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Abstract

The two-dimensional response to oscillatory flow of an elastically mounted rigid
cylinder is studied experimentally and the results are compared with numerical
predictions of the response. The tests are conducted in a U-tube with the Keulegan-
Carpenter number, Kc, between 2 and 60, and the ratio of the natural frequency
in water to the fluid oscillation frequency, f,/f., between 1 and 8.6. The results
of the experimental portion of the study show that the response of the cylinder
depends on both Kc and f,,/ f,. For many flow conditions the cylinder was observed
to respond in well defined trajectories that could be classified by the number of
transverse cycles of motion completed for each cycle of water motion. One principal
cycle of inline response was cbserved for each cycle of water motion. In general,
‘u. transverse response tended to assume integer multiples of the flow frequency,
however in contrast to studies of transverse response alone, the transverse response
did not necessarily occur at the integer multiple closest to the natural frequency
of the cylinder. In additior, the transverse response amplitude was not any larger
for cases in which f,/f, was an integer. Transverse response amplitudes were not
ohserved to exceed 1.2 diameters.

Three sets of equations of motion are developed to predict the response of
cylinders to oscillatory flow. Two of the models use the relative velocity * ..icrulation
of the Morison equation for the fluid force inline with the flow, ho. or each
use different models of the transverse force. The third model considers lift and
drag force components parallel and perpendicular to the direction of instantaneous
relative velocity between the fluid and the cylinder. Comparison of the numerical
models’ predictions to the experimentally observed trajectories showed generally
good agreement, however the models were least successful in predicting the cases
in which there were abrupt changes in direction. Suggestionc - improvements to
the models are also made.

The results of this study have identified the need for flow visualization studies of

the two-dimensional response of a cylinder to oscillatory flow.
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Chapter 1

Introduction

As offshore resource exploration and development progress to deeper water,
further research is required to obtain an understanding of the forces on offshore
strctures and the resulting responses to establish safer, more efficient designs. One
particular area of interest is that of the dynamics of flexible members, specifically
marine risers. A riser connects a wellhead at the seabed with a surface vessel, such as
a tension leg platform or a semisubmersible. Risers are typically 45 cm to 60 cm in
diameter, and function as a conduit for the drilling equipment, mud and in the case
of production risers, natural gas or oil. As drilling is done in greater depths of water,
risers become progressively more flexible due to their increased length. Currently,

risers up to about 700m in length are in use.

When the flexible riser is exposed to curreats and/or wave action, its response to
the fluid forces affects the fluid flow. This fluid-styucture interaction may lead to an
amplification of the forces on the structure and sustained large amplitude responses.
Failure due to excessive load or fatigue may result. The forces causing the response
of the structure may be attributed to several sources. Currents cause drag forces in
the direction of the flow. and in addition there may be forces due to vortex shedding
which act transversely to the flow and, less significantly, in the direction of flow. Wave

action can cause forces in the inline direction (the direction of wave propagation) due



to the drag of the flow about the structure, as well as due to the acceleration of the
flow. Vortex shedding due to wave action may also occur, causing both inline and
transverse forces, with the added complication that the vortices shed in one half cycle
become the incident flow for the next half cycle. Adlitional complications are that
the current, wave motion, and response characteristics of the structure vary with
depth, and that the current and wave effects may not be collinear.

An important design problem is to be able to predict both the forces on a structure
and the response. Despite many advances in computational fluid mechanics, accurate
computation of the flow and structural response for marine structures is not yet
feasible. However, once the two-dimensional response of a elastically supported
cylinder has been studied experimentally, the usefulness of simpler equations to
predict the response can be evaluated. In particular, the Morison equation and
various modifications to it have been used quite successfully to predict inline forces
on fixed cylinders in oscillatory and wavy flows. The applicability of these equations
to the case where the cylinder can respond in two dimensions has yet to be assesscd.

Motion of the fluid due to wave action is an approximately elliptical orbit. In the
case of linear inviscid wave theory for deep water, the particle motions are circular,
with an amplitude that decreases exponentially to zero from a maximum at the water
surface. In shallower water, the motion becomes a flatter ellipse at the surface and
straight back and forth at the bottom. By far the most significant component of
this type of flow is that perpendicular to the structure. To understand the basics
of the fluid-structure interaction it is convenient to study this component alone in
nominally twc-dimensional oscillatory flow.

As a necessary step in understanding the response of structures at sea, the
response of an elastically mounted rigid circular cylinder to oscillatory flow is
studied in this thesis. It is hoped that by first understanding the mechanisms
of two-dimensional response due to planar oscillatory flow in a U-tube, a greater
understanding of the behaviour in the sea may be attained. A literature review of

studies relevant to the present investigation is presented in Chapter 2. Chapter 3



contains a description of the experimental apparatus, and is followed by the
experimental results in Chapter 4. In Chapter 5 simple numerical models of the
behaviour of the cylinder are developed, based on previous studies of inline and
transverse: response alone, and are applied to the conditions studied in the U-tube.
The results of the numerical predictions are compared to the experimentally observed
results in Chapter 6 to assess the usefulness of the equations of motion. Finally,
in Chapter 7 conclusions about the experimental results and numerical models are

presented, and important topics for future studies are identified.



Chapter 2

Literature Review

To provide the groundwork required for at least a partial understanding of the
response of offshore structures in waves, investigations of simpler cases of flow about
cylinders are summarized in this chapter. First, the features of steady flow about
fixed structures is discussed, followed by a summary of the response of flexible
structures to steady flow. Studies of oscillatory flow about fixed cylinders are then
considered and compared with studies of wavy flow on fixed cylinders. Finally, most
of the emphasis is placed on investigations of the response of flexible structures in
oscillatory flow and wavy flow. In this thesis, the term “oscillatory flow” refers to
flow in which the flow field removed from the cylinder describes rectilinear harmonic
motion (straight back and forth), while the term “wavy” flow refers to flow in which
the flow field removed from the cylinder describes an orbital motion in a vertical
plane. At the end of the chapter a synthesis is presented of the significant features

of previous work as they relate to the present study.

2.1 Vortex Shedding in Steady Flow

Vortex shedding from bluff bodies in steady flow has been the subject of much

research because it is encountered in many engineering situations, particularly



structures in wind orx currents. Examples include chimneys, transmission wires,
buildings, piles, offshore structures, heat exchanger tubes and reactor tubes. For
a more detailed treatment of vortex shedding and flow induced vibrations in general

the reader is directed to references (1, 2].

Any sufficiently bluff body will shed vortices due to the separation of the boundary
layer. As the flo along the surface of 2 body moves from the stagnation point toward
the downstream side of the object, it loses energy due to friction. Eventually the
flow does not have enough kinetic energy to overcome the increasing pressure on
the downstream side, and separates from the surface of the object. A shear layer is
formed between the fluid flowing past the body and the slower moving fluid in the
wake of the body. This shear layer which trails downstream from the separation point
becomes unstable and rolls up into discrete vortices. For a wide range of Reynolds
numbers, these vortices are shed alternately from each side of the body, producing a

Kirmdn vortex street.

A Strouhal number S, can be defined as
S = f,D/U, (2.1)

which relates the vortex shedding frequency f, (cycles/sec), the constant free stream
velocity U, and a characteristic dimension of the body, D. For circular cylinders in
steady flow with a Reynolds number, Re, frcm 300 to 3 x 10°, S is approximately
constant at 0.2 (1, 3). In one cycle of vortex shedding, a vortex is shed from one side
followed by another shed from the other side. In what follows the vortex shedding

frequency corresponds to the shedding of a pair of vortices.

Separation also has a large effect on the pressure distribution about the cylinder,
giving rise to a significant mean drag force. For large Re, viscous shear forces
contributing to the drag are much smaller than the forces due to the pressure
distribution. An important consequence of vortex shedding from a body such as
a circular cylinder is the variation of lift and drag forces imposed on the body due

to the fluctuations in the pressure on the surface of the body. Variations in the force



transverse to the flow direction, or lift forces, occur at a frequency primarily equal
to the vortex shedding frequency and have zero mean value. Variations in the inline
force occur primarily at a frequency that is twice the vortex shedding frequency,
and are much smaller than both the mean drag and the maximum transverse force.

Because of this, the inline time dependent forces are often neglected.

In the case where the cylinder is not fixed, but is able to respond in the inline or
transverse directions, or both, it is possible that the natural frequency of the structure
may be close to the frequency of force variations in either the inline or transverse
directions and cause large amplitude response. Due to the greater magnitude of the
varying forces in the transverse direction, vibration in that direction is much more
common. A familiar example of this phenomenon is the vibration of power lines in

the wind due to vortex shedding, causing them to “hum” or “sing”.

When the natural frequency of the body is close to the vortex shedding frequency,
causing significant transverse oscillations, the cylinder motion has an effect on the
fluid flow that is causing the motion. The cylinder motion tends to increase the
strength and organization of the vortex shedding which in turn increases the forces
causing the cylinder motion. In doing so, the vortex shedding frequency shifts to the
natural frequency of the structure, in deviation from the Strouhal relationship, i.e.
the motion of the cylinder controls the vortex shedding. This is known as “lock-in”.
Other terms for this phenomenon are locking-on, synchronization, hydroelastic or
fluid-elastic oscillations, wake capture, self-controlled or self-excited oscillations [4].
Lock-in is characterized by a highly nonlinear interaction between the fluid ” »rces and
structural motion and has been modelled with limited success numerically. Further
discussion of these models follows shortly. Although one might expect that lock-in
would cause larger and larger amplitudes of oscillation, the amplitude of cylinder
oscillations has never been observed to exceed 1.5 diameters [1]. The reason for this
is that “as the cylinder amplitude increases beyond approximately one half diameter,
the cylinder begins to outzun the shedding vortices and the lift coefficient diminishes”
1, p.63].



The range of flow conditions over which lock-in occurs is called the range of

capture, and it is usually expressed in terms of the reduced velocity of the flow,
U= U/Df'h (22)

where D is the cylinder diameter, and f, is the natural frequency of the cylinder.
When the natural frequency of the cylinder equals the vortex shedding frequency
predicted by the Strouhal r- itionship, the reduced velocity is the inverse of the
Strouhal number. This is called the resonant point, and corresponds to a reduced
velocity of about 5 for a wide range of Reynolds number. The range of capture
inciudes the resorant point and depends on the shape of the body. For a freely
oscillating circular cylinder the range of capture extends from the resoaant point to
higher values of reduced velocisy [2]. For example, if the flow speed past a flexibly
mounted circular cylinder is increased, the vortex shedding frequency also increases as
predicted by the Strouhal relationship until the resonant point is reached. Further
increases in flow speed do not change the response frequency or vortex shedding
frequency which remain at f,,, until the upper limit of the range of capture is reached.
Beyond this point the vortex shedding cannot remain at the natural frequency
and returns to the frequency given by the Strouhal relationship, and the response
amplitude drops considerably. There is an exception to the above generalizations.
For certain cases involving dense fluids (such as water) and low reduced velocities,
inline oscillations may arise accompanied by symmetric vortex shedding. (2]

As mentioned earlier, a number of models have been used to predict the response
of a cylinder in steady flow. Blevins [1] presents two such models, the “harmonic”
model and the “wake oscillator” model. The harmonic n:cdel assumes sinusoidal
forcing at the vortex shedding frequency applied to a spring-mounted, damped rigid

cylinder. On a per unit length basis the equation of motion is
- . 1 .
(m + ma)y + 47r(m + mu)(fny +ky= '2'pU2DCL sin ¢, (23)

where y is the transverse displacement, m is the structural mass, m, is the added

mass, { is the structural damping factor, k is the stiffness, p is the fluid density, C,



is the lift coefficient, and ¢ is the phase of the vortex shedding. For steady flow the

vortex shedding frequency is constant, thus

¢ = 27l'fut, (24)

in which f, is that predicted by the Strouhal relationship in Equation 2.1. This
model can be solved as a single degree of freedom harmonic oscillator, however it
tends to overpredict the response near resonance. Further improvements are made by
including amplitude dependence in the value of the lift coefficient. The lift coefficient
is based on a three-term polynomial curve fit to experimental data, such that the
lift coeffident increases for amplitudes y/D up to about 0.5 and then decreases
for amplitudes above that. The lift coeffident becomes negative for amplitudes

significantly over one.

The wake oscillator presented by Blevins [1] employs a momentum balance in a
control volume that contains the cylinder. The fluid forcing terms include a negative
damping term that extracts energy from the flow and a nonlinear fluid governor
term that limits the amplitude of oscillations. The coefficients used in the model
are based on experiments on fixed and forced cylinders in steady flow. The wake
oscillator exhibits resonance at super- and sub-haimonics due to nonlinearities in the
equation, and unlike the harmonic model, it “exhibits entrainment—the frequency
of vortex shedding from an elastically mounted cylinder is entrained by the natural

frequency of the motion” [1, p.70].

2.2 Forces on Fixed Cylinders in Oscillatory and

Wavy Flow

An important distinction must be made between oscillatory and wavy flow. While
most of the research on the forces produced by these flows is ultimately aimed at

estimating forces in wavy flow, it is often preferable to produce oscillatory flow in the



laboratory situation. Oscillatory flow has the advantage of separating structural and
fluid effects under specific conditions from the cumulative effects of depth dependent
forces and structural response characteristics encountered with vertical cylinders in
wavy flow. Wavy flow is characterized by fluid particle paths that describe elliptical
trajectories in a vertical plane in the direction of wave propagation. The exact shapes
of these trajectories change with the depth below the fluid surface, and depex< on
the wave characteristics. In oscillatory flow, the fluid particles follow a trajectory
that is back and forth in a straight line and sinusoidal with time. For the case of
linear inviscid wave theory, oscillatory flow reproduces the normal component of the
fuid motion past a vertical structure. For this reason, oscillatory flow is chosen by
many researchers as a starting point for understanding the forces acting on offshore

structures as well as fluid structure-interaction in waves.

Considerable research has been done to measure the forces on fixed cylinders in
oscillatory flow. There are basically two types of such experiments: fixing a cylinder
in oscillating fluid [5, 6, 7, 8, 9, 10] or oscillating a cylinder in still fluid [11, 12, 13].
In each case the forces are considered as inline, in the direction of fluid or cylinder

motion, and tzansverse, normal to the fluid or cylinder motion.

2.2.1 Inline Forces on Fixed Cylinders

The most common equation used to describe the inline forces on a cylinder
in oscillatory flow is that attributed to Morison et al. [14]. It is a semi-intuitive
equation that expresses the net force F on a cylinder of diameter D and length L as

a superposition of a drag force and a force due to the accelerating fluid as

1 T ,dU
F= 2pCdLDUIUI + 4PC’,,.LD o (2.5)

Here p is the density of the Z1id, U is the water particle velocity, and C,, and Cj are

the empirical inertia and drag coefficients respectively. The drag term incorporates

U|U| rather than U? so that it always acts in the direction of the flow. The inertia
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coeflicient for a fixed cylinder may be expressed as
Cn=0Ca+1. (2.6)

The “1” in the Equation 2.6 accounts for the pressure gradient in the flow that causes
the fluid acceleration dU/dt. When a body is immersed in a fluid with a pressure
gradient, it experiences a “buoyancy force” in the direction opposite to the gradient.
The added mass coefficient, C,, accounts for the force required to accelerate the flow

around the body. For inviscid flow, the value of C, for a cylinder is 1.

The values of C,, and C; must be determined from experimental measurements.
The Fourier averages of these coefficients were found by Keulegan and Carpenter [15]

to be
3 1= F(t)cosd

Ca==31J S02LD

do (2.7)

and

C. = WaT [ F(t)sing

3D Jo pURLD 4, (28)

where 8 = 27t/T, T is the period of fluid oscillation, F(t) is the measured force and
Um is the maximum fluid velocity. Alternatively, a least squares analysis yields an
identical expression for C,, and
8 [ F(t)cos?
Co=—3 [ ZHoras. 2.9
‘T T3rdo pUZID (29)
Experiments to determine values for the.se cosficients have been conducted in wave

tanks, on prototype offshore structurxes xe:? ta U-tubes.

A dimensional analysis of the pr¢'isn. reveals two important nondimensional

numbers, the Reynolds number, Re, arxi# ae Keulegan-Carpenter number, Kc,
Re=U,D/v Kc = UnT/D = 27a/D. (2.10)

Here v is the kinematic viscosity and a is the amplitude of fluid oscillation. The
physical significance of Kc is that it gives a measure of the amplitude of fluid

oscillation relative to the cylinder diametez. If Kc is very small, say Kc < 2, then
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the flow does not separate from the cylinder. For Kc > 2 separation occurs with a
greater number of vortices shed per half cycle for larger values of Kc.

Sarpkaya (5, 6, 7, 8] has established the most comprehensive set of data for forces
on fixed cylinders using a U-tube. Instead of plotting the force coefficients against
Re and Kc as might be expected, the frequency parameter 8 = Re/Ke = D?/vT is
used. The drag and inertia coefficients are then presented as a function of Kc with
B as a parameter. Note that § is constant for a set of experiments conducted in a
U-tube with a given diameter cylinder and frequency of oscillation. Large values of
B indicate that the shed vortices will not dissipate significantly before encountering

the cylinder in the next half cycle.

It should be pointed out that C,, and Cy are actually varying throughout the
cycle, and from cycle to cycle, due to vortex shedding and that the published values
of C,n and Cy are the averages over many cycles. Application of the values of Cp,
and Cy from U-tube laboratory tests to offshore designs requires that allowances be
made for the greater Reynolds number, marine growth causing larger diameters and
roughnesses, complex flow conditions, etc. A survey of recommended values of Cp,

and Cy for design purposes are given by Sarpkaya and Isaacson [4] and Wilson [16].

2.2.2 Transverse Forces on Fixed Cylinders

Sarpkaya [5] also reported the lift forces measured on fixed cylinders in oscillatory

flow by defining an rms value of lift coefficient as

(CL)oms = (measured transverse force)rm,
L/rms = 0.5pUn2DL

Alternatively a maximum lift coefficient can be defined based on the maxirium force.

(2.11)

All the information regarding the amplitude and frequency is contained in these
coefficients, whereas for the inline coefficents, it is assumed that Cy and C,, are
constant.

Bearman et al. [17] proposed a model for the lift force on a cylinder in oscillatory
flow based on a quasi-steady application of the Strouhal relationship. Siarting with
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the sinusoidal model for transverse forcing in a steady flow given by Equation 2.3,
they proposed that the lift force in oscillatory flow be defined in terms of the

instantaneous velocity, U, as

Fu(t) = %p(ﬂuc,, cos 6. (2.12)

Note that U(t) = Unsin2rt/T. Here ¢ is the phase of the transverse force, and its

rate of change with respect to time is the vortex shedding frequency

d
-j? = 27 f,. (2.13)

Since the vortex shedding frequency is determined by Equation 2.1, f, = S|U|/D and
is a function of time. The absolute value of U is used to avoid a negative frequency.

The phase of the transverse force may then be written as

t
b= /o 2 f,dt + 9, (2.14)

where f, is the vortex shedding frequency at that instant and ¢ is a constant phase

angle. The lift force may then be written as

Fu(t) = %pU’DCL cos ( Ji ' 2—”'—%'5‘?5 + ¢) . (2.15)
Evaluation of the integral for the first half cycle yields
6 = KeS[1 — cos(2mt/T)] + v. (2.16)
Thus the lift force becomes
Fu(t) = %pUszCL sin?(2nt/T) cos|KeS(1 — cos(2rt/T)) + ¥].  (2.17)

It can be shown that the same equations apply for the next half cycle.

The transverse force is dominated by vortex sheddiang, and a number of different
methods have been suggested for modelling it. Since some transverse forcing models
are proposed in the context of studies of transverse response, other models of

transverse forcing are presented later in the section on transverse response.
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2.2.2 Transverse and Inline Forces Due to Vortices

Maull and Milliner [10] conducted a study of sinusoidal flow past a circular
cylinder, focusing on the relationship between the inline and transverse forces on a
fixed cylinder and how they are affected by the production and movement of vortices.
The main difference in their approach * this problem is that the emphasis of the
analysis is on a “discrete vortex” method which attributes forces to vortex motion
and inertial forces, rather than on the Morison equation. The inline force is given by
a0y

4 dt’

F=Y P%(py) +2 (2.18)

where I is the circulation about a vortex in the flow field, y is the vertical distance
between the vortex and its image in the cylinder, and the summation is over all
vortices in the flow field. The ‘2’ in the second term is the potential flow value for

Cin. The equation for the lift force is based solely on vortex action, and is

Fi= T2 (o), (2.19)

where z is the horizontal distance between the vortex and its image. Maull and
Millirer state that this pair of equations “has the advantage that the forces can be
explained in terms of the strength and motion of the vortices, and further that the lift

and drag forces may be correlated since they are produced by the same mechanism.”

In tests conducted in a U-tube, they measured the inline and transverse forces
on a fixed cylinder as a function of time over 200 cycles. Ar. average cycle was then
determined for each set of operating conditions. Examples of inline versus transverse
force adapted from those presented by Maull and Milliner {10] are shown in Figure
2.1. Here the lift force coeffident Cy is plotted against an inline force coefficient
Cr which does not include the effect of the inertia force. Therefore these plots only
consider the forces due to the development and movement of vortices. The shapes
of these plots were qualitatively explained by Maull and Milliner using equations for
the lift and drag caused by the motion of point vortices past a cylinder in potential

flow. The important difference between the two plots in Figure 2.1 is that in (a),
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for which K¢ = 7.7, there are two individual vortices produced in each half cycle,
but in (b), for which K¢ = 21.1, there are three. Thus in each cycle of fluid motion
the transverse force varies at twice the fluid frequency in Figure 2.1(a) and at three
times the fluid frequency in Figure 2.1(b). The numbers in Figure 2.1 indicate the
position of the cylinder corresponding to quarter cycle increments of the motion of

the fluid, starting at maximum fluid velocity from left to right.

C.EK. Williamson (18] studied the developmeunt and motion of vortices caused
by a circular cylinder oscillated in still water. Usiug flow visualization in a frame
fixed with respect to the undisturbed fluid, ke identified several repeatable ;atierns
of vortex shedding for particular amplitudes of motion. He found that “the process
of pairing of vortices from the previous half cycle with those in a present half cycle
is fundamental to all the patterns.” These paired vortices convect away from the
cylinder in a direction that is dependent on the flow conditions. The first regime of
flow occurs in the range 0 < Kc < 7, for which symmetric pairs of small attached
vortices split up upon flow reversal and pair with the new small vortices formed in the
next half cycle. Pairs of vortices move away from the cylinder roughly perpendicular
to the flow direction. For Kc > 4, the strength of the vortices becomes unequal and
a lift force is produced. In the range of 7 < Kc < 15, one large vortex is shed per
cycle, producing pairs of vortices convecting away from the cylinder. At the upper
end of this regime, the vortices are convected at about 45 degrees from the direction

of the flow.

C.H.K. Williamson and Roshko {19] conducted a similar study of the vortex
motion in the wake of a cylinder moving through the otherwise still water. The
main difference here was that the cylinder was forced %o oscillate transversely at a
frequency higher than in the inline oscillatory motion. A number of different regimes
of flow depending on the amplitude of inline motion and the relative frequency of the
transverse motion were reported. The regimes of vortex motion are characterized by

a wake of pairs or single vortices, or a combination of both.
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2.3 Response of Cylinders to Oscillatory Flow

C.H.K. Williamson [20] studied the inline response of a cylinder io oscillatory
flow, and compared the experimental results with those obtained by integrating
an equation of motion in which the inline force was given by the relative velocity
formulation of the Morison equation. The experiments were conducted in the vertical
arm of a U-tube, with a cylinder mounted on a supporting structure that was free to
resposd inline with the flow. In the experiments, the Keulegan-Carpenter number
ranged from 0 to 35, while the ratio of the natural frequency of the cylinder in
water (f,) to the frequency of fluid oscillations (f,,) was fixed at f,/f, = 1.15, with
B = 730.

The relative velocity formulation generally was found to give good predictions
of the response and phase angle between cylinder and water motion. To select
coefficients for the numerical solution, the amplitude of water motion was used to
select initial values for C,,, and Cy4. The amplitude of relative motion between the
fluid and the cylinder from the sclution was then used to select new values of C,,
and Cy and the equation was solved again. This iterative process was reneated to
converge on final values for C,, and Cy. The iteratively determined coefficients were
close to the coefficients computed from experimentai measurements. In most cases
the iteratively determined coefficients were close to those initially chosen based on
the amplitude of water motion alone. However, predictions of iteratively determin. d
C4 and C,, differ from the initial values near the resonance region for which f,/f,
is slightly less than 1.

Sarpkaya and Rajabi [21] conducted a study of the response of a cylinder in a
U-tube that was free to move in the transverse direction but was fixed inline, in
contrast to the above experiment in which the cylinder was fixed in the transverse
direction but able to respond inline. They report that the frequency ratio f,/f,

remains constant and nearly equal to unity only at “perfect” lock-in, which occurs at
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a reduced velocity U, = 5.4 and that the relative amplitude of oscillation at perfect
lock-in for both smooth and rough cylinders is a unique function of the response
parameter R, = m(/(pLD*Cpmas"’), where ClLmaz’ is the maximum value of lift
coefficient for the same cylinder fixed in the same flow, m is the mass of the body,
and ( is the structural damping. They also state that for inline oscillations ClLmaz’
should be replaced by the normalized amplitude of the fluctuating component of
the inline force. The most striking aspect of this work is the very clear relationship
between the relative amplitude, y/D, and the response parameter, R,, for perfect
lock-in. A very important point made is that unlike the case of steady flow, where
the relati, - amplitude of oscillation can be plotted as a function of M(/(pLD?), it
is necessary to include “the dynamics of the same flow past the same body when the
latter is held stationary” [21]. This was achieved by including Crmas" in the response

parameter.

McConnell and Park [12] studied the fluid lift forces and transverse cylinder
responses due to an oscillating flow by harmonically driving a circular cylinder back
and forth in still water. The cylinder was mounted vertically from an above water
structure that was rigid in the inline direction and could be fixed or free to respond
in the transverse direction. They propose that the lift force be modelled using the

instantaneous fluid velocity so that
Fi(t) = %pUzDLCL sin 27 f,t. (2.20)

The results presented are principally the plots from spectral analysis of the force and
response signals. These plots are used to show that the model for the lift force they
propose, which uses the square of the instantaneous velocity, is more accurate than
the more traditional method of using the square of the maximum velocity. They
show that their model leads to

Fut) = %pU,,ﬁDLCLg(t) (2.21)
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where
g(t) = sin® 27 ft sin 27 £, ¢. (2.22)

By letting f,/f4 = n, where f; is the cylinder driving frequency, the time varying

portion of the lift force becomes
| . | J
g(t) = 5 sin 2rnjqt — ;5o 2n(n +2) fqt — L 5o 2r(n — 2) fqt. (2.23)

From this the frequency components of the fluid lift force are expected to occur at
fos fo— 2fa, and f, + 2f4. The latter two are referred to as side-band frequencies.
Their results show that the model is quite accurate in terms of frequency content.
An additional result presented is the identification of three regimes of response. First,
U, < 4.4 to 5.3 corresponds to response near the upper side-band frequency, while
4.4 t0 5.3 < U, < 6.6 to 7.2 corresponds to response close to the natural frequency,

and U, > 6.6 to 7.2 corresponds to response near the lower side-band frequency.

McConnell and Park, in a second paper [13], extended the same type of study
to a larger range of Kc, showing that the Strouhal number S = f,D/U,,, defined
here for oscillatory flow using U,,, remains in the range of 0.15 to 0.20 except for a
few cases dominated by lock-in, for both fixed and transversely free cylinders. They
report also that for Kc < 75 an integer ratio of f,/f; was always found, when f, is
assumed to correspond to the largest frequency component of the force signal. For
larger Kc, fractional ratios appeared. This phenomenon was attributed to the fact
that for smaller Kc, the vortices have little time to decay or drift out of place, and
therefore remain in a “position to interact with the cylinder when it returns to that

location”. This leads to a stronger and more consistent vortex shedding pattern.

Analysis of the transverse response showed that the cylinder response frequency
occurs at the natural frequency, except in locked-in regions, where the response
frequency changes to keep f./fs an integer value. Lock-in was less evident for
Kc > 60. The response amplitudes for the tests were generally quite small, with
Yrms/ D < 0.40. The maximum transverse response at a given Kc occurred at lock-in

for cas.s in which f,/fs was an integer.
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Finally, McConnell and Park [13] showed that their measured lift force coefficients
for the transversely free cylinders, defined as Cp, = 2F/pUn?DL, were considerably
larger than those measured by Sarpkaya (5] on fixed cylinders, however Sarpkaya's
results seemed to form a lower bound on the magnitude of C. Their data came close
to this lower bound for cases that gave low amplitude response, thus approximating

Sarpkaya’s fixed cylinder data as would be expected.

Bearman and Hall [22] investigated the transverse response of a cylinder in a U-
tube. A vertical test cylinder was mounted in a carriage in an air filled compartment
above the working section of the U-tube. The frequency parameter for these tests was
B = 478, the ratio of the density of the cylinder to that of the fluid was p./p = 3.28,

and the damping ratio in air was 0.08.

To aid in the analysis of the data, they propose to model the lift force using
Equation 2.17. A spectral analysis of this lift force model “gives power at multiples of
flow oscillation frequency and the distribution of odd and even multiples depends on
the signs of consecutive half cycles” [22]. As Kc increases, the multiple for maximum
power also increases. To support the model they show plots of dimensionless
transverse amplitude, y/D, against Kc for given frequency ratios. Spectral analyses
of conditions corresponding to two adjacent peaks in this plot show that for one peak
the odd multiplcs of the flow frequency stand out, but for the other peak, the even
multiples of the flow frequency stand out.

They conclude that transverse response depends on Kc and f,/ f,, with maximnum
transverse response occurring at integer frequency ratios, that the model they propose
can predict frequency and amplitude modulation and maximum responses at integer
frequency ratios, and that maximum response amplitudes appear to be equal to

about one cylinder diameter.

Sumer and Fredsge [23] studied the transverse vibrations of an elastically mounted

cylinder to oscillatory flow for Kc between 5 and 100, and U, < 16. The experimental
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set-up consisted of a carriage that could be moved above a test tank, with an
elastically mounted horizontal cylinder, neutrally buoyant in most cases, suspended
in the water. The cylinder was free to respond in the transverse direction only. The
cylinder supports protruded through a horizontal submerged plate that was designed
to reduce free surface effects. The tests were conducted by setting an amplitude

of oscillation, and then varying the frequency of oscillation to change the reduced

velocity.

The response frequency of the cylinder, f., was defined as the frequency at which
the highest peak occurs in a spectral analysis of the response, and it displayed a
strong tendency to assume an integer multiple of the flow frequency. As the reduced
velocity was increased, the ratio f./ f,, decreased. The plots of the response amplitude
(maximum and rms) agaiast reduced velocity revealed that the response was quite
large near the middle of a range in which f,/ f,, had a particular integer value, however
the response dropped considerably where the jump was made to a new value of £,/ f,..
The largest maximum response tended to occur for lower reduced velocity in most

cases, with the amplitude never exceeding 0.8 diameters.

Sumer and Fredsge (23] demonstrated that the results of McConnell and Park
[12], if plotted in the same fashion as their own, yield very similar trends, including
the jumps to a new integer ratio of f./f,. The other comparison they made was
with Sarpkaya’s [5] result of the number of vortices shed per cycle. Despite the fact
that their cylinder could respond in the transverse direction, and Sarpkaya’s results

were for a fixed cylinder, the agreement between the two studies is quite good.

With stiffer springs the amplitudes of response were generally larger than for
the softer springs, but displayed the same dependence on U,. The lower response
was attributed to the fact that in the stiff spring cases the cylinder is more lightly
damped. When a cylinder with a specific gravity of 1.8 rather than neutrally buoyant
was used, the dependence of response on U, was virtually identical to the neutrally

buoyant case, however the amplitudes of response were noticeably smaller.
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Sumer et al. [24] studied the two-dimensional response of a cylinder above a scour
trench on the bottom of a wave flume. The cylinder was mounted horizontally on
a carriage that was oscillated in still water to create the wave action. In the tests
U, was varied between 3 and 8 for Kc = 10 and 40. The cylinder was positioned at
different heights above the scour trench. The resulting trajectories of the cylinder
showed that when the cylinder was very close to the trench, or partly in it, the
responses were not vary large. In contrast, when the cylinder was positioned farther
above the trench, trajectories often showed large inline and transverse responses. At
Kc = 10, the trajectories were mainly of an “infinity” shape, while for Kc = 40 the

trajectory was less well defined and included more transverse cycles of motion.

2.4 Response of Cylinders to Wavy Flow

Zedan et al. [25] conducted an investigation of cantilever pile dynamics in response
to waves produced in a wave tank. Two series of tests were performed, one at
kd = 1.63 and one at kd = 2.6, where k is the wave number and d is the water depth.
For each case the natural frequency of the pile was varied by changing weights on top
of the pile. The Reynolds number in all tests was between 4.0 x 10* and 7.0 x 104,
while Kc remained between 10 and 15. These values were taken at the mean water

level. The inline and transverse responses were measured for each test.

The results of these tests indicated that maximum transverse response was
obtained for f, = 2f,. Spectral analysis indicated that most of the energy
was concentrated at a frequency equal to the vortex shedding frequency and
the structure’s natural frequency. The vortex shedding frequency was visually
determined to be twice the wave frequency. The tests reported did not extend to
higher Kc, where one would expect more vortices to be shed per cycle and thus cause
response at higher multiples of wave frequency. Piots of transverse deflection of the
top of the pile against reduced velocity revealed a maximum near U; = 5.5 with a

smaller peak at U, = 6.2 or 7.3, depending on the depth parameter kd.
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Spectral analysis of the the inline response showed that most of the energy was
concentrated near the wave frequency and near the vortex shedding frequency for
tests not close to the lock-in range. Under lock-in the inline response was found to
be sinusoidal at the vortex shedding frequency, and was amplified “substantially”.
Of particular interest is the result that under lock-in conditions, the inline response
occurs at the vortex shedding frequency, rather that twice f,. In steady flow the inline
force has been observed to vary at twice the vortex shedding frequency. If the Morison
equation is applicable, then the dominant frequency should be the wave frequency.
The authors note that “one may speculate that transfer of emergy or interaction
between inline and transverse oscillations is responsible for this behaviour”. The
other possibility they suggest is that this behaviour is due to substantially increased
inline drag under lock-iw conditions, as is observed in steady flow. No mention was

made of symmetric vortex shedding being observed during the tests.

An extension of the above study was made by Zedan and Rajabi [26] using the
same data as [25] in a comparison of the behaviour of a pile in waves to that of a
cylinder free to respond in the transverse direction only in oscillatory flow. Plots of
C against reduced velocity for the pile in waves show two peaks: one at U, = 5.5,
which agrees with the results of Sarpkaya and Rajabi [21] for transverse response in
oscillatory flow. A second peak occurs in the plots at U, = 6.2 and 7.3 for values of
kd = 1.63 corresponding to intermediate water depth, and at kd = 2.6 corresponding

to deeper water, respectively.

The lift coefficient for the pile under lock-in conditions was found to be 1.6 to
1.93 times the lift coefficient measured for a cylinder fixed in barmonic flow of the
same Kc. This compares closely to the value of about two reported by Sarpkaya and

Rajabi [21] for a transversely free cylinder in oscillatory flow.

The frequency of the transverse force caused by waves on the pile occurred
predominantly at f, = 2f, under lock-in conditions, however as the pile natural

frequency and twice the wave frequency became separated, contributions to the force



23

at the frequencies f,, fu, and 3f, became more irepottant. “vbon I vt far enough

from 2f,, the predominact lift frequency was f,,, followed o, fu ard 2f..

Sawaragi et al. [27)] studied the respoase of a pile due to vortex shedding i waves
using a pile in a wave tank. The water depth was 0.35 m for all test: ard & ,ms
ranged from 1.5 to 18. Note that K, s defined by the authors as “{ne rooi mean
square value of the Keulegan-Carpenter : nuber ai each vertical elevation of the

structure”. Tests were conducted on a single cykizder by varying f./ f, and Kec.

The results presented include the trajectory of the displacement of the top of the
pile. Four regimes of response are identified from the trajectories. Examples are
shown in Figure 2.2. The first regime is defined by fu/fw < 1.1 and is characterized
by predominance of the inline force and a response that is almost a straight line in
the inline direction, as shown in Figure 2.2(a). The locus is approximately an oo
shape for 1.1 < fo/fu < 1.7, and for 1.7 < fa/fu < 2.5 the locus is characterized
by a “double ellipse”, as shown in Figures 2.2(b) and (c) respectively. In this latter
frequency range the response is principally in the transverse direction because “the
pile is resonated by the Lift force, which has the frequency two times as large as the
wave frequency”. A similar explanation is provide for the range 2.5 < f./fu < 3.3

in which the loci show large transverse “triple ellipses” that are caused by resonance

at fo = 3fu.

— D
WAVE (c)

1D
Repms = 2.58 Kcpms = 11.2

Kepms = 111
Jul Ju = 1.005] ol fu = 1215 fol fu = 2.028

Figure 2.2 Typical responses of a pile to waves as reported by Sawaragi et al. [27]
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The examples of the loci presented in [27] not only progress from f,/f, =
1.1 to 3.3 but also there is an increase in Kc,, in the sequence. This is not surprising
because in order to exdcite 2nd and 3rd multiples of the wave frequency more vortices
must be shed per cycle, and as was shown by Sarpkaya [5), this is mainly a function of
Kc, especially for low Reynolds numbers. Their results also show that inline response
is predominant for f,/f, < 1.4, and transverse response is dominant for f,/ f, > 1.4
especially when f,/f, is 2 and 3.

Sawaragi et al. [27] propose a formulation of the lift force that is the superposition
of the first three multiples of the wave frequency. It is empirical in nature because
it includes the measured spectral energy and phase angle of the lift force. However,
this forinulation may not be accurate for Kc > 15, because higher Ac would induce

responses at higher multiples of the flow frequency, as found in other work.

Borthwick and Herbert [28] studied the trajectory of a rigid pile pinned at its
base, held vertically with a spring mounted in the base to provide stiffness. The pile
was placed in a wave tank and the response and forces were measured. Similar to the
work in [27], trajectories of the displacement of the top of the pile were plotted and
could be classified according to the frequency ratio f,/f,. When f,/f., approached
an integer value the force and response amplitudes became large and repeatable. For
fnl fu = 2 the trajectory was a horseshoe shape, while cases in which f,,/f,, was not
an integer value, the trajectories were more complex, with multiple loops making up
the trajectory. Higher values of f,,/f,, also tended to increase the complexity of the

trajectcries.

2.5 Concluding Remarks

From the papers that deal with the response of cylinders to oscillatory flow, a
number of trends are evident. First, it appears that the most important paraszeters

that govern the response are Kc and the frequency ratio f,/f,. Although Sarpkaya
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and Rajabi [21] found that perfect lock-in occurred at a particular value of reduced
velocity, this was not reported, or at least not emphasized, in other papers. The
reason for this discrepancy may be that the lock-in found by Sarpkaya and Rajabi
was focused strictly on cases for lock-in to the vortex shedding frequency, and that
they did not encounter large responses at the other forcing frequencies suggested
by McConnell and Park [12, 13] and by Bearman and Graham [9], whose work was
conducted at lower values of Kc and f,/ f,,. Since Sarpkaya and Rajabi’s value of f,
was about 9 times that of f,,,if McConnell and Park’s suggestion that forcing occurs
at f,, fo+2f4, and f, — 2f4 is applied, oi:z can see that the three frequencies will be
quite close. It may be that a “range of capture” phenomenon similar to the steady
flow case may cause response to occur primarily at the vortex shedding frequency,
and consequently excitation at the side-band frequencies would be dominated by a

locking-in to the vortex shedding frequency.

McConnell and Park [12] suggested that the lift forces occur at the vortex
shedding frequency and at two side-band frequencies. This does not necessarily
contradict the work of Bearman et al. [17], who proposed that the lift force consists
of multiples of the driving frequency with either even or odd multiples dominating
depending on the flow, because McConnell and Park’s model includes the three
largest components of the model given by [17]. The essential diiference between
the two approaches is that McConnell and Park suggest that the vortex shedding
frequency is constant and an integer multiple of the wave or driving frequency, while
Bearman and Hall suggest that the vortex shedding frequency varies throughout the
cycle. Note that as the number of vortices shed per cycle decrrases, the significance
of a varying frequency of vortex shedding diminishes. For simplicity in a model of the
lift force, it is worth noting that Rajabi [29] found that the first three predominant
harmonics of the lift force could be used to represent the lift force trace quite

accurately, similar to the model proposed by McConnell and Park.

Sumer and Fredsge [23] found that when the cylinder is free to respond in the

transverse direction, the response tends to occur at a frequency that is an integer
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multiple of the flow frequency and is closest to the natural frequency of the cylinder.
The otker frequency components are likely given by the formulation of Bearman and
Hall. That is, all the other multiples of the flow frequency, with the two side-band
frequencies presented by McConnell and Park as the two next strongest components

of the even or odd multiples.

It seems that there is considerable consistency in the approaches to the frequency
relationships, however an additional factor that must be considered is the magnitude
of the response. At lock-in the maximum amplification of the transverse forces seems
to be limited to about a factor of 2 while amplitudes of transverse response scem
to be limited to less than one diameter. Maximum response also depends on the

damping in the system—both fluid and structural damping.

The only known study of the two-dimensional response of a cylinder to oscillatory
flow is that by Sumer et al. [24] in the context of pipeline vibrations in scour trenches.
The study shows that there are definite patterns of response that depend on the flow
conditions, and that these responses become larger as the distance from the scour

trench increases.

There have been no studies known to this author of the two-dimensional response
of a cylinder in oscillatory flow far removed from a solid boundary. The motion of
cantilever piles in wavy flow studied by Zedan et al. [25] and Sawaragiet al. 2, and
Borthwick and Herbert [28] are the close to this situation, however they measure the
cumulative effects of wavy flow on a pile. In what follows an experiment to measure
the two-dimensional motion of a flexibly supported rigid cylinder in oscillatory flow

1s discussed.



Chapter 3

Experimental Apparatus

In this chapter the experimental apparatus and instrumentation for the
experimental portion of the study is described. Specifically, the U-tube, drive system,

test cylinders, springs and video analysis are discussed.

3.1 The U-tube

tor the experimental portion of the present study, a U-tube was chosen as
the means of producing oscillatory flow. U-tubes have been used by a number
of researchers for similar studies (2, 8, 10]. A schematic of the U-tube is shown
in Figure 3.1. It has a cross section 0.6 m by 0.6 m and a natural frequency ~f
oscillation of 0.31 Hz. The U-tube was made in five sections, all of which except the
test section were made of 2.7 mm stainless steel, with reinforcing ribs a maximum
of 0.3 m apart. The remaining section, the centre test section, was constructed from
4.8 mm (3/16 in) stainless steel sheet, with 40 mm ribs as reinforcement. The much
stiffer working section proved necessary for maintaining clearances between the test
cylinder and the walls of the U-tube. A removable hatch on the top of the working
section provided access to the interior of the U-tube, while 10 mm thick float glass

windows on both sides and in the hatch provided a view inside the tunnel. A light
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under the centre of the working section illuminated the specimen through a window
in the bottom of the section. The corners of the U-tube were streamlined to maintain

harmonic flow throughout the U-tube.

Both ends were open to the atmosphere, with the ¢:i- = system located in one end,
and a variable capacitance depth transducer was located in the other. Pressure taps
across the working section were installed to penuit the measurement of the pressure

gradient along the flow, which gives a measure of the acceleration of the fluid.

3.1.1 Drive system

A means of maintaining steady-state oscillations had to be devised. Initially,
a large butterfly valve and air injection system were tested. The 0.4 m diameter
butterfly valve was mounted on the top of one of the arms of the U-tube, and was
pneumatically operated by computer. A compressed air line was also mounted on
top of the same arm and controlled by computer. By closing the butterfly valve
and injecting compressed air, the water could be displaced from equilibrium by the
desired amount. By opening the butterfly valve, the water was set in free oscillation

with a damping ratio of 0.3%.

The water level in one of the vertical arms was monitored using a variable
capacitance water level transducer connected to a data acquisition system in an
IBM PC compatible computer. It was intended that by controlling the opening and
closing times of the air injection and butterfly valve, based on the instantaneous
water level in one cf the arms, the oscillations could be maintained indefinitely. The
most serious problem with this method v 15 that the natural frequency of the water
oscillations was three times higher when the butterfly valve was closed than when it
was open, due to the trapped volume 4% air at the top of one arm. The only way
to avoid the higher frequency oscillaitons was to have the air supply inject air at
exactly the right rate to match the water motion, however even with very carefully

determined opening and closing ".mes for the valve and air supply, satisfactory water
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oscillations could not be attained. Although the water could be made to oscillate
principally at the desired frequency, pressure differential measurements made along
the test section of the U-tube showed that there was a very significant signal at the
higher frequency of 1 Hz. Since fluid acceleration, which is caused by the pressure
differential, causes inertia forces on a body ir oscillatory flow, it became clear that

an alternative method had to be developed to maintain the oscillations.

A much simpler drive system is to oscillate a small plate harmonically in onc arm
of the U-tube. The system shown in Figure 3.2 consisted of 2 1/8 hp permanent
magnet variable speed DC motor, with speed and torque control unit, driving a
submerged plate via a “Scotch yoke” mechanism. The drive arm fixed to the motor
output shaft had holes between 5 cm and 40 cm from the output shaft and provided a

mount for a cam follower which could be bolted in one of the holes. The amplitude of

vertical shaft

scotch yoke mechanism

horizontal track

drive arm

plate

Figure 3.2 Drive system removed from the U-tube.
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the plunger motion was selected by placing the cam follower the appropriate distance
from the output shaft of the motor. The cam follower, when mounted in the drive
arm, was also positioned in a horizontal track attached to a long vertical shaft. The
vertical shaft was free to move along its length, constrained above and below by ball
bearing guides. The rectangular cross section of the vertical shaft prevented it from
rotating about its axis. At the bottom of the vertical shaft was a 0.4 m by 0.4 m
plate that remained submerged during operation. When the motor was running,
the vertical shaft and the attached plate would follow the vertical component of the
position of the cam follower, thereby producing sinusoidal motion. To limit the loads
placed on the motor, and to maintain constart motor speed, the plate was made of
extruded polystyrene foam with a thickness such that the buoyancy of the foam just
supported the weight of the vertical shaft and the attached horizontal cross track. A

view of the drive system mounted in the U-tube is shown in the Figure 3.3.

The operation of the system for a particular test involved selecting the appropriate
position for the cam follower, which fixed the flow amplitude, and ensuring that the
motor speed was set to match the natural frequency of water oscillations. The motor
was then turned on, and the speed fine tuned to match the water motion. If the

motor was running too fast the plunger motion led the water motion, 2nd vice versa.

3.2 The Test Cylinders

A system was required in which cylindrical specimens could be suspended to
move freely in the inline and transverse directions, while resiricting the motion to
be essentially two-dimensional. The cylinders used in the test were smooth and
made from thick-walled clear acrylic tubing. The 570 mm long cylinders were fitted
with square, 100 mm x 100 mm x 2.5 mm, clear acrylic end plates which left
approximately 12.5 mm clearance at each end between the end plate and the glass
windows in the tunnel wall. The cylindrical speciraens are shown in Figure 3.4

and the dimensions and masses of the cylinders are given in Table 3.1. Four teflon



Figure 3.3 The drive system mounted in the U-tube.

Table 3.1 Test Cylinders

No. Mass Diameter
(g) (mm)
1 357 25.8
2 985 45.1
3 1894 63.8
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D =638 mm——=,

D =451 mm

D =258 mm

Figure 3.4 Cylinders used in the study.

“buttons” were attached to the corners of the end plates to act as spacers between
the window and the end plates. Approximately 0.5-1 mm total clearance was left to
permit the cylinder to move freely in the inline and transverse directions. The effect
of the buttons was to suppress any motion other than the desired two-dimensional
motion of the cylinder. That is, they prevent rotation about an axis perpendicular
to that of the cylinder while having minimal effects due to friction when light sliding

contact was made with the window.

In practice, it was found that certain flow conditions tended to produce repeatable
two-dimensional motion in which the buttons did not significantly contact the
window. Certain other conditions led to a very three-dimensional response with
significant window to button contact. These conditions were taken as an indication

of low correlation, as will be explained later.

The tendency for the cylinder to rotate about an axis perpendicular to its own
was reduced by separating the rotational and translational natural frequencies as

much as possible using a steel weight in the centre of the specimen to minimize the
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moment of inertia. The weight was sized to make the specimen neutrally buoyant
in water. Neutral buoyancy permitted the use of very soft springs to support the
cylinder in its horizontal position, while maintaining its equilibrium position in the
centre of the test section.

The cylinder was suspended in the test section with a set of eight matched springs.
Figure 3.5 shows the cylinder at the equilibrium position in the U-tube, viewed
through one of the side windows. The springs were attached at one end to the
corners of the end plates on the cylinder and at the other end to small hooks on the
inside of the U-tube wall. With the cylinder at rest, the springs had an orientation
approximately 45 degrees to the horizontal, so that the stiffness in the inline and
transverse directions were the same. The anchor points inside the U-tube for the
springs were placed as far apart as possible to reduce nonlinear effects which occur
for large displacements from the equilibrium position. Six sets of springs were used,

and the resulting effective stiffness and frequency ratios in water are summarized in

Table 3.2.

Figure 3.5 A cylinder suspended in the U-tube.
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Table 3.2 Spring-Cylinder Combinations

Spring  Desig- ket folfwfor  foffufor  fu/fufor
No. nation (N/m) Cylinder1 Cpylinder 2 Cylinder 3

1 4-15 14.2 2.49 1.42 1.07

2 4-17 24.2 3.04 1.81 1.29

3 3-16 40.8 3.81 2.29 1.68

4 2-13 56.0 4.49 2.711 1.97

5 2-15 113 6.43 3.91 2.87

6 4-26 199 8.62 5.14 3.81

The natural frequencies were calculated from slow motion play-back of video
recordings of free vibration tests without the buttons on the end plates. Damping
in the free vibration tests was found to be less than 5% and includes both fluid and
structural damping. This value agrees well with the theoretical value for viscous
unseparated flow. [1] The damping was more difficult to measure with the buttons
in place because of the slight friction with the glass. This friction tended to be
more significant for the small amplitude vibration tests, in which an effective { was
measured to be as high as 20%. This should not be taken as indicative of the damping
under test conditions. It is very difficult to specify a single value of { valid for the
entire range of conditions, and would be misleading to do so. However, it is worth
noting that any significant frictional forces tend to clearly disrupt the cylinder’s

response. Such cases are discussed in detail in Chapter 4.

Measuring the stiffness in-situ proved to be difficult because without submerging
the cylinder in water, several of the springs were not able to support the weight of the
cylinders. To solve this difficulty, the effective stiffnesses were measured in a frame
with hooks in a layout identical to that of the hooks on the U-tube wall. A single

end plate was suspended by four springs in the frame. The stiffness of this system
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was assumed to be half of that of the cylinder in the U-tube, because the springs
mounted in the frame reproduce the conditions at one end of the cylinder only. This
assumption was tested in situ for the stiffest springs which were able to support
the smallest cylinder very close to the centre position in the U-tube. The measured
stiffness in this case was within 3% of the stiffness expected from measurements in

the frame.

The stiffness was expected to vary somewhat with direction, however in the
range of deflections encountered in the experiment, stiffnesses in either the inline
or transverse direction were measured to be at most 5% less than the stiffness in
the direction parallel to a spring. The stiffnesses in Table 3.2 are the means of the

stiffness in the inline, transverse, and diagonal directions.
The springs had an unstretched length of about 170 mm and were made of
stainless steel. The designation of the springs in Table 3.2 consist of the mean coil

diameter in 1/16'"™ of an inch followed by a dash and the wire diameter in 1/1000h

of an inch.

3.3 Data Acquisition

A VHs format camera was used to record the cylinder motion while viewing it
through the side window. A scale was drawn on the window with indelible ink, and
a cross was placed on the end of the specimen end plate. In the field of view of
the camera were a high contrast LCD digital voltmeter, and a high intensity LED.
These two devices were controlled by a microcomputer which continually monitored
the output of the variable capacitance depth gauge in one of the arms of the U-
tube. Based on the water level with zero motion, the computer detected upward and
downward zero-level crossings, and recorded maximum and minimum levels during a
cycle. When an upward zero crossing was detected, the LED was switched on and the
voltmeter was sent a signal that would cause the voltmeter to display the amplitude

of the last cycle in tenths of a metre. When a downward zero-crossing was detected,
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the LED was switched off. These two devices therefore recorded the amplitude and
phase of the water motion on the videotape for later correlation with the cylinder
motion. The clear end plates allowed the total cylinder behaviour, including any

rotation, to be visible on the recording.

The depth gauge was calibrated by filling the U-tube past its normal operating
level and monitoring the output of the capacitance gauge over the full range of water

levels.

Once data for all the cases in Table 3.2 had been collected on videotape, digitizing
sequences of frames was accomplished using a digital image processing board and
associated software. A simple program permitted the use of a “mouse” to move a set
of crosshairs on the video screen, and by “clicking” on the position of the cylinder,
its coordinates could be written to a file. The scale on the window provided the
necessary calibration measurements. Due to the large number of frames taken in
the tests, only samples of cylinder motion were digitized for plotting. The video
system recorded 30 frames per second, or about 97 frames per cycle of watcer motion.
Typically two cycles for each spring-cylinder combination were digitized for each
amplitude of water motion tested. Depending on the speed and complexity of the
response, every 1st, 2nd, 3rd or 4th frame was digitized. Plots of one cycle were used
in a compilation of the “overall picture”, while individual plots of two or four cycles

were used to examine specific cases of interest.



Chapter 4

Experimental Results and

Analysis

For a large number of the tests conducted, the cylinder followed well defined
trajectories. There was considerable variety in the shape and size of the trajectories,
depending on the test conditions. In these tests the Keulegan-Carpenter number,
Kc, ranged from about 2 to 60 and the frequency ratio, f,/ f,,, varied from about 1 to
8.5. The frequency parameter, 3, is 205, 625, and 1250 for the cylinders of diameter
25.8 mm, 45.1 mm, and 63.8 mm respectively. Similarly, the maximum Reynolds
numbers encountered in the tests were 13800, 29000, and 44100 for the three cylinders
in order of increasing diameter. Over this diverse set of conditions the trajectories
clearly were dependent on both Kc and f,/ f., and could not be characterized by
reduced velocity alone. The response at lower frequency ratios consisted of generally
more simple and repeatable trajectories, while for conditions of higher f,./f,, there
tended to be more cycle to cycle variation of the trajectories. Consequently, these

two types of responses will be considered separately in this chapter.
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4.1 Response at Low Frequency Ratios

In general, vortex shedding from cylinders is a three-dimensional phenomenon in
which vortices are shed at different times along the length of the cylinder. Therefore,
a three-dimensional response would be expected from an elastically mounted rigid
cylinder exposed to an oscillatory flow. However, when the conditions of vortex
shedding are such that a synchronization exists between the cylinder motion and
the shedding, the vortices tend to be shed simultaneously from the same side
of the cylinder over a significant pertion of the cylinder’s length. A measure
of whether the vortices are being shed simultaneously along the length of the
cylinder is the “correlation length”, or simply “correlation”. When synchronization
occurs, correlation increases, and the vortex shedding process becomes strongly
two-dimensional. As a result, the response of the cylinder is also strongly two-
dimensional. Conversely, when the correlation is low the response of the cylinder is
three-dimensional. In what follows, a response or trajectory that is termed “strongly
two-dimensional” is one that does not invalve any noticeable effects of the buttons

on the cylinder end plates rubbing on the glass and disrupting the cylinder motion.

Examples of strongly two-dimeasional responses over two consecutive cycles are
shown in Figure 4.1 for the combination of Kc and f,/ f,, identified in each figure. In
all plots of trajectories given in this thesis, the dependence on time within one cycle is
not shown. However, this information could be obtained from the data on videotape
as further analysis might require. The trajectories themselves repeat for each cycle
of water motion with very little deviation from cycle to cycle. To aid iu explaining
the cause of these shapes, two trajectories for a single cycle of water motion are
presented in Figures 4.2(a) and (b). Figure 4.2(c) indicates the water motica as a
function of time over one cycle, with five points in the cycle of water motice labelled
1 through 5. The corresponding positions of the cylinder at each of these points in
time are indicated on the trajectories in Figure 4.2(a) and (b). The starting point in

Figure 4.2(c), labelled “1”, corresponds to maximum fluid velocity from left to right
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Figure 4.2 Phase relationships between water motion and two typical trajectories.



and occurs when the fluid is passing its equilibrium position. At this moment the
cylinder is at the point labelled “1” in Figure 4.2(a) which corresponds to maximum
inline and transverse deflection to the right. The cylinder then proceeds from right
to left to point 2 un the trajectory, while the fluid is moving in the opposite direction
to reach its maximum displacement to the right at point 2 shown in Figure 4.2(c).
The flow then reverses and both the cylinder and the fluid move from right to left
until point 3 is reached, where the fluid is at its maximum velocity from right to
left and the cylinder is near its largest deflection to the left and another peak in the
transverse displacement. Motion of the cylinder through positions 4 and 5 completes
the cycle. This analysis illustrates the phase relationship between the water motion
and the response of the cylinder. A similar relationship is evident in Figure 4.2(b) for
Kec =19.7 and f,/f. = 1.97. It is interesting to note that the maximum displacement
of the cylinder, both inline and transverse, occurs when the fluid velocity is very close

to its maximum value.

The basic difference between the trajectories in Figure 4.2(a) and (b) is that for
Kc = 5.3 there are two cydles of transverse motion for every cycle of water motion
while for Kc = 19.7 there are three cycles of iransverse motion for each water cycle.
In Loth cases, the cylinder completes one cycle of inline motion for each cycle of
fluad motion. Also, Figure 4.2(a) might be described as a distcrted infinity shape
while Figure 4.2(b) looks like the letter “N”. The reason for these differences can
be attributed to the number of vortices produced during each half cycle. In this
regard the qualitative similarity of the trajectories of response in Figure 4.2 to the
force plots from Maull and Milliner [10] in Figure 2.1 is very striking. Specifically,
Figure 2.1(a) and Fig- . 4.2(a) correspond to reasonably similar values of Kc and
have a similar shape, #hile Figures 2.1(b) and 4.2(b) also are close in shape and
correspond to Kc close to 20. Recall that in Figure 2.1(a), with Kc = 7.7, two
vortices were produced in every half cycle while for Figure 2.1(b), with Kc = 21.1,
three vortices were produced in each half cycle. To provide an indication of the phase

of the force on the cylinder with respect to the fluid motion, the numbers 1 through
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5 are also shown on Figure 2.1, indicating the water motion as given in Figure 4.2(c).

As stated earlier, strongly two-dimensional response trajectories were very
repeatable, tracing out essentially the same shape each cycle. For example, Figure 4.3
shows the trajectory of the cylinder over four consecutive cycles of water motion for
Kc = 7.3 and f,,/ fu = 1.68. This corresponds to a reduced velocity of 4.3. In this case
the inline response amplitude is about 1.5 diameters, while the transverse response
amplitude is about 0.7 diameters. As in Figure 4.2(a), there are two complete
cycles of transverse motion for each cycle of water motion. One noticeable difference
between Figure 4.2(a) and Figure 4.3 is that one has the opposite orientation to the
other. The orientation of the trajectories depends on the initial conditions aad the
side of the cylinder that vortices first start. Strongly two-dimensional trajectories
of the types shown in Figures 4.2(a), 4.2(b) and 4.3 do not change their orientation

during the course of a test.

It may seem surprising that the strongly two-diciensional response shown in
Figure 4.3 occurs for a frequency ratio of 1.68 and reduced velocity of 4.3, as these
conditions do not correspond to an integer frequency ratio or a reduced velocity of
5.4 reported for transverse lock-in. McConnell and Park [12] explain that the lock-

in condition is achieved for integer values of f,/f, because the vortices are then

f,/fu=1.68

X
O
il

7.3

Figure 4.3 Trajectory for four consecutive cycles for f,,/f, = 1.68 and Kc = 7.3.



44

able to remain in a “position to interact with the cylinder when it returns to that
location”. Apparently, the inline motion of the cylinder in the present study alters
the conditions required for the incident flow, containing recently shed vortices, to

reinforce the transver : motion.

To obtain a more detailed picture of the response for a given set of springs,
Figure 4.4 presents a sequence of trajectories for a frequency ratio of 1.97 and Ke
increasing from 2.5 to 19.7. In each case two complete cycles are plotted, starting
when the water in the U-tube passes its equilibrium position going from left to right.
The first two cases, Figure 4.4(a) for Kc = 2.5 and Figure 4.4(b) for Kc = 4.7,
show trajectories that can be described as “infinity” shapes similar to Figure 4.2(a).
The first of these is very repeatable with a very small cycle to cycle variation. As
Kc increases, to 7.7 in Figure 4.4(c) and then to 8.4 in Figure 4.4(d) the “infinity”
shapes become distorted as shown. Although the shape has changed significantly,
the cylinder still completes one inline cycle and two transverse cycles for one cycle
of water motion. Note that the orientations of the trajectories in Figures 4.4(c) and

(d) are different due to the different initial conditions for each test.

Figure 4.4(e) shows the trajectory for K¢ = 9.7. In this case the correlation is low
and the response is three-dimensional. No particular significance should be placed on
this trajectory as it is not of the strongly two-dimensional type. The conditions for
this case mark the transition between trajectories classified as having an “infinity”
shape to those shaped like the letter “N”. Another test was run with Kc = 11.4
which is not iccluded in Figure 4.4 as its behaviour was not significantly different
from that of Figure 4.4(e). For fn/f, = 1.97 with Kc between 9.7 and 11.4 the
reduced velocities range between 4.9 and 5.8. It is interesting to note that in this
range of reduced velocity with an integer frequency ratio, lock-in would be expected
based on studies of transverse response in oscillatory flow [12]. % yparently the inline
response affects the nature of the fluid-structure interaction to an extent that the
results from transverse response studies are not directly applicable to the case when

the cylinder responds in two dimensions.
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When Kec = 13.9 and f./f, = 1.97, a two-dimensional trajectory occurs
intermittently, and is shown in Figure 4.4(f). For a short period of time the
cylinder responds in a two-dimensional fashion, but then the motion becomes three-
dimensional and the buttons on the end plates contact the windows, significantly
reducing the response. Subsequently a two-dimensional motion builds up again to
that shown in Figure 4.4(f), with the process then repeating itself. Apparently the
synchronization between the vortex shedding and the motion of the cylinder is not
sufficient to maintain the two-dimensional trajectory in this case. Further increases
in Kc result in a return to strongly two-dimensional and repeatable trajectories as
shown in Figures 4.4(g) and (h) for Kc = 17.6 and 19.7 respectively. The trajectories
for these two cases are now typical of those shaped like the letter “N”. The different
orientation in these last two figures is again due to different initial conditions. Note
the amplitude of the response, both inline and transverse, has increased significantly
over the responses for smaller Kc, even though the reduced velocity in this range is

approximately 9.

Based on studies of transverse response alone, larger response might be expected
at what McConnell and Park [12] call “side-band frequencies” which correspond
to U, slightly below 4.3 and slightly above 7.2, as discussed in Section 2.3. This
transverse response would also be expected to occur at a frequency very close to
the natural frequency of the structure, which for this case is 1.97 times the flow
frequency. Figures 4.4(c) and (d) show a large amplitude transverse response at
twice the flow frequency and a reduced velocity of about 4.0 to 4.3 as expected.
However, it is not until Kc = 18 to 20, corresponding to U, = 10, that large
amplitude transverse response occurs. It occurs at 1.5 times the natural frequency
of the cylinder rather than at the natural frequency, since three cycles of transverse
motion are completed for each cycle of inline and water motion. A noteworthy result
is that the transverse response here is larger than the response that occurs at the
cylinder’s natural frequency for U, = 4.0 to 4.3. This phenomenon provides further

evidence that the inline response alters the conditions for large amplitude transverse
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res:.onse from those from studies of transverse response alone.

A summary of sample trajectories for f,/f, less than 4 is shown in Figure 4.5.
The Keulegan-Carpenter number is plotted as the ordinate with the frequency ratio
plotted as the abscissa. Stiffer springs correspond to increased natural frequency of
the cylinder and hence increased frequency ratio. The frequency of the water motion
is fixed by the natural frequency of the U-tube. All trajectories have been drawn
to the same scale so the relative response amplitudes between the tests can easily
be assessed. For reference purposes one cylinder diameter is shown in Figure 4.5
to provide a scale for the response amplitudes. The upper limit of Kc for cach
combination of cylinder and springs shown in Figure 4.5 was limited by either the
response of the cylinder being too large to view it completely within the window or by
the limitations of the driving mechanism. For reference purposes, lines corresponding

to U, = 3 to 10 are shown on Figure 4.5.

Examination of Figure 4.5 reveals that the trajectories in certain regions of the
graph fall into distinct groups based on their overall appearance. The two types of
trajectories that have been discussed so far are those with a basic “infinity” shape
and those shaped like the letter “N”. These are labelled “Group 2” and “Group 3"
in Figuse 4.5 in reference to the number of transverse cycles completed for each cycle
of inline motion. It is believed that the numbers also correspond to the production
or shedding of two and three vortices every half cycle, by comparison to the work
of Maull and Milliner [10] as discussed earlier. At higher Kc and f,/ f,, trajectories
with 4 cycles of transverse motion for each one inline are evident. These trajectories

fall into the region labelled “Group 4”.

On Figure 4.5 those trajectories judged to involve significant contact with the
glass as a result of three-dimensional response are marked with the symbol }
and those cases which exhibited intermittent two-dimensional trajectories, or non-
repeatable trajectories are marked with the symbol *. Clearly, the three-dimensional
trajectories which necessarily involved significant contact with the window cannot be

considered repeatable either. Trajectories which changed orientation during steady
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state flow conditions form another classification, and are marked by a . Further
discussion of this classification of trajectory follows shortly. The remaining cases
are two-dimensional trajectories that follow the same shape of trajectory, but the
amount of cycle to cycle variation in the trajectory depends on the case, as was
evident in Figure 4.1. Attempts were made to correlate the conditions of strongly
two-dimensional and repeatable response to values of r« *.ced velocity, frequency
ratio, and Kc without success. Table 4.1 shows the flow conditions along with
maximum inline deflections, X, and maximu transverse deflections, Y, associated
with eight strongly two-dimensional trajectories. These eight trajectories are labelled
A through H in Figure 4.5 and were selected because they showed smaller cycle to
cycle deviations than most, while representing the different shapes of repeatable
trajectories encountered. It is assume:i that smaller deviations from cycle to cycle
indicate a higher degree of synchronization between vortex shedding and cylinder
motion. As can be seen from Table 4.1, there is no common value of reduced velocity

at which these trajectories occur, nor do these responses necessarily occur at integer

Table 4.1 Flow characteristics and peak deflections from equilibrium for eight
repeatable trajectories.

Key KC f./fe U X Y
A 8.6 1.07 80 19 0.6
94 129 73 13 0.7
5.3 168 32 11 06
2.5 197 13 02 04
8.4 197 43 11 0.9

19.7 197 100 1.7 09

151 287 53 12 09

158 381 41 09 0.6

o @ =m0 0
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frequency ratios.

The maximure inline d=dection for th- ~aces in Tab.. 4.1 of 1.9 diameters occurred
for Kc = 8.6 with f,/f, = 1.07, and the n-: !2-gest deflection of 1.7 diameters
ocurred for Kc = 19.7 witk f./f, = 1.97. Note that Keule; .. :Jarpenter uumber is
a measure of the relative amplitude of fluid particle motion ccripared to the cylinder
diameter. Specifically, Kc = 2ra/D where a is the amplitude of fluid motion.
Therefore for Kc = 8.6 the amplitude of fluid motion is 1.37D. In this case the
inline deflection of the cylinder exceeds that of the fluid motion because the natural
frequency of the cylinder is close to the fluid frequency. The maximum transverse
response of 0.9 diameters occurred at both U, = 5.3 and U, = 10.0. Transverse
deflections in all cases did not exceed one cylinder diameter, which is similar to the

results reported for studies of transverse response alone.

For fixed cylinders the number of vortices shed in a cycle is principally a function
of Kc. The boundaries between the groups in Figure 4.5 are thought to characterize
the number of vortices produced or shed each half cycle. However these boundaries
occur at smaller values of Kc than would be associated with a fixed cylinder,
especially if the frequency ratio is small. This is as one might expect, because
at low frequency ratios the cylinder can respond significantly in the inline direction,
resulting in smaller relative motion between the cylinder and the fluid. This smaller

relative motion will produce fewer vortices each cycle.

There is also a region for low values of both Kc and f,/f, that have similar
trajectories which are basically horizontal or have a “U” shape (or an inverted
“U”). As Kc is very small it is doubtful that any vortices are actually shed,
although attached vortices are probably present. These trajectories could probably
be classified as part of the Group 2 trajectories by virtue of their U shape which, like
an “infinity” shape, completes 2 cycles of transverse motion for each cycle of inline
motion. An interesting feature of these trajectories, which are marked with a t in
Figure 4.5, is that they often change orientation from a U to an inverted U or vice

versa under steady state flow conditions. Such a change is illustrated in Figure 4.6
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Figure 4.6 Samp! of a U-shaped trajectory that changes orientation.

for which Kc = 2.9 and f,,/f, = 1.68. By carefully following the trajectory through
the 2.5 cycles shown, proceeding in the direction of the arrow, the transition from
a U to inverted U shape can be seen. The change in orientation can be explained

by a lack of synchronization between the development of vortices and the cylinder

motion.

4.2 Response at Higher Frequency Ratios

The trajectories examined to this point have been for frequency ratios, f,/ f., less
than four, although frequency ratios up to 8.6 were investigated. As the frequency
ratio exceeds about 4 the shapes of the trajectories become more difficult to analyze
due to the increased complexity and speed of the cylinder motion. The limitation
is not only due to the rate at which the frames of the video recording are taken,
but also due to difficulties in interpreting a trajectory with many crossing points
and transverse cycles. An additional complication is that in general there is greater
cycle to cycle variation of a trajectory for responses at higher frequency ratios. Thus

the main features to be examined for the cases with higher frequency ratios are the
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number of transverse cycles for each cycle of water motion, and whether the same
basic shape of trajectory is followed for each cycle of water motion. It is difficult to
apply the same criteria for classifying the trajectories at lower frequency ratios to
the results at higher frequency ratios. All tests for frequency ratios greater than 4
were conducted with the two smaller diameter cylinders, and consequently the ratio
of length to diameter was higher for these tests. This made highly correlated vortex
shedding less likely. This tendency toward more three-dimensional behaviour was
offset somewhat by the relatively stiff springs, which meant that generally larger
forces were required to cause significant motion. If contact were made with the
glass, the frictional force was therefore less significant compared to the other forces
involved, and affected the motion to a lesser extent than for lower frequency ratios.
The result of these factors was that contact with the glass was more common, but

it often did not prevent trajectories of a consistent shape from occurring.

Two examples of response at higher frequency ratios are given in Figure 4.7.
In Figure 4.7(a) the response shown is for Kc = 23.7 and f,/f, = 5.14, which
corresponds to a reduced velocity of 4.6. In Figure 4.7(b) Kc = 32.6 and f,./fu, =
5.14, giving a reduced velocity of 6.3. These trajectories are typical for U, and f,/ fu
both greater than 4, as in each half cycle several transverse cycles of motion are
completed with large amplitude transverse motion occurring near maximum inline
deflection. The trajectories also tend to complete the transverse cycles by following
a “C” shaped path when near the right side of the trajectory and a backward “C™
shaped path near the left side of the trajectory. This “C” shape can be attributed to
the phase relationship between transverse and inline forces caused by the shedding

of vortices in this flow.

One difference between Figures 4.7(a) and (b) is that they exhibit different types
of symmetry. In (a) there are four cycles of transverse motion completed in each
cycle, while in (b) there are five. The result is that in Figure 4.7(a) the even number
of cycles means that the trajectory is roughly symmetric about the y-axis, while in

(b) the odd number of cycles means that the trajectory is roughly symmetric about
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the origin.

To gain a better understanding of typical responses encountered at higher
frequency ratios a sequence of trajectories is plotted in Figure 4.8 for f, [ fw = 6.43
and increasing Kc.  Starting at low Kc, there is very little inline response due
to the relatively stiff springs, and the small fluid velocities and accelerations which
cause correspondingly small drag and inertia forces. With respect to the transverse
response, it is necessary to recall that at very low Kc, very few or no vortices are shed,

and that as Kc increases the number of vortices shed per cycle also increases. The
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small transverse response is due partly to the stiff springs, but also the number of
vortices developed per cycle is much lower than the frequency ratio. This means that
the frequency of transverse forcing is much lower than the natural frequency of the
cylinder, and therefore lower amplitude response should be expected. As Kcincreases
one or two vortices appear to be shed for each half cycle, producing larger forces which
cause the cylinder to respond briefly. Then, as the fiow reverses the cylinder returns
toward the equilibrium position where it oscillates at smaller amplitudes until the
vortices shed in the next half cycle develop to the point where larger response occurs
again. This type of behaviour is evident in Figures 4.8(a), (b) and (c) where roughly
two significant transverse cycles of response occur for each cycle of water motion.
The small amplitude oscillations make the size and direction of the first significant
motion in the next half cycle of water motion unpredictable. In what follows the term
“inconsistent” will be used to describe trajectories that do not follow the same basic
shape in terms of the number of transverse cycles or their orientation and order of
occurrence during one cycle of water motion. In Figures 4.8(a), (b) and (c), increased

amplitudes of response are evident as the Keulegan-Carpenter number increases.

The plots shown in Figure 4.8 are for one cycle only due to the complexity of the
trajectories. It is helpful to focus on the general shape rather than the rough details
caused by the relatively low digitization frequency. Those plots that show greater
symmetry and organization are generally more repeatable, and those that seem more
random in shape are indicative of trajectories that are not highly repeatable. For
example, Figures 4.8 (c) and (d) should only be considered as samples of inconsistent
trajectories, but (e) shows much more symmetry with five transverse cycles for each
inline cycle of motion. A similar shape is evident in (f) but in (g) much less symmetry
is evident. Specifically, note that in (g) the path the cylinder takes from one side
of the trajectory to the other, nearer the top of the trajectory, is very different in
nature from the return path directly below it. It would appear that the incident
vortices from the previous half cycle are not as well timed with the response of the

cylinder, and consequently this “mistiming” results in an inconsistent trajectory. The
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mistiming is also indicative of a transition, in this case from five transverse cycles
per cycle of water motion seen in (f) to 6 cycles as scen in (). At these higher Ac
the range of amplitude of water motion, over which a trajectory with small cycle
to cycle variations exists, is very small. As a result it is quite comiwon for tne
amplitude to die down for about one cycle before returning to a larger number of
consistent cycles similar to that shown in Figure 4.8(h). Figures 4.8(i) and (j) show
relatively consistent trajectories with 7 transverse cycles of motion for each cycle of
water motion, however the deviation from cycle to cycle is much greater than that
for trajectories at lower f,/f,. Despite this larger deviation, the trajectories are
quite repeatable in the number of transverse cycies completed for each inline cycle
of motion. The amplitude of transverse motion appears to be limited to about 1
diameter here, similar to the maximum amplitude of a cylinder responding to vortex
shedding in steady flow as well as that found for smaller frequency ratios. The inkine
response, on the other hand, has continued to increase to about 2 diameters. These
two plots in (i) and (j) correspond to a reduced velocity of 7.5 and 8.1 respectively, yet
they show the largest inline and transverse responses observed in all tests. Again it is
evident that the inline motion alters the conditions for lock-in from those discovered
in studies of transverse response alone. Although the reduced velocity is close to the
the “upper side-band frequency” identified by McConnell and Park {12] of slightly
over U, = 7.2, it is interesting that a larger response did not occur for a reduced

velocity close to 5.4.

It might have been expected that with a much more stiffly supported cylinder,
conditions of lock-in for transverse response only might apply, but this was not the
case. It is worth noting that even though f,/f, = 6.43, there were significant
transverse responses at 5, 6 and 7 times the frequency of the flow. It is interesting
to note that the results of Sumer and Fredsge [23] indicate that the cylinder tends
to respond at a frequency close to its natural frequency, and the vortex shedding
frequency shifts to accomodate this response. This discovery was made in tests

conducted at fixed values of K¢ while varying U, (ie. varying f./f.). In contrast,
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the present study shows that the respons: 1=:./: to occur at different multiples of fn
although f,/f. is fixed and Kc is varied. . ze ability of the cylinder to respond at
these different frequencies seems to indicate that the inline motion of the cylinder
helps to accommodate the difference between the natural frequency of the cylinder
and the expected vortex shedding frequency based on the Strouhal relationship.

Figure 4.8(k) shows a sample of the trajectory for Kc = 59.9 and f,/f. = 6.43,
so that U, = 9.3. In this case the response is three-dimensional and the cylinder
makes significant contact with the walls of the U-tube. Consequently, the number
of transverse cycles and the shape of the trajectory have very little meaning, other
than to indicate a possible region of transition between conditions of larger, more
consistent response.

To obtain an overview of the types of trajectories encountered, Figure 4.9 shows,
in the same manner as Figure 4.5, typical trajectories for f,/f., greater than
four. Lines corresponding to points of constant reduced velocity are again included
for reference. A slightly different system of symbols is used to characterize the
responses. The trajectories that were clearly not two-dimensional are marked with
a }. Trajectories that showed no consistency of shape from one cycle to the next
(that is “inconsistent”) are marked with an *. The remaining trajectories generally
followed the same basic shape from cycle to cycle, although there may have been
slight contact with the glass, or occasicnal cycles where the response died down due
to a slight “mistiming” of vortex shedding and cylinder motion.

From this plot a number of trends are evident. First, significant response
amplitudes in the transverse direction occur for a reduced velocity of 3 or greater.
Second, the largest responses in both the inline and transverse directions occur for
reduced velocities larger than 6, rather than the value of 5.4 for transverse lock-in.
This higher value of reduced velocity can be partly explained by the inline motion
of the cylinder which would tend to reduce the amplitude of relative inline motion
beiween the water and the cylinder. The smaller relative inlin~ motion would tend

to cause fewer vortices to be shed per cycle of water motion for a given Kc. Therefore
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a larger value of Kc would be required for enough vortices to be shed per cycle to
match the iatural frequency of the cylinder.

It is difficult to comment on the upper limits of the amplitude of response, if
any exist, because of the experimental setup. In order to obtain larger reduced
velocities over the range of frequency ratios, a smaller cylinder must be used because
of the limi:> {0 the amplitude of water motion that can be achieved in the U-tube.
As smatler diasneter cylinders are used, the length to diameter ratio increases, thus
making correlation along the full length of the cylinder more unlikely. The result is
that the vortex shedding can occur out of phase along the length of the cylinder,
and induce the cylinder to rotate about an axis perpendicular to its own, causing
significant contact between the buttons on the end plates and the window. Any
response is then disrupted and the motion can not build up. An example of this is
evident in Figure 4.9 for Kc = 54 and a frequency ratio of about 4.5. An additional
factor that may be significant is that the natural frequency of the cylinder in the
rotational mode is higher than that in translation. Although the cylinder can only
move a limited amount in this rotatioral mode, the higher natural frequency is
closer to the vortex shedding frequency at high Kc and consequently is more easily
excited than translaticnal motion. It is also possible that large amplitude transverse
responses do not orcus above a limit of reduced velocity, but a different experimental
apparatus would be required to investigate this possibility.

Also included in Figure 4.9 are boundaries for the different “groups” of trajectories
defined by the number of transverse cycles completed for each inline cycle. For higher
frequency ratios, the boundaries are less well defined, due in part to the smaller
number of experiments conducted in that range. As expected, the divisions between
the groups become more of a function of Kc alone as f,/ f,, increases, because stiffly
supported cylinders more closely approximate fixed cylinders for which the number

of vortices shed per cycle is mainly a function of Ke.

Since the shedding of a pair of vortices corresponds to one cycle of the transverse

force, some similarity might be expected between the number of pairs of vortices shed
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per cycle reported by Sarpkaya [5] for a fixed cylinder and the number of transverse
cycles the cylinder completes for one cycle of water motion in the present study. For
example, Sarpkaya [5] reports that for Kc = 50, 10 pairs of vortices are shed per
cycle, but for the cylinder with the highest frequency ratio in the present study, the
number of transverse cycles of response completed for each cycle of water motion
is only 7 when Kc = 50. This difference can be attributed to the inline motion of
the cylinder, since studies of transverse response alone by Sumer and Fredsge (23]
indicated good agreement between the number of transverse cycles completed and

the number of vortices shed per cycle from a fixed cylinder.

4.3 Conclusions

This study of the two-dimensional response of a flexibly mounted cylinder in
oscillatory flow has shown that the inline response significantly alters the conditions
at which large amplitude, repeatable responses occur. These conditions are different
from those identified in studies of transverse response only. Specifically, repeatable
two-dimensional response did not occur at a common value of reduced velocity, or
necessarily at the natural frequency of the cylinder. Large responses were generally
observed for U, > 6, while significant transverse responses did not occur for U, < 3.
The higher values of reduced velocity required for large transverse response than
those reported for studies of transverse response alone can be attributed to the inline
motion of the cylinder which reduces the amplitude of relative motion between the
cylinder and the water.

In all cases, the cyli::der completed one main cycle of inline motion for one cycle of
water motion. The trajectories were classified according to the number of transverse
cycles completed for each cycle of water motion. These different types of trajectories
occurred in well defined regions on a plot with Kc and f,./ f.,, particularly for lower
values of f,/f.. Conditions corresponding to the boundaries between these regions

are those of low correlation and three-dimensional response. The shapes of the
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trajectories could not be classified cn the basis of reduced velocity alone. The
responses for lower frequency ratios displayed less cycle to cycle variation in the

trajectories than the responses at higher frequency ratios.

It was postulated that the main cause of the different groups of trajectories is the
number of vortices produced or shed every half cycle, and it is clear thet the next
step in understanding the fluid-structure interactions will require flow visualization

studies.

Finally, some assessment of the uncertainties in the measurements must be made.
The uncertainty in the amplitude and phase information is quite small compared to
that involved in the digitization process, since the LED an¢ LoD were updated at
2"t 100 Hz, which far exceeds the frame rate of the videotape of 30 Hz. The
wiccréainty in a coordinate is judged to be +2 pixels on a 512 by 512 grid. This
translates to an uncertainty in the position of the cylinder of about 1.7 mm, or as
a percentage of the diameter of the cylinder as 6.6%, 3.7% and 2.7% for the three

cylinders in order of increasing diameter.



Chapter 5

Equations of Motion

For the design of safe and efficient offshore structures in deeper waters, it is
important to be able to predict the forces acting on a structure in waves and the
resulting structural response. Ideally one would expect that a complete numerical
solution of the time dependent Navier-Stokes equations coupled with the response
of the structure would provide the complete solution to the problem, however
such an undertaking is not currently feasible due to the prohibitive computational
power required. Therefore various approximations need to be made to obtain
useful solutions. For studies of steady and oscillatory flow about fixed and flexible
structures, some knowledge of the net effects of the fluid flow has been acquired.
This knowledge can be applied as a first step in formulating simple models to predict
the response of a flexible structure. These models are necessarily approximate, and
therefore must be evaluated by comparison with experiments to detcrmine their

usefulness and limitations.

In this chapter, models for forces on cylinders in steady and oscillatory flow will
be used to formulate equations of motion to predict the two-dimensional response
of a cylinder in oscillatory flow. Three different models are considered here. The
first two employ a modified form of the Morison equation in the inline direction and

different expressions for the transverse force, resulting in uncoupled sets of equations.
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In the third model, the lift and drag are considered to act perpendicular and parallel
to «he direction of instantaneous relative velocity between the fluid and the cylinder,
which results in a coupled set of equations. For each of the three models the resulting
equations of motion are integrated numerically. The judgements as to whether each
model accurately predicts the amplitude and or shape of the experimentally observed

response are presented in the next chapter.

5.1 An Equation for Inline Motion

Due to the complex nature of the fluid-structure interaction for the problem being
considered, the equations of motion necessarily depend on empirical coefficients.
Ideally the equations of motion should have a minimum number of coefficients, and
should have data available to provide a basis for selecting them. Given the success
of the Morison equation, it is a natural starting point for approximating the inline
force acting on the cylinder. The basic assumption of the “independent flow fields”
approach is that the forces on a flexibly mounted cylinder can be considered as the
sum of the fluid forces that a fixed cylinder would experience in the same flow, which
are the “far field” effects, plus the fluid forces that the cylinder would experience
if it were oscillating in still water at the amplitude cf the response, which are the
“near field” effects [30]. Such superposition is speculative, but has the advantage of
clearly defining the sources for the empirical coefficients. The inline fluid force per

unit length of cylinder for this case is
F, = pACWU + 3pDCAUIV]| — pAC.'S ~ %pDCd'a‘:lil, (5.1)

in which A represents the cross-sectional area of the cylinder, p is the fluid density,
r is the inline cylinder displacement and dots denote differentiation with respect to
time. The first two terms on the right hand side of Equation 5.1 are the far field
effects, and represent the force given by the Morison equation on a fixed cylinder,

while the last two terms represent the near field effects. The values of C, and Cy4
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are taker from data for a fixed cylinder in the same flow, while C,’ and C,' are taken
from datz for a cylinder oscillating in still water with the same amplitude of cylinder
motion. Unjcriunately these latter coefficients depend on the solution; therefore, an
iterative approach is required for their evaluation.

Another point of view considers the drag force terms to be based on the relative

velocity between the fluid and the cylinder, giving a fluid force per unit length of
F. = pAC,U — pAC,'3 + %pDCd(U - )|U - z|. (5.2)

The value of Cy used for the drag force in this case should be based on the amplitude
of relative motion rather than fluid or structural motion alone. In what follows it is
assumed that the drag coefficient for the relative motion is not significantly different
from that for the case of a fixed cylinder in a still fluid, thus avoiding an iterative
solution. Further support for this assumption is presented laier in this section.

To aid in assessing how to select the inertia coefficients in Equation 5.2, it is

useful to use it in conjunction with an equation of motion, for example
. . -1 . .
mz + ct + kr = pACU — pAC,'t + EpDC'd(U - z)|U - z|. (5.3)

In this equation the term containing C,, represents the contribution of two effects.
The first is the pressure gradient in the flow causing the fluid acceleration U, while
the second is the force required to accelerate the flow about the cylinder when held
fixed. In contrast, C,’ is used in the equation to represent the force required to
accelerate the cylinder in otherwise still fluid at flow conditions corresponding to
the amplitude of structural motion. Since Cp, and C,’ correspond to different flow
conditions, C,, # C,’ + 1, and as a result the two terms should be kept scparate.
By writing Equation 5.3 with the inertia terms separate, the inertia term due to
structural motion can be brought to the left hand side so that the “mass” term
includes the added mass. This then permits the equation to be written in a standard
form that includes the natural frequency,

pACLU  1pDCyU - 2)|U - |

Z + 2(wnZ + wa'z =
Z+ 2unz +wn’z m + pAC,' m + pAC,’

, (5.4)
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where
w.? = _k (=—°
" T m+ pAC,”’ "~ 2(m+ pAC w,

are the natural frequency of the cy”1der, and the dar ‘ng ratio in the fluid,

(5.5)

respectively.  When modelling a particular situation the Jue w, is determined
from a simple free vibration test in the fluid. Such a test involves small amplitude
oscillations, for which C,’ may be considered equal to 1.

Equation 5.4 is the “relative velocity” formulation of the Morison equation and
has been used by C.H.K. Williamson [20] as described in Section 2.3. The values of
C4 that C.H.K. Williamson obtained iteratively from the relative velocity approach
in most circumstances did not differ significantly from the values based on the
amplitude of water motion. However, a large difference occurred in the region of
inline resonance for which f,/f, is slightly less than 1. For the present tests, fn/ fu
is always greater that one, therefore Cy can be based on the amplitude of water
motion. For the purposes of assessing the usefulness of the Morison equation to
predict the inline component of the two dimensional response of a cylinder, it is
judged that Equation 5.4 represents a reasonable but necessary compromise between

simplicity and accuracy.

5.2 Simple Uncoupled Model

The first set of equations is the “simple uncoupled model” which uses Equation 5.4
for the inline direction and simple sinusoidal forcing similar to Equation 2.3 for the
transverse direction. Also included in the transverse direction are the near-field
added mass and damping due to the transverse motion. Using the subscripts z and
y to distinguish between empirical coefficients that are different in the inline, z, and

transverse, y, directions, the set of equations on a per unit length basis is

(m+ pAC: +cd +kx = pACU + %pDCd,(U - 2)|U - 2|, (5.6)
. . 1 .
(m+pAC g+ cy+ky = %pDU,,.zCL sin(nwyt + @) — —2-pDCdyyly|, (5.7)
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where m represents the structural mass only, n is an integer based on the number
of vortices produced per half cycle and ¢ is the phase of the vortex shedding forcing
with respect to the fluid motion, U = U, sinw,t. The basis for sclection of the of
value of n is consistent with the result reported by Maull and Milliner {10], but n is
difficult to determine a priori. It may be estimated from sources such as Sarpkaya
(5], where the number of vortices shed per cycle from 2 fixed cylinder are reported.
These sources are of limited use, since the rumber of vortices may change when the
cylinder is free to respond inline with the flow. Therefore, the value of n may have to
be based on experimentally observed trajectorie: The value of ¢ must also be based
on experimentation and comparison with actual tests, because presently no data are
available for its value. Further details on the selection of ¢ will be presented with
the numerical results. The value of Cy,, Crn and Cp, are approximated by the values
from data for a fixed cylinder in the same flow. Cy, is based on small kc ( < 10)
since the amplitude of transverse motion is expected to be small. The reason for this
is that in studies of transverse response only, amplitudes of oscillation greater than
1 diameter have not been observed [22, 23]. It is useful to write the equations in
non-dimensional form using the following substiiutions, in which an overbar denotes
a dimensionless quantity,’ denotes differentiation with respect to dimensionless time,

and p. is the density of the cylinder

z=71TD t=7D/T t=3"D/T?
y=3yD y=9D/T y=3"D/T* (5.8)
t=1T QD=wnfwy = fo/fo  wuw=21/T
U=Unsin(wyt) 7 =p/p
This substitution into Equations 5.6 and 5.7 yields after some algebra
—t — 2002 2 Cd:r e ) o 7 =t
T +47(Q7 + 47°Q°T = —= s (Kesin 2wt — ') | Kesin 27t — 7|
T+ C,
+2r Kc Cm cos 2nt, (5.9)

p+Cd
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7'+ 4An(QOF + 4n20% =

—=——F 7. (5.10)

5.3 Modified Uncoupled Model

A possible improvement for the transverse forcing proposed in the simple
uncoupled model is to use the transverse force suggested by McConnell and Park
[12] previously discussed in Section 2.3. Specifically, the transverse force in this case
is given by

FL(t) = %pDCLU2 sin(nwyt + @). (5.11)
The only difference from the simple uncoupled model is that the instantaneous fluid
velocity is used instead of U,,. The value of n is again based on the number of
vortices that are produced per half cycle of fluid motion. This forcing model gives
frequency components at nw,, (n + 2)w, and (n — 2)w,, as previously discussed.

Using the same model for inline forcing as the simple uncoupled model, the

resulting equations of motion for the “modified uncoupled model” are

(m+pAC )i+ ci+kz = pACLU + -;-pDCd,(U - z)|U - z|, (5.12)

i

ipDU"’CL sin(nw,t + ¢) — %pDCdvyh}l. (5.13)

By substituting in the expressions of Equation 5.8, the nondimensional equations are

2 Cuy,

T+ 47T + 4727 = == - (Kesin 27t — T') | Kcsin 2nt — 7|

L S O

+27 Ke— CC 5 cos 27t (5.14)
7 +4rl0y +4n?Q% = g—Kc’ C sin(n2rt + ¢)sin? 27t

T p+C

] (5.15)

o+ C,



5.4 Coupled Model

An alternative to simply superimposing the inline and transverse deflections
predicted by separate equations is to resolve the lift and drag terms perpendicular
to and parallel to the instantaneous direction of relative motion with respect to
the fluid, while leaving the inertia terms independent in the inline and transverse
directions. Another approach based on resolving inertia terias in the direction of
relative acceleration is presented in Appendix A, although with certain assumptions
this results in the same equations of motion.

As shown ir Figv~ 1, for a cylinder with velocity zi + yJ, the velocity of the

fluid with respeci v. - - .+ . deris

vrie = (U - 2)i - gj, (5.16)

in which the direction of relative velocity is defined by the angle a. Note that positive

« is measured clockwise. From Figure £.1(a),

1_/__' cos @ = Y- :z:)’ (5.17)
v v

where v is the magnitude of vp/¢c and is

v= (U - 2)? + §* (5.18)

Using the lift and drag forces, Fi, and Fp, illustrated in Figure 5.1(b), the equations

-

Yy.J

(a) (b)

Figure 5.1 Direction of lift and drag for the coupled model.



of motion are

mi+cz+kr = FDcosa+FLsina+CmpAU—C.,'pA5:,

my+cy+ky = Fpcosa— Fpsina— C,/pAj,
where the lift and drag force are

Fp = %pDCdv:', F, = —;-pDCLv2 sin(nwyt + ¢).

By combining these results the equations of motion become

(m+ pAC)E +cz+kxr = C,,.pAU + %pDCdv2 Cos
1

2pDC'Lv2 sin(nwyt + ¢) sin a

1 .
(m+ pAC, )i +cy+ky = ipDCLv2 sin{nw,t + ¢) cos o

—é—pDCdv2 sin a.

+

(5.19)
(5.20)

(5.21)

(5.22)

(5.23)

Again using the p:»dimensionalization given iu Equation 5.8, the equations of motion

can be written as

T4+ 47T + 4riQ’z =

2r Kc Crm cos 2rt

p+Cl

-f-2 Ca (Kcsin 27t — T') {(Kcsin 2t —T)% + 3‘/42}%
TP+ c,’ \

+E__C’:._r" sin(n2rt + 9) {(Kc sin2rf — ') + T
Tp+ Cu’y Yy

7'+ 4y +4n? 0% =
%n L sin(n2nd + )(Kesio 2 - 7) {(Kesin(2rd) - 7)1 +7°)
2 Cp

L
—;Wy {(Kcsin 2rt — %) + y’z}’ .

(5.24)

(5.25)
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The inline equation for the uncoupled models was successfully used by C.H.K.
Williamson (18] to predict inline response, but it remains to be seen whether this
approach can be successfully used in the context of two-dimensional response. Large
discrepancies between observed and predicted behaviour might be expected to occur
for flow conditions in which the fluid-structure interaction is significantly different
from that for a fixed cylinder, since the coefficients were obtained from data for a

fixed cylinder. In such cases an iterative solution might be required.

The solutions to the sets of equations in this chapter cannot be expected
to reproduce exactly the observed behaviour because of the assumptions and
simplifications made. In particular, lock-in self-limiting amplitudes were not
accounted for in the models and are not expected in the results. Other assumptions
made include the applicability of fixed cylinder data, the use of constant coefficients,
the assumption of independent inline and transverse behaviour, and the omission of

inline force due to vortices.

In the next chapter the solutions of the three models developed here are compared
to experimentally observed trajectories. This comparison provides a basis for

evaluating the usefulness and limitations of the models.



Chapter 6

Numerical Results and Analysis

In this chapter, the computed trajectories from the equations of motion developed
in Chapter 5 are compared to experimentally observed trajectories. From this

comparison the usefulness and limitations of the different models are identified.

6.1 Solution of the Equations of Motion

The equations of motion presented in Chapter 5 cousist of sets of nonlinear second
order differential equations that are not readily solved analytically. Consequently,
thesc eqnations were solved numerically using an adaptive stepsize, fourth order
Runge-Kutta algorithm given by Press et al. [31]. To solve the pair of second order
equations, they were converted into a set of four first order equations in the variables

z;, such that

oo

z d
T a=n a= & z4=y. (6.1)

The nondimensional forms of the equations were solved for zero initial conditions

<y =

and all quickly approached steady-state trajectories. Other initial conditions were
also used and the solutions were found not to depend on the initial conditions. In
all cases structural damping was set to zero because it is much smaller than fluid

damping eftects. Additionally, structural damping would have been very difficult
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to determine experimentally as the very soft springs cannot support the cylinders
without the buoyancy provided by the water. The assumption of ignoring the very
small structural damping is conservative because it will tend to overestimate the

response slightly.

Maximum deflections from the equilibrium position rather than peak to peak
measurements are used in the comparison because structural stresses are generally
proportional to deflection from equilibrium. If peak to peak measurements were
used, any offset of the response in one direction would result in the largest deflection
from equilibrium exceeding half of the peak to peak measurement. Therefore if peak

to peak measurements were used, the stresses could be underestimated.

6.4 -..omparison to Experimental Results

To evaluate the effectiveness of each of the three models in predicting the response
of a cylinder to oscillatory {low, five particular cases in the experimental portion of
the study were selected for comparison to the numeriial predictions, and are referred
to as Case 1 through Case 5. In all cases tke trajectories chosen were judged as being
two-dimensional and repeatable, which permits a meaningful comparisor between the

experimental and numerical results.

For each of the models developed in the previous chapter, a number of coefhcients
must be specified. The values of Kc and f,/f, characterize the case under
consideration, while values of Cy, C, and C; were taken from data {or a fixed cylinder
as measured by Sarpkaya [5]. A summary of the test cases and the coefficients used
for all the models is presented in Table 6.1. From free vibration tests of the cylinder
in water, the added mass coefficient was found using Equation 5.5 to be very close to
1. This result was expected, since for small amplitude oscillations in which there is
little or no separation of the flow, the value of C,' should be very close to the inviscid
flow value of 1. Therefore C,’ = 1 was used in all cases. The selection of n and ¢ is

discussed in the comparison to the experimental results.
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Table 6.1 Summary of coeflicients used in the numerical models.

Case Kc ful/fw Cs Cn CiL
1 94 129 19 10 3.2
2 7.7 197 18 15 2.5
3 19.7 197 17 10 2.7
4 15.0 287 20 0.8 32
) 48.0 643 11 14 0.6

6.2.1 Case 1

The first experimentally cbserved trajectory for comparison is shown in Figure 6.1

for which K¢ = 94 and f./f, = 1.29.

The empincal coefficients used in the

solution of the simple uncoupled rodel were Cy = 1.9, C,, = 1.0, Cp = 3.2 as

given in Table 6.1. The remaining parameters to be specified are n and ¢. The

number of vortices shed per half cycle for a fixed cylinder has been documented

by Sirpkaya [5], and depends mainly on Kc. Sumer and Fredsge [23] compared

Sarpkaya’s results to the number of transverse oscillations that they observed for a

fo/fa=1.29
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Figure 6.1 Experimentally observed trajectory, Case 1.
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stiffly supported cylinder able io respond in the transverse direction ouly, and noted
very good agreement between the two numbers. The numbers presented by Sarpkaya
are a function mainly of Ac but in the experimental portion of the present study the
nrmber of transverse cycles for each cycle of water motion was observed to depend
on both Ac and frequency ratio f,/ f,. Therefore the value of n was set by inspection
of the experimental results using the number of cycles of transverse motion for each
cycle of inline motion. It is worth noting that the selection of n can be made in
advauce by referring to Figure 4.5 using the values of Kc and f,/f,. Each “Group”
in the figure is named according to the number of transverse cycles completed for
each iniine cycle, which corres:.- ..« ©:- n for the uncoupled models.

The trajectory produced by t:.- simple uncoupled model is given iu Figure 6.2(a)
for ¢ = —1.7. The shape of the numerically predicted trajectory is similar to that in
Figure 6.1. The inline response amplitude matches quite closely that observed in the
experiment, as shown 'n Figure 6.1, however the maximum transverse response is
slightly larger than the experimentally observed value. Although the shape matches
the observed trajectory quite well, the trajectory predicted by the model gives
equal maximum trapsverse deflections both upward and downward. In contrast, the
observed trajectory shows an apparent offset so that the largest negative transverse
deflections are greater than those in the positive direction. This may be due to
unequal development of the vortices, which is not accounted for in the model. The
value of ¢ was the one parameter that could not be determined from previous
experimental results. The effect of selecting a different value of ¢ is illustrated
in Figure 6.2(b) for which ¢ = 0. For the simple uncoupled model, the inline and
transverse response amplitudes do not depend on ¢. In what follows the value of
¢ is chosen so as to achieve the best match between the experimentally observed

trajectory and those calculated numerically.

The modified uncoupled model was able to accurately repreduce the trajectory
of Case 1 with n = 2 and ¢ = —x/2, as shown in Figure 6.3. This value of ¢ is

very close to that required for the simple uncoupled model. The computed inline
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Figure 6.2 Numerically predicted trajectories from the simple uncoupled model

for Case 1 with n=2. (a) ¢ = —1.7, (b) ¢ = 0.
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Figure 6.3 Numnerically predicted trajectory from the modified uncoupled
model for Case 1 withn =2 and ¢ = —n/2.
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response amplitude is in good agreement with the observed response. The main
difference between the obse:ved and predicted amplitudes is that they are shifted in
opposite directions from the equilibium position. Specifically, the experimentally
observed maximum transverse displacements are about 0.4D upward and 0.7D
downward whereas the predicted trajectory has an even greater offset with maximum

displacements of about 0.7D upward and 0.2D) downward.

The coupled model also required values for the coefficients Cy, C,,, and Cy, which
were taken from Table 6.1. The remaining parameters are ¢, which was again varied
to obtain the best trajectory, and n. For the coupled model the vatue of n no longer
corresponded to the number of transverse cycles for each cycle of water motion, as
it did for the uncoupled models. The reason for this change is most likely due to
the coupling between the lift force, which acts perpendicular to the instantaneous
relative velocity, and the inline motion. An example of the effects of different values
of n can be seen in Figures 6.4(a), (b) and (c) in which n is given values of 1,2 and 3
respectively, with ¢ = 0. From these three figures, it is clear that the value of n does
not correspond to the number of transverse cycles for each cycle of inline motion. In

Figure 6.4(d) the value of n is 3 as in 6.4(c), however ¢ = 7 /4, with the result that



79

p/r=¢‘e=u(p)o=¢‘c=u()0o=¢‘c=u(q)
0=¢ ‘1T =u(®) ‘1 ose) ‘¢ pue u uo suspuadap s,ppowt padnoy p'g 2anIiy

a/x a/*
4 { 0 |- ¢ A L 0 L— [
1 i 1 } 1 | 1 | ! 1 1 L ! 1 1 |_.v
< N <
IOW OW
) () .
a/x a/x
4 l 0 - c— A i 0 L— c—
1 ] 2 { ! 1 1 | : 1 1 1 1 ! 1 |
< <
O~ —O™N
o o
(q) (o)




80

the trajectory is very similar to that for ¢ = 0 and n = 1 in Figure 6.4(::>. The result
of this phenomenon is that not only ¢ had to be varied, but also n had to be chosen
correctly. Based on the trajectories analyzed in this study. the best value for n is
either one less than or greater than the observed number of transverse cycles. The
closest trajectory to thc observed Case 1 is that showr in Figure 6.5 with n = 3 and
¢ = —n /4. The shape is quite similar to the observed trajectory, but inline response

is overestimated slightly and the transverse response is underestimated.

An additional feature that may be compared between the computed and
experimentally observed trajectories is the phase of the response with respect to the
water motion and the direction of motion about the trajectory. For this comparison,
the trajectory is arbitrarily considered to start at the time corresponding to maximumn
fluid velocity from left to right, at which time the fluid is passing its equilibrium
position. On the plots of both the experimentally observed trajectory and the
computed trajectories, the starting point is indicated with a dot, while an arrowhead

indicates the direction of motien of the cylinder from the starting point.

Comparison of the starting point for the simple uncoupled model in Figure 6.2(b)

| T I T [ I

0
x /D

Figure 6.5 Numerically predicted trajectory from the coupled model for Case 1
withn =3 and ¢ = -7 /4.
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to that of the observed trajectory in Figure 6.1 reveals a very close agreement, but
it proceeds in the opposite direction. The modified uncoupled model in Figure 6.3
also starts at about the same point but proceeds in the direction opposite to that
observed experimentally. The coupled model in Figure 6.5 is the only medel for
Case 1 that agrees with the observed trajectory in both direction and starting point.
On the basis of the direction of the computed responses it appears that the coupled

model is a better predictor of the response in this case.

6.2.2 Case 2

The observed trajectory for Case 2, in which Kc = 7.7 and f,,/f, = 1.97, is shown
in Figure 6.6. As in the observed trajectory for Case 1, there are two transverse
cydes for each cycde of inline motion, so that for both uncoupled models, n = 2.
However, unlike the infinity shape for Case 1, there are three crossing points in the
trajectory and two points where the cylinder changes direction abruptly. With n = 2
the frequency of transverse forcing caused by the vortices is defined to be twice the
flow frequency. The frequency ratio f,/f, is also very close to 2, which indicates
that there is a resonance-like condition. It is speculated that the abrupt changes

-~
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Figure 6.6 Experimentally observed trajectory, Case 2.
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in direction are caused by the resonance-like condition and may correspond to the

shedding of a strong vortex.

The trajectory predicted by the simple uncoupled modei with ¢ = 0 is shown in
Figure 6.7(a) and with ¢ = 7/2 in Figure 6.7(b). Other values of ¢ were also tried
with similar results. Clearly the abrupt changes in direction are not predicted by
the simple uncoupled model. The transverse response amplitudes are overpredicted
by the model, while inline responses are underpredicted by about half. The simple

uncoupled model is clearly unsuccessful at reproducing this case.

Samples of the modified uncoupled model's predictions for Case 2 are shown 1.
Figuze 6.8(a) with ¢ = 0 and in Figure 6.8(b) with ¢ = ~1.8. In Figure 6.8(b)
a slight similarity in shape is evident in that the trajectory shows three crossing
points, but otherwise the shape 1« not very close to the observed one. Inline responses
are underpredicted by slightly more than half while the transverse response is quite
accurately predicted. By comparing Figures 6.7 and 6.8 it is evident that the modified
uncoupled model predicts transverse amplitudes that are less than those of the simple

uncoupled model.

In modelling Case 2 with the coupled model, the best trajectory was produced
forn =1 and ¢ = —7/2 and is shown in Figure 6.9(a). However, a similar trajectory
was produced when n = 3 and ¢ = 1.4, and is shown in Figure 6.9(b). The
predictions of inline response were somewhat lower than observed, but transverse
response predictions were very close to the observed values. Of interest in modelling
Case 2 is the result obtained by setting ¢ = 0, n =1, C, = 3, C,, = 2, and
Cq = 0.8, shown in Figure 6.10. Although there is no rigorous basis for choosing these
coeflicients, the similarity between this trajectory and that observed in experiment

is very good.

A comparison of the phase and starting points of the computed response from
the simple uncoupled model for Case 2 is quite difficult, due to the large differences

between the shape of the observed trajectory in Figure 6.6 and the computed
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Figure 6.7
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Numerically predicted trajectories from the simple uncoupled model

for Case 2 withn =2, (a) ¢ =0, (b) ¢ = 7/2

83



S

(a)
-
~NO-
>
T T i T T T I T
-2 -1 0 1 2
x/D
(v) |
=)
N O
>
]
N l I ; T ™
-2 —1 Qo 1 2
x /D

Figure 6.8 Numerically predicted trajectory from the modified uncoupled
model for Case 2 withn =2. (a) ¢ =0,(b) $ = —-1.8
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Figure 6.9 Numerically predicted trajectory from the coupled model for Case 2.
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Figure 6.10 Numerically predicted trajectory from the coupled model for Case 2,
using modified coefficients.

trajectories in Figure 6.7. However, both the computed and observed starting points
agree in that they occur shortly after the cylinder has reached its maximum positive
inline deflection. The modified uncoupled model in Figures 6.8(a) and (b) also shows
the starting points to occur shortly after maximum positive inline deflection. In
Figure 6.8(b), which exhibits three crossing points similar to the observed trajectory,
the trajectory proceeds in the same direction about this shape as the experimental
trajectory shown in Figure 6.6. The coupled model predictions in Figures 6.9 and
6.10 show the same direction of motion and good agreement in phase is evident in
Figure 6.9. Figure 6.10, which was obtained using coefficients to best fit the shape
rather than coefficients from empirical data, shows a slight difference in the starting

point.



6.2.3 Case 3

The third case for comparison is shown in Figure 6.11, for which Ac  19.7 and
fn/fw = 1.97. This is the same frequency ratio as for Case 2 which w.s identified
as a resonance-like condition. Note that in contrast to Case 2, this case corresponds
to a trajectory with three transverse cycles for each inline cycle. Additionally, in
Case 3 the transverse response is larger than for Case 2. Using the simple uncoupled
model with n = 3, the third case was most closely reproduced by setting ¢ = —0.4,
with the predicted trajectory shown in Figure 6.12. This model gives a reasonably
good prediction of the shape, which is evident by following botk trajectories from
their starting points. In both the numerically predicted and observed trajectories,
the starting point occurs near the right hand side of the trajectory near a very sharp
peak. They then proceed to a fairly sharp downward peak, followed by a more
rounded upward peak and then to the very sharp downward peak at the lower left
corner of the trajectory. The inline response amplitude is well predicted, however

transverse respoase is again overestimated.

The modified uncoupled model’s prediction is shown in Figure 6.13 with ¢ = 0.
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Figure 6.11 Experimentally observed trajectory, Case 3.
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Figure 6.12 Numerically predicted trajectory from the simple uncoupled model
for Case 3 with n = 3 and ¢ = —0.4.

The trajectory shows one sharper peak both upward and downward, similar to the
experimentally observed trajectory, however near maximum inline deflection the
transverse deflection appears to be shifted vertically. This results in a trajectory
that appears to be rotated about 30 degrees from the simple uncoupled model’s
prediction. Consequently, the largest transverse response is much greater than the
observed, but inline amplitude predictions are quite accurate. The best trajectory
from the coupled model is that shown in Figure 6.14, for which n = 4 and ¢ = 2.5.
The overall shape and transverse response is well duplicated, but the inline response

1s sonuewhat overestimated.

The starting point and direction of the observed trajectory for Case 3 in
Figure 6.11 shows the trajectory starting at the largest inline and transverse
deflection and proceeding first toward a fairly sharp downward peak, as described for
the simple uncoupled model. All three models exhibit the same direction of motion
and very close agreement in starting point, as can be seen in Figures 6.12, 6.13 and

6.14.
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Figure 6.13 Numerically predicted trajectory from the modified uncoupled

model for Case 3 with n =3 and ¢ = 0.
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Figure 6.14 Numerically predicted trajectory from the coupled model for Case 3
with n =4 and = ¢ = 2.5.
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6.2.4 Case 4

Figure 6.15 shows the experimentally observed trajectory for Case 4, for which
Kc =15.0 and f,/f, = 2.87. It is similar to Case 2 in that there are abrupt changes
in direction which might be attributed to the shedding of a strong vortex. This case
could alse be considered as a resonance-like situation, since three transverse cycles
are completed for each cycle of inline motion and f,,/ f,, is close to three. A typical
trajectory predicted by the simple uncoupled model is shown in Figure 6.16, with
# = 0. The shape of the trajectory is not very close to the experimental one. The
transverse response is somewhat overestimated, while the observed inline response is
underestimated by about half.

The predictions of Case 4 from the modified uncoupled model are shown in
Figures 6.17(a) and (b) for ¢ = 0 and ¢ = /3 respectively. Aguin, the model
does not predict the abrupt changes in direction. As was the case with the simple
uncoupled model, the inline deflections are underestimated by about half while the

transverse deflections are overestimated slightly.

The computed response from the coupled model is shown in Figure 6.18, with

o~ .
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Figure 6.15 Experimentally observed trajectory, Case 4.
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Figure 6.16 Numerically predicted trajectory from the simple uncoupled model

for Case 4 with n = 3 and ¢ = 0.

¢ = 0 and n = 4. In this case the transverse and inline amplitudes of motion are
both well estimated and the shape bears some resemblance to the experimentally

observed trajectory.

A comparison of the starting points and directions for the computed trajectories
for Case 4 is difficult to make, due to the differences in shape from the observed
trajectory, however they all start near maximum positive inline deflection. The
coupled model is the only one for which the direction of motion may be compared,

and it proceeds in the opposite direction from the experimentally observed trajectory.

6.2.5 Case b

The experimentally observed trajectory for Case 5 is shown in Figure 6.19, for
which Kc = 48 and f,/f,, = 6.43. This case is significantly different from the others
in that both Kc and f,/f, are much larger. The larger cycle to cycle variations
observed experimentally for larger Kc, as discussed in Chapter 4, are evident in that
the end of the cycle shown is not coincident with the start of the cycle. Nevertheless,

this trajectory is repeatable in terms of the number of transverse cycles completed
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Figure 6.17 Numerically predicted trajectory from the modified uncoupled
model] for Case 4. (a) ¢ =0, (b) ¢ = /3.
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Figure 6.18 Numerically predicted trajectory from the coupled model for Case 4

with n = 4 and ¢ = 0.
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Figure 6.19 Experimentally observed trajectory, Case 5.
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and the orientation of the transverse cycles within each cycle of inline motioa. The
number of transverse cycles completed per inline cycle is 7, including the smaller
cycles in the centre of the trajectory. Therefore n should be chosen as 7 for the
uncoupled models. The abrupt changes in direction and the similarity between
fn/fw = 6.43 and the number of transverse cycles completed in oae cycle of water

motion indicates that this is also a resonance-like condition.

The simple uncoupled model’s prediction for n = 7 and ¢ = 0 is shown
in Figure 6.20. Seven transverse cycles can be identified, and they all are of
the same amplitude, as expected fro.n the simple uncoupled model. In contrast,
the experimental trajectory shows larger transverse amplitude corresponding tc
large inline displacement. Both inline and transverse displacement amplitudes are
underestimated, probably due to an amplification of lift and drag forces similar to
that experienced under lock-in conditions in steady flow. The modified uncoupled

model’s predictions with n = 7 and ¢ = 0, shown in Figure 6.21, displayed some
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Figure 6.20 Numerically predicted trajectory from the .simiple uncoupled model
for Case 5 with n =7 and ¢ = 0.



Figure 6.21 Numerically predicted trajectory from the modified uncoupled
model for Case 5 with n = 7 and ¢ = 0.

modulation of the transverse response but also underestimated the amplitude of

inline and transverse response.

A typical trajectory from the coupled model for Case 5 is shown in Figure 6.22
with n = 6 and ¢ = 0. The amplitudes of response are again underestimated.
Comparison of the starting points show that all the models start near the maximum
inline deflection, as observed in the experimental trajectory, but the direction of

motion is difficult to compare.

6.3 Conclusions

The numerical results of the three models developed to predict the response of a
cylinder to oscillatory flow were compared to experimentally observed trajectories.
The agreement between the predicted and experimentally observed trajectories was

generally quite good considering the simplicity of the models and the complex nature
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Figure 6.22 Numerically predicted trajectory from the coupled model for Case 5
with n =6 and ¢ = 0.

of the interaction between the cylinder and the flow. The comparison showed that
there was particularly good agreement for the trajectories which did not have abrupt
changes in direction and resonance-like conditions. This limitation is not as serious
as one might expect, with respect to transverse oscillations, since non-resonant cases
such as Case 3 often produced larger transverse deflections than the resonant cases.
However, significant underestimation of the inline response for the resonant cases is

a greater limitation.

The simple uncoupled model best predicted trajectories that were smoothly
curved. The transverse response peaks were all of the same amplitude due to the
nature of the simple harmonic forring in the transverse direction, and consequently
the modulation of the transverse response observed experimentally was not predicted.
Of the predictions by the simple uncoupled model that were close enough in shape
to permit a comparison of the starting points and direction, only Case 3 showed the

correct direction and starting point.
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The modified forcing model showe:. some improvement over the simple uncoupled
model’s predictions. In general the transverse responses were closer to the
experimentally observed values than for the simple uncoupled model. The reason
that the modified uncoupled model does not overpredict the transverse responses
to the same extent as the simple uncoupled model is the use of the instantancous
fluid velocity, rather than U,,, in the expression for the lift force. As expected the
inline response amplitudes for i modified uncoupled model were the same as for
the simple uncoupled model because the inline equation of motion is the same for
both. The model displayed some modulation of the amplitude of transverse response,
and it is in this respect that the modified uncoupled model was noticeably better
than the simple uncoupled model. In every case except 4 and 5, where the similarity
in shape was not sufficient to permit a clear comparison of the direction of motion,
good agreement in starting point and direction of motion about the trajectory was
evident. This result helps to discount the possibility ‘hat the agreement in shape
between the numerical and experimental trajectories is caused by a combination of

coincidence and adjustment of the parameter ¢.

The coupled model showed considerably different types of trajectories from those
produced by the uncoupled models. Although the selection of the parameters n and ¢
was more difficult to define, the overall shape and proportions of the trajectories were
in better agreement than the two uncoupled models. In particular, the transverse
displacements for Cases 2, and 4 were not so highly overestimated, while the shape of
Case 3 was predicted in quite good detail. For Case 5, in which Kc = 48, the coupled
model was least successful. This might indicate that it is best suited to cases where
a large part of the vortex motion consists of attached vortices being swept around
the cylinder, as opposed to vortex shedding in the quasi-steady flow encountered for
large Kc. In this respect, the coupled model showed potential, with the excellent
agreement in shape that was obtained for Case 2 with different coefficients. This
result may be an indication that alternative methods of selecting coefficients need to

be developed, perhaps involving iterative solutions. The coupled model also exhibited
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good agreement in starting point and direction of motion in cases where the shapes
were similar enough to permit the comparisons.

One reason for the consistent overprediction of amplitudes of transverse response
by the simpie uncoupled model in Cases 1 to 4 may be that the structural damping
was ignored in the numerical solution. This problem could also be addressed by
using a more suitable lift coefficent. In the results given here, the lift coefficient
was Cpn. reported by Sarpkaya [5], which was the largest of the maximum values
of the lift coefficient over many cycles. Instead, the average maximum value of the
lift coefficient could be used. Another approach would be to employ an amplitude

dependent lift coeflicient, although such a source of data is not currently available.

The trajectories show that a different model is required to reproduce exactly the
shapes of the trajectories that have abrupt changes in direction, or “corners”, which
are likely caused by the strong and distinct shedding of an individual vortex. Inline
response amplitudes are quite well predicted for Cases 1 and 3, which are smoothly
curved trajectories, but the inline response for trajectories exhibiting “corners” are
underpredicted by about half. It would appear that there is a considerable difference
in the fluid-structure interaction between these two types of cases. The resuit of
this fluid-structure interaction is that inline deflections may be underestimated for
conditior:s involving transverse resonance. To gain a better understanding of the
Huid-structure interaction a flow visualization study of the vortex shedding should
be undertaken and compared to the flow visualization studies by C.H.K. Williamson
(18} and C.H.K. Williamson and Roshko [19]. Due to resonance-like phenomena, the
use of constant empirical coefficients from fixed cylinder data is probably in error.
One possibility to investigate is the use of iteratively determined coefficients similar

to those used by C.H.K. Williamson [20] for inline response.

An alternative method of obtaining better agreement in the shapes of the
trajectories is to use a more complex forcing expression. In an attempt to improve
the shape of the trajectories an additional term was added to the inline forcing terms

in the simple uncoupled model to account for vortex forces in the inline direction.
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The numerical results of this model were not presented here, however it is worth
noting that the trajectories often lost symmetry and gained complexity, proving to

be worse predictions of the cylinder’s response than the simple uncoupled model.

A further refinement that could be made to the modified uncoupled model would
be to use the forcing expression of Bearman et al. [17] as discussed in Section 2.2.2.

By -ising this inodel, additional components at multiples of the flow frequency would
be included.

Although some success was achieved with the three models it is clcar that
further improvements are needed to accurately predict the cylinder’s response. The
possibility of a wake oscillator model similar to that for steady flow seems to be the
next step, although greatly increased complexity might be anticipated due to the
need to account for the incident wake and vortices from the previous half cycle. In
this respect, a vortex tracking numerical model might hold some promise, but such
a model would first require a knowledge of vortex motion for the case in which the

cylinder is free to respond in two dimensions.



Chapter 7

Conclusions and

Recommendations

In this study, the response of a flexibly mounted rigid cylinder to oscillatory
flow was investigated experimentally. It was found that the cylinder tended to
respond in frajectories that varied in size and shape depending on the Keulegan-
Carpenter number, Kc, and frequency ratio, f./f,. Kc was varied between 2 and
60 in the study, while f,/f, was varied between 1 and 8.6. When the trajectories
were placed on a plot with Kc as the ordinate and f,/f, as the abcissa, it was
found that the trajectories in certain areas of the plot were similar and could
be grouped on the basis of the number of transverse cycles completed for each
cycle of water motion. In all cases, one princpal cyde of inline motion was
observed for each cycle of water motion. For the range of parameters investigated,
trajectories with as few as 2 or as many as 8 transverse cycles were identified. The
boundaries for these groups were most clearly defined for lower values of Kc and
fn/fw. For conditions corresponding to the boundaries between trajectories with
different numbers of transverse cycles, smaller, and often three-dimensicnal response
was observed. Amplitudes of transverse response appeared to be limited to about 1.2

diameters, similar to the largest amplitudes observed in studies of transverse-only
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response in oscillatory flow and of response to steady flow. Amplitudes of inline
response of slightly over two diameters were observed, however no limit to their

amplitude was evident.

It was found that when the cylinder can respond in two dimensions the number
of transverse cycles completed in one cycle of water motion tended to assume integer
multiples of the flow frequency. For example, as Kc was increased for a cylinder
with f./f, fixed at 1.97, the transverse response occurred first at 2 and then at 3
times the flow frequency. By comparison, in studies of transverse response alone it
has been reported that the frequency of response shows a strong tendency to assume
an integer multiple of the flow frequency, but the integer multiple is sach that the
principal frequency of transverse response remains very close to the natural frequency
of the cylinder. In the example cited from the present study, the response at 3 times
the flow frequency for a cylinder with f,./f, = 1.97 is not consistent with the results
of transverse response only. The reason for this inconsistency is that transverse
response at 2 times the flow frequency, rather than 3, would result in a response
frequency closer to the natural frequency. In addition, the studies of transverse
response alone have shown that larger transverse responses occur when the ratio of
the natural frequency to the flow frequency is an integer multiple, although this was
not evident in the present study. The reasons for these differences can be attributed
to the inline response of t:.e cylinder which can significantly alter the timing of the

incident vortices from the previous half cycle with the response of the cylinder.

Three numerical models of the two-dimensional response of a cylinder
to oscillatory flow were developed and compared to experimentally observed
trajectories. The “simple uncoupled” model and the “modified uncoupled model”
used the relative velocity formulation of the Morison equation for the inline fluid
force, and different expressions for the transverse forcing. The “coupled model”
involved lift and drag terms that act perpendicular and paralle! to the direction
of instantaneous relative velocity between the cylinder and the flow. In all models

empirical coefficients from studies of fixed cylinders in oscillatory flow were used.
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It was found that the models predicted the behaviour quite well considering the
simplicity of the models and the complexity of the fluid-structure interaction. In
particular, the models were more successful at predicting the response for cases
where the trajectories were smoothly curved, rather that the cases that appeared to
involve resonant behaviour and abrupt changes in direction. The modified uncoupled
model was significantly better than the simple uncoupled model because it was able
to predict some modulation of the transverse response. It was also more successful
at predicting the direction of motion about the trajectory and the phase relationship
between the water motion and the trajectories. Despite these successes, it was also
evident that improvements need to be made to accomodate the resonant cases. The
main shortcoming of the models was that the inline response for these resonant
cases was significantly underestimated, especially for cases corresponding to high Ke.
In this regard, the coupled model showed some promise in that, with appropriate
coefficients, it could model some of the resonant cases more successfully. This may
be an indication that alternative methods may be required to select the empirical
coefficients, perhaps involving iterative approaches which account for the structural
response. Obviously many other different models could be formulated which may
prove useful. In this regard the independent flow fields model could be used for
the inline force, and different models for the lift force such as the one proposed by
Bearman et al. [17] should be considered.

For this study, it is clearly evident that the next step in understanding the fluid-
structure interaction is to conduct a flow visualization study to determine the fluid
and vortex dynamics involved. Such a study should be able tc identify the causes of
the well defined groups of trajectories observed, and perhaps provide some insight

for the modelling of the response, particularly the resonant cases.
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Appendix A

Resolving Inertia Terms in an

Equation of Motion

This appendix describes an alternative method of deriving the inertia :ei:us for
the resolved lift and drag model discussed in section 5.4. The inertia terms due to the
flow field and the acceleration of the cylinder with respect to the fluid are resolved
in the direction of relative acceleration, with the inline and transverse components
separated.

The direction of the acceleration of the cylinder with respect to the fluid, ac/F,
is not necessarily the same as the direction of instantaneous relative velocity. The
inertia terms must therefore be resolved along a direction separate from the direction
of relative velocity. Recall that the velocity of the fluid with respect to the cylinder
is vpjo as defined in Eq. 5.16. The inertia terms depend on the acceleration of the

cylinder with respect to the fluid,
ag/r = (& — U)i + i, (A1)
as shown in Figure A.1. The angle v can be defined such that
siny=g/a and cosy=(%-U)/a, (A.2)

where a = y/(Z — U)? + §? is the magnitude of a. The inertia term for the z direction
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U4

ac/F

[ 1]

Figure A.1 Components of the direction of relative acceleration.

will include a pressure gradient term that is causing the fluid acceleration, U. This
force is independent of cylinder motion and acts only in the z direction. Additionally
there will be a term to account for the relative acceleration of the cylinder with

respect to the fluid. Therefore

[inertia], = pAU — pAC,(ac/r)=
= pAU — pAC,acosy
= pAU — pAC,4(z - U), (A.3)

using the second of Equation A.2. In general the coefficier i C, will depend on the
relative motion which is not known a priori. At this pe:at it is necessary to make
some assumptions to avoid an iterative solutior. I. is convenient to extract the
—pAC,Z term for use as an added mass in the vaietion of motion, which causes the
natural frequency of the structure in the fluid > ppear as a term in the equation of
motion. The remaining inertia terms are pAU{1+ Z,). By including added mass with
the structural mass, one is committed to treating the inertia terms on an independent
flow field basis because the relative acceleration term (Z — ) has been separated.
C, should then be used in place of (1+ C,) as it is known to account for the effects
of the fluid motion past the cylinder when held fixed.

The inertia term for the y direction is similazly shown to be
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[inertia], = —pACi(ac/r),
= —pAC,asiny
= —pAC.J. (A4)

as it only consists of effects due to the acceleration of the cylinder with respect to
the fluid. The inertia terms derived in this appendix are identical to those assumed

in the resolved lift and drag model and used in equations 5.19 and 5.20.



