
MooZi: A High-Performance Game-playing
System that Plans with a Learned Model

by

Zeyi Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department or Computing Science

University of Alberta

© Zeyi Wang, 2022

https://github.com/uduse/
https://www.ualberta.ca/computing-science/index.html
https://www.ualberta.ca/index.html

ii

Abstract

The intent of this thesis is to develop a high-performance open-source system that plans with a

learned model and to understand the algorithm through extensive analysis. We formulate the

problem of maximizing accumulated rewards in Markov Decision Processes, and we frame

playing games as such problems. We develop the MooZi system to solve these problems.

MooZi includes (1) a MuZero-based algorithm that plans with a learned model (2) a distributed

architecture that trains and evaluates the algorithm efficiently, and (3) a collection of tools to

visualize and understand the algorithm. We empirically show that MooZi outperforms PPO

and AC in MinAtar environments. We also show that MooZi learns to play the two-players

board game Breakthrough. We use our tools to analyze the learned model by visualizing search

trees and learned representation. We make MooZi publicly available to accelerate future

research.

iii

Preface
This dissertation is original, unpublished, independent work by the author, Zeyi Wang.

iv

This thesis is dedicated to my dear parents.

v

Acknowledgements
I would like to thank my supervisor, Professor Martin Müller, for providing valuable guidance,
editing oceans of mistakes in my thesis, and patiently enduring my hectic working schedule.
Further, I would like to thank Dr. Chao Gao and Dr. Ting-Han Wei for providing feedback
during the meetings. Thanks also to Jiuqi Wang for contributing to the project by implementing
a multi-layer perceptron network.

vi

Contents

Abstract ii

Contents vi

List of Tables vii

List of Figures viii

List of Symbols ix

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions of this Thesis . 2

2 Literature Review 3
2.1 Planning and Search . 3
2.2 Monte Carlo Methods . 4
2.3 Monte Carlo Tree Search (MCTS) . 4

2.3.1 Selection . 5
2.3.2 Expansion . 6
2.3.3 Evaluation . 6
2.3.4 Backpropagation . 7
2.3.5 MCTS Iteration and Move Selection . 7

2.4 AlphaGo . 7
2.5 AlphaGo Zero . 9
2.6 AlphaZero . 9
2.7 MuZero . 10

2.7.1 MuZero Reanalyze . 12
2.8 Atari Game Playing . 12

2.8.1 The Atari Learning Environment . 12
2.8.2 Deep Q-Networks . 13

vii

2.8.3 Double Q Learning . 13
2.8.4 Experience Replay . 14
2.8.5 Network Architectures . 15
2.8.6 Scalar Transformation . 15
2.8.7 MinAtar . 16
2.8.8 Consistency Loss . 16

2.9 Deep Reinforcement Learning Systems . 17
2.9.1 Mnih et al.’s Asynchronous Methods Framework 17
2.9.2 The IMPALA Architecture . 17
2.9.3 The SEED Architecture . 18
2.9.4 The Acme Framework . 19
2.9.5 Ray and RLlib . 19
2.9.6 JAX and Podracer Architecture . 20

3 Problem Definition 23
3.1 Markov Decision Process and Agent-Environment Interface 23
3.2 Policies and Value Functions . 24
3.3 Partially Observable Markov Decision Process . 24
3.4 Game Playing . 25

4 Method 26
4.1 Design Philosophy . 26

4.1.1 Use of Pure Functions . 26
4.1.2 Training Efficiency . 28
4.1.3 Understanding the Method is Important 29

4.2 Architecture Overview . 29
4.3 The MooZi System Components . 30

4.3.1 Environment Bridges . 30
4.3.2 Vectorized Environment . 31
4.3.3 Action Space Augmentation . 33
4.3.4 History Stacking . 33
4.3.5 The MooZi Neural Network . 35
4.3.6 Planner . 37
4.3.7 Training Target Generation . 38
4.3.8 Loss Computation . 39
4.3.9 Updating Neural Network Parameters . 41
4.3.10 MooZi Reanalyze . 42

viii

4.3.11 Training Worker . 42
4.3.12 Testing Worker . 42
4.3.13 Reanalyze Worker . 43
4.3.14 Replay Buffer . 43
4.3.15 Parameter Server . 44

4.4 The MooZi System in Action . 44
4.5 Logging and Visualization . 44

5 Experiments 48
5.1 Experiment Setup . 48

5.1.1 Basic Configuration . 48
5.1.2 Neural Network Configurations . 48

Residual Block . 49
The Representation Function Network . 49
The Prediction Function Network . 49
The Dynamics Function Network . 50
The Projection Function Network . 51
Network Training . 51

5.1.3 Planner Configurations . 51
5.1.4 Driver Configuration . 52

5.2 MooZi vs PPO in MinAtar Environments . 52
5.3 Sticky Actions in MinAtar . 55
5.4 Testing Strength when Scaling the Search Budget in Asterix 57
5.5 Improving Sample Efficiency with Reanalyze in Asterix 58
5.6 Analysis of Planning in Space Invaders . 60
5.7 Learning through Self-play in Breakthrough . 61
5.8 Analysis of Planning in Breakthrough . 62
5.9 Visualizing the Hidden Space of the Learned Representation 65

6 Conclusion 67

7 Future Work 68

ix

List of Tables

5.1 Planner Configuration . 51

x

List of Figures

2.1 The Monte Carlo Tree Search Framework, from Chaslot et al. [9]. 5
2.2 Illustration of MuZero planning, acting, and training with a learned model. . 10
2.3 IMPALA Architecture, from Espeholt et al. [14].. 18
2.4 The SEED Architecture, from Espeholt et al. [15]. 19
2.5 Example of a distributed asynchronous agent with Acme, from Hoffman et al.

[27]. 20
2.6 RLlib Abstraction Layers, from Liang et al. [39]. 21
2.7 Sebulba architecture, from Hessel et al. [26]. 22

3.1 The Agent-Environment Interface, from Sutton and Barto [62]. 23

4.1 Computation graph of the simple dense layer in Algorithm 1. 28
4.2 The MooZi Architecture. 30
4.3 An example of history stacking. 36
4.4 Self-consistency Loss Computation. 41
4.5 Timeline of training steps. 44
4.6 MooZi Tensorboard dashboard. 46
4.7 MooZi produces trajectories in Asterix as GIFs with annotations, presented

here as tiled images of every four frames. 46

5.1 MinAtar Environments, from Young and Tian [67]. 53
5.2 Evaluation of MooZi in MinAtar games. 54
5.3 Evaluation of MooZi vs PPO vs AC in two variants of Breakout. 56
5.4 Agent strength with different number of simulations. 57
5.5 MooZi with reanalyze workers in Asterix. 59
5.6 MooZi acting in Space Invaders environment by planning with a learned

model. 60
5.7 The board game Breakthrough. 61
5.8 Evaluation of MooZi training in Breakthrough. 62
5.9 MooZi planning with a learned model in Breakthrough. 63

xi

5.10 MooZi planning with a learned model that fully captures environment
dynamics. 64

5.11 The hidden space of the learned representation visualized through
t-distributed stochastic neighbor embedding (t-SNE). 66

xii

List of Symbols

Symbol Description Section
s state 3.1
a action 3.1
r reward 3.1
t timestep 3.1

T terminal timestep 3.1
γ discount 3.1
o partially observable environment frame 3.3

G return 3.2
GN N-step return 3.2

V value function 3.2
Q state-action value function 3.2
δ TD-error or value diff 4.3.14
Ae environment action space 4.3.3
Aa agent action space 4.3.3
S state space 3.1
O observation space 3.1
Tt step sample 4.3.7
T trajectory sample 4.3.7
L loss function 4.3.8

x hidden state 4.3.5
h representation function 4.3.5
g dynamics function 4.3.5
f prediction function 4.3.5
ϱ projection function 4.3.5
v value prediction 4.3.5

v∗ value after search 4.3.6
r̂ reward prediction 4.3.5
p policy prediction 4.3.5

xiii

p∗ policy after search 4.3.6
Z support of the scalar transformation 2.8.6, 4.3.5

B batch size 4.3.4
H height 4.3.1
W width 4.3.1
Ce environment channels 4.3.1
Ch history channels 4.3.4
K number of unrolled steps 4.3.7
L history length 4.3.7

N bootstrap length for N-step return 4.3.7

1

1 Introduction

Deep Learning (DL) is a branch of Artificial Intelligence (AI) that emphasizes the use of neural
networks to fit any arbitrary function represented by a dataset. The training of a neural network
is done as follows: compute a loss function from a batch of data, back-propagate gradients
with respect to the loss, and update weights and biases based on the gradients. Deep learning
techniques have been widely adopted in many domains, including computer vision, natural
language processing, and robotics.

Reinforcement Learning (RL) is a branch of AI that emphasizes solving decision making
problems with delayed rewards through trial and error. RL had most success in the domain of
game playing [60], in which the algorithm is represented as an agent and interacts with game
environments, such as board games and Atari games. An extension to game playing is general
game playing (GGP) [19], with its goal of designing a single agent that can play many different
games without having much prior knowledge of the games.

Deep Reinforcement Learning (DRL) is a popular research area that combines DL and RL
to solve decision making problems. In a DRL system, the RL techniques lay out the structure
of the algorithm such as the use of the agent-environment interface, a value function, a
reward signal, etc., while the DL techniques are used to approximate value functions and learn
representations [62].

Planning refers to any computational process that analyzes generated actions and their
consequences in an environment [62]. In RL terms, planning means the use of a model to
improve a policy. In board games where perfect models are accessible, planning with these
models yields great performance. The most significant achievement of planning with a perfect
model is AlphaGo beating human champions in Computer Go [60]. However, how to plan in
games where no perfect models are available remains a challenging problem to researchers.

A distributed system utilizes concurrency through multiple processes or computer nodes to
complete tasks. DRL systems for solving large problems are both data and compute intensive.
Utilizing concurrency to increase efficiency and throughput for these DRL systems is sometimes
necessary. Building a distributed system to achieve such concurrency is a common practice in
industry, but requires significant engineering effort.

Chapter 1. Introduction 2

1.1 Motivation

Schrittwieser et al. developed MuZero [56], an algorithm that plans with a learned model
(reviewed in Section 2.7). This algorithm achieved state-of-the-art performance in both Atari
games and board games. However, the source code of the algorithm is not publicly available,
and the pseudo-code provided with the paper isn’t sufficient to reproduce the full algorithm.
Moreover, MuZero requires much more computation than other RL algorithms, and an
inefficient implementation will drastically slow down experimentation. The algorithm learns a
model using a neural network, and such a model, like other applications using neural
networks, is impossible to understand with a casual glance of the learned weights. We need a
publicly available efficient implementation of an algorithm that plans with a learned model
and tools that help us understand the learned model. This helps researchers understand how
the algorithm and facilitates future research.

1.2 Contributions of this Thesis

In this thesis we present the project MooZi, a system that plays games by planning with a
learned model. This project includes:

• A collection of environment bridges that connect the system to common RL environments
such as MinAtar [66], Atari [5], and OpenSpiel [38].

• Neural networks that learn a representation and can be used for planning.

• A MCTS based planner that uses the learned model to perform planning.

• A concurrent computing system that efficiently trains the model.

• Empirical studies and analysis of the system using environments from MinAtar and
OpenSpiel.

The source code of the project can be found on GitHub at https://github.com/uduse/moozi.

https://github.com/uduse/moozi

3

2 Literature Review

2.1 Planning and Search

Many AI problems can be reduced to a search problem [65, p.39]. Such search problems can be
solved by determining the best plan, path, model, function, and so on, based on some metrics
of interest. Therefore, search has played a vital role in AI research since its dawn. The terms
planning and search are widely used across different domains. Here we adopt the definition
by Sutton and Barto [62].

Planning refers to any process by which the agent updates the action selection policy
π(a | s) or the value function Vπ(s). We will focus on the case of improving the policy in our
discussion. We view the planning process as an operator I that takes the policy π as input and
outputs an improved policy Iπ.

Planning methods can be categorized based on the target state s they aim to improve. If the
method improves the policy for arbitrary states, we call it background planning. That is, for
any timestep t and a set of states S′ ⊂ S :

π(a | s)← Iπ(a | s), ∀s ∈ S ′

Typical background planning methods include dynamic programming and Dyna-Q [62]. In
the case of dynamic programming, a full sweep of the state space is performed and all states
are updated. In the case of Dyna, a subset of the state space is selected for update.

Another type of planning focuses on improving the policy of the current state st. We call
this decision-time planning. That is, for any timestep t:

π(a | s)← Iπ(a | s), s = st

Algorithms such as AlphaGo use both types of planning when they use self-play for
training. For decision-time planing, a tree search is performed at the root node and updates
the policy of the current state. For background planning, a neural network uses past
experience to train and update policy for all states.

Chapter 2. Literature Review 4

An early example of the use of search as a planning method is the A* algorithm. In 1968,
Hart, Nilsson, and Raphael designed this algorithm for finding a shortest path from a start
vertex to a target vertex [21]. Although A* works quite well for many problems, especially in
early game AI, it falls short in cases where the assumptions of A* do not hold. For example, A*
requires a heuristic, and an optimal solution under stochastic environments. It is
computationally infeasible on large problems. To address this problem, Korf framed the
problem of Real-Time Heuristic Search, where the agent has to make a decision in each
timestep with bounded computation, and developed the Real-Time-A* algorithm as a
modified version of A* with bounded computation per step [37]. Tree-based search algorithms
such as MiniMax and Alpha-Beta Pruning were developed to play and solve two-player
games [34]. Monte Carlo techniques are designed to handle complex environments.

2.2 Monte Carlo Methods

In 1873, Joseph Jagger observed the bias in roulette wheels at the Monte Carlo Casino. He
studied the bias by recording the results of roulette wheels and won over 2 million francs over
several days by betting on the most favorably biased wheel [46]. Therefore, Monte Carlo (MC)
methods gained their name as a class of algorithms based on random sampling.

MC methods are used in many domains but in this thesis we will primarily focus on its usage
in search. In a game where terminal states are usually unreachable by the limited search depth,
evaluation has to be performed on the leaf nodes that represent intermediate game states. One
way of obtaining an evaluation on a state is by applying a heuristic function. Heuristic functions
used this way are usually hand-crafted by human based on expert knowledge, and hence are
prone to human error. The other way of evaluating the state is to perform a rollout from that
state to a terminal state by selecting actions by some randomized policy. This evaluation process
is called random rollout or Monte Carlo rollout.

2.3 Monte Carlo Tree Search (MCTS)

Kocsis and Szepesvári developed the Upper Confidence Bounds applied to Trees (UCT)
method as an extension of the Upper Confidence Bound (UCB) algorithm employed in
multi-armed bandit problems [36]. Rémi Coulom developed the general idea of Monte Carlo
Tree Search that combines Monte Carlo rollouts with tree search [10] for his Go program
CrazyStone. Shortly afterwards, Gelly et al. implemented another Go program MoGo that uses
the UCT selection formula [18]. MCTS was generalized by Chaslot et al. as a framework for
game AI [9]. This framework requires less domain knowledge than classic approaches to game

Chapter 2. Literature Review 5

AI while often giving better results. The core idea of this framework is to gradually build the
search tree by iteratively applying four steps: selection, expansion, evaluation, and
backpropagation. The search tree built in this way emphasizes search of more promising
moves and game states based on collected statistics in rollouts. More promising states are
visited more often, have more children, have deeper subtrees, and rollout results are
aggregated to yield more accurate values. Here we detail the four steps in the MCTS
framework by Chaslot et al. (see Figure 2.1).

Figure 2.1: The Monte Carlo Tree Search Framework, from Chaslot et al. [9].

2.3.1 Selection

The selection process starts at the root node and repeats until a leaf node in the current tree is
reached. At each level of the tree, a child node is selected based on a selection formula such
as UCT or PUCT. A selection formula usually has two parts: the exploitation part based on the
evaluation function E, and the exploration bonus function B. For actions (s, a), a ∈ A of a parent
state s , the selection I(s) is defined as

I(s) .
= argmax

a∈A
[E(s, a) + B(s, a)] (2.1)

The evaluation function E can be based on the value of the child, the accumulated reward of
the child, or the prior selection probability based on the policy π(a | s). The exploration bonus
function B is usually based on the visit count of the child and the parent. The more visits a child

Chapter 2. Literature Review 6

has, the smaller the exploration bonus becomes. For example, the UCT algorithm uses

E(s, a) =
V(s)

N(s, a)

B(s, a) =

√
2 ∗ log(∑b∈A N(s, b))

N(s, a)

where V(s) is the value of the node, and N(s, a) is the visit count of the edge. Gelly et al. used
this selection rule in their implementation of MoGo, the first computer Go program that uses
UCT [18]. Rosin developed the PUCB and the PUCT algorithm that utilize a predictor P(s, a)
that estimates the prior probability of the action a being selected from state s. This approach
was later used in AlphaGo (Section 2.5 and [52]).

2.3.2 Expansion

The selected leaf node is expanded by adding one or more children. Each child represents a
successor game state reached by playing the associated legal move.

2.3.3 Evaluation

The expanded node is evaluated, either by playing a game with a rollout policy, or by using
an evaluation function, or by using a blend of both approaches. Many MCTS algorithms use a
randomized policy as the rollout policy, and the game result as the evaluation. Early work on
evaluation functions focused on hand-crafted or machine learned heuristic functions based on
expert knowledge. Recently, evaluation functions use deep neural networks specifically trained
for the given problem (Section 2.4 gives an example).

2.3.4 Backpropagation

After the expanded nodes are evaluated, the nodes on the path from the expanded nodes back
to the root are updated. The statistics updated usually include visit count, estimated value and
accumulated reward of the nodes.

2.3.5 MCTS Iteration and Move Selection

The four MCTS steps are repeated until the budget runs out. The budget is usually a limited
number of simulations or a period of time. After the search, the agent acts by selecting the
action associated with the most promising child of the root node. This could be the most visited

Chapter 2. Literature Review 7

child, the child with the greatest value, or the child with the greatest lower confidence bound
value [53, 64].

2.4 AlphaGo

In 2017, Silver et al. developed AlphaGo, the first Go program that beat a human Go
champion on even terms [60]. AlphaGo was trained with a machine learning pipeline with
multiple stages. For the first stage of training, a supervised learning policy (or SL policy) is
trained to predict expert moves using a neural network. This SL policy p is parametrized by
weights σ, denoted pσ. The input of the policy network is a representation of the board state,
denoted s. The network outputs a probability distribution over all legal moves a through the
last softmax layer. During the training of the network, randomly sampled expert moves are
used as training targets. The weights σ are then updated through gradient ascent to maximize
the probability of matching the human expert move:

∆σ ∝
∂ log pσ(a | s)

∂σ

For the second stage of training, the supervised policy pσ is used as the starting point for
training with reinforcement learning. This reinforcement learning trained policy (or RL policy)
is parametrized by weights ρ and is initialized pρ = pσ. Training data is generated in form of
self-play games using pρ as the rollout policy. For each game, the game outcome zt = ±r(sT),
where sT is the terminal state, zT = +1 for winning, zT = −1 for losing from the perspective of
the current player. Weights ρ are updated using gradient ascent to maximize the expected
outcome using the update formula:

∆ρ ∝
∂ log pρ (at | st)

∂ρ
zt

Finally, a value function is trained to evaluate board positions. This value function is modeled
with a neural network with weights θ, denoted Vθ . Given a state s, Vθ(s) predicts the outcome
of the game if both players act according to the policy pρ. This neural network is trained with
stochastic gradient descent to minimize the mean squared error (MSE) between the predicted
value Vθ(s) and the outcome z.

∆θ ∝
∂Vθ(s)

∂θ
(z−Vθ(s))

AlphaGo combines the policy network pρ and the value network Vθ with MCTS for acting.
AlphaGo uses a MCTS variant called PUCT similar to that described in Section 2.3. In the search
tree, each edge (s, a) stores an action value Q(s, a), a visit count N(s, a), and a prior probability

Chapter 2. Literature Review 8

P(s, a). At each time step, the search starts at the root node and simulates until the budget runs
out. In the selection phase of each simulation, an action is selected for each traversed node using
the base formula in Equation 2.1. In AlphaGo, the exploitation score of the selection formula is
the estimated average value of the next state after taking the action Q(s, a). In AlphaGo’s PUCT
formula, the exploration bonus of edge (s, a) is based on the prior probability P and decays as its
visit count N grows. As before, the action taken at time t maximizes the sum of the exploitation
score and the exploration bonus

I(s) = argmax
a∈A

[E(s, a) + B(s, a)]

E(s, a) = Q (s, a)

B(s, a) ∝
P(s, a)

1 + N(s, a)

AlphaGo evaluates a leaf node state sL by blending both the value network estimation Vθ(sL)

and the game result zL obtained by the rollout policy pπ. The mixing parameter λ ∈ [0, 1] is
used to balance these two types of evaluations into the final evaluation V(sL)

V (sL) = (1− λ)Vθ (sL) + λzL .

2.5 AlphaGo Zero

AlphaGo Zero is a successor of AlphaGo that beat AlphaGo by 100-0 in 100 games [60]. In
contrast, AlphaGo Zero learns to play Go from tabula rasa. This means it learns solely by
reinforcement learning from self-play, starting from random play, without supervised learning
from human expert data.

Central to AlphaGo Zero is a deep neural network fθ with parameters θ. Given a state s as
an input, the network outputs both move probabilities ppp and value estimation v

(p, v) = fθ(s)

To generate self-play games s1, ..., sT, MCTS is performed at each state s using the latest neural
network fθ . To select a move for a parent node p in the search tree, a variant of the PUCT

Chapter 2. Literature Review 9

algorithm is used:

I(s) = argmaxa∈A (E(s, a) + B(s, a))

E(s, a) = Q(s, a)

B(s, a) ∝ P(s, a)
√

∑b∈A N(s, b)
1 + N(s, a)

.
Self-play games are processed into training targets to update the network parameters θ

through gradient descent on the loss function l

L(θ) = (z− v)2 −πππT log ppp + c∥θ∥2

Here (z− v)2 is the mean squared error of the prediction value, −πππT log ppp is the cross-entropy
loss of the move probabilities, and c∥θ∥2 is a L2 weight regularization. Many other components
of this system are similar to those in AlphaGo.

2.6 AlphaZero

AlphaZero reduces game specific knowledge of AlphaGo Zero even further so that the same
algorithm can be also applied to Shogi and chess [59]. One generalization is that in AlphaZero
the game result is no longer either winning or losing (z ∈ {−1,+1}), but can also be a draw
(z ∈ {−1, 0,+1}).

2.7 MuZero

In 2020, Schrittwieser et al. developed MuZero, an even more general algorithm that learns to
play Atari, Go, chess and Shogi at superhuman level. Compared to AlphaGo and AlphaZero,
MuZero has no access to a perfect model of the game. MuZero plans with a neural network
that also learns the game dynamics through experience. Therefore, MuZero can be applied to
games where the perfect model is either not known or is infeasible to compute with. Figure 2.2
illustrates how MuZero plans, acts, and trains with a learned model.

MuZero defines three main functions. The representation function h encodes a history of
observations o1, o2, . . . , ot and actions a1, a2, . . . , at−1 into a hidden state x0

t . This hidden state
representation is learned, and is the main conceptual change from AlphaZero. The dynamics
function g implements action execution in the representation. Given a hidden state xk and
action ak, produces an immediate reward rk and the next hidden state xk+1. The prediction

Chapter 2. Literature Review 10

Figure 2.2: Illustration of MuZero planning, acting, and training with a learned model. A: MuZero
plans with MCTS and the learned model. The representation function h is used to construct the root node.
The prediction function f is used to estimate node values and action priors. The dynamics function g is used
to estimate state transitions and transition rewards. B: MuZero acts in the environment by sampling an
action proportional to the action visit counts at the root. C: MuZero trains its three functions by aligning

the unrolled model outputs and collected statistics in trajectories.

function f corresponds to the one network in AlphaZero. Given a hidden state xk, it produces
a probability distribution pk of actions and a value vk associated to that hidden state. The three
functions f , g, h are approximated jointly in a neural network with weights θ

x0
t = hθ(o1, . . . , ot, a1, . . . , at−1) (2.2)

(xk+1, r̂k+1) = gθ(xk, ak) (2.3)

(vk, pppk) = fθ(xk) (2.4)

The superscripts of x, a, v denote the depth of such values in the search tree, and depth 0 is at the
search tree’s root. Equivalently, the superscripts also mean the number of recurrent inferences
(through the dynamics function g) the algorithm performs to obtain that value.

MuZero plans with a search method based on the MCTS framework (discussed in Section
2.3). Due to the lack of access to a perfect model, MuZero’s MCTS differs from a standard one
in numerous ways. The nodes are no longer perfect representations of the board states. Instead,
each node is associated with a hidden state x as a learned representation of the board state. The
transition is no longer made by the perfect model but by the dynamics function g. Moreover,
since the dynamics function also predicts a reward, edges created through inferencing with the

Chapter 2. Literature Review 11

dynamics function also contribute to the Q-value estimation.
To act in the environment, MuZero plans following the MCTS framework described in

Section 2.3. At each timestep t, x0
t is created using Equation 2.2. A variant of PUCT is used to

select an action during the search:

I(s) = argmax
a∈A

(E(s, a) + B(s, a))

E(s, a) = Q(s, a)

B(s, a) ∝ P(s, a)
√

∑b∈A N(s, b)
1 + N(s, a)

[
c1 + log

(
∑b∈A N(s, b) + c2 + 1

c2

)]
.

Here c1 and c2 are two constants that adjust the exploration bonus. The selected edge (xk, ak)

at depth k is expanded using Equation 2.3 and evaluated using Equation 2.4. At the end of
the simulation, the statistics of the nodes along the search path are updated. We denote the
updated prior action probabilities p∗, and the updated value estimation with v∗. Since the node
transitions are approximated by the neural network, the search is performed over hypothetical
trajectories without using a perfect model. Finally, the action a0 of the most visited edge (x0, a0)

of the root node is selected as the action to take in the environment.
Experience generated is stored in a replay buffer and processed into training targets. The

three functions of the model are trained jointly using the loss function

Lt(θ) =
K

∑
k=0
Lp
(

p∗t+k, pk
t

)
︸ ︷︷ ︸

(1)

+
K

∑
k=0
Lv (zt+k, v∗t)︸ ︷︷ ︸

(2)

+
K

∑
k=1
Lr
(

rt+k, r̂k
)

︸ ︷︷ ︸
(3)

+ c∥θ∥2︸ ︷︷ ︸
(4)

(2.5)

where K is the rollout depth, (1) is the loss of the predicted prior move probabilities and move
probabilities improved by the search, (2) is the loss of the predicted value and experienced N-
step return, (3) is the loss of the predicted reward and the experienced reward, and finally (4) is
the L2 regularization.

2.7.1 MuZero Reanalyze

Schrittwieser et al. also developed MuZero Reanalyze, a sample efficient variant of MuZero
[56]. This method generates training targets in addition to those generated through game play
through re-executing search on old games using the latest parameters. MuZero Unplugged and
Efficient Zero also use similar mechanisms to generate new data by updating search statistics
of old data [57]. In Efficient Zero, experiments use a reanalyze ratio of 0.99, which means only
1% of the training data are generated through interacting with the environment, and the other

Chapter 2. Literature Review 12

99% are generated by re-running search on old trajectories. In our project, we also implement a
reanalyze worker to perform this task (see Sections 4.3.10 and 4.3.13).

2.8 Atari Game Playing

2.8.1 The Atari Learning Environment

The Atari 2600 gaming console was developed by Atari, Inc. and was released in 1977. Over
30 million copies of the console sold over its 15 years on the market [4]. The most popular
game, PacMan, sold over 8 million copies and was the all-time best-selling video game back
then. Stella is a multi-platform Atari 2600 emulator released under the GNU General Public
License (GPL) [61]. Stella was ported to popular operating systems such as Linux, MacOS, and
Windows, providing Atari 2600 experiences to users without physical copies of the equipment.
In 2013, Bellemare et al. introduced the Arcade Learning Environment (ALE) and the library
has been publicly available since [5]. ALE provides interfaces of over a hundred of Atari game
environments using Stella as the backend. Each ALE environment has specifications on its
visual representation, action space, and reward signals. ALE environments are suitable for
controlled machine learning research, because data are well-represented and evaluation metrics
are clearly defined. Moreover, ALE environments are diverse in their characteristics: while
some environments require more mechanical mastery of the agent, others require more long-
term planning. This makes solving multiple ALE environments using the same algorithm a
good general game playing problem.

2.8.2 Deep Q-Networks

Mnih et al. pioneered the study of using deep neural networks to learn in ALE environments
[44]. They developed the algorithm Deep Q-Networks (DQN) that learned to play seven of
the Atari games and reached human-level performance. The DQN agent has a neural network
that approximates the Q function, parametrized by weights θ, denoted Qθ . Experiences are
generated through interacting with the environment by taking the action that maximizes the
immediate Q-value

π(at | (ot−L+1, . . . , ot)) = argmax
a

Qθ(ot−L+1, . . . , ot, a)

where L is the length of history, and ot is the “frame”, a partial observation of the game state at
timestep t (also see Section 4.3.4). Generated experience is stored in an experience replay buffer
implemented as a FIFO queue. For each training step, a batch of uniformly sampled experience

Chapter 2. Literature Review 13

is drawn from the experience replay, and the loss is computed using

L(θ) ∝ Eπ

[
r + γ max

a′
Qθ′(s′, a′)−Qθ(s, a)

]
.

The network parameters θ′ are updated less frequently than θ.

2.8.3 Double Q Learning

Hasselt analyzed the overestimation problem of Q values in Q-learning and developed double
Q learning, where a double Q update replaces the traditional Q update [22]. Double Q learning
reduces the overestimation problem by introducing an additional Q estimator and updating the
two estimators using each other:

QA(s, a)← QA(s, a) + α

(
r + γQB

(
s′, argmax

a′
QA(s′, a′)

)
−QA(s, a)

)

QB(s, a)← QB(s, a) + α

(
r + γQA

(
s′, argmax

a′
QB(s′, a′)

)
−QB(s, a)

)

where QA and QB are two different Q estimators updated alternately. Hasselt, Guez, and Silver
applied double Q learning to DQN [23]. Similar to the double Q update above, a double Q
update for neural networks is formulated as

L(θA) ∝ Eπ

[
r + γQθB

(
s′, argmax

a′
QθA(s′, a′)

)
−QθA(s, a)

]

L(θB) ∝ Eπ

[
r + γQθA

(
s′, argmax

a′
QθB(s′, a′)

)
−QθB(s, a)

]
.

Here QθA and QθB are two sets of parameters of the same neural network architecture.

2.8.4 Experience Replay

Schaul et al. studied the role of experience replay in DQN and developed the prioritized
experience replay method [55]. In the original DQN, all samples were drawn from the
experience replay uniformly. In prioritized experience replay however, samples are drawn
according to a distribution based on their calculated priority

P(i) =
pα

i

∑k pα
k

Chapter 2. Literature Review 14

where P(i) is the probability of the i-th sample being drawn, α is a constant, and pi is the priority
of the sample. Schaul et al. developed two approaches to compute priorities of samples. In
proportional sampling, the priority p of sample i is calculated by

pi = |δi|+ ϵ

where δi is the temporal-difference error of the sample, and ϵ is a small constant to give all
samples a non-zero probability to be drawn. In rank-based sampling, the same temporal
differences are calculated, but the final priority is computed based on the rank of the error,

score(i) = |δi|+ ϵ

pi =
1

rank(score(i))

Horgan et al. followed up by implementing a distributed version of prioritized experience
replay [28]. Kapturowski et al. investigated the challenges of using experience replay for
RNN-based agents and developed Recurrent Replay Distributed DQN [32].

2.8.5 Network Architectures

Wang et al. studied an alternative neural network architecture for ALE learning [63]. A
Dueling Q-network retains the input and output specifications of the Q-network used in DQN
and structurally represents the learning of the advantage function A(s, a) defined as

A(s, a) .
= Q(s, a)−V(s)

The Q-network has three parts: θ, the shared trunk of the network; Λ, the advantage head; and
Υ, the value head. The network approximates the value function internally through the shared
trunk and the value head, denoted Vθ,Υ, and the advantage function, denoted Aθ,Λ. The values
computed by the two heads are combined to form the Q-value as follows:

Qθ,Υ,Λ(s, a) = Vθ,Υ(s) +

(
Aθ,Λ(s, a)− 1

|A|∑a′
Aθ,Λ(s, a′)

)
.

Similar to DQN, the dueling Q-network is trained through fitting to empirical data generated
by interacting with the environment. Experiments show that this architecture encourages the
network to learn to differentiate between the values of states and the values of state-action pairs,
and leads to better performance of the agent.

Chapter 2. Literature Review 15

2.8.6 Scalar Transformation

Pohlen et al. introduced enhancements to achieve more stable training in Atari games [50]. We
focus on discussing the transformed Bellman Operator since both MuZero and MooZi use it.
For different Atari games, reward signals can vary drastically both in density and scale. This
leads to high variance in training targets during training of the algorithms, causing algorithms
to have difficulty converging. DQN clips the reward signal to a range of [−1, 1] to reduce such
variance [44]. However, this clipping discards the scale of rewards and consequently changes
the set of optimal policies. The transformed Bellman Operator was developed to address this
problem. The Q update of the new operator is as follows

Q(s, a)← Q(s, a) + αϕ

(
r + γϕ−1

(
max
a′∈A

Q
(
s′, a′

))
− ϕ−1Q(s, a)

)
where ϕ is an invertible transformation that contracts. One example of such a transformation is

ϕ(x) .
= sign(x)

(√
|x|+ 1− 1

)
+ εx

ϕ−1(x) .
= sign(x)

(√1 + 4ε(|x|+ 1 + ε)− 1
2ε

)2

− 1

Both MuZero and MooZi use this specific ϕ definition to transform both values and rewards (see
Section 4.3.5).

2.8.7 MinAtar

MinAtar, developed by Young and Tian, is an open-source project that offers RL environments
inspired by ALE [67]. MinAtar offers five environments that pose similar challenges to ALE
environments: learning representation from raw pixels, and learning behaviors that associate
actions and delayed rewards. MinAtar environments are implemented in pure Python, have
simpler environment dynamics, and are visually less rich than ALE environments, while
retaining some flavor of the original games. This makes MinAtar environments perfect for
university research.

2.8.8 Consistency Loss

One interesting characteristic of Atari-like games is that the environment frames are usually
temporally consistent. For example, given the position of the player avatar for the last few
frames, it is not difficult for a human to guess the position of the avatar in the next frame. To take

Chapter 2. Literature Review 16

advantage of this property, one common approach is to enforce temporal consistency in the loss
function. De Vries et al. visualized the latent space of a learned model of MuZero in a 3D space,
in which a hidden state is a point in the space [12]. As MuZero applies recurrent inferences to
a hidden state, the transitions can be traced as a 1-D path in the 3D space. The consistency loss
they developed creates a smoother path in the 3D space and improves performance. Ye et al.
developed a project-then-predict structure similar to a Siamese network to enforce consistency
[66, 35].

2.9 Deep Reinforcement Learning Systems

Deep reinforcement learning systems involve irregular computation patterns and complicated
hardware interactions between CPUs and AI accelerators. Designing such systems efficiently
is a great challenge. Decisions the designer has to make include but are not limited to: (1)
Where and how to generate experience? (2) Where and how to store generated experience? (3)
Where to store the model and copies of it? (4) Where to carry out the gradient computation? (5)
How to orchestrate processes for stable training? Here we briefly review several popular deep
reinforcement learning system designs that utilize parallelization to achieve faster and more
efficient training.

2.9.1 Mnih et al.’s Asynchronous Methods Framework

Mnih et al. developed asynchronous variants for four popular RL algorithms with a
parallelization structure that uses actor-learner processes [43]. Each actor-learner process holds
a local copy of the model, generates experience locally using the model, and accumulates
gradients locally. Once in a while, all local gradients are aggregated to update the global
model. Delaying and aggregating updates to neural network parameters reduces gradient
variance among processes and achieves a more stable learning. Among the asynchronous
algorithm variants, Asynchronous Advantage Actor Critic (A3C) had the best performance
and achieved the state-of-the-art at the time of publication using only half the training time.

2.9.2 The IMPALA Architecture

Espeholt et al. developed IMPALA, a scalable distributed deep reinforcement learning agent
[14]. IMPALA deploys two types of computation workers: actor and learner. A actor holds
a copy of the neural network parameters and the environment. It performs model inferences
locally to interact with its environments and generates experiences. Generated experiences are
saved in local storage and subsequently pushed into the learner’s local storage. The learner

Chapter 2. Literature Review 17

holds the master copy of the neural network parameters. Once the learner receives enough
experiences from the actors, it samples experiences from its local queue and performs batched
forward pass and back-propagation steps using its model. Figure 2.3 shows two variants of this
structure.

Figure 2.3: IMPALA Architecture, from Espeholt et al. [14].. Left: a single learner computes all
gradients; Right: multiple worker learners compute gradients and one master learner collects and

aggregates gradients.

2.9.3 The SEED Architecture

Espeholt et al. developed the Scalable, Efficient Deep-RL (SEED) architecture to effectively
utilize accelerators using a centralized inference server [15]. Similar to IMPALA, SEED also uses
two main types of workers: actors and learners. However, in SEED, actors do not hold copies of
the model. Instead, SEED actors interact with their environments through querying the learner.
The learner not only computes gradients and stores trajectories as in IMPALA, but also has a
batching layer that batches actor queries and efficiently performs batched inference with the
model. Since actors no longer need to pull neural network parameters from the learner, the IO
overhead from serializing and messaging parameters is eliminated. Moreover, since the learner
batches queries from all actors, the IO overhead from moving inputs and outputs to accelerators
(GPUs or TPUs) is also reduced, increasing the overall inferencing throughput. One downside
of the SEED architecture is that actors have to wait for a response from the learner to take an
action, and thus have a higher latency for taking a step. Figure 2.4 illustrates a distributed SEED
agent.

Chapter 2. Literature Review 18

Figure 2.4: The SEED Architecture, from Espeholt et al. [15]. All inferences are computed on the
learner and actors act through querying the learner.

2.9.4 The Acme Framework

Hoffman et al. developed the Acme research framework [27]. Acme is similar to IMPALA:
processes that interact with the environment are actors, and processes that collect experience
and update gradients are learners. Additionally, Acme has a dataset component, which is
synonymous to the replay buffer used in DQN. This component uses Reverb, a
high-performance library developed by Cassirer et al. for storing and sampling collected
experiences [8]. Figure 2.5 illustrates a distributed asynchronous agent in Acme.

Figure 2.5: Example of a distributed asynchronous agent with Acme, from Hoffman et al. [27].

Chapter 2. Literature Review 19

2.9.5 Ray and RLlib

Moritz et al. designed and implemented Ray, a framework for scalable distributed computing
[47]. Ray enables both task-level and actor-level parallelization through a unified interface.
Ray Core was designed with AI applications in mind and has powerful primitives for building
distributed AI systems. For example, Ray uses shared memory to store inputs and outputs of
tasks, allowing zero-copy data sharing among tasks. This is useful for DRL systems in which
generated experiences are stored and sampled in separate processes. Liang et al. developed
RLlib, an industrial-grade deep reinforcement learning library. RLlib is built on top of Ray
Core and provides abstractions for a broad range of DRL systems. Figure 2.6 illustrates RLlib’s
abstraction layers. As of the writing of this thesis, RLlib implements 24 popular DRL algorithms
using its abstractions. One major difference between RLlib agents and other DRL agents is that
RLlib deploys a hierarchical control over the worker processes. Our project uses Ray Core to
implement its worker processes and deploys a hierarchical control paradigm similar to RLlib
(see Section 4).

Figure 2.6: RLlib Abstraction Layers, from Liang et al. [39].

2.9.6 JAX and Podracer Architecture

Frostig, Johnson, and Leary designed JAX, a just-in-time (JIT) compiler that compiles
computations expressed in Python code into high-performance accelerator code [16]. JAX is
compatible with Autograd, so computation procedures expressed and compiled with JAX can

Chapter 2. Literature Review 20

be automatically differentiated. JAX also supports control flow, allowing more sophisticated
logic to be expressed while taking advantage of accelerators. Our project uses JAX for both
neural networks and search. As a result, we are able to compile the entire policy in rollout
workers, including history stacking, planning, and neural networks inferencing, into a single
optimized program that can be hardware-accelerated. Hessel et al. designed two paradigms to
efficiently use JAX for DRL systems [26]. In the Anakin architecture, the environment is
implemented with JAX and the entire agent-environment loop is compiled using JAX and
computed with accelerators. Gymnax, developed by Robert Tjarko Lange, provides
environment implementations in native JAX, and is compatible with the Anakin architecture
[51]. However, pure JAX implemented environments are not always feasible, especially when
environments involve external services, such as Stella or Unity in their backend. Alternatively,
in the Sebulba architecture [26], environments run on CPUs, but policies could be compiled
and computed on accelerators. Generated experiences in both architectures can be used to
compute gradients directly on accelerators. Figure 2.7 illustrates the Sebulba architecture.

Figure 2.7: Sebulba architecture, from Hessel et al. [26]. The environments runs on CPUs. Inferences
and gradient computations are compiled, optimized and executed on TPUs.

21

3 Problem Definition

3.1 Markov Decision Process and Agent-Environment Interface

A RL problem is usually represented as a Markov Decision Process (MDP). MDP is defined as
a four-tuple (S ,A, R, P). S is a set of states that forms the state space. A is a set of actions that
forms the action space; P(s′|s, a) .

= Pr[st+1 = s′ | st = s, at = a] is the transition probability
function. R(s, a, s′) is the reward function. We use the agent-environment interface (as in
Figure 3.1) to solve a problem formulated as an MDP. The MDP is represented as the
environment. The decision maker that interacts with the environment is called the agent. At
each time step t, the agent starts at state st ∈ S , takes an action at ∈ A, transitions to state
st+1 ∈ S based on the transition probability function P(st+1 | st, at) and receives a reward
R(st, at, st+1). These interactions yield a sequence of actions, states, and rewards
s0, a0, r1, s1, a1, r2, We call this sequence a trajectory. When a trajectory ends at a terminal
state sT at time t = T, this sequence is completed and we called it an episode. Figure 3.1
illustrates the interaction between the agent and the environment.

Figure 3.1: The Agent-Environment Interface, from Sutton and Barto [62].

3.2 Policies and Value Functions

At each state s, the agent takes an action based on a policy π(a | s). This policy represents the
conditional probability of the agent taking an action given a state, π(a | s) .

= Pr[at = a | st = s].

Chapter 3. Problem Definition 22

The objective of the agent is to maximize the expected discounted sum of rewards from the
current state st following the policy π

maximize Eπ [Gt | st = s] , ∀s ∈ S (3.1)

Gt
.
=

T

∑
k=0

γkrt+k+1 . (3.2)

Here γ is the discount factor to favor short-term rewards. G is the discounted sum of rewards,
or, equivalently, the discounted return. We represent the maximization target above as the
value function V

Vπ(s)
.
= Eπ [Gt | st = s] .

The value function indicates how good a state is when following the policy π. Similarly, we
define the state-action value function

Qπ(s, a) .
= Eπ [Gt | st = s, at = a]

that indicates how good a state and action pair is. We define the N-step return as a proxy of the
true return, bootstrapped from a value function of a future state

GN
t

.
=

N−1

∑
k=0

γkrt+k+1 + γNV(st+N) .

3.3 Partially Observable Markov Decision Process

A generalization of MDP is a Partially Observable Markov Decision Process (POMDP) [3]. In
addition to the four-tuples of MDP, POMDP also defines Ω, a set of observations o that forms
the observation space; and O(o | s, a) .

= Pr[ot | st = s, at = a], the conditional probability of
observing ot given the last taken action at and state st. In an agent-environment interface with
a POMDP represented environment, the true environment state st at each timestep is hidden
from the agent and the agent only receives a partial observation ot.

3.4 Game Playing

We can represent board games and video games as POMDPs and solve them by developing
an agent. Many board games, such as Go and chess, are fully observable and we treat them

Chapter 3. Problem Definition 23

as the special case where ot = st. Video games, however, are partially observable since frames
rendered on the screen do not contain all information of the program’s running memory. In Go,
chess, and Shogi, the only reward is given from the last timestep based on the game result, and
the reward is one if {−1, 0,+1}. In Atari games, environments produce intermediate rewards
based on game progression, and the scale and density of the rewards varies from game to game.
In all cases, the goal of the agent is to maximize the expected return as described in Equation
3.1.

24

4 Method

4.1 Design Philosophy

4.1.1 Use of Pure Functions

One of the most notable differences of the MooZi implementation compared to other
implementations is the use of pure functions. In MooZi, we separate the storage of data and the
handling of data whenever possible, especially for the parts with heavy computations. We use
JAX and Haiku [25, 31] to implement neural network related modules (see Section 2.9.6).
These libraries separate the specification and the parameters of a neural network. The
specification of a neural network is a pure function that is internally represented by a fixed
computation graph. The parameters of a neural network includes all learned network weights
that can be used with the specification to perform a forward pass. For example, consider a
simple neural network with a single dense layer that computes

y = tanh (Ax + b)

Here x is the input vector of shape (n, 1), y is the output vector of shape (m, 1), A are the
learned weights of shape (m, n), and b is the learned bias of shape (m, 1). The parameters are
all the weights in A and b. We demonstrate how to build this simple network using JAX and
Haiku in Algorithm 1. We visualize the computation graph in Figure 4.1. Using these pure
functions separates the algorithm of the agent and the state of the agent both conceptually and in
implementation. The algorithm can be abstracted into a computation graph that can be compiled
and optimized using a specialized compiler, such as XLA [1], for hardware acceleration (see
Section 2.9.6). The state part of the agent can be efficiently handled by tools specialized in data
manipulations and transfer such as Ray (see Section 2.9.5). This way, our system efficiently
performs inferences on accelerators (such as GPUs and TPUs) and transfers data on CPUs.

4.1.2 Training Efficiency

In Section 2.9 we reviewed common DRL systems for which their developers stated training
efficiency as the highest priority in their system design. We also designed our system to be

Chapter 4. Method 25

import haiku as hk
import jax
import jax.numpy as jnp

m = 3
n = 2

specify the computations to be performed
class Model(hk.Module):

def __call__(self, x):
A = hk.get_parameter('A', shape=(m, n), init=jnp.zeros)
b = hk.get_parameter('b', shape=(m, 1), init=jnp.zeros)

return jax.nn.tanh(A @ x + b)

haiku transforms the object-oriented model into a functional one
model = hk.without_apply_rng(hk.transform(lambda x: Model()(x)))

construct a concrete input
x = jnp.ones((n, 1))

initialize the parameters
params = model.init(jax.random.PRNGKey(0), x)

perform the forward pass
y = model.apply(params, x)

Algorithm 1: A simple dense layer implemented in JAX and Haiku. The model
in the code is the specification of the neural network. The params in the code is the

parameters of the neural network. Only params contains concrete data.

Chapter 4. Method 26

Figure 4.1: Computation graph of the simple dense layer in Algorithm 1. This computation graph
show no concrete data, but the data types, shapes, and operators of the layer (f32 stands for single-
precision float). To complete a forward pass, we need both concrete neural network parameters args[0]

(A, b) and a concrete input value args[1] (x).

efficient and scalable. Here we describe key features of our system which improve its
efficiency. The first one is system parallelization. The computation throughput of a single
process is simply not enough for DRL systems. In the published results of MuZero by [56], the
agent generated over 20 billion environment frames for training. For a non-parallelized
system, consider Gymnax’s efficient MinAtar implementation where each environment step
takes about 1 millisecond [51]. A single process would take more than 200 days just to step the
environment, without considering the model training cost. As a result, we have to build a
distributed system to increase total throughput through parallelism.

The second key feature of our system is the environment transition speed. In Atari games,
especially Atari games in ALE (2.8.1), taking one environment step invokes a full-fledged Atari
emulator in the backend, which is much more time consuming than neural network inference.
Board games, especially those implemented in high performance languages, are much faster.
We use MinAtar (reviewed in Section 2.8.7) for simpler variants of Atari games, and OpenSpiel
for efficient implementations of board games to reduce the time spent on environment
transitions [38, 67].

The third key feature of MooZi is efficient acting with interdependent inferences. DRL
systems such as IMPALA assume that the policy output can be computed by a single forward
pass of a neural network. However, MuZero’s policy requires multiple inferences per action

Chapter 4. Method 27

taken and these inferences are dependent of each other based on the tree search. Our system,
utilizing JAX and MCTX, handles acting with multiple inferences per action efficiently by
implementing the entire process of acting in native JAX.

4.1.3 Understanding the Method is Important

Machine learning algorithms, especially those involving neural networks, have interpretability
issues and sometimes can only be used as “black boxes” [40]. We believe that having a system
that we can understand is much more useful for future research than having a system that “just
works”. Therefore, our project studies the behavior of the system through extensive logging
and visualization utilities. We will show we use these tools to understand the learned model in
Section 4.5 and Chapter 5.

4.2 Architecture Overview

In MooZi, we use the Ray library designed by Moritz et al. [47] for orchestrating distributed
processes. We also adopt the terminology used by Ray. In a distributed system with centralized
control, a single driver process is responsible for operating all other processes. Other processes
are either tasks or actors. Tasks are stateless functions that take inputs and return outputs.
Actors are stateful objects that can perform multiple tasks. In the RL literature, actor is also
a commonly used term for describing the process that holds a copy of the network weights
and interacts with an environment [15, 14]. Even though MooZi does not adopt this concept
of a RL actor, we will use the terms Ray task and Ray actor to avoid confusion. In contrast
to distributed systems with distributed control, ray tasks and actors are reactive and do not
have busy loops. The driver controls when a ray task or actor is activated, what data is used
as input, and where the output goes. The driver orchestrates the data and control flow of the
entire system. Ray tasks and actors merely respond to instructions, process input and return
output on command. We illustrate MooZi’s architecture in Figure 4.2.

4.3 The MooZi System Components

4.3.1 Environment Bridges

Environment bridges unify environments which are defined in different libraries to a shared
interface used by MooZi. In software engineering terms, environment bridges follow the
bridge design pattern [6]. In our project we implement environment bridges for three types of

Chapter 4. Method 28

Driver

Replay BufferParameter Server

Reanalyze Workers
Reanalyze Workers

Reanalyze Workers

Testing Worker

Training Workers
Training Workers

Training Workers

 Data Flow

 Control

Figure 4.2: The MooZi Architecture. The Driver is the entry point of the program (details in Section
4.4). The Parameter Server stores the latest copy of the network weights and performs batched updates to
them (see Section 4.3.15). The Replay Buffer stores generated trajectories and processes these trajectories
into training targets (see Section 4.3.14). A Training Worker is a Ray actor responsible for generating
experiences by interacting with the environment (see Section 4.3.11). A Testing Worker is a Ray actor
responsible for evaluating the system by interacting with the environment (see Section 4.3.12). A
Reanalyze Worker is a Ray actor that updates search statistics for history trajectories (see Section 4.3.13).

Chapter 4. Method 29

environments that are commonly used in RL research: OpenAI Gym, OpenSpiel, and MinAtar [7,
38, 67].

For all these wrapped environments, our bridges produce a flat structure for each timestep
that has the following inputs and outputs:

• Inputs:

blast
t : A boolean indicating the episode end.

at: An integer encoding of the action taken.

• Outputs:

ot: An 3-dimensional array representing the observation of the current timestep as an
image in the shape (H, W, Ce). H is the height, W is the width, and Ce is the number of
channels.

bfirst
t : A boolean indicating the episode start.

blast
t : A boolean indicating the episode end.

bplayert : A boolean indicating the current player. A boolean is sufficient because MooZi
currently only supports environments with at most two players.

rt: A float indicating the reward of taking the given action.

mAa

t : A bit mask indicating legal action indices. Valid action indices have a 1-bit and
invalid actions indices have a 0-bit for non-terminal states (also see Section 4.3.3).

All environments are generalized to continuous tasks by passing an additional input blast
t to

the environment stepping argument. For an episodic task, the environment is reset internally
when blast

t is True. The policy still executes for the last environment step, but the resulting
action is discarded. For a continuous task, the environment always steps with the latest action
and never sets blast to true. Algorithm 2 demonstrates the unified main loop interface. We also
implement a mock environment [45] using the same interface. A mock environment is
initialized with a trajectory sample T , and simulates the environment by outputting step
samples one at a time. An agent can interact with this mock environment as if it were a real
environment. However, the actions taken by the agent do not affect the state transitions since
they are predetermined by the given trajectory. This mock environment is used by the
reanalyze workers in Section 4.3.13.

4.3.2 Vectorized Environment

A vectorized environment supervisor stacks multiple individual environments to form a single
vectorized environment. The environment takes inputs and produces outputs similar to an

Chapter 4. Method 30

interact with the environment with a policy indefinitely
def main_loop(env, policy):

action = 0
reset = True
while True:

result = step(env, action, reset)
action = policy(result.observation)
reset = result.is_last

def step(env, action, reset):
if env.type == "episodic":

if reset:
return env.reset()

else:
return env.step(action)

elif env.type == "continuous":
return env.step(action)

Algorithm 2: Unified Main Loop Interface. Both episodic environments and
continuous environments are handled with the same main loop.

individual environment, but with an additional batch dimension. For example, an individual
environment produces a single frame of shape (H, W, C), while the vectorized environment
produces a batched frame of shape (B, H, W, C). Previously scalar outputs such as reward are
also stacked into vectors of size B. Since environment bridges generalize episodic tasks as
continuous tasks, we do not need special handling for the first and the last timesteps in the
vectorized environment and its main loop looks exactly like that in Algorithm 2. Using
vectorized environments increases the communication bandwidth between the environment
and the agent and facilitates designing a vectorized agent that processes batched inputs and
returns batched actions in one call.

The mock environment described in Section 4.3.1 is less trivial to vectorize. Each mock
environment has to be initialized with a trajectory sample. To vectorize B mock environments,
at least B trajectories have to be tracked at the same time. These B trajectories usually have
different length and therefore terminate at different timesteps. Once one of the mocked
trajectories reaches its termination, another trajectory has to fill the slot. We create a trajectory
buffer to address this problem. When a new trajectory is needed by one of the mocked
environments, the buffer replenishes it, so the vectorized mocked environment can process
batched interactions at full capacity like a regular vectorized environment until the trajectory
buffer runs out of trajectories. An external process has to refill the buffer once in a while. The
driver pulls the latest trajectories from the replay buffer and supplies the mock environment’s
trajectory buffer (also see Section 4.3.13).

Chapter 4. Method 31

4.3.3 Action Space Augmentation

We augment the action space by adding a dummy action adummy indexed at 0. This dummy
action is used to construct history observations when the horizon extends beyond the current
timestep. For example, if the history horizon is 3, we need the last three frames and actions to
construct the input observation to the policy. However, if the current timestep is 0, the agent
hasn’t taken any actions yet. We use zeroed frames with the same shape as history frames,
and the dummy action as history actions. Moreover, MooZi’s planner (see Section 4.3.6) does
not have access to a perfect model, and it does not know when a node represents a terminal
state. Node expansions do not stop at terminal states and the tree search can simulate multiple
steps beyond the end. Search performed in these invalid subtrees not only wastes precious
search budget, but also back-propagates value and reward estimates that are not learned from
generated experience. We address this issue by letting the model learn a policy that always
takes the dummy action beyond a terminal state. This learned dummy action acts as a switch
that, once taken, treats all nodes in its subtree as absorbing states and edges that have zero
value and reward respectively. This discourages the planner from searching in invalid regions
and improves search performance for near-end game states. To formally differentiate these two
types of action spaces, we denote the original environment action space Ae and the augmented
action space Aa, with

Aa = Ae ∪ {adummy}
ai = adummy ∀i < 0 (before the first timestep)

ai = adummy ∀i ≥ T (after the last timestep)

Notice that the environment terminates at timestep T so the last effective action taken by the
agent is aT−1.

4.3.4 History Stacking

In fully observable environments, the state st at timestep t observed by the agent entails
sufficient information about the future state distribution. However, for partially observable
environments, this does not hold. The optimal policy might not be representable by a policy
π(a | ot) that only takes into account the most recent partial observation ot. Most Atari games
are such partially observable environments. In DQN, Mnih et al. alleviated this problem by
augmenting the inputs of the policy network from a single frame observation to a stacked
history of four frames so that the policy network had a signature of π(a | ot−3, ot−2, ot−1, ot)

Chapter 4. Method 32

(Section 2.8.2, [44]). AlphaZero and MuZero use not only a stacked history of environment
frames, but also a history of past actions. MooZi uses the last L environment frames and taken
actions, so the signature of the learned model through the policy head of the prediction
function is p = f (a | ot−L+1, . . . , ot, at−L, . . . , at−1). The greater L is, the better the stacked
observation represents a full state. In a deterministic environment with a fixed starting state,
the stacked history represents a full environment state when L = ∞. On the other hand, L = 1
is sufficient for fully-observable perfect information environments. We represent all partial
observations as images with height H, width W and environment channels Ce. In ALE, the
height and width are the resolution of the screen frame, and the channels are RGB values. In
MinAtar, the height and the width are also the resolution of the screen frame but the channels
are layers of game entities such as enemies or bullets. In board games, the height and the
width are the width of the board, and the channels are layers of game entities such as white
pawn, black knight, and empty tiles.

The exact process of creating the model input by stacking history frames and actions is as
follows:

1. Prepare L saved environment frames of shape (L, H, W, Ce).

2. Stack the L dimension with the environment channels dimension Ce, resulting in shape
(H, W, L ∗ Ce)

3. Prepare saved L past actions of shape (L), encoded as integers.

4. One-hot encode the actions as shape (L, |Aa|).

5. Normalize the action planes by the number of actions |Aa|. The shape remains the same.

6. Stack the L axis with the action axis, now shape (L ∗ |Aa|).

7. Tile action planes (L ∗ |Aa|) along the H and W dimensions, now shape (H, W, L ∗ |Aa|)

8. Stack the environment planes and action planes, now shape (H, W, L ∗ (Ce + |Aa|))

9. The history is now represented as an image with a height of H, width of W, and L ∗ (Ce +

|Aa|) channels

To process batched inputs from vectorized environments described in Section 4.3.2, all
operations above are performed with an additional batch dimension B, yielding the final
output with the shape (B, H, W, L ∗ (Ce + |Aa|)). We denote the channels of the final stacked
history Ch = L ∗ (Ce + |Aa|), where the subscript h means the channel dimension for the
representation function h. Figure 4.3 illustrates this process with an example. We process
history as images this way to utilize neural network architectures that were originally
developed to work with images such as ResNet [24].

Chapter 4. Method 33

Figure 4.3: An example of history stacking. History: Partial observations and actions from the last
3 timesteps (L = 3). Actions are integers and observations are images with 2 channels each. One-hot
Actions: One-hot encodes L history actions into vectors. Normalize Actions: Divide the resulting one-hot
encoded actions by the size of the action space. Actions to Planes: One-hot encodes actions into feature
planes that have the same resolution (i.e., same width and height) as the observations, |Aa| = 2. Stack
Planes: Stack all planes together, creating an image with 12 channels and the same resolution as the

observations.

Chapter 4. Method 34

4.3.5 The MooZi Neural Network

MooZi uses the JAX and Haiku libraries to build the neural network [25, 16, 31]. We also
consulted other open-source projects that use neural networks to play games [13, 66, 64].
MooZi implements two neural network variants, one is based on multilayer-perceptrons
(contribution of Jiuqi Wang) and the other one is based on residual blocks [24]. These two
implementations share the same interface and can be used interchangeably.

Similar to MuZero described in Section 2.7, the model has a representation function h, a
dynamics function g, and a prediction function f . Additionally, MooZi has a projection function
ϱ for training with the self-consistency loss (see Section 4.3.8). The learned model is used to
construct the root node of a tree search using the representation function h and the prediction
function f . We call this process the initial inference. The learned model is also used to create
tree edges and child nodes using the dynamics function g and the prediction function f . We
call this process the recurrent inference. The initial and recurrent inference terminology is also
used in MuZero’s public pseudo-code and MCTX’s source code [59, 30]. For convenience, the
initial and the recurrent inference both produce a tuple (x, v, r̂, p), where x is the hidden state,
v is the value prediction, r̂ is the reward prediction, and p is the policy prediction. The reward
prediction r̂ is set to 0 for the initial inference. During training, v and r̂ are logits with size |Z| .
During acting, the logits of v and r̂ are first converted to softmax distributions, then converted
to scalars using the transformation Φ (see Section 2.8.6).

We apply the invertible transformation ϕ described in Section 2.8.6 to both the scalar reward
targets and scalar value targets to create categorical representations with the same support size.
Scalars are first transformed using ϕ, then converted to a linear combination of the nearest two
integers in the support. For example, for scalar ϕ(x) = 1.3, the nearest two integers in the
support are 1 and 2, and the linear combination is ϕ(x) = 1 ∗ 0.7 + 2 ∗ 0.3, which means that
the target of this scalar is 0.7 for category 1, and 0.3 for category 2. Operator Φ applies ϕ then
categorizes the resulting value into a support Z. Using the same example ϕ(x) = 1.3, assume
the support is Z = [−2,−1, 0, 1, 2], |Z| = 5, then Φ(x) = [0, 0, 0, 0.7, 0.3], and Φ(x) · Z = ϕ(x) =
1.3. For training, the value head and the reward head first produce estimations as logits of size
|Z|. These logits are aligned with the scalar targets to produce categorization loss as described
in Section 4.3.8. For acting, the neural network additionally applies the softmax function to the
logits to generate a distribution over the support. The linear combination of the distribution and
their corresponding integer values are computed and fed through the inverse transformation
ϕ−1 to produce scalar values. This means from the perspective of the planner (see Section 4.3.6),
the scalar estimations made by the model are in the same shape and scale as those produced by
the environment.

Chapter 4. Method 35

4.3.6 Planner

The planner component P takes a stacked history as its input (see Section 4.3.4), performs a
search, collects search statistics, and outputs a action and search statistics

at, v∗t , p∗t = P(ot−L+1, . . . , ot, at−L, . . . , at−1) .

Here v∗t is the search-updated value estimate of the root, p∗t is the search-updated action visits
at the root, and at is the action to take. Training workers (see Section 4.3.11) use the full planner.
Testing workers only use the action output from the planner. The planner used this way is
equivalent to a policy π. Reanalyze workers only use the output statistics from the planner. The
planner uses the MuZero variant of MCTS described in Section 2.3 and Section 2.7, implemented
with the help from MCTX by Ivo Danihelka [30, 31, 11]. The planner uses a boolean flag bplayer

from the environment bridge output (described in Section 4.3.1) to indicate the current player.
In a single-player environment, this boolean flag does not affect the search. In a two-player
environment, the planner performs a logical NOT that flips the player along with the dynamics
function g for each node expansion. As described in Section 4.3.5, the model is trained from the
perspective of the first player. The planner re-orients the value and reward predictions v, r̂ of
each node based on the player of that node. MooZi assumes the two-player game is zero-sum,
so this re-orientation is a simple sign flip. Once the values are oriented from the perspective of
the current player of a node, the planner searches in a Negamax fashion [54] by selecting nodes
that maximizes the negation of Q-values of the edges. We use a discount factor γ = −1 as an
implementation trick to achieve this Negamax search in the planner. The planner also applies
the legal actions mask mAa on root prior policy so only legal actions will be chosen. At the last
timestep T of any environment, the only legal action will be the dummy action and the planner
will be forced to take it.

4.3.7 Training Target Generation

At each timestep t, the environment provides a tuple of data as described in Section 4.3.1. The
agent interacts with the environment by performing a tree search and taking action at. The
search statistics of the tree search are also saved, including the updated value estimate of the
root action v̂t, and the updated action probability distribution p̂t. This completes one step
sample Tt for timestep t, which is a tuple (ot, at, bfirst

t , blast
t , bplayer, rt, mAa

t , v̂t, p̂t). Once an
episode concludes (blast

T = 1), all recorded step samples are gathered and stacked together.
This yields a final trajectory sample T that has a similar shape to a step sample but with an
extra batch dimension of size T. For example, T observations are stacked from shape
(H, W, Ce) to shape (T, H, W, Ce). The training workers described in Section 4.3.11 generate

Chapter 4. Method 36

trajectories this way. The reanalyze workers generate trajectories with the same signature, but
through statistics updates using a vectorized mock environment (see Section 4.3.10 and Section
4.3.2).

Each trajectory sample with T step samples is processed into T training targets. We define
K as the number of unrolled steps for training. The larger the K, the deeper the search tree we
train the model to align with real trajectories. Training targets are computed with the
minimum information necessary for the loss function computation (see Section 4.3.8) so that
the precomputed training targets take up the least memory. We create a training target at
timestep i as follows:

• Observations oi−L+1, . . . , oi+1 where L is the history stacking size. The first L observations
are used to create policy inputs in Section 4.3.4, and the pair of observations oi, oi+i is used
to compute the self-consistency loss described in Section 4.3.8.

• Actions ai−L, . . . , ai+K−1. Similarly, The first L actions are used for policy input and the
pair of actions at (ai−1, ai) are used for self-consistency loss. The actions ai, . . . , ai+K−1 are
used to unroll the model during the training for K steps.

• Rewards ri+1, . . . , ri+K are the targets of the reward head of the dynamics function.

• Action probabilities p∗i , . . . , p∗i+K from the statistics of K + 1 searches.

• Root values v∗i , . . . , v∗i+K, similarly, from the statistics of K + 1 searches.

• N-step returns GN
i , . . . , GN

i+K. Each N-step return is computed based on the formula

GN
t =

N−1

∑
i=0

γirt+i+1 + γNv∗t+N .

• The current player bplayer.

• The importance sampling ratio ρ = 1. This is a placeholder value for future override
based on replay buffer sampling weights (see Section 4.3.14).

In both single-player and two-player environments, we train the neural network from the
perspective of the first player. This means MooZi only supports zero-sum two-player
environments where the value of the second player can be obtained by taking the negative of
the value of the first player.

Chapter 4. Method 37

4.3.8 Loss Computation

Our loss function is similar to the one in MuZero (see Section 2.7), but with additional self-
consistency loss term, terminal action loss, and value loss coefficient:

Lt(θ) =

[
Lp(p∗t , p0

t) +
1
K

K

∑
k=1
Lp
(

p∗t+k, pk
t

)
︸ ︷︷ ︸

(1)

+ cv

(
Lv(GN

t , v∗t) +
1
K

K

∑
k=1
Lv
(

GN
t+k, v∗t+k

))
︸ ︷︷ ︸

(2)

+
K

∑
k=1
Lr
(

r̂k
t , rt+k

)
︸ ︷︷ ︸

(3)

+ csLs
t(x

1
t , x0

t+1)︸ ︷︷ ︸
(4)

+ cL2∥θ∥2︸ ︷︷ ︸
(5)

]
· ρ

To compute these terms used in the loss function, we use the history observations
ot−L+1, . . . , ot and history actions at−L, . . . , at−1 to reconstruct the stacked frames as the input of
the initial inference (see Section 4.3.4). We apply the initial inference to obtain p0

t , v0
t , x0

t . We
apply K consecutive recurrent inferences using actions at, . . . , at+K−1 to obtain
p1

t , . . . , pK
t , v1

t , . . . , vK
t , x1

t , . . . , xK
t . The policy loss (1) is the standard categorization loss using

cross-entropy

Lp(p, q) = − ∑
p∈p,q∈q

p log q .

The policy targets p∗t+i(i = 0, 1, . . . , K) are action visit counts at the root of K + 1 searches
performed in the game (see Section 4.3.7). To compute the value loss (2) and the reward loss
(3), we apply the scalar transformation Φ (see Section 2.8.6) that converts scalar values to
categorizations, and use the same cross-entropy categorization loss

Lv(p, q) = Lr(p, q) = − ∑
p∈Φ(p),q∈Φ(q)

p log q

Chapter 4. Method 38

MooZi also trains with a self-consistency loss similar to that described by Ye et al. and de Vries
et al. [66, 12]. To compute the self-consistency loss (4), we reconstruct the initial inference for
the next timestep ot−L+2, . . . , ot+1, at−L+1, . . . , at, and compute the cosine distance between the
projected one-step hidden state ϱ(x1

t) of timestep t and the initial hidden state x0
t+1 of the next

timestep t + 1. Formally,

cosine distance (a, b) = 1− a · b
∥a∥∥b∥

Ls(x1
t , x0

t+1) = 1−
ϱ(x1

t) · x0
t+1

∥ϱ(x1
t)∥∥x0

t+1|∥

Figure 4.4 illustrates the intuition behind this loss. Part (5) of the loss function is a standard

Figure 4.4: Self-consistency Loss Computation. The hidden state x1
t after projection should be similar

to the hidden state x0
t+1. We assume the next timestep has more information, so we stop gradient from

x0
t+1 to push the representation of the previous timestep towards the next timestep.

L2 regularization loss to reduce network overfitting, with coefficient cL2 to control the strength
of this regularization. The overall loss of a training target is scaled by its importance sampling
ratio ρ based on the probability of its being drawn from the replay buffer (see Section 4.3.14).
We also use the gradient scaling described by Schrittwieser et al. that halves the gradient at the
beginning of each dynamics function call [56]. The constants in the loss functions depend on
system configuration, and the constants we used for experiments can be found in Chapter 5.

Chapter 4. Method 39

4.3.9 Updating Neural Network Parameters

We use a standard Adam optimizer developed by Kingma and Ba [33]. We also clip the gradient
as described by Pascanu, Mikolov, and Bengio [49]. The dynamics function g in our learned
model is essentially an RNN, so we expect this gradient clipping trick to have a similar effect
in our model. Optax, developed by Matteo Hessel et al., is a library for gradient manipulations
implemented in JAX [42]. We use Optax’s implementation for both the Adam optimizer and
the gradient clipper. Moreover, we also use a target network that was used in DQN to stabilize
training [44].

4.3.10 MooZi Reanalyze

In Section 2.7.1, we reviewed MuZero Reanalyze. In our project, we also implement a reanalyze
worker process that re-runs search on old trajectories with the latest neural network parameters.
Given a trajectory sample T , for each timestep t in the trajectory, the reanalyze process works
as follows

• Use observations (ot−T+1, . . . , ot) and actions (at−T, . . . , at−1) to reconstruct the planner
input.

• Feed the planner P with the reconstructed input, obtaining the update action ãt, the
updated policy target at the root p̃∗t , and the updated value target at the root ṽ∗t .

• Discard the updated action ãt since the action that got executed in the environment has to
be the old action at to keep the trajectory consistent.

• Replace the old policy target p∗t with the updated policy target p̃∗t .

• Replace the old value target v∗t with the updated policy target ṽ∗t .

Once the entire trajectory T is processed, we obtain an updated trajectory T̃ in which only
the value targets and policy targets are replaced. The updated trajectories are processed into
training targets by the replay buffer, and used in training the same way as normally collected
trajectories.

4.3.11 Training Worker

The main goal of training workers is to generate trajectories by interacting with environments
for training purposes. For each worker, a vectorized environment is created as described in
Section 4.3.2, a history stacker is created as described in Section 4.3.4, and a planner was created
using MCTS configurations as described in Section 4.3.6. Each worker also has a copy of the

Chapter 4. Method 40

parameters similar to that in IMPALA (see Section 2.9.2 and [14]). Step samples and trajectory
samples are collected as the planners create actions and the vectorized environments execute
the actions. Each worker is allocated one CPU and a fraction of a GPU (usually 10% to 20%
of a GPU) so neural network inferences can be done on GPU. Collected trajectory samples are
returned to the driver for further management.

4.3.12 Testing Worker

The main goal of testing workers is to evaluate the strength of the agent by interacting with
environments. These workers are similar to training workers and they hold the same type
of data. The differences are: testing workers only use a single environment, have less GPU
allocation, and are only run once every n training steps, where n is a configurable number (see
configuration in Section 5.1.4).

4.3.13 Reanalyze Worker

The main goal of reanalyze workers is to update search statistics using the reanalyze process
described in Section 4.3.10, and push the updated trajectories to the replay buffer.

4.3.14 Replay Buffer

The replay buffer processes trajectories into training targets and samples trajectories or training
targets. Since most training targets are expected to be sampled more than once, the replay buffer
precomputes the training targets for all received trajectory samples in the replay buffer with
the process described in Section 4.3.7. The replay buffer also computes the value difference δ

for each target, which is the difference between the predicted value from the search, and the
bootstrapped N-step return

δi = |v∗i − GN
i |

We implemented three modes of sampling: uniform, proportional, and rank-based. In
uniform sampling, every training target has equal probability of being drawn. Proportional
and rank-based sampling follow the same formula described by Schaul et al. [55]. However,
instead of one-step temporal difference error, we use the δ error we described above. For each
training target i, the replay buffer also computes the importance sampling ratio ρ(i) based on
the probability P(i) of it being drawn

ρi =
1

N · P(i)

Chapter 4. Method 41

where N is the number of samples in the buffer. Since the probabilities of targets depends
on other targets as well, the importance sampling ratio of targets is not static, and has to be
recomputed each time a batch is sampled from the replay buffer.

4.3.15 Parameter Server

The parameter server holds the central copy of the neural network parameters, and updates the
parameters. Once a batch of training targets is received by the parameter server, the loss and
gradients are computed as described in Section 4.3.8, and the parameters are updated.

4.4 The MooZi System in Action

In MooZi, Algorithm 3 is the driver that manages all others processes and dataflow. The driver
starts by initializing all rollout workers, a parameter server, and a replay buffer. At the
beginning of a training step, the driver performs lightweight tasks of all processes such as
synchronizing parameters and tally statistics. During the training step, all processes perform
their heavyweight tasks such as generating trajectories or updating parameters. Rollout
workers interact with environments, the parameter server computes gradients, and the replay
buffer processes trajectories into training targets. The method calls made by the driver do not
block. They schedule call events and return immediately rather than waiting for the methods
to finish. The immediate return values of the calls are promises managed by Ray [17]. Actors
execute their scheduled method calls sequentially once their concrete inputs are ready. Figure
4.5 illustrates how tasks are executed in parallel over time.

Figure 4.5: Timeline of training steps. The red bar indicates a synchronization barrier. The duration of
each training step is decided by the last finished task.

Chapter 4. Method 42

start_training = False
trajectory_samples = []
parameter_server = make_parameter_server()
replay_buffer = make_replay_buffer()
training_worker = [make_train_worker() for i in range(num_train_workers)]
testing_worker = make_test_worker()
reanalyze_workers = [make_reanalyze_worker() for i in range(num_reanalyze_worker)]

for epoch in range(num_epochs):
if not start_training:

if start_training_condition_met():
start_training = True

for worker in training_worker + testing_worker + reanalyze_workers:
if update_condition_met(worker):

worker.set_parameters(parameter_server.get_parameters())

replay_buffer.process_trajectory_samples(trajectory_samples)

if start_training:
for i in range(num_updates_per_epoch):

batch = replay_buffer.sample_batch(batch_size)
parameter_server.update(batch)

trajectory_samples.clear()
for worker in training_worker:

sample = worker.run()
trajectory_samples.append(sample)

if testing_condition_met():
test_result = testing_worker.run()

if start_training:
for worker in reanalyze_workers:

trajectories_to_update = replay_buffer.get_trajectory_samples()
worker.refill_trajectory(trajectories_to_update)
updated_trajectories = worker.run()
replay_buffer.add_trajs(updated_trajectories)

Algorithm 3: The driver.

Chapter 4. Method 43

4.5 Logging and Visualization

Figure 4.6: MooZi Tensorboard dashboard.

MooZi incorporates extensive logging and visualization utilities to help users understand
its behavior better. All distributed processes maintain a dedicated log file that records all
important events within the process. MooZi uses TensorBoard [1] to log informative scalar and
vector quantities. Figure 4.6 shows the MooZi TensorBoard dashboard. MooZi logs over 50
different metrics into this dashboard. These include 29 metrics from the training workers, 3
metrics from the testing logger, 20 metrics from components of the loss function, 8 metrics
from the parameter optimizer. Optionally, the dashboard shows distributions of parameters
from all neural network layers. MooZi also provides utilities to visualize the behavior of the
algorithm (shown in Section 5.7 and Section 5.9). The test worker saves trajectories as
annotated GIFs that are easy to play and analyze on a frame-to-frame basis. Figure 4.7 shows
an example of such a GIF tiled as images.

Chapter 4. Method 44

Figure 4.7: MooZi produces trajectories in Asterix as GIFs with annotations, presented here as tiled
images of every four frames. In these images, R is the reward rt−1 given from the last timestep, V is the
value prediction v∗t after search, P is the prior policy p0

t at the root before search, N are the visit counts at
the root after search, π is the policy target p∗t of the timestep, Q are the Q-values, and A is the index of

the action to take.

45

5 Experiments

We run the MooZi system on both video games and board games to demonstrate MooZi’s ability
to learn and perform in both domains. We use MinAtar environments (reviewed in Section 2.8.7)
as video game environments, and Breakthrough as a board game environment. We compare
MooZi’s performance in MinAtar environments with published results from Gymnax [51] and
MinAtar [67]. We evaluate MooZi’s performance in Breakthrough by comparing MooZi models
with different amount of training. We analyze MooZi’s behavior in these environments and
discuss the behavior of the system during training.

5.1 Experiment Setup

5.1.1 Basic Configuration

For all of our experiments, we use MooZi with unrolled steps K = 5, history length L = 4, and
bootstrap steps N = 10. We use a discount of 0.997 and a support Z from the interval [−30, 30]
(|Z| = 61). MuZero by Schrittwieser et al. only used the transformation Φ in Atari
environments [56], but we discovered the same support works well for both MinAtar
environments and Breakthrough, so we always use it. We run all experiments on a single
computer with Intel Xeon CPUs (72 × 2.3 GHz), Nvidia Tesla V100 GPUs (8 × 32 GB), and 500
Gigabytes of system memory. Each run roughly consumes 50% of available computation
resources of this computer, and we usually run two instances of the system at the same time.

5.1.2 Neural Network Configurations

We use the residual-blocks-based variant (see Section 4.3.5) of the network for all of our
experiments.

Residual Block

We follow the residual block definition by He et al. [24]. The computation of one residual block
is computed as follows:

• input x

Chapter 5. Experiments 46

• save a copy of x to x′

• apply a 2-D padded convolution on x, with kernel size 3 by 3, same channels

• apply batch normalization on x

• apply ReLU activation on x

• apply a 2-D padded convolution on x, with kernel size 3 by 3, same channels

• apply batch normalization on x

• add x′ to x

• apply ReLU activation on x

The Representation Function Network

The representation function x = h is computed as follows:

• input a stacked history ψ of shape (H, W, Ch)

• apply a 2-D padded convolution on ψ, with kernel size 1 by 1 and 32 channels

• apply 6 residual blocks with 32 channels on ψ

• output the hidden state x of shape (H, W, 32)

The Prediction Function Network

The prediction function p, v = f (x) is computed as follows:

• input hidden state x of shape (H, W, 32)

• apply 1 residual block with 32 channels on x

• flatten x, now shape (H ∗W ∗ 32)

• apply 1 dense layer with output size of 128 on flattened x to obtain the value head xv, now
shape (128)

• apply batch normalization and ReLU activation on xv

• apply 1 dense layer with output size of |Z| on xv, now shape (1)

• output the value head xv as the value prediction v

Chapter 5. Experiments 47

• apply 1 dense layer with output size of 128 on flattened x to obtain the policy head xp,
now shape (128)

• apply batch normalization and ReLU activation on xp

• apply 1 dense layer with output size equals to the action space size on xp, now shape
(|Aa|)

• output the policy head as the policy prediction p

The Dynamics Function Network

The dynamics function x, r̂ = g(x) is computed as follows:

• input hidden state x of shape (H, W, 32), action a as an integer

• encode a as action planes of shape (H, W, |Aa|) (same procedure as in Section 4.3.4)

• stack x on top of the encoded action, now shape (H, W, 32 + |Aa|)

• apply a 2-D padded convolution on ψ, with kernel size 1 by 1, 32 channels, now shape
(H, W, 32)

• apply 1 residual block with 32 channels on x to obtain the hidden state head xs

• apply 1 residual block with 32 channels on the hidden state head xs

• output the hidden state head xs as the next hidden state x′

• apply 1 dense layer with output size of 128 on x to obtain the reward head xr, now shape
of (128)

• apply batch normalization and ReLU activation on xr

• apply 1 dense layer with output size of |Z| on xr, now shape of (|Z|)

• output reward head xr as the reward prediction r̂

Ye et al. discovered that a small dynamics function network is sufficient for Atari
environments, and our MinAtar experiments also use a small dynamics function network with
only one residual block as the trunk. However, we noticed that such a small dynamics function
network isn’t sufficient to fully learn the environment dynamics in Breakthrough. As a result,
we use a larger dynamics function network with 6 residual blocks for the Breakthrough
experiments in Section 5.7.

Chapter 5. Experiments 48

Worker c1 c2 Temperature Dirichlet Noise Simulations

Training 2.25 19652 1.0 0.2 25

Reanalyze 1.75 19652 - 0.2 50

Testing 1.75 19652 0.25 0.1 40

Table 5.1: Planner configurations.

The Projection Function Network

The projection function x = ϱ(x) is simply one residual block (see Section 4.3.5).

Network Training

In the loss function described in Section 4.3.8, we use parameters cv = 0.25, cs = 2.0, and
cL2 = 1.0× 10−4. We use a batch size of 1024, a learning rate of 1.0× 10−2, and a global norm
clipping of 5.0. We perform gradient updates with a number of samples that is four times the
number of step samples generated in each training step. For example, if we have 30 training
workers, each with 16 environments, and each performs 100 environment steps per training
step, then the total number of step samples generated is 30 ∗ 16 ∗ 100 = 48000. This means
that we update the gradient using 4 ∗ 48000 = 192000 sampled training targets from the replay
buffer. That is 192000

1024 ≈ 188 gradient updates from mini-batches of size 1024 per training step.

5.1.3 Planner Configurations

Table 5.1 shows the configurations of planners from different type of workers. Reanalyze
workers do not sample actions to act so the temperature parameter does not affect their
behavior. c1 is the exploration constant in the PUCT formula from Section 2.7. A greater c1

favors the less visited actions more. c2 is also an exploration constant in the PUCT formula. We
use the same value as [56] because we find it sufficient to tune c1 to balance exploration. The
temperature controls how action is selected from the distribution of action visit counts from the
root nodes. A temperature of 0 selects the most visited action at the root node. A temperature
of ∞ means random action selection. The dirichlet noise controls the exploration noise added to
the actions at the root node. A greater dirichlet noise adds more prior probability to less
explored actions. The simulations parameter is the number of simulations that the planner
performs at each timestep (see Section 2.3). The training workers favor exploration and
generate data quickly with fewer simulations. The testing workers favor exploitation and
spend more time on simulations to get better average return. The reanalyze workers do not
need to interact with the environment so they spend more time performing simulations.

Chapter 5. Experiments 49

5.1.4 Driver Configuration

We use 30 training workers, each with 16 copies of the environment. For every training step,
each training worker performs 100 environment steps. The Freeway environment has much
longer episodes, so each training worker uses only 2 environments and performs 2500
environment steps per training step. We use 1 testing worker with one copy of the
environment. For every 10 training steps, the testing worker collects 10 trajectories and logs
the average return of the trajectories. We only use the reanalyze worker for the experiments in
Section 5.5. All workers sync with the latest neural network parameters every 10 training
steps.

5.2 MooZi vs PPO in MinAtar Environments

We run MooZi using all five environments in MinAtar: Breakout, Space Invaders, Freeway, Asterix,
and Seaquest [67]. All environments produce frames of resolution 10× 10, with four to seven
environment channels Ce. In Breakout, the player moves a paddle left or right on the bottom of
the screen to bounce a ball to hit the bricks. The reward is +1 for each brick broken and 0 in all
other situations. The game ends when the paddle fails to catch the ball. In Space Invaders, the
player controls a cannon that can move left, move right, or fire the cannon. A cluster of enemies
moves across the screen and they fire at the player. The reward is +1 for each enemy hit by
the player and 0 in all other situations. The game ends when the player is hit by an enemy’s
bullet. In Freeway, the player starts at the bottom of the screen and can move up or down once
every three frames to travel across a road with traffic, or stay in place. Cars spawn randomly
and travel horizontally across the screen. When they hit the player the player is moved back to
its starting position. The reward is +1 for each time the player successfully travels across the
whole road and 0 in all other situations. The game ends after 2500 timesteps. In Asterix, the
player moves in four directions, and enemies and treasures spawn randomly on the edges. The
reward is +1 if the player obtains a treasure and 0 in all other situations. The game ends when
the player bumps into an enemy. Enemies have different speed indicated by the color of their
tail.

Figure 5.1 shows screen shots of the MinAtar environments. MuZero is reported to have
much better performance in more deterministic environments [48]. To compare MooZi in more
deterministic environments, we compare with the results reported by Gymnax, in which
algorithms are evaluated in environments with no sticky action. We discuss this difference in
section 5.3.

Chapter 5. Experiments 50

Figure 5.1: MinAtar Environments, from Young and Tian [67].

Figure 5.2 shows the evaluation of MooZi on MinAtar environments. We run MooZi with
three seeds on each of these environment. Gymnax benchmarked the performance of PPO with
three sets of hyper-parameters in each of these four games [51, 58]. We compare our results with
the best performing PPO in each of these games. The average return uses the planner setting of a
test worker in Section 5.1.3. In Breakout, MooZi obtained a near-optimal strategy and the paddle
almost never fails to catch the ball. There is no default step limit in this environment so we cap
the return at 100. Similarly in Space Invaders, MooZi obtained a near-optimal strategy and we
cap the return at 300. In Freeway, two out of three runs obtained a near-optimal strategy, and one
run failed to learn a stable policy. Since each episode in this environment is much longer than
in other environments, we have to configure MooZi differently to run 2,500 worker steps per
training step. This drastically reduced the cycles of updating the network and generating data
using the newer network. As a result, MooZi learning is much less stable in this environment
than in other environments. In Asterix, both MooZi and PPO do not obtain an optimal strategy,
but MooZi achieves twice as much average return as PPO. In all environments, a single run
takes about 10 hours. Gymnax does not provide their runtime statistics, but we presume their
result is at least an order of magnitude faster than ours since they do not use planning in acting.

Chapter 5. Experiments 51

Figure 5.2: Evaluation of MooZi in MinAtar games. Each game has three MooZi runs and four games
have one PPO run reported by Gymnax. The x axis shows the number of environment frames used in

training. The y axis shows the average return of the algorithm in the environment.

Chapter 5. Experiments 52

5.3 Sticky Actions in MinAtar

MinAtar environments have a default sticky action probability of 10%. This means that in one
out of ten timesteps, the environment uses the last taken action to step the environment
instead of using the agent’s output action. For example, assume that at time t, the agent
outputs action at = MoveLeft and moves to the left. At time t + 1, the agent outputs action
at+1 = MoveRight. However, if the environment applies the sticky action and overrides the
action, then at+1 = MoveLeft, and the agent moves to the left even further. The presence of a
non-zero sticky action probability adds stochasticity to environments and changes the set of
optimal polices. For example, in Space Invaders, if the sticky action probability is 0, then the
agent can move away from enemy bullets just in time, one frame before the agent is about to
get hit. However, with a sticky action probability of 10%, moving away one frame in advance
means there’s a 10% chance that the agent will die, and moving away two frames in advance
means there’s a (10% ∗ 10%) = 1% chance that the agent will die two frames later. We observe
that a MooZi agent trained in Space Invaders with a 10% sticky action probability moves away
from an enemy bullet right after the bullet becomes visible on the screen. Young and Tian
shipped the MinAtar environments with four algorithms including two variants of DQN and
two variants of an Actor-Critic (AC) method. The MinAtar paper [67] only reports Breakout
results with a sticky action probability of 10%. Gymnax only reports Breakout results without
sticky action probability. We compare with MinAtar and Gymnax in their respective testing
environments using the same MooZi agent configuration. In Figure 5.3, we use the final
average returns of PPO and AC reported in Gymnax and MinAtar’s paper respectively. In
Breakout with sticky actions, MooZi learns more slowly and the final average return is much
lower. In Breakout without sticky actions, MooZi quickly learns a near-optimal policy and never
fails to return the ball. In both environments, MooZi out-performs the other algorithm.

Chapter 5. Experiments 53

Figure 5.3: Evaluation of MooZi vs PPO vs AC in two variants of Breakout. The x axis shows the
number of environment frames used in training, in units of 1.0 × 107 frames. The y axis shows the
average return of the algorithm in the environment. Top: Non-deterministic variant of Breakout with
sticky actions. Bottom: Deterministic variant of Breakout without sticky actions. The average return of

PPO and AC are their final reported return.

Chapter 5. Experiments 54

5.4 Testing Strength when Scaling the Search Budget in Asterix

We use the trained MooZi model in the Space Invaders environment to evaluate its strength while
varying the number of simulations. We only use model checkpoints from the first 3 million
environment frames because after that the agent behaves optimally even when using the prior
policy to act. For each of these checkpoints, we run a testing worker to collect 30 episodes
and compute the average return of these episodes. The testing worker uses the same planner
configuration as the testing worker in Section 5.1.3 except for the number of simulations. Figure
5.4 shows the result. We observe that with a greater number of simulations, the agent tends
to perform better. With more training, the agent always performs better. The difference of
performance due to simulation count seems to be smaller than the difference due to training.
For example, with 2.5 million frames of training, acting using 64 simulations gives an average
return around 70. With 3 million frames of training, acting according to the prior (1 simulation)
does even better and gives an average return around 75. The prior policy, with a bit more
training, quickly catches up to or even exceeds the deep search policy with less training. This
finding aligns with the analysis by Hamrick et al. [20]: the planner contributes more to the
algorithm by generating better data for training the model rather than exploiting the model for better
testing.

Figure 5.4: Agent strength with different number of simulations. The x axis shows the number of
environment frames used in training, in unit of 1.0× 106 frames. The y axis shows the average return of

the algorithm.

5.5 Improving Sample Efficiency with Reanalyze in Asterix

We run three sets of parameters of MooZi, each with three experiments in the Asterix
environment. We configure training workers and reanalyze workers to generate the exact same

Chapter 5. Experiments 55

amount of training targets for each training step. We control the total number of generated
training targets and network updates per training step by fixing the sum of number of training
workers and reanalyze workers to 20. The parameter set 20 : 0 indicates 20 training workers
and 0 reanalyze workers. This set is also used in Section 5.2. The parameter set 16 : 4 uses 16
training workers and 4 reanalyze workers. Similarly, the parameter set 12 : 8 uses 12 training
workers and 8 reanalyze workers. We fix the total environment frames to 10 million.
Parameter sets with more reanalyze workers take more time to run, as they consume
environment frames budget more slowly. Figure 5.5 shows the performance of MooZi with
Reanalyze workers. The parameter set with 8 reanalyze workers used 3 million environment
frames to reach an average return that takes the parameter set with 0 reanalyze workers 5
million environment frames. The number of training targets used for training in the former is
3 ∗ (20

12) = 5 million and this equals the 5 million mark of the latter . This means that in the
early stage of the training, each training target generated by the reanalyze workers contributes
to the training as much as one training target generated by the training workers. In the later
stage of the training, all runs reached a similar final average return with the same amount of
environment frames. This means that the training targets generated by the reanalyze workers
do no longer contribute, or can even harm the training process in the later stage. We
hypothesize that the reason for this observation is that in the early stage of the training,
training targets shift more quickly, and updating past trajectories with the latest model is more
valuable. However, in the later stage of the training, training targets stabilize and it becomes
more important to have better performing trajectories than more accurate estimates from
worse trajectories.

Chapter 5. Experiments 56

Figure 5.5: MooZi with reanalyze workers in Asterix. The x axis shows the number of environment
frames used in training, in units of 1.0× 106 frames. The y axis shows the average return of the algorithm

on a log scale.

Chapter 5. Experiments 57

5.6 Analysis of Planning in Space Invaders

Figure 5.6: MooZi acting in Space Invaders environment by planning with a learned model. Left:
Example of an observation ot and the agent’s statistics. Right: The search tree built by planning with the

agent’s learned model in this example.

We show an example of MooZi acting in the Space Invaders environment by planning with
a learned model in Figure 5.6. The left hand side shows the latest environment observation ot.
We also annotate agent statistics on the image. The right hand side shows the search tree of the
agent for deciding the next action. Row R shows the reward from the last timestep rt. The agent
hits an enemy in the last timestep so rt = 1. Row V shows the value prediction v∗t at the current
timestep, which is also the value of the root node in the search tree on the right hand side. Row
P shows the prior policy p0

t before the tree search. The prior policy is obtained by performing
one initial inference described in Section 4.3.5. Row N shows the visit counts of nodes at the
root. π shows the posterior policy p∗t after the tree search. Row Q shows the one-step returns
of r̂1

t + γv1
t . Row A shows the next action to take in the environment. The prior policy shows

that the agent favors two actions, Left and Fire. The reason for going Left is because the agent
observes an enemy bullet traveling towards the agent. The search reveals why Fire is also a good
idea: if the agent decides to Fire at t, it could still dodge Left at t + 1. The subtle difference is that
by delaying the dodging by one timestep, the agent hits the enemy one timestep earlier, and
receives a greater discounted return. The agent also learns to not dodge Right in this situation,
and the prior of this action is so low that it is not even explored in the search. This is because the
enemies are moving to the left. If the agent takes a Right, subsequent Fires will miss. After the

Chapter 5. Experiments 58

search, the posterior probability of taking the action Fire is 96%, which means the agent is going
to take this action 96% percent of the time. The training target created from this interaction will
also shift the prior of this action towards 96% in future similar simulations.

5.7 Learning through Self-play in Breakthrough

Figure 5.7: The board game Breakthrough. Left: The Breakthrough (5× 5) starting board used in our
experiment. Right: Illustration of the Breakthrough movement rule.

We evaluate MooZi in the board game Breakthrough. Breakthrough is played by two players,
zero-sum, deterministic, and with perfect information for both players. The original
Breakthrough is played on a 7× 7 board. In our experiment we use smaller board size of 5× 5,
with fewer pieces for both players. Each piece can move forward, diagonally forward, or
capture an enemy piece diagonally forward. The player who first reaches the home row of its
opponent wins. Figure 5.7 illustrates the starting board used in our experiment and the
movement rules. We use the OpenSpiel implementation of Breakthrough. The action space size
of the environment is around 300, and a typical state has five to twelve legal actions.

We train MooZi through self-play with a shared network for both players. The planner is
configured for a two-player game as described in Section 4.3.6. Figure 5.8 shows the evaluation
of MooZi throughout training. We evaluate 23 model checkpoints by running a round-robin
tournament in which all models pairs with all other models and play 16 matches alternating
first and second player. We initialize the Elo of each checkpoint to zero and compute the new
Elo rating based on the results of the tournament. The steady Elo rating increase shows that the
model learns reliably through self-play.

Chapter 5. Experiments 59

Figure 5.8: Evaluation of MooZi training in Breakthrough. The x axis shows the number of training
steps of 23 model checkpoints. The y axis shows the Elo rating of the checkpoints.

5.8 Analysis of Planning in Breakthrough

Figure 5.9 shows an example of MooZi planning in a two-player game using the learned model
in Breakthrough. For creating the illustration, we use a game implementation with the perfect
model, and rollout perfect game states using the actions sampled by the search to create a
perfect game state tree. We overlap the MooZi search tree and the perfect game state tree to
create the visualization in the figure. The learned model only knows the legal actions at the
root level, so it is possible for the planner to create nodes using illegal actions beyond the root
level. When this happens, such nodes will not have their corresponding legal game states. We
call a search tree node without a corresponding legal game state a delusion, and we color these
nodes with light pink or white. Node A is a node in the search tree with its corresponding
legal game state rendered as a board position. Node B is a delusion created by the learned
model by taking action of index 41 (annotated as “Action: 41” on the illustration) that’s not
legal in the game state corresponding to node A. Node C is not a delusion because action of
index 101 is one of the legal actions in the game state of node A. The search cannot differentiate
delusional nodes from valid nodes, and the value predictions of node B and node C are both
used to update their parent node A through backpropagation. One special case of a delusion is
when the search takes the dummy action after a terminal state. Even though the dummy
action is not a legal action in the game, it represents a valid prediction that the game ends.

In the early stage of training, the model frequently samples illegal actions beyond the root

Chapter 5. Experiments 60

Figure 5.9: MooZi planning with a learned model in Breakthrough. On nodes: I is the node index, R
is the reward prediction r̂, V is the value prediction v, and N is the node visit count. On edges: A is the

action index, p is the prior probability, Q is the Q-value.

Chapter 5. Experiments 61

Figure 5.10: MooZi planning with a learned model that fully captures environment dynamics. The
model accurately rollout game states from the starting state D all the way to the terminal state E. The red
line is the cut-off of the training horizon, above which predictions are enforced by the training process.

Chapter 5. Experiments 62

level, and the search trees are full of delusions with arbitrary value and reward predictions. As
the model learns, the search trees become more accurate, and can fully capture the environment
dynamics. Figure 5.10 shows a search tree created using a well-learned model. This model is
trained with K = 5 unroll steps to predict the value v, reward r̂ and action distribution p within
a tree depth of five. On top of the figure is the entire search tree with the root node D as the top
node. The red line in the figure indicates the depth above which is within the training horizon
and most nodes in the search tree are beyond the training horizon. The planner uses the learned
model to unroll from the starting state D all the way to the terminal state E, correctly predicts a
black win with a reward of 1, and correctly predicts game termination by selecting the dummy
action afterwards. Moreover, this search tree satisfies all the following conditions: (1) every
node is either associated with a legal game state, or correctly predicts game termination (2)
every predicted reward is within 1% margin of the actual reward of the associated game state
(3) every node after a terminal node takes the dummy action and predicts a zero value and a
zero reward. This example shows that a well-learned model learns game dynamics far beyond
five steps and can be used almost like a perfect model.

5.9 Visualizing the Hidden Space of the Learned Representation

We visualize the learned representation of MooZi by projecting hidden states into a lower
dimension using the dimension reduction technique t-distributed stochastic neighbor embedding
(t-SNE) [41]. We use a semi-trained (100K training steps) Breakthrough model and a planner
with more exploration (dirichlet fraction = 0.5) to make the data more diverse. We collect data
by running self-play for 5K steps and for each timestep t we record the value prediction after
search v∗, hidden state at the root x0, and the current player bplayer. We run t-SNE using only
the hidden states to generate a two-dimensional embedding for each data point. Figure 5.11
illustrates a shared embedding colored based on their values, move numbers (timestep t), and
player indices in three subplots. The bottom subplot shows hidden states are most distinct by
their corresponding players. This is reasonable because the entire search is pivoted from the
root player’s point-of-view. The middle subplot shows a sense of “game progression” within
clusters. Combining the middle and the top subplots, we observe that as the game progresses,
the value predictions diverge to two extremes.

Chapter 5. Experiments 63

Figure 5.11: The hidden space of the learned representation visualized through t-distributed
stochastic neighbor embedding (t-SNE). Top: colored by the value predictions after search v∗. Middle:

colored by the move number (also timestep) t. Bottom: colored by the player index.

64

6 Conclusion

In this thesis, we present MooZi, a high-performance game-playing system that plans with a
learned model. We developed a MuZero-based learning algorithm and parallelized the
algorithm using a hierarchical control. We empirically showed that MooZi learns a model and
plans with the model in both single-agent and two-player domains. In MinAtar environments,
the agent fights enemies or collects resources and gains rewards along the way. In these
environments, MooZi achieved a greater average return than the Proximal Policy Optimization
algorithm in five deterministic MinAtar environments including Breakout, Space Invaders,
Asterix, Freeway, and Seaquest. MooZi also achieved a greater average return than the
Actor-Critic algorithm in the non-deterministic MinAtar environment Breakout with
sticky-actions. In a two-player board game, the goal of the agent is to beat the other agent in
competition. We trained MooZi in the two-player board game of Breakthrough and showed that
MooZi learned to master the game through self-play. We visualized and analyzed the search
trees in both domains to demonstrate how MooZi plans with a learned model. We showed an
example where the learned model fully captures game dynamics beyond its training horizon.
We projected the learned representation into a lower dimension and showed how the hidden
states travel in the space as game progresses. Finally, we make MooZi publicly available to
accelerate future research.

65

7 Future Work

MooZi is an on-going project and we aim to generalize MooZi even further and support more
games. We reported results of MooZi in Breakthrough, but MooZi supports all other two-player
perfect-information deterministic games in OpenSpiel. We will run MooZi in more such games
and at the same time try to find a single set of hyperparameters that works well. Currently
MooZi assumes the environment dynamics to be deterministic. A promising direction is to
handle stochasticity and support non-deterministic video games and board games. Prior work
extended the MuZero algorithm with encoded random nodes [48, 2], and it will be our top
priority to extend MooZi in a similar fashion. MooZi currently does not support continuous
action space and has poor support for large discrete action space. We can extend MooZi to
support continuous action space using Sampled MuZero [29]. We can support large discrete
action spaces better by reducing the memory footprint through packing data with a library that
specializes in handling sparse N-dimensional arrays. MooZi already supports planning with
Gumbel [11] through MCTX. We conducted preliminary experiments and we will follow up
with a set of more rigorous experiments. Moreover, MooZi currently interweaves handling of
episodes and timesteps. Games such as Freeway that have extremely long episodes require a
large number of environment interactions per training step to generate at least one episode. We
will unify the handling of long episodes by slicing episodes into fixed-size sequences. Moreover,
experience represented as fixed-size sequences can be implemented using native JAX and speed
up the system by making search targets (p∗ and v∗) stay on GPUs or TPUs in their lifetime. In
short, we will make MooZi more general as well as more efficient.

66

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems. 2015.
URL: https://www.tensorflow.org/.

[2] Ioannis Antonoglou et al. “Planning in Stochastic Environments with a Learned Model”.
In: International Conference on Learning Representations. Mar. 15, 2022. URL: https :
//openreview.net/forum?id=X6D9bAHhBQ1 (visited on 09/03/2022).

[3] Karl Johan Åström. “Optimal Control of Markov Processes with Incomplete State
Information I”. In: Journal of Mathematical Analysis and Applications 10 (1965), pp. 174–205.
ISSN: 0022-247X. URL: http://lup.lub.lu.se/record/8867084 (visited on 08/24/2022).

[4] Atari 2600. In: Wikipedia. July 24, 2022. URL: https://en.wikipedia.org/w/index.php?
title=Atari_2600&oldid=1100194806 (visited on 07/29/2022).

[5] Marc G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for
General Agents”. In: Journal of Artificial Intelligence Research 47 (June 14, 2013), pp. 253–279.
ISSN: 1076-9757. DOI: 10.1613/jair.3912. arXiv: 1207.4708.

[6] Bridge Pattern. In: Wikipedia. June 27, 2022. URL: https://en.wikipedia.org/w/index.
php?title=Bridge_pattern&oldid=1095365747 (visited on 07/22/2022).

[7] Greg Brockman et al. “OpenAI Gym”. June 5, 2016. DOI: 10.48550/arXiv.1606.01540.
arXiv: 1606.01540 [cs].

[8] Albin Cassirer et al. Reverb: A Framework For Experience Replay. Feb. 9, 2021. arXiv: 2102.
04736 [cs]. URL: http://arxiv.org/abs/2102.04736 (visited on 07/30/2022).

[9] Guillaume Chaslot et al. “Monte-Carlo Tree Search: A New Framework for Game AI”.
In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment 4.1 (1 2008), pp. 216–217. ISSN: 2334-0924. URL:
https : / / ojs . aaai . org / index . php / AIIDE / article / view / 18700 (visited on
09/03/2022).

https://www.tensorflow.org/
https://openreview.net/forum?id=X6D9bAHhBQ1
https://openreview.net/forum?id=X6D9bAHhBQ1
http://lup.lub.lu.se/record/8867084
https://en.wikipedia.org/w/index.php?title=Atari_2600&oldid=1100194806
https://en.wikipedia.org/w/index.php?title=Atari_2600&oldid=1100194806
https://doi.org/10.1613/jair.3912
https://arxiv.org/abs/1207.4708
https://en.wikipedia.org/w/index.php?title=Bridge_pattern&oldid=1095365747
https://en.wikipedia.org/w/index.php?title=Bridge_pattern&oldid=1095365747
https://doi.org/10.48550/arXiv.1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2102.04736
https://arxiv.org/abs/2102.04736
http://arxiv.org/abs/2102.04736
https://ojs.aaai.org/index.php/AIIDE/article/view/18700

Bibliography 67

[10] Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search”.
In: Computers and Games. Ed. by H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M.
Donkers. Red. by David Hutchison et al. Vol. 4630. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72–83. ISBN: 978-3-540-75537-1
978-3-540-75538-8. DOI: 10.1007/978-3-540-75538-8_7.

[11] Ivo Danihelka et al. “Policy Improvement by Planning with Gumbel”. In: International
Conference on Learning Representations. Mar. 4, 2022. URL: https://openreview.net/
forum?id=bERaNdoegnO (visited on 09/03/2022).

[12] Joery A. de Vries et al. “Visualizing MuZero Models”. Mar. 3, 2021. arXiv: 2102.12924
[cs, stat]. URL: http://arxiv.org/abs/2102.12924 (visited on 10/28/2021).

[13] Werner Duvaud and Aurèle Hainaut. MuZero General. July 21, 2022. URL:
https://github.com/werner-duvaud/muzero-general (visited on 07/22/2022).

[14] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures”. In: Proceedings of the 35th International Conference
on Machine Learning. International Conference on Machine Learning. PMLR, July 3, 2018,
pp. 1407–1416. URL: https://proceedings.mlr.press/v80/espeholt18a.html (visited
on 09/03/2022).

[15] Lasse Espeholt et al. “SEED RL: Scalable and Efficient Deep-RL with Accelerated Central
Inference”. Feb. 11, 2020. arXiv: 1910.06591 [cs, stat]. URL: http://arxiv.org/abs/
1910.06591 (visited on 09/18/2021).

[16] Roy Frostig, Matthew James Johnson, and Chris Leary. “Compiling Machine Learning
Programs via High-Level Tracing”. In: Systems for Machine Learning 4.9 (2018), p. 3.

[17] Futures and Promises. In: Wikipedia. Aug. 2, 2022. URL: https://en.wikipedia.org/w/
index.php?title=Futures_and_promises&oldid=1101913451 (visited on 08/11/2022).

[18] Sylvain Gelly et al. Modification of UCT with Patterns in Monte-Carlo Go. [Research Report]
RR-6062. INRIA, 2006. URL: https : / / hal . inria . fr / inria - 00117266 (visited on
09/03/2022).

[19] General Game Playing. URL: http://www.ggp.org/docs/BeginnersGuide.html (visited on
09/27/2022).

[20] Jessica B. Hamrick et al. “On the Role of Planning in Model-Based Deep Reinforcement
Learning”. In: International Conference on Learning Representations. Feb. 10, 2022. URL:
https://openreview.net/forum?id=IrM64DGB21 (visited on 09/03/2022).

https://doi.org/10.1007/978-3-540-75538-8_7
https://openreview.net/forum?id=bERaNdoegnO
https://openreview.net/forum?id=bERaNdoegnO
https://arxiv.org/abs/2102.12924
https://arxiv.org/abs/2102.12924
http://arxiv.org/abs/2102.12924
https://github.com/werner-duvaud/muzero-general
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/1910.06591
http://arxiv.org/abs/1910.06591
http://arxiv.org/abs/1910.06591
https://en.wikipedia.org/w/index.php?title=Futures_and_promises&oldid=1101913451
https://en.wikipedia.org/w/index.php?title=Futures_and_promises&oldid=1101913451
https://hal.inria.fr/inria-00117266
http://www.ggp.org/docs/BeginnersGuide.html
https://openreview.net/forum?id=IrM64DGB21

Bibliography 68

[21] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (July 1968), pp. 100–107. ISSN: 2168-2887. DOI:
10.1109/TSSC.1968.300136.

[22] Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing
Systems. Vol. 23. Curran Associates, Inc., 2010. URL: https :

//proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-

Abstract.html (visited on 07/24/2022).

[23] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with
Double Q-Learning”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, Feb. 12, 2016, pp. 2094–2100.

[24] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016,
pp. 770–778. ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR.2016.90.

[25] Tom Hennigan et al. Haiku: Sonnet for JAX. Version 0.0.3. DeepMind, 2020. URL: http:
//github.com/deepmind/dm-haiku.

[26] Matteo Hessel et al. Podracer Architectures for Scalable Reinforcement Learning. Apr. 13,
2021. arXiv: 2104.06272 [cs]. URL: http://arxiv.org/abs/2104.06272 (visited on
07/19/2022).

[27] Matt Hoffman et al. “Acme: A Research Framework for Distributed Reinforcement
Learning”. June 1, 2020. arXiv: 2006 . 00979 [cs]. URL:
http://arxiv.org/abs/2006.00979 (visited on 05/22/2021).

[28] Dan Horgan et al. “Distributed Prioritized Experience Replay”. In: International
Conference on Learning Representations. Feb. 10, 2022. URL:
https://openreview.net/forum?id=H1Dy---0Z (visited on 09/03/2022).

[29] Thomas Hubert et al. “Learning and Planning in Complex Action Spaces”. In:
Proceedings of the 38th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, July 1, 2021, pp. 4476–4486. URL:
https://proceedings.mlr.press/v139/hubert21a.html (visited on 09/03/2022).

[30] Ivo Danihelka. Mctx: MCTS-in-JAX. DeepMind, July 30, 2022. URL: https://github.com/
deepmind/mctx (visited on 08/06/2022).

https://doi.org/10.1109/TSSC.1968.300136
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku
https://arxiv.org/abs/2104.06272
http://arxiv.org/abs/2104.06272
https://arxiv.org/abs/2006.00979
http://arxiv.org/abs/2006.00979
https://openreview.net/forum?id=H1Dy---0Z
https://proceedings.mlr.press/v139/hubert21a.html
https://github.com/deepmind/mctx
https://github.com/deepmind/mctx

Bibliography 69

[31] James Bradbury et al. JAX: Composable Transformations of Python+NumPy Programs.
Version 0.3.16. Google, 2018. URL: https : / / github . com / google / jax (visited on
07/22/2022).

[32] Steven Kapturowski et al. “Recurrent Experience Replay in Distributed Reinforcement
Learning”. In: International Conference on Learning Representations. Feb. 10, 2022. URL:
https://openreview.net/forum?id=r1lyTjAqYX (visited on 09/03/2022).

[33] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. Version 9.
Jan. 29, 2017. arXiv: 1412.6980 [cs]. URL: http://arxiv.org/abs/1412.6980 (visited on
08/05/2022).

[34] Donald E. Knuth and Ronald W. Moore. “An Analysis of Alpha-Beta Pruning”. In:
Artificial Intelligence 6.4 (Dec. 1, 1975), pp. 293–326. ISSN: 0004-3702. DOI:
10.1016/0004-3702(75)90019-3.

[35] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for
One-shot Image Recognition”. In: ICML deep learning workshop 2 (2015), p. 1.

[36] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In:
Machine Learning: ECML 2006. Ed. by Johannes Fürnkranz, Tobias Scheffer, and
Myra Spiliopoulou. Red. by David Hutchison et al. Vol. 4212. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 282–293. ISBN: 978-3-540-45375-8
978-3-540-46056-5. URL: http://link.springer.com/10.1007/11871842_29 (visited on
04/05/2021).

[37] Richard E. Korf. “Real-Time Heuristic Search”. In: Artificial Intelligence 42.2 (Mar. 1, 1990),
pp. 189–211. ISSN: 0004-3702. DOI: 10.1016/0004-3702(90)90054-4.

[38] Marc Lanctot et al. “OpenSpiel: A Framework for Reinforcement Learning in Games”.
Sept. 26, 2020. DOI: 10.48550/arXiv.1908.09453. arXiv: 1908.09453 [cs].

[39] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”. In:
Proceedings of the 35th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, July 3, 2018, pp. 3053–3062. URL:
https://proceedings.mlr.press/v80/liang18b.html (visited on 09/03/2022).

[40] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explainable AI:
A Review of Machine Learning Interpretability Methods”. In: Entropy 23.1 (1 Jan. 2021),
p. 18. ISSN: 1099-4300. DOI: 10.3390/e23010018.

[41] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data Using T-SNE”. In:
Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605. ISSN: 1533-7928. URL:
http://jmlr.org/papers/v9/vandermaaten08a.html (visited on 09/03/2022).

https://github.com/google/jax
https://openreview.net/forum?id=r1lyTjAqYX
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0004-3702(75)90019-3
http://link.springer.com/10.1007/11871842_29
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.48550/arXiv.1908.09453
https://arxiv.org/abs/1908.09453
https://proceedings.mlr.press/v80/liang18b.html
https://doi.org/10.3390/e23010018
http://jmlr.org/papers/v9/vandermaaten08a.html

Bibliography 70

[42] Matteo Hessel et al. Optax: Composable Gradient Transformation and Optimisation, in JAX!
Version 0.1.3. DeepMind, 2020. URL: https://github.com/deepmind/optax (visited on
08/05/2022).

[43] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
Proceedings of The 33rd International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, June 11, 2016, pp. 1928–1937. URL:
https://proceedings.mlr.press/v48/mniha16.html (visited on 09/03/2022).

[44] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: NIPS Deep
Learning Workshop. Dec. 19, 2013. arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.
5602 (visited on 12/01/2020).

[45] Mock Object. In: Wikipedia. Oct. 12, 2021. URL: https://en.wikipedia.org/w/index.php?
title=Mock_object&oldid=1049556133 (visited on 07/23/2022).

[46] Monte Carlo Casino. In: Wikipedia. May 28, 2022. URL: https://en.wikipedia.org/w/
index.php?title=Monte_Carlo_Casino&oldid=1090263293 (visited on 06/03/2022).

[47] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging {AI} Applications”. In:
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
2018, pp. 561–577. ISBN: 978-1-939133-08-3. URL: https://www.usenix.org/conference/
osdi18/presentation/moritz (visited on 09/03/2022).

[48] Sherjil Ozair et al. “Vector Quantized Models for Planning”. In: Proceedings of the 38th
International Conference on Machine Learning. International Conference on Machine
Learning. PMLR, July 1, 2021, pp. 8302–8313. URL:
https://proceedings.mlr.press/v139/ozair21a.html (visited on 09/03/2022).

[49] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of Training
Recurrent Neural Networks”. In: Proceedings of the 30th International Conference on
Machine Learning. International Conference on Machine Learning. PMLR, May 26, 2013,
pp. 1310–1318. URL: https://proceedings.mlr.press/v28/pascanu13.html (visited on
09/03/2022).

[50] Tobias Pohlen et al. “Observe and Look Further: Achieving Consistent Performance on
Atari”. May 29, 2018. DOI: 10.48550/arXiv.1805.11593. arXiv: 1805.11593 [cs, stat].

[51] Robert Tjarko Lange. Gymnax: A JAX-based Reinforcement Learning Environment Library.
Version 0.0.4. 2022. URL: https : / / github . com / RobertTLange / gymnax (visited on
07/29/2022).

https://github.com/deepmind/optax
https://proceedings.mlr.press/v48/mniha16.html
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://en.wikipedia.org/w/index.php?title=Mock_object&oldid=1049556133
https://en.wikipedia.org/w/index.php?title=Mock_object&oldid=1049556133
https://en.wikipedia.org/w/index.php?title=Monte_Carlo_Casino&oldid=1090263293
https://en.wikipedia.org/w/index.php?title=Monte_Carlo_Casino&oldid=1090263293
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://proceedings.mlr.press/v139/ozair21a.html
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.48550/arXiv.1805.11593
https://arxiv.org/abs/1805.11593
https://github.com/RobertTLange/gymnax

Bibliography 71

[52] Christopher D. Rosin. “Multi-Armed Bandits with Episode Context”. In: Annals of
Mathematics and Artificial Intelligence 61.3 (Mar. 2011), pp. 203–230. ISSN: 1012-2443,
1573-7470. DOI: 10.1007/s10472-011-9258-6.

[53] Jonathan Roy. Fresh Max_lcb_root Experiments · Issue #2282 · Leela-Zero/Leela-Zero. GitHub.
2019. URL: https://github.com/leela- zero/leela- zero/issues/2282 (visited on
06/15/2022).

[54] J. Schaeffer. “The History Heuristic and Alpha-Beta Search Enhancements in Practice”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 11.11 (Nov./1989),
pp. 1203–1212. ISSN: 01628828. DOI: 10.1109/34.42858.

[55] Tom Schaul et al. “Prioritized Experience Replay”. In: 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. URL:
http://arxiv.org/abs/1511.05952.

[56] Julian Schrittwieser et al. “Mastering Atari, Go, Chess and Shogi by Planning with a
Learned Model”. In: Nature 588.7839 (Dec. 24, 2020), pp. 604–609. ISSN: 0028-0836,
1476-4687. DOI: 10.1038/s41586-020-03051-4.

[57] Julian Schrittwieser et al. “Online and Offline Reinforcement Learning by Planning with
a Learned Model”. In: Advances in Neural Information Processing Systems. Oct. 25, 2021.
URL: https://openreview.net/forum?id=HKtsGW-lNbw (visited on 08/02/2022).

[58] John Schulman et al. “Proximal Policy Optimization Algorithms”. Aug. 28, 2017. arXiv:
1707.06347 [cs]. URL: http://arxiv.org/abs/1707.06347 (visited on 06/06/2021).

[59] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. Dec. 5, 2017. DOI: 10.48550/arXiv.1712.01815. arXiv: 1712.01815
[cs].

[60] David Silver et al. “Mastering the Game of Go without Human Knowledge”. In: Nature
550.7676 (7676 Oct. 2017), pp. 354–359. ISSN: 1476-4687. DOI: 10.1038/nature24270.

[61] Stella: "A Multi-Platform Atari 2600 VCS Emulator". URL: https://stella-emu.github.
io/ (visited on 07/29/2022).

[62] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
edition. Adaptive Computation and Machine Learning Series. Cambridge,
Massachusetts: The MIT Press, 2018. 526 pp. ISBN: 978-0-262-03924-6.

https://doi.org/10.1007/s10472-011-9258-6
https://github.com/leela-zero/leela-zero/issues/2282
https://doi.org/10.1109/34.42858
http://arxiv.org/abs/1511.05952
https://doi.org/10.1038/s41586-020-03051-4
https://openreview.net/forum?id=HKtsGW-lNbw
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://stella-emu.github.io/
https://stella-emu.github.io/

Bibliography 72

[63] Ziyu Wang et al. “Dueling Network Architectures for Deep Reinforcement Learning”. In:
Proceedings of The 33rd International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, June 11, 2016, pp. 1995–2003. URL:
https://proceedings.mlr.press/v48/wangf16.html (visited on 09/03/2022).

[64] David J. Wu. “Accelerating Self-Play Learning in Go”. Nov. 9, 2020. arXiv: 1902.10565
[cs, stat]. URL: http://arxiv.org/abs/1902.10565 (visited on 06/15/2022).

[65] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Cham:
Springer International Publishing, 2018. ISBN: 978-3-319-63518-7 978-3-319-63519-4. DOI:
10.1007/978-3-319-63519-4.

[66] Weirui Ye et al. “Mastering Atari Games with Limited Data”. In: Advances in Neural
Information Processing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 25476–25488.
URL: https :

//proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-

Abstract.html (visited on 09/03/2022).

[67] Kenny Young and Tian Tian. “MinAtar: An Atari-Inspired Testbed for Thorough and
Reproducible Reinforcement Learning Experiments”. June 6, 2019. DOI:
10.48550/arXiv.1903.03176. arXiv: 1903.03176 [cs].

https://proceedings.mlr.press/v48/wangf16.html
https://arxiv.org/abs/1902.10565
https://arxiv.org/abs/1902.10565
http://arxiv.org/abs/1902.10565
https://doi.org/10.1007/978-3-319-63519-4
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://doi.org/10.48550/arXiv.1903.03176
https://arxiv.org/abs/1903.03176

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Motivation
	Contributions of this Thesis

	Literature Review
	Planning and Search
	Monte Carlo Methods
	Monte Carlo Tree Search (MCTS)
	Selection
	Expansion
	Evaluation
	Backpropagation
	MCTS Iteration and Move Selection

	AlphaGo
	AlphaGo Zero
	AlphaZero
	MuZero
	MuZero Reanalyze

	Atari Game Playing
	The Atari Learning Environment
	Deep Q-Networks
	Double Q Learning
	Experience Replay
	Network Architectures
	Scalar Transformation
	MinAtar
	Consistency Loss

	Deep Reinforcement Learning Systems
	AsynchronousMethodsDeepMnih.Badia.ea2016's Asynchronous Methods Framework
	The IMPALA Architecture
	The SEED Architecture
	The Acme Framework
	Ray and RLlib
	JAX and Podracer Architecture

	Problem Definition
	Markov Decision Process and Agent-Environment Interface
	Policies and Value Functions
	Partially Observable Markov Decision Process
	Game Playing

	Method
	Design Philosophy
	Use of Pure Functions
	Training Efficiency
	Understanding the Method is Important

	Architecture Overview
	The MooZi System Components
	Environment Bridges
	Vectorized Environment
	Action Space Augmentation
	History Stacking
	The MooZi Neural Network
	Planner
	Training Target Generation
	Loss Computation
	Updating Neural Network Parameters
	MooZi Reanalyze
	Training Worker
	Testing Worker
	Reanalyze Worker
	Replay Buffer
	Parameter Server

	The MooZi System in Action
	Logging and Visualization

	Experiments
	Experiment Setup
	Basic Configuration
	Neural Network Configurations
	Residual Block
	The Representation Function Network
	The Prediction Function Network
	The Dynamics Function Network
	The Projection Function Network
	Network Training

	Planner Configurations
	Driver Configuration

	MooZi vs PPO in MinAtar Environments
	Sticky Actions in MinAtar
	Testing Strength when Scaling the Search Budget in Asterix
	Improving Sample Efficiency with Reanalyze in Asterix
	Analysis of Planning in Space Invaders
	Learning through Self-play in Breakthrough
	Analysis of Planning in Breakthrough
	Visualizing the Hidden Space of the Learned Representation

	Conclusion
	Future Work

