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Abstract 
 

As the global population approaches 10 billion by 2050, sustainable food production faces 

unprecedented challenges. Nitrogen (N) fertilizers, crucial for crop yields, contribute 

significantly to agricultural greenhouse gas emissions and environmental degradation. The 4R 

Nutrient Stewardship framework (Right source, Right rate, Right time, Right place) aims to 

optimize fertilizer use efficiency while minimizing environmental impact. In addition, 

alternatives such as plant biostimulants are advocated to increase plant N uptake and protect 

them against abiotic stress thereby, making them important for sustainable crop production. 

One such biostimulant is Humalite, a naturally occurring form of an oxidized coal-like 

substance containing high levels of humic acid and low amounts of heavy metals. The Prairie 

Mines and Royalty ULC, Hanna, Alberta holdings (currently WestMet Ag) have large Humalite 

deposits that are unique due to a higher percentage of humic acid resulting from freshwater 

deposition. Humalite is known for its ability to improve plant agronomic parameters and 

increase crop N use. Limited field research exists on the effect of Humalite, application rate, 

and interaction with urea, especially at reduced rates on grain agronomic parameters. 

Therefore, a field study was conducted from 2021 to 2023 at three Alberta sites - Battle River 

Research Group (BRRG), Gateway Research Organization (GRO), and St. Albert Research 

Station (St Albert), in a split-plot design with four replications, three urea levels (i.e. 

recommended, half recommend, and zero urea) combined with five Humalite rates (0, 56 (or 

112), 224, 448, and 896 kg ha-1). In 2021, the highest wheat yields were observed at half urea 

rates plus 224 kg ha-1 of Humalite at BRRG (35% yield increase), at GRO (8.4% yield 

increase); and at St Albert (33.5% yield increase). In 2022, canola yields were unaffected by 

Humalite application rates. In 2023, wheat yields from half-recommended and recommended 

urea rates plots outperformed zero urea plots across all sites, regardless of Humalite rates. The 

highest wheat grain protein content values were observed at 224 - 448 kg ha-1 of Humalite plus 

half or recommended urea rate. Depending on the site, the highest net revenue resulted from 

half urea rates plus Humalite at application rates between 112 – 448 Kg ha-1 in wheat i.e. 

optimal Humalite rate for increased profitability.  

Enhanced efficiency N fertilizers (EENFs) are innovative fertilizer products designed to 

improve N availability to crops while reducing environmental losses. Among these, double 

inhibitor fertilizers, also known as dual inhibitors, are particularly effective in optimizing N 
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use efficiency by utilizing N inhibitors to improve soil N retention and make it more available 

to the plant. Building on the field study results, a controlled environment experiment was 

conducted at the University of Alberta from November 2023 to May 2024 to further investigate 

the optimal Humalite application rate of 448 kg ha-1. This greenhouse study focused on the 

interaction between Humalite and EENFs on wheat and canola growth. The experiment 

compared SuperU®, an EENF, with conventional urea at recommended and reduced (70%) 

rates, combined with Humalite. A total of seven treatments, including a control, were evaluated 

over two growth cycles. Results revealed that Humalite was more effective in enhancing wheat 

growth compared to canola. Under optimal conditions, wheat grown with reduced urea rate 

plus Humalite demonstrated the highest N fertilizer recovery rate and comparable agronomic 

N efficiency to the recommended urea rate, however, with significantly lower yields. 

Interestingly, Humalite application did not show additional benefits when combined with 

SuperU® under ideal conditions. However, during a heat-stressed cycle, Humalite increased 

wheat yields when combined with reduced SuperU® compared to recommended SuperU®. 

This effect was not observed in canola. For wheat, reduced SuperU® was as effective as the 

recommended rate, producing similar yields as that of the recommended urea rate and resulting 

in higher protein content than the recommended SuperU®. In contrast, canola responded 

similarly to the recommended rate of both SuperU® and urea. The results of the two studies 

suggest that incorporating Humalite and using reduced rates of dual inhibitor EENFs could 

potentially decrease urea usage, contributing to more sustainable and economically viable 

wheat production systems. 
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Chapter 1.0 Literature Review 

  

1.1 Introduction 

 

The evolution of agricultural practices has profoundly influenced human civilization, starting 

with the transition from hunter-gatherer societies to settled farming communities around 

10,000 BC (Wells & Stock, 2020). Early agricultural practices catalysed population growth, 

necessitating intensified farming to sustain the growing population (Garbowski et al., 2023; 

Gignoux et al., 2011; Johnson & Earle, 2000). While these advancements led to significant 

increases in food production, the intensification of practices such as over-irrigation which led 

to increased soil salinity, deforestation, shorter crop rotations, conventional tillage, and 

adopting monocultures over crop diversification proved to be damaging in the long run (Bai et 

al., 2022; Bennett et al., 2021; Dale & Carter, 1956; King, 1911; Malaj et al., 2020; Malézieux, 

2012; Martens et al., 2015; Montgomery, 2012; Ponting, 2007; Tainter, 1988). Intensification 

practices have resulted in long-term environmental damage, including reduced soil health, loss 

of biodiversity, and increased greenhouse gas (GHG) emissions, which threaten the very 

ecosystems that support agriculture (Bellwood, 2023; Diamond, 1998; Goyette et al., 2016; 

Johnson, 2016; Park et al., 2012; Ponting, 2007; Purwanto & Alam, 2020; Sánchez-Bayo & 

Wyckhuys, 2019; Stanton et al., 2018). Studies have pointed out that intensive agriculture in 

the past, combined with early human activities, resulted in the depletion of land and water 

resources, leading to decreased soil fertility and productivity, and even altered the planet’s 

climate, ultimately reducing the resilience of agricultural ecosystems to changing climatic 

patterns (Paoletti et al., 2011; Ruddiman, 2005, 2017).  

The transition to large-scale industrial agriculture marked a turning point, with the 

introduction of chemical fertilizers and the Green Revolution heralding unprecedented 

increases in crop yields (John & Babu, 2021). Fossil fuels, chemical or synthetic fertilizers, 
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and pesticides have significantly contributed to increasing crop yields in the 20th century 

(Bouwman et al., 2017; Carvalho, 2017; Lu & Tian, 2017). Despite the aim of the Green 

Revolution to alleviate world hunger, millions of people still face food insecurity today, with 

around 783 million people (2022) facing hunger and almost 757 million people (2023) facing 

moderate to severe food insecurity (FAO et al, 2024). Globally, intensive agricultural practices 

such as monoculture, heavy tillage, and excess synthetic chemical usage have led to a rapid 

decline in soil health affecting all key indicators of soil quality (Belete & Yadete, 2023; Derpsch 

et al., 2024; Gupta et al., 2022; Tahat et al., 2020). Furthermore, the excessive use of chemical 

or synthetic fertilizers and pesticides, aimed at increasing grain yield, has led to reduced soil 

organic matter, and increased soil salinization, and acidification (Barak et al., 1997; Bouman 

et al., 1995; Das et al., 2023; Kopittke et al., 2019; Liang et al., 2013; Mandal et al., 2020; 

Tripathi et al., 2020). These issues have resulted in impaired ecosystem service functions and 

have stagnated crop productivity (Bai et al., 2022; Buragohain et al., 2018; Lazicki et al., 2020; 

Ray et al., 2012; Singh, 2018; Wambacq et al., 2022).  

On a global scale, reactive nitrogen (N) added to the Earth by anthropogenic activities 

has increased dramatically, with 90% coming from agricultural production (Fowler et al., 2013; 

Zhang et al., 2020). In 2021, the global cropland nutrient surplus was 82 million tons (Mt) of 

N, 8 Mt of phosphorous (P), and 12 Mt of potassium (K) (FAO, 2023) signifying either the 

over-application of fertilizers and/or the reduced uptake by crops. The overuse of synthetic 

fertilizers has led to environmental degradation resulting in nutrient imbalances, leaching, and 

the associated impacts of water pollution - eutrophication, and reduced water quality 

(Akinnawo, 2023; Dhankhar & Kumar, 2023; Schilling & Spooner, 2006; Turner & Rabalais, 

1994; Weyer et al., 2001). In addition to environmental impacts, the widespread application 

and overuse of these chemical fertilizers have increased food production costs due to the 

expenses associated with sourcing raw materials, manufacturing, and transportation costs 
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resulting in serious economic and food security challenges for producers and consumers alike 

(Bonilla-Cedrez et al., 2021; Elser et al., 2014; Hebebrand & Laborde Debucquet, 2023; 

Khabarov & Obersteiner, 2017).  

The global population is projected to reach 9 billion by 2043, significantly increasing 

food demand. The challenge is to identify sustainable approaches to enhance crop production 

without repeating past mistakes (Hongguang, 2023). Improving N use efficiency (NUE) has 

become a primary target for sustainable solutions globally to reduce the over-reliance on 

synthetic N fertilizers (Rosolem & Husted, 2024). In light of these challenges, there is an urgent 

need for effective nutrient management systems that can balance fertilizer use while enhancing 

agricultural productivity and minimizing environmental impacts (Selim, 2020). Conservation 

practices, including increased crop biodiversity, intercropping, and the application of soil 

amendments and plant biostimulants have been advocated as viable strategies to address these 

pressing issues (Bamdad et al., 2022; de Molina et al., 2015; Guo et al., 2018; Li et al., 2020; 

Martin-Guay et al., 2018; Parr & Hornick, 1992; Tilman, 2020). Amendments such as animal 

manures, crop residues, green manures, wood ash, biochar, and composted materials play a 

crucial role in improving soil quality and fertility (Ahmed et al., 2015; Blum, 1992; Debosz et 

al., 2002; Jones, 2013; Maillard & Angers, 2014; Verma et al., 2020; Wei et al., 2016). 

Amendments are also essential for providing a sustainable source of nutrients to plants, thereby 

improving yields and acting as natural fertilizers (Assefa, 2019; Jannoura et al., 2014; Jjagwe 

et al., 2020; Shaji et al., 2021; Singh et al., 2020; Yadav & Sarkar, 2018). Additionally, plant 

biostimulants which are substances or microorganisms applied to plants to enhance nutrient 

efficiency, abiotic stress tolerance, and crop quality traits, offer promising solutions for 

sustainable agriculture (du Jardin, 2015), especially in the Northern Great Plains (Bartsch et 

al., 2023; Biederman et al., 2017; Parker et al., 2018; Souza et al., 2019).  
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1.2 Crop Production in the Northern Great Plains  
 

The Northern Great Plains (NGP) spanning parts of the United States of America and Canada 

is a critical agricultural region for global food production and food security (Kissinger & Rees, 

2009; Kukal & Irmak, 2016; Tanaka et al., 2007). It is an area of highly fertile soils which give 

rise to high agricultural production (Baulch et al., 2019). The NGP includes arable areas of the 

three Canadian Prairie (CP) provinces of Alberta, Saskatchewan, and Manitoba, and the 

agricultural regions of North and South Dakota, Montana, parts of Minnesota and Iowa, and 

some parts of northeastern Wyoming and Nebraska in the United States (Barker & Whitman, 

1988; Baulch et al., 2019; Li et al., 2021; Padbury et al., 2002). This region has a semi-arid to 

sub-humid climate with extreme summers and winters (Padbury et al., 2002). Agriculture is 

usually limited by moisture as the region naturally experiences more evapotranspiration than 

precipitation (Padbury et al., 2002). The CP region has seen a substantial shift from its natural 

grassland state to agricultural cultivation, a transition that commenced in the 1870s in Manitoba 

and was nearly completed by the 1920s, reshaping the region's ecological and economic 

dynamics (Pennock et al., 2011). Agriculture in the CP primarily predominantly takes place on 

Chernozemic soils, which are rich in soil organic matter (SOM) from native prairie grassland 

and parkland vegetation (Dumanski et al., 1998). These soils are classified into Black, Brown, 

and Gray zones based on soil organic carbon (SOC) content and moisture availability, which 

significantly influence agricultural productivity (Grant & Wu, 2008). Black Chernozemic soils 

are found in the northern region with higher precipitation and yield the highest crops, while 

Brown and Dark Brown Chernozems are in the arid southern region, characterized by lower 

SOC and water availability (Campbell et al., 1990; Pennock, 2021). The Gray soil zones, 

primarily forested, face limitations in agricultural production due to frosts, lower SOM, and 

nutrient deficiencies (Landi et al., 2003; Pettapiece et al., 2010). The Black soil zone is the 

most productive, while the Brown zone experiences the greatest water deficit, affecting crop 
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yields and fertilizer use (Grant & Wu, 2008; Pennock et al., 2011). The NGP significantly 

contributes to the production and export of staple cereal and oilseed crops (Agriculture and 

Agri-Food Canada, 2023b; U.S. Department of Agriculture & NASS, 2019); and is renowned 

for its extensive dryland cereal and oilseed cultivation system, with an increasing trend toward 

irrigation farming in certain regions (Carr et al., 2021; Cochran et al., 2006; Deines et al., 2020; 

Evett et al., 2020; Jing et al., 2021; Larney et al., 2004; Wang et al., 2022). The major grain 

crops grown are wheat, corn, soybeans, and canola, with other significant crops such as oats, 

barley, sunflower seeds, sugar beets, and edible beans (Johnston et al., 2002; Wienhold et al., 

2017). The CP occupies about 51.2 million hectares (Mha), out of the 62.2 Mha of Canada’s 

agricultural land making up around 82% of the country’s farmlands (Statistics Canada, 2023). 

The CP contributes to around 85% of the country’s total arable land, making it agriculturally 

and economically crucial (Statistics Canada, 2023). In 2023, approximately 32 million metric 

tonnes  of wheat were grown on 10.6 Mha across Canada (Statistics Canada, 2024b). The CP 

accounted for 90% of this production with Alberta contributing 29%, Saskatchewan 45%, and 

Manitoba 16% (Statistics Canada, 2024b).  

1.2.1 Crop production in the Canadian Prairies 

 

The CP is characterized by a short growing season, around 90-120 days, typically from late 

May to early or mid-September (Baulch et al., 2019; Chipanshi et al., 2021; Mapfumo et al., 

2023; Pelster et al., 2023), with cereal and oilseed crops requiring a minimum of 1200 growing 

degree days to reach physiological maturity (Mapfumo et al., 2023). In 2023, Canada produced 

approximately 85 million metric tonnes of grains and oilseeds across 27 Mha, and 4 million 

metric tonnes of pulses on 2 Mha (Agriculture and Agri-Food Canada, 2023a). The CP 

contributed significantly with 86% of grains and oilseeds and 98% of pulses, accounting for 

73% and 97% of the total crop production, respectively (Statistics Canada, 2024b). The CP 

provinces have historically been the primary regions for wheat cultivation, comprising about 
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96% of the wheat-growing area from 1908 to 2007, though this figure has slightly decreased 

to 94% due to diversification into other grains, oilseeds, and pulse crops (McCallum & 

DePauw, 2008; Statistics Canada, 2024b). Canada is also the largest producer of canola 

(oilseed rape), cultivating around 18 million metric tonnes on 8 Mha across the country 

(Statistics Canada, 2024b). The CP accounts for almost 99% of canola production with Alberta, 

Saskatchewan, and Manitoba contributing 29%, 52%, and 16%, respectively (Statistics 

Canada, 2024b).  

Wheat production in the CP is diverse with nine distinct classes based on the growth 

habit (spring and winter) and other quality factors such as protein content, kernel hardness, 

gluten strength, and colour (DePauw et al., 2011; McCallum & DePauw, 2008). The largest CP 

wheat class grown is the Canadian Western Red Spring (CWRS) which is used for making 

high-quality bread due to its relatively high protein content and blending capability (Iqbal et 

al., 2016; Pswarayi et al., 2014). Popular varieties in 2024 include “AAC Brandon”, “AAC 

Viewfield”, “AAC Starbuck”, “AAC Wheatland”, and “CDC Landmark” (Canadian Grain 

Commission, 2023; Cereals Canada, 2024). The Hard Red Spring wheat in the U.S. Northern 

Great Plains (USNGP) is comparable to the Canadian Western Red Spring (CWRS) wheat 

class. It constitutes approximately 25% of wheat production in the USNGP region, though its 

bread-making quality is slightly lower than that of CWRS (USDA, 2024). Popular varieties 

include “LCS Hammer AX”, “LCS Buster”, “LCS Cannon”, “LCS Trigger”, and “LCS Rebel” 

(Limagrain Cereal Seeds, 2024). Other wheat classes in the CP include Canada Eastern Red 

Spring (CERS), Canada Eastern Hard Red Winter (CEHRW), Canada Eastern Soft Red Winter 

(CESRW), Canada Eastern Amber Durum (CEAD), and Canada Eastern White Winter 

(CEWW) (Canadian Grain Commission, 2023). Optimal wheat growth conditions are achieved 

between 17-23°C with a precipitation input around 250-1750 mm yr-1 (Enghiad et al., 2017; 

Porter & Gawith, 1999). 
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Canola/oilseed rape (Brassica napus L.) is almost entirely spring sown in the CP and is 

mostly grown as three main herbicide-resistant or genetically modified systems which are 

Roundup-Ready®, Liberty-Link®, and Clearfield® canola systems, having bred resistance to 

glyphosate, glufosinate, and imidazolinone herbicides respectively (Beckie et al., 2004; Health 

Canada, 2016; Mauro & McLachlan, 2008). Canola typically completes its life cycle in 90-100 

days from seeding to maturity, although this duration can vary based on cultivar, soil fertility 

and moisture, environmental conditions, sunlight intensity, and air temperature (Morrison et 

al., 2016; N. Harker et al., 2012). 

Seeding crops in the CP typically occur from late April to mid-May, although regional 

variations exist (Dhillon et al., 2022; Johnston et al., 2002; Karamanos et al., 2012). The timing 

is influenced by soil conditions, snowmelt and runoff, spring precipitation, soil texture and 

temperature, frost risk, and previous crop residues (Arshad & Azooz, 2003; Grant et al., 2016; 

Gusta et al., 2004; He et al., 2013). Pre-seed herbicide application is crucial for annual 

broadleaf and perennial weeds such as kochia [Bassia scoparia (L.) A.J. Scott], volunteer 

canola, redroot pigweed (Amaranthus retroflexus L.), common lambs quarters (Chenopodium 

album L.) (Brunharo et al., 2022; Geddes et al., 2022). Pre-seed herbicide applications are 

usually performed in warm and low-wind conditions to control cool-season annual weeds 

creating a competition-free environment for the main crops (Chastko et al., 2024; Tidemann et 

al., 2023). Herbicides such as Axial® (Syngenta) provide broad-spectrum control for grass 

weeds (Syngenta, 2024). However, prairie producers usually practice a more integrated weed 

management system due to increased herbicide resistance (Geddes et al., 2022; Tidemann et 

al., 2023). No-till or minimum tillage practices with standing stubble are preferred during pre-

seeding land preparation to preserve soil moisture and nutrients, leading to increased seed yield 

(Bescansa et al., 2006). Soil temperature plays a crucial role in determining the correct time to 

seed (Rahman et al., 2020). A soil temperature of 10oC is usually considered the optimum 
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temperature for triggering seed germination (Chen et al., 2005). Choosing the right seeding 

date is crucial for producers as it significantly impacts crop physiological stages and subsequent 

yields (MacMillan & Gulden, 2020). Seeding rates are determined by the intended plant 

density, thousand kernel weight (TKW), and the seed germination percentage (Lafond & Gan, 

1999). Producers generally prefer early seeding for both wheat and canola to optimize crop 

performance by maximizing available soil moisture and the full growing season, with early-

seeded wheat being favoured to avoid frost damage and capitalize on early spring moisture and 

nutrients, resulting in better establishment and growth (Collier et al., 2020; Collier et al., 2021, 

2022; He et al., 2012). Ultra-early wheat seeding is currently an advocated practice; 

characterized by seeding at a soil temperature between 2oC – 6oC for the benefits of frost 

damage and weed infestation avoidance to increase grain yields (Collier et al., 2021; 

Thilakarathna et al., 2017). However, ultra-early seeding in canola is not feasible, as the 

optimal seeding temperature required by canola seeds is 10oC – 20oC (Chen et al., 2005; 

Kondra et al., 1983) and may experience seed rotting in cold soils (Chen et al., 2005; Livingston 

& de Jong, 1990). Additionally, unlike wheat, whose growing point remains protected below 

the soil surface until BBCH30 (beginning of stem elongation), canola’s exposed growing point 

makes it highly susceptible to frost damage from emergence, significantly limiting the 

feasibility of ultra-early seeding in the CP (Alt et al., 2020; Fiebelkorn & Rahman, 2016). 

Seeding rates and target plant densities generally increase from the drier Brown and Dark 

Brown soil zones to the more moisture-rich Black and Gray soil zones (O’Donovan et al., 

2011). Higher seeding rates reduce tiller numbers and lead to uniform maturity and increased 

yield (Shah et al., 2020). Wheat is typically seeded at a depth of 1.5 to 2.5 inches with an 

optimal seeding rate of 250-400 seeds/m² (Collier et al., 2021), while canola is placed at a depth 

of ½ to 1/4th inch with an optimal seeding rate to produce 50-80 plants per square meter 

(Dhillon et al., 2022). Shallow seeding helps canola seedlings emerge quickly and uniformly, 
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which is important for early growth and development (Hanson et al., 2008). Seeding equipment 

in the CP varies based on soil conditions and field requirements, with commonly used 

implements including air seeders, air drills, precision planters, direct or no-till seeders, and disc 

seeders. Air drills, conventionally used for seeding canola, typically have a 30 cm row spacing 

(Dhillon et al., 2022). These drills are equipped with double shoots, disc openers, and a seed 

cup assembly to ensure precise seed placement. Direct-seeding systems commonly employ 

inorganic fertilizer blends for both cereal and broadleaf crop production (Beckie et al., 1997). 

Commercial fertilizer blends are labelled with a ratio indicating the proportions of N, P, 

potassium, and sulphur per unit, each representing essential macronutrients for plant growth 

(Singh et al., 2023). Common inorganic fertilizer blends include urea N (46-0-0), 

monoammonium phosphate (11-52-0), triple superphosphate (0-46-0), potassium chloride (0-

0-60), and elemental sulphur or ammonium sulphate (21-0-0-24) (Dyck & Puurveen, 2020; 

Howell et al., 2017). Nutrients are concurrently applied during seeding based on soil test reports 

for targeted yield goals (Jouany et al., 2021; Khakbazan et al., 2021; Mezbahuddin et al., 2020). 

Fertilizer granules are typically banded below or beside the seed row during seeding to enhance 

nutrient availability and uptake (May et al., 2020). One-pass direct seeding, which involves 

planting directly into the previous crop's residue without prior tillage, has become widely 

adopted in the CP (Grant et al., 2010; May et al., 2020). Effective crop residue management in 

the previous growing season is essential, as excessive residue can hinder germination and affect 

the seeder's ability to accurately place seed and fertilizer, while insufficient residue can lead to 

excess moisture and cooler soil temperatures, resulting in similar establishment issues 

(Cutforth et al., 2002; Hu et al., 2015; Liu & Lobb, 2021; Malhi & Lemke, 2007). Wheat seeds 

are often treated with fungicide seed treatments to protect against common seed- and soil-borne 

diseases such as common bunt, loose smut, seed rot, and various seedling-related diseases 

(Aboukhaddour et al., 2020; Kumar et al., 2022; Turkington et al., 2016). In canola crops, flea 
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beetles are a prevalent pest, attacking during early seedling to vegetative stages, potentially 

causing significant yield losses (Lamb & Turnock, 1982; Lundin, 2020). Canola seeds are 

commonly treated with neonicotinoid (neonic) insecticides, typically applied as a blue-

coloured coating, to protect against flea beetle damage (Tansey et al., 2009). Neonics utilize 

soil moisture to move from the seed coat to the plant, offering protection, especially in warm, 

dry conditions during the susceptible stages (Sekulic & Rempel, 2016). The neonicotinoids act 

as neurotoxins when ingested by flea beetles feeding on the treated plants, effectively reducing 

crop damage and potential yield losses (Jeschke & Nauen, 2008; Mittapelly et al., 2024). 

Post-seeding, producers focus on comprehensive weed, insect, and disease control to 

ensure a healthy crop (McCallum et al., 2021). Regular field scouting and plant damage 

assessments are crucial, particularly during susceptible stages of crop development (McCallum 

et al., 2021). For canola, stems and undersides of leaves are checked for flea beetles till the 

four-leaf stage, with extra caution when temperatures exceed 14°C (Hoarau et al., 2022). If the 

threshold is crossed, foliar insecticides are sprayed (Mittapelly et al., 2024). Insecticides such 

as Malathion and Sevin XLR are applied after mid-July to control flea beetle emergence 

threatening pod development and yield (Cornelsen et al., 2024; Scagliarini et al., 2023). 

Additionally, integrated pest management (IPM) strategies, including cultural, physical, 

biological, and chemical controls, are employed to minimize the impact of pests on canola 

yields (Hoarau et al., 2022).  

The use of inorganic fertilizers in Canada has increased steadily since the 1980s (Yang 

et al., 2007). In the CP, various inorganic fertilizer blends are commonly applied to cereals and 

oilseeds, primarily through direct seeding methods (Beckie et al., 1997). However, if not 

managed properly, inorganic N fertilizers may lead to undesirable consequences, such as 

increased GHG emissions, particularly nitrous oxide (N2O) (Glenn et al., 2021; Venterea et al., 

2005, 2011). Although N, P, and K fertilizers are the most widely used synthetic macronutrient 
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sources, N fertilizer application has grown exponentially worldwide (Lu & Tian, 2017). 

Nitrogen is the primary macronutrient associated with increased plant height, crop yield, and 

quality (Krapp, 2015; May et al., 2012). Plants primarily absorb N in the form of ammonium 

and nitrate, utilizing it for protein synthesis (Gastal & Lemaire, 2002; Temple et al., 1998). 

Some plants, particularly legumes, can access N through biological nitrogen fixation – a 

process where symbiotic soil microorganisms convert atmospheric dinitrogen into ammonia 

(Compant et al., 2019). However, most crops rely on soil N, and chemical fertilizers have 

become necessary in many agricultural systems when the N removed through crop harvests 

exceeds what is naturally available in the soil (Thorburn et al., 2024). Nitrogen fertilizer 

recommendations for crop production in the NGP, including the CP are highly variable and 

depend on multiple factors. These factors include soil zone, previous crop, soil texture, 

application method, crop type, expected yield, soil moisture conditions, and local climate 

patterns (Grant et al., 2016; Liang et al., 2004; Malhi et al., 2001; McKenzie et al., 2006; 

Mezbahuddin et al., 2020; St. Luce et al., 2016). Optimal fertilizer rates, placement strategies, 

timing of application, and nitrogen sources are determined through a combination of soil 

testing, crop-specific requirements, and regional best management practices (Jégo et al., 2022; 

Malhi et al., 2001; Zebarth et al., 2009). In the CP, N fertilizer recommendations are commonly 

based on the measurement of nitrate-nitrogen (NO3 -N) levels in the top 60 cm of soil during 

spring sampling, providing information about the available N in the crop root zone (Khakbazan 

et al., 2018; St. Luce et al., 2015). According to the Alberta Fertilizer Guide (2004), rainfed 

wheat and canola benefit from N rates between 22 – 99 kg N ha -1 and 22 – 112 kg N ha -1, 

respectively, depending on the soil zone and moisture conditions. A recent study in Manitoba 

found that 30 kg N ha -1, combining soil residual and applied fertilizer, was needed for each kg 

of wheat grain yield to optimize economic returns and protein levels (Mangin et al., 2017). For 

canola, it typically ranges from 140-196 kg N ha -1.for a 2800 kg ha-1 yield goal (Wen et al., 
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2021). Saskatchewan's recommendations range from 17-67 kg N ha⁻¹ for wheat and 6-45 kg N 

ha⁻¹ for canola (Saskatchewan Ministry of Agriculture, 2016). In Montana, it is advised to 

apply 55 g of N per kg of wheat (Jacobsen et al., 2003), while in South Dakota, this rate changes 

to 40 g of N per kg of wheat (Gelderman & Lee, 2019). Nitrogen fertilizers are placed at 

different times in the NGP. In the CP, most N fertilizers are applied completely at seeding to 

reduce machinery and operation costs and limit in-season disturbances (Ma et al., 2006). In the 

case of oilseeds such as canola, split applications were found to be more effective as N is 

supplied at appropriate growth stages during crop development (Grant et al., 2012; Ma et al., 

2015). In Alberta, split application of anhydrous ammonia at BBCH 14 improved grain yield, 

and application near BBCH 59-61 increased grain N concentration (Beres et al., 2008). 

Phosphorous is applied for rapid root growth, early maturity, and increased yields 

(Havlin et al., 2014; Ros et al., 2020). The source of P fertilizer is rock phosphate, which is not 

extensively used in the NGP. The more common commercial P fertilizers available in both 

granular and liquid form are monoammonium phosphate (11-52-0), diammonium phosphate 

(18-46-0), ammonium polyphosphate (10-34-0), and triple superphosphate (Froese et al., 2020; 

Grant & Flaten, 2019). Western Canadian producers predominantly place P fertilizer (mostly 

monoammonium phosphate) in seed rows or side-banded during seeding (Froese et al., 2020). 

Potassium is required for plant physiological processes such as photosynthesis, transport of 

nutrients and water, and stomatal regulation (Bourns & Flaten, 2022). Potassium fertilizers in 

the CP are sourced from the potash mines located in Saskatchewan (Broughton, 2019). 

In-crop herbicide application for wheat usually occurs at BBCH 12-22 in late May for 

weed control, using motorized sprayers (Tidemann et al., 2023). Potential insect pests of wheat 

include wheat stem sawfly, grasshopper, and wheat midge (McCallum et al., 2021). Wheat 

midges are uniquely controlled by growing spring wheat varietal blends (VB) such as Shaw 

VB, Fieldstar VB, Conquer VB, and Utmost VB which contain the single midge-resistant gene 
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Sm1 in Western Canada (Mbanyele et al., 2024; Vera et al., 2013). Biological or chemical 

insecticides are applied when pest populations exceed economic thresholds to prevent 

significant damage and yield loss (Dakhel et al., 2020; Dufton et al., 2022; Sjolie et al., 2024). 

Wheat diseases include wheat rust, smut, Fusarium head blight, root rots, ergot, and Septoria 

leaf blotch, with fungicides applied at flag leaf emergence if symptoms are observed 

(Aboukhaddour et al., 2020). In-crop herbicides for canola have reduced due to the canola 

varieties being herbicide tolerant. In-crop herbicide for Roundup ready and Truflex canola 

varieties are usually sprayed from the 2-leaf to 6-leaf stage to reduce yield losses (Harker et 

al., 2000).   

Efficient harvesting practices for wheat and canola in the CP are essential for 

maximizing yield and quality while minimizing losses. The timing depends on crop maturity, 

weather, and grain moisture content (Kutcher et al., 2010; Qian et al., 2018). Wheat is ideally 

harvested at kernel moisture levels of 13-15% to prevent yield and quality losses (Alt et al., 

2019). Timely harvest is also important to minimize shattering losses in canola, with pre-

harvest desiccants often applied to accelerate and uniformly dry down the crop, ensuring 

optimal yield and quality (Long et al., 2016). Traditionally, canola is swathed when a 60% seed 

colour change is observed, then allowed to dry to approximately 10% moisture content before 

combining (Beres et al., 2023). Swathing or straight-cutting or combining canola depends on 

various factors, including canola variety, available machinery, crop maturity, climate 

conditions, and soil type (Brackenreed, 2019; Cavalieri et al., 2014). Recent research has 

demonstrated that straight-cutting canola can improve seed quality and reduce harvest losses 

compared to swathing (Brackenreed, 2019; Watson et al., 2007). This shift in harvest methods 

has been facilitated by the development of shatter-resistant varieties, which can withstand 

longer field exposure without significant yield loss (Kuai et al., 2016). When chemical 

desiccation is necessary, producers commonly use products such as diquat (Reglone) or 
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saflufenacil (Heat LQ) to hasten crop dry-down (May et al., 2020). For wheat, proper moisture 

management is necessary for storage at 8-14.5% moisture content to protect against insects, 

molds, and mites, while in canola, 8% moisture content is required (Chelladurai et al., 2016; 

Karunakaran et al., 2001; Sathya et al., 2009). 

1.2.1 Need and strategies to build resilience in the Northern Great Plains cropping 
systems 

 

Agronomic practices such as precision agriculture, crop rotation and diversification, tillage, 

early seeding, increasing seeding rates, altering row spacing, integrated pest management, and 

integrated nutrient management are now being incorporated into NGP agriculture to enhance 

yield and economic benefits (Elliott et al., 2008; Lundin, 2019). Recent agricultural practices 

have evolved significantly, focussing on conservation agriculture to improve sustainability 

(Kirkegaard et al., 2020; Lafond et al., 1992). Historically, continuous agricultural practices 

such as intensive tillage and summer-fallowing led to severe soil degradation i.e. soil erosion, 

acidification, and salinization (Coote et al., 1981; Voroney et al., 1981). The adoption of 

conservation agriculture and other regenerative practices over the past four decades has 

dramatically improved CP soil health and increased crop yields (Awada et al., 2014). Producers 

in the CP have implemented strategies such as conservation tillage, precision agriculture, 

diversified cropping regimes, and the use of stress-tolerant crop varieties (Archer et al., 2018; 

Campbell et al., 2002; Smolik et al., 1995; Tanaka et al., 2010; Zentner et al., 2002, 2011). 

However, in the current global agricultural context, new challenges are emerging, particularly 

related to climate change necessitating more sustainable nutrient management (Rashid et al., 

2021; Selim, 2020; Wu & Ma, 2015). 

To avoid repeating past mistakes and to better prepare for future challenges, crop 

management strategies must be refined and tailored to current and projected scenarios (Altieri 

et al., 2015; Lychuk et al., 2019; Martens et al., 2015; Raza et al., 2019; Webb et al., 2017). 
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These include optimizing crop rotations, further improving reduced or no-tillage practices, 

enhancing pesticide management, incorporating cover crops, and implementing integrated 

nutrient management approaches including the use of soil amendments and plant biostimulants 

(Hanberry et al., 2021; Liu et al., 2022; Lychuk et al., 2017; Mapfumo et al., 2023; Mayer & 

Silver, 2022; Singh et al., 2020; Van Eerd et al., 2023; Zhang & White, 2021). 

Over the past three decades, the CP has witnessed a significant shift from wheat-fallow 

monoculture systems to diverse crop rotations (Benaragama et al., 2016; Zentner et al., 2002). 

Before the 1980s, the region primarily employed crop-fallow or crop-crop-fallow rotations, 

with spring wheat (Triticum aestivum L.) as the dominant crop (Campbell et al., 2002). Despite 

increased productivity, frequent fallow and low-diversity crop rotations led to topsoil loss 

caused by wind and soil erosion (Janzen, 2001). Crop rotation, the practice of growing a 

sequence of different crop types in the same field across successive growing seasons has 

emerged as a solution to these challenges (Iheshiulo et al., 2023; Leteinturier et al., 2006; 

Munkholm et al., 2013). Crop rotations can significantly influence soil-plant N dynamics due 

to the residual effects of previously grown crops (Luce et al., 2015; O’Donovan et al., 2014). 

Moreover, crop rotation enhances crop yields by optimizing nutrient utilization and disrupting 

pest cycles (Bainard et al., 2017). In response to climate change, market fluctuations, and the 

need for improved environmental sustainability, traditional crop rotations are being adapted to 

include a wider variety of pulse crops and more efficient strategies (Martens et al., 2015). 

Diversifying crop species through rotation not only stabilizes profits (Davis et al., 2012), but 

also reduces NO3-N and phosphorus leaching, GHG emissions, and fertilizer requirements in 

the NGP (Behnke et al., 2018; Kiani et al., 2017; Leteinturier et al., 2006; Lychuk et al., 2021; 

Malhi et al., 2009; Soon & Clayton, 2002). Despite these benefits, recent trends toward 

simplified cereal-based rotations have raised concerns about reduced crop diversity, which can 

jeopardize soil health and crop productivity (Karlen et al., 2006; McDaniel et al., 2014; Ozlu 
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et al., 2019). For instance, continuous or long-term wheat-canola rotations, although beneficial 

for reducing pest pressures, often result in lower yields (Schillinger & Paulitz, 2018). 

Historically, crop rotations in the NGP, particularly in the CP, have been dominated by cereals 

such as spring and durum wheat, with corn prevalent in the NGP of the United States of 

America (Feng et al., 2021). However, economic pressures such as falling cereal prices and 

increased input costs, as well as policy changes, have led producers to diversify their cropping 

rotations from monoculture of cereal crops to include diverse crops such as lentils, canola, 

chickpea, dry pea, flax, and mustard (Arshad et al., 2002; Chen et al., 2012; Gill, 2018; Harker 

et al., 2015; Johnston et al., 2002; Lupwayi et al., 1998; Miller et al., 2002; Smith et al., 2017; 

Tanaka et al., 2007). These pulse and oilseed crops have previously been reported to 

significantly increase grain yield and quality compared with continuous cereal/wheat systems, 

attributed to the retention of soil nitrate (Sainju & Pradhan, 2024). A typical CP crop rotation 

sequence involves cereals (wheat, oats, barley), oilseeds (canola, mustard, sunflower, flax), and 

legumes (lentils, field peas, beans, chickpeas) spanning across a 3 - 5 year cycle (Dhuyvetter 

et al., 1996; Grant et al., 2002; He et al., 2021; Miller & Holmes, 2005; Strydhorst & Liu, 

2023). Rotation with canola is recommended to be scheduled every two to three years to break 

insect and disease cycles and promote crop diversification as well as farm profits (Gill, 2018). 

However, canola being an important economic crop for the CP, mostly continuous canola or 1-

in-2-year canola rotations are more common (Town et al., 2023). In the USNGP, rotations also 

include maize and soybean (O’Brien et al., 2020). Historically, the USNGP area of North and 

South Dakota and Nebraska includes fodder crops such as grasses and alfalfa for livestock use 

with 4-yr rotations that include corn, wheat, and soybean which have collectively improved 

crop yield, soil health, and water use efficiency (Feng et al., 2021; Nebraska Corn Board, 2023; 

Sainju et al., 2021; Tanaka et al., 2005). Despite setbacks in crop production due to disease 

outbreaks and low crop value (Aboukhaddour et al., 2020; Byamukama et al., 2021; Nganje et 
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al., 2004), the strategic diversification of crop rotations continues to offer a pathway toward 

sustainable and resilient agricultural systems.  

An advocated strategy being explored is the use of cover crops as a complete or partial 

replacement for summer fallow in the NGP, with the potential to improve soil health and 

sustainability (Jones et al., 2020; Khan & McVay, 2019; Nielsen et al., 2016). Single or diverse 

cover crop species can benefit crop production indirectly by increasing soil stability and water-

holding capacity, promoting microbial population and activity, and reducing soil erosion 

(Dapaah & Vyn, 1998; Jones et al., 2020; Malezieux et al., 2009). Cover crops can directly 

increase plant available N, improve nutrient use efficiency, and thus, increase crop yields and 

quality (O’Reilly et al., 2012). Cover crops have also been reported to reduce leaching losses, 

by around 69% globally compared with fallow as they work as nutrient scavengers taking up 

residual N left by the previous crop (Li et al., 2021).  

Tillage or conventional tillage is an agronomic practice traditionally used for weed 

elimination, seedbed preparation, decreasing soil compaction, and incorporation of crop 

residues (Baan et al., 2009; Davies & Payne, 1988; Maillard et al., 2018). Historically, intensive 

mechanical tillage was commonly employed, particularly during summer fallow years, to 

control weeds (Curtin et al., 2000). While this approach provided short-term increases in crop 

yield, it also led to significant long-term drawbacks, such as decreased soil organic carbon 

(SOC) storage, reduced soil microorganism populations, depletion of plant-available nutrients, 

and overall decline in soil productivity (Bhattacharyya et al., 2022; McConkey et al., 2012; Yu 

et al., 2024). Since the 1990s, the NGP shifted to the adoption of no- or reduced-till practices 

to reduce soil erosion and degradation, optimize water use efficiency, reduce fuel costs required 

to operate extra machinery and improve nutrient management (Agriculture and Agri-Food 

Canada, 2009; Horowitz et al., 2010; Lafond et al., 1992, 1993; Nielsen & Vigil, 2010; Unger 

et al., 2010). By 2016, nearly 80% of CP farmlands were under conservation tillage, including 
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65% practicing zero-till (Statistics Canada, 2017). Although no or zero-till resulted in several 

improvements in soil properties and crop yields, some challenges such as excess soil moisture, 

pest control issues, and cooler soil temperatures are still a cause for hesitancy and feasibility 

of adoption (Adhikari et al., 2023; Agriculture and Agri-Food Canada, 2009; Sainju, 2020). 

Despite these challenges, minimum tillage or no-till systems can provide greater resilience to 

the cropping systems in the context of climate change while being economically beneficial for 

the producers.  

Pest management involves several techniques such as crop rotation, model predictions, 

monitoring, pheromone traps, biocontrol, and applying pesticides when necessary (McCallum 

et al., 2021). These pests are tackled by an integrated pest management system which includes 

crop rotations, seeding rates, row spacing, and other chemicals such as foliar insecticides and 

neonicotinoid seed treatments (Batallas & Evenden, 2020; Soroka et al., 2018). Pesticides are 

used to protect crops from weeds, diseases, and pathogens (Chastko et al., 2024; Vankosky et 

al., 2017). Herbicide-tolerant or genetically modified crops are usually grown in the NGP 

including corn, soybean, and canola (Brunharo et al., 2022). Glyphosate is the most widely 

used herbicide for canola, soybean, and corn. More than 93% of the canola-seeded area in CP 

is glyphosate and glufosinate-ammonia-tolerant (Cornelsen et al., 2024; Kataria & Verma, 

1992). Glyphosate is effective on weeds such as wild oats (Avena fatua L.), kochia [Bassia 

scoparia (L.) A.J. Scott], and downy brome (Bromus tectorum). Other weed species common 

in the USNGP are giant foxtail (Setaria faberi Herrm.), waterhemp [Amaranthus tuberculatus 

(Moq.) J.D. Sauer], and giant ragweed (Ambrosia trifida L.). Glyphosate-resistant canola can 

also act as a volunteer weed in the subsequent crop due to pod shattering in the previous 

growing season (Jhala et al., 2021). Current plant pathogens mainly affecting canola production 

include sclerotinia stem rot [Sclerotinia sclerotiorum ((Lib.) de Bary)], blackleg 

[Leptosphaeria maculans ((Sowerby) P. Karst)] and clubroot [Plasmodiophora brassicae 
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(Woronin)]; they are managed by fungicides, crop rotation, and resistant cultivars (Del Río et 

al., 2007; Hwang et al., 2011; Hwang et al., 2016). Canola is currently threatened by flea 

beetles, cutworms, root maggots, armyworms, diamondback moths, aphids, and leafhoppers 

(Cornelsen et al., 2024).  

Ultra-early seeding of wheat has emerged as an innovative strategy to enhance 

resilience in the CP agricultural systems (Collier et al., 2024). This approach capitalizes on 

longer frost-free periods by seeding wheat when soil temperatures reach 2-6°C, regardless of 

calendar date, to enhance yields by avoiding high temperatures at critical growth stages later 

in the season (Collier et al., 2020). In the NGP, a short frost-free period can limit grain yields 

(Collier et al., 2021; Iqbal et al., 2007). The ultra-early wheat seeding system capitalizes on the 

early season growing degree-day as well as precipitation accumulated to produce higher yield 

(Collier et al., 2020). Studies in Australia in ultra-early seeding have evaluated and reported 

increased wheat grain yield due to deeper rooting, better access to soil moisture, reduced 

temperatures at grain filling, and an overall better establishment of the crop (Hunt et al., 2018; 

Kirkegaard et al., 2015). An earlier average planting window shift of 0.24 days year-1 of 

“Thatcher” wheat produced a higher yield of 23.5 kg ha−1year−1 in six locations in Montana 

(Lanning et al., 2010), hence, avoiding grain yield reduction due to increased growing season 

temperatures which affects grain filling (He et al., 2012; Kouadio et al., 2015; Qian et al., 

2019). In Western Canada, the highest yields were observed on the earliest seeding dates, with 

higher seeding rates and a shallow seeding depth at locations south of latitude 51⁰ (Collier et 

al., 2021). Hence, producers south of latitude 51⁰ are recommended to shift to earlier spring 

planting in Western Canada to reduce the risk of yield loss due to higher temperatures later in 

the season (Collier et al., 2020).  

The long-term sustainability of agriculture in the NGP hinges on protecting natural 

resources, building resilience to various biotic and abiotic stresses, as well as maintaining 
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economic viability (Martens et al., 2015). As previously discussed, practices such as crop 

rotation and diversification, conservation tillage, and ultra-early seeding strategies are being 

implemented to enhance sustainability, stability, and resilience in the NGP cropping systems 

(Smith et al., 2017). These approaches have shown promising results, increasing wheat and 

canola yield and quality while serving as mitigation strategies against variable climate 

conditions, particularly drought (Smith et al., 2017). However, to maintain and improve current 

productivity levels, especially in simple crop rotation systems, fertilizer application is often 

necessary to optimize yield and ensure economic feasibility (Lassaletta et al., 2014). This 

reliance on synthetic fertilizers as the main anchor for sustaining and increasing crop yields for 

the growing population has raised concerns about soil health and environmental impacts, 

highlighting the growing need for Integrated Nutrient Management (INM) (Selim, 2020). 

Nitrogen fertilizer production accounts for almost 90% of the entire fertilizer industry 

(Tyagi et al., 2022). Nitrogen, though vastly available in the atmosphere, cannot be easily taken 

up by plants (Leigh, 2002). In nature, N is transformed into forms that are readily available to 

terrestrial ecosystems, which is again converted into other forms of N, eventually circling back 

into the atmosphere as molecular N (N2) (Dong et al., 2021). However, natural processes such 

as biological nitrogen fixation, provide only a limited amount of fixed N which is not enough 

for increasing crop yields to satisfy the current population demand (Ladha et al., 2022). The 

solution for increasing N was discovered in the form of the development of synthetic fertilizers 

based on the effective and efficient Haber-Bosch process (Erisman et al., 2008, 2013) providing 

great benefits in food production and security since the 1960s (Sutton et al., 2011). Synthetic 

N fertilizers mostly provide a direct supply of plant-available N in the form of ammonium 

(NH4
+) and nitrate (NO3

-), or urea which breaks down into NH4
+ and NO3

- by the activity of 

urease enzyme and other microorganisms (Drury et al., 2017; Subbarao et al., 2006). This 

increase in enhanced nutrient supply to plants has exponentially increased crop production and 
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yield over the years, however, N fertilizers are also susceptible to N losses, thus impacting their 

efficiency (Govindasamy et al., 2023). Nitrogen-based fertilizers in the CP are applied as urea, 

ammonium nitrate, anhydrous ammonia, and ammonium sulphate (Shen et al., 2019). Applied 

N fertilizers can be subjected to loss in four major pathways – ammonia volatilization, nitrate 

leaching, immobilization, and denitrification (Janzen et al., 2003; Qiao et al., 2015). Ammonia 

in gaseous form can be volatilized into the atmosphere when ammonium-based fertilizers are 

applied (Pan et al., 2016). Immobilization of soil N occurs when soil microorganisms convert 

ammonium and nitrate into organic forms of N, thus rendering them unavailable for plant 

uptake (Yansheng et al., 2020). Denitrification leads to the formation of N2O from nitrate which 

has a potential global warming effect 265 times greater than carbon dioxide (Adelekun et al., 

2019; Pan et al., 2022). Nitrous oxide is produced mostly due to excess soil N being lost to the 

environment and soil mediated specifically by soil microbes (Ramzan et al., 2020; Snyder et 

al., 2009). Though crop production contributes to a relatively smaller percentage of the total 

GHG emissions, it is an important concern to mitigate N2O production due to its potency, since 

it is directly related to sub-optimal methods of soil and fertilizer management in agriculture 

(Smith et al., 2012; Tenuta et al., 2019). Other land practices such as irrigation and tillage can 

also contribute to N2O production (Halvorson et al., 2010; Lee et al., 2006). 

 

1.3 Integrated nutrient management 
 

Integrated nutrient management (INM) is a multifaceted sustainable approach to nutrient use 

through the judicious and integrated use of organic, inorganic, and biological fertilizer sources 

(Janssen, 1993; Paramesh et al., 2023). Integrated nutrient management techniques allow for a 

more balanced nutrient management strategy, combining traditional and modern agricultural 

fertilizer practices leading to enhanced crop nutrient uptake and soil nutrient retention that 



22 

 

mitigates nutrient losses and improves crop productivity and soil quality (Paramesh et al., 

2023). Integrated nutrient management practices aim to synchronize the nutrient demand of the 

crop, with the supply and release of the nutrient sources used, thus, increasing the nutrient use 

efficiency and reducing losses related to leaching, volatilization, runoff, immobilization, and 

emission release (Wu & Ma, 2015). Furthermore, INM focuses on the overall improvement of 

soil physical, chemical, and biological properties for a more sustained agricultural output and 

productivity (Das et al., 2015). Various studies have shown that INM practices compared to the 

sole application of chemical fertilizers or organic manures can significantly increase rice, 

wheat, maize, and cowpea yields and quality, and improve soil health by minimizing nutrient 

losses and managing nutrient supply (Adediran et al., 2005; Ejigu et al., 2021; Ghosh et al., 

2020; Gosal et al., 2018; Hammad et al., 2020;Khan et al., 2007; Ranjan et al., 2023; Urmi et 

al., 2022; Varatharajan et al., 2022). Integrated nutrient management practices are globally 

recognized for their effectiveness, yet their adoption varies significantly across regions 

(Chivenge et al., 2022; Gram et al., 2020; Mohanty et al., 2020). In Asian and African countries, 

there is a long-standing tradition of implementing INM techniques that combine conventional 

NPK fertilizers with organic sources such as farmyard manure, compost, vermicompost, and 

green manure, particularly in grain, pulse, and vegetable crops (Babu et al., 2020; Chakraborty 

& Kumar, 2017; Chianu & Tsujii, 2005; Thilakarathna & Raizada, 2015; Wabusa et al., 2024). 

In contrast, Western agriculture primarily relied on manure as the sole nutrient source until the 

1930s, when the advent of synthetic N fertilizers via the Haber-Bosch process revolutionized 

N supply (Cunfer, 2021).  

In Canada, agriculture is responsible for approximately 76% of anthropogenic N2O 

emissions, with synthetic N fertilizers, particularly urea, being the primary source 

(Environment and Climate Change Canada, 2022b). Canada's N fertilizer consumption has 

surged from 0.94 million tonnes in 1981 to 2.5 million tonnes in 2016, with Western Canada 
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experiencing a 200% increase compared to 42% in Eastern Canada (Agriculture and Agri-Food 

Canada, 2016). This growing reliance on N fertilizers has led to a 43% national increase in 

N2O emissions, primarily attributed to N fertilizer application (Agriculture and Agri-Food 

Canada, 2016). In the CP, N inputs and outputs have varied in the last three decades with 

Alberta showing the highest yield response (91% N increase, 117% production increase), 

followed by Saskatchewan (98% N increase, 61% yield increase), while Manitoba 

demonstrated the lowest efficiency (77% N increase, 26% production increase) (Statistics 

Canada, 2024b). This corresponded with the change in NUE across the provinces ranging from 

67 - 83% for Alberta, 88 - 130% in Saskatchewan, and 61 - 77% in Manitoba (Yang et al., 

2024). Despite these increases in N input, net GHG emissions in the CP have remained 

relatively stable due to enhanced carbon sequestration in soils through best management 

practices (Agriculture and Agri-Food Canada, 2016). To address the challenges posed by rising 

N fertilizer use, the Canadian Government dedicated $200 million for the 2021 - 23 season to 

launch an on-farm climate action program, aiming to reduce GHG emissions by 40% through 

improved N management (Environment and Climate Change Canada, 2022a). Although nitrate 

leaching is lower in the CP compared to Eastern Canada due to its semi-arid climatic conditions 

and lower precipitation rates, nitrate runoff remains a concern (Yang et al., 2023). Studies have 

indicated that substantial nitrate N losses can occur, especially in late spring, through surface 

and subsurface runoff during early and late spring snowmelt respectively under the CP climate, 

which can be exacerbated in wet years following dry years due to potential nutrient flushing 

(Kokulan et al., 2019, 2022; Tiessen et al., 2010). A recent study calculated that N input in the 

CP increased from 21.8 - 59.8 kg N ha-1 in 1981 to 83.2 – 134.5 kg N ha-1 in 2016, an almost 

three-fold increase, mostly attributed to increased canola production, which requires more N 

for higher yields (Yang et al., 2023). Additionally, Yang et al. (2024) reported a significant 

decrease in NUE for the CP provinces, from 91.3% in the early 1980s to 73.3 % in 2016. 
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Despite this decline, the CP region’s NUE remains substantially higher than the global average 

for major cereals (rice, wheat, and corn), which ranges from 30% to 50% (Bundy & Andraski, 

2005; Cassman et al., 2002; Yang et al., 2024). The decrease in NUE for the CP in the 36 years 

was mainly attributed to the drastic increase in inorganic N fertilizer use and overall increased 

N losses through N2O emissions, ammonia volatilization, nitrate losses, and elevated residual 

soil nitrogen levels (Yang et al., 2024). Hence, there is a pressing need to minimize inorganic 

N fertilizer dependency as they are directly related to increased fossil fuel usage, as well as 

optimize the use of inorganic N fertilizer depending on the agro-climatic conditions, crop, soil 

as well as economic variability in the CP region to improve grain yields and reducing 

environmental footprint (Mezbahuddin et al., 2020; Snyder, 2017; Yang et al., 2024).  

 

1.3.1 The 4R Nutrient Stewardship  
 

To optimize N fertilizer management, precision agriculture, and variable rate technology have 

emerged as key strategies in modern agriculture, particularly in the CP, providing site-specific 

crop management and enabling the practical application of inputs at varying rates across fields 

(Khakbazan et al., 2021; Mezbahuddin et al., 2020). Building upon these technologies, the 4R 

Nutrient Stewardship framework offers a comprehensive approach to optimize nutrient use 

efficiency and sustainability (Bruulsema et al., 2019). The 4R Nutrient Stewardship was 

developed a decade ago, focusing on the Right place and Right time of application of the Right 

rate of the Right nutrient source to improve crop yields, NUE, soil health, and economic profits 

for producers and is widely advocated in North America (Bruulsema, 2022). The foundation of 

the 4R idea was laid down in 1988 by Thorup and Stewart, who emphasized the importance of 

optimizing nutrient management practices for balancing nutrient cycles for sustainable crop 

production and reducing extra fertilizer costs (Thorup & Stewart, 1988). Due to the urgency of 
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feeding an increasing population as well as gaining maximum economic yield, the 4R was 

pushed aside, till it became apparent that improper and N-balanced fertilizer management was 

leading to serious environmental and economic consequences, as well as nutrient losses and 

low NUE (Cook et al., 1996; Griffith & Dibb, 1985; Lamb et al., 2008; National Research 

Council, 1989). The 4R framework is individualized for each farm and locality based on the 

soil zone/type, different cropping systems, and climate limitations. The performance indicators 

for efficient 4R management include 9 indicators provided by the International Plant Nutrition 

Institute (2012) reflecting an area of concern in all cropping systems. The first three indicators 

are farmland productivity, soil health, and nutrient use efficiency, which are directly 

measurable at the farm scale. Hence following all 4Rs ensures that fertilizers do not limit crop 

yields, maintain soil fertility, and optimize nutrient use efficiency.  

 “Right” timing is crucial for N application, as N availability at the correct growth stage 

is important for yield and quality parameters (Bogard et al., 2010). The timing of N uptake by 

crops is not constant during the growing season. In cereals, nitrate supply is crucial at pre-

anthesis as well as at the grain-filling stage to obtain higher crop yields and protein content 

(Martre et al., 2003; Worland et al., 2017). Above-ground N uptake can be as little as 17% 

during establishment (seeding to tillering) in cereals (McGuire et al., 1998) and oilseeds (Ma 

& Herath, 2016). During the growth period from tillering to heading, the majority of N uptake 

takes place, peaking just before anthesis (Malhi et al., 2006). It is in this phase that most of the 

nitrate and ammonium are absorbed and assimilated in vegetative tissues, which is then 

mobilized into grains in the later part of the season (Barraclough et al., 2014; Hawkesford, 

2014). Malhi et al. (2006) reported marginal N uptake (< 5%) during the grain-filling period in 

the Black soils in Saskatchewan. In contrast, Mangin et al. (2022) reported almost 21-36% N 

uptake in wheat post-anthesis, although this uptake was highly dependent on late-season 

rainfall. The small percentage of post-anthesis N uptake is thought to contribute greatly towards 
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grain N (Kichey et al., 2007; Pask et al., 2012). Standard 2.69 Mg/ha spring wheat, 5.38 Mg/ha 

barley, and 2.35 Mg/ha canola crops partition 95, 118, and 125 kg N/ha between their seed and 

straw biomass (Karamanos, 2015). These factors make the timing of N application extremely 

crucial as both early and late application can lead to N loss. A global meta-analysis reported 

that late-season applied N increases grain protein but is neutral for crop yields, which is good 

since there is usually a negative correlation between crop yield and grain N concentration 

(Giordano et al., 2023). However, in the CP’s arid and dry conditions, split application and 

complete pre-plant application of the recommended rate provided similar yield and protein 

content (Grant et al., 2012). Hence, it appears that the timing of fertilizer N rate may depend 

on environmental conditions to provide maximum yield. Late fall application is also sometimes 

considered as an N management strategy. Because of soil freezing, which diminishes soil N 

availability, there is a decrease in N2O emissions in the subsequent season. This indicates that 

applying anhydrous ammonia late in the fall may prove advantageous compared to spring 

application in this aspect (Tenuta et al., 2016). Contrastingly, a modeling study found that 

spring banding was effective in reducing N2O, N2, and ammonia emissions compared to fall 

banding (Mezbahuddin et al., 2020). Split application of urea also reported lower N2O 

emissions in potato production in Manitoba (Gao et al., 2017).  

Proper N fertilizer placement plays a vital role in ensuring accessibility and efficient N 

uptake by crops, reducing potential N loss pathways and environmental impact in the NGP’s 

unique soil and climatic conditions (Tenuta et al., 2023). Although most of the NGP applies N 

fertilizer via side banding, broadcasting is still practiced as an application method in pastures 

or forages (Grant & Wu, 2008; Mezbahuddin et al., 2020). In the past, broadcast applications 

were preferred under conventional tillage systems compared to zero-till as tillage enables the 

fertilizer to be incorporated rather than being exposed on the surface, thus, reducing potential 

volatilization losses (Malhi et al., 2001). However, since broadcasting can also be 
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environmentally, agronomically, and economically inefficient leading to around 50% more N 

losses through ammonia volatilization, side banding is currently the preferred way of N 

application (Gao et al., 2018; Sheppard et al., 2010). Side-banding of N fertilizer has also been 

demonstrated to either reduce (Nash et al., 2012), increase (Halvorson & Del Grosso, 2013), 

or even have no effect (Burton et al., 2008) on N2O emissions. 

Conceptually, N application rates should be equal to the crops’ requirement for adequate 

yield that is not satisfied by the initial soil mineral N, mineralizable SOM, and atmospheric N 

deposition (Cassman et al., 2002; Morris et al., 2018). Nitrogen application rates in the NGP 

are highly variable as they depend on the crop type, crop requirement, yield goals, soil type 

and condition, and climatic factors (Cao et al., 2018; Grant et al., 2016). In Manitoba, more 

than 190 kg N ha-1 is recommended for reaching the economically optimal yield and protein 

content of spring wheat (Mangin et al., 2017). Forage crop production of sorghum in Iowa has 

a recommendation of 120-140 kg N ha-1 for obtaining high yields (Rooney et al., 2007); and 

218 kg N ha-1 in New Mexico (Marsalis et al., 2010). Therefore, it is crucial to balance N 

application rates within the 4R network to ensure crop productivity while mitigating 

environmental impacts in the NGP.  

The “Right Source” selection by producers depends on various factors, including but 

not limited to transportation costs, local availability, soil nutrient deficiency, and soil test 

reports (Mylavarapu, 2010). Selecting the correct source starts with a soil test assessment which 

indicates the nutrient requirement moulded for the upcoming season’s crops (Bruulsema et al., 

2019). In the absence of soil testing, other diagnostic tests such as plant tissue or sap analysis, 

visual assessment for nutrient deficiencies, crop growth responses, and near-infrared 

spectroscopy are also used (Fageria & Baligar, 2005; Jones Jr, 2011; Mylavarapu, 2010). The 

most common N fertilizers used in Canada are urea, anhydrous ammonia, ammonium nitrate, 

calcium ammonium nitrate, urea ammonium nitrate (UAN), and ammonium sulphate (Statistics 
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Canada, 2024a). Nitrogen fertilizer source has been found to influence N2O emissions in crop 

production systems (Drury et al., 2012; Halvorson et al., 2010; Venterea et al., 2010). 

Anhydrous ammonia was found to have higher levels of N2O emissions compared to UAN and 

urea (Mosier, 1994; Venterea et al., 2005).  

Enhanced efficiency nitrogen fertilizers (EENFs) such as polymer-coated “slow-

release” urea or stabilized urea which contain nitrification and urease inhibitors, have been 

designed to adhere to the 4R principles contributing to the “Right Source” aspect (Fast et al., 

2024). When urea fertilizer is applied to soil, urease enzymes hydrolyse urea to ammonia, 

causing N loss due to ammonia volatilization (Drury et al., 2017). The ammonium that results 

from the hydrolysis of urea can be absorbed by plants, immobilized by soil microbes, attached 

to the surface of non-exchangeable clay, or proceed to the next transformation to nitrite and 

nitrate (Sigurdarson et al., 2018). Nitrification is the transformation of ammonium to nitrite 

followed by nitrate by microbial activity (Subbarao et al., 2006). Nitrate leaching is primarily 

caused by its greater mobility in soil than ammonium due to its negative charge, which prevents 

it from being held by the negatively charged soil particles (Meisinger & Delgado, 2002).  

Ammonia volatilization is the first avenue of N loss after N fertilizer application. 

Coating urea with urease inhibitors based on hydroxamic acid and phosphoramides can 

contribute to reduced ammonia volatilization of urea by half, under various soil and 

environmental conditions (Lasisi et al., 2019; Silva et al., 2017) by increasing soil ammonium 

and decreasing soil nitrate levels (Fan et al., 2018). N-(n-butyl) thiophosphoric triamide 

(NBPT) is the most widely used urease inhibitor due to its ability to bind directly with the 

active metallocentre site of the urease enzyme (Kafarski & Talma, 2018). Nitrification 

inhibitors (NI) such as dicyandiamide (DCD) are used to inhibit microorganisms such as 

Nitrosomonas which aid in converting ammonium to nitrite, thereby reducing nitrate leaching 

and nitrous oxide emissions (Subbarao et al., 2006; Wissemeier et al., 2001; Zerulla et al., 
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2001). Application of N inhibitors has been demonstrated to increase wheat and maize yields 

and NUE because the increased ammonium encourages stronger microbial activity which in 

turn increases reserve soil N (Fast et al., 2024; Ma et al., 2015). The application of a double 

inhibitor on urea resulting in a product such as SuperU® (NBPT plus DCD) has the potential 

to simultaneously reduce nitrate leaching, nitrous oxide emissions, and ammonia volatilization 

(Drury et al., 2017).  

Enhanced efficiency nitrogen fertilizer products slow the N release by either being 

encapsulated with protective coatings made of water-insoluble or semi-permeable material to 

restrict the dissolution rate of the fertilizer or by containing chemicals that inhibit N processes 

in the soil, thus reducing N loss, in turn providing more N to be available to the plants (Figure 

1.1) (Asgedom et al., 2014; Venterea et al., 2011). Studies demonstrate a reduction in N2O 

emissions but are inconsistent (An et al., 2021; Graham et al., 2018; Halvorson et al., 2011, 

2014; Parkin & Hatfield, 2014). However, no change in N2O emissions with Environmentally 

Smart Nitrogen®, a polymer-coated EENF was observed versus conventional urea application 

(Gao et al., 2017). However, there are some challenges with EENF adoption. Increased costs 

of EENFs compared to conventional fertilizers restrict consumer adoption (Thapa et al., 2016). 

Coating damage due to machine handling, from the manufacturing unit to seeding, may also 

contribute to reduced performance (Beres et al., 2012). 

In response to rising N fertilizer prices, CP producers have increasingly turned to soil 

amendments and plant biostimulants as integral components of their INM strategies to further 

enhance nutrient use efficiency and reduce N fertilizer dependency (Bartsch et al., 2023). This 

approach incorporates soil amendments (SAs) and plant biostimulants (PBs) alongside 4R 

principles to enhance nutrient use efficiency, reduce inorganic N fertilizer dependency, and 

improve resilience against climate change (Bruulsema et al., 2024; Rubin et al., 2023). Soil 

amendments such as manure, and composts, enhance soil fertility; and PBs such as microbial 
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and humic substances focus on enhancing plant nutrient uptake, and root development acts as 

complementary tools for nutrient acquisition potentially reducing synthetic fertilizer 

requirements (Bhattacharyya et al., 2008; Ghosh et al., 2022; Leoni et al., 2019).  

 

1.4 Amendments: concepts and applications 

One effective strategy to address the challenges of increasing crop yields without causing 

environmental stress, improving soil health, and reducing reliance on synthetic fertilizers, is 

the use of soil amendments (Garbowski et al., 2023). Soil amendments are aimed at improving 

soil fertility by increasing water availability to plants, maintaining the biological activity of 

soil microorganisms, and enhancing nutrient availability and plant uptake (Tejada et al., 2009). 

Soil amendments also increase soil stability by improving soil aggregate stability, buffer soil 

pH, enhance bulk density, and improve soil-air-water composition and balance (Figure 1.1) 

(Tejada et al., 2009; Zhang et al., 2023). Soil amendments include manure, compost, biochar, 

wood chips, and lime.  

Manure is a by-product of livestock production and works as a fertilizer and soil 

conditioner (Gholami et al., 2016; Kar et al., 2017; Wen et al., 2003). Historically, manure has 

been utilized to provide nutrients naturally, and for its beneficial soil quality-enhancing 

properties (Jones, 2012; Liu et al., 2020). Manure can be sourced from cattle, pig/swine, sheep, 

and chicken; and applied in liquid or solid forms (Asgedom & Kebreab, 2011; Gholami et al., 

2016; Hangs & Schoenau, 2023; Weber et al., 2022). Cattle and liquid swine manure have been 

shown to elevate soil pre-seeding available-N leading to increased wheat, canola, and barley 

yields, and enhanced N uptake (Mooleki et al., 2001, 2002). Yields either equal to or near the 

yield produced by synthetic fertilizers have also been observed by manure application (Buckley 

et al., 2011; Olson et al., 2010; Qian & Schoenau, 2002). Although highly rich in organic matter 
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and a great source of plant nutrients, there are some concerns with sole manure application. 

Firstly, nutrients present in livestock manure are available sparingly (Biederman et al., 2017; 

Eghball & Power, 1999; Hangs et al., 2022; Stumborg et al., 2007). Long-term studies have 

shown that manure application for 15 or more years can proportionately increase mineralizable 

soil N and P, which contradicts short-term manure application, where N immobilization was 

observed (Whalen et al., 2001; Zaman et al., 1998). When manure is not applied at least every 

alternate year, crop yield and N uptake may diminish (Mooleki et al., 2001). Additionally, at 

least 40% of manure-N is supposed to be plant-available during the entire year, but it can drop 

to much lower percentages due to lower inorganic N content, cool and dry environment, soil 

type, and low C:N ratio (Mooleki et al., 2001). Although soils with manure applications have 

high fertility, repeated and continuous application may lead to excess N build-up, exceeding 

crop N requirement as well as soil’s ability to retain N, eventually causing nitrate and P leaching 

(Mooleki et al., 2001; Sharifi et al., 2011). Nitrogen and P runoff can lead to algal blooms, 

eutrophication, killing marine life, and impacting water quality (Liu et al., 2021). Other related 

problems of manure application are pathogens, salt, greenhouse gas production, and higher 

costs and feasibility for transport (Whalen & Chang, 2001). Hence, an environmentally safe 

approach is required along with providing enough nutrients to the crop. An appropriate manure 

application method would be to reduce its rate and supplement with inorganic N fertilizers to 

achieve increased nutrient availability and crop yield goals (Iqbal et al., 2019; Sileshi et al., 

2019).  

Other amendments applied are lime and biochar. Lime application is most commonly 

used worldwide to alleviate soil acidification i.e. increase soil pH (Fageria & Baligar, 2008; 

Holland et al., 2018). In the NGP, crop yield loss due to soil acidification is mainly caused by 

the overuse of N fertilizers (Campbell & Zentner, 1984; Liebig et al., 2006). Previous studies 

on lime application report increased soil pH resulting in increased alfalfa, wheat, and barley 
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yields in Western Canada (Malhi et al., 1995) with and without N fertilizer application (Hoyt 

& Hennig, 1982). Lime can be sourced as agricultural lime, sugarbeet lime, and wood ash 

(Lupwayi et al., 2009). Lime and manure were found to increase CP wheat and canola crop 

yields and improve plant available P and K and soil microbial quantity in acidic soils (Lupwayi 

et al., 2009; Malhi et al., 2004; Whalen et al., 2000, 2002). Lime application is also beneficial 

for crop diseases and insect attacks (Bresnahan et al., 2003; Tinline et al., 1993). However, 

negative effects due to excess liming have also been reported viz. soil compaction and 

decreased yields (Cifu et al., 2004; Li et al., 2019). Liming cost is also a barrier to its 

widespread application in the CP region (Lupwayi et al., 2009). Biochar or black carbon is 

another amendment used for enhancing soil health via increased nutrient retention and soil 

carbon sequestering (Joseph et al., 2013). Biochar is a residual product formed during pyrolysis 

of biomass, a thermochemical decomposition process, subjected to low oxygen under 

temperatures between 300 and 700oC, along with other by-products (Bridgwater, 2003; 

Lehmann & Joseph, 2015). Biochar is reported to increase soil carbon storage, thus, aiding in 

the mitigation of atmospheric GHG (Fowles, 2007; Kwapinski et al., 2010; Lehmann & Joseph, 

2015). Being carbon-rich, biochar has been shown to improve soil fertility (Joseph et al., 2013). 

The use of biochar as a soil conditioner and as a mitigation strategy to aid soil N and P retention 

and their increased availability has been reported globally (El-Naggar et al., 2019; Gao et al., 

2019). Studies assessing the effect of biochar alone, or in combination with synthetic and/or 

manure have shown improved soil characteristics (Gao et al., 2022; Šimanský et al., 2018) and 

crop yields in barley (Agegnehu et al., 2016), maize (Zhu et al., 2015), and wheat (Khan et al., 

2022) as well as overall crop yields (Gao et al., 2019; Nguyen et al., 2017). A four-year study 

assessing the interaction between biochar and manure found enhanced N mineralization and 

increased water-holding capacity. They also found that biochar was more effective in 

improving soil properties on Brown soils than Black soils signifying that the soil type has a 
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significant effect on amendment effectiveness (Hangs et al., 2022). In the same study, wheat 

and canola yields increased under biochar plus inorganic N and P manure compared to biochar 

plus organic manure. Globally it has been determined that even a small amount of synthetic 

fertilizer substitution with animal manure or compost can lead to increased yields and improved 

soil environment (Geng et al., 2019; Zhang et al., 2016). 

 

1.5 Plant Biostimulants and their role in nutrient management 

Plant Biostimulants (PBs) differ from soil amendments as they are applied in minute quantities 

or at rates of or below 100 Liters or kg per hectare (du Jardin, 2015; Rose et al., 2014). The 

biostimulants industry is currently a fast-growing sector among agricultural industries with a 

predicted 7.4% annual growth rate and USD 4.6 billion in revenue by 2030 (Critchley et al., 

2021). Biostimulants, essentially, offer a novel approach to regulate and/or modify the plants' 

morphological characteristics such as increased shoot and root growth, and even directly alter 

the plant’s internal efficiency to provide better nutrient uptake capability, and increase yield 

(du Jardin et al., 2020; Massaya et al., 2022). According to du Jardin et al., (2020) and Michalak 

et al., (2020), the goal of PB applications is to enhance one or more aspects of the plant 

rhizosphere, including (i) nutrient use efficiency, (ii) abiotic stress tolerance, (iii) quality traits, 

and (iv) nutrient availability. Plant biostimulants are targeted at stimulating and modifying 

natural processes within the plant physiology (Kumari et al., 2022). Biologically derived PBs 

are defined by their functionality over composition (Bulgari et al., 2015; Calvo et al., 2014). 

Natural materials-based PBs have garnered attention from both the scientific community as 

well as industry enterprises in the last 25 years as these substances appear to have great 

potential in enhancing and improving plant growth and development, providing resilience 

against abiotic stresses, and improving nutrient use efficiency (Brown & Saa, 2015; Crouch & 

Van Staden, 1993; du Jardin, 2015; Khan et al., 2009; Maini, 2006; Sharma et al., 2014).  
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Initially, PBs were regarded as those substances that when applied in minute quantities, 

would stimulate certain biochemical processes in a living organism to preserve its life, without 

supplying nutrients (Russo & Berlyn, 1991). A comprehensive list of definitions of 

biostimulants is assembled by Yakhin et al. (2017), where a chronological approach towards 

understanding the nature of biostimulants has been provided. Only recently, du Jardin (2015), 

conducted the first in-depth analysis in understanding the systemization and characterization 

of PBs, based on the mode of origin and their function. Plant biostimulants are hence becoming 

increasingly popular for their use in sustainable agriculture systems, and integrated pest and 

nutrient management programs - to reduce heavy reliance on irrigation water, and synthetic 

agrochemicals and fertilizers (du Jardin et al., 2020; González-Pérez et al., 2021; Michalak et 

al., 2020; Wozniak et al., 2020).  

Plant biostimulants were first discovered by two independent research teams. The first 

group observed improvement in shoot and root growth, NUE, and increased drought resistance 

by some compounds at low doses (Russo & Berlyn, 1991). The product applied was a mixture 

of humic acids, seaweed extracts, and vitamins. The second group observed similar results with 

humic and seaweed-based products (Zhang & Schmidt, 2000) on turfgrass. They found that 

these “hormone-containing products” increased antioxidant levels in plants by influencing 

plant metabolism through hormonal activity, thus helping the plants to respond better to stress. 

These studies birthed the idea and proposal of using these products in combination with or by 

themselves, to reduce fertilizer use, i.e., lowering agricultural inputs and consequently 

increasing crop yields (Zhang & Schmidt, 2000). Other research studies also pursued 

understanding PB's mode of action. A review by Kinnersley (1993) identified biostimulants as 

“phytochelates”– substances that chelate or form a bond with micro and macro-nutrients, thus, 

promoting plant growth by supplying more nutrients. The chelation property of seaweed 

extracts improved nutrient optimization and soil structure was one of the major reasons that 
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pushed research (du Jardin et al., 2020). Humic substances (HS) were identified as a type of 

PB whose chelation bioactivity is provided by carboxyl groups (Vaughan & Malcolm, 1985). 

The humic acid (HA) and fulvic acids (FA) components of HS enhance metal ion uptake, such 

as iron (Fe+2) and Magnesium (Mg+2) which are directly required by plants for optimum 

photosynthesis (Kinnersley, 1993).  

In the soil, PBs increase enzymatic along with microbial activity, thus enhancing soil 

fertility (Hellequin et al., 2020). Although there is growing scientific evidence supporting the 

efficacy of biostimulants, limitations are preventing their widespread adoption. Research is still 

evolving in understanding PBs' mechanism of action, optimal application methods, and 

potential interactions with other agricultural inputs (du Jardin, 2015). Regulatory frameworks, 

standardization of products, economic viability as well as environmental sustainability, all need 

to be addressed with interdisciplinary collaboration to enhance the adoption of biostimulants 

for sustainable agriculture (Brown & Saa, 2015; Calvo et al., 2014; du Jardin, 2015; Yakhin et 

al., 2017). Plant biostimulants are broadly classified into two categories viz. biological 

substances which are derivatives of microorganisms or plants, and those not of biological origin 

(Grammenou et al., 2023). The main categories are seaweed and plant extracts, humic 

substances, protein hydrolysates, and microbial inoculants (Figure 1.1). 

Seaweed extracts are a biostimulant class emerging as a promising tool for agricultural 

use (Ali et al., 2021). Seaweeds were historically used as agricultural fertilizer in European and 

Mediterranean countries (Pereira et al., 2019; Temple & Bomke, 1988). Seaweed biostimulants 

are derived from various species including Ascophyllum nodosum, Sargassum spp., and 

Laminaria digitata containing an array of rich bioactive compounds such as polyphenols and 

phytohormones (Al-Ghamdi & Elansary, 2018; Khan et al., 2009). Chemical and physical 

methods (mainly alkaline extraction methods) are used for the extraction of biologically active 

molecules from different seaweeds (Shukla et al., 2019). Seaweed-based biostimulants are 
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reported to promote root development, nutrient uptake, and overall plant growth, while also 

enhancing abiotic stresses such as drought and salinity tolerance (Ali et al., 2021; Deolu-Ajayi 

et al., 2022). Various crops including wheat, soybean, chickpea, and rice when treated with 

seaweed extracts under stress conditions, have recovered with a significant increase in plant 

growth (Abdel Latef et al., 2017; Sharma et al., 2019; Shukla et al., 2018; Zou et al., 2018). 

Several studies have indicated an increase in crop yield and quality parameters with a single 

application of these extracts, or in combination with other fertilizers and PBs (Chen et al., 2021; 

Hamouda et al., 2022; Nasiroleslami et al., 2021; Nichol et al., 2023; Raj, 2021). However, in 

some cases, crops treated with these PBs had no significant yields (Di Stasio et al., 2018), while 

reduced yields were observed in a few stress cases (Trivedi et al., 2018). Despite their 

widespread use, especially in horticultural sectors, the mechanisms underlying their effects are 

still an active area of research (Deolu-Ajayi et al., 2022). As agricultural production faces 

increasing challenges from climate change and soil degradation, seaweed biostimulants offer a 

viable solution for enhancing crop performance and sustainability (Battacharyya et al., 2015; 

Hassan et al., 2021; Layek et al., 2018; Michalak et al., 2020; Mukherjee & Patel, 2020). 

Another type of non-microbial biostimulatory substance is a protein-based product called 

protein hydrolysates, which are reported to enhance N, P, K, and Mg in crops (Brown & Saa, 

2015). 

Microbial inoculants such as plant growth promoting rhizobacteria (PGPR) and 

arbuscular mycorrhiza fungi (AMF) have also shown significant promise as PBs (Backer et al., 

2018; Sun & Shahrajabian, 2023). Plant growth promoting rhizobacteria directly affect plant 

growth by releasing phytohormones and volatile compounds that modulate plant signaling 

pathways, increase nutrient availability through mechanisms such as iron chelation, and 

inorganic P solubilization, and enhance essential macro- and micro-nutrient uptake (De Freitas 

et al., 1997; Glick et al., 2007; Podile & Kishore, 2006; Sheng & He, 2006). Additionally, 
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PGPRs have been reported to improve root growth and development, viz. increasing root 

surface area, volume, and density, supporting further nutrient and water uptake (Mahaffee & 

Kloepper, 1994; Mantelin & Touraine, 2004; Podile & Kishore, 2006). Similarly, AMF form 

symbiotic relationships with plant roots, thereby enhancing nutrient and water acquisition, and 

improving plant stress tolerance against salinity, and drought (Khan et al., 2024; Silva et al., 

2023; Sun & Shahrajabian, 2023; Wahab et al., 2023). These fungi act as an extension of plant 

roots in the form of hyphal networks to enable the plants to increase their nutrient uptake by 

reaching difficult to access regions in the soil (Sun & Shahrajabian, 2023). Studies in the NGP 

show an increase in crop yield and soil NPK uptake in maize, wheat, pea, and lentils (Abd El-

Azeem & Bucking, 2023; Adesemoye et al., 2008; Biswaray, 2015; Chang, 2008; Floc’h et al., 

2022; Germida & Walley, 1996). These findings illustrate the potential of using microbial PBs 

for sustainable and more resilient agriculture in the NGP, especially under such climatic 

turbulent conditions.  

 

1.5.1 Humic substances 

Humic substances (HSs) are naturally derived macromolecular products formed through the 

microbial decomposition and transformation of dead plant and animal residues (Tiwari et al., 

2023; Zavarzina et al., 2021). Humic substances can be found in various natural environments, 

including soil, peat, oceans, and freshwater regions, and their properties can vary significantly 

based on their source and formation processes (Ampong et al., 2022; Bezuglova & Klimenko, 

2022; Lanno et al., 2022). Humic substances can be sourced from lignite, leonardite, 

vermicompost, and other organic materials (Arancon et al., 2006; Canarutto et al., 1996; 

Huculak-Mączka et al., 2018; Peuravuori et al., 2006; Qian et al., 2015; Tahir et al., 2011; 

Vlčková et al., 2009). The most common source of HS is leonardite, which is a highly oxidized 

form of lignite, a coal, but has not reached the state of coal (Conselvan et al., 2017; Petrov et 
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al., 2017; Sun et al., 2020). Humic substances are divided into three components based on their 

molecular weight and solubility: humic acids (HAs), fulvic acids, and humin (Rathor et al., 

2023). Among these, HA is the most active component with a complex structure contributing 

to its high molecular weight, thus, conferring a recalcitrant property to microbial degradation 

(Lumactud et al., 2022). Humic acid, a principal component of HSs, acts as a biostimulant that 

enhances nutrient availability and promotes plant growth (Delfine et al., 2005; Osman & Rady, 

2012). It is known for increasing plant growth and grain yield by forming chelated bonds that 

aid nutrient uptake (Ampong et al., 2022; Calvo et al., 2014; de Melo et al., 2016; Nardi et al., 

2017; Olaetxea et al., 2018; Vujinović et al., 2020). Humic substances have the unique ability 

to form structural complexes with cationic micronutrients through their functional groups -

carboxyl, amino, or alcohol groups, chelate micro- and macro-nutrients and enhance their 

availability to plants (Barton & Abadia, 2007). This chelation process stimulates plant growth 

by facilitating nutrient accumulation (Chen & Aviad, 1990; Varanini & Pinton, 2000).  

Humic acid has been shown to alleviate plant growth under abiotic stresses such as 

salinity and water stress (Aguiar et al., 2016; Ali et al., 2019; Khaleda et al., 2017; Saidimoradi 

et al., 2019; Shukry et al., 2023; van Tol de Castro et al., 2022). Humic acids may also enhance 

heat tolerance in horticultural crops, though their effects on crops are still being explored 

(Canellas et al., 2024; Cha et al., 2020; Choi et al., 2024; Khan et al., 2020; Poomani et al., 

2023). Humic substances are an integral component of soil organic matter and dissolved 

organic matter, thereby playing a crucial role in soil fertility and plant growth (Canellas & 

Olivares, 2014; Olaetxea et al., 2020; Stevenson, 1994; Trevisan et al., 2010). Numerous 

studies have reported the impact of HS on plant and soil functions (Mora et al., 2010; Muscolo 

et al., 2013; Nardi et al., 2002; Rose et al., 2014; Trevisan et al., 2010). Plants treated with HS 

had modified root systems and morphology (Rathor et al., 2023, 2024). Humic substances also 

influence plant physiology and biochemical processes which improve plant photosynthesis and 
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respiration rates thereby increasing crop yields (Olk et al., 2018). In addition to their effects on 

plant growth, HSs also improve soil physico-chemical properties including soil nutrient 

content, cation exchange capacity, and microbial population (Figure 1.1) (Gümüş & Şeker, 

2015). Good soil structure, influenced by HS, directly affects soil solution and water 

movement, reduces soil erosion, improves nutrient recycling, and root penetration, and 

enhances crop yields (Bhatt & Singh, 2022; Khaled & Fawy, 2011; Piccolo et al., 1997; Tahoun 

et al., 2022). Humic substances such as Humalite combined with recommended N fertilizer 

significantly increased wheat grain yield by 14-19 %, protein content by 20-30 %, and 

improved NUE by 14-60 % indoors (Rathor et al., 2024).  

 

1.6 Gaps identified 

To achieve the United Nations 2030 Agenda for Sustainable Development Goals, particularly 

Zero Hunger (Goal 2), Sustainable Consumption and Production (Goal 12), and Climate Action 

(Goal 13), immediate measures are essential to ensure food security, promote sustainable 

agricultural practices, and mitigate climate change impacts, thereby building a resilient and 

sustainable future for coming generations (United Nations, 2015). Agricultural research and 

development play a pivotal role and responsibility in enhancing global crop production systems 

to feed the growing world population, reduce dependency on fossil fuels and synthetic 

fertilizers, and mitigate N2O emissions, ultimately contributing to a more sustainable and food-

secure future. The CP, encompassing Alberta, Saskatchewan, and Manitoba, are of paramount 

importance to Canada's agricultural sector and economy. This region's diverse soil zones, 

including Black, Brown, and Gray Chernozems, significantly influence agricultural 

productivity and necessitate tailored research approaches. Canada has emerged as one of the 

global leaders in N management, employing advanced technologies such as precision 

agriculture, the 4R nutrient stewardship program, and EENFs. In Canada’s target to reduce 
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GHG emissions by 40% by 2030, the cropping system management in the CP contributes 

significantly.  

Despite the CP's agricultural progress, the region faces pressing challenges. Over the 

past 36 years, increased N inputs have led to higher residual soil N levels, raising contamination 

risks (Yang et al., 2024). This situation underscores the urgent need for improved N 

management strategies. Compounding these challenges, farm input production costs have risen 

dramatically, with the N fertilizer farm input price index in Canada more than doubling from 

45.3 in 2002 to 105.1 in 2024 (Statistics Canada, 2018). Although EENFs show promise in 

reducing GHG emissions and improving NUE, location-specific research is required at 

different rates to test their sustainability as EENFs are costlier than their conventional 

counterparts, and crop yields are not impacted negatively. Furthermore, with the predictions of 

a shorter growing season, higher temperatures, and erratic precipitation due to climate change 

in the CP (Lychuk et al., 2019; Wang et al., 2012), there is a need to conduct research with 

sustainable options and optimize the use of N fertilizers. 

The use of PBs is a natural, innovative, and sustainable technology that is yet to be 

completely explored in the pursuit of attaining the UN sustainable development goals. The 

integration of PBs into 4R nutrient stewardship practices faces significant challenges due to 

limited research and operational examples (Casa & Ronga, 2020), especially in the CP. The 

diverse range of PBs, with their unique mode of action, complicates the determination of 

optimal application rates, timing, and placement within the 4R framework making their 

incorporation a little more complex compared to conventional farm inputs in the CP 

agricultural systems. The integration of PBs into agricultural practices in the CP presents both 

opportunities and challenges. Their adoption at the field level remains limited due to producers' 

concerns about additional costs without guaranteed yield increases. The synergistic action of 

PBs and N fertilizers to reduce or substitute N fertilizer application while also providing 
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resilience against climate change needs to be explored further from an agronomic perspective. 

So far, PB with EENFs has been investigated very little, especially in cereal and oilseed crops 

(Souza et al., 2019). Especially in the CP, with its vast climatic conditions, and different soil 

zones with different characteristics, there is a dearth of research in the application of PBs in 

synergistic ways with different N fertilizer sources. There is also a gap between research and 

its implementation by producers, slowing the pace of adoption of these integration practices. 

Among PBs, there is a particular lack of research on HSs, especially regarding optimal 

application rates across different soil zones and environmental conditions in the CP. 

Humic substances are a type of PB that have been extensively researched across the 

world of agriculture, spanning several decades. However, they have several sources that they 

are derived from making them unique in their action based on the source and the crop and soil 

that they are being applied on, which makes the standardization of humic products and their 

characterization methods an ongoing challenge in research thus making it a challenge in 

optimizing their application. Ampong et al. (2022) identified knowledge gaps in the use of HSs 

as biostimulants. Although there are global efforts persisting in finding and optimizing tools 

for N optimization, there is a significant gap in research investigating the use of HSs in 

combination with conventional NPK fertilizers on N uptake and utilization in agricultural cash 

crops. Research has shown that HSs need to be tailored in the region where they are being 

applied (Rathor et al., 2023). To our knowledge, there is a severe lack of research on HS applied 

with reduced N fertilizer rates and with different N fertilizer sources especially in long-term 

studies. Such research would provide valuable insight to producers enabling them to make 

informed decisions regarding optimal sources, rates, frequency, as well as economic viability 

tailored to their specific local conditions. 
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Figure 1.1 Flow chart depicting categories, their action, and benefits of soil amendments, plant 
biostimulants (PGPR: Plant growth-promoting rhizobacteria; AMF: arbuscular mycorrhiza 
fungi), and enhanced efficiency nitrogen fertilizers (EENFs) in the context of integrated 
nutrient management.  
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Chapter 2.0  

Agronomic responses and economic returns from wheat-canola rotation under Humalite 
and urea applications. 
 

2.1 Introduction 

Spring wheat (Triticum aestivum L.) and canola (Brassica napus L.) are the two most 

predominant grain crops grown in Western Canada. Annual production of wheat and canola in 

Western Canada is approximately 23.8 and 18.1 metric million tons, respectively (Statistics 

Canada, 2023). Wheat is a staple grain crop, and it is integral for meeting essential human 

dietary requirements because of its superior composition of carbohydrates, fats, protein, fiber, 

zinc, calcium, and vitamins (Irge, 2017). Canola is mainly used as an oilseed crop and is known 

for its use as an edible oil, biofuel, industrial oil, and a high-protein meal (McVetty & Duncan, 

2016). Wheat and canola production is heavily reliant on synthetic fertilizers to provide 

essential nutrients, such as nitrogen (N), phosphorous (P), and potassium (K), to sustain 

nutrient supply and support yields (Nyamangara et al., 2020). Nitrogen is required in large 

quantities to reach optimum crop yields and is widely limited (Elser et al., 2007; LeBauer & 

Treseder, 2008; Maaz et al., 2021; Marschner, 1995; Yuan & Chen, 2012). Approximately 30-

50 percent of applied N is taken up by crops, while the rest is lost through nitrate (NO3
-) 

leaching, ammonia (NH3
-
 ) and nitrous oxide volatilization, and denitrification (Conant et al., 

2013; Hood-Nowotny et al., 2010; Malhi et al., 1998; Mosier et al., 1998; Smil, 1999). 

Excessive N application and N loss adversely cause environmental degradation, resulting in 

groundwater contamination, greenhouse gas emissions, soil acidification, and impaired 

microbial activity and function (Cui et al., 2023; Gao et al., 2023; Sun et al., 2023; Hartmann 

et al., 2015). Crop varieties developed during the Green Revolution of the 1960s improved crop 

yields. However, these varieties have been found to have relatively poor nitrogen use efficiency 

(NUE), thus requiring more N fertilizer application to produce higher yields (Gooding et al., 
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2012; Li et al., 2018). Therefore, there is a need to explore sustainable solutions that enhance 

the capacity of soils to retain soil N and provide it when needed by crops. To minimize the 

negative environmental impact of nitrogenous-based fertilizers, it is crucial to investigate 

alternative strategies that optimize crop yields in wheat and canola systems while minimizing 

the use of synthetic N sources.  

A recent approach involves the use of biostimulants such as Humalite. Humalite is an 

organic soil amendment with a high concentration of humic acid (HA) and is found in 

significant quantities in Southern Alberta (Rathor et al., 2024). Humic substances (HSs) (e.g., 

Humalite) are formed through the microbial decomposition of plant and animal residues from 

millions of years ago (Lumactud et al., 2022; Olk et al., 2018). These substances are composed 

of approximately 80% soil organic matter (SOM), and include HA, fulvic acids (FA), and 

humin (de Melo et al., 2016; Schnitzer, 1978). Humic substances face intense depletion as a 

consequence of intensive cropping systems (Senesi et al., 2007). As a result, researchers have 

been attempting to replenish HS in the soil through external applications (Gerke, 2018; Rose 

et al., 2014). These externally applied HS are obtained from various sources, such as lignite, 

peat, Humalite, and compost, as well as artificial sources (Akimbekov et al., 2021; Gollenbeek 

& van der Weide, 2020; Lanno et al., 2022; Rathor et al., 2024; Yang et al., 2021). Humic 

substances have a positive effect on soil health, improve nutrient uptake and crop yields when 

applied in crops such as barley, maize, cowpea, canola, mustard, and millet (Arslan et al., 2021; 

Canellas et al., 2019; Eyheraguibel et al., 2008; García, Santos, et al., 2016; Kahraman, 2016; 

Laskosky et al., 2020; Malik et al., 2023; Mourad et al., 2021; Olaetxea et al., 2020; Rajpar et 

al., 2011; Rathor et al., 2024; Rose et al., 2014; J. Shen et al., 2020; Vujinović et al., 2020; 

Yakhin et al., 2017). Under field conditions, HS improve plant growth and root architecture by 

enhancing root length, thickness, density, and branching (García, de Souza, et al., 2016; Mora 

et al., 2010; Tavares et al., 2021). Furthermore, HS enhance NUE by improving nutrient uptake 
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and assimilation (Chen et al., 2004; Nardi et al., 2017; Zhang et al., 2019). This is associated 

with the chelating ability of HS to form complex but stable natural compounds with metals, 

thereby improving the bioavailability and solubility of soil nutrients (Chen et al., 2004). 

However, crop yield responses to HS applications remain inconsistent, resulting in skepticism 

about the effectiveness of HS products (Billingham, 2015; Bybordi & Ebrahimian, 2013; Hartz 

& Bottoms, 2010; Mohammed et al., 2019). Some studies have reported no positive effects on 

crop growth and development after HA application (Albiach et al., 2001; Mukherjee et al., 

2014). For example, a combination of biochar and HA did not improve soil fertility and crop 

productivity (Holatko et al., 2020). Rose et al. (2014), in their meta-analysis, observed that 

although plant growth responses to HS are generally positive, they are influenced by a variety 

of environmental and management factors, including the source of the HS; their review also 

revealed that most successful studies were conducted under controlled conditions.  

However, past studies report that HA application in the presence of synthetic fertilizers, 

such as urea, increased crop yields (Gao et al., 2022; Osman et al., 2013; Zheng, 1991). 

Humalite-fertilizer interactions have been reported to enhance maize growth, improve fertilizer 

efficiency, reduce N losses, increase microbial populations and diversity, and improve maize 

root growth and development (Araújo et al., 2017; Canellas & Olivares, 2014; Puglisi et al., 

2013). For example, humic acid urea is an enhanced efficiency organic-inorganic compound 

fertilizer consisting of a mixture of HA and conventional urea. Humic acid urea has been shown 

to increase crop yield, biomass, N uptake, and delay urea hydrolysis by inhibiting urea 

nitrification and ammonification (Rose et al., 2016; Saha et al., 2017; Zhang et al., 2019), and 

thus, improving NUE (Shen et al., 2020). Several research gaps were identified by Ampong et 

al. (2022), indicating a paucity of data regarding the application rates of specific HS sources 

and their interaction with urea fertilizer, especially under field conditions to provide producers 

with HA source-specific information. Humalite was evaluated because it is a naturally 
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occurring humic organic substance containing high concentrations of HA (61 - 88%), close to 

zero nutrients, low amounts of micronutrients and heavy metals (Loring Laboratories Ltd. 6835 

8St N.E. Calgary Alberta, Canada T2E 7H7 - File No: RC20-0257); the low amounts of 

micronutrients and heavy metals is due to its unique freshwater depositional environment. 

Large Humalite deposits are found in Southern Alberta and available to producers who are 

applying it on their fields. Currently, there are no scientific studies identifying optimum 

Humalite rates and their interaction with urea under field conditions, particularly in Western 

Canada. Previous studies have been conducted exclusively under controlled conditions (Rathor 

et al., 2023, 2024, 2024a; Laskosky et al., 2020). Under controlled environmental conditions, 

Humalite is reported to enhance wheat growth, grain yield, and protein content by improving 

soil N availability and nutrient uptake (Rathor et al., 2024). Although Humalite has been 

applied on-farm by some crop producers, there is a dearth of research on appropriate Humalite 

application rates and whether Humalite application leads to reduced urea application rates. 

Therefore, the objectives of this three-year field study were to (1) identify the optimum 

Humalite application rates at three contrasting sites in Alberta, (2) assess the effect of different 

Humalite plus urea application rates on wheat and canola yields and protein contents, and (3) 

evaluate whether producers profit when Humalite is applied in grain systems. 

 

2.2 Materials and Methods 

 

2.2.1 Study sites and growth conditions 

 

Field trials were conducted in small plots over three growing seasons (2021-2023) at three sites 

in Alberta, Canada. Experimental trials were carried out on no-tilled land at (1) St. Albert 

Research Station, University of Alberta (53.6929508, -113.6353861), the soil at this site is 

described as Luvic Chernozem (IUSS Working Group WRB. 2022) and the soil texture is 
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classified as silty clay loam (sand 6%, silt 56%, clay 38%); (2) Gateway Research Organization 

(GRO) near Westlock (54.0840915, -113.8496014), the soil described as albic solonetz (IUSS 

Working Group WRB. 2022); and soil texture is classified as loamy soil (sand 38%, silt 40%, 

clay 22%) and (3) Battle River Research Group (BRRG) near Forestburg (52.522269, -

111.962730), the soil described as haplic kastanozem (IUSS Working Group WRB. 2022); and 

soil texture is classified as loamy (sand 40%, silt 39%, clay 21%). The previous crops at each 

site were barley at St. Albert, wheat at GRO, and field peas at BRRG. Environmental data was 

obtained from the Alberta Climate Informational Service website (Government of Canada & 

Alberta Government, 2020). The monthly average temperatures and total precipitation at each 

site for the three growing seasons are summarized (Figure 2.1).  

A minimum of six random soil cores were taken in the spring, pre-seeding at a depth of 

0-15 cm from each block to form a composite sample that was analyzed characterize the soil 

(Table 2.1) and to determine urea application rates at each site (Table 2.2). Soil pH was 

measured using a 1:2 soil: water extraction method with a pH meter (McKeague, 1978). Soil 

Electrical Conductivity (EC) was determined by measuring the electrical resistance in a soil-

water mixture between two electrodes, inversing the value, and then multiplying by a 

conversion rate of 2.06 (McKeague, 1978). Nutrient extraction of water-soluble nitrate, nitrite, 

available phosphate, and exchangeable potassium from the soil samples was measured using 

the modified Kelowna extraction solution (Ashworth and Mrazek, 1995). Nitrate, phosphate, 

and potassium were analyzed using continuous flow colorimetry, and nitrite was analyzed using 

a SmartChem colorimetric discrete analyzer. Nitrate analysis was performed using a 2.0 M KCl 

extract by Segmented Flow Analysis (Carter & Gregorich, 2008). Phosphate analysis was 

performed using the Stannous Chloride method (American Public Health Association et al., 

2023). Potassium analysis was measured using an Automated Flame Photometry Method 

(Dieken & Alberta Research Council, 1996). The obtained data were used to make site-specific 
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fertilizer application rate recommendations for the next crop provided by (A & L Canada 

Laboratories Inc., 2136 Jetstream Road, London, Ontario, Canada N5V 3P5). Soil organic 

matter content was measured by oven-drying the sample, followed by burning organic matter, 

and then calculating the percentage of organic matter from the weight loss on ignition 

(McKeague, 1978). 
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Note: NA(data not available ). 

Table 2. 1 Three-year (2021-2023) baseline soil chemical properties at three sites before wheat 
and canola seeding [St. Albert: St. Albert Research Station, University of Alberta, BRRG: 
Battle River Research Group, GRO: Gateway Research Organization; SOM: Soil organic 
matter, NO3-N: Soil available nitrate-nitrogen, CEC: Cation exchange capacity, Mg: 
Magnesium, Ca: Calcium, Na: Sodium, Al: Aluminum].  

 

Site properties 2021 2022 2023 

St Albert 
   

pH 8 6.8 7.4 

SOM (g kg-1) 106 77 NA 

NO3-N (mg kg-1) 12 8 14 

CEC (cmol kg-1) NA 20.5 NA 

Mg (mg kg-1) 306 302 NA 

Ca (mg kg-1) 3450 3280 NA 

Na (mg kg-1) 38 38 NA 

Al (mg kg-1) 352 378 NA 

BRRG 
   

pH 4.9 4.8 4.9 

SOM (g kg-1) 52 55 54 

NO3-N (mg kg-1) 12 17 15 

CEC (cmol kg-1) 23.2 20.3 19.9 

Mg (mg kg-1) 235 215 235 

Ca (mg kg-1) 970 1170 1080 

Na (mg kg-1) 41 40 31 

Al (mg kg-1) 1018 912 905 

GRO 
   

pH 5.5 5.1 5.6 

SOM (g kg-1) 41 43 46 

NO3-N (mg kg-1) 11 14 7 

CEC (cmol kg-1) 17.1 18 21.6 

Mg (mg kg-1) 249 232 210 

Ca (mg kg-1) 1710 1660 1690 

Na (mg kg-1) 42 49 46 

Al (Al mg kg-1) 597 803 798 
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Figure 2.1 Cumulative precipitation (a - c) and daily average temperature (d - f) at St. Albert, 
Battle River Research Group (BRRG); Gateway Research Organization (GRO) during three 
crop growing seasons (2021 – 2023). 

 

2.2.2 Experimental design and treatments 

 

The experiment was conducted in a split-plot design with four replications for a total of 60 

plots per site. Urea fertilizer levels were the main plot factor, applied at three levels: no urea 

control, half recommended rate, and recommended urea rate based on soil test at each site viz. 

St. Albert site: half recommended rate (126, 213 & 112 kg ha-1), and recommended urea rate 

(251, 409 & 244 kg ha-1) for 2021, 2022, and 2023 respectively; BRRG site: half recommended 

rate (77, 141 & 129 kg ha-1), and recommended urea rate (154, 281 & 268 kg ha-1) for 2021, 

2022, and 2023 respectively;  GRO: half recommended rate (106, 123 & 115 kg ha-1), and 

recommended urea rate (244, 246 & 267 kg ha-1) for 2021, 2022, and 2023 respectively. The 

subplots were Humalite rates at five levels: i) 0, ii) 112 kg ha-1, iii) 224 kg ha-1, iv) 448 kg ha-

1, and v) 896 kg ha-1 applied in 2021 and 2022. In 2023, a 56 kg ha-1 treatment was introduced, 

and the 896 kg ha-1 treatment was dropped from all trial sites. Humalite, supplied by WestMet 

Ag (Hanna, Alberta, Canada), was used as a biostimulant in this field study across all sites and 

years.  In 2020, lab analysis indicated that Humalite contains 61 - 88% HAs depending on 
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texture (fine or coarse), close to zero nutrients, low amounts of micronutrients and heavy metals 

(Loring Laboratories Ltd. 6835 8St N.E. Calgary Alberta, Canada T2E 7H7 - File No: RC20-

0257). Chemical constituents and their concentration can be found in the supplementary 

material of Rathor et al. (2024). Humalite is found exclusively in a 20 km area Southeast of the 

town of Hanna, Alberta, Canada, specifically within the holdings of the Sheerness Coal Mine 

(Recently: WestMet Ag), in large deposits. Humalite is extracted from shallow deposits, 

typically located a few meters below the soil surface. It is believed to have naturally form via 

the decomposition of organic matter in a freshwater environment when coal was formed during 

the Ice Age, which distinguishes Humalite from other humic substances that have the likelihood 

of heavy metals resulting from salt water. Hence, Humalite is unique with high HA content and 

low heavy metal concentrations. 

 In all years, P, K, and S at each site were applied at recommended rates based on soil 

tests (Table 2.2). The source of P was Triple superphosphate (0-45-0), for K was Muriate of 

Potash (0-0-60), and granulated elemental sulphur for the S. The crop rotational sequence at all 

sites from 2021 - 2023 was wheat (AAC Brandon) - canola (RR45CM39) - wheat (AAC 

Brandon). In 2021 and 2022, Humalite was broadcasted and rototilled before seeding; whereas 

in 2023, both urea and Humalite were side-banded at seeding.  
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Table 2. 2 Fertilizer application rates (kg ha-1) at three prairie sites for three growing seasons 
[St. Albert: St Albert Research Station, University of Alberta, BRRG: Battle River Research 
Group and GRO: Gateway Research Organization; Zero: No urea application, Half: One-half 
of the recommended urea rate application, Recommended: Recommended urea rate 
application; TSP Triple superphosphate: MOP: Muriate of Potash]. 
 

 2021 (wheat)  2022 (canola) 2023 (wheat) 
Sites Residual Half Recommended Zero Half Recommended Zero Half Recommended 

St 
Albert 

         

Urea - 126 251 - 213 409 - 122 244 

TSP 120  - -  75.
6 

100 88.9 120 111.
1 

120 

MOP 140  - -  10
3 

130 150 18 10 153 

Sulfur 24 0 0 33 40 40 19 0 0 

BRRG          

Urea - 77 154 - 141 281 - 129 268 

TSP 24 - - 49 49 49 38 38 24 

MOP 28 - - 47 47 47 37 37 37 

Sulfur 0 0 0 0 7 0 0 0 0 

GRO          

Urea -  106 244 -  123 246  - 115 267 

TSP 62 - - 76 76 76  - 62 62 

MOP 28 - - 37 37 37  - 37 37 

Sulfur 20 0 0 13 13 13  - 13 7 

 

 

 

2.2.3 Crop establishment and data collection  

Crop were seeded using a small plot Seeder, Fabro Drill (Swift Current SK, Canada) mounted 

with six TechnoTill openers (Wetaskiwin AB, Canada) with nine inches of row spacing at 

BRRG site, a Fabro zero till (Swift Current SK, Canada) small plot seeder (6 rows) with a nine-

inch row spacing at the GRO site, and new Fabro seeder (8 rows) (Swift Current SK, Canada) 

with 7 inches row spacing at St. Albert site. Seeding and harvesting dates at each site year are 

reported in Table 2.3. The targeted yield was 4035 kg ha-1 and 5380 kg ha-1 for canola (2022) 

and wheat (2021 & 2023), respectively. The targeted plant density was 350 plants/m2 for wheat 



53 

 

and 110 plants/m2 for canola. Pre-burn and in-crop herbicides applied differed between sites 

and have been summarized in Table 2.3. Crops were harvested at crop maturity. Data on the 

grain yield, yield parameters, and grain moisture content were collected during harvest. Crops 

were harvested with a Zurn 150 plot harvester at GRO and with Wintersteiger Classic 

harvesters at the other two sites. Quality parameters assessed include thousand kernel weight 

(TKW) and grain protein. Canola and wheat yields were adjusted to 8% and 14% seed moisture 

content, respectively, using the following formula: 

 Adjusted yield (kg/ha) = (𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑦𝑖𝑒𝑙𝑑) 𝑥 [(100 − 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%))/ (100- 

Moisture Content (%))]  

Near-infrared spectroscopy (Mininfra SmarT NIT Analyzer) was used to analyze the protein 

content of the subsampled wheat grains.  
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Table 2. 3 Seeding, harvesting, and herbicides applied dates for wheat and canola from 2021 
to 2023 growing seasons at three sites in Alberta [St. Albert: St. Albert Research Station, 
University of Alberta, BRRG: Battle River Research Group near Forestburg, GRO: Gateway 

Research Organization near Westlock]. 

 

Years  Sites  

Seeding 

dates 

Harvesting 

dates 

Pre-seed 

herbicides In-crop herbicides 

2021 

(wheat) 

St. 

Albert 23-May 07-Sep Glyphosate Stellar™ XL and Axial® 

BRRG 13-May 07-Sep Glyphosate Stellar™ XL and Axial® 

GRO 27-May 08-Sep 

Glyphosate + 

Heat® Viper® + UAN 

2022 

(canola) 

St. 

Albert 13-May 15-Sep Glyphosate Glyphosate + LontrelTM 

XC + Poast® Ultra 

BRRG 30-May 27-Sep Glyphosate Glyphosate 

GRO 25-May 04-Oct Not Applied Glyphosate 

2023 

(wheat) 

St. 

Albert 31-May 05-Oct Glyphosate Stellar™ XL and Axial® 

BRRG 15-May 11-Oct Glyphosate Stellar™ XL and Axial® 

GRO 17-May 26-Sep Glyphosate + 

MCPA Ester 
Curtail M + Axial® 

 

2.2.4. Economic analysis 

 

An economic analysis was conducted to evaluate the profitability of urea and Humalite use in 

wheat-canola-wheat crop rotation by comparing returns on investment in urea and Humalite, 

and the control treatment. Urea fertilizer purchase price per tonne was obtained from Sturgeon 

Valley Fertilizer Ltd, St. Albert, annually at 1548 CAD, 2554 CAD, and 2128 CAD in 2021, 

2022, and 2023, respectively. Humalite cost per tonne was obtained from WestMET Group 

Canada Ltd at 300 CAD dollars. Wheat and canola prices were obtained from the Alberta 

economic dashboard and the Alberta Canola Producers Commission, respectively (594 CAD 

per tonne for canola and 438 CAD per tonne for wheat). The net revenue was calculated as 

gross revenue (crop price multiplied by yield) minus Humalite and urea costs for each treatment 

per site-year. Other production and field management costs were assumed to cancel out in this 
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economic analysis because they are standard expenditures would have been incurred normally 

by crop producers. This approach isolates the economic impact of adding Humalite and urea, 

allowing us to accurately assess their contribution to overall production costs and net revenue.  

2.2.5. Data analysis 

 

The data were statistically analysed using R (v4.1.2; R Core Team 2023). Data were subjected 

to the analysis of variance (ANOVA) using a linear mixed effects model to assess the effects 

of different treatments across sites. The Akaike Information Criterion (AIC) were employed to 

evaluate the appropriateness of various models. These criteria serve to measure the quality of 

each model relative to each other, with a lower value indicating a better fit and model. The 

three years were analysed separately because of the different Humalite rates in 2023 and the 

different crops planted in each growing season. In the model, urea and Humalite rates and all 

possible interactions were fixed factors, while the replicates were the random factors. ANOVA 

and mean separation were performed using the lmer and emmeans functions. The significance 

of differences was evaluated using probability levels of P ≤ 0.05 and P ≤ 0.01. Boxplots were 

used to assess the effect of the different treatments on net revenue. Data visualization was 

plotted using the “ggplot2()” package.  

 

2.3 Results 

 

2.3.1 Environmental conditions during crop growth 

 

Environmental conditions varied between cropping calendars. In 2021, significantly higher 

temperatures were encountered earlier (June) in the season, with temperatures greater than 30° 

C in July (Figure 2.1 d-f). Hence, 2021 was considered a dry year as drought conditions 

persisted, contrary to 2023, where dry conditions were encountered mostly at the beginning of 



56 

 

the growing season. St. Albert and BRRG had lower accumulated rainfall compared to BRRG 

(Figure 2.1a,b) and similar moisture trends throughout the 2023 growing season (Figure 2.1c). 

  

2.3.2 Effects of different Humalite and urea application rates on grain yields, protein, 
and total kernel weight 
 

There was a significant effect of urea and site on wheat grain yields and there was a significant 

urea x Humalite x site interaction in 2021 (Table 2.4). In 2022, the main effects of sites on 

canola yields were significant, and there was a significant urea x site interaction. In 2023, the 

main effects of urea, Humalite, and site were significant, and there was a significant effect of 

urea x site and urea x Humalite x site interaction. The average wheat yields were lower than 

targeted and ranged from 2800 - 4200, 2406 - 4371, and 2142 - 2669 kg ha-1 at St. Albert, 

BRRG and GRO, respectively. At BRRG, significantly higher wheat yields were observed at 

224 kg ha-1 Humalite rates plus half urea recommended rate. When Humalite was applied at 

112 kg ha-1 plus half urea rates, wheat yields were higher but not significantly different from 

the zero-urea treatment (Figure 2.2). When no Humalite was applied, the highest yields were 

observed when urea was applied at recommended rates. At 448 and 896 kg ha-1 Humalite, wheat 

yields were higher when urea was applied at recommended rates, but these yields were not 

significantly different to those at half urea rates. At BRRG, wheat protein content ranged from 

15.4 (recommended urea rates plus 224 kg ha-1 Humalite) to 17.1 % (Table 2.4). Wheat TKW 

was unaffected by all treatments at all sites (Table 2.5). At GRO, wheat yields were higher at 

half urea recommended rates irrespective of Humalite application rates, although this increased 

yield was not significantly different from those at zero and recommended urea rates (Figure 

2.2). At GRO, wheat protein content was ≥ 17% in all treatments assessed (Table 2.5). The 

lowest mean wheat yields at St. Albert resulted from zero urea plus 896 kg/ha Humalite rates, 

zero urea plus 448 and 896 kg ha-1 Humalite rates at GRO, and zero urea plus 448 kg ha-1 
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Humalite at BRRG (Figure 2.2). At St. Albert, the highest wheat yields were observed when 

urea was applied at the recommended urea rate across all Humalite rates except at 448 kg ha-1 

Humalite, where half recommended urea rate had significantly higher yields than 

recommended and zero urea (Figure 2.2). At the St. Albert research site, wheat protein was less 

than 13.5% in the zero urea plus Humalite application rates and greater than 13.5% at half and 

recommended urea plus Humalite application rates (Table 2.5).  

In 2022, the St. Albert site was hit by hail, so the canola yield from this site was 

excluded from the analysis as the data was considered unreliable. No significant differences in 

canola TKW were observed between treatments at St. Albert. Canola yields ranged from 5076 

- 6212 and 3577 - 4158 kg ha-1 at BRRG and GRO sites, respectively. The lowest canola yields 

were recorded with recommended urea rates at BRRG and the highest canola yields were 

observed with half recommended and recommended urea at GRO (Figure 2.3). Humalite and 

urea rates had no effects on canola TKW at BRRG and GRO. 

In 2023, at BRRG, significantly higher wheat yields were observed at recommended 

urea plus 112, 224, and 448 kg ha-1 Humalite rates when compared with 56 kg ha-1 and zero 

Humalite (Figure 2.4). At 56 kg ha-1 Humalite rate, similar wheat yields were observed between 

the half and recommended urea rates, and these yields were significantly different from wheat 

yields from no urea treatments. Wheat seed protein contents ranged from 12.9 - 14.7 % and 

increased as urea rates increased (Table 2.5). At the GRO site, wheat yields were significantly 

higher at half and recommended urea rates compared to zero urea with or without Humalite 

application and similar between half and recommended urea rates (Figure 2.4). The seed 

protein content at GRO increased mostly increased urea application (Table 2.5). The highest 

wheat yield (3830 kg ha-1) was observed at the recommended urea rate plus 224 kg ha-1 

Humalite rate, while the lowest yield (2641 kg ha-1) was observed at zero urea plus 448 kg ha-

1 Humalite at St. Albert site (Figure 2.4). When no Humalite was applied, significantly higher 
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wheat yields were observed at recommended urea application, with similar yields for half or 

no urea rates. At 56 and 448 kg ha-1 Humalite rates, higher wheat yields were observed at half 

urea rates, although these yields were similar to the no and recommended urea rates at 56 kg 

ha-1 Humalite rates and similar to the recommended urea rates at 448 kg ha-1 Humalite rates. 

At 112 kg ha-1 Humalite rate, wheat yield at half and recommended urea rates were similar, 

while at 224 kg ha-1 Humalite rate, wheat yield was significantly higher at recommended urea 

rates compared to no or half urea rates (Figure 2.4). Wheat protein was similar and greater than 

13.5% at half and recommended urea irrespective of Humalite rates (Table 2.5).  

 

Table 2. 4 Analysis of Variance (ANOVA) table showing Humalite effects on wheat and canola 
yields at three sites for three growing seasons (2021 – 2023). 

  2021 2022 2023 

Source of variation P - values 

Urea 0.001*** ns 0.001*** 

Humalite ns ns 0.01* 

Site 0.001*** 0.001** 0.001*** 

Urea x Humalite ns ns ns 

Urea x Site ns 0.04* 0.001*** 

Humalite x Site ns ns ns 

Urea x Humalite x Site 0.04* ns 0.01* 

*, **, *** indicate significant differences at P < 0.05, P < 0.01, P<0.001, respectively; ns 
indicates not significant 
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Table 2. 5 Effects of Humalite on wheat and canola protein content and total kernel weight at different sites over three years. 

    2021 (Wheat) 2022 (canola) 2023 (wheat) 
 HR (Kg/ha) 

 
St Albert BRRG GRO BRRG GRO St Albert BRR

G 

GRO 

Urea rates 
2021 

& 
2022 

202
3 

  Protein 
(%) 

 TKW 
(g) 

Protei
n (%) 

 TKW 
(g) 

Protein 
(%) 

TKW 
(g) TKW (g) Protein (%) 

                Zero 0 0  11.8a 38.1a 16.8ab 32.5a 17.1abcd 38.5a 3.7a 4.3a 12.7a 12.9a 12.3ab 

 112 56  12.7abc 39.2a 16.8ab 34.3a 17.0abc 39.6a 3.7a 4.2a 12.5a 13.2a 12.1a 

 224 112  13.2abc 39.5a 16.4ab 33.0a 16.9ab 38.3a 3.5a 4.3a 13.0ab 13.7a 13.5abc 

 448 224  11.9ab 39.6a 17.1b 32.6a 17.3abcde 38.2a 3.5a 4.4a 12.5a 13.9a 12.7abcd 

 896 448  12.3ab 37.2a 17.1b 32.0a 16.8a 38.3a 3.4a 4.2a 13.1abc 13.9a 12.5abc 

               Half 
Recommended 

0 0  13.7abc 38.8a 16.9ab 34.6a 17.6bcde 38.9a 3.7a 4.1a 13.9bc 14.0a 13.4cdef 

112 56  14.7abc 39.3a 17.0b 32.6a 17.5abcde 39.1a 3.5a 4.2a 14.0bc 14.1a 13.2bcde 

224 112  14.1abc 38.5a 17.0b 33.2a 17.7cde 38.6a 3.5a 4.2a 14.0bc 14.1a 13.3bcdef 

448 224  14.6abc 38.7a 17.1b 33.2a 17.6bcde 39.7a 3.6a 4.2a 13.8bc 14.1a 13.6defg 

896 448  14.5abc 37.8a 16.8ab 33.8a 17.7e 38.3a 3.4a 4.3a 13.9bc 14.2a 13.5cdefg 

               Recommended 0 0  15.5abc 41.2a 16.3ab 32.9a 17.9e 39.7a 3.3a 4.3a 14.2c 14.3a 14.2efg 

 112 56  16.1c 39.7a 16.0ab 31.9a 17.7cde 38.1a 3.4a 4.3a 14.2c 14.5a 14.2efg 

 224 112  15.7bc 39.0a 15.5a 33.8a 17.9e 39.2a 3.3a 4.0a 14.2c 14.6a 14.3fg 

 448 224  16.3c 39.0a 16.6ab 33.0a 17.8de 38.9a 3.1a 4.1a 14.2c 14.6a 14.4fg 

 896 448  15.6abc 39.0a 16.7ab 33.2a 17.9e 37.8a 3.4a 4.1a 14.2c 14.7a 14.2efg 

Different letters indicate significant differences at P = 0.05 within each column, HR: Humalite rates. BRRG, Battle River Research Group; GRO, 

Gateway Research Organization
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Figure 2.2 Wheat yields under different Humalite and urea rates at different sites in 2021 
growing season [Error bars represent standard error of the means; St. Albert: St. Albert 
Research Station, University of Alberta, BRRG: Battle River Research Group near Forestburg, 

GRO:  Gateway Research Organization near Westlock]. 
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Figure 2.3 Effects of different urea rates on canola yields at two sites. Error bars represent 
standard error of the means. [Error bars represent standard error of the means; St. Albert: St. 
Albert Research Station, University of Alberta, BRRG: Battle River Research Group near 

Forestburg, GRO:  Gateway Research Organization near Westlock]. 
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Figure 2. 4 Wheat yields at different Humalite and urea application rates at three sites in the 
2023 season [Error bars represent standard error of the means; St. Albert: St. Albert Research 
Station, University of Alberta, BRRG: Battle River Research Group near Forestburg, GRO:  

Gateway Research Organization near Westlock]. 

 

2.3.3 Economic analysis of Humalite application in the presence of different urea rates 

 

The net revenue generated indicated that profitability depended on site, Humalite, and 

urea rates. No revenues were lost, i.e., no negative values at all Humalite and urea rates but net 

revenues across sites and years for each treatment exhibited great variability (Figures 2.5-2.7). 

More wheat net revenue was generated at St. Albert and BRRG compared to the GRO site in 

2021 (Figure 2.5). At the BRRG, the highest net revenue was observed in wheat at 224 kg ha-1 

Humalite plus half urea rates in 2021 (Figure 2.5). The lowest revenue was generated at 112 

and 224 kg ha-1 Humalite plus recommended urea application rate. Half and recommended urea 

plus  448 kg ha-1 Humalite rates generated similar net revenues that were higher than the no 

urea treatment; at 896 kg ha-1 Humalite rate, a similar trend was observed although the mean 

net revenue for the recommended urea treatment was higher (Figure 2.5). At the GRO site, the 

net wheat revenue was highest when no and 112 kg ha-1 Humalite was applied, plus no urea 
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(Figure 2.5). Net revenues were lowest at all Humalite rates (except at 896 kg ha-1 Humalite 

rate) plus recommended urea. At St. Albert, the highest mean wheat revenue was observed at 

112 kg ha-1 Humalite plus the recommended urea rate (Figure 2.5). Half urea rates generated a 

wide range of net revenues with the highest observed at 448 kg ha-1 Humalite rate. The lowest 

net revenues were observed at 896 kg ha-1 Humalite at all urea rates. 

Based on the net revenue calculations undertaken in 2022, more revenues were 

generated at the BRRG compared to the GRO site (Figure 2.6). At BRRG, the no urea and 

recommended urea rates generated the highest and lowest net revenue, respectively. 

Irrespective of Humalite application rates, half urea rates generated more mean canola net 

revenues (Figure 2.6). At GRO, the highest net canola revenues were observed at zero and half 

urea rates irrespective of Humalite application rates; the lowest net canola revenues were 

generated when urea was applied at recommended rates (Figure 2.6).   

In 2023, when no Humalite was applied at the BRRG site, zero and half urea rates had 

similar net wheat revenues that were significantly higher than the recommended urea rate 

(Figure 2.7). At 56 kg ha-1 Humalite, half and recommended urea rates had significantly higher 

net wheat revenues compared to the no urea treatment; meanwhile, at 112 and 224 kg ha-1 

Humalite rates, the recommended urea treatment had the highest wheat net revenue (Figure 

2.7). At 448 kg ha-1 Humalite, zero urea treatment had the highest net revenue. At GRO, there 

was a distinct pattern across all Humalite treatments. When half urea recommended rates were 

applied, net wheat revenue was higher compared to no and recommended urea treatments; the 

later had the lowest net revenue (Figure 2.7). At St. Albert, the highest wheat net revenue was 

observed at 224 kg ha-1 Humalite rate plus zero urea, while significantly low net revenues were 

observed at 56 and 448 kg ha-1 Humalite rates when urea was applied at recommended rates 

(Figure 2.7). At 112 kg ha-1 Humalite rate, a wide range of wheat net revenues were observed 

with half urea rates.  
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Figure 2.5 Net revenue generated with different Humalite application rates at reduced and 
recommended urea rates for wheat yields at three sites in 2021. Black dot in each plot indicates 
the mean. [Error bars represent standard error of the means; St. Albert: St Albert Research 
Station, University of Alberta, BRRG: Battle River Research Group near Forestburg, Alberta, 

GRO: Gateway Research Organization near Westlock, Alberta]. 
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Figure 2.6 Net revenue generated with different Humalite application rates at reduced and 
recommended urea rates for canola yields at two sites in 2022. Black dot in each plot indicates 
the mean. [Error bars represent standard error of the means; St. Albert: St Albert Research 
Station, University of Alberta, BRRG: Battle River Research Group near Forestburg, Alberta, 

GRO: Gateway Research Organization near Westlock, Alberta]. 
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Figure 2.7 Net revenue generated with different Humalite application rates at reduced and 
recommended urea rates for wheat yields at three sites in 2023. Black dot in each plot indicates 
the mean. [Error bars represent standard error of the means; St. Albert: St Albert Research 
Station, University of Alberta, BRRG: Battle River Research Group near Forestburg, Alberta, 

GRO: Gateway Research Organization near Westlock, Alberta]. 
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2.4 Discussions  

Humic substances as biostimulants are reported to either reduce fertilizer inputs and/or promote 

plant growth and crop yields (Ampong et al., 2022; Brown et al., 2020; Olaetxea et al., 2020; 

Varanini & Pinton, 2000; Vikram et al., 2022). In a field study conducted in China, the 

combined HA plus urea application increased maize biomass and grain yields by 11.5 - 21.3 % 

compared to urea only plots (Zhang et al., 2019). In another 2-year maize-wheat field 

experiment with various urea and HA-treated urea treatments, both wheat and maize yield 

increases were also reported. These increases were attributed to reduced N losses and prolonged 

effects of fertilizer (Kong et al., 2022). In the present study, responses to Humalite and urea 

application rates varied by site (Figures 2.2, 2.3, 2.4). In 2021, the combination of half urea 

recommended rates plus 448 kg ha-1 Humalite resulted in a yield increase of 8.4% at GRO 

(Figure 2.2). At BBRG, half urea recommended rates plus 224 kg ha-1 Humalite produced a 

significant yield increase of 34.9%, outperforming control treatments. At St. Albert, the 

application of full urea recommended rate plus 224 kg ha-1 of Humalite recorded the highest 

yield increase of 33.5% compared to the control (Figure 2.2). A reason for these variable 

observations could be the amount of soil organic matter (SOM) at these sites (Table 2.1). Humic 

acids form an integral part of SOM. Therefore, HA (Humalite) application can positively 

influence soil aggregate stability and nutrient uptake, thus potentially improving crop yields, 

especially in soils with low clay content and organic matter (Piccolo et al., 1997; Zhou et al., 

2019). This may be the reason for better responses to Humalite applications at lower Humalite 

application rates observed at the BRRG site, which had low SOM levels (5.2%) (Table 2.1). 

Soil-dissolved organic matter can perform similar functions as applied HS (García et al., 2016). 

Hence, the high organic matter present in St. Albert (SOM = 10.6%) may be negating the effects 

of Humalite. This may explain why positive results are mostly observed in sites with low SOM. 
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Past research shows that the addition of HS with NPK fertilizers results in a significant yield 

increase, especially in low SOM soils (Duan et al., 2024; Selim et al., 2009; Tahir et al., 2011; 

Zhou et al., 2019, 2022). Although the lowest wheat yields were observed at GRO, lower 

Humalite application rates still resulted in increased yields. This suggests that regardless of site 

and urea rate, the optimal Humalite rate may vary between 112 – 448 kg ha-1 depending on 

SOM content. These findings were similar to results from previous studies indicating that 

moderate HS application rates are beneficial for plant growth compared to higher rates 

(Arjumend et al., 2015; Tahir et al., 2011; Tan & Nopamornbodi, 1979).  

In 2022, significant effects of Humalite on canola yields were not observed in BRRG 

and GRO sites. The lowest canola yields were observed at GRO, primarily due to consistently 

poor rainfall throughout the growing season compared to the BRRG site (Figure 2.3). This 

absence of rainfall, particularly at the onset of the growing season may have resulted in 

moisture stress, thus hindering the plants’ ability to absorb water and nutrients at a critical phase 

of the plant development. Furthermore, urea application significantly influenced canola yields 

and trends were inconsistent in BRRG and GRO sites. At BRRG, the highest canola yields 

were recorded in control and half urea recommended rates, while for GRO, yields consistently 

increased with higher urea rates (Figure 2.3). Yield responses to increasing N fertilizer rates 

vary depending on factors such as rainfall, soil moisture content, soil type, and residual fertility 

(Cheema et al., 2001).  

The observed consistent benefit of applying Humalite at lower rates on crop yields led 

to the adjustment of Humalite application strategy in 2023, involving the eradication of 896 kg 

ha-1 and addition of 56 kg ha-1 (Figure 2.4). Similar results were reported by Tahir et al. (2011) 

in Pakistan on calcareous and non-calcareous soils where applying HA at high rates did not 

improve growth, yields and nutrient uptake in wheat plants. In our study, the optimal Humalite 

rate ranged from 112 - 224 kg ha-1 when combined with recommended urea rates at all sites.  
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For half urea recommended rate, an optimal Humalite range of 56 – 112 kg ha-1 was observed. 

Humic substances improve soil physical, chemical and biological properties, thereby 

improving plant performance and yields (Gümüş & Şeker, 2015; Li et al., 2019; Mosa et al., 

2020; Trevisan et al., 2010). The effects of Humalite and urea on wheat yields were particularly 

prominent in 2023, especially at the GRO site, compared to previous years. This increased 

response could be linked to the application of organic materials (Humalite), which can enhance 

soil physicochemical properties over time. Such improvements often require a longer duration 

to become obvious. Additionally, the residual effects of organic materials on soil properties and 

crop production can persist for several years, contributing to the observed yield increases 

(Diacono & Montemurro, 2010). This research aimed to identify conditions under which crop 

yields could be maximized with reduced urea application. Yield trends varied by location; at 

GRO, applying half urea recommended rates was most effective across all years irrespective 

of Humalite application rate. In a study by Lindsey et al. (2021), the application of HS with 

reduced N fertilizer provided equivalent turfgrass quality and cover relative to full N rates. In 

another study with rice, a lower dose of HA applied with reduced N fertilizer resulted in 

significant yields and fertilizer efficiency comparable to full N application (Suhardjadinata et 

al., 2015). However, at BRRG and St. Albert, urea applied at recommended rates mostly 

outperformed other urea application rates, with a few exceptions, particularly at reduced rates 

of Humalite. The high yields observed at low Humalite rates, particularly in wheat, suggest 

that the effects of HSs on plant growth and yields is non-linear (Rose et al., 2014). This 

indicates that increasing concentrations of HSs do not uniformly enhance plant performance 

(Rose et al., 2014). Instead, the response is influenced by several factors, including the 

application rate, method of application, source of HSs, crop type, and climatic conditions 

(Akimbekov et al., 2021). These interactions highlight the complexity of predicting and 

ensuring consistent responses to HSs (Rose et al., 2014 and Akimbekov et al., 2021).  
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Therefore, further research is needed to improve our understanding and predictability of how 

HSs affect plant growth and yield under varying conditions.   

Thousand kernel weight (TKW) at all sites were similar, irrespective of treatments. 

However, protein contents in grains were affected by urea application across all sites. Across 

all urea levels, the highest protein content in wheat was predominantly observed with Humalite 

rates between 224 and 448 kg ha⁻¹. These results are supported by a pot experiment conducted 

by Rathor et al. (2024), which found that wheat seed protein content was higher when Humalite 

was combined with inorganic fertilizers. In another field experiment conducted by Li et al., 

(2019) in China, it was observed that protein contents in peanut was higher in the first year of 

experiments when HA was combined with inorganic fertilizer. In a review conducted by 

Ampong et al. (2022), it was reported that HA increased crop N uptake, regardless of the 

amount or form of N fertilizer applied. Additionally, the review suggested that HA affects 

protein content differently, depending on the rates of HA applied, the method of application, 

and the crop type. Therefore, there is still an inconsistent trend in N assimilation and crop 

protein content under varying HA types. Therefore, the higher protein content observed at 

higher urea rates across all sites could be associated with higher N availability and uptake 

(Rathor et al., 2024). Humalite is expected to chelate nutrients, making them available to plants 

(Boguta et al., 2019; Van Dijk, 1971). Our results indicate that moisture deficit may be a 

significant factor in the St Albert resulting in wheat protein contents below 13.5% when no 

urea was applied; meanwhile, in other sites (BRRG and GRO), wheat protein content was 

significantly higher as expected.  

Along with yield increase, the influence of return on investment should also be 

considered when contemplating the application of biostimulants. Crop producers are currently 

looking for strategies to reduce input costs and increase profitability, considering the ongoing 

surge in fertilizer prices in the global market. In 2021, because wheat yields were higher at half 
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urea recommended rates plus 112 - 224 kg ha-1 Humalite, wheat net revenue values remained 

higher than other treatments and rates at BRRG. While at GRO, the highest wheat net revenues 

were generated with no urea application because there was no significant yield advantage to 

urea and Humalite application. This can be linked to the low canola yields. The poor yield 

performance is likely a result of insufficient rainfall at the onset of the growing season, which 

hindered plant establishment and growth, leading to early plant stress during this critical period. 

Hence affecting the overall productivity and profitability of the crop.  At St. Albert, the highest 

net revenue gains were recorded with 112 and 448 kg ha-1 of Humalite under recommended 

and half urea rates, respectively (Figure 2.5). In the subsequent year for canola, at GRO, net 

revenue margins continued to drop with higher urea and Humalite rates and profitability was 

maximum at half urea recommended rate (Figure 2.6). Increasing Humalite rates plus urea at 

recommended rates reduced net revenue margins (Figure 2.6). In 2023, wheat net revenue 

margins mostly declined with higher urea rates across Humalite treatments. Crop producers 

may find minimal incentive to utilize high Humalite and urea rates, as yield variations across 

treatments did not lead to substantial gains in increasing net revenue margins (Figure 2.5). This 

study suggests that the optimal Humalite rate for crop producers at GRO is half the urea 

recommended rate plus 112 kg ha-1 Humalite. The highest net revenue resulted from 448 kg ha-

1 Humalite plus zero urea application rates at the BRRG  meanwhile at St. Albert, 224 kg ha-1 

Humalite plus zero urea application rates resulted in the highest net revenue. Generally, higher 

net revenue gains occurred with lower input combinations. It should be noted that 

recommendation is dependent on soil type, climatic conditions in the growing season, and 

farming systems and can change depending on other factors. Currently, a better profit margin 

can be attained with lower inputs for crop producers. The gains from applying Humalite may 

arise more from soil health benefits in the long term. 
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2.5 Conclusions  

The effect of Humalite on crop yield in the presence of different urea rates was weather, crop, 

and site-specific. Wheat seems to respond to Humalite application more than canola. This 

response may be linked to factors such as differences in their root architecture (Rathor et al., 

2024; Wu et al., 2017) and possibly the role that canola and wheat root exudates play in nutrient 

uptake in the presence of Humalite (Canarini et al., 2019). The optimal application rates of 

Humalite varied depending on soil type, climate, and crop species, with lower Humalite plus 

reduced urea resulting in higher net revenue for crop producers. At GRO and BRRG, half-

recommended urea application rates plus 112 - 448 kg ha-1 Humalite resulted in yields similar 

to recommended urea application rates. In sites such as St. Albert with high SOM, yield 

increases were observed mostly at recommended urea rates. Reduced N rates plus Humalite 

can allow for reduced use of N fertilizers that will be profitable for producers and protect the 

environment. Considering the rising fertilizer prices and environmental concerns, the use of 

biostimulants such as Humalite offers a promising avenue for improving crop yields while 

reducing input costs. Nonetheless, further research is needed to identify Humalite application 

strategies, such as the method and timing of application, and evaluate the interaction of 

Humalite with different N sources and other nutrients in major crops. Additionally, there is the 

need to assess whether Humalite is beneficial in dry years long term, especially in a changing 

climate.  
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Chapter 3.0  

The impact of Humalite application in the presence of different nitrogen sources on wheat 

and canola agronomic soil and nitrogen related parameters - A Greenhouse Study 

3.1 Introduction 

Nitrogen (N) availability is one of the most limiting factors for crop productivity. Nitrogen is 

the most used plant nutrient for optimal plant growth and productivity, making N-fertilizer a 

critical component of agriculture (Lassaletta et al, 2014; Mezbahuddin et al., 2020). Currently, 

N fertilizer accounts for more than 50% of the global food production (Zhang et al., 2015). 

However, globally around 30-50% of N is taken up by crops (Bindraban et al., 2020; Linquist 

et al., 2012). This reduced nitrogen use efficiency (NUE) results in the inability of the crops to 

access soil N and maximize their yield potential (Cassman et al., 2002; Mezbahuddin et al., 

2020). There are other consequences including economic loss due to higher investments in 

fertilizer inputs, excess fertilizer application-related costs, and food insecurity (Sharma & Bali, 

2018). Moreover, N-losses create a negative environmental footprint contributing to 

greenhouse gas (GHG) emissions, underground water and air pollution, and eutrophication 

(Linquist et al., 2012).  

Currently, global NUE has decreased since the 1960s though N fertilizer input has 

increased nine-fold since then (Gastal et al., 2015; Lassaletta et al., 2014; Tilman et al., 2002). 

A meta-analysis by Lassaletta et al. (2014) reported and predicted a disproportionately low 

yield increase to increased N fertilization. However, Yang et al. (2024) reported that though 

NUE for the Canadian Prairies is higher than the global average, NUE in the prairies has 

significantly reduced from 1981 to 2016, even though N fertilizer inputs have increased 

drastically. With the increased N fertilizer inputs, increasingly higher residual soil N has been 

observed in the prairie soils along with an increase of nitrous oxide emissions by 43% (Yang 
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et al., 2023, 2024). Additionally, Statistics Canada (2018) reported a substantial increase in the 

farm input price index, with the N fertilizer index increasing from 45.3 in 2002 to 105.1 in 

2024. Thus, there is an economic, environmental, and agronomic motivation to improve 

fertilizer NUE. The 4R Nutrient Stewardship, a technology to improve N management, was 

developed a decade ago to improve crop yields, NUE, and soil health, as well as provide 

economic profits to the producers (Snyder, 2017). 4R stands for the Right Place, Right Time, 

and Right Rate for the Right Source of N fertilizer to be applied (Bruulsema, 2022). Therefore, 

there has been a persistent push to enhance N fertilizer management that aims to retain soil N 

and improve NUE, reflecting a commitment to sustainable agricultural practices (Khakbazan 

et al., 2021; Snyder, 2017; Trenkel, 2010). One of the methods of achieving reduced GHG 

emissions as well as improving NUE through incorporating the 4R principles is to incorporate 

the use of enhanced efficiency N fertilizers (EENFs) (Grant & Wu, 2008; Snyder, 2017).  

Enhanced efficiency N fertilizers have been designed to (i) delay the release of plant-

available N into the soil, thus increasing nutrient availability and uptake by plants, leading to 

higher NUE, and (ii) reduce N loss and environmental impact caused by the loss (Snyder, 2017; 

Trenkel, 2010). Enhanced efficiency N fertilizers have been proposed to provide better benefits 

over conventional urea (Shaviv, 2001; Trenkel, 2010). A type of urea-based EENFs are coated 

with urease inhibitors (UI), nitrification inhibitors (NI), or both (Byrne et al., 2020). Urease or 

nitrification inhibitors delay N release which permits plants to capture ammonium ions for an 

extended period and reduces ammonia volatilization and nitrate leaching loss (Dawar et al., 

2011). Impregnation with NI suppresses soil nitrifying microorganisms delaying the 

conversion of ammonium to nitrite and nitrate (Lam et al., 2022). This facilitates greater 

ammonium adsorption into soil exchangeable sites instead of lost due to leaching, nitrous oxide 

emissions, and denitrification, thereby improving NUE of crops (Degenhardt et al., 2017). 

Urease and nitrification inhibitors combined called dual inhibitors (DI) are added together to 
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fertilizers to further enhance the individual application of either UI or NI. The most common 

UI and NI used in agriculture are N-(n-butyl) thiophosphoric triamide (NBPT) and 

Dicyandiamide (DCD (C2H4N4)) respectively (Dai et al., 2014; Modolo et al., 2018). SuperU® 

(KochTM Fertilizer), is a popular DI used in North America that conglomerates both NBPT 

and DCD, with urea granules (Koch Fertilizer, 2021). 

Several studies have been conducted to observe the agronomic efficacy of different 

EENFs, especially with inhibitor-added fertilizers. Apart from reducing N loss, EENFs are 

implemented to prolong and/or increase plant N availability and crop yields (Yang et al., 2016). 

Inhibitor-based EENFs have been shown to increase grain yield and other agronomic 

parameters compared to conventional urea applications (Beres et al., 2018; Fast et al., 2024; 

Owens et al., 2023; Thapa et al., 2016; Wang et al., 2023). Theoretically, this would lead to an 

increase in NUE and crop yields, however, consistent results have not been supported by 

research. The use of NIs has been shown to indirectly improve agricultural and horticultural 

crop yields by 2 - 4.5% (Pasda et al., 2001). A meta-analysis conducted by Thapa et al. (2016) 

reported a 7% increase in cereal (rice, wheat, maize) yields with the use of NIs. A similar yield 

increase was observed in a previous meta-evaluation by Wolt (2004) with a soil N retention 

increase of 28%. Some studies reported addition with UIs increased crop yield compared to 

NIs (Chuan et al., 2010). Findings from another recent meta-analysis which included the newer 

inhibitors reported an overall significant increase in crop yields (3-5%), with UI being more 

effective than NI and DI (Fan et al., 2022). The addition of urea with DIs has also not been 

supported with consistent results. The application of dual inhibitors has led to significant yield 

and NUE increases compared to a single inhibitor and conventional urea (Adams et al., 2018; 

Cui et al., 2022; Kakabouki et al., 2020; Qi et al., 2022; Zaman et al., 2013). A significant 

increase of 2-5% in crop yields with the use of NBPT+DCD was reported by a meta-analysis 

(Fan et al., 2022). Field and laboratory experiments show the effectiveness of SuperU® (DI) 
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in increasing yields and agronomic N- efficiency under favourable conditions of adequate 

rainfall, but not under dry conditions (Afshar et al., 2018). In some cases, however, the 

application of DI did not affect yields significantly compared to conventional urea (Tenuta et 

al., 2023). Some studies indicate that DIs may not always enhance soil mineral N, N uptake, or 

yields, as one inhibitor might negate the effects of the other (Frame, 2017; Rozas et al., 1999; 

Soares et al., 2012). A study found that the addition of NBPT to urea improved cotton yields 

and other parameters, however with the addition of DCD to NBPT + urea fertilizer, limited 

NBPT performance which resulted in reduced N uptake, NUE, and crop yields (Kawakami et 

al., 2012). Some studies have not observed any significant increase in yield with DIs compared 

to conventional urea but did find a reduction of N losses without compromising on crop yield 

and quality (Thapa et al., 2015; Torralbo et al., 2022).  

On the other hand, plant biostimulants (PBs) such as Humalite have been postulated to 

increase N uptake, crop yields, and yield quality parameters, as well as NUE (Ampong et al., 

2022; Rathor et al., 2023, 2024; Rose et al., 2014). Humalite like other humic substances (HS) 

is naturally occurring, a highly stable organic substance derived from the transformation of 

dead and decayed biota (Canellas et al., 2015; Lumactud et al., 2022; Nardi et al., 2017; Rathor 

et al., 2023, 2024). A major constituent of humic substances is humic acid (HA), which acts as 

an N fertilizer synergist and is directly involved in promoting crop growth and yield, 

prolonging N use efficiency, and reducing N losses (Araújo et al., 2017). The complex structure 

contains carboxyl and other oxygen-containing functional groups that form complex bonds 

with N in the urea or ammonium ions (Jin et al., 2023; Liu et al., 2024) allowing it to chelate 

cations in the soil contributing to increased nutrient uptake, availability, and transport (Goel et 

al., 2021). Thus, HSs can bind and stabilize ammonium ions in the soil, thereby prolonging 

their availability to the plants (Dong et al., 2009; Laskosky et al., 2020; Rose et al., 2014; Shen 

et al., 2020; Zhang et al., 2013). Hence, research supports the role of HAs in enhancing plant 
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growth parameters, including biomass, chlorophyll content, plant height, grain yield, and 

related quality parameters (Canellas et al., 2019; Canellas & Olivares, 2014; Jannin et al., 2012; 

Muscolo et al., 2013; Scaglia et al., 2016; Zandonadi et al., 2013).  

The synergistic effect of humic substances with urea has been well studied. Humic acids 

have been shown to inhibit urea hydrolysis in some cases (Shen et al., 2020). Other studies 

show contrasting results where HAs increased urea hydrolysis and reduced ammonium 

nitrification to nitrate (Laskosky et al., 2020). Humic acid urea, a fertilizer made with humic 

acid and urea, is reported to significantly improve crop yields and N fertilizer recovery (Liu et 

al., 2019; Zhang et al., 2019). Canadian producers employing 4R nutrient management 

strategies are concurrently applying both SuperU and Humalite in their farms. Currently, there 

are no prairies-specific assessments evaluating the impact of humic products such as Humalite 

and SuperU applications on grain crop agronomic parameters and nutrient use. Secondly, 

considering that humic products are considered biostimulants, the jury is out there on whether 

reduced N should be applied in the presence of humic products and SuperU.  

Therefore, the objectives of this project are: 

(1) To assess the interaction of different N sources and Humalite on crop agronomic 

parameters. 

The null hypotheses were: 

i. Humalite interacts with N sources resulting in increased wheat and canola agronomic 

parameters.  

ii. Humalite plus reduced N rates had similar effects on grain crop agronomic parameters. 

iii. Wheat and canola responded differently to Humalite plus SuperU applications.  
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(2) To assess the interaction of different N sources and Humalite on nitrogen use and 

selected soil parameters.  

The null hypotheses were:  

i. Humalite interacted with different N sources resulting in increased N use and increases 

in soil chemical parameters.  

ii. Humalite plus reduced N rates had similar effects on N use and other soil parameters. 

 

3.2 Materials and Methods 

 

3.2.1 Experimental design and data collection 

 

An experiment was conducted from November 2023 – April 2024 at the Plant Growth Facility, 

University of Alberta. The greenhouse was maintained at 23 ± 3◦C with a 16-h light and 8-h 

dark cycle. The soil used for the experiment was obtained from a silage corn stubble research 

farm (Ornithic Black Chernozem soil), South Campus, University of Alberta. The soil was first 

sieved through an 11mm mesh followed by uniform mixing with sand (Target Products Ltd.) 

at a ratio of 1:2 (v/v) soil: sand ratio. Six kilograms (bulk density 1.5 g/cm3) of soil-sand 

mixture (soil) was filled into each 6.52L plastic pot. The soil was sent to Elements Laboratory, 

Edmonton for soil analysis and wheat/canola fertilizer recommendation. The experiment was 

a completely randomized design with seven treatments replicated 8 times and repeated twice 

with each phase referred to as a cycle. A modern high-yielding CWRS cultivar ‘AAC Brandon’ 

and a roundup-ready canola variety, RR45CM39, were assessed. Treatments comprised of two 

N sources (urea and urea coated with dual inhibitors i.e. SuperU®) at two N rates: recommended 

rate - RR and reduced by 30% RR, and no N applied as the control. Phosphorous, K and S 

fertilizer application were applied as per the fertilizer recommendation provided by Elements 

Laboratory. The treatments were as follows: (i) No N Control (T1) (ii) Urea at RR (T2) (iii) 
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Urea (RR) + Humalite (T3) (iv) Urea at 70% RR + Humalite (T4) (v) SuperU at RR (T5) (vi) 

SuperU at 70% RR (T6), and (vii) SuperU at 70% RR + Humalite (T7). Additionally, 

phosphorous (Triple superphosphate 0-45-0) and sulphur (elemental sulphur 35%) were 

applied at 100 ppm and 50 ppm respectively to canola from March 5th – 10th, 2024 in the second 

cycle due to deficiency symptoms observed. The 70% RR was referred to as the reduced N 

treatment. Humalite (WestMet Ag, AB, Canada) was applied at 448.3 kg/ha based on field trials 

(Nallanthighal et al., 2024). The fertilizer and Humalite amounts were calculated based on soil 

bulk density for each pot. Available NPK analysis by Elements Laboratory, Edmonton was 

performed by extracting the nutrients on Modified Kelowna solution and analyzing further by 

continuous flow calorimetry.  A 5 cm hole was made in the middle of the topsoil where the 

treatment mixtures were added. Six wheat and canola seeds were sown at 1” depth around the 

fertilizer hole and thinned down to one plant per pot one week post-emergence. Plants were 

fully watered throughout the experiment and run in two cycles. Each cycle had two sets of 

plants, a set for destructive sampling (DS) at BBCH 65 and another sampling (whole sampling- 

WS) at seed maturity (Table 3.1). Dates when sampling activities were conducted and a list of 

agronomic parameters collected are found in Table 3.1 and Table 3.2, respectively. For Powdery 

Mildew prevention in canola, several fungicides (Regalia Maxx Biofungicide (Marrone Bio 

Innovations) @ 2.5 ml/1L, and Ivory Dish Soap and Potassium Bicarbonate mixture @ 

10ml/1L ±10g/1L) applications were performed. Ference (Syngenta Canada Inc.) at 5ml/10L 

was applied to prevent Aphids and Thrips in wheat. 
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Figure 3.1 Experimental design (completely randomized design) conducted at the plant growth 
facility, University of Alberta indicating one crop cycle. 

 

 

Table 3.1 Dates during which agronomic activities were conducted at each cycle in wheat and 
canola [(W.S) Whole sampling; (D.S.) Destructive Sampling]. 

  Canola Wheat 
  Cycle 1 Cycle 2 Cycle 1 Cycle 2 
Activities W.S. D.S W.S. D.S W.S. D.S W.S. D.S 

Seeding Nov 3/23 Nov 3/23 Jan 4/24 

Feb 
13/24 

Nov 
8/23 

Nov 
8/23 Jan 8/24 

Jan 
8/24 

Harvesting 

Feb 
15/24 

Dec 23-
24/23 

Apr 
9/24 

Apr 
2/24 

Mar 
23/24 

Jan 
24/24 May 1/24 

Mar 
27/24 

SPAD(BBCH 65) 
Dec 19-
28/23 - 

Mar 5-
10/24 - 

Jan 15-
25/24 - 

Mar 18-
21/24 - 

Plant Height 
Dec 19-
28/23 - 

Mar 5-
10/24 - 

Mar 
21/24 - 

Mar 18-
21/24 - 

Biofungicide 
(Powdery mildew) 

Nov 
23/23 

Nov 
23/24 

Jan 
19/24 

Feb 
15/24 - - - - 

Insect biocontrol 
Dec 
19/23 

Dec 
19/24 

Feb 
17/22 

Feb 
17/23 

Dec 
19/23 

Dec 
19/24 

Feb 
17/24 

Feb17/
24 
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Table 3.2 List of wheat and canola agronomic and soil parameters collected during the 
experimental cycles I & II 

 

 

3.2.2 Evaluation of shoot, root biomass, and soil parameters 

 

Plants destined for DS were harvested at crop flowering (BBCH 65) stage. The shoot was cut 

at the soil surface and separated from the root. Roots were collected, thoroughly washed, and 

placed in labelled paper bags, dried at 60°C for 48-72 hours, and weighed on a digital scale 

balance (Denver Instrument S234.3 Summit Series Analytical Balance, 230g x 0.1 Mg). Dry 

weights were recorded as root dry weight (RDwt) and shoot dry weight (SDwt). Root shoot 

(Root/Shoot) ratio was calculated by dividing RDwt by SDwt, and total dry weight (TDwt) 

was calculated by adding both RDwt and SDwt. For total N content (TNC), plant materials 

were finely ground using a Thomas Model 4 Wiley mill and sent to the Natural Resources 

Analytical Laboratory (NRAL), the University of Alberta for analysis. The soil mix was also 

air dried for 1 week, ground, and sent to NRAL for soil ammonium (NH4-N), nitrate-N (NO3-

N), pH, and TNC analysis. Total organic carbon (TOC) and TNC were analyzed by combustion 

WheatCanola

Cycle IICycle ICycle IICycle IParameters

DestructiveWholeDestructiveWholeDestructiveWholeDestructiveWhole

Yield

Thousand kernel weight

Protein/Oil content

SPAD

Plant height

Days to flowering

Shoot dry weight

Root dry weight

Shoot total nitrogen content

Soil ammonium-N

Soil nitrate-N

Done Not required 
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elemental analysis (Thermo FLASH 2000 Organic Elemental Analyzer, Thermo Fisher 

Scientific Inc., Bremen, Germany 2016).   

 

3.2.3 Other agronomic data collected 

In canola and wheat, SPAD readings were taken using a SPAD-502 Plus chlorophyll meter 

(Minolta) at BBCH 65. In wheat, SPAD values were obtained from the tip of the flag leaf and 

the second fully developed leaf; and in canola, were collected from the tips of any three fully 

developed leaves. In each pot, plant height from ground level to the tip of the leaves was 

recorded for canola at BBCH 65, and before harvest for wheat. The total number of branches 

(NOB) in canola was counted at BBCH 65. The total number of spikes (NOS) was counted 

before wheat harvest. Wheat grains were threshed using a Hege 16 laboratory thresher 

(Wintersteiger, Ried im Innkreis, Austria). Canola plants were covered with plastic covers and 

tied at the bottom to contain the pods inside and minimize shattering losses. When pods started 

to change their colour, the canola plants were cut and set to dry in the greenhouse for a uniform 

dry down, after which pods were crushed and seeds were collected. The harvested seeds per 

pot were cleaned, dried to a moisture content of 4%, and weighed on a digital scale balance 

(Denver Instrument S234.3 Summit Series Analytical Balance, 230g x 0.1 Mg) for grain yield 

per pot. The wheat grain protein content (GPC) and canola oil content (GOC) were analyzed 

using TANGO FT-NIR spectrometer (Bruker Optics, Ettlingen, Germany). Thousand kernel 

weight (TKW) was calculated by multiplying the weight of 200 grains by five for both crops. 

Harvest Index (HI) was calculated by dividing grain yield by SDwt collected at DS (Dai et al., 

2016). 

Crop NUEs were calculated based on equations from Congreves et al. (2021) thus: 
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Apparent N recovery (ARN) % = ((Total N uptake of plant from the treatment – Total N uptake 

from the control) / Total applied N of the fertilizer in the treatment) x 100 

Agronomic Nitrogen Efficiency (AEN(kg kgN-1)) = (Grain yield from the treatment – Grain 

yield from the control) / Total applied N of the fertilizer in the treatment 

 

Agronomic N efficiency reflects crop yield increase per unit N applied, whereas ARN measures 

the proportion of applied N taken up by the crop (Li et al., 2023) 

 

Other N-related parameters were calculated as follows (Li et al., 2023; Qi et al., 2021): 

Soil apparent nitrification rate (SANR) % = NO3
- -N/(NH4

+-N + NO3
- -N) × 100  

Apparent N residual rate (ANRR ) % = (Residual N in fertilized treatment − Residual N in 

unfertilized treatment)/N rate × 100 

Apparent N loss rate (ANLR) % = 100 − ARN − ANRR 

 

3.2.4 Data analysis 

All data analyses were conducted using R version (v4.1.2; R Core Team 2023). A linear mixed-

effects model was employed to identify significant sources of variation. This model accounts 

for the fixed effects of the seven treatments and two growth cycles, their interaction, and the 

random effect of replication. The agronomic and soil parameters were considered as response 

variables. The model was implemented using the lme function from the nlme package in R, 

with the following structure: 

 

model <- lme(Yield~ Treatment*Cycle, random=~1 | Replication, data=dataset) 
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Significance levels between different treatments, cycles, and their interactions were assessed 

at p < 0.001, p < 0.01, and p < 0.05. Post-hoc analysis was performed using the emmeans 

package with Fisher's Least Significant Difference (LSD) test, and letter groupings were 

obtained to identify significant variables. Graphs were created using SigmaPlot® Version 11.  

 

3.3 Results 

 3.3.1 Environmental conditions during crop growth 

The soil combined with sand and used in this experiment was composed of nitrate-N (10 ppm), 

phosphorous (>80 ppm), potassium (501 ppm), sulphate-S (13 ppm), total nitrogen (0.12 mg 

kg-1), total organic carbon (1.62 mg kg-1), organic matter (3.5%), a soil pH of 6.0, and an 

electric conductivity (0.30 dS/m). Temperature varied significantly for growth cycles (GC) 

when wheat and canola were grown. Growth Cycle I (GCI) experienced relatively lower 

temperatures compared to Growth Cycle II (GCII) (Figure 3.1). A significant temperature 

fluctuation was observed as a pronounced dip in temperatures from 52 - 82 days after sowing 

(DAS) in GCI and from 0 - 20 DAS in GCII (Figure 3.1). Notably, GCII was characterized by 

a marked increase in temperature, especially from 70 DAS onwards (Figure 3.1). Temperature 

readings ranged from 21oC to almost 34oC towards the end of GCII, resulting in hot and dry 

conditions within the greenhouse at the pod/grain filling stages (Figure 3.1). High temperatures 

in GCII potentially induced heat stress in the crops. During GCI, canola plants reached the full 

flowering stage (BBCH 65) more quickly than wheat, taking approximately 47 - 55 days 

compared to wheat's 70 - 86 days. In GCII, both crops showed a slight shift in their flowering 

timelines. Canola flowered between 57 - 63 days, while wheat reached full flowering slightly 

earlier, between 69 - 72 days; probably due to the heat. The time to maturity also varied between 

the two growth cycles for both crops. In GCI, canola matured in 104 days, while wheat required 
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135 days to reach full maturity. In GCII, there was a reduction in maturation time for both 

crops, with canola maturing in 96 days and wheat in 114 days. 

 

Figure 3.2 Average daily temperatures during the two growth cycles of wheat and canola 
growth  

 

3.3.2 Humalite x different N sources interaction effects on crop agronomic parameters 

The effects of different treatments, growth cycles (GCs), and their interactions on wheat and 

canola agronomic parameters are summarized in the Analysis of Variance (ANOVA) table 

(Table 3.3). For wheat, the ANOVA indicate a significant two-way interaction between 

treatment x cycle for several parameters, viz. SPAD (P < 0.01), SDwt (P<0.001), RDwt 

(P<0.01), TDwt (P<0.001), NOS (P < 0.05), GPC (P<0.001), yield (P<0.001), and HI 

(P<0.001) (Table 3.3a). The treatment effect was significant only for wheat height (Ht) 
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(P<0.05), while cycle significantly affected wheat height (P<0.001), R/S ratio (P<0.001), and 

TKW (P<0.001) (Table 3.3a).  

 

Table 3. 3 Analysis of Variance (ANOVA) table showing the effects of N treatments, cycles, 
and their interaction on wheat and canola agronomic parameters [Plant height: Ht (cm), SPAD, 
shoot dry weight: SDwt (g), root dry weight: RDW (g), total dry weight: TDW (g), Root/shoot 
ratio: R/S, number of spikes in wheat: NOS or number of canola branches: NOB, protein 
content: PC (g plant-1) and oil content: OC (g plant-1), thousand kernel weight: TKW (g), Yield: 
grain yield (g), harvest index: HI]. 

a) Wheat 

Source of variation Ht SPAD  NOS/NOB SDwt RDwt R/S TDwt Yield TKW GPC/OC HI 

Treatment * ** *** *** ** ns *** *** ns *** ns 

Cycle *** *** ns *** *** *** *** *** *** *** ns 

Treatment x Cycle ns ** * *** ** ns *** *** ns *** *** 

b) Canola 

Treatment *** ** *** *** *** * *** *** ns *** ns 

Cycle *** ** *** ns ns ns ns *** *** *** *** 

Treatment x Cycle ns ns ns ns ns ns ns *** ns *** ** 

*, **, *** indicate significant differences at P < 0.05, P < 0.01, P<0.001, respectively; ns 
indicates not significant 

 

Wheat height was significantly lower in GCII (57.9 ± 0.78 cm) compared to GCI (73.2 ± 0.79 

cm) (Figure 3.4A). The urea treatments (T2-T4), even with Humalite addition or reduced urea 

had similar heights (Figure 3.3). In contrast, the application of SuperU at a reduced rate or in 

combination with Humalite (T7) resulted in significantly taller plants compared to SuperU at 

RR which had the shortest (62.4 ±1.23 cm) plants among all treatments (Figure 3.3). SPAD 

values were significantly higher in GCII, with no significant differences among treatments 

(Figure 3.4A). In GCI, urea at RR and reduced rates plus Humalite had similar SPAD values 

(Figure 3.4A). Similarly, SuperU at RR and SuperU at reduced rate plus Humalite had similar 

SPAD values, although the latter had higher SPAD values (Figure 3.4A). Notably, SuperU at 

reduced rate plus Humalite had SPAD values that were comparable to all urea treatments (T2-

T4). Overall, SDwt was higher in GCI across all treatments (Figure 3.4C). In GCI, urea at 
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reduced rates plus Humalite had significantly higher wheat SDwt compared to urea at RR but 

this was similar to urea at reduced rate without Humalite (Figure 3.4C). The application of 

SuperU at a reduced rate plus Humalite significantly decreased wheat SDwt compared to 

SuperU at RR; SuperU at reduced rate had similar SDwt with urea and SuperU at RR. Similar 

SDwt was observed among GCII treatments (Figure 3.4C). Wheat RDwt was consistently 

higher in GCII compared to GCI across all treatments (Figure 3.4D). In GCI, no significant 

differences in RDwt were observed among urea (T2-T4) or SuperU treatments (T5-T7). 

However, both urea treatments with Humalite had significantly higher RDwt than all SuperU 

treatments (Figure 3.4D). In GCII, only SuperU at reduced rate plus Humalite showed a 

significant increase in RDwt compared to the control but was similar to SuperU at a reduced 

rate, urea at RR, and urea at reduced rate plus Humalite. Significantly low TDwt were observed 

for urea at RR plus Humalite, urea at reduced rate plus Humalite, and SuperU at RR (Figure 

3.4E). In GCI, the Humalite effect varied depending on the N source applied. Urea at reduced 

rate plus Humalite had significantly higher (22%) wheat TDwt compared to urea at RR, 

whereas SuperU at reduced rate plus Humalite significantly decreased wheat TDwt compared 

to the other SuperU treatments (Figure 3.4E). Wheat Root/Shoot ratio was significantly higher 

in GCII compared to GCI (Figure 3.5B). The total NOS was similar between cycles for most 

treatments except for urea and SuperU at RRs (Figure 3.4B). In GCI, urea and SuperU at RRs 

had similar but significantly higher spike numbers compared to all other treatments irrespective 

of cycles (Figure 3.4B).  

Wheat yield varied significantly between growth cycles, with higher yields observed in 

GCI for all N treatments (T2-T7) (Figure 3.4F). In GCI, among urea treatments (T2-T5). 

Applying urea at RR resulted in the highest and significant wheat yields. Interestingly, these 

yields were similar to those resulting from SuperU at reduced rates plus Humalite application 

(Figure 3.4F). All SuperU treatments had similar wheat yields during both cycles except for T7 
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with significantly lower yield during GCII. Thousand kernel weight was significantly higher 

in GCI compared to GCII wheat plants (Figure 3.5C). Wheat grain protein content (GPC) was 

higher in GCI compared to GCII in all N treatments, though it was only significant for urea at 

RR, SuperU at RR, and SuperU at a reduced rate (Figure 3.4G). In GCI, urea at RR resulted in 

the highest and significant GPC compared to all other treatments irrespective of cycles (Figure 

3.4G). Humalite did not have a pronounced effect on wheat protein content as was expected 

for both N sources. Wheat HI was variable between GC depending on treatments (Figure 3.4H). 

In GCI, urea at a reduced rate plus Humalite application resulted in a significantly lower wheat 

HI compared to urea at RR (Figure 3.4H). Conversely, SuperU at a reduced rate plus Humalite 

resulted in a significantly higher wheat HI compared to SuperU at RR. In GCII, urea at a 

reduced rate plus Humalite application resulted in significantly higher HI than urea at RR; 

similar wheat HI between SuperU treatments were observed. 

Treatments
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Figure 3.3 Wheat height under different treatments [T1: Control; T2: Urea at recommended 
rate (RR); T3: Urea at RR plus Humalite; T4: Urea at 70% RR plus Humalite; T5: SuperU at 
RR; T6: SuperU at 70% RR; T7: SuperU at 70% RR plus Humalite; Error bars represent 
standard error; different letters represent significant differences at p ≤ 0.05].  
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Figure 3.4 Effects of different treatments x cycle interaction on wheat agronomic parameters 
[T1: Control, T2: Urea at recommended rate (RR), T3: Urea at RR plus Humalite, T4: Urea at 
70% RR plus Humalite, T5: SuperU at RR, T6: SuperU at 70% RR, T7: SuperU at 70% plus 
Humalite; shoot dry weight: SDwt, root dry weight: RDwt, total dry weight: TDwt, grain 
protein content: GPC; Error bars represent standard error of means, different letters represent 
significant differences at p ≤ 0.05]. 
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Figure 3.5 Effect of experimental growth cycles on wheat height (A), Root/Shoot ratio (B), 
and thousand kernel weight (TKW) (C) [Error bars represent standard error of means, different 
letters represent significant differences at p ≤ 0.05]. 

 

 

For canola, the ANOVA revealed a significant two-way interaction between treatment 

x cycle for GOC (P<0.001), yield (P<0.001), and HI (P<0.01) (Table 3.3b). Treatment effects 

were significant for canola height (P<0.001), SPAD (P<0.01), SDwt (P<0.001), RDwt 

(P<0.001), R/S ratio (P<0.05), TDwt (P<0.001), and NOB (P<0.001) (Table 3.3b). The growth 

cycle significantly affected canola height (P<0.001), SPAD (P<0.01), NOB (P<0.001), and 

TKW (P<0.001) (Table 3.3b). Canola height was significantly higher in GCII (90.4 ±0.88 cm) 

compared to GCI (84.4 ± 0.79 cm) (Figure 3.6A). Application of urea at RR resulted in 

significantly taller plants compared to urea at RR plus Humalite (Figure 3.7A). Canola plants 

had similar heights when SuperU treatments were applied; all treatments resulted in 

significantly taller plants compared to the control as expected (Figure 3.7A). SPAD values were 

significantly higher in GCI compared to GCII (Figure 3.6B). SPAD values were similar 

between all N treatments and this was significantly higher than the control (Figure 3.7B). The 

highest canola SDwt was observed in urea at RR which was similar to urea at RR plus Humalite 

but significantly different from all other treatments (Figure 3.7D). A significant decrease in 
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canola SDwt was observed in urea at a reduced rate plus Humalite; similar canola SDwt were 

observed in all SuperU treatments. Similar canola RDwt was observed between all N 

treatments, and this was significantly higher than the control (Figure 3.7E). The highest canola 

Root/Shoot ratio was observed when urea at a reduced rate plus Humalite was applied; this was 

similar to SuperU treatments but significantly higher than urea treatments and the control 

(Figure 3.7F). Similar canola TDwt was observed between SuperU at a reduced rate and 

SuperU at a reduced rate plus Humalite, but canola TDwt when subjected to SuperU at a 

reduced rate plus Humalite is significantly lower than that in SuperU at RR. All N treatments 

applied at RR had similar and higher, albeit significantly higher canola TDwt in 2 out of 3 

treatments (Figure 3.7G). Canola TDwt was lower when urea at a reduced rate plus Humalite 

was applied compared to the other urea treatments; all treatments resulted in significantly 

higher canola TDwt compared to the control as expected.  

Canola yields were treatments and GC dependent (Figure 3.8A). Yields were generally 

higher in GCI in all N treatments. In GCI, the highest canola yields were observed in urea at 

RR (T2 and T3) irrespective of whether Humalite was applied; this yield was similar to that 

resulting from SuperU at RR application; similar canola yields were observed between SuperU 

treatments irrespective of cycles (T5-T7) (Figure 3.8A). In GCII, Humalite application 

significantly reduced the canola yields under urea treatment. Thousand kernel weight was 

significantly higher in canola plants from GCII compared to GCI (Figure 3.6C). Grain oil 

content also varied significantly between growth cycles (Figure 3.8B); higher canola GOC was 

observed in GCI in all N treatments. The addition of Humalite did not significantly increase 

canola GOC (Figure 3.8B). Similar canola GOC were observed between SuperU treatments 

(T5-T7). In GCII, urea at RR plus Humalite had a significantly lower canola GOC; this was 

similar to SuperU at RR and the control. Among SuperU treatments, both reduced rate 
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treatments (T6 and T7) resulted in significantly higher canola GOC than SuperU at RR. Canola 

HI was lower in GCII for all N treatments (Figure 3.8C).  

 

 

 

 

Figure 3.6 Effect of experimental growth cycles on canola height (A), SPAD (B), thousand 
kernel weight (TKW) (C), and number of branches (D) [Error bars represent standard error of 
means, different letters represent significant differences at p ≤ 0.05]. 
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Figure 3.7 Effects of different treatments on canola agronomic parameters [T1: Control; T2: 
Urea at recommended rate (RR); T3: Urea at RR plus Humalite; T4: Urea at 70% RR plus 
Humalite; T5: SuperU at RR; T6: SuperU at 70% RR; T7: SuperU at 70% RR plus Humalite; 
shoot dry weight: SDwt, root dry weight: RDwt, total dry weight: TDwt; Error bars represent 
standard error of means; different letters represent significant differences at p ≤ 0.05]. 
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Figure 3.8 Effects of different treatments x cycle interaction on canola agronomic parameters 
[T1: Control; T2: Urea at the recommended rate (RR); T3: Urea at RR plus Humalite; T4: Urea 
at 70% RR plus Humalite; T5: SuperU at RR; T6: SuperU at 70% RR; T7: SuperU at 70% RR 
plus Humalite; grain oil content: GOC; Error bars represent standard error of means; different 
letters represent significant differences at p ≤ 0.05]. 
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3.3.3 Humalite x different N sources interaction effects on soil nitrogen use and nitrogen 
related parameters 

 

The effects of different treatments, GCs, and their interaction on wheat and canola N use and 

N-related parameters are summarized in Table 3.4. In wheat, ANOVA indicates that a 

significant treatment x cycle interaction was observed for TNC (P<0.001), ARN (P<0.01), NH4-

N (P<0.05), NO3-N (P<0.001), and ANRR (P<0.05) (Table 3.4a). Treatments were significant 

for AEN (P<0.01), soil pH (0.01), and SANR (P<0.001); GCs have a significant impact on AEN 

(P<0.001), soil pH (P<0.001), SANR (P<0.001), and ANLR (P<0.01) (Table 3.4a).  

 

Table 3. 4 Analysis of Variance table showing the effects of N treatments, growth cycles, and 
their interaction on wheat and canola N use and N-related parameters [Total nitrogen content: 
TNC (mg kg plant-1), agronomic N efficiency: AEN (kg N-1), apparent N recovery efficiency: 
ARN (%), Soil pH: pH, soil ammonium-N: NH4-N (mg kg plant-1), soil nitrate-N: NO3

 -N (mg 
kg plant-1), soil apparent nitrification rate: SANR (%), apparent N residual rate: ANRR (%), 

apparent N loss rate: ANLR (%)].  

*, **, *** indicate significant differences at P < 0.05, P < 0.01, P<0.001, respectively; ns 
indicates not significant 

 

Wheat shoot TNC varied significantly across treatments and GC (Figure 3.9A). In GCI, 

all N treatments resulted in significantly higher wheat shoot TNC compared to the control. The 

application of urea at RR plus Humalite resulted in significantly higher shoot TNC meanwhile 

similar shoot TNC were observed when urea at recommended rate plus Humalite and urea at 

a) Wheat           

Source of variation TNC AEN ARN pH NH4-N NO3-N TIN SANR ANRR ANLR 

Treatments *** ** ns ** ns *** *** *** ns ns 

Cycles *** *** *** ** *** *** *** *** *** ** 

Treatment x Cycle *** ns ** ns * *** *** ns * ns 

b) Canola           

Treatments *** ns ns ns ns *** *** *** ns ns 

Cycles *** *** ** *** *** *** *** *** *** *** 

Treatment x Cycle * ns * *** ns *** *** *** ns ns 
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reduced rate plus Humalite were applied (Figure 3.9A). In contrast, reducing the rate of 

SuperU, with or without Humalite significantly decreased shoot TNC compared to SuperU at 

RR (T5). Additionally, both reduced rate SuperU treatments resulted in similar shoot TNC.  

T
N

C
 [

g
 p

la
n

t-
1

]

0.0

0.1

0.2

0.3

0.4

ab

cd
bc bc bc bc cd

a

ef

g

ef

g
fg

de

T1 T2 T3 T4 T5 T6 T7

m
g

 N
H

4
-N

 k
g

-1
 s

o
il

0

2

4

6

8

10

12

c

ab ab

a

bc

a

a

a
a a a a a

a

m
g

 N
O

3
 -

N
 k

g
-1

s
o

il

0

10

20

30

40

50

60

a

ab

bc

ab
a a

a

a

de
e

bc

e

de
cd

a

g
h h

c
d

e

h

fg
h

e
fg

a
b

b
c
d

e d
e

f

b
c
d

a
b

c
d

a
b a
b

c

CI CII CI CII CI CII CI CII CI CII CI CII CI CII

A)

B)

C)

D)

CI CII CI CII CI CII CI CII CI CII CI CII CI CII

T2 T3 T4 T5 T6 T7

A
p

p
a

re
n

t 
N

 r
e

c
o

v
e

ry
 (

%
)

0

5

10

15

20

25

30

35

e

a
a

aa
a

ab

bc

cd
dcd

cd

E)

Treatments

T1 T2 T3 T4 T5 T6 T7

T
IN

 [
m

g
 k

g
 N

-1
]

0

10

20

30

40

50

T2 T3 T4 T5 T6 T7

-8

0

8

16

24

32

de
de

cd

e e

de

ab
bc

ab
ab

a ab
A

p
p

a
re

n
t 

N
 r

e
s

id
u

a
l 

ra
te

 [
 %

 ]

CI CII CI CII CI CII CI CII CI CII CI CII

F)

CI CII CI CII CI CII CI CII CI CII CI CII

a

g
h h

c
d

e

h

fg
h

e
fg

a
b

b
c
d

e d
e

f

b
c
d

a
b

c
d

a
b a

b
c

D)

 

 

Figure 3.9 Effects of different treatments x cycle interaction on wheat soil and N-based 
parameters [T1: Control; T2: Urea at recommended rate (RR); T3: Urea at RR plus Humalite; 
T4: Urea at 70% RR plus Humalite; T5: SuperU at RR; T6: SuperU at 70% RR; T7: SuperU at 
70% RR plus Humalite; shoot total nitrogen content: TNC, ammonium-N: NH4-N, nitrate-N: 
NO3-N, and total inorganic nitrogen: TIN; Error bars represent standard error of means; 
different letters represent significant differences at p ≤ 0.05]. 
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Agronomic N efficiency was significantly higher in wheat plants grown in GCI 

compared to GCII (Figure 3.10A). Among urea treatments, Humalite application plus urea at 

RR did not significantly improve AEN compared to urea at RR (Figure 3.11A). However, 

Humalite plus urea at a reduced rate resulted in significantly higher AEN. Application of 

SuperU treatments with reduced rates with and without Humalite resulted in significantly 

higher AEN compared to SuperU at RR (Figure 3.11A). SuperU treatments at a reduced rate 

and urea at RR also had similar AEN (Figure 3.11A). Apparent N recovery (ARN) varied 

significantly across treatments and cycles (Figure 3.9F). Apparent N recovery values were 

generally lower across all GCII treatments than GCI (Figure 3.9F). In GCI, the ARN ranged 

from 15% to 28%, with the highest ARN observed in wheat plants treated with urea at a reduced 

rate plus Humalite compared to all other treatments (Figure 3.9F). The application of urea at 

RR plus Humalite increased ARN compared to urea at RR, though not statistically significant. 

Among SuperU treatments, both SuperU at reduced rate treatments showed similar ARN to 

SuperU at RR (Figure 3.9F).  
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Figure 3.10 Effect of experimental growth cycles on wheat agronomic nitrogen efficiency 
(AEN) (A), soil pH (B), soil apparent nitrification rate (SANR) (C), and apparent N loss rate 
(D) [Error bars represent standard error of means; different letters represent significant 
differences at p ≤ 0.05]. 
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Figure 3.11 Effects of treatments on wheat soil and nitrogen related parameters [T1: Control; 
T2: Urea at the recommended rate (RR); T3: Urea at RR plus Humalite; T4: Urea at 70% RR 
plus Humalite; T5: SuperU at RR; T6: SuperU at 70% RR; T7: SuperU at 70% RR plus 
Humalite; agronomic nitrogen efficiency: AEN, soil apparent nitrogen rate: SANR; Error bars 
represent standard error of means; different letters represent significant differences at p ≤ 0.05]. 
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Soil pH varied significantly across treatments (Figure 3.11B). Soil pH was significantly 

higher in GCI compared to GCII (Figure 3.10B). The control treatment had the highest pH that 

was significantly higher than most of the N treatments except for urea at RR plus Humalite and 

SuperU applied at a reduced rate (Figure 3.11B). Humalite plus urea at RR slightly increased 

soil pH compared to urea at RR but this increase was insignificant. Application of SuperU at 

reduced rate plus Humalite also resulted in higher but insignificant soil pH compared to SuperU 

at RR (Figure 3.11B). Soil ammonium-N levels varied significantly across treatments and 

growth cycles (Figure 3.9B). In GCII, NH4-N levels were generally lower (ranging from 3.5 - 

4.3 mg kg⁻¹) but similar between treatments. In GCI, the control treatment had the highest NH4-

N level, similar to urea at reduced rate plus Humalite application, but significantly higher than 

all other N treatments. Soil NH4-N levels were lower but insignificant for reduced N treatments 

(T4, T6, and T7). Urea at RR plus Humalite slightly increased NH4-N but this increase was 

insignificant. Similar soil NH4-N was observed between urea and SuperU at RRs (Figure 3.9B). 

Soil nitrate-N levels were generally higher in GCII compared to GCI in all N treatments (Figure 

3.9C). In GCI, only SuperU at RR resulted in significantly higher NO3-N levels, all other N 

treatments were similar to the control. For SuperU treatments, SuperU at a reduced rate plus 

Humalite, and SuperU applied at reduced rates resulted in similar NO3-N levels, which were 

significantly lower than SuperU at RR (Figure 3.9C). In GCII, the control had the lowest NO3-

N level, which was similar to all N treatments except for SuperU at RR Urea treatments had 

similar NO3-N (Figure 3.9C). However, only SuperU at RR resulted in significantly higher 

NO3-N levels compared to SuperU at reduced rate treatments. 

Soil apparent nitrification rate in wheat was significantly higher in GCII compared to 

GCI (Figure 3.10C). All N treatments resulted in significantly higher SANR compared to the 

control (Figure 3.11C). Among the urea treatments (T2-T4), no significant differences were 

observed (Figure 3.11C). Similarly, there were no significant differences among the SuperU 
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treatments (T5-T7), although SuperU at RR had slightly higher SANR than at a reduced rate 

(Figure 3.11C). The ANRR was significantly higher in GCII compared to GCI (Figure 3.9F). 

In GCI, although not statistically significant, application of urea plus Humalite (T3 and T4) 

tended to reduce ANRR, with urea at a reduced rate plus Humalite showing a negative value 

(Figure 3.9F). Among SuperU treatments, no significant differences were observed as well, 

regardless of whether N was reduced or Humalite applied. However, SuperU at a reduced rate 

plus Humalite also resulted in a negative ANRR value (Figure 3.9F). In GCII, urea treatments 

had similar ANRR, although treatments with Humalite (T3 and T4) tended to have increased 

ANRR (Figure 3.9F). Similar ANRR was observed among SuperU treatments even when 

reduced N and Humalite were applied (Figure 3.9F). Apparent nitrogen loss rate differed 

significantly between the two growth cycles with GCI showing a significantly higher N loss 

rate compared to GCII (Figure 3.10D). 

In canola, the ANOVA table indicates that significant treatment x cycle interaction for 

TNC (P<0.05), ARN (P<0.05), soil pH (P<0.001), NO3-N (P<0.001), and SANR (P<0.001) 

(Table 3.4b). Treatment alone did not have a significant impact on any parameter but GC had 

a significant impact on all parameters thus: AEN (P<0.001), NH4-N (P<0.001), ANRR 

(P<0.001), and ANLR (P<0.001). 

Canola shoot TNC varied significantly across treatments and GC (Figure 3.12A). In 

GCII, all treatments had significantly higher canola shoot TNC compared to GCI, though it 

was not significant for urea at RR plus Humalite and SuperU at RR (Figure 3.12A). In GCI, 

the application of urea at reduced rate plus Humalite resulted in significantly decreased shoot 

TNC (Figure 3.12A). In contrast, reducing the rate of SuperU, with or without Humalite 

significantly decreased shoot TNC compared to SuperU at RR (T5) in GCI; this shoot TNC  

was similar to SuperU at RR in GCII. Both SuperU at reduced rate treatments resulted in similar 

shoot TNC (Figure 3.12A). Meanwhile, urea at RR resulted in significantly higher shoot TNC 
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compared to SuperU at RR in GCII. Agronomic N efficiency was significantly higher in canola 

plants grown in GCI compared to GCII (Figure 3.13A). Apparent N recovery varied 

significantly across treatments and cycles (Figure 3.12F). In GCII, the ARN was generally 

higher for most treatments compared to GCI (Figure 3.12F). Similar ARN was observed for all 

urea treatments in both cycles. In contrast, in GCII, SuperU treatments at reduced rates, with 

or without Humalite (T6 & T7) had significantly higher ARN values compared to SuperU at 

RR (Figure 3.12F).  

Soil pH varied significantly across treatments and cycles (Figure 3.12B). Soil pH was 

generally lower for all N treatments in GCII than GCI, except for the control (Figure 3.12B), 

which showed a slight increase, which was not significant. In GCI, SuperU at RR had 

significantly higher soil pH, comparable to urea at RR plus Humalite (Figure 3.12B). SuperU 

at a reduced rate resulted in significantly reduced soil pH regardless of Humalite application, 

but increased soil pH in GCI, compared to SuperU at RR. Application of urea at RR plus 

Humalite resulted in a slight, but insignificant increase in soil pH compared to urea at RR only; 

the control treatment maintained a relatively stable pH across both GCs.  
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Figure 3.12 Effects of different treatments x cycle interaction on canola soil and N-based 
parameters [T1: Control; T2: Urea at recommended rate (RR); T3: Urea at RR plus Humalite; 
T4: Urea at 70% RR plus Humalite; T5: SuperU at RR; T6: SuperU at 70% RR; T7: SuperU at 
70% RR plus Humalite; shoot total nitrogen content: TNC, nitrate-N: NO3-N, total inorganic 
nitrogen: TIN, soil apparent nitrification rate (SANR); Error bars represent standard error of 
means; different letters represent significant differences at p ≤ 0.05]. 

 

In canola, soil NH4-N was significantly higher in GCII compared to GCI (Figure 

3.13B). Soil NO3-N levels varied significantly across treatments and cycles (Figure 3.12C). 

Soil NO3-N levels were generally higher in GCII compared to GCI for all N treatments, with 

no significant differences observed among treatments in GCI (Figure 3.12C). Application of 

urea at RR plus Humalite resulted in a slight but insignificant increase in soil NO3-N levels; 
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when applied with urea at a reduced rate had similar NO3-N levels as urea at RR (Figure 3.12C). 

SuperU at RR had similar NO3-N levels to all urea treatments; these NO3-N levels were 

significantly higher than SuperU at reduced rate treatments (T6 & T7). Application of SuperU 

at a reduced rate plus Humalite resulted in a slight, though statistically insignificant increase in 

soil NO3-N levels (Figure 3.12C). 

Soil apparent nitrification rate varied significantly across treatments and cycles (Figure 

3.12E). Soil apparent nitrification rates were significantly higher in GCII compared to GCI for 

all N treatments; in contrast with the control treatment decreasing significantly in GCII (Figure 

3.12E). In GCI, SANR in control was significantly higher than all urea and Humalite treatments 

but similar to SuperU at recommended and reduced rates. In GCI, SANR ranged from 73% to 

79% for N treatments, while in GCII, it increased to 84 - 92%. No significant differences were 

observed among urea treatments in both cycles and SuperU treatments in GCI. In contrast, in 

GCII, canola plants showed significantly higher SANR for all N treatments compared to the 

control (Figure 3.12E). However, in GCII, SuperU at RR had significantly higher SANR 

compared to SuperU at a reduced rate; this SANR was similar to that of SuperU at a reduced 

rate plus Humalite. The ANRR and ANLR showed significant variation across cycles (Figure 

3.13C, D).  The ANLR was significantly low in GCI, compared to GCII, exhibiting negative 

values in GCI (Figure 3.13C). In contrast, ANLR was significantly higher in GCI compared to 

GCII.   



104 

 

 

 

Figure 3.13 Effect of experimental growth cycles on canola agronomic nitrogen efficiency 
(AEN) (A), soil available ammonium-N (NH4-N) (B), apparent N residual rate (ANRR) (C), 
and apparent N loss rate (D) [Error bars represent standard error of means; different letters 
represent significant differences at p ≤ 0.05]. 
 

 

3.4 Discussions 

3.4.1 Effect of environmental condition in the presence of Humalite and different nitrogen 

sources on grain agronomic, and nitrogen-related parameters 

This study explored the effects of different N sources, application rates, Humalite, and their 

interaction on the agronomic, and N-related parameters in wheat and canola under controlled 

environment. Growth conditions in the growth facility played a significant role, evident in the 

variations observed in the two GCs. Wheat and canola are cool-season crops that are highly 

sensitive to increasing temperatures, especially during reproductive and grain/pod-filling 

stages (Angadi et al., 2000; Liu et al., 2014; Singh et al., 2008; Ullah et al., 2022; Vignjevic et 

al., 2015; Weymann et al., 2015). Wheat agronomic parameters collected demonstrated that 
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GC significantly affected most variables. In wheat, parameters such as plant height, SDwt, 

TDwt, grain yield, GPC, TKW, NOS, and HI were lower in GCII compared to GCI. Conversely, 

RDwt and SPAD values were higher in GCII. For canola, SPAD values, NOB, yield, GOC, and 

HI were adversely affected in GCII. The temperature variations between GCs likely contributed 

to these differences. The hot and dry conditions in GCII, particularly after 70 days after sowing 

(DAS) when temperatures exceeded 27°C, may have influenced crop physiological processes 

and reduced fertilizer efficiency, thereby affecting yield and protein content. This aligns with 

existing literature indicating that high temperatures negatively impact wheat yield due to heat 

stress during the grain-filling period, known as terminal heat stress, which is particularly severe 

(Farooq et al., 2011; Kumar et al., 2019; Rehman et al., 2021; Satorre & Slafer, 1999). Optimal 

temperatures for wheat anthesis and grain filling range from 12-22°C, and exposure beyond 

this range can significantly reduce grain yield (Tewolde et al., 2006). Heat stress disrupts 

physiological processes such as photosynthesis (Al-Khatib & Paulsen, 1999), consequently 

leading to protein degradation (Sairam et al., 2000), and hastening leaf senescence (Zhao et al., 

2007). This results in decreased grain weight and size, reduced yields, and lower protein 

content quality (Dias & Lidon, 2009; Hurkman et al., 2009; Nuttall et al., 2018), as observed 

in GCII wheat in the current study.  

For canola, SPAD values, NOB, grain yield, GOC, and HI were significantly lower in 

GCII compared to GCI. Studies have shown that high temperatures affect canola yields and oil 

content (Faraji et al., 2009; Lohani et al., 2022; Pokharel et al., 2021; Si et al., 2003). Heat 

stress during the flowering stage can lead to canola flower blast, characterized by aborted 

flowers, poorly filled pods, and blank sections on the stem, resulting in significant yield 

reductions as high temperatures are known to induce male and female sterility (Morrison & 

Stewart, 2002; Polowick & Sawhney, 1988). Canola exposed to temperatures above 27°C can 

suffer significant yield losses (Morrison & Stewart, 2002). High temperatures during seed 
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filling can shorten the seed-filling duration, reducing yield and related parameters (Hocking et 

al., 1997; Morrison & Stewart, 2002). However, TKW in canola has been shown to increase 

under heat stress conditions due to the crop's phenotypic plasticity to mitigate stress damage 

(Pokharel et al., 2021; Rivelli et al., 2024), which was observed in this study as TKW was 

higher in GCII. 

Regarding N fertilization, research has not reached a consensus on its impact on crop 

yield improvement under high-temperature stress. Previous research has indicated that grain 

yield, protein content, and TKW in wheat do not increase with higher N supply under high-

temperature conditions (Zahedi et al., 2004). Moreover, some studies suggest that higher N 

application can further increase sensitivity to heat stress, thereby reducing grain yields 

(Ordóñez et al., 2015; Slafer & Savin, 2018). Consistent with these findings, all N-fertilized 

treatments for both wheat and canola in GCII produced lower yields than in GCI. In contrast, 

a study by Hassan et al. (2015) reported that increasing N fertilizer concentration can alleviate 

heat stress effects. Meanwhile, Zhou et al., (2024) suggested that reducing N application by 

20% can help tolerate heat stress. In this study, during GCII, both RR and reduced rate N 

applications resulted in wheat yields that were similar to control treatments. However, for 

canola, N treatments outperformed the control, with urea at RR producing significantly higher 

yields than at a reduced rate, while SuperU at a reduced rate produced similar yields as that of 

SuperU at RR. This could suggest that different types of crops react differently with N under 

heat stress conditions. Plant biostimulants are designed to improve physiological processes by 

providing increased tolerance to abiotic stresses, including heat stress to improve production 

quality (Carmody et al., 2020; Cocetta et al., 2022; Repke et al., 2022). Humic substances are 

a type of PB that have been shown to increase heat tolerance in plants by activating Heat-Shock 

Protein coding genes (Cha et al., 2020). In liquid forms, HSs have been shown to improve 

abiotic tolerance in diverse crops such as wheat, maize, pepper, and soybean (Kaya et al., 2018; 
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Kıran et al., 2019; Merwad, 2019). However, solid HSs have a lower impact on stress tolerance 

compared to their liquid counterparts but are reported to remain longer in soil and can further 

improve NUE, and N availability (Qin et al., 2023; Qin & Leskovar, 2020). In the current study, 

the observed increase in wheat HI for Humalite combined with urea under high-temperature 

conditions can be justified by the potential of Humalite to enhance nutrient uptake and mitigate 

stress effects, which aligns with previous findings (Maignan et al., 2020; Qin et al., 2023; Qin 

& Leskovar, 2020). However, when urea was applied at the RR, the HI decreased in the heat-

affected cycle, likely due to ammonia-N volatilization and reduced efficiency under stress 

(Cameron et al., 2013). The lack of comparable results with SuperU treatments suggests that 

Humalite's effect might be counteracted by the use of dual inhibitors. Xiao et al. (2024) found 

that HA interacted differently with NBPT in various soil and pH conditions, delaying urea 

hydrolysis by binding to NH4-N ions in black soils. Given that HA can also act as natural urease 

inhibitors in agriculture (Liu et al., 2019; Zhang et al., 2019), the combination of Humalite and 

dual inhibitors might result in the binding of available N, negating their individual effects. 

However, Humalite application did not significantly improve canola agronomic performance, 

aligning with our field study findings (Nallanthighal et al., 2024). Plant biostimulants including 

HSs have been shown to increase abiotic stress tolerance in canola (El-Shazly, 2020; 

Passandideh et al., 2022). However, there have been inconsistencies in their results with 

rapeseed or canola (Osvalde et al., 2024). Moreover, studies have been conducted using liquid 

HS or humic acid, whereas in the present study, we applied HS in a solid form.  

In the current study, wheat also showed significantly lower AEN, soil pH, TNC, NH4-

N, and ARN under high temperatures. Similarly, canola exhibited lower AEN, and soil pH in 

GCII. Previous studies have demonstrated that heat stress also affects enzymes responsible for 

NH4-N and NO3-N metabolism, impacting their assimilation regardless of N applied (Giri et 

al., 2017; Klimenko et al., 2006; Mishra et al., 2023). In GCII, a significant increase in SANR 
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and significantly lower soil pH were observed for all N treatments in both crops. This aligns 

with literature indicating that increased temperature enhances nitrification rates leading to 

reduced soil pH (Dal Molin et al., 2020; Li et al., 2020; Schroder et al., 2011). 

In this study, wheat treated with urea at reduced rate plus Humalite resulted in an 

increase in RDwt in GCII, though not significantly. However, the increase was significant with 

SuperU at a reduced rate plus Humalite when compared to its RR counterpart. This aligns with 

previous research indicating that HA can enhance lateral root growth by activating the auxin 

signal transduction pathway (Canellas et al., 2002; Elmongy et al., 2020; Malik & Azam, 1985; 

Olaetxea et al., 2018; Rathor et al., 2023, 2024; Zandonadi et al., 2007).  

3.4.2 Effect of nitrogen sources and Humalite on grain agronomic, soil, and nitrogen-

related parameters  

Inhibitor-based EENFs and HSs have demonstrated their effectiveness in slowing urea release 

in soil and retaining soil-N, thereby enhancing uptake when crops require it most (Beres et al., 

2018; Fast et al., 2024; Gao et al., 2022; Saha et al., 2019). In the current study, SuperU at RR 

significantly reduced plant height in wheat and canola compared to urea at RR (Figure 3.3A 

and 3.6A), an important aspect considering the impact of lodging on wheat production; a 

similar finding was observed in cotton, suggesting reduced lodging and potential yield and 

quality loss prevention (Kawakami et al., 2012). This contrasts with other studies where 

increased plant height was observed with single or dual inhibitors (Ge et al., 2023; Hussain et 

al., 2021). Similar plant height was observed with the application of urea at reduced rate plus 

Humalite and urea applied at RR (Figure 3.3A and 3.6A), indicating that Humalite application 

negated the effect of reduced N application on plant height. 

No significant differences were observed between both N sources applied at 

recommended rates on most agronomic parameters except wheat yield and protein in GCI 
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(Figure 3.4F, G). This is consistent with Recio et al. (2020) and Sistani et al. (2014), where no 

differences in above-ground biomass were found between conventional urea and EENFs in 

corn. Furthermore, the addition of Humalite increased SDwt (Figure 3.4C) and N uptake with 

urea (Figure 3.9A), however there was no significant change observed when applied with 

SuperU. This aligns with research showing that increased shoot biomass correlates with N 

uptake, and that humic acid-urea fertilizer enhanced both parameters compared to urea (Gao et 

al., 2022). However, the combined effect of SuperU with Humalite may have negated the effect 

of Humalite on N uptake and consequently SDwt.   

In wheat GCI, urea at RR and SuperU at a reduced rate produced the highest yields 

(Figure 3.4F). Notably, SuperU at reduced rate showed similar growth parameters (Figure 

3.4A-H), except for significantly higher protein content compared to SuperU at RR (Figure 

3.4G), consistent with findings in cereal crops where inhibitors at lower urea rates were more 

effective (Khan et al., 2013; Yan-hong et al., 2018). No effect of N sources on TKW was 

observed, similar to the findings by (Mangin et al. (2022). A protein penalty was noted with 

SuperU as well as Humalite application compared to urea at RR (Figure 3.4G). Our results are 

supported by previous research demonstrating the lack of EENF efficacy in increasing wheat 

grain protein (Beres et al., 2010; Mangin et al., 2022; Thapa et al., 2016). Inconsistent results 

with HA on grain protein have been reported, with some studies showing increased protein 

content (Nasiroleslami et al., 2021; Rathor et al., 2024), and others reporting no difference (Li 

et al., 2019; Radwan et al., 2014). Our study revealed a protein penalty associated with 

Humalite and urea application, while SuperU application showed no effect. This finding 

underscores that Humalite is dependent on the N source used. 

Agronomic N efficiency, is a fertilizer-based NUE perspective that provides a measure 

of the yield gain per unit of applied N fertilizer, offering insight into the economic and 

environmental of N fertilizers (Congreves et al., 2021). SuperU at RR had the lowest wheat 
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AEN and reducing SuperU regardless of Humalite application comparatively increased AEN to 

levels comparable with urea at RR (Figure 3.11A). As mentioned previously, lower rates of 

urea plus inhibitors are more effective at improving NUE expressed as AEN  (Khan et al., 2013; 

Yan-hong et al., 2018). A meta-analysis by Rose et al. (2018) further reported that EENFs may 

not increase yields and NUE compared to conventional N application, with sub-optimal rates 

being more effective, aligning with our results. Urea at a reduced rate plus Humalite resulted 

in similar AEN (Figure 3.11A), and SANR (Figure 3.11C) as urea at RR. SuperU at a reduced 

rate plus Humalite resulted in similar AEN and SANR values compared to SuperU at a reduced 

rate. This may indicate that reducing urea and applying Humalite would provide similar NUE 

as well as nitrification as that of conventional rates, providing economic and environmental 

benefits, but may not provide such benefits when applied with SuperU. Humalite application 

also increased ARN when applied with urea, however had similar values as that of SuperU at a 

reduced rate (Figure 3.9E). This suggests that Humalite combined with conventional N 

fertilizer enhances NUE, expressed as AEN and ARN. Despite higher ARN with urea at a reduced 

rate plus Humalite, this did not translate to increased grain yield or protein content, 

corroborating findings that inhibitors and HA can increase NUE without significantly boosting 

yield (He et al., 2018). These results suggest that while Humalite enhanced N uptake, 

utilization, and recovery efficiency, it may have altered the plant's N allocation patterns. The 

additional N might have primarily been directed towards vegetative growth, such as leaves and 

stems, rather than reproductive structures like grain. Alternatively, Humalite could have 

affected the plant's ability to remobilize N from vegetative tissues to the grain after flowering. 

Research shows that under controlled conditions, N uptake in wheat can continue till close to 

maturity, contributing to yield and protein (Glass, 2009; Masclaux-Daubresse et al., 2010). 

Apparent N residual rates for Humalite treatments are slightly lower than the other treatments, 

potentially reducing N availability (Figure 3.9F). However, the interpretation of the current N-
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related results must be done with caution because AEN was calculated at harvest, while ARN 

and ANRR were assessed at wheat flowering. These results suggest that reduced N can be 

applied as a split application with Humalite to prolong NUE to obtain significantly higher 

yields. Furthermore, no significant impact on soil pH was observed with Humalite in wheat 

(Figure 3.11B) although studies show HA's pH buffering ability can increase soil pH (Korsakov 

et al., 2023). 

In canola, results for N sources and Humalite application differed. In GCI, results 

suggest that both N sources applied at RR produced the highest yields (Figure 3.8A). SuperU, 

when applied at a reduced rate produced yield and GOC (Figure 3.8B) similar to SuperU at 

RR, regardless of Humalite application. However, these yields were significantly lower than 

those achieved with urea at RR. Previous research suggests that while single inhibitor N 

fertilizers can increase yield and oil content in rapeseed, double inhibitor N-based fertilizers 

may not have the same effect (Bečka et al., 2024; Mikusova & Ryant, 2021). Our study findings 

further agree with Mourad et al. (2021), that humic substances with reduced N fertilizer linearly 

decreased plant height (Figure 3.7A), grain yield (Figure 3.8A), and oil content (Figure 3.8B). 

Applying urea at a reduced rate significantly decreased SDwt and TDwt, but did not affect 

RDwt. In contrast, SuperU applied at a reduced rate resulted in agronomic parameter values 

similar to those observed when SuperU was applied at the RR. These results therefore suggest 

that SuperU at reduced rates can be applied instead of recommended rates but may result in 

slightly lower yields than urea at RR. Humalite application resulted in similar SDwt and RDwt 

in canola signifying that Humalite application did not increase biomass (Figure 3.7D,E). 

Similarly, no effect of Humalite on SDwt and RDwt was observed when applied with SuperU. 

Urea at a reduced rate plus Humalite resulted in a significantly higher Root/Shoot ratio (Figure 

3.7F) which corroborates with research that HSs stimulate root growth and improve root 

architecture (Ampong et al., 2022; Delfine et al., 2005). 
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For both N sources, recommended rates outperformed reduced rates for canola shoot 

TNC regardless of Humalite application (Figure 3.12A), suggesting that irrespective of N 

sources, Humalite did not have a significant impact on N uptake in canola. Nitrification rates 

were similar across all urea treatments as seen in wheat (Figure 3.12E). Soil pH decreased 

under heat stress conditions in GCII, due to increased nitrate and nitrification rate, which 

releases hydrogen ions, acidifying the soil (Han et al., 2017; Weber & Gainey, 1962). However, 

in GCI, urea at RR plus Humalite resulted in a slight, though not statistically significant 

increase in soil pH which aligns with the pH buffering capacity of HSs in literature (Pertusatti 

& Prado, 2007). No effect on NUE parameters from N sources or Humalite application was 

observed (Figure 3.12G), consistent with studies showing no effect of HA on canola yield and 

components (Eyni et al., 2023). In contrast, other studies have foliar application in canola 

enhanced agronomic traits (Alizadeh et al., 2022; Amiri et al., 2020; Barekati et al., 2019; 

Gürsoy & Kolsarıcı, 2017; Hemati et al., 2022). 

In our study, it was observed that wheat and canola responded differently to dual 

inhibitors and Humalite. Where some studies found enhanced parameters with the effect of 

EENFs and Humalite as mentioned before, some studies found no impact of dual inhibitor 

application on yield or NUE parameters in both wheat and canola (Lasisi et al., 2022). While 

dual inhibitors or Humalite may not always increase yields, further investigation into their 

potential to reduce N losses through ammonia volatilization, nitrate leaching, and nitrous oxide 

emissions would be valuable. 

 

3.7 Conclusions and Recommendations 

This study revealed significant differences in the agronomic, soil, and N-based parameters of 

wheat and canola across different growth cycles, N sources, and Humalite applications. Both 
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wheat and canola, as cool-season crops, were highly sensitive to increased temperatures in the 

second GC, especially during reproductive and grain/pod filling stages, resulting in reduced 

yields and protein content. The application of SuperU resulted in mixed results for both wheat 

and canola, not consistently improving yields or NUE, possibly due to the interaction of 

inhibitors negating the chelating effects of Humalite. In wheat, a reduced rate of SuperU was 

more effective in increasing wheat yields and grain protein content when compared to the 

recommended rate. Humalite when applied with reduced urea significantly increased N uptake 

and NUE but did not translate to increased yield or protein content. There was no significant 

influence of SuperU or Humalite in canola. The study highlights the importance of tailoring N 

management strategies according to the crop and the crop's needs and suggests further research 

on field scale level with different rates on reduced N fertilizer sources with Humalite under 

stress conditions. 
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Chapter 4.0 General discussion, conclusions, and recommendations 

Sustainable solutions for optimizing N fertilizer application to improve NUE and enhance or 

maintain grain yields while reducing N losses are a necessity for future crop production systems 

in the Canadian Prairies. Nitrogen, being a critical nutrient for plant growth and development, 

requires careful management to balance yield optimization with environmental stewardship, 

particularly in the face of climate change. Nitrogen is usually supplied as granular urea fertilizer 

in the Canadian Prairies for most crops, however, its susceptibility to losses in the current 

changing environmental conditions necessitates innovative approaches. Plant biostimulants, 

such as Humalite, a humic substance, and EENFs which have been coated with chemicals such 

as urease and nitrification inhibitors are important in tackling these challenges. These products 

also actively target N losses and make N more available to plants. It is important to choose 

biostimulants and EENFs based on the environmental conditions during the field season, crop 

grown, and soil type.  

Findings from our field study (chapter 2) underscore the variable impacts of Humalite 

and urea application on crop yields and economic returns across different soil zones and 

environmental conditions. Three urea rates (zero, full recommended rate, and half 

recommended rate) and five Humalite rates (0, 112 kg ha-1, 224 kg ha-1, 448 kg ha-1, and 896 

kg ha-1) were applied in a split-plot design at three research sites St Albert, BRRG, and GRO 

which had black, brown, and gray soil zones respectively, for three years 2021-2023 in a wheat-

canola-wheat rotation. In the year 2023, due to a change in the method of Humalite application 

from broadcasting to side-banding, a new rate of 56 kg ha-1 was added, and the highest rate 896 

kg ha-1 was dropped. At the BRRG site, characterized by low SOM, applying half the 

recommended rate of urea combined with 224 kg ha-1 of Humalite led to a significant yield 

increase of 35%. In contrast, at St Albert, which has higher SOM, the highest yield increase of 

34% was observed with the full recommended rate of urea plus 224 kg ha-1 of Humalite. At the 
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GRO site, the combination of half urea recommended rates plus 448 kg ha-1 Humalite resulted 

in wheat yield increase of 8.4% in 2021. These results indicate that the effectiveness of 

Humalite is influenced by the SOM levels, with more pronounced benefits in soils with low 

organic content.  

Furthermore, the study also highlights the significant impact of moisture conditions on 

crop response to Humalite and urea treatments. In 2022, canola yields at GRO were 

consistently low due to poor rainfall throughout the growing season. This moisture stress 

hindered the plants' ability to absorb water and nutrients, especially during critical development 

phases. Conversely, in years with adequate rainfall, the effects of Humalite were more 

pronounced, particularly in wheat. The residual effects of Humalite application became more 

evident over time, with increased responses observed in 2023 compared to previous years, 

especially at GRO. This suggests that the long-term benefits of Humalite on plant growth, 

nutrient availability, and soil physicochemical properties may take several years to fully 

manifest. Furthermore, wheat was more responsive towards Humalite compared to canola, 

which may suggest that Humalite may be more effective with cereals crops than oilseed crops 

in the Canadian Prairies. However, further research with different crops is advocated. 

Economically, the study revealed that lower input combinations often resulted in higher 

net revenue gains. At BRRG, the highest net revenue was achieved with 448 kg ha-1 of Humalite 

and no urea application, while at St Albert, the optimal economic return was observed with 224 

kg ha-1 Humalite and no urea. At GRO, the highest net revenues for wheat were generated with 

no urea application in dry year (2021), while for canola, profitability was maximized at half 

the recommended urea rate. Though GRO had overall lower yields compared to BRRG and St 

Albert, Humalite had the most pronounced effect in the gray soil zone. These findings suggest 

that Humalite can be a cost-effective alternative to higher urea rates, especially in environments 

where SOM is low and adequate soil moisture availability. 
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Therefore, based on the study results, specific recommendations for producers in 

different soil zones are as follows: At the BRRG site, characterized by low soil SOM, producers 

should consider applying half the recommended urea rate combined with 224 kg ha⁻¹ of 

Humalite to achieve significant yield increases. At St. Albert, with higher SOM, the optimal 

strategy is to apply the full recommended urea rate plus 224 kg ha⁻¹ of Humalite, which resulted 

in the highest yield increase. For the GRO site, where the lowest wheat yields were observed, 

applying half the recommended urea rate plus 448 kg ha⁻¹ of Humalite led to a yield increase 

of 8.4%. These site-specific recommendations highlight the importance of tailoring Humalite 

and urea applications to local soil zones and SOM levels. 

For future research, it is crucial to conduct long-term studies to better understand the 

residual effects of Humalite on soil properties and crop production over time. Expanding 

research to include a wider range of soil types, climatic conditions, and cropping systems will 

help develop more comprehensive application guidelines. Investigations can focus on the 

specific mechanisms by which Humalite interacts with different soil types and fertilizers to 

enhance nutrient availability and uptake. Additionally, exploring various application methods 

and timings can maximize the efficiency of Humalite use. Detailed economic analyses can also 

be determined for a long-term cost-benefit ratio of Humalite application under various 

production scenarios. These research efforts will improve the predictability and consistency of 

Humalite effects on plant growth and yield, ultimately aiding producers in optimizing their 

fertilization strategies. 

The controlled environment study (chapter 3) further investigated the interaction 

between different N sources, application rates, and Humalite on wheat and canola conducted 

twice or in two growth cycles. The N sources included urea and SuperU, which is an inhibitor-

based EENF, applied at the recommended rate and 70% of the recommended rate. A Humalite 

rate of 448 kg ha-1 was selected based on the field study results. The experiment revealed 
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significant interactions between Humalite and N sources, with varying effects on crop yields 

and agronomic parameters. The effect of Humalite varied depending on the crop, N source 

used, and the environmental conditions. Notably, the second cycle unexpectedly was subjected 

to heat stress, adversely affecting crop performance. Wheat and canola, both cool-season crops, 

showed reduced yields and protein/oil content under these high-temperature conditions, 

highlighting the sensitivity of these crops to heat stress. In wheat, Humalite combined with 

urea at a reduced rate showed promise in improving NUE parameters such as (AEN) and (ARN). 

This combination resulted in similar NUE values as urea applied at the recommended rate, 

suggesting potential economic and environmental benefits. However, these improvements in 

NUE did not translate to increased grain yield or protein content, indicating that the additional 

N uptake may have been directed towards vegetative growth rather than reproductive 

structures. For canola, the effects of Humalite were less pronounced. Humalite application did 

not significantly impact root and shoot dry weights or N uptake, regardless of the N source 

used. However, when applied with urea at a reduced rate, it did result in a higher root/shoot 

ratio, suggesting potential benefits for root growth and architecture. The interaction between 

Humalite and N sources varied between crops and cycles. In wheat, Humalite combined with 

urea showed more positive effects on N-related parameters compared to its combination with 

SuperU. In canola, the effects were less clear, with SuperU at reduced rates performing 

similarly to recommended rates for most parameters, regardless of Humalite application. 

Further research may be conducted with field trials to validate the results of this study. 

Research can also explore the potential of split N applications in combination with Humalite 

to optimize NUE and yield throughout the growing season. Additionally, studies could examine 

the mechanisms behind the different responses of wheat and canola towards Humalite which 

would provide a better understanding of which crops respond to Humalite more effectively. 

Lastly, given the observed impact of high temperatures, investigating the potential of Humalite 
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to mitigate heat stress effects on crop performance could be crucial, especially in the context 

of climate change. 
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