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Abstract

Modeling of catastrophic disruption requires understanding the processes of dynamic failure and

fragmentation. This paper summarizes current mechanisms and models for dynamic failure, strength,

and fragmentation, reviewing these from a mechanics perspective and with an emphasis on making

links to the developing advances in these areas in the engineering and computational mechanics

communities. We describe dynamic failure processes, examine size and rate effects, articulate the

scaling concepts that arise naturally from these processes, and examine the influences of these

processes on effective strength and fragmentation.
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1. Introduction

There is evidence throughout the solar system of catastrophic disruption, particularly as the1

result of large impacts into asteroids (Williams, 1989; Zappal et al., 1995; Binzel and Xu, 1993;2

Burbine et al., 2001) and comets (Podolak and Prialnik, 1996; Chapman, 1975). Missions in recent3

decades (e.g., NEAR, Deep Impact, Hayabusa, Dawn, Rosetta, soon OSIRIS-REx) have revealed4

new and interesting details about the nature of small bodies in the solar system. Many asteroids5

have been observed to have impact craters with diameters comparable to the body size (Bottke Jr6

et al., 2002), suggesting that very large impacts can be below the disruption threshold. In addition,7

internal structure and damage has been observed on the surface of most small bodies, as is evident8
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from large-scale fractures observed on Ida: (Sullivan et al., 1996); Eros: (Veverka et al., 2000); and9

Vesta: (Le Corre et al., 2012; Schenk et al., 2012; Scully et al., 2012). It appears that much of this10

structure is the consequence of impact-dominated processes.11

Our understanding of impact processes is typically limited by two things: first, our understand-12

ing of the dynamic material properties and failure processes of the planetary materials that are13

involved in the impact, and second, our ability to capture these complex processes within com-14

putational simulations of these extreme events. Laboratory experiments have been very useful in15

improving our understanding of impact processes and catastrophic disruption (e.g., Gault (1973);16

Gault and Wedekind (1969); Fujiwara and Tsukamoto (1980); Nakamura and Fujiwara (1991);17

Martelli et al. (1994)). Laboratory-scale experiments, however, are orders of magnitude smaller18

than most of the collisions in the solar system. Thus computational simulations (e.g., Melosh et al.19

(1992); Benz and Asphaug (1994); Jutzi et al. (2010)) and scaling relationships (Holsapple, 1993;20

Davis et al., 1994; Housen et al., 1983) have become increasingly critical in understanding large-21

scale impacts. Hydrocode-based simulations have been shown to be capable of handling many of22

the complexities of the major impact event, particularly with respect to shockwave propagation23

and interactions with boundary conditions, and are typically benchmarked against laboratory ex-24

periments. Improvements to such simulations and the development of new scaling relationships25

should result from advances in the understanding and modeling of the failure processes that occur26

during impact events.27

Most of the impact events of interest to planetary science represent extreme dynamic events,28

which are characterized by the deposition of large amounts of energy in very short times. Because29

the speeds at which energy can propagate away from the location of deposition are finite (for30

example, shock speeds), the local energy density rises very rapidly, and so the material seeks31

new internal pathways to dissipate the energy (for example, fracture, melting, and vaporization).32

These internal energy pathways are typically referred to as “mechanisms.” Which mechanisms are33

available depends on the materials involved, and which of these mechanisms are exercised depends34

also on the severity of the impact, and the generalized loading conditions (e.g. impact parameters35

such as obliquity).36

A schematic of the main variables, failure mechanisms and processes in planetary impact events37

is presented in Figure 1 in terms of the conventional domains associated with a major impact.38
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Consider an impactor of diameter a impacting a much larger target body at a high velocity V . One39

characteristic timescale for the event is then given by τi = a/V , and the likely phenomena can40

then be categorized in terms of time after impact, described in terms of multiples of τi. This type41

of domain decomposition can also be performed in terms of length scales using multiples of the42

impactor diameter. Four domains can be identified, denoted generally as the source, strong shock,43

strength/flow and structural domains. Within each of these domains, we can identify the expected44

pressures, strain rates, and temperatures. These variables typically characterize the conditions that45

are developed in those domains. For example, the domain just under the impactor (called the46

contact domain) perceives the highest pressures, strain rates and temperatures. For each domain,47

we also identify critical macroscale processes, the deformation and failure mechanisms, and the48

kinds of models needed to describe these mechanisms. The material models that are used should49

be able to account for this range of pressure, strain rate and temperature histories, be able to50

incorporate these deformation and failure mechanisms in an effective way, and provide the key51

parameters necessary for the modeling of the critical processes in each domain.52

The domains of primary interest to us in this paper are in the shaded region in Figure 1. The53

materials in this region are under pressures of the order of 10 MPa to 1 GPa, deforming at in-54

termediate strain rates of 10−6 − 104 s−1, and undergoing massive failure through the collective55

behavior of cracks, voids and shear bands. Modeling the response of the material involves the56

coupling of these damage mechanisms with the rapidly varying stress states associated with the57

propagating shock, the development of rarefaction fans and subsequent spall from shock release58

down isentropes, massive fragmentation at intermediate strain rates, fragmentation-induced dilata-59

tion (“bulking”) and the overall rates of deformation. In practice, few simulation approaches are60

able to handle all of these phenomena within the same simulation with high fidelity, with particular61

difficulties often arising from the fragmentation and bulking components.62

This paper summarizes current mechanisms and models for dynamic failure, strength, and63

fragmentation, reviewing these from a mechanics perspective and with an emphasis on making64

links to the developing advances in these areas in the engineering and computational mechanics65

communities. Note that the background of the authors is that of experiments and modeling in66

dynamic mechanics of solids, rather than planetary science, and so it is likely that we cannot67

adequately represent the extensive literature in this area in planetary science. We therefore do68
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not attempt to capture all of the excellent work already published within the planetary science69

literature in this area, providing instead representative examples of related work. Finally, we note70

that reviews such as this are inevitably biased towards the works that are most familiar to the71

authors, and we apologize in advance to any who feel that their work has been slighted: this is72

certainly not our intention.73

2. Dynamic Failure Mechanics74

The specific failure processes that are developed within any given region of the target depend75

primarily on the material class (e.g. brittle versus ductile) and the current stress state. Figure 276

provides some of the typical failure processes that are developed within each material class as a77

function of the multiaxial stress state. Note for example, that the influence of confining pressures78

on failure processes can also be dramatic. Confining stresses can reduce available driving forces79

for some failure processes like fracture. However, confining stresses can also change the mode80

of failure. For example, Hu et al. (2011) demonstrated that the application of a bi-axial confining81

stress can re-orient the principal direction of crack growth during compression, producing diffuse82

shear-dominated failure zones (Figure 3). Some of these mechanisms are not intuitively expected:83

for example, a homogeneous ductile material subjected to hydrostatic compression generally does84

not fail, whereas the same ductile material containing inclusions/heterogeneities can develop adi-85

abatic shear bands under hydrostatic compression because the inclusions break symmetry and act86

as nucleation sites for the failure process. As a consequence, the possibility of large-scale shear87

localization should be considered in most planetary materials even in regions of nearly hydrostatic88

compression. Additional details on selected mechanisms in Figure 2 may be found in the follow-89

ing references: necking and void growth (Wu et al., 2003); adiabatic shear bands (Wright, 2002);90

bifurcation to nucleate voids (Wu et al., 2003); wing cracks (Horii and Nemat-Nasser, 1985); crack91

shutdown under pressure (Hu et al., 2011); and spallation (Wright and Ramesh, 2009).92

The major dynamic failure processes that are developed during large-scale impacts include (but93

are not limited to):94

• Dynamic fracture (nucleation, growth and coalescence of cracks) (Freund, 1998).95

• Dynamic void nucleation and growth (leading to spallation) (Meyers, 1994).96

4



• Void collapse (e.g., (Carroll and Holt, 1972; Molinari and Mercier, 2001)). Note that pore97

compaction can also be a localizing process, e.g. (Issen and Rudnicki, 2000).98

• Adiabatic shear banding (dynamic localization of shearing deformations) (Wright, 2002;99

DORAZIO et al., 2011).100

• Amorphization or phase change of some crystal structures (Chen et al., 2003).101

Some examples of these failure processes are presented in Figure 4 for a variety of materials102

(references are noted in the sub-figures). The morphology of the failures is distinct in each case.103

Since each failure process is typically developed under a particular stress state, the presence of104

such failures is often used as a signature of the prior existence of that stress state. The associated105

length scales include the failure size and the failure spacing.106

We provide foundational models for each failure mechanism in the next sections. In general,107

such models typically prescribe five major components: (i) a nucleation criterion; (ii) an onset of108

growth criterion (sometimes called an initiation criterion), if nucleation has already occurred; (iii)109

an equation for the growth dynamics; (iv) a description of the interactions with other failures or110

with boundaries; and (v) a coalescence or runaway instability criterion. The nucleation question is111

the least well-understood of the five components, and is an active area in multiscale modeling (e.g.,112

Rudd and Belak (2002)). Growth, on the other hand, is relatively well described, although growth113

dynamics continues to be an area of intense research (e.g., Wilkerson and Ramesh (2014)). In most114

cases the interaction and coalescence questions are also poorly-understood and are the source of115

many recent models (e.g., Jacques et al. (2012)).116

A consequence of the activation of any of the failure processes presented in Figure 2 are in-117

herent length scales and timescales, which then are manifested in the macroscopic impact event.118

These scales should ideally be resolved in simulations if the failure process is to be captured, an119

issue of great importance in engineering because of the need for design of protection systems.120

However, resolving these scales is often difficult to do from a computational resources viewpoint,121

particularly for the scales associated with small bodies in the solar system. As an example, the122

spacing of macroscopic shear bands will be reflected in the fragment sizes (Zhou et al., 2006c),123

and so the computational scheme must be able to resolve this spacing if fragment sizes are to be124

predicted. These fragment length scales change with loading path, e.g. when a region of material125
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undergoes hydrostatic compression followed by hydrostatic tension, the initial compressive state126

may result in shear banding, and the subsequent tensile state is then felt by a damaged material127

containing shear bands with a spacing that will affect the tensile fragmentation. In this section, we128

will explore some key failure mechanisms that are activated during catastrophic disruption, and129

we present some examples of models for these mechanisms. A relatively recent compendium of130

many of these mechanisms and associated models can be found in the Proceedings of the IUTAM131

Symposium on Dynamic Fracture and Fragmentation of 2009, with the papers appearing in the132

International Journal of Fracture in 2010.133

An area of particular current growth in the mechanics literature is that of multiscale compu-134

tational models of failure processes such as shear localization and dynamic fracture. Since these135

processes localize in both space and time, they are intrinsically multiscale. Significant advances in136

multiscale modeling capabilities are under development, through both sequential (coarse-graining137

or fine-scaling) and concurrent (hierarchical and partitioned-domain) approaches (a discussion of138

these is provided by Tadmor and Miller (2012)). Snapshots of the state of the art can now be ob-139

served in all of the major mechanics conferences. Much that was considered simply not possible140

a decade ago is now feasible, e.g. the coupled handling of plasticity and fracture across multiple141

scales within computational frameworks (Chakravarthy and WA, 2010), and the efficient compu-142

tational solution of multiscale damage problems (Liu, 2014). An excellent example of these ideas143

as applied to modeling materials across multiple scales is provided by Phillips (2001), and a more144

recent discussion of the computational aspects is provided by Fish (2013). Many of these advances145

are able to bridge across six or more orders of magnitude in length scales, and arose because146

of the engineering need for microstructure-aware computational mechanics schemes (e.g., Ghosh147

(2011)) for failure-resistant product design (e.g. jet engines). These theoretical frameworks and148

computational methods lend themselves also to the much larger scales examined by the planetary149

science community, although significant challenges remain. Improved models of the disruption150

and fragmentation of planetary bodies should benefit from such multiscale approaches.151

We discuss the major failure mechanisms briefly et seq. The literature on the mechanics of152

individual failure processes is vast, and so we focus on the key concepts rather than provide a153

comprehensive review.154

6



2.1. Dynamic fracture155

An excellent discussion of fracture mechanics that includes dynamic fracture is presented by156

Broberg (1999). The elastodynamic solutions corresponding to fast cracks were first presented by157

Freund, and are summarized in his book on Dynamic Fracture Mechanics (Cambridge University158

Press). These works generally focus on the propagation of pre-existing cracks. Nucleation of159

cracks from heterogeneities is a complex problem with solutions that vary widely depending on160

the nature of the heterogeneity and on the local stress state. A common, if imperfect, approach161

to nucleation is to define the local maximum tensile stress (say maximum principal stress) σmax,162

define the heterogeneity size lh, and then to assume that nucleation occurs when σmax = α KIC√
2πlh

,163

where KIC is a property (the “fracture toughness”) of the matrix material surrounding the hetero-164

geneity and α is a prefactor that is used to identify the “strength” of the heterogeneity (i.e. the pre165

factor is different for inclusions, pores, and so forth).166

For a pre-existing crack of a given length, the onset of tensile crack growth (crack initiation)167

occurs when the stress intensity factor KI (which represents the driving force on the crack tip,168

depends on the stress state and is tabulated for a variety of problems, e.g. Anderson (2004) and the169

DTD Handbook online) reaches a critical value (the aforementioned fracture toughness): KI = KIC.170

Fracture toughness data for a number of geological materials is presented by Zhang and Zhao171

(2014). The stress intensity factor is the variable through which the multiaxial stress state affects172

the crack tip, and such analyses motivate the development of pressure-dependent behavior of brittle173

rocks.174

Once the crack is growing, the dynamics of crack growth for fast cracks is defined by the rate175

of change of crack length l̇, and is given by176

l̇ = vc

( KI − KIC

KI − KIC/2

)β
, (1)

where vc is the crack speed (an important parameter that must be measured) and β is a parameter177

that defines the increase in effective crack inertia with crack speed. Crack speeds can vary substan-178

tially, but are limited by the Rayleigh wave speed except under pathological conditions (Broberg,179

1999). In geomaterials, they are usually of the order of 200-2,000 m/s (Zhang and Zhao, 2014).180

Once the cracks are sufficiently large, they will begin to interact (the works of Kachanov (2003)181
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in this area are particularly useful). The general interactions of multiple dynamic cracks are very182

difficult mechanics problems. Many approaches to describe this interaction have been used, such183

as assuming a periodic array of cracks (Deng and Nemat-Nasser, 1992; Deshpande et al., 2011),184

considering self-consistent solutions (Paliwal and Ramesh, 2008), or making structural approx-185

imations such as buckling columns (Ashby and Cooksley), 1986). In general, crack interactions186

result in increased driving force on crack tips, and the crack speed increases (equation 1). Crack187

interactions are particularly important when estimating the strength of brittle materials.188

Eventually the growing cracks will coalesce. Coalescence of cracks is typically only modeled189

in an approximate manner through either an instability analysis of the ligament between inter-190

acting cracks (e.g., Benzerga and Leblond (2010)), through empirical functions that parameterize191

the instability, or through mode-specific rules (Tang et al. (2001)). Fragmentation follows after192

coalescence, and so fragment sizes and shapes depend on the full set of nucleation, growth and193

coalescence behaviors.194

Computational modeling of fracture processes is well developed for the growth phase, and195

there are several commercial and public domain software packages that handle fracture mechanics,196

including dynamic fracture. These include general purpose commercial finite element packages197

like Abaqus that include techniques such as cohesive zone modeling, and downloadable software198

such as FRANC3D developed by academic groups (in this case the Cornell Fracture Group). Such199

codes are generally capable of tracking crack fronts and crack paths through solids during dynamic200

failure processes, but the computational cost increases rapidly with increasing numbers of cracks,201

and convergence with respect to fragmentation remains a major research problem.202

2.2. Adiabatic shear localization203

Shear localization or shear banding is an instability brought about through the large shearing204

deformations of materials. Shear bands are of two types: (a) resulting from deformation instabil-205

ities associated with evolving parameters in the constitutive equations (Rudnicki and Rice, 1975),206

and (b) thermal instabilities associated with evolving temperature, adiabatic heating and subse-207

quent thermal softening (Molinari and Clifton, 1987). Deformation instabilities are mathemati-208

cally easily described in terms of bifurcation analyses, are commonly observed in slow loading209

problems, and are not discussed further here.210
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Thermal instabilities lead to a kind of shear band known as an adiabatic shear band (Molinari211

and Clifton, 1987). These only arise under dynamic loading and are a result of the competition212

between the timescales associated with the loading dynamics and the timescales associated with213

the thermal conduction. An excellent summary of the conditions for nucleation of adiabatic shear214

localization (in terms of the onset of instability) is provided by Wright (2002). Criteria for the onset215

of adiabatic shear bands typically examine the derivatives of the stress in the stress-strain curve of216

the material e.g., in terms of strain-hardening, strain-rate-sensitivity and thermal softening of the217

shear stress, or in terms of the evolution of effective frictional stresses. The canonical works in the218

area of shear localization and adiabatic shear band development are the books by Wright (2002)219

and Dodd and Bai (2012).220

Once an adiabatic shear band has nucleated, the strain localization evolves in two directions:221

along the direction of shear (in the form of a shear band tip), and normal to the direction of shear222

(in the form of the band thickness). Unlike the crack tip, the tip of the shear band is typically poorly223

defined; however, the propagation of the shear band tip along the direction of shear appears to be224

similar to that of a shear crack, and so a tip velocity is sometimes identified as equal to a shear crack225

speed for modeling purposes. A now-classic set of experiments that describes this behavior, with226

associated analyses, is presented by Zhou et al. (1996). The rate of localization depends strongly227

on material behavior and the macroscopic stress state (Wright, 2002). For many materials, it is228

possible to define a finite band thickness that depends on material properties (Dodd and Bai, 2012).229

The final microstructure within this shear band thickness is typically very different from the initial230

microstructure of the material, because very large shear strains must be accommodated by the231

material within the band. An additional mechanism that may be very important in fluid-saturated232

geophysical materials is that of an effective thermal pressurization produced by the constrained233

relative thermal expansion of fluids within the band (Platt et al., 2014). Adiabatic shear bands in234

brittle materials have been recently examined by citeGradySB2011.235

The interactions of shear bands define the shear band spacing, and essentially constitute com-236

petitions between momentum transport and thermal transport . A detailed analysis of shear band237

interactions is provided by Zhou et al. (2006c). The shear band spacing may control the apparent238

fragment size under some conditions, because the shear localization is often the first failure mech-239

anism that is developed during the compressive states that initiate after impact loading, with cracks240

9



often following along the shear bands.241

From a computational viewpoint, adiabatic shear localization represents a major challenge be-242

cause of the dynamics involved, the associated length scales, and the evolving local microstructure243

in the band. The majority of simulations of adiabatic shear localization do not account for the non-244

linear evolution of the material behavior within the shear band. Mesh-insensitive computations of245

shear localization can be obtained by incorporating the thermal conduction length scales in thermo-246

mechanical simulations, and by incorporating enriched numerical techniques such as XFEM and247

its relatives. This failure mode remains one of the most challenging dynamic failure mechanisms248

for simulations.249

2.3. Spall failures under dynamic loading250

There is not, unfortunately, an accessible standard reference on the mechanics of spall failure,251

but an excellent discussion can be found in the book by Meyers (1994). In the engineering sense252

used here, spallation is the result of the dynamic nucleation, growth and coalescence of voids or253

cracks (Meyers, 1994))under a macroscopically hydrostatic tensile state, and are typically observed254

on the opposite side of the target body from the impact face. The tensile states are generated by the255

interaction of rarefaction or tension waves coming off free surfaces, and so body geometry plays a256

big role in the location of spall. Full brittle spall is rare, and so we focus on the ductile (void-driven)257

spall problem. Void nucleation typically occurs over a very wide range of length scales because of258

the scales of heterogeneities. For the case of an elastic-plastic solid, it can be rigorously shown that259

even homogeneous nucleation of voids will occur through a bifurcation process at sufficiently high260

hydrostatic tensile stresses (Wright and Ramesh, 2009). The presence of a heterogeneity reduces261

the critical stress that is needed, and thus in general geophysical materials have a distribution of262

nucleation sites with a corresponding distribution of nucleation stresses. Nucleation can occur263

at, for example, vacancy clusters (Mori and Meshii, 1964), precipitates (Embury and Nicholson,264

1965), inclusions (Thompson and Weihrauch, 1976), large xenoliths and so forth. Most materials265

of interest to the planetary science community contain pre-existing voids and pores, although the266

initial porosity will typically be modified by the compressive shocks from the impact.267

The classical picture of spall mechanics is the following: voids are nucleated as described268

above, grow through the development and growth of a plastic zone around the void, and then269
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the interactions of the growing voids leads to the macroscopic spall failure. The “spall strength”270

is the maximum hydrostatic tensile stress (Antoun et al., 2003) that the material can withstand,271

is associated with these dynamically growing and interacting voids, and is viewed as a material272

property (akin to the fracture toughness described earlier). For any given void, the void growth273

rate is limited by two factors (Wright and Ramesh, 2009): (1) the inertia associated with moving274

the mass of material away from the current void surface, and (2) the viscoplastic inertia associated275

with developing plastic flow at sufficiently high rates. The consequence is that the spall strength276

increases rapidly with the volumetric strain rate (Wright and Ramesh, 2009). The spall strengths277

of engineering materials are typically measured using plate impact spallation experiments (Meyers,278

1994), but there is limited data on the spall strengths of geological materials (e.g., Field (2007)).279

A first-order and somewhat conservative estimate of the spall strength for effective elastic-plastic280

solids can be obtained using the analytical procedures described by (Wu et al., 2003). A recent281

discussion of the theoretical mechanics issues associated with spall (albeit in metals) can be found282

in Wilkerson and Ramesh (2014).283

Spall failures that develop in numerical simulations are typically captured either by explicitly284

incorporating a spall failure criterion (such as a spall strength) or develop naturally through the285

evolution of an internal (porosity-type) damage model (such as localization of growing porosity).286

Validation of computational models of spall is difficult because of the dearth of time-resolved287

experimental spall data on the materials of interest, and issues of length-scale dominate such com-288

putational analyses. An example of the state-of-the-art in time-resolved experimental spall data is289

provided by the Line VISAR work of Furnish et al. (2009), and demonstrates the statistical nature290

of the mechanism.291

3. Dynamic Failure Mechanics and The Effective Strength of Planetary Materials292

The icy, basaltic and chondritic materials that dominate small bodies are generally very hetero-293

geneous, containing multiple constituent phases that may be individually either brittle or ductile.294

The local behavior may include cracking, shear banding and void growth, while the macroscopic295

representation of the averaged behavior is usually the “strength,” defined as the limiting stress that296

the material can undergo before measurable permanent deformation, and represented by a limit297

surface in a six-dimensional stress space (Nemat-Nasser, 2009). The effective strength is a conse-298
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quence of the local behaviors averaged over some representative volume element or RVE (which299

scales with mesh/cell size in simulations). The review article by Holsapple (2009) provides an300

excellent discussion of the strength of planetary materials. In this paper, we focus only on mak-301

ing connections between the underlying failure mechanisms and the effective strength (and later302

fragmentation).303

Generally, a strength model captures (a) the onset of permanent deformation, by defining the304

yield surface, (b) the amount of incremental plastic deformation that will occur when the stress305

moves outwards from the yield surface (this is called a flow law) and (c) whether the yield surface306

itself evolves as a result of deformation (this is called hardening). The evolution of other internal307

variables (for example, porosity or crack damage) may also need to be defined (Jutzi et al., 2008).308

The strength model must be defined for all possible loading paths in stress space (e.g. loading309

in compression, followed by shear, and followed by unloading). Given the variety of possible310

paths, it is extremely difficult to find validated phenomenological models that describe all of the311

possible behaviors. This motivates the development of strength models that contain evolving inter-312

nal variables, where the evolution equation for the internal variable can describe specific physical313

mechanisms and thus reduce the need for massive suites of experiments for parameter identifica-314

tion. The review article by Holsapple (2009) lists some of the strength models commonly used315

by the planetary impact community. A model that is used in engineering and that should be con-316

sidered by the broader community is the Sandia Geomodel (Fossum and Brannon, 2004), which317

is also efficient and is available in some high-performance codes, and its subsequent development318

in the form of Kayenta, which provides a generalized framework for complex plasticity models319

(datasets are available for limestone, tuff and granite). Another model of interest is that developed320

originally for concrete by de Borst and Gutierrez (1999). The transition from smeared cracks to321

discrete cracks in a finite element framework has been examined by de Borst et al. (2004). Major322

challenges remain in obtaining parameters for these models for any given material. A recent sub-323

stantial data set and review of experimental methods to probe the dynamic strength and failure of324

geological materials is provided by Zhang and Zhao (2013).325

As an alternative to phenomenological models, micromechanics-based models may be used326

(Paliwal and Ramesh, 2008). These models are based on the underlying deformation mechanisms327

(such as cracking or twinning) that can be activated in materials subjected to any given loading.328

12



One benefit of these physics-based approaches is that they naturally suggest ways to incorpo-329

rate strain rate, size scale and variability effects into the strength model. The extension to scales330

and loading regimes outside of the range of experimental data is a continuing hurdle for prob-331

lems in planetary and space science. The incorporation of fundamental sub-scale physics through332

micromechanics-based models provides promise for obtaining more representative outcomes than333

phenomenological models when simulations are performed in regimes where test data is not avail-334

able.335

Failure mechanisms such as cracking are subscale mechanisms that are averaged over the vol-336

ume in estimating the effective strength of most geomaterials, and the length scales associated337

with these mechanisms are such that the effective strength is now a function of sample size. The338

consequences of the dynamic subscale processes on the strength of planetary materials are three-339

fold. First, the strength of geomaterials is a function of the discretization size, with larger RVEs340

corresponding to weaker materials. Second, the variability in the strength is also a function of the341

discretization size, with smaller RVEs having greater variability (Graham-Brady, 2010). Third,342

both the strength and the variability, at any given discretization size, depend on the effective rate343

of deformation (higher rates lead to higher mean strengths and lower variabilities (Daphalapurkar344

et al., 2011)). We demonstrate these implications of dynamic failure mechanics for the influence345

of strain rate, sample size, and sample variability on the effective strength in the next section.346

3.1. Defect distributions, failure dynamics and effective strength347

A key characteristic of all planetary materials is the kind and degree of heterogeneity (e.g.348

inclusions and pores), since these typically control the nucleation of failure processes. We refer349

to these heterogeneities as “defects” in the subsequent discussion. When and how must a defect350

be considered in the discussion of material behavior? At any given scale, any effective property351

of a material is determined by volume averaging over RVEs at smaller scales. Thus, for example,352

pores are averaged to obtain porosity and, therefore, density. However, two materials with the353

same effective porosity may have very different pore size distributions. Consider one material with354

a multitude of small pores and one with a few large voids. The failure mechanisms of these two355

materials may be different because the size of the pores can have a strong impact on the failure356

process (Katcoff and Graham-Brady, 2014). Thus it may be important to capture not just the357
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average defect density but also the defect distribution in determining effective behavior.358

The incorporation of defect distributions and the associated micromechanics can simplify the359

treatment of disruption problems. The influence of defect-driven nucleation on the failure dynam-360

ics introduces a length scale (based on the defect spacing), a nucleation stress scale (based on361

the defect size), and two time scales: the timescale for the failure to propagate and the timescale362

for the failures from individual defects to communicate. By comparing these timescales with the363

timescale associated with the loading dynamics (e.g. the reciprocal of the applied strain rate), we364

can define different regimes of behavior that guide our development of a material model.365

The connections between the defect population and the rate-dependent strength are demon-366

strated in Figure 5, which considers a brittle solid containing a population of flaws/defects of367

varying severity (that is, a defect distribution). We move clockwise from the top right quadrant of368

Figure 5, which shows a probability distribution function g(s) of defect sizes s within the material.369

These defects are not necessarily internal cracks, but rather heterogeneities in the material that are370

potential sites for crack nucleation. Fracture mechanics tells us that the stress needed to activate a371

defect (such as a slit microcrack) decreases as 1
√

s , as shown in the bottom right quadrant of Figure372

5. Two different rates of loading, slow and fast, are represented on the bottom left quadrant of373

Figure 5, which shows the stress as a function of time. At any given time, under slow loading (the374

red solid line), the most severe (largest) flaw is triggered first, and the growth of the corresponding375

crack might lead to failure of the structure. Under dynamic loading (the green solid line), while the376

most severe flaw is still triggered first, the finite-velocity growth of the corresponding crack can377

be outpaced by the rate of increase of the loading, so that the next-most-severe flaw is triggered378

before macroscopic failure occurs, and so on. At any given time, the dashed lines show that at low379

loading rates only the largest defects are activated, while at high loading rates the majority of the380

defect distribution will be activated. Thus the entire distribution of flaws may be activated in the381

material under dynamic loading (the concept of higher loading rates initiating the smaller flaws of382

a distribution is utilized in many studies (Holsapple, 1994a; Melosh et al., 1992).383

Full micromechanics calculations (Paliwal and Ramesh, 2008) show that when the crack growth384

dynamics and self-consistent crack interactions are accounted for, the distribution of activated de-385

fects (which is different from the distribution g(s) of available defects) is not necessarily described386

by the two-parameter Weibull-type function n = kεm (where n is the number of activated defects, ε387
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is a strain measure and k,m are effective material parameters that must be estimated independent of388

fracture mechanics). The latter approach using the two-parameter Weibull is used extensively, e.g.,389

(Melosh et al., 1992) and more recently (Huang and Subhash, 2003). The effective strength of the390

overall material, containing an independently prescribed distribution of defects from which cracks391

may be activated, can be computed directly from the crack interactions (Paliwal and Ramesh,392

2008). This distinction is important in engineering brittle materials, where the defect population393

is controllable and can be designed, but is generally less useful for rock masses where the initial394

distribution of defects may not be known a priori.395

The modeling frameworks described above allow for crack growth rates that are determined396

via dynamic fracture mechanics (as opposed to assuming constant crack speeds), determines the397

population of activated defects using fracture mechanics rather than phenomenology, accounts398

for self-consistent interactions of cracks and computes effective strength therefrom, and naturally399

incorporates confinement effects on the dynamics of crack growth and the strength. These concepts400

lead to an important insight: when it comes to impact loading, bigger is not necessarily weaker.401

Eventually the effect that bigger bodies are more likely to have bigger defects is outpaced by the402

effect that bigger bodies take much longer times to break.403

The distribution of flaws is commonly characterized using a power law distribution of flaw404

sizes over many orders of magnitude (Holsapple et al., 2002). The geophysical processes that405

produce the rock mass typically place an upper bound (smax) on the flaw size in the rock mass,406

and we assume that the lower bound on the flaw size is smin (in engineered ceramics, entirely407

different defect distributions are generated by the different processing conditions used to make the408

material, and the maximum defect size and total defect density are dominated by these processing409

conditions). Any impact into this rock mass will be modeled using a numerical approach which has410

some finite spatial resolution. The length scale h introduced by the computational discretization is411

likely to fall within the limits smin − smax of the flaw size distribution and divides the distribution412

into “subscale” flaws and “super scale flaws,” the former being smaller than h and the latter being413

larger than h. Flaws which are larger than h can be resolved explicitly by the computational mesh.414

The sub scale flaws, smaller than h, cannot be resolved by the computational mesh and therefore415

must be effectively homogenized and represented using a “strength” model, such as a continuum416

damage model. The super scale flaws, larger than h, result in failure processes that can be explicitly417
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captured by the simulation, but these failure processes need additional equations (e.g., equations of418

fracture mechanics) to describe their energetics and their dynamics. Essentially, strength models419

are used at the subscale while failure models supplement the strength models at larger scales. A420

variety of techniques have been developed (Pandolfi and Ortiz, 2012; Guy et al., 2012; Moës et al.,421

2003; Camacho and Ortiz, 1996; Xu and Needleman, 1994) for addressing those flaws which can422

be resolved by the computational method.423

Because the strength model used at scales below numerical resolution must average in some424

sense mechanisms occurring at smaller scales, the strength should generally be anisotropic with425

evolving anisotropy. As a simple illustration, if a brittle material is first loaded in compression,426

we should expect that the material will now contain a collection of cracks that are aligned along427

the principal stress direction (Horii and Nemat-Nasser, 1985). If this sample is now subsequently428

loaded in tension along the perpendicular direction, the effective strength of the material in that429

direction will be much lower than the effective strength in the direction of the original compression,430

so that the strength is now anisotropic. The engineering mechanics community is moving rapidly431

towards the incorporation of anisotropic strength models in simulations of impact events, but many432

challenges remain in both formulation and implementation.433

3.2. Scaling of rate-dependent strength of geophysical materials434

An example of the use of micromechanics to develop a simplified strength model is presented435

here. A recently developed rate-dependent strength model that incorporates the interaction of a dis-436

tribution of preexisting flaws and crack growth dynamics has been shown to reasonably describe437

the dynamic strength of a wide range of brittle solids (Kimberley et al., 2013). By identifying criti-438

cal time and length scales involved in the problem, a universal relationship between the unconfined439

compressive strength of a brittle solid, σc, and the applied equivalent strain rate, ˙̄ε, is found:440

σc

σ0
= 1 +

( ˙̄ε
ε̇0

)2/3

. (2)

Here σ0 = α
KIC
s̄η1/4 and ε̇0 = α

cd
s̄

KIC
E η1/4 are the characteristic stress and strain rate based on the441

mechanical (KIC is the fracture toughness, cd is the dilatational wave speed, E is Young’s Modulus),442

and microstructural properties of the material (s̄ is the average flaw size, η is the flaw density).443

Physical interpretations of these characteristic quantities are given in Kimberley et al. (2013). The444
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Table 1: Characteristic stress and strain rate parameters for the compressive strength data on the brittle solids presented
in Figure 6. Details are presented in (Kimberley et al., 2013)

.

Material σ0 (MPa) ε̇0(s−1)
Limestone (Frew et al., 2001) 70 2.0x102

Limestone (Green and Perkins, 1969) 300 5.0x103

Basalt (Kumar, 1968) 200 1.0x103

MAC 88118 (Kimberley and Ramesh, 2011) 50 2.0x102

Concrete (Ross et al., 1995) 53 2.5x102

associated parameters are presented in Table 1 (for compression) for some geological materials.445

The equations describing the characteristic stress and strain rate provide useful tools for examining446

the effect of material properties and microstructure on the rate dependent strength. This strength447

scaling captures (Figure 6) the rate-insensitive response of geological materials at low rates as448

well as the sharp increase in compressive strength observed when these materials are compressed449

at high rates. Preliminary results show that it can be used to describe tensile failure as well with450

adjustments to the characteristic stress and strain rate, for reasons discussed in that paper. A similar451

fracture-based approach to predicting the rate dependent strength was used by Grady and Lipkin452

(1980) which resulted in a power law dependence of strength with strain rate with an exponent453

of 1/3. The difference in scaling exponent observed here is a result of the defect distribution and454

crack interactions. It is also possible to develop scaling exponents for rate-dependence that relate455

to assumed or measured Weibull distributions of size-dependent strength. In this regard, however,456

we note that the apparent Weibull modulus of engineering brittle solids is known to be a function457

of the rate of loading, as discussed by Daphalapurkar et al. (2011).458

The associated micromechanics model also demonstrates that the superimposition of confin-459

ing pressure will result in a linear dependence (Hu et al., 2011) of the deviatoric strength on the460

pressure (as observed in a number of materials), and suggests that there will be a reduction of461

the rate dependence of the strength with increasing pressure. The latter prediction has not yet462

been tested experimentally but is consistent with the success of a number of simulations that use463

rate-independent strength at high pressures.464

3.2.1. Implementation of micromechanics-derived strength models in disruption465

Many catastrophic disruption studies define a measure Q∗ of the disruption, called the catas-466

trophic disruption threshold and defined as the specific kinetic energy per unit target mass at which467
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the ratio of the mass of the largest fragment to the original target mass becomes 0.5 (Ryan, 2000).468

Here we present a revised disruption scaling where the results of Kimberley et al. (2013) are in-469

corporated in traditional analytical treatments of catastrophic disruption. In the strength regime,470

Holsapple (1994b) has shown that471

Q∗ ∝
(
S
ρ

)3µ/2

U (2−3µ) (3)

where S is a material property with units of stress describing the strength of the target, ρ is the472

target density, U is the impact velocity and µ is an exponent in the coupling parameter (typically473

taken to be 0.55 for rocky bodies (Holsapple, 1993)). Making the strength measure in (3) the474

failure strength described by Kimberley et al. (2013), and approximating the strain rate in the body475

by ˙̄ε = U/R the following scaling is obtained:476

Q∗ ∝
σ0

ρ
+
σ0

ρ

( ˙̄ε
ε̇0

)2/33µ/2

U (2−3µ) (4)

The size scaling in the strength regime articulated above has significant shortcomings related477

to the strength model (e.g. it is developed for uniaxial stress states, and ignores explicit size de-478

pendence) and the assumptions related to the disruption process itself (lack of strain rate history,479

oversimplification of the strain rate distribution in the target body). However, it does provides a480

view of how micromechanics models may be utilized to evaluate scaling in the strength regime.481

Ideally the micro mechanical model would be run in a concurrent numerical framework leading482

to a fully coupled simulation (such simulations are underway, with preliminary results presented483

by Tonge et al. (2014)). Our current numerical implementations are not efficient enough to allow484

for full scale simulations of the disruption process, and so we have resorted to incorporating the485

strength model of Kimberley et al. (2013), which incorporates the key features of the full microme-486

chanics.487

Equation (4) is plotted in Figure 7 for an impact velocity of 1 km/s (using a bold black line)488

together a with summary of earlier scaling laws described by Holsapple et al. (2002). Equation (4)489

predicts that the strength regime consists of two regions as illustrated in Figure 7. For very small490

bodies there is a decrease in threshold specific energy with a slope of −µ in the log-log plot. This491

corresponds to the high strain rate regime of the strength-rate relationship, and agrees with the492
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experimental measurements on small targets conducted by Housen and Holsapple (1999). As the493

target size increases the average strain rate in the body decreases and the specific energy needed494

to disrupt a body reaches a plateau corresponding to the strength observed at low strain rates (as495

previously noted, crack growth dynamics dominates defect probability at large sizes). This feature496

is notably absent in all other scaling predictions (other than Durda et al. (1998)), and is a direct497

result of the strength predicted based on micromechanical approaches. For bodies in the 100m498

- 10km range this scaling predicts higher catastrophic disruption thresholds as compared to most499

other predictions in the plot. As the size of the target body increases further, the scaling should of500

course transition from strength dominated to gravity dominated in which a body may be shattered501

and reaccumulate, or dispersed.502

One possible implication of the disruption threshold presented here is that it would be harder503

to generate rubble pile bodies from targets in the 1km -10km range. Bodies with higher disruption504

thresholds are less likely to accumulate after impact because fragments have high enough velocity505

to escape gravitation of the rest of the fragments. The existence of small rubble pile bodies such as506

Asteroid 25143 Itokawa could imply that this disruption scaling is simply wrong, or alternatively507

suggest that Itokawa is the result of reaccumulation of a portion of a larger body that was disrupted.508

This latter suggestion is supported by observational evidence that suggests that Itokawa is likely509

the result of fragmentation of a larger parent body (Tsuchiyama et al., 2011).510

As can be seen in Figure 7, there is great variation in the strength regime scaling of various511

authors, all of which adequately agree with the very small scale laboratory observations used to tie512

the strength scaling to the axes. This highlights the effect that the assumptions regarding strength513

and failure can have on a predicted scaling outcome. It is our hope that simulations incorporating514

micromechanical approaches that account for the multiaxial stress states and damage anisotropy515

will provide new insight into the impact processes shaping our solar system.516

4. Dynamic Fragmentation517

The rapid deposition of impactor kinetic energy to the interacting bodies during impact results518

in the initiation of cracks, voids or shear bands from internal defects, and these failure processes519

then interact and coalesce to form fragments. Under quasi-static loading, fragmentation is domi-520

nated by the growth of a few dominant cracks (Rong et al., 1979). Tens of thousands of fragments521
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may still be generated under nominally low-rate conditions (Hogan et al., 2012). Under dynamic522

loading, many more nucleation sites are activated (Zhou et al., 2006b), resulting in decreasing523

fragment sizes for increasing strain rates (Grady, 2009b). This fragmentation occurs across many524

length scales, ranging from the order of the body size down to the micro-scale (e.g., order of525

minimum defect spacing).526

The inherent limits on experimental, numerical and observational resolution results in atten-527

tion being primarily given to larger scales, but the smaller scales dominate the nucleation problem,528

and may carry a significant part of the energy at ultra-high strain rates. In experiments, stud-529

ies are often concerned with quantifying the largest fragment size as, for example, a measure of530

catastrophic disruption (Fujiwara et al., 1977; Ryan et al., 1991). Measurements of complete dis-531

tributions are less frequent and characterization of fragments < 1 mm are not widely performed. In532

simulations, the numerical resolution sets the minimum resolvable fragment size in the absence of533

a post-processing fragmentation step. For planetary and space science observational data, instru-534

ment resolution limitations typically prevent documenting sub-meter fragments on, for example,535

Itokawa (Fujiwara et al., 2006). Examining these larger fragmentation scales may be sufficient for536

interpreting some planetary impacts (e.g., Sudbury (Zieg and Marsh, 2005)). Better links between537

laboratory experiments, numerical simulations, and observational data are needed to bridge these538

fragmentation length scales. In this section we explore some of these links by examining two im-539

portant parts of dynamic brittle fragmentation: the average fragment size, and size distributions.540

A further discussion of many of the topics may be found in the book by Grady (2006), and an541

additional resource on both ductile and brittle fragmentation is provided by Grady (2009a).542

4.1. Fragment size distributions543

Statistical and geometric approaches have been pursued to predict fragmentation distributions544

when experimental results were not available. Lienau (1936) randomly partitioned lines to in-545

vestigate fragment distributions. Mott and Linfoot (1943) predicted distributions by randomly546

partitioning geometric shapes with lines. In later work, Grady and Kipp (1985) noted Poisson,547

binomial, log normal, and Weibull fragmentation distributions can be obtained using similar geo-548

metric approaches. Grady (2008) noted that these distribution shapes have a strong dependence on549

material type, where ductile materials appear to be better characterized with an exponential form550
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and brittle materials follow a power-law shape. Combinations of exponential and power-law func-551

tions have also been explored in the literature. The origins of these various forms for the fragment552

size distribution are presented in the reviews by Åström (2006) and the book chapter by Grady553

(2009a).554

Much interest in brittle fragmentation has been focused on power-law fragment size distribu-555

tions because of the link to scale-invariance (Turcotte, 1993). Power-law distributions can be mod-556

eled as a cascade of breakups (Astrom, 2006) and have the form N(L) ∝ L−n where the exponent557

n is the fractal dimension. In the planetary and space science community, the slopes of power-law558

distributions is used to constrain collision evolution (Davis et al., 1979; Mazrouei et al., 2014).559

This fractal dimension ranges between 1.5 to 2.5 for experiments with brittle materials (Hogan560

et al., 2013a, 2012; Grady, 2009a), 3.1 to 3.5 on Itokawa (Mazrouei et al., 2014), and between 2.2561

and 2.7 in catastrophic disruption simulations (Jutzi et al., 2010). Values of approximately 2 may562

indicate the fragmentation process is mainly surface driven, whereas fractal dimensions closer to563

3 suggest the damage is more spatially distributed (Taşdemir, 2009). We emphasize that power-564

law exponents are strongly related to the measurement or numerical resolution. Grady (2009b)565

suggested that there exist two governing length scales, λe and λc, which bound the region of the566

cumulative distribution described by a power-law function. This idea was explored for dynamic567

fragmentation of granite by Hogan et al. (2012).568

4.2. Characteristic fragment sizes569

In addition to computing the fragment size distribution, the prediction of a characteristic length570

scale, λ, is central to understanding brittle fragmentation events. The prediction of λ enables, for571

example, fragmentation distributions to be normalized and linked across laboratory experiments572

and numerical simulations of much larger scales. This characteristic length scale is often taken to573

be the average or median fragment size. Early works on brittle fragmentation sought to develop574

relationships between energy input and resulting fragment size (Bond, 1961; Hukki, 1961; von575

Rittinger, 1876; Kick, 1885; Bergstrom et al., 1961; Bergstrom, 1962; Gilvarry, 1961). Linking576

energy dissipation with fragmentation was determined to be more robust than geometric argu-577

ments, although underlying microstructural effects were not yet considered. In this review, we578

consider theories developed for predicting rate-dependent average fragment sizes developed by579
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Grady (2009b), Glenn and Chudnovsky (1986), and Zhou et al. (2006a,b). These are developed for580

fracture-dominated failure processes. Fragment sizes associated with adiabatic shear band failure581

follow a different scaling law than that for brittle fracture, as discussed by Zhou et al. (2006c),582

following on from the work of Wright and Ockendon (1996) and Grady and Kipp (1987).583

The average fragment size according to Grady is (Grady, 2009b):584

LGrady =

(48Gc

ρε̇2

)1/3

(5)

where the fracture energy is related to the square of the fracture toughness KIC. This strain-rate585

scaling of the average fragment size is used extensively in the community, but, as we will show586

later, experimental data on the fragmentation of some planetary materials has demonstrated that587

this approximation strongly overestimates mean fragment sizes at low rates of deformation (<588

103 s−1) and indeed scales incorrectly with strain rate at these low rates. In contrast, the approach589

seems to have the correct scaling with strain rate at very high strain rates (> 105 s−1). Glenn and590

Chudnovsky (1986) extended the work by Grady to include the elastic strain energy contribution,591

which is important at low rates, and predicted a quasi-static average fragment size that is essentially592

independent of strain rate for low strain rates. They suggested that the average fragment size, LGC,593

be calculated as:594

LGC = 4

√
3
α

sinh
(
φ

3

)
(6)

where595

φ = sinh−1
[
β
(3
α

)3/2]
(7)

and α = 3σ2
t

ρEε̇2 , β =
3Gc
2ρε̇2 , with E the Young’s modulus and σt is the tensile strength of the material.596

A different approach to predicting average rate-dependent fragmentation sizes uses computa-597

tional tools that explicitly capture both energetics and dynamics, and that account for the residual598

damage within fragments as well as the residual kinetic energy associated with wave propagation599

within fragments. These are process-driven models rather than end-state models. Miller et al.600

(1999) used cohesive elements in a one-dimensional finite element scheme to investigate brittle601

fragmentation. These simulations predicted average fragment sizes an order of magnitude smaller602

than those obtained using the energy-based models. Drugan (2001) accounted for wave interac-603
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tions for one-dimensional fragmentation of a bar, and predicted average fragment sizes smaller604

than the Glenn and Chudnovsky (1986) predictions at intermediate rates, while converging with605

the Grady (2009b) and Glenn and Chudnovsky (1986) models at very high strain rates. This work,606

as well as the study by Shenoy and Kim (2003) using cohesive elements as simulated defects, es-607

tablished the potential importance of wave interactions during fragmentation of brittle materials.608

The incorporation of elastic wave propagation and interactions, crack nucleation and growth, as609

well as defect distributions in a fragmentation simulation was pursued by Zhou et al. (2006a,b)610

(ZMR) for a much larger range of strain rates than Drugan (2001) and Shenoy and Kim (2003).611

A range of brittle material properties was examined, and a normalizing strain rate measure was612

identified. All of the material behaviors were shown to collapse to a single rate-dependent curve613

for the rate average fragment size. In addition to fragment sizes, Zhou et al. (2006a,b) also derive614

characteristic time (t0 =
EGc
σ2

t c ), length (L0 = ct0 ) and strain rate (ε̇0 =
σt
Et0

) terms used to nor-615

malize rate-dependent size predictions, and this resulted in collapsing of size predictions across a616

wide range of brittle material properties. At low rates, the ZMR model predicts average fragment617

sizes that are larger than those predicted by Glenn and Chudnovsky (1986) and at higher rates, the618

ZMR model predicts fragment sizes that are approximately 1/3 to 1/5 the average size predicted by619

Grady. More sophisticated simulations by Levy and Molinari (2010) extended these computational620

approaches and included the effect of the initial defect distribution to normalize the average frag-621

ment size predictions. Very recent work by Bazant and Caner (2014) provides further advances in622

understanding of the scaling of fragmentation with respect to strain rate.623

4.3. Comparing experiments and fragmentation models624

It is nontrivial to compare fragmentation experiments with fragmentation models, because the625

experimental approaches used to generate fragments almost always result in stress states that are626

much more complicated than the stress states assumed in the models. For example, most ex-627

perimental methods associated with impact generate initially compressive stress states that are628

expected to produce internal failures and this seeds the subsequent fragmentation process. Frag-629

ments can be developed from macroscopically compressive states within which very large amounts630

of strain energy can be stored, and the release of that strain energy can generate very fine fragments.631

Most experimental methods produce a wide range of strain rates as well, so it can be difficult to632
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decide what strain rate to use for comparison with a model.633

Published fragment-size distributions exist, e.g. (Hogan et al., 2013a, 2012) for impact test-634

ing. However, the corresponding average fragment sizes were plotted at a strain rate estimated635

by the ratio of impact velocity to target thickness, without accounting for the difference between636

compressive and tensile states or the variation in strain rate within the sample. This demonstrates637

the difficulty of comparison of experiments and models arising from the complexity of the exper-638

imental stress and strain rate distributions. Similarly, in their experimental study on the uniaxial639

compression of SiC-N, Wang and Ramesh (2004) plot their average fragment size against the com-640

pressive loading rates. However, the equivalent tensile rate is not equal to the compressive loading641

rate. In another study, Hogan et al. (2013b) plotted median fragment sizes using a mass-size rep-642

resentation but compared the sizes to a model that used a number-size representation. The lesson643

here is that there are many sizes and strain rates for which to compare models with, and one should644

keep this in mind when conclusions are made.645

Here we define a specific approach to compare experimental fragmentation results obtained646

from compression Kolsky bar experiments on basalt (Hogan et al., 2015) with theoretical predic-647

tions. Grady and Lipkin (1980) also used Kolsky bar experiments to study the fragmentation of648

planetary materials. This particular testing technique allows fragmentation distributions to be di-649

rectly linked with material strength measurements under well-defined stress-state and strain-rate650

loading conditions, but the comparison of compressive and tensile states must still be made. We651

choose to define an equivalent tensile problem by converting the strain energy in the compression652

problem to the kinetic energy in an equivalent expanding ring. A comparison of experimentally653

measured sizes with models also requires deciding what strain-rates to use for comparison. Here654

we define an equivalent tensile strain rate (ε̇equi), since the models all assume tension. We define655

the equivalent tensile strain rate by defining an equivalent expanding ring problem with:656

ε̇equi =
V
R

(8)

where R (m) is the equivalent expanding ring radius and V (m/s) is the velocity of the expan-657

sion of the equivalent expanding ring. We can estimate V by assuming that the strain energy in658

compression is converted to the kinetic energy of an expanding ring. The strain energy (W) in659
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compression is given as:660

W =
[1
2

∫
σ̄dε

]
∇ =

1
2
σt3

E
(9)

where ε is the strain, σ̄ is the effective stress (Pa), ∇ is the volume (m3) and t is the specimen size661

(m) (here we are assuming a cube). In uniaxial compression σ̄ is equal to the compressive strength.662

The kinetic energy of an equivalent expanding ring is given as:663

KEring =
1
2

mV2
ring =

1
2
ρ(2πr)RtV2

ring = πρR2tV2
ring (10)

where m is the mass (kg). Equating these energies (W=KE) and solving for Vring, we find:664

Vring =

√
σ̄2t2

πρR2E
(11)

and correspondingly665

ε̇equi =
Vring

R
=

√
σ̄2t2

πρR4E
(12)

We assume that R is 10x the specimen length. Other radii may be assumed (e.g., 30x speci-666

men length), but our results are relatively insensitive to this change because the applied rate is so667

low. In the calculation of the model predictions, we use material properties of basalt of ρ=2,870668

kg/m3 (Stickle et al., 2013), E=70 GPa (Stickle et al., 2013) and K1c=1.6 MPa
√

m (Balme et al.,669

2004). Following convention, we take σt to be 1/10 of the material’s quasi-static compressive670

strength, which is approximately 400 MPa (Stickle et al., 2013).671

Shown in Figure 8 are the experimental results from Hogan et al. (2015) and comparisons with672

the models using the equivalence arguments made above. Note we normalize by the characteristic673

length (L0) and strain rates (ε̇0) proposed by Zhou et al. (2006a,b). We see from Figure 8 that674

current models all over-estimate average fragment sizes. We also point out that the models of675

Grady (2009b) predict much larger sizes than those of Glenn and Chudnovsky (1986), and Zhou676

et al. (2006a,b) at these strain rates. In a major planetary impact event, the strain rates produced677

can be very high over relatively small volumes (close to the source domain in Figure 1), but the678

rates are much lower over much larger volumes that can participate in the fragmentation process.679

Thus models such as the Grady-Kipp model may significantly overestimate the fragment sizes over680
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much of the volume. For example, Fig 9A shows the results of computed strain rates from a CTH681

simulation (Ernst et al., 2009) of a 1km body impacting a half-space at 5km/s, and Fig 9B shows682

the corresponding strain rate domains in comparison with two fragmentation models. In this case683

the ZMR model predicts the development of much smaller fragments that are more in line with the684

large amounts of fines observed near many impact craters. Fig 9B also shows the importance of685

using updated fragmentation models in the consideration of such events.686

Increasingly sophisticated models incorporating, for example, continuum elasticity, inelastic-687

ity, and damage mechanics have been developed to capture the behavior of brittle materials (Clay-688

ton, 2008; Tonge et al., 2013). However, none of these approaches directly couple fragmentation to689

the deformation, so that in practice fragment sizes are estimated by stopping the simulation at some690

ad hoc time, estimating the strain rate distribution, and then using post-processing calculations to691

extract fragment distributions. This decoupled approach has the major disadvantage of providing692

solutions that depend on the time chosen to estimate the onset of fragmentation. The inclusions693

of fracture-inducing heterogeneities (Kraft et al., 2008; Kraft and Molinari, 2008) to naturally ac-694

count for nucleation, the coupling of fragmentation models to the internal variable theory, and the695

ability to obtain further fragmentation through granular flow would greatly improve the reliability696

of such simulations.697

5. Summary698

This paper summarizes current mechanisms and models for dynamic failure, strength, and frag-699

mentation, reviewing these from a mechanics perspective and with an emphasis on making links to700

the developing advances in these areas in the engineering and computational mechanics commu-701

nities. We believe that the effective incorporation of failure processes into large-scale impact sim-702

ulations through micromechanics-based approaches presents a great opportunity for advancement703

in the fidelity of simulations of impact and disruption. In this paper, we advocate for a consistent704

multiscale approach to modeling strength, failure and fragmentation in the context of large-scale705

numerical simulations, with particular attention paid to the handoff between strength models and706

failure models in relation to the numerical resolution. When the failure processes are subscale707

to the computational resolution, the consequence is effective behavior (such as strength) that is708

anisotropic, size-dependent and rate-dependent. Advances in theoretical descriptions of these be-709
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haviors and advances in computational mechanics approaches to multiscale modeling have great710

promise for producing higher-fidelity simulations of large-scale impact and disruption events.711
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Fig. 1: Schematic of mechanistic domains and associated mechanisms in catastrophic disruption and asteroid impact.
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a
V is an impactor-dependent timescale.
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Fig. 2: Failure processes that may be developed during various stress states within dynamic loading. Each region of
the target body goes through a complex history of multiaxial stress states and deformation states during a catastrophic
disruption event. The typical failure processes that are developed under example stress states are shown. Note that the
strength of a material element will also be affected by the failure processes developed over the stress path.
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Fig. 3: Influence of confinement on failure process in brittle solids (aluminum nitride in this case) (Hu et al., 2011).
Photographs taken every 2 microseconds with exposure times of 500 nanoseconds. (a) Unconfined uniaxial dynamic
compressive loading in the horizontal direction. (b) Failure during planar confinement (in the vertical direction) and
dynamic compressive loading (in the horizontal direction). Note the development of axial cracks, propagating at
speeds of several hundred m/s in (a), but none of these are observed in (b).
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Fig. 4: Examples of failure processes: (a) brittle fracture, (b) shear bands, (c) void growth and spallation, and (d)
amorphization. Note that a variety of length scales are represented in this figure, and all of these processes can lead to
fragmentation.
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Fig. 5: Multipart schematic showing the influence of rate of loading on the activation of defects in a material containing
a distribution of defects. The probability of finding a defect of size s is shown in the top right quadrant. The bottom
right quadrant shows how the activation stress depends on the defect size. The bottom left quadrant shows how the
applied stress might vary with time, with the red solid line showing a low loading rate and the green solid line showing
a high loading rate. At any given time, the dashed lines show that at low loading rates only the largest defects are
activated, while at high loading rates the majority of the defect distribution will be activated.
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Fig. 6: All brittle solids, including geophysical and engineering materials, appear to follow a universal dependence of
the (a) compressive and (b) tensile strengths on the strain rate (Kimberley et al., 2013). This results from the KRD
scaling analysis of the influence of a defect distribution on fracture dynamics.

Fig. 7: Disruption model incorporating micro-mechanics-based scaling of strength (bold black line).
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Fig. 8: Experimental fragment size averages of structure-dominated fragmentation compared with the models of Grady
(2009b), Glenn and Chudnovsky (1986), Zhou et al. (2006b).
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Fig. 9: A. Computed strain rate domains from the impact of a 1km quartz body at 5km/s into a quartz half-space
(Ernst et al., 2009). B. Comparison of two different fragmentation models over the computed strain rate domain and
the typical laboratory strain rate domain. The ZMR model predicts a much larger amount of fines as a consequence of
the impact.
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