 0.69 0.17 |-2.08 1.39 2.43 2.78
1 -1.56 0.52 }-0.28 0.35 !-1.39 |-1.39 |-0.35 0.52 |-0.69

*Wall numbering given in Fig. 6.3

TABLE 6.10 PARALLEL WALL OUT-OF-PLUMBS

FOR BUILDING B
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assumed for both types of out-of-plumbs, therefore eliminating the
need to differentiate between perpendicular and parallel deviations.
The values listed in Table 6.11 also demonstrate that the distri-
butions are slightly skewed and somewhat more peaked than a normal

distribution.



CHAPTER VII

STATISTICAL ANALYSIS

7.1 Effects of Column Out-of-Plumbs

Since the column out-of-plumb population is normally distri-
buted, the variate AO/h can be standardized as described in Appendix A.
A design value for column deviations from plumb is obtained by

rearranging the terms in Eq. (A-44).

A A
a _ ‘o
R - h TR i -

In this expression Ad/h is the distributed random variable, B is the
standardized Ad/h value, Kb/h is the arithmetic mean of the discrete
population, and Oc is the standard deviation.

In the present study, the mean, valued at -1.0 x 10~° Rad.
in Fig. 6.7, may clearly be neglected in Eq. (7.1). In other words,
the population is assumed normally distributed about a mean of zero.

The expression is then reduced to

d _
_— = BGC (7.2)

The quantity B is found from the "Tables of the Standard Cumulative
Normal Distribution" (Table A-1) for a prescribed cumulative probability
of occurrence. For example, the probability of having a value falling

within the limits % ZGC is 0.9544. The selection of an appropriate B

102
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in the present case is very arbitrary. A study described in Ref. 58 has
shown that the probability of failure of a building under normal
conditions shoﬁld not be higher than 3 x 10-* during the 30-year life

of the structure. This corresponds to a B factor of approximately 3.5.

A factor of 3.0 has been used in Ref. 61 in the derivation of design
criteria based on limit states. The New Canadian Standard CSA-S16.1,
"Steel Structures for Buildings -~ Limit States Design', has used B
factors ranging between 2.9 and 4.0(59). The selected factor, B,
commoﬁly called the "safety index", should fall within these limits. A
conservative B of 3.5 corresponding to a probability of being exceeded of

4.6 x 10~" will be used in this thesis. This choice will be subject to

further discussions in Appendices B and C.

7.1.1 Horizontal Force at Connection Point

The horizontal forces shown in Fig. 2.2 result from the fact’
that the column is out-of-plumb. The force PAx/h, for instance, is |
transmitted by the connection to the beam or floor diaphragm and then
to the core. A safe estimate of this additional force in the connection

is:

Fd = BOCP = 3.5 x 0.0017 P =.0.006 P (7.3)

where Fd is the absolute value of the force, P is the factored axial

load in the column obfained for a specific load combination, B = 3.5,

and Oc = 0.0017 from Table 6.6. Equation (7.3) indicates that a ;onnection
between one column and the adjacent beam should be designed for 0.6

percent of the factored axial load to resist the force created by the
out-of-plumb of the column. The force Fd has a probability of not being

exceeded, defined by the safety index B, of 99.954 percent or, in
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other words, a probability of being exceeded of 4.6 x‘lo‘“, if P is
assumed deterministic.*

In the common case of two column segments connected at a floor
level and having different axial loads, different heights, and different
out-of-plumbs, the extra force, ¥, at the beam-to-column connection is

an algebraic summation of the type shown in Fig. 7.1.

PA PA
F Gﬁﬁl + (h)2 (7.4)
if F = PX+PY
and X 7> N(u, o), Y~ N(uy, cy)
~ 2 2 2 2
Then F ~> N(Py u_+P, My fPl o2 + P} oy) ,

if independence is satisfied.t

For W, = uy = 0 and Ox = Oy = g,

F > N(0, o/ PZ + P)

Thus, in the case of two column segments, the force F is still normally
distributed and has a new standard deviation defined as above.

Equations (7.2) and (7.4) are combined to give:

Fd = BOCV P; + P% (7.5)

"where Fd is the absolute value of the extra force used in the design of

a beam~to-column connection when two columns are present. When Pl = P2’

'Fd = 3.5 x 0.0017 x Y2 P = 0.0084 P. The extra force to be resisted

by the connection as given by expression (7.5) is 0.84 percent of the

* See Appendix B

+ See Appendix C
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F=(PA/h), +(PA/h),

¢

Figure 7.1 Horizontal force required to stabilize two out-of-plumb columns
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average axial load in the columns, which is significantly lower than

the 2 percent presently used(AB).

7.1.2 Horizontal Shear in the Plane of the Floor

The out—-of-plumbs of the columns above and below a given
floor produce extra shears in the plane of that floor. For example,
the floor system of Fig. 6.2 must transmit to the core an extra shear
resulting from the 16 out-of-plumb columns on lines 8 to 15. These
columns have random inclinations and the resulting shear (for example

- in the x~direction) is:

PA .
0
[“7;*]j (7.6)

|
f
[ e R

j=1
where n = 16, the number of columns considered in the example.
As in the preceding case, an expression for F may be obtained

from the statistical sum of the standard deviations corresponding to

the 16 columns.

n
F. = Boc/ P;“ (7.7)

d j=1
Fd is the absolute value of the extra horizontal shear due to n out-of-
plumb columns and Pj is the factored column axial load for the load
combination considered. The other terms have been defined previously.

Equation (7.7) 1is general and includes Egs. (7.3) and (7.5), applied

previously to connection design, for n = 1 and 2.

7.1.3 Moment in Floor

Moments in any portion of a floor due to a group of out-of-

plumb columns can also be determined. For example, the moment in the
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plane of the floor at point O in Fig. 6.2 is produced by the x and y

out-of-plumbs of the columnson lines 8 to 15, thus:

16 PAx PA

s + .
[ L, + 5 L, (7.8)
In Eq. (7.8),‘Lx and Ly are the lever arms in the x and y directions
from the column to the point at which the moment is calculated. Since

Lx and L_ are also coefficients (similar to P), the same summation

rule applies.

M, = Bo // g [P2(L% + 1L)] (7.9)
d c j=1 X vy ] '

M.d is the absolute value of the design moment in the plane of the floor

due to a group of n out-of-plumb columns.

7.1.4 Shear in Core

The core (or any other bracing system) must stabilize the
columns by resisting the forces induced by the vertical loads acting
on the columns in their deformed positions. Fig. 7.2 shows that the
absolute value of the out-of-plumb shear resisted by the core between
floors i-1 and i is Si and depends only on the out-of-plumbs of the
columns at storey i (storey below floor level i).

By PA

Ji
(=1, (7.10)
i j=1 h “j )

w
]
™

where n, is the number of columns at storey i. Then,

i
/1
Sq4 = Bo/ L p? (7.11)



m . .
S *Sm
(k) |
e & ]
/—’—2,-—'—_—“
|
S.
i+1 | ir2
N —‘._._.."_— - T > — —
Si+1 isi""‘
hi+
' : Si+1
Y
f T = 5
| i
hi l ;
i -1 I Si \M.LV
4 -
A _+“'—"___’—'__"—_'"—"—-"
| Si~1 tS|—1
hioq I
Si- 1
Yy i-2 ]
Si- 2 *Si-2
’—-—‘2-—/
Plumb Line Out-of-Plumb
Column Stack :
Yy W 7

m = Total number of storeys

i, k =Storey indices i+ 1 <k<m

Figure 7.2 Shears and moments in core due to column out-of-plumbs
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where Sdi is the absolute value of the shear in the core at storey i
caused by the out-of-plumbs of the columns and Pj is the factored axial

load in column j. The summation extends over the ng columns in storey i.

7.1.5 Moment in Core

Fig. 7.2 shows that the moment at floor level i due to the

out-of-plumb columns is:

M, = I Sh (7.12)
1 =i+l <K

where k is a storey index used for storeys above level i. Substituting

Sk as given by Eq. (7.10) in the expression for the moment, gives:

' m o "k PA,
M, = I [Z (=m.]h
1 =i+l =1 DR

Transforming the summation inside the brackets results in:

n
m k
M, = T (Bo ¥ P2?), h
1 k=i+1 je1 3Tk K

Transforming again for the other summation yields:

n
/m k 252 2
My, = Bov I Dy jil Pl by

k=1+1

which can be written as:

m
M = //r;z i (S,h)? (7.13)
di k=i41 ¢ K

where Mdi is the moment in the core at floor level i caused by the out-

of-plumbs of the columns, Sdk is the shear at storey k given by Eq. (7.11),



110

» hk is the height of storey k, and m is the total number of storeys in

the building.

7.1.6 Torque in Core

The torque due to out-of-plumb columns, at a speéific storey
of the core, depends only on the columns at that storey in a manner
similar to the éhear. The torque at each storey is obtained b? combining
the expressions developed for the moments in the floors (7.9) and the

shears in the core (7.11).

n

i PAx PA
Ti = § {"ff“ Ly +~-—1h Lx]j (7.14)
j=1 .
or
n,
/ * 2 2 2
Tdi = Bcc jil [p (LX + Ly)]j (7.15)

where LX'and Ly are the distances (lever arms) along the x and y

axes between a particular column and the center of resistance of the core.

7.1.7 Lateral Deflections

An equivalent column inclination, Ad/h, constant for a

" specified number of columns may be obtained from Eqs. (7.6) and (7.7).

For F = Fd’
n 2
Ad BOC 'il PJ
= = nJ (7.16)
T P
j=1

This equation would be considerably simplified if expressed only in terms

of B, OC and n, the total number of columns in the structure. Assuming that
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Pj is constant for all the columns gives:

fa . e (7.17)

Generally, the column axial loads differ greatly in a structure. As
demonstrated in Appendix D, the formulation (7.17) is always unconservative

with respect to the "exact" expression (7.16). It is also demonstrated

in the Appendix that

(7.18)

gives a safe estimate when n is reasonably large. For structures of
one and two storeys, Eq. (7.16) is recommended.

A set of horizontal forces is obtained from the structural
configuration shown in Fig. 5.1(a) where the constant slope is defined
by either one of the equations above. These forces can be added
to the wind forces and used to calculate the lateral deflections of a
structure. Applications of Eqs. (7.16) and (7.18) are given in tﬁe

next chapter.

7.2 FEffects of Wall OQut-of-Plumbs

The results summarized in Table 6.11 show that the perpendi-

cular and parallel wall out-of-plumb populations can be described by

4 normal distribution and statistical characteristics common to both.

Ccnéervatively, the mean, KO/h, is taken as 0.00028 Rad. and the

standard deviation, Ow, as 0.0028 Rad.
Since the core depends entirely on itself for stability (the

frame is assumed pinned at each floor level and the core cantilevered
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fro@ the foundation), only moments, torques,and extra lateral
deflections induced in the core by the wall out-of-plumbs must be
calculated.

The deviations measured onvthe walls are affected in some
ways by the presence of variations in wall thickness. The problem

is treated in Appendix E.

7.2,1 Moment in Core
The expression used to describe a standardized normal

variable (A-44) can alsa be used to describe the wall out~of-plumbs:

A I

4 _ 0

T h + Bcw (7.19)
where Ad/h is the design wall out-of-plumb and B is the safety index

introduced in section 7.1. The moment due to out-of-plumbs at the

base of the one-storey wall shown in Fig. 7.3(a) is:
M = PA (7.20)

where P is the total factored load carried by the wall and AO is
the actual averaged out-of-plumb of the wall. Similarly, the
moﬁent in either the x or y direction at the base of the one-storey
core section of Fig. 7.3(b) is:

M = & (PA (7.21)

)
=1 2
where Pj is the factored axial load carried by one of the n individual
wall segments and AOj is the actual perpendicular or parallel out-of-

plumb of the wall, depending on the direction considered.
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b) One-storey core

Figure 7.3 Moments in one-storey walls
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Equations (7.20) and (7.21) together with (7.19) may be

adapted for design by the transformation of section 7.1.1.

"0 n /‘B"——‘: i

M, = T 'Z (Ph)j + Bcw 'Z (Ph)j (7.22)
j=1 j=1 : .

The terms in the above expression have been defined previously in

this chapter.

Equation (7.22) would be simplified if the mean were
negleéted. The actual mean could be zero, as in the case of column
oﬁt~of—p1umbs,due to the similarities between these two variables.

It is possible that the measured mean is different from zero by reason
of the relative small sample size (379). The question, at this

point, is to find the percentage of the total moment that is
contributed by the mean in practical situations.

Assuming constant axial loads, Eq. (7.22) becomes
M, = 0.00028 n Ph + 3.5 x 0.0028 /n Ph. The ratio of the first term

to the total expression for Md gives

0.00028 v n
0.00028 v n + 0.0098

_which is the percentage contribution of thg mean to the total moment
in terms of n. For n =1, the mean accouﬁts for less than 3 percent of
the total but for n = 5 and 20, the contributions are 6 and 11 percent
respectively.

Assuming, for the reasons listed above, that the mean could

be negligible, Eq. (7.22) would become:

n
- / 2
M, Bo,, jil (P02 (7.23)
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and Ow is taken as 0.0028. The ﬁalidity of Eq. (7.23) will be discussed
in the next chapter.

The design equation for the moments due to initial wall
deviations in a multi-storey core is obtained in a manner similar to
Eq. (7.13) for column out-of-plumbs. Using the notation adopted in

Fig. 7.2, the moment is calculated as:

m
L (7.24)
k=1+1 e ,

M

it

where Mi,the moment at level i, is the algebraic summation of the
individual storey-moments above level i. When the contribution of

the mean is accounted for, the corresponding design equation becomes:

— n n
AO m k /// m k
My, = 5 I LI (®h).] + 8o I [X (ewmil (7.25)
k=i+l j=1 J Vo k=141 j=1 J ‘

When the contribution of the mean is neglected, this expression is

reduced to:
m .
M., = 7/ £ (M) (7.26)
di k=it1 O K

where Mdk is given by Eq. (7.23) for each level k above level 1i.
The variable n in Eq. (7.23) is then replaced by n o, the number of

walls at storey k.

7.2.2 Torque in Core

The cantilevered wall shown in Fig. 7.3(a) is stabilized
against the in-plane out-of-plumb by a moment at the base. However,

due to the relatively small thickness of the wall, the stability against
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an cut—of—plumb in the orthogonal direction must be ensured by some
means other tﬁan the wall itself.

As an example, thé support required to stabilize wall No. 2
in the y-direction, as shown in Fig. 7.3(b), is provided by the adjacent
WallS,FNOS. 3 and 4, spanning at right angles. Assuming conservatively
that the base of wall No. 2 is pinned in the y~direction and that the
supports of the adjacent walls are only effective at the top of the
wall, a total horizontal force of value PAy/h is induced to stabilize
wall No. 2. The out-of-plumb value for wall No. 2 in the y-direction
is A&.

This force, however, is not distributed equally to the
stabiliziqg walls (Nos. 3, 4) since the wall to be stabilized (No. 2)
has variable out-of-plumbs at different sections. When several
walls are assembled orthogonally to form a core, the presence of
these unbalanced forces could result in the formation of a significant
corque in the core.

A set of unequal horizontal forces on a wall can be visua-
’iized as a corresponding force applied eccentrically with respect to
the center of the wall. The eccentricity of this force is a function
of the actual state of plumbness of the wall and consequently
characterizes that wall. The eccentricity can be considered as a
vvariable with a particular distribution and can be evaluaced from
the out-of-plumb measurements taken on the individual walls by the
-procedure described below.

As shown in Fig. 7.4, a wall iay be subdivided into as many
segments as there are measurements taken on that wall. The contri-

bution of the wall to the total torque can be approximated by:
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T: Torque {positive clockwise)

G: Center of resistance of the core

2. Distance from segment k to the center of the wall
L: Total length of the wall

®: Location of measurements

Figure 7.4 Evaluation of ratio e/L
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s AO
T = Pe = L (P 7;>l)k
k=1
where

T = resulting torque

P = total factored axial load on the wall
e = >equivalent "eccentricity"

s = number of segments in a wall
Pk = axial load carried by segment k

AOk =  measured out—of—plumb of segﬁent'k
2k = distance from the center of segment k to the center
of the wall
h = height of the wall

Making the assumption that each segment carries an equal share of

the total load on the wall and solving for e, gives:

k=1
The ratio Pk/P is equal to 1/s. Dividing both sides by the length,

L, of the wall gives:

s A
;{1; 5 (‘f?‘ %.)k (7.27)
k=1

i

e
L
The measured out-of-plumb, Ao/h, of each segment k is multiplied by
;he ratio Zk/L pertaining to that segmept. The sum of the s individual
products is then multiplied by a constant, 1/s, to result in a
dimensionless equivalent "eccentricity", e/L, which characterizes

the wall.
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These quantities are listed in Tables 7.1 and 7.2 for the
walls of buildings A and B respectively. The values are then plotted
separately for each building in Figs. 7.5 and 7.6 and combined in
Fig. 7.7. The characteristics of each distribution are listed in
Table 7.3.

The distributions are approximately normal. They are
reasonably peaked and slightly skewed. The absolute value of the
mean‘E/L, can be taken as 0.5 x 10~* and the standard deviation,
Oe, as 4.0 x 107"%.

The contribution of a wall to the total torque in a core

is then calculated as:

L (7.28)

. e k

The safety index B is 3.5.
The design torque in the core at any storey i is obtained

from a statistical formulation combining the two expressions above.

o

By //“i
T,, = L (PL), + B0/ I (PL)? (7.30)
di =1 i e j=1 3

The torque at storey i depends only on the n, out-of~plumb walls at

that storey. By assuming an eventual mean of zero for a population

with a larger sample dimension,Eq. (7.30) would be reduced to:
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-3.94
-2.49
5.36
4.85
0.85
4.98
9.22
-1.36
-1.36
-0.81
-0.54
0.54
1.36
~-1.36
-1.09
2.17
-1.36
0.18
8.68
0.29
-0.97
-3.86

e/L x 10%
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* Wall numbering given in Fig. 6.2

VARIABLE e/L FOR BUILDING A

TABLE 7.1
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e/L x 10"
Wall No.*
Storey
No. 2 4 5 6 7 8 9
34 -0.80:1 2.33 -3.92| -5.08 2.87 8.46 | 0.87 ]| -4.69
33 -8.27 1.17 3.91 4,17 | -2.21 | -8.33] 1.11 5.60
32 -7.49 | 6.06 0.91 | -3.65 7.55 ) ~1.30} 1.42 1.04
31 4.46 | ~3.65 -0.14 | -8.33 | 14.58 ] -6.38 ] 2.72 0.00
30 0.94 |-0.52 ~4.69 4.40 | -6.35 ] 11.26 {-1.43]-0.91
29 0.65 1 8.43 0.78 | -2.87-} 2.08 0.13{-~1.531]~1.69
28 ~3.26 |-2.80 -5.05}1 -3.39 | 4.82 ] -2.47 2.97 1-2.87
27 -0.811-5.34 -0.33 | ~-3.78 1.30 | -1.17 }-2.35] 2.08
26 4,30 | 3.39 ~2.34 ] ~-1,82 | 1.04 3.00 | ~4.45 ] -4.95
25 0.29 ] 1.04 1.95 1.69 {-4,18 { -0.52 | 2.23 | -2.08
24 5.37 1-1.69 -4,53 |-11.46 | 3,26 | -8.07 |-1.87 | -1.82
23 0.39:{-1.86 - 3.52 1 12.24 2.87 0.65|~-3.14 2.34
22 -2.28 1.95 0.39 ] -3.39 3.52 2.08 1 1.56}| 0.78
21 4,23 1~3.26 1.20 1.04} 6,514 -3.00}{-5.11} 0.78
20 -2.12 |-8.04 -0.39{ ~9.64 0.26 2.60 | 0.80}~-2.87
19 -2.51 ] 3.94 }{-0.39 |-6.38 | -2,08 |-1.04 | -9.64 | 0.93|-4,17
18 3.78 | -3.99 | -1.79 | ~-6.35 | ~7.65|-1.95| -7.49 ] 5,97 | -1.63
17 -0.29 {-4.33 [ ~1.43 |-0.91 3.91 {-0.91 1.69 ] 5.34 1.95
16 2.31 0.72 | 0.52 {-3.13 | -1.04 1.30 2.08 | -1.54 3.78
15 -4.,07 }-1.07 }|-1.17 5.08 2.08 | ~-1.17 -2,08 | -5.38 | -1.30
14 0.91 |~-0.37 | ~4.82 | -5.47 | ~14.06 | 3.13 | -4.56| 3.37 1.04
13 ~-4.23 ] 3.38 2.12 1-1.30 | -1.14 |[-4.75| -8.30 1 2.18 5.86
12 1.16 1-1.57 | -3.01 | 0.65 1.79 {-1.89 | -7.00}| 4.46 | 4.31
11 -6.19 {-2.28 | 1.79 | 1.63 1.79 | -0.10 | -7.16 | 3.01|-0.16
10 1.24 |-4.07 |~6.51 |-2.87 | -6.25|-2.93 |-11.07 5.41 | -6.10
9 -1.99 {-1.95|-5.86 {-2.93 | -8.14 |~-1.20 | -8.14|~1.75|~-5.21
8 1.18 0.55(~1.551}-7.32 {~11.39 {~5.83 | -7.98 |-7.30 | 1.47
7 -2.54 0.41 {-2,28 | ~-2.85 2,66 1 1.07 ~2.93 5.89 | ~1.14
6 2.48 1.22 | -4.49 | 0.00 4,88 0.00 1.63°7 3.93|-3.91
5 4,27 2,22 1-0.94 | ~-1.47 | -10.25 | 1.97 | -0.49 ] 4.39 1.47
4 ~3.00 110.51 0.77 1.14 6.51 [-8.63 | -6.02 |-3.74 6.59
3 -0.52 2.50 | -4.50 |-6.50 | -2.28 {-1.30 | ~-1.79 |-3.09| 0.41
2 ~0.75 1 2.31 |-1.30 {-1.14 3.74 1 -0.81 2,60 | -0.65 | -0.43
1 ~1.68 |-2,22 1-3.36 {-3.91 | -2.60 |-0.65 6.51 1-1.14 | 1.52
* Wall numbering given in Fig. 6.3

TABLE 7.2 VARIABLE e/L FOR BUILDING B
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Building n Mean Stand. Dev. Skewness Kurtosis
(x 10%) (x 10%)
A 88 0.47 3.49 0.65 3.21
B 291 -0.83 4.17 0.06 3.79
A+ B 379 -0.53 4.06 0.10 3.81

TABLE 7.3

STATISTICAL CHARACTERISTICS FOR e/L
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/n .
i :
= 2
T = Bce )} (PL)j (7.31)

di j=1

The two equations above are only applicable to a reinforced concrete

structure consisting of an orthogonal assembly of cast-in situ walls.

7.2.3 Lateral Deflections

It has been demonstrated in section 7.1.7 that a structure
deflects laterally as the result of the axial loads acting on the out~-
of-plumb columns. In a similar manner, the axial loads acting on the
out-of-plumb walls forming the core force the structure to deflect
an additional amount. As shown in Fig. 7.8(a), a vertical load P
applied to an out-of-plumb wall section induces an additional lateral
‘deflection Aé. The moment at the base of the one-storey wall is
then the sum of the moment PAé defined in section 7.2.1 and a smallgr
moment PAé.

An estimation of the component PAé of the total moment can
be obtained from the equivalent model shown in Fig. 7.8(b). A
‘fictitious horizontal force PAo/h is applied at the top of the
perfectly vertical wall section. In a manner similar to the iterative
procedure described in Chabter IITI, the structure is analyzed to
determine the converged moment P(AO + Aé) and the corresponding
deflec;ion Aé.

The model shown in Fig. 7.8(b) can be used to evaluate an
equivalent wall out-of-plumb value, Ad/h, for the general case of a
combination of n walls. The derivation is similar to that of section
7.1.7 for columns. The fictitious force at the top of_the wall

section is:
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Initial position —

Initial wall out-of-plumb

]

i

Growth in initial out-of-plumb

M=PAg +PAy’

a) Cantilevered out-of-plumb wall section

P

{

> I

PAg/h

b) Equivalent Model (First order values shown)

Figure 7.8  Effect of wall out-of-plumbs on the lateral deflection of a core
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F = —0 ' ' (7.32)

: AO
Fd = Ny P + BOW P i , (7.33)
For n walls,
n PAO
F = I C—E‘). (7.34)
j=1 .
or
3, n | T
F = —= 7 P, + RO L PS¢ (7.35)

An equivalent out—-of-plumb, Ad/h, constant for a specified number of

walls may be obtained from Eqs. (7.34) and (7.35)., For F = Fd’

- L p?

fa % =1
" T h * 80w 'n ‘ ‘ (7.36)

g P

j=1

According to Appendix D, this expression can be written as:

!

&>

A Bo ’
4 . 0, v , (7.37)
h h 202/—1;-

Assuming that every wall is out-of-plumb in the same direction by the

amount Ad/h given in Eq. (7.37), a set of horizontal forces, at each
floor level can be calculated.
The total sway of a structure is obtained by a second order

analysis where the applied forces are those caused by the wind loads
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together with the lateral forces due to column and wall out-of-plumbs.
A statistical combination is required to account for the fact that the
walls and the columns may induce deflections in opposite directions;
The total lateral load at a specific floor level is then:

H + v Hé + sz (7.38)

Hwind

where Hc and Hw are the lateral loads representing the effects of the
column and wall out-of-plumbs respectively.

Eq. (7.38) is not exact if the mean in expression (7.37)
is to be included. The exact expression can be easily derived but is
more complex. However, the difference in the results is not significant

and Eq. (7.38) can be adopted.

7.3 Summary

The various statistical characteristics that have been
recommended for use in design in this chapter and in the previous

one have been summarized in Table 7.4.
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Function Mean Standard Deviation
(Rad.) (Rad.)
Eb
Column All Purposes i 0.0 GC = (,0017
Out~of-Plumbs
4
Moment & T 0.00028 o. = 0.0028
Deflection w
Wall — ]
 Out-of-Plumbs | o e §~= 0.00005 o, = 0.0004

Safety Index

TABLE 7.4

DESIGN VALUES




CHAPTER VIII

APPLICATIONS

Several equations serving different purposes have been pre-

sented in the previous chapter but no examples of applications have

yet been presented. In this chapter the applicability of these
equations will be checked against the corresponding results obtained

from the measurements taken on buildings A and B.

8.1 Column Out-of-Plumbs

8.1.1 Force at Connection Point

A connection between one column and a beam must be designed to
resist the extra horizontal force due to the eventual out-of-plumb of
the column. This force was estimated as 0.6 percent of the féctored
axial load in the column. The force is increased to 0.84 percent of
the average axial load in the more common case of two column segments
connected at a floor level, as shown in Fig. 7.1.

Two cases must be considered in the transfer of these forces
in a braced structure:

1. The bent to be designed is stabilized by a stiffer structure
outside the plane of the bent. This could be the case, for
instance, for column stacks 1 to 6 in the structure shown
in Fig. 6.2. The extra forces originating from each column
stack are directly transmitted to the core by the floor

diaphragms. The individual connections must be designed for

131
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horizontal shears equal to 0.6 or 0.84 percent of the column
axial loads, depending on the case (see section 7.1.1).
Thevfloor diaphragms, in turn, must be designed to resist
the appropriate horizontal shears given by Eq. (7.7).
2. The bent to be designed is braced in the plane of the bent.
The extra shears due to column out-of-plumbs are transferred
from bay to bay and thé connections . must be designed
accordingly.
An example showing the gradual increase in the horizontal
force, when transmitted to the bracing system, is given in Fig. 8.1.
The columns in the upper and lower storeys of the frame carry
individual axial loads of 170 and 340 kips respectively. According
to Eq.- (7.7), the force in the girder a-b is 2.26 kips and originates
from the two left hand columns. The force in girder c-d is 3.2 kips
and is produced by the axial loads acting on four out-of-plumb columns;
the shears being transmitted from left to right. The force in girder
e-f is 3.92 kips and the bracing system finally resists a total force
of 4.52 kips. The gradual increase in shear is non-linear and the
connections in the vicinity of the bracing structure have to resist

the larger shears.

8.1.2 Shear in the Plane of the Floor

The horizontal shears in the plane of the floor, estimated
by Eq. (7.7), are compared to the values calculated from the measured
column out—of-plumbs in buildings A and B. The actual forces in the
x and y directions, calculated for all tne columns at each storey,

are listed in columns 3 and 4 of Tables 8.1 and 8.3. The corresponding
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170K ﬁK 110K 170K
‘\ *ﬁ h 4 o \*
‘10'
a blc dle f
A 4
o Yo 20, < ‘-—-4 52K
2.26K 3.20K 3.92K
10’
BE RS R T
340K ‘ 340K 340K 340K
Fg=8o, |3 p2 (7.7)
j=1
=35

g. = 0.0017 Rad.

Figure 8.1 Transfer of shear in beam-to-column connections
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1 2 3 4 5 6 7 8 9 10
Floor | Storey Storey Force Storey Shear in Core Moment in Core Torque
No. Height (Kips) Moment (Kips) (Ft.-K.) in Core
F) G Ty mis] ) an Ty anT T o0 y Axis| (Ft--K.)
27 20 0.04 | - 0.16 10.74 0.04 | ~ 0.16 0.00 0.00 10.74
26 12 0.36 | - 1.36 85.20 0.40 | - 1.52 0.80 - 3.20 95.94
25 12 - 2.35 1.84 57.79 |~ 1.95 0.32 5.60 ~21.44 153.73
24 12 - 3.40 2,92 ~205.57 |- 5.35 3.24 ~17.80 ~17.60 ~ 51.84
23 12 4.50 0.16 -182.13 |~ 0.85 3.40 ~-82.00 21.28 ~233.97
22 12 7.19 | - 8.85 497.56 |~ 6.34 | - 5.45 ~-92.20 62,08 263.58
21 12 - 6.88 6.77 104.97 1~ 0.54 1.32 ~-16.12 - 3.32 '368.55
20 12 - 53.13 |-~ 5.99 ~131.15 |~ 5.67 | - 4.67 -22,60 12.52 237.40
19 12 2,68 5.98 -157.84 |- 2.99 1.31 -90.64 -43,52 5.33
18 12 4,44 | - 7.93 -294.82 1.45 1 - 6.62 | -126.52 ~27.80 ~215.27
17 12 - 3.72 | - 0.10 154.05 |~ 2.27 | - 6.72 | -109.12 |-107.24 ~61.22
16 12 2.79 1.72 -123.43 0.52 ) - 5.00 | -136.36 |-187.88 ~184.65
15 12 - 7.27 12.29 -317.10 {~ 6.75 7.29 { -130.12 |-247.88 -501.93
14 12 5.87 | - 0.66 684.63 |- 0.88 6.63 { -211.12 |-160.40 182.83
13 12 15.41 | ~18.61 647.17 | 14.53 | -11.99 | -221.68 -80.84 830.05
12 12 -26.74 9.72 ~672.88 |-12.21 | - 2.26 ~47.32 {-224.60 157.17
11 12 14.23 0.58 ~534.81 2,02 | - 1.68 1 -193.84 |-251.72 -377.64
10 12 5.08 | ~25,66 512.65 7.10 | -27.34 | -169.60 |-271.88 134.00
9 12 -16.33 37.07 -190.02 |~ 9.24 9.73 ~84.40 {-599.96 ~-55.01
8 12 4.80 | ~ 9.66 145.26 |- 4.44 0.07 | ~195.28 |-483.20 90.17
7 12 - 9.73 23.43 988.50 |-14.16 23.50 | -248.56 |-482.3% 1078.75
6 12 15.80 1.47 ~830.72 1.64 24.97 | ~418.48 |~200.36 248.03
5 12 5.46 | - 8.98 95.87 7.10 15.99 | ~398.80 99.28 343.89
4 12 14.30 | ~26.84 140.90 | 21.40 | -10.85 313.60 291.16 484.79
3 12 3.02 | - 2.31 ~-398.58 | 24.42 | -13.16 ~-56.80 160.96 86.21
2 12 -45.97 24,17 730.38 |~-21.55 11.01 236.24 3.04 816.59
1 20 - 3.03 | -15.38 | -1486.87 |~24.58 | - 4.37 ~22.36 135.16 -670.28

-513.96 47.76
TABLE 8.1 FORCES IN BUILDING A FROM ACTUAL

COLUMN OUT-OF-PLUMBS




1 2 3 4 5 6 7
Floor|Storey 1 Storey Shear Moment Torque
No. [Height 5 p2 Force in Core in Core in Core
=1 3’1 (Eq. 7.7) | (Eq. 7.11) |(Eq.. 7.13) (Eq. 7.15)
(Ft.) (Kips) (Kips) (Kips) (Ft.-K.) (Ft.-K.)
27 20 215 1.28 1,28 0.0 79.6
26 12 691 4.31 4,12 25,6 259.6
25 12 1000 7.23 5.95 55.7 377.0
24 12 1265 9.59 7.52 90.5 477.3
23 12 1523 11.77 9.06 127.8 575.1
22 12 1776 13.92 10.56 167.8 670.7
21 12 2029 16.05 12.08 210.3 766.7
20 12 2280 18.16 13.57 255.4 861.4
19 12 2528 20.26 15.05 302.9 955.7
18 12 2777 22.35 16.52 352.6 1049.9
17 12 3024 24.43 17.99 404.6 1143.2
16 12 3271 26,50 19.47 458.5 1236.7
15 12 3517 28.58 20.92 514.6 1329.7
14 12 3337 28.85 19.86 572.6 1393,2
13 12 3556 29.02 21.15 620.2 1439.7
12 12 3773 30,84 22.45 670.1 1527.6
11 12 4003 32,73 23.79 722.2 1615.5
10 12 4207 35.77 25.04 776.7 1703.4
9 12 4422 36.32 26.32 832.8 1786.3
8 12 4640 38.14 27.60 890.7 1878.4
7 12 4855 39.96 28,90 950.3 1965.9
6 12 5071 41.78 30.18 1011.5 2052.9
5 12 5287 43,60 31.46 1074.4 2140.4
L4 12 5502 45.41 32,74 1138.8 2227.5
3 12 5718 47.21 34,02 1204.7 2315.0
2 12 5933 49.02 35.29 1272.0 2401.7
1 20 6149 50.84 36.59 1340.7 2489,2
1527.4

TABLE 8.2
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FORCES IN BUILDING A FROM STATISTICAL CALCULATIONS
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1 2 3 4 5 6 7 8 9 10
Floor | Storey Storey Force Storey Shear in Core Moment in Core Torque
No. | Height {(Kips) Moment (Kips) (Ft.-K.) in Core
Fe) s Yy Axts | (Fe--K) 1o Axis | vy Axis | x Axis | y Axis (Ft.-K.)
34 24 - 2,12 1 - 0.60 6.31 |- 2,12 | - 0.60 0.00 0.00 6.31
33 12 0.21 0.96 64.58 {- 1.91 0.36 -50.88 -14.,40 70.89
32 12 1.48 1.25 ~338.27 |- 0.43 1.61 ~73.80 -10.08 ~267.39
31 12 0.68 ) - 1.70 409,35 0.251 - 0.09 -78.96 9.24 141.96
30 12 - 5,93 0.06 -498.94 |- 5.68 | - 0.03 ~75.96 8.16 ~-356.98
29 12 7.16 2,83 40.35 1.48 2.81 | -144.12 7.80 ~316.63
28 12 - 0.60 2.93 125.64 0.88 5.74 .1 -126.36 41,52 -~191,00
27 12 -10.56 9.82 321.64 |~ 9.68 15.56 | ~-115.80 110.40 130.65
26 12 2.01 | - 7.48 -398.29 | - 7.67 8.08 }-231.96 297.12 ~-267.65
25 12 10.66 | - 4.85 709.03 2.99 3.24 1 -324.00 394,08 441.38
24 12 -15.50 11.14 ~-828.74 | -12.51 14.38 | -288.12 432,96 ~387.36
23 12 8,171 - 4.72 1528.07 | - 4,34 9.66 |-438.24 605.52 1140.71
22 12 0.94 1 -20.54 ~726.16 | ~ 3.40{ -10.87 | -490.32 721.44 414.55
21 12 4.01 22.97 222.34 0.61 12.10 | -531.12 591.00 636.88
20 12 1.72 ] - 2.18] -1987.66 2.34 9.92 1-523.80 736.20 -1350.77
19 12 - 9.99 -35.03 1016.84 1 - 7,65 | -25.11 | -495.72 855.24 -333.93
18 12 19.37 9.83 841.27 1 11.71] -15.29 |-587.52 553.92 507.33
17 12 - 3.16 30.03 ~708.78 8.55 14.74 | ~447.00 370.44 -201.45
16 12 -17.88 | ~'6.47 -318.22 |~ 9,33 8.28 | ~344.40 547.32 -519.66
15 12 19.00{ ~14.21 596.11 9.66 ] - 5.94 | -456.36 646.68 76.45
14 12 15.85 4.70 ~530.72° ) 25.51] ~ 1.24 | -340.44 575.40 -454,28
13 12 ~14.40 2.92 853.66 | 11.11 1.68 |~ 34.32 560,52 399.39
12 12 -29.54 | -21.74 151.78 | -18.43 | -20.06 99.00 580.68 551.17
11 12 13.11 28.85 | -2289.57] - 5.31 8.79 | -~-122.16 339.96 -1738.40
10 12 5.16 | -27.09 1920.94 1 - 0.15] -18.30 | -185.88 445,44 182.54
9 12 - 6.33 11.38 -327.14 | - 6.48] - 6.91 | ~187.68 225.84 ~144,60
8 12 7.12 35.16 ~585.46 0.64 28,25 | -265.44 142,92 -730.05
7 12 -20.56 { ~-36.81 36.68 ] -19.93 ] - 8.56 | -257.76 481.92 -~693.37
6 12 45.88 | -12.41 2901.36 | 25.95] -20.97 | -496.92 379.20 2207.99
5 24 - 8.14 21.83 832.05} 17.80 0.86 | -185.52 127.56 1375.94
4 27 -31.81 15.34 444.57 | ~14.00 16.20 241.68 | 148.20 1820.50
3 16 ~ 3.12 4,27 2528.19 | -17.12 20.46 | -136.32 585.60 ~707.69
2 15 17.49 6.17 994.50 0.36 26.63 | -410.24 912.96 286.82
1 15 5.64 3.75 1748.31 6.00 30.38 | -404.84 | 1312.41 ~1461.50

-314.84 | 1768.11

TABLE 8.3

FORCES IN BUILDING B FROM ACTUAL

COLUMN OUT-OF-PLUMBS




1 2 3 4 5 6 7

Floor | Storey i, Storey Shear Moment Torque

No. Height [ 5 Pﬁ] Force in Core in Core in Core

ja1 31 (Eq. 7.7) {(Eq. 7.11) (Eq.. 7.13) | (Eq. 7.15)

(Ft.) (Kips) (Kips) (Kips) (Ft.-K.) (Ft.-K.)
34 24 398 2.37 2.37 0.0 160.6
33 12 689 4.73 4,10 56.9 279.7
32 12 998 7.22 5.94 75.2 407.2
31 12 1303 9.77 7.75 103.6 537.1
30 = 12 1628 12.41 9.69 139.2 671.5
29 12 1945 15.09 11.57 181.4 801.8
28 12 2263 17.75 13.46 228.4 932.8
27 12 2580 20.42 15.35 279.8 1063.8
26 12 2899 23.09 17.25 335.0 1195.4
25, 12 3216 25.76 19.14 393.8 1326.4
24 12 3594 28.70 21.38 455.9 1481.6
23 12 3855 31.36 22.94 523.1 1589.7
22 12 4173 33.80 24.83 591.1 1720.7
21 12 4491 36.48 26.72 662.0 1852.2
20 12 4809 39.15 28.61 735.5 1984.0
19 12 5129 41,83 30.52 811.7 2115.0
18 12 5447 44,52 32.41 890.5 2246.0
17 12 5766 47.20 34,31 971.7 2377.7
16 12 6084 49.87 36.20 1055.4 2508.7
15 12 6404 52.56 38,10 1141.3 2640.3
14 12 6723 55.25 40.00 1229.4 2772.0
13 12 7040 57.92 41.89 1319.8 2903.0
12 12 7361 60.60 43,80 1412.3 3035.3
11 12 7679 63.29 45.69 1506.9 3166.3
10 12 7998 65.97 47.59 1603.6 3298.0
9 12 8316 68.65 49.48 1702.2 3429.0
8 12 8636 71.33 51.38 1802.8 3560.6
7. 12 8955 74,02 53.28 1905.3 3692.3
6 12 9274 76.71 55.18 2009.7 3824.0
5 24 9592 79.39 57.07 2116.0 3963.3
4 27 9911 82.07 58.97 2520.6 4095.4
3 16 10234 84.77 60.89 2981.4 4163,0
2 15 10567 87.53 62.87 3136.5 4365.4
1 15 10952 90.55 65.16 3275.2 4516.2

3418.0

TABLE 8.4
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FORCES IN BUILDING B FROM STATISTICAL CALCULATIONS



138

storey forces given by Eq. (7.7) are listed in column 4 of!Tables 8.2
and 8.4. The absolute values of the measured and predicted forces
described above are compared in Figs. 8.2 and 8.3. The fofces obtained
from the measurements are represented by the solid circles. The
direction of the forces is not relevant since the only purpose of these
figures is to compare the observed and predicted magnitudes. Equation
(7.7), with B = 3.5 and o, = 0.0017 Rad.,appears to be an upper bound

on the predicted forces in the floor diaphragms.

If more measurements were available from several similar
structures, the computed values shown by the solid circles would
eventually fill the area corresponding to the predipted values with a
density corresponding to that of a normal distribution. Depending on
the probability chosen for design (B factor), a few points may be found
outside the limits. In the absence of measurements, such a situation

(54). In this

can be artificially created by a Monte Carlo simulation
method, applied to the present case, out-of-plumbs of known distribution
and characteristics are randomly generated by a computer for every

column segment in a fictitious structure.

8.1.3 Moment in the Plane of the Floor

The adequacy of Eq. (7.9) in predicting moments in floor
diaphragms due to column out?of—plumbs can be checked as in the previous
section. The results obtained from Eq. (7.9) are compared in Figs.

8.4 and 8.5 with those taken from column 5 of Tables 8.1 and 8.3.
These figures and others to come in this chapter have the character-

istics of Figs. 8.2 and 8.3,
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Figure 8.5 Momaent in the plane of the floor at each level of building B
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The moments shown are calculated, for convenience, by consider- -
ing every column present in the structure at each storey. In this
particular case, n becomes n, and Eq. (7.9) takes the form of Eq. (7.15)
derived to calculate the torques in the core. These results are listed
.in column 7 of Tables 8.2 and 8.4. The figures show that Eq. (7.9)

provides a good estimate of the moments in the floor diaphragms.

8.1.4 Shear, Moment, and Torque in Core

Calculations and figures are provided in this section to
verify the application of Eqs. (7.11), (7.13), and (7.15), all three
expressions giving estimates of forces to be resisted by the core.

The measured and predicted shears resisted by the core at each storey

of buildings A and B are compared in Figs. 8.6 and 8.7. Similarly,

the moments are compared in Figs. 8.8 and 8.9 and the torques in

Figs. 8.10 and 8.11. The plotted quantities are taken from Tables 8.1
~to 8.4 and their respective origins are indicated on the figures.

In each case, the proposed equation seems adequate.

8.1.5 Lateral Deflections

The presence of out-of-plumb columns in a structure forces
the structure to sway laterally. All the columns participate in this
action. In the case of building A, the lateral deflection curves
obtained from the measurements in the x and y directions have been
plotted in Fig. 8.12 against the results given by the equations derived
in section 7.1.7. Curives 1 and 2 show the results of Eqs. (7.16) and
(7.18) while curves 3 and 4 present the actual deflections obtained
from the measurements. The values shoéﬁ in abcissa have no units since

they only serve the purpose of indicating the relative deflections.
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Figure 8.6 Shear due to column out-of-plumbs in the core of building A
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Figure 8.8 Moment due to column out-of-plumbs in the core of building A
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It is seen that Eq. (7.18) gives a conservative estimate of
. the more exact expression (7.16). The equivalent slope Ad/h given by
- Eq. (7.16) is 3.5 x 0.0017 x 19755/367682 = 0.00032 Rad., compared to
0.00037 Rad. given by Eq. (7.18) with n = 458. The storey forces used
in the determination of the sway of building A were obtained by using
these values and the actual column axial loads in the structure.

To demonstrate that Eqs. (7.16) and (7.18) are general, the
study must be extended to structures of different size. Three simple
structures denoted as E.1, E.2, and E.3 have been selected and are
shown in the insets to Figs. 8.13 to 8.15. E.l and E.2 are 5-storey
buildings with 20 and 50 columns respectiveiy, while E.3 is a 10~
storey building containing 50 columns.

A Monte Carlo simulation has been used to generate random
out-of-plumbs for the columns of frame E.l1. The population generated
was-normally distributed and had a mean of zero and a standard deviation
of 0.0017 Rad. Every column of the frame has been allocated one of
these values. A set of storey forceé was obtained and was:applied
to the shear-wall to calculate the lateral deflections. The process
was repeated 50 times with different values and the results were plotted
in Fig. 8.13. Also plotted is the curve resulting from Eq. (7.16),
where Ad/h = 3.5 x 0.0017'x 1173/4500 = 0.00155 Rad. (in this case,
the same result is obtained from Eq. (7.18)). It is obéerved that none
of the curves exceeds tﬁe limit given by Eq. (7.16) or (7.18). |

Similar computations were made for structures E.2 and E.3
and the resulté are presented in Figs. 8.14 and 8.15. Uniform sloﬁes
in the order of 0.001 Rad. were calculated from both Eqs. (7.16) and

(7.18). The prescribed curves were again not exceeded. It can be
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concluded that Eq. (7.18) gives a good upper bound for estimating the
lateral deflections induced by initial column out-of-plumbs for the

types of structures studied.

8.2 Wall Out-of-Plumbs

The actual cores of buildings A and B are formed of eight
and nine walls per storey, respectively. However, only the four
exterior walls will bé considered in the foliowing applications, using
the information given by the measurements. It will be assumed that the
four walls carry the total axial loads in the actual cores. The
moments, torques, and lateral deflections calculated in this manner
will be larger than in the actual cases where the same loads are carried
by more than four walls. These effects will be discussed in the next
cﬁapter.

The wall dimensions used in the computations are given in
Figs. 6.2 and 6.3. Inébuilding A, the core dimensions are 87' x 29°'
up to level 14 and are reduced to 67' x 29' in the upper section.
In building B, the dimensions are assumed to be 66' x 38' for the
total height of the building.

The share of the total axial load carried by the individual
walls is assumed proportional to the length of the walls. These
values are listed in Tables 8.5 and 8.7. The axial loads in the upper
22 storeys of the 27-storey building A are used in the calculations

since results were obtained for only 22 storeys.
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8.2.1 Moment in Core

The moments in the cores of buildings A and B have been
calcuiated at each étorey from the informatién given by the measure-
meﬁts on the walls and have been listed in co%umns 6 and 7 of Tables
8.5 and 8.7. The moments prescribed by Eq. (7.25), which considers
the contribution of the mean, and Eq. (7.26), which neglects it, are
listed in columns 3 and 4 of Tables 8.6 and 8.8.

The measured and predicted moments described above are plotted
in Figs. 8.16 and 8.17 for direct comparison. Fig. 8.17 proves that
the apparent conservativeness of the proposed equations in Fig. 8.16
is due to the actual out-of-plumb arrangement in building A, This arrangement
resulted in the calculation of comparatively small moments in the core. |
Moreover, the contribution of the mean, which accounts for 15 and 25
percent of the contribution of the standard deviation at the base of

buildings A and B, is apparently a significant factor.

8.2.2 Torque in Core

The torques at each core level, as predicted by Eqs. (7.30)
and (7.31), are listed in Tables 8.6 and 8.8 for buildings A and B.
The torques calculated from the actual measurements are listed in
Tables 8.5 and 8.7 and are plotted against the proposed design values
in Figs. 8.18 and 8.19. Since all the measured values lie well within
the limits prescribed by Eq. (7.31) and since the contribution of the
mean accounts for less than 6 percent of the contribution of the
standard deviation in both cases, Eq. (7.31) seems apprépriate for use

in design.




1 2 3 ] 4 1 5 6 I 7 8
Storey Storey Axial Load Moment Torque
~No. Height (Kips) (Ft.-K.) (Ft.-K.)
(Ft.) | Total | Walls #1,2*% | Walls #3,4% | x Axis y Axis
22 12 1382 484 207 0.00. 0.00 7.49
21 12 2726 954 409 ~-167.12 12.93 - 17.01
20 12 4140 1449 621 ~181.90 71.14 45.28
‘19 12 5520 1932 828 ~141.17 | 40.95 84.21
18 12 6894 2413 1034 -151.20 61.08 - 44.74
17 12 8274 2896 1241 170.16 174.15 315.08
16 12 9652 3378 1448 52.90 | -424.68 12.51
15 12 11022 3858 1653 288.87 -363.11 4.52
14 12 12406 4652 1551 52.33 | -287.06 -162.39
13 12 13782 5168 1723 - 20.38 151.32 441,12
12 12 15154 5683 1894 -307.48 7.22 158.22
11 12 16406 6197 2006 - 11,47 -296.46 -207.35
10 12 17898 6712 2237 - 3.82 -101.87 40.36
.9 12 19306 7240 2413 ~-359.24 ~341.45 - 82.02
8 12 20650 1744 2581 -246,09 | ~-115,22 80.77
7 12 22022 8258 2753 - 64.61 123.82 ~ 9.89
6 12 23398 8774 2925 652,23 238.53 141.72
5 12 24766 9287 3096 288.78 85.89 ~ 56.38
4 12 26146 9805 3268 123.35 428,35 ~532.11
3 12 27526 10322 3441 1127.65 73.94 529.04
2 12 28910 10841 3614 1438,38 148.85 669.33
1 20 30286 11357 3786 1200.10 645.35 ~584,38
1857.10 322.00

157

* "Wall numbering

TABLE 8.5

given in Fig. 6.2.

"FORCES IN CORE OF BUILDING A FROM ACTUAL

WALL OUT-OF-PLUMBS
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1 ) 3 | 4 5 { 6
Storey Storey | Moment Torque
No. Height (Ft.-K.) (Ft.-K.)
' (ft.)
Eq. (7.25)%| Eq. (7.26)%| Eq. (7.30)*%*% Eq. (7.31)%*%*
22 12 0.0 0.0 69.1 65.3
21 12 92.3 87.5 136.3 128.7
20 12 207.9 193.5 207.0 195.5
19 12 354.7 325.9 276.0 260.7
18- 12 524.7 477.9 344.7 325.6
17 12 716.9 647.3 413.7 390.7
16 12 930.0 832.8 482.6 455.8
15 12 1162.6 1033.0 551.1 520.5
14 12 1413.5 1246.7 851.2 806.2
13 12 1698.6 1489.8 945.6 895.7
- 12 12 1999.2 1743.6 1039.9 984.9
11 12 2314.2 2008.2 1133.4 1073.6
10 12 2643.0 2281.8 1228.1 1163.3
-9 12 2988.5 2567.3 1324.8 1254.8
8 12 3361.9 2863.9 1417.0 1342.1
7 12 3736.9 3169.3 1511.0 1431.2
6 12 4126.3 3484.3 1605.5 1520.6
5 12 4530.0 3808.8 1699.3 1609.5
4 12 4946.1 4142.1 - 1794.1 1699.3
3 12 5376.2 4484 .6 1888.7 1788.9
2 12 5819.9 4835.9 1983.7 1878.9
1 20 6277.2 5196.0 2078.1 1968.3
7416.4 6165.2
* with 8 = 3.5, A;/h = 2.8 x 107", and o,= 2.8 x 107°,
*% with B = 3.5, e/L = 0.5 x 107", and O, = 4.0 x 107",

TABLE 8.6 FORCES IN CORE OF BUILDING A

FROM STATISTICAL CALCULATIONS




1 1 2 3 4 5 6 7 8
Storey | Storey Axial Load Moment Torque
No. Height (Kips) (Ft.-K.) (Ft.-K.)
(Fr.) ey
Total Walls #1,2% Walls #3,9% x Axis y Axis
34 24 312 100 56 0.00 0.00 - 0.82
33 12 1962 628 353 - 3.85 | - 4.53 - 16.67
32 12 3208 1027 577 42.79 51.77 - 5.42
3 12 4326 1376 787 54.24 105.18 6.94
30 12 5440 1730 990 75.12 155.94 - 16.27
29 12 6560 2086 1194 97.38 186.10 120.88
28 12 7672 2440 1396 - B81.47 154.80 ~139.60
27 12 8790 2795 1600 ~ 71.02 520.91 -102.81
26 . 12 9896 3147 1801 - 74.02 500.73 109.83
25 12 11012 3502 2004 -125.68 623.91 29.75
24 12 12114 3852 2205 -292.17 637.38 ~232.69
23 12 13226 4206 2407 -138.02 810.64 12.79
22 12 14342 4561 2610 - 20.77 1018.44 1.67
21 12 15456 4915 2813 - 0.60 1196.07 52.63
20 12 16550 5263 3012 220.76 1387.30 ~390.23
19 12 17664 5617 3215 352.53 1469.10 - 2.70
18 12 18922 6017 3444 126.16 1369.05 - 53.10
17 12 20186 6419 3674 364.48 | 2107.00 ~188.47
16 12 I21&46 6820 3903 518.30 2088.91 200.16
15 12 | 22708 7221 4133 -202.68 | 2263.77 -283.76
14 1.2 23938 7612 4357 207.65 | 2416.14 ~ 35.45
13 12 25194 8012 4585 41.70 | 2927.45 94.09
12 12 26456 84131 4815 199.24 3291.20 1.02
11 L2 1 27716 8814 5044 -306.82 3322.93 -461.48
10 b2 28974 9214 5273 -929.03 5056.40 ~424.77
9 12 30600 9615 5685 ~509.12 | 4895.72 ~489.17
8 12 31496 10016 5732 -168.95 | 6252.96 112.62
7 12 32758 10417 5962 - 68.51 6051.05 -223.92
6 12 34016 10817 6191 638.75 5979.25 66.53
5 24 35548 11304 6470 836.68 5674.81 497.23
4 27 36176 11504 6584 -1496.94 6560.72 754.135
3 16 40886 13002 7441 225.71 7113.85 54,738
2 15 42470 13505 7730 -867.73 5854 .57 88.23
1 [ 43978 13985 8004 ~1228.49 7374.08 -415.94
L -1405.32 6955.80
% Wall numbering given in Fig. 6.3.

TABLE 8.7

FORCES IN CORE OF BUILDING B FROM ACTUAL

WALL OUT-OF-~PLUMBS

159
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1 2 3 4 5 6
Storey Storey Moment Torque
No. Height (Ft.-K.) (Ft.-K.)
() Thq. (7.25)% | Bq. (7.26)% | Eq. (7.30)%% |Eq. (7.31)%*
34 24 0.0 0.0 14.6 13.7
33 12 40.2 38.1 91.7 86.3
32 12 134.4 125.7 150.0 141.0
31 12 252.3 232.8 201.4 189.3
30 12 385.7 351.7 253.2 238.0
29 12 535.6 483.3 305.3 287.0
28 12 701.5 627.2 357.1 335.7
27 12 882.4 782.3 409.1 384.6
26 12 1077.7 948.1 460.6 433.0
25 12 1286.5 1123.6 512.5 481.8
24 12 1508.6 1308.7 563.8 530.0
23 12 1743.1 1502.6 615.6 578.7
22 12 1990.1 1705.1 667.5 627.5
21 12 2249.2 1916.0 719.4 676.2
20 12 2520.1 2135.0 770.3 724.1
19 12 2801.9 2361.2 822.1 772.8
18 12 3095.1 2594.9 880.7 827.9
17 12 3403.3 2839.6 939.5 883.2
16 12 3726.1 3094.5 998.2 938.3
15 12 4062.8 3359.2 1056.9 993.5
14 12 4412.9 3633.0 1114.1 1047.3
13 12 4775.2 3914.9 1172.6 1102.3
12 12 5150.1 4205.2 1231.3 1157.5
11 12 5537.5 4503,6 1290.0 1212.7
10 12 5936.9 4809.9 1348.5 1267.7
9 12 6348.0 5123.7 1412.3 1327.2
8 12 6777.2 5450.1 1465.9 1378.0
7 12 7210.8 5777.9 1524.6 1433.2
6 12 7656.0 6113.0 1583.2 1488.3
5 24 8112.1 6454.9 1654.5 1555.3
4 27 9670.1 7773.9 1683.7 1582.8
3 16 11391.1 9221.5 1903.0 1788.9
2 15 12154.4 9801.6 1976.6 1858.1
1 15 12852.8 10321.6 2046.8 1924.1
13567.5 10851.6
* with B = 3.5, 4,/h = 2.8 x 107*, and o, = 2.8 x 1073,
** with § = 3.5, e/L = 0.5 x 10™*, and o, = 4.0 x 107",

TABLE 8.8

FORCES IN CORE OF BUILDING B

FROM STATISTICAL CALCULATIONS
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e (Col. 8, Table 8.5)
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0 5 10 15 20

Torque X10~2(Ft- K)

Figure 8.18 Torque due to wall out-of-plumbs in the core of building A
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id l Equation (7.30)
- L] (6=35,%/L=05X10"4,
. | 0e=4.0X107%)
¢ [ ] (Col. 5, Table 8.8)
. [ ] '
N - [
. -
° l l/— Equation (7.31)
______:______Measured values ]/l (Col. 6, Table 8.8)
5 N (Col. 8, Table 8.7) ] l
. [ |
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0 il L | [ 1
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TorqueX 1072 (Ft- K)

Figure 8.19 Torque due to wall out-of-plumbs in the core of building B
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8.2.3 Lateral Deflections

Equation (7.37), which gives an equivalent wall out-of-
plumb for use in an overall stability analysis of a structure, has the
same form and consequently the same characteristics as Eq. (7.18)
derived for column out-of-plumbs. Therefore, the results obtained
in section 8.1.5 can be extended to the present case.

As applied to the 22-storey building A, the equivalent slope
of the walls forming the core is Ad/h = 0.00028 + 3.5 x O.OOZB/Zf?Er =
0.00156 Rad. and the slope calculated for buildingB (where n =vl36)'

is 0.00133 Rad.



CHAPTER IX

'COMPARATIVE STUDY

Design equations have been derived and their applicability
has been confirmed in the previous two chapters, but the significance
of the effects in terms of the overall structural design has not been
determined. The importance of the out-of-plumb effects in design
can be evaluated in terms of corresponding wind effects.

The study in this chapter is limited in scope but gives
interesting results when applied to core-braced structures. Where
appropriate, the design recommendations given in section 5.4 are
compared with the results of the techniques developed in this report.
A certain consistency is achieved by using the specified loads in the
calculations. No attempt is made to include the wind effects on the
column axial loads,which would have resulted in increased axial loads
on the leeward side and reduced axial loads on the windward side,

with no net difference in the total gravity load.

9.1 Horizontal Forces at Connection Point

Wind pressures of 35.0 psf in the upper sections of
buildings A and B and 22.0 psf at ground level were obtained from
the simple procedure prescribed by the National Building Code of

(60)

Canada Of these pressures, a proportion 8/13 is applied directly

to the windward side of the building and a proportion 5/13 acts as a

166




167

suction on the leeward side. The basic wind pressure with a return
period of 30 years is 8.5 psf for these buildings.

The shears caused by wind and transmitted to the core were
caléulated at specific beam-to-column connections in both buildings.
The values presented in column 4 of Table 9.1 were obtained from the
windward pressures given above applied to the particular connection
tributary areas (see Figs. 6.2 and 6.3). The horizohtal forces created
in these connections by the out-of-plumbs of the columns are presented
| in the same table. A sample calculation using Eq. (7.5) is gi§en
below the table. The out~of-plumb to wind shear ratios given in
column 6 indicate that,in a tall braced building, the out-of-plumb
shears generally govern in the design of the connections, while in the
top storeys they still account for an important fraction of the wind
shears.

The out-of-plumb shears become even more critical in a frame
of the type shown in Fig. 8.1 where the forces are transferred to a
bracing system in the plane of the frame. The shears due to column
out-of-plumbs are increased from bent to bent during the transfer but
the wind forces remain constant. It is understood that other signi-
ficant forces, such as the P-A forces described in Chapter IV, are
also present.

The model shown in Fig. 9.1(a) was used as an example in
Ref. 23 to estimate the out-of-plumb forces in girder-to-column
connections. All columns are assumed to be erected with initial out-of-
plumbs of 0.002 Rad.(36) (see section 5.4.2). The constant forces
of value 1.02 kips created at each connection are added algebraically

when transferred to the bracing system.
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Figure 9.1 Distribution of horizontal shear in a braced bent
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The same frame has been used in the example of Fig. 8.1 for
an eventual comparison. The horizontal shears from Figs. 8.1 and 9.1(a)
are plotted in Fig. 9.1(b) as a function of the number of columns (2 per
connection). The figure shows that the shears predicted by a constant
column out-of-plumb of 0.002 are unconservative for a small number of
columns but become excessively large as the number of columns involved
increases. An arbitrary wind shear, calculated for a pressure of 21.54
psf and a span perpendicular to the plane of the frame of 30 ft.,
has been plotted on the graph to point out that the wind shear is
independent of the number of columns in the bent. The relative
importance of the wind shear with respect to the out~of-plumb shear is

given by the gravity-to-wind load ratio at the section under study.

9.2 Shear and Moment in the Plane of the Floor

The portion of the floor delimited by column lines No. 8 to 15
in Fig. 6.2 must be designed for shears and moments in the plane of the
floor. Assuming a wind force in the x direction, the shear transmitted
to the core at a specific floor level by the portion of the floor
described above, is roughly equal to the sum of the lateral forces
concentrated at connections No. 8, 9, 14 and 15. A shear equal to 17.6
kips is calculated at floor level 1 for a wind pressure of 22 psf and
‘a tributary area of 800 ft?. This value is compared in Table 9.2 with
the shear calculated at the same storey from the 16 out-of-plumb
columns on lines 8 to 15. The out-of-plumb shear is about twice as
large as the wind shear at that level. The values obtained at floor

level 23 show that the wind controls in the upper storeys.
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1 2 3 4 5
Floor Wind OQut-of-Plumb Qut—of-Plumb Effect
Level Effect Effect Wind Effect
Shear 1% 17.6 k. 36.0 k.t 2.0
In Floor 23%% 21.0 k. 7.4 k 0.35
Moment 1% 222 ft.-k. 2206 ft.-k.tt 9.9
In Floor 23%%* 265 ft.-k. 452 ft.-k. 1.71

* Design wind pressure = 22.0 psf

%% Design wind pressure = 35.0 psf

1
3.5 x .0017 ¥/ I P§ (Eq. 7.7)

+ Fd

oM

//16
3.5 x .0017 v [P? (L

"TABLE 9.2

j=1

j=1

2 2
x + Ly)]j (Eq. 7.9)

COMPARISON OF OUT-OF-PLUMB AND WIND

EFFECTS IN FLOOR SYSTEMS
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The moments calculated at the same floor sections, under the
same conditions, are listed in the second half of the table. The out-
of-plumb moments obtained from Eq. (7.9) far exceed the wind moments at

every storey of building A.

9.3 Shear, Moment, and Torque in Core

The simplified method of Ref. 60 was used to calculate the
ﬁoments and shears caused by a basic wind pressure of 8.5 psf at each
storey of buildings A and B. The results are presented in Tables 9.3 -
to 9.5. The tabulated values have been calculated for a wind applied
perpendicular to the short face of the buildings. The wind loads (wind-
ward‘and leeward componenté combined) and resulting shears and moments
in the orthogonal direction can be obtained by factoring the tabulated
values by the appropriate building length-to-width ratio given below
the tables.

A comparison of the shears given in column 4 of Tables 9.3
and 9.5 with those given in column 5 of Tables 8.2 and 8.4 reveals
that the column out-of-plumbs create shears in the cores of buildings
A and B which do not exceed 4.5 and 3.3 percent of the wind shears
(depending on the direction of the wind).

The out-of-plumb moments given in column 6 of Table 8.2
are compared in Fig. 9.2 with the corresponding wind moments for
building A. Although still small, the fraction of moment due to
column out—of-plumbs is relatively larger in the upper section of the
structure than at the base. This is in part due to the gravity-to-

wind load ratio but is largely a reflection of the fact that wind
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1 2 v 3 4 5
Storey Storey Wind Load Shear Moment
No. Height (Short Span)
(Ft.) (kips) (kips) (Ft.-K.)
27 20 35.0 35.0 0.0
26 12 56.0 91.0 700
25 12 42.0 133.0 1792
24 12 42.0 175.0 3388
23 12 42.0 217.0 5488
22 12 39.4 256.4 8092
21 12 39.4 295.8 11169
20 12 39.4 335.2 14718
19 12 39.4 374.6 18741
18 12 39.4 414.0 23236
17 12 39.4 453.4 28204
16 12 39.4 492.8 33645
15 12 36.8 © 529.6 39558
14 12 36.8 566.4 45914
13 12 36.8 603.2 52710
12 12 36.8 640.0 59949
11 12 36.8 676.8 67629
10 12 34.1 710.9 75750
9 12 34,1 745.0 84281
8 12 34,1 779.1 93221
7 12 31.5 810.6 102570
6 12 31.5 842.1 112298
5 12 28.9 871.0 122403
4 12 28.9 899.9 132855
3 12 26.3 926.2 143654
2 12 26.3 952.5 154768
1 20 35.0 987.5 166198
185948

Wind pressure,q(gs) = 8.5 psf.

Building dimensions: Long span, 147’ Ratio = 1.485
Short span, 99'

TABLE 9.3 SHEAR AND MOMENT DUE TO WIND IN

CORE OF (27-STOREY) BUILDING A
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1 2 3 4 5
Storey Storey Wind Load Shear Moment
No. Height (Short Span)
(Ft.) (kips) (kips) (Ft.-K.)
22 12 19.7 19.7 0.0
21 12 39.4 59.1 236
20 12 39.4 98.5 946
19 12 39.4 137.9 2128
18 12 39.4 177.3 3782
17 12 39.4 216.7 5910
16 12 39.4 256.1 8510
15 12 36.8 292.9 11584
14 12 36.8 329.7 15098
13 12 36.8 366.5 19055
12 12 36.8 403.3 23453
11 12 36.8 440.1 28292
10 12 34.1 474.,2 33574
9 12 34.1 508.3 39264
8 12 34.1 542.4 45364
7 12 31.5 573.9 51872
6 12 31.5 605.4 58759
5 12 28.9 634.3 66024
4 12 28.9 663.2 73636
3 12 26.3 689.5 81594
2 12 26.3 715.8 90184
1 20 35.0 750.8 98773
113789
1

Wind pressure, q (30) = 8.5 psf

Building Dimensions:

- Long span, 147 Ratio = 1.485
- Short span, 99'

TABLE 9.4 SHEAR AND MOMENT DUE TO WIND IN CORE

OF (22~STOREY)BUILDING A




1 2 3 4 5
Storey Storey Wind Load Shear Moment
No. Height (Short Span)
(Ft.) (kips) (kips) (Ft.-K.)
34 24 54.4 54.4 0.0
33 12 81.6 136.0 1306
32 12 54.4 190.4 2938
31 12 48.4 238.8 5222
30 12 48.4 287.2 8088
29 12 48.4 335.6 11534
28 12 48 .4 384.0 15562
27 12 48.4 432.4 20170
26 12 48.4 480.8 25358
25 12 48.4 529.2 31128
24 12 48.4 577.6 37478
23 12 48 .4 626.0 44410
22 12 48.4 674.4 51922
21 12 48.4 722.8 60014
20 12 48.4 771.2 68688
19 12 45.3 816.5 77942
18 12 45.3 861.8 87740
17 12 45.3 907.1 98082
16 12 45.3 952.4 108967
15 12 45.3 997.7 120396
14 12 45.3 1043.0 132368
13 12 45.3 1088.3 144884
12 12 42.3 1130.6 157944
11 12 42.3 1172.9 171511
10 12 42.3 1215.2 185586
9 12 42.3 1257.5 200168
8 12 42.3 1299.8 215258
-7 12 39.3 1339.1 230856
6 12 39.3 1378.4 246925
5 24 59.0 1437 .4 263466
4 27 77.1 1514.5 297964
3 16 59.6 1574.1 338855
2 15 39.1 1613.2 364041
1 15 37.8 1651.0 388239
413004
Wind pressure, q(é%) = 8.5 psf.
Building Dimensions : Long Span; 152 Ratio = 1.333

TABLE ‘9.5

Short Span, 114'

SHEAR AND MOMENT DUE TO WIND IN

CORE OF BUILDING B

175



Wind acting on long face
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Roof -
25 |-
20
15
Storey
The compared values are given in
column 6, table 8.2 and column 5,
10 + table 9.3.
5 b
0 | ! 1 ! |
0] i 2 3 4 5
Out-of-Plumb % 100 (%)
Wind °

Figure 9.2 Comparision of moments caused by column out-of-plumbs and
moments due to wind in Luilding A
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moments are added aigebraically from storey to storey while out-of-
plumb moments are combined statistically according to Eq. (7.13).

A similar comparison is presented in Fig. 9.3 for the moments
c&used by the wall out-of-plumbs of building A. The figure indicates
that the out-of-plumb moments can be proportionally quite large in
the upper storeys of a tall building. Fortunately, these results are
- not significant. A core is designed for the forces at its base and
in general for the forces at one or two other locations along the
core. Therefore, the forces present in the upper section of the core
are fesisted by a stiffer and stronger core than required.

The actual buildings, A and B, had cores formed of eight and
nine orthogonal walls respectively. The moments, torques, and lateral
deflections calculated for only four walls are consequently larger
than in the real case. Assuming that the actual eight walls of building
A carry an equal share of the total vertical load, it can be shown
that the moments predicted by Eq. (7.26) are reduced by 55 percent.
Thus, in the case of the wind acting on the short face of the building
as shown in Fig. 9.3, the moment is reduced from 39 to about 19
percent at the top of the building and from 6.5 to about 3.5 percent
at the base.

The results presented in Fig. 9.4 show that the moments in
the core due to column and wall out-of-plumbs are negligible in the
case of building B. A reduction of 55 percent also exists when the
calculations are based on the actual nine walls.

There are no recommendations related to wind in the Canadian

(60)

National Building Code which allow a calibration of the torques
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Wind acting on long face

- Roof
20
Short face
15
Storey  2 7
10 - ]
The compared values are given
. in column 3, table 8.6 and column 5,
. table 9.4.
s ]
ol * ﬁ I I I |
0 10 20 30 40
Out-of-Plumb
ST UMY %100 (%)
Wind

Figure 9.3 Comparison of moments caused by wall out-of-plumbs and moments
due to wind in building A
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@ Column out-of-plumbs @ Wall out-of-plumbs
The compared values are given in The compared values are given in
column 6, table 8.4 and column 5, column 3, table 8.8 and column 5,
table 9.5. table 9.5.
Roof ; ,
B 2 Q@ @ D
30
Wind acting on long face
25
20 +
, f«— Short face
Storey
15+
Long face — Short face
10 |~
5+
0 ] L | 1 I ]
0 1 2 3 4 5
-of-Pl
9}1‘__?__f___‘.’_'1‘_'2 X 100 (%)
Wind

Figure 9.4 Comparision of moments caused by column and wall out-of-plumbs
and moments due to wind in building B
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given in column 7 of Tables 8.2 and 8.4 and in columns 5 and 6 of
Tables 8.6 and 8.8. However, the siﬁple static analysis described

in the commentary on the effects of éarthquakes in Supplement No. 4
to the National Building Code of Canada can be used to calibrate the
out~of~-plumb torques. ‘The total lateral forces for an earthquake
occurring in a seismic zone 2 are calculated as 1032 kips and 1560
kips, respectively, for buildings A and B. The estimated total weights
of both buildings are approximately 61450 and 100000 kips. The
calculated lateral forces acting through the design eccentricity

(60)

recommended by the code produce torsional moments in the order
of 7585 and 28236 ft.-k.,respectively,at the base of the buildings.

The code recommends a design eccentricity equal to 1.5
times the distance between the calculated center of mass and the center
of resistance of the structure, plus an accidental eccentricity equal
to 0.05 times the plan dimension in the direction of the computed
éccentriéity. By reason of its symmetry, building A has an accidental
eccentricity equal to 7.35 ft. The calculated eccentricity for building
B is 7.0 ft. and the accidental eccentricity is gqual to 7.6 ft.

The torques created by the out~of-plumbs in these buildings
account for 33 and 38 percent of the accidental torque in the case of
the columns and 27 and 17 percent,respectively,in the case of the
walls. When the calculated eccentricity is also accounted for in
building B, the proportions are reduced to 16 percent for the columns
and 7 percent for the walls. The proportions related to the walls
in both buildings are further reduced by a factor of 2.5 of the
calculations based on the actual number of walls forming the cores.

The out-of-plumbs could therefore induce torsional effects that are

ﬁot_necessarily negligible.
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9.4 Lateral Deflections

It has been shown in sections 5.1 and 5.4 that the most
common technique in an overall stability analysis for initial out-of-
plumbs consists in assumiﬁg that columns and walls all lean in the
same direction, as in Fig. 5.1(a). The standards described in section
5.4,which refer to that model,were applied to building A and compared
with the results of Eq. (7.16) and (7.18) in Fig. 9.5. It was shown
in section 8.1.5 that curves 1 and 2 in Fig. 9.5 were upper bounds
on the actual lateral deflections for this structure. In fact, the
actual deflection curves obtained from the measured column out-of-
plumbs in the x and y directions were shown in Fig. 8.12 to be well
within these limits. By superimposing Fig. 8.12 on Fig. 9.5, the
conservative nature of the various code recommendations is evident.

5)(47), which is a function

The West German expression (No.
of the building height, gives the closest estimate. The lateral
deflections given by curves 4 and 6 'are about i3 times larger than the
1imit given by Eq. (7.18) at the top of the building. Curve No. 6,

suggested by the Swedish Conérete Regulations (B7~1968)(46)

, has been
obtained for 6 columns with a slope of 0.007 Rad. and 10 columns with
a slope of 0.0035 Rad., resulting in a slope of 0.0048 Rad. at each
storey.

By extending the study, it can be ascertained whether some
vof these recommendations still have the same relationship when applied
to structures of different heights. Figs. 9.6 and 9.7 present curves

obtained for a 10-storey building (E.3) and a 5-storey building (E.1l)

respectively. It is observed that the different code requirements are
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@ agh=po, | = pjz/é1 P (Eq. 7.16)
= o
@ 44/h = Bog / A (Eq. 7.18)
®) ag/h=0002 [ CSA-S16.1] (Section 5.4.2)
Roof S @
25
20
|
= 15
8
[T

10 }

(Section 5:.4.1)

@ ayg/h=0005 .

® agy/h = 1/85 /b, (in feet)

[DIN 1045, reinf. conc.]

[ECCS]

{Section 5.4.4)

A
® A4/h=0.007 and 0.0035

{B7-1968] {Section 5.4.6)

@ Eq. 5.8 [ SNB - $25:21]

[precast reinf. conc.] (Section 5.4.6)

i }
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i i
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L.ateral Dellection

Figure 9.5 Comparison of lateral deflections derived from different code
specifications for building A
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Q) Ay/h =Bo; '21Pi2/.>:1Pj ........... (Eq. 7.16)
i= i=
@ Ag/h ‘”‘ﬁ"c/m\/ N (Eq. 7.18)
® ag/m=0002 . [ CSA-S16.1] __ (Section 5.4.2)

@ ag/h=0005 .

®) Ag/h=1/55 J hy (in feet)

[DIN 1045, reinf. concrete] {Section 5.4.4)

0.0 ® © @

[ECCS} . . (Section 5.4.1)

10

Floor Leve!

| | | ) l 1

0 1 2 3 4 5 6

Lateral Deflection

Figure 9.6 Comparison of lateral deflections derived from different code
spacifications for building E.3
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n n
Ag/h = Bo, 21 P,2/21P, .................................... (Eq. 7.16)
j= i=
2.2
Ad/h‘ﬁ(fc/ VL (Eq.7.18)
Ag/h=0.002 . .. ... CICSA-S16.) (Section 5.4.2)
Ag/h=0005 ... [ECCS] ... (Section 5.4.1)
Ag/h = 1/55 | h, (in feet) [DIN 1045, reinf. concrete]  (Section 5.4.4)
5 - @0 © @
4 -
3 -
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]
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Lateral Deflection

Figure 9.7 Comparison of lateral deflections derived from different code
specifications for building E.1
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more appropriate to low structures in the sense that the disparities
between their predictions and the results of Eq. (7.18) are significantly

(47)

reduced. The West German recommendation in general estimates the

(41)

deflections reasonably well while the European recommendation still
remains excessively conservative. Any comparison between the different
code recommendations, however, must be carefully interpreted for the
reasons given in section 5.1.

For the buildings under study, the deflections predicted by
Eqs. (7.18) and (7.37) account for a small percentage of the deflections
due to wind, as shown in Table 9.6. . The column out-of-plumbs have
apparently no significant effect on tﬁe overall étégility of the
structures. The sway induced by the wall out-of-plumbs accounts for
less than 5 percent of the sway due to wind when ﬁhe actual number of
walls is used in the calculations. lAlthough the lateral deflections
are small for these buildings of 20 storeys and over, it cannot immedi-
ately be concluded that the overall stability of other buildings is not
affected by out-of-plumbs. The gravity-to-wind load ratio of a building,
the type of building, and the number of columns and/or walls present
in the building are all significant factors to be taken into account.

An example is given in Fig. 9.8 where a one-storey braced
structure is analyzed for two different combinations of columns and
walls. Egs. (7.16) and (7.36) are used to calculate the horizontal
forces due to out-of-plumbs for the given axial loads. The forces Hc
and Hw obtained for éolumn and wall out-of-plumbs, respectively, are
combined according to Eq. (7.38). Since the deflections are directly
related to the applied lateral loads in this case, the ratios given in

Fig. 9.8 are a measure of the sway induced by out-of-plumbs to the sway
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Building No. of Columns Ag/h* Qut—of-Plumb x 100
n (x 10" Rad.) Wind
&3
A 458 3.67 1.0
B 880 2.73 1.0
* Ay/h= 3.5 x .0017/ 2.2/ (Eq. 7.18)
Wall OQut—of-Plumbs:
i
Building No. of Walls Ad/h**; OQut-of-Plumb x 100
n (x 10* Rad.) Wind
(%)
(4 wallé/étorey)
88 1.56 6.0
A (8 walls/storey)
176 1.20 4.6
(4 walls/storey)
136 1.33 3.5
B (8 walls/storey)
306 1.00 2.6
% A,/h = 0.00028 + 3.5 x .0028/%%n (Eq. 7.37)

TABLE 9.6

LATERAL DEFLECTIONS CAUSED BY OUT-OF-PLUMBS

AS A PERCENTAGE OF DEFLECTIONS DUE TO WIND
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P p
H=——p o ‘7 —r
/ P = 80k
|
% H= 18k
/% ! P/H =4.44
Y 7 ——
1 Column:
PAy ‘/ 802
H, = =80| 3.5X0.0017 = 0.48k
h 80
1 Wall:
Hy, = =80 | 0.00028 + 3.5X0.0028 =0.8k
h 80
J H2 +H2
———mrmnemee = (0,062
H
4 Columns:
ZPA vV 4x202
H = -—-—-——-—-0—— =801} 3.6X0.0017 ————— =0.24 k
¢ h 80
2 Walls: ___
TPy 2 X402
HW = -——-T]——-—-— = 80 {0.00028 + 3.5X0.0028-———-—§6—-— = (.58 k
v HZ + HZ
=0.035
H

Figure 9.8 Example—proportion of sway
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caused by the lateral loads. The 5.2 percent out-of-plumb sway obtained
for the one-column, one-wall structure is reduced to 3.5 percent for

the four-column, two-wall structure carrying the same total load.




CHAPTER X
DISCUSSION
.

The previous chapters have been devoted to the presentation
andkdiscussion of aspects of structural stability related to P-A and
out-of-plumb effects. The general discussion presented in this chapter
should establish a logical link between these different sections and

emphasize the major characteristics of the study.

10.1 P-A Effects

The P-A effects were briefly discussed in the first sections
of the fhesis withvemphasis placed on the creation and transfer of |
additional horizontal forces in structures. Practical techniques for
including second order effects in analysis were presented. It was
demonstrated that when an approximate second order analysis is
performed, the horizontal forces in the structure are not distributed
in a proper manner. Generally, the errors in these forces do not
affect the design of structural members but do affect the design of
connections and floor diaphragms when the second order effects are
important. Such a situation may occur in a pin-connected frame which
relies on a separate lateral support system for stability. The transfer
of horizontal forces in this type of structure is more critical than
in other types of structures.

As a general rule, the correct horizontal force distribution

should be evaluated at specific storeys in any type of structure when

189
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the storey shears given in Fig. 3.3 are significant compared to the
applied wind forces. A redistribution of the forces based on the free-
body diagram method described in section 4.3 is then recommended,

since the concept of the free-body diagram is familiar to most designers.
When the sway forces are not significant, the horizontal forces given

by a first order analysis can be used in the design of the connections

and floor systems.

10.2 Out—-of-Plumb Effects

The study of the effects of out-of-plumbs on the stability
of structures was primarily based on core-braced buildings in which a
pin-connected steel frame is supported by a central reinforced concrete
core. Although the transfer of the horizontal forces is more critical
'in this type of structure, the results obtained on core-braced buildings
can be extrapolated to other types of structures including moment
resisting frames. The sway of a continuous structure creates extra
moments in the members and the additional forces produced are reduced
to & minimum. The out-of-plumb effects in moment resisting frames are
not investigated as such in this thesis.

Statistical methods are essential to describe the nature of
the out-of-plumb forces. A certain probability of occurrence can then
be associated with the selected factor of safety. A safety index of 3.5,
corresponding to a probability of failure of 4.6 x 10™*, has been
adopted, based on discussions presented in section 7.1 and in Appendices
B and C. The adequacy of the selected safety index and the applicability
of the equations derived jn Chapter VII have been confirmed in Chapter

|
VIII. ; t
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The out-of-plumb measurements taken as a part of this research project
and presented in Chapter VI compare quite well with the published
measurements listed in section 6.1. The statistical populations obtained
are normally distributed, resulting in greatly simplified calculations.
The calculated means are generally small enough to be neglected when

. the sample dimensions are sufficiently large to present a realistic
estimate of the distribution characteristics. Unfortunately, the
standard deviations obtained in this thesis are specific to the
building measured. They are apparently typical for steel columns and

cast-in situ reinforced concrete walls,as observed by comparing

the results of the three different buildings A, B, and C. The standard
deviation for the reinforced concrete walls is almost double
that measured for the steel columns, as shown in Table 7.4.
Data from other structures are required to estimate the
effects on the standard deviation of variables like:
.— the structural material,

-~ the type of structure,

- the erection an% plumbing techniques,
- the skill and experience of the constructor.

The population mean may also be large in some cases and the
possibility of systematic variations due to erection techniques or
errors caused by the use of a faulty instrument, for instance, should
be evaluated. While the mean of the column population is almost

zero, the corresponding value for the walls is not negligible.

10.2.1 Connection and Floor Design in Braced Buildings

It was demonstrated in sections 9.1 and 9.2 that the action

of column out-of-plumbs in a core~braced building generally controls
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the design of beam-to-column connections and of floor diaphragms for
horizontal shears and moments. The forces andAmoments given by Eqgs.
(7.7) and (7.9) should be computed for the loading cases of Ref. 36,
using the appropriate load combination factors. 1In tall buildings with
uniformly varying gravity loads, the shears and moments can be
calculated at specific levels and the remaining values obtained by
interpolation.

The model shown in Fig. 5.1(b) was incorrect for the assess-—
ment of forces in the plane of the floors. With a suitable uniform
slope equal to BOC, as given by Eq. (7.2), the model would produce
an upper bound on the forces, which would be equivalent>to totally
neglecting the random nature of cqlumn out~of-plumbs (See Appendix C).
The application shown in Fig. 9.1(b) provides a graphical representa-
tion of the problem. The straight line is the result of the algebraic
summation of the individual column forces suggested by the model of
Fig. 5.1(b). The curve, obtained from a statistical summation,
represents more exactly the actual forces in the structure. 1In this
particular example, since Ad/h = (0,002 is lower than BOC = 0,006,
the actual forces are underestimated by the simple model for
frames having fewer than 10 columns. Beyond this limit, a significant
reduction takes place.

Each beam~to-column connection in a moment resisting frame
can be conservatively designed for an extra horizontal force equal to
0.85 percent of the largest axial load in the two columns above and
below the floor (see Eq. 7.5). This assumes that no significant
transfer of force exists in the structure and that a minimum bracing

force is required to stabilize the columns. A slight reduction of
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this value might be expected in future from an appropriate study on
the effects of column out-of-plumbs in continuous frames.

The basic equation used in Russia for the calculation of
out-of-plumb horizontal forces follows the pattern observed in the
present study(so). Eq. (5.4) should be compared to Eq. (7.18),considgr~

ing that €. is equal to three times the standard deviation obtained

1
from measurements taken on concrete structures. The design value

e, = 0.012, defined as the total change in slope between two columns

1

(at their intersection), is twice as large as BOC = 0.006 for one

column in this thesis and has been described as ioo large in Ref. 48.
The need for a variabie safety index, which has been

observed in the study presented in Fig. 5.4, is most likely to compen-

sate for the neglect of the variable axial loads PJ combined as in

Eq. (7.16) or (7.7). It has been shown in Appendix D that an expression

of the form of Eq. (7.18) underestimates the "exact" force given by

Eq. (7.16) for a small number of columns. The Russians observed

this trend in their study and compensated by imposing a larger factor

of safety.

(

The Swedish Building Regulations o1) described in section
5.4.6 also present the results of a comprehensive statistical approach.
The regulations are, in some respects, in good agreement with the
findings of this thesis. However, the force inaconnection, given by
Eq. (5.6), is equal to about 3.5 pefcent of the average axial load

in the load bearing elements; which is large when compared to the 0.84

percent found in this study.
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10.2.2 Core Design

Shears and moments in a core from both column and wall out-
of-plumbs can be neglected, according to the calculations presented in
Chapter IX. However, as shown in section 9.3, the torques account
for é significant percentage of the minimum torsidnal moments prescribed
by the Canadian National Building Code(éo). The empirical minimum
eccentricity prescribed by the code has been intended to account for
possible additional torsion arising from various sources listed in
Supplement No. 4 to the Canadian National Building Code. It is not
mentioned, however, that the minimum eccentricity is also intended to
account for the possibility of a torque caused by 6ut~of—p1umbs but
‘there is no apparent reason why it should not. |

In view of the significance of the out-of-plumb torques it
might-be more reasonable to include the torsional moments given by
Eqs. (7.15) and (7.31) specifically. In a three-dimensional analysis
of a structure under earthquake loading, the out—of-plumb torques
would be added to the prescribed calculated and accidental torsional
woments. In an analysis for wind loads, the out-of-plumb torques
would be considered alone since, in this case, there is no provision
for 4 winimum eccentricity of load application. In mixed construction
(core-braced building), the torques would be evaluated at specific
storeys for the factored axial loads and combined according to the

Ti to account for their random nature.

expression ¢r53m4
It is common practice, however, to neglect the three~dimensional
effects in most buildings, based on a recognition of the fact that the

torques are comparatively small and that a structure is generally much

stiffer and stronger in torsion than necessary.
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10.2.3 Overall Stability

When the overall stability of a structure under combined
lateral and gravity loads is to be assessed, the extra lateral deflec-
tions caused by column and wall out-of-plumbs can be disregarded.

The deflections caused by the out-of-plumbs account for a very small
percentage of the deflect}ons due to wind, as demonstrated in section
9.4 (Table 9.6).

The uniform slopes given by Egqs. (7.18) and (7.37) are
suitable for the assessment of the overall stability of a structure
when the loading case considered is associated with the vertical loads
acting alone. The presence of initial imperfections in a structure
gives rise to an initial sway of the structure. Lateral forces are
computed and applied to the structure to produce additional deflections

and corresponding P-A shears and forces. _The c0nggpgwhgﬁmbgenmdevekopeﬁ“
(36)

in Ref. 23 and has been adapted for the Canadian Standards S16.1

for/émb ﬁgtant slope of 0.002. Audiscussignuofmtheystandard is given
in séction 5.4.2.

In a core-braced building or an equivalent composite
structure, the forces obtained from Eqs. (7.18) and (7.37) should be
combined toggther accérding to the expression /~7?:Tﬁz to account for
their random nature. As before, the forces can be evaluated at
specific floors and the intermediate values obtained by interpolation.
The factored axial loads from the gravity load case are used in the

(36)

equations

The fictitious horizontal load principle discussed in section

3.2 and applied to a cantilevered member in section 7.2.3 can be used

to justify the application of Eq. (7.18) to moment resisting frames.
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The extra moments created in the structure in this manner resist the
sway induced by column out-of-plumbs.

Taking for granted that Egqs. (7.16) and (7.18) provide an
upper bound on the lateral deflections, the different code recommenda-
tions described in section 5.4 were shown to be conservative in Figs.
9.5 to 9.7. The study demonstrated that a fixed slope,such as 0.002
or 0.005,is not an appropriate model for general application. The
West German expression given by equation No. 5 in Fig. 95 provided a
close estimate in every case. The variable ht suggested by the Germans
is in some ways equivalent to the variable n in Eq. (7.18).

The prescription of the Swedish DBuilding Code for reinforced

concrete (Sl) N

Eq. (5.8), conforms in principlé to the views of the
present study. However, the expression assumes that 20 percent of the
maximum inclination obtained from field measurements is a systematic
variation and 80 percent is random. The maximum inclination of 0.015
used in the equation seems slightly high, as demonstrated in Fig. 9.5.
The reduction factor 7y, which accounts for the tolerance requirements
and the degree of control, has no real significance, in view of the
discussion presented in section 5.3.

The eﬁtire provision for out-of-plumbs summarized in Fig.
5.5 is, in general, acceptable. The most curious statement is that

the three types of forces given by Eqs. (5.6) to (5.8) cannot be

combined.

10.3 Concluding Remarks

The stability of a structure cannot be properly ensured

unless all the major destabilizing forces in the structure are properly
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resisted. For this reason, P-A as well as out-of-plumb forces should
be given consideration in design.

The statistical method presented herein for steel frames and
cast-in situ reinforced concrete walls can also be applied to cast-in
situ or precast concrete frames,as long as the characteristics of
the respective member out-of-plumb populations are known or estimated.
A 'gimilar type of apprpach can be adopted for the evaluation of forces
in the bracing members which provide lateral support to the compression
flange of initially crooked beams and girders. An assembly of bracing
members and beams in a horizontal plane can be treated as an assembly
of beams and out-of-plumb columns in the vertical. The required
statistical characteristics would be obtained from a survey of beam

deviations in buildings under construction.



CHAPTER X1

SUMMARY AND CONCLUSIONS

11.1 Summary

Different forces which are likely to affect the strength and
stability of buildings and their components were investigated in this
thesis. The forcés were classified in three categories: the first
order forces, the P-A forces, and the forces due to initial out-of-
plumbs.

The P-A forces were discussed briefly and approximate methods
for their determination were presented.

The thesis essentially concentrated on the investigation
0of out—of-plumb effects and the development of suitable design
procedures. Statistical methods provided an appropriate means of
defining the problems of stability and strength related to structural

out-of-plumbs.
Measurements were made on steel columns and concrete walls

in two tall core-braced buildings and one large industrial building under
construction to determine actual characteristics of out-of~plumbs for
use in the statistical calculations.

Equations were derived for the design of connections, floor
diaphragms, and vertical bracing systems affected by the out-of-plumb
forces and methods were suggested for the evaluation of the building
sway movements.

Comparisons with corresponding first order effects have

demonstrated that while some out-of-plumb effects are negligible,
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others may be very significant. Moreover, when compared to the results
bésed on present standards, the effects were generally found to be either
under-or overestimated. |

The investigation resulted ultimately in the creation of
more rational clauses for design standards which are related to the
stability of structures and individual members. The proposed clauses

are listed in the following section.

11.2 Conclusions

The investigation is concluded by presenting the results of
the research in the form of proposed clauses for design standards. The
actual sections of the Canadian Standard S16.1 "Steel Structures for
Buildings - Limit States Design"(36) which relate to the overall stability
of structures_and of individual members are rewritten in view of the
present findings.{ Some recommendations which relate to concrete structures
are presented spparately for consideration for the appropriate concrete
standards.

The section numbering adopted below corresponds to that of
the Canadian Standard but the nomenclature used is that of this thesis.

12.2.1. Proposed Clauses for CSA-S16.1
"Steel Structures for Buildings"

8.6 Stability Effects

8.6.1 The analyses referred to in Clauses 8.4 and 8.5 shall
include the éway effects produced by the vertical 1oéds acting on
the structure in its displaced configuration, unless the
structure is designed in accordance with the provisions of

Clause 8.6.3.
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For certain types of structures where the vertical loads

are small, where the structure is relatively stiff and where

the lateral load resisting elements are well distributed, the

sway effects may not have a significant influence on the design

of the structure (See clause 9.3.2(b)).

8.6.2 For structures in which the sway effects have been

included in the analysis to determine the design moments and

forces (see Appendix J), the effective length factors for

members shall be based on the sidesway prevented condition

(See clause 9.3.2(a)).

(a) Where a loading combination produces significant relative

(b)

()

lateral displacements of the column ends, the sway
effects shall include the effect of the vertical loads
acting on the displaced structure but need not include the '
sway effects produced by initial column out-of-plumbs.
However, in a steel frame the sway effects shall not be less
than those produced by the vertical loads acting on the
structure assumed displaced an amount equal to 0.006/2'%75—,
where n is the total number of columns iﬁ the structure

(see section J-3 of Appendix J).

In mixed construction, composed of steel columns and cast-
in situ reinforced concrete walls arranged orthogonally, the
sway effects shall not be less than those produced by the
vertical loads acting on

(1) the columns assumed out-oi-plumb by the amount given in

clause 8.6.2(b) and
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(ii) the walls assumed out-of-plumb by an amount equal to
| 0.0003 + 0.01/%2'%n, where n is the total number of one-
storey walls in the structure.
The storey forces obtained in this manner shall be combined
according to Hc + Hw and applied to the structure as in
Appendix J. 1In this expression HC and Hw are the forces

obtained from the column and wall out-of-plumbs respectively.

8.6.3 For structures in which the sway effects have not been
included in the analysis, the use of effective length factors
greater than 1.0 (sidesway permitted case) for the design

of columns, provides an approximate method of accounting for
the sway effects in moment resisting frames (see clause 9.3.3).
This provision shall not be used for structures analyzed in

accordance with Clause 8.5.

19. Stability of Structures and Individual Members

19.1 General

19.1.1 1In the design of a stecl structure, care shall be taken
to ensure that the structural system is adequate to resist the
forces caused by the factored loads and to ensure that a complete
structural system is provided to transfer the factored loads to
the foundations, particularly when there is a dependence on
walls, floors, and roofs acting as shear resisting elements or

diaphragms. (See also Clause 8.6).

19.1.2 Design drawings shall indicate all load resisting elements
essential to the integrity of the completed structure and shall

show details necessary to ensure the effectiveness of the load
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resisting system. Design drawings shall also indicate the

‘requirements for roofs and floors used as diaphragms.

19.1.3 Erection drawings shall indicate all load resisting
. elements essential to the integrity of the completed structure.
Permanent and temporary load resisting elements essential to
the integrity of the partially completed structure shall be

clearly specified on the erection drawings.

19.1.4 Where the portion of the structure under consideration

does not provide adequate resistance to applied lateral forces

and other destabilizing forces, provision shall be made for

transferring the forces to adjacent lateral load-resisting elements.

(a) Beam-to-column connections and floor diaphragms shall be
designed to resist horizontal forces due to column out-of-

plumbs given by

n
F, = 0.006 vV ¥ P§

d j=1
where n = number of participating columns above and Below
floor 1evél.
P,= factored axial loads in the individual columns.
(b) 1Individual sections of floor diaphragms shall also be

designed for in-plane moments given by

n
= / 2 2 2
M. = 0.006 '2 [p (Lx + Ly)]

d jol i

where n and P are defined as in clause 19.1.4(a) and Lx
and L_ are lever arms, taken in two orthogonal directions,

from the column to the point at which the moment is calculated.
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19.1.5 The structure shall be analysed to ensure that adequate
resistance to torsional deformations has been provided. As a
minimum, the bracing system in a structure shall be capable of
resisting a torsional moment, Tc’ at each storey, given by the
expression of Clause 19.1.4(b), with the summation applied to
the total number of columns in the storey. Thé torsional moment
is calculated with respect to the center of resistance of the
structure and shall account for the effects of the gravity loads
acting on the out-of-plumbs of the columns.

(a) A steel structure shall be designed for the above torsional

moment .
(b) Mixed construction, composed of steel columns and cast-in situ
reinforced concrete walls arranged orthogonally shall be
able to resist a torsional moment at a specific storey given
by:
(i) the expression defined in!01ause 19.1.5(a) as applied
to the columns and,

(ii) the expression below as applied to the walls:

n
0.0015 vV % (PL)2j

T =
w j=1

where n = total number of walls in the storey
P = factored axial load in each individual wall
L = length of the wall.

The torques obtained in (b) shall be combined according to

v T2 + T? at each storey.
c W
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19.2 Stability of Columns

19.2.1 Beam-to-column connections shall have adequate strength

to transfer the applied forces, the sway forces (see Appendix J),

plus the forces calculated as follows:

.(a) In a simple braced frame, the forces described in Clause
19.1.4(a).

(b) In a continuous frame, 0.85 percent of the largest factored
axial load in the two columns above and below the floor at
a specific connection.

’ ‘These forces shall be computed for the loading cases of Clause

7.2.4 using the appropriate load combination factors.

APPENDIX J - Guide To Calculation Of Stability Effects

J.1 This guide provides one approach to the calculation of the

additional bending moments and forces generated by the vertical

loads écting through the deflected shape of the structure.

By this approach, the above moments and forces are incorporated

into the results of the analysis of the structure. However, due

to the approximate nature of the method, the horizontal forces

to be used in the design of floor diaphragms and beam-to-column

connections are inexact but can be easily corrected when required.
Alternatively, a second order analysis, which formulates

equilibrium on the deformed structure, may be used to include the

stability effects.

J.2 Combined Loading Case

Step 1 - Apply the factored load combination to the structure

(Clause 7.2.2).
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Step 2 - Compute the lateral deflections at each floor level
(Ai) by first order elastic analysis.
t

Step 3 - Compute the artificial storey shears Vi due to the sway

forces.

o= =t

- A)
i hi i

i+l

Step 4 - Compute the artificial lateral loads H;.

- 1 -
Hy Vicn =Y

¥

Step 5 - Repeat Step 1 applying the artificial lateral loads Hi
in addition to the factored load combination.

Step 6 - Repeat Steps 2 through 5 until satisfactory convergence
is achieved. Lack of convergence within 5 cycles may
indicate an excessively flexible strhcture. In no
case shall the building sway exceed the recommended maximum
values for deflections given in Appendiva.

Convergence can be achieved in one cycle by using the expression

given below instead of the equation given in step 3 in the

calculation of the artificial storey shears.

1
' =
Vi 1 1
P (B -8 TV
h,
i
where ZVi = total first order shear at storey 1; the other

terms are defined in Figure 11.1.



Viei &2 -
' Pisq

Ajy
P Hi

-
v

i+1

A

--‘-’V,i

where:

V', = Artificial shear at storey i due to sway forces,

ZP; =Sum of the column axial loads at storey i,

h; = Height of storey i, and

A 4 1,4; = Displacements of levels i + 1 and i respectively

Figure 11.1 Sway forces due to vertical loads
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J.3 Vertical Loads Only

Since vertical loads do not normally produce significant
sway deflections of the structure, the initial sway forces are
computed on the basis of the sway displacements in each storey
produced by initial column out-of-plumbs.

0.006 h,

Al = e b
1 2875

where, A, = net sway displacement at storey i (equivalent to
Bivr — B9+
hi = height of storey i
n = total number of columns in the building.

Using these deflections, the calculations are started at step 3 of

‘the procedure described in J.2.

J.4 Horizontal Force Distribution

The procedure described in section J.2 produces horizontal
forces slightly in error. The correct forces should be evaluated
at specific storeys when the artificial storey shears, Vi, are

significant compared to the applied lateral loads at these storeys.

The individual columnrshears are calculated from equilibrium qf

each column with the moments, axial loads, and lateral deflections

obtained from the second order analysis. The correctly distri-

buted horizontal forces are then determined by equilibrium of

these shears and applied forces at floor levels. In all other

cases, the horizontal forces given by a first order analysis

should be used.
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12.2.2 Proposed Clauses for Concrete Buildings

- (a) A structure composed exclusively of load bearingcast-in situ
concrete walls should be designed forgan extra sway produced
by the vertical loads acting on the walls assumed out-of-
plumb an amount equal to 0.0003 + 0.01/2'%q;;where n is
the total number of one-storey walls in the structure.

(b) A structure composed of load bearingcast-in situ concrete
walls arranged orthogonally should be able to resist a
torsional moment at a specific storey given by:

n
T = 0.0015/ % (pPL)2,
w J

j=1

where, n = total number of walls in the storey
P = factored axial load in each individual wall
L = 1length of the wall
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APPENDIX A

PROBABILISTIC AND STATISTICAL CONCEPTS

The following appendix presents a summary of the probabi;
listic and statistical concepts introduced in the report. Although
there‘are many excellent texts available to fulfill this purpose, it
is thought that a condensed summary of the essential concepts will
greatly facilitate comprehension of the material. For more detailed
discussion with illustrations from civil engineering practice, Refs.

54 and 55 are recommended.

A-1 Probability

1f an experiment is conducted N times, and a particular
attribute A occurs n times, then the limit of n/N as N becomes large
is defined as the probability of the event A, denoted Pr(A).

However, a more general definition is needed to cover the
case in which an estimate of the outcome of an event is principally
intuitive. In this case: 'The probability Pr(A) is a measure of
the degree of belief held in a specified proposition A". This inter-
pretation of probability is a broader concept and includes the first

definition.
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A-2 Probability Rules

1. 1If Pr(A) and Pr(A) represent respectively the probabilities

of the event A occurring and not occurring, then

Pr(A) = 1 - Pr(A) (A-1)

2. 1If A and B are two independent events, then the probability
that both A and B will happen, known as the "joint probability"
denoted by "and", is the product of the respective individual

probabilities -~ that is,

Pr(A and B) = Pr(AB) = Pr(A) Pr(B) v . (A-2)
3. If A and B are two mutually exclusive events - that is Pr(AB) =

0 - then the probability denoted by "or'" that one of these

two events will take place is given by the sum of their

individual probabilities:

Pr(A or B) = Pr(a+B) = Pr(A) + Pr(B) (A-3)
4. The probability of an event A is a number greater than or equal

to zero but less than or equal to unity. The probability

of a certain (absolute) event B is unity.

(A-4)

I
ot

0 < Pr(A)

(A-5)

]
-

Pr(B)

A-3 Random Variables

A random variable is a function defined on a sample space.

For example, in the toss of two dice, the sample space consists of the
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36 possible pairs of outcomes. The sum or the average or even the
square of the summed value for each pair of tosses is a random
variable, because it is a function defined for every point in the
sample space.

A sample space involving either a finite number or a count-
able infinity of elements is said to be "discrete'. A discrete
random variable is one that can take on only a countable nuﬁber of
values. A second type of random variable is a "continuous"
variable. A continuous random variable may take on any value in one

or more intervals and results from measured, rather than counted data.

A-4 Probability Function and Cumulative Distribution

A-4.1 Discrete Random Variable

In the two dice example, the probability of each value of
the random variable x representing the sum of the results of the two
tosses is obtained by adding the probabilities of approprigte points
in the sample space. Because each of the 36 points is equally likely
and their total probability must add to 1, each point has associated
with it a probability of 1/36. The 'probability functiou", P(xi),
obtained is sketched in Fig. A-1(a).

The function F(Xi) plotted in Fig. A-1(b) givgs the probabi-
lity of obtaining a value sﬁaller than or equal to some value xi.of
the discrete random variable x and is known as the "cumulative
distribution function" of that random variable. F(xi) can be obtained
by summing the values of the probability function over those points in
the sample space for whiﬁh the random variablg takes on a value less

than or equal to x, - that is,

i
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X 2 3 4 5 6 7 8 9 10 1 1 12
P(x;)| 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36
02
P(x;) 01 |
0 T T T T T T T T T T T
2 3 4 5 6 7 8 9 101112
X
a) Probability function
X;p 1 <2 2 3 4 5 6 7 8 9 10 11 1= 12
Fix;)|] O 1/36 | 3/36 | 6/36 |10/36{15/36|21/36|26/36/30/36{33/36|35/36| 1
10 - v
08 |-
0.6 +
F(Xi)
04
02+
0 T 1

i ! i i 1 ! ! l
2 3 4 5 6 7 8 9 10 11
Xi

b} Cumulative distribution function

12

Figure A.1 Statistical distribution for sum of values in tossing two dice
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Pr(x f.xi) = F(xi) = z P(Xi) (A-6)
x <X
-1
Clearly,
0 < F(xi) <1 for all X (A-7)
F(xi) > F(xj) for xi‘z Xj (A-8)

The complement of the distribution function gives the probability

that the random variable exceeds a specified‘value —‘that is,
> = - (A~
Pr(x xi) 1 F(Xi) (A-9)

Also,

ZP(xi) = 1 - (A-10)

A-4.2 Continuous Random Variable

The case of a continuous random variable is treated in
a manner. similar to the discrete variable. - Here, the distributions
are represented»by smooth continuous curves and the discrete summations
are replaced by integrations.

S If F(Xi) is the cumulative distribution of a continuous

random variable x, then

lim F(xi) = F(-w) = 0
X, * —®
1
(A-11)
lim F(Xi) = F(o) = 1
X, > @

1
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¢ {
For a discrete random variable the probability fupction P(Xi) was

defined as the probability associated with the value X e Such a
direct definition is clearly no longer meaningful for a continuous
random variable. Instead, the definition of the cumulative distri-
bution function is used to define the "probability density function"
f(x) of a continuous variate x as follows:

Pr(xi Sx<x,+A)

f(x) = 1lim X = Ed- [F(x)] (A-12)
b >0 A X

X

Probability for a continuous random variable may thus be interpreted
in terms of relative area under the curve defined by the probability

density function. As an example, different probabilities are

represented by the shaded areas on Fig. A-2 for a continuous random

variable x with probability density function f(x).

A-5 Expected Value or Mean

The best known measure of central tendency is the "expected
value", more frequently called the "arithmetic mean'", or sometimes

"the mean".

When the mathematical form of the distribution is known,

the expected value is defined as

E(x) = ff; x f(x) dx x = continuocus random
variable
(A-13)
E(x) = L xip(xi) x = discrete random

i variable
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f(x)

f(x)

f(x)

Figure A.2 Probability density function, f(x)
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The mean is more frequently estimated from the values of n observa-

tions. The "data mean", denoted by x or U, is calculated as

X
i=1 *
n

[ ae =}

i (A-14)

b4 =

where X5 i=1, 2, ..., n, are the values for the n data points.
Other measures of central tendency, such as mode and median are

described in Refs._54 and 55.

A~-6 Moments of a Distribution

In addition to the mean, other characteristics are frequently
used to describe the distribution spread, symmetry, and peakedness.
These characteristics may be summarized by the moments of the distri-
bution. For the purpose of simplicity only the expressions defining
thebmoments from data will be presented.

A distribution is completely specified once all. its moments
are known. However, many distributions can be adequately described by
the first four moments, and discussion will be limited to these
moﬁents.

The first central moment is always zero
m, = 0 (A-15)

and is the difference between the mean and itself.

A-6.1 Variance and Standard Deviation

The second moment about the mean is a measure of dispersion.

It is known as the "variance" m,, var(x) or o°.
2 X
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2 _  i=1 - 1 2 _ 1 2 v
gt = = 3 E X] - o7 ( E Xi) (A-16)

Eq. (A-16) leads to what statisticians call a "piased estimate'".

The corresponding unbiased formula is
a 2
_ 2
| P (1 1 o
s? = _ (A-17)
n(n-1)

W~ D

Eq. (A-17) is generally used instead of (A-16) as an estimate of the
-variance where only a small number of observations is available.

The square root of the variance is known as the "standard
deviation”" and is denoted by the symbolox- A non-dimensional character-
istic called "coefficient of variation" is of special importance and

is defined as,

(a-18)

% | |

A-6.2 Skewness

The third moment about the mean is related to the asymmetry

or "skewness'" of a distribution.

n —
I o(x, - x)°

oo oi=t 7

3 n
(A-19)
n n n n 3
X x; X x; z X X X
- i=1 -3 i=1 i=1 + 2 i=1
n n n n

The third moment is generally standardized in order to compare

the symmetry of two distributions where the scales of measurement differ.
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0 = 3 (A-20)

A single peaked distribution with aB < 0 is said to be skewed to the'
left, that is, it has a left "tail" as shown in Fig. A-3(a). 1If
Oy > 0, the distribution is skewed to the right. For symmetric

distribution, a3 = 0.

A-6.3 Kurtosis
The fourth moment about the mean is related to the peaked-

ness, - also called "kurtosis" of the distribution,and is defined as

n ——
I (x, - x)"
0 o iA=Lt
4 n (A-21)
n n n n 2 n
z ox* L ox; I x3 Looxg pX x§
- i=1 -4 i=]1 2i=l + 6 i=1 i=1 _
n n n n
n [
z Xy
3 i=1
n
The quantity
m
4
Ot4 = —O.’T (A-22)

is a relative measure of kurtosis. As shown in Fig. A-3(b), % is 1.8
for a uniform distribution, 3.0 for a perfectly normal distribution,

and 9.0 for an exponential distribution.
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f(x)

a3<0

(a) Distribution skewed to the left

f(x)

¥

a4 = 9 (Exponential distribution)
/ a4 = 3 (Normal distribution)

CL4 = 18 ‘
/ (Uniform distribution)

\

(b) Relative measure of kurtosis

Figure A.3 Moments of a distribution
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A-7 Covariance and Coefficient of Correlation

The joint behavior of two random variables x and y is

usually summarized by the "covariance", g, g
3

ox,y = E(xy) - E(x)E(y) (A-23)

If x and y are independent,cx g = 0.

?

The standardized measure of the linear relationship between two

variates is the "coefficient of correlation", o,

= .EE;X
e go
X'y
n
X Loy,
il |g=1 1
n
= (A-24)
n
b
. i=1

p lies between and includes -1 and 1. If p = 0, the variates are said
to be uncorrelated. The correlation coefficient only gives a measure

of the linear relationship between two variables.,

A-8 TFirst Order Probabilistic Approach ' : -

In a first order probabilistic approach, the first two
moments are used to characterize a random variable. The mean,
standard deviation, and correlation coefficient concisely describe
the best predictions, the uncertainty, and the joint behavior of the

variables.
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A-9 Moment Algebra

~Properties of Expectation

E(c) = ¢ (A-25)

E(cx) = cx (A-26)
where ¢ is a deterministic constant.

var (¢) = 0 (A-27)

var (cx) = c? 0; (A-28)

Sum of Random Variables

Let z = x+ vy (A-29)
then z = x +‘§ (A-30)
2 2 2 -

oz = ox + oy + ZOx’y (a-31)

If x and y are uncorrelated

02 = 02+ 02 (A-32)
z x y

Difference of Random Variables

Let z = x -y (A-33)

Thenz = x -y (A-34)

02 = o02+4+0%2 -2 (A-35)
z X y X,¥

If x and y are uncorrelated

z X y

If x and y are uncorrelated, whether z is the sum or the difference of

x and y, the variances Ui and 0; always add to gilve OZ.

Product of Random Variables

Let z = Xy (A-37)

Then z = x y+ Ox,y . (A-38)
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If x and y are uncorrelated
z = xy (A-39)
(A-40)

02 = x%20% + y%0% + 0202
z y X X'y

which is simplified to !
vi = v? 4+ v? o+ viy? (A-41)
: X y X y

b4

A-10 Normal Distribution

The '"normal (or Gaussian) distribution'" is the most widely
used model in applied probability theory. Its probability density

function as shown in Fig. A-4(a) is,

f(x)

il

exp[‘(x _ZU)Z] (A-42)

o V/2m 20

-~ < x <o ~wol yy<o g>0

The mean, U, and the variance, 02, of the normal distribution are

estimated by Eqs. (A~14) and (A-16) respectively. The cumulative normal

f

distribution is

’ -z = w2
F(x) = J exp [—E=F] 4z (4-43)
- g V21 20

This expression gives the probability of a randomly selected value
from a normal distribution. Most text-books provide a table of the
cumulative distribution function of a "standardized" normal random

variable, y, which is defined as,

y = 2=d (A-44)




0.4
0.3
f(x) 0.2

0.1

1.0

f(x) 0.5

1.0

f{x) 0.5
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a) Normal distribution

b) Half-normal distribution
02=0.5

¢) Log-normal distribution

u=0

02=0.3 x) 1 [ -1 " )2]
x) = . exp X - u
oxy 2n 202 n
u
a2 =1
fep— |
1 3 4 5 6 7

Figure A.4 Continuous statistical distributions
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and has a mean 0 and a standard deviation 1.

The cumulative probabilities of the standardized normal distribution
are given in Table A-1. For a random variable following a normal
distribution, 68.3 percent of the probabilities are within *10

around the mean and 95.5 and 99.7 percent of the probabilities are

within the Wu*20 and p*30 ranges respectively.

A-11 Central Limit Theorem

The "central limit theorem" is a justification of the wide
use of the normal distribution. This theorem states that under very
general conditions, as the number of variables in the sum becomes large,
the distribution of the sum of random variables will approach the
normal distribution.

Even if the number of variables invelved is only moderately
large, as long as no one variable dominates and as long as the variables
are not highly dependent, the distribution of their sum will be nearly

nOrmal(SS).

A-12 Half-Normal Distribution

The "half-normal distribution" is used to describe normally
distributed variates in which only the absolute deviations around the
mean are known.

The probability density function is

f(x) = 2 exp [~ jﬁ%] (A-45)
ki 20

02
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where x > 0 and 0 > 0 is a scale parameter which does not equal the
standard deviation of the distribution. A plot of a half-normal

distribution is given in Fig. A-4(b).

A-13 Log-Normal Distribution

The "log-normal distribution” is the model for a random
variable having a logarithm which follows the normal distribution with

parameters | and 0. Thus the probability density function for x is

1 1 : 2
f(x) = ———exp [-— (In x - W] (A-46)
ox v 21 20°

where x > 0, =© <y <o, g>0

The log-normal distribution as shown in Fig. A-4(c) is skewed to the
right, the degree of skewness increasing with increasing values of O.
Note that | and 0 are scale and shape parameters respectively and
not location and scale parameters as in the normal distribution.

By the central limit theorem, it can bé shown that the
distribution of the product of n independent positive variates approaches
a log~normal distribution.

The cumulative values for y = Zh x can be obtained from the
tabulation of the standardized normal distribution and the corresponding

values of x are found by taking antilogs.




APPENDIX B

EFFECTS OF NON-DETERMINISTIC GRAVITY LOADS

B-1 Deterministic Gravity Loads

The horizontal force created by the gravity loads acting on

the out-of-plumb of one column is,

A
- p-9 -
F .Ph‘ (B-1)

where P is a deterministic axial load and Ao/h is a normally distributed
out-of-plumb variable with a mean, uc, equal to zero and a standard

deviation, oc, equal to 0.0017 Rad. (see Fig. 6.7).

8

v ™ N(0,0.0017) (3-2)
For this case, the resulting design force is given by Eq. (7.3) in

section 7.1.1:
F, = B oc P (B-3)

The safety index B has been selected as 3.5. The absolute

value of the force F, then has a probability of not being exceeded

d
(given by Table A-1) of 0.99954, assuming that P is not a variable.

B-2 Non-Deterministic Gravity Loads

A random gravity load with a known distribution would produce
the horizontal force given by Eq. (B-4) when acting on an out-of-plumb

column.
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F = P -— (B-4)

The force in Eq. (B-4) has a distribution with a mean uf and a variance

G% given by expressions (A-38) and (A-40) in Appendix A.

He = Mo My + 0. ' (B-5)
= 2 2 z .2 72 : ' -
o, /'pc op + 1’ ol + ol o | (B-6)
where, U, = 0.0
up = mean of gravity load population
o] = covariapce = 0.0
c,p
o = 0.0017
c
Gp = standard deviation of gravity load population

The covariance OC P is zero since obviously there is no correlation
b

between the axial load and the out~of-plumb of a column. Then,

il

Mg 0.0

o, = o v U+ o2 (B-8)
c p p

f

The gravity load is the sum of dead and live loads. Since
the dead and live loads are not correlated(sg), Eqs. (A-30) and (A-32)

are used to define up and Cp:

Moo= My + My . . (B-9)

+ 0 (B-10)

N
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In these expressions, the subscripts d and £ define the
dead and live load distribution characteristics respectively. It can
be assumed that the standard deviation of the dead load is not very

significant compared to the standard deviation of the live 1oad‘in Eq:

)(58,59)

(B-10 . The dispersion of the gravity load distribution will

be very close to the dispersion of the live load distribution.
The sustained live load distributions for the instantaneous

load, the lifetime maximum load, and the loads for two intermediate

(61)

time periods are given in Fig. B-1 . Of these, only the instant-

aneous distribution is known from live load surveys(éz). Various
theoretical models have been proposed to derive the lifetime maximum

(63’64). Using the live

live load distribution from load survey data
load model of Ref. 63 and the live load data of Ref. 62, the statistics
of lifetime maximum live load have been derived through simulation in

Ref. 64.

What is needed in the present case is the distribution of

the lifetime maximum live load intensities given by the dashed curve in

Fig. B~1 and not the arbitrary point-in-time loads obtained from the

live load surveys. For all practical purposes, the lifetime maximum

live load distribution can be reasonably approximated by a normal

distribution. A computer simulation has shown that the product of two

normal variables is also very close to a normal. The design horizontal

force for the case of variable gravity loads can then be defined by

Eq. (A-44):

F, = M + Ao . (B~-11)

d

f

The safety index A in this expression is not necessarily 3.5 as for B.

Since uf = 0,
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Figure B.1 Probability distributions of live load intensities
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Fy = Ao u; + o; (B-12)

Eq. (B-12), derived for a non-deterministic load, should be compared
to Eq. (B~3) to determine the value of the factor A that would make

the horizontal forces given by the two equations equal.

B~3 Estimation of Dead and Live Load Parameters

The four parameters ud, Mg Od,and 02 must be estimated in
order to determine the safety index A.

Approximations given in Ref. 59 are listed in Table B-1.
The lifetime maximum dead load is assumed to have an average value equal
to the design value with a coefficient of variation of 0.07(58’59).
This implies that the maximum dead load will be within #*14 percent
of the.design value in 95 percent of all structures.

For an office building floor designed for 50 psf, the expected
maximum live load (not including partitions) over a 30-year life would

(59

be reduced to about 35 psf It has been indicated in Ref. 64

(60) for reduction of

that the Canadian National Building Code formula
floor load with tributqry area, 0.3 + 10//~K~ , is fairly consistent
" with calgulated maximum lifetime loads baSed‘on measurements. Therefore;
the ratio of expected 30-year load to National Building Code design load
will be assﬁmed to be 0.7, independent of tributar& area. The results
of load surveys(62) indicate that the coefficient of‘variation for maximum
floor loads is about 0.3 and is unchanged with increasing area.

For office and residential buildings, the expected load at a

given time is approximately equal to the 30-year load for an infinite

area. For office buildings, this corresponds to 0.7(0.3 + 10//©) 50 psf =



Mean u Coeff. of Variation
Specified Load o/u
Dead Load 1.0 0.07
Live Load '
- Maximum 30 yeérs» 0.7 0.3
- At any time 0.21/(0.3 + 10//4) 0.3 + 0.4/V/A

A is the Tributary Area in sq. ft.

TABLE B-1

GRAVITY LOADS

PROBABILISTIC ASSUMPTIONS FOR
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10.5 psf, a value confirmed by survey resul?s(%g). On the other hand
the coefficient of variation of a load at any time increases with a
decrease in area. The equation given is based on Table 7 of Ref. 62.

Approximate formulas are given in Ref. 64 for the mean and
standard deviation of the maximum sustained live load during a structure's
life plus the largest extraordinary event which occurs during the random
duration of this maximum sustained load. The approximations fit the

actual distributions in the upper fractiles of these loads.

My = 14,9 + 763/V A1 psf (B-13)
o, = vV 11.3 + 15000/A,  psf (B-14)
where Al is the "influence area" which corresponds to four times the

more common '"tributary area'", A, in the case of single-storey column
loads.

These results have shown that for columns, the prescribed
design loads as a function of area for the Canadian National Building
Code(60) correspond approximately to the 0.9 fractile of the maximum
total load. As shown in Fig. B-2, the NBC prescribed load is 50 psf
for office buildings and for A > 200 ft.?, this value is reduced by
a factor 0.3 + 10//A . The prescribed live load P in a column is

then estimated by Eq. (B-15) for a column tributary area larger than

200 ft.2. ,

H

P = Mo + WOQ F(B‘ls)

The value for the safety index ¥ which corresponds to the 0.9 fractile

is 1.3 and 7} and 02 are given by Eqs. (B-13) and (B-14) or are taken

from Table B-1.
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A1= Influence area
A = Tributary area

Figure B.2 Prescribed live loads for column design
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Example:
A = 200 ft.%A1 = 800 ft.?
Prescribed load = 50 x 200 = 10000 1bs.
“2 = (14.9 +:763//800) 200 = 8375 1bs.
Ol = v 11.3 + 15000/800 x 200 = 1096 1bs.
P = 8375 4 1.3 x 1096 = 9800 1bs.

« » 2 percent difference.

Using the values of Table B-1,

My = 0.7 x 50 x 200 = 7000 1bs.
o, = 0.3 x 7000. = 2100 1lbs.
P = 7000 + 1.3 x 2100 = 9730 1lbs.

Ce 2.8 percent difference.

B-4 Probability Calculations

The distributions of the two random variables in Eq. (B-4)
are given in Fig. B-3(a,b) with their corresponding probabilities..
The dead load is not included in the load distribution shown in (b)
in order to simplify the calculations. The results should not be
changed significantly. The distribution represented by the continuous
curve in Fig. B-3(c) is the distribution of the variable horizontalv
force, PAO/h, for a deterministic axial load P. The shape of the
distribution is the same as in (a) but the scale is different. The

variance in this case is ché according to Eq. (A-28). The horizontal
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(a) fi
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0.99954
-3.50, me=0 . 3.5¢;

(b)

(c) Po A

Figure B.3 Distributions
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shear distribution for a variable axial load PO is represented by the
dotted curve on the same figure. The variance is now equal to
oz(uz + oz) and is always smaller than the variance in the case of

the deterministic load. 1In terms of standard deviations,

J F o
Gc(uz + 1.3 UJL) > oc “2 + 02 , (B~16)

The variance of the distribution assuming P non-deterministic
is reduced from the variance assuming P deterministic. The probability
is then greater under the dotted curve that the shear force will be
less than 3.Soc(u2 + 1.302). By assuming f deterministic, the absolute
value of the shear has a 99.954 percent chance of being less than
this limit,

PA
Pr []--g(l] < 3.50, (g +1.30,)] = 0.99954 (B-17)

When the axial load is random,

A

-9 =
Pr [P0 7 < 3.5 o, (uz + 1.302’)] ?

Dividing both sides of the inequality by the standard deviation of

the population, gives

P A /h 3.5 (u, + 1.30,)
pr (290 % - T (B-18)
0 YHgtog YHUptoy

As shown in section A-10 of Appendix A, when a normally distributed
variable with a mean equal to zero is divided by the standard deviation
of the population, the variable is said to be standardized. The
expression on the left hand side of the inequality is then the
standafdized horizontal shear for a non-deterministic load and can be

called Fst' The new safety index A for the force obtained in Eq. (B-12)
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is given by the expression on the right hand side. The factor A can be
evaluated from the values of Table B-1 or from Eqs. (B-13) and (B-14).

From Table B~1,

Mo = 0.7 p
o, = 0.3 My = 0.3 x0.7P = 0.21P
A 3.5 (0.7 +1.3 x 0.21) P 4. 66

v 0.77 + 0.217 p
The probability of Fst being lower than this value is obtained
from the table of the Standard Cumulative Normal Distribution (Table

A-1).

Pr stt < 4.66] = 0.9999984

Pr [[Fst[ < 4.66] = 0.9999968

Using Eqs. (B-13) and (B-14) with A = 200 ft.2 and A, = 800 ft.2,

1
My = 8375 1bs. and 02 = 1096 1lbs,

3.5 (8375 + 1.3 x 1096)

A 4,06
V83752 + 10962

Pr [F, < 4.06] = 0.999975

Pr ['Fscl' < 4.06] = 0.999951

Due to the random nature of the gravity loads, the horizontal shear
given by Eq. (B-3) has a real probability which corresponds to
B = 4.2 when the loads prescribed by the Canadian National Building

Code are used in combination with 8 = 3.5 in Eq. (B-3).
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It is possible to calculate the value of § in Eq. (B-15)
whic’: would have held the probability at 0.99954 (8 = 3.5) in Eq. (B-3).

This occurs when (UQ + woz) =y uz + 0; in Eq. (B-18). Then,

]

Pr [FSt < 3.5] 0.99954

The quadratic equation obtained has a root equal to

Tut oy -y
Vv = 5 (B-19)
2

The index Y will be close but never equal to zero according to this
equation. An indeterminate result is obtained when the variation
oz is zero. The values in Table B-1 for the maximum live load give
Y = 0.15, while Eqs. (B-13) and (B-14), for the example presented
previously, yield ¢ = 0.065. Thus, if a gravity load given by the
mean shown in Fig. B-2 was used, the resulting horizontél shear
calculated by Eq. (B—B) would have a 99.95 percent chance of not

being exceeded.



APPENDIX C

DEGREE OF DEPENDENCE OF COLUMN OUT-OF-PLUMBS

It seems likely that a certain correlation exists between
the out-of-plumbs of the columns in a structure. Whether it signi-
ficanﬁly affects the results of the theory developed in Chapter VII
has‘yet to be verified.

Assuming that z is thg sum of two random variables, x and
ys the variance of the new variable z 1is given by Eq. (A-31) in

Appendix A:

02 = 02 +02+ 2 (c-1)
z X y X,
The variance 0% is defined in section A-6.1 and the covariance
Gx in section A-7. The horizontal force at a connection point, as
[y .

gi&en by Eq. (7.4) in the case of two out-of-plumb columns, is now a

normally distributed variable of the form:

2.2 2.2
Fo~> NP+ Py s /Plox +Pi0% + 2P R0 )

1 sy
For ux = uy = 0 and Ox = Oy = g,
F ~> N(O, oY P2 + P2 + 2p P.P. )
’ 1t % 152

where p = ox y/02 is defined in section A-~7 of Appendix A
’
as the coefficient of correlation, which is the‘stgndardized measure
of the joint behavior of two random variables. When p = 1.0, the

variates are positively perfectly correlated and when p = -1.0, they
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are perfectly negativel& correlated. On a graph, these conditions
are represented by straight lines of slope +1 and -1 respéctively.
1f p = 0.0, the variates are said to be uncorrelated or perfectly
independent.

" The horizontal force caused by n out-of-plumb columns,

assuming a certain degree of correlation between the columns, is then

given by:

n-1
L P, P
= 3

n
F, = BOC .Z Pj + 2p .

d j+l (c~2)

.

j=1 k|

The second term under the root sign is the summation of all
the possible independent combinations of pairs of adjacent columns.
An upper bound is found when p =1, i.e. when there exists a positivé

linear dependence between the variables. Then,

F ~> N0, o/ (B, + P )

F ~> N(0, o (P + Pz))

The resulting design horizontal force for the general case of

n columns. is:

n .
F, = BOC I P, ' (c-3)
This is equivalent to the model shown in Fig. 5.1(b) with

all the columns out-of-plumb by BOC. The lower bound is obtained by

assuming perfect independence between the variables (p = 0).

F ~> N(O, oY P2 + Pgw)
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n
F, = Bcrc/ T p? (C-4)

d j=1 i

This formulation is used in Chapter VII, sections 7.1.1 and 7.1.2.

| Different combinations of out—of-plumb columns taken in a
vertical line and in a storey are shown in Fig. C-1. The correla-
tions corresponding to the different combinations, denoted as a, b,
¢, and d, can be calculated and can be visualized graphically. An
estimation of the actual coefficient of correlation for each case can
be obtained from Eq. (A-24). The results obtained for building B are
listed in Table C~1 and the graphical representations of the two
different correlations pertaining to group 'a' are given in Figs. C-2

and C-3. Fig. C-2 shows the correlation between columns adjacent in .

"vertical lines and Fig. C-3 shows the correlation between adjacent
coiumns at each storey. The values plotted on each figure represent
a sample of the total number of observations. The out-of-plumbs in the
x and y directions ére considered together.

The results shown in column 2 of Table C-1 for groups a aﬁd
b indicate a slight but non-significant dependence between columns
in vertical lines. The scatter of the points shown in Fig. C-2
confirms these results. The coefficients of correlation obtained in
" cases ¢ and d where the pairs are one and two steps apart are even
closer to zero. This result was expected., It indicates a decreased
depepdence of the variables as the compared columns are taken farther
apart. The usual practice of erecting tier columns does not seem to
inauce a significant degree of correlation between the column out-of-
plumbs from one floor to another. The correlation that could have

existed initially from floor to floor is apparently wiped out during
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Figure C.1
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I—I—~ JI—I—I—1I°

etc' sssase i .‘-on-t‘o

Plan View
Combinations
-2, 3-4,5-6, etc... {adjacent columns)
-3, 4-5, 6-7, etc ... (adjacent columns)
-3, 4-6, 7-9, etc. { 1 step apart)
-4,5-8, 9- 12 etc ... (2 steps apart)

Column combinations for the evaluation of the degree of
correlation between out-of-plumbs



1 2 3
Combination Coefficient of Correlation, p
Type*

In A Vertical Line In A Storey

i

{

Adjacent Columns
Adjacent Columns
One Step Apart

Two Steps Apart

0.072 0.133
0.063 0.238
-0.008 0.068
0.024 -0.022

Defined in Fig. B~1

TABLE C~1

COEFFICIENTS OF CORRELATION

FOR BUILDING B
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(Ao/h), +1 X 10+3 Rad.

Coefficient of correlation = 0.072 (from data)

Figure C.2 Correlation between two out-of-plumb columns adjacent in a vertical line
in building B



252

(Ag /h); 4 1 X 10*3 Rad.

o®

Coefficient of correlation = 0.133 (from data)

Figure C.3 Correlation between two out-of-plumb columns adjacent in a storey
in building B
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the construction of the building by the effects described earlier
in section 5.3.

Coefficients of correlation of 0.133 and 0.238 for adjacent
columns in a storey were obtained for building B. The plot corres-
ponding to p = 0.133 is given in Fig. C-3 and shows considerable
scatter. A positive coefficient of correlation in this case indicates
that two adjacent columns in a storey lean in the same positive or
negative direction more often than predicted by the theory developed
in Chapter VII based on total independence. Since an unsafe situation
could result, an evaluation of this effect is mandatory.

The results obtained for combination types ¢ and d in column
3 of Table C-1 confirm earlier observations that the correlation
decreases rapidly as the columns forming the pairs are taken farther
apart. It is believed that the correlation within a storey is in
great part tied in to fabrication errors. When girders for a specific
storey are cut slightly shorter or longer, the adjustmént of these
girders between the columns in a bent might force the columns to lean
in the same direction in the plane of the bent.

In summary, a correlation does exist between column-of-
plumbs. Although it is negligible from storey to storey, it isxsigni—
ficant within a storey. For all practical purposes, p = 0.0 between
columﬁs in vertical lines, p = 0.2 between adjacent columns in a
storey, p = 0.1 for pairs one step apart in a storey, and pl= 0.0
" for pairs more than one step apart.

Considering the case of two adjacent columns at a same

storey Eq. (C-2) becomes:

— 2 2
F, = B0, '/Pl + P5 +2(0.2) PP

d 2
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Assuming equal axial load in the columns,

Fd = v 2.4 BOC P

The lower bound given by Eq. (C-4) is

Fd =y 2 BGC P

Then, the correlation existing between two adjacent columns

increases the horizontal force predicted by Eq. (C-4) by 10 percent.

For the general case of n columns at the same storey,

" Eq. (C-2) yields:

/n 2 " +01ngzpp. + 0.0]
F. = B0 T P°+ 2[0.2 L Pij+l . z $Fi+2
d ¢ y=1 7 j=1 3
Assuming that

" ; p?

T P,P. » -

+1 k

j=1 ] =1 J
and

Y P.P. o T P s

j=l J J+2 j’_‘"l j

/—“n.*; f—— 2
F = BG 1.6 Z P = 1.26 BO— z P,
d Te j=1 J c j=1 j

which constitutes an increase of 26 percent from the lower bound
given by Eq. (C-4). The calculations show that the 26 percent limit
is attained at 15 columns.
It remains to check whether this effect 1is reduced or
increased when columns from different storeys are éombined. By summing

separately within each storey, Eq. (C-2) becomes:
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where n, is the number of columns at storey i.

,This equatioﬁ can be simplified within each storey as before:

rry
i

//> oy nin
Bo,, 1.6 % P24+ 1.6 ¢ P?

j=l J j:l

g
[

//“i i
1.26 RO v P2+ % Pp?
c h| 3

j=1 i=1
Eq. (C-4), applied to the same case, becomes:

//“i i+l
F, = Bo v & P2+ 1§ pP?
c 3 3

d j=1 j=1

This shows that the increase of 26 percent from the.lower
bound reméins when columns from different storeys are combined.

Eq. (C-2), however, is not practical in a design for the
horizontal out-of-plumb forces. It seems more logical to use the
expression giving the lower bound with an increased safety index
which would account for the correlation effects and other factors.
When a factor B of 3.5 is used in Eq. (C-4), the real probability

of being exceeded is not 4.6 x 107" but 5 x 10”° corresponding to a B
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value of 2.8. In other words, in five out of a thousand times, the
horizontal forces calculated for B = 3.5 would exceed the predicted
values.

The applications given later in Chapter VIII, where several
measured and predicted quantities are directly compared, will justify
the choice of a safety index equal to 3.5 under the above conditions.
More important is the fact that the safety index § is actually increased
fromv3.5 to 4.2,as shown in Appendix B, because of the random nature
of the gravity loads. The combination of the éffects observed in
Appendices B and C results in an average safety index of 3.5 with a

corresponding probability of 0.99954.
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APPENDIX D

LATERAL DEFLECTIONS DUE TO COLUMN OUT-OF-PLUMBS

Expression (7.16) reproduced below as (D-1) requires
excessive computational efforts for structures with a large number of
columns. An investigation is needed to determine whether this

equation can be simplified.

n
A /z p2
S SR e (D-1)
h c n :

r P

j=1

When the column axial loads are assumed to be constant, the variable

Pj disappears and Eq. (D-1) is reduced to:

L (D-2)

In practical structures the axial loads differ and cause Eq. (D-2)

to be unconservative. A more general formulation would be,

= == (D-3)

where the variable x is a function of the number of columns in a
structure and the variations in column axial loads. The influence of

these two factors on the variable x can be evaluated.

257
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Equating (D-1) and (D-3) yields:

which in turn becomes:

_ fnn
x = n R (D-4)
where

n
z Pj

R = J=r_ - (D-5)
r p2
=1

The minimum x value is 2.0 and is obtained when the axial loads in

Eq. (D-4) are constant.

x - —fon . fan _ _fan o,
n(— ) n /n 1/2 &n n

v aP?

The upper limit is not defined but 1is in the order of 2.5 in practical
structures. Larger values are obtained only in very unusual cases.
Fig. D-1 shows the column layouts of seven different building

cross—-sections. The variable x is calculated for typical 1, 2, 6,

and 10-storey buildings by assigning the relative axial loads P, 2P,
énd 4P to the corner, exterior, and interior columns respectively.

The column axial loads are increased uniformly from floor to floor.

For instance, if the top column of a 3-storey column stack carries 2P,

the middle one and the lower one carry 4P and 6P respectively,
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¢ o o o

e o ¢

4

1 Storey 2 Storeys 6 Storeys 10 Storeys
n/R X | n/R X | n/R X n/R X
_2‘.(%)_- 2.00 3_% 2.1 % 2.14 —% 2.14
—-2—%8— 2.11 "3‘1_23@5‘ 2.16 ng? 2.18 —7% 2.17
—Z.l%- 2.04 __é%Z_r 2.10 “{3?‘56‘5‘ 2.13 -1%% 2.13
3%- 2.34 —jlgg— 2.35 3%32- 2.31 -6%)'6* 2.29
—5%— 2.18 % 2.21 T?éz'o‘ 2.21 —%27%— 2.20
-33%— 2.16 % 2.20 —-.;%% 2.20 %—8—5 2.20
’Z%“ 2.11 “'6%223" 2.15 % 2.17 -1%%8— 2.16

Figure D.1 X values for different column layouts
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In all cases, except in the very unusual case No. 4, x
does not exceed 2.2. A similar pattern is observed in all arrangements!
The faétor X increases slightly when passing from a one-storey to a
two-storey building; the value remains fairly constant as other ‘
storeys are added and finally decreases when n becomes large. This
behavipr is explained by the fact that when n becomes large, the
difference between the axial loads becomes less significant and R tends
towards vn. At the limit, x is 2.0 as shown in Eq. (D-6). The
notable increase of the variable x in the 2-storey buildings 6f Fig. D-1
reflects the factor of 2 between the axial loads at each storey. The
number of columns is then too small to hide the effect of the axial’
1oéd variations. |

| As applied to the actual axial loads in the 27-storey

building A (Fig. 6.2), x = &n 18.62 = 2.10. The column layout of
building A is given in example No. 3 in Fig. D-1.

In view of these considerations, Eq. (6~3) with x = 2.2
is recommended for use in design. However, the "exact" expression
(D-1) should be used in the case of one or two-storey structures for

a .more accurate evaluation of Ad/h.




APPENDIX E
EFFECT OF WALL THICKNESS VARIATIONS
ON MEASUREMENTS OF OUT—OF;PLUMBS
:

The exact deviétion from plumb at a specific section of a
wall is obtained by using the average of two measurements, one taken
on either side of the wall. Measurements taken on one side only do
not account for the unavoidable thickness variations of the wall.
However, it is physically impossible to take double measurements at
each wall section.

It is possible to determine to what extent the measurements
are affected by estimating the distribution of the wall thickness
variations and combining the resulting variance with the variance of
the wall out—bf-plumb population. The variance is defined és the
squared value of the standard deviation.

Thickness measurements were taken wherever possible with a
measuring tape on the core of building B. At least two measurements
were taken per vertical section of the wall.

The variables that must be distributed and uéed in the
calculations are the deviations from the mean at each individual
section. The wall section shown in Fig. E-1(a) is thicker at the
bottom and the measurement taken as shown results in an out-of-plumb
value-smaller than the actual. In (b) the recorded deviation is
larger than it should be while in (c¢) the actual out-—of-plumb is

recorded. 1In other cases, as in (d), the thickness variation does
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—>1——-1<—— Prescribed thickness

Out-of-plumb | -
wall

(a)

(d)

Figure E.1 Wall thickness variations
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not affect the measurements. For a set of two measurements at the
section shown in Fig. E~1(e), the mean thickness is (ti + t2)/2 and
the values to be distributed are ti = t, - mean and té = t, - mean.
The diétribution obtained is given in Fig. E-2 together
with the mean, the standard deviation, and other characteristics.
The distribution is close to normal. The mean, of course, 1is zero and
the standard deviation is 0.16". The variance of the measured out-of-
plumbs is the sum of the variance of the actual out-of-plumbs and the

variance of the deviations of the wall thickness from the mean at

specific sections.
var (AO)m = var (AO)act + var (Gt)
or

var (AO)act =  vyar (AO)m - var (St) (E-1)

The standard deviation of the measured out-of-plumbs for building B is
éiven in Table 6.11 and is approximately 0.0023. A representative value
in units of inches is obtained by multiplying the standard deviation by
the standard storey height in practical structures, say 144". The

variance is then (144" x 0.0023)2 = (0.33")? and

- 2 _ 2 2
var (AO)act = (0.33) (0.16) 0.08 in.
The actual standard deviation should therefore be

o = v 0.08 = 0.29"

which constitute an insignificant reduction from 0.33". Since the
effect is slightly on the conservative side when neglected, a reduction

will not be applied to the measured standard deviation in this report.
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