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Abstract

This thesis is concerned with the development of a novel discrete particle swarm

optimization (PSO) technique and its application to the discrete optimization of

digital filter frequency response characteristics on the one hand, and the high-level

synthesis of bit-parallel digital filter data-paths on the other. Two different tech-

niques are presented for the optimization of sharp-transition band frequency re-

sponse masking (FRM) digital filters, one of which is based onthe conventional

finite impulse-response (FIR) digital subfilters, and a new hardware-efficient ap-

proach which is based on utilizing infinite impulse-response (IIR) digital subfilters.

It is shown that further hardware efficiency can be achieved by realizing the IIR

interpolation subfilters by using the bilinear-LDI approach. The corresponding dis-

crete PSO is carried out over the canonical signed digit (CSD) multiplier coefficient

space for direct mapping to digital hardware considering simultaneous magnitude

and group-delay frequency response characteristics. A powerful encoding scheme

is developed for the high-level synthesis of digital filtersbased on discrete PSO,

which preserves the data dependency relationships in the digital filter data-paths.

In addition, a constrained discrete PSO is developed to overcome the limitations

which would manifest themselves if the conventional PSO were to be used. Sev-

eral examples are presented to demonstrate the applicationof discrete PSO to the

design, high-level synthesis and optimization of digital filters.
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Chapter 1

Introduction

Digital filters find wide variety of applications in modern digital signal process-

ing systems [1, 2]. As a result of the recent progress in such systems, there isan

ever growing demand for sharp transition band digital filters. These narrow transi-

tion bandwidth digital filters are usually designed by usingthe frequency response

masking (FRM) approach [3]. The computational efficiency of the FRM technique

makes it suitable for different applications, e.g. in audiosignal processing and data

compression [4].

Practical design of digital filters is based on optimizationfor satisfying the given

design specifications together with the hardware architecture. However, the opti-

mization may be carried out in terms of fixed configurations but variable multiplier

coefficient values. On the other hand, the problem may concern the optimization

of the hardware architecture without taking the multipliercoefficient values into

consideration.

In order to optimize the given design specifications, the multiplier coefficient

values can be determined in infinite precision by using hitherto optimization tech-

niques. However, in an actual hardware implementation of the digital filters, the in-

finite precision multipliers should be quantized to their finite precision counterparts,

but these finite precision multiplier coefficients may no longer satisfy the given de-

sign specifications. Consequently, from a hardware implementation point of view,

there is a need for finite precision optimization techniques, capable of finding the

optimized digital filter rapidly while keeping the computational complexity at a de-

sired level. In principle, there exist two different techniques for the optimization of

1



digital filters, namely, gradient-based and heuristic optimization approaches.

Gradient-based optimization techniques have been studiedwidely. In [5], an

integer programming technique was developed for the optimization of digital filters

over a discrete multiplier coefficient space. In [6], a Remez exchange algorithm was

used for the optimization of FRM finite impulse response (FIR) digital filters and it

was shown that this algorithm may provide a speed advantage over the linear pro-

gramming approach. However, both these techniques suffer from sub-optimality

problems. In [7], unconstrained weighted least-squares criterion was used to de-

velop another technique for the optimization of digital filters. Convex optimization

approaches such as semi-definite programming [8] and second-order cone program-

ming [9] have also been applied to the optimization of digital filters. However, if a

large number of constraints are present, these optimization techniques may become

computationally inefficient in terms of time consumption and speed.

Heuristic optimization algorithms have emerged as promising candidates for the

design and discrete optimization of digital filters, particularly due to the fact that

they are capable of automatically finding near-optimum solutions while keeping

the computational complexity of the algorithm at moderate levels. Simulated an-

nealing (SA) and genetic algorithms (GAs) were widely used in the design and op-

timization of digital filters [10–12]. Particle swarm optimization (PSO) and seeker

optimization algorithm (SOA) are two newly developed algorithms suitable for the

optimization of various digital filters due to their few number of implementation

parameters and high speed of convergence [13, 14]. It was shown that SOA has

advantages over PSO in terms of the speed of convergence and global search abil-

ity [15]. Tabu search (TS) [16], ant colony optimization (ACO) [17], immune

algorithm (IA) [18] and differential evolution (DE) [19, 20] are alternative can-

didates for the optimization of digital filters. All the foregoing techniques allow a

robust search of the solution space through a parallel search in all directions with-

out any recourse to gradient information. However, the aforementioned techniques

were developed for infinite precision optimization of digital filters which require

the user to perform a quantization step for a hardware implementation.

In [21–23], a technique was developed for finite-precision design andopti-
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mization of FRM digital filters using GAs. finite-precision optimization of FRM

FIR digital filters using PSO was studied in [24,25] and finite-precision optimiza-

tion of infinite impulse response based (IIR-based) FRM digital filters was studied

in [26, 27]. In this thesis, PSO of FRM FIR and FRM IIR digital filters suitable

for direct very-large-scale integration (VLSI) hardware implementation is studied.

PSO was originally proposed by Kennedy and Eberhart in 1995 as a new intelligent

optimization algorithm which simulates the migration and aggregation of a flock of

birds seeking food [28]. It adopts a strategy based on particle swarm and parallel

global random search, that may exhibit superior performance to other intelligent

algorithms in computational speed and memory. In PSO, a potential candidate so-

lution is represented as a particle in a multidimensional search space, where each

dimension represents a distinct optimization variable. The particles in the multi-

dimensional search space are characterized by corresponding fitness values. They

make movements in the search space towards regions characterized by high fitness

values.

The conventional FRM digital filters incorporate FIR interpolation digital sub-

filters. These digital subfilters are usually of high orders,rendering the resulting

overall FRM digital filters as not economical, since the resulting digital filters oc-

cupy large chip areas and consume high amounts of power in their VLSI hardware

implementations. In general, the multiplication operation is the most cost-sensitive

part in such an implementation. Therefore, there is every incentive to reduce the

number of multiplication operations in the digital filter realization. This problem

may be circumvented by employing IIR interpolation digitalsubfilters [29,30].

There is a vast body of literature available for the design and optimization of

digital IIR filters [31–33]. However, all the aforementioned designs are based on

the exact transfer function coefficients which leads to an uneconomical hardware

realization of such filters. This thesis employs the actual multiplier coefficients for

the direct VLSI hardware implementation as design and optimization variables. In

order to realize the constituent IIR interpolation digitalsubfilters on a hardware plat-

form, the bilinear-lossless-discrete-integrator (bilinear-LDI) digital filter design ap-

proach is employed [34]. These digital subfilters are realized as a sum/differenceof
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a pair of bilinear-LDI digital allpass networks. The salient features of the bilinear-

LDI digital filters are that they lend themselves to fast two-cycle parallel digital sig-

nal processing speeds, while being minimal in the number of digital multiplication

operations (and, practically, minimal in number of digitaladdition and unit-delay

operations).

The starting point in the design of FRM digital filters is to find the multiplier co-

efficients constituent in the FRM digital filter in infinite precision by using the hith-

erto gradient-based optimization techniques (e.g. Parks-McClellan approach [35]

for FIR digital filters) followed by a quantization step. Thequantization can be

performed by constraining the multiplier coefficients values to conform to certain

number systems such as the signed power-of-two (SPT) system. SPT is a computa-

tionally efficient number system which can further reduce the hardware complexity

of the FRM IIR digital filters. In this number system, each multiplier coefficient

is represented with only a few non-zero bits within its wordlength, permitting the

decomposition of the multiplication operation into a finiteseries of shift and add op-

erations. Digital filters incorporating SPT multiplier coefficient representation are

commonly referred to asmultiplierlessdigital filters [36]. However, the SPT repre-

sentation of a given number is not unique, resulting in redundancy in the multiplier

coefficient representation. This redundancy can adverselyaffect the corresponding

computational complexity due to recourse to compare operations repetitively.

The canonical signed digit (CSD) number system is a special case of the SPT

number system which circumvents the above redundancy problem by limiting the

number of non-zero bits in the representation of the multiplier coefficients. It is usu-

ally used in combination with subexpression sharing and elimination, which in turn

results in substantial reduction in the cost of the VLSI hardware implementation of

the digital filters [37]. In CSD number system, no two (or more) non-zero bits can

appear consecutively in the representation of the multiplier coefficients, reducing

the maximum number of non-zero bits by a factor of two in termsof shift and add

operations [38].

After multiplier coefficient quantization, the resulting FRM digital filter may no

longer satisfy the given target design specifications. Therefore, the next step in the
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design of FRM digital filters is to perform a further optimization to make the finite

precision FRM digital filter to conform to the design specifications. This can be

achieved by resorting to a finite-precision optimization technique such as PSO.

A direct application of the conventional PSO algorithm to the optimization of

the above FRM digital filters gives rise to three separate problems:

• The first problem arises because in the course of optimization, the multiplier coef-

ficient update operations lead to values that may no longer conform to the desired

CSD wordlength, etc. (due to random nature of velocity and position of particles).

This problem is resolved by generating indexed look-up tables (LUTs) of permis-

sible CSD multiplier coefficient values, and by employing the indices of LUTs to

represent FRM digital filter multiplier coefficient values.

• The second problem stems from the fact that in case of FRM IIR digital filters,

the resulting FRM IIR digital filters may no longer be bounded-input-bounded-

output (BIBO) stable. This problem can be resolved by generation and successive

augmentation of template LUTs until the BIBO stability constraints remain satisfied

[23].

• Finally, the third problem arises because even in case of having indexed LUTs, the

particles may go over the boundaries of LUTs in course of optimization (due to the

inherent limited search space). This can be resolved by introducingbarren layers.

A barren layer is a region, with a certain width and certain entries, which is added

to the problem space such that the particles tend to shy away from such a region.

The width of the barren layers is calculated based on a worst case scenario that

may happen in the particles movements in the search space. However, the entries

of barren layers are different for different problems and depend on the topology of

the search space and the fitness function used in the problem.

The field of high-level synthesis has gained a great deal of recognition on the

part of digital system designers during the past decades [39–49]. The process of

high-level synthesis usually begins with a behavioral description of the required

digital system together with a set of user-specified time and/or area constraints.
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The goal of high-level synthesis is to produce a corresponding register-transfer level

(RTL) implementation that satisfies the given constraints [50–52]. This implemen-

tation includes the data-path as well as the hardware to control the constituent data

transfers. The resulting data-path itself includes a network of arithmetic functional

units, registers, multiplexors, and buses.

The process of high-level synthesis consists of three main steps. The first step

concerns the translation of the digital system specifications into a corresponding

data flow graph (DFG) . The second step, referred to as scheduling, involves the

assignment of the DFG operations to various time-steps. Finally, the third step,

referred to as data path synthesis, concerns the binding of the DFG operations to

physical arithmetic units (digital adders, digital multipliers, etc.), as well as the sub-

sequent allocation of hardware resources (registers, multiplexors, etc.) to facilitate

the data transfer in the DFG.

There are a number of approaches available for the scheduling of digital sys-

tems. The as soon as possible (ASAP) and the as late as possible (ALAP) schedul-

ing techniques are the most well known amongst these approaches. In the absence

of any constraints on the hardware resources, the ASAP scheduling leads to the

fastest possible schedule, generating the minimum number of time-steps. However,

the main disadvantage of this scheduling technique is that it leads to high hardware

requirements. In [44] and [45], this problem was resolved through a conditional

postponement of the operations. In [47], force directed scheduling technique was

developed in an attempt to distribute the operations evenlyover the various time-

steps. The latter technique is global both in the way it selects the next operation

to be scheduled and in the way it decides on the time-step to place this operation,

although it performs the scheduling and allocation tasks separately. In [43], the

scheduling and allocation tasks are carried out simultaneously, where the schedul-

ing is performed based on the critical path in the DFG, and theregister allocation

is performed by the program proposed in [53]. In [54], a program based on list

scheduling is proposed, which employs DFG re-timing to generate the shortest crit-

ical path solution.

In [40], a technique was developed for the synthesis of pipelined data-paths,
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resulting in an area-optimal, time-optimal or combined area-optimal-cum-time-

optimal design. A high-level hardware compiler was developed in [44] to find

the parallelism in the behavioral specifications in order toproduce a fast-running

implementation that meets user-specified constraints. An integer linear program-

ming approach was proposed in [41]. Although this approach could find the global

optimum solution, the algorithm was exponential with regard to the computational

time, rendering it impractical for large design problems. An iterative algorithm was

developed in [49], which could escape from the local minima in a polynomial com-

putational time. Percolation based scheduling [48] starts with an optimal schedule

and applies transformation methods to maximize parallelism.

Genetic algorithms have been used for scheduling problems and high-level syn-

thesis of digital filters [55–58]. As discussed before, these techniques permit a fast

exploration of the design space in an attempt to find a global optimum. PSO can

also be utilized for the application of scheduling [59–61] and high level synthesis

of digital filters.

This thesis is concerned with the application of PSO to the development of a

new optimization technique for the high-level synthesis ofdigital filter data paths.

This optimization technique is concerned with the minimization of the cost asso-

ciated with the final digital filter for obtaining global area-optimal, time-optimal,

or combined area-optimal-cum-time-optimal data paths subject to user-specified

constraints on the number of physical arithmetic functional units employed. The

optimization is made computationally effective by encoding the digital filter DFG

into particles which preserve the data-dependency relationships in the original dig-

ital filter signal flow graph under the operations of additionand subtraction by the

underlying PSO algorithm.

This chapter proceeds as follows. Section1.1 provides a brief overview of the

conventional PSO algorithm and explains the recent developments of the PSO algo-

rithm together with the advantages and disadvantages of each of these algorithms.

Finally, section1.2provides a brief summary of this chapter.
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1.1 PSO Algorithm

In this section, the conventional PSO algorithm is studied and the recent develop-

ments of PSO algorithm is briefly introduced.

1.1.1 The Conventional PSO Algorithm

Let us consider an optimization problem consisting ofN design variables, and let

us refer to each solution as a particle. Let us further consider a swarm ofK particles

in theN-dimensional search space. The position of thek-th particle in the search

space can be assigned aN-dimensional position vectorXk = {xk1, xk2, . . . , xkN}.

In this way, the elementxkj (for j = 1, 2, . . . , N) represents thej-th coordinate of

the particleXk.

The PSO optimization fitness function maps each particleXk in the search space

to a fitness value. In addition, the particleXk is assigned aN-dimensional velocity

vectorVk = {vk1, vk2, . . . , vkN}. The PSO optimization search is directed towards

promising regions by taking into account the velocity vector Vk together with the

best previous position of thek-th particleXbestk = {xbestk1 , xbestk2, . . . , xbestkN},

and the best global position of the swarmGbest = {gbest1 , gbest2, . . . , gbestN} (i.e.

the location of the particle with the best fitness value).

The conventional PSO is initialized by spreading the particlesXk through the

search space in a random fashion. Then, the particles make movements through the

search space towards regions characterized by high fitness values with correspond-

ing velocitiesVk. The movement of each particle is governed by the best previous

location of the same particleXbestk , and by the global best locationGbest. The ve-

locity of particle movement is determined from the previousbest location of the

particle, the global best location, and the previous velocity.

The velocity and position of each particle in thei-th iteration throughout the
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Figure 1.1: Movement of Particles in PSO Algorithm

course of PSO are updated in accordance with the equations:

vikj = wvi−1
kj + c1r1(x

i−1
bestkj

− xi−1
kj ) + c2r2(g

i−1
bestj

− xi−1
kj ) (1.1)

if vikj < vmin ; vikj = vmin

if vikj > vmax ; vikj = vmax

xi
kj = xi−1

kj + vikj (1.2)

The parameterw represents an inertia weight;c1 andc2 are the correction (learning)

factors, andr1 andr2 are random numbers in the interval[0, 1]. The velocity is

limited betweenvmin andvmax to avoid very large particle movements in the search

space, wherevmin < 0 andvmax > 0. Fig. 1.1 illustrates how the particles move in

a two-dimensional search space (N = 2). In this figure, two particles are present in

the swarm, i.e.K = 2.

The first term in the right hand side of movement update Eqn. (1.1), weighted

by w, signifies the dependence of the current particle velocity on its value in the

previous iteration. The second term, weighted byc1, signifies an attractor to pull the

particle towards its previous best position. The third term, weighted byc2 controls
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the movement of the particle towards the global best position.

In addition to the update Eqns. (1.1) and (1.2), one can limit the coordinates in a

particle between two user defined valuesxjmin
andxjmax in order to limit the search

space. However, This operation increases the complexity and consumes time.

1.1.2 Literature Survey on PSO

Due to its simple implementation in both software and hardware platforms, the PSO

has become a popular optimization technique and has been widely applied to solve

many practical problems. Therefore, there is a vast body of literature concerning the

performance improvements of the PSO algorithm and many theoretical studies have

been made to illustrate the importance and effectiveness ofPSO. Convergence anal-

ysis and stability studies have been reported in [62–65]. Much research on perfor-

mance improvements has been reported, including parameterstudies, combination

with auxiliary operations, and topological structures [66,67]. There are three basic

parameters involved in the conventional PSO algorithm, namely, the inertia weight

w and the correction factorsc1 andc2. The inertia weightw in Eqn. (1.1) was intro-

duced in [68] which was forced to linearly decrease with the iterative generations.

In this way, in the first iterations, PSO is more likely to search globally through

the entire search space, while as the algorithm proceeds to its final iterations, the

PSO searches more precisely in spaces with better fitness values to find optimal

solutions. A fuzzy adaptivew was proposed in [69] to dynamically adapt the iner-

tia weight on the population level. A random version settingw was experimented

in [70] for dynamic system optimization. The expected value whichcan be defined

for this randomw is based on the idea as in Clerc’s constriction factor [62,71]. The

constriction factor is equivalent to the inertia weight mathematically, as Eberhart

and Shi mentioned in [72].

The correction factorsc1 andc2 are also important parameters in PSO as shown

via experiments in Kennedy’s two extreme cases [73]. Kennedy and Eberhart [28]

suggested a fixed value of2, and this configuration has been adopted by many other

researchers. In [74], it was shown that using ad hoc values ofc1 andc2 instead of

a fixed value of2 for different problems could yield better performance. In [75], a
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PSO algorithm was proposed with linearly time-varying correction factors, where

a largerc1 and a smallerc2 were set at the beginning and were gradually reversed

during the search. Among these three methods, the last one with linearly time-

varying correction factors shows the best overall performance. This may be owing

to the time-varyingc1 andc2 that can balance the global and local search abilities,

which implies that adaptation ofc1 andc2 can be promising in enhancing the PSO

performance.

Another active research trend in PSO is hybrid PSO, which combines PSO with

other evolutionary paradigms. In [76], a selection operation similar to that in a

GA was first introduced into PSO. Hybridization of GA and PSO has been used

in [77] for recurrent artificial neural network design. GA operators have been also

combined with PSO algorithm to obtain better results. In [76], selection operation

was used to improve PSO. In [78], a recombination method with dynamic linkage

discovery in GA was employed to obtain the PSO-RDL algorithm. Mutation was

also utilized to improve the search ability of PSO [79]. In [80], a breeding operator

was incorporated into the PSO algorithm, where breeding occurred inline with the

standard velocity and position update rules. In addition, other techniques such as

local search [81] and differential evolution [82] have been used to combine with

PSO. Self-organizing hierarchical technique [75], cooperative approach [83], de-

flection, stretching, and repulsion techniques [84] have also been combined with

conventional PSO to enhance performance. Inspired by biology, some researchers

introduced niche [85], and speciation [86] techniques into PSO. These technique are

capable of keeping the particles away from each other in the course of optimization

and they can locate as many optimal solutions as possible.

PSO topological structures are also widely studied. The LPSO with a ring topo-

logical structure and the Von Neumann topological structure PSO have been pro-

posed in [87, 88] to enhance the performance in solving multi-modal problems.

Dynamically changing neighborhood structures have been proposed in [74,89,90]

to avoid the drawbacks of fixed neighborhoods. Moreover, in the fully informed

particle swarm algorithm [91], the information of the entire neighborhood is used

to guide the particles. The CLPSO in [92] allows the particle use different previous
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best positions to update its flying on different dimensions for improved performance

in multi-modal applications.

The remainder of this thesis is organized as follows. Chapter 2 is concerned with

the development of a novel discrete PSO to the design and optimization of FRM

digital filters. Two different techniques have been employed: FRM FIR digital

filters consisting FIR interpolation digital subfilters, and FRM IIR digital filters

having bilinear-LDI IIR interpolation digital subfilters.This chapter starts with

an introduction to the conventional FRM technique and proceeds with introducing

bilinear-LDI design approach. Then, CSD number system is explained, and finally,

the design procedure for the optimization of FRM digital filters is proposed.

Chapter3 discusses a novel PSO algorithm for the high-level synthesis of dig-

ital filter data-paths. the optimization is such that the cost function of the digital

filter data-paths is minimized. This cost function is derived by taking into account

both the time constraints and the hardware requirements associated with the digital

filter data-paths. The constrained optimization is carriedout in a way that there

is no functional unit violation in the course of high-level synthesis of digital filter

data-paths using PSO. This chapter starts with a brief introduction to the high-level

synthesis of digital filter data-paths. Then, the particle formation in the course of

PSO is explained and the constrained PSO for high-level synthesis of digital filter

data-paths is proposed. Finally, the cost function associated with the digital filter

data-paths is derived by taking into account the time constraints, the number of

functional units, and the number of support cells that are required for the imple-

mentation of digital filter data-paths.

Chapter4 presents several examples to illustrate the application ofPSO to the

design, high-level synthesis and optimization of digital filters. A pair of lowpass

FRM digital filters are designed and optimized using the proposed PSO, one of

which utilizing the conventional FIR interpolation digital subfilters, and the other

having bilinear-LDI IIR interpolation digital subfilters.In addition, the application

of PSO to the design and optimization of bandpass FRM FIR and bandpass FRM

IIR digital filters is illustrated through two different examples. The optimization is

subject to satisfying stringent design specifications. Finally, the proposed PSO is
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used for the high-level synthesis of a benchmark fifth order elliptic filter.

Finally, chapter5 draws the main conclusions of the thesis. A summary of the

contributions made in this thesis is presented and suggestions for future work are

explained.

1.2 Summary

This chapter has presented an introduction to a very popularoptimization technique,

called particle swarm optimization. This optimization technique is known to be

effective in optimizing various functions which are highlynonlinear, multivariate,

and multimodal. Due to independence of any gradient information of the objective

function, PSO can find optimal solutions in a given search space fast and easily.

PSO is applied to a class of digital filters which are suitablefor narrow transition

band designs. This optimization is carried out over a CSD number system to reduce

the hardware implementation of digital filters. Two categories of such digital filters

are introduced, namely, conventional FRM FIR digital filters, and FRM IIR digital

filters incorporating IIR digital subfilters realized as a combination of two digital

allpass networks that are implemented using bilinear-LDI design approach.

There are three problems in the PSO of FRM digital filters overthe CSD multi-

plier coefficient space. Firstly, due to random nature of PSOoperations of addition

and subtraction, PSO may result in multiplier coefficient values that are not con-

formed to the CSD number format. Secondly, in case of FRM IIR digital filter

design, PSO may result in candidate FRM IIR digital filters which are not BIBO

stable. Thirdly, since the search space is limited, the particles may go outside the

boundaries of the search space in the course of PSO. This thesis presents solutions

to the above three problems.

In addition, PSO is applied for the high-level synthesis of digital filter data-

paths. In this technique, the cost function associated withthe digital filter data-path

is minimized to obtain a time-optimal, area-optimal, or combined time-cum-area-

optimal solution. An encoding scheme is used to ensure that the data-dependency

relationships present in the DFG of the digital filter remainsatisfied under the op-

13



erations of addition and subtraction by the underlying PSO algorithm.
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Chapter 2

Design and PSO of FRM Digital
Filters

This chapter discusses in detail the design, realization and discrete optimization of

FRM FIR and FRM IIR digital filters. FRM FIR digital filters consist of FIR mask-

ing digital subfilters and FIR digital interpolation subfilters, while FRM IIR digital

filters are designed by FIR masking digital subfilters together with IIR interpola-

tion digital subfilters. The FIR filter design is straightforward and can be performed

by using hitherto techniques. The IIR digital subfilter design topology consists of a

parallel combination of a pair of allpass networks such thatits magnitude-frequency

response matches that of an odd order elliptic minimum Q-factor (EMQF) transfer

function. This design is realized using the bilinear-LDI approach, with multiplier

coefficient values represented as finite-precision CSD numbers.

The above FRM digital filters are optimized over the discretemultiplier coeffi-

cient space, resulting in FRM digital filters which are capable of direct implemen-

tation in digital hardware platform without any need for further optimization. A

new PSO algorithm is developed to tackle three different problems. In this PSO al-

gorithm, a set of indexed LUTs of permissible CSD multipliercoefficient values is

generated to ensure that in the course of optimization, the multiplier coefficient up-

date operations constituent in the underlying PSO algorithm lead to values that are

guaranteed to conform to the desired CSD wordlength, etc. Inaddition, a general

set of constraints is derived in terms of multiplier coefficients to guarantee that the

IIR bilinear-LDI interpolation digital subfilters automatically remain BIBO stable
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throughout the course of PSO algorithm. Moreover, by introducing barren layers,

the particles are ensured to automatically remain inside the boundaries of LUTs in

course of optimization.

This chapter proceeds as follows. Section2.1 is concerned with a brief intro-

duction to the conventional FRM design approach. Section2.2describes the design

procedure for FRM filters incorporating IIR interpolation digital subfilters and dis-

cusses formation of power complementary filter pairs through the use of a parallel

allpass digital network realization. Section2.3 outlines the special type of ellip-

tic filters used for the design of FRM digital filters. Section2.4presents the design

methodology for implementing an allpass network using the bilinear-LDI approach.

Section2.5provides an introduction to CSD number system and the corresponding

quantization error. Section2.6 introduces a set of stability constraints that guaran-

tee the BIBO stability of digital filters described in Section 2.4. Section2.7presents

a novel PSO algorithm that allows the optimization to searchthrough the CSD mul-

tiplier coefficient space automatically, while maintaining BIBO stability of every

particle throughout the optimization process. Section2.8 outlines in detail the de-

sign and PSO of FRM FIR digital filters and FRM bilinear-LDI based IIR digital

filters. Finally, Section2.9provides a summary of this chapter.

2.1 The Conventional FRM Design Approach

2.1.1 Design of Lowpass FRM Digital Filters

The block diagram in Fig.2.1shows a conventional FRM digital filter, whereHa(z)

represents a FIR interpolation lowpass digital subfilter, and whereHb(z) represents

a power complementary counterpart ofHa(z) in accordance with

|Ha(e
jω)|2 + |Hb(e

jω)|2 = 1 (2.1)

Here,z represents the discrete-time complex frequency, andω represents the

corresponding (normalized) real frequency variable. Moreover,F0(z) andF1(z)

represent FIR masking digital subfilters, whileHa(z
M ) andHb(z

M ) representM-

fold interpolated versions ofHa(z) andHb(z), respectively. In case of FIR digital
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Figure 2.1: FRM Digital Filter Block Diagram
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Figure 2.2: Block Diagram Representation of Frequency-Response Masking

interpolation subfilters, for a linear-phase filterHa(z) of orderNFIR, the relation-

ship betweenHb(z) andHa(z) is as follows:

Hb(z) = z(NFIR+1)/2 −Ha(z) (2.2)

and henceHb(z) can be implemented by subtracting the output ofHa(z) from the

delayed version of the input, as shown in Fig.2.2.

The FRM digital filter in Fig.2.1has an overall transfer function

H(z) = Ha(z
M )F0(z) +Hb(z

M)F1(z) (2.3)

The masking digital subfiltersF0(z) andF1(z) are employed to suppress the un-

wanted image bands produced by the interpolated digital subfilters Ha(z
M) and

Hb(z
M ). The masking filters are made to have equal order (by zero padding) in

order to ensure that their phase characteristics are similar. The corresponding inter-

polated digital subfiltersHa(z
M ) andHb(z

M) can realize transition bands which are

a factor ofM sharper than those ofHa(z) andHb(z), without increasing the number

of required non-zero digital multipliers. The magnitude frequency-response of the

various subfilters incorporated by the FRM digital filter design approach are shown

in Fig. 2.3.
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Figure 2.3: Magnitude Frequency-Response of FRM Digital Filter. (a) Magni-
tude Frequency-Response of the Bandedge-Shaping Digital SubfiltersHa(z) and
Hb(z). (b) Magnitude Frequency-Response of theM-Interpolated Complemen-
tary Digital SubfiltersHa(z

M) andHb(z
M ). (c) Magnitude Frequency-Response

of the Masking Digital SubfiltersF0(z) and F1(z) for Case I. (d) Magnitude
Frequency-Response of the Overall FRM Digital FilterH(z) for Case I. (e) Mag-
nitude Frequency-Response of the Masking Digital SubfiltersF0(z) andF1(z) for
Case II. (f) Magnitude Frequency-Response of the Overall FRM Digital Filter H(z)
for Case II [3].
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Table 2.1: Edge Frequencies of the Overall FRM FIR filter and Masking Subfilters

Filter Passband Edge Stopband Edge

Case I

H(z)
2ILπ + ωp

M

2ILπ + ωa

M

F0(z)
2ILπ + ωa

M

2(IL + 1)π − ωa

M

F1(z)
2ILπ − ωp

M

2ILπ + ωp

M

Case II

H(z)
2ILπ − ωa

M

2ILπ − ωp

M

F0(z)
2(IL − 1)π + ωa

M

2ILπ − ωa

M

F1(z)
2ILπ − ωp

M

2ILπ + ωp

M

Here, Case I design is when the transition band ofH(z) is extracted from that

of Ha(z
M ) and Case II design is when the transition band ofH(z) is extracted

from that ofHb(z
M ). The edge frequencies of the overall digital FRM filter and

its constituent subfilters are given in Table2.1, whereIL represents the number of

image lobes to be masked given by:

IL =







⌊
Mωp

2π

⌋

Case I

⌈
Mωa

2π

⌉

Case II

(2.4)

where⌊ ⌋ denotes the largest integer from the lower side, and⌈ ⌉ signifies the

smallest integer from the upper side.

2.1.2 Design of Bandpass FRM Digital Filters

In general, it is possible to extend the conventional FRM approach for the design of

bandpass or bandstop FRM digital filters. However, the resulting FRM digital filters

are constrained to have identical lower and upper transition bandwidths. In [93],

this restriction was relaxed by realizing the bandstop FRM FIR digital filter as a
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Halp(z
M )

Hblp(z
M )

F0lp(z)

F1lp(z)

+

Hahp(z
M )

Hbhp(z
M )

F0hp(z)

F1hp(z)

+

Figure 2.4: Bandpass FRM Digital Filter Block Diagram

parallel combination of a corresponding pair of lowpass andhighpass FIR digital

filters. The latter lowpass and highpass FRM digital filters were obtained using a

variation of the conventional FRM approach.

Let the desired bandpass FRM digital filterH(z) have a lower transition band-

width which is not identical to its upper transition bandwidth. H(z) can be realized

as a cascade combination of a pair of lowpass and highpass FRMdigital filters, so

that

H(z) = Hlp(z)Hhp(z) (2.5)

whereHlp(z) represents a lowpass andHhp(z) represents a highpass FRM digital

filter. In this way,Hlp(z) andHhp(z) can be obtained with the help of Eqn. (2.3) as

Hlp(z) = Halp(z
M )F0lp(z) +Hblp(z

M)F1lp(z) (2.6)

Hhp(z) = Hahp(z
M )F0hp(z) +Hbhp(z

M )F1hp(z) (2.7)

The lower transition bandwidth is governed by the constituent transition band-

width of the highpass FRM digital filter, while the upper transition bandwidth is

governed by the constituent transition bandwidth of the lowpass FRM digital filter.

The realization for bandpass FRM digital filter are as shown in Fig.2.4.

2.2 Design of FRM Digital Filters Incorporating IIR
Interpolation Digital Subfilters

In the case of FRM IIR digital filters,Ha(z) andHb(z) (in section2.1) act as IIR

interpolation digital subfilters. The masking filtersF0(z) andF1(z) are not changed

(i.e. they are still equal order FIR digital filters). Therefore, Eqn. (2.3) is still valid

for the FRM IIR digital filter.
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The IIR interpolation digital subfilterHa(z) is chosen to have an odd order

NIIR. Odd-ordered elliptic transfer functions can be represented as a sum of or

difference between two allpass transfer functions [94]. Therefore,Ha(z) can be

realized as the addition of two allpass digital networksG0(z) andG1(z) as follows:

Ha(z) =
G0(z) +G1(z)

2
(2.8)

whereG0(z) is odd-ordered andG1(z) is even-ordered. The interesting fact is

that the difference betweenG0(z) andG1(z) results in a filter that is power com-

plementary toHa(z), and can subsequently be used as the power complementary

interpolation digital subfilterHb(z) as in the following:

Hb(z) =
G0(z)−G1(z)

2
(2.9)

It can be easily verified thatHa(z) andHb(z) are power complementary digital

filters [29], i.e. they satisfy Eqn. (2.1). In addition, it is well known that this struc-

ture halves the number of multiplier coefficients required for the implementation of

FRM digital filters and therefore is the most economical realization since it requires

a total of onlyNIIR multiplier coefficients to realize bothHa(z) andHb(z). The

overall transfer function ofH(z) given by Eqn. (2.3) can be expressed as:

H(z) =
G0(z

M ) +G1(z
M)

2
F0(z) +

G0(z
M )−G1(z

M)

2
F1(z) (2.10)

The block diagram in Fig.2.5 shows the IIR interpolation digital subfilters

Ha(z) andHb(z) realized as a parallel combination of two allpass networks.It

should be noted that ifHa(z) is a lowpass filter,Hb(z), which is the power comple-

mentary ofHa(z), is a highpass filter. Fig.2.6 shows an overall FRM IIR digital

filter realization.

One may rearrange the structure in Fig.2.6 by using Eqns. (2.8-2.9). This can

be performed by defining two digital subfilters as follows:

A(z) =
F0(z) + F1(z)

2
(2.11)

B(z) =
F0(z)− F1(z)

2
(2.12)

ThenH(z) in Eqn. (2.10) simplifies to:

H(z) = G0(z
M )A(z) +G1(z

M )B(z) (2.13)
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G0(z)

G1(z)

+

+
−

1
2 Ha(z)

1
2 Hb(z)

Figure 2.5: Block Diagram of Interpolation and Complementary Filters as a Parallel
Combination of Two Allpass Networks

G0(z
M )

G1(z
M )

+

+
−

F1(z)

F0(z)

+ 1
2

Figure 2.6: FRM Digital Filter Realization in Terms of Allpass Digital Networks
G0(z) andG1(z)

Fig. 2.7shows the block diagram representing Eqn. (2.13).

G0(z
M )

G1(z
M )

A(z)

B(z)

+

Figure 2.7: Alternative Structure of the Overall FRM IIR Digital Filter

The advantage of realizing the FRM IIR digital filter as shownin Fig. 2.7 is

that two adders shown in Fig.2.6 are removed and they are no longer required.

This subsequently simplifies the hardware implementation of the overall FRM IIR

digital filter. However, it should be noted that the FIR masking digital subfilters

F0(z) andF1(z) are made to be equal order using zero padding, and this results in

the masking filters being moderately sparse. This is not the case whenA(z) and

B(z) are used instead. Therefore, the gain in hardware that couldbe achieved by

using the realization in Fig.2.7is offset by a greater number of non-zero multiplier
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coefficients required in the realization of FRM IIR digital filters.

2.3 Realization of IIR Interpolation Digital Subfilters
Using Elliptic Filters with Minimum Q-factor (EMQF)

Bilinear-LDI transformation falls into the category of digital filter realization tech-

niques that transform an analog reference filter to its digital counterpart. Therefore,

in order to determine the multiplier coefficient values of the IIR interpolation digital

subfiltersHa(z) andHb(z) constituent in the FRM IIR digital filter, a suitable ana-

log reference filterHa(s) and its power complementary analog filterHb(s) have to

be determined, wheres is the analog frequency domain variable. OnceHa(s) and

Hb(s) have been determined, the interpolation digital subfiltersHa(z) andHb(z)

are derived by using bilinear-LDI technique (see Section2.4).

EMQF filters have several advantages for the design of FRM IIRdigital filters.

The squared ripple in the passband region ofHa(z) and the squared ripple in the

stopband region ofHb(z) are equal as indicated by Eqn. (2.1). On the other hand,

the squared ripple in the stopband region ofHa(z) and the squared ripple in the

passband region ofHb(z) are equal. In addition, depending on whether the design

specifications require a Case I or Case II FRM technique, either Ha(z) or Hb(z)

could determine the maximum passband and stopband ripple ofthe overall FRM

IIR digital filter H(z). Consequently, the interpolation filterHa(z) is chosen to

have equal passband and stopband squared tolerances. In this way, the resulting

Hb(z) also displays equal passband and stopband squared tolerances. These char-

acteristics can be generalized for the analog reference subfiltersHa(s) andHb(s).

Therefore, there is a need for an analog reference filterHa(s) that together with its

power complementHb(s) can exactly satisfy the passband and stopband relations

in the FRM IIR filter. EMQF filters can successfully comply with the specifica-

tions present in the FRM IIR filter design. In addition, an EMQF transfer function

can be easily designed by using bilinear-LDI transformation technique or any other

structure consisting of two digital allpass networks in parallel. Furthermore, filters

having EMQF transfer functions are minimally sensitive to component variations.
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Despite all the advantages of EMQF filters, they suffer from not being able to

independently specify passband and stopband ripples [95], [96] of the filter. Addi-

tionally, EMQF filters have exceedingly low passband attenuation.

All the poles of an EMQF transfer function reside on a circle in thes domain

rendering them to have equal magnitudes. Given a squared passband and stopband

tolerance ofδp andδa, respectively, for an EMQF filter, the passband ripple∆p and

minimum stopband attenuation∆a can be obtained as follows [97]:

∆p = −10 log(1− δp) (2.14)

∆a = −10 log(δa) (2.15)

The required passband and stopband edge frequencies for theanalog reference

filter Ha(s) can be determined using design specifications along with Table 2.1.

Frequency wrapping from digital to analog domain, and vice versa, has to be taken

into account in accordance with:

ΩA =
2

T
tan(

ωdT

2
) (2.16)

whereΩA is the analog frequency variable, whereωd is the digital frequency vari-

able, and whereT is the sampling period.

Once the transfer function of the analog reference filterHa(s) is determined, it

is represented as a sum of two allpass analog filtersG0(s) andG1(s). In addition,

Hb(s), which is the power complementary ofHa(s) is represented as the difference

of G0(s) andG1(s). The poles ofG0(s) andG1(s) are determined by cyclically

distributing the poles of the reference filterHa(s) [97]. In the next section, belinear-

LDI design technique is used to transform the two allpass networksG0(s) andG1(s)

into digital domain.

2.4 Implementation of EMQF Interpolation Subfil-
ters Using Bilinear-LDI Design Approach

In this section, the design procedure in [34, 98] is briefly explained to design and

implement digital filtersG0(z) andG1(z) using the the bilinear-LDI approach. This
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approach transforms analog reference filtersG0(s) andG1(s) to obtain their digital

filter counterpartsG0(z) andG1(z).

The bilinear frequency transformation maps the analog frequency variables to

its digital domain counterpartz in accordance with:

s =
2

T

z − 1

z + 1
(2.17)

whereT represents the sampling period, for mapping the transfer function of a

prototype reference filter from the analog domain to the digital domain. The bilinear

transform maps the left half of the complexs-plane to the interior of the unit circle

in thez-plane. Therefore, BIBO stable filters in thes domain are converted to filters

in thez domain which preserve that stability. Similarly, if the analog reference filter

is minimum-phase, the previous characteristic of bilineartransform guarantees that

the resulting digital filter is also minimum-phase. It also preserves the sensitivity

properties of the analog reference filter. However, bilinear transform may result in

a digital filter that has delay-free loops in its implementation. Unfortunately, delay-

free loops prevent the implementation of a digital filter to be realizable in hardware

platform.

The LDI frequency transformation ensures the absence of delay-free loops in

the digital implementation and is given by

s =
1

T

(

z
1
2 − z−

1
2

)

(2.18)

The LDI frequency transformation maps the hardware implementation of the analog

reference filter to digital domain. While the LDI frequency transformation guaran-

tees that there are no delay-free loops in the implementation of the digital filter, it

does this to the cost of resulting in a digital filter having poor magnitude-frequency

responses. Moreover, it is incapable of preserving the BIBOstability properties of

the analog reference filter.

The bilinear-LDI approach is a combination of the two above mentioned real-

ization techniques. In bilinear-LDI transform, a precompensation is performed to

the reference analog filter. Then, the conventional LDI design technique is applied

to a network resulting from the precompensated analog prototype filter. The pre-

compensation is such that the application of the LDI design technique results in a
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filter that exactly matches the bilinear frequency transform of the uncompensated

analog prototype filter.

The resulting bilinear-LDI digital filters have several desirable features from a

hardware realization point of view. They are minimal in the number of digital multi-

plication operations. Although they are not minimal in the number of digital adders

and unit-delays, the additional adders and the additional unit delay lead to certain

advantages when the concept of generalized delay unit is used for the realization

of the network [34]. Moreover, The bilinear-LDI digital filters lend themselves to

fast two-cycle parallel digital signal processing speeds and they exhibit exception-

ally low passband sensitivity to their multiplier coefficient values, resulting in small

coefficient wordlengths.

As discussed in Section2.3, the analog reference filterHa(s) is decomposed

into two allpass analog networksG0(s) andG1(s). The digital allpass networks

G0(z) andG1(z) are obtained fromG0(s) andG1(s) using the bilinear-LDI design

approach.

It should be pointed out thatG0(s) is an odd-ordered allpass function. There-

fore, it has a pole on the real axis in thes domain. On the other hand,G1(s) ends

up having an even-ordered allpass function. It is well knownthat an allpass transfer

function can be written in the general form [34]:

G(s) =
P (−s)

P (s)
(2.19)

whereP (s) is a Hurwitz polynomial of order, say,̃n . Moreover,P (s) can be

expressed as:

P (s) = EvP (s) + OdP (s) (2.20)

where EvP (s) denotes the even and OdP (s) denotes the odd part ofP (s).

By simple manipulation of Eqns. (2.19) and (2.20) one can get

G(s) = K̃
1− Z(s)

1 + Z(s)
(2.21)
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K̃

−2

VA1(s)

g(s)

VA2(s)

Figure 2.8: Signal Flow Graph ofG(s)

Here,K̃ = 1 or−1, andZ(s) is a realizable reactive impedance given by

Z(s) =







OdP (s)

EvP (s)
for evenñ

EvP (s)

OdP (s)
for oddñ

(2.22)

whereñ is the order ofG(s) (odd when realizingG0(s) and even when realizing

G1(s)). The impedanceZ(s) has a zero ats = 0 for evenñ and a pole ats = 0 for

oddñ, while having a zero ats = ∞ both for eveñn and for odd̃n.

The bilinear-LDI digital realization ofG(s) is achieved by using the following

steps:

• The transfer functionG(s) is decomposed in the form

G(s) = K̃[1− 2g(s)] (2.23)

where

g(s) =
Z(s)

1 + Z(s)
(2.24)

Here,G(s) can be realized as the transfer function of the signal-flow graph

in Fig. 2.8. Furthermore,g(s) represents a lowpass or highpass analog filter

that can be realized as the transfer function of the voltage divider network in

Fig. 2.9. Finally,Z(s) represents realizable reactances (consisting of capac-

itors and inductors only) and can be decomposed into its Foster II canonical

form, as in Fig.2.10, in accordance with

Z(s) =
1

Y (s)
(2.25)

Y (s) = sC1 +
1

sL1
+

m∑

i=2

sCi

s2CiLi + 1
(2.26)
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+

r0 = 1Ω

+

Z(s)

−

VA2(s)

−

VA1(s)

Figure 2.9: Voltage Divider Circuit forg(s)

Lm

Cm

C1 L1

L2

C2

L3

C3

Figure 2.10: Realization of ImpedanceZ(s)

wherem = ñ/2 for evenñ andm = (ñ + 1)/2 for odd ñ, and whereCi

represent capacitances andLi represent inductances (fori = 1, 2, . . . , m),

and inductorL1 is only present for eveñn.

• The impedanceZ(s) in Fig. 2.10is substituted into Fig.2.9and the precom-

pensation is applied to the resulting network. This amountsto a modification

of circuit elements in accordance with:

V
′

A1
(s) =

VA1(s)

1− sT/2
(2.27)

The resistance inr0 in Fig. 2.9 is modified to:

r
′

0 = z
1
2 r0 (2.28)

and

L
′

1 = L1 (2.29)

C
′

1 = C1 +
T

2
+

T 2

4L1
+

m∑

i=2

Ci
T 2

4Li

Ci +
T 2

4Li

(2.30)
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Figure 2.11: Realization of the Bilinear-LDI Digital Allpass NetworkG(z) [34]

L
′

i = Li

[

Ci +
T 2

4Li

Ci

]2

(2.31)

C
′

i =
C2

i

Ci +
T 2

4Li

(2.32)

with r0 = 1Ω and fori = 2, 3, ..., m.

• Since the voltage/current signal-flow graph of the precompensated network

[34] consists of analog integrators only and it has no analog differentiators, it

can be used for bilinear-LDI realization method. Therefore, the analog inte-

grators in the signal-flow graph of the precompensated network are replaced

by LDI digital integrators, and by impedance-scaling, the resulting network

is scaled byz−
1
2 to eliminate any half-delay elements. The resulting digital

network is displayed in Fig.2.11. The multiplier coefficients in Fig.2.11are

as follows:

mLi
=

T

L
′

i

(2.33)

mCi
=

T

C
′

i

(2.34)

for i = 1, 2, ..., m.
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2.5 CSD Number System

CSD is based on the ternary number system (−1, 0, and1). It is a unique represen-

tation of a binary number with minimum number of1 and−1 digits. One of the

main applications of CSD numbers, therefore, is in multiplication operation where

it allows a minimum number of combined additions and subtractions to produce

the product. It is shown that for an-bit multiplication, the number of major opera-

tions (addition/subtraction and shift) never exceedsn
2
, and on average this number

is reduced ton
3
, as the word size grows [99].

As mentioned before, from a hardware implementation point of view, a suitable

design employs finite-wordlength multiplier coefficient values with sparse non-zero

coefficients. Therefore, CSD number system is employed in this thesis. Subse-

quently, PSO is carried out using a LUT-based scheme, where the LUTs consists of

permissable CSD multiplier coefficients.

Care must be taken in making the LUTs, since making it too few entries would

result in large quantization errors in the multiplier coefficients, thereby not per-

mitting the PSO algorithm to converge to a filter satisfying design specifications.

Conversely, making the LUTs too many entries greatly increase the solution space,

and this slows down the rate of convergence of the PSO algorithm. Let us

consider a FRM digital filter consisting of CSD multiplier coefficientsm̂FRM ∈

CSD(L, l, f), whereCSD(L, l, f) represents the set of all possible CSD numbers

having a wordlength ofL digits and a maximum number ofl non-zero digits with

f digits in the fractional part. In this way, the CSD multiplier coefficientsm̂FRM

can be expressed in the general form

m̂FRM =
L∑

n=1

Dn × 2(R−n) (2.35)

and satisfying the constraints

Dn ∈ {−1, 0, 1} (2.36)

Dn ×Dn+1 = 0 (2.37)
L∑

n=1

|Dn| ≤ l (2.38)
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with R representing a fixed value radix-point in the range0 < R < L. Con-

straint (2.37) implies

max [l] = L/2 for evenL

max [l] = (L+ 1)/2 for oddL

The choice of radix-pointR for the LUTs depends upon the largest multiplier

coefficientmFRM , and can be easily determined. Setting values forL and l is

more complicated, and depend on the passband and stopband ripple specification

and stopband frequency of the overall FRM digital filterH(z), as well as the order

and stopband frequency of the interpolation digital subfilterHa(z). The greater the

restriction on passband and stopband ripples, the higher isthe required resolution

of the LUTs (i.e. LUTs having a lower average quantization from infinite-precision

to finite-precision domain). Higher resolution LUTs can be generated by increasing

the wordlengthL or the maximum number of non-zero digitsl.

It was shown that the worst case normalized CSD quantizationis not very sensi-

tive to changes inL, especially after8 bits [100]. Therefore, it may be necessary to

increasel in addition to increasingL in order to have a LUT resolution great enough

to achieve desired filter specifications after optimization. But while the worst case

quantization is highly sensitive tol, increasingl is much more detrimental to hard-

ware efficiency than simply increasingL, and l is therefore kept minimal. Note

should be made that in the case of IIR interpolation digital subfilter the passband

sensitivity to quantization is very low. Therefore, if the passband ripple specifica-

tion is tight, it usually translates into requiring a higherresolution LUT for the FIR

masking digital subfilters. If the stopband ripple specification is strict, the LUTs for

both the interpolation digital subfilters and the FIR masking digital subfilter need

to have a high resolution.

CSD LUTs with a limited value ofl have a non-uniform distribution, which

means that the quantization error is not constant over the CSD range [100]. The

worst case quantization increases as it advances from the least significant to the

most significant end of the CSD number range. This behaviour remains more or less

the same regardless of the chosen values ofL or l. This quantization pattern plays

31



an important role in deciding what values ofL and l while building the required

LUTs. If, for instance,H(z) is to have a wide band, then the corresponding FIR

masking subfiltersF0(z) andF1(z) are also wideband. This in turn results in a large

central multiplier coefficient compared to the rest of the coefficient values. Since

the most significant values of the CSD range are more sparselyspread, this large

multiplier coefficient usually has a high quantization error going from the infinite-

precision to a finite precision value. A widebandH(z) therefore normally requires

large values ofL and/orl to reach an acceptably low ripple size as compared to a

narrowbandH(z).

Similarly, the required resolution for the LUTs also depends upon the stopband

edge specification of the interpolation filterHa(z), which in turn depends on fre-

quency edge specifications ofH(z) and the interpolation factorM . The larger the

stopband edge ofHa(z), ωa, the greater is the value of its central multiplier coeffi-

cient. Therefore,ωa is kept low by choosing an appropriate value ofM . (It should

be noted, however, that ifωa is made excessively low, it results in very large order

FIR masking digital subfilters.)

2.6 Constraints for Guaranteed BIBO Stability

In order for the FRM digital filter consisting of CSD multiplier coefficientsm̂FRM

to be BIBO stable, it is both necessary and sufficient for the bilinear-LDI IIR inter-

polation digital subfiltersHa(z) andHb(z) to be BIBO stable. Likewise, in order

for the interpolation digital subfiltersHa(z) andHb(z) to be BIBO stable, it is both

necessary and sufficient for the bilinear-LDI allpass digital networksG0(z) and

G1(z) to be BIBO stable. In this way, it is required that the bilinear-LDI digital

allpass networksG0(z) andG1(z) remain BIBO stable throughout the course of the

PSO algorithm.

In the course of PSO algorithm, the infinite-precision multiplier coefficientsmLi

andmCi
can only take quantized valueŝmLi

andm̂Ci
that belong toCSD(L, l, f).

In order for the bilinear-LDI digital allpass networksG0(z) andG1(z) to remain

BIBO stable, it is required that the values of the corresponding quantized reactive
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elementsL̂i and Ĉi remain positive [101] in the course of optimization. This is

due to the properties of the bilinear frequency transformation from analog to digital

domain. In order to find the conditions for BIBO stability andin accordance with

Eqns. (2.33) and (2.34), one has:

L̂
′

i =
T

m̂Li

(2.39)

Ĉ
′

i =
T

m̂Ci

(2.40)

Moreover, in accordance with Eqns. (2.29-2.32), one has:

L̂
′

1 = L̂1 (2.41)

Ĉ
′

1 = Ĉ1 +
T

2
+

T 2

4L̂1

+

m∑

i=2

Ĉi
T 2

4L̂i

Ĉi +
T 2

4L̂i

(2.42)

L̂
′

i = L̂i

[
Ĉi +

T 2

4L̂i

Ĉi

]2

(2.43)

Ĉ
′

i =
Ĉ2

i

Ĉi +
T 2

4L̂i

(2.44)

whereL̂1 = ∞ for odd-ordered allpass networkG0(z).

By substituting Eqns. (2.39) and (2.40) into Eqns. (2.41-2.44), and by solving

the resulting equations for the reactive elementsL̂i andĈi, one can obtain

L̂1 =
T

m̂L1

(2.45)

Ĉ1 =

T

{

4
m̂C1

− m̂L1 − 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

− 2

}

4
(2.46)

L̂i =
T (m̂Li

m̂Ci
− 4)2

16m̂Li

(2.47)

Ĉi =
−4T

m̂Ci
(m̂Li

m̂Ci
− 4)

(2.48)

From Eqns. (2.45-2.48), L̂i > 0 andĈi > 0 provide that

m̂L1 > 0 (2.49)
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Table 2.2: Relations for Elements of Back-Transformed Reactance

Element Equation Inequality Constraints

L̂1
T

m̂L1

m̂L1 > 0

Ĉ1
1
4
T

{

4
m̂C1

−m̂L1−4

(
m∑

i=2

1
4

m̂Li
−m̂Ci

)

−2

}

m̂C1 <4

{

m̂L1+4

(
m∑

i=2

1
4

m̂Li
−m̂Ci

)

+2

}−1

L̂i
T (m̂Li

m̂Ci
− 4)2

16m̂Li

m̂Li
> 0

Ĉi
−4T

m̂Ci
(m̂Li

m̂Ci
− 4)

m̂Ci
< 4 (m̂Li

)−1

m̂Li
> 0 (2.50)

m̂Ci
<

4

m̂Li

(2.51)

m̂C1 <
4

{

m̂L1 + 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

+ 2

} (2.52)

Then, in order to make the CSD FRM digital filter BIBO stable, it is necessary and

sufficient to choose the values of the multiplier coefficientsm̂FRM ∈ CSD(L, l, f)

such that the inequality constraints (2.49-2.52) are satisfied. The equations and

corresponding condition required for BIBO stability are summarized in Table2.2.

In order to make the CSD lowpass digital IIR FRM filter BIBO stable, it is

necessary and sufficient to choose the values of the multiplier coefficientsm̂Li
,

m̂Ci
∈ CSD(L, l, f) such that the inequality constraints of Table2.2are satisfied.

It should be pointed out that constraint (2.51) is most stringent when̂mLi
is at

its largest possible value. Similarly, constraint (2.52) is most stringent when̂mL1 ,

m̂Li
andm̂Ci

are all at their largest possible values (whilem̂Li
andm̂Ci

still adhere

to constraintm̂Ci
< 4 (m̂Li

)−1).
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2.7 Proposed PSO of FRM Digital Filters

The proposed particle swarm optimization of FRM FIR digitalfilters and BIBO

stable FRM IIR digital filters is carried out over the CSD multiplier coefficient

spaceCSD(L0 or1, l0 or1, f0 or1), whereL0 or1 represents the multiplier coefficient

wordlength, wherel0 or1 represents the maximum number of non-zero digits, and

wheref0 or1 represents the number of fractional part digits (for FIR or IIR digital

subfilters, respectively).

The starting point of any stochastic algorithm plays an important role in the

convergence behavior of the optimization algorithm [83]. Therefore, it is important

to generate the initial swarm in proper positions in the search space rather than

complete random generation of the initial population. In order to achieve this, the

following technique is employed:

2.7.1 Initiation of PSO

To start the PSO algorithm from a good position in the search space the infinite

precision multiplier coefficient values of the seed particle are generated by using

classical techniques as discussed in previous sections. These infinite precision mul-

tiplier coefficient values are turned into their finite precision counterparts by simply

rounding them to their closest CSD values. This seed particle is used as the center

of the swarm and a cloud of particles are generated randomly around the seed parti-

cle. It should be noted that the distance of the randomly generated particles should

not be far from the seed particle. In this way, the initial swarm contains particles

which have high chances of being near the optimal solution. The multiplier coeffi-

cient values of the swarm are taken from a set of CSD LUTs whichare constructed

as follows:

2.7.2 FRM FIR Digital Filter Template LUTs

For the case of FRM FIR digital filters, a template LUT is constructed for all

multiplier coefficient values for the interpolation digital subfilter Ha(z) and the

masking digital subfiltersF0(z) andF1(z). The elements of this LUT belong to
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CSD(L0, l0, f0). The values ofL0, l0 andf0 are determined empirically based on

the amplitude frequency-response of the digital subfiltersHa(z), F0(z) andF1(z).

2.7.3 FRM IIR Digital Filter Template LUTs

For the case of FRM IIR digital filters, it is necessary and sufficient to choose the

values of the multiplier coefficients, such that the inequality constraints (2.49-2.52)

are satisfied. In order to achieve this, the LUTs are constructed as follows:

• One LUT is constructed for all multiplier coefficient valuesm̂FIR ∈ CSD(L0, l0, f0)

for the masking digital subfiltersF0(z) andF1(z). The values ofL0, l0 and

f0 are determined empirically based on the amplitude frequency-response of

the masking digital subfiltersF0(z) andF1(z).

• A LUT is constructed for all multiplier coefficient valueŝmIIR ∈ CSD(L1, l1, f1)

for the digital allpass networksG0(z) andG1(z). Once again, the values of

L1, l1 andf1 are determined empirically. Also, it is expedient to assumethat

m̂IIR have only positive values.

• The above CSD LUT is used to form one size-reduced LUT per the mul-

tiplier coefficient for digital allpass networksG0(z) andG1(z), where each

size-reduced LUT initially includes CSD values bounded from below by the

smallest representable value belonging toCSD(L1, l1, f1), and from above

by the corresponding value of the finite-wordlength coefficients for the seed

particle. The size-reduced LUTs are augmented before PSO process com-

mences. The purpose of this augmentation is to ensure that the exploration

space include as many of those CSD multiplier coefficientsm̂L1 , m̂C1 , m̂Li

andm̂Ci
which still satisfy the BIBO stability constraints (2.49-2.52).

The above constructed LUTs are used as template LUTs. There are two prob-

lems concerning the PSO of FRM IIR digital filters over the CSDmultiplier co-

efficient space. To overcome these problems, the template LUTs must be further

processed. These two problems and the way to solve them are discussed in the

following.

36



2.7.4 PSO indirect search method

In PSO, the required new particle position is obtained from the previous position of

the particle through the addition of a random (normalized) velocity value. However,

by directly applying the conventional PSO to the above optimization over the CSD

multiplier coefficients, one may obtain new particle positions whose coordinate val-

ues are no longer inCSD(L0 or1, l0or1, f0 or1). In order to overcome this problem,

the optimization search is carried out indirectly via the indices to the LUT CSD val-

ues (as opposed to LUT CSD values themselves). In this way, the CSD coordinate

values for each particle position are obtained by integer indices to the CSD LUTs.

The key point in the indirect search rests with ensuring thatthe index set is closed,

i.e. by ensuring that each index points to a valid CSD value inthe LUT, and that

the resulting particle in the course of PSO adheres to the prespecified CSD number

format.

If the velocity values are replaced by their closest integervalues, the update

equations become modified to

v̂ikj = [wv̂i−1
kj + c1r1(x̂

i−1
bestkj

− x̂i−1
kj ) + c2r2(ĝ

i−1
bestj

− x̂i−1
kj )]1 (2.53)

if v̂ikj < v̂min ; v̂ikj = v̂min

if v̂ikj > v̂max ; v̂ikj = v̂max

x̂i
kj = x̂i−1

kj + v̂ikj (2.54)

Here,x̂kj, v̂kj, x̂bestkj , ĝbestj , v̂min andv̂max are all integer values wherêvmin < 0

andv̂max > 0. In addition,w is limited in the interval[0, 0.5) (as discussed shortly).

2.7.5 Barren layers

Due to their finite length, the template LUTs inevitably leadto a bounded opti-

mization search space. In order to ensure that the particlesdo not cross over to the

outside of the search space in the course of PSO, the search space is constructed as a

combination of two regions, namely the interior and barren layers. The barren layer

1[R] denotes roundingR to its closest integer, whereR is assumed to be a real value.
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is constructed to yield relatively low fitness values, and isrepresented as header and

footer in the template LUT. There are two problems concerning the construction of

the barren layers:

barren layer entries

The first problem in the construction of barren layers concerns how to make the

fitness values in the barren layer relatively low. This problem can be resolved by

filling the header part by unrealistically large, and the footer part by unrealistically

small CSD multiplier coefficient values.

barren layer width

The second problem, on the other hand, concerns how to determine the width of

the barren layer such that the particles do not cross over to the outside of the search

space even under the worst case scenario. These two problemsrelate to the num-

ber of entries and the CSD values of the entries in header and footer parts of the

template LUTs. To overcome this problem, let us consider thej-th variable in the

k-th particle is in the boundaries of one of the template LUTs in iterationi−1. The

worst case scenario occurs whenxi−1
kj moves toward the barren layer with the peak

permissible velocities (vmax for the header, andvmin for the footer. If in thei-th

iterationxi
kj is in the footer:

x̂i
bestkj

> x̂i
kj (2.55)

ĝibestj > x̂i
kj (2.56)

and if it is in the header:

x̂i
bestkj

< x̂i
kj (2.57)

ĝibestj < x̂i
kj (2.58)

Eqns. (2.55-2.58) show that the velocity of the particle in iterationi + 1 tends

to move the particle in a direction opposite to the directionof the barren regions.

Here, the worst case happens whenr1 = r2 = 0. In this way, the number of entries

38



Lf in the footer part, and the number of entriesLh in the header part is determined

in accordance with

Lf = |v̂min|+ [w|v̂min|] + [w[w|v̂min|]] + . . .

≤ |v̂min|+
|v̂min|

2
+

|v̂min|

4
+ . . .

= 2|v̂min| (2.59)

Lh = v̂max + [wv̂max] + [w[wv̂max]] + . . .

≤ v̂max +
v̂max

2
+

v̂max

4
+ . . .

= 2v̂max (2.60)

Let us recall that since0 ≤ w < 0.5,

if v : positive integer ⇒ [wv] ≤
v

2
(2.61)

In addition, after some iterationŝvi+1
kj = 0. Otherwise, ifw ≥ 0.5, v̂i+1

kj can never

become zero, and the width of the barren layer will be infinity.

The augmented LUTs remains fixed in the course of PSO, restricting automatic

particle movement inside the limited search space. Modifying the index values

inside each particle by adding the current indices to the length of the footer barren

region,Lf , PSO algorithm is ready to start the optimization of FRM digital filters.

2.8 Design Methodology

The design methodology for the proposed PSO of FRM FIR digital filters and BIBO

stable bilinear-LDI based FRM IIR digital filters over the CSD multiplier coefficient

space can be summarized as follows:

1. Designing the interpolation digital subfilter: the first step in determining the

interpolation subfilter specifications is to fix the interpolation factorM from

a pre-specified range. This is done in a way that the order of the FIR masking

filters is kept minimal. Using the passband edge frequencyωp and stopband

edge frequencyωa and the expressions for boundary frequencies given in

Table 2.1, one can determine the filter case and calculate the approximate
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passband edgẽθ and stopband edgẽφ of the digital interpolation lowpass

subfilterH(ejω), for every value of the user specified range of interpolation

factorsM . The order of the FIR masking filters depends on the minimum dis-

tance between consecutive image replicas of either the interpolated subfilter

Ha(e
jMω) or its complementHb(e

jMω). Then, displacementλM and distance

D̃M for each interpolation factorM are given as:

λM = max[|(
π

2
− θ̃)|, |(

π

2
− φ̃)|] (2.62)

D̃M =
π

M
−

2λ

M
(2.63)

To minimize the length of FIR-masking filters, the value ofM that results in

the largest value of̃DM is chosen. This determines the optimal interpolation

factorM as well as the approximate passband edgeθ̃ and stopband edgẽφ of

the digital interpolation subfilterH(ejω). EMQF filters have the property of

equal square magnitude ripple size in the passband and stopband. Therefore,

of the two ripple specifications, whichever gives the smallest tolerance in

the squared magnitude response determines both the passband rippleRp and

stopband attenuationRa of the interpolation digital subfilterHa(e
jω). The

interpolation digital subfilter orderNIIR is then determined usingRp, Ra, θ̃

andφ̃. NIIR must be rounded to the nearest larger odd integer so that it can

be implemented by a parallel combination of two allpass networks. With the

orderNIIR, and passband and stop band ripplesRp andRa fixed, the ratio

of the analog passband edgeθA and stopband edgeφA is a constantk given

by [102]

D =
100.1Ra − 1

100.1Rp − 1
(2.64)

q = 10
− log(16D)

N
IIR (2.65)

q = q0 + 2q50 + 15q90 + 150q130 (2.66)

kp =

[
1− 2q0
1 + 2q0

]2

(2.67)

k =
√

1− k2
p (2.68)

In order to satisfy the passband edge specification, the digital passband edge
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ωp = θ̃ for Case I filters. The digital stopband edgeωa is then determined

using the analog ratiok. (Here, frequency warping from digital to analog

domain, and vice versa, given by Eqn. (2.16) needs to be taken into account.)

Similarly,ωa = φ̃ for Case II filters, andωp can be determined by using ratio

k. Also, using given ripple specifications along with the boundary frequen-

cies described in Table2.1, one can determine the transfer function of the FIR

masking filtersF0(e
jω) andF1(e

jω).

2. Generation of seed FRM digital filter particle: The seed FRM digital filter

particle is formed as follows:

• A particle withB1 coordinates is formed in which each coordinate serves

as an index of the corresponding CSD LUT for each multiplier coeffi-

cient constituent in the interpolation digital subfilters.

– In case of FRM IIR digital filters, the multiplier coefficients corre-

spond to the bilinear-LDI allpass digital networksG0(z) andG1(z).

– In case of FRM FIR digital filters, the multiplier coefficientcorre-

spond to the interpolation digital subfiltersHa(z) andHb(z).

• A particle withB2 coordinates is formed in which each coordinate serves

as an index of the corresponding CSD LUT for each multiplier coeffi-

cient in the FIR masking digital subfiltersF0(z) andF1(z).

3. Generation of Initial Swarm: An initial swarm of K particles is formed

by generating a random cloud around the seed particle as discussed in sec-

tion 2.7.1.

4. Fitness Evaluation: The fitness function for CSD FRM IIR digital filters is

defined in accordance with

fitnessmagnitude = −20log[max(εp, εa)] (2.69)

fitnessgroup−delay = ςp (2.70)

fitness = fintessmagnitude − fitnessgroup−delay (2.71)
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where

εp = max
︸︷︷︸

ω∈∆ωp

[Wp|H(ejω)− 1|] (2.72)

εa = max
︸︷︷︸

ω∈∆ωa

[Wa|H(ejω)|] (2.73)

ςp = max
︸︷︷︸

ω∈∆ωp

[Wgd|τ(ω)− µτ |] (2.74)

with ∆ωp representing the passband frequency region(s), with∆ωa rep-

resenting the stopband frequency region(s), and withτ(ω) representing the

group-delay frequency response of the FRM IIR digital filter2. Here,Wp,

Wa, andWgd represent weighting factors for the passband and stopband mag-

nitude responses, and for the group-delay response, respectively. Moreover,

µτ represents the average group-delay over the passband region. In [103],

a convenient way to represent digital networks in terms of matrix representa-

tion is presented. This technique can be used to find the magnitude and group

delay frequency response of the digital network in Fig.2.11. Let us consider

the input to the digital network in Fig.2.11to bexD and the output of it to be

yD. In addition, let the output of thei-th time delay in Fig.2.11to bexi and

the input to thei-th time delay to beyi. The transfer function matrix of the

network,T, can be found as

y = Tx (2.75)

wherey = [yD, y1, y2, . . . , y2m+1]
t 3andx = [xD, x1, x2, . . . , x2m+1]

t, and

T is a(2m+ 2)× (2m+ 2) matrix with the entries obtained as Eqn. (2.76).

T=













0 1 −1 0 0 0 ... 0 0
1 0 0 0 0 0 ... 0 0

mC1
mC1

1−mC1
(1+

m∑

i=1

mLi
) −mC1

mC1
mL2

−mC1
... mC1

mLm −mC1

0 0 mL1
1 0 0 ... 0 0

0 0 mC2
mL2

0 1−mC2
mL2

mC2
... 0 0

0 0 mL2
0 −mL2

1 ... 0 0

...
...

...
...

...
...

...
0 0 mCmmLm 0 0 0 1−mCmmLm mCm
0 0 mLm 0 0 0 −mLm 1













(2.76)
2In case of FRM FIR digital filters,ςp is a constant and has no effect in the optimization process.

In this thesisςp = 0 for FRM FIR digital filters.
3
X

t denotes the transpose of the matrixX.
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Sincexi = z−1yi, the transfer functionG(z) = yD
xD

can be found as

G(z) = z−1e[I − z−1D]−1c (2.77)

wheree is a row vector andc is a column vector of length2m+1, and where

I is the identity matrix andD is a(2m+1)× (2m+1) matrix in accordance

with

T =









0 e

c D









(2.78)

The matrixT is also useful in finding the group delay ofH(z). The group-

delay ofH(ejω) is given by

τ(ω) = −Im

{
1

H(ejω)

dH(ejω)

dω

}

(2.79)

With the help of Eqn. (2.10), the expressiondH(ejω)
dω

can be written as

dH(ejω)

dω
=

1

2

[dG0(e
jω)

dω
(F0(e

jω) + F1(e
jω))+

d(F0(e
jω) + F1(e

jω))

dω
G0(e

jω)+

dG1(e
jω)

dω
(F0(e

jω)− F1(e
jω))+

d(F0(e
jω)− F1(e

jω))

dω
G1(e

jω)
]

(2.80)

The derivative of FIR filters can be easily found from their transfer function.

In order to find the derivative of the digital allpass networksG0(z) andG1(z),

the following expression can be used

dG(ejω)

dω
= −je−jω

2m+1∑

i=1

Gxi(e
jω)Giy(e

jω) (2.81)

whereGxi(z) is the transfer function betweenxD andyi, and whereGiy(z)

is the transfer function betweenxi andyD. The transfer functionsGxi(z) and

Giy(z) can be found from the transfer function matrixT as follows

Gxi(z) = axi + z−1exi[I− z−1D]−1c (2.82)

Giy(z) = aiy + z−1e[I− z−1D]−1ciy (2.83)
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whereaxi andaiy are scalars,exi is a row vector andciy is a column vector

of length2m+ 1, in accordance with[axi exi] is thei-th row of the matrix

T, and[aiy ctiy]
t is thei-th column of the matrixT. Having the expressions

for H(ejω) and dH(ejω)
dω

, the group delay can be obtained in accordance with

Eqn. (2.79).

The passband and stopband weighting factorsWp andWa are easily deter-

mined from user specifications. The group-delay weighting factor is set as

Wgd =
ζ × fitnessmagnitude

fitnessgroup−delay

(2.84)

whereζ is a fixed constant such that0 < ζ < 1, and wherefitnessmagnitude

andfitnessgroup−delay are obtained by examining the seed FRM digital filter

particle. The weighting factor for the group-delay increases asζ → 1.

2.9 Summary

This chapter has presented a novel technique for PSO of FRM digital filters incor-

porating FIR and IIR digital interpolation subfilters. In case of FRM IIR digital

filters, the bilinear-LDI approach is employed to reduce thenumber of multiplier

coefficients in the IIR digital subfilter. In order to map an analog prototype filter

to the digital domain using bilinear-LDI technique, elliptic filters with minimum

Q-factor is used. In this way, the IIR interpolation subfilters constituent in the FRM

IIR digital filter are guaranteed to be power complementary.

The design methodology for design and optimization of FRM digital filters us-

ing PSO technique has been presented. There are three main problems in the PSO

of FRM digital filters. Due to the randomness of the operations of addition and sub-

traction in the underlying PSO, one may obtain a FRM digital filter particle whose

multiplier coefficients do not conform to CSD number format.This problem has

been resolved by constructing a set of LUTs containing permissible CSD numbers,

and by using the indices of the LUTs as optimization variables in PSO. Therefore,

an integer-based PSO is developed to search over the indicesof the LUTs.

In case of FRM IIR digital filters, PSO may produce particles which are not

BIBO stable. This problem is not present for FRM FIR digital filters due to the
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inherent stability feature of FIR filters. To overcome this problem, a set of BIBO

stability constraints has been developed and the LUTs have been successively aug-

mented until the BIBO stability constraints remain satisfied. In this way, the FRM

IIR digital filter particles generated in the course of PSO are guaranteed to be BIBO

stable.

On the other hand, the particles may go over the boundaries ofLUTs in the

course of optimization. This problem has been resolved by introducing barren lay-

ers. Barren layers are added to the header and the footer of the LUTs and they are

characterized by low fitness values compared to the main entries of the LUTs, i.e. a

particle with a coordinate in a barren layer has a lower fitness value than a particle

without a coordinate in the barren layers.

The optimization of FRM digital filters using PSO algorithm concerns both the

magnitude and the group-delay frequency-responses of the FRM digital filter. Ma-

trix equations have been developed to determine the magnitude and the group-delay

frequency-responses of FRM digital filters. This improves the evaluation of the fit-

ness value of each particle and simplifies the objective function used in the course

of PSO.
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Chapter 3

Novel PSO for High-Level Synthesis
of Digital Filters

In this chapter, PSO algorithm is exploited and applied to the development of a new

optimization technique for the high-level synthesis of digital filter data-paths. In this

algorithm, a powerful encoding scheme is introduced that encodes the information

present in the digital filter DFG into successive swarm of particles. These particles

carry information about the main steps that are required forthe high-level synthesis

of digital filter data-path, i.e. scheduling, allocation, and binding. This informa-

tion can be used to calculate the cost function associated with the time and area

requirements in the corresponding hardware realization ofthe digital filter data-

path. The cost associated with the final digital filter data-path is minimized for

obtaining global area-optimal, time-optimal, or combinedarea-cum-time-optimal

data-paths subject to user-specified constraints on the number of physical arithmetic

functional units employed. The final point in the optimization is the identification

of the data-path that optimizes the area and time in the corresponding data-path

encoded swarm.

The proposed PSO algorithm guarantees that the data-dependency relationships

in the digital filter DFG remain satisfied under the operations of addition and sub-

traction in the underlying PSO algorithm. In addition, a technique is developed to

avoid any functional unit violation (that may occur becauseof the random nature of

the operations of addition and subtraction in the underlying PSO algorithm) through

the course of high-level synthesis of digital filters.
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This chapter proceeds as follows. Section3.1 presents an introduction to the

high-level synthesis of digital systems and introduces thesteps that are required for

the high-level synthesis of digital filters. Section3.2presents a powerful encoding

scheme to encode the digital filter data-paths into particles that can be used in the

course of PSO algorithm. This scheme is capable of satisfying the data-dependency

relationships in the digital filter DFG. Section3.3 explains how the initial swarm

of particles is generated in order to increase the speed of convergence of PSO.

Section3.4 describes the constraints that are present in the course of high-level

synthesis of digital filters using PSO and solutions to theseconstraints are provided

in this section. Section3.5 is concerned with the evaluation of the cost function

that is being used in the course of high-level synthesis of digital filters using PSO.

Finally, Section3.6provides a summary of this chapter.

3.1 High-Level Synthesis of Digital Filters

High-level synthesis of digital filters is the act of mappinga behavioral description

of the digital filter to the RTL model in order to execute the variable assignments

in the digital filter data-path. Since the amount of computation in each state is de-

termined in the RTL model, one must first define the number and type of resources

(arithmetic functional units, multiplexors, registers, etc.) to be used in the data-path.

Allocation is the task of defining necessary resources for a given design specifica-

tion associated with a digital filter data-path. The next task in mapping a behavioral

description into an RTL model is partitioning the behavioral description into time-

steps. In this way, the allocated resources can be used to compute all the variable

assignments present in each time-step. This partitioning of behavioral description

into time intervals is called scheduling. Although scheduling assigns each opera-

tion to a particular time-step, it does not assign it to a particular operator. To obtain

the proper implementation, one can assign each variable to astorage unit (e.g. a

register), each operation to a functional unit (e.g. an adder or a multiplier), and

each transfer from input or output to units and among units toan interconnection

unit (e.g. a multiplexor). This task is called binding (or resource sharing). Binding
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determines the structure of the digital filter data-path butit is unable to define the

structure of the control unit. In the following subsections, the main tasks that are

required for the high-level synthesis of digital filters areexplained [104].

3.1.1 Allocation

Allocation is the task of determining the type and quantity of resources used in a

given digital filter DFG. Other tasks, e.g. clocking scheme,memory hierarchy, and

pipelining style, can also be determined by allocation. Thegoal of allocation is to

make the design having a good performance, while keeping thecost of it below a

reasonable limit. If the original behavioral description of the digital filter data-path

contains inherent parallelism, allocating more hardware resources increases area

and cost, but it also creates more opportunities for parallel operations or storage

accesses, resulting in a better performance. On the other hand, allocating fewer re-

sources decreases area and cost, but it also forces operations to execute sequentially,

resulting in a poorer performance. To perform the required trade-offs, allocation

must determine the exact area and performance values. A simple approximation of

cost and performance consists of the number of functional units and support cells,

and the number of time-steps, respectively. This approximation can be used to

come up with an optimal allocation scheme that decreases thecost, while keeping

the performance in a good level.

3.1.2 Scheduling

Scheduling is the act of assigning operations and memory accesses in a digital fil-

ter data-path, into clock cycles or time-steps. There are two types of scheduling

algorithms based on the optimization goal and the user-specified constraints.

• Resource-constrained schedulingtries to maximize usage of the allocated re-

sources. This scheduling algorithm occurs if all the available resources and

the maximum number of time-steps during allocation has beenspecified by

the user. The goal of resource-constrained scheduling algorithm is to gen-

erate a design with the best possible performance, or the fewest number of

time-steps. Resource-constrained scheduling usually produces a design that
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has one time-step at a time and then it schedules operations so as not to ex-

ceed resource constraints or violate data-dependencies. Resource-constrained

scheduling guarantees that at the time-step for which it schedules an opera-

tion, an operator which can execute that operation is available and all the

predecessors of the corresponding operation have been scheduled.

• Time-constrained schedulinghappens if a list of resources is not available

prior to scheduling, but a desired overall performance is specified by the user.

The goal of this scheduling algorithm is to produce a design with the lowest

possible cost, or the fewest number of functional units. In time-constrained

scheduling, the maximum number of time-steps available foroperations is

fixed by the user. Based on this performance constraint and the data depen-

dency constraints, the earliest time-step and the latest time-step, into which

an operation can be scheduled are computed. Using the earliest and the latest

time-steps, bounds for all operations, one can estimate themaximum num-

ber of functional units or the cost of the design. Time-constrained schedul-

ing algorithms select an operation, evaluate the cost of scheduling it in each

time-step between the earliest and the latest time-steps, and select the state

that results in the least cost. The important goal is to minimize the number of

functional units in any time-step.

When the critical path is defined in a digital filter data-path, scheduling must ensure

that the design uses faster functional units for operationson the critical path and

slower units for operations outside the critical path. In this way, an optimal design

of the digital filter data-path may be achieved.

3.1.3 Binding

The binding task assigns the operations and memory accesseswithin each clock

cycle to available hardware units. A resource such as a functional, storage, or

interconnection unit can be shared by different operations, data accesses, or data

transfers if they are mutually exclusive. For example, two operations assigned to

two different time-steps are mutually exclusive since theywill never execute simul-
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taneously. Therefore, they can be executed with a single hardware unit. Binding

consists of three subtasks based on the unit type:

• Storage bindingassigns variables to storage units. Storage units can be of

many types, including registers, register files, and memoryunits. Two vari-

ables that are not alive simultaneously in a given state can be assigned to the

same register. Two variables that are not accessed simultaneously in a given

state can be assigned to the same port of a register file or memory.

• Functional unit bindingassigns each operation in a time-step to a functional

unit. A functional unit or a pipeline stage can execute only one operation per

clock cycle.

• Interconnection bindingassigns an interconnection unit such as a multiplexor

or bus for each data transfer among ports, functional units,and storage units.

Although listed separately, the three subtasks are intertwined and must be carried

out concurrently for optimal results.

In the next section, the above concepts are used to encode thedigital filter data-

path into particles in such a way that the resulting particles can be utilized in the

course of PSO for high-level synthesis of digital filter data-path.

3.2 Digital Filter DFG Encoding Scheme

This section presents a powerful DFG encoding scheme for thescheduling, allo-

cation, and binding of digital filter data-paths in the underlying PSO algorithm.

In the proposed encoding scheme, the digital filter DFG is encoded into a particle

containing two partitionsP 1 andP 2 [58], where the partitionP 1 contains the in-

formation regarding scheduling of the digital filter data-path, and the partitionP 2

embodies the information regarding the corresponding DFG allocation and bind-

ing. These partitions are formed, manipulated, and maintained in such a way that

they preserve the data-dependency relationships in the original digital filter signal

flow-graph under the operations of addition and subtractionby the underlying PSO

algorithm.
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Figure 3.1: Particle Structure for PartitionP 1

3.2.1 DFG Encoding for Scheduling

As discussed before, the partitionP 1 contains the information regarding the schedul-

ing of the digital filter data-path. To achieve this goal, partition P 1 in the DFG parti-

cle is generated to incorporate a set ofI coordinates as shown in Fig.3.1, where the

j-th coordinate represents the delay∆Onj
from the first possible time-step where

an operationOnj
may be scheduled in the high-level synthesis of digital filter data-

path, where1 ≤ nj ≤ I and1 ≤ j ≤ I and whereI denotes the total number of

operations present in the DFG.

In this way, the problem of scheduling the digital filter data-path reduces to that

of determining the operation identifiersn1,n2,. . .,nI such that the data-dependency

relationships in the digital filter DFG remain satisfied under the operations of addi-

tion and subtraction by the PSO algorithm. One straightforward approach to deter-

mining these identifiers is to perform an ASAP scheduling andorder the operations

Onj
in ascending order of their ASAP schedule time-step. However, the problem

of such an ordering is that this process does not lead to a unique ordering process.

In order to resolve this problem, one must take into consideration the critical path

information in the operation ordering process. This critical path information can be

used to order the operations lying on a longer critical path before those lying on a

shorter critical path because the latter operations have smaller degrees of freedom.

The critical paths in the digital filter DFG can be determinedby performing the

following tasks:

• ASAP scheduling is performed on the digital filter DFG and theresulting

total number of time-steps is recorded asTASAP.

• ALAP scheduling is performed on the digital filter DFG with the maximum

number of time-steps fixed atTASAP.
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• The difference between the ALAP schedule time-steptALAPnj
and the ASAP

schedule time-steptASAPnj
for each operationOnj

in the digital filter DFG is

computed and stored astdiffnj
.

In this way, the operations with lower values oftdiffnj
reside on longer critical paths

and the operations with higher values oftdiffnj
reside on shorter critical paths. Con-

sequently, the operations are ordered in the ascending order of their tdiffnj
+ tASAPnj

values in order to take into account both the critical path information and the data-

dependency relationships in the digital filter DFG. But by definition:

tdiffnj
+ tASAPnj

= tALAPnj
(3.1)

Therefore, the operations happen to be ordered in ascendingorder of their ALAP

schedule time-steps.

3.2.2 DFG Encoding for Allocation and Binding

In the high-level synthesis of digital filter data-paths, itis frequently required to

optimize not only the cost associated with the physical arithmetic functional units

employed, but also that associated with the required support cells (multiplexors and

registers). The latter cost is influenced by two important factors, namely the alloca-

tion of operators to various operations and the ordering of signals for symmetrical

operations (i.e. digital additions).

The partitionP 2 in the DFG particle is formed to incorporate a set ofI coordi-

nates as shown in Fig.3.2, whereΘOnj−I
in thej-th coordinate represent the oper-

ator number and wherebj−I represents the order of the signals within theΘOnj−I
-th

operator executing operationOnj−I
, where(I + 1) ≤ j ≤ 2I andbj−I ∈ {−1, 1}

indicating whether or not the two input signals associated with the operator are

swapped for symmetrical operations. Here,1 ≤ ΘOnj−I
≤ θn with θn being a user-

specified number and1 ≤ n ≤ NM whereNM is the number of different functional

units available in the DFG.
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Figure 3.2: Particle Structure for PartitionP 2

3.3 Formation of the Initial Swarm

To start the PSO algorithm from a good position in the search space one can perform

the ASAP scheduling or the ALAP scheduling of the digital filter data-path and use

the corresponding order of operations to formP 1 of the seed particle. To formP 2,

one can use the operator numbers for the corresponding operations in the ASAP or

ALAP scheduling of the digital filter data-path. A random choice ofbj is preferable

for the formation of the seed particle. This seed particle isused as the center of the

swarm and a cloud of particles is generated randomly around the seed particle. It

should be noted that the distance of the randomly generated particles should not be

far from the seed particle. In this way, the initial swarm contains particles which

have high chances of being near the optimal solution.

3.4 Constrained PSO for Digital Filter Data-Paths

This section is concerned with the constraints associated with PSO of digital filter

data-paths. These constraints can be classified into two categories. One constraint

is related to the range of values that a coordinate in the position of a particle can

be changed. The other constraint is associated with the functional unit violation

that may occur in the course of PSO. These two constraints arediscussed in the

following two subsections.

3.4.1 Coordinates Limit

Due to the random nature of operations in the PSO algorithm, the position value of

a particle can be any infinite-precision number. In the optimization of digital filter

data-paths, the resulting particle position cannot take any value and it should be

constrained to a specific number system.
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PartitionP 1 in the particle is constructed with coordinates containingthe delay

from the first possible time-step where an operation may be scheduled. This delay

is an integer number and cannot be less than zero. Therefore,the first constraint

can be applied by limiting the coordinate values in partition P 1 to be nonnegative

integers.

PartitionP 2 in the particle, on the other hand, is constructed with coordinates

containing the operator number and a sign value that can takethe values of+1 or

−1. Let us considerNadd represent the number of physical adder cells available

for the implementation of the digital filter data-path andNmult represent the total

number of physical digital multipliers present in the implementation of the digital

filter data-path. The numbersNadd andNmult are fixed by the designer as a part of

the input specification. Then, the coordinate containing anadder as an operator can

be varied in the intervals[−Nadd,−1] and[1, Nadd], and the coordinate containing a

multiplier as an operator can be varied in the intervals[−Nmult,−1] and[1, Nmult].

Taking into consideration these constraints, the new PSO algorithm will be:

v̂ikj = [wv̂i−1
kj + c1r1(x̂

i−1
bestkj

− x̂i−1
kj ) + c2r2(ĝ

i−1
bestj

− x̂i−1
kj )] (3.2)

if v̂ikj < v̂min ; v̂ikj = v̂min

if v̂ikj > v̂max ; v̂ikj = v̂max

x̂i
kj = x̂i−1

kj + v̂ikj (3.3)

if x̂i
kj < x̂jmin

; x̂i
kj = x̂jmin

if x̂i
kj > x̂jmax ; x̂i

kj = x̂jmax

Here, x̂kj, v̂kj , x̂bestkj , ĝbestj , v̂min, v̂max, x̂jmin
and x̂jmax are all integer values

wherev̂min < 0 and v̂max > 0. In the above equations,̂xjmin
and x̂jmax can be

found by using the partition information, i.e. if the coordinate is in partitionP 1,

thenx̂jmin
= 0 and there is no limit for̂xjmax. On the other hand, if the coordinate

is in partitionP 2 and the coordinate represents an adder, thenx̂jmin
= −Nadd and

x̂jmax = Nadd, while if the coordinate is in partitionP 2 and the coordinate represents

a multiplier, then̂xjmin
= −Nmult andx̂jmax = Nmult. One may notice that there is a

possibility that the value of a coordinate become zero in partition P 2 which violates

the conditions discussed before. Random selection of a value for the corresponding
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coordinate between the values+1 and−1 can solve this problem.

3.4.2 Functional Unit Satisfaction

In the course of optimization of digital filter data-paths, one can easily notice that

sometimes the optimization results in particles sufferingfrom concurrent assign-

ment of the same functional unit to two or more operations in the same time-step.

One way to resolve this situation is to include a violation term in the cost function

of the digital filter particle. The other way is to reassign the functional units for

violating operations only [105]. Additionally, one can keep the operator number

unchanged and increment the time-step where the operation may be scheduled until

it finds a free slot. In this thesis, the third scheme is used which looks practical in

the implementation of PSO for high-level synthesis of digital filters.

3.5 Formulation of the Cost Function for Digital Fil-
ter Data-Paths

This section is concerned with the calculation of the cost function associated with

the above data-path encoded swarm. The desired cost function can be expressed as

a linear combination of the costC1 associated with the hardware requirement, and

the costC2 associated with the time requirement of the digital filter data-path in

accordance with:

C = ω1C1 + ω2C2 (3.4)

whereω1 andω2 are user-specified weighting factors.

3.5.1 Evaluation of the Cost Associated with the Hardware Re-
quirements of the Digital Filter Data-Path

The digital filter data-path consists of digital adders and multipliers as the con-

stituent arithmetic functional units. In order to facilitate data-transfer, additional

hardware resources such as registers and multiplexors are also required. In this

way, the cost associated with the hardware requirement of the data-path can be
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computed in accordance with:

C1 = Aadd+ Amult + Areg+ Amux (3.5)

whereAadd, Amult, Areg andAmux represent the cost associated with the constituent

digital adders, multipliers, registers, and multiplexors, respectively.

Digital Adder and Multiplier Costs

Let Gadd represent the number of gate-equivalents associated with the implemen-

tation of a basic full adder. Then, the total cost associatedwith the digital adder

present in the data-path is computed in accordance with:

Aadd = WNaddGadd (3.6)

whereW is the signal wordlength. The total cost associated with thedigital multi-

pliers may be obtained in accordance with:

Amult = NmultGmult (3.7)

whereGmult represents the total number of gate-equivalents required in the imple-

mentation of each of these multipliers.

Register Costs

The computation of the costs associated with the registers and multiplexors requires

the knowledge of the life-times of the various variables in the DFG. Let the time-

step where a signal is first generated by an operation in the DFG be represented by

lbegin, and let the time-step when the same signal is last consumed by an operation in

the DFG be represented bylend. In a bit-parallel implementation, a signal is active

for one time-step from the time-step when it is last used in the DFG. In this way, the

life-time of the signal in the scheduled DFG spans over the time-interval[lbegin, lend].

By using this life-time information, the REAL algorithm [53] can be used to deter-

mine the numberNreg of registers required. REAL implements an algorithm for

register allocation based on track assignment in routing. The algorithm is referred

to as the left edge algorithm and has been proven optimal [106]. The track problem

assignment is solved as follows [53]:
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• Sort the wire segments in increasing order of their left edges.

• Assign the first segment (the leftmost edge) to the first track.

• Find the first wire whose left edge is to the right of the last selected wire and

assign it to the current track.

• If no more wires can be assigned to the current track, start a new track and

begin again from the second step. Repeat until all wires are assigned to tracks.

Although the left edge algorithm is based on a greedy search,it gives optimal

results and the goal of it is to allocate the wire segments to tracks so as to minimize

the total number of needed tracks.

For DFGs with no delay-free loops or conditional branches, the register alloca-

tion problem is the same as the track assignment as describedabove. In this thesis,

the registers are modeled as tracks, andlbegin and lend are modeled as the left and

right edges of wires, respectively. The set of variables andtheir life-times can be

used to build a life-time table. Given the life-time table for a DFG the goal is to

assign variables to registers so as to minimize the total number of registers needed

to store the variables. Two variables cannot share a register if they overlap in time.

Let the number of gate-equivalents required for the implementation of a unit

register (a D-flip-flop) be represented asGreg. Then, the cost associated with the

registers is computed in accordance with:

Areg = WNregGreg (3.8)

Multiplexor Costs

The various operations in the DFG can either be performed by different functional

units, or the same functional unit can be used to perform different operations. In

the latter case, the functional unit has to be multiplexed among different operations.

The final digital filter data-path will usually consist of a few classes of multi-input

multiplexors. The number of required multiplexors in each class is determined from

the knowledge of the time-steps in which the various operations are scheduled in

the DFG. Mainly, there are three types of multiplexors in theDFG.
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• Multiplexors connected to the inputs of the adders.In order to calculate the

type of multiplexors that are connected to the inputs of an adder, the variables

that are connected to the first input of the adder are listed. The next step is

to find the registers in which the corresponding variables are stored. The

number of different registers that has been found shows the number of inputs

to the multiplexor. This process is repeated for the second input of the adder.

Therefore, a maximum of two multiplexors is needed for an adder and the

number of inputs to the multiplexors can be calculated as described above.

• Multiplexors connected to the inputs of the multipliers.Let us consider the

multiplier coefficients are stored in an external memory. This external mem-

ory is connected to one of the inputs of the multiplier. Therefore, a maximum

of one multiplexor is associated with the inputs of a multiplier. To find the

number of inputs for this multiplexor, one can perform a sameprocedure as

discussed in the previous item, i.e. the variables connected to the input of the

multiplier are listed and their corresponding registers are found. The number

of different registers equals the number of inputs to the multiplexor.

• Multiplexors connected to the inputs of the registers.Each register needs

at most one multiplexor. The number of inputs to each multiplexor can be

found by using the information in the lifetime table. Each register stores a

number of variables. Each variable correspond is either an output of an adder

or a multiplier, or it is the input of the system. In either case, the number

of different adders, multipliers, and inputs of the system,corresponding to

the variables associated with each register is the number ofinputs of those

multiplexors that have to be allocated at the input of the registers.

Let Nmuxp represent the number ofp-input multiplexors in the resulting digital

filter data-path, and letGmuxp represent the number of gate-equivalents required in

the implementation of ap-input multiplexor. The cost associated with the multi-

plexors can be calculated in accordance with:

Amux = W
∑

p

NmuxpGmuxp (3.9)
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3.5.2 Evaluation of the Cost Associated with the Time Require-
ments of the Digital Filter Data-Path

The costC2 is evaluated in terms of the total number of time-steps required to im-

plement the digital filter data-path, determined by the assignment of the operations

constituting the DFG to various time-steps.

It should be noted that two distinct operations in the DFG cannot be bound to

the same functional unit unless these operations are scheduled at least one time-step

apart. In addition, the computational delay associated with the functional unit has

to be taken into consideration. This computational delay was calculated in [107].

The durationTclk of each time-step associated with the above digital filter data-path

can be calculated as [108]

Tclk = tDFF + 3tG + 2tmux +WtFA (3.10)

wheretDFF, tG, tmux andtFA represent the propagation delays through a D-flip-flop,

a typical gate, a two-input multiplexor, and a full adder, respectively. ThenC2 may

be obtained as:

C2 = ttotalTclk (3.11)

wherettotal represents the total number of time-steps required to implement the dig-

ital data-path. Having determined the cost functionsC1 andC2 in Eqns. (3.5) and

(3.11), one can determine the cost function associated with the digital filter data-

path by using Eqn. (3.4). The result is then used by the PSO algorithm to optimize

the data-path.

3.6 Summary

This chapter has presented a novel technique for high-levelsynthesis of digital fil-

ters using particle swarm optimization technique. In this technique, a powerful

encoding scheme is presented that is capable of turning the information in a digi-

tal filter data-paths into particles which can be used by PSO algorithm to optimize

the digital filter data-paths. The encoding scheme is in sucha way that preserves

the data-dependency relationships present in the DFG of thedigital filter. This is
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achieved by sorting the operations in the DFG by their ALAP scheduling time-steps

which takes into account the critical path information of the operations in the digital

filter data-path. The particle is divided into two parts where the first part contains

the information associated with the scheduling of different operations in the digital

filter data-path, and the second part is carrying the information regarding the alloca-

tion of different operators to operations and the ordering of signals for symmetrical

operations in the digital filter DFG.

There are two problems concerning the PSO for high-level synthesis of digital

filter data-paths. On one hand, the coordinates of each particle is bound to certain

integer numbers which depend on the user-specified constraints. On the other hand,

there is a possibility that in the course of PSO, two or more operators are allocated

for a single operation in a time-step. This is due to the random nature of operations

of addition and subtraction in the underlying PSO. To avoid this, the time-step of

the violating operation is increased until it reaches an empty spot.

The cost associated with the PSO for high-level synthesis ofdigital filters is

formed to obtain an area-optimal, time-optimal, or combined area-cum-time-optimal

solution. In order to achieve this, the number of support cells (registers, and multi-

plexors) which are required for the high-level synthesis ofthe digital filter data-path

is calculated and the cost associated with the hardware implementation of the arith-

metic functional units together with the support cells is evaluated. In addition, the

time requirements of the digital filter data-path is considered. This will provide PSO

with an objective function to obtain a combined area-cum-time-optimal digital filter

data-path.
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Chapter 4

Application Examples

In chapters2 and 3, the design and optimization of FRM digital filters, and the

high-level synthesis of digital filters using PSO were discussed, respectively. This

chapter is concerned with the application of PSO to the design, high-level synthesis,

and optimization of digital filters by a number of practical examples.

Two sets of lowpass FRM digital filters are used, with the firstone having an

FIR interpolation subfilter and the second one having an IIR interpolation subfilter.

Moreover, two sets of bandpass FRM digital filters are utilized, where again, one

having FIR digital filters as interpolation subfilters and the other having IIR digital

filters as interpolation subfilters. In case of IIR digital subfilters, the bilinear-LDI

technique is used to realize the FRM IIR digital filter. In addition, an example is

made to illustrate the application of PSO to the high-level synthesis of a benchmark

digital filter.

This chapter proceeds as follows. In section4.1, an example is presented to

show the application of PSO to the design and optimization ofa lowpass FRM FIR

digital filter. Section4.2presents an example illustrating the design and optimiza-

tion of a bandpass FRM FIR digital filter using PSO. In section4.3, the application

of PSO to the design and optimization of a lowpass FRM IIR digital filter is pre-

sented. In this section, the design parameters are the same as the design parameters

of the example in section4.1and comparisons are made to show the improvement in

PSO of FRM IIR digital filter. In addition, a comparison is made between PSO and

GA in this application. In section4.4, PSO is applied to a bandpass FRM IIR digital

filter, while the design parameters are the same as the example in section4.2. Com-
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parisons are made to illustrate the validity of the proposedtechnique. Section4.5

presents an example to show the application of PSO to the high-level synthesis of

a benchmark elliptic wave digital (WD) filter. Finally, section 4.6 presents a brief

summary of this chapter.

4.1 Lowpass FRM FIR Digital Filter Design Exam-
ple

This section is concerned with the design and optimization of a lowpass FRM FIR

digital filter satisfying the magnitude response design specifications given in Table

4.1over the CSD multiplier coefficient space.

The parameters for the PSO of lowpass FRM FIR digital filter isshown in Table

4.2and the CSD parameters are presented in Table4.3.

The first step to design the FRM FIR digital filter is to find the length of the dig-

ital subfiltersHa(z), F0(z) andF1(z). Given the design specification in Table4.1,

The lengths of the digital subfiltersHa(z), F0(z) andF1(z) are found to be79, 24,

and42, respectively (based on Parks-McClellan approach), resulting in N = 145.

The passband and stopband edge frequencies of the digital subfiltersHa(z), F0(z)

andF1(z) are determined by using the design equations given in [3]. Moreover, the

passband ripple and stopband loss of these subfilters are setat 85% of the corre-

sponding values given in the design specifications in Table4.1 (in order to account

for any second-order effects when using the design equations in [3]). In this way,

Table 4.1: Design Specifications for Lowpass FRM FIR DigitalFilter

Maximum Passband RippleAp 0.1[dB]

Minimum Stopband LossAa 40[dB]

Passband-Edge Normalized Frequencyωp 0.60π[Rad]

Maximum Stopband-Edge Normalized Frequencyωa 0.61π[Rad]

Normalized Sampling PeriodT 1[s]

Interpolation FactorM 6
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Table 4.2: PSO Design Parameters for Lowpass FRM FIR DigitalFilter

K w c1 c2 v̂min v̂max Lf Lh

700 0.4 2 2 −5 5 10 10

Table 4.3: CSD Parameters for Lowpass FRM FIR Digital Filter

L0 l0 f0

11 3 10

the derived design specifications for the digital subfiltersHa(z), Hb(z), F0(z) and

F1(z) are obtained as shown in Table4.4.

Finally, by using Parks McClellan approach, the subfiltersHa(z), F0(z) and

F1(z) can be designed. Consequently, the magnitude frequency response of the

overall infinite-precision lowpass FRM FIR digital filterH(z) is obtained as shown

in Fig. 4.1. Based on the infinite-precision lowpass FRM FIR digital filter, the

corresponding CSD FRM FIR initial digital filter is obtainedthrough rounding the

infinite-precision multiplier coefficient values to their closest CSD values. The re-

sulting CSD FRM FIR digital filter has a magnitude frequency response as shown

in Fig. 4.2

By applying the proposed PSO to the above CSD FRM FIR digital filter and

after about100 iterations, the discrete PSO converges to the optimal lowpass FRM

FIR digital filter having a magnitude frequency response as shown in Fig. 4.3. In

addition, Fig.4.4gives us a closer look at the magnitude frequency response inthe

passband region of the lowpass FRM FIR digital filter.

Table4.5represents the comparison of the CSD lowpass FRM FIR digitalfilters

before and after PSO.
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Table 4.4: Band-Edge Frequencies, Passband Ripples and Stopband Losses for Dig-
ital SubfiltersHa(z), Hb(z), F0(z) andF1(z) for Lowpass FRM FIR digital filter

Subfilter
Passband

Edge
Frequency

Stopband
Edge

Frequency

Passband
Ripple

Stopband
Loss

Ha(z) 0.34π 0.4π 0.085 dB 46 dB

Hb(z) 0.4π 0.34π 0.085 dB 46 dB

F0(z) 0.4π 0.6π 0.085 dB 46 dB

F1(z) 0.61π 0.723π 0.085 dB 46 dB
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Figure 4.1: Magnitude Frequency-Response of the Overall Infinite-Precision Low-
pass FRM FIR Digital FilterH(ejω)
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Figure 4.2: Magnitude Frequency-Response of the Overall Lowpass CSD FRM FIR
Digital FilterH(ejω) Before PSO
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Figure 4.3: Magnitude Frequency-Response of the Overall Lowpass CSD FRM FIR
Digital FilterH(ejω) After PSO
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Figure 4.4: Magnitude Frequency-Response in the Passband Region of the Overall
Lowpass CSD FRM FIR Digital FilterH(ejω) After PSO

Table 4.5: Frequency-Response Analysis of the Lowpass CSD FRM FIR Digital
Filter Before and After PSO

Frequency-Response CharacteristicBefore PSO After PSO

Maximum Passband RippleAp 0.2788[dB] 0.0996[dB]

Minimum Stopband LossAa 31.4681[dB] 40.0269[dB]
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4.2 Bandpass FRM FIR Digital Filter Design Exam-
ple

In this section, the design of a bandpass FRM FIR digital filter over the CSD mul-

tiplier coefficient space is considered. The given magnitude response design speci-

fications are as given in Table4.6.

The parameters for the PSO of bandpass FRM FIR digital filter is shown in

Table4.7and the CSD parameters are presented in Table4.8.

As before, the first step to the design of the bandpass FRM FIR digital filter is to

find the lengths of the digital subfiltersHalp(z), F0lp(z), F1lp(z), Hahp(z), F0hp(z)

andF1hp(z). Using the design specifications given in Table4.6, The lengths of the

digital subfiltersHalp(z), F0lp(z) andF1lp(z) are found to be79, 24, and42, re-

spectively. Also, the lengths of the digital subfiltersHahp(z), F0hp(z) andF1hp(z)

are found to be49, 23, and35, respectively, resulting inN = 252. The passband

ripple and stopband loss of these subfilters are set at85% of the corresponding val-

ues given in Table4.6. In this way, the derived design specifications for the digital

subfiltersHalp(z), F0lp(z), F1lp(z), Hahp(z), F0hp(z) andF1hp(z) are obtained as

shown in Table4.9.

Finally, by using Parks McClellan approach, the subfiltersHalp(z), F0lp(z),

F1lp(z), Hahp(z), F0hp(z) andF1hp(z) can be designed. The magnitude frequency

response of the overall infinite-precision bandpass FRM FIRdigital filter H(z) is

as shown in Fig.4.5.

Based on the infinite-precision bandpass FRM FIR digital filter, the correspond-

ing CSD FRM FIR digital filter is obtained to have a magnitude frequency response

as shown in Fig.4.6

By applying the proposed discrete PSO to the above CSD FRM FIRdigital

filter and after about200 iterations, discrete PSO converges to the optimal bandpass

FRM FIR digital filter having a magnitude frequency responseas shown in Fig.4.7.

Fig. 4.8gives us a closer look at the magnitude frequency response inthe passband

region of the bandpass FRM FIR digital filter.

Table4.10compares the CSD bandpass FRM FIR digital filters before and after
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Table 4.6: Design Specifications for Bandpass FRM FIR Digital Filter

Maximum Passband RippleAp 0.1[dB]

Minimum Stopband LossAa 40[dB]

Lower Stopband-Edge Normalized Frequencyωa1 0.31π[Rad]

Lower Passband-Edge Normalized Frequencyωp1 0.33π[Rad]

Upper Passband-Edge Normalized Frequencyωp2 0.60π[Rad]

Upper Stopband-Edge Normalized Frequencyωa2 0.61π[Rad]

Normalized Sampling PeriodT 1[s]

Lowpass Filter Interpolation FactorMlp 6

Highpass Filter Interpolation FactorMhp 5

Table 4.7: PSO Design Parameters for Bandpass FRM FIR Digital Filter

K w c1 c2 v̂min v̂max Lf Lh

700 0.4 2 2 −5 5 10 10

Table 4.8: CSD Parameters for Bandpass FRM FIR Digital Filter

L0 l0 f0

11 3 10
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Table 4.9: Band-Edge Frequencies, Passband Ripples and Stopband Losses for
Digital SubfiltersHalp(z), Hblp(z), F0lp(z), F1lp(z), Hahp(z), Hbhp(z), F0hp(z) and
F1hp(z) for Bandpass FRM FIR Digital Filter

Subfilter
Passband

Edge
Frequency

Stopband
Edge

Frequency

Passband
Ripple

Stopband
Loss

Halp(z) 0.34π 0.4π 0.085 dB 46 dB

Hblp(z) 0.4π 0.34π 0.085 dB 46 dB

F0lp(z) 0.4π 0.6π 0.085 dB 46 dB

F1lp(z) 0.61π 0.723π 0.085 dB 46 dB

Hahp(z) 0.35π 0.45π 0.085 dB 46 dB

Hbhp(z) 0.45π 0.35π 0.085 dB 46 dB

F0hp(z) 0.31π 0.09π 0.085 dB 46 dB

F1hp(z) 0.47π 0.33π 0.085 dB 46 dB
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Figure 4.5: Magnitude Frequency-Response of the Overall Infinite-Precision Band-
pass FRM FIR Digital FilterH(ejω)
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Figure 4.6: Magnitude Frequency-Response of the Overall Bandpass CSD FRM
FIR Digital FilterH(ejω) Before PSO
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Figure 4.7: Magnitude Frequency-Response of the Overall Bandpass CSD FRM
FIR Digital FilterH(ejω) After PSO
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Figure 4.8: Magnitude Frequency-Response in the Passband Region of the Overall
Bandpass CSD FRM FIR Digital FilterH(ejω) After PSO

Table 4.10: Frequency-Response Analysis of the Bandpass CSD FRM FIR Digital
Filter Before and After PSO

Frequency-Response CharacteristicBefore PSO After PSO

Maximum Passband RippleAp 0.6277[dB] 0.0991[dB]

Minimum Stopband LossAa 25.6378[dB] 40.0125[dB]

PSO.

4.3 Lowpass FRM IIR Digital Filter Design Example

Consider the design of a lowpass FRM IIR digital filter satisfying the magnitude re-

sponse design specifications given in Table4.11over the CSD multiplier coefficient

space.

The parameters for the PSO of lowpass FRM IIR digital filter isshown in Table

4.12and the CSD parameters are presented in Table4.13.

Given the design specification in Table4.11, The order of the digital allpass
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Table 4.11: Design Specifications for Lowpass FRM IIR Digital Filter

Maximum Passband RippleAp 0.1[dB]

Minimum Stopband LossAa 40[dB]

Passband-Edge Normalized Frequencyωp 0.60π[Rad]

Maximum Stopband-Edge Normalized Frequencyωa 0.61π[Rad]

Normalized Sampling PeriodT 1[s]

Interpolation FactorM 6

Table 4.12: PSO Design Parameters for Lowpass FRM IIR Digital Filter

K w c1 c2 v̂min v̂max Lf Lh

700 0.4 2 2 −5 5 10 10

Table 4.13: CSD Parameters for Lowpass FRM IIR Digital Filter

L0 l0 f0 L1 l1 f1

11 3 10 12 3 7
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Figure 4.9: Magnitude Frequency-Response of the Overall Infinite-Precision Low-
pass FRM IIR Digital FilterH(ejω)

networksG0(z) andG1(z) are found to be5 and4, respectively. In addition, the

digital masking subfiltersF0(z) andF1(z) have the same length as the previous

example, i.e.24 and42, respectively, resulting inN = 75. In this example a set of

ten CSD LUTs are required, nine LUTs for the multiplier coefficientsmC0,1 , mC0,2 ,

mC0,3 , mL0,2 , mL0,3 , mC1,1 , mL1,1 , mC1,2 andmL1,2 constituent in the digital allpass

networksG0(z) andG1(z), and one template LUT for all the multiplier coefficients

constituent in the masking digital subfiltersF0(z) andF1(z).

Finally, by using Parks McClellan approach, the subfiltersF0(z) andF1(z) can

be designed. Also, by using the EMQF technique, the digital allpass networks

G0(z) andG1(z) can be designed. Consequently, the magnitude and group delay

frequency responses of the overall infinite-precision lowpass FRM IIR digital filter

H(z) is obtained as shown in Figs.4.9and4.10.

Based on the infinite-precision lowpass FRM IIR digital filter, the corresponding

CSD FRM IIR initial digital filter is obtained to have a magnitude and group delay

frequency responses as shown in Figs.4.11and4.12.

By applying the proposed PSO to the initial FRM IIR digital filter and after
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Figure 4.10: Group Delay Frequency-Response of the OverallInfinite-Precision
Lowpass FRM IIR Digital FilterH(ejω)
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Figure 4.11: Magnitude Frequency-Response of the Overall CSD Lowpass FRM
IIR Digital Filter H(ejω) Before PSO
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Figure 4.12: Group Delay Frequency-Response of the OverallCSD Lowpass FRM
IIR Digital Filter H(ejω) Before PSO

about70 iterations, the PSO converges to the optimal lowpass FRM IIRdigital

filter having a magnitude frequency response as shown in Fig.4.13. In addition,

Fig. 4.14gives us a closer look to the magnitude frequency response ofthe passband

region of the lowpass FRM IIR digital filter. Fig.4.15illustrates the group delay

frequency response of the optimized lowpass FRM IIR digitalfilter. The values

of the multiplier coefficientsmL0 or1, p andmC0 or 1, p are obtained as summarized in

Table4.14.

Table4.15represents the comparison of the CSD lowpass FRM IIR digitalfilters

before and after PSO.

Since the design specifications are the same for this exampleand lowpass FRM

FIR digital filter example in section4.1, comparisons can be made between these

two filters in terms of the number of optimization variables and the speed of con-

vergence as summarized in Table4.16.
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Figure 4.13: Magnitude Frequency-Response of the Overall CSD Lowpass FRM
IIR Digital Filter H(ejω) After PSO
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Figure 4.14: Magnitude Frequency-Response of the PassbandRegion of the Overall
CSD Lowpass FRM IIR Digital FilterH(ejω) After PSO
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Figure 4.15: Group Delay Frequency-Response of the OverallCSD Lowpass FRM
IIR Digital Filter H(ejω) After PSO

Table 4.14: Digital Multiplier Values for Lowpass FRM IIR Digital Filter

Multiplier CSD RepresentationDecimal Value

mC0,1 00001.0001̄01̄0 0.9219

mC0,2 10101.0000000 21

mC0,3 00010.01̄0001̄0 1.7344

mL0,2 00000.0001001̄ 0.0547

mL0,3 00000.10001̄01̄ 0.4609

mC1,1 00001.001̄01̄00 0.8438

mC1,2 01000.1000000 8.5

mL1,1 00001.001̄01̄00 0.8438

mL1,2 00000.0010010 0.1406
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Table 4.15: Frequency-Response Analysis of the CSD LowpassFRM IIR Digital
Filter Before and After PSO

Frequency-Response CharacteristicBefore PSO After PSO

Maximum Passband RippleAp 0.4345[dB] 0.0991[dB]

Minimum Stopband LossAa 4.9451[dB] 40.336[dB]

Maximum Group Delay 178[Samples] 148[Samples]

Table 4.16: Comparison between PSO of Lowpass FRM FIR Digital Filter and PSO
of Lowpass FRM IIR Digital Filter

Characteristic Lowpass FRM
FIR Digital Filter

Lowpass FRM
IIR Digital Filter

Number of Optimization VariablesN 145 75

Average Number of Iterations 100 70

4.3.1 Comparison with DCGA

In this section a comparison has been made between the proposed algorithm and the

Diversity Controlled (DC) GA [23] for the optimization of the lowpass FRM IIR

digital filter satisfying the design specifications in Table4.11. This comparison was

made because these two techniques are both LUT-based and theinitialization of the

algorithms are the same. The parameters for DCGA optimization of the lowpass

FRM IIR digital filter arec = 0.8, α = 0.3 andζ = 0.4 [109] and the number of

chromosomes in the population pool is1000.

In this comparison,20 different trials are performed for the optimization of a

lowpass FRM IIR digital filter while each trial contains200 iterations. The average

fitness value of the best particle in the swarm (best chromosome in the population

pool) in these20 trials is calculated in each iteration. The result is shown in Fig.

4.16.

Two observations can be obtained from this figure:

• The initialization of the two techniques is tried to be the same, i.e. the seed
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Figure 4.16: Comparison Between the Proposed PSO (Solid Line) and DCGA (Dot-
ted Line) for the Optimization of a Lowpass FRM IIR Digital Filter

chromosome in DCGA optimization of the lowpass FRM IIR digital filter

is obtained exactly as the seed particle is obtained in the proposed PSO. The

population pool, then, is generated through random mutation of the seed chro-

mosome with small mutation probability. As it can be seen in Fig. 4.16, the

initialization of the proposed PSO is much better than that of the DCGA. This

is an advantage for the proposed PSO in terms of finding the optimal solution

while the population is still diverse.

• The speed of convergence for the proposed PSO is higher than the DCGA

technique. This is obvious in Fig.4.16since the slope of the graph for the

proposed PSO is greater than the slope of the graph for DCGA.

4.4 Bandpass FRM IIR Digital Filter Design Exam-
ple

Consider the design of a bandpass FRM IIR digital filter satisfying the magnitude

response design specifications given in Table4.17over the CSD multiplier coeffi-
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Table 4.17: Design Specifications for Bandpass FRM IIR Digital Filter

Maximum Passband RippleAp 0.1[dB]

Minimum Stopband LossAa 40[dB]

Lower Stopband-Edge Normalized Frequencyωa1 0.31π[Rad]

Lower Passband-Edge Normalized Frequencyωp1 0.33π[Rad]

Upper Passband-Edge Normalized Frequencyωp2 0.60π[Rad]

Upper Stopband-Edge Normalized Frequencyωa2 0.61π[Rad]

Normalized Sampling PeriodT 1[s]

Lowpass Filter Interpolation FactorMlp 6

Highpass Filter Interpolation FactorMhp 5

Table 4.18: PSO Design Parameters for Bandpass FRM IIR Digital Filter

K w c1 c2 v̂min v̂max Lf Lh

700 0.4 2 2 −5 5 10 10

cient space.

The parameters for the PSO of bandpass FRM IIR digital filter is shown in Table

4.18and the CSD parameters are presented in Table4.19.

Given the design specification in Table4.17, The order of the digital allpass

networksG0lp(z), G1lp(z), G0hp(z) andG1hp(z) are found to be3, 4, 3 and4, re-

spectively. In addition, the digital masking subfiltersF0lp(z), F1lp(z), F0hp(z) and

F1hp(z) have the same length as the previous example, i.e.24, 42, 25 and35 re-

spectively, resulting inN = 140. In this example a set of fifteen CSD LUTs are

Table 4.19: CSD Parameters for Bandpass FRM IIR Digital Filter

L0 l0 f0 L1 l1 f1

11 3 10 12 3 7
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Figure 4.17: Magnitude Frequency-Response of the Overall Infinite-Precision
Bandpass FRM IIR Digital FilterH(ejω)

required, fourteen LUTs for the multiplier coefficientsmC0,1 , mC0,2 , mC0,3 , mL0,2 ,

mL0,3 , mC1,1 , mL1,1 , mC1,2 andmL1,2 constituent in the digital allpass networks

G0lp(z), G1lp(z), G0hp(z) andG1hp(z), and one template LUT for all the multiplier

coefficients constituent in the masking digital subfiltersF0lp(z), F1lp(z), F0hp(z)

andF1hp(z).

Finally, by using Parks McClellan approach, the subfiltersF0lp(z), F1lp(z),

F0hp(z) andF1hp(z) can be designed. Also, by using the EMQF technique, the

digital allpass networksG0lp(z), G1lp(z), G0hp(z) andG1hp(z) can be designed.

Consequently, the magnitude and group delay frequency responses of the overall

infinite-precision bandpass FRM IIR digital filterH(z) is obtained as shown in

Figs.4.17and4.18.

Based on the infinite-precision bandpass FRM IIR digital filter, the correspond-

ing CSD FRM IIR initial digital filter is obtained to have a magnitude and group

delay frequency responses as shown in Figs.4.19and4.20.

By applying the proposed PSO to the initial FRM IIR digital filter and after

about160 iterations, the PSO converges to the optimal bandpass FRM IIR digital
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Figure 4.18: Group Delay Frequency-Response of the OverallInfinite-Precision
Bandpass FRM IIR Digital FilterH(ejω)
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Figure 4.19: Magnitude Frequency-Response of the Overall CSD Bandpass FRM
IIR Digital Filter H(ejω) Before PSO
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Figure 4.20: Group Delay Frequency-Response of the OverallCSD Bandpass FRM
IIR Digital Filter H(ejω) Before PSO

filter having a magnitude frequency response as shown in Fig.4.21. In addition,

Fig. 4.22gives us a closer look to the magnitude frequency response ofthe passband

region of the bandpass FRM IIR digital filter. Fig.4.23illustrates the group delay

frequency response of the optimized bandpass FRM IIR digital filter. The values

of the multiplier coefficients for the lowpass and highpass sections of the bandpass

FRM IIR digital filter are obtained as summarized in Tables4.20and4.21.

Table 4.22 represents the comparison of the CSD bandpass FRM IIR digital

filters before and after PSO.

Since the design specifications are the same for this exampleand bandpass FRM

FIR digital filter example in section4.2, comparisons can be made between these

two filters in terms of the number of optimization variables and the speed of con-

vergence as summarized in Table4.23.
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Figure 4.21: Magnitude Frequency-Response of the Overall CSD Bandpass FRM
IIR Digital Filter H(ejω) After PSO
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Figure 4.22: Magnitude Frequency-Response of the PassbandRegion of the Overall
CSD Bandpass FRM IIR Digital FilterH(ejω) After PSO
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Figure 4.23: Group Delay Frequency-Response of the OverallCSD Bandpass FRM
IIR Digital Filter H(ejω) After PSO

Table 4.20: Digital Multiplier Values for the Lowpass Section of the Bandpass FRM
IIR Digital Filter

Multiplier CSD RepresentationDecimal Value

mC0,1 00001.0001̄001̄ 0.9297

mC0,2 00010.0001̄01̄0 1.9219

mL0,2 00000.1000010 0.5156

mC1,1 00001.001̄001̄0 0.8594

mC1,2 10000.1̄01̄0000 15.375

mL1,1 00001.0001̄01̄0 0.9219

mL1,2 00000.00101̄01̄ 0.0859
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Table 4.21: Digital Multiplier Values for the Highpass Section of the Bandpass
FRM IIR Digital Filter

Multiplier CSD RepresentationDecimal Value

mC0,1 00001.001̄01̄00 0.8438

mC0,2 00010.0001001̄ 2.0547

mL0,2 00000.1000001̄ 0.4922

mC1,1 00001.01̄00010 0.7656

mC1,2 10000.0100001 16.2578

mL1,1 00001.00001̄01 0.9766

mL1,2 00000.00101̄01̄ 0.0859

Table 4.22: Frequency-Response Analysis of the CSD Bandpass FRM IIR Digital
Filter Before and After PSO

Frequency-Response CharacteristicBefore PSO After PSO

Maximum Passband RippleAp 0.8982[dB] 0.0978[dB]

Minimum Stopband LossAa 9.1715[dB] 40.0172[dB]

Maximum Group Delay 312[Samples] 239[Samples]

Table 4.23: Comparison between PSO of Bandpass FRM FIR Digital Filter and
PSO of Bandpass FRM IIR Digital Filter

Characteristic Bandpass FRM
FIR Digital Filter

Bandpass FRM
IIR Digital Filter

Number of Optimization VariablesN 252 140

Average Number of Iterations 200 160
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4.5 High-Level Synthesis of Digital Filters Example

In this section the proposed PSO algorithm is applied to the digital data-path syn-

thesis of the benchmark elliptic WD filter shown in Fig.4.24[110]. In this figure,

the input node is labeled as1 and the output node is labeled as42. All the outputs

of the time delays in Fig.4.24act as an input to the system and all the inputs to the

time delays act as the output of the system. Therefore, nodes1, 8, 9, 13, 24, 31, 36,

and37 are generated in the first time-step in the DFG and nodes7, 10, 12, 23, 35,

38, 41, and42 are last consumed in the last time-step of the DFG.

The above high-level synthesis is performed in terms of two types of arithmetic

functional units, namely two-input digital adders and digital modified booth mul-

tipliers. Moreover, the signal wordlengthW is fixed at22 bits and the coefficient

wordlength is fixed at15 bits throughout the synthesis. The maximum number of

generations in the constituent PSO algorithm is fixed at100.

The design parameters for the PSO algorithm used in the high-level synthesis

of digital filters is as shown in Table4.24

High-level synthesis by PSO algorithm leads to optimal data-paths character-

ized by the entries in Table4.25.

The scheduled DFGs associated with the user-specified constraints in column 1

of Table4.25are as shown in Figs.4.25, 4.27, and4.29. In addition, The life-time

table corresponding to the user-specified constraints in Table4.25are obtained as in

Figure 4.24: A benchmark fifth-order elliptic WD filter
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Table 4.24: PSO Design Parameters for High-Level Synthesisof a Benchmark Dig-
ital Filter

K w c1 c2 v̂min v̂max

100 0.25 2 2 −5 5

Table 4.25: Results of High-Level Synthesis with PSO

Functional Units
Nadd 3 3 2

Nmult 2 1 1

Time Steps ttotal 17 18 19

Multiplexors

Nmux2 6 5 5

Nmux3 4 2 1

Nmux4 4 6 4

Nmux5 1 0 1

Nmux6 1 0 1

Nmux7 1 1 0

Nmux8 0 2 2

Registers Nreg 13 12 12

88



Table 4.26: Register Allocation for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 3 andNmult = 2

Register #1 1 6 7

Register #2 8 2 4 5 42

Register #3 9 19 17 16 3 12

Register #4 13 38

Register #5 24 22 27 21 23

Register #6 31 14 10

Register #7 36 25 29 30 32 35

Register #8 37

Register #9 20 18 15 11

Register #10 28 26 33 34

Register #11 39

Register #12 40

Register #13 41

Figs. 4.26, 4.28, and4.30, and the register allocation for each of the user-specified

constraints are obtained as shown in Tables4.26, 4.27, and4.28. Moreover, the

average values of the cost function after20 runs as obtained during the course of

optimization for these user-specified constraints are as shown in Fig.4.31.
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Figure 4.25: Scheduled DFG for Data-Path Synthesis of Benchmark WD Filter for
Nadd = 3 andNmult = 2
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Figure 4.26: Life-Time Table for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 3 andNmult = 2
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Figure 4.27: Scheduled DFG for Data-Path Synthesis of Benchmark WD Filter for
Nadd = 3 andNmult = 1

92



Time-steps

Va
ria

b
le

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 4.28: Life-Time Table for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 3 andNmult = 1
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Table 4.27: Register Allocation for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 3 andNmult = 1

Register #1 1 6 7

Register #2 8 2 4 5 39 12

Register #3 9 19 17 16 3 42

Register #4 13 38

Register #5 24 22 27 21 23

Register #6 31 11 10

Register #7 36 25 29 30 15 33 14 35

Register #8 37

Register #9 20 18 32

Register #10 28 26 40

Register #11 34

Register #12 41

Table 4.28: Register Allocation for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 2 andNmult = 1

Register #1 1 6 7

Register #2 8 2 4 5 34

Register #3 9 19 17 16 3 38

Register #4 13 12

Register #5 24 22 27 21 23

Register #6 31 14 39

Register #7 36 25 29 30 11 10

Register #8 37

Register #9 20 18 15 32 41

Register #10 28 26 33 42

Register #11 40

Register #12 35
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Figure 4.29: Scheduled DFG for Data-Path Synthesis of Benchmark WD Filter for
Nadd = 2 andNmult = 1
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Figure 4.30: Life-Time Table for Optimized Data-Path Synthesis of Benchmark
WD Filter forNadd = 2 andNmult = 1
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Figure 4.31: Average Value of the Cost Function Versus Number of Iterations for
Different User-Specified Constraints (Nadd = 3 andNmult = 2 (solid),Nadd = 3
andNmult = 1 (dashed),Nadd = 2 andNmult = 1 (dotted))

4.6 Summary

This chapter has presented several examples to illustrate the application of the pro-

posed PSO to the design, high-level synthesis, and optimization of digital filters.

The first two examples have been concerned with the design andoptimization of

FRM FIR digital filters, one having a lowpass and the other having a bandpass

frequency-response characteristic. The optimization hasbeen performed over the

CSD multiplier coefficient space and the results have shown that PSO can be suc-

cessfully applied to the design and optimization of FRM FIR digital filters.

The second two examples have explained the application of PSO to the design

and optimization of a set of two FRM IIR digital filters, one having a lowpass and

the other having a bandpass frequency-response characteristic. The optimization

considered both the magnitude and the group-delay frequency-responses. Similar

to the first two examples, these optimizations have been performed over CSD multi-

plier coefficient space and the design specifications have been kept unchanged with

respect to the first two examples. Therefore, comparisons could be made between
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the two FRM techniques. It has shown that in case of FRM IIR digital filters, not

only the number of optimization variables are reduced in comparison with their FIR

counterparts, but also the speed of convergence is increased, so that one can obtain

a stable FRM digital filter fast and reliably. In addition, the results for PSO of

lowpass FRM IIR digital filter have been compared with the results obtained previ-

ously using DCGA, and it has been shown that PSO gives faster and more reliable

solutions than DCGA.

Finally, the last example has demonstrated high-level synthesis of digital filters

through the application of PSO to the high-level synthesis of a benchmark elliptic

WD filter. This example concerned with the optimization of the data-path asso-

ciated with the digital filter and the result has been shown tobe area-cum-time-

optimal. This has been achieved by optimizing the number of required support

cells together with the user-specified number of arithmeticfunctional units, and by

taking into account the cost for the hardware implementation of each of the above

items. The number of time-steps in the DFG has been also minimized to obtain an

optimal digital filter data-path.
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Chapter 5

Conclusions

5.1 Conclusions

This thesis has been concerned with the design and optimization of a class of dig-

ital filters suitable for direct hardware realization. The digital filter should have

been capable of having sharp transition bandwidth, while maintaining low com-

plexity in term of hardware implementation. Therefore, FRMtechnique has been

employed to achieve the previous goals. In order to further reduce the hardware

complexity for the implementation of FRM digital filter, theCSD number system

has been exploited for the advantage of having fewer number of nonzero bits in the

representation of multiplier coefficient values constituent in the FRM digital filter.

Two approaches have been studied; FRM digital filters incorporating FIR dig-

ital filters to represent both masking digital subfilters andinterpolation subfilters,

and FRM digital filters incorporating FIR digital filters to represent masking digital

subfilters and IIR digital filters to represent interpolation subfilters. In the latter case

the hardware realization complexity is reduced due to the fewer number of coeffi-

cients present in the implementation of an IIR digital filter. To further reduce the

number of coefficients, the bilinear-LDI technique has beenexploited to represent

digital interpolation subfilters constituent in the FRM digital filters.

A novel particle swarm optimization has been proposed for the optimization of

FRM digital filters. This technique is capable of tackling three separate problems

that may occur in the process of optimization of FRM digital filters. A set of LUTs

is constructed and the indices of the LUTs are used to define the search space for
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the PSO. Therefore, an integer-based PSO is proposed to search over the indices of

the LUTs and to ensure that the resulting multiplier coefficient values constituent in

the FRM digital filters conform to the CSD number system format. By successive

augmentation of the LUTs with regard to the set of stability constraints, the search

space is limited to FRM digital filters that are guaranteed tobe BIBO stable in the

course of optimization. Finally, barren layers have been introduced to guarantee

that in the course of PSO, the particles remain inside the boundaries of LUTs. The

cost function for PSO of FRM digital filters has been calculated to optimize both

the magnitude frequency response as well as the group delay associated with the

FRM digital filter.

In addition, a novel PSO has been developed for high-level synthesis of dig-

ital filters. An encoding scheme has been introduced to guarantee that the data-

dependency relationships in the digital filter DFG remain satisfied under the oper-

ations of addition and subtraction in the PSO algorithm. In addition, a technique

is developed to avoid any functional unit violation (that may occur because of the

random nature of the operations of addition and subtractionin the underlying PSO

algorithm) through the course of high-level synthesis of digital filters. The PSO is

capable of optimizing the area and time constraints associated with the high-level

synthesis of digital filters, by taking into account the user-specified constraints in

the number of functional units available for implementation of the DFG. In addition,

the number of support cells, such as registers and multiplexors, has been optimized

in the course of PSO for the high-level synthesis of digital filter data-paths.

Several examples have been presented to illustrate the usefulness of the pro-

posed techniques. PSO was applied to a set of FRM FIR digital filters, one showing

a lowpass frequency response characteristic and the other having a bandpass fre-

quency response characteristic. In addition, to show the usefulness of the PSO to

the design and optimization of FRM IIR digital filters incorporating bilinear-LDI

digital subfilters, a lowpass and a bandpass FRM IIR digital filter with stringent

design specifications were used as examples. Moreover, PSO has been applied to

the high-level synthesis of a benchmark elliptic wave digital filter and the results

obtained were illustrated in an example.
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5.2 Summary of Contributions

• This thesis has presented FRM FIR digital filter technique toreduce the com-

plexity of designing a sharp transition band digital filter.

• In order to further reduce the hardware realization complexity, an IIR-based

FRM digital filter incorporating interpolation digital subfilters realized using

bilinear-LDI design technique has been presented.

• A step-by-step procedure for the design of FRM digital filters incorporating

FIR or IIR interpolation subfilters is presented.

• A novel integer-based PSO is presented for the optimizationof FRM digital

filters.

• A set of CSD LUTs is constructed and modified to guarantee the BIBO sta-

bility of the resulting digital filters that may be generatedthroughout the PSO

process.

• An indirect search method is introduced that makes the PSO tosearch over

the indices of LUTs. In this way, the multiplier coefficient values constituent

in the digital filter particle are guaranteed to conform to CSD number format.

• A novel modification to the LUTs is presented to ensure that the particles

remain inside the LUTs in the course of PSO. In this modification, the LUTs

are augmented in two directions with two layers that are characterized with

low fitness values. These layers are called barren layers. The conditions

present in the equation of PSO makes it impossible for the particles to go

over the boundaries of the augmented LUTs.

• A new cost-function is developed that simultaneously optimizes both the

magnitude-frequency and group-delay frequency response.The group-delay

frequency response is calculated efficiently using adjointnetworks technique.

• A novel PSO is developed for high-level synthesis of digitalfilter data-paths.
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• An encoding scheme is presented to encode the scheduling andallocation

of the operations present in the digital filter data-path into particles, which

preserves the data-dependency relationships in the digital filter data-paths.

• A new technique is developed to avoid functional unit violation that may

occur during the course of PSO for high-level synthesis of digital filter data-

paths.

• The cost function utilized for the high-level synthesis of digital filter data-

paths allow time-optimal, area-optimal, or time-cum-area-optimal synthesis

of digital filter data-paths.

• The usefulness of PSO of FRM FIR digital filters has been demonstrated.

• The usefulness of PSO of FRM IIR digital filters incorporating bilinear-LDI

interpolation subfilters has been demonstrated.

• The usefulness of PSO for high-level synthesis of digital filter data-paths has

been demonstrated.

5.3 Suggestions for Future Work

Future work involves the improvement of the proposed integer-based PSO algo-

rithm. It may be reasonable to find a way for removing the rounding operations

present in the proposed PSO. The LUT-based technique and thebarren layers in-

troduced in this thesis can be further processed and can be used for different ap-

plications, not only in the field of digital filter design, butalso in other fields of

research.

This thesis has presented high-level synthesis of digital filters using PSO. Fu-

ture work in this area involves the automatic avoidance of functional unit violation

in course of PSO. This can be achieved either by including an extra term in the

objective function of PSO, or by adding an optimization variable to the underlying

PSO. In the latter case, the speed of convergence for PSO may be reduced, while
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in the first case, the speed of convergence is changed negligibly. Other encoding

schemes can be employed to reduce the number of coordinates in a particle.
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