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Abstract

This thesis is concerned with the development of a noverelisgarticle swarm
optimization (PSO) technique and its application to therdite optimization of
digital filter frequency response characteristics on theltend, and the high-level
synthesis of bit-parallel digital filter data-paths on thkes. Two different tech-
niques are presented for the optimization of sharp-tremmstband frequency re-
sponse masking (FRM) digital filters, one of which is basedh@conventional
finite impulse-response (FIR) digital subfilters, and a nandivare-efficient ap-
proach which is based on utilizing infinite impulse-respo@iR) digital subfilters.
It is shown that further hardware efficiency can be achiewedeldlizing the IIR
interpolation subfilters by using the bilinear-LDI apprbadhe corresponding dis-
crete PSO is carried out over the canonical signed digit (GBiltiplier coefficient
space for direct mapping to digital hardware consideringuiianeous magnitude
and group-delay frequency response characteristics. Agualencoding scheme
is developed for the high-level synthesis of digital filtbi@sed on discrete PSO,
which preserves the data dependency relationships in thealdiilter data-paths.
In addition, a constrained discrete PSO is developed tocowee the limitations
which would manifest themselves if the conventional PSOevterbe used. Sev-
eral examples are presented to demonstrate the applicHtdiacrete PSO to the

design, high-level synthesis and optimization of digitifs.
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Chapter 1

Introduction

Digital filters find wide variety of applications in moderngdial signal process-
ing systems1, 2]. As a result of the recent progress in such systems, theae is
ever growing demand for sharp transition band digital sltérhese narrow transi-
tion bandwidth digital filters are usually designed by udimg frequency response
masking (FRM) approacl8]. The computational efficiency of the FRM technique
makes it suitable for different applications, e.g. in auglgnal processing and data
compression4].

Practical design of digital filters is based on optimizafimrsatisfying the given
design specifications together with the hardware architectHowever, the opti-
mization may be carried out in terms of fixed configurationsvawmiable multiplier
coefficient values. On the other hand, the problem may coniter optimization
of the hardware architecture without taking the multipkbeefficient values into
consideration.

In order to optimize the given design specifications, thetipligr coefficient
values can be determined in infinite precision by using hitheptimization tech-
niques. However, in an actual hardware implementationefigital filters, the in-
finite precision multipliers should be quantized to theiitéprecision counterparts,
but these finite precision multiplier coefficients may nodensatisfy the given de-
sign specifications. Consequently, from a hardware imphtati®n point of view,
there is a need for finite precision optimization techniguagpable of finding the
optimized digital filter rapidly while keeping the computatal complexity at a de-

sired level. In principle, there exist two different tectpmes for the optimization of



digital filters, namely, gradient-based and heuristicroation approaches.

Gradient-based optimization techniques have been stwd@ely. In [5], an
integer programming technique was developed for the opétian of digital filters
over a discrete multiplier coefficient space. @ij a Remez exchange algorithm was
used for the optimization of FRM finite impulse response (FRital filters and it
was shown that this algorithm may provide a speed advantagetioe linear pro-
gramming approach. However, both these techniques suéier $ub-optimality
problems. In 7], unconstrained weighted least-squares criterion wad tsele-
velop another technique for the optimization of digitakfit. Convex optimization
approaches such as semi-definite programn8harid second-order cone program-
ming [9] have also been applied to the optimization of digital fdtedowever, if a
large number of constraints are present, these optimizggzhniques may become
computationally inefficient in terms of time consumptiordapeed.

Heuristic optimization algorithms have emerged as pramgisandidates for the
design and discrete optimization of digital filters, partarly due to the fact that
they are capable of automatically finding near-optimum tsmhs while keeping
the computational complexity of the algorithm at moderateels. Simulated an-
nealing (SA) and genetic algorithms (GAs) were widely usethe design and op-
timization of digital filters L0-12]. Particle swarm optimization (PSO) and seeker
optimization algorithm (SOA) are two newly developed altfons suitable for the
optimization of various digital filters due to their few nuerbof implementation
parameters and high speed of convergerd&14]. It was shown that SOA has
advantages over PSO in terms of the speed of convergencdabal gearch abil-
ity [15]. Tabu search (TS) 1[6], ant colony optimization (ACO) 17], immune
algorithm (1A) [18] and differential evolution (DE) 19, 20] are alternative can-
didates for the optimization of digital filters. All the fageing techniques allow a
robust search of the solution space through a parallel lse@asll directions with-
out any recourse to gradient information. However, theaf@ntioned techniques
were developed for infinite precision optimization of dajifilters which require
the user to perform a quantization step for a hardware img@h¢ation.

In [21-23], a technique was developed for finite-precision design @i+



mization of FRM digital filters using GAs. finite-precisiomptimization of FRM
FIR digital filters using PSO was studied i&4] 25] and finite-precision optimiza-
tion of infinite impulse response based (lIR-based) FRMtdidilters was studied
in [26,27]. In this thesis, PSO of FRM FIR and FRM IIR digital filters t@able
for direct very-large-scale integration (VLSI) hardwamgplementation is studied.
PSO was originally proposed by Kennedy and Eberhart in 19%breew intelligent
optimization algorithm which simulates the migration aggegation of a flock of
birds seeking foodZg]. It adopts a strategy based on particle swarm and parallel
global random search, that may exhibit superior perforragncother intelligent
algorithms in computational speed and memory. In PSO, anpateandidate so-
lution is represented as a particle in a multidimensionai@espace, where each
dimension represents a distinct optimization variablee Pphrticles in the multi-
dimensional search space are characterized by corresppfitiess values. They
make movements in the search space towards regions chiaedtey high fithess
values.

The conventional FRM digital filters incorporate FIR intelgtion digital sub-
filters. These digital subfilters are usually of high ordeesdering the resulting
overall FRM digital filters as not economical, since the hasg digital filters oc-
cupy large chip areas and consume high amounts of powerimth8I hardware
implementations. In general, the multiplication openai®the most cost-sensitive
part in such an implementation. Therefore, there is evergntive to reduce the
number of multiplication operations in the digital filterafezation. This problem
may be circumvented by employing IIR interpolation diggabfilters R9, 30].

There is a vast body of literature available for the desigth @ptimization of
digital lIR filters [31-33]. However, all the aforementioned designs are based on
the exact transfer function coefficients which leads to amconomical hardware
realization of such filters. This thesis employs the actudltiglier coefficients for
the direct VLSI hardware implementation as design and dpétion variables. In
order to realize the constituent lIR interpolation diggabfilters on a hardware plat-
form, the bilinear-lossless-discrete-integrator (l@n-LDI) digital filter design ap-

proach is employedH]. These digital subfilters are realized as a sum/differerfice



a pair of bilinear-LDI digital allpass networks. The satiégatures of the bilinear-
LDI digital filters are that they lend themselves to fast teyale parallel digital sig-
nal processing speeds, while being minimal in the numbergitadl multiplication
operations (and, practically, minimal in number of digaaldition and unit-delay
operations).

The starting point in the design of FRM digital filters is todithe multiplier co-
efficients constituent in the FRM digital filter in infinitegmision by using the hith-
erto gradient-based optimization techniques (e.g. PlslitGSlellan approach3s)
for FIR digital filters) followed by a quantization step. Theantization can be
performed by constraining the multiplier coefficients \eduo conform to certain
number systems such as the signed power-of-two (SPT) sySteiinis a computa-
tionally efficient number system which can further reduaehrdware complexity
of the FRM IIR digital filters. In this number system, each tiplier coefficient
is represented with only a few non-zero bits within its werdjth, permitting the
decomposition of the multiplication operation into a firsexies of shift and add op-
erations. Digital filters incorporating SPT multiplier ¢ba@ent representation are
commonly referred to asultiplierlessdigital filters [36]. However, the SPT repre-
sentation of a given number is not unique, resulting in redmay in the multiplier
coefficient representation. This redundancy can advesedtdyt the corresponding
computational complexity due to recourse to compare opperRtepetitively.

The canonical signed digit (CSD) number system is a speatd of the SPT
number system which circumvents the above redundancyemobly limiting the
number of non-zero bits in the representation of the mudtigloefficients. Itis usu-
ally used in combination with subexpression sharing andiektion, which in turn
results in substantial reduction in the cost of the VLSI gk implementation of
the digital filters B7]. In CSD number system, no two (or more) non-zero bits can
appear consecutively in the representation of the mudtigdoefficients, reducing
the maximum number of non-zero bits by a factor of two in teahshift and add
operations 38].

After multiplier coefficient quantization, the resultin@®M digital filter may no

longer satisfy the given target design specifications. dfoee, the next step in the



design of FRM digital filters is to perform a further optimiza to make the finite
precision FRM digital filter to conform to the design spedifions. This can be
achieved by resorting to a finite-precision optimizatiocht@que such as PSO.

A direct application of the conventional PSO algorithm te tiptimization of

the above FRM digital filters gives rise to three separatélpros:

The first problem arises because in the course of optimizati@ multiplier coef-
ficient update operations lead to values that may no long#&oom to the desired
CSD wordlength, etc. (due to random nature of velocity argitfpm of particles).
This problem is resolved by generating indexed look-upetsLUTSs) of permis-
sible CSD multiplier coefficient values, and by employing thdices of LUTs to

represent FRM digital filter multiplier coefficient values.

The second problem stems from the fact that in case of FRM iffkadl filters,
the resulting FRM IIR digital filters may no longer be boundeput-bounded-
output (BIBO) stable. This problem can be resolved by gdaimrand successive
augmentation of template LUTs until the BIBO stability ctrasts remain satisfied
[23].

Finally, the third problem arises because even in case ohgawdexed LUTS, the
particles may go over the boundaries of LUTs in course ofhoigition (due to the
inherent limited search space). This can be resolved bydatiingbarren layers

A barren layer is a region, with a certain width and certaitries, which is added
to the problem space such that the particles tend to shy awayduch a region.
The width of the barren layers is calculated based on a wast scenario that
may happen in the particles movements in the search spasgevdq the entries
of barren layers are different for different problems angdeatel on the topology of

the search space and the fitness function used in the problem.

The field of high-level synthesis has gained a great dealcufgmition on the
part of digital system designers during the past decaB@sip]. The process of
high-level synthesis usually begins with a behavioral dpon of the required

digital system together with a set of user-specified time@ndrea constraints.



The goal of high-level synthesis is to produce a correspaniigister-transfer level
(RTL) implementation that satisfies the given constraif@$2]. This implemen-
tation includes the data-path as well as the hardware toadhe constituent data
transfers. The resulting data-path itself includes a ndkwbarithmetic functional
units, registers, multiplexors, and buses.

The process of high-level synthesis consists of three ntepss The first step
concerns the translation of the digital system specifioatimto a corresponding
data flow graph (DFG) . The second step, referred to as sdhgdutvolves the
assignment of the DFG operations to various time-stepsalllgjrthe third step,
referred to as data path synthesis, concerns the bindingedDEG operations to
physical arithmetic units (digital adders, digital muligps, etc.), as well as the sub-
sequent allocation of hardware resources (registersjptexors, etc.) to facilitate
the data transfer in the DFG.

There are a number of approaches available for the schedofidigital sys-
tems. The as soon as possible (ASAP) and the as late as jpa@di&AP) schedul-
ing techniques are the most well known amongst these appeeadn the absence
of any constraints on the hardware resources, the ASAP slihgdeads to the
fastest possible schedule, generating the minimum nuniltene-steps. However,
the main disadvantage of this scheduling technique is tihedds to high hardware
requirements. In44] and [49], this problem was resolved through a conditional
postponement of the operations. W], force directed scheduling technique was
developed in an attempt to distribute the operations evewdy the various time-
steps. The latter technique is global both in the way it ¢eléte next operation
to be scheduled and in the way it decides on the time-stepatgehis operation,
although it performs the scheduling and allocation tasksusgely. In #3], the
scheduling and allocation tasks are carried out simultasigowhere the schedul-
ing is performed based on the critical path in the DFG, andélester allocation
is performed by the program proposed 58] In [54], a program based on list
scheduling is proposed, which employs DFG re-timing to gateehe shortest crit-
ical path solution.

In [40], a technique was developed for the synthesis of pipeliretd-gaths,



resulting in an area-optimal, time-optimal or combinedaapptimal-cum-time-
optimal design. A high-level hardware compiler was devetbn [44] to find
the parallelism in the behavioral specifications in ordepitoduce a fast-running
implementation that meets user-specified constraints. nfeger linear program-
ming approach was proposed #il]. Although this approach could find the global
optimum solution, the algorithm was exponential with regi@arthe computational
time, rendering it impractical for large design problems. iterative algorithm was
developed in49], which could escape from the local minima in a polynomiaheo
putational time. Percolation based scheduli#g ftarts with an optimal schedule
and applies transformation methods to maximize paratielis

Genetic algorithms have been used for scheduling problechbigh-level syn-
thesis of digital filters$5-58]. As discussed before, these techniques permit a fast
exploration of the design space in an attempt to find a gloptihmum. PSO can
also be utilized for the application of schedulirgp{61] and high level synthesis
of digital filters.

This thesis is concerned with the application of PSO to theld@ment of a
new optimization technique for the high-level synthesigligital filter data paths.
This optimization technique is concerned with the minirticza of the cost asso-
ciated with the final digital filter for obtaining global areptimal, time-optimal,
or combined area-optimal-cum-time-optimal data pathgesutio user-specified
constraints on the number of physical arithmetic functiamats employed. The
optimization is made computationally effective by encadihe digital filter DFG
into particles which preserve the data-dependency reilstiips in the original dig-
ital filter signal flow graph under the operations of additeosmd subtraction by the
underlying PSO algorithm.

This chapter proceeds as follows. Sectioh provides a brief overview of the
conventional PSO algorithm and explains the recent devedops of the PSO algo-
rithm together with the advantages and disadvantages bf@abese algorithms.

Finally, sectionl.2 provides a brief summary of this chapter.



1.1 PSO Algorithm

In this section, the conventional PSO algorithm is studied| e recent develop-

ments of PSO algorithm is briefly introduced.

1.1.1 The Conventional PSO Algorithm

Let us consider an optimization problem consisting\otlesign variables, and let
us refer to each solution as a particle. Let us further cansidwarm of< particles
in the N-dimensional search space. The position ofkkta particle in the search
space can be assignedvadimensional position vectoX,, = {xy1, k2, . - ., Tin }-
In this way, the element,; (for j = 1,2,..., N) represents thg-th coordinate of
the particleX.

The PSO optimization fithess function maps each pariiglen the search space
to a fitness value. In addition, the particle is assigned &' -dimensional velocity
vectorVy, = {vk1, Ve, - - ., vkn }. The PSO optimization search is directed towards
promising regions by taking into account the velocity vedtp together with the
best previous position of thieth particle Xpes:, = {Tpestyys Toestygs - - - > Thestyn }
and the best global position of the swatM.s; = {Gvest, s Goestss - - - » Goestn + (I-€-
the location of the particle with the best fitness value).

The conventional PSO is initialized by spreading the plasic; through the
search space in a random fashion. Then, the particles makemamts through the
search space towards regions characterized by high fitaéssswvith correspond-
ing velocitiesV,. The movement of each particle is governed by the best prsvio
location of the same particl&,.,,, , and by the global best locati@#,..;. The ve-
locity of particle movement is determined from the previdaest location of the
particle, the global best location, and the previous vé&joci

The velocity and position of each particle in thh iteration throughout the



Figure 1.1: Movement of Particles in PSO Algorithm

course of PSO are updated in accordance with the equations:

vy = wol + e (el — @) + cara(ginh, — 7)) (1.1)
if U;cj < Umin U]Z;;j = Umin
if Ulicj > Umaz 3 Ulicj = Umaz

xzj = :EZI + v,ij (1.2)

The parametew represents an inertia weiglat; andc, are the correction (learning)
factors, and-, andr, are random numbers in the interyél 1]. The velocity is
limited between,,,;,, andv,,,., to avoid very large particle movements in the search
space, where,,,;, < 0 andv,,,, > 0. Fig. 1.1lillustrates how the particles move in
a two-dimensional search spacgé & 2). In this figure, two particles are presentin
the swarm, i.e K = 2.

The first term in the right hand side of movement update Efid),(weighted
by w, signifies the dependence of the current particle veloaityt® value in the
previous iteration. The second term, weighted-fysignifies an attractor to pull the

particle towards its previous best position. The third tenmighted byc, controls



the movement of the particle towards the global best pasitio
In addition to the update Eqn4..Q) and (L.2), one can limit the coordinates in a

particle between two user defined valugs, andz;, . in order to limitthe search

min Jmazx

space. However, This operation increases the complexityyansumes time.

1.1.2 Literature Survey on PSO

Due to its simple implementation in both software and harévadatforms, the PSO
has become a popular optimization technique and has be@amweipplied to solve
many practical problems. Therefore, there is a vast bodyevéture concerning the
performance improvements of the PSO algorithm and manyehieal studies have
been made to illustrate the importance and effectiveneBS&. Convergence anal-
ysis and stability studies have been reporteds2+65]. Much research on perfor-
mance improvements has been reported, including parastetdies, combination
with auxiliary operations, and topological structuré6,b7]. There are three basic
parameters involved in the conventional PSO algorithm,etgnthe inertia weight
w and the correction factors andc,. The inertia weightv in Egn. (L.1) was intro-
duced in B8] which was forced to linearly decrease with the iterativaeyations.
In this way, in the first iterations, PSO is more likely to sdaglobally through
the entire search space, while as the algorithm proceeds timal iterations, the
PSO searches more precisely in spaces with better fithesssvad find optimal
solutions. A fuzzy adaptiver was proposed ind9] to dynamically adapt the iner-
tia weight on the population level. A random version setting/as experimented
in [70] for dynamic system optimization. The expected value witigh be defined
for this randomuw is based on the idea as in Clerc’s constriction fadd@1]. The
constriction factor is equivalent to the inertia weight heahatically, as Eberhart
and Shi mentioned in7p).

The correction factorg, andc, are also important parameters in PSO as shown
via experiments in Kennedy'’s two extreme casé&d.[Kennedy and Eberharg§]
suggested a fixed value Bfand this configuration has been adopted by many other
researchers. In7g], it was shown that using ad hoc values®fandc, instead of

a fixed value o® for different problems could yield better performance. 78][ a
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PSO algorithm was proposed with linearly time-varying eotion factors, where

a largerc; and a smaller; were set at the beginning and were gradually reversed
during the search. Among these three methods, the last ahelingarly time-
varying correction factors shows the best overall perforcea This may be owing

to the time-varying:; andc, that can balance the global and local search abilities,
which implies that adaptation ef andc, can be promising in enhancing the PSO
performance.

Another active research trend in PSO is hybrid PSO, whichbioes PSO with
other evolutionary paradigms. 17§, a selection operation similar to that in a
GA was first introduced into PSO. Hybridization of GA and PS&3 lheen used
in [77] for recurrent artificial neural network design. GA operatbhave been also
combined with PSO algorithm to obtain better results.76,[selection operation
was used to improve PSO. Ii§], a recombination method with dynamic linkage
discovery in GA was employed to obtain the PSO-RDL algorittiviutation was
also utilized to improve the search ability of PSI®]. In [80], a breeding operator
was incorporated into the PSO algorithm, where breedingroed inline with the
standard velocity and position update rules. In additidgheotechniques such as
local search 1] and differential evolution82] have been used to combine with
PSO. Self-organizing hierarchical techniqu®][ cooperative approact8f], de-
flection, stretching, and repulsion techniqu8d] [have also been combined with
conventional PSO to enhance performance. Inspired by dppkbme researchers
introduced nicheg5], and speciationgd6] techniques into PSO. These technique are
capable of keeping the particles away from each other indhese of optimization
and they can locate as many optimal solutions as possible.

PSO topological structures are also widely studied. TheQ R&h a ring topo-
logical structure and the Von Neumann topological striee®80 have been pro-
posed in 87,88] to enhance the performance in solving multi-modal proldem
Dynamically changing neighborhood structures have beepgsed in 74,89, 90|
to avoid the drawbacks of fixed neighborhoods. Moreoverhenfully informed
particle swarm algorithmd1], the information of the entire neighborhood is used
to guide the particles. The CLPSO @ allows the particle use different previous
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best positions to update its flying on different dimensiarsrhproved performance
in multi-modal applications.

The remainder of this thesis is organized as follows. Chi&igeconcerned with
the development of a novel discrete PSO to the design anthigation of FRM
digital filters. Two different techniques have been emptbyERM FIR digital
filters consisting FIR interpolation digital subfilters,daRRM IIR digital filters
having bilinear-LDI IIR interpolation digital subfiltersThis chapter starts with
an introduction to the conventional FRM technique and pedsewith introducing
bilinear-LDI design approach. Then, CSD number systempéagxed, and finally,
the design procedure for the optimization of FRM digitakfi#t is proposed.

Chapter3 discusses a novel PSO algorithm for the high-level synshafsiig-
ital filter data-paths. the optimization is such that thet dosction of the digital
filter data-paths is minimized. This cost function is dediv®y taking into account
both the time constraints and the hardware requirementsiassd with the digital
filter data-paths. The constrained optimization is caroetlin a way that there
is no functional unit violation in the course of high-levghshesis of digital filter
data-paths using PSO. This chapter starts with a briefdotrbon to the high-level
synthesis of digital filter data-paths. Then, the partiderfation in the course of
PSO is explained and the constrained PSO for high-levehsgig of digital filter
data-paths is proposed. Finally, the cost function assatiith the digital filter
data-paths is derived by taking into account the time cairgls, the number of
functional units, and the number of support cells that aceired for the imple-
mentation of digital filter data-paths.

Chapter4 presents several examples to illustrate the applicatid?S® to the
design, high-level synthesis and optimization of digithéfs. A pair of lowpass
FRM digital filters are designed and optimized using the psgg PSO, one of
which utilizing the conventional FIR interpolation didisubfilters, and the other
having bilinear-LDI IIR interpolation digital subfilter¢n addition, the application
of PSO to the design and optimization of bandpass FRM FIR andass FRM
lIR digital filters is illustrated through two different exgples. The optimization is

subject to satisfying stringent design specifications.alfynthe proposed PSO is
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used for the high-level synthesis of a benchmark fifth ordlgatie filter.
Finally, chaptel5 draws the main conclusions of the thesis. A summary of the
contributions made in this thesis is presented and suggestor future work are

explained.

1.2 Summary

This chapter has presented an introduction to a very popptanization technique,
called particle swarm optimization. This optimizationtia@ue is known to be
effective in optimizing various functions which are highignlinear, multivariate,
and multimodal. Due to independence of any gradient inftionaf the objective
function, PSO can find optimal solutions in a given searcltsgast and easily.
PSO is applied to a class of digital filters which are suitdbtenarrow transition
band designs. This optimization is carried out over a CSDlrarmaystem to reduce
the hardware implementation of digital filters. Two categ®of such digital filters
are introduced, namely, conventional FRM FIR digital féteand FRM IIR digital
filters incorporating IR digital subfilters realized as ardmnation of two digital
allpass networks that are implemented using bilinear-L&3igh approach.

There are three problems in the PSO of FRM digital filters therCSD multi-
plier coefficient space. Firstly, due to random nature of B$€rations of addition
and subtraction, PSO may result in multiplier coefficieriuea that are not con-
formed to the CSD number format. Secondly, in case of FRM ligital filter
design, PSO may result in candidate FRM IIR digital filterdalhare not BIBO
stable. Thirdly, since the search space is limited, thagestmay go outside the
boundaries of the search space in the course of PSO. This firesents solutions
to the above three problems.

In addition, PSO is applied for the high-level synthesis igfitdl filter data-
paths. In this technique, the cost function associatedtéldigital filter data-path
IS minimized to obtain a time-optimal, area-optimal, or ¢oned time-cum-area-
optimal solution. An encoding scheme is used to ensure tieatiata-dependency

relationships present in the DFG of the digital filter remsaisfied under the op-
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erations of addition and subtraction by the underlying P&Oraghm.
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Chapter 2

Design and PSO of FRM Digitall
Filters

This chapter discusses in detail the design, realizationdéstrete optimization of
FRM FIR and FRM IIR digital filters. FRM FIR digital filters carst of FIR mask-
ing digital subfilters and FIR digital interpolation sul#ils, while FRM IIR digital
filters are designed by FIR masking digital subfilters togethith IIR interpola-
tion digital subfilters. The FIR filter design is straighti@rd and can be performed
by using hitherto techniques. The IIR digital subfilter desiopology consists of a
parallel combination of a pair of allpass networks suchitsahagnitude-frequency
response matches that of an odd order elliptic minimum @fa&MQF) transfer
function. This design is realized using the bilinear-LDpeagpach, with multiplier
coefficient values represented as finite-precision CSD rusib

The above FRM digital filters are optimized over the discretdtiplier coeffi-
cient space, resulting in FRM digital filters which are cdpaif direct implemen-
tation in digital hardware platform without any need forther optimization. A
new PSO algorithm is developed to tackle three differenbl@ms. In this PSO al-
gorithm, a set of indexed LUTs of permissible CSD multipteefficient values is
generated to ensure that in the course of optimization, thigpher coefficient up-
date operations constituent in the underlying PSO algoritad to values that are
guaranteed to conform to the desired CSD wordlength, etaddfition, a general
set of constraints is derived in terms of multiplier coe#fitis to guarantee that the

lIR bilinear-LDI interpolation digital subfilters automeally remain BIBO stable
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throughout the course of PSO algorithm. Moreover, by inicalg barren layers,
the particles are ensured to automatically remain insiddtiundaries of LUTs in
course of optimization.

This chapter proceeds as follows. Sectibfis concerned with a brief intro-
duction to the conventional FRM design approach. Se@i@udescribes the design
procedure for FRM filters incorporating IIR interpolatioiyidal subfilters and dis-
cusses formation of power complementary filter pairs thinding use of a parallel
allpass digital network realization. Secti@mB outlines the special type of ellip-
tic filters used for the design of FRM digital filters. Sect@#d presents the design
methodology for implementing an allpass network using thiedar-LDI approach.
Section2.5provides an introduction to CSD number system and the qooreting
guantization error. Sectioh.6introduces a set of stability constraints that guaran-
tee the BIBO stability of digital filters described in Sect@&.4. Section2.7 presents
a novel PSO algorithm that allows the optimization to se#incbugh the CSD mul-
tiplier coefficient space automatically, while maintaigiBIBO stability of every
particle throughout the optimization process. Sec8d@outlines in detail the de-
sign and PSO of FRM FIR digital filters and FRM bilinear-LDIded IIR digital

filters. Finally, Sectior?.9 provides a summary of this chapter.

2.1 The Conventional FRM Design Approach

2.1.1 Design of Lowpass FRM Digital Filters

The block diagram in Fig2.1shows a conventional FRM digital filter, whekfg, (=)
represents a FIR interpolation lowpass digital subfilted whereH,(~) represents

a power complementary counterpart/f(z) in accordance with
[Ha(e™)[? + [ Hy(e’)|* = 1 (2.1)

Here, z represents the discrete-time complex frequency, amdpresents the
corresponding (normalized) real frequency variable. Mueg, F,(z) and F}(z)
represent FIR masking digital subfilters, whitg () and H,(2") represent\/-

fold interpolated versions off,(z) and H,(z), respectively. In case of FIR digital
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Figure 2.1: FRM Digital Filter Block Diagram
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Figure 2.2: Block Diagram Representation of FrequencypBese Masking

interpolation subfilters, for a linear-phase filtéy, (=) of order Ny, g, the relation-

ship betweerf{,(z) andH,(z) is as follows:
Hy(z) = ZNrint /2 _ [ () (2.2)

and hencd,(z) can be implemented by subtracting the outputigfz) from the
delayed version of the input, as shown in RAg2

The FRM digital filter in Fig.2.1 has an overall transfer function
H(z) = H(zM)Fy(2) + Hy(2M)F1(2) (2.3)

The masking digital subfilters,(z) and F}(z) are employed to suppress the un-
wanted image bands produced by the interpolated digitdilsrs H,(2") and
Hy (™). The masking filters are made to have equal order (by zeroimpg)doh
order to ensure that their phase characteristics are sifili@ corresponding inter-
polated digital subfilterél, (»*) and H,(2*) can realize transition bands which are
a factor ofM sharper than those éf,(z) andH,(z), without increasing the number
of required non-zero digital multipliers. The magnitudeduency-response of the
various subfilters incorporated by the FRM digital filter idesapproach are shown
in Fig. 2.3
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Figure 2.3: Magnitude Frequency-Response of FRM DigitdeFi (a) Magni-
tude Frequency-Response of the Bandedge-Shaping Digitdllt8rs H,(z) and
Hy(z). (b) Magnitude Frequency-Response of thielnterpolated Complemen-
tary Digital SubfiltersH,(2™) and H,(2™). (c) Magnitude Frequency-Response
of the Masking Digital Subfilters,(z) and Fi(z) for Case I. (d) Magnitude
Frequency-Response of the Overall FRM Digital Filtéfz) for Case I. (e) Mag-
nitude Frequency-Response of the Masking Digital Subdilig(~) and F (z) for
Case Il. (f) Magnitude Frequency-Response of the Overalll ERgital Filter H(z)

for Case Il B].
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Table 2.1: Edge Frequencies of the Overall FRM FIR filter arasking Subfilters

Filter | Passband Edge Stopband Edge

H(z) _2]”;\; Wp 2]L7;\j We
Casel| f(z) 21L7;W+ Wa 2(1y, +;4)7r — W,

Fi(z) L”;W_ o 21”;\; Wp

2[,m — w, 2, m—

H(z) # %
Casell| f(2) 2(11, —EW + w, 2&7;\/[— Wa

Fi(z) LLL_ “p 2[“;\; Wp

Here, Case | design is when the transition ban@/¢t) is extracted from that
of H,(z) and Case Il design is when the transition bandHdf:) is extracted
from that of H,(2™). The edge frequencies of the overall digital FRM filter and
its constituent subfilters are given in Tal@d, wherel; represents the number of

image lobes to be masked given by:

M
{ Q%J Case |
T
I; = (2.4)
M
[ w“—‘ Case ll
2

where | | denotes the largest integer from the lower side, andsignifies the

smallest integer from the upper side.

2.1.2 Design of Bandpass FRM Digital Filters

In general, it is possible to extend the conventional FRMraggh for the design of
bandpass or bandstop FRM digital filters. However, the teguFRM digital filters
are constrained to have identical lower and upper tramstiendwidths. In93],

this restriction was relaxed by realizing the bandstop FRR #igital filter as a
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Figure 2.4: Bandpass FRM Digital Filter Block Diagram

parallel combination of a corresponding pair of lowpass haiggthpass FIR digital
filters. The latter lowpass and highpass FRM digital filteesavobtained using a
variation of the conventional FRM approach.

Let the desired bandpass FRM digital filt€ =) have a lower transition band-
width which is not identical to its upper transition bandthidH (z) can be realized
as a cascade combination of a pair of lowpass and highpassdidtidl filters, so
that

H(z) = Hyp(2) Hyp(2) (2.5)

where H,,(z) represents a lowpass aiitf},,(z) represents a highpass FRM digital

filter. In this way,H,,(z) andH,,,(z) can be obtained with the help of EqR.J) as

Hlp(z> = Haz;;(’ZM)FOzp (Z) + Hblp(ZM)Fllp (Z) (26)
Hyp(2) = Ha,, (") Fo,, (2) + Hy,, (z") 11, (2) (2.7)

The lower transition bandwidth is governed by the constitweansition band-
width of the highpass FRM digital filter, while the upper ts&on bandwidth is
governed by the constituent transition bandwidth of thepass FRM digital filter.
The realization for bandpass FRM digital filter are as shawfig. 2.4.

2.2 Design of FRM Digital Filters Incorporating IIR
Interpolation Digital Subfilters

In the case of FRM IIR digital filterst,(z) and H(z) (in section2.1) act as IIR
interpolation digital subfilters. The masking filtéfs(z) andF; (z) are not changed
(i.e. they are still equal order FIR digital filters). Thewed, Eqn. 2.3) is still valid
for the FRM IIR digital filter.
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The IIR interpolation digital subfiltefd,(z) is chosen to have an odd order
Nirr. Odd-ordered elliptic transfer functions can be represgmats a sum of or
difference between two allpass transfer functio®4].[ Therefore,H,(z) can be
realized as the addition of two allpass digital netwaf$z) andG,(z) as follows:

_ Go(Z) + Gl(Z)
2

where G(z) is odd-ordered and+,(z) is even-ordered. The interesting fact is

(2.8)

H,(z)

that the difference betweeH,(z) andG;(z) results in a filter that is power com-
plementary toH,(z), and can subsequently be used as the power complementary

interpolation digital subfilte7,(z) as in the following:

_ Go(z) = Gi(%)
2

It can be easily verified thdt, (z) and H,(z) are power complementary digital

(2.9)

Hb(Z)

filters [29), i.e. they satisfy Eqn.4.1). In addition, it is well known that this struc-
ture halves the number of multiplier coefficients requiredthe implementation of
FRM digital filters and therefore is the most economicalizadiion since it requires
a total of only N;;r multiplier coefficients to realize botH,(z) and H,(z). The

overall transfer function of{ (z) given by Eqn. 2.3) can be expressed as:
. GQ(ZM) + Gl(ZM) Go(ZM) — Gl(ZM)
B 2 2

The block diagram in Fig2.5 shows the IIR interpolation digital subfilters

H(Z) Fo(Z) —+

Fi(2) (2.10)

H,(z) and Hy(z) realized as a parallel combination of two allpass networlks.
should be noted that i/, (=) is a lowpass filterH,(z), which is the power comple-
mentary ofH,(z), is a highpass filter. Fig2.6 shows an overall FRM IIR digital
filter realization.

One may rearrange the structure in F2g6 by using Eqns.4.8-2.9). This can
be performed by defining two digital subfilters as follows:
Fo(z) + Fi(2)

A(z) = 5 (2.11)
plo = BO=FG) 212

ThenH (z) in Egn. .10 simplifies to:
H(z) = Go(z")A(2) + G1 (") B(2) (2.13)
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SR G1(2) +

Hb(Z)

Figure 2.5: Block Diagram of Interpolation and Complemeytlters as a Parallel
Combination of Two Allpass Networks

= Go(M) Fo(2)

- e}

- G(2M) Fi(2)

Figure 2.6: FRM Digital Filter Realization in Terms of Allpa Digital Networks
Go(Z) andGl(Z)

Fig. 2.7 shows the block diagram representing Egh18).

Go(ZM)

Y
2
O

Y

Y

Gl(ZM)

Y
Y
O

Figure 2.7: Alternative Structure of the Overall FRM IIR g Filter

The advantage of realizing the FRM IIR digital filter as shawrFig. 2.7 is
that two adders shown in Fi@.6 are removed and they are no longer required.
This subsequently simplifies the hardware implementatfdheoverall FRM IIR
digital filter. However, it should be noted that the FIR maskdigital subfilters
Fy(z) and F} (=) are made to be equal order using zero padding, and thissesult
the masking filters being moderately sparse. This is not #se evhenA(z) and
B(z) are used instead. Therefore, the gain in hardware that dmubltthieved by

using the realization in Fig.7is offset by a greater number of non-zero multiplier
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coefficients required in the realization of FRM IIR digitdtdis.

2.3 Realization of lIR Interpolation Digital Subfilters
Using Elliptic Filters with Minimum Q-factor (EMQF)

Bilinear-LDI transformation falls into the category of dgj filter realization tech-
niques that transform an analog reference filter to its aigbunterpart. Therefore,
in order to determine the multiplier coefficient values @ tIR interpolation digital
subfiltersH,(z) and H,(z) constituent in the FRM IIR digital filter, a suitable ana-
log reference filter, (s) and its power complementary analog filtés(s) have to
be determined, whereis the analog frequency domain variable. Oiif,gs) and
H,(s) have been determined, the interpolation digital subfiltéfsz) and H,(z)
are derived by using bilinear-LDI technique (see Sec#ai.

EMQF filters have several advantages for the design of FRMligiRal filters.
The squared ripple in the passband regiorfpfz) and the squared ripple in the
stopband region off,(z) are equal as indicated by Eqi2.7). On the other hand,
the squared ripple in the stopband regionff(z) and the squared ripple in the
passband region df,(z) are equal. In addition, depending on whether the design
specifications require a Case | or Case |l FRM techniqueeetitfy(z) or H,(z)
could determine the maximum passband and stopband rippteeajverall FRM
lIR digital filter H(z). Consequently, the interpolation filtéf,(z) is chosen to
have equal passband and stopband squared tolerancess imatithe resulting
H,(z) also displays equal passband and stopband squared t@srafitese char-
acteristics can be generalized for the analog referendétetdH,(s) and Hy(s).
Therefore, there is a need for an analog reference filtgs) that together with its
power complementi,(s) can exactly satisfy the passband and stopband relations
in the FRM IIR filter. EMQF filters can successfully comply tithe specifica-
tions present in the FRM IIR filter design. In addition, an EM@ansfer function
can be easily designed by using bilinear-LDI transfornratezhnique or any other
structure consisting of two digital allpass networks ingbat. Furthermore, filters

having EMQF transfer functions are minimally sensitive tonponent variations.
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Despite all the advantages of EMQF filters, they suffer frashbeing able to
independently specify passband and stopband ripp&s[6] of the filter. Addi-
tionally, EMQF filters have exceedingly low passband atition.

All the poles of an EMQF transfer function reside on a circléhe s domain
rendering them to have equal magnitudes. Given a squarstigras and stopband
tolerance ob, andJ,, respectively, for an EMQF filter, the passband ripfdleand

minimum stopband attenuatiak, can be obtained as followST]:

A, = —10log(1 — 9,) (2.14)
A, = —101og(d,) (2.15)

The required passband and stopband edge frequencies fanalwy reference
filter H,(s) can be determined using design specifications along withe TAal.
Frequency wrapping from digital to analog domain, and vieesa, has to be taken

into account in accordance with:

2 T
Q=7 tan(%) (2.16)

wheref), is the analog frequency variable, whergis the digital frequency vari-
able, and wher#’ is the sampling period.

Once the transfer function of the analog reference fitfgfs) is determined, it
is represented as a sum of two allpass analog filtg(s) andG,(s). In addition,
H,(s), which is the power complementary £, (s) is represented as the difference
of Gy(s) andG(s). The poles ofGy(s) andG;(s) are determined by cyclically
distributing the poles of the reference filt€,(s) [97]. In the next section, belinear-
LDI design technique is used to transform the two allpassois G (s) andG (s)

into digital domain.

2.4 Implementation of EMQF Interpolation Subfil-
ters Using Bilinear-LDI Design Approach

In this section, the design procedure 84[98] is briefly explained to design and

implement digital filters7y(z) andG(z) using the the bilinear-LDI approach. This
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approach transforms analog reference filt&sss) andG, (s) to obtain their digital
filter counterpart$sy(z) andG;(z).
The bilinear frequency transformation maps the analoguigaeqy variables to
its digital domain counterpattin accordance with:
. zz —1
Tz+1
whereT' represents the sampling period, for mapping the transfection of a

(2.17)

prototype reference filter from the analog domain to thetdigiomain. The bilinear
transform maps the left half of the compleyplane to the interior of the unit circle
in thez-plane. Therefore, BIBO stable filters in thedomain are converted to filters
in thez domain which preserve that stability. Similarly, if the &wareference filter
is minimum-phase, the previous characteristic of bilitemnsform guarantees that
the resulting digital filter is also minimum-phase. It alsegerves the sensitivity
properties of the analog reference filter. However, bilirteansform may result in
a digital filter that has delay-free loops in its implemeiatat Unfortunately, delay-
free loops prevent the implementation of a digital filter orbalizable in hardware
platform.

The LDI frequency transformation ensures the absence alydete loops in
the digital implementation and is given by

1 /1

S=1 <z§ — z_%> (2.18)

The LDI frequency transformation maps the hardware imptaaten of the analog
reference filter to digital domain. While the LDI frequencgrisformation guaran-
tees that there are no delay-free loops in the implementafithe digital filter, it
does this to the cost of resulting in a digital filter havingppmagnitude-frequency
responses. Moreover, it is incapable of preserving the BsBility properties of
the analog reference filter.

The bilinear-LDI approach is a combination of the two abowentioned real-
ization techniques. In bilinear-LDI transform, a precomsgegtion is performed to
the reference analog filter. Then, the conventional LDIglesechnique is applied
to a network resulting from the precompensated analog fy¢dilter. The pre-

compensation is such that the application of the LDI desgghnique results in a
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filter that exactly matches the bilinear frequency transfaf the uncompensated
analog prototype filter.

The resulting bilinear-LDI digital filters have several table features from a
hardware realization point of view. They are minimal in theenrber of digital multi-
plication operations. Although they are not minimal in thember of digital adders
and unit-delays, the additional adders and the additionialdelay lead to certain
advantages when the concept of generalized delay unit & foseéhe realization
of the network B4]. Moreover, The bilinear-LDI digital filters lend themsel/to
fast two-cycle parallel digital signal processing speeatsthey exhibit exception-
ally low passband sensitivity to their multiplier coeffiotevalues, resulting in small
coefficient wordlengths.

As discussed in Sectiop.3, the analog reference filtdd, (s) is decomposed
into two allpass analog networks,(s) andG(s). The digital allpass networks
Go(z) andG,(z) are obtained frondzy(s) andG (s) using the bilinear-LDI design
approach.

It should be pointed out that,(s) is an odd-ordered allpass function. There-
fore, it has a pole on the real axis in thelomain. On the other hand;; (s) ends
up having an even-ordered allpass function. It is well kndwat an allpass transfer

function can be written in the general fori34:

(2.19)

where P(s) is a Hurwitz polynomial of order, say; . Moreover, P(s) can be
expressed as:
P(s) = EVP(s) + OdP(s) (2.20)
where EVP(s) denotes the even and ®ds) denotes the odd part &f(s).
By simple manipulation of Egqns2(19 and .20 one can get

~1—Z(s)
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Figure 2.8: Signal Flow Graph @f(s)

Here, K = 1 or —1, andZ(s) is a realizable reactive impedance given by
OdP(s)

EvD(s) for evenn

Z(s) = (2.22)
EvP(s) .
OdP(s) for oddn

wheren is the order ofG(s) (odd when realizind+,(s) and even when realizing
G1(s)). The impedancé(s) has a zero at = 0 for evenn and a pole at = 0 for
oddn, while having a zero at = oo both for everm: and for oddn.
The bilinear-LDI digital realization of/(s) is achieved by using the following
steps:
e The transfer functioii7(s) is decomposed in the form
G(s) = K[1 —2g(s)] (2.23)
where
Z(s)

96) = 1575
Here,G(s) can be realized as the transfer function of the signal-flaplr

(2.24)

in Fig. 2.8 Furthermorey(s) represents a lowpass or highpass analog filter
that can be realized as the transfer function of the voltagdet network in

Fig. 2.9. Finally, Z(s) represents realizable reactances (consisting of capac-
itors and inductors only) and can be decomposed into itseFtistanonical

form, as in Fig2.10 in accordance with

Z(s) = 2.25
() =35 (2.25)
1 - SOZ'
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Figure 2.10: Realization of Impedanggs)

wherem = /2 for evenn andm = (n + 1)/2 for oddn, and whereC;

represent capacitances ahgdrepresent inductances (for= 1,2, ...

and inductorL, is only present for even.

7m)’

e The impedancé(s) in Fig. 2.10is substituted into Fig2.9 and the precom-

pensation is applied to the resulting network. This amotm&modification

of circuit elements in accordance with:

Var(5) = 1?‘;(;}2

The resistance in, in Fig. 2.9is modified to:

1

7’62257“0
and
L=1,
C,=C . C“*T;
1+ +4—L1+Z
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Figure 2.11: Realization of the Bilinear-LDI Digital Allsa NetworkG(z) [34]

292
/ OZ + L )
L =L, 04LZ (2.31)
, C?
Ci=cim= (2.32)

4L;
with ro = 1Q and fori = 2,3, ..., m.

e Since the voltage/current signal-flow graph of the precampted network
[34] consists of analog integrators only and it has no analdgraiftiators, it
can be used for bilinear-LDI realization method. Thereftihe analog inte-
grators in the signal-flow graph of the precompensated rr&teue replaced

by LDI digital integrators, and by impedance-scaling, tesulting network

is scaled byz—% to eliminate any half-delay elements. The resulting digita

network is displayed in Fig2.11 The multiplier coefficients in Fig2.11are
as follows:

(2.33)

(2.34)

fori =1,2,....m.
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2.5 CSD Number System

CSD is based on the ternary number systerh, (0, and1). It is a unique represen-
tation of a binary number with minimum number bfand —1 digits. One of the
main applications of CSD numbers, therefore, is in multgiion operation where
it allows a minimum number of combined additions and subiwas to produce
the product. It is shown that for:abit multiplication, the number of major opera-
tions (addition/subtraction and shift) never excegdand on average this number
is reduced td;, as the word size grow89).

As mentioned before, from a hardware implementation pdintew, a suitable
design employs finite-wordlength multiplier coefficientuas with sparse non-zero
coefficients. Therefore, CSD number system is employedigthesis. Subse-
quently, PSO is carried out using a LUT-based scheme, whereWTs consists of
permissable CSD multiplier coefficients.

Care must be taken in making the LUTSs, since making it too fetsies would
result in large quantization errors in the multiplier cagéints, thereby not per-
mitting the PSO algorithm to converge to a filter satisfyirgsign specifications.
Conversely, making the LUTs too many entries greatly ireeghe solution space,
and this slows down the rate of convergence of the PSO dhgorit Let us
consider a FRM digital filter consisting of CSD multiplierefbcientsmprry €
CSD(L,1, f), whereCSD(L,I, f) represents the set of all possible CSD numbers
having a wordlength of. digits and a maximum number éhon-zero digits with
f digits in the fractional part. In this way, the CSD multiplieoefficientsm g,

can be expressed in the general form

L
mFRM = Z Dn X Q(R_n) (235)

n=1

and satisfying the constraints

D, € {-1,0,1} (2.36)

D, x D, =0 (2.37)
L

> ID,| <1 (2.38)
n=1
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with R representing a fixed value radix-point in the rarigec R < L. Con-

straint @.37) implies

max [[] = L/2 for evenL

max [[| = (L+1)/2 foroddL

The choice of radix-poinfz for the LUTs depends upon the largest multiplier
coefficientmpggy,, and can be easily determined. Setting values/fand! is
more complicated, and depend on the passband and stoplpghel specification
and stopband frequency of the overall FRM digital filtétz), as well as the order
and stopband frequency of the interpolation digital sufitf, (2). The greater the
restriction on passband and stopband ripples, the highbeisequired resolution
of the LUTs (i.e. LUTs having a lower average quantizatiamfrinfinite-precision
to finite-precision domain). Higher resolution LUTs can leagrated by increasing
the wordlengthl. or the maximum number of non-zero digits

It was shown that the worst case normalized CSD quantizegioot very sensi-
tive to changes irL, especially afteB bits [L0J. Therefore, it may be necessary to
increased in addition to increasing, in order to have a LUT resolution great enough
to achieve desired filter specifications after optimizatiBat while the worst case
guantization is highly sensitive fpincreasing is much more detrimental to hard-
ware efficiency than simply increasing and! is therefore kept minimal. Note
should be made that in the case of IIR interpolation digitddféter the passband
sensitivity to quantization is very low. Therefore, if thagsband ripple specifica-
tion is tight, it usually translates into requiring a highesolution LUT for the FIR
masking digital subfilters. If the stopband ripple spectfarais strict, the LUTSs for
both the interpolation digital subfilters and the FIR magkilgital subfilter need
to have a high resolution.

CSD LUTs with a limited value of have a non-uniform distribution, which
means that the quantization error is not constant over tHe @8ge L0(0. The
worst case quantization increases as it advances from dise degnificant to the
most significant end of the CSD number range. This behavesuams more or less

the same regardless of the chosen valuek of [. This quantization pattern plays
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an important role in deciding what values bfand/ while building the required
LUTs. If, for instance,H (z) is to have a wide band, then the corresponding FIR
masking subfiltergy(z) and F;(z) are also wideband. This in turn results in a large
central multiplier coefficient compared to the rest of thef@ioient values. Since
the most significant values of the CSD range are more spaspedad, this large
multiplier coefficient usually has a high quantization egoing from the infinite-
precision to a finite precision value. A widebafd =) therefore normally requires
large values ofl, and/or/ to reach an acceptably low ripple size as compared to a
narrowbandH (z).

Similarly, the required resolution for the LUTs also depgn@on the stopband
edge specification of the interpolation filtéf,(z), which in turn depends on fre-
qguency edge specifications #f(z) and the interpolation factar/. The larger the
stopband edge dfl,(z), w,, the greater is the value of its central multiplier coeffi-
cient. Thereforeyw, is kept low by choosing an appropriate value\éf (It should
be noted, however, thatdf, is made excessively low, it results in very large order

FIR masking digital subfilters.)

2.6 Constraints for Guaranteed BIBO Stability

In order for the FRM digital filter consisting of CSD multiph coefficientsh g,
to be BIBO stable, it is both necessary and sufficient for thedar-LDI IIR inter-
polation digital subfilterdd,(z) and H,(z) to be BIBO stable. Likewise, in order
for the interpolation digital subfilter&,,(z) and H,(z) to be BIBO stable, it is both
necessary and sufficient for the bilinear-LDI allpass digitetworksG,(z) and
G1(z) to be BIBO stable. In this way, it is required that the bilineé®I digital
allpass networké:(z) andG, (=) remain BIBO stable throughout the course of the
PSO algorithm.

In the course of PSO algorithm, the infinite-precision nplikir coefficientsn,
andm, can only take quantized valugs;,, andm, that belong taC'SD(L, 1, f).
In order for the bilinear-LDI digital allpass networks(z) andG;(z) to remain

BIBO stable, it is required that the values of the correspragnduantized reactive
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elementsL; and C; remain positive {01] in the course of optimization. This is
due to the properties of the bilinear frequency transfoiongtom analog to digital

domain. In order to find the conditions for BIBO stability aimdaccordance with

Egns. .33 and .34, one has:

~ T
L,=— (2.39)
mLi
Y T
C; == (2.40)
me;
Moreover, in accordance with Eqn2.292.32), one has:

Ly=1, (2.41)
LT T I G
Ci=Citg+=—+) = e (2.42)

AL, Z G+
A 2 -2
L [C+
L =1L, AL (2.43)
G
. C?
Ci+ir

whereL; = oo for odd-ordered allpass netwotk(z).
By substituting Eqns.2.:39 and .40 into Eqns. 2.41-2.44), and by solving

the resulting equations for the reactive elemdntandC;;, one can obtain

. T
Ly = — (2.45)
le
4 41%2 ! _9
. mc Ly — m4L B mci
¢y = =2 Ty (2.46)
4
AT
i, = Lliwie, —4) (2.47)
16mLi
. —4T
Ci=——— 2.48
me; (mLimCi - 4) ( )
From Eqns.2.452.48), L, > 0 andC; > 0 provide that
mpy, >0 (2.49)
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Table 2.2: Relations for Elements of Back-Transformed Rewme

Element Equation Inequality Constraints
. T
Ll —~ le >0
mr,
m 1 m 1 o
A 1 4 A A A
Cl ZT{m01 _mL1_4<ZAA—mC> —2} mcl<4{le+4 <Zm> +2}
=2 [ v i=2 mp, i
. T e, — 4)?
i (mLzmAcl ) > 0
167TLL7 ’
. —4T _
C; e, < 4 ()"

mcl <

g, > 0 (2.50)

e, < 4 (2.51)
mLi

1 (2.52)

m

1
24_mi

i=2 M,

)

Then, in order to make the CSD FRM digital filter BIBO stabtesinecessary and

sufficient to choose the values of the multiplier coefficgent-ry, € CSD(L, 1, f)

such that the inequality constraint®.492.52 are satisfied. The equations and

corresponding condition required for BIBO stability arersunarized in Tabl.2
In order to make the CSD lowpass digital IR FRM filter BIBO l5itg it is

necessary and sufficient to choose the values of the meltipbefficientsm,,,

me, € CSD(L, 1, f) such that the inequality constraints of TaBl@ are satisfied.

It should be pointed out that constrai2t$1) is most stringent wheri, is at

its largest possible value. Similarly, constraity2) is most stringent whef,,

my, andmg, are all at their largest possible values (whilg, andm,, still adhere

to constraintie, < 4 (my,)”").

34




2.7 Proposed PSO of FRM Digital Filters

The proposed particle swarm optimization of FRM FIR digitkers and BIBO
stable FRM IIR digital filters is carried out over the CSD nmller coefficient
spaceC'SD(Loor1, loor1, foor1), Where Lyor1 represents the multiplier coefficient
wordlength, wheré,; represents the maximum number of non-zero digits, and
where fyor1 represents the number of fractional part digits (for FIRI8Y dligital
subfilters, respectively).

The starting point of any stochastic algorithm plays an irtged role in the
convergence behavior of the optimization algoritt88][ Therefore, it is important
to generate the initial swarm in proper positions in the deapace rather than
complete random generation of the initial population. ldesrto achieve this, the

following technique is employed:

2.7.1 Initiation of PSO

To start the PSO algorithm from a good position in the seapate the infinite
precision multiplier coefficient values of the seed pagtiate generated by using
classical techniques as discussed in previous sectiorselihfinite precision mul-
tiplier coefficient values are turned into their finite ps2on counterparts by simply
rounding them to their closest CSD values. This seed painsalsed as the center
of the swarm and a cloud of particles are generated randamiyd the seed parti-
cle. It should be noted that the distance of the randomly igéee particles should
not be far from the seed particle. In this way, the initial Bwaontains particles
which have high chances of being near the optimal solutidtne multiplier coeffi-
cient values of the swarm are taken from a set of CSD LUTs waéietconstructed

as follows:

2.7.2 FRM FIR Digital Filter Template LUTs

For the case of FRM FIR digital filters, a template LUT is cousted for all
multiplier coefficient values for the interpolation diditsubfilter H#,(z) and the

masking digital subfilterd(z) and F(z). The elements of this LUT belong to

35



CSD(Lg,ly, fo). The values of., [, and f, are determined empirically based on

the amplitude frequency-response of the digital subfiltérs:), F,(z) and F(z).

2.7.3 FRM IIR Digital Filter Template LUTs

For the case of FRM IIR digital filters, it is necessary andisigint to choose the
values of the multiplier coefficients, such that the inegualbnstraints 2.492.52

are satisfied. In order to achieve this, the LUTs are conistduas follows:

e One LUT is constructed for all multiplier coefficient valués;r € C'SD(Ly, lo, fo)
for the masking digital subfiltergy(z) and F;(z). The values of.,, [, and
fo are determined empirically based on the amplitude frequeesponse of

the masking digital subfiltergy(z) and F(z).

e ALUT is constructed for all multiplier coefficient valués; r € CSD(Ly, 1, f1)
for the digital allpass networkS,(z) andG;(z). Once again, the values of
L4, l; and f; are determined empirically. Also, it is expedient to asstinat

myrr have only positive values.

e The above CSD LUT is used to form one size-reduced LUT per the m
tiplier coefficient for digital allpass networks,(z) andG,(z), where each
size-reduced LUT initially includes CSD values boundeahfioelow by the
smallest representable value belonging’t6D (L, , f1), and from above
by the corresponding value of the finite-wordlength coedfits for the seed
particle. The size-reduced LUTs are augmented before PSCegs com-
mences. The purpose of this augmentation is to ensure thaibioration
space include as many of those CSD multiplier coefficients, m¢,, my,
andrmc, which still satisfy the BIBO stability constraint2.49-2.52).

The above constructed LUTs are used as template LUTs. Thertgva prob-
lems concerning the PSO of FRM IIR digital filters over the C®Dltiplier co-
efficient space. To overcome these problems, the templafes lthust be further
processed. These two problems and the way to solve them stesded in the

following.
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2.7.4 PSO indirect search method

In PSO, the required new particle position is obtained froengrevious position of
the particle through the addition of a random (normalizeddpeity value. However,
by directly applying the conventional PSO to the above ojtition over the CSD
multiplier coefficients, one may obtain new particle pasig whose coordinate val-
ues are no longer i6'SD(Loor1, loor1, foor1). In order to overcome this problem,
the optimization search is carried out indirectly via théioes to the LUT CSD val-
ues (as opposed to LUT CSD values themselves). In this way¢8D coordinate
values for each patrticle position are obtained by integeices to the CSD LUTSs.
The key point in the indirect search rests with ensuring tinaindex set is closed,
i.e. by ensuring that each index points to a valid CSD valuiénLUT, and that
the resulting particle in the course of PSO adheres to theppafied CSD number
format.

If the velocity values are replaced by their closest integdues, the update

equations become modified to

0y = Wil + e (@it — #50) + era(gind — a5t (2.53)
L
it Oh > Omae 5 Ohy = Omas

Bhy = 2p; ' + 0y (2.54)

Here, 1, Urj, Toesty;» Jbest;» Umin @NA0n,, are all integer values wherg,;, < 0

ando,,., > 0. In addition,w is limited in the interval0, 0.5) (as discussed shortly).

2.7.5 Barren layers

Due to their finite length, the template LUTs inevitably |e@ada bounded opti-
mization search space. In order to ensure that the partide®t cross over to the
outside of the search space in the course of PSO, the seawhisgonstructed as a

combination of two regions, namely the interior and baresrets. The barren layer

1[R] denotes rounding to its closest integer, whei is assumed to be a real value.
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is constructed to yield relatively low fitness values, an@@esented as header and
footer in the template LUT. There are two problems conceytie construction of
the barren layers:

barren layer entries

The first problem in the construction of barren layers comedrow to make the
fithess values in the barren layer relatively low. This peoblcan be resolved by
filling the header part by unrealistically large, and thetéogart by unrealistically

small CSD multiplier coefficient values.

barren layer width

The second problem, on the other hand, concerns how to datethe width of
the barren layer such that the particles do not cross oveetoutside of the search
space even under the worst case scenario. These two protgtatesto the num-
ber of entries and the CSD values of the entries in headeraotdrfparts of the
template LUTs. To overcome this problem, let us considerjttievariable in the
k-th particle is in the boundaries of one of the template LUTisarationi — 1. The
WOrst case scenario occurs Wh:égl moves toward the barren layer with the peak
permissible velocitiesu,,, for the header, and,,;, for the footer. If in thei-th

iterationz;; is in the footer:

iZestkj > i‘;ﬂj (255)

glz;estj > :i‘;c] (256)
and if itis in the header:

Thesty, < T (2.57)

gll;estj < 92’2] (258)

Eqgns. 2.552.58 show that the velocity of the particle in iteration- 1 tends
to move the particle in a direction opposite to the directidbthe barren regions.

Here, the worst case happens when= r, = 0. In this way, the number of entries
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Ly in the footer part, and the number of entrigsin the header part is determined

in accordance with

Ly = [Omin| + [w]Omin|] + [w[w]Omin]]] + - -

~ ~
| Umin | | Umin |

< | Dymin| + 5 T T

= 2| Dpin] (2.59)
Lj, = Upmaz + [WOinas]| + [W[wOpmaes]] + . ..

< Oy + oz Dmaz

- 2 4

= 20mas (2.60)

Let us recall that sincé < w < 0.5,

if v :positiveinteger = [wv] < (2.61)

| <

In addition, after some iteratiorig’' = 0. Otherwise, ifw > 0.5, 7' can never
become zero, and the width of the barren layer will be infinity

The augmented LUTs remains fixed in the course of PSO, restriautomatic
particle movement inside the limited search space. Maoudlifythe index values
inside each particle by adding the current indices to thgttenf the footer barren

region, L, PSO algorithm is ready to start the optimization of FRM tibjiilters.

2.8 Design Methodology

The design methodology for the proposed PSO of FRM FIR difijitars and BIBO
stable bilinear-LDI based FRM IIR digital filters over the @ &ultiplier coefficient

space can be summarized as follows:

1. Designing the interpolation digital subfiltethe first step in determining the
interpolation subfilter specifications is to fix the intemgodn factor)d/ from
a pre-specified range. This is done in a way that the orderedfiR masking
filters is kept minimal. Using the passband edge frequencgnd stopband
edge frequency, and the expressions for boundary frequencies given in

Table 2.1, one can determine the filter case and calculate the appat&im
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passband edgé and stopband edge of the digital interpolation lowpass
subfilter H (e’+), for every value of the user specified range of interpolation
factorsM. The order of the FIR masking filters depends on the minimuan di
tance between consecutive image replicas of either thepwitged subfilter
H,(e’M«) or its complement],(¢?«). Then, displacemen,,; and distance

D, for each interpolation factal/ are given as:

My = max[|(5 = 0)1,1(5 = 9] (262)
Dy = % - % (2.63)

To minimize the length of FIR-masking filters, the valueléfthat results in
the largest value oD, is chosen. This determines the optimal interpolation
factor M as well as the approximate passband etiged stopband edgeof

the digital interpolation subfiltef (¢?~). EMQF filters have the property of
equal square magnitude ripple size in the passband andsstdpibherefore,

of the two ripple specifications, whichever gives the snsaltelerance in
the squared magnitude response determines both the pessiae R, and
stopband attenuatioft, of the interpolation digital subfiltef7,(e’~). The
interpolation digital subfilter ordeN;; is then determined using,, R,, 0
and¢. N;;z must be rounded to the nearest larger odd integer so that it ca
be implemented by a parallel combination of two allpass neta. With the
order N;rr, and passband and stop band ripplgsand i, fixed, the ratio

of the analog passband ed§e and stopband edgg, is a constant: given
by [102]

100.1Ra -1
D= 10018y _ | (2.64)
—log(16D)
q=10 "nr (2.65)
q = qo + 2q5 + 15q) + 150q;° (2.66)
1 —2qo ’
kp = (2.67)
1 + 2(]0

k= /1 k2 (2.68)

In order to satisfy the passband edge specification, theatlgassband edge

40



Wy = g for Case | filters. The digital stopband edggis then determined
using the analog ratié. (Here, frequency warping from digital to analog
domain, and vice versa, given by EqA.X6) needs to be taken into account.)
Similarly, w, = ¢ for Case Il filters, and, can be determined by using ratio
k. Also, using given ripple specifications along with the badary frequen-
cies described in Tab1, one can determine the transfer function of the FIR
masking filtersF (e?*) and F; (e7%).

2. Generation of seed FRM digital filter particld’he seed FRM digital filter

particle is formed as follows:

e A particle with B, coordinates is formed in which each coordinate serves
as an index of the corresponding CSD LUT for each multiplassfti-

cient constituent in the interpolation digital subfilters.

— In case of FRM IIR digital filters, the multiplier coefficientorre-
spond to the bilinear-LDI allpass digital networks(z) andG,(z).

— In case of FRM FIR digital filters, the multiplier coefficieobrre-
spond to the interpolation digital subfiltefs, (=) and H,(z).

e A particle with B, coordinates is formed in which each coordinate serves
as an index of the corresponding CSD LUT for each multiplassfti-
cient in the FIR masking digital subfiltefs(z) and F;(z).

3. Generation of Initial Swarm An initial swarm of K particles is formed
by generating a random cloud around the seed particle asssied in sec-
tion2.7.1

4. Fitness EvaluationThe fitness function for CSD FRM IIR digital filters is

defined in accordance with

fitnessmagnitude = —20loglmax(e,, e,)] (2.69)
Jitness group—deiay = Sp (2.70)
fitness = fintessmagnitude — fINESS group—delay (2.71)
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where
e, = max, [W,|H () — 1] (2.72)
ga = max, [W,|H(e*)]] (2.73)

o = ag [Woa|(w) — pir[] (2.74)

with Aw, representing the passband frequency region(s), With rep-
resenting the stopband frequency region(s), and w(th) representing the
group-delay frequency response of the FRM IIR digital fikerHere, W/,
W,, andWW,, represent weighting factors for the passband and stopbage m
nitude responses, and for the group-delay response, tasghgcMoreover,
1L, represents the average group-delay over the passband.regim [103,
a convenient way to represent digital networks in terms dfimeepresenta-
tion is presented. This technique can be used to find the ragéand group
delay frequency response of the digital network in Rid.1 Let us consider
the input to the digital network in Fi@.11to bex, and the output of it to be
yp. In addition, let the output of theth time delay in Fig2.11to bexz; and
the input to the-th time delay to bey;,. The transfer function matrix of the
network, T, can be found as

y =Tx (2.75)

wherey = [yDa Y1, Y2, - - ame+1]t 3andx = [$D>$1, Lo, ... >$2m+1]t, and

Tisa(2m +2) x (2m + 2) matrix with the entries obtained as EgR.76).

r 0 1 -1 0 0 0 0 0 A
1 0 0 0 0 0 0 0
m
mgc, mcy 1-m¢, (1+Z mLi) —mgc, Mmc,MrLy, —Mgy ... MCyMLy, —Mcy
=1
0 0 mp, 1 0 0 0 0
T= 0 0 MCy MLy 0 I-mcymr, mey .. 0 0
0 0 mLy 0 —mpr, 1 0 0
0 0 mcm.mLm 0 0 0 . I-mc,,mr,, Mcn,
L O 0 ML, 0 0 0 —ML,,

(2.76)

2In case of FRM FIR digital filters;,, is a constant and has no effect in the optimization process.
In this thesis;, = 0 for FRM FIR digital filters.
3X* denotes the transpose of the maiXix
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Sincer; = 2~ 'y;, the transfer functiod(z2) = Z—g can be found as
G(z) =z"te[l - 27 'D] ¢ (2.77)

wheree is a row vector and is a column vector of lengthm + 1, and where
I is the identity matrix andD is a(2m + 1) x (2m + 1) matrix in accordance
with

T = (2.78)
c D

The matrixT is also useful in finding the group delay &f(z). The group-
delay of H(e/*) is given by

7(w) = —Im {H<1 de(jw)} (2.79)

elv)

With the help of Eqn.Z.10), the expressioA“) can be written as

W) _ LA () + Ra(e))+

dw 2 ' '
A(R(E) + Fi(c#)
dw
T (o) — R+

d(Fy(e’) — Fi(e’))
dw

Go(@jw)‘l—

G () (2.80)

The derivative of FIR filters can be easily found from theamisfer function.
In order to find the derivative of the digital allpass netwsxtg (z) andG,(z),

the following expression can be used

dG(ejw) s —jw g jw jw
0 = —je’ Zzl Gri(€7)Gyy (e7%) (2.81)

whereG,;(2) is the transfer function betweern, andy;, and wherez;,(z2)
is the transfer function between andyp. The transfer function&,;(z) and

Giy(2) can be found from the transfer function matilixas follows

Gui(2) = i + 2 eI — 27'D] e (2.82)
Giy(2) = ay + 2 e[l — 27'D] ¢y (2.83)
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wherea,, anda;, are scalarsg,, is a row vector ana;, is a column vector
of length2m + 1, in accordance witlu,; e,;] is thei-th row of the matrix
T, and[a;, cf,]"is thei-th column of the matrixI'. Having the expressions
for H(e/) and%jw), the group delay can be obtained in accordance with
Eqn. 2.79.

The passband and stopband weighting factéysand 1V, are easily deter-

mined from user specifications. The group-delay weightawgdr is set as

¢ X fitnessmagnitude
thn@SSgroup—delay

where( is a fixed constant such that< ¢ < 1, and wherefitness,,agnitude

Woa =

(2.84)

and fitness goup—delay are obtained by examining the seed FRM digital filter

particle. The weighting factor for the group-delay incesaas] — 1.

2.9 Summary

This chapter has presented a novel technique for PSO of Figitafdiilters incor-

porating FIR and IIR digital interpolation subfilters. Inseaof FRM IIR digital

filters, the bilinear-LDI approach is employed to reduce rthenber of multiplier
coefficients in the IR digital subfilter. In order to map ambogy prototype filter
to the digital domain using bilinear-LDI technique, ellpfilters with minimum

Q-factor is used. In this way, the IIR interpolation subfi#teonstituent in the FRM
lIR digital filter are guaranteed to be power complementary.

The design methodology for design and optimization of FRNltdl filters us-
ing PSO technique has been presented. There are three rablamps in the PSO
of FRM digital filters. Due to the randomness of the operatiohaddition and sub-
traction in the underlying PSO, one may obtain a FRM digitaffiparticle whose
multiplier coefficients do not conform to CSD number formdhis problem has
been resolved by constructing a set of LUTs containing pesitoie CSD numbers,
and by using the indices of the LUTs as optimization varialmePSO. Therefore,
an integer-based PSO is developed to search over the irafites LUTSs.

In case of FRM IIR digital filters, PSO may produce particldsichh are not
BIBO stable. This problem is not present for FRM FIR digitdefis due to the
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inherent stability feature of FIR filters. To overcome thisllem, a set of BIBO
stability constraints has been developed and the LUTs hewe buccessively aug-
mented until the BIBO stability constraints remain satafign this way, the FRM
lIR digital filter particles generated in the course of PS®guaranteed to be BIBO
stable.

On the other hand, the particles may go over the boundariét)®t in the
course of optimization. This problem has been resolved tigduicing barren lay-
ers. Barren layers are added to the header and the footee aftfis and they are
characterized by low fitness values compared to the mairesrafthe LUTSs, i.e. a
particle with a coordinate in a barren layer has a lower fanetue than a particle
without a coordinate in the barren layers.

The optimization of FRM digital filters using PSO algorithimncerns both the
magnitude and the group-delay frequency-responses ofRM digital filter. Ma-
trix equations have been developed to determine the malgénd the group-delay
frequency-responses of FRM digital filters. This improvesevaluation of the fit-
ness value of each particle and simplifies the objectivetionwsed in the course
of PSO.
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Chapter 3

Novel PSO for High-Level Synthesis
of Digital Filters

In this chapter, PSO algorithm is exploited and applied éodbvelopment of a new
optimization technique for the high-level synthesis of@dikfilter data-paths. In this
algorithm, a powerful encoding scheme is introduced thabdeas the information
present in the digital filter DFG into successive swarm ofipkas. These particles
carry information about the main steps that are requirethi®high-level synthesis
of digital filter data-path, i.e. scheduling, allocatiomdabinding. This informa-
tion can be used to calculate the cost function associatddthe time and area
requirements in the corresponding hardware realizatiothefdigital filter data-
path. The cost associated with the final digital filter dea#hps minimized for
obtaining global area-optimal, time-optimal, or combirsda-cum-time-optimal
data-paths subject to user-specified constraints on theeuwh physical arithmetic
functional units employed. The final point in the optimipatis the identification
of the data-path that optimizes the area and time in the sporeding data-path
encoded swarm.

The proposed PSO algorithm guarantees that the data-depsniklationships
in the digital filter DFG remain satisfied under the operatiohaddition and sub-
traction in the underlying PSO algorithm. In addition, ahteique is developed to
avoid any functional unit violation (that may occur becaosthe random nature of
the operations of addition and subtraction in the undeglfa80 algorithm) through

the course of high-level synthesis of digital filters.
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This chapter proceeds as follows. Secti&f presents an introduction to the
high-level synthesis of digital systems and introducesthps that are required for
the high-level synthesis of digital filters. SectiBr2 presents a powerful encoding
scheme to encode the digital filter data-paths into pa#tittiat can be used in the
course of PSO algorithm. This scheme is capable of satptyi@ data-dependency
relationships in the digital filter DFG. Sectiéh3 explains how the initial swarm
of particles is generated in order to increase the speed mfecgence of PSO.
Section3.4 describes the constraints that are present in the coursgylofldvel
synthesis of digital filters using PSO and solutions to tleesgestraints are provided
in this section. SectioB.5is concerned with the evaluation of the cost function
that is being used in the course of high-level synthesisgitalifilters using PSO.

Finally, Sectior3.6 provides a summary of this chapter.

3.1 High-Level Synthesis of Digital Filters

High-level synthesis of digital filters is the act of mappagehavioral description
of the digital filter to the RTL model in order to execute theigble assignments
in the digital filter data-path. Since the amount of compatain each state is de-
termined in the RTL model, one must first define the number gpe of resources
(arithmetic functional units, multiplexors, registers.g to be used in the data-path.
Allocation is the task of defining necessary resources favengdesign specifica-
tion associated with a digital filter data-path. The next tasnapping a behavioral
description into an RTL model is partitioning the behaviai@scription into time-
steps. In this way, the allocated resources can be used tputerall the variable
assignments present in each time-step. This partitionirgbavioral description
into time intervals is called scheduling. Although schéuylassigns each opera-
tion to a particular time-step, it does not assign it to aipaldr operator. To obtain
the proper implementation, one can assign each variablestorage unit (e.g. a
register), each operation to a functional unit (e.g. an medde&a multiplier), and
each transfer from input or output to units and among uni@tanterconnection

unit (e.g. a multiplexor). This task is called binding (osoerce sharing). Binding
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determines the structure of the digital filter data-pathibist unable to define the
structure of the control unit. In the following subsectiptie®e main tasks that are

required for the high-level synthesis of digital filters aselained L04].

3.1.1 Allocation

Allocation is the task of determining the type and quantityesources used in a
given digital filter DFG. Other tasks, e.g. clocking schememory hierarchy, and
pipelining style, can also be determined by allocation. bal of allocation is to
make the design having a good performance, while keepingdkeof it below a
reasonable limit. If the original behavioral descriptidritee digital filter data-path
contains inherent parallelism, allocating more hardwasources increases area
and cost, but it also creates more opportunities for pdrafierations or storage
accesses, resulting in a better performance. On the other BHocating fewer re-
sources decreases area and cost, but it also forces opsratiexecute sequentially,
resulting in a poorer performance. To perform the requiradd-offs, allocation
must determine the exact area and performance values. Aesapproximation of
cost and performance consists of the number of functioniégs and support cells,
and the number of time-steps, respectively. This approtxamacan be used to
come up with an optimal allocation scheme that decreasesogtewhile keeping

the performance in a good level.

3.1.2 Scheduling

Scheduling is the act of assigning operations and memomsaes in a digital fil-
ter data-path, into clock cycles or time-steps. There acetfwes of scheduling

algorithms based on the optimization goal and the userdgxbconstraints.

e Resource-constrained schedulitmigs to maximize usage of the allocated re-
sources. This scheduling algorithm occurs if all the avddaesources and
the maximum number of time-steps during allocation has Ispecified by
the user. The goal of resource-constrained schedulingitilgois to gen-
erate a design with the best possible performance, or thestemumber of

time-steps. Resource-constrained scheduling usualuses a design that
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has one time-step at a time and then it schedules operatioas 150t to ex-
ceed resource constraints or violate data-dependena@ssulRce-constrained
scheduling guarantees that at the time-step for which gdweles an opera-
tion, an operator which can execute that operation is availand all the

predecessors of the corresponding operation have beedudete

Time-constrained schedulifgappens if a list of resources is not available
prior to scheduling, but a desired overall performance ecdi@d by the user.
The goal of this scheduling algorithm is to produce a desigh the lowest
possible cost, or the fewest number of functional units.ifretconstrained
scheduling, the maximum number of time-steps availableofmarations is
fixed by the user. Based on this performance constraint andata depen-
dency constraints, the earliest time-step and the latest-$tep, into which
an operation can be scheduled are computed. Using thestarhie the latest
time-steps, bounds for all operations, one can estimatenthemum num-
ber of functional units or the cost of the design. Time-cameed schedul-
ing algorithms select an operation, evaluate the cost cdcdiding it in each
time-step between the earliest and the latest time-steylsselect the state
that results in the least cost. The important goal is to mizérthe number of

functional units in any time-step.

When the critical path is defined in a digital filter data-pattheduling must ensure

that the design uses faster functional units for operatanghe critical path and

slower units for operations outside the critical path. lis thiay, an optimal design

of the digital filter data-path may be achieved.

3.1.3 Binding

The binding task assigns the operations and memory accesi®s each clock

cycle to available hardware units. A resource such as aifmadt storage, or

interconnection unit can be shared by different operafidasa accesses, or data

transfers if they are mutually exclusive. For example, tyerations assigned to

two different time-steps are mutually exclusive since tdlnever execute simul-
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taneously. Therefore, they can be executed with a singléwaae unit. Binding

consists of three subtasks based on the unit type:

e Storage bindingassigns variables to storage units. Storage units can be of
many types, including registers, register files, and merooits. Two vari-
ables that are not alive simultaneously in a given state eaasbigned to the
same register. Two variables that are not accessed sirealialy in a given

state can be assigned to the same port of a register file or gemo

e Functional unit bindingassigns each operation in a time-step to a functional
unit. A functional unit or a pipeline stage can execute omlg operation per

clock cycle.

¢ Interconnection bindingssigns an interconnection unit such as a multiplexor

or bus for each data transfer among ports, functional usit$,storage units.

Although listed separately, the three subtasks are inteetivand must be carried
out concurrently for optimal results.

In the next section, the above concepts are used to encodetted filter data-
path into particles in such a way that the resulting paician be utilized in the

course of PSO for high-level synthesis of digital filter dpth.

3.2 Digital Filter DFG Encoding Scheme

This section presents a powerful DFG encoding scheme fos¢heduling, allo-
cation, and binding of digital filter data-paths in the urigieg PSO algorithm.
In the proposed encoding scheme, the digital filter DFG i®ded into a particle
containing two partitions®! and P? [58], where the partitionP! contains the in-
formation regarding scheduling of the digital filter dat@ip and the partitiod?
embodies the information regarding the corresponding DRégation and bind-
ing. These partitions are formed, manipulated, and maiathin such a way that
they preserve the data-dependency relationships in thealidigital filter signal
flow-graph under the operations of addition and subtradijothe underlying PSO

algorithm.
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Figure 3.1: Particle Structure for Partitidtt

3.2.1 DFG Encoding for Scheduling

As discussed before, the partitiéh contains the information regarding the schedul-
ing of the digital filter data-path. To achieve this goal titen P! in the DFG parti-
cle is generated to incorporate a sef @bordinates as shown in Fig.1, where the
j-th coordinate represents the delﬁbnj from the first possible time-step where
an operatior),,, may be scheduled in the high-level synthesis of digitalrfiizta-
path, wherel < n; < I andl < j < I and wherel denotes the total number of
operations present in the DFG.

In this way, the problem of scheduling the digital filter datth reduces to that
of determining the operation identifiers,n.,. . .,n; such that the data-dependency
relationships in the digital filter DFG remain satisfied untte operations of addi-
tion and subtraction by the PSO algorithm. One straightfmdrapproach to deter-
mining these identifiers is to perform an ASAP scheduling@maier the operations
O,,, in ascending order of their ASAP schedule time-step. Howeke problem
of such an ordering is that this process does not lead to aiemigfering process.
In order to resolve this problem, one must take into consiitan the critical path
information in the operation ordering process. This caitjgath information can be
used to order the operations lying on a longer critical pa&tiote those lying on a
shorter critical path because the latter operations haedlesnadegrees of freedom.

The critical paths in the digital filter DFG can be determibgderforming the

following tasks:

e ASAP scheduling is performed on the digital filter DFG and tasulting

total number of time-steps is recordediagap.

e ALAP scheduling is performed on the digital filter DFG withetmaximum

number of time-steps fixed @hsap.
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e The difference between the ALAP schedule time-gh@ppnj and the ASAP
schedule time-step\SApnj for each operatiow,,; in the digital filter DFG is

computed and stored &g, -

In this way, the operations with lower valuest@ﬁnj reside on longer critical paths
and the operations with higher valuestg;ffnj reside on shorter critical paths. Con-
sequently, the operations are ordered in the ascending mirdueirtdiﬁnj + tasap,,
values in order to take into account both the critical patarimation and the data-

dependency relationships in the digital filter DFG. But bfi&on:

taifr,,, + tasap,, = tALAP,, (3.1)

Therefore, the operations happen to be ordered in ascendieg of their ALAP

schedule time-steps.

3.2.2 DFG Encoding for Allocation and Binding

In the high-level synthesis of digital filter data-pathsisitfrequently required to
optimize not only the cost associated with the physicaharétic functional units
employed, but also that associated with the required stipptls (multiplexors and
registers). The latter cost is influenced by two importactdes, namely the alloca-
tion of operators to various operations and the orderinggrfads for symmetrical
operations (i.e. digital additions).

The partitionP? in the DFG particle is formed to incorporate a sef afoordi-
nates as shown in Fi@.2 WhereeonH in the j-th coordinate represent the oper-
ator number and whetg_; represents the order of the signals within@e,  -th
operator executing operatia@n,,_,, where(/ + 1) < j < 27/ andb;_; € {—1,1}
indicating whether or not the two input signals associatéti he operator are
swapped for symmetrical operations. Helres @Onj_f < 0,, with 6,, being a user-
specified number and< n < N,; whereN,, is the number of different functional

units available in the DFG.

52



01090, | 000, | 1:00,, e b19o0,,

Figure 3.2: Particle Structure for Partitidt?
3.3 Formation of the Initial Swarm

To start the PSO algorithm from a good position in the segrelosone can perform
the ASAP scheduling or the ALAP scheduling of the digitakfiltlata-path and use
the corresponding order of operations to fofthof the seed particle. To form?,
one can use the operator numbers for the correspondingtmperan the ASAP or
ALAP scheduling of the digital filter data-path. A random mweoofb; is preferable
for the formation of the seed particle. This seed particlesisd as the center of the
swarm and a cloud of particles is generated randomly arcumdéed particle. It
should be noted that the distance of the randomly generaiidlps should not be
far from the seed particle. In this way, the initial swarm tzoms particles which

have high chances of being near the optimal solution.

3.4 Constrained PSO for Digital Filter Data-Paths

This section is concerned with the constraints associat#dREO of digital filter
data-paths. These constraints can be classified into tvega@aes. One constraint
is related to the range of values that a coordinate in thetipnsaf a particle can
be changed. The other constraint is associated with thaifunmat unit violation
that may occur in the course of PSO. These two constraintdiaceissed in the

following two subsections.

3.4.1 Coordinates Limit

Due to the random nature of operations in the PSO algorithenpbsition value of
a particle can be any infinite-precision number. In the optation of digital filter
data-paths, the resulting particle position cannot takevatue and it should be

constrained to a specific number system.
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Partition P! in the particle is constructed with coordinates contaihrgdelay
from the first possible time-step where an operation may bedided. This delay
is an integer number and cannot be less than zero. Theréf@rdirst constraint
can be applied by limiting the coordinate values in pantitid! to be nonnegative
integers.

Partition P2 in the particle, on the other hand, is constructed with cinaites
containing the operator number and a sign value that canthekealues oft-1 or
—1. Let us considerV,qq represent the number of physical adder cells available
for the implementation of the digital filter data-path aig; represent the total
number of physical digital multipliers present in the implentation of the digital
filter data-path. The numbers,qq and N are fixed by the designer as a part of
the input specification. Then, the coordinate containingdaer as an operator can
be varied in the intervals- Naq¢, —1] @and[1, Nagd, and the coordinate containing a
multiplier as an operator can be varied in the interVal&/ i, —1] and[1, Npux]-

Taking into consideration these constraints, the new P§arighm will be:

f),ij = [w@,i}l + oy (iggsﬁkj — :%2;1) + 027“2@1:;]- - ii;}l)] (3.2)
if ?AJ]ZCJ > @maa} ) ﬁllw - f)maz

By = Ty + O (3.3)
it 2 <@ 3 Eh =T
if fi;j > Tjpaw fi;j = Zjnan

Here, Z1;, Orjs Toesty;s Jvest;s Vmins Umazs T, @ANA T;, .. are all integer values

whered,,;, < 0 andu,,,, > 0. In the above equations,, . andz; . can be

found by using the partition information, i.e. if the coardte is in partition”!,

thenz; , = 0 and there is no limit fot;

Jmazx*

On the other hand, if the coordinate
is in partition P and the coordinate represents an adder, thep = —N,qq and

;... = Naga, While if the coordinate is in partitiof? and the coordinate represents
a multiplier, thent; . = —Npu andz;,, .. = Nmur. One may notice that there is a

possibility that the value of a coordinate become zero ititp@r P? which violates

the conditions discussed before. Random selection of @ ¥atihe corresponding
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coordinate between the valueg and—1 can solve this problem.

3.4.2 Functional Unit Satisfaction

In the course of optimization of digital filter data-pathseccan easily notice that
sometimes the optimization results in particles suffeifmogn concurrent assign-
ment of the same functional unit to two or more operationhiendame time-step.
One way to resolve this situation is to include a violatiomrtén the cost function
of the digital filter particle. The other way is to reassige fanctional units for
violating operations onlyJ05. Additionally, one can keep the operator number
unchanged and increment the time-step where the operatigiihenscheduled until

it finds a free slot. In this thesis, the third scheme is usethviooks practical in

the implementation of PSO for high-level synthesis of dilfilters.

3.5 Formulation of the Cost Function for Digital Fil-
ter Data-Paths

This section is concerned with the calculation of the costfion associated with
the above data-path encoded swarm. The desired cost fumetiobe expressed as
a linear combination of the coét; associated with the hardware requirement, and
the costC, associated with the time requirement of the digital filtetaggath in
accordance with:

C = wC + weCy (3.4)

wherew; andw, are user-specified weighting factors.

3.5.1 Evaluation of the Cost Associated with the Hardware Re
guirements of the Digital Filter Data-Path

The digital filter data-path consists of digital adders andtipliers as the con-
stituent arithmetic functional units. In order to facitéadata-transfer, additional
hardware resources such as registers and multiplexordsreegjuired. In this

way, the cost associated with the hardware requirementeofigita-path can be
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computed in accordance with:
Cl = Aadd + Amult + Areg + Amux (3-5)

where Aadgs Amuit, Areg @Nd Amyx represent the cost associated with the constituent

digital adders, multipliers, registers, and multiplexoespectively.

Digital Adder and Multiplier Costs

Let Gaqq represent the number of gate-equivalents associated atintplemen-
tation of a basic full adder. Then, the total cost associatehl the digital adder

present in the data-path is computed in accordance with:

Aadd = W NagdG add (3.6)

wherelV is the signal wordlength. The total cost associated withdigeal multi-

pliers may be obtained in accordance with:
Amult = NmuItGmuIt (3-7)

whereGny represents the total number of gate-equivalents requirdgel imple-

mentation of each of these multipliers.

Register Costs

The computation of the costs associated with the registersmultiplexors requires
the knowledge of the life-times of the various variableshe DFG. Let the time-
step where a signal is first generated by an operation in ti& Rd-represented by
lbegine @nd let the time-step when the same signal is last consuynaad dperation in
the DFG be represented ly,q In a bit-parallel implementation, a signal is active
for one time-step from the time-step whenitis last usedelRG. In this way, the
life-time of the signal in the scheduled DFG spans over thedintervallpegin, lend -

By using this life-time information, the REAL algorithrd3] can be used to deter-
mine the numberV,¢q of registers required. REAL implements an algorithm for
register allocation based on track assignment in routirige dlgorithm is referred
to as the left edge algorithm and has been proven optih®&.[ The track problem

assignment is solved as followsd:
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Sort the wire segments in increasing order of their left eadge

Assign the first segment (the leftmost edge) to the first track

Find the first wire whose left edge is to the right of the las¢sted wire and

assign it to the current track.

¢ If no more wires can be assigned to the current track, staewatrack and

begin again from the second step. Repeat until all wiresssigaed to tracks.

Although the left edge algorithm is based on a greedy sed#rgives optimal
results and the goal of it is to allocate the wire segmentsattks so as to minimize
the total number of needed tracks.

For DFGs with no delay-free loops or conditional branchles register alloca-
tion problem is the same as the track assignment as desatfioe@. In this thesis,
the registers are modeled as tracks, &ggh andl.nq are modeled as the left and
right edges of wires, respectively. The set of variablesthed life-times can be
used to build a life-time table. Given the life-time table ®&DFG the goal is to
assign variables to registers so as to minimize the totalbmurof registers needed
to store the variables. Two variables cannot share a regfishey overlap in time.

Let the number of gate-equivalents required for the impiaiatéon of a unit
register (a D-flip-flop) be represented @gy. Then, the cost associated with the

registers is computed in accordance with:
Areg - WNregGreg (3.8)
Multiplexor Costs

The various operations in the DFG can either be performedffgrent functional

units, or the same functional unit can be used to perfornewdifit operations. In
the latter case, the functional unit has to be multiplexedragrdifferent operations.
The final digital filter data-path will usually consist of aMe&lasses of multi-input
multiplexors. The number of required multiplexors in ealass is determined from
the knowledge of the time-steps in which the various openatiare scheduled in

the DFG. Mainly, there are three types of multiplexors inEHeG.
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e Multiplexors connected to the inputs of the adddrsorder to calculate the
type of multiplexors that are connected to the inputs of ateadhe variables
that are connected to the first input of the adder are listdek riext step is
to find the registers in which the corresponding variablesstored. The
number of different registers that has been found showsuheer of inputs
to the multiplexor. This process is repeated for the secopdtiof the adder.
Therefore, a maximum of two multiplexors is needed for aneaduhd the

number of inputs to the multiplexors can be calculated asrde] above.

e Multiplexors connected to the inputs of the multipliek®t us consider the
multiplier coefficients are stored in an external memoryis External mem-
ory is connected to one of the inputs of the multiplier. Thare, a maximum
of one multiplexor is associated with the inputs of a muiépl To find the
number of inputs for this multiplexor, one can perform a sgmeedure as
discussed in the previous item, i.e. the variables conddotthe input of the
multiplier are listed and their corresponding registeesfaund. The number

of different registers equals the number of inputs to thetiplekor.

e Multiplexors connected to the inputs of the registeEsach register needs
at most one multiplexor. The number of inputs to each mukpt can be
found by using the information in the lifetime table. Eachis¢er stores a
number of variables. Each variable correspond is eitheugoub of an adder
or a multiplier, or it is the input of the system. In either eathe number
of different adders, multipliers, and inputs of the systewmrresponding to
the variables associated with each register is the numbpats of those

multiplexors that have to be allocated at the input of théstegs.

Let Nmux, represent the number pfinput multiplexors in the resulting digital
filter data-path, and lef',, represent the number of gate-equivalents required in
the implementation of a-input multiplexor. The cost associated with the multi-

plexors can be calculated in accordance with:

Amux =W Z Nmuxp Gmuxp (3-9)
P
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3.5.2 Evaluation of the Cost Associated with the Time Reque-
ments of the Digital Filter Data-Path

The costC, is evaluated in terms of the total number of time-steps reguio im-
plement the digital filter data-path, determined by thegassent of the operations
constituting the DFG to various time-steps.

It should be noted that two distinct operations in the DFGneaibe bound to
the same functional unit unless these operations are sigtkalilieast one time-step
apart. In addition, the computational delay associatet thi¢ functional unit has
to be taken into consideration. This computational delag ealculated in107).
The duratioril, of each time-step associated with the above digital filt¢a-geath

can be calculated a4(0g

wheretprr, ta, tmux @aNdiea represent the propagation delays through a D-flip-flop,
a typical gate, a two-input multiplexor, and a full addegpectively. Ther; may
be obtained as:

Cy = totaT ok (3.11)

wheret o represents the total number of time-steps required to imgie: the dig-

ital data-path. Having determined the cost functiGhgndC; in Eqns. 8.5 and
(3.11), one can determine the cost function associated with theadfilter data-
path by using Eqn.3(4). The result is then used by the PSO algorithm to optimize
the data-path.

3.6 Summary

This chapter has presented a novel technique for high-sswehesis of digital fil-
ters using particle swarm optimization technique. In tieshhique, a powerful
encoding scheme is presented that is capable of turningntbemation in a digi-
tal filter data-paths into particles which can be used by Pi§@righm to optimize
the digital filter data-paths. The encoding scheme is in sualay that preserves

the data-dependency relationships present in the DFG digul filter. This is
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achieved by sorting the operations in the DFG by their ALARestuling time-steps
which takes into account the critical path information ad tiperations in the digital
filter data-path. The particle is divided into two parts wh#re first part contains
the information associated with the scheduling of difféigrerations in the digital
filter data-path, and the second part is carrying the inftionaegarding the alloca-
tion of different operators to operations and the orderingignals for symmetrical
operations in the digital filter DFG.

There are two problems concerning the PSO for high-leveth®gis of digital
filter data-paths. On one hand, the coordinates of eaclclgaigibound to certain
integer numbers which depend on the user-specified comistr&n the other hand,
there is a possibility that in the course of PSO, two or mormerajors are allocated
for a single operation in a time-step. This is due to the ramdature of operations
of addition and subtraction in the underlying PSO. To avhbid,tthe time-step of
the violating operation is increased until it reaches antgrapot.

The cost associated with the PSO for high-level synthesidigifal filters is
formed to obtain an area-optimal, time-optimal, or comtiaeea-cum-time-optimal
solution. In order to achieve this, the number of suppoisdetgisters, and multi-
plexors) which are required for the high-level synthesigefdigital filter data-path
is calculated and the cost associated with the hardwaresimgaitation of the arith-
metic functional units together with the support cells ialeated. In addition, the
time requirements of the digital filter data-path is consede This will provide PSO
with an objective function to obtain a combined area-cumetioptimal digital filter

data-path.
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Chapter 4

Application Examples

In chapters2 and 3, the design and optimization of FRM digital filters, and the
high-level synthesis of digital filters using PSO were ds&sad, respectively. This
chapter is concerned with the application of PSO to the dekigh-level synthesis,
and optimization of digital filters by a number of practicabenples.

Two sets of lowpass FRM digital filters are used, with the fins¢ having an
FIR interpolation subfilter and the second one having anntBrpolation subfilter.
Moreover, two sets of bandpass FRM digital filters are wdizwhere again, one
having FIR digital filters as interpolation subfilters and tither having IIR digital
filters as interpolation subfilters. In case of IIR digitab§liers, the bilinear-LDI
technique is used to realize the FRM IIR digital filter. In #gbch, an example is
made to illustrate the application of PSO to the high-leyatesis of a benchmark
digital filter.

This chapter proceeds as follows. In secttb, an example is presented to
show the application of PSO to the design and optimizaticalofvpass FRM FIR
digital filter. Sectior4.2 presents an example illustrating the design and optimiza-
tion of a bandpass FRM FIR digital filter using PSO. In secdd) the application
of PSO to the design and optimization of a lowpass FRM lIRtdldilter is pre-
sented. In this section, the design parameters are the satie design parameters
of the example in sectiofh.1and comparisons are made to show the improvementin
PSO of FRM IIR digital filter. In addition, a comparison is negoetween PSO and
GA in this application. In sectiof.4, PSO is applied to a bandpass FRM IIR digital

filter, while the design parameters are the same as the egamgectiort.2 Com-
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parisons are made to illustrate the validity of the propdsetinique. Sectiod.5
presents an example to show the application of PSO to thelbigh synthesis of
a benchmark elliptic wave digital (WD) filter. Finally, sewt 4.6 presents a brief

summary of this chapter.

4.1 Lowpass FRM FIR Digital Filter Design Exam-
ple

This section is concerned with the design and optimizatianlowpass FRM FIR
digital filter satisfying the magnitude response desigresigations given in Table
4.1 over the CSD multiplier coefficient space.

The parameters for the PSO of lowpass FRM FIR digital filteshiswn in Table
4.2 and the CSD parameters are presented in Tallle

The first step to design the FRM FIR digital filter is to find tkadth of the dig-
ital subfiltersH,(z), Fy(z) and Fy(z). Given the design specification in Tatlel,
The lengths of the digital subfilteds,(z), Fy(z) andFy(z) are found to b&9, 24,
and42, respectively (based on Parks-McClellan approach), tieguh N = 145.
The passband and stopband edge frequencies of the didifdtexs H,(z), Fo(z)
andF;(z) are determined by using the design equations give8]irMoreover, the
passband ripple and stopband loss of these subfilters aed &8t of the corre-
sponding values given in the design specifications in Tadl¢in order to account

for any second-order effects when using the design equaitiof3]). In this way,

Table 4.1: Design Specifications for Lowpass FRM FIR Didhtidter

Maximum Passband Ripplé, 0.1[dB]
Minimum Stopband Lossl, 40[dB]

Passband-Edge Normalized Frequengy 0.607[Rad]

Maximum Stopband-Edge Normalized Frequengy, 0.617[Rad]

Normalized Sampling Periadl 1[s]

Interpolation Facton/ 6
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Table 4.2: PSO Design Parameters for Lowpass FRM FIR Digittr

K w C1 | €2 | Umin | Umax L f L h

70010422 =5 ) 10 | 10

Table 4.3: CSD Parameters for Lowpass FRM FIR Digital Filter

Lo | 1o | fo
11 | 3 | 10

the derived design specifications for the digital subfilt&r$z), H,(z), Fo(z) and
Fi(z) are obtained as shown in Tallel

Finally, by using Parks McClellan approach, the subfilt&igz), Fy(z) and
Fi(z) can be designed. Consequently, the magnitude frequenpgnses of the
overall infinite-precision lowpass FRM FIR digital filtéf(z) is obtained as shown
in Fig. 4.1 Based on the infinite-precision lowpass FRM FIR digitakfiltthe
corresponding CSD FRM FIR initial digital filter is obtaindtrough rounding the
infinite-precision multiplier coefficient values to thelpsest CSD values. The re-
sulting CSD FRM FIR digital filter has a magnitude frequenegponse as shown
in Fig. 4.2

By applying the proposed PSO to the above CSD FRM FIR digiter fand
after aboutl 00 iterations, the discrete PSO converges to the optimal le&/p&M
FIR digital filter having a magnitude frequency responsehasve in Fig. 4.3 In
addition, Fig.4.4gives us a closer look at the magnitude frequency resportke in
passband region of the lowpass FRM FIR digital filter.

Table4.5represents the comparison of the CSD lowpass FRM FIR digttais
before and after PSO.
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Table 4.4: Band-Edge Frequencies, Passband Ripples goioBi Losses for Dig-
ital SubfiltersH,(z), Hy(z), Fo(z) andF;(z) for Lowpass FRM FIR digital filter

Passband| Stopband
Subfilter Edge Edge Passband Stopband
Ripple Loss
Frequency | Frequency
H,(z) 0.347 0.47 0.085 dB 46 dB
Hy(z2) 0.47 0.347 0.085 dB 46 dB
Fo(z) 0.47 0.67 0.085 dB 46 dB
Fi(z) 0.617 0.7237 0.085 dB 46 dB
20
O .
_20 .
m'
D, -40 ]
R
L 60 .
L
_80 .
-100f |
_120 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5

w [Rad]

Figure 4.1: Magnitude Frequency-Response of the Overtlile-Precision Low-
pass FRM FIR Digital Filter (¢/*)
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Figure 4.2: Magnitude Frequency-Response of the Overalpass CSD FRM FIR
Digital Filter H (/) Before PSO
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Figure 4.3: Magnitude Frequency-Response of the Overatpass CSD FRM FIR
Digital Filter H (e’~) After PSO
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Figure 4.4: Magnitude Frequency-Response in the PasshbagidriRof the Overall
Lowpass CSD FRM FIR Digital Filtef (¢*) After PSO

Table 4.5: Frequency-Response Analysis of the Lowpass OS2 FIR Digital
Filter Before and After PSO

Frequency-Response CharacteristiBefore PSO| After PSO

Maximum Passband Ripplé, 0.2788[dB] | 0.0996[dB]

Minimum Stopband Lossl, 31.4681[dB] | 40.0269[dB]
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4.2 Bandpass FRM FIR Digital Filter Design Exam-
ple

In this section, the design of a bandpass FRM FIR digitalrfdieer the CSD mul-
tiplier coefficient space is considered. The given magmittasponse design speci-
fications are as given in Tabfe®6.

The parameters for the PSO of bandpass FRM FIR digital fiteshiown in
Table4.7and the CSD parameters are presented in Téal8le

As before, the first step to the design of the bandpass FRM igiRtfilter is to
find the lengths of the digital subfiltedg,, (z), Iy, (2), [, (2), Ha,,(2), Fo,,(2)
andF, (z). Using the design specifications given in Tabl6, The lengths of the
digital subfiltersH,, (z), Fo,(2) and Fy, (z) are found to ber9, 24, and42, re-
spectively. Also, the lengths of the digital subfiltéis, (z), Fo,,(z) andFy, (2)
are found to bel9, 23, and35, respectively, resulting iV = 252. The passband
ripple and stopband loss of these subfilters are s#it%tof the corresponding val-
ues given in Tabld.6. In this way, the derived design specifications for the digit
subfiltersH,, (z), Fo,(2), F1,,(2), Ha,,(2), Fo,,(2) and Fy, (z) are obtained as
shown in Tablet.9.

Finally, by using Parks McClellan approach, the subfiltéfig (z), Fo,(2),
Fy, (2), H

Ahyp

(2), Fo,,(2) and Fy, (2) can be designed. The magnitude frequency
response of the overall infinite-precision bandpass FRM ditfiRal filter H (z) is
as shown in Fig4.5.

Based on the infinite-precision bandpass FRM FIR digitarithe correspond-
ing CSD FRM FIR digital filter is obtained to have a magnituciency response
as shown in Fig4.6

By applying the proposed discrete PSO to the above CSD FRMdigRal
filter and after abow200 iterations, discrete PSO converges to the optimal bandpass
FRM FIR digital filter having a magnitude frequency respoasshown in Fig4.7.

Fig. 4.8gives us a closer look at the magnitude frequency resportbe jpassband
region of the bandpass FRM FIR digital filter.

Table4.10compares the CSD bandpass FRM FIR digital filters before &iad a
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Table 4.6: Design Specifications for Bandpass FRM FIR Diiléer

Maximum Passband Ripplé, 0.1[dB]

Minimum Stopband Lossl, 40[dB]

Lower Stopband-Edge Normalized Frequengy | 0.31x[Rad]

Lower Passband-Edge Normalized Frequengy | 0.337[Rad]

Upper Passband-Edge Normalized Frequengy| 0.607[Rad]

Upper Stopband-Edge Normalized Frequengy | 0.617[Rad]

Normalized Sampling Peridfl 1[s]
Lowpass Filter Interpolation Factadt, 6
Highpass Filter Interpolation Factar,, 5

Table 4.7: PSO Design Parameters for Bandpass FRM FIR Digiter

K w C1 | €2 | Umin | Umax L f L h

70010422 =5 ) 10 | 10

Table 4.8: CSD Parameters for Bandpass FRM FIR Digital fFilte

Lo | lo | fo
11 | 3 | 10
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Table 4.9: Band-Edge Frequencies, Passband Ripples apbasib Losses for
Digital SubfiltersH,, (z), Hy, (), Fo,,(2), F1,,(2), H,

Fy, () for Bandpass FRM FIR Digital Filter

Ahyp

(2), Hy,, (2), Fy,, (2) and

Subfilter PaEsjé): " StEESZ”d Passband | Stopband

Frequency| Frequency Ripple Loss
H,, (2) 0.347 0.4 0.085 dB 46 dB
Hy, (2) 0.4 0.347 0.085 dB 46 dB
Fo,(2) 0.4 0.67 0.085 dB 46 dB
Py, (2) 0.617 0.7237 0.085 dB 46 dB
H,, (2) 0.357 0.45m 0.085 dB 46 dB
Hy, (2) 0.457 0.35m 0.085 dB 46 dB
Fy,,(2) 0.317 0.097 0.085 dB 46 dB
,,(2) 0.477 0.337 0.085 dB 46 dB

20
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=100}

-120
0

Figure 4.5: Magnitude Frequency-Response of the Overialite-Precision Band-

15
w [dB]

pass FRM FIR Digital Filterf (¢/*)
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Figure 4.6: Magnitude Frequency-Response of the Overaldpass CSD FRM
FIR Digital Filter H (¢’) Before PSO
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Figure 4.7: Magnitude Frequency-Response of the OveraldBass CSD FRM
FIR Digital Filter H(¢?*) After PSO
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Figure 4.8: Magnitude Frequency-Response in the PassbegidiRof the Overall
Bandpass CSD FRM FIR Digital Filtdi (¢*) After PSO

Table 4.10: Frequency-Response Analysis of the BandpaBsRE3/ FIR Digital
Filter Before and After PSO

Frequency-Response CharacteristiBefore PSO| After PSO
Maximum Passband Ripplé, 0.6277[dB] | 0.0991[dB]
Minimum Stopband Lossl, 25.6378[dB] | 40.0125[dB]

PSO.

4.3 Lowpass FRM IIR Digital Filter Design Example

Consider the design of a lowpass FRM IIR digital filter saiisf) the magnitude re-
sponse design specifications given in TahlELover the CSD multiplier coefficient
space.

The parameters for the PSO of lowpass FRM IIR digital filtestiswn in Table
4.12and the CSD parameters are presented in Talilg

Given the design specification in Talbdell, The order of the digital allpass
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Table 4.11: Design Specifications for Lowpass FRM IIR Diltidter

Maximum Passband Ripplé, 0.1[dB]
Minimum Stopband Lossl, 40[dB]
Passband-Edge Normalized Frequetngy 0.607[Rad]
Maximum Stopband-Edge Normalized Frequengy, 0.617[Rad]
Normalized Sampling Peridfl 1[s]
Interpolation Facton/ 6

Table 4.12: PSO Design Parameters for Lowpass FRM IIR Digiteer

K w C1 | €2 | Umin | Umax L f L h

70010422 =5 ) 10 | 10

Table 4.13: CSD Parameters for Lowpass FRM IIR Digital FFilte

Lo |lo| fo|Li | L | fi
11131101123 | 7
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Figure 4.9: Magnitude Frequency-Response of the Overfatiiie-Precision Low-
pass FRM IIR Digital FilterH (e/*)

networksGy(z) andG,(z) are found to bé and4, respectively. In addition, the
digital masking subfilterd(z) and F;(z) have the same length as the previous
example, i.e24 and42, respectively, resulting itv = 75. In this example a set of
ten CSD LUTs are required, nine LUTs for the multiplier cagéfntsimc, ., mc,.,,
M52 MLy MLg s My MLy, Moy, @Ndmy, , constituent in the digital allpass
networksGy(z) andG;(z), and one template LUT for all the multiplier coefficients
constituent in the masking digital subfiltefs(z) and F} (z).

Finally, by using Parks McClellan approach, the subfiltgys:) and F3(z) can
be designed. Also, by using the EMQF technique, the digitahss networks
Go(z) andG4(z) can be designed. Consequently, the magnitude and group dela
frequency responses of the overall infinite-precision lasgFRM IIR digital filter
H(z) is obtained as shown in Fig4.9and4.10

Based on the infinite-precision lowpass FRM IIR digital filthe corresponding
CSD FRM IIR initial digital filter is obtained to have a magmde and group delay
frequency responses as shown in Figgd1and4.12

By applying the proposed PSO to the initial FRM IIR digitatdil and after
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Figure 4.10: Group Delay Frequency-Response of the Ovifatlite-Precision
Lowpass FRM IIR Digital Filterf (e/+)
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Figure 4.11: Magnitude Frequency-Response of the Ovefsld Cowpass FRM
lIR Digital Filter H (¢/*) Before PSO
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Figure 4.12: Group Delay Frequency-Response of the Ove&ill Lowpass FRM
lIR Digital Filter H (¢/*) Before PSO

about70 iterations, the PSO converges to the optimal lowpass FRMditiRal
filter having a magnitude frequency response as shown in&itf3 In addition,
Fig. 4.14gives us a closer look to the magnitude frequency resportbe passband
region of the lowpass FRM IIR digital filter. Figd.15illustrates the group delay
frequency response of the optimized lowpass FRM IIR diditedr. The values
of the multiplier coefficientsn, ,,,, andmc,,,, , are obtained as summarized in
Table4.14

Table4.15represents the comparison of the CSD lowpass FRM IIR difyiils
before and after PSO.

Since the design specifications are the same for this exaanpléowpass FRM
FIR digital filter example in sectiod.1, comparisons can be made between these
two filters in terms of the number of optimization variablegldhe speed of con-

vergence as summarized in Tadld 6
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Figure 4.13: Magnitude Frequency-Response of the Ovefdl) Cowpass FRM
lIR Digital Filter H(e’%) After PSO
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Figure 4.14: Magnitude Frequency-Response of the Passtegidn of the Overall
CSD Lowpass FRM IIR Digital Filtef] (¢7*) After PSO
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Figure 4.15: Group Delay Frequency-Response of the OVe&lll Lowpass FRM
lIR Digital Filter H (/) After PSO

Table 4.14: Digital Multiplier Values for Lowpass FRM IIR §ital Filter

Multiplier | CSD RepresentationDecimal Value
Mcy 00001.0001010 0.9219
My, 10101.0000000 21
My s 00010.0100010 1.7344
M Lo 00000.0001001 0.0547
ML, 00000.1000101 0.4609
mey 00001.0010100 0.8438
mey , 01000.1000000 8.5
mr, 00001.0010100 0.8438
ML, 5 00000.0010010 0.1406
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Table 4.15: Frequency-Response Analysis of the CSD LowipR$4 IIR Digital
Filter Before and After PSO

Frequency-Response Characteristi®efore PSO | After PSO
Maximum Passband Ripplé, 0.4345[dB] 0.0991[dB]
Minimum Stopband Lossl, 4.9451[dB] 40.336[dB]

Maximum Group Delay 178[Samples]| 148[Samples]

Table 4.16: Comparison between PSO of Lowpass FRM FIR Digiiter and PSO
of Lowpass FRM IIR Digital Filter

Lowpass FRM Lowpass FRM

Characteristic - . L .
FIR Digital Filter | 1IR Digital Filter

Number of Optimization Variabled’ 145 75

Average Number of Iterations 100 70

4.3.1 Comparison with DCGA

In this section a comparison has been made between the pbalgorithm and the
Diversity Controlled (DC) GA 23] for the optimization of the lowpass FRM IIR
digital filter satisfying the design specifications in Ta#l@1 This comparison was
made because these two techniques are both LUT-based anditdization of the
algorithms are the same. The parameters for DCGA optinozaidf the lowpass
FRM IIR digital filter arec = 0.8, a = 0.3 and¢ = 0.4 [109 and the number of
chromosomes in the population poolli&)0.

In this comparison20 different trials are performed for the optimization of a
lowpass FRM IIR digital filter while each trial contai@g0 iterations. The average
fitness value of the best particle in the swarm (best chromesa the population
pool) in these0 trials is calculated in each iteration. The result is show#ig.
4.16

Two observations can be obtained from this figure:
e The initialization of the two techniques is tried to be thensai.e. the seed
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Figure 4.16: Comparison Between the Proposed PSO (Sole) aimd DCGA (Dot-
ted Line) for the Optimization of a Lowpass FRM IIR Digitalterr

chromosome in DCGA optimization of the lowpass FRM IIR caifilter
is obtained exactly as the seed particle is obtained in thpgsed PSO. The
population pool, then, is generated through random murtatithe seed chro-
mosome with small mutation probability. As it can be seenim B.16 the
initialization of the proposed PSO is much better than tht@DCGA. This
is an advantage for the proposed PSO in terms of finding theajgolution

while the population is still diverse.

e The speed of convergence for the proposed PSO is higher leaDEGA
technique. This is obvious in Figl.16since the slope of the graph for the

proposed PSO is greater than the slope of the graph for DCGA.

4.4 Bandpass FRM IIR Digital Filter Design Exam-
ple

Consider the design of a bandpass FRM IIR digital filter $ganhg the magnitude

response design specifications given in TahlEr over the CSD multiplier coeffi-
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Table 4.17: Design Specifications for Bandpass FRM IIR Ridtilter

Maximum Passband Ripplé, 0.1[dB]

Minimum Stopband Lossl, 40[dB]

Lower Stopband-Edge Normalized Frequengy | 0.317[Rad]

Lower Passband-Edge Normalized Frequengy | 0.337[Rad]

Upper Passband-Edge Normalized Frequengy| 0.607[Rad]

Upper Stopband-Edge Normalized Frequengy | 0.617[Rad]

Normalized Sampling Peridfl 1[s]
Lowpass Filter Interpolation Factadt, 6
Highpass Filter Interpolation Factar,, 5

Table 4.18: PSO Design Parameters for Bandpass FRM IIRdDigiter

K w C1 | C2 | Umin | Umaz L f L h

7001042 |2] =5 5 10 | 10

cient space.

The parameters for the PSO of bandpass FRM IIR digital fétehobwn in Table
4.18and the CSD parameters are presented in Talile

Given the design specification in Tabdel7, The order of the digital allpass
networksGy,, (2), G1,,(2), Go,,(2) andGy, () are found to be, 4, 3 and4, re-
spectively. In addition, the digital masking subfiltdfg (z), F1,,(z), Fo,,(2) and
F, (z) have the same length as the previous example 2ile42, 25 and 35 re-

spectively, resulting inV = 140. In this example a set of fifteen CSD LUTs are

Table 4.19: CSD Parameters for Bandpass FRM IIR DigitaéFilt

Lo |lo| fo|Li | L | fi
11131101123 | 7
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Figure 4.17: Magnitude Frequency-Response of the Ovendithite-Precision
Bandpass FRM IIR Digital Filteff (e/~)

required, fourteen LUTs for the multiplier coefficients;, ,, mc,,, mcy5, Mg,
MLy Mcy .y MLy, Moy, andmg, , constituent in the digital allpass networks
Go,, (2), G1,,(2), Go,,(2) andGy, (z), and one template LUT for all the multiplier
coefficients constituent in the masking digital subfiltéts (2), I, (2), Fo,,(2)
andr, (z).

Finally, by using Parks McClellan approach, the subfiltéss (2), F1, (2),
Fy,,(2) and F, (z) can be designed. Also, by using the EMQF technique, the
digital allpass networksr, (z), G1,,(2), Go,, (2) andGy, (z) can be designed.
Consequently, the magnitude and group delay frequencynsgs of the overall
infinite-precision bandpass FRM IIR digital filté¥ (=) is obtained as shown in
Figs.4.17and4.18

Based on the infinite-precision bandpass FRM IIR digitadfjithe correspond-
ing CSD FRM IIR initial digital filter is obtained to have a magide and group
delay frequency responses as shown in Hgs9and4.20

By applying the proposed PSO to the initial FRM IIR digitatdil and after
about160 iterations, the PSO converges to the optimal bandpass FRMigital
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Figure 4.18: Group Delay Frequency-Response of the Ovirfatlite-Precision
Bandpass FRM IIR Digital Filteff (e/*)

| | |
w N = =
o o o o o
T T T T

IH(Ee"®)| [dB]
5

0 0.5 1 15 2 25 3 3.5
w [Rad]

Figure 4.19: Magnitude Frequency-Response of the Ove®&il Bandpass FRM
lIR Digital Filter H (¢/*) Before PSO
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Figure 4.20: Group Delay Frequency-Response of the Ove&lll Bandpass FRM
lIR Digital Filter H (¢/*) Before PSO

filter having a magnitude frequency response as shown in&£gL In addition,
Fig. 4.22gives us a closer look to the magnitude frequency resportbe pssband
region of the bandpass FRM IIR digital filter. Fig.23illustrates the group delay
frequency response of the optimized bandpass FRM IIR diifijitar. The values
of the multiplier coefficients for the lowpass and highpassisns of the bandpass
FRM IIR digital filter are obtained as summarized in Tale€20and4.21

Table 4.22 represents the comparison of the CSD bandpass FRM IIR digita
filters before and after PSO.

Since the design specifications are the same for this exaanglbandpass FRM
FIR digital filter example in sectiod.2, comparisons can be made between these
two filters in terms of the number of optimization variablesldahe speed of con-

vergence as summarized in Tadl@3
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Figure 4.21. Magnitude Frequency-Response of the Ove&id Bandpass FRM
lIR Digital Filter H(e’%) After PSO
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Figure 4.22: Magnitude Frequency-Response of the Passtegidn of the Overall
CSD Bandpass FRM IIR Digital Filtelf (¢’*) After PSO
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Figure 4.23: Group Delay Frequency-Response of the OVe&lll Bandpass FRM
lIR Digital Filter H(e’%) After PSO

Table 4.20: Digital Multiplier Values for the Lowpass Sexctiof the Bandpass FRM
IIR Digital Filter

Multiplier | CSD RepresentationDecimal Value
MCy 00001.0001001 0.9297
My, 00010.0001010 1.9219
M Lo 00000.1000010 0.5156
mey 00001.0010010 0.8594
mey , 10000.1010000 15.375
mr,, 00001.0001010 0.9219
MLy, 00000.0010101 0.0859
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Table 4.21: Digital Multiplier Values for the Highpass Seat of the Bandpass

FRM IIR Digital Filter

Multiplier | CSD Representation Decimal Value
mco 00001.0010100 0.8438
Mcy ., 00010.0001001 2.0547
M, 00000.1000001 0.4922
mey 00001.0100010 0.7656
mey , 10000.0100001 16.2578
mr, 00001.0000101 0.9766
ML, , 00000.0010101 0.0859

Table 4.22: Frequency-Response Analysis of the CSD BasdfaM IR Digital

Filter Before and After PSO

Frequency-Response Characteristi@efore PSO | After PSO

Maximum Passband Ripplé, 0.8982[dB] 0.0978[dB]

Minimum Stopband Lossl, 9.1715[dB] 40.0172[dB]
Maximum Group Delay 312[Samples]| 239[Samples]

Table 4.23: Comparison between PSO of Bandpass FRM FIRdDigilter and

PSO of Bandpass FRM IIR Digital Filter

Characteristic

Bandpass FRM

Bandpass FRM

FIR Digital Filter | IIR Digital Filter
Number of Optimization Variabled’ 252 140
Average Number of Iterations 200 160
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4.5 High-Level Synthesis of Digital Filters Example

In this section the proposed PSO algorithm is applied to thead data-path syn-
thesis of the benchmark elliptic WD filter shown in Fi§24[110. In this figure,

the input node is labeled dsand the output node is labeled4s All the outputs

of the time delays in Figd.24act as an input to the system and all the inputs to the
time delays act as the output of the system. Therefore, node9, 13, 24, 31, 36,
and37 are generated in the first time-step in the DFG and n@des, 12, 23, 35,

38, 41, and42 are last consumed in the last time-step of the DFG.

The above high-level synthesis is performed in terms of fpe$ of arithmetic
functional units, namely two-input digital adders and tigmodified booth mul-
tipliers. Moreover, the signal wordlengil is fixed at22 bits and the coefficient
wordlength is fixed at5 bits throughout the synthesis. The maximum number of
generations in the constituent PSO algorithm is fixethat

The design parameters for the PSO algorithm used in thelbigisynthesis
of digital filters is as shown in Tabk.24

High-level synthesis by PSO algorithm leads to optimal getthhs character-
ized by the entries in Tabke.25

The scheduled DFGs associated with the user-specifiedraoristin column 1
of Table4.25are as shown in Figgl.25 4.27, and4.29 In addition, The life-time

table corresponding to the user-specified constraintshiea25are obtained as in

el g } Tl
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Figure 4.24: A benchmark fifth-order elliptic WD filter
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Table 4.24: PSO Design Parameters for High-Level Syntleési8enchmark Dig-
ital Filter

K w C1 Co Umin Urmazx

100 1025 2 | 2 | =5 >

Table 4.25: Results of High-Level Synthesis with PSO

Nagaa | 31 3| 2
Nmult 2
Time Steps tiotw | 17 | 18 | 19

Functional Units

Multiplexors | N,

Registers Nyeg |13 ] 12 12
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Table 4.26: Register Allocation for Optimized Data-PatmtBgsis of Benchmark
WD Filter for Nyy = 3 andN,,,,;r = 2

Register#1| 1 6 7

Register#2| 8 2 4 5 42
Register#3| 9 19 17 16 3 12
Register #4| 13 38

Register #5| 24 22 27 21 23
Register #6| 31 14 10

Register #7| 36 25 29 30 32 35
Register #8| 37

Register #9| 20 18 15 11
Register #10 28 26 33 34
Register #11 39

Register #12 40

Register #13 41

Figs.4.26 4.28 and4.30, and the register allocation for each of the user-specified
constraints are obtained as shown in Talle€5 4.27, and4.28 Moreover, the
average values of the cost function afgérruns as obtained during the course of

optimization for these user-specified constraints are aasim Fig.4.31
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Table 4.27: Register Allocation for Optimized Data-PatmtBesis of Benchmark
WD Filter for N,g3q = 3 and N, = 1

Register#1| 1 6 7

Register#2| 8 2 4 5 39 12
Register#3| 9 19 17 16 3 42
Register #4| 13 38

Register#5| 24 22 27 21 23
Register#6| 31 11 10

Register#7| 36 25 29 30 15 33 14 35
Register #8| 37

Register #9| 20 18 32

Register #10 28 26 40

Register #11 34

Register #12 41

Table 4.28: Register Allocation for Optimized Data-PatmtBgsis of Benchmark
WD Filter for Nygq = 2 andN,,,,;: = 1

Register#1| 1 6 7

Register#2| 8 2 4 5 34
Register#3| 9 19 17 16 3 38
Register #4| 13 12

Register #5| 24 22 27 21 23
Register #6| 31 14 39

Register #7| 36 25 29 30 11 10
Register #8| 37

Register #9| 20 18 15 32 41
Register #10 28 26 33 42
Register #11 40

Register #12 35
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4.6 Summary

This chapter has presented several examples to illushateaplication of the pro-
posed PSO to the design, high-level synthesis, and opfiioizaf digital filters.
The first two examples have been concerned with the desigmginaization of
FRM FIR digital filters, one having a lowpass and the otheritga bandpass
frequency-response characteristic. The optimizationbess performed over the
CSD multiplier coefficient space and the results have shinahRSO can be suc-
cessfully applied to the design and optimization of FRM FIgtdl filters.

The second two examples have explained the application ©f®8$he design
and optimization of a set of two FRM IIR digital filters, oneviteg a lowpass and
the other having a bandpass frequency-response chaséicteifhe optimization
considered both the magnitude and the group-delay frequesponses. Similar
to the first two examples, these optimizations have beeopeed over CSD multi-
plier coefficient space and the design specifications hase kept unchanged with

respect to the first two examples. Therefore, comparisonkldze made between
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the two FRM techniques. It has shown that in case of FRM lIRtalidlters, not
only the number of optimization variables are reduced inganson with their FIR
counterparts, but also the speed of convergence is inctessé¢hat one can obtain
a stable FRM digital filter fast and reliably. In additiongethesults for PSO of
lowpass FRM IIR digital filter have been compared with thailssobtained previ-
ously using DCGA, and it has been shown that PSO gives fastemmre reliable
solutions than DCGA.

Finally, the last example has demonstrated high-level®gis of digital filters
through the application of PSO to the high-level synthets benchmark elliptic
WD filter. This example concerned with the optimization o tthata-path asso-
ciated with the digital filter and the result has been showbdarea-cum-time-
optimal. This has been achieved by optimizing the numbereqtired support
cells together with the user-specified number of arithnfetictional units, and by
taking into account the cost for the hardware implemematioeach of the above
items. The number of time-steps in the DFG has been also nziathto obtain an

optimal digital filter data-path.
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Chapter 5

Conclusions

5.1 Conclusions

This thesis has been concerned with the design and optiomnzaft a class of dig-
ital filters suitable for direct hardware realization. Thgitl filter should have
been capable of having sharp transition bandwidth, whilentaging low com-
plexity in term of hardware implementation. Therefore, FRRMhnique has been
employed to achieve the previous goals. In order to furteduce the hardware
complexity for the implementation of FRM digital filter, tl&SD number system
has been exploited for the advantage of having fewer nunfbhesreero bits in the
representation of multiplier coefficient values consititiie the FRM digital filter.

Two approaches have been studied; FRM digital filters inm@iing FIR dig-
ital filters to represent both masking digital subfilters amerpolation subfilters,
and FRM digital filters incorporating FIR digital filters tepresent masking digital
subfilters and IIR digital filters to represent interpolatgubfilters. In the latter case
the hardware realization complexity is reduced due to thefenumber of coeffi-
cients present in the implementation of an IIR digital filt&o further reduce the
number of coefficients, the bilinear-LDI technique has bewploited to represent
digital interpolation subfilters constituent in the FRM ithgfilters.

A novel particle swarm optimization has been proposed ferbtimization of
FRM digital filters. This technique is capable of tacklingaé separate problems
that may occur in the process of optimization of FRM digithéfs. A set of LUTs

is constructed and the indices of the LUTs are used to defmesdhrch space for
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the PSO. Therefore, an integer-based PSO is proposed thsmaar the indices of
the LUTs and to ensure that the resulting multiplier coedfitivalues constituent in
the FRM digital filters conform to the CSD number system farnigy successive

augmentation of the LUTs with regard to the set of stabildpstraints, the search
space is limited to FRM digital filters that are guaranteede®IBO stable in the

course of optimization. Finally, barren layers have bedroduced to guarantee
that in the course of PSO, the particles remain inside thadauies of LUTs. The

cost function for PSO of FRM digital filters has been calcediato optimize both

the magnitude frequency response as well as the group detagiated with the

FRM digital filter.

In addition, a novel PSO has been developed for high-levathegis of dig-
ital filters. An encoding scheme has been introduced to giteeathat the data-
dependency relationships in the digital filter DFG remaitisfiad under the oper-
ations of addition and subtraction in the PSO algorithm. ddi#gon, a technique
is developed to avoid any functional unit violation (thatyrmecur because of the
random nature of the operations of addition and subtraatioime underlying PSO
algorithm) through the course of high-level synthesis gitdi filters. The PSO is
capable of optimizing the area and time constraints assatiaith the high-level
synthesis of digital filters, by taking into account the usgecified constraints in
the number of functional units available for implementatdthe DFG. In addition,
the number of support cells, such as registers and mulbptekas been optimized
in the course of PSO for the high-level synthesis of digitedifidata-paths.

Several examples have been presented to illustrate thalouss$ of the pro-
posed techniques. PSO was applied to a set of FRM FIR diditakfj one showing
a lowpass frequency response characteristic and the otivergha bandpass fre-
guency response characteristic. In addition, to show teéulress of the PSO to
the design and optimization of FRM IIR digital filters incomating bilinear-LDI
digital subfilters, a lowpass and a bandpass FRM IIR digitarfith stringent
design specifications were used as examples. Moreover, BSOden applied to
the high-level synthesis of a benchmark elliptic wave digfiiter and the results

obtained were illustrated in an example.
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5.2 Summary of Contributions

e This thesis has presented FRM FIR digital filter techniquetiuce the com-

plexity of designing a sharp transition band digital filter.

e In order to further reduce the hardware realization complean IIR-based
FRM digital filter incorporating interpolation digital sfilbers realized using

bilinear-LDI design technique has been presented.

e A step-by-step procedure for the design of FRM digital fdtercorporating

FIR or lIR interpolation subfilters is presented.

e A novel integer-based PSO is presented for the optimizatidfRM digital

filters.

e A set of CSD LUTs is constructed and modified to guarantee {B©Bsta-
bility of the resulting digital filters that may be generatatbughout the PSO

process.

e An indirect search method is introduced that makes the PS$@doch over
the indices of LUTSs. In this way, the multiplier coefficiergalues constituent

in the digital filter particle are guaranteed to conform tdd&imber format.

e A novel modification to the LUTs is presented to ensure thatgarticles
remain inside the LUTs in the course of PSO. In this modifargtthe LUTS
are augmented in two directions with two layers that areadtarized with
low fitness values. These layers are called barren layerg cdhditions
present in the equation of PSO makes it impossible for thécpes to go

over the boundaries of the augmented LUTS.

e A new cost-function is developed that simultaneously o@és both the
magnitude-frequency and group-delay frequency respoftse group-delay

frequency response is calculated efficiently using adjoétivorks technique.

e A novel PSO is developed for high-level synthesis of diditer data-paths.
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e An encoding scheme is presented to encode the schedulinglimadtion
of the operations present in the digital filter data-patlo iparticles, which

preserves the data-dependency relationships in the Idijgadata-paths.

e A new technique is developed to avoid functional unit vicatthat may
occur during the course of PSO for high-level synthesis gitdli filter data-

paths.

e The cost function utilized for the high-level synthesis ajithl filter data-
paths allow time-optimal, area-optimal, or time-cum-aogéimal synthesis

of digital filter data-paths.
e The usefulness of PSO of FRM FIR digital filters has been destnated.

e The usefulness of PSO of FRM IIR digital filters incorporgtinlinear-LDI

interpolation subfilters has been demonstrated.

e The usefulness of PSO for high-level synthesis of digiteffitlata-paths has

been demonstrated.

5.3 Suggestions for Future Work

Future work involves the improvement of the proposed intdgesed PSO algo-
rithm. It may be reasonable to find a way for removing the rangeperations
present in the proposed PSO. The LUT-based technique arzhthen layers in-
troduced in this thesis can be further processed and candaefosdifferent ap-
plications, not only in the field of digital filter design, balso in other fields of
research.

This thesis has presented high-level synthesis of digitat$iusing PSO. Fu-
ture work in this area involves the automatic avoidance n€fwnal unit violation
in course of PSO. This can be achieved either by includingxaéma éerm in the
objective function of PSO, or by adding an optimization &hfe to the underlying

PSO. In the latter case, the speed of convergence for PSO enagdhced, while
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in the first case, the speed of convergence is changed ridgligdther encoding

schemes can be employed to reduce the number of coordinagsarticle.

103



References

[1] D.R. Wilson, D. R. Corrall, and R. F. Mathias, “The Desigmd Application
of Digital Filters,” IEEE Transactions on Industrial Electronics and Control
Instrumentationvol. IECI-20, pp. 68-74, 1973.

[2] P. P. Vaidyanathan, “Multirate digital filters, filter bks, polyphase net-
works, and applications: a tutorialProceedings of the IEERvol. 78, pp.
56-93, 1990.

[3] Y. C. Lim, “Frequency-Response Masking Approach for Synthesis of
Sharp Linear Phase Digital FilterdEEE Transactions on Circuits and Sys-
tems vol. 33, no. 4, pp. 357-364, 1986.

[4] —, “A Digital Filter Bank for Digital Audio Systems,JEEE Transactions
on Circuits and Systemsol. 33-8, p. 848 849, Aug. 1986.

[5] Y. C. Lim, S. R. Parker, and A. G. Constantinides, “Finiterd Length FIR
Filter Design Using Integer Programming over a Discretefftnent Space,”
IEEE Transactions on Acoustics, Speech and Signal Praugs&il. 30, pp.
661-664, 1982.

[6] T. Saramakiand Y. C. Lim, “Use of the Remez Algorithm foeg€igning FIR
Filters Utilizing the Frequency-Response Masking Apphgsia 1999 IEEE
International Symposium on Circuits and Systems. ISCAS/@193, 1999,
pp. 449-455.

[7] Y. J. Yu and Y. C. Lim, “FRM Based FIR Filter Design - the WLA&p-
proach,” in2002 IEEE International Symposium on Circuits and Systems.
ISCAS 2002vol. 3, 2002, pp. 1I-221 — 111-224.

[8] W.-S. Lu and T. Hinamoto, “Optimal Design of Frequencgdponse-
Masking Filters Using Semidefinite Programmin¢fZEE Transactions on
Circuits and Systems |: Fundamental Theory and Applicatigal. 50, pp.
557-568, 2003.

[9] ——, “Optimal Design of FIR Frequency-Response-Maskiilgers Using
Second-Order Cone Programming,”Pnoceedings of 2003 IEEE Interna-
tional Symposium on Circuits and Systems. ISCASVORB 3, 2003, pp. lll-
878 — 111-881.

[10] L. Cen and Y. Lian, “Hybrid Genetic Algorithm for the Digs of Modified
Frequency-Response Masking Filters in a Discrete Sp@aejlits, Systems,
and Signal Processingol. 25, pp. 153-174, April 2006.

[11] S. Chen, R. H. Istepanian, and B. L. Luk, “Digital IIR t&t Design Using
Adaptive Simulated AnnealingDigital Signal Processingvol. 11, no. 3,
pp. 241-251, July 2001.

104



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. sang Tang, K. fung Man, S. Kwong, and Z. feng Liu, “Dgrsiand Op-
timization of 1IR Filter Structure Using Hierarchical GeiteAlgorithms,”
IEEE Transactions on Industrial Electronicsol. 45, no. 3, pp. 481-487,
1998.

C. Dai, W. Chen, and Y. Zhu, “Seeker Optimization Algbm for Digital IIR
Filter Design,”IEEE Transactions on Industrial Electronicgol. 57, no. 5,
pp. 1710-1718, May 2010.

M. Najjarzadeh and A. Ayatollahi, “FIR Digital FilterBesign: Particle
Swarm Optimization Utilizing LMS and Minimax Strategiesy’ IEEE In-
ternational Symposium on Signal Processing and Informatiechnology,
2008. ISSPIT 20082008, pp. 129-132.

C. Dai, W. Chen, Y. Zhu, and X. Zhang, “Seeker OptimiaatAlgorithm for
Optimal Reactive Power DispatchEEE Transactions on Power Systems
vol. 24, no. 3, pp. 1218-1231, August 2009.

A. Kalinliand N. Karaboga, “A New Method for AdaptiveRl Filter Design
Based on Tabu Search AlgorithmAEU - International Journal of Electron-
ics and Communicationsol. 59, no. 3, pp. 111-117, May 2005.

N. Karaboga, A. Kalinli, and D. Karaboga, “Designingdial IIR Filters
Using Ant Colony Optimisation Algorithm, Engineering Applications of
Artificial Intelligence vol. 17, no. 3, pp. 301-309, April 2004.

A. Kalinli and N. Karaboga, “Artificial Immune Algorittm for IR Filter
Design,” Engineering Applications of Artificial Intelligenceol. 18, no. 5,
pp. 919-929, Dec 2005.

R. Storn, “Designing Nonstandard Filters with Diffatel Evolution,”IEEE
Signal Processing Magazineol. 22, no. 1, pp. 103-106, Jan 2005.

N. Karaboga, “Digital IIR Filter Design Using Differéial Evolution Algo-
rithm,” EURASIP Journal on Applied Signal Processingl. 2005, no. 8,
pp. 1269-1276, Jan 2005.

P. Mercier, S. M. Kilambi, and B. Nowrouzian, “Optimizan of FRM FIR
Digital Filters Over CSD and CDBNS Multiplier Coefficient &mes Em-
ploying a Novel Genetic Algorithm,Journal of Computersvol. 2, no. 7,
pp. 20-31, Sept. 2007.

S. Bokhari and B. Nowrouzian, “DCGA Optimization of Lpass FRM IIR
Digital Filters Over CSD Multiplier Coefficient Space,” B2nd IEEE In-
ternational Midwest Symposium on Circuits and Systekagust 2009, pp.
573-576.

S. Bokhari, B. Nowrouzian, and S. A. Hashemi, “A novethaique for
DCGA optimization of guaranteed BIBO stable IIR-based FRilitel fil-
ters over the CSD multiplier coefficient space,proceedings of 2010 IEEE
International Symposium on Circuits and Systems (ISCZ®R)0, pp. 2710—
2713.

S. A. Hashemi and B. Nowrouzian, “Particle swarm opgation of FRM

FIR digital filters over the CSD multiplier coefficient spdde proceedings
of 53rd IEEE International Midwest Symposium on Circuitsl éystems
(MWSCAS)2010, pp. 1246-1249.

105



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

——, “Anovel discrete particle swarm optimization font fir digital filters,”
Journal of Computers, "Submitted”

——, “Discrete particle swarm optimization of magnigidesponse of iir-
based frm digital filters,” inpproceedings of 17th IEEE International Confer-
ence on Electronics, Circuits, and Systems, 2010. ICEC®S.2D&cember
2010.

——, “A novel finite-wordlength particle swarm optimitzan technique for
frm iir digital filters,” in proceedings of 2011 IEEE International Symposium
on Circuits and Systems (ISCAS), "To appedvtay 2011.

J. Kennedy and R. Eberhart, “Particle Swarm Optim@ati in Proceed-
ings of IEEE International Conference on Neural Netwokkd. 4, 1995, pp.
1942-1948.

M. D. Lutovac and L. D. Mili¢, “lIR Filters Based on Freency-Response
Masking Approach,” infelecommunications in Modern Satellite, Cable and
Broadcasting Service, TELSIKS 20@&Eept. 2001, pp. 163-170.

H. Johansson and L. Wanhammar, “High-speed Recurslterirg Using
the Frequency-Response Masking Approach,Pmceedings of the IEEE
Int. Symposium on Circuits and Systet@97, pp. 2208-2211.

J. Sun, W. Fang, and W. Xu, “A Quantum-Behaved Particleardn
Optimization With Diversity-Guided Mutation for the Desigof Two-
Dimensional IR Digital Filters,IEEE Transactions on Circuits and Systems
[I: Express Briefsvol. 57, no. 2, pp. 141-145, 2010.

A. Slowik and M. Bialko, “Design and Optimization of IIRigital Filters
with Non-Standard Characteristics Using Particle Swarntir@pation Al-
gorithm,” in 14th IEEE International Conference on Electronics, Citsui
and Systems, ICECS 2Q@007, pp. 162-165.

B. Luitel and G. K. Venayagamoorthy, “Particle Swarmti@pzation with
Quantum Infusion for the design of digital filters,” IREE Swarm Intelli-
gence Symposium, SIS 20@808, pp. 1-8.

B. Nowrouzian and L. S. Lee, “Minimal Multiplier Reatison of Bilinear-
LDI Digital Allpass Networks,” inlEE Proceedings on Devices and Systems,
G Circuits, vol. 136, Jun. 1989, pp. 114-117.

T. Parks and J. McClellan, “Chebyshev Approximatiom fonrecursive
Digital Filters with Linear Phase JEEE Transactions on Circuit Theory
vol. CT-19, pp. 189-194, 1972.

Y. C. Lim, R. Yang, D. Li, and J. Song, “Signed Power-oid Term Alloca-
tion Scheme for the Design of Digital Filter$EE Transactions on Circuits
and Systems Il: Analog and Digital Signal Processvigy. 46, pp. 577-584,
1999.

R. I. Hartley, “Subexpression Sharing in Filters Us{@gnonic Signed Digit

Multipliers,” IEEE Transactions on Circuits and Systems Il: Analog and Dig
ital Signal Processingvol. 43, pp. 677-688, 1996.

106



[38] A. T. G. Fuller, B. Nowrouzian, and F. Ashrafzadeh, “@pization of FIR
Digital Filters over the Canonical Signed-Digit Coeffidi&pace Using Ge-
netic Algorithms,” in1998 Midwest Symposium on Circuits and Systems
1998, pp. 456—-459.

[39] M. C. McFarland, A. C. Parker, and R. Camposano, “Tatiooh high-level
synthesis,” inProceedings of the 25th ACM/IEEE Design Automation Con-
ference ser. DAC '88, 1988, pp. 330-336.

[40] N.Parkand A. Parker, “Sehwa: a software package fottegis of pipelines
from behavioral specificationsl|EEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systemsl. 7, no. 3, pp. 356 —370, March
1988.

[41] J.-H. Lee, Y.-C. Hsu, and Y.-L. Lin, “A new integer lineprogramming for-
mulation for the scheduling problem in data path synthesi?roceedings
of 1989 IEEE International Conference on Computer-Aidedige, 1989.
ICCAD-89. Digest of Technical Paperdlov 1989, pp. 20 —23.

[42] S. Devadas and A. Newton, “Algorithms for hardware editon in data path
synthesis, IEEE Transactions on Computer-Aided Design of Integratigd C
cuits and Systemsol. 8, no. 7, pp. 768 —781, July 1989.

[43] A. C. Parker, J. T. Pizarro, and M. Mlinar, “Maha: a pragr for datapath
synthesis,” inProceedings of the 23rd ACM/IEEE Design Automation Con-
ference ser. DAC '86, 1986, pp. 461-466.

[44] H. Trickey, “Flamel: A high-level hardware compiledlEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systgol. 6, no. 2,
pp. 259 — 269, March 1987.

[45] P. Marwedel, “A new synthesis algorithm for the mimotdte/are system,”
in Proceedings of the 23rd Conference on Design Automatiod6.19une
1986, pp. 271 - 277.

[46] P. G. Paulin and J. P. Knight, “Force-directed schedyufor the behavioral
synthesis of asics|JEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systemeol. 8, no. 6, pp. 661 —679, June 1989.

[47] ——, “Force-directed scheduling in automatic data paththesis,” inPro-
ceedings of the 24th ACM/IEEE Design Automation Conferesere DAC
'87, 1987, pp. 195-202.

[48] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Pertiola based synthe-
sis,” in Proceedings of the 27th ACM/IEEE Design Automation Confare
1990, June 1990, pp. 444 —-449.

[49] I.-C. Park and C.-M. Kyung, “Famos: an efficient scheéaglalgorithm for
high-level synthesis [EEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systemsl. 12, no. 10, pp. 1437 —-1448, Oct. 1993.

[50] K. Ito, T. lwata, and H. Kunieda, “An optimal schedulingethod for parallel
processing system of array architecture,”Hroceedings of the ASP-DAC
'97. Asia and South Pacific Design Automation Conferenc&19an. 1997,
pp. 447 —454.

107



[51] P. Aratd, Z.A. Mann, and A. Orban, “Time-constrained scheduling ofjéar
pipelined datapathsJournal of Systems Architectyreol. 51, no. 12, pp.
665 — 687, 2005.

[52] S. O. Memik, R. Kastner, E. Bozorgzadeh, and M. Sarddha“A schedul-
ing algorithm for optimization and early planning in higéwel synthesis,”
ACM Transactions on Design Automation of Electronic Systeal. 10, pp.
33-57, Jan. 2005.

[53] F. Kurdahi and A. Parker, “Real: A program for registdoeation,” in Pro-
ceedings of the 24th Conference on Design Automation, 198ie 1987,
pp. 210 — 215.

[54] B. Haroun and M. Elmasry, “Architectural synthesis &ésp silicon compil-
ers,” IEEE Transactions on Computer-Aided Design of Integrateduis
and Systemwol. 8, no. 4, pp. 431 —-447, Apr. 1989.

[55] S. J. Beaty, “Genetic algorithms and instruction sehied,” in Proceedings
of the 24th annual international symposium on Microarctiitee, ser. Ml-
CRO 24, 1991, pp. 206-211.

[56] E. Bonsma and S. H. Gerez, “A genetic approach to thelapped schedul-
ing of iterative data-flow graphs for target architecturé$wommunication
delays,” inProceedings of the ProRISC Workshop on Circuits, Systeis an
Signal Processingl997.

[57] M. Heijligers and J. Jess, “High-level synthesis salied) and allocation
using genetic algorithms based on constructive topolbgid@eduling tech-
niques,” inProceedings of the IEEE International Conference on Evoihut
ary Computation, 1995vol. 1, Dec. 1995, p. 56.

[58] J. H. Satyanarayana and B. Nowrouzian, “A new techniquéhe high-level
synthesis of digit-serial digital filters based on genelypathms,” Journal
of Circuits, Systems, and Computers (JCS@). 7, no. 6, pp. 517 —-535,
1997.

[59] R. F. Abdel-Kader, “Particle swarm optimization forrgirained instruction
scheduling,VLSI Des, vol. 2008, pp. 7:1-7:7, February 2008.

[60] S.-C. Chu, Y.-T. Chen, and J.-H. Ho, “Timetable schedpusing particle
swarm optimization,” inProceedings of First International Conference on
Innovative Computing, Information and Control, 2006. IGIC06., vol. 3,
Sept. 2006, pp. 324 -327.

[61] X. Kong, J. Sun, and W. Xu, “Particle swarm algorithm fasks scheduling
in distributed heterogeneous system,Hroceedings of Sixth International
Conference on Intelligent Systems Design and ApplicatR0G6. ISDA '06.
vol. 2, Oct. 2006, pp. 690 —695.

[62] M. Clerc and J. Kennedy, “The particle swarm - explosistability, and
convergence in a multidimensional complex spatieEE Transactions on
Evolutionary Computationvol. 6, no. 1, pp. 58 —73, Feb 2002.

[63] I. C. Trelea, “The particle swarm optimization algb: convergence analy-
sis and parameter selectioivjf. Process. Letfvol. 85, pp. 317-325, March
2003.

108



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

V. Kadirkamanathan, K. Selvarajah, and P. Flemingalfity analysis of
the particle dynamics in particle swarm optimizd EEE Transactions on
Evolutionary Computatio2006.

F. van den Bergh and A. P. Engelbrecht, “A study of p&t®warm opti-
mization particle trajectorieslhf. Sci, vol. 176, pp. 937-971, April 2006.

R. C. Eberhart and Y. Shi, “Particle swarm optimizatidievelopments, ap-
plications and resources,” iAroceedings of the 2001 Congress on Evolu-
tionary Computation, 200,12001.

X. Li and A. P. Engelbrecht, “Particle swarm optimizati an introduction
and its recent developments,” Rroceedings of the 2007 GECCO confer-
ence companion on Genetic and evolutionary computasen GECCO '07,
2007, pp. 3391-3414.

Y. Shi and R. C. Eberhart, “A modified particle swarm opitier,” in Pro-
ceedings of the 1998 IEEE International Conference on Higrlary Com-
putation, 1998. IEEE World Congress on Computational ligehce, May
1998, pp. 69 —73.

——, “Fuzzy adaptive particle swarm optimization,” Rroceedings of the
2001 Congress on Evolutionary Computation, 20@001.

R. C. Eberhart and Y. Shi, “Tracking and optimizing dgmia systems with
particle swarms,” inProceedings of the 2001 Congress on Evolutionary
Computation, 20012001.

M. Clerc, “The swarm and the queen: towards a deterrmand adaptive
particle swarm optimization,” ifPfroceedings of the 1999 Congress on Evo-
lutionary Computation, 1999. CEC 99.999.

R. C. Eberhart and Y. Shi, “Comparing inertia weightsl @onstriction fac-
tors in particle swarm optimization,” iRroceedings of the 2000 Congress on
Evolutionary Computation, 200Q2000.

J. Kennedy, “The particle swarm: social adaptation méwledge,” inPro-
ceedings of IEEE International Conference on Evolution@gmputation,
1997, Apr. 1997, pp. 303 —308.

P. Suganthan, “Particle swarm optimiser with neighthooed operator,” in
Proceedings of the 1999 Congress on Evolutionary Commutati999. CEC
99, 1999.

A. Rathaweera, S. Halgamuge, and H. Watson, “Selfitzyag hierarchical
particle swarm optimizer with time-varying acceleratiaefficients,”IEEE
Transactions on Evolutionary Computatijaml. 8, no. 3, pp. 240 — 255, June
2004.

P. Angeline, “Using selection to improve particle swmaoptimization,” in
Proceedings of the 1998 IEEE International Conference oold#ionary
Computation, 1998. IEEE World Congress on Computationilligence,
May 1998, pp. 84 —89.

C.-F. Juang, “A hybrid of genetic algorithm and paicdwarm optimiza-

tion for recurrent network designEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cyberneticsol. 34, no. 2, pp. 997 — 1006, April 2004.

109



[78] Y.-P. Chen, W.-C. Peng, and M.-C. Jian, “Particle swaptimization with
recombination and dynamic linkage discove{£EE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cyberneties]. 37, no. 6, pp. 1460
—1470, Dec. 2007.

[79] P. Andrews, “An investigation into mutation operatéosparticle swarm op-
timization,” in Proceedings of IEEE Congress on Evolutionary Computation,
2006. CEC 20062006.

[80] M. Levbjerg, T. K. Rasmussen, and T. Krink, “Hybrid pake swarm opti-
miser with breeding and subpopulations,” 2001.

[81] J. Liang and P. Suganthan, “Dynamic multi-swarm p&tswarm optimizer
with local search,” irProceedings of the 2005 IEEE Congress on Evolution-
ary Computation, 2005vol. 1, Sept. 2005, pp. 522 -528 Vol.1.

[82] W.-J. Zhang and X.-F. Xie, “Depso: hybrid particle swawith differen-
tial evolution operator,” irProceedings of IEEE International Conference on
Systems, Man and Cybernetics, 200&l. 4, Oct. 2003, pp. 3816 — 3821
vol.4.

[83] F. van den Bergh and A. P. Engelbrecht, “A Cooperativeryach to Parti-
cle Swarm Optimization JEEE Transactions on Evolutionary Computatjon
vol. 8, no. 3, pp. 225-239, 2004.

[84] K. Parsopoulos and M. Vrahatis, “On the computationlbgl@bal minimiz-
ers through particle swarm optimizationZEE Transactions on Evolution-
ary Computationvol. 8, no. 3, pp. 211 — 224, June 2004.

[85] R. Brits, A. P. Engelbrecht, and F. V. D. Bergh, “A nichiparticle swarm
optimizer,” in Proceedings of the Conference on Simulated Evolution And
Learning 2002, pp. 692—696.

[86] D. Parrott and X. Li, “Locating and tracking multiple gmic optima by a
particle swarm model using speciatiotEEE Transactions on Evolutionary
Computationvol. 10, no. 4, pp. 440 —458, Aug. 2006.

[87] J. Kennedy and R. Mendes, “Population structure antighaswarm perfor-
mance,” inProceedings of the 2002 Congress on Evolutionary Compmutati
2002. CEC '02.2002.

[88] ——, “Neighborhood topologies in fully-informed and dieof-
neighborhood particle swarms,” iRroceedings of the 2003 IEEE In-
ternational Workshop on Soft Computing in Industrial Apations, 2003.
SMCia/03, June 2003, pp. 45 - 50.

[89] X. Hu and R. Eberhart, “Multiobjective optimizationing dynamic neigh-
borhood particle swarm optimization,” Proceedings of the 2002 Congress
on Evolutionary Computation, 2002. CEC '02002.

[90] J. Liang and P. Suganthan, “Dynamic multi-swarm péetiswarm opti-
mizer,” in Proceedings of 2005 IEEE Swarm Intelligence Symposiung.200
SIS 2005.June 2005, pp. 124 — 129.

[91] R. Mendes, J. Kennedy, and J. Neves, “The fully inforrpedicle swarm:

simpler, maybe better[EEE Transactions on Evolutionary Computatjon
vol. 8, no. 3, pp. 204 — 210, June 2004.

110



[92] J. Liang, A. Qin, P. Suganthan, and S. Baskar, “Comprsive learning
particle swarm optimizer for global optimization of muliaal functions,”
IEEE Transactions on Evolutionary Computatjosol. 10, no. 3, pp. 281 —
295, June 2006.

[93] R. Yang, Y. C. Lim, and S. R. Parker, “Design of sharp éinphase FIR
bandstop filters using the frequency-response-maskimmigee,” Circuits,
Systems, and Signal Processiugl. 17, no. 1, pp. 1-27, Jan. 1998.

[94] A. Willson and H. Orchard, “Insights into Digital Filte Made as the Sum
of Two Allpass Functions,JEEE Trans. On Circuits And Systiol. 42, pp.
129-137, Mar. 1995.

[95] D. Rabrenovic and M. Lutovac, “Elliptic filters with mimal Q-factors,” in
IEE Electronics Letters Onlinevol. 30, no. 3, Feb. 1994, pp. 206—207.

[96] L. D. Milic and M. D. Lutovac, “Design of Multiplierles Elliptic IIR Filters
with a Small Quantization ErrorJEEE Transactions on Signal Processjng
vol. 47, no. 2, pp. 469-479, Feb. 1999.

[97] M. D. Lutovac and L. D. Mili¢, “Design of ComputationgiEfficient Elliptic
[IR Filters with a Reduced Number of Shift-and-Add Operasian Multipli-
ers,”IEEE Transactions on Signal Processjngl. 45, no. 7, pp. 2422—-2430,
Oct. 1997.

[98] B. Nowrouzian, “A Novel Approach to the Exact Design dDLSymmetri-
cal Digital and Switched-Capacitor Filters,” Rroceedings of 33rd Midwest
Symposium on Circuits and Systend. 2, Aug. 1990, pp. 967-972.

[99] R.Hashemian, “A new method for conversion of a 2’s coenpént to canonic
signed digit number system and its representationgroteedings of 1996
Conference Record of the Thirtieth Asilomar Conferenceignels, Systems
and ComputersNovember 1996, pp. 904 —907 vol.2.

[100] S. B. Bokhari, “Design and Discrete Optimization ofE®) Stable FRM
Digital Filters Incorporating IIR Digital Interpolationubfilters,” Master’s
thesis, University of Alberta, Dep. of Elec. and Comp. Engnjversity of
Alberta, Edmonton, AB, Canada, 2010.

[101] V. Valkenburg/ntroduction to Modern Network Synthesislohn Wiley and
Sons, Inc., 1965.

[102] A. Antoniou,Digital Filters: Analysis, Design, and ApplicationsMcGraw
Hill, Inc., 1993.

[103] R. E. Crochiere, “Digital Network Theory and its Apgdition to the Analysis
and Design of Digital Filters,” Ph.D. dissertation, M.1Dep. of Elec. Eng.,
M.1.T, Cambridge, MA, May 1974.

[104] D. D. Gajski and L. Ramachandran, “Introduction tohigvel synthesis,”
IEEE Design Test of Computersl. 11, no. 4, pp. 44 —54, 1994.

[105] A. Shahid, M. S. T. Benten, and S. M. Sait, “Gsa: schieduand alloca-
tion using genetic algorithm,” ifroceedings of the conference on European
design automatiorser. EURO-DAC '94, 1994, pp. 84-89.

111



[106] A. Hashimoto and J. Stevens, “Wire routing by optimgichannel assign-
ment within large apertures,” iRroceedings of the 8th Design Automation
Workshopser. DAC '71, 1971, pp. 155-169.

[107] J. H. Satyanarayana and B. Nowrouzian, “Design and fpgplementation
of digit-serial modified booth multipliersJournal of Circuits, Systems, and
Computers (JCSCYol. 6, no. 5, pp. 485 -501, 1996.

[108] ——, “A comprehensive approach to the design of digittal modified
booth multipliers,” inProceedings of the 26th Southeastern Symposium on
System Theory, 199March 1994, pp. 229 -233.

[109] F. Marquez-Stricker, Y. Wu, and B. Nowrouzian, “A Ndéviechnique for
the Design and DCGA Optimization of Guaranteed BIBO Stahlendann
Digital IF Filters over the CSD Multiplier Coefficient Spgtan proceedings
of 2009 IEEE International Symposium on Circuits and Syst@®CAS)
2009, pp. 473-476.

[110] S.Y. Kung, T. Kailath, and H. J. Whitehous4,SI and Modern Signal Pro-
cessing Prentice Hall Professional Technical Reference, 1984.

112



Appendix A

Author’s Contributions

Refereed Journal Publications

e Seyyed Ali Hashemj and Behrouz Nowrouzian, “A novel discrete particle
swarm optimization for FRM FIR digital filters”, Submitted ournal of

Computers

Refereed Conference Publications

e Seyyed Ali Hashemj and Behrouz Nowrouzian, “A novel finite-wordlength
particle swarm optimization technique for FRM IIR digitdtdrs”, To ap-
pear inproceedings of 2011 IEEE International Symposium on Ciscaind
Systems (ISCASYlay 15th - 18th, 2011, Rio de Janeiro, Brazil.

e Seyyed Ali Hashemj and Behrouz Nowrouzian, “Discrete particle swarm
optimization of magnitude response of IIR-based FRM digitars”, In pro-
ceedings of 17th IEEE International Conference on Eledt®rCircuits, and
Systems (ICECS) 20,1December 12th - 15th, 2010, Athens, Greece.

e Seyyed Ali Hashemj and Behrouz Nowrouzian, “Particle swarm optimiza-
tion of FRM FIR digital filters over the CSD multiplier coefi@nt space”, In
2010 53rd IEEE International Midwest Symposium on Circaitgl Systems
(MWSCAS)August 1st - 4th, 2010, Seattle, Washington, US.

e Syed Bokhari, Behrouz Nowrouzian, algyyed Ali Hashemj “A novel
technique for DCGA optimization of guaranteed BIBO stabiebbased FRM

113



digital filters over the CSD multiplier coefficient spacei, proceedings of
2010 IEEE International Symposium on Circuits and Systé8SAS) May
30th - June 2nd, 2010, Paris, France.

114



