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Abstract

Bengali and Hind are two widely spoken yet low-resource languages. The state-of-

the-art in modeling such languages uses BERT and the Wordpiece tokenizer. We

observed that the Wordpiece tokenizer often breaks words into meaningless tokens,

failing to separate roots from affixes. Moreover, Wordpiece does not take into account

fine-grained character-level information. We hypothesize that modeling fine-grained

character-level information or interactions between roots and affixes helps with mod-

eling highly inflected and morphologically complex languages such as Bengali and

Hindi. We used BERT with two different tokenizers - Bengali and Hindi Unigram

tokenizer and a character-level tokenizer and observed better performance. Then, we

pre-trained two language models accordingly and evaluated them for masked token

detection, both in correct and erroneous settings, across many NLU tasks. We pro-

vide experimental evidence that Unigram and character-level tokenizers lead to better

pre-trained models for Bengali and Hindi, outperforming the previous state-of-the-art

and BERT with Wordpiece vocabulary. We conduct the first study investigating the

efficacy of different tokenization methods in modeling Bengali and Hindi.
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Chapter 1

Introduction

Bengali and Hindi are the sixth and fourth most spoken languages globally, with

234 and 345 million native speakers, respectively [1]. Speakers of these languages

contribute to 7% of the world’s population. Bengali is the national language of

Bangladesh, where 98% of the population have it as their first language. It is also the

official language in two Indian states, West Bengal, Tripura, and the Barak Valley

region of the state of Assam, and the second most spoken language out of the 22

official languages of India. Hindi is spoken mainly in northern India and is considered

the common language of the Hind Belt region, covering most of India.

1.1 Motivation

Although Bengali and Hindi are widely spoken, computational resources are scarce

for them. These languages have received very little attention and effort from the NLP

community compared to high-resource languages like English, Chinese, and Spanish.

Very few task-specific resources like labeled datasets and NLP tools are available for

them. Therefore, self-supervised pre-training is the best way towards useful and large

language models for such languages [2].

Self-supervised pre-training approaches can leverage factual knowledge and lin-

guistic information from ample unlabeled raw texts to learn good word representa-

tions. These representations can improve downstream task performance with minimal
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task-specific adaptation. The downstream tasks can be token-level like named entity

recognition (NER) or sentence-level like sentiment analysis and natural language in-

ference. Pre-training from such an unlabeled corpus can enable transfer learning to

enhance natural language understanding capability, thus improving performance for

downstream tasks with limited training data. Thus, it can benefit languages like

Bengali and Hindi, which lack manually annotated data collection efforts.

Wikipedia and other unlabeled data resources are widely used for pre-training

transformer-based language models. Like other languages, Bengali and Hindi Wikipedia

and other web resources are continuously improving [2]. Through self-supervised pre-

training, these languages can benefit from such unlabeled web resources.

1.2 Challenges

Bengali and Hindi belong to the Indo-Aryan language family. Both languages origi-

nated from Sanskrit [3] and share similar linguistic characteristics, including morpho-

logical richness. Modified vowels, consonants, and many compound characters lead

to morphological complexity. When vowel letters follow a consonant, the shape of the

vowel letter changes, and the modified vowel letter is placed to the left, right, both,

or bottom of the consonant. Besides vowel letter attachment, consonants can take

modified character forms when these appear on a compound character. While a vowel

is not technically a letter but rather a sound, we refer to the letters that represent

vowels in Bengali and Hindi.

A large number of compound characters are formed by joining multiple basic char-

acters. Bengali has 50 basic characters, which can combine with each other and form

up to 171 compound characters. Tables 1.1 and 1.2 present examples of modified

vowels, consonants, and compound characters.

Bengali and Hindi are highly inflected languages. The same root can have many

inflected forms depending on adding different suffixes and prefixes [4]. Table 1.3 shows

examples of how various inflected words can be formed from each root.
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Vowel letter Aa I � U � E � O � �

Modified vowel letter a i � u � e � e a e � �

Modified consonant pa ip p� pu p� ep �p epa ep� p�

Table 1.1: Vowel letters and their modified character forms. Modified vowel letters are
added to one example consonant ‘p’. Bengali has 11 letters that represent vowels, and
10 of these take modified forms when attached to any of the 39 consonants. Finally,
if there are no modified vowel letters or ` 
 ' added to a consonant, it is assumed that
the remaining vowel letter `A' follows the consonant `p'.

Basic Characters Compound Character

p
 + t á

P
 + k ²k

l
 + l ê

s
 + p
 + r ³�

n
 + d
 + b «Ø

k
 + P
 + m ½o

Table 1.2: Compound characters formed by joining multiple basic characters . Bengali
has around 171 compound characters.

Root Inflected Forms

Har (“hara'”, to lose) Harb (“hara'ba”, will lose), eHeriq (“herechhi”, have lost),

Hartam (“hara'tAma'”, used to lose)

Gr (“ghara'”, house) Ger (“ghare”, at home), Grguela (“ghara'gulo”, houses),

GriT (“ghara'Ti”, the house)

Aaim (“Ami”, I) Aamra (“Ama'rA”, we), Aamar (“AmAra'”, my),

Aamaek (“AmAke”, to me)

Table 1.3: Different inflected forms of same root leads to differnet words. Bengali has
more than 160, 36, and 24 inflected variations of verbs, nouns, and pronouns.

Finally, these languages have a relatively free word order. Although these are head-

final languages with principal subject-object-verb word order, word order is loosely

bound in constituent chunks or local word group level. Nevertheless, intra-chunk
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word re-ordering is not allowed [5].

The above characteristics make Bengali and Hindi different from high-resource lan-

guages like English, which require special attention for natural language tasks. Al-

though modern English also has inflections, English is considered a weakly inflected

language1 with linear morphology [6]. However, Sanskrit-originated languages widely

use nonlinearity in morphology [7], thus leading to nonlinear inflections. Inflections

can be of two types depending on internal structural changes. Linear inflection indi-

cates that the root structure remains unchanged while adding an affix. Nevertheless,

euphonic changes can occur at the boundary. On the other hand, the internal struc-

ture of the root changes after being added to the affix in a nonlinear inflectional form.

In Bengali, especially verbs show non-linear characteristics in inflectional form. For

example, the verb root ‘xa' (‘kha’ - to do) becomes ‘exeyiq' (‘kheyechi’ - present perfect)

after adding the suffix ‘e·iq' (‘echi’). This is an example of nonlinearity.

Pre-trained language representations from transformers [8] are the most popular

choice for natural language tasks [9–11]. Current research focuses on better learning

language representations from high-resource languages. State-of-the-art like BERT’s

[12] tokenizers are trained on high-resource languages. Even the multilingual and

monolingual BERT-based language models [12, 13] inherited BERT’s Wordpiece to-

kenization system for modeling Bengali and Hindi. Both systems rely on the original

Wordpiece tokenizer, which, to the best of our knowledge, was not developed with

these languages in mind. Therefore, the question remains: how suitable is the word-

piece tokenization system in the context of Bengali and Hindi? No prior work investi-

gates the efficacy of different tokenization methods for modeling Sanskrit-originated

languages. Our work thoroughly analyzed different tokenization methods to address

the shared characteristics of Bengali and Hindi.

In fact, we observed that Wordpiece splits words into tokens that have no meaning

in isolation and fails to separate roots, suffixes, and prefixes. Thus, the Wordpiece

1https://en.wikipedia.org/wiki/Inflection

4
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tokenizer often fails to split words into natural tokens. Instead, it greedily selects

the longest subword unit from the beginning and then repeats the same process until

the end of the word. We found many situations where Wordpiece would pick a

common root for its vocabulary during training while failing to use that token when

encountering said root in a compounded and/or inflected form. One example was

the root ‘pirbHn' (“paribahan'”, transport); when Wordpiece was faced with ‘gNpirbHenr'

(“gana'paribahan'er”, of public transport), the resulting tokens would be sub-words

[‘gNp', `ir', `bH', `enr'] that did not include a root, suffix, or prefix. We ran into many

other examples where Wordpiece produced “unnatural” tokens.

Moreover, Wordpiece does not take into account fine-grained character-level in-

formation. Such information might help identify modified vowels, consonants, and

compound characters, thus improving the capability of language models to deal with

morphological complexity. Adding a single character, modified vowel, consonant, or

compound character can produce a different word. Depending on the corpus, the

Wordpiece tokenizer will tokenize it into other sub-word tokens, thus impacting the

downstream task performance. For example, if we add a single character ‘A' at the

beginning of the word ‘kaj' (“kaj”, act), it will become ‘Akaj' (“Akaj”, useless act).

The single character added here is a prefix that indicates the negation of the word

‘kaj' (“kaj”, act). The Wordpiece tokenizer will tokenize it into other meaningless

subwords [‘Ak', `·aj'] depending on the corpus, even if the meaningful subword unit

‘kaj' (“kaj”, act) is present in its vocabulary.

1.3 Thesis Objectives

Motivated by Wordpiece’s limitations observation, we carefully considered design

choices for building NLU models for Bengali and Hindi, including evaluating different

tokenization methods to accommodate the shared characteristics of these languages.

Believing that better modeling fine-grained character-level information or interactions

between roots and suffixes or prefixes would result in better models, we modified the
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BERT architecture with two different tokenizers - Bengali and Hindi Unigram to-

kenizer and character-level tokenizer and observed better performance empirically.

Bengali and Hindi Unigram tokenizer learns scores with vocabulary that help the to-

kenizer find the most probable splits of the word during segmentation. Therefore, it

can better separate roots, affixes, and modified vowels. Thus, it might help the model

learn how words are formed in Bengali and Hindi. Bengali and Hindi character-level

tokenizers utilize CNN layers that attend to each character for constructing word em-

bedding, thus better-identifying subword patterns and character-level interactions.

Character-level interactions can be compound characters, modified vowels, and con-

sonants. We pre-trained and evaluated language models based on these tokenizers

on masked token detection, both in correct and in erroneous settings, among other

common NLU tasks, including question classification, sequence labeling, text classi-

fication, and sequence pair classification.

The objectives of our thesis are summarized below.

1. Study Bengali and Hindi Unigram tokenizer, a fully probabilistic tokenizer that

produces more meaningful subword units and is better equipped to deal with

modified vowels and consonants, suffixes, and prefixes by finding the most likely

split into tokens using scores learned during the tokenizer training process.

2. Study Bengali and Hindi character-level tokenizer based on CharacterBERT

[14], which is well suited to deal with compound characters and better learn

intra and inter-word patterns by consulting characters in each word.

3. Present two pre-trained models - Bengali and Hindi Unigram BERT and Bengali

and Hindi Character BERT.

4. Provide experimental evidence that Unigram and character-level tokenizers lead

to better pre-trained models for Bengali and Hindi and outperform BERT with

Wordpiece vocabulary. Therefore, these two tokenizers seem to be better suited

6



for Bengali and Hindi than the original BERT tokenizer.

1.4 Thesis Outline

Chapter 1 provides motivation and background information regarding the research

problem and challenges. In addition, the research question and objectives of the work

are briefly discussed there. Chapter 2 discusses relevant literature and emphasizes

areas where further study is required. Chapter 3 discusses different tokenizers and

how they help achieve the thesis objectives. Chapter 4 presents the base model

architectures and discusses how these language models are pre-trained. Moreover, this

chapter explains why we selected certain datasets for pre-training and downstream

tasks and the intrinsic and extrinsic evaluation methods used to assess model quality

and performance. It also details downstream tasks with input, output, and description

of datasets. Chapter 5 reports results, key findings, and a discussion. Chapter 6

re-emphasizes the thesis objectives and how introduced tokenizers and pre-trained

models improve downstream task performance. This chapter also discusses potential

future work to improve the models with different strategies. It concludes by suggesting

how these tokenizers can be extended to other language models, such as language

generation models. Finally, Chapter 7 discusses ethical considerations about pre-

training data and the limitations of the tokenizers and pre-trained models.
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Chapter 2

Literature Review

2.1 General Language Models

Careful design choices for language models (LM) help achieve better performance in

high-resource settings [12, 14–17]. Transformer-based [8] models with self-attention

mechanisms remain a state-of-the-art approach for language modeling. These models

are trained using different pre-training objectives like auto-regressive language model-

ing, masked language modeling, and replaced token detection. Such models’ success

has shifted the attention from static word embeddings [18, 19] to contextual word

representations obtained through pre-training.

GPT [15] adopted a generative pre-training objective to learn generalizable univer-

sal text representations from a large unlabeled corpus. The final aim of pre-training

was to transfer learned knowledge to various downstream tasks. Their empirical re-

sults demonstrated that such an unsupervised pre-training strategy significantly im-

proves performance in supervised target tasks. BERT [12] introduced a masked lan-

guage modeling approach, improving GPT’s auto-regressive pre-training technique.

In BERT’s masked language modeling method, a few input tokens were randomly

masked, and the model learned by predicting the vocabulary utilizing context from

the left and right directions. This bidirectional pre-training strategy enabled the

model to produce deep bidirectional representations from a large corpus of unlabeled

text. Moreover, they added an additional task-specific layer to fine-tune the model on
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the target task. Instead of using unidirectional context, bidirectional representations

facilitated the model to produce state-of-the-art results in eleven downstream NLP

tasks.

RoBERTa [16] reimplemented the BERT model and pointed out overlooked design

choices. The authors thoroughly examined the impact of hyperparameter tuning

and the training set size and concluded that BERT was undertrained. To address

this issue, they used more data for training with longer sequences and larger batch

sizes. They also applied a dynamic masking strategy instead of static masking, where

random masking patterns were generated each time data were fed to the model. Their

suggested design choices resulted in improved performance on all downstream tasks.

Moreover, their work re-established the effectiveness of the masked language modeling

objective for natural language understanding.

Like RoBERTa, many other works introduced different variants of BERT [12]. El

Boukkouri et al. proposed a variant named CharacterBERT [14]. CharacterBERT

employed ELMO’s [20] character-level CNN module to obtain word representation by

consulting characters in sequence. Since they dropped the Wordpiece vocabulary of

the BERTmodel, their approach had the advantage of having open vocabulary instead

of being constrained to Wordpiece vocabulary. The purpose of CharacterBERT was

mainly to deal with the vocabularies of specialized domains like the medical domain.

The success of CharacterBERT in specialized domains motivates us to explore the

advantage of the character-level system in the context of Bengali and Hindi, which

include a lot of compound and modified characters.

Clark et al. [17] improve the BERT pre-training objective using a generator and

discriminator model. Initially, the generator model corrupts a few tokens and replaces

them with plausible alternatives instead of masking. After this, the discriminator

model was trained to distinguish between original input and replaced input, allowing

the model to learn faster from all tokens from the entire input sequence rather than

a few masked tokens.
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Such improvements motivate us to identify overlooked design choices for low-

resource languages like Bengali and Hindi.

2.2 Multilingual Pre-trained Models

Most prior work focuses on high-resource languages like English, Chinese, and Span-

ish. Therefore, developing language models for low-resource languages like Bengali

and Hindi remains understudied. The lack of specialized LMs for low-resource lan-

guages like Bengali and Hindi forces NLP researchers working on downstream tasks

[21, 22] to resort to fine-tuning multilingual pre-trained language models (PLM).

Delvin et al. released the multilingual BERT (mBERT) model [12]. It was pre-trained

on a multilingual corpus obtained by concatenating Wikipedia pages encompassing

104 languages. It followed the transformer-based architecture of the original BERT

model and was pre-trained using similar masked language modeling (MLM) and next

sentence prediction (NSP) objectives. Their model had a shared Wordpiece vocabu-

lary that covered the top 104 languages. Thus, the Wordpiece tokenizer was trained

on all the languages.

A RoBERTa-based multilingual model, XLM-RoBERTa [23], was also pre-trained

with MLM objective on more than 2 TB of filtered common crawl data encompassing

100 languages. They analyzed trade-offs between low and high-resource language

and the effects of language sampling and vocabulary size. Their work showed that

increasing model capacity can deal with the low-resource and high-resource language

performance trade-offs and lead to superior performance on cross-lingual tasks. They

used a vocabulary of 250K and trained two different models, XLM-R base and XLM-R

large.

Finally, IndicBERT [24] is a multilingual PLM developed for 11 major Indian lan-

guages. They presented NLP resources for these 11 Indic languages. Their NLP re-

sources comprise a large-scale general domain sentence-level monolingual corpora, an

evaluation benchmark, and a PLM named IndicBERT. IndicBERT used ALBERT [25]

10



as a base model. However, the multilingual models cover a wide range of languages.

They are usually larger models, requiring more computational cost to fine-tune for

target tasks due to their larger shared vocabulary size and increased model capacity

(1.6X - 2.5X parameters for mBERT, XML-R than BERT). We emphasize the lack of

previous work for understanding language-specific needs and thus carefully choosing

transformer architectures in the context of Bengali and Hindi to address those needs.

2.3 Language Specific Models

There are very few models specific to Bengali and Hindi. Recently, Bhattacharjee

et al. [13] proposed a Bengali NLU model BanglaBERT based on BERT [12]. They

pre-trained the model using ELECTRA’s [17] replaced token detection objective on a

27.5GB corpus crawled from 110 popular websites. Moreover, they introduced another

model jointly trained on Bengali and English corpus to enable cross-lingual zero-shot

transfer. Their language-specific model performed better than multilingual models

in supervised settings, demonstrating the importance of training language-specific

models. Like other BERT-based models developed for high-resource languages, they

trained a Wordpiece tokenizer for Bengali.

Moreover, Rahman et al. [4] have presented an analysis of different architec-

tures like convolutional, recurrent, and transformer-based neural networks in the

context of Bengali and Hindi. They proposed a memory-efficient Coordinated CNN

(CoCNN) architecture for modeling Bengali and Hindi. CoCNN model utilized word

and sentence-level convolutional submodules to learn intra-word and local sentence-

level patterns.

Finally, they concluded that state-of-the-art transformer models could not perform

better for Bengali and Hindi. However, their model with fewer parameters could

outperform competitive architectures like state-of-the-art transformers. Although

their work attempted to address the specific characteristics of Bengali and Hindi, the

CoCNN model cannot be pre-trained. Instead, it needs to be trained end-to-end for
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each downstream task. Therefore, it would not be able to transfer knowledge from

large unlabeled corpora but only be limited to very few labeled datasets available for

such low-resource languages.

To overcome such shortcomings, we utilize transformer architecture to enable

transfer learning through pre-training and simultaneously address Bengali and Hindi

language-specific needs.
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Chapter 3

Tokenizers

Tokenizers heavily influence transformer-based language models because the text en-

coding method determines how the language model will perform in various language

understanding tasks. Designing an LM for a language requires a lot of research to

choose a tokenizer well suited for the specific language characteristics. The language

model might not learn meaningful representations without understanding the lan-

guage structure. We believe that finding the most meaningful word representations

would lead to better language models. We observe that BERT’s original Wordpiece

tokenizer cannot produce state-of-the-art results for Bengali and Hindi. Thus, we pro-

pose modifications to that model using two different tokenizers - Bengali and Hindi

Unigram tokenizer and character-level tokenizer, that improve end-task performance.

3.1 Wordpiece

A tokenizer is one of the essential components of natural language processing. Lan-

guage models cannot directly process raw text, so converting raw text into numerical

vectors is necessary. The purpose of the tokenizer is to split the text into pieces

called tokens according to a set of rules or learned vocabulary and translate them to

numerical values.

A tokenizer can be word level, sub-word level, or character level. Word-level to-

kenizers are built to split raw texts into words using spaces and pre-defined rules
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such as punctuation. The word-level approach has disadvantages, such as extensive

vocabulary size due to a larger corpus and a higher number of words in a language.

Also, training a language model with an extensive vocabulary size becomes compu-

tationally expensive. Although the issue of extensive vocabulary size is solvable by

removing less important words from vocabulary, this removal approach will result

in many unknown words when encountering words not present in the vocabulary.

In addition, such tokenizers will treat very similar words as different words, thus

representing them using other numeric vectors or embeddings.

Subword-level tokenizers address the problem of word-based tokenizers by splitting

words into smaller subwords. They can reduce vocabulary size to share information

between different words. Thus, they can identify common subword units across very

similar words. Subword-level tokenizers are better than word-level tokenizers since

they can prevent the out-of-vocabulary word problem, use a manageable vocabulary

size, and mitigate data sparsity by splitting words into common subword units [26].

Subword-level tokenizers are data-driven and rely on learning from the data. On the

other hand, rule-based tokenizers rely on hand-crafted and language-dependent rules.

For example, the SpaCy [27] library includes rule-based tokenizers that apply rules

specific to language for tokenizing. They are word-based tokenizers, so they suffer

from the same problem of larger vocabulary size faced by word-level tokenizers. More-

over, they are mainly designed for European languages where words are segmented

using whitespaces [28]. Hence, languages such as Chinese that do not use spacing in

writing systems can be challenging for such tokenizers [29]. NLTK library [30] offers

a Penn tree bank word tokenizer [31] that uses regular expressions to tokenize text.

Other examples of rule-based tokenizers include the Korean morphological analysis

tool, which is used to create supervised tokenizers [29]. Moreover, language is always

changing and evolving [32]. For example, the contemporary Bengali language evolved

from Shadhu Bhasha. With the evolutionary change, verb morphology changed from

a structured form in Shadhu Bhasha to a nonlinear form in today’s Bengali (SCB)
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[7]. Thus, designing new rules to cope with evolutionary language changes is labori-

ous and expensive. Previous work has demonstrated that unsupervised data-driven

tokenizers can outperform hand-crafted rule-based methods for machine translation

[29].

Wordpiece [26] is a subword tokenization algorithm. It is developed for dealing

with rare words during machine translation and is also used for BERT pre-training.

The user specifies the desired vocabulary size. This size is usually selected based on

model validation performance on downstream tasks and computation costs. Word-

piece algorithm starts with a small vocabulary and iteratively increases its vocabulary

size to the desired number of tokens. The initial vocabulary consists of all the charac-

ters in the corpus, which are referred to as tokens. The algorithm works by learning

merge rules to combine pairs of tokens until the desired vocabulary is reached. The

algorithm learns these merge rules by combining two tokens of current vocabulary to

create and add new tokens to the vocabulary. In the first few iterations, characters

from the base vocabulary merge to create new tokens. Eventually, these newly added

tokens merge and generate longer ones with subsequent training steps. Wordpiece

computes scores for each of the pairs in the existing tokens and selects the one with

the best score for merging. If two consecutive tokens in the pair are t1 and t2 and

the merged pair is t1 t2 , the score can be calculated as below.

Score =
freq(t1t2)

freq(t1)× freq(t2)
(3.1)

Thus, the score can be calculated by dividing the pair frequency by the product

of the frequencies of each token. This score emphasizes pairs where individual tokens

are less frequent. Then, it selects the pair with the highest score for merging and

repeats the same process until the desired vocabulary size is reached.

During tokenization, the Wordpiece tokenizer will identify the longest possible

token at the beginning of a word. Once selecting the longest subword unit from the

vocabulary, it will start again on the remaining part of the word until reaching the
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end. For example, when tokenizing the word ‘AkpTvaeb’ (“AkapaT'bhabe”, frankly),

the Wordpiece tokenizer will first look for the longest token at the beginning of the

word. Assume that ‘Ak’ is the first identified longest token in the vocabulary. It will

look for the longest token in the remaining split ‘pTvaeb’ and identify ‘pT’ as the longest

token at the beginning of ‘pTvaeb’. Finally, for the remaining part, ‘vaeb’ is identified,

which token is already in the vocabulary.

We do not discuss Byte-Pair Encoding tokenization (BPE) because Wordpiece is

a variant of BPE. BPE [33] was initially developed as a text compression algorithm,

and Radford et al. [15] first used this algorithm for tokenization while pre-training

the GPT model. Wordpiece is very similar to BPE in terms of training, but it uses

likelihood score instead of frequency for merging pair. Previous works have shown

that Wordpiece performs better for neural machine translation tasks [26].

3.2 Unigram BERT

Unigram [28] is a subword tokenization algorithm. Unlike Wordpiece [26], it begins

with a larger vocabulary and works in a top-down approach to iteratively reduce it to

the final vocabulary. Before training the tokenizer, we apply normalization steps, in-

cluding a few replacements and normalization form KC1 (NFKC) Unicode normaliza-

tion. NFKC Unicode normalization involves two steps – compatibility decomposition

followed by canonical composition. Since some characters can be represented using

different Unicode representations in Bengali and Hindi, NFKC normalization is used

to normalize all variants of characters into a single shared form. This normalization

step is also performed for the Wordpiece algorithm. Two or more whitespaces were

replaced with a single space like SentencePiece [34] algorithm. We also preserve the

accents since vowel matras and diacritics are frequently used in Bengali and Hindi.

We use a Metaspace pre-tokenizer to replace single whitespaces with a specific

character (‘ ’) for the pre-tokenization step. We start with an initial seed vocabulary

1https://unicode.org/reports/tr15/
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(91,551) much larger than the target vocabulary size (30,522). Seed vocabulary in-

cludes all basic characters and the most common substrings (top 35%) obtained from

the corpus. We include all possible characters besides the most common substrings

because the model cannot otherwise tokenize potential out-of-vocabulary words. Out-

of-vocabulary words occur when the tokenizer encounters words with subword tokens

not present in the vocabulary.

At each iteration, the corpus-level loss for the Unigram algorithm was computed,

given the current vocabulary. Each word in the corpus was tokenized using the avail-

able vocabulary for calculating loss. Like the Unigram language model, each token is

considered independent of the previous tokens. Hence, each token’s probability can

be computed by dividing the token frequency by the sum of all tokens’ frequencies

in the corpus. During word tokenization, the Unigram model considers the best seg-

mentation of the word into sub-word tokens with the highest probability. This best

segmentation is efficiently done using the Viterbi [35] algorithm. As tokens are con-

sidered independent, word probability is the product of sub-word token probabilities.

Afterward, word probabilities are multiplied by the word frequency to get final scores.

Finally, the corpus-level loss is determined by applying the negative log-likelihood of

these scores. Suppose that we have sample words w1, w2, . . . , wn in the corpus; then

the corpus-level loss can be computed as:

loss =
n∑︂

i=1

freqi ∗ (−log(P(wi))) (3.2)

The training is based on an expectation maximization (EM) algorithm. It deter-

mines how much the loss will be increased for removing each token from the current

vocabulary. At each step, p% of the subword tokens having the most negligible impact

on corpus-level loss are discarded. The p value for discarding tokens is a hyperparam-

eter that was selected based on final corpus-level loss. These steps are repeated until

the desired vocabulary size of 30.5K is reached. Moreover, the scores are saved with
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vocabulary to find the most probable splits into tokens. Therefore, the algorithm pre-

served the tokens mostly needed for tokenization purposes and dropped less needed

ones belonging to the tail end of the distribution. During training, elementary to-

kens are not discarded, as the model cannot tokenize every word without all possible

characters. Since our NLU model is based on BERT, we used similar special tokens

([UNK], [PAD], [CLS], [SEP], [MASK]) to indicate unknown, padding, classification,

separator, and mask tokens.

Reference word Unigram tokenizer Wordpiece tokenizer

iSXa�itìaenO [iSXa�itìan, e·, O] [iSXa�itìaen, O]

(“shikKapRatiShThan'eO” [(“shikKapRatiShThan'”, [(“shikKpRatiShThan'e”,

, also in educational- educational-institutions), in educational-institutions)

institutions) (“e”, in), (“o”, also)] , (“o”, also)]

vaeraeÑalen [vaeraeÑaln, e·] [vaeraeÑal, en]

(“bharottalan'e”, in [(“bharottalan'”, weight [(-), (-)]

weight-lifting) -lifting), (“e”, in)]

AkpTvaeb [AkpT, vaeb] [Ak, pT, vaeb]

(“AkapaT'bhabe”, (“AkapaT'”, frank), [( ), ( ), (“bhabe”, way)]

frankly) (“bhabe”, way)]

ibnomRta [ibnomR, ta] [ibn, m
, rt, a]

(“binamRa'ta”, modesty) [(“binamRa'”, humble) [( ), ( ), ( ), ( )]

, (“ta”, being)]

gNpirbHenr [gNpirbHn, e·r] [gNp, ir, bH, enr]

(“gana'paribahan'er”, of [(“gana'paribahan'”, public [( ), ( ), ( ), ( )]

public transport) transport), (“er”, of)]

Akaj [A, kaj] [Ak, ·aj]

(“Akaj”, useless act) [(“A”, useless), (“kaj”, act)] [( ). ( )]

Table 3.1: Comparison of Unigram tokenizer with Wordpiece Tokenizer. ( ) indicates
the translation of a token without meaning that does not indicate any root, suffix,
prefix, or meaningful unit.
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Preliminary Experiments

We trained the Unigram tokenizer on Bengali pre-training data and compared it with

the original BERT’s Wordpiece tokenizer. We tokenized a few sample words and

examined the differences (see Table 3.1).

Looking at the quality of sub-word tokens, we observed that the Unigram tokenizer

always utilizes learned scores to find the most likely splits into tokens. It can separate

roots (vaeraeÑaln), emphasizing suffixes (`O') and modified vowels (`e·') in the first and

second examples. However, the Wordpiece tokenizer fails to do that. In the third

and fourth examples, the Unigram tokenizer can separate the roots (‘AkpT', `ibnomR')

from suffixes (‘vaeb',`ta') in their inflected forms. In addition, Unigram tokenizer can

separate the affix (`e·r') in the second last example. This affix produces an inflectional

form of the noun to denote a relationship with the next word in a sentence. Nev-

ertheless, the Wordpiece tokenizer cannot identify roots, suffixes, or prefixes during

word segmentation. In the last example, the Unigram tokenizer produces meaning-

ful sub-word tokens (‘A', `kaj'). Here, the first prefix (‘A') indicates negation, thus

negating the meaning of the next token (‘kaj'). On the contrary, in the last three

examples, the Wordpiece tokenizer unnecessarily decomposes words into meaningless

word pieces (‘Ak', `·aj'). These word pieces do not indicate any suffix, prefix, root, or

meaningful unit. Therefore, these tokens might not help the BERT model understand

how words can be formed in Bengali and Hindi.

Finally, we examined the number of roots and affixes covered in Wordpiece and

Unigram vocabulary trained on Bengali pertaining corpus. For identifying roots and

affixes, we used a list of 83,666 roots2 and 62 inflectional affixes [7]. We observed

Unigram has 31% more roots and 29% more affixes in its vocabulary compared to

Wordpiece. Wordpiece vocabulary has 6,679 roots, whereas Unigram vocabulary has

8,757 roots. Moreover, Wordpiece vocabulary includes 45 affixes, whereas Unigram

2https://github.com/Foysal87/Bangla-NLP-Dataset/
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vocabulary includes 58 affixes.

3.3 Bengali and Hindi Character BERT

The character-level tokenizer comprises a convolutional neural network (CNN) mod-

ule that produces a contextless token-level representation before feeding to the BERT

model. It takes as input a sequence of characters and embeds each character into a

fixed-sized d -dimensional vector. These embeddings are sequentially fed into seven

1D CNN layers with various filter sizes. The outputs of CNN layers are max-pooled

and concatenated to build token-level representations. Furthermore, these concate-

nated representations go through Highway layers [36] incorporating nonlinearities

with residual connections. Finally, outputs are projected to 768 dimensions, similar

to BERT’s embedding size. These token-level embeddings are fed to BERT’s 12 en-

coder layers to produce contextual representations. Figure 3.1 depicts how the CNN

module constructs token-level representation after attending to each character in the

sequence.

In Bengali and Hindi, characters can combine to form modified vowels, consonants,

and compound characters. The character-level CNN module can model these intra-

word interactions to learn fine-grained character-level information. Adding a single

character, modified vowel, consonant, or compound character can lead to a different

word. Thus, the original BERT’s Wordpiece tokenizer will produce different sub-word

tokens that can impact downstream task performance.

Moreover, the character-level tokenizer consults characters to produce a word-level

representation. Therefore, it can have an open vocabulary not limited to Word-

piece vocabulary. Besides injecting character-level information, the Bengali and Hindi

Character BERT model can learn local inter-word dependencies at the sentence level

using encoder layers. Following the original BERT, we used padding, separator, clas-

sification, and mask tokens as special tokens and added positional embedding to the

token embeddings. For MLM, we have constructed a temporary vocabulary compris-
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Figure 3.1: Illustration of Character CNN module producing a token-level embed-
ding after attending each character. Modified vowels and compound characters are
highlighted in Grey color.

ing the top 30,522 tokens from the pre-training corpus. These tokens have been used

as target labels.
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Chapter 4

Experimental Evaluation

4.1 Pre-training

4.1.1 Pre-training Objective

We pre-train the models with the masked language modeling (MLM) objective. Dur-

ing pre-training, 15% tokens are randomly selected for masking. The selected tokens

are replaced using the [MASK] token. MLM cross-entropy loss was defined using the

masked token prediction task. In addition, we randomize the masking pattern every

time we feed a batch of sequences to the model. Random masking enables the model

to learn efficiently from as many tokens as possible without duplicating data samples.

We pre-trained the Bengali and Hindi Character BERT and Unigram BERT models

on each language separately. However, we do not train models on the next-sentence

prediction (NSP) task, as the authors of the RoBERTa [16] paper show that remov-

ing next-sentence prediction loss does not hurt the BERT model’s performance on

downstream tasks.

4.1.2 Model Architecture and Hyperparameters

Our models are based on the BERT base model and CharacterBERT model. Both

models use a 12-layer encoder with 12 attention heads and 768 embedding sizes. We

pre-trained the models for 803,640 steps with a 256 batch size. We use 128 maximum

sequence length due to GPU memory constraints and pre-trained on a single A-100
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GPU (40GB of VRAM). For optimization, we use the Adam optimizer [37] with a

2e-5 learning rate, L2 weight decay of 0.01. We linearly decay the learning rate

with training steps until the desired number of steps is reached. The Bengali and

Hindi Unigram BERT model has 110M parameters. Moreover, the Bengali and Hindi

Character BERT model has 104.6M parameters due to the CNN module’s smaller

character embeddings (16 dimensional).

4.2 Datasets

4.2.1 Pre-training Datasets

Pre-training transformer-based model requires a large quantity of good-quality data.

For example, BERT used Wikipedia and Book Corpus [38] as pre-training data. We

used open-access datasets [39] that represent the contemporary Bengali and Hindi

writing styles. In addition, we select data sources that cover various topics. Many

noisy and unauthentic data sources are available, including offensive text and erro-

neous facts. Therefore, most pre-training data were collected from sources such as

online news portals, known as authentic data sources with minimum offensive texts.

We pre-trained on articles from online news portals and Wikipedia articles. Ben-

gali pre-training data was collected from Prothom Alo (between 2014 and 2017) [40]

and BDNews articles (between 2015 and 2017) [41]. Hindi pre-training corpus en-

compasses Wikipedia articles [42], Hindi Oscar corpus [43], HindiEnCorp 0.5 [44]

dataset, WMT Hindi news crawl data [45]. Hindi has a comparatively larger collec-

tion of pre-training data than Bengali because it has more textual data available in

digital format. Since it is a sentence-level corpus, all text passages and documents

were split into sentences. The Bengali and Hindi pre-training corpus had 6.69M and

8.57M samples, respectively, with a maximum sequence length of 128 tokens after

tokenization.
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4.2.2 Datasets For Model Quality Analysis:

We experiment with five publicly available datasets [39] for model quality analysis

– three Bengali and two Hindi datasets. We chose newspaper articles to verify the

effectiveness of models across a wide range of domains. Domains include politics,

technology, sports, lifestyle, literature, and entertainment. Bengali datasets include

online news website articles collected from Prothom Alo [40], BDNews24 [41], and

Naya Diganta [46]. The Hindi datasets are also from online news portals – Hindi

News LiveHindustan [47] and Patrika [48]. Following Rahman et al. [39], we use two

Bengali and Hindi datasets- Naya Diganta and Patrika as test sets.

We also tested our models with misspelled words. To do that, we replaced words in

the Prothom Alo and Naya Diganta datasets with common misspellings identified by

Rahman et al. [39]. The common misspellings are 20K real and synthetic error words

formed from the top 13K words in the Prothom Alo dataset. First, we randomly select

a certain percentage of sentences in the validation set. Then, we transform the words

in the selected sentences with their misspelled versions according to identified common

misspellings. For some of the words, multiple misspelled versions are available in

the error words list. During word replacement, we arbitrarily select one misspelled

version. We incrementally increased the noise ratio in the validation sets and created

three versions with various noise levels. Dataset statistics are provided in table 4.1.

Corpus Training samples Validation samples Metric

BDNews24 446,984 111,747 PPL

Prothom Alo 1,080,000 270,000 PPL

Naya Diganta - 100,000 PPL

Livehindustan 187,077 46,770 PPL

Hindi Patrika - 100,000 PPL

Table 4.1: Model quality analysis dataset statistics (the number of training and val-
idation samples). Naya Diganta and Hindi Patrika were entirely used for validation
purposes.
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4.3 Performance Metrics

We use perplexity (PPL) obtained from the masked token prediction task to assess

the quality of the model. Perplexity is a popular intrinsic evaluation metric that

measures the language model’s quality independent of downstream applications. To

calculate the perplexity, we randomly select tokens from the sequences in the corpus

for masking. Then, we compute the probability P of the model predicting token given

the masked sequence. If we have probability values P1, P2, . . . , Pn for the correspond-

ing tokens, we calculate perplexity by multiplying the probabilities and dividing by

the number of tokens. We consider log of probabilities to avoid numerical underflow:

PPL = exp(−1

n

n∑︂
i=1

(log(Pi))) (4.1)

We ensure that the number of samples in the validation sets is sufficient for a good

corpus representation. This PPL calculation approach is better suited to the BERT

model than the next token prediction task because it measures the ability of the

model to predict missing tokens anywhere in the sequence. This approach is similar

to how BERT was designed and trained to leverage the bidirectional context to predict

missing tokens at any position in the sequence.

For downstream tasks such as text classification, named entity recognition, senti-

ment analysis, and natural language inference (NLI), we use F1 score and accuracy

as performance metrics.

4.4 Model Training & Evaluation

For the masked token prediction task, we trained models with the same vocabulary

size (30,522) for 24 epochs. We used 80% of the data for training and reported per-

plexity on 20% of validation data. We optimized the models using Adam optimizer

[37] with 2e-5 learning rate and decayed learning rate with linear learning rate sched-

uler. We used a batch size of 64 and trained the models using two GPU servers.
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We used one server with a Tesla V100 GPU (16GB VRAM) and another with a

Nvidia GeForce RTX 2080 TI GPU (11GB VRAM). For experimentation, we used

frameworks and libraries such as Transformers [49], Pytorch [50], and Scikit-learn

[51].

4.4.1 Fine-tuning Setup

We fine-tuned our pre-trained models for eight diverse downstream tasks in Bengali

and Hindi. The fine-tuning was performed for 2-6 epochs, and the learning rate

was tuned from 1e-5 to 5e-5 range with a weight decay of 0.01. We used the Adam

optimizer and tuned learning rate warmup ratio from 0 to 10% of the total steps for

model optimization. The batch size was chosen from {16, 32}, and we use a batch size

of 32 for most of the tasks. The maximum length was restricted to 128 tokens for the

fine-tuning experiments, as our models were pre-trained with a maximum sequence

length of 128. We ran the experiments on two GPU servers with an Nvidia GeForce

RTX 2080TI GPU (11GB VRAM) and a 3060 GPU (6GB VRAM), respectively. We

fine-tune pre-trained models independently for each task.

4.4.2 Downstream Tasks

Few annotated datasets are available for Bengali and Hindi due to insufficient efforts

in labeled data collection [2]. However, recent works [24, 39] have curated and uni-

fied existing datasets from publicly available sources and introduced NLU benchmark

datasets for Bengali and Hindi. We fine-tuned models on Bengali and Hindi bench-

mark datasets [24, 39] comprising basic NLU tasks. Basic NLU task includes question

classification, sequence labeling, text classification, and sequence pair classification.

We provided detailed statistics of the datasets in table 4.2. Task details are discussed

below.
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Task Corpus Total Train Test Dev Metric

Question Bengali Question 3,333 2,666 667 - Macro-F1

Classification Classify

Named Entity Bangla NER 71,285 64,155 3,565 3,565 Macro-F1

Recognition dataset

Genre
Soham News 14,106 11,284 1,411 1,411 Accuracy

Classification Articles

BBC News 4,333 3,467 866 - Accuracy

Articles

Hate Speech Hindi Hate 3,654 2,923 731 - Macro-F1

Detection Speech dataset

Sentiment
Hindi Product 2,355 1,884 471 - Macro-F1

Analysis Reviews

IITP Movie 3,100 2,480 310 310 Accuracy

Reviews

Natural Language COPA 899 362 88 449 Accuracy

Inference (NLI) dataset

Discourse Analysis MIDAS 9,968 7,974 997 997 Accuracy

Discourse dataset

Question Cloze-style Multiple 38,845 34,960 3,885 - Accuracy

Answering Choice QA

Table 4.2: Dataset statistics for eight diverse downstream tasks.

Question Classification

The Bengali Question Classify dataset [52] consists of 3,330 question samples and

six classes. Bengali questions have flexible ways of inquiring, which poses difficulty

for question classification (QC). The task is to classify the question into one of the

six categories – numeric, human, location, abbreviation, entity, and descriptive type

question.
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Named Entity Recognition

We chose the largest openly available NER dataset for Bengali [53]. The dataset

contains 71 thousand sentences properly annotated using the IOB tagging scheme.

It was annotated using four course-grained tags: person (PER), location (LOC),

organization (ORG), and object (OBJ) entity. The dataset consists of sentences from

Bengali Wikipedia and three popular newspapers1 – Ittefaq, Bangladesh Protidin, and

Kaler Kontho. It encompasses domains such as politics, sports, health, entertainment,

and editorial. Bangla NER poses unique challenges – no capitalizations to indicate

named entity appearance, multiple meanings of the same word, no specific sentence

structure for recognizing named entity patterns due to relatively free word order,

inflected words leading to various surface forms of the same entity, and multiword

expression leading to an entirely different meaning [21].

Article Genre Classification

A news article is provided as input, and the task is to classify the article’s genre

or topic. We select two Bengali and Hindi open-access datasets covering common

article categories. Soham News Articles [54] is a collection of Bengali news arti-

cles (Anandabazar Patrika, Ebala, and Zeenews articles) with six genres – Kolkata,

state, national, sports, entertainment, and international. In addition, BBC News [24]

covers a wider range of genres, including the common ones - India, international,

entertainment, sport, news, science, business, Pakistan, South Asia, Institutional,

social, China, multimedia, and learning English.

Hate Speech Detection

The task is to identify whether a post on social media contains hate speech and

offensive content. This task is a coarse-grained binary classification problem with

two classes – Hate and offensive (HOF) and Non-hate and offensive (NOT). Hindi

1https://www.top10bd.com/top-10-newspaper-in-bangladesh
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Hate Speech dataset [55] comprises 3,664 social media posts.

Sentiment Analysis

We used two Hindi datasets for sentiment analysis: Hindi Product Review [39] and

IIT-Patna Movie Review [56] datasets. The product review dataset consists of 2,355

reviews. The task is to classify a review into positive or negative classes. For compar-

ison with the baseline method, we consider positive and negative classes for reporting

F1 score similar to previous work [4]. IIT-Patna movie (3,100 samples) reviews can be

categorized into three polarities- positive, negative, or neutral. We report accuracy

for the movie review dataset to compare with published results [24].

Natural Language Inference

For natural language inference (NLI), we use the Choice of Plausible Alternative

(COPA) task [57]. This task verifies the models’ capability for open-domain com-

monsense reasoning. We use COPA’s Hindi-translated version [24] with 899 multiple-

choice questions. The multiple-choice questions focus on casual reasoning about day-

to-day activities with two possible choices. The question serves as a premise, and the

objective is to choose an alternative with a more plausible causal relation (cause or

effect) to the premise.

Discourse Analysis

The MIDAS Discourse dataset [58] comprises sentences collected from Hindi short

stories and is annotated with five discourse modes - descriptive, narrative, dialogue,

argumentative, informative, and others. The task is to identify the modes of discourse

at the sentence level. Descriptive sentences indicate locations in stories. A narrative

sentence denotes an action an entity performs and its association with the story time-

line. Dialogue sentences express conversations, and argumentative sentence validates

a claim. Finally, an informative sentence informs readers about an entity or situation

in the story.
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Cloze-style Multiple Choice QA

Cloze-style multiple choice question answering (QA) [24] evaluates whether a language

model can serve the purpose of a knowledge base. In this dataset, 38,845 article

samples are collected from Bengali Wikipedia. The entities in the text are recognized

with their type using Wikidata. An entity is randomly masked in the article. The

task is to predict the masked entity out of four possible candidates. The Cloze-style

QA task is challenging because three incorrect entities also appear in the article and

belong to the same entity type as the correct one.

Input Output Representation

We utilize task-specific input-output representations for fine-tuning Bengali and Hindi

Character BERT and Unigram BERT on downstream tasks. For sequence labeling

tasks such as NER, we feed each sequence to the models and obtain final token

representations. We assign labels to each token and use multiclass cross-entropy loss

for finetuning.

Sequence classification includes QC, genre classification, sentiment analysis, dis-

course analysis, and hate speech detection tasks. For sequence classification, we feed

the final hidden vector aggregate representation of the classification token ([CLS])

from the last layer to a linear classifier with a softmax layer to obtain the probability

of each class. We used a similar approach for the NLI task, providing a sequence

pair separated by a separator token ([SEP]) into the model instead of a single se-

quence. The classification token ([CLS]) representation is fed into the output layer

for classification into one of the categories.

We treat cloze-style multiple-choice QA as a multiple-choice task. We input the

masked article and candidate entity separated by a separator ([SEP]) token into a

classifier. The classifier predicts the candidate entity with the highest score among the

four options. We used the correct entity index number as a label out of all probable

choices and fine-tuned the model using cross-entropy loss.
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4.4.3 Evaluation

We select the best model based on validation performance for public datasets with

given test and validation splits. Finally, we load the best model and use the official

test set to report the final result. We perform a five-fold cross-validation for the data

sets without an official test set and report mean results. We repeat the whole process

for each task.

We have computed measures of dispersion for our reported results. For five-fold

cross-validation, we report the standard deviation on the mean results obtained from

five folds.

For datasets with an official test split, the standard deviation is calculated using

a bootstrapping procedure. This involves randomly selecting samples from the anno-

tated test set and obtaining a performance score. We repeat this process three times

and report the results along with the standard deviation.
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Chapter 5

Results and Discussion

5.1 Comparison With Baseline Model

We trained original BERT and proposed models on five Bengali and Hindi datasets.

We compared their perplexity (PPL) scores on a validation set in correct and erro-

neous settings. Perplexity and improvements are reported in tables 5.1, 5.2, 5.3 and

5.4. We report improvement relative to the baseline. The PPL scores in the table

show that the Bengali and Hindi Unigram BERT and Character BERT outperform

baseline BERT with Wordpiece vocabulary. Bengali and Hindi Unigram BERT signif-

icantly improved over the baseline, and Character BERT also shows relatively better

PPL scores.

We use eleven sets of perplexity values from Bengali and Hindi Unigram BERT and

baseline BERT to perform the Wilcoxon Signed-Ranks test. Wilcoxon Signed-Ranks

test is a non-parametric counterpart of paired t-test, which does not require data to

be normally distributed. We compute the difference between sets of scores obtained

from two models. The differences are ranked, and signs (positive/negative) of differ-

ences are also considered. Finally, the sum of the ranks is calculated for positive and

negative ranks. The sum of positive and negative ranks should be the same if there

are no differences. The null hypothesis is that the central tendencies of Bengali and

Hindi Unigram BERT and baseline BERT are the same. We obtained an asymptotic

significance value of 0.003, which is less than the significance level of 0.05. Hence,
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we can reject the null hypothesis and conclude that there is a statistically signifi-

cant difference between Bengali and Hindi Unigram BERT and baseline BERT PPL

scores. We performed the same test for Bengali and Hindi Character BERT and base-

line BERT and found PPL score difference was statistically significant (asymptotic

significance value of 0.003).

Wordpiece Unigram

Dataset Error Tokenizer Tokenizer (Bengali) Improvement

BDNews No 100±0.7 49±0.5 +51%

Prothom Alo

No 45±0.3 26±0.2 +42%

10% 53±0.3 29±0.2 +45%

20% 62±0.2 33±0.1 +47%

30% 72±0.1 37±0.1 +49%

Naya Diganta

No 81±0.5 46±0.4 +43%

10% 95±0.4 51±0.4 +46%

20% 110±0.4 58±0.3 +47%

30% 126±0.8 63±0.8 +50%

Table 5.1: Improvement resulted from Bengali Unigram BERT compared to baseline
BERT. Perplexity values are used to perform a Wilcoxon Signed-Ranks test, and
results in bold text indicate a statistically significant difference in PPL score (p <
0.05).

Wordpiece Unigram

Dataset Error Tokenizer Tokenizer (Hindi) Improvement

Live Hindustan No 57±0.5 23±0.3 +60%

Hindi Patrika No 92±0.3 36±0.1 +61%

Table 5.2: Improvement resulted from Hindi Unigram BERT compared to baseline
BERT. Perplexity values are used to perform a Wilcoxon Signed-Ranks test, and
results in bold text indicate a statistically significant difference in PPL score (p <
0.05).
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Wordpiece Character

Dataset Error Tokenizer BERT (Bengali) Improvement

BDNews No 100±0.7 74±0.1 +26%

Prothom Alo

No 45±0.3 35±0.1 +22%

10% 53±0.3 36±1.0 +32%

20% 62±0.2 38±0.1 +39%

30% 72±0.1 40±0.2 +44%

Naya Diganta

No 81±0.5 49±0.1 +40%

10% 95±0.4 51±0.1 +46%

20% 110±0.4 54±0.5 +51%

30% 126±0.8 57±0.5 +55%

Table 5.3: Improvement resulted from Bengali Character BERT compared to baseline
BERT. Perplexity values are used to perform a Wilcoxon Signed-Ranks test, and
results in bold text indicate a statistically significant difference in PPL score (p <
0.05).

Wordpiece Character

Dataset Error Tokenizer BERT (Hindi) Improvement

Live Hindustan No 57±0.5 43±0.1 +25%

Hindi Patrika No 92±0.3 56±0.3 +39%

Table 5.4: Improvement resulted from Hindi Character BERT compared to baseline
BERT. Perplexity values are used to perform a Wilcoxon Signed-Ranks test, and
results in bold text indicate a statistically significant difference in PPL score (p <
0.05).

We also experimented with whether Bengali and Hindi Character BERT and Un-

igram BERT can deal with misspellings. Hence, we created noisy versions of the

Prothom Alo and Naya Diganta validation sets with incremental changes in noise

levels. The experiments for verifying the robustness of models to misspellings are

conducted only on validation sets because language models’ performance often dete-

riorates in practical use in erroneous settings. We replace words in p% of the sentences
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with common misspellings to create erroneous versions of the validation sets. The

misspelled words are formed by adding, removing, replacing characters, modifying

vowels and consonants, or producing inflected forms of words by adding affixes.

With incremental changes in error percentage, the perplexity of Bengali and Hindi

Unigram BERT and Character BERT increases slowly compared to the baseline

BERT. In particular, Bengali and Hindi Character BERT outperform original BERT

by a large margin in erroneous settings. Although the relative improvement is 22%

in the correct Prothom Alo validation set, the improvement becomes 44% when a

noise level of 30% is applied to the Prothom Alo validation set. So, the relative im-

provement almost doubles, showing Bengali and Hindi Character BERT’s advantage

in erroneous settings. Similarly, Bengali and Hindi Character BERT shows robust-

ness to misspellings in the Naya Diganta validation set, as the relative improvement

increases by 15 points in most erroneous settings. Since the character-level tokenizer

attends to each character in words, corrupting a word by modifying characters can

have the least impact. The character-level tokenizer might still identify the intra-

word patterns by consulting the correct characters in words. On the other hand, the

Wordpiece tokenizer produces different subword tokens for a misspelled word, thus

drastically impacting the model’s performance.

Moreover, Bengali and Hindi Unigram BERT can also better adapt to noisy and

inflected settings compared to the baseline model, as the relative improvement in-

creases to 49% in the noisiest version from 42% in the correct Prothom Alo validation

set. Similarly, Bengali and Hindi Unigram BERT show a 7-point increase in relative

improvement for the Naya Diaganta validation set. It indicates that the Bengali and

Hindi Unigram tokenizer’s ability to separate modified vowels, affixes, and roots re-

mains an advantage of the model to better adapt with misspelled and inflected words

than baseline BERT.

We also plot the validation loss of models in figure 5.1, 5.2, and 5.3.
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Figure 5.1: Comparing BERT with Bengali Unigram BERT and Character BERT on
BDNews validation set for first 12 epochs. The perplexity after 12 epochs is shown
with each model name.

Figure 5.2: Comparing BERT with Bengali Unigram BERT and Character BERT
on Prothom Alo validation set for first 12 epochs. The perplexity after 12 epochs is
shown with each model name.

5.2 Comparison in Downstream Tasks

5.2.1 Comparison with Monolingual Model

We fine-tuned pre-trained Bengali and Hindi Character BERT and Unigram BERT

on three downstream tasks. We compared them with the original BERT pre-trained

on the same pre-training data [4]. There are no publicly available standard test splits

for question classification, hate speech detection, and product review datasets. Thus,

we perform 5-fold cross-validation to report mean F1 scores. The mean results in

table 5.5 and 5.6 show that Bengali and Hindi Character BERT and Unigram BERT
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Figure 5.3: Comparing BERT with Hindi Unigram BERT and Character BERT on
Live Hindustan validation set for first 12 epochs. The perplexity after 12 epochs is
shown with each model name.

achieve robust performance over the original BERT in three downstream tasks. The

Bengali and Hindi Unigram BERT model significantly improved over the original

BERT. Moreover, character-aware Bengali and Hindi Character BERT perform at

the same level as Unigram BERT on hate speech detection. However, it marginally

lags behind Bengali and Hindi Unigram BERT in the question classification and

product reviews tasks.

Original Bengali Bengali

Dataset BERT Unigram BERT Character BERT

Question Classify 90.50 97.22±0.9 96.48±0.4

Table 5.5: Comparison of F1 score between proposed pre-trained models and original
BERT in Bengali downstream tasks. Original BERT results are from [4].

We do not re-train the original BERT and reproduce the baseline BERT result

because it is computationally expensive to pre-train a BERT model from scratch.

Therefore, we compare with published BERT results from [4], which uses the same

dataset for pre-training.
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Original Hindi Hindi

Dataset BERT Unigram BERT Character BERT

Hate Speech Detection 77.00 82.93±0.6 82.77±1.3

Product Reviews 84.10 89.57±1.8 87.23±1.9

Average 80.55 86.25 85.00

Table 5.6: Comparison of F1 score between proposed pre-trained models and original
BERT in Hindi downstream tasks. Original BERT results are from [4].

Indic Multilingual Bengali Bengali

Dataset BERT BERT Unigram BERT Character BERT

Named Entity 62.42 64.54 71.54±0.1 69.87±0.2

Recognition

Soham News 78.45 80.23 91.29±0.1 91.93±0.1

Article

Cloze-style QA 39.40 36.23 56.13±0.1 40.51±0.1

Average 60.09 60.33 72.99 67.44

Table 5.7: Accuracy comparison between proposed pre-trained models and multi-
lingual models in Bengali downstream tasks, except NER task, which compares F1
score. NER result and the rest of the results for multilingual BERT and IndicBERT
are published in [21] and [24], respectively.

5.2.2 Comparison with Multilingual Models

We compare our proposed pre-trained models with two multilingual models. Multi-

lingual BERT represents the original BERT [12] pre-trained on multilingual corpora.

IndicBERT is a pre-trained multilingual model [24] for Indian languages. Table 5.7

and 5.8 compares published multilingual BERT and IndicBERT [21, 24] results with

our pre-trained models. However, the gold labels for the COPA test set are not pub-

licly available. Therefore, we collected the test set with gold labels from the English

COPA dataset [59]. Then, we translated them to Hindi using manually translated

annotations [60]. We fine-tuned pre-trained multilingual BERT and IndicBERT on
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Indic Multilingual Hindi Hindi

Dataset BERT BERT Unigram BERT Character BERT

BBC News 74.60 60.55 76.67±0.2 76.11±0.1

Classification

IITP Movie 59.03 56.77 67.03±0.3 64.18±0.4

Reviews

Midas 78.44 71.20 81.42±0.1 79.34±0.1

Discourse

COPA 51.22 54.78 60.84±0.6 56.23±0.1

Average 65.82 60.83 71.49 68.97

Table 5.8: Accuracy comparison between proposed pre-trained models and multi-
lingual models in Hindi downstream tasks. The results for multilingual BERT and
IndicBERT are published in [21] and [24], respectively.

the COPA dataset and reported results on the translated test set. Previous work [21]

only published multilingual BERT results for the NER task. Hence, we fine-tuned

IndicBERT on the NER dataset and reported results on the standard test set. We

report macro-F1 for the NER task and accuracy for the other tasks.

Bengali and Hindi Unigram BERT outperform multilingual BERT and IndicBERT,

achieving average scores of 72.99 and 71.49 in Bengali and Hindi datasets, respectively.

Bengali and Hindi Character BERT outperform multilingual BERT and IndicBERT,

achieving average scores of 67.44 and 68.97 in Bengali and Hindi datasets, respec-

tively. Our pre-trained models’ performance is more robust for four text classification

tasks than for other tasks. Text classification tasks include Soham News Article,

BBC News Article, IITP Movie Reviews, and Midas Discourse datasets. In sequence

labeling tasks such as NER, Bengali and Hindi Character BERT and Unigram BERT

exceeds multilingual models. For challenging tasks like COPA and Cloze-style QA,

our models, especially Bengali and Hindi Unigram BERT, improve by a large mar-

gin of up to 9 points and 19 points in COPA and QA datasets, respectively. For
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Wikipedia-based datasets like Clozed-style QA, our pre-trained models can improve

task performance over multilingual BERT pre-trained on the Wikipedia corpus. Ben-

gali and Hindi Character BERT and Unigram BERT are comparable, but Unigram

BERT is consistently better in most tasks.

5.3 Error Analysis

For question classification, our pre-trained models make the highest errors for classi-

fying samples in the “description” category. Descriptive questions typically ask about

the definition, reason, and description of something. A descriptive question example

is “Aal�ngr s«ziet nbab israjUeÖ�lar s®Mitr AnYotm karN ekaniT?” (‘Which was one of the rea-

sons for Nawab Sirajuddaula’s consent to the Treaty of Alinagar?’). These questions

(7% of the “description” category samples) ask about specific entities. Therefore,

the models misclassified these questions as belonging to the ‘entity’ class. On the

other hand, questions from entity class query about substance, symbol, currency, a

particular term, language, animal, sport, technique, event, religion, disease, creative

content, and others. For example, “igyasUÖin Aajm SaeHr p�ìepaPktay SaH muH®Md sg�r ekan kabYiT

rcna kern?” (‘Which poem was written by Shah Muhammad Sagir under the patronage

of Ghiyasuddin Azam Shah?’) is an example question belonging to the entity class.

Moreover, the ‘description’ class has the least samples compared to the other classes.

Hence, the models do not see sufficient examples to discern descriptive questions from

entity-related questions.

For hate speech detection, our models demonstrate lower precision for the ‘non-hate

and offensive’ (NOT) class than the ‘hate and offensive’ (HOF) class despite having

almost equal samples for both classes. Approximately 54% of the observations belong

to the HOF class, and the rest (46%) belong to the NOT class. After inspecting mis-

classified observations, we notice that misclassified samples have frequently occurring

English words (‘anniversary’, ‘drink’, ‘female’, ‘twitter’, ‘force’) as these observations

are collected from social media posts. However, our models are pre-trained mainly
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on monolingual newspaper data, which does not usually contain mixed scripts such

as Hindi and English. For instance, our Bengali and Hindi Unigram BERT does not

have all the English alphabets in its vocabulary, thus leading to [UNK] tokens for

out-of-vocabulary alphabets. Although Bengali and Hindi Character BERT does not

rely on a fixed vocabulary, it has not seen such mixed scripts during pre-training.

This can impact the precision score, therefore impacting F1 for the NOT class. This

issue might be solved by adding frequently occurring English words or all English

alphabets to the model’s vocabulary and retraining the models on a larger mixed

script dataset.

For product reviews, both models yielded lower recall scores for the negative class,

which impacts overall macro F1. The product reviews dataset consists of fewer nega-

tive examples than positive ones. Therefore, the smaller amounts of samples were

not adequate for the models to learn accurately about the negative class during

fine-tuning. We observed a similar issue in the movie review dataset, where most

misclassified examples belong to the negative or neutral class.

In the NER task, words with multiple meanings are the main challenge for Bengali

and Hindi Character BERT and Unigram BERT. For example, our models identified

the word ‘baKlaedS’ (Bangladesh) as the beginning of a location (B-LOC). This word

itself is the name of a country, which is why the model misclassified it as location.

However, it appears as ‘baKlaedS IUinfaID dl’ (“Bangladesh Unified dala'”, Bangladesh

Unified Team), the name of a sports team representing Bangladesh in the given

context. Therefore, the correct label should be the beginning of an organization (B-

ORG). Similarly, the model predicts ‘SaÚ’ (“Shanta'”, quiet) as the beginning of a

person entity (B-PER), which is wrong. In this context, the word means quiet, which

should be assigned to the other tag (O). The model confused others with the person

entity because it is common to name people ‘SaÚ’. The second challenge for the mod-

els was to deal with multiword expressions. For example, the word ‘UÑr-pi±cima¨celr’

(“Uttara'-poshcimaNcal'er”, north-western region) is a multiword expression in mis-
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classified samples. Bengali and Hindi Unigram BERT was partially correct as it

successfully identified the first part as the beginning of a location (B-LOC) but mis-

classified the second part as other (O) type, which is also a location. The reason

could be that the dataset has few examples of multiword expressions. On the con-

trary, character-aware Bengali and Hindi Character BERT correctly classified both

words of the multiword phrase.

For the Soham News classification, most errors occurred for similar news categories,

predicting national instead of international. International is the minority class, con-

tributing only 4% of the training data. After reviewing the misclassified instances,

we identified that these national and international samples mainly fall under the po-

litical domain. While the national news articles discuss news and events relevant to

the country, international news articles cover news and events outside the country.

The only way to distinguish these news categories is by utilizing cue words and con-

texts, such as person entities referring to national or international political figures,

and location entities, such as country names. It becomes difficult for the models

to distinguish these categories, especially in articles where national political figures

and locations appear in international news articles. Therefore, our models misclassi-

fied such international news articles as national ones, resulting in lower accuracy for

the international class. Similar problems were observed for minority classes in BBC

News classification dataset. Social, China, multimedia, and learning English news

categories account for less than 2% of the BBC News training data.

We analyzed predictions of pre-trained models on Discourse analysis and observed

most confusing discourse modes are informative and descriptive. Both of our models

misclassified 70% informative examples as descriptive ones. Informative sentences

provide information to the reader about an entity or a situation. On the other hand,

descriptive sentences illustrate specific locations in the story with detailed descrip-

tions to help the reader visualize the scene. These errors might have occurred because

these informative examples present detailed information about an entity, thus mis-
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understood as descriptive examples. Misclassifications are not likely due to fewer

examples of informative class because both models can successfully classify examples

in other category, having the least number of training instances.

The COPA task appears to be one of the more challenging tasks where our best-

performing models’ accuracy (60.80%) is far from human-level performance (99%).

Our pre-training data were mainly collected from online news newspaper corpus, often

containing crime reports referring to violent incidents. It may impact the reasoning

process of the pre-trained language models. The crime news genre typically requires

more complicated and sophisticated reasoning, which may not be generalized as day-

to-day reasoning. Given two conceivable alternatives and one premise, our models

chose the one more relevant to crimes or violent incidents. One misclassified example

had the premise “I emptied my pockets.” Two provided alternatives were “I retrieved

a ticket stub” and “I got a weapon.” Our model predicted the incorrect one, “I

got a weapon,” as the most probable one, whereas the correct causal effect of the

premise was “I retrieved a ticket stub.” Similarly, the given premise and two choices

were “Passenger limit has been reached”, “The patrol agent checked his passport”,

and “Patrol agent accused him of smuggling,” respectively. Our model predicted

the wrong option, “Patrol agent accused him of smuggling,” as the most probable

consequence. Moreover, other errors were made due to the incompetency of the model

in unambiguously interpreting the premise and choices. For example, one premise

stated, ‘The office was closed’ and provided two choices: ‘It was a holiday.’ and ‘It

was summer.’ The correct cause was ‘It was a holiday,’ but our model picked the

other wrong option, ‘It was summer.’ From these observations, the lesson is that the

pre-training corpus should adequately cover generalizable common-sense reasoning

examples. Such pre-training data might make the model competent to perform day-

to-day reasoning and understand textual premises and alternatives unambiguously.

Finally, Bengali cloze-style QA is the most challenging task, which focuses on de-

termining whether language models can serve as a knowledge base. For instance, one
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sample article masks an organizational entity and discusses a specific service provided

by that entity. The challenging part was three entities (BRAC, Robi, Google) out

of four possible options belong to the same entity type - organization (ORG). Only

the fourth option was an out-of-context entity (Kathmandu indicating a location

(LOC) type entity), which was comparatively easier to filter out while selecting the

best alternative for the masked token. Finally, all these articles were collected from

Wikipedia, and some of these entities mentioned in the article never appeared in the

Bengali pre-training corpus. Therefore, it was challenging for the models to act as

a knowledge base, so fine-tuning the language models on Wikipedia articles before

adding task-specific layers can further boost performance.

5.4 Bilingual Unigram BERT

Hindi has a higher number of unlabeled and labeled data compared to Bengali. In our

pre-training dataset, the Hindi corpus has 1.88M samples more than Bengali. There-

fore, we wanted to see whether a model pre-trained on bilingual data could benefit

from both languages. We pre-trained the Unigram BERT model on the bilingual

corpus obtained by concatenating Bengali and Hindi pre-training data. We used the

same hyperparameters that were used for pre-training the Bengali and Hindi Uni-

gram BERT. We increased the vocabulary size to 50,000 to accommodate vocabulary

from both languages. We fine-tuned Bilingual Unigram BERT on Bengali and Hindi

datasets and reported results in table 5.9.

The results in table 5.9 show that Bilingual Unigram BERT improved performance

in Bengali datasets. In fact, it exceeds Bengali and Hindi Unigram BERT by 2.89

points in the Cloze-style QA dataset. This improvement might have resulted from

more named entities appearing in the bilingual corpus, which helped the model to

predict masked entities in the text correctly. However, this improvement comes with

a cost as the performance of the Bilingual Unigram BERT slightly drops in Hindi

datasets except for IITP Movie Reviews. In particular, performance drops in COPA
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Bengali & Hindi Bilingual

Dataset Unigram BERT Unigram BERT Language

Named Entity Recognition 71.54±0.1 71.85±0.1 Bengali

Soham News Article 91.29±0.1 91.64±0.1 Bengali

Cloze-style QA 56.13±0.1 59.02±0.1 Bengali

BBC News Classification 76.67±0.2 76.56±0.2 Hindi

IITP Movie Reviews 67.03±0.3 68.06±0.3 Hindi

Midas Discourse 81.42±0.1 80.74±0.1 Hindi

COPA 60.84±0.6 58.35±0.6 Hindi

Average 72.13 72.32 -

Table 5.9: Accuracy comparison between Bengali and Hindi Unigram BERT and
Bilingual Unigram BERT, except NER task, which compares F1 score.

and Midas discourse datasets but remains comparable for BBC News dataset. Inter-

estingly, Bilingual BERT improves performance by 1 point in the IITP Movie Reviews

dataset. Since Hindi has more data availability, this approach can enable knowledge

transfer from both languages to improve performance in Bengali datasets with less

data availability.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

To address the specific needs of Sanskrit-originated languages, we have presented

Bengali and Hindi Unigram and character-level tokenizers and pre-trained mod-

els. We show that these tokenizers are well suited for low-resource Bengali and

Hindi languages by demonstrating improved performance in a diverse set of down-

stream tasks. Both tokenizers, especially Bengali and Hindi character-level tok-

enizer, show robustness over the original BERT tokenizer in highly erroneous and

inflected settings. These experimental results illustrate the importance of under-

standing language-specific needs and choosing a tokenization method accordingly.

The Bengali and Hindi character-level tokenizer can integrate fine-grained intra-

word information for constructing word representations. Thus, it might be better

equipped to attend compound characters, modified vowels, and consonants. Ben-

gali and Hindi Unigram tokenizer finds the most probable split into tokens to pro-

duce more meaningful units and better separate roots, affixes, and modified vowels.

Therefore, it might help the NLU model to learn intra-word dependencies better and

understand how words are formed in highly inflected and morphologically rich Bengali

and Hindi languages.
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6.2 Future Work

In future research, we plan to run experiments on more Bengali and Hindi NLU

benchmarks and pre-train models on larger document-level corpora with longer se-

quences. Since Hindi and Bengali have a lot of dialects, we plan to pre-train models

on informal Bengali and Hindi texts besides formal texts. It is possible to experiment

with the zero-shot cross-lingual transfer because Hindi has comparatively more data

availability than Bengali. So, we plan to fine-tune Bilingual Unigram BERT on the

Hindi dataset and test on the Bengali equivalent version to see whether the bilingual

model can transfer cross-lingual knowledge.

In addition, we intend to use a more efficient pre-training objective, like replaced

token detection and span masking instead of tokens. We believe the span masking

strategy is better suited for Bengali and Hindi loosely bound word ordering character-

istics. Although word order is loosely bound at the local word group level, intra-chunk

words always tend to stay together. So, we can mask local word groups as a span,

thus enabling the NLU model to learn how local word groups or constituent chunks

are formed. Besides span masking, we can modify positional embeddings to handle

such relatively free word-ordering characteristics.

Future research can apply similar tokenizers to more recent and larger NLU mod-

els (like RoBERTa [16], DeBERTa [61]). We can experiment with Unigram and

character-level tokenizers for other languages with similar characteristics, such as

Urdu, Assamese, Nepali, Odia, Gujarati, Marathi, and Punjabi. It is also possible

to fuse character-level and subword-level information from character-level and Uni-

gram tokenizers and introduce an innovative pre-training strategy to optimize such

combined tokenizer-based language models. Finally, we can incorporate similar tok-

enization strategies for Bengali and Hindi natural language generation (NLG) models.
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Chapter 7

Limitations

For the pre-training corpus, we carefully considered data sources with minimum of-

fensive texts. However, there might be unpleasant content like objectionable text

and sociocultural or stereotypical biases. Such biases can contribute to biased word

representations and have a negative impact, especially for text generation purposes.

In addition to acquiring linguistic knowledge such as syntax, structure, and gram-

mar, data-driven pre-trained language models can learn factual or relational knowl-

edge from the pre-trained corpus [62]. This association learning might be helpful for

downstream tasks like cloze-style question-answering but can also propagate biases to

target tasks. For example, state-of-the-art like GPT-3 demonstrates biases [63] like

relating men with jobs requiring higher levels of education or expertise. Such biases

can impact downstream NLP tasks. However, recent literature [62] shows that we can

change task-specific adaptation methods to mitigate such harmful effects on society

in downstream applications. For instance, fine-tuning a smaller set of parameters,

like the final layer, and keeping the rest of the parameters fixed can make the model

more robust to such biases.

Another limitation of our work is that our pre-training corpus does not include

emojis. Therefore, our tokenizers and pre-trained models may not be able to capture

additional contextual information encoded in emojis. Even the original BERT vo-

cabulary does not have any textual emoticons present in its vocabulary. Emoji-rich
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datasets are found mainly in social media contexts. Emoji plays a vital role in sen-

timent analysis and conversational settings. For example, facial emojis can indicate

positive or negative emotions [64] and are usually common on social media posts.

Understanding emojis can further improve the performance of language models in

such downstream tasks [65]. One possible solution for this problem is to add new

tokens representing emojis to the model’s vocabulary and further fine-tune the model

on an emoji-featured dataset. The first step would not be required for the Bengali

and Hindi Character BERT model as it is not limited to a fixed vocabulary. Hence,

the second step of fine-tuning the model on an emoji-rich dataset will suffice.

We used a maximum sequence length of 128 for pre-training our models due to

the limitation of computing resources, especially GPU memory constraints. As a

result, our model’s accuracy might not reach its highest potential for tasks requiring

long-range dependencies. However, pre-training the models on longer sequences can

improve the performance of document-level tasks. Document-level tasks include news

article genre classification and cloze-style QA from Wikipedia articles.

Finally, we compare our pre-trained model’s performance with results published

in other papers. We noticed that previous papers did not include standard deviation

values from different folds or random runs, limiting measures of dispersion.
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Appendix A: Fine-tuning
hyperparameters and Computation
time

A.1 Bengali and Hindi Unigram BERT

Table A.1 shows the training Hyperparameters of the Bengali and Hindi Unigram

BERTmodel. In the following table, we report the learning rate (LR), batch size (BS),

max epoch (ME), weight decay (WD), and learning rate warmup ratio (WR). We also

provide information about the time required (TR) to run individual experiments,

including training time and hyperparameter search (minutes).

A.2 Bengali and Hindi Character BERT

Table A.2 shows the training Hyperparameters of the Bengali and Hindi Character

BERT model. In the following table, we report the learning rate (LR), batch size (BS),

max epoch (ME), weight decay (WD), and learning rate warmup ratio (WR). We also

provide information about the time required (TR) to run individual experiments,

including training time and hyperparameter search (minutes).

A.3 Model Quality Analysis and Pre-training Com-

putation time

We also provide information about the time required to run model quality analysis

and pre-training experiments (hours) in tables A.3 and A.4.
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Task Corpus LR BS ME WD WR TR

Question Bengali Question 3e-5 32 4 0.01 0.00 30

Classification Classify

Named Entity Bangla NER 2e-5 16 4 0.01 0.06 87

Recognition dataset

Genre
Soham News 3e-5 32 6 0.01 0.00 45

Classification Articles

BBC News 3e-5 32 4 0.01 0.05 27

Articles

Hate Speech Hindi Hate 3e-5 32 3 0.01 0.00 48

Detection Speech dataset

Sentiment
Hindi Product 3e-5 16 4 0.01 0.00 33

Analysis Reviews

IITP Movie 3e-5 32 5 0.02 0.05 24

Reviews

Natural Language COPA 5e-5 32 2 0.01 0.10 21

Inference (NLI) dataset

Discourse Analysis MIDAS 3e-5 32 3 0.01 0.10 27

Discourse dataset

Question Cloze-style Multiple 2e-5 32 4 0.01 0.00 180

Answering Choice QA

Table A.1: Hyperparmaters for fine-tuning Bengali and Hindi Unigram BERT on
eight diverse downstream tasks.
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Task Corpus LR BS ME WD WR TR

Question Bengali Question 3e-5 32 6 0.01 0.00 41

Classification Classify

Named Entity Bangla NER 3e-5 32 3 0.01 0.06 90

Recognition dataset

Genre
Soham News 3e-5 32 5 0.01 0.00 57

Classification Articles

BBC News 2e-5 32 6 0.01 0.00 33

Articles

Hate Speech Hindi Hate 3e-5 32 3 0.01 0.00 41

Detection Speech dataset

Sentiment
Hindi Product 3e-5 16 4 0.01 0.00 24

Analysis Reviews

IITP Movie 2e-5 32 3 0.01 0.00 24

Reviews

Natural Language COPA 5e-5 32 2 0.01 0.00 27

Inference (NLI) dataset

Discourse Analysis MIDAS 2e-5 32 3 0.01 0.00 27

Discourse dataset

Question Cloze-style Multiple 2e-5 32 4 0.01 0.00 270

Answering Choice QA

Table A.2: Hyperparmaters for fine-tuning Bengali and Hindi Character BERT on
eight diverse downstream tasks.
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Corpus Unigram BERT Character BERT baseline BERT

BDNews24 14 hours 19 hours 14 hours

Prothom Alo 24 hours 33 hours 24 hours

Naya Diganta 1 hour 2 hours 1 hour

Livehindustan 8 hours 11 hours 8 hours

Hindi Patrika 1 hour 2 hours 1 hour

Table A.3: Model quality analysis computation time. Naya Diganta and Hindi Patrika
were only used for testing purposes.

Pre-training corpus Unigram BERT Character BERT

Bengali corpus 61 hours 73.5 hours

Hindi corpus 73.5 hours 90 hours

Table A.4: Pre-training time for different models.
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Appendix B: Examples for
Tokenizers

B.1 Wordpiece Tokenizer

B.1.1 Corpus

We employ a toy example with a small corpus to demonstrate how the Wordpiece

algorithm works. The toy corpus contains only three sentences with thirty words,

given below.

“this is a demonstration of how subword tokenizer works in practice. this is a

toy example for explanation purposes. two subword level tokenization methods can be

explained using this example.”

B.1.2 Vocabulary

For this toy example, we have specified the vocabulary size to be 65 for the Wordpiece

tokenizer. In this example, we arbitrarily select 65 as the vocabulary size. It is

typically chosen based on downstream validation performance and computation cost.

Moreover, we calculate how often each word appears to obtain token frequencies later.

The word frequency table B.1 presents words and their counts, respectively.

As explained in section 3.1, the algorithm starts with a small vocabulary consist-

ing of all characters in the corpus. Thus, the words are converted to a sequence of

characters, and non-beginning letters of words are preceded by a ‘##’ to indicate

that they occur after the first letter. Now, the initial vocabulary is shown below.
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Word Frequnecies

this 3

is 2

a 2

demonstration 1

of 1

how 1

subword 2

tokenizer 1

works 1

in 1

practice 1

. 3

toy 1

example 2

for 1

explanation 1

purposes 1

two 1

level 1

tokenization 1

methods 1

can 1

be 1

explained 1

using 1

Table B.1: Word statistics.
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[##a, ##b, ##c, ##d, ##e, ##f, ##g, ##h, ##i, ##k, ##l, ##m, ##n,

##o, ##p, ##r, ##s, ##t, ##u, ##v, ##w, ##x, ##y, ##z, ., a, b, c, d, e,

f, h, i, l, m, o, p, s, t, u, w]

B.1.3 Merge Rules

This algorithm will expand the initial vocabulary to a pre-defined vocabulary size by

learning merge rules to combine pairs of tokens. The initial characters of the base

vocabulary are considered tokens. Wordpiece will calculate a score for each pair of

tokens from the existing vocabulary using the equation below.

Score =
freq(t1t2)

freq(t1)× freq(t2)
(B.1)

We calculate and include scores for ten pairs as examples in table B.2.

pair scores

t##h 0.107

i##s 0.061

d##e 0.077

o##f 1.000

##i##s 0.025

##e##m 0.026

##m##o 0.022

##o##n 0.024

##n##s 0.008

##h##i 0.068

Table B.2: Scores obtained from first ten pairs.

For example, the token pair ‘t##h’ appears three times in the word ‘this’. In

addition, the individual tokens ‘t’, and ‘##h’ occur 7 and 4 times, respectively.

From the frequency table B.1, we can observe that the words ‘this’ (3), ‘tokenizer’

(1), ‘toy’ (1), ‘two’ (1), and ‘tokenization’ (1) have the letter ‘t’ in the beginning;
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thus, ‘t’ appears seven times in total. On the other hand, ‘##h’ has a prefix ‘##’

indicating it’s a non-beginning character that appears four times in the middle of the

words ‘this’ (3) and ‘methods’ (1). So, we compute the score as follows.

Score =
freq(t##h)

freq(t)× freq(##h)
=

3

7× 4
= 0.107 (B.2)

Once the scores are calculated for all pairs, it will choose the pair with the best score

for merging, which is ‘o##f’ with a score of 1.0. This score can be calculated from

the frequency table B.1. ‘o’ appears at the beginning of the word ‘of’ one time, and

‘##f’ appears only once in the middle of the word ‘of’. The equation emphasizes

‘o##f’ because ‘o’ and ‘##f’ as individual tokens are less frequent, occurring once

in the corpus. We compute the score as below, and ‘of’ is added to the vocabulary.

Score =
freq(o##f)

freq(o)× freq(##f)
=

1

1× 1
= 1.0 (B.3)

We continue appending pairs with the highest scores, applying merge rules, until we

reach the pre-defined vocabulary size of 65. We save only the final resulting vocab-

ulary but not the merge rules. The final vocabulary is shown here, including all the

special tokens for the BERT model.

[[PAD], [UNK], [CLS], [SEP], [MASK], ##a, ##b, ##c, ##d, ##e, ##f, ##g,

##h, ##i, ##k, ##l, ##m, ##n, ##o, ##p, ##r, ##s, ##t, ##u, ##v,

##w, ##x, ##y, ##z, ., a, b, c, d, e, f, h, i, l, m, o, p, s, t, u, w, of, su, sub, pu,

subw, ex, ##pl, ##mpl, expl, pr, pur, purp, pra, prac, pract, exa, exampl, expla, ca]

B.1.4 Tokenizing Word

We can tokenize any word once the tokenizer is trained on the toy corpus. We tokenize

the word ‘examples’ using the tokenizer. Given the final vocabulary, the Wordpiece

tokenizer will search through all the tokens in the vocabulary and select the longest

available token at the beginning of the word. Since the prefix ‘##’ indicates the
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token appears in the middle of the word, not at the beginning, the tokenizer does

not consider tokens with prefixes like ‘##e’ while searching. Among the possible

options ‘e’, ‘ex’, ‘exa’,‘exampl’, it will find and split the longest one ‘exampl’. For the

remaining split ‘##es’, the tokenizer will again identify the longest possible token,

‘##e’. Finally, the last remaining split ‘##s’ is already in the vocabulary. Therefore,

‘examples’ is tokenized as [‘exampl’, ‘##e’, ‘##s’].

B.1.5 Tokenizing Out-of-vocabulary Word

The out-of-vocabulary word occurs when the Wordpiece tokenizer encounters sub-

words not present in the vocabulary. For example, tokenizing the word ‘join’ will

result in [UNK], thus indicating an unknown word. While the tokens ‘##o’, ‘##i’,

and ‘##n’ are already present, it cannot find the beginning subword ‘j’ in the vocab-

ulary.
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B.2 Unigram Tokenizer

B.2.1 Vocabulary

To demonstrate the unigram algorithm, we use the same toy corpus. As explained

in the section 3.2, we initialize a seed vocabulary with 200 tokens, much larger than

our predefined vocabulary size. In this toy example, we arbitrarily chose 65 as the

predefined vocabulary size. Vocabulary size is typically chosen based on downstream

validation performance and computation cost. We include all 24 basic characters

and 176 most common substrings from the corpus in the seed vocabulary. The seed

vocabulary is shown here.

[ , t, h, i, s, a, d, e, m, o, n, r, f, w, u, b, k, z, p, c, y, x, l, v, t, th, wo, or,

is, on, ti, wor, w, e, ex, ex, pl, th, i, at, ati, atio, ation, tio, tion, io, ion, word,

ord, rd, to, to, le, es, thi, this, thi, this, hi, his, is, a, ra, ho, s, su, sub, -

subw, subwo, subwor, subword, su, sub, subw, subwo, subwor, subword, ub, ubw,

ubwo, ubwor, ubword, bw, bwo, bwor, bword, tok, toke, token, tokeni, tokeniz,

tok, toke, token, tokeni, tokeniz, ok, oke, oken, okeni, okeniz, ke, ken, keni, keniz,

en, eni, eniz, ni, niz, iz, wo, wor, in, p, exa, exam, examp, exampl, exam-

ple, exa, exam, examp, exampl, example, xa, xam, xamp, xampl, xample, am, amp,

ampl, ample, mp, mpl, mple, ple, f, exp, expl, expla, exp, expl, expla, xp, xpl,

xpla, pla, la, an, se, wi, wit, with, wi, wit, with, it, ith, ds, d, de, dem, demo,

demon, demons, demonst, demonstr, demonstra, demonstrat, demonstrati, -

demonstratio, demonstration, de, dem, demo, demon, demons, demonst, demonstr,

demonstra, demonstrat, demonstrati, demonstratio, demonstration, em, emo, emon,

emons, emonst, emonstr, emonstra, emonstrat, emonstrati, emonstratio, emonstra-

tion, mo, mon, mons]

Table B.3 shows some example tokens present in the seed vocabulary and their
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frequencies. The first letter of each word starts with a ‘ ’ because each space was

replaced with a ‘ ’ during the pre-tokenization step. Token frequencies are obtained

from the word frequencies in the corpus (see the table B.4 below).

Token Frequnecies

t 7

th 6

wo 5

or 5

is 4

on 4

ti 4

wor 4

w 4

e 4

ex 4

ex 4

pl 4

th 3

i 3

at 3

tokeniz 2

atio 3

ation 3

tio 3

Table B.3: Token statistics.
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Word Frequnecies

this 3

is 2

a 2

demonstration 1

of 1

how 1

subword 2

tokenizer 1

works 1

in 1

practice 1

toy 1

example 2

for 1

explanation 1

purposes 1

two 1

level 1

tokenization 1

methods 1

can 1

be 1

explained 1

using 1

Table B.4: Word statistics.
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B.2.2 Calculating Loss

We need to compute corpus-level loss for the current vocabulary at each training step.

To calculate loss, we compute probabilities for each token in the vocabulary. Similar

to the unigram language model, each token is considered independent, so we can

estimate the probability for each token by dividing the token frequency by the sum of

all token frequencies in the corpus. We report a log of probabilities to avoid numerical

underflow. Moreover, negative log values are recorded so that negative log values can

be used directly to estimate the negative log-likelihood during loss calculation. The

first 20 probability values are reported in the table B.5.

For example, the token ‘ tokeniz’ occurs a total of 2 times in the corpus in the

words ‘tokenizer’ (1) and ‘tokenization’ (1), respectively. Then, the token frequency

can be divided by the sum of all token frequencies (568) in the corpus to obtain token

probability, shown below.

P ( tokeniz) = −log

(︃
freq( tokeniz)

freq(sum)

)︃
= −log

(︃
2

568

)︃
= 5.649 (B.4)

Similarly, we can calculate the probability for token ‘ation’, which occurs three times

in the words ‘demonstration’ (1), ‘explanation’ (1), and ‘tokenization’ (1), respec-

tively. The calculation is shown below.

P (ation) = −log

(︃
freq(ation)

freq(sum)

)︃
= −log

(︃
3

568

)︃
= 5.244 (B.5)

Once we are done estimating token probabilities, we have all the required values

to calculate loss. Each word in the corpus is tokenized using available vocabulary

for calculating loss. Given token probabilities, the Viterbi algorithm is applied to

consider the most likely segmentation of each word into sub-word tokens. For example,

if we tokenize the word ‘tokenization’ with the current vocabulary, we will get the

most probable splits [‘ tokeniz’, ‘ation’]. As tokens are considered independent, we

can multiply token probabilities to obtain word probability, which is equivalent to

addition in log space. So, the negative log probability for the word ‘tokenization’ will
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Token Probabilities

t 3.634

h 4.396

i 3.703

s 3.703

a 3.944

d 4.550

e 3.346

m 4.956

o 3.509

n 4.040

r 4.145

f 5.244

w 4.145

u 5.244

b 5.244

k 5.244

z 5.649

p 4.396

tokeniz 5.649

ation 5.244

Table B.5: Token probabilities.

be the sum of the log probabilities of ‘ tokeniz’ and ‘ation’, which is 10.893. Like

‘tokenization’, we apply a similar process to get negative log probabilities for each

word. The table B.6 shows each word’s negative log probabilities and frequencies.

Finally, we multiply this word level log probability values with corresponding word

frequencies from the table to obtain final scores. The corpus level loss is the sum of
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Word Frequencies Word Probabilites

this 2 5.649

is 2 5.649

a 2 5.649

demonstration 1 6.342

of 1 11.598

how 1 12.639

subword 2 5.649

tokenizer 1 13.140

works 1 14.596

in 1 8.495

practice 1 30.087

toy 1 11.586

example 1 5.649

for 1 10.382

explanation 1 14.932

purposes 1 31.889

with 2 5.649

few 1 13.140

words 1 11.298

two 1 9.129

level 1 22.328

tokenization 1 10.892

methods 1 24.856

can 1 13.738

be 1 11.436

explained 1 19.195

these 1 13.833

examples 1 9.352

Table B.6: Word probabilities.
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these final scores computed using the equation below.

loss =
n∑︂

i=1

freqi ∗ (−log(P(wi))) (B.6)

We get the following if we sum all the values in the table B.6.

loss = freq( this) ∗ (−log(P( this)) + · · ·+ freq( examples) ∗ (−log(P( examples))
(B.7)

loss = 2× 5.649 + · · ·+ 1× 9.352 = 387.022 (B.8)

B.2.3 Discarding Tokens

After determining corpus-level loss, we need to determine how much loss increases for

removing each token from the vocabulary. To obtain individual token-level loss, we

need to estimate loss after removing that token from the vocabulary. Then, we can

subtract the corpus-level loss from the loss without that particular token, indicating

the increase in loss for that token. In the table B.7, we have included token-level loss

for some example tokens.

Instead of removing one token at a time, we discard 10% of tokens having the

least impact on corpus-level loss at each training step. This shrinking factor, which

represents the percentage of tokens to discard, is chosen based on the final corpus-

level loss. 10% yields the best corpus-level loss for this corpus. In the first iteration,

20 tokens were removed, as shown in the table B.8. Table B.7 shows that the token

‘ation’ increases the loss by 7.889 because words like ‘explanation’, and ‘tokenization’

cannot be tokenized with the best probable split without this token. Given the

probability values, the best segmentation for token ‘tokenization’ and ‘explanation’

are [‘ tokeniz’, ‘ation’] and [‘ expla’, ‘n’, ‘ation’]. Thus, the algorithm preserves tokens

necessary for tokenization purposes.

From the table B.8, we can observe the token ‘ ex’ has a zero loss and can be

removed from the vocabulary. This token appears at the beginning of the word ‘ex-

amples’. It can be discarded because the best possible segmentation of ‘examples’ is
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Token Loss

t 2.083

th 1.224

wo 2.921

or 2.921

ex 0.000

on 0.000

ti 2.381

wor 0.000

w 0.000

e 0.000

mo 0.000

mon 0.000

mons 0.000

tokeniz 5.691

th 1.224

t 2.083

th 2.152

ho 2.256

ation 7.889

mo 0.000

Table B.7: Increase in loss for removal of each token.

[‘ example’, ‘s’], which does not include the token ‘ ex’. We continue discarding 10%

of tokens with minimum impact on loss in each iteration until we reach the desired

vocabulary size of 65. The final vocabulary is shown below, where five spots are

preserved for special tokens. For tokenization purposes, we save both the vocabulary

and scores.
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Token Loss

is 0.0

on 0.0

wor 0.0

w 0.0

e 0.0

ex 0.0

ex 0.0

pl 0.0

i 0.0

at 0.0

ati 0.0

atio 0.0

tio 0.0

tion 0.0

io 0.0

ion 0.0

word 0.0

ord 0.0

rd 0.0

to 0.0

Table B.8: Tokens with least impact on corpus-level loss.

[[PAD], [UNK], [CLS], [SEP], [MASK], , t, h, i, s, a, d, e, m, o, n, r, f, w, u, b, k,

z, p, c, y, x, l, v, t, th, wo, or, ti, th, ation, to, le, es, this, is, a, ra, ho, subword,

tokeniz, wor, in, p, example, f, expla, an, with, ds, demonstration, emonstr,

emonstra, emonstrat, emonstrati, emonstratio, emonstration, mo, mon, mons]
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B.2.4 Tokenizing Word

Given the vocabulary and scores, we can tokenize any word. If we tokenize the word

‘examples’, the tokenizer will split it into subword tokens [‘ example’, ‘s’]. Therefore,

the unigram tokenizer can better split the root ‘ example’ and the suffix ‘s’. However,

the Wordpiece tokenizer fails to do that by tokenizing the word ‘examples’ as [‘ex-

ampl’, ‘##e’, ‘##s’]. Similarly, the unigram tokenizer will also tokenize ‘subwords’

into most likely split [‘ subword’, ‘s’], thus splitting into root and suffix. On the

contrary, Wordpiece tokenizer tokenizes ‘subwords’ as [‘subw’, ‘##o’, ‘##r’, ‘##d’,

‘##s’]

B.2.5 Tokenizing Out-of-vocabulary Word

The unigram tokenizer will tokenize the word ‘join’ into [UNK] despite tokens ‘o’, ‘i’,

and ‘n’ being present in the vocabulary, as the beginning subword ‘ j’ is absent.
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