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Abstract

Researchers developing artificially intelligent conversational agents (aka, chat-

bots) seek effective ways to provide personal assistance to users with various

needs. We have implemented a web-based conversational agent that recom-

mends resources to help clients (caregivers of patients suffering from various

neurodevelopmental disorders — either family members or health-care pro-

fessionals). Our agent first asks the client a conditional sequence of relevant

questions about the patient’s medical symptoms to fill out a patient profile,

then recommends an appropriate website from a curated knowledge base of

resources, previously validated by experts. We implement this agent as an

expert-system (ES), using an inference engine to make recommendations based

on a knowledge base of information about resources and the information ac-

quired about the patient. This ES technology means the designer can easily

update information about the resources, without redesigning the question-

answering process. We anticipate that our framework can be used in different

applications that require a conversational agent to ask personalised questions

to identify the best recommendations for users.
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Preface

The research conducted for this thesis forms part of a University of Alberta

collaboration between Dr. Francois Bolduc from the Faculty of Medicine and

Dentistry, Dr. Osmar Zäıane and Dr. Russell Greiner from the Department

of Computing Science. Chapters 1, 3, and 4 will be revised for publication as

a journal paper in the field of expert systems applications.
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Chapter 1

Introduction

Conversational agents (aka chatbots) are software systems that engage in di-

alogue exchanges with humans, often in natural language [69]. Many people

use conversational agents like Google Home and Amazon Alexa for help with

recommendations about shopping and general knowledge, setting reminders on

their phone, accessing current information about weather, news and so on [50].

With the help of cutting-edge automated speech recognition algorithms, the

tools analyse the users’ speech and convert it into words; they then use sophis-

ticated Natural Language tools to better interpret the information request and

provide relevant responses [39]. They may use open-source knowledge bases

such as Wikipedia to get the information needed to generate useful responses

to user queries. These tools combine a variety of algorithms, including in-

formation retrieval systems [7], knowledge-based systems [32], and end-to-end

machine-learned systems [75] to provide a useful service to users — a service

that includes providing answers and recommending resources. However, they

are unable to replicate longer, human-like conversations, as when friends en-

gage in chitchat, and are only restricted to short task-oriented dialogues [44].

A chatbot system must address multiple tasks, each with a unique problem

definition. For example, a recommendation chatbot that suggests buying the

best laptops must address at least two tasks. One task is understanding the

requirements of the user with regards to laptop specifications, i.e., whether

the user wants a high-end laptop or a cheap laptop. This task involves natural

language understanding [2] as the chatbot attempts to perceive the user’s
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intent from spoken or written natural language input. Another task, known

as natural language generation [71], is generating a written or spoken response

appropriate to the user’s intent. These tasks are fundamentally different with

respect to their objective function. Researchers have used various approaches

including rule-based systems, information retrieval systems, machine learning,

and/or reinforcement learning in order to implement a complete conversational

agent [13, 78, 89].

The first chatbot ELIZA was built by a team at MIT in 1966 [81, 96] to

serve the role of a virtual psychotherapist. It receives user input, in writ-

ten natural language, and breaks it down by rule-based keyword matching.

Using another set of rules triggered by keywords determined from the input,

ELIZA generates a response in written natural language. ELIZA has influ-

enced research and development of multiple chatbot frameworks like ALICE

and ELIZABETH [1, 79, 80] using open-source dataset corpora of human dia-

logue that can be used to train various models of chatbot. Using FAQs listed

at the website of the School of Computer Science at the University of Leeds, re-

searchers retrained the ALICE chatbot system to create FAQChat [78]. They

claim that FAQChat is a viable alternative to Google as a tool to access open-

source FAQ databases and generate answers in written natural language to

written user questions. Like FAQChat and ELIZA, the chatbot proposed in

our thesis is also rule-based with textual input and output. Rule-based chatbot

frameworks, like ELIZABETH, allow knowledge from an expert to be hard-

coded as rules. Alternatively, the rules may be learned using machine learning

techniques from previous conversational data that include input from users

and valid responses annotated by domain experts. Prior to the deep learn-

ing boom in the 2010s, research was restricted to rule-based chatbot systems

due to the lack of large datasets and effective machine learning techniques.

Recent research into chatbots led to open-ended systems that answer conver-

sational questions [86], answer text comprehension questions [54], or engage in

versatile conversations with users [89], all trained using variations of sequence-

to-sequence deep-learning models [87] on very large collections of question and

answers [68, 70].
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Many chatbot applications do not have a large dataset of relevant training

examples. In that case, developers resort to expert designed chatbots and

template-based chatbots. A template-based chatbot attempts to fill out a

template of information by asking the user questions followed by incorporating

the response from the user in a template of answers. For example, a chatbot-

doctor may ask a subject questions regarding medical symptoms. The answers

are compiled together by a set of rules that provide responses to the subject

in the form of a diagnosis. However, the application can be made to be more

complex and dynamic if questions asked sequentially depend on the responses

by the user. The order of questions asked may change depending on the

sequence of answers provided by the subject. In order to incorporate this

functionality, an old technology called expert-systems may be used to build

the chatbot.

Expert-systems (ES) [36, 95] are programs that implement decision mak-

ing using an inference engine that reaches decisions or conclusions given the

facts about a particular instance. They were very popular in the 1970s and

80s, especially after the appearance of eMYCIN [12, 53], the first backward-

chaining expert-system shell; they provided a means for non-programmers to

easily use them. An example of a recent expert-system-based chatbot is a

web-based pharmacist built by an undergraduate student at Ashesi University

in Ghana [17]. Their chatbot answers questions in the domain of pharmacy,

e.g., questions on information about drugs and prescriptions. It implements

an expert-system as a web application like the chatbot proposed in our thesis.

Most existing chatbot frameworks are either learning-based or rule-based with-

out a generic inference engine, unlike the generic inference engine provided by

an expert-system, and not compatible with expert-systems. The difficulty and

cost of knowledge acquisition from domain experts to define the rules and on-

tologies, the knowledge base requires, has hindered this technology. With the

advent of machine learning aiming at automatically learning rules from data

when large labelled datasets are available, researchers are turning to this ap-

proach to build machine-learned systems, as this avoids the cost of knowledge

acquisition from domain experts. However, access to large labelled data to
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automatically learn these rules is not always possible, making expert designed

systems and expert-systems a viable solution to problems with availability of

domain experts and limited data.

In this thesis, we research techniques of implementing a conversational

agent using an expert-system framework. In order to implement a chatbot

framework, we explored a medical application that attempts to provide rele-

vant resources for parents or health care providers of subjects suffering from

various neurological disorders and exhibiting challenging behaviours like phys-

ical aggression [16]. Online resources and technology-based interventions as-

sociated with neurological disorders are scarce and not organised in one single

application [29]. We are developed an expert-system-based chatbot framework

so that caregivers can interact with a conversational agent and find appropri-

ate, personalised resources for subjects with neurological disorders.

1.1 Motivation

It is estimated that one billion people worldwide are suffering from various

forms of neurodevelopmental disorder (NDD), which includes Autism, ADHD,

and Intellectual Disability disorders [63]. NDD affects around 13% of the world

population [63]. Local and international resources to help subjects with NDD

are inadequate and unequally distributed [63]. These disorders are a serious

concern especially in children who are unable to help themselves due to the in-

ability to understand their symptoms. Caregivers are responsible to intervene

and alleviate a situation that involves a child exhibiting physical aggression to-

wards others due to a neurodevelopmental disorder, including Autism [64, 83].

These disorders lead to challenging behaviours such as physical aggression and

self-harm when triggered by anxiety, depression, etc. Challenging behaviours

can be managed by an intervention from a parent or a caregiver [52] and hence,

it is important for the caregivers to be aware of effective interventions.

Online resources related to NDD are accessible by any web browser. How-

ever, there are no resources that offer advice on interventions or actions to take

for specific cases of NDD and challenging behaviours. A chatbot that analyses
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specific subject characteristics and recommends a useful resource available lo-

cally or internationally can help parents and caregivers provide efficient service

to children suffering from NDD. Our research into NDD and conversational

agents led to the conclusion that a conversational agent that provides person-

alised recommendations for subjects of NDD does not exist.

Building and maintaining a chatbot to recommend resources is challenging

as online resources are not static. The webpages are continuously changing;

new webpages appear and others disappear or become obsolete. It is important

that the chatbot need not be redesigned and the internal rules of the rule base

need not be changed for each batch of new resources, or periodically when

webpages are updated. We need to dissociate the expertise of recommending

resources about NDD from the resources themselves, in order to have the

resources maintained and updated in an external database by an individual

without any programming skills.

Due to the lack of large datasets of existing dialogue between subjects and

health practitioners recommending resources for NDD, we decided to imple-

ment an expert-system-based chatbot. Since the NDD resources are dynamic

and continuously changing, we created a knowledge base of resources that is

maintainable by an individual without any programming skills. We dissociated

the information of the resources from the knowledge base of the expert-system

so that the it does not end up with rules specific to resources. It also allowed

others to modify resource attributes in the knowledge base without changing

the rules. We needed to build an automated system like a chatbot, which

can converse with the subject or the caregiver and offer resource recommenda-

tions since the availability of human support may not be enough to handle the

large number of NDD subjects. In order to address these issues, we propose a

flexible expert-system chatbot framework that responds to dynamic webpages

without having to change the internal rules of the expert-system.
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1.2 Thesis statements

Thesis 1. We can use the proposed expert-system model to build a conversa-

tional agent that recommends online resources

In order to demonstrate that we can build a conversational agent that rec-

ommends online resources by using the proposed expert-system model, we

chose multiple resources from the resource database as test cases. We cre-

ated an imaginary user with characteristics that match the attributes of the

example resources. If the chatbot recommends these resources under the ap-

propriate subject profile, it shows that the system matches the model it is

built from. However, the system does not guarantee that the flow of dialog

is efficient since we did not have the resources to conduct a research study on it.

Thesis 2. The mechanism used by the expert-system-based chatbot is not

affected by changes to the resources to recommend if these happen to change,

disappear or new ones are created in the resource database as long as we are

using the same characteristics of the resources

In order to support the claim that the expert-system framework can easily

add information about recommendations, we added the attributes of a rele-

vant website to the system via the administration console, a web portal used

by administrators to modify characteristics of resources. We tested whether

the website was recommended given the right combination of subject facts

– i.e. challenging behaviour, condition, the age of children, and where they

lived. If the website is recommended via the user interface of the system, we

see that information about the website was effectively incorporated without

changing the rules of the expert-system.

When modifying information about an existing recommendation, we up-

dated the website attributes from the administration console. We tested

whether the same website was recommended under the right combination of

website attributes. We performed similar steps for deleting information about
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a website from the resource database. We chose a website that was previously

recommended by the expert-system. After removing the attributes of the web-

site from the system via the administration console, we checked whether the

system had stopped recommending the website under the right combination

of subject facts.

1.3 Contributions

We have developed an expert-system-based chatbot framework that offers rec-

ommendations to caregivers of children suffering from various forms of NDDs.

The recommendations are websites or resources vetted by a domain expert

who is responsible for tagging each resources with appropriate attributes like

Autism as its “condition”, physical aggression as its “challenging behaviour”,

and anxiety as its “trigger”. We have developed a front-end that acts as a

messaging interface to the user. The interface asks appropriate questions to

establish the subject profile, provides an appropriate recommendation match-

ing the subject profile, and afterwards, allows the user to rate the recommen-

dation. Moreover, our framework can be used by health practitioners seeking

generic information about challenging behaviours and conditions associated

with NDD. All the conversations between the user and the chatbot can be

saved (with user consent) at a secured database, along with the user’s feed-

back on the quality of website defined as a numerical rating between 1 and 5

(1 being a very bad resource and 5 being an outstanding resource). We antic-

ipate the saved data can later be used to build a machine learning framework

that ranks resources based on user feedback and provides better personalised

recommendations over time.

In order for the system to recommend websites about interventions, an ex-

pert has collected a sample of useful websites. These websites are tagged with

the relevant challenging behaviours, neurodevelopmental conditions and other

relevant characteristics related to subjects. For example, if the website presents

content about self-harm in children suffering from Autism, triggered by anx-

iety, the website will be tagged with “self-harm” for challenging behaviour,
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“anxiety” for trigger, and “autism” for condition. Some other resources (in

addition to websites) collected by the expert are phone numbers that may

be called in case of emergency, or support when a child is demonstrating a

challenging behaviour.

The back-end is equipped with a knowledge base of expert-verified websites

and their characteristics. Experts created some hand-made generic rules based

on combinations of subject facts, and the system uses an inference engine to

make decisions based on these rules and subject facts. The website is equipped

with an administration console where an administrator can add, edit, or delete

information about recommendations.

In the field of conversational agents [69], there are few surveys describing

the scope of the field. We have performed an extensive review of Conversa-

tional Artificial Intelligence that we have covered in Chapter 2. We attempted

to define the different aspects and features of conversational agents and de-

scribe how various methods fit the defined aspects. Generally, a chatbot needs

to identify the context of a conversation, make use of the input from a user

and implement a model to generate a valid response to the user’s input that

may be a question, answer or a comment.

To summarise, in this thesis our contributions are as follows :

1. We have developed an expert-system-based framework for a conversa-

tional agent that recommends useful resources (including websites) to caregivers

of subjects suffering from NDD and challenging behaviours.

2. We have conducted a review into the scope and features of conversational

agents developed in academia and industry.

3. We have developed a user-friendly interface in the form of a website

through which the chatbot can converse with the user and provide recommen-

dations.

4. We have developed a database of relevant resources and websites for

NDD subjects and labelled them with corresponding challenging behaviours,

conditions, types of intervention, locations, etc.

5. We have developed a user-friendly admin console for administrators

of the chatbot to easily add new, modify, or delete information related to re-
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sources.

6. We have conducted a usability heuristic evaluation [59] of the interface

to the conversational agent and performed a detailed analysis on the heuristics.

1.4 Outline of thesis

In Chapter 2, we provide a detailed review of conversational agents in the

literature and the industry. We define concepts such as the context, the input

to the system, the response provided by the system; we then compare vari-

ous conversational agents against these concepts. Then, we explain various

methods used to build conversational agents and discuss different evaluation

protocols for chatbots.

In Chapter 3, we define expert-systems and provide details of the method

used to build the Coaching Assistant for Medical Information (CAMI). We

outline different frameworks and software libraries used by our chatbot. We

also define the schema of the resource database used to store specific char-

acteristics about resources. The chapter defines the rule base used by the

expert-system for inference. We also provide definitions for subject facts such

as age, gender, challenging behaviour, location, etc.

In Chapter 4, we discuss the results of the heuristic evaluation of the inter-

face of our chatbot and the steps taken to rectify some of the issues presented

by the evaluation. We describe the results of the experiments to show that

our expert-system framework matches the proposed system and is flexible with

regards to adding, modifying, and deleting information about resources.

In Chapter 5, we conclude the thesis and discuss future improvements to

the expert-system framework. We discuss how our system can be used for any

recommendation based chatbot systems with defined website attributes and

subject facts. The rules can be easily modified in the code and adapted to fit

a particular application. We believe our expert-system framework is not just

limited to applications in the medical domain, but in many different domains

given that the scope of the application is properly defined.
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Chapter 2

Conversational Agents

In this chapter, we discuss the current state-of-the-art research in conversa-

tional agents — especially Question Answering Systems [4, 35, 84] and Dia-

logue Systems [5, 51, 101] — then define some crucial aspects of conversation,

and describe how different algorithms and methods have tried to tackle the

problem of emulating a human conversation. We provide examples of the de-

fined terms in Figure 2.1, which shows a conversation between a human and

an AI agent. In the following sections, we define context, input, output, and

model, the four fundamental dimensions of every conversational agent.

Definition 2.1. The input comes from the user in the form of sentences,

which are analysed by the conversational agent.

Definition 2.2. The output is the response created by the conversational

agent given the input and the task.

Definition 2.3. The method is the process of generating an output by con-

sidering both the input and the task.

Additionally, we introduce definitions of other terms used in this chapter :

Definition 2.4. An utterance is a message sent from the user to the chatbot

or vice versa.

Definition 2.5. An interaction is a single exchange of communication be-

tween the user and the chatbot agent that includes one of more utterances from

the user and one or more utterances from the agent.
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Definition 2.6. A conversation or a dialogue is a collection of one or

more interactions between the user and the chatbot agent.

Taking Figure 2.1 as reference, an example of input is “hello” and an exam-

ple of output is “could you please let me know what are the operating systems

you are using? ”. An utterance can be both an input and an output. An

interaction, a single exchange of communication, is the combined input and

output — e.g. the first two lines of the excerpt. Here, the conversation is com-

posed of multiple interactions between the user and the machine. The entire

exchange can be termed either a conversation or a dialogue. A conversation is

basically the exchange of interactions in a single session.

2.1 Conversation

A conversation is defined as a series of interactions between the agent and the

user, where the user and the agent have passed information back and forth.

The user may ask a question after which the agent may answer that question.

Similarly, the user may answer a question after it is asked by the agent. A

conversation may have one or many interactions between the user and the

agent.

Example of an interaction (the simplest conversation):

User : Who is the prime minister of Canada?

Agent : Justin Trudeau

Example of an interaction with two utterances from the agent:

User : Who is the president of Canada?

Agent : Did you mean the prime minister of Canada?

Agent : Canada does not have any president. The prime minister of Canada

is Justin Trudeau.
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Figure 2.1: An example excerpt of a conversation between a human and an
agent [89].
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A conversation always includes at least one interaction between the user and

the agent. The example below includes more than one interaction between the

user and the agent.

Example of a longer conversation:

User : Which country is Edmonton located in?

Agent : Canada

User : Which province in Canada is Edmonton located in?

Agent : Alberta

2.2 Context

Context is defined as the knowledge that is used by the agent to predict re-

sponses to a question asked by the user. Context may include information

from the previous part of the current dialogue during the current conversa-

tion. It may also include the dialogue from previous conversations between

the agent and the user. Context may originate externally from useful websites

in the world wide web, such as Wikipedia. Typically, there are three types

of context namely previous conversations, current conversation and external

information.

External context can be specific in the sense that the source of knowledge

is only included in a database. An example of a database is DBPedia [6], a

collection of structured information from Wikipedia. DBPedia contains in-

formation from many different domains of knowledge, so an application using

DBPedia as context may be open-ended. Sometimes, context may only be

restricted to a group of documents. For example, a chatbot application may

be responsible for providing information about ADHD. An expert may have

collected a group of documents, including webpages, fact sheets, PDF docu-

ments, etc., only related to ADHD. The context for that application is then

restricted to the information from the defined group of documents.
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2.2.1 Domain

The domain is a feature of the application and its context that puts a limit

to the context available to answer a particular question. If a chatbot includes

context that covers information that is not restricted to a specific constrained

domain, the application is open-domain. One can ask any question and expect

a correct answer. The Google search engine [11] is an example of an open

domain application where users can ask questions from different domains.

Closed-Domain

If the application has a limited number of documents or databases it considers

context, and its scope is limited to answering questions within the domain

of these documents and databases, the application is closed-domain. A chat-

bot is task-oriented and closed-domain if it only focuses on a particular task.

Consider the task of booking a restaurant reservation. The answers to the

questions are specific to the domain of restaurant booking. The agent picks

the best answers/questions according to the context. If you ask the agent

“Who is the president of United States?”, it will not correctly answer the

question since it falls outside the task of restaurant booking. It is not ex-

pected to answer any question outside its domain of expertise and the task it

handles.

2.3 Input

Input is the data put forth by the user to communicate with the agent. It can

be written as text, for example when writing questions in the Google search

engine box. Input maybe auditory, for example, in the cases of Google Home

and Amazon Alexa. With spoken input, there needs to be a microphone to

record the speech of the user and send the signal to the agent. We categorize

input into three different types: a question, an answer, or a comment. The

input may be visual, such as images sent by the user via the chat interface.
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Question

Typically in Question Answering Systems, the user only asks a question. Ex-

amples include “What is the current year”, “Who won the football world cup”,

etc. The question does not necessarily follow with a question mark. The agent

needs to analyse and recognise the question from the input. Understanding

short text input or conversations is a difficult problem in itself and has been

explored more in the literature compared to understanding longer text con-

versations [37, 77].

Answer

With a conversational agent such as a Dialogue System, the user is not re-

stricted to asking a question. They are free to answer any questions asked

by the agent. The agent may ask a relevant question in order to determine

the situation of the user, for example asking about symptoms in the case of

a patient’s medical diagnosis. The user provides an input to the agent as an

answer to the question asked by the agent.

Comment

A comment may be anything that is not a question or an answer. For example,

a user can start with an introductory greeting in the form of “hi” or “hello”.

This initiates the conversation with an agent. In the case of an input comment,

the agent does not need to answer any specific question. The agent can start

the communication casually, like a normal conversation between people. The

comment can be a goodbye such as “Great to talk to you. Bye”. It maybe

used to compliment the service of an agent like “Thank you that helped a

lot. You provide really good advice”. Alternatively, it can be used to provide

negative feedback about the quality of the service, for example “You are an

idiot”. Comments are used in chitchat conversations and they are explored in

the paper by Vinyals et al. [89] which framed their conversational agent as a

neural conversational model that uses a neural network architecture.
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2.4 Output

Output is the data put forth by the agent to communicate with the user. It may

take the form of written text when conversing within a mobile application or

a web interface with text-based forms. It may take the form of spoken output

in the case of devices with a speaker such as Google Home or Amazon Alexa.

We categorise output as an answer to a question asked by the user, a question

asked by the agent, or a comment that includes everything outside the realms

of a question or an answer — any response from the agent to communicate

with the user. The output is generally categorized into long text or short text.

Most conversational agents respond in short text since responding in long text,

an active topic of research, is more challenging [30, 76].

Question

An agent may resort to asking the user a question in order to understand their

situation better. For example, in medical diagnosis, an agent needs to ask a

series of questions in order to find out whether the patient is suffering from a

variety of symptoms. It can be simple “yes” or “no” question, multiple choice

questions, or questions that can be answered in free text.

Answer

Typical Question Answering Systems require the agent to only answer ques-

tions. The agent considers the context of the application in order to answer a

question asked by the user.

Comment

Similar to the case of the user, an agent is also free to comment during the

conversation with the user, if allowed in the context of the application. The

agent may take the initiative and start with “hello” or “good day” and wait

for the user’s reply. The agent may also conclude the conversation with a

“goodbye, have a good day”.
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2.5 Methods

The method of a chatbot is defined as a processing engine that analyses the

context and the input together to provide an output. Typically, the method

represents an ensemble of different models tuned for different tasks, for ex-

ample, understanding and formulating a question or generating a response.

Machine learning techniques — for example, deep learning — are applied on

training data to build a learned model that is used for inference during response

generation with real users [85]. Reinforcement learning may also be used for

response generation [47]; a well defined state and action space is required for

the agent. Information retrieval uses probabilistic techniques to infer an an-

swer after the question is matched with documents from the knowledge base,

which may represent the world wide web for open-ended applications [32].

2.5.1 Neural Conversational Model

Vinyals et al. [89] described the task of a conversational agent in detail using

a neural conversational model. Their research combined natural language un-

derstanding and natural language generation in one simple neural network, a

sequence-to-sequence model. Sequence-to-sequence models are recurrent neu-

ral networks used to predict a sequence of words given a previous sequence of

words. Typically, a softmax or sigmoid final layer follows the final hidden layer

into a vector of word embeddings, and the predicted word is the one with the

highest probability. Words are predicted one at a time resulting in a sequence

of words.

During training, a language model updates its weights by minimizing the

differences between one-hot encoded actual words and their corresponding log-

its of the predicted words. However, these models do not work efficiently in

the context of conversational AI and question answering. The hidden layers

are not sophisticated enough to learn the context and facts from questions or

conversations. Recent works using deep learning tend to have recurrent neural

networks as a baseline over more sophisticated architectures like memory net-

works [85]. Figure 2.2 describes the sequence-to-sequence model implemented
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Figure 2.2: The sequence-to-sequence model used by Vinyals et al. [89]. Here,
A, B and C are previous sentences considered as the context for the model.
W, X, Y and Z are words from the sentence uttered by the user. These words
interact with the model, during inference, to produce W, X, Y, Z as machine-
predicted sequence of words as output.

by the authors and Figure 2.1 shows an example excerpt of a conversation

between a human and the machine (agent).

The authors trained their model twice in two different experiments, one

on a closed domain IT helpdesk troubleshooting dataset and another on an

open domain movie-transcript dataset. The performance of their model was

evaluated by human judges on a test dataset of 200 examples. Each of these

test examples was evaluated by four different judges and if at least three judges

agreed that the answer was of high quality, that test example was a success.

They also ran CleverBot [26] on all of these 200 test examples and had the

human judges evaluate CleverBot’s responses. Their model was preferred over

CleverBot on 97 of these test examples, while CleverBot was preferred over

their model on 60 of the 200 test examples.

Comparison with CAMI

Our chatbot, CAMI, is architecturally very different from the neural conver-

sation model. CAMI does not implement a machine learned framework but a

hand-coded expert-system. CAMI queries a resource database to retrieve a rel-

evant resource per patient facts. Unlike CAMI, there is no explicit database

in the neural conversation model. Its context can be very open-ended, but
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CAMI’s is only restricted to a specific medical domain, NDD. CAMI and the

neural conversation model are similar in the sense that both models can ask

questions in the form of written natural language. CAMI also provides mul-

tiple choice questions to the user while the neural conversation model do not

ask questions in a multiple choice format.

2.5.2 Memory Networks

Memory networks [10, 85, 98] are a class of end-to-end neural networks that

produce responses from context and input. These networks can directly be

applied in a question answering problem where the input is the question from

the user and the output is an answer with the highest probability found from

the final softmax classification layer of a known set of answers — a set of

options rather than a sequence of words. The architecture has four major

components. The first component encodes the input in a vector space of

feature representation layer with learnable weights. The second component is

the generalizable memory component that can be written to and read from.

Input representations are saved to this component and updated with new data.

The idea is to generalize, learn the most common input representations, and

understand the context from the input. The third component is the output

feature map layer which encodes an output feature representation vector, given

the input and the current memory state.

End-to-end memory networks are architectures where all four components

of memory networks are joined end-to-end in a multilayer neural network

shown in Figure 2.3 [85]. The input sentences interact with a hidden layer

of weights to create an embedding vector. The input sentences act like con-

text for a given problem. The question, q, interacts with the input embedding

in a layer where the inner product of the question and the embedding is cal-

culated. The next layer is a softmax attention layer where the inner product

is compared against the input embedding, and the most relevant sentences

in the context are considered against the question. Some sentences from the

context will have more weight than others when compared with the question.

The weighted sum of the inputs is generated as output from the memory layer.
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Figure 2.3: The architecture of a memory network as described by Sukhbaatar
et al. [89]. Embeddings for question q interacts with embeddings for sentences
x to create weighted sum o. The dot product of embedding of questions q and
o is used in the final softmax layer with weights W to predict answer a from
a list of known choices.

The output feature vector and the question vector interact in another layer

to produce the predicted answer. This layer is connected to the final soft-

max classification layer of all the possible answers from the problem. Different

papers introduced different variations of memory networks [49, 103] and sub-

mitted the results of experiments conducted on the Facebook BAbI datasets

[97, 99].

In order to evaluate the models, the authors used accuracy as a perfor-

mance measure calculating the percentage of answers the model got right.

The answers need to be in exactly the right sequence of words when compared

to the ground truth. The evaluation measure is known as exact match (EM),

where the sequence of predicted words need to match the sequence of words

for the ground truth.
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Comparison with CAMI

CAMI is architecturally very different from memory networks. CAMI does

not implement a machine learning framework but rather an expert-system for

inference. CAMI uses a resource database to make queries in order to retrieve

a relevant resource as per patient facts. Unlike CAMI, there is no database

in memory networks. Their context can be very open-ended depending on

the dataset used for learning, while CAMI’s is only restricted to the medical

domain of NDD. CAMI and memory networks are similar in the sense that both

models can ask questions in the form of written natural language. However,

CAMI also provides multiple choice questions to the user.

2.5.3 Information Retrieval

Information retrieval [7, 37, 72] is a class of algorithms that attempt to gather

useful information from a data source by various means. The data source

may be structured as in a database like MySQL, PostgreSQL, etc. It may

also be unstructured, as in Wikipedia, where the text is the main source of

information.

In a structured source, the database is defined by tables and columns that

categorize data. For example, data about a user who has provided their height,

weight, gender, and age is categorized into columns of height, weight, gender,

and age. Consequently, it is very easy to execute an SQL query to a database

in order to retrieve information about a user. Other structured information

can be stored in XML or JSON format, and there have been many attempts

to parse information from JSON and XML and retrieve relevant information

[40].

However, in an unstructured source, the data is not classified into tables

and columns. It may be free text like Wikipedia where the information about

a user, for example a scientist, is written like “Albert Einstein was born on

〈date, year〉” . To retrieve such information, one needs to use natural language

processing algorithms to extract named entities like the name of the person and

the date when they were born [61]. Popular information retrieval algorithms,
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for instance the Google search engine [11], uses keyword matching to match

words and sections of text between user queries and website content. The

websites matched with order of confidence levels are returned back to the user

with the first suggestion as the most confident suggestion. But the source of

information does not always need to be free text. It may be encoded as a PDF

file or an image that has information in pixels. In order to use a PDF file,

we need to convert a PDF into free text and use natural language processing

algorithms to extract information.

In the case of images, researchers need to implement image processing algo-

rithms to extract information [27]. Researchers have implemented algorithms

to extract shape, colour, texture, and other information available from images.

A standard research problem is the classification of images into entities like

humans, animals, books, laptops, etc. With recent advances in deep learning,

the number of successful breakthroughs in image classification has grown ex-

ponentially, especially with deep convolutional networks on Imagenet dataset

[42]. Researchers have also implemented speech processing algorithms for in-

formation retrieval from audio files [66], for converting audio information into

subject-specific text-based vocabulary.

Yan et al. [104] implemented DocChat, an information retrieval system as

part of a chatbot that can leverage information from unstructured documents.

The chatbot retrieved sentences from these documents and ranked them in

order of similarity with the user query — an utterance from the user that may

be a question or a comment. It compared similarity between the query and the

candidate sentences using multiple features like inverse document frequency of

each word in a sentence. After calculating similarity between the query and

candidate sentences, the chatbot ranked all the sentences in order of similarity.

From the ranked list of sentences, it provided the sentence with the highest

similarity as a response to the user query.

In order to evaluate DocChat, the authors used WikiQA dataset, and a list

of [question, document, and answer] tuples. Each sentence from the document

was either labelled with 0 if it was an inappropriate answer for the question

or 1 if it was an appropriate answer. The task was to predict the correct
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answer labelled 1 and predict all other sentences as 0, for that specific question.

They used evaluation metrics such as Mean average precision (MAP) and

Mean reciprocal ranking (MRR) to provide a performance measure for their

algorithm.

Another example of an information-retrieval-system-based chatbot is FAQChat

[78], which uses keyword matching to fetch information from its knowledge base

to answer user queries. The authors compared the performance of FAQChat

with Google search engine. They built an interface where users can submit

questions and receive answers from either Google or FAQChat. They chose

their own formulated questions from a range of topics, and received two an-

swers, one from Google and another from FAQChat. The user would then

choose one of the answers as the best answer for the question. On conducting

the experiment, the authors found that the mean number of users who chose

answers from FAQChat over Google were higher.

Comparison with CAMI

The information retrieval chatbots described here are similar to CAMI as both

use an external database to fetch answers to user queries. However, CAMI

specifically uses an expert-system for inference unlike the chatbots described

in this subsection. Their context can be open-ended or specific to a domain

but CAMI’s is only restricted to the medical domain of NDD. DocChat can ask

questions in the form of written natural language like CAMI, while FAQChat

cannot ask questions. Both FAQChat and DocChat can answer questions in

text while CAMI is only able to retrieve resources as the only form of answer.

CAMI is the only chatbot to provide multiple choice questions to the user.

2.5.4 Active Question Answering

With advances in deep reinforcement learning [56] and after the recent inven-

tion of Deep Q networks [55], scientists realised these techniques can also be

applied to problems that involve decision making. Question answering and

conversational AI are complex problems that involve decision making by the
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agent. It involves learning the best policy — the best question to ask, or

the best answers to offer given the state of the agent and the question asked

by the user. One can formulate this into a reinforcement learning problem

where we can define state of the agent as the question asked by the user and

the history of conversation, actions the agent can take such as asking a ques-

tion or answering a question, and the rewards from the user depending on the

action the agent took. Evaluation may be qualitative or quantitative. With re-

spect to qualitative evaluation, human acceptance of an answer may be geared

towards certain qualitative attributes — whether an agent’s answer is good

enough to be correct, or whether the answer makes logical sense but unrelated

to the question [62]. Assessment may vary between users depending on their

individual biases like education, expertise of the subject, etc. Learning from

qualitative data is challenging and currently, it is an active research area [14].

C. Buck et al. [13] formulated the problem of question answering into a

reinforcement learning task. The user interacts with an AI agent that commu-

nicates with a black box environment, external to the agent. The user provides

a question to the AI agent that reformulates it into multiple questions. The

agent then forwards the questions to the environment that provides an an-

swer to each of these questions. The answer is matched against the original

question to produce F1 score by comparing tokens between the answer and

original question. The F1 score is the reward for that answer [21]. From the

list of answers, the one with the highest F1 score is chosen as the best answer

and ultimately the answer to the original question provided by the user. The

authors of the paper built a complex architecture that involves deep learning

techniques to influence the policy gradient of the AI agent.

The task of reformulating a question into multiple similar questions is done

by a sequence-to-sequence model. The authors describe it as similar to the

task of machine translation, which translates a text in one language to another

[8]. Active Question Answering (AQA), introduced in C. Buck et al. [13], is

a task to reproduce questions similar to the original question in the same

language and elicit the best answer. The environment provides an answer to

each of these questions and a reward once matched with the original question.
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Figure 2.4: The architecture of the model, copied from C. Buck et al. [13],
consists of the Reformulate network, sequence-to-sequence model, and the Ag-
gretate network, a CNN model. Question q from the user is reformulated into
multiple questions, answers to which are retrieved from the Environment. The
best answer a is chosen by the Aggregate network and returned back to the
user.

The authors considered this a reward function where the provided question is

a state; the action is the task of producing similar questions to the original

question; and the reward as the combined function of the action and the

original question. The agent learns over time an optimal policy — generating

the best questions given the original question — via reinforcement learning.

The task of choosing the best answer is done by a convolutional neural

network that matches the question with the best answer based on the best

F1 score. Eventually, the main aspect of the architecture is training with

policy gradient involved in the sequence-to-sequence network of the question

reformulation task. The agent learns, over time, how to train the reformulation

network better to produce the best questions given the original question, and

choose the best possible answer from the environment.

The authors trained their architecture on the Jeopardy! question and
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answer dataset called SearchQA [21]. Their model was evaluated on exact

matches of answers (EM) and F1 scores. Their model beat the state-of-the-art

model BiDAF, which is a deep neural network built for question answering

[74]. An example of an original question is “Michael Caine & Steve Martin

teamed up as Lawrence & Freddy, a couple of these, the title of a 1988 film”.

This question was reformulated by AQA into “What is name is name where

name is name michael caine steve martin teamed lawrence freddy and title

1988 film key 2000 ?”. The correct answer is “dirty rotten scoundrels”.

Comparison with CAMI

CAMI is architecturally very different from AQA. CAMI does not implement a

combined machine learning and reinforcement learning framework but rather

an expert-system for inference. CAMI uses a resource database to make queries

in order to retrieve a relevant resource given the characteristics of the user. Un-

like CAMI, there is no explicit database for AQA. Its context can be very open-

ended, but CAMI’s is restricted only to the medical domain of NDD. CAMI

can ask questions to user queries unlike AQA, which only answers questions

(although it can reformulate questions in order to choose the best answer).

2.5.5 Knowledge-Based Systems

Knowledge-based systems [22] typically use structured information as the data

source. This class of models attempts to process the input and make a query to

a structured database to retrieve the answer. It is also possible that multiple

answers can be retrieved and used to fill out an answer template. Knowledge-

based systems can be used in conjunction with other systems, like information

retrieval systems, in an ensemble system to make a method more effective and

approach different situations.

In the Webclopedia architecture [32], a knowledge-based Question Answer-

ing System developed by Hermjakob et al., the authors explained several steps

in order to produce an answer from a question from the user. During question

parsing, they extracted useful information from the question that is relevant

to the answer. Using the query creator engine, they extracted and combined
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useful words in order to create a meaningful query. Using the query and infor-

mation retrieval techniques, they retrieved about 1000 important documents.

The system then scored every sentences in these documents and used these

scores to rank segments of sentences. They parsed top segments from these

documents and matched them against answers stored in a database. Finally,

they ranked and extracted possible answers and formatted them to be shown

to the user.

The authors used the NIST TREC QA datasets [91, 92], about 1 million

newspaper texts distributed by the NIST TREC, to select their answers to

questions. They also used WordNet to formulate their questions. In order

to evaluate their responses to the questions in the test set, they used Mean

Reciprocal rank to provide a score for all their responses and rank them. If

the correct response is found in the list of ranked answers at position n, the

reciprocal rank for the question would be 1/n. If the correct answer is not

found in the ranked list of predicted answers, the reciprocal rank for that

question will be 0. They then calculated the mean reciprocal rank over all

the reciprocal ranks of the questions in the test set. Webclopedia tied for 2nd

place in 2000 in the NIST TREC QA competition.

Comparison with CAMI

CAMI and Webclopedia are similar in their use of an external database to fetch

answers to user queries. The answer that CAMI provides is a link to a resource

whereas Webclopedia’s answers are strings of text. CAMI specifically uses

an expert-system for inference while Webclopedia uses information retrieval

techniques to choose answers to user questions. Webclopedia is open-ended,

but CAMI is restricted to the medical domain of NDD. Webclopedia replies in

the form of written natural language like CAMI, but it cannot ask questions.

CAMI can also ask multiple choice questions to the user.
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2.5.6 Industry Chatbots

Google Home and Amazon Alexa

Google Home and Amazon Alexa [39, 50] are virtual assistants that help peo-

ple, in general, complete a variety of everyday tasks like reminders on cooking,

cleaning, doctor’s appointments, etc. They are conversational agents, specif-

ically Dialogue Systems, that converse in spoken language with the user [24,

45]. Their algorithms have been implemented in mobile phones too, not just

in their own devices, using application programming interfaces connecting the

software system with other devices. The Google assistant in phones accepts

both text and speech as input for conversations with the user. For simplicity,

we discuss only the Google Home and Amazon Alexa, the devices that only

engage in spoken conversation with the user, in this thesis.

Google took their search engine to the next level with a Dialogue System

capable of a short conversation consisting of multiple interactions with the

user. By storing dialogue states of user and chatbot, Google Home can track

how the current conversation with a user develops. This capability is also avail-

able with Amazon Alexa. They both have the ability to record conversations,

with user permission, that provides previous conversation context for current

conversations. Previous conversation contexts provide prior knowledge about

the user that allows the devices to be more personalised and able to respond

with better answers.

Very little is known about the exact architecture behind Google Home

and Amazon Alexa. However, they are both open-ended chatbots that can

perform various tasks for the user in addition to retrieving resources for the

user. CAMI also provides resources for the user but its domain is restricted to

the medical field of NDD. Like CAMI, they can both ask questions. However,

Google Home and Amazon Alexa can only interact with the user via a spoken

conversation unlike CAMI, which only interacts with texts.
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GYANT

GYANT [90, 94] is a virtual assistant that offers medical advice to patients

suffering from general medical conditions like fever, sore throat, etc. Like

CAMI, it is meant to be used by medical professionals to support patient

healthcare. Users are asked questions via the GYANT user interface about

medical symptoms and they can either answer via text or by clicking one of the

multiple choice options provided by the chatbot. The chatbot asks questions to

complete a patient profile of medical symptoms and actions and interventions

that the user has already taken on behalf of the patient. GYANT is very

similar to CAMI in that it asks questions in order to fill out a patient profile.

However, compared to CAMI, it covers a broader range of medical illness, is

more versatile and engaging in its approach, asks more detailed questions, and

can also answer some off-topic questions. It also lets the user write answers

and ask any questions via a textbox at any time, while CAMI only lets the

user answer in text for specific questions. With regards to medical advice,

GYANT does not provide links to recommended websites. It also does not

cover the range of medical conditions that CAMI covers with regards to NDD.

Buoy Health

Buoy Health [18, 41] is a medical chatbot that asks a patient or a health care

professional about symptoms of illness and offers medical advice. Like CAMI,

users are asked questions about symptoms while the chatbot completes a pa-

tient profile that it will later use to determine what advice to offer. The user

interface is easy to use. The chatbot covers a wide range of common illnesses

and asks a variety of questions to compile a detailed profile of the patient —

much more detailed than CAMI. It also has a search engine for symptoms

where users can search for relevant symptoms and ask specific questions about

those symptoms to better understand them. Users answer multiple choice

questions, but the chatbot does not allow users to write in free text and they

are limited to the topic of conversation only, much like CAMI. With regards

to medical advice, Buoy Health’s chatbot does not provide website recommen-
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dations, unlike CAMI. It also does not cover the range of medical conditions

that CAMI covers with regards to NDD.

2.6 Evaluation

Evaluating conversational agents is a challenging problem. For example, if the

answer to “Who is the current Prime Minister of Canada” is “Justin Trudeau”,

one may write the answer in several different ways. An alternate answer may

be, “It’s Justin Trudeau for sure”. Technically both answers are correct. How-

ever, it is difficult for an automated system to keep track of all the correct

versions of an answer to a possible question. In this example, an algorithm

matches the name “Justin” to an answer. However, if someone writes “It’s not

Justin, it’s O’Toole”, evaluating such an answer is also difficult. It is clearly a

wrong answer. However, complex automated methods need to be implemented

to analyse the word “not” beside “Justin” and give a score of zero, meaning

an incorrect answer. Evaluating answers like “I do not know” is also challeng-

ing since it is neither right or wrong. Common measures of accuracy will not

work in these cases where the answer predicted by the model is neither right

or wrong.

The challenges to evaluating a chatbot lead us to human evaluators. There

have been multiple studies where experts have been called on to evaluate

an answer predicted by chatbots for domain-specific question answering. An

expert decides whether the answer is good enough to be correct, and, based on

human judgement, the evaluation of a conversational agent is performed. A

measure of accuracy is used to evaluate the performance of the model based on

the percentage of right answers in the entire test set. Human evaluation has

been heavily implemented in literature for evaluating conversational agents in

many different systems like SASSI [34], Trains [23], and PARADISE [93].

There are also some automated methods for evaluating a conversational

agent. The Facebook BAbI tasks [99] provide a simple accuracy estimate

of an answer provided by an agent. If the answer provided by an agent is

correct to the word, meaning every word is correct and in the same sequence,
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the answer is deemed as a right answer and an exact match (EM). In any

other circumstance, the answer is wrong. It is a strict measure of correctness.

In summary, any classification metric may be used for evaluating a chatbot

with the correct answer being accurate to the sentence with words that are

positional independent. Any deviations from the correct answer, even when

the answer seems similarly worded, is considered incorrect.

In order to find an evaluation metric to give credit to variations of cor-

rect answers, researchers at IBM developed an automated evaluation method

called BLEU [65]. The method compares n-gram matches of the actual an-

swer with the predicted answer. The matches are positional independent. The

higher the matches between the predicted answer and the true answer, the

higher its BLEU score. This method has primarily been used for machine

translation. However, it has also been used for evaluation of conversational

agents [88]. Meteor [9] is another automated evaluation method that focuses

on comparing words between the actual answer and the predicted answer while

also considering synonyms of words. The authors of Meteor claim they have

improved it to identify the weakness of BLEU. While BLEU and Meteor are

better than simply looking at a string as a correct answer, they do not address

the difficulties of evaluating a conversational agent since differently worded

sentences with limited n-gram matches may still carry similar meaning. Lie et

al. [48] summarise reasons why the aforementioned metrics do not work well

when evaluating open-ended conversational systems.

Jiwei et al. [46] developed neural persona conversational models in order to

handle different personalities and speech patterns during response generation.

They used perplexity and BLEU metrics in order to evaluate their models. The

perplexity of a distribution is the weighted geometric average of the inverse

of the probabilities. It is used to measure the quality of a language model

with regards to the distribution of words in a generated response. Response

generation models use perplexity as a qualitative measure of its performance.

Typically, perplexity is not the sole evaluation metric of a conversational agent

since it does not compare the generation with an actual answer.

In recent works, multiple evaluation metrics have been used to evaluate
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conversational agents. Venkatesh et al. [88] described a series of different

computational metrics and later combined them for an evaluation model. The

authors used the Alexa Prize dataset [3] to perform an evaluation of different

models trained on that dataset. They used Alexa user ratings on millions of

existing conversations between Amazon Alexa and users to train their evalu-

ation model and mimic a human evaluator during the process. Their target

is to research and develop upon an automated evaluation system for training

and testing open-ended conversational agents.

2.7 Comparison of Conversational Agents

In this section we compare a few conversational agents introduced in this thesis

against the dimensions of context, input and output. Table 2.1 compares dif-

ferent conversational agents under the features of the input dimension. Table

2.2 compares different conversational agents under the features of the out-

put dimension. As shown in the two tables, these conversational agents only

provide textual input and output. They, however, do not process visual and

auditory input and output. Some industry chatbots, for example Amazon

Alexa, do have the capability to process auditory input and output; they are

not included in the tables due to the lack of academic papers confirming all

the features discussed in the tables.

Tables 2.4 compare different conversational agents against multiple features

of the context dimension. Similarly, in the case for the input and the output di-

mensions, the conversational agents shown in these tables only provide textual

context.

2.8 Expert-system-based Chatbots

We looked at expert-system-based chatbots and found a few implementations

in the literature. One such implementation came from Ashesi’s undergraduate

work [17] that combined expert-systems with a pharmaceutical chatbot. We

noticed how they used pyknow to implement an expert-system using python.
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Input Visual Textual Auditory Question Answer Comment
CAMI 7 3 7 7 3 7

Neural
Conver-
sational
Model [89]

7 3 7 3 3 3

Memory
Networks
QA [85]

7 3 7 3 7 7

Memory
Networks
Dialogue
[10]

7 3 7 3 3 3

Docchat
[104]

7 3 7 3 3 3

AQA [13] 7 3 7 3 7 7

Webclopedia 7 3 7 3 7 7

Table 2.1: A few conversational agents categorized under the dimension of
input. The table describes the format of the input available. For example,
is the chatbot letting the user write words or speak to it or both? It also
describes whether the user is able to question the chatbot, answer or provide
a comment like “Thank you”.

We used experta [60], a modern fork of pyknow, to implement our expert-

system since pyknow is now deprecated.

Aquabot [57] is a chatbot framework taking the role of a virtual assistant

of a psychologist. Although the authors implemented rules in order to ask

the right questions to a patient, their expert-system is not technically similar

to CAMI’s traditional expert-system that consists of a fact base, a knowledge

base with rules and an inference engine. Their claimed expert-system consists

of only rules from an expert, without the advantage of an inference engine

and a fact base. Aquabot uses NLP methods to process text from the user;

CAMI does not implement any advanced text processing. A similar chatbot

for answering generic questions in healthcare is implemented by Kavitha et al.

[38]. Similar to Aquabot and unlike CAMI, this chatbot implements advanced

NLP methods for text processing from the user response and uses a rule-based

expert-system.
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Output Visual Textual Auditory Question Answer Comment
CAMI 7 3 7 3 3 7

Neural
Conver-
sational
Model.
[89]

7 3 7 3 3 3

Memory
Networks
QA [85]

7 3 7 7 3 7

Memory
Networks
Dialogue
[85]

7 3 7 3 3 3

Docchat
[104]

7 3 7 3 3 3

AQA [13] 7 3 7 7 3 7

Webclopedia 7 3 7 7 3 7

Table 2.2: A few conversational agents categorized under the dimension of
output. The table describes the format of the output presented. It also de-
scribes whether the chatbot is able to question the user, answer or provide a
comment like “Thank you”.

The First Sinhala Chatbot [33] is another chatbot that is built upon a rule-

based expert-system framework using Java SWI-PROLOG [100]. Its purpose

is to answer generic questions, asked in the Sinhalese language, which may

include about current date and time. Unlike CAMI, it uses advanced NLP

methods to process and analyse questions in Sinhalese and uses rules from a

knowledge base to create an answer in Sinhalese. Unlike CAMI, enough infor-

mation is not provided about their expert-system architecture except that it

has a knowledge base with rules. No explanation is provided on their inference

engine.

Virtual Tour Agent [73], a chatbot that finds best cities with hotels and

travel dates for people looking to book a tour, is similar to CAMI because it

implements an expert-system like the one mentioned in this thesis complete

with a knowledge base of rules and inference engine in the form of Java Expert

System Shell [25]. Like CAMI, it also has a MySQL database which is used to
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Summary System Type Source of
Dataset

Year Pub-
lished

CAMI Expert-
System-based

Internal
Knowledge
Base

NA

Neural Con-
versational
Model [89]

Neural Net-
work based

Curated
Datasets

2015

Memory Net-
works QA [85]

Neural Net-
work based

Facebook
bABI QA
Dataset

2015

Memory
Networks
Dialogue [85]

Neural Net-
work based

Facebook
bABI
Dialog
Dataset

2015

Docchat [104] Information
Retreival
based

World
Wide Web

2016

AQA [13] Reinforcement
Learning
based

SearchQA
Dataset

2017

Webclopedia Knowledge
based

Multiple
curated
datasets

2000

Table 2.3: A few conversational agents summarized describing the kind of
system, the source of dataset and the year published.

retrieve tour information. In a webpage, the user is asked to choose potential

tour dates, hotel type, amenities and price ranges for potential hotels. CAMI

also asks similar questions related to patient’s medical conditions. However,

unlike CAMI, Virtual Tour Agent is not a chatbot as it does not participate

in a sequence of back to forth interactions with the user.

In this chapter, we describe a study of the characteristics of modern chat-

bots found in the literature and the industry. The design of template-based

chatbots like Buoy Health motivated the design of CAMI, especially the fact

that template-based chatbots use question templates to ask questions to the

user in order to build a subject profile that can be later used to provide rec-

ommendations to the user. We also looked at how Buoy Health uses multiple

choice answers to avoid ambiguity in the answers provided by the users if
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Context
Domain,
Format

Closed
Domain

Open
Domain

Visual Textual Auditory

CAMI 3 7 7 3 7

Neural
Conver-
sational
Model [89]

3 3 7 3 7

Memory
Networks
QA [85]

3 7 7 3 7

Memory
Networks
Dialogue
[85]

3 7 7 3 7

Docchat
[104]

7 3 7 3 7

AQA [13] 3 7 7 3 7

Webclopedia 7 3 7 3 7

Table 2.4: A few conversational agents categorized under the dimension of
context. This table describes whether the domain of the conversational agents
is open or closed domain and in what format the context is available.

they used text instead, and we implemented the same for CAMI. However,

learning-based chatbots did not influence the design of CAMI since there were

no available conversational datasets to learn from.
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Chapter 3

Method

In this chapter we briefly explain the concepts behind expert-systems followed

by defining the architecture behind CAMI. We then describe how different

components of CAMI interact with each other including the expert-system

and Question Answering System, and explain the core algorithm in detail

with examples. We also describe the design of the resource database and the

interface of the chatbot. Unlike conversational agents that use end-to-end

models of learning based on sequence-to-sequence predictors to generate a re-

sponse, and unlike typical domain specific Question Answering Systems that

use hard-coded rules and a set of templates with a slot filling process to gener-

ate answers, our chatbot, CAMI (Coaching Assistant for Medical Information),

uses an expert-system framework.

3.1 Definitions

In this section, we define the most important terms used for this thesis. The

definitions introduced in this section are more specific to CAMI wheras those

in Chapter 2 are more generic.

Definition 3.1. An agent (chatbot) is the artificial conversational system

responsible for communicating with the user via an textual interface by asking

questions to the user and finally offering a recommendation.

Definition 3.2. A user is defined as a person who communicates with a

chatbot via a textual interface. In our project, it is either a parent of the
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subject suffering from a neurodevelopmental disorder or a professional health

practitioner responsible for a specific subject.

Definition 3.3. A subject is defined as a person with relevant medical facts

for whom a recommendation will be offered by the chatbot. S/He can be a child,

a teenager, or an adult.

Definition 3.4. A resource is a website with information related to NDD

for parents, or health care providers who are seeking help on behalf of a subject

suffering from NDD.

Definition 3.5. A trigger is a temporal state of the subject that may include

anxiety, depression, etc.

Definition 3.6. A challenging behaviour is a subject behaviour demon-

strated when a subject is suffering from a neurodevelopmental disorder aggra-

vated by a trigger. This includes self-harm, physical aggression, non-compliance,

and/or temper tantrums.

Definition 3.7. An intervention is an action taken by a parent or a health

practitioner to help the subject suffering from a challenging behaviour.

Definition 3.8. The resource database is a structured database for re-

sources containing background information initially asserted by a domain ex-

pert and attributes that can be related to subject facts

3.2 Expert-Systems

In the field of artificial intelligence, expert-systems are computer programs

that encode knowledge within a set of rules, and implement an inference en-

gine to reach decisions or conclusions given a set of facts from a fact base [36,

95]. Expert-systems are task-oriented and domain-specific. The rules encoded

within an expert-system is decided by experts of the domain of application.

Expert-systems, although an old technology, is still used in many different ap-

plications including, but not limited to, manufacturing planning [82], medical

diagnosis [31], robotics [43], etc. These systems have three components are

defined as follows:
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Definition 3.9. The knowledge base consists of a set of rules representing

the expertise of the expert-system.

Definition 3.10. The fact base stores information about the environment

that will be used by the rules.

Definition 3.11. The inference engine is a program based on logic that de-

duces consequent facts and reaches conclusions based on rules from the knowl-

edge base, and established facts from the fact base.

A generic structure of an expert-system connecting the knowledge base, the

fact base and the inference engine together is shown in Figure 3.1. Information

is only one way as it is passed from the knowledge base to the inference engine

when rules are processed by the inference engine. However, the information

travels both ways between the fact base and inference engine. When the

inference engine makes conclusions that can be used as facts for rules that are

chained, the inference engine passes these facts to the fact base [95].
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Figure 3.1: A generic structure of an expert-system. The knowledge base and
the fact base are connected by the inference engine, which makes decisions
based on rules in the knowledge base and facts in the fact base [95].

3.2.1 Knowledge Base

The knowledge base consists of a set of rules representing the expertise of

the expert-system while the fact base stores temporary information about

information related to the application. The rules of the knowledge base are

developed by an expert who has domain knowledge about the application.

Each rule in the knowledge base has an antecedent — the condition of the

rule, and a consequent — the conclusion of the rule. For example, a rule

may be “If it is cloudy today, then it will rain tomorrow”. In this case the

antecedent is the condition whether it is cloudy today and the consequent is
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the deduced fact that it will rain tomorrow. The antecedent is expressed with

facts potentially stored in the fact base. When the antecedent is satisfied —

i.e. there is a fact in the fact base asserting that the weather is cloudy, the

consequent is asserted to be true and facts from the consequent are inserted

into the fact base to update current information that “it will rain tomorrow”.

3.2.2 Inference Engine

The inference engine is a program based on logic that deduces consequent facts

and reaches conclusions based on rules from the knowledge base, and estab-

lished facts from the fact base. It may update the fact base with new facts that

are deduced by applying rules to the established facts. The two most common

forms of reasoning in an inference engine are forward chaining and backward

chaining. Forward chaining is a method of reasoning that reaches conclusion

facts by searching all the rules of the knowledge base to check if each of their

antecedent is satisfied. Backward chaining works in the opposite direction. It

checks whether it can establish the consequent of a rule, the goal, by checking

whether the antecedents of that rule and any other chained rules are satisfied.

The inference engine goes backward from the goal to establish the consequent

of connected rules before establish the goal itself. In complex expert-systems,

rules are chained together to create a DAG-like structure. They may lead to

deduced facts that are used in chained rules to derive conclusive facts. Some

rules may connect user-provided facts with deduced facts in antecedent.

Figure 3.2 provides an example of an application where the rules are

chained together. User-provided facts “Temperature Between -4 C and 0 C”

and “Freezing Rain = True” are joined in conjunction using an “AND” re-

lation, meaning they both must be True to satisfy the conclusion that the

“chance of black ice forming on the roads and pathways” is high. The conclu-

sion of the previous rule provides the fact “Black Ice = High”. This consequent

of the first rule, now a derived fact, acts as antecedent of the second rule in

conjunction with another user-provided fact “Car = False”, which means the

user does not own a car, leading to the decision to work from home today

because there is a chance that someone may fall on black ice while walking,
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and get injured.

By forward chaining, the expert-system deduces first whether the first rule

is satisfied leading to the conclusion that the chance of black ice is high. Chain-

ing the previous rule with the next, it can deduce whether to work from home.

By backward chaining, the inference engine tries to establish whether to work

from home by looking at the final rule and establish whether the user already

has a car and whether the chance of black ice is high. Since the chance of

black ice is determined by the first rule, it will go back to the first rule and

establish the facts for temperature and freezing rain. The inference engine will

look to establish facts that are needed to deduce whether the user needs to

work from home by going backward down the chained rules.
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Figure 3.2: An example set of chained rules in an application that recommends
whether to work from home after freezing rain. The circular nodes represent
connections, for example “AND” or “OR” between facts in the antecedent.
The rectangular nodes, colored light blue, represent facts provided by the
user. The light orange rectangular nodes represent conclusive facts derived by
the expert-system. In this example, the conclusive fact “Black Ice = High” is
deduced by the expert-system to be later used as a deduced fact for the next
rule. The decision to work from home is also a conclusive fact for the second
rule.

3.3 CAMI Expert-system design and imple-

mentation

In this and the following sections, we discuss the architecture of CAMI. Figure

3.3 shows the diagram of the architecture of the CAMI chatbot system. The
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framework is divided into an expert-system and a Question Answering System

connected to a resource database. The Question Answering System collects

facts from the user and passes them to the expert-system. When an antecedent

in a rule is satisfied and the rule is fired, the expert-system formulates a query

and passes it to the Question Answering System. The Question Answering

System executes the query to the resource database in order to retrieve rele-

vant resources and passes them to the user via the user interface. Figure 3.4

shows how the user communicates with CAMI. We decided to implement an

architecture that is compartmentalized and divided into core components like

the expert-system and the Question Answering System. It is motivated by

the need to decouple the rules in the expert-system from the resources in the

resource database so that the information about the resources can be indepen-

dently modified without requiring to change the rules in the expert-system.

Figure 3.3: CAMI uses an expert-system, a resource database, which stores
resource facts in the form of attributes of resources, to recommend resources,
and a Dialogue Manager with question templates. The Question Answering
System asks a question, retrieves a subject fact for that question, and passes
it to the expert-system, which fires rules to create a query for the resource
database.
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Figure 3.4: The relationship between different components of our chatbot,
CAMI. It depicts how the resource database, which stores resource facts in
the form of attributes of resources, is separated from the expert-system only
accessible via a query when a rule is fired in the expert-system. This allows the
research team to change information about resources in the resource database
without modifying the expert-system.

In CAMI, the expertise of the NDD therapists and advisors is encoded

within the knowledge base in the form of rules, and used when recommending

resources to users about subjects. The inference engine applies the rules from

the knowledge base and subject facts from the fact base in order to reach a

conclusion that creates an SQL query that depends on subject facts. The

query is then passed to the Question Answering System to extract relevant

resources from the resource database. If no rules are satisfied, the Dialogue

Manager will select a question for a missing subject fact to ask the user, e.g.

“What is the age of the subject”. Currently, CAMI can process five different

types of subject facts as literals of a rule’s conjunctive antecedent. They are

challenging behaviour, condition, age, intervention and location.

Once a rule having the antecedent with established subject facts is satisfied,
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the rule is saved in the temporary session variable, unique for every session,

to provide an explanation of the recommendation if required. An advantage

of using expert-systems is that they can provide explanations to decisions

made by the inference engine. We provide explanation of the decision made in

terms of all the subject facts in the saved rule that matched with the resource

attributes. For example, if a recommended resource has two attributes, city

as “Edmonton” and age of subject as “Child”, these attributes have been

matched with the same subject facts and these attributes are provided as an

explanation as to why the expert-system chose the resource.

We implement an expert-system because it provides the efficiency and ease

of developing a rule-based system with an already existing inference engine.

We only need to write the rules using the expert-system language, which is

simple to use and easy to read. There is only a need to write code to connect

the expert-system with the Question Answering System. Furthermore, the

expert-system is easy to maintain and can be reused when new rules from

experts are available.

3.3.1 The fact base

The fact base is the expert-system’s temporary information database. We

populate the fact base with facts from the subject as we collect them during

a session with the user. These facts along with the rules from the knowledge

base are used by the expert-system to fire rules and reach conclusions, which

correspond to the resource database. Returning users need to start the chatbot

session from the very beginning since subject-specific facts are deleted after the

end of a session. We have not implemented a system where subject-specific

facts can be stored for use in a future session because the functionality is

beyond the scope of the project.

3.3.2 The knowledge base

We define rules in the knowledge base driven by the motivation of providing

the user with recommendations as the user keeps answering questions with

subject facts. Initially, the recommendations retrieved by the query may be
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insufficient for the subject’s requirements since not all facts about the subject

have been collected. With each new subject fact, the recommendations will

be more refined and appropriate for the subject.

Rule Example

An example of a rule is as follows:

“If ADHD IN condition AND

Physical Aggression IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

If a rule is satisfied, the system makes a query to the recommendations ta-

ble of the resource database with subject facts. The conclusion fact is simply

a query created from all the subject facts from the antecedent matched with

their respective columns in the recommendation table. For example, an SQL

query that is formulated from the conclusion of a rule, “ATTRIBUTES FOR

QUERY” is :

SELECT website-url FROM RECOMMENDATIONS WHERE

condition-column=“ADHD” AND

challenging-behaviour-column=“Physical Aggression” AND

age-column=“USER-AGE” AND

location-column=“USER-LOCATION” AND

intervention-column=“USER-INTERVENTION”

Hence, we name the conclusion fact “ATTRIBUTES FOR QUERY”.

The subject age, intervention, and location must be present for the rules

to fire while condition and challenging behaviour determine rule classification.

The query is executed to the database where resource attributes are matched
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with subject facts to retrieve a list of matching webpages. The links to these

matched resources are recommended back to the subject via the chatbot mes-

saging interface.

Rule Examples

Rules in the knowledge base are designed with the goal of query generation

with each new subject fact collected by the Dialogue Manager. They are bro-

ken down into multiple categories, each with a different number of facts in the

antecedent. The categories and their rules are described below.

Category 1 rule examples:

“If ADHD IN condition,

ATTRIBUTES FOR QUERY”

“If age IS PRESENT,

ATTRIBUTES FOR QUERY”

Category 2 rule examples:

“If ADHD IN condition AND

Physical Aggression IN challenging behaviour,

ATTRIBUTES FOR QUERY”

“If ADHD IN condition AND

age IS PRESENT,

ATTRIBUTES FOR QUERY”

Category 3 rule example:

“If ADHD IN condition AND

Physical Aggression IN challenging behaviour AND
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age IS PRESENT,

ATTRIBUTES FOR QUERY”

Rule categories 4 and 5 consist of four different facts and five different

facts joined by conjunction in the antecedent respectively. There are a total

of 11 rules in category 1 with four different rules for four different challenging

behaviours, four different rules for four different conditions and three rules for

each of location, intervention type and age facts. For category 2, combinations

of different facts are considered resulting in a much higher number of rules.

3.3.3 The Inference Engine

The inference engine is responsible for making decisions, in our case building

the SQL query for the resource database, given the subject facts and the

rules encoded by the knowledge base. We implement forward chaining as the

method for the inference engine to fire rules from the knowledge base given

subject facts from the fact base. Our expert-system is implemented using the

python open source inference engine library called pyknow. When support

for pyknow was dropped, we shifted our library to experta since it was well

maintained [60]. CAMI expert-system consists of three parts: the knowledge

base, the inference engine and the fact base.

3.3.4 Query Relaxation

If a user is interested in resources from Edmonton, a city in Alberta, and the

system is not able to find any resources for Edmonton, the system can relax

the Location attribute from the city to the province. With query relaxation

[19, 20], the system allows resources from a wider area than specified by the

user.

3.3.5 Query Tightening

If a query returns too many resources for a certain subject profile, we can apply

query tightening techniques to filter the resources. By adding more constraints
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to the query like the quality of resources returned or the top-k rated resources

from ratings collected from user feedback, we can implement query tightening.

3.3.6 Intermediary Rules

If the user wants to offer the numerical age of the subject, an intermediary

rule that assigns the age of the subject from a number into a class (TEEN,

ADULT, or CHILD) will benefit this use case. For example:

“If age IS LESS THAN 12,

age=CHILD”

“If age IS BETWEEN 12 AND 18,

age=TEEN”

“If age IS GREATER THAN 18,

age=ADULT”

In order for these rules to be fired, we also need to allow users to submit

written answers. We only allow multiple choice answers from the interface,

but the ability to provide written answers is outside the scope of the current

project and is a planned feature for a future implementation.

3.4 CAMI Question Answering System

The role of the Question Answering System is to ask questions, acquire facts

from the interlocutor, and offer recommendations to the user. The questions

are organised in templates where each question pertains to a fact. For exam-

ple, the Dialogue Manager will ask “What is the child’s age?” when it needs

to determine the child’s age. This information is collected by the Question

Answering System independent of the expert-system and later transferred to

the fact base of the expert-system.
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3.4.1 Dialogue Manager

The Dialogue Manager is responsible for communicating appropriate ques-

tions to the user. The sequence of questions asked is decided by a rule-based

algorithm. We introduced a graph to encode the ordering of questions and re-

sponses by the user. The graph is defined as questions representing the nodes,

and the user responses as edges between questions. For example, if the user

answered “No” to the question about whether they wished to be anonymous,

the next node traversed would ask the user about the login email. If the user

answered “Yes”, the node traversed would be different.

When filling out a subject profile, the Dialogue Manager needs to ask

appropriate questions. The response to a question adds a fact to the expert-

system fact base. Each resource in the resource database is labelled with

subject facts that we name “attributes” for clarity. During the resource an-

notation process, an expert labelled a certain website with appropriate at-

tributes. For example, if a resource caters to children suffering from ADHD,

that resource will be labelled for “Child” as age attribute and “ADHD” for

condition attribute. Considering all the resources in the resource database

where each resource is labelled with attributes, the frequencies of these at-

tributes per resource are not the same due to each resource being different.

The answer to the question of whether a subject is suffering from ADHD will

reduce the number of possibilities of appropriate resources for that subject. By

calculating the frequencies of the attributes distributed over resources in the

resource database, the Dialogue Manager chooses the attribute with the high-

est frequency and asks the question pertaining to that attribute. The process

continues in a loop until a rule in the expert-system is satisfied, resulting in

a query that provides recommendations. The process described here is called

highest information gain, where the question to ask pertains to the attribute

with the highest frequency in a list of possible resources.

The Dialogue Manager implements the following algorithm in a loop in

Algorithm 1 with g(x)D as the function for calculating the frequency of x,

denoted by attributes over the resource dataset D (list of resources). Every
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resource is mapped with appropriate attributes by an expert. The attribute a

with maximum frequency over the dataset D is then used to retrieve question

q from a list of questions Q, which is mapped by attributes to questions.

Currently, each resource in the resource database D is labelled with resource

attribute a, age. Therefore, age occurs the most — the maximum frequency

— over D compared to other attributes like location or challenging behaviour,

etc. Question q pertaining to attribute age will be asked — ‘What is the age

of the subject”. Once the question q is asked by the Dialogue Manager, the

answer, f - a fact of the subject pertaining to question q is added to the fact

base. The expert-system is then executed, rules are fired and queries are made

to the resource database. A resource r is retrieved from the resource database

with the execution of the query. Later, D is reduced to only include resources

that match fact f to attribute a in the resource database. The program runs

in a loop until D is empty, meaning there are no more resources applicable

for the subject profile, or Q is empty, meaning all the available questions have

been asked.

In any instance of the loop, the selected question q can only be asked once

and any asked questions and its corresponding attributes are discarded from

their respective lists. The question q is chosen randomly if multiple attributes

have the same frequency. This approach may not be ideal in a real subject-

doctor interaction, since the required question may be dictated by a medical

reason rather than the frequency of facts in the remaining recommendations.
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Algorithm 1 Program Logic

Input: X,Q,D,F . // X is the list of applicable attributes, Q is the list
of applicable questions mapped, D is the list of applicable resources and F
is the Fact Base

refine = False . If refine is True, resources are recommended with each
question asked

r = NULL . Resource to recommend to the user

while D NOT EMPTY AND Q NOT EMPTY do
a← argmaxx g(x)D . a is attribute with highest frequency over D
q ← Q(a)
DELETE q from Q
DELETE a from X

f ← ask(q) . Ask question q to user
F ← append(F, f) . Add fact to fact base
r ← ES(F ) . Run Expert-System and get resource

if refine AND r EXISTS then
print(r)

D ← D(a = f) . Applicable resources reduced due to more facts

if 6 refine AND r EXISTS then
print(r)

In order to explain the algorithm better, let us define two resources r1 and

r2 in dataset D. r1 has attributes “Age = child” and “ADHD = True” while

r2 has only one attribute “Age = child”. For the attribute age, the relevant

question to ask is “What is the subject’s Age”, and for the attribute condition

ADHD, the relevant question to ask is “Does your child suffer from ADHD”.

When the system starts, g(Age) = 2 since resource attribute age is present

in both r1 and r2 — it occurs twice over all the resources in the database.

g(ADHD) = 1 because only one of the resources is labelled with attribute

ADHD. Since attribute age has the highest count, the question linked with

age will be asked first. If the response to the question “What is the subject’s

Age” is “adult”, the loop ends immediately because no resources has “adult”

as a value for age — the list of applicable resources D becomes empty. If

53



the answer is “child”, the next question to ask is “Does your child suffer from

ADHD”. If the value is True, both resources r1 and r2 are returned. If the

value is False, only resource r2 is returned. Once the resource link is shown in

the interface, the loop ends since there are no more questions to be asked; Q

is empty.

The idea behind selecting questions based on the highest frequency of at-

tributes, a← argmaxx g(x)D, in the resource dataset is to make sure that the

chatbot do not ask irrelevant questions, and optimize the number of questions

asked. Based on the example above, if the subject is an adult, none of the

resources are applicable. The chatbot gets to that conclusion by asking one

question about subject’s age. However, if the chatbot ignores the formula for

frequency of attributes and asks the question about the condition ADHD first,

the chatbot still needs to ask the question about age before it can rule out

that no resources are applicable for the subject. The chatbot needs to ask

both questions which is not optimal. By applying the idea behind informa-

tion gain, the chatbot only needs to ask the question about age to finish the

conversation.

The Dialogue Manager uses a tree that generates a series of initial ques-

tions about consent in the order defined by the tree. The user needs to answer

“Yes” to all the consent related questions; otherwise the chatbot will stop the

conversation. After initial questions of consent are asked, the Dialogue Man-

ager uses the Algorithm 1 to generate another tree of questions and answers,

as shown in Figure 3.5. The structure of the generated tree changes if infor-

mation about the resources D changes in the resource database. The Dialogue

Manager fills out the subject profile and chooses the appropriate questions to

ask as dictated by the generated tree. The chatbot is going to keep asking

questions until there are no more resources left that match the criteria of the

subject facts, or the list of questions to ask is exhausted.

In order to better understand how the system traverses the tree, let us

consider a running example of a subject. The first relevant question asked

is “Which city are you located in” to which the user answers “Edmonton”

on behalf of the subject. From the tree, the system is going to traverse the
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Figure 3.5: An example tree generated by the described Algorithm 1. The
rectangular nodes of this tree are questions asked by the agent and the edges
between the nodes are possible responses by the user drawn in circles. By
using this algorithm, the chatbot is going to keep questions in a path where
recommendations are available and until recommendations are found.

55



path connected to the answer “Edmonton” that leads to the question “Is the

child diagnosed with ADHD”. The user answers “No” to this question. Then

the system asks the user “Does the child have physical aggression?” The user

answers “Yes” to the aforementioned question. The system responds with a

relevant recommendation following the path in the tree.

In a practical situation, the order of questions generated by Algorithm 1

may not be accurate. A doctor may ask questions in an order that is clinically

justified. However, our framework does not allow changing the ordering of

questions once it is generated. We can improve the question order by including

questions as rules in the expert-system.

An example of a simple rule maybe - “If ADHD is EMPTY, ASK ques-

tion ADHD”. Once the user has answered the question about ADHD, other

question rules that depend on the answer to ADHD may fire, e.g. “If ADHD

NOT EMPTY and LOCATION is EMPTY, ASK question LOCATION”.

Therefore, we can create a set of question rules that determine the order of

asking questions vetted by an expert. In the examples above, the expert-

system will ask the user whether the subject has ADHD first, and once the

user has answered that question, it will ask where the subject is located. The

order of asking questions is determined by the rules and not by the frequency

of attributes in a set of given resources which may change from time to time.

In this way, medical professionals can control the ordering of questions asked.

3.4.2 Website Framework

Our chatbot is based on a model-view-controller web application framework as

depicted in Figure 3.6. The conversational agent CAMI is text-based. While

speech-to-text and text-to-speech can be added, our project partners, practi-

tioners in the NDD field, opted for a text-based application.

A web application framework needs to have a front-end where users can in-

teract with the app, and a back-end server where the requests sent by the users

are processed. Our conversational agent is built on a lightweight web frame-

work named Flask [28], which uses Python. We use a model-view-controller

framework, where the view is the front-end that users interact with; the con-
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Figure 3.6: The structure of a web application made under a model-view-
controller framework.

troller represents the back-end code that connects the front-end with the Ques-

tion Answering System and the expert-system. The entire application is hosted

on a uWSGI server that receives requests from users and handles traffic to mul-

tiple flask applications running concurrently on the back-end server. We use

NGINX as the server protocol for our application.

Front-End

The front-end is written in dynamic HTML5 templates embedded with Python

and Javascript code. This technique allowed variables from the back-end server

to be used in the HTML templates. The questions and answers from the

conversation are embedded into the HTML templates every time the chatbot

asks a question or the user answers a question.

We use Javascript call back functions for “Yes”, “No”, and “Why” response

buttons that can be clicked by the user on the interface. We implement re-

sponse buttons to questions since it eliminates the complications introduced

with processing text. With text-based answers, users may provide incorrect

or vague responses that the Question Answering System may find difficult to

process. By avoiding text-based responses, we make sure that the answers

provided by users are exact and easy to handle. There are a few questions

that are text-based such as the name and email address of the user, but the
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recommendations are not dependent on the answers to these questions.

When a link to a resource is provided by the chatbot, there is a 5 star

rating system implemented in Javascript and HTML. The callback function

for clicking on the 5 stars is written in AJAX. After the user clicks on any of the

5 stars, the rating information is received by server and saved to the resource

database. The rating provides a quantitative assessment of the links provided

by the application that can be analysed later to rank certain resources over

others. AJAX [67] is an asynchronous process of sending data to the server

via Javascript callback functions without having to load the entire page, only

the portion the function is assigned to.

We use custom CSS designs implemented from an open source CSS frame-

work called Twitter Bootstrap [15]. The framework provides built-in Javascript

functions for using simple buttons, colours, and layouts that are tested as

user-friendly. We implement a design that is easy to follow, user-friendly, and

aesthetically pleasing.

Back-End

When requests are sent from the front end by the user, they are received by

the server and sent to the flask application controller that handles the request.

The back-end has functions that handle AJAX requests sent by the front-end.

It has a function to handle POST requests sent by the user in the form of

messages sent to the server.

The most important variable in the back-end is the Session variable, which

is transferred from the front-end to the back-end. The Session variable is

a dictionary object containing key-value pairs of variables. It is possible to

add custom variables and their values to the dictionary object. The Session

variable temporarily saves information from the conversations, such as the

questions asked by the agent and the answers provided by the user, and the

state of the agent. Without the session variable, it is impossible to keep track

of the state of the agent. Once the session between a user and chatbot ends,

the Session variable is destroyed.

The back-end stores the code behind the expert-system and the Question
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Answering System. Once the back-end receives a response from the user, the

response is passed to the Question Answering System for analysis and saved

to the database.

3.4.3 Facts and Variables

The important variables are defined beforehand by the experts as the infor-

mation required by the chatbot system to recommend a resource. Facts for

these variables are gradually filled with each interaction between the user and

a chatbot. By asking the user questions, the chatbot fills up a subject pro-

file that we refer to as subject facts later required by the inference engine to

recommend a resource to the user. However, there are other facts that the

chatbot collects from the user such as their name and email, which are not

needed by the chatbot for recommendations. The user may choose to not pro-

vide the name and the email, and the conversation will still continue with an

anonymous user. The variables that these important facts belong to are :

Condition

It is defined as the NDD from which the subject suffers. The condition is one of

ADHD, Autism, Intellectual Disability, and Neurodevelopmental Delay. The

subject can potentially suffer from one or more of these conditions.

Challenging Behaviour

It is defined by an action that the subject is not in control of, and is triggered

due to the condition they are suffering from. The subject can exhibit one or

more challenging behaviours such as physical aggression, self-harm, temper

tantrums, and non-compliance.

Age

It is one of child, teen, or adult.
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Type of Intervention

It can be one of Parental, Professional or General. It categorizes the resources

and webpages that the experts have gathered. For example, if a webpage

describes an intervention by a professional such as a caregiver or a health

practitioner, it belongs under the category of Professional interventions.

Location

It is the place where the user and the subject lives, where they will be able

to access resources. However, the user can opt to receive recommendations of

resources from places other than the local residence area. There are multiple

values of locations and they are categorized into cities and provinces of Canada.

3.4.4 Database Controller

The database controller connects the back-end code with the resource database.

It is defined by functions that can add, modify, and delete items in certain

tables in the resource database. It is also responsible for adding, editing,

and deleting information about resources from the resources table (known as

interventions). The resource database is separated from the entire system,

accessible by the database controller.

3.4.5 Administration Console

The administration console is an interface connecting an administrator to the

resource database via the database controller. An admin, an expert or an em-

ployee from the research team is authorized to have access to the database and

its contents. The console is designed to make it easy to change information

in the database without any programmer expertise. The console is also used

to change attributes of websites and recommendations, via the interventions

table, to represent the decoupling of the rules of the expert-system from the

resource database. Figure 3.7 shows the login webpage to the administra-

tion console. After logging in, the webpage shows a list of tables available in

the database that is accessible by the administrator. These tables that are
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Figure 3.7: The website for logging into the administration console.

described in the next section.

3.5 The CAMI Resource Database

The CAMI MySQL resource database is an important aspect of the conversa-

tional agent since it has tables with information about resources, and informa-

tion about conversations that has been saved during sessions. Each table in

the database has a mandatory column called the identifier that gives a unique

integer to any item in the table.

The challenging behaviour table stores information about all the challeng-

ing behaviours that the application handles. Figure 3.8 shows all the examples

of challenging behaviour and how the table is displayed in the administration

console.

The condition table stores information about four different NDD conditions

that the application handles. They are Autism, ADHD, Neurodevelopmental

Delay, and Intellectual Disability. Each subject can be linked with one or more

of these conditions. Figure 3.9 shows all the examples of conditions and how

the table is displayed in the administration console interface.

The intervention table stores information about useful websites and links

that can help the caregiver of a subject understand what they are going

through and what steps to take to alleviate the situation. It stores whether
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Figure 3.8: The website that lists all challenging behaviours in the adminis-
tration console.

Figure 3.9: The website that lists all the conditions in the administration
console.
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an intervention is Parental, Professional, or General; the suggested age of the

subject for which the resource applies; the topic of the resource; some tag

words; and the website link.

The intervention table is also linked with the intervention challenging be-

haviour and intervention condition tables. The database controller has func-

tions that link the interventions with challenging behaviours, conditions, age,

location, and other subject facts. Figure 3.10 shows an example of an inter-

vention linked with a challenging behaviour in its own intervention challenging

behaviour table. The identifier for the intervention is linked with the identifier

of the corresponding challenging behaviour in this table. All linked tables are

designed simply by having the identifiers of the linked entities as columns in

the tables.
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Figure 3.10: The website for intervention and challenging behaviour links.

The User table stores information about users that have consented to hav-

ing the information of the subject saved during a session. It saves the email

and password for the user and any other relevant information needed during

the chat session. The User challenging behaviour and User condition tables

save information about challenging behaviours, and conditions linked with the

user via the user identifier.

The conversation table records all the conversations between the user and

the chatbot. For every conversation, there is a user identifier assigned to

it. However, if the user decides to not have their information recorded, they

are anonymized and the user identifier is left blank. Every conversation also

includes at least one interaction. It includes the chatbot question/answer
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and the user response to the chatbot. The conversation has a column called

reward, which is the rating of the user on a website if the chatbot has returned

a website. When a user rates a website, it is saved in the conversation table,

with the reward being the number of stars the user has assigned to a particular

website. Figure 3.11 shows a representation of the conversation table in the

administration console and a list of conversations that are stored in the table.

Figure 3.11: The website that lists all the conversations in the administration
console.

3.6 CAMI Interface

Once the user connects with the chatbot interface, they are introduced to the

ethics-approved online consent and information letter detailing the purpose
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Figure 3.12: CAMI showing the initial consent page.

and background of the CAMI chatbot. There is a corresponding assent form

on the website. If the user consents to using the chatbot and participating in

the conversation, they are asked some additional questions about the chatbot.

These are “Yes” or “No” questions, to which the user must respond in the

affirmative; otherwise the chatbot disconnects and ends the conversation. The

Dialogue Manager, shown in Figure 3.3, is responsible for handling the path

of the conversation with each user response and question template.

Figures 3.12, 3.13, and 3.14 show snapshots of the consent section of the

chatbot. The consent, however, is not part of the expert-system. A user is

only allowed to progress if they agree to all the conditions asked in all these

questions. Figure 3.15 shows a user agreeing to the consent of the conversation.
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Figure 3.13: CAMI showing an intermediate consent page.
.
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Figure 3.14: CAMI showing some consent-related questions and answers be-
tween the user and the chatbot.

Figure 3.15: CAMI showing that the user agrees to the consent.

The chatbot continues the conversation by asking some personal questions,
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such as whether the user is a parent or health care professional. CAMI also

asks for the user’s email and whether they want their conversation recorded for

the future. Figures 3.16 and 3.17 show some personal questions asked about

the user. The questions asked until this point follow a static graph with a pre-

defined order of questions, given the answers to the previous questions. Any

questions asked after this point are determined by a dynamic graph, depending

on the state of annotated resources in the resource database, generated by the

Dialogue Manager in the Question Answering System.

Figure 3.16: CAMI asking for email after user has consented to the study.
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Figure 3.17: User responding with email after consenting to providing the
email.
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Chapter 4

Implementation of a prototype
and appraisal of its robustness
to dynamic resources

The biggest advantage of our expert-system-based chatbot for recommendation

is that we separated the expertise about medical features from the information

about the resources (i.e. webpages). The expertise about the medical features,

while dependent on the application domain, here NDD, is fixed. We converted

this acquired savoir faire into rules in the knowledge base. The information

about the webpages is gathered separately and saved in the resource database.

This separation, depicted in 3.4, allows updating the resource database by non-

technical staff without jeopardizing the proficiency encoded in the knowledge

base. Indeed, many new webpages related to NDD continue to be published

and existing resources also frequently change. The resource database simply

stores the url and the characteristics of the webpages, in terms of the subject

facts used by the inference engine. Updating this database allows the chatbot

to improve and adapt to the new reality online as new resources are made

available and old resources get deprecated.

4.1 Adding A Website

We decided to test whether a new website added to the chatbot framework is

offered to the user under the right subject profile. This addition is done via the

administration console of the application, without needing any change in the
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code or in the expert-system. Information about the website is simply added to

the resource database and instantly becomes a candidate for recommendation

if the facts of subject satisfy the appropriate attributes for the website, for

example, a condition such as ADHD, a challenging behaviour such as physical

aggression, etc.

We decided to add a website, the 211 community support group for mental

health issues in Edmonton and surrounding area 1 to the resource database.

Annotated by an expert, the website applies to any child, teen, or adult suffer-

ing from any condition ranging from ADHD, Autism, or Intellectual Disability,

exhibiting any challenging behaviour from physical aggression, self-injury, and

living in Edmonton. Figure 4.1 and Figure 4.2 show a progression of images

about the flow of questions and answers in the conversation between the user

and the chatbot. We chose an imaginary subject to represent the path followed

by the chatbot. The subject is a child who lives in Edmonton and suffers from

Intellectual Disability, exhibits physical aggression and self-injury. The user

representing the subject is looking for Parental intervention. By answering

these questions, the chatbot recommended the right website — the one se-

lected for this experiment. This demonstrates the fact that it is very easy to

add additional websites to the chatbot framework through its administration

console without having to change the inference engine or rules. The images

used here are a mock-up and do not represent the currently implemented in-

terface. However, the current images from the interface are used and edited to

create the mock-ups. The original images are shown in the Appendix figures

A.1 and A.2.

4.2 Editing A Website

In order to show that the chatbot adapts after changing information about a

resource from the administration console, we decided to change the attributes

of the 211 support website. We only changed the intervention type of the

website from Parental to General intervention. Under this adjustment, the

1https://edmonton.cmha.ca/programs-services/211-alberta-edmonton-and-area/
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Figure 4.1: The progression of a conversation between the chatbot and a user
that ends in the recommendation of the 211 support website (Mockup).
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Figure 4.2: The progression of a conversation between the chatbot and a user
that ends in the recommendation of the 211 support website (Mockup).
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chatbot should offer the recommendation of 211 support website under General

intervention, not Parental intervention.

We logged into the administration console with admin privileges in order

to change the features of the 211 support website. The intervention type,

e.g. Parental, is saved under the table Resource Code. The table Intervention

Resource Code links the intervention and the intervention type together. In

order to make a change to the intervention type of a website, we changed the

resource code identifier of the link between an intervention and resource code

from 2 to 3, 2 being Parental and 3 being General. It is important to be

able to change the attributes of websites since they maybe updated with new

information that need to be reflected on the recommendations.

Once we made the change, we tested a conversation between the chatbot

and an imaginary user in order to show that the change has indeed taken place.

Before the change, we knew that there were no websites recommended under

the city of Edmonton and General intervention. If the 211 support website

is indeed recommended via the right features, our framework can adapt to

changing website attributes. To make sure the right set of facts are selected,

we chose an imaginary subject who lives in Edmonton, suffers from Intellec-

tual Disability and shows physical aggression. However, we made the user

representing the subject choose General intervention instead of Parental inter-

vention — the only change we made from the experiment of adding a website

under Section 4.1. Figures 4.3 and 4.4 show the progression of a conversa-

tion between the imaginary user and the chatbot that resulted in the correct

recommendation of the 211 support group website.

Since the recommendation applies for either physical aggression or self-

injury as facts of challenging behaviour, selecting one or the other or both is

going to result in the recommendation of the website. However, if we choose

“No” for both challenging behaviours, the chatbot is going to decide against

offering the recommendation since the user has to choose at least one of the

annotated challenging behaviours for the recommendation of the 211 support

website. Not choosing any challenging behaviour suggests that the subject is

looking for something else that is not covered by the 211 support website since
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challenging behaviour is an integral feature to the recommendation of that

website.

4.3 Deleting A Website

Sometimes, websites lose domain name and hosting services resulting in their

cancellation. Sometimes, recommendations are updated and they loose a cer-

tain level of quality of information acceptable by an expert. Therefore, it

is important that information about these websites can be deleted from the

administration console easily without having to change the expert-system.

In order to show whether the chatbot adapts to an expert deleting a web-

site, we decided to conduct an experiment where we deleted the 211 support

website from the administration console. There are two ways to perform that

action. An expert can delete the website by clicking on the delete button in

the intervention table view of the admin console. They can also decide to

edit the intervention and change the value of Export from 1 to 0, meaning

the website is going to be kept in the resource database, but will no longer be

recommended by the chatbot.

Once we deleted the information about the website by changing the value

of the Export from 1 to 0, we decided to test the chatbot. We chose the city of

Edmonton, and once we clicked on General intervention, the chatbot showed

that there were no recommendations available (as in Figure 4.5). We also

tested the route of clicking on the Parental intervention which provided no

recommendations either. Therefore, the experiment showed that deleting the

information about the website from the resource database succeeds, resulting

in the appropriate adaptation of the chatbot recommendation system.

4.4 Heuristic Evaluation

Our team performed a preliminary heuristic evaluation of the chatbot to ensure

that it met minimum usability standards. Evaluating usability can catch up to

80 per cent of usability problems before ever exposing a real user to the system

[59]. Our evaluators, trained in the human-computer interaction method of
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Figure 4.3: The progression of a conversation between the chatbot and a user
after editing information about the 211 support website (Mockup)
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Figure 4.4: The progression of a conversation between the chatbot and a user
after editing information about the 211 support website (Mockup).
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Figure 4.5: The progression of a conversation between the chatbot and a user
under after the deletion of the 211 support website.

heuristic evaluation [58], tested the chatbot against qualitative usability stan-

dards. Basic design principles [102] and Nielsen’s usability heuristics, which

were created from a corpus of over 290 usability problems, were applied dur-

ing the evaluation of the existing chatbot. The experiment revealed several

usability design problems within the chatbot and several bugs that affected

the functionality of the system. For each of the Nielsen’s heuristics that was

violated, the evaluators provided a severity score that determined how severely

the violation impacted the functionality of the chatbot, a description of the

violation, a potential fix for the violation, and a location where the heuristic

was violated. Table 4.2 provides a frequency of all the violations starting from

the most frequent to the least frequent. Table 4.1 provides a description of

each of the 33 violations, including the nature of the heuristic violation, the

location on the interface where it occurred, and the severity of the violation.

The first error in the Table 4.1 was given the severity of 4, (very severe),

and it broke the chatbot functionality. It happened when we allowed the user

to type answers in written format to “yes”/“no” questions. Typing anything
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other than “yes”/“no” to those questions broke the functionality of the chatbot

and it stopped responding. The user had to start again from the very beginning

in order to continue the conversation, and lost all the information provided

to the chatbot in the current conversation. It disrupted the user experience

and rendered the chatbot unusable. In order to fix the issue, we prevented

the ability of the user to answer in written format to “yes”/”no” questions.

Instead, we allowed the user to click on “yes”/“no” buttons so that the answer

provided by users is always absolute and any ambiguous or erroneous written

answer can be avoided. After the change was made, system failures resulting

from ambiguous answers were avoided.

Visibility and system status was the most frequent heuristic violation re-

ported from the evaluation. There were multiple instances during the conver-

sation flow when the chatbot stopped responding to the user without providing

any explanation as to why the chatbot did so. The system status of the chat-

bot was not understood as a result, hence the violation was in the category

of system status. This resulted when the chatbot had no recommendations to

make. To fix the bug, we added a message from the chatbot that the system

had no recommendations to make given the subject facts and urged the user

to start from the beginning by clicking on a button that started the conversa-

tion from the beginning. The change allowed the user to understand that no

recommendations were available for the subject, and to start the conversation

again if necessary. The change fixed the issue and the violation was avoided

in a later build of the chatbot.

There were other issues that came up during the heuristic evaluation such

as the Application Name not being consistent. This fell under the category

of Consistency and Standards. It was an issue of very low severity, hence the

value of 0 assigned to the row number 33 of Table 4.1. In order to resolve the

issue, we fixed all the instances where “Chatbot” was misspelled as “ChatBot”.

We changed all the instances to “Chatbot” from “ChatBot”, thereby fixing the

issue.

Out of 33 issues reported during the heuristic evaluation, all but 6 issues

were resolved. Issue number six was reported as a result of a lack of doc-
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umentation and help for the users to navigate through the chatbot. Help

messages and documentation generally improve the user experience further,

but we decided against it since a lot of work was needed in order to provide

constructive help messages. An expert needs to create the documentation and

help messages detailing the meaning of certain medical terms and their im-

portance in the chatbot application. As a result, we left the modification of

the chatbot interface for the future and we expect that the help messages and

documentation can be implemented after consultation with an expert.

Tables 4.3 and A.1 describe the heuristic item and the description of the

nature of violations that we were unable to fix. Future improvements should

focus on improving the user interface further by fixing the six violations de-

scribed in the table and then undergoing another heuristic evaluation to assess

whether the changes made improved the usability standards of the interface.

With a lot of the issues already fixed, the state of the user interface is bet-

ter than before, and using the chatbot should be easy and simple. However,

any new violations can only be found by another heuristic team evaluation on

the interface, and although it will need additional funding, it is highly recom-

mended and essential before the chatbot can be published for use with real

users.

A heuristic evaluation of a product is essential since it exposes many us-

ability issues not identified by the developers. As a developer, it is difficult to

map every usability bugs that can arise when using a product, in our case a

chatbot. The perspective of usability evaluators maybe different from the per-

spective of a developer. The process of analysing, understanding the feedback

and fixing some of the issues raised by the evaluators helped me become more

aware of the usability issues discussed in this section. Therefore, we feel it

is important to include the heuristic evaluation anslysis in this thesis so that

other developers can learn from the mistakes I made during the development

of the chatbot, improve awareness of the usability of a product and potentially

avoid usability bugs resulting from the development of a product.
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Location Heuristic Violated Severity
1 General Error Prevention/Recovery from Errors 4
2 System Visibility of System Status 4
3 Initial Chat Flexibility & efficiency of use/ Visibility

of System Status
3

4 General User Control & Freedom 3
5 Chatting Flexibility & efficiency of use 3
6 System Help & documentation 3
7 link recommandation Help users recognize, diagnose, recover

from errors/Visibility of System Status
3

8 Chatbot Message Visibility of System Status/Match Be-
tween System and Real World

3

9 Chatbot Text Input Consistency & Standards 2
10 Chatbot Question Match Between System & the Real World 2
11 My Message Proximity 2
12 link recommendation Contrast 2
13 link recommendation Consistency & Standards 2
14 Suggestion Chatbot

Message
Consistency & Standards 2

15 Initial Chat Message Visibility of System Status 2
16 Initial Chat Message Contrast 2
17 General Aesthetic & Minimalist Design 2
18 Chatbot Text Input Visibility of System Status 2
33 Chatbot Message Consistency & Standards 2
19 Initial Chat Visibility of System Status 1
20 Initial Chat Aesthetic & minimalist design 1
21 initial Chat Help users recognise, diagnose, and re-

cover from errors
1

22 Chatting Similarity 1
23 Chatting Contrast 1
24 Chatting Match between System & Real World 1
25 Message textbox Match between System & Real world 1
26 Initial Chat Message Contrast 1
27 Suggestion Chatbot

Message
Visibility of System Status 1

28 Suggestion Chatbot
Message

Contrast/Proximity 1

29 Initial Chat Message Consistency & Standards 1
30 General chatbot ques-

tion messages
Consistency & Standards 1

31 Chatbot Text Input Flexibility & Ease of Use 1
32 App Name Consistency & Standards 0

Table 4.1: This table shows all the heuristic violations, their violation locations
in the chatbot interface, and the severity of those violations.
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Heuristic Violated Frequency
Visibility of System Status 8
Consistency & Standards 7
Contrast 5
Match between System & Real World 4
Flexibility & Ease of use 3
Help users recognise, diagnose, and recover from errors 3
Proximity 2
Aesthetic & minimalist design 2
Similarity 1
User Control & Freedom 1
Help & Documentation 1

Table 4.2: Descriptive Statistics of the Heuristic Evaluation.

Location Heuristic Violated Severity
4 General User Control & Freedom 3
6 System Help & documentation 3
10 Chatbot Question Match Between System & the Real World 2
33 Chatbot Message Consistency & Standards 2
20 Initial Chat Aesthetic & minimalist design 1
29 Initial Chat Message Consistency & Standards 1

Table 4.3: This table shows the location, heuristic violation and the severity of
all the heuristics that we were unable to fix and left for future improvements.
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Chapter 5

Conclusion and Future Work

We have developed an expert-system-based chatbot framework to provide rec-

ommendations for subjects suffering from certain medical conditions pertain-

ing to NDD. The application is meant as a resource of information and not as

a substitute for doctor’s advice. We focused on decoupling the rules made by

the expert from the information of the resources so that anyone can update the

information of resources without changing the rules of the expert-system. The

idea of the framework may be used by chatbots for different applications that

provide recommendations. The knowledge base and resource database will be

different according to the variables and features of the application. However,

the architecture of the chatbot should still follow a similar pattern.

The chatbot has the potential to be improved by integrating machine learn-

ing tasks like intent prediction, natural language understanding, and neural

response generation. However, vast amount of data is needed to integrate

these machine learning tasks. Without enough labelled and expert validated

data, machine learning algorithms cannot be used to improve the chatbot.

Reinforcement learning can also be potentially implemented to improve the

chatbot performance by learning from the feedback of users, and making bet-

ter decisions with experience. Currently, feedback from a user is saved when

a resource is recommended (see Figure A.2). With data from real users, it is

possible for the chatbot to adapt to users’ preferences.

However, in order to gather useful data, we have to conduct experiments

that involve actual subjects suffering from NDD. We have not yet been able
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to perform those experiments as it requires additional funding and initiatives

taken by experts in the field. Future improvements should focus on collecting

actual conversation data using our interface, learning from that data to per-

form machine-learned tasks and produce appropriate recommendations given

a set of subject facts. Open source datasets are not available and few hospitals

have taken the initiative to gather conversational data from chatbots. We can

potentially improve the order of the questions by emulating how a doctor asks

questions to a subject. Currently, we implement a naive information gain algo-

rithm to ask questions pertaining to website facts that occur most frequently

in the recommendations. This procedure may not optimal and ideal for a user.

Since not all queries can lead to a recommendation from the resource

database, the Question Answering System can be improved by including a

query expansion that resubmits the query to the website database. In general,

it is a query relaxation [19, 20] technique that is used to relax some of the con-

straints in the query. For example, if no website is found for a given location,

the location may be relaxed all together or generalised along a geographical

location hierarchy from city to state/region or country.

In order to improve the state of the interface, it is useful to fix the six issues

mentioned in the previous chapter, leading to a second heuristic evaluation

that will reveal whether there are user-centred heuristic violations. A user-

friendly, easy to use interface is the first step before collecting user data using

the chatbot interface.

Future attempts may include using the expert-system framework on a dif-

ferent application and building a chatbot using the system and process shown

in this thesis. That may show whether our framework is suitable to be imple-

mented for other applications and use cases. Some features of the design of

CAMI included in Chapter 3 are not implemented because the project took

a direction of implementation different from expert-systems, and thereby the

implementation of any planned features would not have been used in the fi-

nal version of CAMI. Table 5.1 makes a comparison of the list of discussed

features between the current version and planned future version. Currently,

the chatbot provides a resource, if found, when the SQL query to the resource
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database completely matches all the subject facts with all the resource at-

tributes. However, we can modify the rules of the expert system easily as

presented in Chapter 3 and produce SQL queries so that a resource is recom-

mended when some resource attributes match subject facts. We have presented

the design of such rules in Chapter 3; however, we leave its full implementa-

tion for the future. Appendix A.0.1 shows all the currently implemented rules.

Chapter 3 also presents design of Query relaxation, Query tightening and In-

termediary rules that can be implemented for CAMI in the future. Chapter 4

presents the mockups of UI, edited from actual images of example runs of the

chatbot, intended for a future version of CAMI.

Features Current Version Future Version
Recommendations with exact match 3 3

Recommendations with a partial match 7 3

Personalised recommendations 3 3

Query relaxation 7 3

Query tightening 7 3

Textual answers from users 7 3

Intermediary rules 7 3

Implementation of UI Mockups 7 3

Table 5.1: This table shows the list of features for both the current version
and planned future version of CAMI.

Although it is possible to develop our chatbot as a rule-based system in-

stead of an expert-system, the reusability and extendibility of expert-systems

may be missed. It is very easy to modify rules within the expert-system and

implement forward and backward chaining. However, with a rule-based sys-

tem, one has to develop the inference engine from scratch with functional code

that may be difficult to maintain and improve upon in the long run.
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Appendix A

Appendix

A.0.1 Knowledge Base Rules

We implemented 16 different rules for the expert-system. All the rules are as

follows:

“If Autism IN condition AND

Physical Aggression IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Autism IN condition AND

Non-Compliance IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Autism IN condition AND

Self-Harm IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND
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location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Autism IN condition AND

Temper Tantrums IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Neurodevelopmental Delay IN condition AND

Physical Aggression IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Neurodevelopmental Delay IN condition AND

Non-Compliance IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Neurodevelopmental Delay IN condition AND

Self-Harm IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Neurodevelopmental Delay IN condition AND
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Temper Tantrums IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Intellectual Disability IN condition AND

Physical Aggression IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Intellectual Disability IN condition AND

Non-Compliance IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Intellectual Disability IN condition AND

Self-Harm IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If Intellectual Disability IN condition AND

Temper Tantrums IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,
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ATTRIBUTES FOR QUERY”

“If ADHD IN condition AND

Non-Compliance IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If ADHD IN condition AND

Self-Harm IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If ADHD IN condition AND

Temper Tantrums IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”

“If ADHD IN condition AND

Physical Aggression IN challenging behaviour AND

age IS PRESENT AND

intervention IS PRESENT AND

location IS PRESENT,

ATTRIBUTES FOR QUERY”
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A.0.2 Current implementation of CAMI interface

In order to provide the current implementation of the interface, we decided

to follow a progression of conversation that resulted in a recommendation by

choosing the Professional intervention. The 211 support group website should

not be recommended under the Professional intervention route. Figures A.1

and A.2 show a conversation sequence between the chatbot and an imaginary

user who is looking for Professional intervention, representing a child suffering

from intellectual disability and exhibiting physical aggression and self-injury.

The sequence of conversation led to the recommendation of a different website

that already existed in the knowledge base. This website is annotated by an

expert for a child or a teen, suffering from any of ADHD, Intellectual Disability,

or Autism, exhibiting physical aggression, self-injury, temper tantrums and/or

non-compliance, and living in Edmonton.
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Figure A.1: The progression of a conversation between the chatbot and a user
under the Professional type of intervention.
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Figure A.2: The progression of a conversation between the chatbot and a user
under the Professional intervention.
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Description (Nature of Violation)
4 Freedom if I press the back button on the browser, I can see the con-

versation “reversing”, but then if I type a new message after that, it
goes back to the beginning of the conversation, erases the messages I had
typed previously, and says that it does not understand my message (even
if the message I typed makes sense in the context of where I am). Going
back from this point likewise “rewinds” the old conversation again.

6 There is no help or how to use the system guide, which could be difficult
for users who don’t have a lot of experience with chatbots.

33 The question “Which type of intervention are you looking for? (Parental
or Professional or General)” is confusing. It is not clear what the differ-
ence is or what the purpose of this question it.

10 Some of the language used may be too complicated for users. For ex-
ample, a question like “Has your child been diagnosed with ‘non-specific
developmental delay’?” has terms like ‘non-specific developmental delay’
that the user may not know the meaning of. Note that there are other
places where it is explained further (Is your child non-compliant (not
willing to follow commands)?)

20 Some of the information at the beginning of the test is too much and
hard to follow

29 The words “consent” and “assent” are both used here in seemingly in-
terchangeable ways, which could be confusing because the user might
wonder if there is a difference even though they are essentially synonyms.
Also, it’s unclear who the user is from this. Some of it seems like the
child would be using this chatbot but the later chat questions seems like
child-use is inappropriate.

Table A.1: This table describes the nature of the heuristic
violations that we were unable to fix and left for future
improvements.
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