
 

 

 

 

Human Standing and Sitting Stability: Instrumented Objective Balance 

Evaluation and Quantification of Postural Control   
 

by 

 

Alireza Noamani 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

 

 

 

 

 

Department of Mechanical Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Alireza Noamani, 2022 

 

 



 

ii 

 

Abstract 

Falls are one of the most frequent causes of injury in the elderly and ambulatory individuals 

with neuromuscular impairments. Standing balance impairment is among the most consistent 

predictors of future falls. Furthermore, many individuals with neuromusculoskeletal conditions 

use a wheelchair for daily ambulation and often exhibit degraded trunk control during dynamic 

tasks, requiring assistance in seated stability. Therefore, implementing outcome measures that 

identify static balance difficulties may lead to more effective rehabilitation, and reduced future fall 

risk and fall severity in affected individuals. Characterizing the dynamic balance and 

neuromuscular control mechanisms are essential for identifying underlying impairments, 

implementing targeted rehabilitation, and developing assistive technologies. The overall goal of 

this thesis is to contribute toward developing methodologies for instrumented static and dynamic 

balance assessment with high sensitivity and responsiveness, allowing for a better understanding 

of the mechanisms of postural control. This thesis aimed to (1) develop and validate algorithms 

for reliable assessment of static balance using wearable technology, with the capability of being 

integrated into clinical tests for individuals with neuromuscular impairments; and (2) characterize 

the relationship between dynamic balance and risk of loss of balance and identify the roles of 

neuromuscular mechanisms involved in seated stability.  

First, we validated an algorithm for characterizing static balance using wearable 

technology against measurements of gold-standard in-lab equipment. We showed that our 

proposed method could provide accurate kinematics and kinetics measures and could be 

recommended for monitoring standing balance.  
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Second, we used the validated algorithm to perform a static balance evaluation using 

wearable technology for ambulatory individuals with incomplete spinal cord injury (iSCI) with 

mild balance deficits during standing under various conditions. Our method enabled characterizing 

standing balance in this group compared to able-bodied participants with sufficient resolution and 

discriminatory ability for objective balance evaluation.  

Third, we used the validated algorithm to compare the postural control strategy between 

the same iSCI and able-bodied participants by characterizing their trunk-leg movement 

coordination under different sensory conditions. We observed trunk-leg movement coordination 

showed high sensitivity, discriminatory ability, and excellent test-retest reliability to identify 

changes in postural control strategy post-iSCI.   

Fourth, we investigated, in a clinical setting, the use of the validated algorithm above and 

the integration of wearable technology into a clinical scale test for objective outcome evaluation 

of balance rehabilitation in elderly with moderate-to-severe balance impairments. Our method 

enabled identifying and characterizing underlying causes of impaired balance pre- and post-

rehabilitation with high sensitivity to subtle changes in balance. 

Fifth, we determined the limit of dynamic seated stability as a function of the trunk 

kinematics relative to the base of support. We experimentally validated the predicted limit of 

stability using traditional motion capture cameras. We then validated an algorithm to use wearable 

technology for assessing dynamic seated stability and risk of loss of balance against a gold-

standard system.  

Sixth, we characterized the neuromuscular mechanisms involved in human sitting by 

identifying a nonlinear physiologically-meaningful neuromechanical model of seated stability. 

The model predicted the trunk sway behaviour during perturbed sitting with high accuracy. Our 
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method accounted for physiological uncertainties while allowing for real-time tracking and 

correction of parameters’ variations due to external disturbances and muscle fatigue.  

Seventh, we identified the high-level task goals of the neural control for regulating dynamic 

seated stability using nonlinear control theory. We observed the neural control might use trunk 

angular kinematics, primarily angular acceleration, as the input to achieve near-minimum muscle 

activation while keeping the deviations of the trunk angular position and acceleration sufficiently 

small.  

The practical outcome of this research toward static balance assessment is the development 

of algorithms used with wearable sensors for clinical objective balance assessment and 

characterization of complex balance mechanisms during static quiet stance. Such algorithms may 

provide a significant increase in the sensitivity of diagnosis of impaired balance for ambulatory 

individuals with iSCI with mild balance deficits and elderly with moderate-to-severe balance 

impairments. The practical outcomes of this research toward dynamic balance assessment are: (a) 

obtaining dynamic limits of stability for sitting; (b) the development of an algorithm for assessing 

the risk of loss of balance using wearable technology; (c) the development of a novel 

methodologies for a mechanistic understanding of the several neuromuscular stabilization 

mechanisms and high-level task goals of the neural control for maintaining dynamic stability. 
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Chapter 1 

Chapter 1 presents the motivations, objectives, and outline of this thesis. 

1 Introduction 

1.1 Motivation and Problem Statement 

Falls are among the most frequent causes of injury in individuals with neuromuscular 

impairments and the elderly [1], [2]. Previous studies showed that impairment of gait or balance 

is the most consistent predictor of falls [3]. Hence, individuals with impaired balance are at high 

risk of falling, and therefore, the ability to maintain balance during gait, standing, and postural 

transitions has been used to evaluate fall risk in individuals and the effectiveness of rehabilitative 

interventions [4], [5]. Up to one-third of seniors fall at least once a year [6], with over 50% of 

fallers reporting multiple falls [7]. The fall rate among the elderly grows with age [8], making falls 

the fifth leading cause of death in older adults [9]. In addition, the literature has reported a high 

occurrence of falling incidences among individuals with spinal cord injury (SCI), with up to 78% 

of these individuals experiencing at least one fall post-rehabilitation [10]–[12]. Falls can lead to 

injuries and hospitalization [10], restriction in community participation [11], [13], [14], and the 

development of a fear of falling [15].  In addition, up to 30% of individuals with a recent SCI and 

most individuals with an incomplete spinal cord injury (iSCI) are able to regain partial balance and 

walking ability after the first year post-injury [16]. However, a significant challenge for individuals 

with iSCI is to maintain postural stability while recovering walking function [17]. iSCI affects the 

ability to safely stand and perform functional activities in this position [18]. The future level of 

ambulation in this population is associated with the initial level of balance and the amount of motor 

function below the level of the lesion [19]. Recovery of balance ability during standing and 

regaining the ability to walk are the top priorities for individuals with iSCI [16], [20], [21]. One of 

the major factors contributing to falls in this population is the loss of balance [14], [18], 

highlighting the lack of effective postural control in individuals with iSCI. Furthermore, greater 

postural control in this population is highly related to a more normal gait pattern, higher stride 

speed, less reliance on supervision or physical assistance, and more functional ambulatory status 

[16]. The development of fall prevention strategies is associated with effective postural control. 
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Hence, the implementation of outcome measures that identify the balance and walking abilities of 

individuals with neuromuscular impairments, such as iSCI, can lead to more effective 

rehabilitation [16]. Therefore, understanding the underlying mechanisms of how postural control 

is regulated post-impairment is of significant importance. 

Many individuals with neuromusculoskeletal conditions, including more than 60% of 

individuals with SCI, use a wheelchair or scooter for daily ambulation [22] and often show 

degraded trunk control, which requires assistance in seated stability during activities of daily living 

[23]. Affected individuals commonly suffer from an inability to maintain an upright seated posture 

due to the impaired neuromuscular function of the trunk and pelvic musculature [24].  For instance, 

most lesions located above the first lumbar vertebra will lead to full or partial paralysis of the 

lumbar trunk muscles [25]. Consequently, the lumbar muscles cannot produce sufficient torques 

to maintain trunk stability [25]. Moreover, any lesion between the head and the tenth thoracic 

vertebra leads to further trunk impairment by also affecting sensorimotor transmission [26]. Thus, 

these individuals are at high risk of falling when exposed to sitting perturbations, making tips and 

falls the leading cause of injury in this population [27]. Up to 69% of wheelchair users experience 

at least one fall each year [28], and falls are the leading cause of injury in this population [27], 

often requiring hospitalization [29]. Trunk instability can also result in reduced functional 

independence during activities of daily living [26], [30], and respiratory dysfunction [31], [32]. 

Furthermore, these individuals use compensatory strategies such as the posterior pelvic tilt [33] 

and one-arm support while reaching [26], causing reduced work volume, asymmetric trunk 

configuration, and inadequate distribution of upper body weight, which can lead to secondary 

health complications such as kyphosis and pressure sores [4]. Consequently, individuals with 

impaired trunk stability (e.g., individuals with SCI) view sitting stability during daily activities as 

one of their most essential needs, even outweighing their desire to walk again [34]. In this light, 

an assessment methodology that can evaluate their sitting stability during daily life would 

dramatically increase their quality of life while wheeling in a wheelchair. 

Physical therapists oftentimes use standard observational rating scales to evaluate balance. 

The concurrent validity of observational balance scales, e.g., Berg Balance Scale (BBS) or Mini 

Balance Evaluation System Test (Mini-BEST), among the elderly and individuals with iSCI has 

been studied in the past. However, previous studies reported an inability to predict future falls for 

such methodologies. Moreover, they tend to be subjective and may provide limited information 
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for understanding the potential underlying mechanisms for the balance difficulties [16], [35], [36], 

highlighting the requirement of a quantitative approach to evaluate standing balance. Hence, the 

instrumented version of such tests can provide a more precise impairment-level evaluation of 

balance by measuring how and why functional performance is impaired with increased sensitivity 

in the identification of mild changes [37]. Therapists may use such objective measures to track 

subtle changes in postural control over time and precisely focus the therapy on underlying causes 

[37].  

Many studies have used stationary laboratory equipment, including motion capture systems 

and force plates, to derive measures for characterizing the control mechanisms of balance [38]–

[42]. Such measures can quantify balance during both static and dynamic conditions [43]. On the 

one hand, measures obtained during static conditions corresponding to spontaneous body sway 

have been extensively used to assess postural control during quiet stance [42]. A commonly 

applied technique for assessing postural control and stability during quiet standing is utilizing 

measures of postural steadiness known as posturography [43]. On the other hand, applying external 

perturbations (e.g., platform translation or external forces) and sensory disturbances (e.g., visual, 

proprioceptive, and/or vestibular disturbances) have been used to characterize postural responses 

and underlying stabilization mechanisms during dynamic conditions [44]–[46].   

1.1.1  Static Balance Assessment 

Objective assessment of balance has been investigated based on the reaction forces from 

the ground, and body segments’ motions (e.g., joint angles) measured via force plates and motion 

capture systems during standing, respectively [47], [48]. Nevertheless, the implementation of in-

lab equipment for clinical research and practice has not become practical due to the requirement 

of expensive equipment and dedicated lab space. Body-worn inertial measurement units (IMUs) 

have been used as a reliable alternative for obtaining accurate and sensitive measures of balance 

in populations with neuromuscular impairments such as individuals with Parkinson’s disease [49], 

traumatic brain injury [37], and SCI [50]. IMUs can be used to provide impairment-level measures 

that characterize the functional performance of balance with increased sensitivity to movement 

disorders, rehabilitation, and mild changes in postural stability [37], [49]. Moreover, IMUs are 

light-weight, relatively inexpensive, and can be easily integrated into functional tests, which makes 

them an ideal alternative to stationary laboratory equipment with a higher level of clinical utility 

[37], [51]. Despite recent developments, there is a need to (a) develop algorithms to characterize 
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the dynamics of standing balance using the wearable IMUs; (b) experimentally validate the 

accuracy of the wearable device against gold standard motion capture and force plate systems; (c) 

assess the sensitivity of the developed system for identifying impairment-related changes in 

standing balance, and (d) conduct a clinical study to evaluate the responsiveness and validity of 

the wearable device for clinical outcome evaluation of rehabilitation interventions. 

1.1.2 Dynamic Balance Assessment 

The literature has introduced several biomechanical criteria for defining the limits of 

dynamic stability during standing and walking based on the kinematics of the human body [52]–

[58]. In addition, many studies have characterized postural responses and underlying stabilization 

mechanisms by applying external physical or sensory disturbances [45], [46], [59]–[65]. The 

literature has shown that characterizing neuromuscular control in able-bodied individuals is 

beneficial for identifying and restoring impaired balance in individuals with neuromuscular 

impairments [23], [59], [66]. Hence, characterizing neuromuscular control not only explains a 

fundamental question in human motor control but also contributes to objective balance evaluation 

and developing targeted rehabilitative interventions for improving impaired balance [60], [67]. 

The neuromuscular mechanisms of sitting and standing stability have been identified using closed-

loop system identification techniques applied to body motion and muscle activation data recorded 

when the body was perturbed via external stimuli (e.g., external forces, moving support surface, 

or moving visual surround) [46], [65]. Nevertheless, previous work assumed a time-invariant linear 

behaviour for the neuromuscular control that maintains sitting or standing stability and neglected 

time-variant or nonlinear dynamics as well as physiological uncertainties in real-world conditions 

[68]–[71]. In this light, there is a need for a nonlinear neuromechanical model of dynamic stability 

that explains the roles of stabilization mechanisms while accounting for uncertainties associated 

with the complex neuromuscular system. 

Yet, the literature has mostly focused on dynamic stability during standing to characterize 

underlying stabilization mechanisms. However, dynamic stability during sitting has not been fully 

investigated due to complexities associated with the human trunk structure and the number of 

muscles and the variety of stabilization mechanisms involved. Moreover, despite the significance 

of the dynamic balance assessment methodology, there is no standard biomechanical criterion that 

particularly quantifies the limits of dynamic balance during sitting. Consequently, the focus of this 

research on dynamic balance assessment was given to sitting balance. Therefore, this research 
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addresses the following gaps of knowledge: (a) biomechanical characterization and quantification 

of the relationship between the dynamic posture of the trunk and sitting balance; (b) a validated 

biomedical device for assessing dynamic sitting posture and fall risk; and (c) mechanistic 

understanding of the non-impaired neuromuscular control mechanisms and their roles in achieving 

seated stability [25], [60], [72].  

1.2 Thesis Objectives 

The overall goal of this thesis research is to contribute toward developing methodologies 

for comprehensive instrumented static and dynamic balance assessment with high sensitivity and 

responsiveness, allowing for a better understanding of the mechanisms of postural control. To 

achieve this goal, this research aimed to address two major gaps in the literature: 

(1) Static balance: instrumented assessment of static balance, understanding the underlying 

mechanisms of how postural control is regulated in individuals with mild balance deficits 

(e.g., a group of ambulatory individuals with iSCI), and how rehabilitative interventions 

affect postural control in individuals with moderate-to-severe balance impairments. 

(2) Dynamic balance: characterization of dynamic balance as well as gaining a mechanistic 

understanding of the neuromuscular mechanisms involved in dynamic seated stability in 

able-bodied individuals. 

To address the first gap, this research aimed to develop and validate an algorithm for 

reliable assessment of static standing balance using wearable technology, with the capability of 

being integrated into clinical tests for individuals with neuromuscular impairments such as 

ambulatory individuals with iSCI with mild balance deficits as well as the elderly with moderate-

to-severe balance impairments. For this purpose, we developed an algorithm to assess kinematic 

and kinetic parameters that characterize standing balance using the measurements of wearable 

IMUs. We achieved this objective by completing the following steps: 

• We investigated the validity of an algorithm for estimating conventional balance biomarkers 

using wearable technology for the reliable assessment of the dynamics of standing balance. 

• We used the validated algorithm above for using wearable IMUs to characterize changes in 

standing balance in a group of individuals with iSCI (with mild balance deficits and at least 
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partially preserved motor function below the lesion level) due to alteration in the integration 

of sensory information. 

• We used the validated algorithm above for using wearable IMUs to identify changes to the 

postural control strategy by quantifying the trunk-leg movement coordination in the same 

group of individuals with iSCI. 

• We investigated the feasibility of integrating the wearable technology above into the BBS test, 

in a clinical setting, to identify the effect of rehabilitative interventions on balance biomarkers 

in comparison to BBS scores in a group of the elderly with moderate-to-severe balance 

impairments. 

To address the second gap, this research aimed to characterize the relationship between the 

dynamic posture of the trunk and dynamic balance and identify the roles of neuromuscular 

mechanisms involved in non-impaired dynamic stability. Note, since the literature has not fully 

investigated dynamic stability during sitting due to complexities associated with the structure of 

the human trunk, the focus in this thesis research was given to dynamic sitting balance. We 

achieved this objective by completing the following steps: 

• We quantified the relationship between the dynamic posture of the trunk and fall risk during 

sitting by obtaining the limits of dynamic stability as a feasible stability region (FSR). 

• We developed an algorithm for assessing seated stability using wearable technology. 

• We identified the roles of the passive and active neuromuscular control mechanisms involved 

in seated stability using a nonlinear neuromechanical model to represent how the underlying 

stabilization mechanisms appear to operate. 

• We identified the high-level task goals of the central nervous system (CNS) for achieving trunk 

stability in sitting posture based on nonlinear control and optimal control. 

1.3 Thesis Impact and Significance 

Each year, about 4,500 new cases of SCI are reported in Canada: about 1,800 cases as a 

consequence of traumatic injury and the rest as a result of diseases and other non-traumatic causes, 

and the total number of individuals with SCI living in Canada is estimated at 85,500 [73]. In 

addition, the annual incidences of new traumatic SCI in the United States are estimated as high as 

17,800, and the current number of people living with SCI in this country is approximately 294,000 
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[74]. 32.6% of individuals with SCI in the United States had neurologically incomplete tetraplegia, 

24.0% complete paraplegia, 18.5% complete tetraplegia, and 18.5% incomplete paraplegia [22].  

Falls are among the leading causes of injury in the SCI population. Each year, about 180,000 

injurious fall incidents are reported in Canada. More than 100,000 wheelchair-related injuries need 

emergency treatments. Rehabilitation due to bone fracture in individuals with SCI needs four to 

eight weeks of hospitalization. This results in reduced strength and an increased risk of developing 

blood clots. In addition, access to hospital care during the COVID-19 pandemic has been a 

challenge for high-risk individuals with other underlying health conditions. The annual direct-care 

costs of fall-related injuries in Canada are estimated as high as $2 billion [75]. Due to the impacts 

of falls on the quality of life of many Canadians and on the Canadian healthcare system and 

economy, the development of technologies that contribute to reducing the risk of falling is of 

significant interest to the Canadian healthcare system. 

The overall contributions of this thesis toward developing instrumented static and dynamic 

balance assessment methodology are algorithms validated against gold-standard references to 

obtain sensitive and responsive measures of static and dynamic stability using wearable technology 

for understanding the underlying mechanisms of postural control. The practical outcome of this 

research toward static balance assessment is the development of algorithms for clinical objective 

balance assessment during static quiet stance using wearable technology for ambulatory 

individuals with iSCI and mild balance deficits and elderly with moderate-to-severe balance 

impairment. The advantages of this technology will be: (a) characterization of complex balance 

mechanisms without a dedicated laboratory; (b) capability of integration into conventional clinical 

tests; and (c) a significant increase in the sensitivity of diagnosis of impaired balance. The practical 

outcomes of this research toward dynamic balance assessment are: (a) obtaining and validating 

dynamic limits of stability for sitting; (b) the development and validation of an algorithm for 

assessing the risk of loss of balance in dynamic conditions using wearable technology; (c) the 

development of a novel methodology for a mechanistic understanding of the contribution of 

several underlying neuromuscular stabilization mechanisms to achieving dynamic stability; and 

(d) the development of a methodology to obtain a high-level understanding of the task goals of the 

neural control for maintaining dynamic stability, all tested among able-bodied individuals.   
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1.4 Thesis Outline 

The remainder of this thesis explains the steps toward achieving the objectives and is 

organized as follows: 

• Chapter 2 provides an overview of the literature relevant to this thesis research. First, it 

provides an overview of standing balance, including objective assessment methodologies using 

motion tracking systems, standing balance assessment post-iSCI, and standing balance 

assessment of the elderly in clinical research and practice.  Second, it highlights an overview 

of sitting balance assessment, including trunk stability, the limit of stability, and neuromuscular 

control identification.  

• Chapter 3 presents a novel algorithm for deriving reliable standing balance biomarkers using 

the recording of three body-mounted IMUs as well as its validity against a gold-standard 

optoelectronic motion capture system and a force plate. This chapter is based on a journal 

publication  [76]. 

• Chapter 4 presents the characterization of standing balance in ambulatory individuals with iSCI 

with mild balance deficits under different sensory conditions using the balance biomarkers 

derived based on the measurements of our novel wearable device validated in Chapter 3. This 

chapter is based on a journal publication  [77].  

• Chapter 5 investigates the alteration of postural control strategy in ambulatory individuals with 

iSCI with mild balance deficits by characterizing trunk-leg movement coordination under 

different sensory conditions based on the measurements of our novel wearable device validated 

in Chapter 3. This study introduces a new balance biomarker capable of identifying impaired 

postural control strategies with high reliability. This chapter is based on a journal publication 

[78]. 

• Chapter 6 investigates, in a clinical setting, the use of IMUs integrated into the BBS test for 

objective outcome evaluation of balance rehabilitation compared to conventional BBS scores 

in elderly with moderate-to-severe balance impairment. This chapter is based on a journal 

publication [79]. 

• Chapter 7 presents a mathematical approach to obtaining the limit of dynamic seated stability 

as a function of the trunk motion, experimentally validates the predicted limit of stability using 

gold-standard motion capture, compares the predicted limit of stability with that predicted in 
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the literature for standing and walking, and validates an algorithm using a wearable device for 

assessing dynamic seated stability and risk of loss of balance. This chapter is based on a journal 

publication [80]. 

• Chapter 8 presents the characterization of the roles of passive and active stabilization 

mechanisms involved in human dynamic sitting stability by experimentally identifying 

nonlinear trunk dynamics in able-bodied individuals. This study uses an Adaptive Unscented 

Kalman Filter (AUKF) for identifying the parameters of a nonlinear model while accounting 

for the time-varying process and measurement noise. This chapter is based on a journal 

publication [81]. 

• Chapter 9 explains the task goals used by the neural control to regulate seated stability. This 

study uses a nonlinear neuromechanical model of the seated human along with a full-state 

feedback linearization approach and optimal control theory for identifying neural dynamics. 

This chapter is based on a submitted journal publication. 

• Chapter 10 provides the conclusions and future perspectives. 
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Figure 1-1. Elements of the proposed algorithm for objective standing balance assessment using wearable technology and their relation. 
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Figure 1-2. Elements of the proposed methodology for sitting balance assessment and neuromuscular characterization. 
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Chapter 2 

Chapter 2 presents an overview of the literature relevant to this thesis research. 

2 Literature Review 

2.1 Static Balance Assessment 

2.1.1 Quantification of Standing Balance 

Bipedal human standing, from a mechanical point of view, is inherently unstable [82] since 

its stability needs a large mass consisting of many flexible segments to remain in an erect posture 

with the center of mass (COM) located within a relatively small base of support (BOS) [83]. 

Successful stabilization of the body posture requires coordination among different components of 

the body’s neuro-musculoskeletal system, including joints and muscles [84]. Studying the 

mechanisms responsible for postural control is of significant interest to many researchers. 

Spontaneous sway during quiet standing has been widely used to investigate human postural 

control by analyzing the trajectory of the center of pressure (COP) [40], [41], the body COM [85], 

[86], or the ankle and hip joint motions [82], [87]. 

Standing balance represents an individual’s ability to maintain the COM of the body and 

the COP within the boundaries of an established BOS [88]–[90]. The COM (also known as the 

center of gravity) represents the centroid of all mass of the body, while the COP represents the 

point of application of the ground reaction forces (GRFs) [89]. Researchers have extensively used 

both COM and COP to evaluate standing balance performance, identify impaired balance due to 

underlying health conditions, track retrospective falls, and predict prospective falls [89].  

Traditionally, stationary laboratory equipment, including motion capture systems and force 

plates, has been used to derive COM- and COP-based balance biomarkers, respectively, for 

quantifying the dynamics of standing balance. Stationary equipment provides gold-standard 

reference measurements of COM- and COP-based balance biomarkers for both able-bodied 

individuals and those with neuromuscular impairment. However, the use of stationary equipment 

for clinical research and practice can be cumbersome due to the requirement of costly equipment 

in a dedicated lab space, which is not accessible at many locations such as hospitals and 
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rehabilitation clinics [89]. This results in the reduced utility of the stationary equipment outside 

the laboratory environment, limiting the ability of in-home monitoring, performing point-of-care 

clinical tests [37], [91], and routine objective outcome evaluation in clinical research and practice 

[92]. Body-worn IMUs, composed of a tri-axial accelerometer, gyroscope, and magnetometer, 

have been used as a reliable alternative for obtaining accurate and sensitive measures of standing 

balance in different populations such as able-bodied individuals [93], populations with Parkinson’s 

disease [49], traumatic brain injury [37], and SCI [50]. IMUs are lightweight, unobtrusive, and 

relatively inexpensive. They can be easily integrated into functional tests, making them an ideal 

alternative to stationary laboratory equipment with a higher level of clinical utility [37], [51].  

Increased use of COM- and COP-derived measures for assessing standing balance 

performance requires understanding what aspect of postural control these measures quantify and 

how they can be interpreted. COM- and COP-based measures quantify distinct aspects of postural 

control. Previous studies have shown that COM motion is controlled by the CNS via 

synergistically activating muscles in response to the COM movements [44], [45], [89], [94], 

implying that any movements of the COM lead to the initiation of the postural response. Therefore, 

COM motions indicate challenges in maintaining balance as well as the success of the neural 

response generated by the CNS to regulate stability [89]. On the other hand, COP provides 

information about the CNS response to COM imbalance, reflecting neuromuscular attempts to 

respond to instability [89]. Therefore, COP not only contains valuable information about the COM 

fluctuations but also about the utilized balance control strategy [43], [95]. Although COM- and 

COP-based measures may provide overlapping information about postural stability, there is a 

subtle distinction in what aspects of postural control COM and COP quantify. Mancini et al. [85] 

showed a moderate-to-weak correlation between COP and COM measures highlighting the 

distinction between these measures in quantifying postural control. Therefore, understanding such 

differences can help researchers and clinicians interpret changes in the balance performance of 

patients and evaluate the outcome of rehabilitation interventions.  

Utilizing measures of postural steadiness based on COP and COM time series during quiet 

standing is known as posturography. Common posturographic measures introduced by the 

literature based on the measurements of in-lab equipment and wearable IMUs are discussed in 

sections 2.1.1.1 and 2.1.1.2, respectively. 
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2.1.1.1 Posturography 

Many studies have used COP-based measures to characterize the control mechanisms of 

quiet standing [38]–[42]. The COP displacement can quantify standing balance during both 

dynamic and static conditions [43]. On the one hand, applying external perturbations (e.g., 

platform translation or external forces) and sensory disturbances (e.g., visual and/or 

proprioceptive) have been used to characterize postural responses and underlying stabilization 

mechanisms during dynamic conditions [44]–[46].  On the other hand, COP displacement during 

static conditions corresponds to spontaneous body sway and postural control during a quiet stance 

[42]. A commonly applied technique for assessing postural control and stability during quiet 

standing is utilizing measures of postural steadiness known as posturography [43]. The most 

common posturographic measures used to characterize quiet standing include time- and frequency-

domain measures, which quantify displacement, velocity, area, and frequency properties of the 

COP (or COM) time series in the anteroposterior (AP) and mediolateral (ML) directions [41]. 

Other measures are Stabilogram Diffusion Function [38]–[40], Detrended Fluctuation Analysis 

[96], Approximate Entropy and Sample Entropy [97]–[99], and Lyapunov Exponent [100].  

Collins and Luca [40] introduced a new concept for studying human postural control. They 

assumed maintaining an erect posture during an upright stance can be viewed as, in part, a 

stochastic process, and the COP can be analyzed as one- and two-dimensional random walks. They 

modelled COP trajectories as Brownian motion and assumed two short- and long-term 

mechanisms regulate quiet standing. They introduced averaged stabilogram diffusion plots as 

mean-square displacement of the COP vs. time interval. They estimated short- and long-term Hurst 

exponents as the slopes of the lines fitted to the short- and long-term regions of the log-log 

stabilogram diffusion plots, respectively. The short- and long-term regions ranged from 0 to 0.5 

and 2 to 10 seconds, respectively. They suggested that the Hurst exponent of the short-term interval 

represents the open-loop mechanism of postural control while the long-term interval represents the 

closed-loop mechanism associated with neural feedback over a longer time. Note that the Hurst 

exponent is a number between 0 and 1, representing how the past increments of the displacement 

are correlated with the future increments. A Hurst exponent of 0.5 corresponds to zero correlation 

representing random walk behaviour, while a Hurst exponent larger (smaller) than 0.5 corresponds 

to positively (negatively) correlated stochastic process representing persistent (anti-persistent) 

behaviour. 
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Collins and Luca [38] also investigated the effect of visual input on standing balance using 

the same approach. They showed that visual inputs affect postural controls in two ways: a decrease 

in the stochastic process of the open-loop mechanism or an increase in the stochastic activity of 

the closed-loop mechanism. They suggested that in both scenarios, the visual input led to reduced 

stiffness of the musculoskeletal system. They attributed this hypothesis to reduced muscular 

activity at lower joints for the open-loop mechanism or to reduced gains of proprioceptive and 

vestibular components of the neural feedback for the closed-loop mechanism. 

Prieto et al. [41] introduced a wide range of measures of postural steadiness based on the 

planar trajectory of the COP throughout the test called stabilogram. These measures were time-

domain distance and area measures, frequency-domain measures, and hybrid measures (e.g., 

fractal dimension). Time-domain measures are associated with the displacement or the velocity of 

the COP trajectory as well as the area of the stabilogram. Frequency-domain measures characterize 

the area or the shape of the power spectral density of the COP trace. Hybrid measures model the 

stabilogram with a combination of time-domain distance measures. They concluded that among 

many COP-based measures introduced in this study, the use of (a) one time-domain distance or 

area measures (e.g., root-mean-square distance), (b) mean velocity, (c) one hybrid measure (e.g., 

mean frequency), and (d) one frequency-domain measure (e.g., centroid frequency) are 

recommended and together they can quantify different aspects of postural control during quiet 

standing. 

COP-based measures characterize postural stability in three domains: stability 

performance, control demand, and postural regulation. Time-domain distance and area measures 

are related to stability performance, while the velocity measure was related to the control demand  

[101]–[104]. An increase in control demand can be attributed to increased visual contribution for 

postural stability [105]–[107] and an increased risk of falling [41]. Postural instability can be 

inferred from decreased stability performance shown by increased distance and area measures, as 

well as increased control demand shown by increased velocity measures. Hybrid measures 

combine the distance and velocity measures characterizing the relationship between stability 

performance and control demand [101]. The frequency measures are oftentimes calculated for the 

range of 0 to 5 Hz. The power frequency measures show alteration in preferential postural 

regulation [108], [109]. The centroid frequency indicates the inertia of an inverted pendulum 

model [43] and the time required for a system to return to its initial position [101]. Frequency 
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dispersion is a measure of variability in frequency content and is associated with active and passive 

stiffness or rigidity of the inverted pendulum [42].  

Popovic et al. [90] introduced a new stability criterion based on the relationship between 

the COP position and the individual’s stability. They identified four stability zones: a high 

preference zone as the area where the COP is located 99% of the time during quiet standing; a low 

preference zone as the area where the COP is located 1% of the time during quiet standing; an 

undesirable zone as the COP area where the individual needs to change their posture to maintain 

stability; and an unstable zone as the COP area where the individual needs to take a step to maintain 

stability. Their measure of stability ranges from zero to one. It is equal to zero in the high 

preference zone, linearly increases in the low preference zone, and is equal to one in undesirable 

and unstable zones. 

Rocchi et al. [110] identified the features of the COP trajectory that are most sensitive to 

postural stability performance to eliminate redundancy. They applied thirty-seven posturographic 

measures used by Prieto et al. [41] to COP time series in both the AP and ML directions as well 

as COP resultant distance (RD). They conducted a feature selection process using Principal 

Component Analysis (PCA). They suggested that the COP RD time series can be characterized by 

four measures: (a) the size of the path travelled by the COP (e.g., root-mean-square distance); (b) 

a frequency characteristic (e.g., centroid frequency); (c) principal sway direction showing the 

relative weight of AP and ML components of the COP trajectory; and (d) frequency dispersion. 

They also recommended six measures for quantifying COP AP and ML time series: (a, b) 

dispersion in AP and ML directions using root-mean-square and their contrast; (c, d) mean velocity 

in AP and ML direction; (e) centroid frequency in AP direction; and (f) frequency dispersion in 

AP direction. 

Human quiet standing is oftentimes modelled as a single inverted pendulum rotating about 

the ankle joint, stabilized primarily by active control of the ankle joint along with passive 

musculoskeletal stiffness and damping properties [111], [112]. Gage et al. [112] investigated the 

validity of the inverted pendulum model by examining the relationship between COM and COP 

during a 120-second quiet standing in able-bodied individuals. The 3D kinematics of 14 body 

segments were recorded using optoelectronic motion capture cameras while a force plate measured 

the COP trajectory and GRFs. Their results validated the inverted pendulum model of quiet 

standing, showing that the difference between COP and COM trajectories was significantly 
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correlated with the COM acceleration. They observed temporal and spatial synchronization 

between each segment COM and the whole-body COM, with the segmental COM increasing 

linearly with the height above the ankle joint. In addition, they showed that ankle joint angular 

displacement could track the COM motion. 

Fok et al. [113] examined the error of the inverted pendulum model associated with the 

distance between the body COM and the ankle joint during natural unrestricted unperturbed 

standing as well as the error of having the ankle joint angular motion represent the COM angle. 

They used an optoelectronic motion capture system, and their experimental procedure included 

quiet standing with EO or EC, voluntary forward/backward sway, and freely moving. The distance 

change of the COM during EO and EC quiet standing was very small, i.e., close to the accuracy 

of their motion capture system. The distance change tended to be larger during forward and back 

voluntary sway, but it was not significant. Thus, they suggested that the inverted pendulum model 

is valid for quiet standing and voluntary sway if the inter-joint contribution, i.e., hip or knee joint 

torques, is not of interest. The COM sway angle and ankle joint angle had a moderate positive 

correlation during EO and EC quiet standing and voluntary sway, but a significant offset was 

observed. This implies that the ankle joint angle moderately represented the temporal features of 

the COM sway angle, and it may not provide an accurate estimate of COM spatial features. 

Aramaki et al. [82] pointed out that hip joint motion also plays a significant role in efficient 

maintenance of the COM above the BOS since literature had suggested that restricted hip joint led 

to considerably higher ankle sway in able-bodied individuals [114]. They investigated how the 

coordination between the ankle and hip joints is controlled during a 30-second quiet standing with 

eyes open (EO) and eyes closed (EC). The angular motion of the ankle and hip joints was measured 

via laser displacement sensors. They observed a significantly higher magnitude of angular 

position, velocity, and acceleration for the hip joint compared to the ankle joint, confirming that 

the hip joint motion cannot be ignored during quiet standing. Furthermore, they discovered a 

reciprocal relationship between the angular accelerations of the hip and ankle joints, demonstrating 

that the ankle angular acceleration was compensated for by hip angular acceleration in the opposite 

direction. Such a consistent relationship was not observed for the angular displacement. Thus, they 

suggested that the angular motions of the ankle and hip are not supposed to minimize the COM 

displacement but, rather, to minimize the COM acceleration. 
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The ankle and hip strategies, along with stepping, are considered three coordinative 

patterns employed by the CNS to maintain stability during quiet standing [115], [116]. It is a 

common assumption that a quiet stance can be modelled by an inverted pendulum representing the 

ankle strategy and the hip joint only contributes during larger perturbations. The ankle strategy 

predominates during low-amplitude, low-velocity perturbations, while the hip strategy 

predominates during higher perturbation frequencies [115]. However, Creath et al. [116] 

demonstrated that a single segment model of quiet standing could be inadequate, and both ankle 

and hip strategies could be observable even during a quiet stance. They examined trunk-leg 

coordination of able-bodied individuals while standing on a hard surface (HS), foam surface (FS), 

and a sway-referenced surface with EC. During the sway-referenced trial, the platform was rotated 

in the AP direction equal to the hip angular displacement measured via a rod potentiometer. They 

used spectral analysis on trunk and leg angular displacement under different sensory conditions 

and observed the angular displacement of the trunk and leg were in-phase at sway frequencies 

below 1 Hz and anti-phase at sway frequencies above 1 Hz representing ankle and hip strategies, 

respectively. The transition from the ankle strategy to hip strategy was abrupt for the HS and FS 

conditions while a gradual transition was observed for the sway-referenced condition. They 

suggested that ankle and hip strategies are “simultaneously co-existing excitable modes” which 

are both present; however, the predomination of one strategy depends on the sensory information, 

and the characteristics of the task or perturbation. Similar results were observed by Zhang et al. 

[117] in both the AP and ML sway directions, further highlighting the utility of a double-linked 

inverted pendulum model of the dynamics of quiet standing.  

Hsu et al. [84] also proposed that postural control during quiet standing depends on the 

coordination of multiple joints. They hypothesized that all major joints are equally active along 

the longitudinal axis of the body and coordinate to stabilize the spatial positions of the head and 

body COM. They examined this hypothesis by recording the motion of a multi-segment body 

model of able-bodied individuals during a five-minute quiet stance with EO or EC. They showed 

that the CNS minimizes the sway of the body COM and the head during quiet standing by 

coordinating the variance of joint motions in a way that the temporal variability of the joints has a 

minor effect on either the head or the COM position whereas, in an inverted pendulum model, the 

variability of the ankle joint motion would directly lead to variability in the COM and head 

positions. Depriving vision led to increased joint configuration variance compared to EO, while 
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its effect was insignificant on the variation of COM position, further highlighting the importance 

of multi-joint coordination to postural control during quiet standing. 

Sasagawa et al. [118] investigated the effect of hip joint motion on the body kinematics in 

the sagittal plane during quiet standing of able-bodied individuals. They derived the actual COM 

acceleration by dividing the shear force measured by the force plate by the body mass. They 

estimated the COM acceleration using the angular motion data measured via laser sensors. They 

observed an anti-phase modulation between the ankle and hip angular acceleration. They showed 

that the COM acceleration could be precisely estimated only when the hip joint motion was 

considered in addition to the ankle joint motion. 

Hay et al. [119] used magnitude squared coherence (MSC) to investigate the relationship 

between the free moment and COP in the AP and ML directions measured by a force plate during 

quiet standing with EO or EC. Regardless of vision condition, they observed a strong (weak) 

coherence between the free moment and AP (ML) COP at frequencies below 0.5 Hz, while the 

coherence decreased (increased) from 0.5 Hz to 1 Hz. The authors compared their results with 

previous studies that investigated multi-joint coordination [116] as well as ankle joint and muscle 

activation coherence [120]. They concluded that these observations resulted from ankle strategy 

at lower sway frequencies and hip strategy at higher sway frequencies.  

2.1.1.2 IMU-Based Posturography 

Posturographic measures using gold-standard force platforms and motion capture systems 

have shown high sensitivity and reliability for characterizing postural control. However, their cost 

and portability issues have hindered their utilization in clinics. Clinical rating scales are the most 

common approach for evaluating postural control in clinics; however, they are affected by 

clinicians’ bias, low sensitivity to mild impairments, and poor reliability [85], [121]. Such 

limitations directly impact the ability of clinicians and researchers to identify individuals with mild 

balance impairment, monitor the progression of the disease, and evaluate the outcomes of 

interventions [37]. Mancini et al. [85] argued that there is a need for a more practical, objective 

balance assessment methodology for clinical applications that demonstrates high sensitivity to 

mild neurological impairments and good test-retest reliability with experimental and clinical 

validity. Many studies have proposed IMUs, particularly accelerometers, as a low-cost portable 

alternative [122]–[125]. A waist-mounted accelerometer has been suggested for the approximate 
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estimation of COM motion. Winter suggested that COM horizontal acceleration is proportional to 

the difference between COP and COM and, therefore, could potentially be a better postural sway 

measure representing the error signal within the postural control system [88].  

Whitney et al. [123] investigated the test-retest reliability of three posturographic measures 

obtained from a waist-mounted accelerometer compared to COP during quiet standing with 

different sensory conditions. COM acceleration-based measures showed similar test-retest 

reliability as COP-based measures. Acceleration- and COP-based measures were significantly 

correlated under all test conditions. They suggested that the use of an accelerometer for balance 

evaluation may be useful to reduce clinical evaluation time.  

Mancini et al. [85] investigated the sensitivity and experimental concurrent validity of 

using a waist-mounted accelerometer compared to a force plate for measuring postural sway. They 

also examined test-retest reliability and concurrent validity of acceleration-based measures 

compared to clinical scores (postural instability and gait disability sub-score of the Unified 

Parkinson’s Disease Rating Scale). They used the common posturographic time- and frequency-

domain measures with both COM acceleration and COP time series. They also introduced an 

acceleration based-measure called JERK [126]. They observed the capability of acceleration-based 

measures in distinguishing postural sway characteristics of able-bodied individuals compared to 

individuals with untreated Parkinson’s disease. JERK and time-domain measures showed high 

test-retest reliability. They observed a significant correlation between acceleration-based measures 

and clinical scores. Hence, they suggested that the use of COM acceleration-based measures, 

including JERK, root-mean-square amplitude, mean velocity, and centroid frequency, are valid, 

sensitive, and reliable measures of postural stability. 

Alberts et al. [127] used the IMU composed of accelerometers and gyroscopes of an iPad 

attached to the sacrum to approximate the COM and quantify postural stability compared to a force 

platform in able-bodied individuals. Participants completed a Sensory Organization Test. They 

calculated the COM sway angle using both IMU reading and COP measured by the force plate. 

They demonstrated that using IMUs could quantify postural stability with sufficient precision and 

accuracy. They suggested that using IMUs, at the time, did not replace biomechanical analysis; 

however, they can translate complex in-lab biomechanical analyses to a broader field such as 

clinical evaluations and athletic training. 
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Heebner et al. [128] also investigated the capability and reliability of accelerometry 

measures compared to COP-based measures to characterize postural stability in healthy athletic 

individuals during tasks with varying difficulty, including four static tasks with EO or EC and two 

dynamic tasks. The COM acceleration-based measures showed high reliability with the ability to 

differentiate tasks with varying difficulties. Moderate-to-weak correlation between the 

acceleration- and COP-based measures, proposed by Heebner et al., was observed, highlighting 

the fact that the two methods do not represent the same component of postural stability. However, 

both methods showed similar patterns of postural stability scores across different tasks.  

 Hansson and Tornberg [129] examined the correlation between a waist-mounted IMU and 

a force plate, as well as the reliability of the IMU for quantifying standing balance with EO or EC. 

A strong correlation was observed between two measuring devices in both the AP and ML 

directions with EO and EC. They observed moderate to good intra- and inter-trial reliability for 

the IMU. They suggested that the two assessment devices were not interchangeable, and there is a 

significant need for a reliable algorithm with the ability to move the balance assessment using 

wearable technology out into real life.   

In a 2019 survey, Ghislieri et al. [130] reviewed the use of wearable IMUs for assessing 

standing balance. They investigated the application of IMUs for quantifying balance in different 

populations, sensor placement, common IMU-derived parameters, and validation against gold-

standard. Many studies utilized IMUs to assess balance in healthy, young, and/or older adults and 

patients with Parkinson’s disease [131]–[134] and multiple sclerosis [135], [136]. Regarding 

sensor placement, the most common place was the lower back (e.g., sacral region) as a 

representation of the body COM. Other studies have placed the IMU on areas of the lower limb, 

such as the thigh or shank, sternum, upper back, i.e., thoracic region, wrist, and forehead. Placing 

sensors on both the lower back and lower limb enables assessing postural control strategies (e.g., 

ankle or hip strategies) [131], [132]. The most common parameters were acceleration-based 

measures, including root-mean-square of the acceleration, JERK, range of acceleration, and 

centroid frequency. Few studies used gyroscope readings. Generally, there was a lack of sensor 

calibration procedures prior to calculating parameters assuming sensor misalignment was 

negligible. Many studies investigated the sensitivity and experimental validity of acceleration-

based measures compared to COP-based measures and clinical scores. IMU-derived acceleration-

based measures and COP-based measures quantify different aspects of postural control, hindering 
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direct comparison between the two methods. Nevertheless, the authors stated a lack of information 

about the sensitivity of wearable systems compared to traditional force plate posturography, 

particularly in the clinical field, for detecting mild changes in balance performance. They 

highlighted that IMUs have not become a practical tool of posturography for balance assessment 

due to a lack of accuracy validation of IMU-based measures compared to gold-standard force 

platforms. Thus, an innovative wearable balance assessment technology can be highly beneficial 

to both healthy and pathological populations. 

In a 2021 review article, Baker et al. [137] investigated the concurrent and discriminant 

validity as well as the inter-sensor and test-retest reliability of wearable IMUs for assessing 

standing balance in healthy adults. Concurrent validity was investigated by comparing IMU-based 

measures with those of force plate [85], [128], and a combination of motion capture and force plate 

[138]–[140], showing moderate to strong correlation in both the AP and ML directions. The 

authors observed consistent moderate to excellent test-retest reliability for static balance 

assessment using wearable sensors across different studies.  Moreover, discriminant validity was 

assessed across different studies, highlighting the capability of wearable sensors to distinguish the 

balance performance of young from older adults and fallers from non-fallers [141]. Furthermore, 

a single sensor placed near the body COM was as reliable as multiple sensors, showing moderate 

to good validity and test-retest reliability [137]. Using a single waist-mount accelerometer (over 

the lumbar region L3-L5) provides simplicity, encouraging clinicians to integrate wearable sensors 

into practice. This is especially important during telehealth interactions when healthcare is 

provided remotely. Such a simple wearable device would increase flexibility for clinical treatment 

when physical distancing is practiced, such as during the COVID-19 pandemic [137]. 

Richmond et al. [89] explored the current and future applications of COM- and COP-based 

measures for assessing standing balance. The authors pointed out that traditional posturography 

using motion capture cameras and force platforms for measuring the COM motion and COP, 

respectively, could be costly with reduced utility outside of the laboratory. Recent developments 

of wearable IMUs and innovative algorithms which can extract useful measures for quantifying 

standing balance look promising. However, such portable devices are not without their limitations, 

including sub-optimal noise minimization due to poor design of internal components and 

synchronization between sensors [142]. The authors believed that such limitations are being 

eliminated by the recent advancements in the field and the emerging concern is how the outcome 
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of wearable technologies can relate to gold-standard laboratory equipment in practice. Since IMU-

based measures have different units compared to measures obtained from laboratory equipment, 

the direct comparison of outcome measures across the literature is cumbersome. Such difficulty 

can affect the translatability of IMU-based measures to clinical applications. Moreover, the 

accuracy of IMU-based measures significantly depends on sensor placement and post-processing 

algorithms. Similar to Ghislieri et al. [130], the authors of this study also believed there is a major 

need for a validation study between IMUs and motion capture cameras for measuring the COM 

kinematics during quiet standing. Given the differences between COM- and COP-based measures, 

additional investigation is needed to understand the clinical applicability of IMU-derived COM 

measures compared to traditional COP measures. 

In sections 2.1.2 and 2.1.3, we discuss how the literature has benefited from traditional 

posturography using motion capture and force platform and recent advancements in wearable 

IMUs to characterize postural control during quiet standing based on the body COM and COP in 

two groups with degraded standing balance: (a) individuals with iSCI, and (b) the elderly, 

respectively. 

2.1.2 Balance Assessment in Individuals with iSCI 

The literature has reported that regaining the ability to maintain postural stability and 

walking function is among the top priorities for individuals with iSCI [16], [20], [21]. Up to one-

third of all individuals with recent SCI are able to regain partial balance and walking ability after 

the first year post-injury [16], [143]. However, their prospective level of ambulation is related to 

the initial amount of motor function below the level of the lesion [19]. For instance, 80-100% of 

individuals with iSCI rated D on the American Spinal Injury Association Impairment Scale (AIS) 

are able to partially recover walking function, indicating some preservation of motor and sensory 

function below the level of lesion a year post-injury [16], [144]. This shows the necessity of 

implementing outcome measures that allow for the identification of the balance and walking 

capacities of individuals with iSCI to guide the delivery of more effective rehabilitative 

interventions [16]. 

Integration of sensory information from the somatosensory, visual, proprioceptive, and 

vestibular systems plays a predominant role in effective postural control [10], [17]. While iSCI 

results in motor impairment below the level of the injury [18], it may also change sensory 
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reweighting due to, e.g., reduced somatosensation. Developing compensatory strategies to 

maintain postural stability post-iSCI leads to alteration in reweighting of sensory information [20], 

[35]. As a result, alteration of sensory information such as visual [17] and somatosensory [145] 

inputs can further challenge postural control in individuals with iSCI. Hence, the implementation 

of methodologies for identifying changes in postural control and underlying impaired balance 

mechanisms allows for targeted and guided rehabilitation after iSCI [35]. Such interventions can 

have a positive impact on the improvement of postural control and movement coordination [20]. 

Sayenko et al. [20] used COP-based measures from a force plate to investigate the effect 

of the visual feedback on standing balance in individuals with iSCI. They also determined whether 

static and dynamic stability could be improved during training-irrelevant tasks after balance 

training. Participants attended twelve training sessions over four weeks. During each training 

session, they stood on a force plate and were instructed to look at a monitor placed at their eye 

level in front of the force plate. COP planar position was used as an input for the game-based 

exercises. In addition, static and dynamic stability was evaluated before and after training. Static 

balance was evaluated using COP distance, area, and velocity measures obtained during quiet 

standing with EO or EC. Dynamic balance was evaluated based on the maximum voluntary 

displacement of COP toward eight targets placed 45 degrees apart around the center without losing 

balance. The displacements of COP in eight directions formed an octagon, and its area was 

calculated as a measure of dynamic stability. They observed a significant improvement of static 

and dynamic stability measures post-training showing the effectiveness of visual feedback on 

postural control of individuals with iSCI. This could be attributed to the improvement of existing 

motor strategies as well as the development of new strategies and integration of the sensorimotor 

system. 

Grangeon et al. [101] determined the minimum COP-based measures required for 

characterizing seated stability in individuals with SCI compared to able-bodied individuals by 

comparing 39 COP-based posturographic measures. Two sitting positions were performed by each 

participant: first with both hands on the thighs and second with both upper extremities flexed and 

abducted at 70 degrees and 45 degrees, respectively. COP-based measures were able to distinguish 

the balance of individuals with SCI compared to able-bodied participants irrespective of sitting 

positions. Bilateral hand support led to reduced AP sway in individuals with SCI and was 

suggested as a compensatory strategy. COP time-domain distance and area measures were highly 
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correlated, while frequency-domain measures were discriminative and uncorrelated. They 

suggested that posturographic measures for characterizing balance post-SCI should include mean 

distance, mean velocity, centroid frequency, median frequency, and frequency dispersion in both 

the AP and ML directions.  

Lemay et al. [17] compared individuals with iSCI and able-bodied individuals in terms of 

the use of visual information to maintain standing balance. They also quantified the relationship 

between the contribution of visual inputs to postural stability and a clinical balance scale. All 

participants performed two 45-second quiet standing on a force plate with EO or EC. They used 

root-mean-square distance, mean velocity, and sway area as posturographic measures. Individuals 

with iSCI were also assessed with Mini-BEST as a clinical balance scale. They observed worse 

postural stability in individuals with iSCI compared to able-bodied individuals in both conditions. 

Moreover, the Romberg ratios (i.e., measure in EO / measure in EC) of mean velocity and sway 

area were significantly larger for individuals with iSCI compared to able-bodied individuals 

implying a higher contribution of visual inputs to postural steadiness post-iSCI. Romberg ratios of 

root-mean-square distance and sway area were significantly correlated with Mini-BEST. Since 

SCI causes somatosensory impairments following a lesion, the contribution of visual information 

during standing may be increased post-iSCI in comparison with a healthy population due to altered 

sensory reweighting. 

Maintaining balance is an essential component of safe standing and walking; however, it 

is a major challenge for individuals with iSCI as they regain the ability to walk [17]. A more 

normal walking pattern, higher stride speed, less reliance on supervision or physical assistance, 

and more functional ambulatory status are highly correlated with greater postural control in 

individuals with iSCI [16]. The literature has demonstrated that clinical measures of standing 

balance, such as Berg Balance Scale scores, for individuals with iSCI correlate well with various 

walking outcome measures such as speed, endurance, and reliance on mobility-related assistive 

devices [16], [36].  However, the major bottlenecks of the BBS are its ceiling effect, its inability 

to predict future falls, and the inability to determine the underlying cause of balance difficulty [16]. 

As a complementary approach, Lemay et al. [36] investigated the concurrent validity of Smart 

Balance Master tests in individuals with iSCI compared to observational BBS. Smart Balance 

Master consisted of two force platforms used to determine the COM position with an eye-level 

screen showing the participant’s COM and the evaluation task. In addition to BBS, participants 
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performed a static task, including standing on the force platform with EO and then EC with sway 

area as the measure. Then, a limit of stability task was performed where participants were asked 

to reach eight equally spaced targets as fast as possible. Sway path length and time were averaged 

over eight directions. Finally, participants performed a weight shifting task in the AP and ML 

directions by following a target with their COM shown on the screen with the absolute error 

expressed as a percentage of the limit of stability being reported. They observed no stability 

performance difference between tetraplegic and paraplegic individuals using posturographic 

measures. The limit of stability test showed the highest correlation with BBS and other Smart 

Balance Master tests. Therefore, the limit of stability test was suggested as a complementary 

method to BBS for assessing the dynamics of standing balance in individuals with iSCI. 

In another study, Lemay et al. [18] characterized dynamic postural balance during standing 

among individuals with iSCI compared to able-bodied individuals using the comfortable multi-

directional limit of stability and investigated its association with quiet standing posturography. 

Participants were asked to lean toward eight targets placed 45 degrees apart while standing on a 

force plate, and COP visual feedback was provided. The absolute maximal distance and the path 

length of COP were calculated for each direction. Furthermore, quiet standing was performed with 

EC, and time-domain COP measures were computed. The observed COP path length was 

significantly greater for individuals with iSCI compared to able-bodied individuals in all directions 

except for the AP direction. The maximum position reached in the AP direction was significantly 

smaller in individuals with iSCI. They observed little correlation between quiet standing time-

domain measures and the limit of dynamic stability. They suggested that a comprehensive 

assessment of postural stability should also include outcome measures evaluating both static and 

dynamic stability. 

Tamburella et al. [146] analyzed the reliability, validity, and responsiveness of COP-based 

measures to assess standing balance under different conditions in individuals with iSCI. They 

examined twenty-three individuals in 111 sessions over one year. Each session included clinical 

scale tests such as BBS and stabilogram analysis on a force platform. Test conditions comprised 

of open feet and closed feet with EO and EC. COP-based measures were path length, mean velocity 

in the AP, ML, and RD directions, ellipse area, x-axis, and y-axis of the ellipse area. Among all 

COP-based measures, mean velocity was the most repeatable measure with the lowest coefficient 

of variation and highest intraclass correlation coefficient (ICC). Path length and mean velocity in 
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the ML and RD directions had the lowest percentage change due to the measurement error 

quantified by Minimal Detectable Change. Path length and mean velocity in the AP, ML, and RD 

directions were also the most valid measures with the highest correlation with BBS. Among the 

test conditions, the open-feet test with EO was the most valid, while the open-feet test with EC 

was the most reliable with the highest ICC. In terms of responsiveness, BBS was the most sensitive 

clinical scale, while all COP-based measures were shown to be more sensitive than all clinical 

scales. 

In a systematic review, Arora et al. [10] explored the balance measures used to evaluate 

the balance performance of individuals with iSCI and compared them in terms of their clinical 

utility, psychometric properties, and comprehensiveness. They identified 31 balance measures, 

including eleven biomechanical measures and twenty balance scales. Balance scales have shown 

higher clinical utility compared to biomechanical measures (e.g., COM- and COP-based 

measures), limiting the use of biomechanical measures in a clinical environment. Therefore, 

developing biomechanical measures with high clinical utility is of significance. Among balance 

scales, the BBS and Functional Reach Test had higher validity [16], [147]–[149], reliability [146], 

[149], [150], and responsiveness [147], [151]. Although BBS was the most common test, it was 

not able to predict future falls in individuals with iSCI [150], [152]. The comprehensiveness of the 

clinical measures was based on how many domains of postural control they could evaluate, 

including static stability, underlying motor systems, functional stability limit, verticality, reactive 

postural control, anticipatory postural control, dynamic stability, sensory integration, and cognitive 

influences. The Mini-BEST was the most comprehensive among clinical scales. The authors 

believed there was no single test/measure that concurrently demonstrated high clinical utility, 

strong psychometric properties, and comprehensiveness. Three gaps were identified by the 

authors. First, the measures should be further investigated for their psychometric properties in 

individuals with sub-acute and chronic SCI, with the focus on identifying cut-off scores indicating 

a high risk of falling. Second, the responsiveness of the measures to changes in postural control in 

individuals with SCI should be further studied. Third, comprehensive balance measures during 

transferring in wheel-chair users should be further investigated. 

Chan et al. [35] evaluated the test-retest reliability of Mini-BEST via ICC and assessed the 

concurrent validity of mini-BEST by examining its Pearson’s correlation with COP-based 

measures. COP-based measures have shown high reliability and validity as the gold standard in 
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the literature [146]. The Mini-BEST evaluates balance via 14 standing and walking tasks scored 

on a three-point ordinal scale. Participants performed Mini-BEST twice two weeks apart. They 

also performed a quiet standing test on a force plate with EO or EC. They observed excellent test-

retest reliability of the Mini-BEST. They observed a negative correlation between the Mini-BEST 

score and COP mean velocity during the EO condition. In terms of convergent validity, they 

observed a strong correlation between Mini-BEST total score and lower extremity strength.  

In a prospective cohort study, Musselman et al. [153] investigated the performance of COP-

based measures and clinical scores for distinguishing fallers and non-fallers in ambulatory 

individuals with iSCI. Participants completed two test sessions. In the first session, participants 

performed quiet standing with EO or EC on a force plate. The mean velocity of COP was calculated 

in the AP and ML directions. In the second session, a physical therapist performed a clinical 

assessment, including lower extremity strength, proprioception, cutaneous sensation, walking 

speed, and balance self-efficacy. Participants then self-reported their falls for one year after test 

sessions. Participants were classified as fallers if their number of falls exceeded the median number 

of falls among all participants. Outcome measures of lower extremity strength, cutaneous pressure 

sensitivity, walking speed, and the COP mean velocity in the ML direction could distinguish fallers 

from non-fallers. The authors suggested that COP mean velocity, along with the above-mentioned 

clinical scores, could be useful for the clinician to identify ambulatory individuals with iSCI with 

a high risk of future falls. 

2.1.2.1 Summary and the Gaps 

In summary, many studies mentioned above have taken advantage of in-lab equipment 

such as motion capture cameras and force plates along with clinical scales to obtain objective 

measures of standing balance in ambulatory individuals with iSCI. However, the use of body-worn 

IMUs to obtain clinically meaningful measures of standing balance in individuals with iSCI has 

not been fully investigated. There is a significant need for a comprehensive balance evaluation 

using wearable sensors in individuals with iSCI compared to able-bodied individuals during a 

variety of challenging standing conditions affecting sensory inputs. Furthermore, since individuals 

with iSCI suffer from impaired sensorimotor function and dysfunctional postural control, they may 

adapt postural movement strategies compared to able-bodied individuals to compensate for 

reduced postural control. Although COP- and COM-based measures are strong indicators of 

impaired postural control, they do not directly reflect all aspects of the adaptive postural movement 
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strategies employed during impaired standing [136]. Therefore, identifying alteration of postural 

control strategies post-iSCI compared to able-bodied individuals under different sensory 

conditions using wearable technologies remains a significant need. 

2.1.3 Balance Assessment in Elderly 

Up to one-third of senior adults fall at least once a year [6], and over half of these 

individuals report multiple falling incidences [7]. Therefore, it is not surprising that falls are among 

the most common causes of injuries in senior adults [1], [2]. Poor postural stability is a key 

contributor to falls in seniors, and balance evaluation is an effective measure for introducing 

targeted rehabilitative interventions [154], with effective interventions preventing more than 50% 

of potential falls in seniors [155]. Targeted rehabilitative interventions are carried out to not only 

prevent future falls but also reduce fall severity [8]. In this light, to reduce future fall incidences 

and their adverse consequences among senior adults, it is essential to (1) implement effective 

balance assessment methodologies; (2) introduce targeted patient-specific rehabilitative 

interventions; and (3) evaluate the effectiveness of such interventions [1], [8], [156]. 

The BBS test is also commonly used in geriatrics clinics for assessing the balance 

performance of the elderly and for clinical outcome evaluation of rehabilitative interventions. It 

was previously discussed that although BBS is relatively fast and reliable, it tends to be, in part, 

subjective in nature due to the involvement of human decision-making [157], low construct 

validity, and may not always result in reliable and sensitive outcomes [49]. In addition, clinical 

scales provide little information for understanding potential underlying causes of balance 

difficulties and for evaluating the effect of therapy on balance performance [16], [35], [36]. Hence, 

there is a need for a more quantitative, objective methodology to evaluate balance when choosing 

targeted rehabilitative interventions and when performing their objective outcome evaluation [85], 

[121]. The literature has shown that quantitative balance biomarkers such as COM- and COP-

based measures allow for identifying age-related changes in balance and, thus, the risk of falling 

in the elderly population with high sensitivity and reliability [41], [91], [158]–[160]. 

Collins et al. [39] used the Stabilogram Diffusion Function to investigate the age-related 

changes in characteristics of open- and closed-loop control mechanisms of balance. They measured 

the COP trajectories using a force platform during quiet standing in the young and senior adults. 

They obtained short- and long-term diffusion coefficients and Hurst exponents as the slopes of the 
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lines fitted to the short- and long-term regions of the linear-linear and the log-log stabilogram 

diffusion plots, respectively. They observed that the steady-state behaviour of the open-loop 

postural control in senior adults was more positively correlated and, thus, more unstable compared 

to young adults. On the other hand, they observed that the steady-state of the closed-loop postural 

control was more negatively correlated in senior adults, implying a more stable closed-loop 

mechanism over the long term. Interestingly, seniors used the open-loop control mechanism for 

longer time intervals which could be associated with larger COP displacement in this population. 

This suggests a longer delay in utilizing the closed-loop control mechanism in senior adults. 

Panzer et al. [161] performed a biomechanical assessment of quiet standing to investigate 

age-related changes in postural stability. They used the mean, variability, and total path length of 

the body COM, individual body segments, and COP. They observed a significant association 

between aging and increased variability of COM, head, and hip motions. They observed an altered 

postural control strategy in the elderly compared to young adults as a compensatory strategy for 

primary balance deficits. The elderly showed reduced small continuous movements while 

exhibiting larger adjustments involving the trunk and hip motions. They also observed increased 

AP COP path length during the EC condition without any significant change in the COM. Based 

on this result, the authors believed there was no evidence of reduced postural stability concurrent 

with aging since balance maintains the COM over the BOS, and therefore, the assessment of 

balance must be based on the COM. However, they stated that postural adjustments due to aging 

could be less effective when the balance is challenged. 

Prieto et al. [41] compared a variety of COP-based time- and frequency-domain measures 

to investigate age-related changes in postural steadiness during quiet standing with EO or EC. 

They observed that different measures could distinguish EO and EC conditions in young and senior 

adults. The mean velocity of COP was the only measure that could concurrently identify age-

related changes and eye conditions in balance. They suggested that multiple measures are required 

to adequately characterize changes in the balance due to aging as well as eyes condition within 

each age group. They recommended the use of COP mean velocity, one time-domain distance 

measure, such as root-mean-square distance, one time-domain hybrid measure such as mean 

frequency, and one frequency-domain measure, such as centroid frequency, as they may 

characterize different aspects of postural stability.  
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Freitas et al. [162] investigated the effect of aging on human postural control during 

prolonged standing. Young and senior adults performed 30-minute and 60-second quiet standing 

trials on a force plate. Both groups showed increased COP root-mean-square distance and velocity 

during prolonged standing. However, the elderly group exhibited smaller changes in postural sway 

during prolonged standing. The authors attributed this to the lack of mobility in the elderly, which 

may contribute to an increased risk of falling in this population. 

Raymakers et al. [163] investigated the choice of COP-based measures for assessing 

standing balance with EO or EC on both HS and FS with or without cognitive tasks for able-bodied 

young and elderly and elderly with balance impairments. They used COP-based measures, 

including mean velocity, maximal AP and ML range of movement, area, deviation, and 

stabilogram diffusion function. Mean velocity was the most consistent measure, showing 

differences between test conditions, health conditions, and age; however, it was not discriminative 

when the cognitive task was introduced to able-bodied older individuals. Maximal ML movement 

range was discriminative among groups and test conditions but not the cognitive task in able-

bodied young and elderly individuals. The critical time derived from the stabilogram diffusion plot 

exhibited no association with other measures while distinguishing the effect of the cognitive task 

in older individuals standing on HS. They concluded that the mean velocity seemed to be the most 

informative measure of balance in all groups and conditions. 

Amoud et al. [96] used fractal time series analysis to quantify the postural stability of the 

elderly compared to able-bodied young adults. They employed two methods for computing Hurst 

exponent for fractal and nonlinear time series analysis using COP time series: Detrended 

Fluctuation Analysis and Stabilogram Diffusion Analysis. They used three different sizes of 

sliding windows (2.5, 5, and 10 seconds) and investigated the effect of age, time, and computation 

method on the Hurst exponent while ICC was used as a reliability measure. Both methods were 

able to identify age-related differences in postural stability with the time of five seconds with good 

to excellent ICC for the Detrended Fluctuation Analysis method showing more robustness. 

When using the inverted-pendulum model of standing balance, the distance between the 

COP and vertical projection of COM (COP-COM) shows the relationship between the controlling 

and controlled variables of postural control. The COM acceleration is proportional to COP-COM. 

Masani et al. [164] claimed that, since aging affects postural control, these two variables could be 

affected. They compared the COP-COM and COM acceleration between a group of able-bodied 
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young adults and a group of elderly during quiet standing with EO or EC. They observed higher 

COP-COM variability and larger COM acceleration in the elderly compared to young adults, 

irrespective of vision condition. They observed that COM acceleration was proportional to COP-

COM in both groups, implying the validity of using the inverted pendulum model in the elderly. 

They suggested that the increase in variability in COP-COM due to aging resulted from changes 

in postural control strategy and, consequently, COM acceleration became larger. 

Lin et al. [165] investigated the within-day and between-day reliability of COP-based 

measures for identifying age-related differences. COP was recorded during quiet standing on four 

different days. The COP-based measures included root-mean-square distance, mean velocity, 

median frequency, sway area, and detrended fluctuation analysis. ICC and standard error of 

measurement (SEM) were used to quantify reliability. Within-day reliability was higher than 

between-day reliability. Consistent with previous studies, mean velocity was the most reliable 

measure. Older participants, compared to younger individuals, exhibited better ICC for all COP-

based measures and comparable SEM except for mean velocity and sway area.  

Tucker et al. [166] investigated age-related differences in postural reaction time and 

coordination during voluntary sway in the AP and ML directions in response to an auditory cue 

initiated from a static quiet stance or dynamic switching of sway between two directions. 

Participants stood on a force plate while wearing tri-axial accelerometers mounted on the head and 

lower trunk. Reaction time was defined as the difference between cue onset and the first observable 

change in COP or acceleration. Measures included reaction time, the difference between reaction 

time of COP, head and trunk acceleration, and COP-head-trunk coupling. The elderly group 

exhibited a slower reaction time during both static and dynamic tasks. They observed a smaller 

difference between reaction time and phase between COP, trunk acceleration, and head 

acceleration. They suggested that the elderly group adopted a more rigid coordination strategy 

compared to younger adults. This could be a compensatory strategy in response to balance 

difficulty in the elderly compared to younger adults.  

O'Sullivan et al. [157] argued that measurement of COM acceleration with a relatively 

inexpensive, light-weight body-worn accelerometer could be a potential solution to the subjectivity 

of clinical scales and a potential alternative to expensive in-lab equipment. They investigated the 

correlation of accelerometry with BBS and TUG and characterized the accelerometer response to 

challenging balance conditions in fallers and non-fallers. Elderly patients of a hospital identified 
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as fallers and non-fallers participated in the study. COM acceleration was measured using a waist-

mounted accelerometer during standing EO or EC on both HS and FS. The root-mean-square of 

COM acceleration increased with task complexity. The accelerometry could distinguish fallers and 

non-fallers under the FSEO condition. A high inverse correlation between the accelerometry and 

BBS and a positive correlation between the accelerometry and the TUG was observed for the 

FSEO condition. Therefore, they demonstrated that accelerometry could be an efficient 

quantitative approach for assessing balance in older adults.  

Singh et al. [167] investigated the effect of age, vision, and surface compliance on the 

spectral content of COP time series. Able-bodied young and elderly individuals stood on a force 

plate with EO or EC on HS or FS. The mean power spectral density of COP over discretized bands 

was calculated. The effects of vision, surface, and age were distinguishable using this measure in 

the AP and ML directions. They observed a significant change in the spectral content of the COP 

in both AP and MLwith task difficulty (EO vs. EC and HS vs. FS) and in older adults. They 

suggested that vision and surface condition were predominantly related to the musculature 

responses associated with the body sway in AP and ML directions.  The authors suggested that 

using the spectral content of COP to distinguish the contribution of different sensory inputs to 

postural control could be useful for identifying elderly individuals with impaired balance. Similar 

results were observed by Fujimoto et al. [168]. 

The literature has shown that the anti-phase action between the leg and trunk reduces the 

COM acceleration during quiet standing, playing a major role in postural stability [82], [116]. Kato 

et al. [169] investigated the effect of aging on trunk-leg movement coordination during standing. 

They measured trunk and leg motion in the AP direction using laser displacement sensors in young 

and elderly participants. They observed significantly higher COM velocity and acceleration in the 

elderly compared to young individuals. They also observed increased angular acceleration of the 

trunk and leg segments as well as reduced trunk-leg anti-phase action. They concluded that reduced 

trunk-leg anti-phase action due to aging is the major contributor to increased COM acceleration 

and, thus, is responsible for reduced postural stability in the elderly. 

Li et al. [170] assessed the reliability and validity of COP-based measures for balance 

assessment in older adults. Participants were evaluated using both BBS and a force plate two times 

a week apart. They used ICC and Pearson correlation to assess the reliability and validity of COP-

based measures, respectively. Good to excellent reliability was observed for twelve COP-based 
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measures. Moderate to good negative correlation was observed between the measures and the BBS. 

Therefore, the authors recommended the use of COP-based measures as reliable, valid measures 

for balance evaluation in older adults. 

Ghahramani et al. [171] analyzed the postural sway of senior adults categorized as non-

fallers, once-fallers, and multiple-fallers using clustering techniques. They performed quiet 

standing with EO, EC, and feet together as well as single-leg and tandem standing. Trunk angular 

position and velocity in the frontal and sagittal planes were measured using an IMU attached to 

the lower back. Data clustering techniques were applied to the recorded data in the form of 

unsupervised learning to identify meaningful patterns between groups and test conditions. A sway 

index was defined as the ratio of the difference between the number of all data samples and the 

number of data in the common cluster over the number of all data samples. The sway index of 

standing on one foot and with one foot in front of the other could distinguish older fallers from 

non-fallers with comparable sensitivity and specificity with BBS. Therefore, they suggested that 

such a protocol could be an alternative or a complementary approach to BBS for identifying older 

fallers. 

A similar study was conducted by Johansson et al. [172]. They investigated how postural 

sway measures could predict fall incidences in 1900 community-dwelling older adults. Postural 

sway was measured during quiet standing with EO or EC using a force platform. The COP path 

length was used as a measure. A TUG test was also carried out to assess lower leg muscle strength, 

gait performance, and functional mobility. A hydraulic hand dynamometer was used to measure 

the maximum grip strength of the non-dominant hand. Participants reported incidents of falls six 

and 12 months after the examination. COP path length was significantly greater among fallers than 

that of non-fallers during both EO and EC conditions, with a strong correlation between the two 

trials.  The authors obtained a nonlinear distribution of falls and COP path length during EO by 

dividing the path lengths into quintiles with significantly increased fall frequency in the 5th quintile. 

Independent predictors of falls were explored using two logistic regression models. The first 

classification model used only the COP path length as an independent predictor of falls, while the 

second model included other measures (e.g., sex, weight, grip strength, TUG). They observed that 

postural sway quantified by COP path length could independently predict fall incidents in 

community-dwelling older adults, highlighting the importance of posturographic measures as 

predictors of future falls in the elderly population. 
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In a comprehensive study, Pizzigalli et al. [160] reviewed the postural characteristics of 

older adults with a high risk of falling based on static and dynamic balance assessments. They 

observed that COP path length, mean velocity, and sway in the AP and ML directions are the main 

measures capable of distinguishing fallers and non-fallers in the elderly population. COP-COM 

was found to be a reliable measure of postural stability in healthy older adults, and it can potentially 

be used to track clinical changes in this population. Common COP-based time- and frequency-

domain measures exhibited better ICC and SEM with aging except for sway area and mean 

velocity. Older adults have shown weaker muscle strength and resistant torque in dynamic 

conditions compared to younger adults, affecting their ability to restore postural stability. 

Furthermore, older adults require higher muscle activity compared to younger adults to produce 

resistant torque leading to premature fatigue and increased fall risk. Balance indicators in the ML 

direction, including COP-based mean velocity, mean amplitude, and root-mean-square 

displacement during EO and EC, are the best indicators for identifying postural stability 

differences between future fallers and non-fallers among older adults. Tandem standing and 

standing with feet placed together have shown to be effective tests for distinguishing fallers from 

non-fallers. Standing with EC could also be effective since fallers had lower proprioception and 

more reliance on visual inputs. Standing on FS has shown a higher increase in COP path length in 

non-fallers compared to fallers, implying that faller older adults seemed to be less affected by the 

reduction in somatosensory input. Older adults exhibited a reduced cutaneous sensation causing 

an inability to detect the COP movement under their feet which would delay compensatory 

reactions when a fall happens, making reaction time one of the best identifiers of fallers. Older 

adults, compared to younger adults, had more antagonist muscle activation adopting a hip strategy 

to restore postural stability in dynamic conditions. During voluntary sway, older adults have shown 

slower, less reliable, and less responsive postural reflexes, suggesting issues with hierarchical 

movement organization. In addition, reduced muscle strength (e.g., ankle dorsiflexion weakness) 

due to atrophy, deterioration of mechanical properties, and loss of motor units are responsible for 

reduced postural stability in older adults. Moreover, greater postural sway and higher muscle 

activations correlated with lower clinical scores and increased fall risk in older adults. The authors 

concluded that objective balance evaluation in older adults is essential for fall risk prediction and 

evaluation of the effectiveness of balance training programs aimed at preventing future falls. 
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Montesinos et al. [173] reviewed the application of wearable IMUs for fall risk evaluation 

in older adults. They identified the optimal combination of sensor placement, task, and feature 

categories. Their results showed that (1) angular velocity during walking measured via an IMU 

attached to the shin and (2) linear acceleration during quiet standing, sit-to-stand, and stand-to-sit 

measured via an IMU attached to the lower back are the best combination.  The measures that were 

significantly higher in elderly fallers were: (1) the root-mean-square acceleration in the ML 

direction during quiet standing with EC; (2) the number of steps and total time to complete a TUG 

test; (3) step time during walking.  

Roman-Liu [158] performed a systematic review and meta-analysis of available data to 

investigate age-related changes in COP range and velocity in the AP and ML directions. They 

formed a numerical database with the mean and standard deviation of selected COP-based 

measures classified with eye condition (EO or EC) and age group (younger or older adults). Their 

results showed that body sway range and velocity increased with age, with the velocity measure 

exhibiting larger age-related changes. COP measures were higher for the EC condition and for 

older adults and, thus, quiet standing with EC could provide clearer results for identifying age-

related changes. They concluded that such quantitative measures of stability with cut-off scores 

could be used for generating standards and recommendations for balance evaluations. 

Sun and Sosnoff [174] reviewed the sensing technologies used to provide objective fall 

risk assessment in older adults. Four major sensing technologies were IMUs, video/depth cameras, 

pressure sensing platforms, and displacement laser sensing. Assessment tasks included walking, 

static/dynamic balance, and functional mobility. The authors believed the variation in outcome 

measures, sensor location, task, assessment tools, and modelling techniques hinders any 

conclusion on the capability of such technology in predicting future falls in older adults. There is 

a need for appropriate model construction/validation before using such technologies for fall risk 

assessment in everyday life. In addition, most previous studies have used retrospective fall history 

along with clinical scales such as BBS and TUG as the reference for identifying fall risk, which 

may not be accurate. The authors suggested the use of prospective fall occurrence six-month post-

examination as a better alternative. Nevertheless, future work is needed to identify clinically 

meaningful and easy-to-interpret outcome measures for identifying fall risk in the elderly based 

on evident research. 
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Patel et al. [141] investigated gait and posture differences between older adult fallers and 

non-fallers based on the measurements of wearable IMUs. They identified 149 gait and posture 

characteristic differences. Spatiotemporal measures, including slower walking speed, shorter step, 

and stride lengths, as well as acceleration-based measures such as reduced root-mean-square 

acceleration, were the measures highly attributed to the risk of falling when performing dynamic 

tasks. On the other hand, increased root-mean-square acceleration of the trunk was an indicator of 

fall risk during static tasks. A single waist-mounted IMU was a successful choice for determining 

various gait and posture characteristics. There was a lack of studies conducted outside laboratories 

such as clinics. IMUs are promising tools to be integrated into current clinical fall risk evaluation 

methods, and they are even more effective for continuous unsupervised monitoring. Due to the 

portable, lightweight nature of IMUs, they can be used outside a laboratory environment which 

has not been widely investigated. The authors suggested that the use of IMUs allows clinicians to 

make a more objective, informed assessment of fall risk and, therefore, their application in a 

clinical setting should be further investigated in the future. 

2.1.3.1 Summary and Gaps 

In summary, there is a growing need for an objective balance assessment of the elderly and 

those with neuromuscular impairments. Particularly, objective balance assessment methodologies 

using wearable IMUs have not been employed in a clinical setting to obtain an objective outcome 

evaluation of rehabilitative interventions. There is a need to investigate the feasibility of using 

IMUs integrated into the functional scale tests for identifying, in a clinical setting, the effect of 

rehabilitative interventions on objective balance measures and clinical scores. Therefore, it is 

essential to develop and validate an algorithm for reliable assessment of standing balance using 

wearable technology integrated into clinical functional tests. For this purpose, research studies 

should: (1) develop algorithms to assess kinematic and kinetic parameters characterizing standing 

balance using the measurement of wearable IMUs and experimentally validate the accuracy of 

these parameters against gold standard motion capture and force plate systems; (2) investigate the 

feasibility of using a validated algorithm for identifying changes of balance biomarkers measured 

by wearable technology in the elderly fallers or those with neuromuscular impairment at 

rehabilitation hospitals/clinics compared to able-bodied young adults; (3) investigate the capability 

of the validated algorithm for identifying the effect of rehabilitative interventions on the balance 
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measures; and (4) compare the obtained objective balance measures from the validated algorithm 

with the clinical scores recorded by certified clinicians. 

2.2 Dynamic Balance Assessment 

Previous studies have suggested that an understanding of healthy neuromuscular control 

can be useful for identifying impaired balance and restoring functional abilities in individuals with 

neuromuscular impairments [23], [59], [66]. Therefore, characterizing the underlying mechanisms 

of neuromuscular control in able-bodied individuals can potentially pave the way for objective 

balance evaluation and the development of targeted rehabilitative interventions for improving 

impaired sitting balance [60], [67]. Furthermore, assistive technologies based on neuromodulation, 

such as FES, could be useful for restoring dynamic stability by stimulating impaired muscles via 

both open- [175] and closed-loop [27], [176]–[180] control strategies. It has been observed that 

closed-loop control of stimulation using kinematic feedback can reduce muscle fatigue, ensure 

smoother muscle contractions, and improve joint trajectory tracking [181]. Therefore, motion 

states (i.e., position and velocity) of the body COM during dynamic conditions can be significant 

in utilizing closed-loop control of assistive technologies. Furthermore, several biomechanical 

criteria have been introduced by the literature to quantify the dynamic stability during standing 

and walking based on the motion states of the body COM [52]–[58]. However, there is no standard 

biomechanical criterion that quantifies the relationship between the motion states of the trunk 

COM and sitting balance during dynamic tasks. In addition, designing bio-inspired controllers for 

assistive technologies (e.g., closed-loop FES systems) is challenging [25], [60], [72] since such 

complex technologies must provide physiological actions similar to those of motor commands 

(e.g., muscle activation) produced by the healthy neural control system [25]. Therefore, 

characterizing the neural control of non-impaired seated stability is a prerequisite for bio-inspired 

closed-loop neuromodulation technology [60].  

In sections 2.2.1 and 2.2.2, we discuss how the literature has quantified the concept of 

dynamic stability and characterized the neuromuscular control mechanisms involved in postural 

stability, respectively. 

2.2.1 Extrapolated COM and Feasible Stability Region 

Previous studies have characterized dynamic standing and gait stability based on the 

motion states of the body’s COM with respect to the BOS using biomechanical models of bipedal 
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human standing and walking [52]–[58]. However, to the best of the author’s knowledge, dynamic 

seated stability has not been comprehensively investigated in the past based on the concepts of 

extrapolated COM and Feasible Stability Region (FSR). The relationship between the COM 

motion states and dynamic stability during gait and standing has been quantified using two 

concepts: the extrapolated COM [182] and FSR [57], [183]. In static conditions, as long as the 

vertical projection of the body’s COM remains within the boundaries of the BOS, stability is 

achieved. However, in dynamic conditions, the COM velocity plays an important role in stability, 

and it must be taken into account [52]. In dynamic conditions, when the COM position is within 

the boundaries of the BOS, a COM velocity directed outward may lead to an unstable condition. 

On the other hand, when the COM position is not within the BOS, a COM velocity toward the 

BOS may lead to a stable condition [52].  

The abovementioned concept of dynamic stability was first introduced by Hof et al. [52] 

as extrapolated COM. They suggested that the position of the COM plus its velocity, multiplied 

by a factor, should remain within the BOS for dynamic stability. This factor is identified based on 

a simple one-segment inverted pendulum biomechanical model and is equal to the inverse of the 

natural frequency of the pendulum as 𝜔0 = √𝑙/𝑔 where 𝑙 is the pendulum length and 𝑔 is the 

gravitational acceleration. They also introduced two measures of stability defined as ‘margin of 

stability’ and ‘temporal stability margin.’ The margin of stability is defined as the minimum 

distance from the extrapolated COM to the boundary of the BOS. The temporal stability margin is 

defined as the time that the COM would reach the boundary of the BOS without any interventions.  

Later, Hof [182] expanded the concept of extrapolated COM to the dynamic stability of 

walking. They stated that, in a simplified gait model, the extrapolated COM trajectory succeeds a 

straight line directed in the line from the COP to the extrapolated COM at the time of foot contact 

with COM following the extrapolated COM in a sinusoidal trajectory. They proposed that a 

sufficient rule for achieving dynamic gait stability is the COP should be placed at a specific 

distance outward and behind the extrapolated COM at the time of foot placement. They showed 

that a disturbance causing a change in the COM velocity (∆𝑣) could be compensated by a change 

in COP position by ∆𝑣/𝜔0 in the same direction. 

On the other hand, the concept of FSR was first introduced by Pai et al. [54]. FSR is a 

region of the COM motion state space in which the body can maintain a stable posture without 
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loss of balance. More specifically, the FSR is defined as the range of feasible COM velocities for 

an initial COM position that would bring the COM to the edge of the BOS with a velocity of zero. 

Hence, the FSR is a subspace of the COM motion states with boundaries that determine the limits 

of dynamic stability. Note that there is a distinction between loss of balance and fall. Loss of 

balance during standing or walking does not always result in falling but requires action for 

recovery, such as taking a step forward or backward. Falls commonly happen after the loss of 

balance; however, not all loss of balance incidents lead to falling. Therefore, the FSR is a subspace 

of the COM motion state space with boundaries that determine the limits of dynamic stability. 

Dynamic stability is achieved if the COM motion states remain within the boundaries of the FSR. 

If the COM states during a gait cycle or standing remain within the FSR limits, the occurrence of 

loss of balance is unlikely. However, COM states falling outside of the FSR boundaries indicate a 

high possibility of a loss of balance.  

The initial FSR introduced by Pai and Patton [54] was based on a two-segment model of 

standing predicting the dynamic stability of the body as a single-segment inverted pendulum 

rotating about the ankle joint with the area under the foot segment representing the BOS. They 

used dynamic optimization to obtain thresholds against forward and backward loss of balance 

based on the maximum and minimum feasible COM velocities, respectively, for a set of pre-

determined COM positions for which dynamic stability could be achieved. They claimed that 

forward (backward) loss of balance would occur if COM motion states exceeded the upper (lower) 

boundary. The proposed FSR was then tested in a later study by Pai et al. [184] to predict stepping 

as compensatory recovery action in participants of different ages and fall history when forward 

waist pulls were applied. The dynamic model of stability was significantly better in predicting 

stepping initiations compared to traditional static stability models.  

Patton et al. [185] investigated the validity of the limits of dynamic stability proposed by 

Pai and Patton [54] as the FSR in terms of COM state boundaries and torque boundaries against 

empirical data. Participants recovered their balance after voluntarily pulling on a handle. They 

observed the empirical trajectories fell within the boundaries of the COM state and torque, showing 

the validity of the obtained limits of dynamic stability. They also observed the margins of stability 

on the torque boundaries were highly correlated with the COP safety margin, defined as the COP’s 

nearest distance to the edge of the feet. In a later study, Patton et al. [186] investigated the effect 

of learning on relative stability as the participants practiced the dynamic pulling task. They 
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observed COP safety margin means and standard deviations increased and decreased, respectively, 

with practice, indicating better postural control in task execution. They suggested that the safety 

margin is used by the CNS in both feedback and feedforward control. 

Pai and Iqbal [55] obtained the FSR for a slipping scenario modelled with BOS translation. 

The FSR obtained for slipping differed from the non-slipping condition, with a 30% overlap in the 

stability region. Their finding supported the idea that movement strategies could be used following 

an unexpected slip to restore stability. They also found out that forced sliding using a moving 

platform can have similar effects on stability to those of slipping, as indicated by the 50% overlap 

between the region of stability of the two conditions. 

 Pai et al. [183] investigated the capability of the dynamic model of stability in predicting 

the need to step in response to moving platform perturbation compared to the static model of 

stability. The COM motion state trajectories were measured for able-bodied participants while 

external perturbations in the form of AP translation of the supporting platform with three different 

acceleration levels were applied. The measured COM motion states were then compared to the 

thresholds for stepping predicted by the static and dynamic COM stability models. The FSR 

associated with the dynamic stability boundaries was obtained using an optimization routine for 

an inverted pendulum biomechanical model with the measured platform acceleration as the input. 

Moreover, based on the static model, the step initiation was reached if the COM position fell 

beyond the limits of the BOS. The dynamic stability model showed significantly better 

performance in predicting step initiation compared to the static model. This highlights the 

importance of incorporating the COM velocity for determining stability in dynamic conditions. 

Iqbal and Pai [53] used a four-segment biomechanical model to see the effect of knee 

motion on the predicted FSR for balance recovery. The FSR was obtained for three conditions: 

unrestricted knee motion, restricted knee motion, and unrestricted knee motion, with an initial 

posture matching the restricted knee motion condition. Their results indicated that the knee motion 

had a considerable impact on the termination of the forward movement of the COM in the FSR. 

They concluded that incorporating knee motion when estimating FSR for balance recovery could 

be important.  

Yang et al. [187] determined the minimum required forward COM velocity with respect to 

its initial position to avoid backward loss of balance during gait. They used a seven-segment 

biomechanical model along with dynamic optimization to obtain the FSR in two conditions: initial 



 

42 

 

posture at the time of toe-off during gait and symmetrical bipedal standing. The FSR against 

backward loss of balance during gait had a similar trend compared to that of the standing. However, 

the minimum required COM velocity to avoid backward loss of balance during gait was greater 

than that of standing.  

In a later study, Yang et al. [188] used a seven-segment biomechanical model to predict 

the FSR at lift-off of the trailing foot in gait based on the threshold of the required forward COM 

velocity relative to the BOS to avoid backward loss of balance under slip and non-slip conditions. 

The required forward COM velocity was approximately two times greater under slip conditions 

compared to non-slip conditions. The predicted threshold agreed with the experimental data. They 

showed that the predicted threshold obtained using the seven-segment biomechanical model was 

more accurate than the threshold obtained using the two-segment model. Yang et al. [57] also 

obtained the FSR in the frontal plane based on the two-segment biomechanical model during gait 

and compared the results with experimental data. The FSR lower boundary was obtained as the 

minimum rightward COM velocity at lift-off of the left foot that brings the COM into the BOS. 

The FSR upper boundary was obtained as the maximum rightward COM velocity beyond which 

the left foot must land to the right of the BOS (crossover step) for balance recovery.  

2.2.1.1 Summary and Gaps 

In summary, the FSR boundaries in the COM state space can be obtained as nonlinear 

functions representing the complex body motion and posture and external perturbations [58], 

unlike the extrapolated COM, which obtains the limits of dynamic stability as a linear function of 

the COM position and velocity. Additionally, the FSR concept allows for using complex 

biomechanical models for characterizing dynamic stability during various tasks and postures. The 

abovementioned studies have shown the validity of using the FSR to determine the limits of 

dynamic stability during standing [54], [189] and walking [56], [57], [187], as well as during gait 

following a slip [188] and BOS perturbations [58]. However, to the best of our knowledge, FSR 

has not been identified and validated against experimental data for quantifying the relationship 

between the trunk COM states and seated stability following BOS perturbations. Furthermore, the 

margin of stability is obtained as the nearest distance between the stability limit and the motion 

trajectory of the COM. Hence, measuring the motion states of the body’s COM during real-world 

perturbed conditions and comparing them with the previously obtained FSR boundaries in the 

state-space plane is needed to characterize the risk of loss of balance. Stationary equipment such 
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as motion capture cameras has been used in the past to obtain the margin of stability based on the 

extrapolated COM or the FSR stability during standing [54], [189], and walking [58]. However, 

measuring the margin of stability during activities of daily living requires a portable device. 

Wearable IMUs offer a feasible alternative for this purpose and can be a low-cost, user-friendly 

tool for out-of-lab assessment of dynamic stability. Nonetheless, their accuracy for measuring the 

COM motion states must first be validated against motion capture cameras as a gold-standard 

reference.  

2.2.2 Neuromuscular Control Characterization 

Several components of the sensorimotor system interact to maintain an upright seated 

posture by stabilizing the inherently unstable trunk. Characterizing the roles of underlying 

neuromuscular mechanisms involved in stabilizing the human trunk has been a long-term 

challenge in human motor control research [23]. Moreover, determining the task goals of the CNS 

for given motor behaviour, such as seated stability, and how the CNS accomplishes these goals 

has been a challenge. The complex interrelation between neuromuscular mechanisms and their 

contribution to the closed-loop postural control system hinders our mechanistic understanding of 

the roles carried out by these mechanisms toward maintaining seated stability [44]. The literature 

has shown that such a mechanistic understanding of neuromuscular control in able-bodied 

individuals contributes to identifying and improving impaired balance and developing assistive 

technologies for restoring trunk stability during impaired sitting [59]. Characterizing 

neuromuscular control contributes to objective balance evaluation and developing targeted 

rehabilitative interventions for improving impaired balance [60], [67]. Furthermore, recent 

advancements in developing assistive technologies, such as FES, have shown promising outcomes 

for restoring seated stability. However, a lack of knowledge about the non-impaired neuromuscular 

control of seated stability challenges designing such a complex technology [25], [60], [72]. 

Therefore, characterizing neuromuscular control of non-impaired seated stability would facilitate 

bio-inspired designs of assistive technologies [60] that can provide physiological action similar to 

intact motor commands in able-bodied individuals [25]. 

Seated stability is a complex motor behaviour involving contributions of the CNS, 

sensorimotor system, muscles, and mechanical properties of the human body. Mechanical 

properties (i.e., stiffness and damping) of the muscles, ligaments and surrounding tissues provide 

a delay-free resistive stabilization moment known as passive control [46]. The passive mechanism 
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is complemented by delayed phasic joint moments generated by muscle activations, especially in 

response to external perturbations [25], [60]. This complementary stabilization mechanism, known 

as an active control, is generated by the sensorimotor system and involves feedforward and 

feedback dynamics [46], [60], [62].  

Active feedback control involves multiple steps. First, the kinematics of the body are 

perceived by sensory receptors, including the proprioception, vestibular, somatosensory, auditory, 

and visual systems [46], [61].  Second, perceived information is fed back to the CNS, where it is 

converted to a motor command [46]. Third, the motor command activates relevant muscles 

producing joint moments for stabilizing the trunk [44], [46]. These three steps are known as 

sensory, neural, and muscular dynamics, respectively.  The process of feedback dynamics is 

delayed due to sensorimotor time delay, including three components: (a) feedback time delay 

caused by the transmission of sensory information to the CNS; (b) motor command time delay 

caused by the processing of sensory information in the CNS and transmitting neuro-electrical 

signals to the relevant muscles; and (c) electromechanical time delay caused by the calcium release 

dynamics, muscle fibre conduction velocities, and time delay associated with the chemical 

reactions to produce a muscle force and eventually joint moment [44], [46], [61]. The feedforward 

dynamics involve a similar active control mechanism to the feedback dynamics. However, instead 

of sensory feedback, the CNS anticipates the body kinematics and predictable perturbations based 

on past experience and generates motor commands to activate relevant muscles [190], [191] to 

counteract the effect of disturbances on the body’s posture [192]. For instance, previous work 

reported the immediate co-activation of the antagonist's muscles to increase the overall stiffness 

of the trunk during sitting [190]. Although the feedforward mechanism assists the feedback 

mechanism, it does not provide enough support when unpredictable disturbances are imposed 

[193].  

Previous studies have used descriptive measures and closed-loop system identification 

techniques to characterize different components of postural control. Descriptive measures are 

oftentimes obtained from the body segments’ kinematics, COM- and COP-based posturography, 

GRFs, or muscle activities recorded during quiet standing or sitting [43], [62] as discussed in detail 

in previous sections. Closed-loop system identification techniques, along with applying external 

perturbations (e.g., platform translation or external forces) and sensory disturbances (e.g., visual 

and/or proprioceptive), have been used to characterize postural responses and underlying 
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stabilization mechanisms during dynamic conditions [44]–[46]. Van der Kooij et al. [46] stated 

that the latter approach provides a more accurate estimate of postural control since posturographic 

measures do not isolate the contribution of different components of the underlying postural control 

system. 

Linear closed-loop system identification techniques described in the literature to identify 

postural control mechanisms include the direct approach, the indirect approach, and the joint input-

output approach [46], [194]. The direct approach models the underlying system as an open-loop 

system, with the output of the plant and controller being independent of their input. Such an 

assumption for a closed-loop system leads to an erroneous identification [46]. The indirect 

approach estimates the sensitivity function of the input and output to the applied external 

perturbation. For a closed-loop system, such sensitivity function will depend on both the controller 

and the plant dynamics. Therefore, for identifying either the controller or the plant, prior 

knowledge of the plant or the controller is required [46]. The joint input-out approach allows for 

separately identifying the controller and the plant without requiring prior knowledge of the 

controller of the plant. The controller can be identified as the ratio of the sensitivity function of the 

plant output and the applied physical disturbance over the sensitivity function of the plant input 

and the applied physical disturbance. The plant can be identified as the ratio of the sensitivity 

function of the controller input and the applied sensory disturbance and the sensitivity function of 

the controller output and the applied sensory disturbance [46]. 

Linear closed-loop system identification techniques have been widely used to identify 

postural control mechanisms responsible for maintaining standing stability in able-bodied 

individuals [67]. The direct approach [63], the indirect approach [59], [61], [66], [195], and the 

joint input-output approach [44], [45] have been used to identify human body dynamics [45], [59], 

[196], [197], the sensorimotor time delay [44], [59], passive and active controls [44], [59], the 

muscular dynamics [44], [59], and the sensory dynamics [61], [198]–[200]. The indirect approach 

has been used by Goodworth and Peterka [199] to identify the contribution of sensorimotor 

integration to seated stability in humans. In addition, Audu et al. [60] identified the active and 

passive control mechanisms of seated stability; however, they did not account for the muscular 

dynamics. Agarwal [67] used the joint input-output approach to identify seated stability 

components, including human body dynamics, active and passive controls, muscular dynamics, 

and sensorimotor time delay. 
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2.2.2.1 Sensory Dynamics 

The information from somatosensory, visual, vestibular, and proprioception systems 

enables the CNS to maintain postural stability. The somatosensory system provides information 

on touch, vibration, and temperature, helping with maintaining stability [61]. The visual system is 

believed to play a significant role in maintaining standing [61] and sitting [199] balance even with 

higher contribution than proprioception and vestibular systems [201]. The literature has reported 

that alteration in the visual inputs (e.g., physical or virtual motion of a screen) can lead to reduced 

stability [45], [59], [61]. The vestibular system provides information on spatial orientation by 

detecting the linear and rotational motions of the head [61], capturing the deviations from the 

gravity direction. Galvanic vestibular stimulation has been used to alter vestibular information to 

investigate its effect on postural stability [202], [203]. The proprioception system senses the 3D 

movements of the joints via proprioceptors. The information from the proprioception and 

vestibular systems is combined by the CNS and is used along with other sensory inputs to obtain 

a complete sense of the body's motion states  [61]. The effect of alteration in proprioception on 

postural stability can be investigated by applying rotation to the base of support [204]. 

Research studies have used system identification techniques to identify the sensory 

dynamics by simultaneously stimulating sensory receptors and measuring body kinematics, 

muscle activities, and GRFs [46], [61]. Stimulation methods included motion stimuli such as 

rotating visual surround and/or the BOS [45], [59], [61], [198], [199], muscle-tendon vibration 

[205], and galvanic vestibular stimulation [206]. Peterka [61] provided a concept that each sensory 

input has an individual weight, with the sum of all sensory weights being equal to one. 

Furthermore, the CNS can dynamically alter the weight associated with each sensory system, 

known as sensory reweighting or dynamic regulation of sensory dynamics [67]. The sensory 

reweighting becomes essential when sensory information from one or more sensory receptors 

becomes unavailable or altered. Previous studies have assumed the sensory dynamics as unity 

when all sensory inputs are present [61], [198]. 

2.2.2.2 Neural Dynamics 

Information on postural stability sensed by the sensory receptors is converted to neuro-

electrical signals sent to the CNS for processing. The process of converting sensory information 

into motor commands through active feedback control by the CNS is called neural dynamics.  
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Previous studies identified the neural dynamics along with the passive and active controls 

of standing and seated stability using linear closed-loop system identification techniques applied 

to body kinematics and muscle activation data recorded when the body was perturbed via external 

stimuli (e.g., moving support surface, external forces, or perturbed visual surround) [46], [65].  To 

identify the neural dynamics as the controller, they have used multi-sinusoidal signals or filtered 

white noise as the external disturbance noise dominating the intrinsic output noise [44], [46], [59], 

[60]. The literature suggests that the neural dynamic generates motor commands based on 

minimizing the angular position and velocity [44], [59], [62], [94] as well as angular acceleration 

[44], [59] with respect to the static upright posture. Minimizing the angular kinematics could be 

inferred as the task goals of the CNS for given motor behaviour, such as maintaining stability [44]. 

Thus, angular kinematics of the body modelled as an inverted pendulum have been used as the 

input of neural dynamics.  

The literature has reported on the use of linear closed-loop system identification to provide 

non-parametric estimates of the neural dynamics in both standing and sitting postures [44], [59], 

[60], [197]. In addition,  parametric estimates of the neural dynamics have been proposed based 

on linear controllers such as proportional-integral-derivative (PID) control [60], [61], [198], [199], 

proportional-derivative (PD) control [62], [65], and PD control with acceleration feedback [59], 

[207] to model the behavior of the CNS. Furthermore, linear optimal control theory has been used 

to infer CNS task goals associated with postural stability [44]. This approach assumes that the 

CNS acts as an optimal controller minimizing a cost function that penalizes the motor commands 

(e.g., muscle activations) and motion states (e.g., body angular kinematics). Inferring cost function 

structure allows for characterizing the task goals for postural stability [44]. For a given 

neuromechanical model of the body as the plant, there is optimal neural feedback that minimizes 

the cost function. Hence, identifying such a neuromechanical model and the neural feedback for a 

given motor task (e.g., seated stability) would allow us to interpret the cost function and, therefore, 

obtain a high-level understanding of the task goals used by the CNS [44].  

2.2.2.3 Muscular Dynamics 

Muscular dynamics have been characterized to quantify the relationship between muscle 

activations and produced joint moments [44], [45], [59], [62]. The literature has emphasized the 

usefulness of identification of muscular dynamics for developing assistive and rehabilitative 

technologies aimed at restoring/improving postural stability [176], [208], [209]. Previous studies 



 

48 

 

have identified the muscular dynamics by applying external disturbances and measuring body 

kinematics, joint moments, and muscle activations. Muscular dynamics consists of muscle 

activation, contraction dynamics, and musculoskeletal dynamics [210]. Either a first-order transfer 

function or a critically-damped second-order transfer function has been used to model muscular 

dynamics [45], [59], [209]. This transfer function is characterized by a natural frequency, a 

damping coefficient, and a gain representing the dynamic behaviour of the muscle activation due 

to calcium release dynamics, muscle fibre conduction velocities, and the time delay associated 

with chemical reactions [69], [211]. 

2.2.2.4 Sensorimotor Time Delay 

The sensorimotor time delay is the delay involved in transmitting sensory information to 

the CNS, processing sensory information in the CNS, transmitting motor commands to the 

muscles, and producing a response in the muscles. The sensorimotor time delay includes three 

components: (a) feedback time delay, (b) motor command time delay, and (c) electromechanical 

time delay. The feedback time delay is due to the transmission of sensory information from the 

sensory receptors to the CNS. The motor command time delay is due to the processing of sensory 

information in the CNS and transmitting neuro-electrical signals to the relevant muscles. The 

electromechanical time delay is due to the calcium release dynamics, muscle fibre conduction 

velocities, and time delay associated with the chemical reactions to produce a muscle force and 

eventually joint moment [44], [46], [61]. 

2.2.2.5 Mechanical Dynamics 

The intrinsic properties (e.g., inertial and viscoelastic properties) of the materials 

comprising the body (e.g., bones, muscles, ligaments, and tissues) and intra-abdominal pressure 

provide a delay-free resistive moment when the body is exposed to an external disturbance [44]–

[46], [59], [60], [62], [198]. This resistive moment would not suffice to prevent the deviation of 

the body from an upright posture due to the gravitational force. Previous studies have commonly 

used the mass-spring-damper system to model the mechanical dynamics [44], [59], [60]. Vette et 

al. identified the stiffness and damping of the trunk during sitting by applying a pulling force in 

eight different directions [212]. Moreover, system identification techniques along with 

physical/sensory perturbations have been employed to obtain non-parametric estimates of the 
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mechanical dynamics. Non-parametric estimates were then parameterized using first-order 

differential equations of a mass-spring-damper system [44], [59], [60].   

2.2.2.6 Feedback Control Model of Human Stability 

Many studies have used feedback control models of postural stability to identify different 

components of underlying neuromuscular stabilization mechanisms using system identification 

techniques [45], [46], [59]–[65]. The feedback control model generally comprises a plant, active 

and passive controls, and feedback. The plant represents the human body dynamics as an inverted 

pendulum that receives stabilizing joint moments from the active and passive control mechanisms 

as the input. The plant's output is the angular kinematics of the inverted pendulum representing the 

body’s COM motion. The feedback branch represents the sensory dynamics modelled as unity 

when all sensory inputs are present. The active control mechanism involves neural dynamics, 

muscular dynamics, and sensorimotor time delay, while the passive control mechanism involves 

mechanical dynamics.  

Masani et al. [63] investigated the contribution of body sway velocity on controlling ankle 

extensor activities during quiet standing. Experimental and simulation studies were carried out. 

Able-bodied participants performed quiet standing with EO or EC. The COP and COM positions 

and velocities were recorded. EMG electrodes measured the activity of relevant muscles 

modulating the ankle joint. Their simulation involved modelling the human body during standing 

as an inverted pendulum, with the output being the AP sway of the COM with respect to the vertical 

line. A feedback time delay and a neuromechanical time delay were assumed. They assumed the 

COM displacement is controlled by a PD controller generating a stabilizing moment once with 

high and once with low derivative gains. Cross-correlation analysis was used to investigate the 

relationship between the ankle joint moment and the COM displacement/velocity. They observed 

cross-correlation results of the simulation with high derivative gain closely matched the cross-

correlation results of the experimental study. They concluded that the postural control system relies 

considerably on the velocity information of the COM, and such a feedback controller, despite 

sensorimotor time delay, can modulate muscle activity without using a feedforward mechanism. 

Vette et al. [62] identified the contribution of the active and passive control mechanisms to 

the total ankle joint moment during standing. Experimental data, including body sway angle and 

the activity of relevant muscles, were collected from able-bodied participants while standing still 
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on a force plate. The parameters of the neuromechanical model were obtained via optimization to 

achieve matching between the measured and predicted ankle joint moment. The plant was 

modelled as an inverted pendulum rotating about the ankle joint with the COM sway angle as the 

output. The input of the plant was the sum of stabilizing moments from the active and passive 

mechanisms; both modelled as PD controllers. The muscular dynamics were modelled as a 

critically-damped second-order transfer function. The sensorimotor time delay was modelled with 

three components of feedback, motor command, and electromechanical time delays. Their results 

showed the significant contribution of both active and passive control mechanisms to total ankle 

joint moment. Their proposed neuromechanical control scheme could successfully model the 

physiological behaviour of underlying stabilization mechanisms during a quiet stance, despite long 

sensorimotor time delays. 

In a review article, Pasma et al. [213] argued that current clinical balance assessment 

methodologies do not allow for differentiating between cause and effect in the closed-loop postural 

control system. Thus, there is an essential need for novel techniques to identify underlying 

impairments and compensatory strategies based on the application of external sensory and physical 

disturbances along with system identification techniques. They proposed that a neuromechanical 

control scheme based on a two-segment inverted pendulum model could be helpful. Sensory and 

physical disturbances should be applied while the biomechanical and electrophysiological 

responses are recorded. The visual, vestibular, and proprioceptive systems could be perturbed by 

the screen movement, galvanic stimulation, and BOS rotation, respectively. Physical disturbances 

should be imposed by external independent forces pushing the upper and lower body segments. 

The measurements should include the body segments’ kinematics and GRFs, and the activity of 

relevant muscles via motion capture system, force plate, and EMG electrodes, respectively. Based 

on the measured data, the sensory dynamics, the active and passive control mechanisms, the 

sensorimotor time delay, and the muscular dynamics could be mathematically characterized using 

closed-loop system identification techniques.  

In a later study, Pasma et al. [197] employed a multi-input multi-output closed-loop system 

identification technique to identify different components of the closed-loop postural control 

associated with standing balance. They applied both sensory and mechanical disturbances, 

perturbing the visual and proprioception systems as well as the ankle and hip joints simultaneously. 

Their results demonstrated that system identification along with sensory/physical perturbations 
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enables characterizing the underlying mechanisms involved in standing stability. They concluded 

that such promising results could pave the way for implementing more tools for diagnosing the 

underlying cause of impaired balance in the future. 

Audu and Triolo [60] examined the contribution of passive and active control mechanisms 

to seated stability in the sagittal and frontal planes in able-bodied participants and individuals with 

SCI. Participants sat on a moving platform that applied BOS perturbations in the form of BOS 

translations in the AP and ML directions. Trunk sway angle was measured. They used a linear 

parametric model to relate the platform displacement to the trunk angle in the time domain. The 

active control was characterized by a PID controller followed by a long-latency time delay. The 

passive controller was characterized by a PD controller representing the stiffness and damping, 

with the damping component being delayed with a short-latency stretch-reflex pathway. The trunk 

was modelled as an inverted pendulum. Their parametric identification could distinguish the SCI 

group from the control (able-bodied) group. Their results indicated that SCI led to a systematic 

reduction of active control parameters while most passive control characteristics remained 

unchanged. In both groups, the passive control was not sufficient to maintain seated stability. 

Passive stiffness was significantly larger in the ML direction compared to the AP direction 

implying that the contribution of the active control in the AP direction was essential for 

maintaining stability. The proportional and derivative terms of the active control were significantly 

larger than the integral term implying that a PD controller could model the active control. Their 

study demonstrated the application of system identification to diagnose impaired aspects of 

balance in individuals with neuromuscular impairments. However, they did not consider the role 

of muscular dynamics in their study. 

Pasma et al. [59] examined the additional value of identifying muscular dynamics and 

electromyography in system identification. They investigated whether considering lower leg 

muscle activation, as well as an acceleration feedback controller, could improve the accuracy and 

reliability of estimated parameters associated with the underlying systems. Able-bodied 

participants stood on a platform while the BOS rotation was applied to disturb proprioceptive 

information.  The kinematics of the body and activity of lower leg muscles were collected using 

motion capture and EMG electrodes, respectively. The human body dynamic was modelled as an 

inverted pendulum rotation about the ankle joint. The neural dynamics were modelled as a PD 

controller with acceleration feedback. The mechanical dynamics were modelled as a PD controller. 
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A single time delay component representing sensorimotor time delay was used. The muscular 

dynamics were modelled as a critically-damped second-order transfer function. They observed that 

adding acceleration feedback and muscular dynamics led to higher reliability and accuracy of the 

closed-loop identification. They concluded that measuring muscle activation along with 

incorporating muscular dynamics and acceleration feedback improves the accuracy and reliability 

of estimated parameters and allows for separating the intrinsic dynamics from reflexive dynamics 

and the muscle activation from the neural time delay. 

2.2.2.7 Summary and Gaps 

In summary, all the abovementioned studies ignored the time-variant or nonlinear 

dynamics of the underlying neuromuscular mechanisms and assumed linear time-invariant 

behaviour for the neuromuscular control that maintains sitting or standing stability. They used 

offline optimization techniques to estimate parameters of their postural control models that require 

time-consuming post-processing of acquired data. This limits the applicability of such models for 

fast identification of impaired balance or when designing assistive technologies that are robust 

against time-varying nonlinear neuromuscular dynamics of the body (e.g., due to disturbances and 

muscle fatigue) and physiological uncertainties in real-world conditions [68]–[71]. In addition, the 

assumption of a linear time-invariant system could lead to erroneous estimates of the neural 

dynamics, consequently affecting our understanding of the task goals used by the CNS to regulate 

postural stability. Recent work has proposed the use of Extended Kalman filters (EKF) [69], [214] 

and adaptive fuzzy modelling [71], [215] for online identification of nonlinear time-varying 

neuromechanical models associated with the human shoulder and knee. Such models can be used 

to define robust muscle stimulation patterns and enable online adaptation of the stimulation by 

estimating relevant neuromuscular information [69]. However, despite their potential, these 

approaches have not been exploited for identifying nonlinear trunk dynamics and characterizing 

mechanisms of seated stability. In this light, there is a paramount need for a nonlinear 

neuromechanical model of seated stability that explains the roles of passive and active stabilization 

mechanisms while accounting for time-varying properties of the neuromuscular system. Utilizing 

a nonlinear neuromechanical model along with the nonlinear control theory for identification 

would lead to a better mechanistic understanding of the postural control system. 



 

53 

 

2.3 Conclusion 

2.3.1 Static Balance 

In Chapter 2, section 2.1, a review of the literature on static balance that is relevant to this 

thesis was presented. The review revealed that many research studies utilized in-lab equipment 

such as motion capture cameras and force platforms, in addition to conventional clinical scales, to 

obtain objective balance measures in ambulatory individuals with iSCI and the elderly. However, 

the use of wearable IMUs has not been fully investigated in these populations to obtain clinically 

meaningful measures of standing balance as well as objective outcome evaluation of rehabilitative 

interventions. There is an increasing need to: (1) develop algorithms to characterize standing 

balance using the measurement of wearable IMUs and experimentally validate the accuracy of 

these measures against gold standard equipment (Chapter 3); (2) investigate the feasibility of using 

the validated algorithm for identifying changes of balance biomarkers using wearable technology 

(Chapter 4) and postural control strategies (Chapter 5) in ambulatory individuals with iSCI with 

mild balance deficits compared to age-matched able-bodied individuals and; (3) investigate the 

capability of the validated algorithm for identifying age-related changes in the elderly fallers 

compared to young adults at rehabilitation hospitals/clinics (Chapter 6); and (4) compare the 

obtained objective balance measures with clinical scales for evaluating the effectiveness of 

rehabilitative interventions on the standing balance (Chapter 6). 

2.3.2 Dynamic Balance 

In Chapter 2, section 2.2, a review of the literature on dynamic balance that is relevant to 

this thesis was presented. The review revealed that characterizing neuromuscular control in able-

bodied individuals is beneficial for identifying and restoring impaired sitting balance in individuals 

with neuromuscular impairments via objective balance evaluation, targeted rehabilitative 

interventions, and assistive technologies such neuromodulation. However, the development of 

objective assessment methodologies and assistive technologies has been challenging due to the 

lack of (1) standard biomechanical criterion that quantifies sitting balance; and (2) mechanistic 

understanding of the roles of underlying mechanisms involved in stabilizing the human trunk and 

their complex interrelations. Therefore, there is a significant need for (1) biomechanical 

characterization and quantification of the relationship between the dynamic posture of the trunk 

and sitting balance, along with a validated biomedical device for assessing dynamic sitting posture 
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and fall risk (Chapter 7); (2) a mechanistic understanding of the non-impaired passive and active 

neuromuscular mechanisms and their roles in achieving seated stability (Chapter 8); and (3) 

mechanistic understanding of the task goals of the neural control for regulating seated stability 

(Chapter 9). 
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Chapter 3 

This chapter provides the details of validating an algorithm for assessing the dynamics of standing 

balance using wearable technology. This chapter has been adopted and/or edited from: 

A. Noamani, M. Nazarahari, J. Lewicke, A. H. Vette, and H. Rouhani, “Validity of using wearable 

inertial sensors for assessing the dynamics of standing balance,” Med. Eng. Phys., vol. 77, pp. 

53–59, 2020, doi: 10.1016/j.medengphy.2019.10.018. 

3 Wearable Technology for Balance Assessment 

3.1 Introduction 

Falls are one of the most frequent causes of injury in individuals with neuromuscular 

impairments and elderly individuals. Previous studies showed that impairment of gait or balance 

is the most consistent predictor of future falls [3]. Hence, individuals with impaired balance are at 

high risk of falling and therefore, the ability to maintain balance during gait, standing, and postural 

transitions have been used to evaluate fall risk in individuals and the effectiveness of rehabilitative 

interventions [4], [5]. Observational balance tests such as the Berg Balance Scale (BBS), which 

includes standing balance trials, are commonly used for this purpose [216]. However, they tend to 

be subjective [157] and may not always yield reliable and sensitive outcomes [49]. Hence, a 

quantitative balance assessment methodology is needed for developing rehabilitative strategies and 

for objective outcome evaluation of treatments [85], [121].  

Objective assessment of balance has been investigated by quantifying body sway during 

quiet standing using the trajectory of the center of pressure (COP) measured via a force plate [47], 

[48]. Such studies assume the human body to behave like an inverted pendulum swaying about the 

ankle joint [83], [112]. However, the surprisingly complex neuromuscular mechanisms of standing 

balance cannot be captured via a single-segment model of the body. Consequently, other studies 

investigated the contribution of the ankle, hip, and other body joints to standing balance using the 

kinematics of a multi-segment body model measured via in-lab equipment [84], [118].  

In addition, joint moments have been used to objectively evaluate the outcome of 

rehabilitation treatments, evaluate muscle strength associated with balance recovery [217], and for 
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clinical evaluation of Parkinson’s disease [218], cerebral palsy [219],  and ankle osteoarthritis 

[220], [221].  Generally, joint moments are estimated via a bottom-up inverse dynamics approach 

using data measured by a three-dimensional (3D) motion-capture system and force plate. 

Despite this work, the implementation of in-lab equipment for clinical research and practice 

is not practical due to the requirement of expensive equipment in a dedicated lab space, which is 

not accessible at many hospitals. Moreover, patients are restricted to the lab space, which limits 

the ability of in-home monitoring [92]. The advantage of wearable technologies over in-lab 

equipment is the feasibility of using them in spaces other than an equipped lab space (i.e., home). 

Nonetheless, such an advantage does not eliminate the necessity of training prior to using the 

equipment, which is essential for any kind of assessment tool. Although wearable sensors provide 

a low-cost alternative that enables out-of-lab balance assessment, their accuracy and reliability for 

clinical research and practice, especially for kinematics and kinetics assessment of standing 

balance, have not been validated [222]. 

The objective of this research is to investigate the validity of an algorithm for a reliable 

assessment of the dynamics of standing balance using wearable technology. We developed 

algorithms to assess kinematic and kinetic parameters of a four-segment body model that 

characterize standing balance using the measurement of: (1) accelerometers; and (2) 

accelerometers plus gyroscopes. Subsequently, we experimentally validated the accuracy of the 

measured parameters against motion-capture cameras as a gold-standard reference to compare 

these two solutions. 

3.2 Methods 

3.2.1 Experimental procedures 

Ten able-bodied male individuals (age: 24.8±2.8 years, body mass: 77.1±6.3 kg) with no 

history of musculoskeletal impairments or any neurological, vestibular, or other balance-related 

disorders participated in data collection. All participants provided written consent prior to 

participation. The Research Ethics Board of the University of Alberta approved the study protocol 

(Pro00065804).  Each participant was asked to stand still on a force plate for one two-minute quiet 

standing test. Participants were asked to maintain a natural, relaxed posture and stance width 

during the trial, with the arms crossed over the chest.     
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3.2.2 Data acquisition 

Four inertial measurement units (IMUs) (MTws, XSENS Technologies, NL) were used to 

measure the kinematics of a four-segment body model at a sampling rate of 100 Hz. Each IMU 

was composed of a tri-axial gyroscope (range: ±2000 deg/s) and a tri-axial accelerometer (range: 

±16g). Each IMU was mounted on a rigid plate equipped with a cluster of four retro-reflective 

markers. The plates were placed over the foot, tibia, sacrum, and sternum, representing the foot, 

leg, pelvis, and head-arms-trunk (HAT) segments, respectively. The raw acceleration and 

gyroscope data were low-pass filtered via a dual-pass 8th-order Butterworth filter (fcut-off = 30 Hz). 

Sixteen retro-reflective markers were placed on anatomical landmarks of the torso (C7, 

incisuria jugularis, and xiphoid), pelvis (left and right ASISs and PSISs), shank (tibial tuberosity, 

head of the fibula, medial and lateral malleolus), and foot (calcaneus, 1st, 2nd, and 5th metatarsal 

heads). Eight motion-capture cameras (VICON, Oxford Metrics Group, UK) measured the 

trajectories of the markers, and a force plate (AMTI, Watertown, MA, USA) recorded the ground 

reaction forces (GRFs) and COP position as a reference. The cameras and the force plate recorded 

synchronously with the IMUs at sampling rates of 100 Hz and 1000 Hz, respectively. The 

synchronous recording was conducted by sending an analog trigger from IMUs to the motion 

capture system and the force plate at the beginning and end of each trial. Therefore, all three sets 

of equipment synchronously recorded. The time series were low-pass filtered via a dual-pass 8th-

order Butterworth filter (fcut-off = 20 Hz). 

3.2.3 Multi-segment model of the body  

The human body was modelled with four rigid segments (Figure 3-1) connected to each 

other by 3D revolute joints. Moreover, it was assumed that the segments were bilaterally 

symmetric with respect to the sagittal plane, and that the feet were motionless during the standing 

trial.  
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Figure 3-1. Simultaneous kinematics and kinetics assessment of a four-segment model of the human body using a 

motion-capture system (cameras and force plate) and IMUs. Retro-reflective markers were placed on the anatomical 

landmarks of each segment. IMUs were mounted on rigid plates equipped with a cluster of markers attached to the 

body.  

 

Anthropometric parameters of each segment, including the mass, center of mass (COM), 

joint centers of rotation (JCRs), and moments of inertia were estimated based on the individual’s 

body mass and height according to [223]. The instantaneous location of the JCRs of each segment 

was calculated from the position of the anatomical landmarks. The length of each segment was 

then obtained as the distance between the proximal and distal JCRs. Subsequently, the location of 

the COM for each segment was determined as a portion of the segment length from the distal joint. 

Note that when IMUs are used, the length of the segments and the location of JCRs can be 

measured by estimating the length of each segment as a portion of the body height based on [223]. 

The masses of the markers, plates, and IMUs were incorporated as additional weights to 

each segment. Nevertheless, the moments of inertia associated with the rigid plates were neglected 

in comparison to the moments of inertia of body segments. 
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The anatomical frame (AF) of each segment was defined based on [224]; however, the 

sequence of the axes was modified such that the X-, Y-, and Z- axes represented lateral-bending, 

flexion-extension, and axial rotation, respectively. For each participant, the lab-fixed frame was 

defined based on the median of the pelvic landmarks during a ten-second time interval at the 

beginning of each trial, with the origin at the mid-point between the right and left ASIS, and the 

X-, Y-, and Z- axes pointing anteriorly, to the right, and downward, respectively. The COM, JCRs, 

moments of inertia, GRFs, COP, and orientation of the segments were obtained with respect to 

this lab-fixed frame during the quiet standing trial.  

3.2.4 Inverse Dynamics  

We implemented the Newton-Euler formulation for joint moment calculation in a custom-

built MATLAB program (MathWorks, Natick, MA, USA): 

�⃗�𝑖 = 𝑚𝑠𝑖−1
 (�⃗�𝑠𝑖−1 − �⃗�) + �⃗�𝑖−1 (1) 

�⃗⃗⃗�𝑠𝑖−1
= 𝑅𝑠𝑖−1 𝐴𝐹

𝐺𝐹 (𝐼𝑠𝑖−1�⃗�𝑠𝑖−1 + �⃗⃗⃗�𝑠𝑖−1 × 𝐼𝑠𝑖−1  �⃗⃗⃗�𝑠𝑖−1) 
(2) 

�⃗⃗⃗�𝑖 = �⃗⃗⃗�𝑖−1 + �⃗⃗⃗�𝑠𝑖−1
+ (�⃗⃗�𝐶𝑂𝑀𝑠𝑖−1

− �⃗⃗�𝐽𝐶𝑅𝑖) × �⃗�𝑖 + ( �⃗⃗�𝐽𝐶𝑅𝑖−1 − �⃗⃗�𝐶𝑂𝑀𝑠𝑖−1
) × �⃗�𝑖−1  (3) 

where 𝑖 and 𝑠𝑖 represent joint and segment indexes, respectively; �⃗⃗⃗�𝑖 and �⃗�𝑖 represent 

moment and force vectors acting on joint 𝑖, respectively; �⃗�𝑠𝑖represents a segment’s linear 

acceleration; �⃗⃗�𝐶𝑂𝑀𝑠𝑖
 and �⃗⃗�𝐽𝐶𝑅𝑖 represent the position of a segment’s COM and JCRs. 

Moreover, 𝐼𝑠𝑖−1, �⃗�𝑠𝑖, and �⃗⃗⃗�𝑠𝑖 represent individual-specific moments of inertia, angular acceleration 

and velocity of the segment expressed in the segment-fixed frame, respectively, and  𝑅 𝐴𝐹
𝐺𝐹 is the 

rotation matrix from the segment-fixed frame to the lab-fixed frame.  

We used four different approaches to estimate the joint moments: 

Approach 1) Camera-based bottom-up approach: We used the measurement of the 

cameras and the force plate to estimate the joint moments in the proposed four-segment model. 

The instantaneous orientation of each segment ( 𝑅𝑠𝑖𝐴𝐹
𝐺𝐹 ) was obtained according to section 3.2.3, �⃗�𝑠𝑖 

was obtained as the 2nd-order differential of �⃗⃗�𝐶𝑂𝑀𝑠𝑖
, and �⃗�𝑠𝑖 and �⃗⃗⃗�𝑠𝑖were calculated from 𝑅𝑠𝑖  𝐴𝐹

𝐺𝐹 . 

Joint moments were then calculated using Eq. 1 to Eq. 3 using a bottom-up inverse dynamics 

approach. This approach started from the most inferior segment by assuming the force plate 

measurements as the boundary condition of the bottom-most segment and then proceeded upwards. 
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Approach 2) Camera-based top-down approach: We used the same kinematic data 

obtained from the cameras as described above. However, in this approach, the inverse dynamics 

calculation started from the top-most segment, assuming an unloaded condition at the top-most 

JCR as the boundary condition, and proceeded downwards. 

Approach 3) IMU-based (only accelerometer) top-down approach: We used the 

kinematic data recorded by the IMUs to estimate the joint moments. The instantaneous orientation 

of the segments ( 𝑅𝑠𝑖𝐴𝐹
𝐺𝐹 ) was estimated based on the segment’s inclination angle. The rotation 

matrix which mapped the sensor-fixed frame to the lab-fixed frame was determined by aligning 

the accelerometer’s vertical axis with gravity during quiet standing as follows [225], [226]:  

𝑥𝐺𝐹 = [𝐴𝐶𝐶𝑥, 𝐴𝐶𝐶𝑦, 𝐴𝐶𝐶𝑧],   𝑥𝐺𝐹 = 𝑥𝐺𝐹/‖𝑥𝐺𝐹‖ (4) 

𝑦𝐺𝐹 = [0 0 1]
𝑇 × 𝑥𝐺𝐹 , 𝑦𝐺𝐹 = 𝑦𝐺𝐹/‖𝑦𝐺𝐹‖ (5) 

𝑧𝐺𝐹 = 𝑥𝐺𝐹 × 𝑦𝐺𝐹 , 𝑧𝐺𝐹 = 𝑧𝐺𝐹/‖𝑧𝐺𝐹‖  (6) 

𝑅𝑠𝑖𝑆𝐹
𝐺𝐹 = [𝑥𝐺𝐹 𝑦𝐺𝐹 𝑧𝐺𝐹]

𝑇 (7) 

where [𝐴𝐶𝐶𝑥, 𝐴𝐶𝐶𝑦, 𝐴𝐶𝐶𝑧] is the accelerometer readout, and 𝑅𝑠𝑖  𝑆𝐹
𝐺𝐹 is the vertical alignment 

matrix. To obtain 𝑅𝑠𝑖𝐴𝐹
𝐺𝐹 , a sensor-to-body calibration procedure [227] was used based on the 

markers on the anatomical landmarks and rigid plates. 

Assuming the segments as rigid links, the instantaneous �⃗⃗�𝐶𝑂𝑀𝑠𝑖
 and �⃗⃗�𝐽𝐶𝑅𝑖 of each segment 

were calculated using their values initially recorded in the segment’s anatomical frame and the 

instantaneous 𝑅𝑠𝑖𝐴𝐹
𝐺𝐹  associated with each segment. The instantaneous �⃗�𝑠𝑖, �⃗�𝑠𝑖 and �⃗⃗⃗�𝑠𝑖  of each 

segment were then obtained based on the calculated �⃗⃗�𝐶𝑂𝑀𝑠𝑖
 and 𝑅𝑠𝑖𝐴𝐹

𝐺𝐹 . Finally, the joint moments 

(�⃗⃗⃗�𝑖 ) were estimated using the top-down approach.  

Approach 4) IMU-based (accelerometer and gyroscope) top-down approach: We used 

the data recorded by the IMUs and the same approach as described above. However, this time the 

orientation of each segment ( 𝑅𝑠𝑖𝐴𝐹
𝐺𝐹 ) was obtained from the IMU’s built-in Kalman filter, which 

provides the sensor’s instantaneous orientation based on the readout of both accelerometers and 

gyroscopes.   

The joint moments and forces acting on the ankle and the bottom-most joints (a 

hypothetical joint between the foot and ground defined as the projection of the ankle joint on the 
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ground [228]) were obtained from Approaches 2 to  4. The anterior-posterior and medial-lateral 

position of the COP was estimated using the dynamic equilibrium of the foot segment. 

Finally, to validate the results obtained from the IMU-based approaches (Approach 3 and 

4) against those obtained from the gold-standard reference system (Approach 1), we used the 

marker clusters mounted on the rigid plate to calculate instantaneous transformation matrices from 

the sensor-fixed frames to the lab-fixed frame. Using the obtained transformation matrices, all 

results are expressed in the lab-fixed frame ( 𝑅𝑠𝑖𝑆𝐹
𝐺𝐹 ). Notably, results obtained from Approach 2 

were already expressed in the lab-fixed frame since the camera-based data were used. 

3.2.5 Data Analysis 

To assess the validity of Approaches 2 to 4, the root-mean-square error (RMSE) of the 

segments’ orientation (expressed as Euler angles), GRFs, COP position, and joint moments 

between the estimations of Approaches 2 to 4 and those of Approach 1 were calculated. Moreover, 

the correlation coefficients between the estimated COP positions and ankle joint moment via 

Approaches 2 to 4 and those measured via the force plate in Approach 1 were calculated.  

We also performed a statistical analysis on the aforementioned results to detect any 

significant differences between the approaches in terms of the RMSE and correlation coefficient 

values. For each case, the Jarque-Bera test was used to confirm that the data followed a normal 

distribution, followed by Levene's test to determine the equality of variance. We performed a one-

way Analysis of Variance (ANOVA) with its significance level set at 0.05, followed by a multiple 

comparison post-hoc test.  

3.3 Results 

The RMSE of the Euler angles representing flexion-extension for the HAT, pelvis and leg 

segments were 0.11°, 0.26°, 0.13° and 0.12°, 0.26°, 0.14° (average across participants) estimated 

via Approach 3 and Approach 4, respectively (Figure 3-2). For the lateral-bending angles, these 

values were 0.16°, 0.09°, 0.08° and 0.21°, 0.12°, 0.09° for Approach 3 and Approach 4, 

respectively. Differences between approaches were not significant.  
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Figure 3-2. Root-mean-square error (RMSE) of the segments’ orientation (expressed with Euler angles for lateral 

bending and flexion-extension), estimated via IMU. Results of Approach 3 (accelerometer only) and Approach 4 

(accelerometer and gyroscope) are presented. No significant difference was observed between the approaches for all 

segments (p-values > 0.05). 

 

The mean RMSE of the joint moments was smaller than 0.016 N.m/kg (average across 

participants) for the coronal and sagittal components. The ankle joint moment in the sagittal plane 

had significantly smaller RMSE when estimated via Approach 2 compared to Approaches 3 and 

4. No significant differences were observed between the RMSE of other joint moments estimated 

via Approach 2 to 4 (Figure 3-3).  

Figure 3-4 shows the time series of the anterior-posterior and medial-lateral COP positions 

as measured by the force plate and estimated by Approaches 2 to 4 for one participant. The average 

correlation coefficient between the estimated and measured COP was greater than 0.93 and 0.81 

(average across participants) for the anterior-posterior and medial-lateral directions, respectively, 

for Approaches 2 to 4 (Figure 3-5). The RMSEs of the anterior-posterior and medial-lateral COP 

positions were smaller than 1.4 mm. Approach 2 had significantly smaller RMSE of the anterior-

posterior position of the COP compared to Approaches 3 and 4. There was no other significant 

difference between the RMSEs and correlation coefficients of the COP position in both directions 

obtained via Approaches 2 to 4. The RMSE of GRFs estimated via Approaches 2 to 4 was smaller 

than 0.2 N/kg. Approach 2 obtained significantly smaller RMSE of the vertical GRF and anterior-

posterior GRF compared to Approaches 3 and 4; however, no significant differences were 

observed in the RMSE of the medial-lateral GRF between the approaches (Figure 3-5). 
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Figure 3-3. (a) Root-mean-square error (RMSE) of the joint moment as estimated via the camera-based top-down 

approach (Approach 2), the IMU-based (only accelerometer) top-down approach (Approach 3), and the IMU-based 

(accelerometer) top-down approach (Approach 4).  (b) The correlation coefficient of the ankle moment as estimated 

via Approaches 2 to 4, with Approach 1. The red sign indicates p-value < 0.05. 
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Figure 3-4. Time-series of the center of pressure position as measured with the force plate (Approach 1), estimated 

via the camera-based top-down approach (Approach 2), and estimated via the IMU-based approaches (Approaches 3 

and 4) for one of the participants. 

 

Figure 3-5.Root-mean-square error (RMSE) and correlation coefficient of the center of pressure (COP) positions and 

ground reaction forces (GRFs) as estimated via the camera-based top-down approach (Approach 2), IMU-based 

(accelerometer only) top-down approach (Approach 3), and IMU-based (accelerometer and gyroscope) top-down 

approach (Approach 4). The red sign indicates p-value < 0.05. 
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3.4 Discussion 

This study presents a comprehensive validation of the accuracy of assessing the dynamics 

of standing balance via wearable IMUs against gold-standard in-lab equipment. The obtained 

results were in good agreement with previously published studies [229]–[231]. We also 

investigated the necessity of using the recordings of accelerometers and gyroscopes, together with 

sensor fusion algorithms (Approach 4), in comparison to using only the recordings of 

accelerometers (Approach 3).  

3.4.1 Estimation of the Euler Angles 

Both Approach 3 (using only accelerometers) and Approach 4 (using both accelerometers 

and gyroscopes) showed high accuracy (small RMSE values in Figure 3-2) in estimating both 

flexion-extension and lateral-bending angles. For all segments, their difference was not significant. 

This implies that measuring body sway kinematics during quiet standing using only accelerometers 

is sufficiently accurate to estimate body segment orientation. 

3.4.2 Estimation of the Joint Moments 

The obtained RMSE of the joint moments agreed with previously reported values [230], 

[231]. The RMSE of the estimated joint moments tended to increase from the proximal joints to 

the distal joints. Previous studies have demonstrated the propagation of experimental errors in 

estimating joint moments using inverse dynamics [232], [233]. The inaccuracies in estimating 

individual-specific anthropometric parameters and systematic COP offset errors in the force plate 

recording could cause a difference in the results of the bottom-up and top-down inverse dynamics 

approaches. Because of the small inter-segmental upper body motions during quiet standing, we 

expect that the effect of the HAT segmentation on the estimation of the distal joint moment (e.g., 

ankle joint) using top-down inverse dynamics is negligible.  

Furthermore, both the inevitable inaccuracies of IMUs and motion capture could induce 

differences between the joint angle estimation via those two systems. This effect could propagate 

into the joint moment estimation. Joint moments estimated via Approaches 2 to 4 showed high 

correlation coefficients with Approach 1 at the ankle joint (greater than 0.93) (Figure 3-3b). Due 

to the small variation of the moments at the hip and L5/S1 joints during quiet standing, the 

correlation coefficient is not a proper metric for the agreement of Approaches 2 to 4 with Approach 

1. Nevertheless, the RMSE of the hip and L5/S1 moments was smaller than 0.01 N.m/kg (average 
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across participants), implying a high accuracy of Approaches 2 to 4 in estimating joint moments. 

Although Approach 2 had a significantly smaller RMSE of sagittal ankle moment compared to 

Approaches 3 and 4, the IMU-based approaches showed a high correlation with Approach 1 in the 

joint moment estimation (Figure 3-3b). Considering the joint moments estimated by the camera-

based bottom-up approach (Approach 1) as a reference, both IMU-based approaches obtained the 

joint moment estimation with small RMSE (smaller than 0.016 N.m/kg) (Figure 3-3 and Figure 

3-5). Since no significant differences were observed between Approach 3 and Approach 4, the use 

of only accelerometers is sufficient for assessing the dynamics of standing balance during static 

unperturbed quiet standing.  

3.4.3 Estimation of COP and GRFs 

Although the camera-based top-down approach (Approach 2) tended to obtain greater 

correlation coefficients than IMU-based approaches (Approaches 3 and 4), the differences were 

not significant. The small differences in the accuracy of the camera-based and IMU-based 

approaches were due to the inaccuracy of estimating the segments’ orientation using IMUs. 

Nonetheless, the IMU-based approaches obtained accurate COP positions that were highly 

correlated with the force plate measurements during quiet standing. The RMSE of the COP 

positions obtained in this study showed an improvement compared to the reported RMSE (around 

3 cm) in previous studies [230]. Note that, during the quiet standing test, the excursion of the COP 

is smaller compared to other tasks such as sit-to-stand and lifting. Hence, a higher resolution and 

accuracy are required in estimating the COP position during quiet standing. 

Approaches 3 and 4 obtained significantly larger RMSE in estimating the vertical GRF and 

anterior-posterior GRF compared to Approach 2. Although no significant difference was observed 

for the medial-lateral GRFs, Approach 2 tended to obtain smaller RMSE. These results showed 

RMSE of GRFs smaller than 15 N for our static quiet standing test, which was in agreement with 

Faber et al. [229], who reported the RMSE of the GRFs in a range of 20 N during trunk-bending. 

3.4.4 Motion capture system versus IMU 

The optoelectronic motion capture system is the most widely used device for accurate 

measurement of human body kinematics [223], [234]. Therefore, it has been frequently used as a 

gold-standard reference to investigate the accuracy of orientation estimation using IMU [235]–

[237]. We compared the joint angles obtained by IMUs with those obtained by a motion capture 
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system, and the differences were, in general, less than 0.5° (Figure 3-2). Therefore, the accuracy 

of both systems in body joint angle measurement was similar. Nevertheless, the motion capture 

system is not error-free and cannot assess the absolute error of IMUs. 

In addition, previous studies suggested the use of a force plate along with a motion capture 

system to estimate kinetic parameters via bottom-up inverse dynamics. They used the results of 

the bottom-up inverse dynamics as a reference to investigate the accuracy of the top-down inverse 

dynamics in estimating kinetic parameters [229]. Moreover, the literature [229], [233] suggests 

that due to the propagation of experimental errors, top-down inverse dynamics may result in an 

erroneous estimation of joint moments and forces in the distal joint. Hence, estimating kinematic 

and kinetic parameters using the measurements of a motion capture system and a force plate along 

with bottom-up inverse dynamics (Approach 1) has been recommended as a reference by literature 

despite its inherent errors. 

3.4.5 Sufficiency of using accelerometers for assessing static balance    

The use of a gyroscope in addition to an accelerometer may improve the orientation 

estimation accuracy in the short term but may deteriorate the accuracy over time due to the drift 

associated with the gyroscope output. Complex sensor fusion algorithms (e.g., Kalman filter) can 

reduce this risk and are integrated into some commercially available IMUs for estimating 

orientation. However, the addition of gyroscopes and sensor fusion algorithms increases the cost 

of IMU and requires unnecessary complex computation and parameter tuning. Moreover, the 

gyroscope has significantly higher power consumption than an accelerometer, and its addition 

reduces battery durability, which may be important for clinical applications. Our study showed 

that the use of accelerometers alone (Approach 3) could be sufficient to obtain joint moments, 

GRFs, and COP during standing with similar accuracy compared to the camera-based top-down 

inverse dynamics approach (Approach 2). Also, the addition of gyroscopes, magnetometers, and 

sensor fusion (Approach 4) does not significantly improve measurement accuracy. 

3.4.6 Limitations 

We used measurements of the motion capture system in Approach 1 as the gold-standard 

reference for orientation estimation. Since this approach requires marker placement on anatomical 

landmarks, its accuracy could be affected due to experimental errors such as soft tissue artifacts 

[238]. Nevertheless, in the current study, the effect of soft-tissue artifacts on estimating the 
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orientation of each body segment using a motion capture system would not be significant due to 

the absence of large movement during quiet standing.  

We previously showed that inaccuracies in estimating anthropometric parameters of body 

segments induced uncertainties in the net joint moment and, consequently, in estimating COP 

position [233]. In the present study, anthropometric parameters were estimated by the participant’s 

body height and weight, which could be a source of inaccuracies in Approaches 2 to 4 when 

estimating COP. Although the errors in the joint moment and COP estimation using IMUs were 

small, the sensitivity of the obtained kinetic parameters to the inaccuracies in the estimation of the 

anthropometric parameters should be further investigated. 

 We used a 3D four-segment model of the human body to estimate joint moments in the 

sagittal and frontal plane, and COP positions in both anteroposterior and mediolateral directions. 

However, bilateral symmetry was assumed for the model in this study, which ignores any 

asymmetric motion patterns and joint moments between the left and right legs. Our four-segment 

model of the body incorporated the ankle, hip, and L5/S1 joints since these joints were reported to 

play a significant role in maintaining standing balance and may be independently affected by 

pathological conditions [84], [87], [116], [239].  We assumed the shank and thigh as a single rigid 

segment, which neglects the relative angle at the knee joint that has a minor contribution to 

standing balance compared to the joints considered in our study [118]. Moreover, we expect that 

the addition of the knee joint to the model, which requires the addition of an IMU on the thigh, has 

a minor effect on the validity of IMUs for assessing the dynamics of standing balance. Yet, the 

inclusion of the knee joint in the model should be investigated for various muscle tension scenarios. 

Based on data collected from able-bodied individuals, this study showed that the proposed 

use of IMUs could provide an accurate and suitable means of performing balance assessment out-

of-laboratory. We expect this system to be accurate and suitable for standing balance assessment 

of those with balance impairment as long as they can stand still for a minute or more. Yet, the 

techniques validated in the current study should be further studied in different groups of affected 

individuals with a high risk of falling prior to coming to any clinical conclusion. Nevertheless, 

accelerometers have been used as a reliable alternative for obtaining sensitive measures of standing 

balance in able-bodied individuals  [93] and populations with Parkinson’s disease [49], elderly 

[157], and SCI [50]. Finally, the proposed methodology is expected to assess the risk of falling 



 

69 

 

associated with the neuromuscular mechanisms that affect standing balance. Assessing other risk 

factors should be studied in the future. 

3.5 Conclusion 

This study presents a comparison between camera-based, and IMU-based inverse 

dynamics approaches for assessing the 3D dynamics of standing balance during unperturbed static 

stance in able-bodied young adults. Accelerometers with or without gyroscopes estimated the leg, 

pelvis and trunk segment orientation accurately. The estimations of ankle, hip and L5/S1 joint 

moments, 3D GRF, and COP position were accurate when top-down inverse dynamics were 

implemented without force plate measurements. These accuracies were in general comparable (no 

statistical difference; p > 0.05) when motion data was obtained using cameras, accelerometers, or 

a combination of accelerometers and gyroscopes. Therefore, it could be suggested that in Internet-

of-Thing-based clinical research and practice, when power-saving is important, the use of 

accelerometers only has sufficient accuracy and could be recommended for body kinematics and 

kinetics monitoring during standing balance assessment. Nevertheless, the validity of the proposed 

technology for different groups of individuals with impaired neuromuscular functions is yet to be 

further investigated prior to any clinical application. Such an application, with further investigation 

and research in the future, can enable in-field clinical evaluations and the development of injury 

prevention and rehabilitation strategies for those with balance impairment with the ability to stand 

still.  

3.5.1 What is next? 

In this chapter, an algorithm was validated for assessing static balance during standing 

using wearable technology in able-bodied individuals. However, the sensitivity and responsiveness 

of the developed algorithm to identify the subtle changes in balance in individuals with balance 

impairments are yet to be investigated. In the next chapter, this technology will be employed to 

investigate its sensitivity to characterize postural control and subtle differences in balance 

mechanisms in individuals with mild balance deficits (i.e., ambulatory individuals with iSCI with 

mild balance deficits and with walking ability) under different sensory conditions. 
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Chapter 4 

This chapter shows how the validated algorithm can be used to characterize standing balance in 

ambulatory individuals with iSCI with mild balance deficits under different sensory manipulations 

using wearable technology. This chapter has been adopted and/or edited from: 

A. Noamani, J. F. Lemay, K. E. Musselman, and H. Rouhani, “Characterization of standing 

balance after incomplete spinal cord injury: Alteration in integration of sensory information in 

ambulatory individuals,” Gait Posture, vol. 83, no. October 2020, pp. 152–159, 2021, doi: 

10.1016/j.gaitpost.2020.10.027. 

4 Characterization of Standing Balance after iSCI 

4.1 Introduction 

Recovery of balance ability during standing and regaining the ability to walk are the top 

priorities for individuals with iSCI [16], [20], [21]. Up to 30% of individuals with a recent SCI 

and most individuals with an incomplete lesion are able to regain partial balance and walking 

ability after the first year post-injury [16]. However, the future level of ambulation in this 

population is associated with the initial level of balance and the amount of motor function below 

the level of the lesion [19]. Hence, the implementation of outcome measures that identify the 

balance and walking abilities of individuals with SCI can lead to more effective rehabilitation [16].  

Literature showed that ambulatory individuals with iSCI are at a greater risk of falling than 

those who use a wheelchair for mobility [12]. Moreover, previous studies have shown that standing 

balance evaluation, such as Berg Balance Scale scores, for individuals with SCI is significantly 

correlated with various walking outcome measures and with their reliance on mobility-related 

assistive devices [16], [36].  Greater postural control in this population is highly associated with a 

more normal walking pattern, higher stride speed, less reliance on supervision or physical 

assistance, and more functional ambulatory status [16].  

However, maintaining postural stability is a major challenge for individuals with SCI as 

they regain the ability to walk [17].  Up to 75% of individuals with iSCI experience injurious falls 

while standing and frequent losses of balance post-rehabilitation [10], [11]. This can result in 
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physical injuries, decreased social involvement [11], [13], [14], and developing a fear of falling 

[15].  These individuals identified loss of balance as the most significant contributor to their falls 

[14], [18], implying that effective control of balance is required for developing fall prevention 

strategies. 

Control of balance during quiet standing depends on the integration of sensory information 

from the somatosensory, visual, and vestibular systems [17] and the interaction of the body with 

the changing environment [10]. Hence, understanding the underlying mechanisms of how postural 

control is regulated post-SCI is of significant importance. iSCI causes sensory and/or motor 

impairments at and below the level of the lesion [18], and sensory reweighting may be affected 

because of impaired somatosensory information. This alteration in reweighting of sensory 

information post-SCI results from the development of compensatory strategies to maintain balance 

[20], [35]. Therefore, postural stability can be further challenged in this population by altering the 

availability of visual [17] and somatosensory [145] inputs, highlighting the fact that many 

contributors to balance control are affected following an SCI. Identifying the underlying 

impairments and changes to postural control is necessary for targeted and guided rehabilitation 

post-SCI [35] since such training can have a positive effect on postural control and coordination 

improvement [20]. For instance, the literature suggests that the over-reliance on visual cues post-

iSCI during walking and standing is due to somatosensory impairment [17], [145]. In addition, 

previous studies have shown the positive effect of sensorimotor integration, such as visual 

feedback [20] and haptic input [240], on balance rehabilitation post-iSCI. However, the effect of 

concurrent restricted visual and somatosensory inputs on standing balance post-iSCI has yet to be 

investigated. Hence, a comprehensive balance evaluation for ambulatory individuals with iSCI 

with mild balance deficits during a variety of challenging standing conditions remains a significant 

need. 

Physical therapists oftentimes use standard observational rating scales to evaluate balance. 

The concurrent validity of observational balance scales (e.g., Berg Balance Scale or mini-

BESTest) among individuals with SCI has been validated. However, previous studies reported an 

inability to predict future falls post-SCI for such methodologies. Moreover, they are subjective and 

provide minor information for understanding the potential underlying mechanisms for the balance 

difficulties [16], [35], [36], highlighting the requirement of a quantitative approach to evaluate 

standing balance. The instrumented version of such tests can provide a precise “impairment-level” 



 

72 

 

evaluation of balance by measuring how and why functional performance is impaired with 

increased sensitivity to the identification of mild changes [37]. Therapists can use such objective 

measures to characterize specific impairments and identify where the problem is occurring. These 

measures can then be employed to precisely focus the therapy on underlying causes and track 

subtle changes in postural control over time [37]. Body-worn inertial measurement units (IMUs) 

have been used as a reliable alternative for obtaining accurate and sensitive measures of standing 

balance in able-bodied individuals  [93], and populations with Parkinson’s disease [49], traumatic 

brain injury [37], and SCI [50]. IMUs can provide impairment-level measures that characterize the 

functional performance of balance with increased sensitivity to movement disorders, 

rehabilitation, and mild changes in postural stability [37], [49]. Moreover, IMUs are light-weight, 

relatively inexpensive, and can be easily integrated into functional tests, which makes them an 

ideal alternative to stationary laboratory equipment with a higher level of clinical utility [37], [51]. 

Therefore, the aim of this study was to characterize the impact of a variety of challenging 

conditions on the standing balance of a small group of ambulatory individuals with iSCI with 

walking ability using a waist-mounted IMU. We compared balance biomarkers derived from IMU 

readouts under conditions that challenge balance by affecting somatosensory (i.e., standing on hard 

and foam surfaces) and visual (i.e., eyes open and closed) inputs. In addition, we compared balance 

biomarkers between the participants with iSCI (AIS level D) and able-bodied participants to 

characterize changes in postural control post-iSCI based on reliance on somatosensory and visual 

information. We hypothesize that ambulatory individuals with iSCI have a reduced stability 

performance, increased control demand, and a less effective active correction post-iSCI in standing 

conditions considered in this study. We assume that ambulatory individuals with iSCI have a lower 

reliance on somatosensory information compared to able-bodied individuals, and they rely more 

on visual information for maintaining standing balance. 

4.2 Methods 

4.2.1 Participants 

Eight individuals with a traumatic or a non-traumatic iSCI AIS level D (hereafter iSCI 

group) and twelve age-matched able-bodied individuals volunteered to participate in this study 

(Table 4-1). Participants with iSCI were recruited from the outpatient population of the CIUSSS 
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du Centre-Sud-de-l’Île-de-Montréal (Installation Gingras-Lindsay) and the Lyndhurst Centre, 

Toronto Rehabilitation Institute-University Health Network.  

Table 4-1. (a) Demographic information of participants with incomplete spinal cord injury; (b) Demographic 

information of able-bodied participants; and (C) Level of injury and American Spinal Injury Association Impairment 

Scale (AIS) for individuals with incomplete spinal cord injury participated in this study. 

 

Participants with incomplete spinal cord injury 

Variable Mean (Standard Deviation) Range 

Age (years) 47.5 (19.3) 20-70 

Height (cm) 174.9 (9.4) 161-187.9 

Weight (kg) 80.0 (19.3) 57-113.4 

Time post lesion (months) 74.1 (87.9) 29-289 

Lower Extremity Motor Score (/50) 46.1 (2.4) 43-49 

Variable Number 

Sex (Male/Female) Male = 8, Female = 0 

Level of lesion Paraplegia: 4, Tetraplegia: 4 

Type of lesion Traumatic: 7, Non-traumatic: 1 

 

Able-bodied participants 

Variable Mean (Standard Deviation) Range 

Age (years) 43.0 (20.1) 18-84 

Height (cm) 169.2 (9.2) 156-181 

Weight (kg) 66.8 (13.1) 47.5-92.2 

Variable Number 

Sex (Male/Female) Male = 6, Female = 6 

 

 

Participants with incomplete spinal cord injury: level of injury and AIS 

Participant  Injury Level AIS 

1 C6 D 

2 L1 D 

3 C5 D 

4 T12 D 

5 C6 D 

6 T8 D 

7 C5 D 

8 T1 D 
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Inclusion criteria were the following: (a) adults with traumatic and non-traumatic motor 

and sensory iSCI with American Spinal Injury Association Impairment Scale (AIS) C or D; (b) at 

least 5 months post-injury; and (c) able to walk for six minutes without assistive devices or 

assistance of another person to ensure that intrinsic balance ability could be studied. Furthermore, 

exclusion criteria were as follows: (a) presence of other neurological disorders; (b) visual 

impairments not corrected with glasses; and (c) vestibular deficits. Ethics approval was obtained 

from the local ethics committees. Each participant provided written informed consent prior to 

participation. 

4.2.2 Data acquisition and human body modelling 

One IMU (Physilog®5, GaitUp, Switzerland) was placed over the sacrum of each 

participant to measure the kinematics of the body at a sampling rate of 256 Hz. The IMU readouts 

were low-pass filtered via a dual-pass 8th-order Butterworth filter with a cut-off frequency of 20 

Hz. 

The human body (above the ankle) was modelled as a one-segment inverted pendulum, 

connected to the ankle joint by a 3D revolute joint, the feet were motionless during the standing 

trial, and the center-of-mass (COM) of the body was located at the level of the sacrum where the 

IMU was placed. Anthropometric parameters of the body segment, including the mass, COM, 

ankle joint center of rotation, and moments of inertia were estimated based on the body mass and 

height, according to Winter [223]. The instantaneous orientation of the body segment was 

determined by aligning the accelerometer’s vertical axis with gravity during quiet standing [225], 

[227]. Assuming the body segment as a rigid link, the instantaneous position of the COM, linear 

acceleration, and angular velocity of the body were calculated using its instantaneous orientation. 

Subsequently, we employed an IMU-based top-down inverse dynamics method to estimate the 

ankle joint moment and center-of-pressure (COP) position based on our previous study [93] using 

a custom-built MATLAB program (MathWorks, USA).  

4.2.3 Outcome measures and data analysis 

To identify changes in the standing balance due to iSCI (AIS level D) and to investigate 

the effect of altered visual and somatosensory inputs, a total of ten COP-based measures [241] and 

three COM acceleration-based measures [85] were calculated for each trial (Table 4-2). COP-

based measures were categorized into the time-domain (i.e., distance, area, and hybrid) measures, 
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and frequency-domain measures, according to Prieto et al. [241]. In the following sections, these 

measures are used to study postural stability for (a) stability performance, (b) control demand, and 

(c) postural regulations [242]. 

Table 4-2. A total of ten center-of-pressure (COP) measures were calculated according to [241]. Different types of 

COP-based measures were used to characterize stability performance, control demand, and postural regulation. In 

addition, three center-of-mass (COM) acceleration-based measures were used based on [85]. 

Outcome Measure Nomenclature Definition Type 

Root-Mean-Square 

Distance 
RDIST RMS distance of COP 

COP Time-

domain 

distance 

measures 

Mean Distance MDIST Average distance from mean COP 

Total Excursion TOTEX Total length of COP path 

Mean Velocity MVELO Average velocity of COP 

95% Ellipse Area Area-CE 
Ellipse area that encloses 95% of the points 

on the COP path 

COP area 

measure 

Sway Area Area-SW 

Area enclosed by the COP path per unit of 

time 

 
COP Time-

domain hybrid 

measures 
Mean Frequency MFREQ 

Revolution per second if the COP travelled 

the total excursion around a circle with a 

radius of the mean distance 

Median Frequency MEDFREQ 

Frequency below which 50% of the total 

power is found 

 
COP 

Frequency-

domain 

measures 

Centroid Frequency CFREQ 

Frequency at which the spectral mass is 

concentrated 

 

Frequency Dispersion FREQD 

A unit-less measure of variability in the 

frequency content of the power spectral 

density 

Sway jerkiness JERK Time derivative of acceleration 
COM 

acceleration-

based 

measures 

Root-Mean-Square 

Acceleration 
RMS-ACC RMS of Acceleration time series 

Centroid Frequency CF-ACC 
Centroid frequency of acceleration time 

series 

 

We performed statistical analyses on each outcome measure to identify the main and 

interaction effects of health condition (able-bodied vs. iSCI), vision condition (EO vs. EC), and 

surface condition (HS vs. FS) on standing balance. For each measure, the Kolmogorov-Smirnov 
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test was used to check that the data were normally distributed, followed by Levene’s test to 

determine the equality of variance. Subsequently, we performed either a three-way Analysis of 

Variance (ANOVA) or a Kruskal-Wallis test (significance level = 0.05) with Bonferroni correction 

followed by multiple comparison post-hoc tests (MATLAB 2019b, MathWorks, USA). A 

significant difference implies a p-value smaller than 0.05. To investigate the effect of altered visual 

and somatosensory inputs on each group, Cohen’s d effect size was calculated, which is defined 

as the difference between two means divided by a standard deviation for the data.  

4.3 Results 

4.3.1 COP time-domain distance and area measures 

Table 4-3. Effect size and p-value of challenging surface (foam surface vs. hard surface) and impaired vision (eyes 

open and eyes closed) on balance parameters for both able-bodied participants and individuals with incomplete spinal 

cord injury (iSCI). 

 

 Effect of Challenging Surface Effect of Impaired Vision 

 Able-bodied iSCI Able-bodied iSCI 

 
Effect 

Size 
p-values Effect Size p-value Effect Size 

p-

value 

Effect 

Size 
p-value 

RDIST 0.82 0.047 0.50 0.743 0.22 0.757 0.48 0.457 

MDIST 0.80 0.047 0.48 0.810 0.18 0.817 0.44 0.572 

TOTEX 1.39 0.003 0.90 0.434 0.92 0.080 0.98 0.139 

MVELO 1.36 0.003 0.85 0.567 0.92 0.078 1.05 0.126 

Area-CE 0.93 0.011 0.85 0.359 0.17 0.952 0.26 0.810 

Area-SW 1.12 0.003 0.82 0.480 0.48 0.520 0.67 0.462 

MFREQ 0.23 0.886 0.26 0.802 0.28 0.532 0.43 0.669 

MEDFREQ 0.25 0.742 0.02 1.000 0.43 0.524 0.48 0.592 

CFREQ 0.20 0.996 0.49 0.553 0.30 0.824 0.50 0.504 

FREQD 0.35 0.917 0.18 0.606 0.20 0.992 0.01 0.987 

JERK 1.14 0.007 0.82 0.562 0.85 0.125 0.86 0.161 

RMS-ACC 0.57 0.220 0.14 0.945 0.01 1.000 0.35 0.611 

CF-ACC 0.24 0.833 0.10 1.000 0.66 0.179 0.39 0.790 

 

All COP time-domain distance measures were significantly larger for the iSCI group 

compared to able-bodied participants for all conditions (p-values = 0.000, see Figure 4-1A and 

Table 4-4A). Standing on FS compared to HS increased all COP time-domain distance measures. 

The impaired vision caused larger TOTEX and MVELO, while it did not reflect any effect on 

RDIST and MDIST (Table 4-4A). Able-bodied participants had larger time-domain distance 
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measures while standing on FS compared to HS; however, its effect was insignificant for the iSCI 

group (all p-values < 0.047, see Table 4-4B). Nevertheless, the iSCI group had larger distance 

measures even during standing on HS compared to able-bodied participants standing on FS (Figure 

4-1A). Although the effect of impaired vision on the distance measures was not significant for 

both groups (Table 4-4C), a general comparison between the effect sizes of impaired vision on 

distance measures shows relatively larger effect sizes for the iSCI group compared to able-bodied 

individuals (Table 4-3). The iSCI group had larger distance measures even with eyes open (EO) 

compared to able-bodied individuals standing with eyes closed (EC) (Figure 4-1A). 

Able-bodied participants had smaller Area-CE compared to the iSCI group (p-value = 

0.000, see Figure 4-1B and Table 4-1A). Standing on FS led to larger Area-CE for able-bodied 

participants (p-value = 0.011), whereas its effect was not significant for the iSCI group (Table 

4-4B). Despite this, Area-CE for the iSCI group was larger even during standing on HS compared 

to able-bodied participants standing on FS (Figure 4-1B). Although standing with EC showed no 

significant effect on the Area-CE for both groups (Table 4-4C), its effect size was relatively larger 

for the iSCI group (Table 4-3).  

 

(A) Time-domain distance measures 
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(B) Time-domain area measure 

 

(C) Time-domain hybrid measures 

 

Figure 4-1. Center-of-pressure balance biomarkers: (A) time-domain distance measures, including COP RMS 

distance, mean distance, total excursion, and mean velocity. (B) time-domain area measure as determined by 95% 

confidence ellipse area. (C) time-domain hybrid measures, including COP sway area and COP mean frequency. 

Biomarkers were measured during four standing conditions on a hard surface (HS) and foam surface (FS) with eyes 

open (EO) and eyes closed (EC) for able-bodied participants (black) and ambulatory individuals with iSCI AIS level 

D (red). The red crosses show outliers. 



 

79 

 

 

Table 4-4. (A) P-values from statistical analysis on balance parameters for the main effects of health condition (able-

bodied (AB) vs. iSCI groups), surface condition (Hard Surface (HS) vs. Foam Surface (FS)), and vision condition 

(Eyes Open (EO) vs. Eyes Closed (EC)). (B) P-values from statistical analysis on balance parameters for the 

interaction effect of health condition (AB vs. iSCI) and surface condition (HS vs. FS). (C) P-values from statistical 

analysis on balance parameters for the interaction effect of health condition (AB vs. iSCI) and vision condition (EO 

vs. EC). 

 

(A) P-value 

 iSCI vs. AB 
FS vs. 

HS 

EC vs. 

EO 

RDIST 0.000 0.008 0.090 

MDIST 0.000 0.010 0.136 

TOTEX 0.000 0.000 0.001 

MVELO 0.000 0.000 0.001 

Area-CE 0.000 0.001 0.331 

Area-SW 0.000 0.000 0.047 

MFREQ 0.473 0.256 0.078 

MEDFREQ 0.746 0.453 0.065 

CFREQ 0.536 0.317 0.121 

FREQD 0.387 0.201 0.992 

JERK 0.000 0.001 0.003 

RMS-ACC 0.000 0.066 0.408 

CF-ACC 0.169 0.532 0.031 

 

 

(B) P-value 

 
AB-HS 

vs. AB-FS 

AB-HS vs. 

iSCI-HS 

AB-HS vs. 

iSCI-FS 

AB-FS vs. 

iSCI-HS 

AB-FS vs. 

iSCI-FS 

iSCI-HS 

vs. iSCI-

FS 

RDIST 0.047 0.002 0.000 0.593 0.085 0.743 

MDIST 0.047 0.001 0.000 0.498 0.081 0.810 

TOTEX 0.003 0.000 0.000 0.550 0.016 0.434 

MVELO 0.003 0.000 0.000 0.470 0.022 0.567 

Area-CE 0.011 0.000 0.000 0.524 0.009 0.359 

Area-SW 0.003 0.000 0.000 0.366 0.008 0.480 

MFREQ 0.886 0.987 0.545 0.989 0.906 0.802 

MEDFREQ 0.742 0.893 0.915 0.997 0.994 1.000 

CFREQ 0.996 0.713 0.981 0.591 0.998 0.553 

FREQD 0.917 0.751 0.985 0.393 0.996 0.606 

JERK 0.007 0.000 0.000 0.401 0.015 0.562 

RMS-ACC 0.220 0.009 0.001 0.482 0.175 0.945 

CF-ACC 0.833 0.515 0.547 0.926 0.941 1.000 
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(C) P-value 

 

AB-EO 

vs. AB-

EC 

AB-EO vs. 

iSCI-EO 

AB-EO vs. 

iSCI-EC 

AB-EC vs. 

iSCI-EO 

AB-EC vs. 

iSCI-EC 

iSCI-EO 

vs. iSCI-

EC 

RDIST 0.757 0.046 0.000 0.313 0.005 0.457 

MDIST 0.817 0.032 0.000 0.206 0.004 0.572 

TOTEX 0.080 0.002 0.000 0.466 0.001 0.139 

MVELO 0.078 0.002 0.000 0.485 0.001 0.126 

Area-CE 0.952 0.004 0.000 0.019 0.001 0.810 

Area-SW 0.520 0.001 0.000 0.055 0.000 0.462 

MFREQ 0.532 0.962 0.308 0.891 0.953 0.669 

MEDFREQ 0.524 0.990 0.710 0.422 0.999 0.592 

CFREQ 0.824 0.848 0.893 0.387 1.000 0.504 

FREQD 0.992 0.793 0.945 0.910 0.991 0.987 

JERK 0.125 0.002 0.000 0.380 0.001 0.161 

RMS-ACC 1.000 0.207 0.006 0.233 0.007 0.611 

CF-ACC 0.179 0.940 0.971 0.080 0.519 0.790 

 

4.3.2 COP hybrid and frequency measures 

The iSCI group had a larger Area-SW (p-value = 0.000); however, no differences were 

observed between groups for MFREQ (Figure 4-1C and Table 4-4A). We observed a larger Area-

SW for able-bodied individuals while standing on FS compared to HS (p-value = 0.003), whereas 

the effect of surface condition was insignificant for the iSCI group (Table 4-4B). However, able-

bodied participants had smaller Area-SW even during standing on FS compared to the iSCI group 

standing on HS (Figure 4-1C). Surface conditions did not affect MFREQ for both groups (Table 

4-3). Moreover, the effect of impaired vision (EC) on the hybrid measures was not significant, but 

it tended to increase these measures (Table 4-4A). Nevertheless, larger Area-SW was observed for 

the iSCI group even during standing with EO compared to able-bodied participants standing with 

EC (p-values < 0.05 Table 4-4C). Regarding the impaired vision, the effect size was relatively 

larger for the iSCI group. 

The effect of health condition (able-bodied vs. iSCI), surface (HS vs. FS), and vision (EO 

vs. EC) conditions, as well as their interaction effects, were insignificant for frequency-domain 

measures (Figure 4-2).  
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Figure 4-2. Center-of-pressure balance biomarkers: frequency-domain measures including median frequency, centroid 

frequency, and frequency dispersion during four standing conditions on a hard surface (HS) and foam surface (FS) 

with eyes open (EO) and eyes closed (EC) for able-bodied participants (black) and ambulatory individuals with iSCI 

(AIS level D) (red). The red crosses show outliers. 

 

 

Figure 4-3. Center-of-mass (COM) acceleration-based measures including COM JERK, RMS acceleration, and 

centroid frequency during four standing conditions on a hard surface (HS) and foam surface (FS) with eyes open (EO) 

and eyes closed (EC) for able-bodied participants (black) and ambulatory individuals with iSCI (AIS level D) (red). 

The red crosses show outliers. 

 

4.3.3 COM acceleration-based measures 

The iSCI group had larger COM JERK, and RMS-ACC compared to able-bodied 

participants (Figure 4-3). JERK increased when able-bodied participants stood on FS compared to 

HS; however, the effect of the surface was insignificant for the iSCI group. Although standing 

with EC did not significantly increase JERK and RMS-ACC, it led to larger effect size for the 

RMS-ACC of the iSCI group (Table 4-3). No significant effect was observed in CF-ACC.   
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Table 4-4 (A), (B), and (C) present the p-value for the main effects of the health (able-

bodied vs. iSCI), surface (HS vs. FS), and vision (EO vs. EC) conditions and their interaction 

effects for each outcome measure used in this study. 

4.4 Discussion 

The present study provides a static balance evaluation for a group of ambulatory 

individuals with iSCI (AIS level D) compared to age-matched able-bodied individuals during a 

variety of challenging standing conditions that affected somatosensory and visual inputs. To this 

end, we obtained COP-based and COM-based balance biomarkers using a waist-mounted IMU. 

We compared these biomarkers between the two groups in different challenging conditions to 

characterize changes in postural control after iSCI (AIS level D) based on reliance on 

somatosensory and visual information.  

4.4.1 Postural stability 

Postural stability can be characterized by three aspects: (a) stability performance, (b) 

control demand, and (c) postural regulations [101]. Stability performance is an indicator of an 

individual’s ability to maintain balance within the stability limit. Attentional resources needed to 

maintain stability are indicated by control demand [101], [242]. Previous studies [102], [242] 

suggested that COP time-domain distance measures quantify stability performance while the 

velocity of COP is an indicator of control demand. Therefore, reduced stability performance and 

increased control demand imply poorer postural stability that leads to an increased risk of falling. 

In addition, previous studies [43], [109], [243] suggested that COP frequency-domain measures 

can be used as an indication of postural regulations by providing insight into postural disturbances 

due to neurological impairments. More specifically, centroid frequency shows the inertia of an 

inverted pendulum and the time required for returning to its initial position [43]; frequency 

dispersion indicates the rigidity and stiffness of the system [242], and power frequency indicates 

changes in preferential postural regulation and is sensitive to the contribution of sensory 

information [101], [242]. 

Our results indicate that the iSCI group had larger COP time-domain distance measures 

compared to able-bodied individuals in all standing conditions, which implies poor stability 

performance. In line with previous studies, larger COP RDIST post-iSCI may be associated with 

less effectiveness of the mechanisms that regulate postural stability due to neurological 
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impairment. Moreover, higher COP MVELO observed post-iSCI may suggest a less effective 

correction made by the nervous system as well as higher control demand. Poorer stability 

performance and higher control demand post-iSCI led to a larger COP area and hybrid measures 

in the iSCI group implying a potentially higher risk of falling in this group. Moreover, increased 

postural sway quantified by time-domain distance, area, and hybrid measures in the iSCI group 

may reflect impaired somatosensory feedback, muscle proprioceptors, and joint receptors in their 

postural control. Such impaired postural control may be due to inaccurate sensory information 

regarding the position of the body in space and incorrect perception of limits of stability [126]. In 

addition, larger COM JERK and RMS-ACC post-iSCI may be an indication of frequent corrections 

of postural sway direction. Previous studies [85], [126] interpreted JERK as a measure of dynamic 

stability that shows the amount of active postural corrections. Therefore, higher values of COM 

JERK and RMS-ACC post-iSCI may be associated with increased control demand and poorer 

active postural corrections in the iSCI group.  

4.4.2 Integration of sensory information 

Control of balance during quiet standing depends on the integration of sensory information 

from the somatosensory, visual, and vestibular systems. However, individuals with iSCI exhibit 

sensory and motor impairments at and below the lesion level, causing an alteration in the 

integration of sensory inputs to maintain balance.  In the present study, we investigated the balance 

performance of a group of ambulatory individuals with iSCI (AIS level D) compared to able-

bodied participants by challenging somatosensory (standing on HS and FS) and visual (EO and 

EC) inputs.  

Standing on FS introduced altered somatosensory information during standing compared 

to standing on HS. Our results revealed that able-bodied participants had larger COP time-domain 

distance measures, the area measure, hybrid sway area, COM JERK, and RMS-ACC when 

standing on FS compared to HS. In contrast, although standing on FS tended to increase these 

parameters in the iSCI group, its effect was insignificant. Literature suggests that somatosensory 

information is the main input used by able-bodied individuals for maintaining postural stability 

[17]. This may justify the significant effect of altering somatosensory inputs on balance parameters 

for able-bodied participants. On the other hand, iSCI caused changes in the somatosensory tracts 

located in the dorsal column, which reduces the relative contribution of somatosensory inputs to 

postural stability [17]. Therefore, the iSCI group could compensate for the FS using the same 
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sensory information (visual) as when they were standing on HS. This may explain the insignificant 

effect of altering surface conditions on the balance parameters in the iSCI group. Individuals with 

iSCI have impaired somatosensory feedback from the foot sole in the postural control loop 

resulting in inaccurate sensory information and an abnormal internal map of stability limits [126]. 

Therefore, due to impaired somatosensation, they may use visual information to partially 

compensate for FS compared to HS. On the other hand, the somatosensory feedback in able-bodied 

individuals was intact and is the primary input for maintaining postural stability [17]. Thus, their 

balance was significantly challenged during standing on FS compared to HS. Nevertheless, the 

iSCI group showed poorer postural stability even during standing on HS compared to able-bodied 

individuals standing on FS. This could be due to reduced postural performance and increased 

control demand, as discussed in the previous section. Our results also showed an increase in COP 

TOTEX and MVELO due to impaired vision, while it did not affect RDIST and MDIST (p-value 

> 0.05) (Table 4-4). This may imply an increase in control demand in the absence of visual 

information.  

Moreover, a general comparison between standing trials with EO and EC for both groups 

revealed a relatively larger effect size in COP time-domain distance measures, area measure, 

hybrid sway area, and COM RMS-ACC for the iSCI group compared to able-bodied participants. 

This may imply that, in general, the iSCI group could be more dependent on visual inputs 

compared to able-bodied participants. Indeed, since somatosensory information is impaired in the 

iSCI group, it is possible that the contribution of the visual information is increased to compensate 

for the lack of sensory information (i.e., somatosensory input) as a more reliable source of 

information to achieve stability, in contrast to able-bodied individuals. Nevertheless, the iSCI 

group showed worse postural stability even during standing with EO compared to able-bodied 

participants standing with EC due to impaired sensory information, poorer postural performance, 

and higher control demand. 

In summary, our results may reflect that because of the contribution of visual inputs toward 

maintaining postural stability post-iSCI, alteration of somatosensory input did not reflect 

significant changes in balance biomarkers. This may suggest the presence of over-reliance on 

visual information to maintain balance post-iSCI. Therefore, two approaches may be pursued by 

future studies as rehabilitative intervention: (1) have the affected individuals maximize their 

remaining somatosensory information for maintaining balance; and (2) compensate for the 
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impaired somatosensory information using visual information such as visual feedback training that 

incorporates learning from visual cues might be of significant benefit for balance rehabilitation. 

4.4.3 Limitation 

The data used in the current study were collected from a relatively small and homogeneous 

group of male individuals with iSCI with walking ability, which limits generalization. A larger 

population would be required to identify any clinically meaningful changes in postural control. 

We only recruited individuals with iSCI AIS level D. Recruiting participants with a greater level 

of motor and/or sensory impairments (AIS levels A, B, and C) is needed to assess the feasibility 

and sensitivity of detecting changes in standing balance under different standing conditions. 

Furthermore, we only challenged the use of visual and somatosensory information in the present 

study. Future studies should investigate the effect of other sensory information (e.g., vestibular 

information) on the standing balance of ambulatory individuals with iSCI. In the present study, the 

lack of significant differences in the effect of surface and vision for the iSCI group is associated 

with a lack of statistical power. Although using a single IMU increase clinical utility for balance 

evaluation, adding more IMUs would provide more information regarding the balance strategy 

used by this group. Moreover, we assumed a bilateral symmetry condition in this study, which 

neglects any asymmetric motion patterns between the left and right legs. The assumption of 

bilateral symmetry for participants with iSCI was based on our preliminary experimental 

examination that did not show a significantly weaker or stronger side. We observed that the Lower 

Extremity Motor Scores (LEMS) for the right and left sides were 22.6 ± 1.4 and 22.4 ± 3.6 out of 

25, respectively. We did not observe a statistically significant difference between the sides (p-

value = 0.8336). Finally, this study showed altered integration of sensory information for 

maintaining balance after iSCI AIS level D. A more complex methodology (i.e., system 

identification approach) would be required to quantify the changes to sensory dynamics and 

sensory reweighting post-iSCI.   

4.5 Conclusion 

We presented a balance evaluation for a group of ambulatory individuals with iSCI (AIS 

level D) compared to age-matched able-bodied individuals during standing on hard and foam 

surfaces with eyes open and closed. We observed a reduced stability performance, an increased 

control demand, and a less effective active correction in the iSCI group in all standing conditions. 
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Our result may suggest that, due to impaired somatosensory feedback, the iSCI group showed a 

higher and lower reliance on visual and somatosensory information, respectively, for maintaining 

balance. Using a single waist-mounted IMU, our method was able to characterize standing balance 

in the iSCI group compared to able-bodied participants. Having high clinical utility and sufficient 

resolution with discriminatory ability, this study suggests that it may be appropriate to use the 

proposed method in the future to objectively evaluate the effectiveness of rehabilitative 

interventions on the balance performance for individuals with ambulatory individuals with iSCI 

AIS level D.  

4.5.1 What is next? 

The validated algorithm showed sensitivity and responsiveness for characterizing postural 

control and subtle differences in balance mechanisms using wearable technology in ambulatory 

individuals with iSCI with mild balance deficits (AIS level D) under different sensory conditions. 

However, the COP- and COM-based measures used in this chapter do not directly reflect all 

aspects of the adaptive postural movement strategies employed during standing. Even though such 

balance biomarkers can reflect reduced postural control due to mild balance impairment, they are 

unable to reveal the alteration in balance control strategies due to mild balance deficit. The next 

chapter will use the developed algorithm and wearable technology to investigate the differences in 

postural control strategies during static standing in the same group of individuals with iSCI 

compared to able-bodied participants. 
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Chapter 5 

This chapter shows how the validated algorithm can be used to characterize postural control 

strategy using wearable technology during standing in ambulatory individuals with iSCI with mild 

balance deficits under different sensory manipulations. This chapter has been adopted and/or 

edited from: 

A. Noamani, J.-F. Lemay, K. E. Musselman, and H. Rouhani, “Postural control strategy after 

incomplete spinal cord injury: effect of sensory inputs on trunk–leg movement coordination,” J. 

Neuroeng. Rehabil., vol. 17, no. 1, 2020, doi: 10.1186/s12984-020-00775-2. 

5 Postural Control Strategy after iSCI 

5.1 Introduction 

Regaining walking function and maintaining a steady standing posture are listed as top 

priorities for individuals with iSCI [16], [20], [21]. Literature reported that, at one-year post-injury, 

up to one-third of individuals with recent iSCI would recover partial balance and walking ability 

[16], [143]. Future ambulatory status is related to the initial amount of motor function below the 

level of the lesion [19]. For instance, statistics indicate partial recovery of walking function among 

80-100% of individuals with iSCI rated D on the American Spinal Injury Association Impairment 

Scale (AIS), indicating some preservation of motor and sensory function below the level of injury 

after the first year of injury [16], [144]. This highlights the importance of implementing outcome 

measures that identify the balance and walking capacities of individuals with iSCI to guide the 

delivery of more effective rehabilitative interventions. 

A significant challenge for individuals with iSCI is to maintain postural stability while 

recovering walking function [17]. iSCI affects the ability to safely stand and perform functional 

activities in this position [18]. The literature has reported a high occurrence of falling among the 

SCI population, with up to 78% of these individuals experiencing at least one fall post-

rehabilitation [10]–[12]. Falls can lead to injuries and hospitalization [10], restriction in 

community participation [11], [13], [14], and a fear of falling [15].  One of the major factors 

contributing to falls in this population is the loss of balance [14], [18], highlighting the lack of 
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effective postural control in individuals with iSCI. Furthermore, greater postural control in this 

population is highly related to a more normal gait pattern, higher stride speed, less reliance on 

supervision or physical assistance, and more functional ambulatory status [16]. Therefore, the 

development of fall prevention strategies is associated with effective postural control. 

Effective postural control is obtained via the integration of sensory information [17] and 

the interaction of the body with the changing environment [10]. Due to the sensory and motor 

impairments at and below the level of the lesion post-SCI [18], sensory reweighting may be 

affected. This effect on sensory reweighting results from the development of compensatory 

strategies to maintain postural stability [20], [35]. Consequently, any alteration in the availability 

of sensory inputs [17], [145] can further challenge postural stability in this population and may 

lead to a variety of adaptive movement coordination patterns. Hence, identifying the underlying 

impairments and changes to movement coordination patterns is necessary for effective 

rehabilitation post-SCI [20], [35]. 

Observational balance assessment methodologies have been used for balance assessment 

post-SCI. Yet, they tend to be subjective and provide minor information for understanding the 

adaptive postural control strategies for compensating for balance difficulties [16], [35], [36], 

highlighting the necessity of a quantitative method to assess postural stability.  

Quantitative evaluation of postural stability is usually performed using measures based on 

the displacement of the center-of-pressure (COP) on a force platform [18] or using measures based 

on center-of-mass (COM) acceleration from an inertial measurement unit (IMU) on the lower trunk 

[85], [244]. Previous studies have used COP-based measures to investigate the limits of stability 

[18] and the effect of sensory information on postural stability [17] post-SCI. The over-reliance 

on visual cues while walking and standing due to impaired somatosensation was highlighted [17], 

[145]. Recently, we characterized the effect of distorted visual and somatosensory inputs on 

postural control using a waist-mounted IMU and compared balance biomarkers between iSCI and 

able-bodied populations [245]. 

Due to impaired somatosensation and reduced muscle control, individuals with iSCI may 

adapt postural movement strategies compared to able-bodied individuals to compensate for 

reduced postural control. While COP- and COM-based measures are strong indicators of 

dysfunctional postural control, they do not directly reflect all aspects of the adaptive postural 

movement strategies employed during standing [136]. Therefore, although such balance 
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biomarkers can indicate reduced postural control post-iSCI, they are unable to reveal the 

underlying mechanism of how and why the postural control is altered. Measuring the kinematics 

between the body segments during standing allows us to capture not only the dysfunctional 

postural control but also how impaired balance is compensated post-iSCI by alteration of inter-

segment motions. Kinematic assessment of body segments during standing enables a better 

understanding of how individuals with iSCI employ adaptive postural strategies to compensate for 

balance difficulties due to impaired somatosensory feedback. For example, the impaired control 

of the ankle joint motion for maintaining the body COM stability during standing might be 

compensated by the altered motion control of the hip joint. During quiet standing, the human body 

is modelled as single and double inverted pendulums to study what is known as ankle and hip 

strategies, respectively. The human body mainly pivots around the ankle joint with increasing 

contribution of hip motion with larger postural sways. Previous literature [116], [136] has shown 

that, at sway oscillations below 1 Hz, able-bodied individuals move their trunk and leg in an in-

phase manner indicating an ankle strategy. However, at sway oscillations above 1 Hz, trunk and 

leg motion is anti-phase, indicating a hip or mixed ankle-hip strategy. This implies the domination 

of the ankle strategy during low-amplitude, low-velocity, or low-frequency motions, whereas the 

hip strategy dominates during larger sway perturbations [115], [116], [246].  Neurological 

impairments could alter the ankle and hip strategies in affected individuals at different sway 

frequencies [247]. The selection of segmental coordination pattern (in-phase or anti-phase) and 

between-patterns transition may be associated with a loss of stability and pre-selected movement 

strategy based on the task [116], [248]. Although the balance strategies of able-bodied individuals 

have been studied in the past, the segmental coordination patterns utilized by the iSCI group during 

quiet stance are yet to be investigated. 

Our recent study [245] showed that ambulatory individuals with iSCI (AIS level D) can 

exhibit reduced stability performance, increased control demand, and a less effective active 

correction with a higher reliance on visual information and lower reliance on somatosensory 

information. In the present study, we aim to (1) compare the postural movement between the same 

group of ambulatory individuals with iSCI (AIS level D) and able-bodied individuals to quantify 

the inter-segment coordination of the trunk and the leg motions; (2) investigate the alteration of 

postural movement strategies under conditions that challenge balance by affecting somatosensory 

(standing on hard vs. foam surfaces) and visual (eyes open vs. closed) inputs; and (3) characterize 
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the test-retest reliability of inter-segment coordination quantification and compare it with that of 

conventional balance biomarkers for the iSCI group.  

We expected that ambulatory individuals with iSCI (AIS level D) would have difficulties 

adapting trunk-leg movement patterns from the ankle strategy at lower frequencies to the mixed 

strategy at higher frequencies due to their sensory and motor impairment. 

5.2 Methods 

5.2.1 Participants 

Table 5-1. Demographic information of participants with incomplete spinal cord injury (iSCI); and demographic 

information of able-bodied participants  

Group Variable Mean (Standard Deviation) Range 

iSCI 

Age (years) 52.4 (20.5) 20-87 

Height (cm) 174.7 (7.8) 161-188 

Weight (kg) 82.1 (18.3) 57-113.4 

Time post lesion (months) 62.2 (70.1) 27-289 

Lower Extremity Motor Score (/50) 44.8 (4.3) 32-49 

 Age (years) 39.4 (19.3) 18-84 

Able-bodied  Height (cm) 170.5 (8.4) 156-181 

 Weight (kg) 69.8 (14.4) 47.5-96 

 Variable Number 

 Sex (Male/Female) Male = 12, Female = 1 

iSCI Level of lesion Paraplegia: 8, Tetraplegia: 5 

 Type of lesion Traumatic: 10, Non-traumatic: 3 

Able-bodied  Sex (Male/Female) Male = 7, Female = 7 

 

Thirteen ambulatory individuals with a traumatic or a non-traumatic iSCI AIS level D 

(hereafter iSCI group) and fourteen aged-matched able-bodied individuals voluntarily participated 

in this study (Table 5-1). In the present study, we used ±3 years for age matching. There was no 

significant difference between the age of the able-bodied participants and individuals with iSCI 

(p-value = 0.1146). Participants with iSCI were recruited from the outpatient population of the 

CIUSSS du Centre-Sud-de-l’Île-de-Montréal (Installation Gingras-Lindsay) and the Lyndhurst 

Centre, Toronto Rehabilitation Institute-University Health Network. The inclusion criteria for the 

iSCI group were: (a) adults with traumatic and non-traumatic motor and sensory iSCI with 

American Spinal Injury Association Impairment Scale (AIS) C or D; (b) at least 5 months post-

injury; and (c) able to walk for six minutes without assistive devices or assistance of another person 

to ensure that intrinsic balance ability could be studied. Exclusion criteria were: (a) presence of 
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other neurological disorders; (b) visual impairments not corrected with glasses; and (c) vestibular 

deficits. Ethics approval was obtained from the local ethics committees. Each participant provided 

written informed consent prior to participation. 

5.2.2 Experimental procedure 

Previous studies have suggested that assessing balance during quiet standing on hard or 

foam surfaces with eyes open or closed could provide useful information to evaluate the balance 

performance of individuals with iSCI [157], [163], [167]. Participants were asked to perform a 

one-minute quiet stance with their feet shoulder-width apart under four different sensory 

conditions: (1) hard surface with eyes open (HSEO), (2) hard surface with eyes closed (HSEC), 

(3) foam surface with eyes open (FSEO), and (4) foam surface with eyes closed (FSEC). The 

purpose of using a foam surface was to alter somatosensory information while standing. Foam 

pads with medium density and a thickness of 7.62 cm (3 inches) (Velva 60, Domfoam, Canada) 

were attached to the participants’ shoes using Velcro straps. The EC condition was used to 

eliminate the effect of visual feedback on balance. Participants were asked to close their eyes for 

the duration of the EC condition. The standing conditions were performed in a randomized order 

using simple randomization, and rest breaks were taken between trials as needed. The length of 

the rest breaks was adjusted to eliminate the impact of fatigue on the performance of the 

participants. The iSCI group participated in two testing sessions (two weeks apart) to assess the 

test-retest reliability of the proposed outcome measures. 

5.2.3 Data acquisition and human body modelling 

To measure the kinematics of the trunk and leg, we used two IMUs (Physilog®5, GaitUp, 

Switzerland) placed over the sacrum and right tibia of each participant (Figure 5-1a and 1b). Each 

IMU contained a tri-axial accelerometer (range: ±16g) and a tri-axial gyroscope (range: ±2000 

deg/s) and recorded the motion of the body segments at a sampling frequency of 256 Hz. The IMU 

recordings were low-pass filtered via a zero-lag 8th-order Butterworth filter with a cut-off 

frequency of 5 Hz. 

The human body was modelled as a double inverted pendulum with trunk, leg, and foot 

segments connected to each other by two 3D revolute joints representing hip and ankle joints. The 

feet were assumed motionless during the standing trials. The mass, length, COM, and moments of 

inertia of the segments were estimated based on the body mass and height, according to Winter 
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[223]. We obtained the instantaneous orientation of the trunk and leg segments by aligning the 

accelerometer’s vertical axis with gravity during quiet stance [225], [227]. We assumed the 

segments as rigid links and calculated the instantaneous position of the COM, linear acceleration, 

and angular velocity of the body using the segments’ orientation. We developed a custom-built 

MATLAB (MathWorks, USA) program for an IMU-based top-down inverse dynamics to estimate 

the ankle and hip joint moments and center-of-pressure (COP) position based on our previous 

study [93].  

5.2.4 Outcome measures and data analysis 

To identify changes in inter-segment movement coordination and control strategy in the 

iSCI group, we calculated the Magnitude-Squared Coherence (MSC) between the acceleration 

patterns of the trunk and leg segments in the anterior-posterior direction. MSC was then calculated 

as:  

𝑀𝑆𝐶 = |𝐶𝑥𝑦(𝑓)|
2 =

|𝑃𝑥𝑦(𝑓)|
2

𝑃𝑥𝑥(𝑓). 𝑃𝑦𝑦(𝑓)
 

(1) 

Where 𝐶𝑥𝑦(𝑓) and 𝑃𝑥𝑦(𝑓) are the complex coherence and cross-spectral density between two 

signals,  𝑃𝑥𝑥(𝑓) and 𝑃𝑦𝑦(𝑓) are the power spectral densities for the signals being compared, and 𝑓 

is frequency. We calculated the power spectral density and cross-power spectral density using 

Welch’s averaged method. A Hanning window of 10 seconds with an overlap of 50% was used 

across frequencies of 0-5 Hz.  The range of the frequency 0 to 5 Hz was selected based on the 

frequency content of the time series obtained via Fast Fourier Transform. Previous literature [116], 

[136] showed that, in able-bodied individuals, the trunk and leg have in-phase motions at sway 

oscillation below 1 Hz, indicating the domination of the ankle strategy during low-frequency 

motions. However, as the sway oscillation increases above 1 Hz, trunk and leg motions become 

anti-phase, indicating a hip or mixed ankle-hip strategy during larger sway perturbations [115], 

[116], [246]. Since the literature [116], [248] has shown that a frequency of 1 Hz is the cut-off 

between in-phase (ankle strategy) and anti-phase (ankle-hip strategy) movement coordination, we 

calculated the mean of MSC of all frequencies (1) below or equal to 1 Hz, and (2) above 1 Hz for 

each participant and each standing condition as an outcome measure for balance assessment. An 

MSC of 1 indicates an in-phase trunk-leg motion pattern, and the smaller the MSC, the lower the 

degree of in-phase action between trunk and leg segments [116]. 
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Figure 5-1. (a) Inertial measurement units (IMUs) were placed on the sacrum and the tibia of the right leg. (b) 

Acceleration signals in the time-domain for trunk and leg segments for one participant for standing on a hard surface 

with eyes open. (c) Trunk-leg Magnitude-Squared Coherence (MSC) for the iSCI group (red) and able-bodied (AB) 

individuals (blue) presented as an ensemble average (mean ± standard deviation) for both groups and each standing 

condition on a hard surface (HS) and foam surface (FS) with eyes open (EO) and eyes closed (EC). (d) Cancellation-

index indicates the reciprocal action between the angular acceleration of the ankle and hip joints as presented for one 

participant from the AB and iSCI groups for standing on a hard surface with eyes open. 
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We also used the cancellation-index proposed by Kato et al. [87], in addition to MSC, to 

identify changes in reciprocal action between the ankle and hip joints (mixed strategy) during 

standing in the iSCI group as follows: 

𝐶𝐼 =  

√𝑘1
2𝑣𝑎𝑟(�̈�𝑙𝑒𝑔) + 𝑘2

2𝑣𝑎𝑟(�̈�𝑡𝑟𝑢𝑛𝑘)

√𝑘1
2𝑣𝑎𝑟(�̈�𝑙𝑒𝑔) + 𝑘2

2𝑣𝑎𝑟(�̈�𝑡𝑟𝑢𝑛𝑘) + 2𝑘1𝑘2𝑐𝑜𝑣(�̈�𝑙𝑒𝑔, �̈�𝑡𝑟𝑢𝑛𝑘)

 

(2) 

Where 𝐶𝐼 is cancellation-index, �̈� is angular acceleration; 𝑘1 and 𝑘2 are constants obtained based 

on the mass and length of the segments as explained by Kato et al. [87]; and 𝑣𝑎𝑟(𝑥) and 𝑐𝑜𝑣(𝑥, 𝑦) 

represent the variance of 𝑥 and the covariance of 𝑥 and 𝑦, respectively. A cancellation-index of 1 

indicates that there is no reciprocal action between ankle and hip joints, and the greater the 

cancellation-index, the greater the degree of reciprocal action.  

 

Table 5-2. As conventional outcome measures, a total of ten center-of-pressure (COP) measures were calculated 

according to [241]. In addition, three center-of-mass (COM) acceleration-based measures were used based on [85]. 

For movement coordination, we used Cancellation Index based on [87] and Magnitude-Squared Coherence (MSC) 

between trunk and leg segments. 

Outcome Measure Nomenclature Type 

Root-Mean-Square Distance RDIST 

COP Time-domain distance measures 
Mean Distance MDIST 

Total Excursion TOTEX 

Mean Velocity MVELO 

95% Confidence Ellipse Area Area-CE COP area measure 

Sway Area Area-SW 
COP Time-domain hybrid measures 

Mean Frequency MFREQ 

Median Frequency MEDFREQ 

COP Frequency-domain measures Centroid Frequency CFREQ 

Frequency Dispersion FREQD 

Sway jerkiness JERK 

COM acceleration-based measures Root-Mean-Square Acceleration RMS-ACC 

Centroid Frequency CF-ACC 

Cancellation-Index CI 
Trunk-leg acceleration pattern coordination 

Magnitude-Squared Coherence MSC 

 

To identify changes to movement coordination strategies due to impairment (iSCI vs. able-

bodied) and altered sensory inputs (HS vs. FS and EO vs. EC), we performed statistical analyses 
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on MSC-based outcome measures at low and high frequencies. The Kolmogorov-Smirnov test was 

used to check that the data were normally distributed, followed by Levene's test to determine the 

equality of variance. Subsequently, we performed either a three-way Analysis of Variance 

(ANOVA) or a Kruskal-Wallis test (significance level = 0.05) with Bonferroni correction followed 

by a multiple comparison post-hoc test (MATLAB 2019b, MathWorks, USA). We also used 

Cohen’s d effect size to compare the effect of altered sensory inputs on the adaptation of inter-

segment coordination between iSCI and able-bodied groups. 

Furthermore, we calculated COP-based and COM acceleration-based measures (Table 

5-2), similar to our previous study [245], to compare the test-retest reliability of MSC-based 

measures with conventional balance biomarkers. We used the intra-class correlation coefficient 

(ICC) for the model (2, k) to evaluate the reliability of each outcome measure.  

5.3 Results 

5.3.1 Effect size between groups 

At lower frequencies (f ≤ 1 Hz), the mean MSC between the trunk and leg accelerations 

was high (above 0.88 medians across participants) for both able-bodied and the iSCI groups across 

all standing conditions (Table 5-3a). Moreover, the effect sizes between populations were small, 

ranging from 0.06 to 0.42. At higher frequencies (f > 1 Hz), mean MSC between trunk and leg 

accelerations were reduced for both groups. However, at higher frequencies, the iSCI group had 

significantly larger mean MSC between trunk and leg accelerations compared to able-bodied 

participants with large effect sizes between groups, ranging from 0.53 to 1.13 across all standing 

conditions.  

5.3.2 Effect size between conditions 

At lower frequencies, the pairwise comparison between mean MSC at different standing 

conditions revealed small effect sizes for both groups (Table 5-3b). However, at higher 

frequencies, medium and large effect sizes were observed for able-bodied participants ranging 

from 0.77 to 1.61 showing larger effect sizes with more challenging conditions (Table 5-3b). 

Similar patterns were observed for the iSCI group; however, the effect sizes were relatively smaller 

compared to able-bodied participants at higher frequencies. 
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Table 5-3. (a) Mean Magnitude-Squared Coherence (MSC) between trunk and leg accelerations presented as [25%, 

50%, 75%] percentiles for able-bodied (AB) participants and ambulatory individuals iSCI AIS level D at lower and 

higher frequencies for different standing conditions as well as between-group Cohen’s d effect size. (b) Between-

conditions Cohen’s d effect size for AB and iSCI groups at lower and higher frequencies. (c) Cancellation-index 

proposed by Kato et al. [87] as an indicator of trunk-leg reciprocal action presented as [25%, 50%, 75%] percentiles 

for AB and iSCI groups with the between-group effect size for each standing condition. Cohen’s d effect size was 

defined as very small (d = 0.01), small (d = 0.20), medium (d = 0.50), large (d = 0.80), very large (d = 1.20), and huge 

(d = 2.00). 

 

(a) Lower Frequencies (f ≤ 1 Hz)  

 AB iSCI Cohen’s d  

HSEO [0.87, 0.88, 0.89] [0.86, 0.89, 0.89] 0.34  

HSEC [0.88, 0.89, 0.9] [0.84, 0.88, 0.9] 0.36  

FSEO [0.84, 0.89, 0.9] [0.85, 0.9, 0.91] 0.06  

FSEC [0.85, 0.89, 0.9] [0.78, 0.9, 0.94] 0.42  

Higher Frequencies (f > 1 Hz)  

 AB iSCI Cohen’s d  

HSEO [0.18, 0.21, 0.29] [0.29, 0.44, 0.57] 1.13  

HSEC [0.19, 0.24, 0.33] [0.27, 0.44, 0.57] 0.99  

FSEO [0.28, 0.34, 0.47] [0.43, 0.49, 0.83] 1.11  

FSEC [0.38, 0.59, 0.72] [0.52, 0.78, 0.87] 0.53  

  

 

 

(b)  Cohen’s d effect size between conditions 

 AB  iSCI 

 f ≤ 1 Hz f > 1 Hz  f ≤ 1 Hz f > 1 Hz 

HSEO vs. HSEC 0.37 0.08  0.33 0.04 

HSEO vs. FSEO 0.02 0.77  0.26 0.58 

HSEO vs. FSEC 0.35 1.58  0.41 0.97 

HSEC vs. FSEO 0.33 0.79  0.05 0.59 

HSEC vs. FSEC 0.01 1.61  0.12 0.96 

FSEO vs. FSEC 0.32 1.11  0.16 0.35 
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(c) Cancellation Index 

  AB iSCI Cohen’s d 

HSEO [1.012, 1.018, 1.02] [1.013, 1.015, 1.018] 0.43 

HSEC [1.015, 1.017, 1.019] [1.012, 1.014, 1.018] 0.58 

FSEO [1.013, 1.017, 1.019] [1.013, 1.016, 1.018] 0.27 

FSEC [1.015, 1.016, 1.019] [1.012, 1.015, 1.018] 0.49 

 

5.3.3 Main effects 

The main effect of the health condition (Table 5-4a) shows no significant differences 

between able-bodied and iSCI groups for mean MSC of trunk and leg accelerations at lower 

frequencies (f ≤ 1 Hz). However, at higher frequencies (f > 1 Hz), the iSCI group had a 

significantly larger mean MSC between trunk and leg accelerations compared to able-bodied 

participants (Figure 5-1c). Moreover, the cancellation-index was significantly smaller for the iSCI 

group compared to able-bodied participants (Table 5-4a and Figure 5-1d).  

The main effect of the surface condition (Table 5-4a) revealed a significantly larger mean 

MSC for standing on FS compared to HS at higher frequencies, while its effect was negligible on 

mean MSC at lower frequencies and on the cancellation-index. No main effect of vision (EO vs. 

EC) was observed on the mean MSC and on the cancellation-index. 

 

Table 5-4. Statistical analysis on Mean Magnitude-Squared Coherence (MSC) between trunk and leg accelerations at 

lower and higher frequencies and on Cancellation-Index (CI): (a) the main effect of health (iSCI vs AB), surface (FS 

vs. HS), and vision (EC vs, EO) conditions; and interaction effect of (b) surface and vision conditions, (c) health and 

surface conditions, and (d) health and vision conditions. Bold numbers show significant difference (P-value < 0.05). 

 

(a) Main Effects (P-value) 

 iSCI vs. AB FS vs. HS EC vs. EO 

MSC (f ≤ 1 Hz) 0.756 0.218 0.564 

MSC (f > 1 Hz) 0.000 0.000 0.189 

CI 0.042 0.995 0.658 

 

 

 

 

(b) Interaction effect of surface and vision conditions (P-value) 

 
HSEO vs. 

HSEC 

HSEO vs. 

FSEO 

HSEO vs. 

FSEC 

HSEC vs. 

FSEO 

HSEC vs. 

FSEC 

FSEO vs. 

FSEC 

MSC (f ≤ 1 Hz) 0.939 0.727 0.576 0.967 0.896 0.995 

MSC (f > 1 Hz) 1.000 0.190 0.001 0.214 0.001 0.274 

CI 0.947 0.995 0.989 0.990 0.996 1.000 
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(d) Interaction effect of health and vision conditions (P-value) 

 
AB-EO vs. 

AB-EC 

AB-EO vs. 

iSCI-EO 

AB-EO vs. 

iSCI-EC 

AB-EC vs. 

iSCI-EO 

AB-EC vs. 

iSCI-EC 

iSCI-EO 

vs. iSCI-

EC 

MSC (f ≤ 1 Hz) 0.920 0.970 0.926 0.998 1.000 0.998 

MSC (f > 1 Hz) 0.416 0.005 0.002 0.270 0.149 0.991 

CI 0.999 0.595 0.296 0.680 0.367 0.960 

 

Table 5-5. Test-retest reliability of conventional balance biomarkers [245] and Mean Magnitude-Squared Coherence 

(MSC) between trunk and leg accelerations at lower and higher frequencies for ambulatory individuals with iSCI AIS 

level D as measured by Intra-class Correlation Coefficient (ICC) across different standing conditions on foam (FS) 

and hard surfaces (HS) with eyes open (EO) and closed (EC).  

 

 Intra-class Correlation Coefficient (ICC) 

  HSEO HSEC FSEO FSEC 

RDIST 1.00 0.94 0.90 0.68 

MDIST 1.00 0.93 0.92 0.70 

TOTEX 1.00 0.87 0.78 0.88 

MVELO 1.00 0.87 0.79 0.84 

Area-CE 0.99 0.74 0.81 0.06 

Area-SW 1.00 0.65 0.75 0.12 

MFREQ 0.77 0.60 0.52 0.28 

MEDFREQ 0.18 0.58 0.08 0.13 

CFREQ 0.83 0.60 0.59 0.13 

FREQD 0.80 0.24 0.70 0.33 

JERK 1.00 0.64 0.41 0.99 

RMS-ACC 1.00 1.00 1.00 1.00 

CF-ACC 0.22 0.16 0.18 0.03 

CI 0.50 0.80 0.76 0.41 

MSC (f ≤ 1 

Hz) 
1.00 1.00 1.00 1.00 

MSC (f > 1 

Hz) 
1.00 1.00 1.00 1.00 

Poor Fair  Good Excellent 

0 - 0.40 0.40 - 0.6 0.6 - 0.74 0.75 - 1 

 

(c) Interaction effect of health and surface conditions (P-value) 

 
AB-HS vs. 

AB-FS 

AB-HS vs. 

iSCI-HS 

AB-HS vs. 

iSCI-FS 

AB-FS vs. 

iSCI-HS 

AB-FS vs. 

iSCI-FS 

iSCI-HS 

vs. iSCI-

FS 

MSC (f ≤ 1 Hz) 0.956 0.999 0.687 0.910 0.932 0.600 

MSC (f > 1 Hz) 0.003 0.006 0.000 0.999 0.134 0.110 

CI 0.990 0.301 0.482 0.473 0.673 0.990 
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5.3.4 Interaction effects 

The interaction effect of vision and surface conditions (Table 5-4b) showed that the FSEC 

condition significantly increased mean MSC compared to HSEO and HSEC at higher frequencies. 

In addition, at higher frequencies, the mean MSC of able-bodied participants increased while 

standing on FS compared to HS (Table 5-4c). Although a similar trend was observed for the iSCI 

group, its effect was not significant. The effect of EC on mean MSC was not significant for both 

groups. However, the iSCI group had a significantly larger mean MSC even with EO and EC 

compared to able-bodied standing with EO (Table 5-4d). At lower frequencies, all interaction 

effects were not significant for the cancellation-index and mean MSC. The between-group effect 

sizes for the cancellation-index were small to medium ranging from 0.27 to 0.58 for different 

standing conditions (Table 5-3c). 

5.3.5 Test-retest reliability 

Table 5-5 shows test-retest reliability as measured via ICC for conventional balance 

biomarkers, presented in our previous study [245], and mean MSC at lower and higher frequencies 

for the iSCI group. Among conventional balance biomarkers, only two COP time-domain 

measures (TOTALX and MVELO) and RMS-ACC showed excellent reliability across all standing 

conditions. The rest of these measures showed average or poor reliability for the FSEC or FSEO 

conditions. The highest reliability was observed for mean MSC with excellent reliability at all 

standing conditions. 

5.4 Discussion 

This study provides an evaluation of the balance control strategy and inter-segment 

movement coordination for a group of ambulatory individuals with iSCI (AIS level D) compared 

to age-matched able-bodied individuals during a variety of challenging standing conditions that 

affected somatosensory and visual inputs. Using IMUs placed on the trunk and leg, we obtained 

MSC between the trunk and leg acceleration patterns. We compared mean MSC at lower (f ≤ 1 

Hz) and higher (f > 1 Hz) frequencies between groups in different challenging conditions to 

characterize changes in movement coordination patterns after iSCI (AIS level D) based on reliance 

on somatosensory and visual information. 

Previous studies [116], [136] showed that able-bodied individuals move their trunk and leg 

in an in-phase motion at sway frequencies below 1 Hz, indicating an ankle strategy. However, at 
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sway frequencies above 1 Hz, the movement of the trunk and leg segments is anti-phase, indicating 

a hip or mixed ankle-hip strategy. Creath et al. [116] demonstrated that able-bodied individuals 

have high trunk-leg coherence at lower frequencies, and low trunk-leg coherence at higher 

frequencies representing ankle (in-phase) and ankle-hip (anti-phase) balance control strategies, 

respectively. We observed that movement coordination patterns of the iSCI group were affected 

due to impaired sensory and motor function compared to able-bodied individuals. We also 

observed that the iSCI group had difficulties adapting trunk-leg movement patterns from the ankle 

strategy at lower frequencies to the mixed strategy at higher frequencies due to their impaired 

somatosensation. 

5.4.1 Effect of iSCI on balance strategy 

Our results indicate that mean MSC between the trunk and leg acceleration patterns at 

frequencies below 1 Hz were high (above 0.88 medians across participants) for both groups 

reflecting an ankle strategy at lower frequencies. No significant main effect of health condition 

(able-bodied vs. iSCI) was observed on mean MSC at lower frequencies, and we observed small 

effect sizes between the groups across all standing conditions. These findings may imply that the 

iSCI group considered in this study display a similar balance control strategy (i.e., ankle strategy) 

compared to able-bodied individuals at lower frequencies with moving their trunk and leg in an 

in-phase manner.    

As we expected, the mean MSC between the trunk and leg acceleration patterns reduced 

as sway frequency increased from 1.0 to 5.0 Hz in both groups. This highlights the transition from 

the ankle strategy to the mixed ankle-hip strategy at higher frequencies and is in agreement with 

previous studies [116], [136]. However, our results revealed that the iSCI group showed 

significantly larger mean MSC at higher frequencies compared to able-bodied participants. 

Moreover, large effect sizes were observed between the groups in the mean MSC across all 

standing conditions at higher frequencies. These findings may confirm our hypothesis that inter-

segment movement coordination is affected post-iSCI due to impaired sensory and motor function 

compared to able-bodied individuals.  

Moreover, as sway frequency increased, able-bodied individuals reduced their trunk-leg 

acceleration coherence representing a switch from an ankle strategy to a hip or mixed strategy 

[116]. However, the iSCI group showed a significantly larger mean MSC between trunk and leg 
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accelerations. This indicates that they are less able to adapt their movement patterns from the ankle 

strategy to a mixed strategy at higher frequencies compared to able-bodied individuals. In addition, 

we used the cancellation-index from the literature [82], [87] to investigate reciprocal motions of 

the ankle and hip joints during quiet standing, highlighting the degree of mixed ankle-hip strategy. 

We observed a significantly smaller cancellation-index in the iSCI group compared to able-bodied 

individuals confirming reduced anti-phase motion between the ankle and hip joints post-iSCI. This 

also highlights an inability to utilize the mixed ankle-hip strategy for maintaining balance due to 

impairment in this group. 

5.4.2 Effect of alteration of sensory information 

We investigated the effect of altered sensory information on balance control strategy in 

able-bodied and iSCI groups. We compared mean MSC at lower and higher frequencies under 

conditions that challenge balance by affecting somatosensory (standing on HS vs. FS) and visual 

(EO vs. EC) inputs. The main effect of surface condition revealed a significantly larger mean MSC 

at higher frequencies for standing on FS compared to HS. However, the main effect of surface 

condition was insignificant on the cancellation-index and the mean MSC at lower frequencies. 

Larger mean MSC at higher frequencies may imply that when the somatosensory feedback is 

distorted due to standing on FS, utilizing the mixed ankle-hip strategy is challenged at higher sway 

frequencies. In contrast, depriving visual information did not reveal any significant effect on the 

mean MSC at lower and higher frequencies. This may imply the minor effect of vision on the 

transition from the ankle strategy to the ankle-hip strategy at higher frequencies. The interaction 

effect of surface and vision conditions (Table 5-4b) revealed a similar finding showing a 

significant increase in mean MSC at higher frequencies for FSEC compared to HSEO and HSEC 

conditions, while no significant effect of vision was observed. 

At higher frequencies, mean MSC significantly increased for able-bodied participants 

when standing on FS compared to HS. This may imply that altered somatosensory information 

challenged the use of a mixed ankle-hip strategy at higher frequencies for able-bodied individuals. 

In contrast, the effect of FS compared to HS on mean MSC was insignificant for the iSCI group. 

This may be associated with impaired somatosensory feedback post-iSCI. iSCI alters 

somatosensory tracts located in the dorsal column decreasing the relative contribution of 

somatosensory information to maintaining balance [17], whereas able-bodied individuals 

primarily use somatosensory information for maintaining balance [17]. This may provide useful 
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information on why altering somatosensory information significantly affected the balance control 

strategy in able-bodied individuals while its effect was minor on the iSCI group.  Moreover, it is 

suggested by the literature that individuals with iSCI mainly use visual information to maintain 

postural stability [245] and therefore, this may justify why altering the somatosensory information 

by using a foam surface had a lesser impact on the control strategy used by the iSCI group. 

In agreement with the findings above, the pairwise comparison between mean MSC of 

different conditions showed small effect sizes at lower frequencies and medium to large effect 

sizes at higher frequencies for both groups due to alteration of sensory inputs. Between-condition 

effect sizes were relatively smaller for the iSCI group compared to able-bodied individuals 

confirming less adaptive movement coordination at higher frequencies post-iSCI. 

Note that although the cancellation-index was able to distinguish movement coordination 

patterns of the iSCI group from able-bodied participants, it was incapable of identifying changes 

in balance strategies due to altered sensory information, in contrast to MSC. This is due to the fact 

that the cancellation-index is a time-domain measure that indicates the trunk-leg reciprocal action 

across the whole frequency spectrum and does not identify the transition from in-phase to anti-

phase inter-segment coordination as sway frequency increases. Hence, using the cancellation-

index to quantify trunk-leg anti-phase action may not be sensitive enough to identify changes to 

inter-segment coordination due to the alteration of sensory inputs. In contrast, mean MSC across 

different ranges of frequency showed sensitivity to alteration of sensory information. This 

highlights the power of using MSC between trunk and leg accelerations, compared to the 

cancellation-index, in identifying changes to balance control strategies not only due to 

neuromuscular impairments but also due to the alteration of sensory inputs. 

5.4.3 Test-retest reliability 

Although a majority of the conventional biomarkers of standing balance previously 

suggested in the literature showed excellent test-retest reliability in the least challenging condition 

(HSEO), only three of them (COP Total Excursion, COP Mean Velocity, and COM RMS 

Acceleration) had good to excellent test-retest reliability in all four conditions. The cancellation-

index showed good to excellent test-retest reliability in only two conditions. However, MSC in 

both lower and higher frequencies showed excellent test-retest reliability for all conditions. As 

such, despite its complex mathematical definition, MSC in both lower and higher frequencies 
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provided repeatable, responsive and sensitive outcome measures with neurophysiological 

relevance for the evaluation of balance strategy in ambulatory individuals with iSCI AIS level D. 

5.4.4 Limitations 

The data used in the present study were obtained from a relatively small and homogeneous 

group of individuals with iSCI, which limited the generalization of the observations and reached 

conclusions. A larger population would be needed to identify any clinically meaningful changes 

in balance control. We only recruited individuals with iSCI AIS level D. Participants with a greater 

level of motor and/or sensory impairments (AIS levels A, B, and C) must be recruited to assess 

the postural control strategy using trunk-leg coordination measures under different standing 

conditions across a more diverse iSCI population. Moreover, bilateral symmetry was assumed in 

this study, which ignores any asymmetric motion patterns between the left and right legs. The 

assumption of bilateral symmetry for individuals with iSCI was based on our preliminary 

experimental investigations that did not reflect a significantly weaker (or stronger) side. 

Participants with iSCI showed relatively good motor recovery and had Lower Extremity Motor 

Scores (LEMS) of 44.8 ± 4.3 (mean ± standard deviation) out of 50 for both sides. In addition, the 

LEMS for the right and left sides were 22.6 ± 1.4 and 22.4 ± 3.6 out of 25, respectively, showing 

no statistically significant difference between the sides (p-value = 0.8336). Nevertheless, this 

assumption is a limitation of this study.  

We assumed the shank and thigh as a single segment, which neglects the relative angle at 

the knee joint. Literature has shown a minor contribution of the knee joint to the standing balance 

of able-bodied individuals compared to the ankle and hip joints considered in this study [118]. 

Despite this, the effect of the knee joint on the movement coordination of individuals with iSCI 

during quiet standing should be investigated in the future. 

5.4.5 Future directions 

This study highlights how the integration of the sensory inputs and motor strategies are 

related and how they are impaired in a group of ambulatory individuals with iSCI (AIS level D). 

It shows the necessity of evaluating sensory integration in individuals with iSCI and observing 

how the motor control strategies are affected due to iSCI under different sensory conditions. 

Sensory integration can be evaluated with various devices (such as the Smart Balance Master™) 

and also with clinical scales such as the mini BESTest. However, most clinical evaluations do not 
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specifically characterize ankle and/or hip strategies. This study suggests that a more 

comprehensive evaluation of balance in individuals with iSCI should assess how motor control 

strategies are modified following iSCI. We do not know at this point whether these motor control 

strategies could be improved if therapists train individuals with iSCI under these various sensory 

conditions. Nevertheless, future studies may use such an objective method to characterize specific 

impairments and identify underlying causes. Obtained measures may then be used to precisely 

focus the therapy on underlying causes and track subtle changes in postural control over time. As 

a future direction, it could be investigated how trunk-leg movement coordination in the iSCI group 

would change following rehabilitative interventions. In addition, it could provide clinicians with 

an insight into how adaptive movement strategies affect postural control post-iSCI. Future studies 

should also investigate postural control strategies post-iSCI in the presence of internally generated 

or externally applied perturbations as well as during walking in ambulatory individuals with iSCI.   

5.5 Conclusion 

We presented an assessment of balance control strategy and inter-segment movement 

coordination for a group of ambulatory individuals with iSCI (AIS level D) compared to age-

matched able-bodied participants during standing on hard and foam surfaces with eyes open and 

closed using only two IMUs. Our observations suggest a similar balance strategy at lower 

frequencies between iSCI and able-bodied groups. However, we observed a decreased ability post-

iSCI in adapting inter-segment coordination between trunk and leg segments changing from ankle 

strategy to mixed ankle-hip strategy as the sway frequency increases. Using coherence between 

trunk and leg accelerations, we also showed that alteration of somatosensory inputs may affect 

trunk-leg movement coordination in both groups. Characterization of trunk-leg movement 

coordination based on coherence analysis provided a sufficient sensitivity with the discriminatory 

ability and excellent test-retest reliability to identify changes in balance control strategy in 

ambulatory individuals with iSCI (AIS level D). Conventional IMU-based balance biomarkers 

were not able to obtain a similar extent of responsiveness and repeatability. Future studies should 

investigate the use of our proposed method for objective outcome evaluation of rehabilitative 

interventions on postural control post-iSCI in a more diverse population.  
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5.5.1 What is next? 

We validated a wearable technology algorithm (Chapter 3) and used it to characterize 

subtle differences in balance and postural control mechanisms in individuals with mild balance 

deficits under different sensory conditions (Chapters 4 and 5). However, there is a need for a 

clinical study to investigate the applicability of the developed algorithm along with the wearable 

sensors for objective outcome evaluation of balance rehabilitation compared to conventional 

clinical observational scales in individuals with moderate-to-severe balance impairment. In the 

next chapter, we used our developed algorithm along with wearable sensors integrated into a 

clinical functional test to assess its sensitivity and responsiveness for clinical outcome evaluation 

of balance rehabilitation in elderly individuals with moderate-to-severe balance impairment. 
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Chapter 6 

This chapter shows how the validated algorithm can be integrated into a clinical functional test 

for the evaluation of rehabilitative interventions using wearable technology in a clinical setting. 

This chapter has been adopted and/or edited from: 

A. Noamani, A. H. Vette, and H. Rouhani, “Instrumented Functional Test for Objective Outcome 

Evaluation of Balance Rehabilitation in Elderly Fallers: A Clinical Study,” Gerontology 2022, 

doi: 10.1159/000521001. 

6 Instrumented Clinical Balance Evaluation 

6.1 Introduction 

Falls are among the most frequent causes of fatal and non-fatal injuries in the elderly [1], 

[2]. Up to one-third of seniors fall at least once a year [6], with over 50% of fallers reporting 

multiple falls [7]. The fall rate among the elderly grows with age [8], making falls the fifth leading 

cause of death in older adults [9]. Falling is a common concern among community-dwelling 

elderly, with a prevalence rate of 30% to 85% [249]–[251], which may contribute to declined 

mental and physical health [156], [249]. Literature has shown that poor postural balance is one of 

the key indicators of falls in the elderly, and evaluation of balance can help prevent falls by 

introducing targeted rehabilitative interventions [154]. The ultimate goal of rehabilitative 

interventions is twofold: (1) preventing future falls and (2) reducing fall severity [8]. Effective 

interventions could prevent more than half of the potential falls in the elderly population [155]. In 

this light, it is crucial to not only implement balance assessment methodologies and introduce 

targeted rehabilitative interventions, but also to evaluate the effectiveness of such interventions to 

reduce future fall incidences and their adverse consequences among the elderly [1], [8], [156].  

Clinicians such as physical therapists commonly use observational assessment 

methodologies and functional mobility assessment tools to examine static and dynamic stability. 

Many tests have been validated in clinical settings, such as the Berg Balance Scale (BBS). 

Although therapists assign a score between 1 to 4 for each BBS task to produce a quantitative 

measure of balancing ability, the assignment process involves human decision-making. 
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Accordingly, such human decision-making can introduce subjective error to assigned scores. 

Therefore, despite such tests being relatively fast and reliable, they tend to be, in part, subjective 

in nature [157], lack constructs validity, and may not always result in reliable and sensitive 

outcomes [49]. Moreover, these tests provide little information for understanding potential 

underlying causes of balance difficulties and for evaluating the effect of therapy on balance 

performance [16], [35], [36]. These facts highlight the paramount need for a more quantitative 

objective methodology to evaluate balance when choosing targeted rehabilitative interventions and 

when performing their objective outcome evaluation [85], [121].  

Previous studies have shown a high inverse association between static standing balance 

and the risk of falling [158], [160]. Standing balance is quantitatively evaluated using balance 

biomarkers obtained from the displacement of the center-of-pressure (COP) measured by a force 

platform [241] or the COP estimated via inertial measurement units (IMUs) [76]. In addition, some 

balance biomarkers have been proposed based on the acceleration of the body’s COM measured 

by an IMU placed on the lower trunk [85]. Previous studies have shown that such quantitative 

balance biomarkers enable identifying age-related changes in balance and, thus, the risk of falling 

in the elderly population with high sensitivity and reliability [91], [158]–[160], [241]. Furthermore, 

the accuracy and efficiency of using IMUs for obtaining such measures have been investigated in 

the past [76], [91]. However, the capability of IMU-based balance biomarkers compared to 

functional observational tests for identifying the effect of rehabilitative interventions in objective 

outcome evaluation is yet to be investigated in a clinical setting. If IMUs show such a capacity 

besides their user-friendliness and relatively low cost, they can be integrated into point-of-care 

clinical tests [37], [91] and utilized for routine objective outcome evaluation in clinical research 

and practice.  

Instrumenting functional tests with IMUs, compared to functional observational tests, 

allows the identification of mild changes in balance by providing quantitative objective measures. 

Hence, instrumented tests have the potential to provide a precise and sensitive “impairment-level” 

balance evaluation of how and why functional performance is impaired compared to able-bodied 

individuals [37]. First, clinicians can use such objective measures to identify balance disorders and 

determine the underlying causes by comparing balance biomarkers of the patients with balance 

biomarkers of able-bodied individuals. Second, the therapy can be precisely focused on these 

underlying causes. Third, therapists can track subtle changes in a patient’s balance and follow the 
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patient’s progress over the course of the rehabilitation [37]. Fourth, therapists can objectively 

evaluate the effectiveness of the introduced interventions by comparing the balance biomarkers 

pre- and post-rehabilitation. Therefore, the improved and yet impaired aspects of balance can be 

identified post-rehabilitation. Hence, objective balance biomarkers allow the therapists to 

characterize and determine intrinsic risk factors post-rehabilitation, whereas functional 

observational tests only show changes in overall balance. In addition, despite the worldwide 

increase in the ageing population, there are insufficient healthcare professionals such as physical 

therapists to identify the elderly with mild balance impairments in a timely manner for 

implementing early targeted interventions [8]. Therefore, in contrast to the functional tests, the use 

of IMUs would allow balance evaluation of elderly cohorts in a timelier manner in the clinical 

settings or even remotely at patients’ homes. This enables remote health assessments without 

requiring the physical presence of healthcare professionals, wherever professional resources are 

limited [8]. This would facilitate more sensitive outcome evaluation toward the identification of 

those individuals with higher fall risk, which would lead to more effective targeted rehabilitative 

interventions. 

In this light, this study addresses the growing need for an objective balance assessment of 

the elderly and an objective outcome evaluation of rehabilitative interventions in clinical settings. 

Particularly this study aims to investigate the feasibility of using IMUs integrated into the BBS 

test for identifying, in a clinical setting, the effect of rehabilitative interventions on balance 

biomarkers in comparison to BBS scores. To achieve this goal, this study: (1) investigates the 

feasibility of using IMUs for identifying age-related changes of balance biomarkers in in-patient 

elderly fallers at their admission to the rehabilitation hospital compared to healthy young adults; 

(2) investigates the effect of rehabilitative interventions on the balance biomarkers by comparing 

them between admission and discharge test sessions; and (3) compares the objective balance 

biomarkers with the observational BBS scores recorded by certified physical therapists. 

 Note that balance biomarkers obtained from the balance test of healthy young adults allow 

therapists to have a baseline for each biomarker. Significant deviation from the baseline can 

identify balance difficulty/impairment and can be attributed to underlying causes that depend on 

the type of biomarker. Additionally, previous studies have used force-plates and IMUs to obtain, 

respectively, COP-based and acceleration-based balance biomarkers for clinically identifying age-

related changes in balance. In the present study, we used IMUs to estimate COP using an algorithm 
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that we validated in our previous study [76] in a clinical setting. Therefore, we believe that 

investigating the capability of IMU-derived COP-based balance biomarkers, in addition to 

acceleration-based biomarkers, for identifying age-related changes is necessary. 

We hypothesized that (1) IMU-based balance biomarkers can identify different aspects of 

impaired balance associated with reduced stability performance, increased control demand, less 

effective active correction, and reduced inter-segment coordination in senior adults; (2) IMU-

based balance biomarkers are capable of identifying subtle changes in the abovementioned aspects 

of balance due to rehabilitative interventions in senior adults and can be used for objective outcome 

evaluation to identify the improved and yet impaired aspects of balance in senior adults post-

rehabilitation; and (3) IMU-based balance biomarkers enable quantifying balance characteristics 

that the conventional BBS cannot identify. 

6.2 Methods 

Table 6-1. (a) Demographic information of senior adults, and (b) demographic information of young adults. 

 

Senior Adults 

Variable Mean ± Standard Deviation Range 

Age [years] 81± 7 67-93 

Body mass [kg] 75.5 ± 23.8 46.6-150.0 

Body height [cm] 163.4 ± 12.1 136.0-195.0 

Falls [#] 3 ± 3 1-10 

Sex Male = 16, Female = 20 

Young adults 

Variable Mean ± Standard Deviation Range 

Age [years] 24 ± 3 18-28 

Body mass [kg] 69.9 ± 8.3 59.6-87.0 

Body height [cm] 175.6 ± 7.0 160.0-184.0 

Variable Number 

Sex Male = 11, Female = 0 

 

6.2.1 Participants 

Thirty-six senior adults were recruited from the in-patient population of the Geriatrics 

Clinic at the Glenrose Rehabilitation Hospital, Edmonton, Canada (Table 6-1a). The number of 

participants was determined based on previous studies [141]. Participants with a six-month fall 

history of at least one fall prior to admission to the hospital were included. Participants were 

excluded if they had: (1) any neurological impairments (e.g., Parkinson’s disease) that affected 
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their balance other than age-related decline of balance; (2) visual impairments not corrected with 

glasses; and/or (c) vestibular deficits. In addition, eleven young adults were recruited from the 

general student population at the University of Alberta, Edmonton, Canada, who participated in 

our study at the Syncrude Centre for Motion and Balance (SCMB) at the Glenrose Rehabilitation 

Hospital (Table 6-1b). Ethical approval was obtained from the health research ethics board of the 

university. Each participant provided written informed consent prior to participation in our study. 

6.2.2 Data acquisition  

Three IMUs (Physilog®, GaitUp, Switzerland) were placed over the sternum, sacrum, and 

tibia of the dominant leg of each participant to measure the motion of the trunk, pelvis, and leg, 

respectively. Each IMU was composed of a tri-axial accelerometer (range: ±11g) and a tri-axial 

gyroscope (range: ±1200 deg/s). IMUs were placed such that their x-, y-, and z-axes represented 

the anterior, vertical, and lateral directions, respectively. In cases where the orientation of an IMU 

did not meet this convention, a calibration function was employed to virtually rotate the channels 

of the IMU to be in accordance with the described representation. The IMUs recorded the sway of 

the body segments at a sampling rate of 500 Hz. The recordings were then low-pass filtered via a 

dual-pass, 8th-order Butterworth filter with a cut-off frequency of 5 Hz. The cut-off frequency of 

the low-pass filter was chosen based on inspecting the IMU time series’ magnitude spectra, with 

the meaningful frequency content (i.e., the frequency content associated with the motion of the 

participant) found between 0 and 5 Hz. In agreement with this, previous studies have shown that 

sway oscillations of standing balance contain frequencies between 0 and 5 Hz [78], [116]. 

6.2.3 Experimental procedure 

Senior adults: After placing the IMUs according to Section 2.2, participants were asked 

to sit on the edge of a bed with adjustable height. The bed height was adjusted to allow the 

participant's legs to hang vertically downward without the feet touching the ground. A passive 

knee flexion-extension task was performed with the help of the experimenter as a functional 

calibration task to align the IMU frame with the anatomical frame of the tibia (see [252] for 

details). This functional calibration task was not dependent on the bed height. This method is a 

calibration procedure that uses the IMU readouts to align the inertial frame of the IMUs with the 

anatomical frames. The IMUs were first virtually rotated by aligning the vertical axis of the 

accelerometer with gravity using the first 5 seconds of the IMU readouts during quiet stance. The 
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leg IMU was then virtually rotated about the vertical axis, such that the x- and z-axes of the IMUs 

represented the anatomical anterior and lateral directions, respectively. Principal Component 

Analysis (PCA) was applied to the IMU readouts of the knee flexion-extension task to obtain the 

rotation matrix that maximized the angular motion about the pitch axis while minimizing motion 

about the roll axis. Subsequently, participants were asked to perform, at their admission to the 

Geriatrics Clinic, a series of fourteen tasks according to the BBS test in the presence of a certified 

physical therapist. Subsequently, they completed a rehabilitation program as in-patients for two to 

four weeks at the Glenrose Rehabilitation Hospital. The type of rehabilitative intervention used for 

each patient depended on the underlying cause of impaired balance, as diagnosed by a team of 

physicians and therapists at the Geriatrics Clinic of the Glenrose Rehabilitation Hospital. 

Additionally, the length of the rehabilitation program varied between patients and was set by initial 

balance performance (as quantified by initial BBS scores) and was adjusted according to progress 

during the program (as determined by physical therapists via observational assessment). After 

completing their rehabilitation program, participants were asked to once again perform, prior to 

their discharge from the hospital, the BBS test with the IMUs in the presence of a certified physical 

therapist. Physical therapists performed their own assessment of each participant’s balance in the 

form of the BBS scores for both admission and discharge test sessions. In addition, they recorded 

the age, weight, height, dominant leg, and six-month history of falls for each participant. 

Moreover, the length of the foot and the heights of the ankle, knee, hip, L5-S1 joints and shoulders 

were measured by a tape measure (from the ground up).  

Young adults: The participants were asked to perform a two-minute quiet standing test 

after placing the IMUs on their body segments according to Section 2.2. They were instructed to 

maintain a natural standing posture with their feet comfortably apart (at shoulder width) while 

looking straight ahead, similar to task 2 of the BBS. Participants also performed a knee flexion-

extension task while seated at the edge of a seat as a functional calibration task. 

6.2.4 Human body modelling 

We modelled the human body with four rigid links representing trunk, pelvis, legs, and feet 

segments, connected to each other by 3D revolute joints (Figure 6-1). The inter-segment joints 

represent the L5-S1, hip, and ankle joints. The feet were assumed stationary during quiet standing. 

We estimated the body segment parameters, including the length, mass, COM, joint centers of 

rotation, and moments of inertia of each segment using the participant’s weight and height [223]. 
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The lengths of the segments were directly measured for the senior adults, as explained in Section 

2.3, to avoid any uncertainties associated with ageing.   

 

Figure 6-1. Location of the inertial measurement units (IMUs) on the body. The human body is modelled as a system 

with three rigid link segments connected to each other by 3D revolute joints representing trunk, pelvis, and leg 

segments. Feet were assumed to be motionless during quiet standing. IMUs were used to estimate the orientation of 

the trunk, pelvis, and leg segments. 

 

We implemented a custom-built MATLAB (MathWorks, USA) program to estimate the 

joint moments at the L5-S1, hip, and ankle joints using a top-down inverse dynamics approach. 

Subsequently, we estimated the COP positions in the anterior-posterior (AP) and medial-lateral 

(ML) directions according to our previous study [76]. The segments’ orientation was calculated 

by aligning the accelerometers’ vertical axis with gravity during quiet standing [225], [227]. We 

obtained the instantaneous position of the COM, linear/angular velocity and acceleration of each 

segment based on its instantaneous orientation. 

6.2.5 Outcome measures and statistical data analysis 

For the senior adults, we extracted the IMUs’ recording during the two-minute quiet 

standing task (task 2 of BBS) to calculate conventional balance biomarkers for both admission and 

discharge test sessions. We only used IMU recordings during the two-minute quiet standing task 

(i.e., task 2 of BBS) to calculate conventional balance biomarkers for the admission and discharge 

test sessions. Although balance biomarkers for the other BBS tasks could provide additional 

information on balance performance, the use of the IMU recordings for these tasks for calculating 

balance biomarkers might not be reliable due to the short task and thus recording duration (i.e., 



 

113 

 

less than 30 seconds). Our preliminary investigation demonstrated that a minimum test duration of 

30 seconds is required for reliable balance evaluation using most IMU-based biomarkers. 

Moreover, the minimum required test duration can increase to 120 seconds for some COM 

acceleration-based balance biomarkers. Therefore, calculating the balance biomarkers for other 

BBS tasks would require increasing the task duration, which would negatively impact the 

integration of IMUs into conventional BBS tests used in clinical settings. 

We used conventional balance biomarkers to identify age-related changes and the effect of 

rehabilitation on the balance performance of senior adults compared to young adults. For each trial 

and each group of participants, we calculated a total of ten COP-based measures [241], thirteen 

COM acceleration-based measures [85], and two inter-segment coordination measures [78], [87] 

(see Table 6-2). COP- and COM acceleration-based measures were grouped into time-domain (i.e., 

distance, area, and hybrid) measures and frequency-domain measures [85], [241]. These measures 

are commonly used to study: (1) standing balance performance; (2) the control demand and active 

postural corrections during standing balance; and (3) postural regulations during standing balance 

[242]. Furthermore, we used the Magnitude-Squared Coherence (MSC) at lower (f ≤ 1 Hz) and 

higher (f > 1 Hz) sway frequencies between the acceleration of the trunk-leg segments and the 

pelvis-leg segments to identify changes in inter-segment coordination [78]. Previous studies [78], 

[116], [136] demonstrated that, in healthy young adults, the trunk/pelvis and leg move in an in-

phase manner at lower sway frequencies (f ≤ 1 Hz), reflecting the domination of the ankle strategy 

during low sway oscillations. As the sway frequency increases above 1 Hz, the trunk/pelvis and 

leg movements show anti-phase coordination, reflecting a mixed ankle-hip strategy during larger 

sway oscillations [78], [116]. An MSC of 1 indicates a perfect in-phase inter-segment 

coordination, whereas a smaller MSC reflects a lower degree of in-phase inter-segment 

coordination [116]. 

First, we used the Wilcoxon rank-sum test to identify any age-related changes in the 

balance biomarkers of the senior adults compared to the young adults. Second, we used the 

Wilcoxon signed rank test to identify any differences between the balance biomarkers of the senior 

adults at their admission and discharge test sessions. This allowed us to identify the effect of 

rehabilitative interventions on the balance performance of senior adults. Third, we used 

Spearman’s correlation test between the BBS total scores provided by the physical therapists and 

each balance biomarker. This allowed us to investigate any association between the BBS, as a 
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subjective functional test, and the objective balance biomarkers obtained by IMUs. Note that 

statistical comparisons between groups were conducted for each balance biomarker separately with 

a significance level of 0.05. We did not perform multiple comparisons and did not extend our 

conclusions to a group of biomarkers. 

Table 6-2. List of balance biomarkers obtained using IMUs: center-of-pressure (COP) measures, center-of-mass 

(COM) acceleration-based measures, and inter-segment coordination measures. 

Outcome Measure Nomenclature Type 

Root-Mean-Square Distance RDIST 
Time-domain distance measures 

(calculated for both COP and COM-

acceleration) 

Mean Distance MDIST 

Total Excursion TOTEX 

Mean Velocity MVELO 

95% Confidence Ellipse Area Area-CE 
Time-domain area measure (calculated for 

both COP and COM-acceleration) 

Sway Area Area-SW Time-domain hybrid measures (calculated 

for both COP and COM-acceleration) Mean Frequency MFREQ 

Median Frequency MEDFREQ 
Frequency-domain measures (calculated 

for both COP and COM-acceleration) 
Centroid Frequency CFREQ 

Frequency Dispersion FREQD 

ISway Sway jerkiness JERK 
Calculated for only COM-acceleration 

measures  
ISway Root-Mean-Square Acceleration RMS-ACC 

ISway Centroid Frequency CF-ACC 

Mean Magnitude-Squared Coherence (f ≤ 1 Hz) 
MSC Inter-segment coordination 

Mean Magnitude-Squared Coherence (f > 1 Hz) 

6.3 Results 

6.3.1 Senior adults versus young adults 

All COP-based measures were able to distinguish the balance performance of senior adults 

from that of young adults (Table 6-3). Senior adults showed significantly higher COP time-domain 

distance, area, and hybrid measures in AP and ML directions (P < 0.05). This trend was also 

observed for the time-domain measures obtained based on the resultant distance (RD) of COP 

(Table 6-3). We also observed significant differences between the senior and young adults for the 

frequency-domain measures of COP in AP, ML, and RD directions (Table 6-3, P < 0.05).  

Time-domain distance measures of COM acceleration in AP, ML, and RD directions were 

significantly higher for the senior adults compared to the young adults (Table 6-4, P < 0.05). COM 

acceleration Area-CE and Area-SW were significantly higher for the senior adults. Among the 

frequency-domain measures of COM acceleration, only AP-MEDFREQ and RD-MEDFREQ were 

significantly different between the two groups. We observed a significantly reduced degree of anti-
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phase coordination between the body segments in senior adults compared to young adults (Table 

6-5, P < 0.05). Particularly, we observed significant differences between the two groups for trunk-

leg MSC at lower sway oscillations (f ≤ 1 Hz) and pelvis-leg MSC and trunk-leg MSC at higher 

sway oscillations (f > 1 Hz). 

 

Table 6-3. Center of pressure (COP) measures of standing balance presented as resultant distance (RD), in anterior-

posterior (AP) direction, and in medial-lateral (ML) direction. Results are presented as [25% 50% 75%] percentiles 

for the senior adults at their admission and discharge test sessions and for the young adults. Bold numbers show 

significant differences (P < 0.05). P-values less than 0.0001 were equated to 0. 

 

COP 

Measures 

Senior Adults 

(Admission) 

Senior Adults 

(Discharge) 
Young Adults 

P 

(Admission 

vs. 

Discharge) 

P (Senior 

Admission 

vs. Young 

Adults) 

R
D

 

RDIST  [0.014, 0.017, 0.022]  [0.013, 0.017, 0.023]  [0.007, 0.009, 0.011] 0.561 0.0004 

MDIST  [0.012, 0.015, 0.02]  [0.011, 0.014, 0.019]  [0.006, 0.008, 0.01] 0.6151 0.0005 

TOTEX  [8.043, 11.781, 16.889]  [8.072, 10.156, 13.577]  [5.257, 5.82, 7.252] 0.4699 0.0004 

MVELO  [0.08, 0.118, 0.164]  [0.08, 0.1, 0.138]  [0.029, 0.03, 0.036] 0.3459 0 

Area-CE  [0.001, 0.002, 0.005]  [0.001, 0.002, 0.003]  [0, 0.001, 0.001] 0.3223 0.0008 

Area-SW  [0, 0.001, 0.001]  [0, 0, 0.001]  [0, 0, 0] 0.4321 0 

MFREQ  [1.004, 1.259, 1.571]  [0.891, 1.168, 1.501]  [0.515, 0.673, 0.948] 0.162 0.0002 

MEDFREQ  [0.003, 0.004, 0.004]  [0.003, 0.003, 0.004]  [0.002, 0.002, 0.002] 0.4321 0 

CFREQ  [0.786, 1.137, 1.347]  [0.886, 1.063, 1.238]  [0.475, 0.595, 0.856] 0.4699 0.0048 

FREQD  [0.944, 0.953, 0.962]  [0.943, 0.952, 0.969]  [0.975, 0.985, 0.992] 0.561 0.0001 

A
P

 

RDIST  [0.012, 0.014, 0.019]  [0.011, 0.014, 0.02]  [0.005, 0.006, 0.01] 0.7534 0.0005 

MDIST  [0.009, 0.01, 0.014]  [0.009, 0.01, 0.015]  [0.004, 0.004, 0.008] 0.9124 0.0009 

TOTEX  [6.058, 8.682, 12.586]  [5.626, 7.984, 9.708]  [3.667, 3.983, 5.527] 0.9249 0.0003 

MVELO  [0.061, 0.088, 0.137]  [0.056, 0.08, 0.097]  [0.02, 0.02, 0.028] 0.4796 0 

MFREQ  [0.94, 1.327, 1.66]  [0.869, 1.107, 1.458]  [0.456, 0.729, 0.886] 0.0758 0.0006 

MEDFREQ  [0.081, 0.29, 0.667]  [0.089, 0.303, 0.415]  [0.011, 0.037, 0.077] 0.144 0.0012 

CFREQ  [1.251, 1.665, 2.071]  [1.299, 1.441, 1.817]  [0.828, 0.979, 1.262] 0.1869 0.004 

FREQD  [0.797, 0.846, 0.932]  [0.805, 0.857, 0.909]  [0.912, 0.968, 0.986] 0.6714 0.0012 

M
L

 

RDIST  [0.007, 0.009, 0.013]  [0.007, 0.008, 0.011]  [0.004, 0.005, 0.007] 0.3459 0.0006 

MDIST  [0.005, 0.007, 0.01]  [0.005, 0.007, 0.008]  [0.003, 0.003, 0.005] 0.414 0.0006 

TOTEX  [4.158, 5.214, 7.196]  [3.97, 4.902, 7.212]  [3.038, 3.407, 3.885] 0.4414 0.0006 

MVELO  [0.041, 0.053, 0.072]  [0.039, 0.049, 0.072]  [0.016, 0.018, 0.02] 0.3622 0 

MFREQ  [1.05, 1.257, 1.538]  [1.007, 1.312, 1.639]  [0.558, 0.711, 1.021] 0.5824 0.0012 

MEDFREQ  [0.092, 0.286, 0.58]  [0.117, 0.325, 0.619]  [0.012, 0.025, 0.149] 0.8015 0.001 

CFREQ  [1.209, 1.543, 1.876]  [1.249, 1.532, 1.884]  [0.785, 1.026, 1.326] 0.4321 0.0036 

FREQD  [0.811, 0.85, 0.897]  [0.784, 0.843, 0.913]  [0.906, 0.952, 0.977] 0.9374 0.0004 

 

Table 6-4. Center of mass (COM) acceleration measures of balance presented as resultant distance (RD), in anterior-

posterior (AP) direction, in medial-lateral (ML) direction, and ISway measures [85]. Results are presented as [25% 

50% 75%] percentiles for the senior adults at their admission and discharge test sessions and for the young adults. 

Bold numbers show significant differences (P < 0.05). P-values less than 0.0001 were equated to 0. 
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COM 

Measures 

Senior Adults 

(Admission) 

Senior Adults 

(Discharge) 
Young Adults 

P 

(Admission 

vs. 

Discharge) 

P (Senior 

Admission 

vs. Young 

Adults) 

R
D

 

RDIST  [0.153, 0.187, 0.258]  [0.139, 0.202, 0.281]  [0.091, 0.098, 0.117] 0.8137 0.0001 

MDIST  [0.131, 0.156, 0.202]  [0.119, 0.168, 0.225]  [0.075, 0.087, 0.089] 0.9499 0 

TOTEX  [52.612, 60.822, 83.616] 
 [50.743, 59.056, 

71.626] 

 [73.139, 76.55, 

97.23] 
0.0758 0.013 

MVELO  [0.537, 0.624, 0.851]  [0.495, 0.6, 0.685]  [0.386, 0.408, 0.489] 0.0247 0.0001 

Area-CE  [0.111, 0.177, 0.351]  [0.102, 0.155, 0.258]  [0.033, 0.049, 0.156] 0.3379 0.0094 

Area-SW  [0.025, 0.035, 0.051]  [0.023, 0.031, 0.048]  [0.01, 0.012, 0.014] 0.4321 0.0003 

MFREQ  [0.472, 0.652, 0.875]  [0.444, 0.599, 0.806]  [0.693, 0.881, 1.002] 0.0868 0.0716 

MEDFREQ  [0.003, 0.004, 0.004]  [0.003, 0.004, 0.004]  [0.002, 0.002, 0.002] 0.414 0.0003 

CFREQ  [0.484, 0.642, 0.818]  [0.437, 0.561, 0.795]  [0.52, 0.689, 0.806] 0.2204 0.5232 

FREQD  [0.963, 0.977, 0.985]  [0.97, 0.976, 0.985]  [0.968, 0.98, 0.983] 0.7296 0.8094 

A
P

 

RDIST  [0.131, 0.172, 0.206]  [0.125, 0.185, 0.261]  [0.08, 0.086, 0.102] 0.6714 0 

MDIST  [0.106, 0.126, 0.158]  [0.1, 0.152, 0.205]  [0.055, 0.068, 0.081] 0.3705 0 

TOTEX  [35.265, 38.08, 48.523] 
 [34.287, 38.044, 

44.04] 

 [43.539, 46.838, 

57.381] 
0.3459 0.0241 

MVELO  [0.353, 0.385, 0.489]  [0.342, 0.374, 0.439]  [0.228, 0.249, 0.287] 0.0868 0.0001 

MFREQ  [0.357, 0.496, 0.667]  [0.306, 0.425, 0.596]  [0.522, 0.577, 0.774] 0.0615 0.1601 

MEDFREQ  [0.029, 0.078, 0.117]  [0.021, 0.045, 0.069]  [0.01, 0.015, 0.043] 0.0928 0.013 

CFREQ  [0.665, 0.933, 1.18]  [0.689, 1.07, 1.525]  [0.619, 0.811, 1.171] 0.3223 0.6601 

FREQD  [0.922, 0.953, 0.983]  [0.944, 0.971, 0.991]  [0.935, 0.969, 0.983] 0.1315 0.7875 

M
L

 

RDIST  [0.056, 0.073, 0.101]  [0.049, 0.063, 0.074]  [0.033, 0.038, 0.061] 0.0353 0.0067 

MDIST  [0.044, 0.057, 0.08]  [0.038, 0.05, 0.06]  [0.026, 0.029, 0.045] 0.0278 0.0014 

TOTEX  [34.384, 39.094, 47.191] 
 [30.727, 37.049, 

42.201] 

 [48.36, 53.037, 

62.246] 
0.0553 0.0048 

MVELO  [0.344, 0.391, 0.482]  [0.306, 0.369, 0.42]  [0.254, 0.278, 0.318] 0.0218 0.0009 

MFREQ  [0.837, 1.055, 1.616]  [1.031, 1.224, 1.6]  [0.998, 1.461, 1.834] 0.4414 0.1967 

MEDFREQ  [0.035, 0.093, 0.34]  [0.086, 0.144, 0.282]  [0.031, 0.077, 0.49] 0.9124 0.6601 

CFREQ  [1.121, 1.528, 2.049]  [1.288, 1.635, 2.058]  [1.499, 1.765, 1.897] 0.5297 0.4869 

FREQD  [0.834, 0.9, 0.949]  [0.817, 0.871, 0.91]  [0.841, 0.865, 0.896] 0.3875 0.5049 

IS
w

a
y

 JERK  [0.045, 0.06, 0.116]  [0.036, 0.054, 0.08]  [0.037, 0.043, 0.065] 0.1162 0.3003 

RMS-ACC  [0.201, 0.266, 0.366]  [0.189, 0.289, 0.421]  [0.112, 0.174, 0.188] 0.7894 0.001 

CF-ACC  [0.377, 0.497, 0.671]  [0.405, 0.502, 0.605]  [0.342, 0.508, 0.648] 0.8876 0.7875 

 

6.3.2 Senior adults: admission versus discharge 

The BBS total score significantly increased between admission and discharge test sessions 

(Figure 6-2A and Figure 6-21B). BBS scores for each BBS task and participant at both the 

admission and discharge test sessions are provided in Supp Table 3 in Supplementary Material. 

Although the COP measures and inter-segment coordination improved after rehabilitation, 

their changes were not significant between the admission and discharge test sessions (Table 6-3 
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and Table 6-5). Nevertheless, COM acceleration RD-MVELO, ML-RDIST, ML-MDIST, and 

ML-MVELO were significantly improved after receiving therapy (Table 6-4). 

 

Figure 6-2. (A) The Berg Balance Scale total score (out of 56) was recorded by certified physical therapists for the 

senior adults at their admission and at their discharge test sessions. (B) The Berg Balance Scale scores (out of 4) for 

each task (T1 to T14) were reported by certified physical therapists for the senior adults at their admission (blue) and 

at their discharge (green) test sessions. 

 

Table 6-5. Inter-segment coordination measures of standing balance are presented as mean Magnitude-Squared 

Coherence (MSC). Results are presented as [25% 50% 75%] percentiles for the senior adults at their admission and 

discharge test sessions and for the young adults. Bold numbers show significant differences (P < 0.05). P-values less 

than 0.0001 were equated to 0. 

Inter-segment 

Coordination Measures 

Senior Adults 

(Admission) 

Senior Adults 

(Discharge) 
Young Adults 

Pelvis-Leg MSC (f ≤ 1 Hz) [0.746, 0.777, 0.789] [0.745, 0.775, 0.795] [0.78, 0.791, 0.798] 

Trunk-Leg MSC (f ≤ 1 Hz) [0.649, 0.696, 0.726] [0.64, 0.685, 0.711] [0.706, 0.743, 0.768] 

Pelvis-Leg MSC (f > 1 Hz) [0.117, 0.23, 0.411] [0.141, 0.218, 0.325] [0.05, 0.059, 0.064] 

Trunk-Leg MSC (f > 1 Hz) [0.105, 0.186, 0.291] [0.097, 0.15, 0.236] [0.038, 0.04, 0.049] 

 

P (Admission vs. 

Discharge) 

P (Senior Admission vs. 

Young Adults) 

[𝝆, P] (IMUs vs. BBS 

Admission) 

[𝝆, P] (IMUs vs. BBS 

Discharge) 

0.6096 0.0715 [-0.2, 0.2344] [-0.01, 0.9359] 

0.3944 0.03 [-0.08, 0.6388] [0.25, 0.1395] 

0.5824 0 [-0.37, 0.0283] [-0.55, 0.0005] 

0.2418 0 [-0.29, 0.0876] [-0.52, 0.001] 

 

 

6.3.3 Balance biomarkers obtained by IMUs versus BBS 

We observed a significant Spearman’s correlation between the BBS total score and the 

pelvis-leg MSC at high sway oscillations at both admission (𝜌 = -0.55, P < 0.05) and discharge (𝜌 
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= -0.37, P < 0.05) test sessions: BBS total score was negatively correlated with pelvis-leg MSC at 

high sway oscillations. The correlations between the BBS total score and other balance biomarkers 

were not significant.  

The Spearman’s correlation between each IMU-based balance biomarker and each BBS 

task score, as well as BBS total score for both the admission and discharge test sessions, are 

provided in Supp Table 4, Supp Table 5, and Supp Table 6 of the Supplementary Material. 

Spearman’s correlation test did not show a significant correlation between each BBS task score 

and each balance biomarker. The effect sizes between balance biomarkers at the admission and 

discharge test sessions are reported in Supp Table 7 of the Supplementary Material. 

6.4 Discussion 

This study shows the capability of an instrumented BBS test with IMUs for identifying 

several aspects of balance impairment in senior adults and for objective outcome evaluation of the 

rehabilitative interventions in geriatrics clinics. To this end, first, we used the balance biomarkers 

for identifying age-related changes in elderly fallers. Second, we evaluated the effect of 

rehabilitation on the balance biomarkers in senior adults by comparing them between the 

admission and discharge test sessions. Third, we investigated the association between the balance 

biomarkers obtained from the IMUs and the observational BBS scores recorded by certified 

physical therapists. Standing balance may be investigated for three different aspects: (1) balance 

performance; (2) control demand and active postural corrections; and (3) postural regulations 

[101]. Time-domain distance and area measures quantify balance performance [102], [242]. In 

addition, velocity measures quantify the attentional resources required to maintain balance, which 

indicates the control demand and degree of active postural corrections [101], [242]. Finally, 

frequency-domain measures provide information about postural regulation and any disturbances 

caused by neurological deficits [43], [109], [243]. Hence, impaired balance can be diagnosed via 

reduced balance performance, increased control demand, and reduced postural regulation.  

 

6.4.1 Senior adults versus young adults: age-related changes 

We observed significantly higher COP and COM acceleration time-domain distance and 

area measures in seniors compared to young adults. Poor balance performance in senior adults 
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highlights declined static balance and, thus, may imply a higher risk of falling [158], [160]. This 

may indicate the lower effectiveness of the postural regulatory mechanisms associated with ageing. 

We also observed increased AP-, ML-, and RD-MVELO of both COP and COM acceleration 

measures in senior adults. A higher MVELO could be associated with a higher control demand. 

The literature has shown that slow and less reliable postural reflexes in senior adults could not 

appropriately respond to voluntary sway demands [160]. Moreover, increased COP hybrid 

measures in all directions and increased COM acceleration hybrid sway area may highlight 

reduced stability and a greater need for attentional resources.  

We observed that frequency-domain measures obtained using COP are more sensitive to 

detecting age-related changes compared to those obtained using COM acceleration. MEDFREQ 

has been shown to be an indicator of the contribution of the sensory inputs to balance and 

preferential postural regulation [101], [242]. This could suggest difficulty in integrating sensory 

information in closed-loop control of balance due to ageing [160]. COP CFREQ could reflect the 

time required for the body to return to its initial position [43]. Our results may imply that ageing 

could cause latency and, thus, increase the response time. Reduced COP FREQD may also suggest 

a rigidity and stiffness of the body in senior adults compared to young adults during quiet standing 

[242].  

We observed reduced inter-segment coordination in senior adults, which may lead to a 

greater body sway in this population. Trunk-leg MSC at lower sway frequencies (f ≤ 1 Hz) was 

significantly reduced in senior adults. This reflects a reduced degree of in-phase action between 

trunk and leg at lower sway oscillations resulting in an impaired ankle strategy. As we expected, 

pelvis-leg and trunk-leg MSC reduced as sway frequency increased from 1.0 to 5.0 Hz in both 

populations. This shows the transition from the ankle strategy to the ankle-hip strategy at higher 

frequencies [116], [136]. Nevertheless, senior adults showed significantly larger MSC at higher 

frequencies compared to young adults, which may indicate less ability to adapt their inter-segment 

coordination from the ankle strategy to the ankle-hip strategy at higher sway oscillations (f > 1 

Hz).  

In summary, IMU-based balance biomarkers, in contrast to observational clinical tests, 

could potentially objectively diagnose different aspects of impaired balance with high sensitivity. 

Such quantitative measures could be essential for implementing targeted interventions, which may 

lead to achieving a higher rehabilitation efficacy. 
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6.4.2 Senior adults at admission versus discharge: effect of rehabilitation 

Although all COP measures tended to improve post-rehabilitation, we observed no 

statistical significance (P > 0.05). Among the COM acceleration measures, only RDIST, MDIST, 

and MVELO in ML direction significantly improved. These results imply that rehabilitative 

interventions resulted in a reduced sway acceleration and sway jerkiness in the ML direction. 

However, the body sway displacement and velocity were not significantly reduced post-

rehabilitation as indicated by COP measures. Reduced jerkiness in the ML direction may indicate 

a more effective active correction made by the central nervous system against body sway. The 

literature showed that balance biomarkers in the ML direction, including ML-RDIST, ML-

MDIST, and ML-MVELO, are the best distinguisher between future fallers and non-fallers in 

senior adults [160]. Therefore, our results objectively may show a potentially reduced risk of future 

falls among our participants post-rehabilitation. Previous studies have suggested that IMUs 

provide impairment-level measures that characterize the functional performance of balance with 

increased sensitivity to not only movement disorders but also rehabilitation and mild changes in 

postural stability [24], [27]. In agreement with these studies, the results of the present study 

highlighted the capability of IMUs in identifying subtle changes to balance due to rehabilitative 

interventions in senior adults. Such objective outcome evaluation allows the physical therapist to 

identify the improved and yet impaired aspects of balance post-rehabilitation in senior adults. 

Although a reduced jerkiness in the ML direction implies reduced future fall risk, high sway 

displacement and velocity in senior adults still reflect high intrinsic risk factors in this population. 

This conclusion could only be achieved by objective outcome evaluation using IMUs, rather than 

only the BBS assessment. This implies the importance of quantitative evaluation of rehabilitation 

efficacy using IMUs, as an add-on to the BBS assessment procedure without the need to complete 

separate tests. 

High body sway post-rehabilitation could be attributed to reduced cutaneous sensation, 

decreased proprioception, impaired joint receptors, and visual impairment due to ageing, which 

would affect the contribution of sensory inputs to postural control [160]. Consequently, 

compensatory reactions for reducing body sway would be delayed due to the reduced ability to 

sense the COP displacement under the feet [160] and a faulty internal map of stability limits [126]. 

Furthermore, previous studies have shown that muscle strength declines due to atrophy associated 

with ageing (e.g., dorsiflexion weakness due to reduced ankle muscle strength) [160]. The presence 
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of muscle weakness may also contribute to high body sway after therapy. Nevertheless, the 

reduced distance and velocity measures of COM acceleration in the ML direction may imply better 

sway control post-rehabilitation. Inter-segment coordination did not significantly improve post-

rehabilitation. This suggests that therapy may not eliminate the difficulty in adapting from ankle 

strategy to ankle-hip strategy in senior adults. Therefore, a lack of reciprocal action between the 

body segments may be a factor contributing to high body sway displacement post-rehabilitation. 

This fact highlights the need for a more targeted intervention aimed at improving the underlying 

causes of impaired balance, such as inter-segment coordination. 

Note, although most COP-based and COM acceleration-based measures did not 

significantly improve after rehabilitation, such minor improvement in many biomarkers could lead 

to an overall improvement in balance performance post-rehabilitation. Such objective outcome 

evaluation and interpretations allow therapists to understand the extent of improvement in different 

aspects of balance post-rehabilitation. Hence, they will be able to determine the efficacy of 

retrospective treatments and implement prospective interventions, targeting less-improved aspects 

of balance. 

6.4.3 IMU-based balance biomarkers versus BBS 

The BBS total scores pre- and post-rehabilitation were [34, 40, 43.5] and [41.5, 45.5, 50], 

respectively, as [25%, 50%, 75%] percentiles. O'Sullivan et al. [144] reported BBS total scores of 

44.2 ± 6.2 and 49.8 ± 6.2 for elderly fallers and non-fallers, respectively. Ghahramani et al. [171] 

reported BBS total scores of 52.2 ± 2.2, 51.1 ± 2.1, and 49.9 ± 4.0 for non-fallers, once-faller, and 

multiple-fallers, respectively. This suggests that the BBS scores reported in this study were within 

the range of the scores reported in the literature for similar populations of elderly fallers. The BBS 

total score showed a significant balance improvement post-rehabilitation in the senior adults. 

Among the balance biomarkers, only MSC (f > 1 Hz) had significant Spearman’s correlation with 

BBS total score for both the admission (ρ = -0.55, P < 0.05) and discharge (ρ = -0.37, P < 0.05) 

test sessions. This result may show that a higher BBS total score at discharge could be attributed 

to better inter-segment coordination. We previously have shown the high reliability of MSC in 

identifying balance impairments in different test conditions in patients with impaired balance [78]. 

We did not observe any significant Spearman’s correlation between other balance biomarkers and 

BBS total score nor between each balance biomarker and each BBS task score at both admission 

and discharge test sessions (see Supplementary Material). This observation implies a lack of 
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association between BBS and IMU-based balance biomarkers. Such lack of association between 

BBS and balance biomarkers, along with previous studies supporting the capability of IMU-based 

balance biomarkers in identifying subtle changes in the balance due to rehabilitation stability [24], 

[27] suggest that IMU-based balance biomarkers may be able to quantify balance characteristics 

that BBS alone cannot simply identify and characterize. For instance, comparing BBS total scores 

at admission and discharge test sessions indicates a significantly reduced fall risk. By contrast, 

balance biomarkers obtained using IMUs during the BBS test suggested that only sway jerkiness 

in ML direction improved after therapy while body sway and inter-segment coordination were not 

significantly improved. Such an advantage highlights the capability of the IMU-based balance 

biomarkers, in addition to the BBS, to identify different aspects of balance characteristics and 

underlying risk factors post-therapy that are not easily observable via BBS. Such an additional 

advantage may lead to increased efficacy of rehabilitation outcome evaluation. On the other hand, 

postural control is a complex task that is regulated via the integration of sensory information and 

the interaction of the body with a dynamic environment [29]. Therefore, it is likely that many non-

significant improvements in COP-based and COM acceleration-based balance biomarkers would 

have led to an overall improvement in balance performance as captured by BBS scores. Therefore, 

the use of IMUs integrated into BBS is recommended since they may characterize different aspects 

of balance that may be ignored when each method is employed separately. 

Nevertheless, although the BBS is a useful and practical clinical test for balance evaluation, 

it may not be able to provide all the detailed information needed to identify all the aspects of 

impaired balance and all the underlying causes of impaired balance pre-rehabilitation. Therefore, 

the little information provided by the BBS scores may limit therapists’ ability to introduce targeted 

interventions focusing on underlying causes of impairment. In addition, the BBS does not provide 

objective outcome evaluation regarding the efficacy of the rehabilitation and its effect on different 

aspects of balance. Particularly, the BBS could only show the overall changes in balance post-

rehabilitation and not the improved and yet impaired aspect of balance. Therefore, BBS may not 

be able to characterize risk factors associated with remaining impaired aspects of balance after 

rehabilitation. By contrast, the efficacy of the rehabilitation, as well as post-therapy fall risk factors 

and their underlying causes, could be identified by the instrumented balance evaluation.  

Furthermore, the BBS tends to be, in part, subjective in nature due to the involvement of 

human opinion in score assignment, whereas IMUs enable objective balance evaluation with a 
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high sensitivity to subtle changes. The subjectivity of the BBS could also contribute to a lack of 

association between the BBS total scores and balance biomarkers. One possible explanation could 

be the effect of inter-rater variability on the BBS scores since multiple physical therapists were 

involved in this study which further shows the necessity of using an objective instrumented 

approach. 

In addition, the use of IMUs may allow for a faster balance assessment in large cohorts in 

clinical settings as they used data from only two minutes of quiet standing rather than several tasks 

performed to obtain the BBS score. This is particularly important due to the worldwide increase 

in the ageing population and insufficient healthcare resources to identify high-risk fallers in a 

timely manner for implementing more effective early interventions. Early diagnosis of balance 

impairments, introducing targeted interventions, and objective outcome evaluation of balance 

performance after rehabilitation for senior adults can significantly reduce future fall incidences 

and prolonged complications of fall-related injuries and their impact on the healthcare systems. 

In summary, an instrumented BBS test may provide physical therapists with a more 

sensitive objective balance assessment tool. Therefore, a preventative intervention can be precisely 

focused on the underlying causes of impaired balance, and therapists can follow the patient’s 

progress over time, evaluate the efficacy of the retrospective interventions on different aspects of 

balance, and introduce prospective interventions to reduce post-rehabilitation fall incidences [37]. 

6.4.4 Clinical relevance and translation of IMU-based balance biomarkers 

Identifying IMU-based balance biomarkers of standing balance does not necessarily mean 

that they can be addressed clinically. Extensive research is required to determine the clinical 

relevance of a variety of IMU-based balance biomarkers in individuals with different underlying 

impairments. However, in the present study, we only focused on balance biomarkers with proven 

clinical relevance in the literature. Previous studies [37], [49], [253] have provided the clinical 

relevance of conventional balance biomarkers used in the present study to evaluate the balance of 

individuals with different conditions. Nevertheless, introducing new biomarkers requires extensive 

clinical research to determine their clinical value. 

In addition, Horak et al. [37] discussed the potential impact of conventional IMU-based 

balance biomarkers for clinical balance assessment and the development of guided rehabilitative 

interventions for improving balance in the elderly as well as individuals with Parkinson's disease. 
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They have suggested [37], [49] that such balance measures can provide clinically-relevant 

characterizations on how and why balance is impaired with increased sensitivity to mild 

impairments and change with rehabilitation compared to clinical functional tests. They also 

suggested that instrumenting clinical functional tests with IMUs adds a multitude of balance 

characteristics to what functional tests alone can provide [37], [49]. For example, BBS measures 

whether an individual can accomplish a task; however, the addition of IMUs provides an objective 

measure of the level of impairment [37]. 

It is critical for therapists to fully understand the advantages and limitations of emerging 

balance assessment technologies when translating them into clinical practice. Therefore, 

translating balance assessment technologies into clinical settings requires the involvement of 

physical therapists in the process of developing methodologies to promote technologies that are 

valid, sensitive, and responsive enough for clinical practice. The literature suggests that therapists 

are interested in balance biomarkers that have been validated against gold-standard references and 

are associated with clinically-relevant outcomes such as fall risk and severity of impairment [37]. 

The therapists require assessment technologies that are easy to use while providing quick and 

meaningful reports for both referring physicians and their patients. Such technologies must 

demonstrate sensitivity to the quality of balance such that patients with a high level of balance 

performance can enhance their function or prevent a decline in function. In addition, they must 

reflect information regarding the severity of impairment that can guide interventions while being 

responsive to the changes [37]. As assessment technologies become more accessible, companies 

developing such technologies must engage and communicate with physical therapists to better 

understand the clinical needs and direct their resources toward addressing the abovementioned 

concerns regarding sensitivity, validity, and responsiveness. 

6.4.5 Limitations 

The data used in this study were collected from a relatively small population of senior 

adults and a small population of young adults. Utilizing IMUs for balance evaluation in a large 

cohort can shed light on the feasibility of the instrumented BBS in clinical practice on a large scale. 

In-patient senior adults received personalized rehabilitation programs. The type and length of the 

program were tailored for each patient based on the impact of patient-specific medical conditions 

on initial balance performance and on progress over the course of the program. Information on the 

type of rehabilitation interventions that each patient received was not available to the authors due 
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to the patients’ privacy policy. Future studies should determine the sensitivity of instrumented tests 

for identifying changes in balance biomarkers due to unique rehabilitation programs among in-

patient senior adults in clinical settings. The methodologies of such studies would require the 

stratification of patients into groups with similar stability performance and similar impairments. 

Finally, we did not record prospective falls in this study. Recording fall incidences after discharge 

would enable identifying the best predictors of future falls among balance biomarkers and BBS 

scores.  

6.5 Conclusion 

In the present study, we provided a balance evaluation of senior adults pre- and post-

rehabilitation in a clinical setting using both the BBS and balance biomarkers obtained using IMUs 

during quiet standing. COP time-domain and frequency-domain measures, COM acceleration 

time-domain measures, and inter-segment coordination measures were able to identify age-related 

changes in the balance of senior adults compared to young adults. Particularly, the instrumenting 

BBS test with IMUs allowed for objective outcome evaluation of rehabilitative interventions with 

high sensitivity to subtle changes in balance without a significant increase in assessment time. 

Objective balance assessment showed that rehabilitation improved efforts for active postural 

correction in the elderly while it could not improve sway displacement/velocity. Therefore, 

balance biomarkers may enable characterizing underlying causes of impaired balance and may 

allow identifying the improved and yet impaired aspects of balance post-rehabilitation. Hence, 

they may be appropriate to characterize risk factors post-rehabilitation for elderly fallers; however, 

BBS scores may only show changes in overall balance. Therefore, we recommend the use of IMUs 

along with the BBS test in clinical environments. Note that information on the type of rehabilitation 

interventions that each patient received was not available to the authors. Therefore, it was not 

possible to investigate the capability of IMU-based balance biomarkers for evaluating the efficacy 

of a specific intervention. Nevertheless, instrumented balance assessment may provide the physical 

therapists with a more sensitive objective assessment tool and may facilitate objective outcome 

evaluation of rehabilitative interventions. Furthermore, IMUs may contribute to a timelier balance 

evaluation of elderly cohorts. Future studies should investigate the capability of instrumented 

balance assessment tools for an early diagnosis of those susceptible to falls and for the 

implementation of more effective rehabilitative interventions. 
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6.5.1 What is next? 

We developed and validated an algorithm for reliable assessment of static standing balance, 

based on wearable technology measurements, with the capability of being integrated into clinical 

tests for individuals with neuromuscular impairments such as ambulatory individuals with iSCI 

with mild balance deficits as well as the elderly with moderate-to-severe balance impairments 

(Chapters 3 to 6). In the next chapter, we investigated the limit of dynamic balance to assess the 

risk of loss of balance during dynamic conditions. Note, since there is a need for a standard 

biomechanical criterion that particularly quantifies the limits of dynamic balance during sitting 

due to complexities associated with human trunk structure and its control, the next chapters 

(Chapters 7 to 9) focused on providing insights into the control strategy employed by the 

neuromusculoskeletal system for dynamic balance of sitting.  
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Chapter 7 

This chapter shows how the feasible stability region can be obtained for seated stability and how 

an algorithm can be used to obtain the margin of stability during perturbed sitting using wearable 

technology. This chapter has been adopted and/or edited from: 

A. Noamani, K. Agarwal, A. H. Vette, and H. Rouhani, “Predicted Threshold for Seated Stability: 

Estimation of Margin of Stability Using Wearable Inertial Sensors,” IEEE J. Biomed. Heal. 

Informatics, vol. 25, no. 9, pp. 3361–3372, 2021, doi: 10.1109/JBHI.2021.3073352. 

7 Feasible Seated Stability Region  

7.1 Introduction 

Each year, about 22,000 new cases of spinal cord injury are reported in the USA and 

Canada, and the total number of individuals with spinal cord injury living in these countries is 

estimated to be around 380,000 [73], [74]. Due to the impaired neuromuscular function of the trunk 

and pelvic musculature, individuals with spinal cord injury are frequently unable to adequately 

control their sitting balance. 

More than 60% of individuals with spinal cord injury use wheelchairs or scooters for daily 

mobility [22]. Many of them experience higher postural sway during sitting compared to able-

bodied individuals because of impaired trunk stability [24]. Thus, these individuals are at high risk 

of falling when exposed to sitting perturbations, such as hitting a bump during daily wheeling, 

making tips and falls the leading cause of injury in this population [27]. Consequently, they view 

sitting stability during daily activities as one of their most essential needs, even outweighing their 

desire to walk again [34]. In this light, an assistive device that can evaluate and improve their 

sitting stability during daily life would dramatically improve their quality of life while moving in 

a wheelchair. 

Recent studies have shown that the development of neuroprostheses using functional 

electrical stimulation (FES) could be beneficial for restoring trunk stability during seated posture 

by activating the paralyzed trunk musculature. It has been suggested that closed-loop control of 

stimulation using kinematic feedback of the trunk can reduce muscle fatigue, ensure smoother 
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muscle contractions, and result in improved joint trajectory tracking [181]. Hence, motion states 

(i.e., position and velocity) of the trunk center of mass (COM) can be of significant importance in 

utilizing closed-loop FES control for stabilizing the trunk. However, to the best of the author’s 

knowledge, there is no standard biomechanical criterion that particularly quantifies the relationship 

between the motion states of the trunk COM and sitting balance and is validated against a gold-

standard reference. 

Previous studies have used biomechanical models of the human body to characterize 

stability using the motion states of the body’s COM with respect to its base of support (BOS) [52]–

[58]. To quantify the relationship between the COM states and stability during gait and standing, 

two concepts have been introduced: the extrapolated COM [182] and feasible stability region 

(FSR) [57], [183]. In static conditions, the projection of the COM position should remain within 

the BOS boundaries to achieve stability. However, in dynamic conditions, the COM velocity must 

also be considered [52]. When the COM position is within the BOS, a COM velocity directed 

outward may lead to an unstable condition. Similarly, when the COM position is not within the 

BOS, a COM velocity toward the BOS may lead to a stable condition [52]. This concept is 

quantified by the extrapolated COM. The concept of the extrapolated COM suggests that the 

position of the COM plus its velocity, multiplied by a factor, should remain within the BOS for 

dynamic stability. This factor is identified based on a simple one-segment inverted pendulum 

biomechanical model and is equal to the inverse of the natural frequency of the pendulum. At the 

same time, the FSR is defined as the range of feasible COM velocities for an initial COM position 

that would bring the COM to the edge of the BOS with a velocity of zero. Hence, the FSR is a 

subspace of the COM motion states with boundaries that determine the limits of dynamic stability. 

Therefore, the dynamic stability is achieved as long as the COM motion states remain within the 

FSR. If the COM states during a gait cycle or standing fall within the boundaries of FSR, the 

occurrence of loss of balance is unlikely. However, COM states falling outside of the FSR 

boundaries indicate a high possibility of loss of balance. Hence, measuring the motion states of 

the body’s COM during real-world perturbed conditions and comparing them with the previously 

obtained FSR boundaries in the state-space plane can characterize the risk of loss of balance.  

The FSR allows using complex biomechanical models of the body for quantification of 

dynamic stability during various task-specific motions and postures. The FSR boundaries in the 

COM state space can be obtained as nonlinear curves and as a function of the complex body motion 
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and posture, and external perturbations [58], unlike the extrapolated COM, which obtains the 

stability limit using a linear combination of the COM motion states. FSR has been identified using 

biomechanical models along with dynamics optimizations and then validated against experimental 

data for standing [54], [189] and walking [56], [57], [187], as well as during gait following a slip 

[188] and BOS perturbations [58]. However, to the best of our knowledge, FSR has not been 

identified and validated against experimental data for quantifying the relationship between the 

trunk COM states and seated stability following BOS perturbations.  

Assessment of stability using both extrapolated COM and FSR requires measuring the 

COM motion states. In-lab equipment such as motion capture cameras has been used in the past to 

validate the use of the extrapolated COM and FSR for quantifying standing [54], [189] and walking 

stability [58]. However, the use of such approaches during activities of daily living requires a 

portable device for measuring the COM motion states. Wearable technologies such as inertial 

measurement units (IMUs) could be useful for this purpose. Unlike motion capture cameras, 

wearable technologies can be used during activities of daily living and in spaces other than an 

equipped lab space. Wearable IMU can be a low-cost, user-friendly tool for out-of-lab assessment 

of seated stability. Nevertheless, their accuracy for obtaining COM motion states must first be 

validated against motion capture cameras as a gold-standard reference.  

To address the abovementioned gaps and to quantify the relationship between the dynamic 

posture of the trunk and fall risk during sitting, this study aims to: (a) obtain the limit of stability 

against forward loss of balance based on the concept of FSR following BOS perturbations using 

mathematical simulations; (b) experimentally validate the obtained FSR using a motion capture 

system; (c) compare the predicted FSR and extrapolated COM for quantifying seated stability 

using experimental data; and (d) investigate the accuracy of using wearable IMUs for assessing 

the dynamic sitting posture and fall risk against the motion capture system as the gold-standard 

reference using experimental data. 

In the following section, first, we explain how the FSR can be obtained for seated stability 

using mathematical simulation. Second, we describe our experimental study with fifteen 

individuals during perturbed sitting to obtain the trunk COM motion states using motion capture 

cameras. Third, we explore the validity of the FSR using the experimental data and compared the 

margin of stability obtained via FSR with the extrapolated COM. Finally, we identify the accuracy 
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of the IMUs against the motion capture for estimating trunk COM motion states and the margin of 

stability. 

7.2 Methods 

7.2.1 Simulation Study: FSR Modelling  

We used a mathematical simulation approach including forward dynamics and dynamic 

optimization to determine the threshold of the trunk COM position and velocity relative to the 

BOS against forward loss of balance. To this end, we used a six-segment model of the human body 

in the sagittal plane during sitting in this study for simulating seated stability when a BOS 

perturbation is applied. The implemented model consisted of the head and neck, thorax and upper 

limbs (crossed over the chest), lumbar segment, pelvic segment, thighs, and lower legs (Figure 

7-1). Segments were connected to each other by revolute joints. Body segment parameters, 

including mass, moments of inertia, COM, and joint center of rotation positions, were derived 

according to the cadaveric data provided by Vette et al. (upper body) [254] and Winter (lower 

limbs) [223]. The inputs to the model were the initial angle and angular velocity (𝜃, �̇�) of each 

joint as well as the muscle excitation history, 𝑢(𝑡), as explained in previous studies [58], [187], 

[188]. Similar to previous studies, joint moments were estimated based on anatomical maximum 

flexion and extension limits and an activation level as follows: 

𝜏𝑖 = {
𝑎𝑖(𝑡)𝑇𝑖

𝐸     𝑎𝑖(𝑡) ≥ 0

𝑎𝑖(𝑡)𝑇𝑖
𝐹     𝑎𝑖(𝑡) < 0

 
(1) 

where 𝜏𝑖 is the joint moment, 𝑎𝑖 is the activation level, and 𝑇𝑖
𝐸 and 𝑇𝑖

𝐹are the physiological 

moment range of joint 𝑖 for extension and flexion, respectively [233], [255], [256]. The activation 

level, used in Eq. 1, was computed via a first-order differential equation as follows: 

�̇�(𝑡) =  
𝑢(𝑡) − 𝑎(𝑡)

𝜏𝑎𝑐𝑡
, −1 ≤ 𝑢(𝑡), 𝑎(𝑡) ≤ 1 

(2) 

where 𝑢(𝑡) is the muscle excitation that was controlled by a series of control nodes (11 nodes per 

joint), and  𝜏𝑎𝑐𝑡 is the activation time constant [58], [188]. The initial activation levels required for 

solving Equation (2) and initial joint moments were obtained using an initial configuration of the 

model, selected to show different initial trunk COM positions. The initial trunk COM positions in 

the anteroposterior direction were chosen to be [−1.5, −1.25, −1, −0.75, −0.70, −0.5,



 

131 

 

−0.25, 0] × BOS length with respect to the COM position in the stable, maximum forward 

bending condition. The choice of these initial COM positions was based on previous studies that 

obtained the FSR for walking [58], [187], [188]. The BOS length was chosen to be 75% of the 

thigh length (from the hip to the knee), similar to previous studies [242], [257]–[259]. The 

configurations of the segments with respect to each other were adopted, for which we observed 

the abovementioned initial trunk COM positions in experimental kinematic data (averaged across 

participants). 

For each initial trunk COM position, we used a genetic optimization algorithm (Figure 7-2) 

to obtain the maximum feasible initial trunk COM velocities that would bring the trunk COM 

position to the anterior edge of the BOS. This maximum velocity corresponding to each initial 

trunk COM position indicates the threshold against forward loss of balance. Any initial velocity 

leading to an unstable condition would cause divergence of the optimization process.  

Optimization variables were initial joint angular velocity and muscle excitation history for 

each joint. Note that having one time series for 𝑢(𝑡) per joint as an optimization variable 

significantly increases the computational cost. Therefore, a set of independent linearly interpolated 

variables known as control nodes were used in the literature [58], [188] to define 𝑢(𝑡). In the 

present study, 11 control nodes per joint were defined as the optimization variables. Subsequently, 

a corresponding time series for 𝑢(𝑡) was constructed by interpolating the control nodes over the 

simulation time. Therefore, we used 12 optimization variables for each joint including initial 

angular velocity and 11 control nodes. Following previous studies [58], [188], a cost function was 

defined to characterize trunk stability during BOS perturbations while guaranteeing a smooth and 

natural motion of each trunk segment. 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝑤1

 �̇�𝐶𝑂𝑀
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

+ 𝑤2|�̇�𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

| + 

𝑤3|�̈�𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

| +  𝑤4 ∫ 𝑒(𝐹𝑦(𝑡))𝑑𝑡
𝑡𝑓
𝑡𝑖

+ 𝑤5 ∫ 𝑒(Ө(𝑡))𝑑𝑡
𝑡𝑓
𝑡𝑖

+ 

𝑤6 ∫ 𝑒 (Ө̇(𝑡)) 𝑑𝑡
𝑡𝑓
𝑡𝑖

+ 𝑤7∑ ∫ 𝜏(𝑡)2𝑑𝑡
𝑡𝑓
𝑡𝑖

4
𝑖=1 + 𝑤8∑ ∫ 𝑆𝐷(Ө𝑖)

𝑡𝑓
𝑡𝑖

6
𝑖=1 𝑑𝑡 +

 𝑤9|𝑥𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

− 𝑥𝐵𝑂𝑆 𝑒𝑑𝑔𝑒| + 

𝑤10⌊𝑦𝐻𝑒𝑎𝑑 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

− 𝑦𝑃𝑒𝑙𝑣𝑖𝑠 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

⌋ + 

𝑤11⌊𝑦𝑇ℎ𝑜𝑟𝑎𝑥 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

− 𝑦𝑃𝑒𝑙𝑣𝑖𝑠 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

⌋ 

(3) 
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𝑤12⌊𝑦𝐿𝑢𝑚𝑏𝑎𝑟 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

− 𝑦𝑃𝑒𝑙𝑣𝑖𝑠 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

⌋ + 

𝑤13⌊𝑦𝑃𝑒𝑙𝑣𝑖𝑠 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

− 𝑦𝑇ℎ𝑖𝑔ℎ 𝐶𝑂𝑀
𝑓𝑖𝑛𝑎𝑙

⌋ 

where 𝑡𝑖 and 𝑡𝑓 are the initial and final time instances of the simulation; 𝑥, �̇�, and �̈� are the linear 

position, velocity, and acceleration, respectively, in the anteroposterior direction; 𝑦 is the vertical 

position; 𝜏 is the joint moment; 𝑆𝐷 is the standard-deviation; 𝐹𝑦 is the vertical ground reaction 

force; and 𝑤𝑖 is the weight for the 𝑖th term. Note that we used linear kinematics of the COM rather 

than angular kinematics to obtain the FSR. This is consistent with previous studies that identified 

the FSR during standing [54], [189] and walking [56], [57], [187]. 

 

Figure 7-1. The biomechanical model, used for dynamic optimization and simulation, consisted of the head and neck, 

thorax and upper limbs, lumbar segment, pelvis segment, thighs, and lower legs and feet as one segment. The base of 

support (BOS) was determined to be located at 75% of the thigh length. The position and velocity of the trunk center 

of mass (COM) were then used to obtain the feasible stability region (FSR) during perturbed sitting for different initial 

positions of the trunk COM with respect to the front edge of the BOS. 

 

The rationale for using terms 1 to 9 was explained in detail by Yang et al. [188] and Bahari 

et al. [58]. We added terms 10 to 13 to terms 1 to 9 to ensure faster convergence and to avoid non-

physiological motion of segments with respect to each other. The first term ensures that the 

maximum initial velocity, which brings the trunk COM position to the front end of the BOS, is 

achieved. The second and third terms are to bring the trunk COM to a stationary condition at the 

front end of the BOS. The fourth term ensures that the resultant vertical ground reaction force 

under the thighs remains positive. The fifth and sixth terms ensure that 𝜃 and �̇� at each joint remain 

within the physiological limits. The seventh term is to minimize the integral of the square of the 

joint moments leading to faster convergence. The eighth term ensures smooth changes of the joint 

angles and minimizes their rapid changes. The ninth term requires the final trunk COM position 

to stay inside the BOS limit at the end of the simulation. 
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Figure 7-2. Flowchart of dynamic optimization and simulation. 

 

 

Figure 7-3. (a, b) Anatomical markers and inertial measurement units (IMUs) were placed on the body; (c) A T-pose 

anatomical calibration was performed at the beginning of the data collection; and (d) Perturbed sitting trials were 

performed while the participant sat on a customized seat fixed on the Stewart platform of a Computer Assisted 

Rehabilitation Environment (CAREN). Note that the recordings of electromyography electrodes shown in this figure 

were not used for the present study. 

 

Terms ten to thirteen ensure the trunk segments have physiologically meaningful motions 

during the seated condition and facilitate faster convergence of the simulation. Our previous 

experimental studies [233], [260] indicate that the vertical COM positions of the trunk segments 

(head, thorax, and lumbar) remain above the pelvis while the COM of the pelvis remains above 
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the thighs. Thus, terms ten to thirteen ensure that such conditions are maintained over the course 

of the simulation. Functions 𝑒(𝑥(𝑡)) and ⌊𝑥⌋ were defined by Yang et al. [188] as follows: 

𝑒(𝑥(𝑡)) =  ∑ ∅(𝑥𝑖(𝑡))
𝑞

𝑖=1
 

(4) 

∅(𝑥𝑖(𝑡)) = {

𝑥𝑖
𝐿𝐵 − 𝑥𝑖 , 𝑥𝑖 < 𝑥𝑖

𝐿𝐵

0, 𝑥𝑖
𝐿𝐵 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈𝐵

𝑥𝑖 − 𝑥𝑖
𝑈𝐵 , 𝑥𝑖 ≥ 𝑥𝑖

𝑈𝐵

 

(5) 

⌊𝑥⌋ = {
−𝑥, 𝑥 ≤ 0
0, 𝑥 > 0

 
(6) 

where 𝑥𝑖
𝐿𝐵 and 𝑥𝑖

𝑈𝐵are the lower and upper bounds of the variable 𝑥𝑖, respectively, used to account 

for the physically feasible ranges of angle and angular velocity for each joint. The cost function 

defined in Equation (3) is particularly important in modelling perturbed sitting where relative 

intersegmental motion is large compared to unperturbed sitting. The weights (𝑤𝑖) were determined 

using an initial multi-objective optimization where each term in Equation (3) was used as a 

separate cost function. The weights were then calculated to ensure all terms fall within the same 

range without outweighing one another in the main optimization. The role of the weights was to 

scale each term, in the cost function, so all terms would fall within the same range and would 

equally contribute to the cost value. Therefore, the optimization algorithm could simultaneously 

minimize all terms in the cost function [58]. In all simulations, the BOS perturbation was modelled 

as a ramp signal, and the thigh segment was assumed to be fixed on the BOS. Simulations were 

performed with MATLAB R2018b (MathWorks, Natick, MA, USA).  

7.2.2 Experimental Study 

7.2.2.1 Participants 

Fifteen abled-bodied male individuals (mass: 75.9±11.2 kg, height: 178±7 cm, age: 24±4 

years) with no history of neuromuscular or musculoskeletal impairments or any disorders that may 

have affected their seated stability participated in this study. Participants were informed about the 

experimental protocol and provided written consent prior to participation. The Research Ethics 

Board of the University of Alberta approved the study protocol (Study ID: Pro00063998). 

7.2.2.2 Experimental Protocol 

Each participant was asked to sit, with their arms crossed over the chest, on a customized 

seat without foot support equipped with a force plate (AMTI, Watertown, MA, USA) on top 
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(Figure 7-3). The seat was fixed on the Stewart platform of a Computer Assisted Rehabilitation 

Environment (CAREN; Motekforce Link, Amsterdam, The Netherlands). The platform was 

connected to six hydraulic actuators that allowed three-dimensional translation and three-

dimensional rotation of the platform. A 180-degree curved virtual-reality projection screen was in 

front of the participants. White two-dimensional grid lines on a black background were projected 

onto the virtual-reality screen by four F-10 AS3D projectors (Barco, Fredrikstad, Norway) to 

provide a similar sensory condition for all participants prior to the perturbation. Sudden BOS 

perturbations in the form of a ramp-shaped horizontal anteroposterior displacement of the platform 

were applied to the seat. Perturbations were applied with three different amplitudes increasing 

from low to high (Figure 7-4). 

Table 7-1. Markers were placed on the anatomical landmarks of the head, spine, trunk, arms, pelvis, and lower limb, 

including thighs, legs, and feet. 

Segment Retro-reflective markers on anatomical landmarks 

Head Condyloid process and mastoid process (left and right) 

Spine C7, T12, and L5 vertebrae, and 5 cm bilaterally to each vertebra 

Trunk T9 vertebra, Suprasternal and xiphoid 

Arms Acromion, lateral epicondylitis, and olecranon (left and right) 

Hands Distal ulna bone, little finger metacarpal head, middle finger distal phalanges  

Pelvis Anterior and posterior superior iliac spine (left and right) 

Legs Greater trochanter, medial and lateral epicondylitis, medial and lateral malleolus 

Feet Calcaneus, 1st and 5th metatarsal heads 

 

 

Figure 7-4. (a) Base of support (BOS) perturbation characteristics. (b) Calculation of the BOS velocity based on the 

anteroposterior acceleration as measured by an inertial measurement unit (IMU) placed on the seat. 
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The amplitudes of the perturbations were designed to duplicate a near-fall experience while 

ensuring the safety of the participants. The amplitudes were determined by trial and error in our 

preliminary experiments and based on the experience of the CAREN operator. The participants 

were instructed to fixate on the screen, keep their legs hanging vertically downward, and maintain 

their sitting balance without using their lower limbs.  Three trials were performed for each 

perturbation amplitude. Rest breaks were provided between the trials as needed. 

7.2.2.3 Data Acquisition 

Retro-reflective markers were placed on the anatomical landmarks of the head, spine, 

trunk, arms, hands, pelvis, legs, and feet (Table 7-1 and Figure 7-3). A twelve-camera motion 

capture system (Vicon Motion Systems Ltd., Oxford, UK) recorded the trajectory of the markers 

at a sampling frequency of 100 Hz. In addition, four markers were placed on the seat to record 

BOS motion.  

Three inertial measurement units (IMUs) (MTws, XSENS Technologies, NL) measured 

the kinematics of the thorax, lumbar segment, and pelvic segment at a sampling rate of 100 Hz.  

One IMU was also attached to the seat. Each IMU was composed of a tri-axial gyroscope (range: 

±2000 deg/s), a tri-axial accelerometer (range: ±16g), and a tri-axial magnetometer (range: ±1.9 

Gauss) and mounted on a rigid plate equipped with four retro-reflective markers (Figure 7-3). The 

raw IMU and marker data were low-pass filtered via a zero-lag 4th-order Butterworth filter with a 

cut-off frequency of 30 Hz and 10 Hz, respectively. The cut-off frequency was selected based on 

the frequency content of the time series obtained via the Fast Fourier Transform. The 

synchronization between the motion capture system and the IMUs was conducted by sending an 

analog trigger from the IMUs to the motion capture system at the beginning and end of each trial. 

A T-pose anatomical calibration was performed by each participant (Figure 7-3c). Anatomical 

markers of the thorax, lumbar segment, and pelvic segment were removed prior to perturbation 

trials and were subsequently reconstructed using anatomical calibration data. 

7.2.3 Data Analysis 

The FSR, obtained via simulations, was validated against the motion states of the trunk 

COM, computed using experimental data. Individual-specific body segment parameters were 

obtained via scaling of the data from the simulation using each participant’s body weight and 

height, similar to our previous studies [233], [260]. The kinematics of each segment during 
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perturbation trials were computed using the trajectories of the markers and forming anatomical 

frames (see Additional Information), similar to the procedure described in our previous studies 

[233], [260]. The position and velocity of the trunk COM in the anteroposterior direction were 

then estimated as follows: 

𝑃𝐶𝑂𝑀(𝑡) =  
∑ 𝑀𝑎𝑠𝑠𝑖 . 𝑃𝐶𝑂𝑀𝑖

(𝑡)𝑛
𝑖=1

∑ 𝑀𝑎𝑠𝑠𝑖
𝑛
𝑖=1

 
(7) 

𝑉𝐶𝑂𝑀(𝑡) =  
𝑑𝑃𝐶𝑂𝑀(𝑡)

𝑑𝑡
=
𝑃𝐶𝑂𝑀(𝑡 + 1) − 𝑃𝐶𝑂𝑀(𝑡 − 1)

2 ∆𝑡
 

(8) 

where 𝑃𝐶𝑂𝑀(𝑡) and 𝑉𝐶𝑂𝑀(𝑡) are the position and velocity of the trunk COM at time 𝑡, respectively; 

𝑀𝑎𝑠𝑠𝑖 and 𝑃𝐶𝑂𝑀𝑖
(𝑡) are the mass and COM position of segment 𝑖 , respectively, and 𝑛 is the 

number of segments, including head and neck, thorax, arms, lumbar segment, and pelvic segment. 

To quantify the risk of loss of balance, the margin of stability (𝑎𝑚𝑎𝑟𝑔𝑖𝑛) was then calculated as the 

shortest distance from the trunk COM states to the boundary of the obtained FSR in the state-space 

plane (velocity-position). Note that the trunk COM states were normalized using the trunk height 

and BOS length prior to the calculation of 𝑎𝑚𝑎𝑟𝑔𝑖𝑛 as follows: 

𝑉𝐶𝑂𝑀
𝑁𝑜𝑟𝑚𝑎𝑙 = 

𝑉𝐶𝑂𝑀

√𝑔 × 𝑇𝑟𝑢𝑛𝑘 𝐻𝑒𝑖𝑔ℎ𝑡
 

(9) 

𝑃𝐶𝑂𝑀
𝑁𝑜𝑟𝑚𝑎𝑙 = 

𝑃𝐶𝑂𝑀 − 𝑃𝐵𝑂𝑆 𝑓𝑟𝑜𝑛𝑡 𝑒𝑛𝑑

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐵𝑂𝑆
 

(10) 

where 𝑉𝐶𝑂𝑀
𝑁𝑜𝑟𝑚𝑎𝑙 and 𝑃𝐶𝑂𝑀

𝑁𝑜𝑟𝑚𝑎𝑙 are the normalized velocity and position of the trunk COM, 

respectively; trunk height was measured as the distance between the C7 and L5 markers, and BOS 

length was measured as 75% of the thigh length (from the hip to the knee). In addition, the 

extrapolated COM in the anteroposterior direction was computed as follows [182]: 

𝑋𝐶𝑂𝑀(𝑡) =  𝑃𝐶𝑂𝑀(𝑡) +
𝑉𝐶𝑂𝑀(𝑡)

𝜔0
,     𝜔0 = √

𝑔

𝑙𝐶𝑂𝑀
 

(11) 

where 𝑋𝐶𝑂𝑀 is the extrapolated COM; 𝑔 is the gravitational acceleration; and 𝑙𝐶𝑂𝑀 is the 

equivalent length between the hip joint and the trunk COM position for each participant. The 

margin of stability (𝑏𝑚𝑎𝑟𝑔𝑖𝑛) was calculated as the shortest distance between the XCOM and the 

front edge of the BOS. 
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To investigate the accuracy of wearable IMUs in measuring the motion states of the trunk 

COM, we used IMUs attached to the thorax segment, lumbar segment, and pelvic segment. The 

IMUs were calibrated by aligning the accelerometer’s vertical axis with gravity during quiet sitting 

at the beginning of each trial [93], [227]. We used the sensor’s built-in Kalman filter to obtain the 

orientation of each segment (expressed as quaternions). The angle and angular velocity of each 

segment were calculated using its orientation and used along with the estimated body-segment 

parameters to estimate the motion states of the trunk COM. Equations for calculating angle and 

angular velocity using quaternions are provided by [261] (see Additional Information). 

Furthermore, the velocity of the BOS was estimated using the accelerometer’s reading. The 

acceleration signal was integrated using a trapezoidal numerical integration and then corrected for 

the drift using linear interpolation (Figure 7-4b), similar to previous studies [235], [236], [262], 

[263]. We used linear interpolation because of the short correction period (just over 1 second in 

Figure 7-4b). Finally, the margin of stability (𝑎𝑚𝑎𝑟𝑔𝑖𝑛
𝐼𝑀𝑈 ) with respect to the FSR boundary was then 

estimated using only IMUs recordings. 

7.2.4 Statistical Analysis 

We used Spearman’s correlation between 𝑎𝑚𝑎𝑟𝑔𝑖𝑛 and 𝑏𝑚𝑎𝑟𝑔𝑖𝑛 to compare the margin of 

stability obtained using FSR and the extrapolated COM. Furthermore, to compare the margin of 

stability estimated by the IMUs with that estimated by the motion capture system, we performed 

statistical analyses between 𝑎𝑚𝑎𝑟𝑔𝑖𝑛 and 𝑎𝑚𝑎𝑟𝑔𝑖𝑛
𝐼𝑀𝑈 . The Kolmogorov-Smirnov test rejected the null 

hypothesis that the data followed a normal distribution. Therefore, we used a non-parametric 

statistical test (Wilcoxon signed-rank test) at a 0.05 significance level for the comparison. We also 

calculated the correlation coefficient and root-mean-square (RMS) difference between the time 

series obtained via the motion capture system and IMUs for the motion states of the trunk. We 

used the statistical F-test between the margins of stability associated with different perturbation 

amplitudes to compare the variance of the margin of stability within our sample population 

between the two perturbation conditions. All analyses were performed with MATLAB R2018b 

(MathWorks, Natick, MA, USA). 
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7.3 Results 

Figure 7-5 shows the boundary of FSR, known as the limit of stability, obtained from the 

simulations. All experimentally obtained trunk COM states for all perturbation trials fell within 

the FSR (Figure 7-5). Trunk COM states for the perturbations with higher amplitudes were more 

scattered and closer to the limit of stability. The variances of the margin of stability among 

participants for low, medium, and high perturbation amplitudes were [0.009, 0.010, 0.012], 

respectively. The statistical F-test between the margins of stability associated with different 

perturbation amplitudes revealed a significantly larger variance among participants for the high 

amplitude compared to the low amplitude (p = 0.039). No significant differences were observed 

between the low and medium amplitudes, and the medium and high amplitudes. However, the 

variance of the margin of stability among participants tended to increase when increasing the 

perturbation amplitude. 

 

 

Figure 7-5. (a) Feasible stability region (FSR) estimated via dynamic optimization (solid black line) and three 

representative trajectories of motion states of the trunk COM during perturbation trials for different perturbation 

amplitudes measured for one participant (left); and (b) the motion states of the trunk center of mass (COM) at the 

minimum margin of stability (the most unstable moment) during experimental trials with sudden horizontal 

perturbations with different amplitudes for all participants (right). 
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Spearman’s correlation between 𝑎𝑚𝑎𝑟𝑔𝑖𝑛 and 𝑏𝑚𝑎𝑟𝑔𝑖𝑛 showed a medium correlation 

coefficient (𝜌 = 0.430, p < 0.001). The statistical comparison between the FSR margin of stability 

obtained via the motion capture system and the IMUs showed no significant difference (p = 0.753) 

(Figure 7-6). The correlation coefficient between the motion capture system and IMUs for 

estimating the trunk COM position and velocity were [0.916, 0.956, 0.975] and [0.862, 0.893, 

0.935], respectively, as the [25%, 50%, 75%] percentiles across participants (Figure 7-6). 

Moreover, the RMS difference between the motion capture system and IMUs for estimating the 

trunk COM position and velocity were [0.004, 0.006, 0.009] and [0.015, 0.018, 0.021], 

respectively, as the [25%, 50%, 75%] percentiles across participants (Figure 7-6). Figure 7-7 

shows a sample time series of the trunk COM states and platform velocity as estimated via the 

IMUs compared to the motion capture system, with a high correlation and small magnitude of the 

error. 

 

 

Figure 7-6.  (a) The margin of stability was obtained experimentally using the motion capture system and the inertial 

measurement units (IMUs). No significant difference was observed between the two measures; (b) and (c) The 

correlation coefficient and root-mean-square (RMS) difference, respectively, between the normalized trunk COM 

position and velocity obtained by the motion capture system and those obtained by the IMUs. 
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Figure 7-7. Trunk center of mass (COM) velocity and position, as well as the base of support (BOS) velocity, were 

estimated via the motion capture system (black line) and via inertial measurement units (IMUs) (red line) for one trial 

and one participant. 

7.4 Discussion 

This study presented a predicted threshold against forward loss of balance during sitting 

using dynamic optimization and simulation to quantify the relationship between the trunk COM 

states and seated stability. We obtained FSR for the sitting condition using a six-segment 

biomechanical model (Objective (a)). We used experimental data from fifteen able-bodied 

individuals who maintained their seated stability following BOS perturbations to validate the 

obtained FSR (Objective (b)). We measured the trunk COM states using a motion capture system 

and computed the margin of stability with respect to the boundary of FSR as an indication of loss 

of balance (Objective (c)). We also validated the use of wearable IMUs against the motion capture 

system for estimation of the margin of stability (Objective (d)). Such wearable technology may be 

of significant importance, in the future, for (a) alarming wheelchair users regarding a potential fall 

risk during wheeling as a function of wheeling speed and body posture; (b) training users to 

improve dynamic sitting balance in rehabilitation programs; and (c) the development of a 

neuroprosthesis for improving seated stability using a closed-loop FES system. Each of these 

applications requires extensive investigation. Nevertheless, the present study took a step forward 
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toward the quantification of seated stability under dynamic conditions, which could pave the way 

for future research studies. 

7.4.1 Experimental Validation of FSR 

FSR against forward loss of balance obtained for the sitting condition (Figure 7-5) shows 

a more nonlinear limit of stability in the state-space plane compared to that obtained for walking 

[58], [188] and standing [54], [189]. This could be due to larger intersegmental motions between 

trunk segments during perturbed sitting compared to walking and standing. Previous studies [54], 

[58], [188] neglected the intersegmental motion between the trunk segments during gait and 

standing, which cannot be neglected during perturbed sitting [260]. As indicated by Figure 7-5a, 

all the experimentally measured trunk COM motion states were located within the FSR for all 

perturbation trials, which suggests the maintained balance of the participants.  

The represented motion states in the state-space plane were chosen to be those that had the 

trunk COM velocity reach its maximum following the BOS perturbation (Figure 7-5a and Figure 

7-5b). Since the BOS perturbation was applied as a ramp-shaped displacement in a short period of 

time, the trunk COM velocity increased and then decreased, similar to the BOS velocity. 

Therefore, the selected point in the state-space plane represented the instance of the most unstable 

condition with a minimum margin of stability (Figure 7-5b). In reality, BOS disturbances 

oftentimes have the shape of a horizontal impulse displacement; however, in the laboratory 

condition, the BOS disturbance was realized in the form of a ramp-shaped displacement to prevent 

potential harm to the study participants. 

By increasing the BOS perturbation amplitude, the trunk COM motion states became more 

scattered. Our statistical analysis revealed that the high perturbation amplitude led to a large 

variance in the margin of stability compared to the low perturbation amplitude. This could be due 

to the increased variability of the trunk intersegmental motions and neuromuscular control strategy 

as the BOS perturbation amplitude increased. In addition, trunk stiffness acts as a passive 

mechanism in stabilizing the trunk in response to the perturbation by producing a resistive torque. 

The literature indicates that trunk stiffness is much lower for small perturbations [212] and linearly 

increases proportionally to the load [264]. By increasing the perturbation amplitude, the effect of 

the variability in trunk stiffness among participants may have become more apparent, which would 

further explain why the motion states of the trunk became more scattered. 
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In agreement with previous studies [58], [188], we also observed that the trunk COM states 

were closer to the limit of stability for larger amplitudes of perturbation, which indicates a more 

challenged sitting posture and smaller margin of stability (Figure 7-5a and Figure 7-5b). The 

trajectory of the trunk COM motion states (Figure 7-5b) showed that the margin of stability tended 

to decrease when increasing the perturbation amplitude; however, no statistical significance was 

observed between the margins of stability for different perturbation amplitudes. Larger differences 

between the perturbation amplitudes (which might not be safe) would be needed to observe a 

clearer difference among the margins of stability within a small-size population.  

7.4.2 FSR vs. Extrapolated Center of Mass 

To quantify the risk of loss of balance, we estimated the margin of stability (𝑎𝑚𝑎𝑟𝑔𝑖𝑛) as 

the shortest distance from the trunk COM states to the boundary of the FSR in the state-space plane 

using experimental data. We also calculated the margin of stability (𝑏𝑚𝑎𝑟𝑔𝑖𝑛) using the concept of 

XCOM introduced by Hof et al. for standing [52] and walking [182], i.e., as the shortest distance 

between the XCOM and the front edge of the BOS. Spearman’s correlation between the two 

measures was moderate. This is due to the fact that the XCOM (Equation (10)) assumes a linear 

limit of stability in the state-space plane between the velocity and position of the COM. However, 

the FSR obtained in this study using a multi-segment biomechanical model (Figure 7-5) showed a 

nonlinear limit of stability, which could explain the moderate correlation between the two 

measures. Moreover, the nonlinear FSR presented by the current study provides a more 

conservative limit of stability compared to the XCOM-based limit, particularly in larger initial 

COM velocities. Quantifying the risk of loss of balance based on a more conservative nonlinear 

limit of stability obtained specifically for the sitting condition could provide better insights into 

the seated stability of an individual. Nevertheless, larger perturbations, which would bring the 

COM position close to the front end of the BOS, are needed to investigate the highly nonlinear 

portion of the FSR limit of stability. This is particularly important since the relation between seated 

stability and the dynamics of the trunk COM is different compared to the relations obtained for 

standing and walking at different COM motion states. 

7.4.3 Margin of Stability: IMUs vs. Motion Capture 

We also used IMUs placed over the thorax, lumbar segment, and pelvic segment to estimate 

the states of the trunk COM. We also used an accelerometer placed on the seat to estimate the 
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velocity of BOS. The accuracy of a segment’s orientation estimate using an IMU may deteriorate 

over time due to the drift associated with the gyroscope output. Complex sensor fusion algorithms, 

such as extended Kalman filters or complementary filters, can reduce the error in orientation 

estimation and are integrated into some commercially available IMUs. Here, we used the built-in 

Kalman filter of the sensors to obtain the segment’s orientation. Furthermore, numerical 

trapezoidal integration of the BOS accelerometer’s recording showed a systematic drift (Figure 

7-4b). To overcome this problem, a correction time series was generated and subtracted from the 

integrated accelerometer’s recording to estimate the BOS velocity. High correlations were 

observed between the position and velocity time series obtained with the motion capture system 

and the IMUs, with a small RMS difference (Figure 7-6 and Figure 7-7). The comparison between 

the margins of stability estimated using the IMUs and the motion capture system revealed no 

significant difference. These findings imply that a wearable device composed of IMUs along with 

the estimated FSR could be used to estimate the margin of stability. Such assessment methodology, 

in the future, may contribute to assessing the risk of loss of balance outside a laboratory volume 

and during seated daily activities and wheeling in a wheelchair; however, it requires further 

investigations under real-world conditions.  

Moreover, recent studies have shown that the development of an FES-based 

neuroprosthesis within a closed-loop control strategy using the inclination angle of the trunk as a 

feedback signal could be beneficial for restoring trunk stability during seated posture [27], [72], 

[176]–[178]. These studies used accelerometers to estimate the trunk inclination angle for a closed-

loop FES control strategy [27], [72], [176], [177], [265]. However, the use of an accelerometer for 

estimating trunk kinematics in dynamic conditions (e.g., BOS perturbations) is prone to errors and 

may yield inconsistent results since it is not possible to isolate gravity from the acceleration 

associated with the dynamic motion. Therefore, such methods for monitoring trunk stability may 

not be error-free when a significant BOS perturbation is imposed, whereas the method presented 

in this study is preferable since it would be less prone to artifacts due to more dynamic movements 

resulting from energetic external perturbations. The present study validated an algorithm for 

monitoring trunk stability using wearable technology and based on the concept of the margin of 

stability during dynamic conditions. Using the methodology presented in this study may facilitate 

the development of a closed-loop FES system for improving trunk stability by providing real-time 

feedback on trunk stability based on both trunk COM position and velocity. Nevertheless, further 
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investigations are required to assess the validity of this approach for FES systems and populations 

with impaired trunk stability. 

7.4.4 Limitations 

We only recruited able-bodied male participants for the present study. Notably, a majority 

of terms in the optimization cost function corresponded to the geometrical and physiological 

constraints of seated posture and are in common for all populations. Yet, the range of joint angles 

and moments might vary among populations and, thus, a more diverse population is needed for 

further generalization of the obtained FSR. Particularly, the physiological ranges of flexion and 

extension moments used in our simulation were based on data from able-bodied individuals [260]. 

These ranges could be affected by neuromuscular impairments and, thus, the model parameters 

may vary, which is a limitation. Therefore, a safety factor could be used for estimating the margin 

of stability when the physiological strength of the trunk musculature cannot be measured for each 

individual.  

We estimated body-segment parameters for each individual by scaling cadaveric data using 

an individual’s body weight and height, which may induce uncertainty in the calculations [233]. 

However, normalization of the trunk COM states prior to calculating the margin of stability could 

reduce the effect of this uncertainty. Moreover, our simulation predicted FSR based on a 

‘biomechanical’ model of loss of balance. The limit of stability may change under different 

physiological and cognitive conditions [58].  

In addition, we assumed a three-segment trunk model (consisting of the head-neck, thorax, 

and lumbar) and pelvic segments, and we neglected the intervertebral motions within each segment 

as well as the effect of potential upper limb motion. Future studies may perform a sensitivity 

analysis to investigate the effect of segmentation on the predicted FSR. The FSR must be obtained 

for different trunk models from single- to multi-segment models to determine the differences in 

the predicted limit of dynamic stability. 

Previous studies used high perturbation amplitudes, causing loss of balance during standing 

or walking conditions, to investigate if an actual loss of balance could be identified based on their 

calculated FSR [58], [187], [188]. Loss of balance during standing or walking does not always 

result in falling, but requires action for recovery, such as taking a step forward or backward. 

Therefore, they identified those recovery actions and compared them with the FSR to see if the 
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body’s COM motion states would fall outside the FSR boundaries. However, during perturbed 

sitting, loss of balance may lead to whiplash-related brain or spinal cord injuries due to a lack of 

recovery action since participants were instructed to cross their arms over their chest during the 

perturbation trials and, therefore, they could not use their arms for recovery. Therefore, the 

amplitudes of the perturbations for the present study were designed to only simulate near-fall 

conditions while ensuring the participants’ safety. Since all experimental COM motion states 

during perturbed sitting fell within the FSR, this could indicate the validity of our approach. 

Nevertheless, not having an actual loss of balance in our experimental data is a limitation of our 

study. 

Finally, we only considered the motions and FSR in the sagittal plane. Finding the limit of 

stability in the frontal plane could be a future research direction. Nevertheless, the present study 

took a step forward toward the quantification of seated stability, which could pave the way for 

further investigations. 

7.5 Conclusion 

This study presented the FSR against forward loss of balance during sitting based on the 

velocity and position of the trunk COM, validated the FSR against experimental data for perturbed 

sitting as measured by the motion capture system, and developed and validated an algorithm for 

estimating the margin of stability using wearable technology composed of IMUs for quantification 

of seated stability and risk of loss of balance. Our results indicate a more nonlinear limit of stability 

compared to those obtained for walking and standing. The margin of stability estimated via IMUs 

showed small differences compared to that estimated via the motion capture system. Such 

wearable technology may be applicable (a) as an alarming device for wheelchair users during 

wheeling and activities of daily living regarding the risk of falling; (b) for targeted rehabilitation 

and intervention to improve seated stability; and (c) as feedback in the development of 

neuroprostheses using a closed-loop FES system. Future studies should conduct extensive 

experimental studies to investigate the applicability of the proposed methodology to the 

abovementioned domains.  

7.5.1 What is next? 

We developed and validated an algorithm for assessing the dynamic stability and risk of 

loss of balance during sitting using wearable technology. Although this algorithm is helpful for 
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assessing the dynamic stability during sitting, it does not provide any information about the 

underlying neuromuscular stabilization mechanisms involved in maintaining dynamic balance. In 

the next chapter, a methodology to characterize the underlying neuromuscular mechanisms that 

regulate dynamic stability was investigated. 

7.6 Additional Information 

7.6.1 Quaternion Conversions to Euler Angle and Rotation Matrix  

The Euler angles (𝛼, 𝛽, 𝛾) representing roll, pitch, and yaw angles can be calculated from 

the quaternion (𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3) at each instant of time as follows: 

 

[

𝛼
𝛽
𝛾
] = [

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞1 + 𝑞2𝑞3, 1 − 2(𝑞1
2 + 𝑞2

2))

𝑎𝑠𝑖𝑛(2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞3 + 𝑞1𝑞2, 1 − 2(𝑞2
2 + 𝑞3

2))

] 

 

In addition, the rotation matrix from the segment-fixed frame (local) to the global 

frame ( 𝑅𝐿
𝐺 ) corresponding to the quaternion (𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3) can be obtained as follows: 

𝑅𝐿
𝐺 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞0𝑞2 + 𝑞1𝑞3)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞0𝑞1 + 𝑞2𝑞3) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

The angular velocity can also be obtained using the rotation matrix as follows: 

𝑊𝑡−1 =  𝐹𝑠.  ( 𝑅𝐿
𝐺

𝑡−1
𝑇  × 𝑅𝐿

𝐺
𝑡 − 𝐼3×3) 

�⃗⃗⃗�𝑡−1 =  [

𝑊𝑡−1(3, 2)
𝑊𝑡−1(1, 3)
𝑊𝑡−1(2, 1)

] 

In Eq. 3, 𝑊𝑡−1 is a 3×3 spin matrix at time instant 𝑡 − 1, 𝑅𝐿
𝐺

𝑡−1 and 𝑅𝐿
𝐺

𝑡  are the rotation 

matrices at time instances 𝑡 − 1 and 𝑡, respectively, 𝐹𝑠 is the sampling frequency, and 𝐼3×3 is a 3×3 

identity matrix. In Eq. 4, �⃗⃗⃗�𝑡−1 is the angular velocity at time instant 𝑡 − 1 and 𝑊𝑡−1 is the spin 

matrix obtained using Eq. 3.  
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7.6.2 Cost function weights 

Table 7-2. Weights of the cost function for each initial position of the COM with respect to the front end of the BOS. 

 (COM initial position with respect to the front end of BOS) / BOS length 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

-1.5 1 400 10 12 150 2 0.004 0.1 1400 100 100 100 100 1000 

-1.25 1 400 10 12 150 2 0.004 0.1 1400 100 100 100 100 1000 

-1 1 400 10 12 150 2 0.004 0.1 700 100 100 100 100 1000 

-0.75 1 400 10 12 150 2 0.004 0.1 700 100 100 100 100 1000 

-0.7 1 400 10 12 150 2 0.004 0.1 700 100 100 100 100 1000 

-0.5 1 200 10 6 150 2 0.004 0.1 350 100 100 100 100 1000 

-0.25 1 200 10 6 150 2 0.004 0.1 350 100 100 100 100 1000 

0 0.01 200 10 6 600 8 0.004 0.1 350 1000 1000 100 100 1000 

 

7.6.3 Definition of the anatomical frames based on anatomical landmarks 

 

Table 7-3. Definition of the anatomical frames based on the location of the anatomical landmarks of each segment, 

including head, thorax, lumbar, pelvis, and arms. 

Anatomical Frame for the head segment 

z-axis 
Pointed to the right as a vector from the mid-point of the left Condyloid and mastoid processes 

to the mid-point of the right Condyloid and mastoid processes. 

y-axis 
Pointing vertically perpendicular to the plane defined by the z-axis and an auxiliary vector from 

mid-mastoid processes to mid-Condyloid processes. 

x-axis Pointing anteriorly to form an orthogonal right-handed coordinate system 

 

Anatomical Frame for the thorax segment 

y-axis A vector pointing vertically from T12 to C7. 

x-axis A vector pointing anteriorly perpendicular to the plane defined by the y-axis and an auxiliary 

vector from left to right formed by bilateral C7 markers. 

z-axis Pointing to the right to form an orthogonal right-handed coordinate system. 

 

Anatomical Frame for the lumbar segment 

y-axis A vector pointing vertically from L5 to T12. 

x-axis A vector pointing anteriorly perpendicular to the plane defined by the y-axis and an auxiliary 

vector from left to right formed by bilateral T12 markers. 

z-axis Pointing to the right to form an orthogonal right-handed coordinate system. 

 

Anatomical Frame for the pelvis segment 

z-axis A vector pointing to the right from left ASIS to right ASIS. 

y-axis A vector pointing vertically perpendicular to the plane defined by left and right ASIS markers 

and mid-point of left and right PSIS markers. 

x-axis Pointing anteriorly to form an orthogonal right-handed coordinate system. 

 



 

149 

 

Anatomical Frame for the arms 

x-axis (lower arm) Pointed distally from the mid-point of the lateral epicondylitis and olecranon to the 

marker placed on the wrist (ulnar styloid process). 

x-axis (upper arm) Pointed proximally from the mid-point of the lateral epicondylitis and olecranon to the 

marker placed on the shoulder (acromion). 

y-axis  The cross-product of the z-axis and x-axis, pointing anteriorly 

z-axis Cross product of the x-axis of the lower and upper arm segments at each side of the body 
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Chapter 8 

This chapter shows an approach to characterize the roles of active and passive mechanisms of 

seated stability using a nonlinear neuromechanical model. This chapter has been adopted and/or 

edited from: 

 A. Noamani, A. H. Vette, and H. Rouhani, “Nonlinear Response of Human Trunk Musculature 

Explains Neuromuscular Stabilization Mechanisms in Sitting Posture,” 2022, J. of Neural Eng. 

19(2), 026045. 

8 Neuromuscular Control of Seated Stability 

8.1 Introduction 

Several components of the sensorimotor system interact to maintain an upright seated 

posture by stabilizing the inherently unstable trunk. Characterizing the roles of underlying 

neuromuscular mechanisms involved in stabilizing the human trunk has been a long-term 

challenge in human motor control research [23]. Indeed, the complex interrelation between 

neuromuscular mechanisms hinders our mechanistic understanding of the roles carried out by these 

mechanisms toward maintaining seated stability [44]. Many individuals with 

neuromusculoskeletal conditions, including two-thirds (range: 59.2% to 86.5% depending on the 

number of years post-injury) of individuals with spinal cord injury (SCI), are wheelchair users 

[22], and often show degraded trunk control, which requires assistance in seated stability during 

activities of daily living [23]. Affected individuals are commonly unable to maintain an upright 

seated posture due to neuromuscular impairment of the trunk [24]. As a result, external 

perturbations during sitting can cause injurious falls: 69% (95% confidence interval 60–76%) of 

wheelchair users experience at least one fall each year [12], [28], and falls are the leading cause of 

injury in this population [27], often requiring hospitalization [29]. The literature has shown that a 

mechanistic understanding of neuromuscular control in healthy individuals contributes to 

diagnosing and improving impaired balance as well as developing assistive technologies for 

restoring trunk stability during impaired sitting [59]. In this light, an approach to quantifying 

neuromuscular stabilization mechanisms could enable objective assessments and targeted 

rehabilitative interventions for impaired balance [60], [67] and allow for the design of bio-inspired 
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assistive technologies [25], [60], [72]. The development of therapies and interventions to improve 

seated stability in affected individuals could significantly improve their functional ability in 

activities of daily living and thus increase their quality of life [34].  

The seated human body is generally modelled as an inverted pendulum, with its stability 

achieved via two control mechanisms [46]: (a) passive control without time delay [60], which 

results from the mechanical stiffness and damping of the muscles and connective tissue generating 

resistive joint moments to stabilize the trunk [46]; and (b) active control with a time delay that 

complements the passive control by generating additional phasic joint moments to stabilize the 

trunk, especially in response to external perturbations [25], [60]. Active joint moments are 

generated by the sensorimotor system, which activates relevant muscles based on sensory 

information and anticipated, predictable perturbations [44], [46], [61]. 

The passive and active control mechanisms of sitting and standing stability have been 

identified using closed-loop system identification techniques applied to body motion and muscle 

activation data recorded when the body was perturbed via external stimuli (e.g., external forces, 

moving support surface, or moving visual surround) [46], [65]. Previous work has identified the 

dynamics of standing stability [45], [197], including passive as well as active control [44], sensory 

dynamics [61], [198], [199], muscular dynamics, and sensorimotor time-delay [44], [46], and of 

seated stability both with [67] and without modeling the muscular dynamics [60], [199]. 

Nevertheless, all previous work assumed time-invariant linear behaviour for the neuromuscular 

control that maintains sitting or standing stability and neglected time-variant or nonlinear 

dynamics. Additionally, previous studies used offline optimization techniques that require time-

consuming post-processing of acquired data. This limits the applicability of such models for fast 

identification of impaired balance or when designing assistive technologies that are robust against 

time-varying nonlinear neuromuscular dynamics of the body (e.g., due to disturbances and muscle 

fatigue) and physiological uncertainties in real-world conditions [68]–[71]. In this light, there is a 

paramount need for a nonlinear neuromechanical model of seated stability that explains the roles 

of passive and active stabilization mechanisms while accounting for time-varying properties of the 

neuromuscular system. 

Recent work has proposed the use of Extended Kalman filters (EKF) [69], [214] and 

adaptive fuzzy modelling [71], [215] for online identification of nonlinear time-varying 

neuromechanical models associated with the human shoulder and knee. Such models can be used 
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to define robust muscle stimulation patterns and enable online adaptation of the stimulation by 

estimating relevant neuromuscular information [69]. However, despite their potential, these 

approaches have not been exploited for identifying nonlinear trunk dynamics and characterizing 

mechanisms of seated stability.  

Therefore, the overall goal of this study was to characterize the roles of passive and active 

stabilization mechanisms involved in human sitting stability by experimentally identifying 

nonlinear trunk dynamics in healthy individuals. Specifically, we used an Adaptive Unscented 

Kalman Filter (AUKF) to identify the parameters of a nonlinear model while accounting for the 

time-varying process and measurement noise. We assumed that exploiting the adaptive property 

of the AUKF enabled dynamic adaptation of its properties under uncertain conditions without 

requiring offline optimization.  

8.2 Methods 

8.2.1 Participants 

Ten able-bodied, young, and male individuals participated in this study (age: 24 ± 4 years; 

mass: 76 ± 13 kg; height: 178 ± 78 cm; Body Mass Index (BMI): 24 ± 3; mean ± standard 

deviation). All participants reported no history of neuromusculoskeletal impairments or any 

disorders that may have affected their seated stability. They gave written informed consent to the 

experimental procedures, which were approved by the local research ethics board. 

8.2.2 Data acquisition 

A 16-channel Bagnoli electromyograms (EMG) system including bipolar surface EMG 

electrodes (DELSYS, Natick, MA, USA) was used. Each EMG sensor had two electrodes with an 

inter-electrode gap of 10 mm and contact dimensions of 10.0 × 1.0 mm. The EMG system had a 

peak-to-peak baseline noise of 5 to 10 μV. The common-mode rejection ratio and the input 

impedance of the electrodes were -92 dB, and 1015 Ω, respectively. The analog-to-digital converter 

generated 16-bit offset binary conversions from analog sources. Surface EMGs were recorded 

from twelve trunk and upper leg muscles known to contribute to trunk stability and its control 

during sitting [266]. Bipolar surface EMG electrodes (Bagnoli, DELSYS, Natick, MA, USA) were 

placed bilaterally over the muscle belly of the rectus abdominis, external oblique, rectus femoris, 

erector spinae (T9 level), erector spinae (L3 level), and biceps femoris (Figure 8-1) [67]. A self-
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adhesive reference electrode was placed over the right iliac crest. EMG data were amplified (gain 

was muscle- and participant-dependent varying from 102 to 104), sampled and digitized at 2 kHz. 

Note that we used surface EMG electrodes in the present study. The literature suggested caution 

when interpreting data recorded via surface EMG electrodes compared to indwelling EMG 

electrodes [267]. Nevertheless, many studies have used surface EMG to study trunk muscles’ 

activation [25], [266], [268] and identify neuromuscular parameters [44], [59], [62]. 

The motion of the body and base-of-support was recorded during the sitting task at 100 Hz 

using a twelve-camera motion capture system (Vicon Motion Systems Ltd., Oxford, UK). 

Retroreflective markers were placed bilaterally on the anatomical landmarks [259] of the head, 

thoracic and lumbar segments of the trunk, arms, hands, pelvis, legs, and feet (Table 8-1 and Figure 

8-1). Four markers were placed on the four corners of the seat to record the motion of the base of 

support. 

8.2.3 Experimental protocol 

The participants were asked to lie in the supine position with their eyes closed for 60 

seconds to establish baseline muscle activity and then performed a series of exercises [67] to 

determine the maximum voluntary contraction (MVC) for each muscle. Each MVC exercise lasted 

30 seconds [269] and was performed three times consecutively [25]. A resting break of 30 seconds 

was given between exercises to minimize fatigue [269]. Note that there was no observed decrease 

in muscle activity across the repetitions of each MVC exercise. Next, a T-pose anatomical 

calibration trial was performed (Figure 8-1) since the anatomical markers of the thoracic and 

lumbar segments of the trunk and pelvis were removed prior to the main trials. These anatomical 

markers were reconstructed for the main trials using data from the anatomical calibration. 

Participants were subsequently asked to sit, with their arms crossed over the chest and their 

legs hanging vertically downward, on a customized seat without foot support (Figure 8-1). The 

seat was fixed on the perturbation platform of a Computer-Assisted Rehabilitation Environment 

(CAREN; Motek Medical, Amsterdam, The Netherlands). Two-dimensional, white grid lines on a 

black background were projected on a 180-degree curved virtual-reality projection screen to 

provide a consistent visual field (Figure 8-1C and Figure 8-1D). Participants were instructed to fix 

their vision on the screen and maintain their sitting stability without using their lower limbs, while 

base-of-support perturbations were applied via anteroposterior translation of the platform (Figure 
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8-1). First, a sudden low-amplitude ramp-shaped perturbation was applied (Figure 8-1E). Next, 

three 240-second trials with white noise perturbation profiles were performed. Each profile had a 

mean power spectral density of 4 cm2/Hz and was filtered via dual-pass first-order high-pass and 

eight-order low-pass Butterworth filters with cut-off frequencies of 0.1 Hz and 5 Hz, respectively 

[44]. The first (last) 10 seconds of each profile consisted of a 5-second hold followed (preceded) 

by increasing (decreasing) ramp motions to avoid abrupt initiation (termination). We used only the 

middle 220 seconds of each trial to eliminate the initiation and termination effects for analyses. 

Rest breaks were provided between trials on participant request. 

 

Table 8-1. Retroreflective markers were placed over the anatomical landmarks. 

Segment Retroreflective markers on anatomical landmarks 

Head Condyloid process and mastoid process (left and right) 

Spine (thorax) C7, 5 cm bilaterally to C7, and T12 vertebra 

Spine (lumbar) T12, 5 cm bilaterally to T12, and L5  

Trunk T9 vertebra, Suprasternal and xiphoid 

Arms Acromion, lateral epicondylitis, and olecranon (left and right) 

Hands Distal ulna bone, little finger metacarpal head, middle finger distal phalanges  

Pelvis Anterior and posterior superior iliac spine (left and right) 

Legs Greater trochanter, medial and lateral epicondylitis, medial and lateral malleolus 

Feet Calcaneus, 1st and 5th metatarsal heads 
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Figure 8-1. Experimental setup at a Computer Assisted Rehabilitation Environment (CAREN): (a, b) Retroreflective 

markers were placed bilaterally on the anatomical landmarks of the head, spine, trunk, arms, hands, pelvis, legs, and 

feet. Twelve bipolar surface electromyography (EMG) electrodes were placed bilaterally over the muscle belly of 

rectus abdominis, external oblique, rectus femoris, erector spinae (T9 level), erector spinae (L3 level), and biceps 

femoris; (c) A T-pose anatomical calibration. Note that the recordings of inertial measurement units shown in this 

figure were not used for the present study; (d) Participants sat on a seat fixed on the CAREN platform while base-of-

support perturbations were applied to the seat; (e) Sudden base of support perturbation characteristics applied to the 

seat in the form of a ramp-shaped displacement; (f) The external disturbance was calculated as the moment applied to 

the trunk due to the acceleration of the base-of-support measured via the trajectories of retroreflective markers placed 

on the CAREN platform. The normalized motor command was obtained as the summation of the back muscles’ 

normalized EMG (extensors) subtracted by the summation of the front muscles’ normalized EMG (flexors). Trunk 

sway angle was calculated as the angle between the vertical axis of the lab frame and the line connecting the 

instantaneous positions of the trunk’s center-of-mass and the L5 marker. 
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8.2.4 Data pre-processing 

The EMG time series were divided by gain, demeaned, rectified, and filtered using a 

moving-average filter with a window size of 100 milliseconds [270]. The EMG time series for the 

perturbation trials were then normalized using the baseline, and maximum MVC values among the 

three recorded MVCs:  

𝐸𝑀𝐺𝑖
𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) =

𝐸𝑀𝐺𝑖(𝑡) − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖
𝑀𝑉𝐶𝑖 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖

 
(1) 

where 𝐸𝑀𝐺𝑖
𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) and 𝐸𝑀𝐺𝑖(𝑡) are the normalized and measured activity level of muscle 𝑖 at 

time 𝑡, respectively; 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 is the mean activity level of muscle 𝑖 during the baseline tests; and 

𝑀𝑉𝐶𝑖 is the maximum activity level of muscle 𝑖 during the MVC exercises. 

The marker trajectories were low-pass filtered using a dual-pass fourth-order Butterworth 

filter with a cut-off frequency of 10 Hz. Body segment parameters, including mass, moments of 

inertia, center-of-mass (COM), and joint center of rotation positions, were derived from cadaveric 

data of the upper body [254] and lower limbs [223]. Participant-specific body segment parameters 

were estimated by scaling the cadaveric data using each participant’s height and mass [233], [260]. 

The trunk sway angle modelled the motion of the COM of the upper body during sitting as an 

inverted pendulum rotating about the L5-S1 joint. Segment kinematics were calculated using the 

marker trajectories as described in [76], [80]. Subsequently, the position of the trunk COM position 

at time 𝑡 (𝑃𝐶𝑂𝑀(𝑡)) was calculated based on the COM position and mass of the head and neck, 

thorax, arms, lumbar, and pelvic segments as follows:  

𝑃𝐶𝑂𝑀(𝑡) =  
∑ 𝑀𝑎𝑠𝑠𝑖 . 𝑃𝐶𝑂𝑀𝑖

(𝑡)𝑁
𝑖=1

∑ 𝑀𝑎𝑠𝑠𝑖
𝑁
𝑖=1

 
(2) 

where 𝑀𝑎𝑠𝑠𝑖 and 𝑃𝐶𝑂𝑀𝑖
(𝑡) are the mass and COM position of segment 𝑖 , respectively, and 𝑁 is 

the number of segments, including head and neck, thorax, arms, lumbar, and pelvis. The trunk 

sway angle (𝜃(𝑡)) was then calculated as the angle between the vertical axis of the lab frame and 

the line connecting 𝑃𝐶𝑂𝑀 and the L5 marker (i.e., the inverted pendulum length). 

8.2.5 Nonlinear neuromechanical representation  

The nonlinear neuromechanical model of trunk stability used in this study is shown in 

Figure 8-2. The plant, as an inverted pendulum, presents a joint moment due to the gravitational 

force acting on the trunk’s COM. The inherent uncertainties of the system include unmodelled 
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internal dynamics (e.g., spinal reflexes), system parameter variations (e.g., muscle fatigue), and 

external disturbances [68]. Hence, the total joint moment acting on the L5-S1 joint is as follows: 

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑔 +𝑀𝑒 +𝑀𝑣 +𝑀𝑎 +𝑀𝑢𝑛𝑐 +𝑀𝑑𝑖𝑠𝑡 (3) 

where 𝑀𝑔 is the gravitational joint moment; 𝑀𝑒 is the passive elastic joint moment; 𝑀𝑣 is the 

passive viscous joint moment; 𝑀𝑎  is the active joint moment; 𝑀𝑢𝑛𝑐  represents the joint moment 

produced by the uncertainty dynamics associated with unmodelled internal dynamics and system 

parameter variations; and 𝑀𝑑𝑖𝑠𝑡  represents joint moments due to external disturbances (Figure 

8-2). The passive joint moment (𝑀𝑝) is the summation of 𝑀𝑒 and 𝑀𝑣. 𝑀𝑔, 𝑀𝑒, and 𝑀𝑣 are obtained 

as follows: 

𝑀𝑔 = −𝑚𝑔𝑙𝑠𝑖𝑛(𝑥1 − 𝜃0) (4) 

𝑀𝑒 = −𝐾1exp (−𝐾2𝑥1)(𝑥1 − 𝐾3) (5) 

𝑀𝑣 = −𝐵1 sign(𝑥2) |𝑥2|
𝐵2  

(6) 

In Equation 4, 𝑚 is the total mass of the upper body; 𝑔 is the gravitational acceleration; 𝑙 is the 

length of the inverted pendulum; 𝑥1 is the trunk sway angle; and 𝜃0 is the deviation of the trunk 

angle from the vertical axis during upright sitting. In Equation 5, 𝐾1, 𝐾2, and 𝐾3 represent the 

stiffness coefficient, exponential elasticity, and resting elastic angle of the trunk, respectively [69], 

[271]. In Equation 6, 𝐵1 and 𝐵2 are positive constants representing the damping coefficient and 

exponential term, respectively; and 𝑥2 is the angular velocity of the inverted pendulum [68].   

𝑀𝑎 is modelled based on three components: a muscle recruitment curve followed by 

critically-damped second-order activation dynamics multiplied by a nonlinear static contraction 

function, which are described in the following (Figure 8-2) [69]. The recruitment curve is the motor 

command (𝑢) from the CNS for activating each muscle as a piece-wise saturation function with 

the lower and upper bounds represented by the baseline and MVC, respectively: 

𝑢 = {
0, 𝐸𝑀𝐺 < 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≤ 𝐸𝑀𝐺 ≤ 𝑀𝑉𝐶
0, 𝐸𝑀𝐺 > 𝑀𝑉𝐶

 (7) 

where 𝑢 is the motor command; 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the mean activity level of muscle during the baseline 

tests; 𝑀𝑉𝐶 is the maximum muscle activity measured during the MVC tests; and 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙 is 

the normalized EMG as calculated in Equation (1). The total motor command (𝑢𝑡𝑜𝑡𝑎𝑙) is obtained 
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as the summation of the back muscles’ motor commands (extensors) subtracted by the summation 

of the front muscles’ motor commands (flexors): 

𝑢𝑡𝑜𝑡𝑎𝑙 =  ∑[𝑢𝑖]𝐸𝑥𝑡𝑒𝑛𝑠𝑜𝑟𝑠

6

𝑖=1

−∑[𝑢𝑗]𝑓𝑙𝑒𝑥𝑜𝑟𝑠

6

𝑗=1

 (8) 

where 𝑖 and 𝑗 are summation indices for extensor and flexor muscles, respectively. 𝑢𝑡𝑜𝑡𝑎𝑙 is 

converted to a normalized activation with a time delay using a second-order transfer function. This 

transfer function represents the dynamic behaviour of the muscle activation due to calcium release 

dynamics, muscle fibre conduction velocities, and the time delay associated with chemical 

reactions [69], [211]: 

�̇�3 = 𝑥4, �̇�4 = −2𝜔0𝛽𝑥4 − 𝜔0
2𝑥3 +𝜔0

2𝑢𝑡𝑜𝑡𝑎𝑙(𝑡 − 𝑇𝑑) (9) 

where 𝑥3 is the normalized activation; 𝜔0 is the natural frequency; 𝛽 is a damping coefficient equal 

to unity; and 𝑇𝑑 is the input time delay. 𝑀𝑎 is obtained as the normalized activation multiplied by 

a nonlinear contraction function (ℱ𝑚) under non-isometric muscle contraction conditions (Figure 

8-2) [69]: 

𝑀𝑎 = ℱ𝑚(𝑥1, 𝑥2)𝑥3 (10) 

where ℱ𝑚 is the maximal active moment in the case of full muscle activation based on the trunk 

angular position(𝑥1) and velocity (𝑥2) represented by a normalized radial-basis function (RBF) 

neural network [69]. We used nine RBFs to describe ℱ𝑚. The center of the associated Gaussian 

functions was selected using grid-partitioning over the range of 𝑥1 and 𝑥2 during non-isometric 

muscle contraction with equal variances and high overlapping [69]. Therefore, ℱ𝑚 acts as a state-

varying gain for the muscle activation dynamics. 

The joint moment due to external disturbances (𝑀𝑑𝑖𝑠𝑡) was calculated based on the motion 

of the base of support as follows: 

𝑀𝑑𝑖𝑠𝑡 = −𝑚. 𝑎𝐵𝑂𝑆. 𝑙. 𝑐𝑜𝑠(𝑥1) (11) 

where 𝑚 is the total mass of the upper body; 𝑙 is the length of the inverted pendulum; 𝑥1 is the 

trunk sway angle, and 𝑎𝐵𝑂𝑆 is the acceleration of the base of support. 

𝑀𝑢𝑛𝑐 is modelled via a second-order recursive Autoregressive with Extra Input (ARX) in 

parallel: 
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𝑀𝑢𝑛𝑐 = 𝐽 ∗ 𝑈𝑛𝑐(𝑡) (12) 

𝑈𝑛𝑐(𝑡) =  −∑𝑎𝑖𝑈𝑛𝑐(𝑡 − 𝑖)

2

𝑖=1

+∑[ 𝑏1,𝑖𝑥1(𝑡 − 𝑖) + 𝑏2,𝑖𝑥2(𝑡 − 𝑖) + 𝑏3,𝑖𝑢𝑡𝑜𝑡𝑎𝑙(𝑡 − 𝑇𝑑 − 𝑖) ] 

2

𝑖=0

 (13) 

where 𝐽 is the moment of inertia of the inverted pendulum; and 𝑈𝑛𝑐 is the uncertainty as a function 

of 𝑥1, 𝑥2, and 𝑢𝑡𝑜𝑡𝑎𝑙. The model coefficients are 𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖, 𝑏3,𝑖 (𝑖: summation index) adjusted by 

a recursive least squares (RLS) algorithm to account for time-varying uncertainties when an 

identified model is used in real-time. The cost function was defined to minimize the difference 

between the actual (�̈�𝑡,   𝑎𝑐𝑡𝑢𝑎𝑙 ) and estimated (�̈�𝑡,   𝑚𝑜𝑑𝑒𝑙) angular acceleration as follows [68]:    

𝐶𝑜𝑠𝑡 =
1

2
∑ 𝑒𝑡

2𝑇
𝑡=1 =  

1

2
∑ (�̈�𝑡,   𝑎𝑐𝑡𝑢𝑎𝑙 − �̈�𝑡,   𝑚𝑜𝑑𝑒𝑙)

2𝑇
𝑡=1   (14) 

where 𝑇 is the duration of a trial; 𝑒𝑡 is the error between the actual (�̈�𝑡,   𝑎𝑐𝑡𝑢𝑎𝑙 ) and estimated 

(�̈�𝑡,   𝑚𝑜𝑑𝑒𝑙) angular acceleration at time sample 𝑡.  

 

8.2.6 State-space representation 

The nonlinear dynamics of the trunk depicted in Figure 8-2 can be represented in state-

space form with four state variables and one input as follows: 

�̇� = [

�̇�1
�̇�2
�̇�3
�̇�4

] = 𝑓(𝑥,  𝑢𝑡𝑜𝑡𝑎𝑙) (15) 

𝑓(𝑥,  𝑢𝑡𝑜𝑡𝑎𝑙)

=  

[
 
 
 
 

𝑥2
1

𝐽
[𝑀𝑔(𝑥1) + 𝑀𝑒(𝑥1) + 𝑀𝑣(𝑥2) + 𝑀𝑎(𝑥1, 𝑥2, 𝑥3) + 𝑀𝑢𝑛𝑐(𝑥1, 𝑥2) + 𝑀𝑑𝑖𝑠𝑡]

𝑥4
−2𝜔0𝛽𝑥4 − 𝜔0

2𝑥3 + 𝜔0
2𝑢𝑡𝑜𝑡𝑎𝑙(𝑡 − 𝑇𝑑) ]

 
 
 
 

 
(16) 

𝑦 = 𝐶𝑥 =  [1 0 0 0] [

𝑥1
𝑥2
𝑥3
𝑥4

] (17) 

where �̇� is the time derivative of the state-vector 𝑥 and 𝑦 is the system measurement. 
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Figure 8-2. The nonlinear neuromechanical model of the trunk consists of passive control, active control, and the plant 

modelled as an inverted pendulum. This model also accounts for the system’s inherent uncertainties, including 

unmodelled internal dynamics (e.g., spinal reflexes) and system parameter variations (e.g., muscle fatigue) as well as 

external disturbances [68]. The total joint moment acting on the L5-S1 joint (𝑀𝑡𝑜𝑡𝑎𝑙) is obtained as the summation of 

the gravitational joint moment (𝑀𝑔), passive elastic joint moment (𝑀𝑒), passive viscous joint moment (𝑀𝑣), active 

joint moment (𝑀𝑎), joint moment produced by the uncertainty dynamics (𝑀𝑢𝑛𝑐), and joint moments due to external 

disturbances (𝑀𝑑𝑖𝑠𝑡). 𝑚 is the total mass of the upper body, 𝑔 is the gravitational acceleration, 𝑙 is the length of the 

inverted pendulum (i.e., the distance between the trunk’s center-of-mass and the L5 marker), 𝑥1 and 𝑥2 are the sway 

angle and angular velocity of the inverted pendulum. 𝑀𝑒 shows the nonlinear elasticity of the trunk [69], [271]. 𝑀𝑣 

shows the nonlinear damping function [68]. 𝑀𝑎 consists of a muscle recruitment curve followed by a critically damped 

2nd-order activation dynamics multiplied by a nonlinear static contraction function [69]. The recruitment curve shows 

the activated motor command (𝑢) from the CNS for activating each muscle as a piece-wise saturation function with 

the lower and upper bounds represented by the baseline and MVC, respectively. The total motor command (𝑢𝑡𝑜𝑡𝑎𝑙) is 

the summation of the back muscles’ motor commands (extensors) subtracted by the summation of the front muscles’ 

motor commands (flexors). The total motor command is converted to a normalized activation with a time delay (𝑇𝑑) 

using a 2nd-order transfer function. This transfer function represents the dynamic behavior of the muscle activation 

due to calcium release dynamics, muscle fiber conduction velocities, and time delay associated with the chemical 

reactions [69], [211]. ℱ𝑚 is the nonlinear contraction function defined as the maximal active moment in case of full 

muscle activation and is a function of the angle (𝑥1) and angular velocity (𝑥2) of the trunk [69]. 𝑀𝑢𝑛𝑐 is modelled via 

a 2nd-order recursive ARX in parallel. The inputs of the uncertainty dynamics are the angular position and velocity as 

well as the motor command. The model coefficients are adjusted by a recursive least squares algorithm for accounting 

for time-varying uncertainties when an identified model is being used in real-time [68]. 

 

8.2.7 Identification of passive control 

In accordance with the literature [212], we assumed that low-amplitude perturbations 

mostly elicit passive mechanisms rather than active postural control mechanisms. Therefore, we 
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used the experimental data for the sudden low-amplitude, ramp-shaped perturbation and a 

nonlinear least-squares algorithm to find the participant-specific passive stiffness (𝐾1, 𝐾2, 𝐾3) and 

damping (𝐵1, 𝐵2) parameters of the neuromechanical model. The initial value of these parameters 

were obtained from the literature [212], [271]. 

8.2.8 Identification of active control 

The active control parameters (∅) were taken to be the natural frequency (𝜔0) of the 

activation dynamics and the weights (𝜓) of the RBF neural network describing ℱ𝑚. We assumed 

that the active control parameters were slowly varying in comparison to the process dynamics [69]. 

We used a dual-estimation scheme by forming an augmented state vector (𝓏) as follows: 

�̇� = [
�̇�
∅̇
] = [

𝑓(𝑥, 𝑢𝑡𝑜𝑡𝑎𝑙 , ∅)
0

] = ℊ(𝓏, 𝑢𝑡𝑜𝑡𝑎𝑙), 𝓏 = [
𝑥
∅] , ∅ = [

𝜔0
𝜓 ] (18) 

We used a UKF according to [272] (Table 8-2, Algorithm 1) to estimate the augmented state vector 

using the augmented state-space model together with the experimental data for the three 240-

second perturbation trials. We assumed that the available observation of the system was the 

discrete-time trunk sway angle, and the input and measurement signals were constant between two 

consecutive discrete samples. Hence, the discrete-time model for state-estimation is as follows: 

𝓏𝑘 =  ℊ(𝓏𝑘−1, 𝑢𝑡𝑜𝑡𝑎𝑙,𝑘−1) + 𝓌𝑘 

𝓎𝑘 = 𝒽(𝓏𝑘) + 𝓋𝑘 

(19) 

where ℊ(𝑧𝑘−1, 𝑢𝑡𝑜𝑡𝑎𝑙,𝑘−1) is the state transition function; 𝓌𝑘  and 𝓋𝑘 are uncorrelated sampled 

white noise signals describing the process and measurement noises with covariance matrices 𝑄𝑘 

and 𝑅𝑘, respectively; and 𝒽 is the measurement function. The initial augmented state vector was 

[𝑦(0), 0, 0, 0, �̂�0(0), �̂�0(0)]
′, where 𝑦(0) is the initial measured trunk angular position; �̂�0(0) is 

equal to 8.33 rad/s, as reported in the literature [178]; and �̂�(0) was randomly generated in the 

range [-0.01, 0.01] [69]. We employed two approaches to optimize the parameters associated with 

the UKF for maximizing the accuracy of the estimation: (a) offline optimization, using a genetic 

algorithm [273], on the first 240-second perturbation trial for each participant; and (b) online 

optimization, using an AUKF [274], [275], on the second and third 240-second perturbation trials 

for each participant.  
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8.2.9 UKF with offline optimization of filter parameters 

We used a custom genetic algorithm implemented in MATLAB R2020a (MathWorks, 

Natick, MA, USA) to optimize the UKF parameters. The optimization variable vector (𝛩) was 

defined as the scaling parameters associated with the unscented transform (𝛼, 𝛽, 𝜅), the process 

noise covariance matrix (𝑄) elements, and the measurement noise covariance (𝑅). Process noises 

were assumed to be uncorrelated and, thus, 𝑄 was a diagonal matrix. The cost function was defined 

to maximize the log-likelihood of the measurement, according to [273], as follows: 

log 𝑝(𝑌|𝛩) =  
∑ log (  𝒩(𝑦(𝑡)|�̂�(𝑡),  𝑆(𝑡))  )𝑇
𝑡=1

𝑇
; (20) 

𝒩(𝑥|𝜇,  𝜎) =
1

√2𝜋𝜎2
exp (−

(𝑥−𝜇)2

2𝜎2
); 

 
(21) 

where 𝑦(𝑡) is the measurement at time 𝑡; �̂�(𝑡) and 𝑆(𝑡) are, respectively, the mean and covariance 

of the measurement estimate resulting from the UKF with filter parameters 𝛩; and 𝒩(𝑥|𝜇,  𝜎) is 

the likelihood of 𝑥, given a normal distribution with a mean of 𝜇 and standard deviation of 𝜎. 

 

Table 8-2.The standard Unscented Kalman filter (UKF) (Algorithm 1) and the Adaptive UKF (AUKF) (Algorithm 2) 

algorithms where ℊ(∗) and 𝒽(∗) denote state transition function and measurement function, respectively; 𝑥 and 

𝑦 represent state and measurement vectors, respectively; 𝑋 and 𝑌 represent sigma points associated with the state and 

measurement vectors, respectively, resulting from the unscented transform; 𝑃 represents error covariance matrix; 

𝑄 and 𝑅 represents process and measurement noise covariance matrices; 𝛼, 𝛽, 𝜅 represents filter scaling parameters; 

𝐿 represents the number of states; 𝑊𝑖
(𝑐)
 and 𝑊𝑖

(𝑚)
 are the weights associated with the covariance and mean of the 

sigma points, respectively, and 𝐾𝑘  represents the Kalman gain. In AUKF, 𝜒𝜎,𝑠
2  represent a chi-square distribution 

with 𝑠 degree of freedom to detect a fault with a reliability level of 1 − 𝜎; 𝜑𝑘  is a statistical function to detect the fault; 

𝛾 is a weighting factor showing the adaptation strength, and 𝛿 describes the distance between the mean of the state �̂� 

and the sigma points. Note, 𝑘 shows the time step and 𝑘|𝑘 and 𝑘|𝑘 − 1 represent the a posteriori and a priori estimates, 

respectively.  

 

Algorithm 1. The standard Unscented Kalman filter (UKF) [272] 

Inputs ℊ(∗), 𝒽(∗), �̂�0, �̂�0
𝑥𝑥 , 𝑄, 𝑅, 𝛼, 𝛽, 𝜅, 𝐿 

1: Initialize Unscented Transform weights:  

2: 𝜆 =  𝛼2(𝐿 + 𝜅) − 𝐿 

3: 𝑊0
(𝑚)

= 𝜆 (𝐿 + 𝜆)⁄ ; 𝑊0
(𝑐)
= 𝜆 (𝐿 + 𝜆)⁄ + (1 − 𝛼2 + 𝛽);  

4: 𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)
= 𝜆 2(𝐿 + 𝜆)⁄ ; 𝑖 = 1 → 2𝐿 

5: for time-step k = 1 → K do 

6: Calculate sigma points: 

7: 
𝑋𝑘−1|𝑘−1 = [�̂�𝑘−1|𝑘−1, �̂�𝑘−1|𝑘−1  ± √(𝐿 + 𝜆)�̂�𝑘−1|𝑘−1

𝑥𝑥 ]; 

8: Time update: 
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9: 𝑋𝑘|𝑘−1 =  ℊ(𝑋𝑘−1|𝑘−1); 

10: �̂�𝑘|𝑘−1 = ∑ 𝑊𝑖
(𝑚)
𝑋𝑘|𝑘−1
𝑖2𝐿

𝑖=0 ; 

11: �̂�𝑘|𝑘−1
𝑥𝑥 = ∑ 𝑊𝑖

(𝑐)2𝐿
𝑖=0 [𝑋𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1][𝑋𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1]

𝑇
+ 𝑄; 

12 𝑌𝑘|𝑘−1 =  𝒽(𝑋𝑘|𝑘−1); 

13: �̂�𝑘|𝑘−1 = ∑ 𝑊𝑖
(𝑚)
𝑌𝑖,𝑘|𝑘−1

2𝐿
𝑖=0 ; 

14: Measurement update: 

15: �̂�𝑘|𝑘−1
𝑦𝑦

= ∑ 𝑊𝑖
(𝐶)2𝐿

𝑗=0 [𝑌𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1][𝑌𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1]
𝑇
+ 𝑅; 

16: �̅�𝑘|𝑘−1
𝑥𝑦

= ∑ 𝑊𝑖
(𝑐)2𝐿

𝑖=0 [𝑋𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1][𝑌𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1]
𝑇; 

17: 𝐾𝑘 = �̅�𝑘|𝑘−1
𝑥𝑦

(�̂�𝑘|𝑘−1
𝑦𝑦

)−1; 

18: �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − �̂�𝑘|𝑘−1),  

19: �̂�𝑘|𝑘
𝑥𝑥  = �̂�𝑘|𝑘−1

𝑥𝑥 − 𝐾𝑘�̂�𝑘|𝑘−1
𝑦𝑦

(𝐾𝑘)
𝑇; 

20: Save �̂�𝑘|𝑘 and �̂�𝑘|𝑘
𝑥𝑥  

21: end for 

 

 

Algorithm 2. The Adaptive Unscented Kalman filter (AUKF) [274], [276] 

Inputs ℊ(∗), 𝒽(∗), �̂�0, �̂�0
𝑥𝑥 , 𝑄0, 𝑅1, 𝛼1, 𝛽, 𝜅, 𝜒𝜎,𝑠

2  

1: Initialize standard UKF → 𝑊𝑖
(𝑚)
,𝑊𝑖

(𝑐)
, 𝑋𝑘−1|𝑘−1  

2: for time-step k = 1 → K do 

3: Perform standard UKF: �̂�𝑘|𝑘, 𝐾𝑘 , 𝑃𝑘|𝑘−1
𝑦𝑦

, 𝑃𝑘|𝑘
𝑥𝑥   

4: Perform the fault-detection mechanism: 𝜑𝑘 = 𝜇𝑘
𝑇[𝑃𝑘|𝑘−1

𝑦𝑦
+ 𝑅𝑘]

−1𝜇𝑘 

5: if 𝜑𝑘 > 𝜒𝜎,𝑠
2  then 

6: Update 𝑄𝑘−1 and 𝑅𝑘; 

7: Innovation: 𝜇𝑘 = 𝑦𝑘 − ℎ(�̅�𝑘|𝑘−1), Residual: 𝜀𝑘 = 𝑦𝑘 − ℎ(�̂�𝑘|𝑘); 

8: �̂�𝑘|𝑘
𝑦𝑦
= ∑ 𝑊𝑖

(𝑐)2𝐿
𝑗=0 [𝒽(𝑋𝑘|𝑘

𝑖 ) − �̅�𝑘|𝑘][ℎ(𝑋𝑘|𝑘
𝑖 ) − �̅�𝑘|𝑘]

𝑇; 

9: 𝛾 = max{𝛾0, (𝜑𝑘 − 𝑎 × 𝜒𝜎,𝑆
2 ) 𝜑𝑘⁄ } 

10: 𝑄𝑘−1 = (1 − 𝛾)𝑄𝑘−1 + 𝛾(𝐾𝑘𝜇𝑘𝜇𝑘
𝑇𝐾𝑘

𝑇), 𝑅𝑘 = (1 − 𝛾)𝑅𝑘 + 𝛾(𝜀𝑘𝜀𝑘
𝑇 + �̂�𝑘|𝑘

𝑦𝑦
); 

11: Correct the state estimate: 

12 �̂�𝑘|𝑘 = ∑ 𝑊𝑖
(𝑚)2𝐿

𝑖=0 ℎ(𝑋𝑘|𝑘
𝑖 ); 

13: �̅�𝑘|𝑘
𝑥𝑥 = ∑ 𝑊𝑖

(𝑐)2𝐿
𝑖=0 [𝑋𝑘|𝑘

𝑖 − �̂�𝑘|𝑘][𝑋𝑘|𝑘
𝑖 − �̂�𝑘|𝑘]

𝑇
+ 𝑄𝑘−1; 

14: �̅�𝑘|𝑘
𝑥𝑦
= ∑ 𝑊𝑖

(𝑐)2𝐿
𝑖=0 [𝑋𝑘|𝑘

𝑖 − �̂�𝑘|𝑘][ℎ(𝑋𝑘|𝑘
𝑖 ) − �̂�𝑘|𝑘]

𝑇; 

15: �̂�𝑘|𝑘
𝑦𝑦
= �̂�𝑘|𝑘

𝑦𝑦
+ 𝑅𝑘, 𝐾𝑘 = �̅�𝑘|𝑘

𝑥𝑦
(�̂�𝑘|𝑘

𝑦𝑦
)−1; 

16: �̂�𝑘|𝑘 = �̂�𝑘|𝑘 + 𝐾𝑘(𝑦𝑘 − �̂�𝑘|𝑘), �̂�𝑘|𝑘
𝑥𝑥  = �̅�𝑘|𝑘

𝑥𝑥 − 𝐾𝑘�̂�𝑘|𝑘
𝑦𝑦
(𝐾𝑘)

𝑇; 

17: end if 

18: 𝑄𝑘 ← 𝑄𝑘−1 and 𝑅𝑘+1 ← 𝑅𝑘 

19: Save �̂�𝑘|𝑘 and �̂�𝑘|𝑘
𝑥𝑥  

20: 𝛿𝑘 = [√(𝐿 +  𝜅)𝑃𝑘]𝑖, 𝛿𝑘
𝑚𝑎𝑥 = max {𝛿𝑘(𝑖, 𝑖)}; 

21: 𝛼𝑘+1 = √𝑡𝑟𝑎𝑐𝑒(𝑃𝑘) 𝛿𝑘
𝑚𝑎𝑥⁄ ; 

22: end for 
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8.2.10 AUKF for online optimization of filter parameters 

The UKF performance can deteriorate or even diverge over time due to errors between the 

actual and modelled noise distributions [274]. Moreover, previous studies have suggested that 

when the UKF is applied to highly nonlinear models with a constant scaling parameter (𝛼), it can 

lack robustness [276], [277]. To address these issues, we used the robust adaptive UKF (AUKF) 

proposed by Zheng et al. [274] to account for uncertain process and measurement noise 

distributions. The robust AUKF [274] runs a standard UKF at each time step, but employs an 

online fault-detection mechanism to determine if the process and measurement noise covariance 

matrices should be updated. Additionally, we used the self-adaptive UKF proposed by Yongfang 

et al. [276], [277] to account for the time-varying scaling parameter of the filter. Such an approach 

provided a robust estimate of the augmented state vector despite uncertain conditions, which can 

facilitate potential online system identification with minimized computation time in future studies. 

Mathematical details of the robust AUKF and self-tuning scaling parameter are provided in Table 

8-2, Algorithm 2. 

8.2.11 Analysis of model performance 

To analyze the performance of the identified neuromechanical model for each participant 

and trial, we divided each 240-second trial into two sets: (a) a training set, as the first 150 seconds 

of the trial, used to identify the active control parameters (∅); and (b) a testing set, as the last 90 

seconds of the trial, used to cross-validate the performance of the identified model. We used the 

mean squared error (MSE) and correlation coefficient between the actual measurements of the 

trunk sway angle and the output of the identified model on the testing set to quantify model 

performance. 

8.3 Results 

The stiffness parameters (𝐾1, 𝐾2, 𝐾3) shown schematically in Figure 8-2 were identified to 

be 139.05 ± 22.97 [N.m/rad], 0.52 ± 1.08 [1/rad], and 0.00 ± 0.00 [rad] (mean ± standard deviation 

across participants), respectively. The damping parameters (𝐵1, 𝐵2) in Figure 8-2 were identified 

to be 12.78 ± 5.78 [N.m.s/rad] and 1.19 ± 0.29 [1/rad], respectively. Figure 8-3 shows a 

representative time series obtained for the gravitational (𝑀𝑔) and passive moments (𝑀𝑝) during a 

low-amplitude ramp-shaped perturbation. 
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Figure 8-3. A representative time series of the joint moments involved in the low-amplitude step perturbation trial are 

presented. 

 

Figure 8-4. Nonlinear contraction function presented as a surface based on the angular position and velocity of the 

trunk for two representative participants. The nonlinear contraction function shows the maximal active moment in the 

case of full muscle activation. 

 

The identified natural frequency associated with the muscle activation dynamics (𝜔0 in 

Figure 8-2) was consistent across the three 240-second perturbation trials, with values of 11.35 ± 

2.61 [1/s], 12.22 ± 2.98 [1/s], and 12.15 ± 2.82 [1/s] for the first, second, and third trials, 

respectively, despite UKF being used for identification on the first trial and AUKF being used on 

the second and third trials. The time delay between the measured feedback and motor command 

(𝑇𝑑), which was estimated using correlation analysis, was also consistent across the perturbation 

trials, with values of 227.50 ± 34.12 [ms], 227.50 ± 27.12 [ms], and 226.25 ± 26.69 [ms]. The 

nonlinear contraction function (ℱ𝑚) showed the non-isometric behaviour of the maximal active 
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moment (Figure 8-4). ℱ𝑚 decreased (shown in blue in Figure 8-4) when the trunk was in the neutral 

state (i.e., upright) or when the angular position and velocity exhibited anti-phase behaviour to 

move the trunk toward the neutral state. By contrast, ℱ𝑚 increased (shown in yellow in Figure 8-4) 

when the angular position and velocity increased in the same direction (in-phase behaviour). 

Figure 8-5A illustrates how the active and passive control mechanisms coordinated to stabilize the 

trunk against external disturbances and gravitational moments during a 30-second segment of a 

representative perturbation trial. The total moment (𝑀𝑡𝑜𝑡𝑎𝑙) estimated by the identified model 

could predict the measured inertial moment (top panel of Figure 8-5A). The passive joint moment 

(𝑀𝑝 = 𝑀𝑒 +𝑀𝑣) stabilized the trunk against the gravitational moment without time delay (middle 

panel of Figure 8-5A), whereas the active joint moment (𝑀𝑎) played a significant role in stabilizing 

the trunk against external disturbances (𝑀𝑑𝑖𝑠𝑡) with time delay (bottom panel of Figure 8-5A). 

Figure 8-5B demonstrates that including the uncertainty dynamics in the model provided a better 

estimation of the measured stabilizing joint moment by accounting for unmodelled dynamics and 

system parameter variations over time. 

The goodness of fit of the identified models, as quantified by MSE, was 0.0008 ± 0.0004 

[rad2], 0.0007 ± 0.0003 [rad2], and 0.0007 ± 0.0006 [rad2] for the first, second, and third 

perturbation trials, obtained by UKF, AUKF, and AUKF, respectively. The corresponding 

correlation coefficients were 84.77 ± 4.91 [%], 86.82 ± 4.70 [%], and 86.72 ± 6.70 [%], 

respectively. Figure 8-6 shows the ability of the AUKF to estimate the parameters of the nonlinear 

model over the 150-second segment for characterizing the stabilization mechanisms as well as the 

trunk sway angle time series obtained by the identified model.  
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(a) 

 

 

(b) 
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Figure 8-5. (a) The measured and modelled trunk moments (𝑀𝑡𝑜𝑡𝑎𝑙) for a representative perturbation trial (top), 

decomposed into the gravitational (𝑀𝑔) and passive moments (𝑀𝑝 = 𝑀𝑒 +𝑀𝑣): 𝑀𝑝 resists against 𝑀𝑔 without a time 

delay (middle), and external (𝑀𝑑𝑖𝑠𝑡) and active moments (𝑀𝑎): 𝑀𝑎 resists against 𝑀𝑑𝑖𝑠𝑡  with a time delay (bottom). 

(b) The modelled trunk moment was compared to the measured trunk moment when the model included the uncertainty 

dynamics to account for unmodelled dynamics and system parameter variations (top). The modelled trunk compared 

to the measured trunk moment when the model did not include uncertainty dynamics (bottom).  

 

(a) 

  
 

(b) 

 
Figure 8-6. (a) Identification of the parameters associated with the uncertainty dynamics (left) and the active control 

(right) over the first 150 seconds of each trial presented for one trial. (b) The trunk sway angle obtained by the 

nonlinear neuromechanical model identified in Figure 8-2 compared to the actual measurement (MSE: mean squared 

error). The adaptive Unscented Kalman filter (AUKF) was applied to the first 150 seconds of the trial to identify the 

parameters associated with the active control (top). The performance of the identified model was then examined using 

the rest of the trial (bottom). Note, the first (last) 10 seconds of each 240-second perturbation trial consisted of a 5-

second hold followed by increasing (decreasing) ramp motions to avoid abrupt initiation (termination) and therefore, 

we only used the middle 220 seconds for analyses. 
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Table 8-3. Summary of the identified passive and active controls’ parameters expressed as mean ± standard deviation. 

The sudden perturbation trial was used to identify passive control parameters using a nonlinear least-squares 

algorithm. The first 240-second perturbation trial was used to identify active control parameters using a UKF tuned 

with offline optimization. The second and third 240-second perturbation trials were used to identify active control 

parameters using an AUKF. 

 

Sudden 

Perturbation 

Trial 

240-Second 

Perturbation 

Trial 1 

240-Second 

Perturbation 

Trial 2 

240-Second 

Perturbation 

Trial 3 

𝐊𝟏 [𝐍.𝐦/𝐫𝐚𝐝 ] 139.05 ± 22.97 - - - 

𝐊𝟐 [𝟏/𝐫𝐚𝐝] 0.52 ± 1.08 - -  

𝐊𝟑 [𝐫𝐚𝐝] 0.0001 ± 0.0001 - - - 

𝐁𝟏 [𝐍.𝐦. 𝐬/𝐫𝐚𝐝] 12.78 ± 5.78 - - - 

𝐁𝟐 [𝟏/𝐫𝐚𝐝] 1.19 ± 0.29 - - - 

𝛚𝟎 [𝟏/𝐬] - 11.35 ± 2.61 12.22 ± 2.98 12.15 ± 2.82 

𝐓𝐝 [𝐦𝐬] - 227.50 ± 34.12 227.50 ± 27.12 226.25 ± 26.69 

 

8.4 Discussion 

This study aimed to characterize the roles of the passive and active control mechanisms 

involved in trunk stabilization during sitting by experimentally identifying a neuromechanical 

model of nonlinear trunk dynamics in healthy individuals using UKF and AUKF. We used an 

AUKF to identify the parameters of the neuromechanical model to account for the time-varying 

process and measurement noise.  

8.4.1 Developed neuromechanical model and its validity 

Identifying the passive control mechanism is challenging since it requires differentiating 

the 𝑀𝑝 from 𝑀𝑎 during perturbed sitting. Previous studies [26], [212] have suggested that the 

contribution of 𝑀𝑎 to trunk stabilization is negligible compared to that of 𝑀𝑝 during low-amplitude 

seated perturbations. Accordingly, we used a low-amplitude, ramp-shaped base-of-support 

perturbation to quantify the behavior of the passive mechanism. Notably, low-level tonic muscle 

activation may present as co-contractions when a low-amplitude perturbation is applied. 

Nevertheless, such tonic muscle activation contributes to the passive mechanism by increasing the 

stiffness and damping properties of the trunk without time delay [25], [26].  

Previous studies [271] have suggested that a nonlinear component, expressed as an 

exponential term, improves the estimation of the stiffness characteristic, and that the resting elastic 

angle (𝐾3) could differ from the natural upright angle [271]. Accordingly, we used a nonlinear 

stiffness model that accounts for the nonlinear elasticity behavior and resting elastic angle of the 

trunk. Our obtained stiffness and damping coefficients were comparable to the findings of previous 
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studies that reported the trunk stiffness (𝐾1), damping (𝐵1), and nonlinear elasticity (𝐾2) from 100 

to 200 [N.m/rad] [212], 10 to 15 [N.m.s/rad] [212] , and -0.486 to 2.024 [1/rad] [271], respectively. 

We also found that the identified 𝐾3 was negligible compared to the natural upright trunk angle 

during sitting.  

We followed previous studies [66], [194] that demonstrated the capability of filtered white 

noise as an external disturbance for characterizing the active mechanism of stability during 

standing. The recruitment curve was used to introduce the physiological nonlinearity due to the 

constraints imposed by the minimum and maximum possible muscle excitation levels for each 

muscle. Opposing signs were used when calculating the total motor commands for posterior and 

anterior trunk muscles to account for the fact that they generate joint moments in opposing 

directions [44]. While we used a delayed, critically-damped second-order model to quantify the 

muscle activation dynamics similar to [62], [278], we used a nonlinear contraction function (ℱ𝑚), 

instead of a constant gain, to account for the non-isometric muscle activation condition. Hence, 

we quantified the muscle activation dynamics by the following parameters: 𝜔0, 𝑇𝑑, and ℱ𝑚 (see 

Figure 8-2). Since the total motor command was an input to the muscle activation dynamics, the 

identified 𝜔0 is an average representation of twitch contraction frequency across all relevant 

muscles. Previous studies [44], [62], [69] reported the twitch contraction frequency from 4 to 25 

[rad/s] for different muscles, which agrees with our results (Figure 8-4). The identified 𝑇𝑑 captures 

the latency between the sensory feedback and the 𝑀𝑎. The identified 𝑇𝑑 in Figure 8-2 is within the 

range of values reported by Audu and Triolo [60] (200 [ms]) as well as Goodworth and Peterka 

[199] (280 [ms], termed the long-latency). We used a normalized RBF neural network to represent 

ℱ𝑚 for explaining the state-varying gain due to non-isometric muscle contraction. Previous studies 

[44], [62] used a constant gain for the activation dynamics under isometric conditions for quiet 

standing. However, this assumption may not be valid during seated tasks such as reaching and 

bending, which involve a change of length of the trunk muscles. The identified ℱ𝑚 in Figure 8-4 

indicates the necessity of accounting for non-isometric conditions by exhibiting highly nonlinear 

state-varying behavior with respect to the trunk angular position and velocity.  

The performance of the identified neuromechanical model was examined for each 

participant and trial using MSE and correlation coefficient. Audu and Triolo [60], [62] reported an 

average root-mean-square error of 0.011 [rad] between their model simulation and measurement; 

However, they did not describe how the results of their model simulation varied with respect to 
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measurement. The goodness of fit of our identified neuromechanical model, quantified by MSE, 

was 0.0007 ± 0.0004 [rad2] across participants. This value is within the range of accuracy of the 

motion measurement device, implying that the identified neuromechanical model is highly 

accurate in comparison to previous studies [60], [62]. 

8.4.2 Roles of passive and active mechanisms in trunk stabilization 

When an external perturbation is applied, the deviation of the trunk from its neutral position 

generates 𝑀𝑔 that is compensated for by a delay-free and resistive 𝑀𝑝 due to the intrinsic stiffness 

and damping properties of the trunk (Figure 8-5A). Previous studies [62] have suggested that 𝑀𝑝 

contributes up to 91% of the trunk stabilizing moment. Our results confirm that a large majority 

of the stabilizing joint moment is provided by 𝑀𝑝 (Figure 8-5A). However, 𝑀𝑝 cannot stabilize 

the trunk against both gravitational and acceleration effects [60], [62], and an additional phasic 

response from the active mechanism is needed in response to external disturbances (Figure 8-5A). 

While 𝑀𝑝 acts instantly to stabilize the trunk against undesired trunk motion, the central nervous 

system (CNS) receives and processes sensory information to generate a delayed phasic joint 

moment (𝑀𝑎) by activating relevant trunk muscles in a synergistic manner. We observed that the 

dynamic behavior of 𝑀𝑎  is correlated with that of the external disturbance (Figure 8-5A), 

indicating that 𝑀𝑎 is required to complement 𝑀𝑝, at least in the presence of external disturbances.  

We observed that ℱ𝑚 increased when the angular position and velocity increased in the 

same direction whereas, when the trunk was in, or moving toward, its neutral position, ℱ𝑚 

decreased (Figure 8-4). The non-isometric behaviour of ℱ𝑚 showed an increased contribution of 

𝑀𝑎 to trunk stabilization during extreme motion states where 𝑀𝑝 is not likely to stabilize the trunk 

alone. Note that, unlike 𝑀𝑝, 𝑀𝑎 is a time-varying process affected by internal disturbances, muscle 

fatigue, and strength condition [68], [69]. Although adding the uncertainty dynamics did not 

change the overall behaviour of the model, it did improve the association between the measured 

and modelled moments, as shown in Figure 8-5B. This highlights the importance of accounting 

for the unmodelled internal dynamics in the overall neuromechanical model. 

8.4.3 Importance of developing a nonlinear model of neuromuscular 

mechanisms of seated stability control 

Most previous studies assumed time-invariance and linearity of the neuromechanical 

model for identifying the passive and active mechanisms of seated stability control [44]–[46], [60], 
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[61], [65], [67], [197]–[199]. This assumption is valid only for small perturbation conditions 

around an upright posture. Therefore, it limits the understanding of the inherently nonlinear 

system. Additionally, the offline optimization techniques for model identification reported in the 

literature do not allow for online correction of the time-varying properties of the identified model 

(e.g., due to muscle fatigue) after the optimization has been performed. As a result, the applicability 

of such models is limited when designing control strategies for assistive technologies such as 

closed-loop FES systems or exoskeletons for long-term operation [70], [71].  

The time-varying nonlinear neuromuscular dynamics and high inter-subject variation of 

the muscle response [68], [70], [71], [215], [279] are reported to be major challenges toward 

developing a neuroprosthesis utilizing closed-loop control (e.g., FES). Our developed 

neuromechanical model of seated stability may address these challenges by accounting for the 

nonlinear behaviour of the active and passive control mechanisms as well as uncertainties due to 

unmodelled dynamics. Such a bio-inspired neuromechanical model may provide a physiologically 

meaningful plant model when developing a closed-loop control system. In particular, AUKF, 

utilized for identifying the properties of the nonlinear neuromechanical model, enables real-time 

correction of the model parameters (e.g., using forgetting factors), which may allow for tracking 

system variations due to external disturbances, muscle fatigue, and physiological uncertainties. 

However, future studies are needed to investigate the applicability of the proposed identification 

scheme to identify changes in active and passive control mechanisms, and system variations, under 

uncertain conditions such as fatigue-induced conditions or in individuals with neuromuscular 

impairments who may exhibit different stabilization mechanisms due to the motor and/or sensory 

deficits. Furthermore, the identification method used by previous studies [44]–[46], [60], [61], 

[65], [67], [197]–[199] does not address the adverse effect of the time-varying process and 

measurement noise on the identification of the neuromechanical model. This adverse effect could 

impact the performance of assistive technologies in long-term operation, as characteristics of 

process and measurement noise change appreciably. The noise covariance adaptation mechanism 

used by AUKF accounts for uncertain process and measurement noise distributions, which could 

minimize the adverse effect of time-varying noise on the identification of the neuromechanical 

model. The adaptative property of AUKF could therefore increase the performance of the 

identified neuromechanical model and may be useful, in the future, for developing more robust 

assistive technologies under real-world conditions. Moreover, the lower computational cost of 
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such an identification scheme allows for participant-specific identification of the neuromechanical 

model, which can facilitate the tailored design of assistive technologies. Nevertheless, future 

studies may employ the proposed methodology, including the neuromechanical model and the 

identification scheme to investigate the value of this approach for designing robust assistive 

technologies aimed at improving stability. 

8.4.4 Limitations of the experimental procedure 

Since all study participants were able-bodied, young, and male, future studies should 

investigate the applicability of our findings to other populations requiring assistive technologies. 

Future studies may investigate between-gender differences in neuromechanical model parameters 

as well as differences between healthy participants and individuals with impaired seated stability 

(e.g., due to ageing or any neuromuscular impairments). Future studies may also perform time 

series analyses based on fractal dimension and Lyapunov exponent to investigate the predictability 

and convergence of EMG time series for identifying between-gender and age-related differences. 

We estimated participant-specific body-segment parameters by scaling cadaveric data by 

participant anthropometric data, which may have introduced uncertainty into the model parameters 

[233]. We assumed a single-segment inverted pendulum of the trunk, which did not account for 

intervertebral and upper limb motion. Future studies should investigate the effect of trunk 

segmentation on the neuromechanical model of seated stability. Using multi-segment models for 

identifying the neuromechanical model requires uncorrelated external perturbation profiles 

simultaneously applied to each segment level. Further investigations and sensitivity analysis are 

needed to determine the effect of segmentation on the passive and active parameters describing 

the neuromechanical model. In the present study, we used AUKF to identify the parameters of the 

neuromechanical model in young, healthy individuals during a short amount of time while 

assuming the active control parameters were slowly varying in comparison to the process 

dynamics. Future studies may investigate the utilization of AUKF with a forgetting factor to track 

variations of active control parameters due to muscle fatigues over longer durations. Finally, we 

only investigated motion in the sagittal plane; however, the trunk muscles selected for this study 

also contribute to the trunk's motion in the frontal and transverse planes. Therefore, future work 

should extend our model to seated stability in the frontal and transverse planes. Nevertheless, the 

present study took a step toward the quantification of seated stability, which could provide the 

foundation for further related work. 
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8.5 Conclusions 

This study experimentally identified a nonlinear, time-varying neuromechanical model of 

seated stability that captures both passive and active control mechanisms under non-isometric 

conditions in healthy individuals. The developed model predicted the role of the active and passive 

mechanisms involved in trunk stability of able-bodied young adults during perturbed sitting with 

high accuracy. This model may enable a comprehensive mechanistic understanding of the various 

components of the neuromuscular control system involved in the seated stability of able-bodied 

young adults.  

8.5.1 What is next? 

We validated a methodology for a mechanistic understating of the passive and active 

stabilization mechanisms involved in dynamic stability. However, the role of the neural control in 

regulating dynamic stability and how it appears to operate still require investigation. In the next 

chapter, the high-level task goals of the neural control that regulates dynamic stability were 

investigated. 
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Chapter 9 

This chapter shows an approach to characterize neural control and its task goals to regulate 

seated stability using a nonlinear neuromechanical model and nonlinear control theory. This 

chapter has been adopted and/or edited from: 

A. Noamani, A. H. Vette, and H. Rouhani, “Nonlinear Neural Feedback Explains Task Goals of 

Central Nervous System for Trunk Stability in Sitting Posture,” ready for submission. 

9 CNS Task Goals of Seated Stability 

9.1 Introduction 

Maintaining stability of the inherently unstable human trunk during sitting requires the 

complex interaction of several components of the sensorimotor system [44], [59]. Individuals with 

moderate-to-severe sensorimotor impairments, e.g., up to two-thirds of individuals with spinal 

cord injury, suffer from reduced trunk stability and the inability to sit unassisted [22]–[24]. 

Consequently, they are at risk of injurious falls when exposed to external sitting disturbances, with 

nearly 70% of wheelchair users experiencing at least one fall each year [28]. Such falls are the 

leading cause of injury in this population [27] and often require hospital care [29]. In this light, 

previous work has demonstrated that an understanding of healthy neuromuscular control can be 

utilized to identify and restore impaired balance in individuals with neuromuscular impairments 

[23], [59], [66]. Hence, the characterization of neuromuscular control can contribute to objective 

balance evaluation and the development of targeted rehabilitative interventions for improving 

impaired balance [60], [67]. Furthermore, assistive technologies based on neuromodulation, such 

as functional electrical stimulation (FES), have shown potential for restoring seated stability by 

stimulating impaired trunk muscles via both open- [175] and closed-loop [27], [176]–[180] control 

strategies. However, designing bio-inspired controllers for FES systems is challenging [25], [60], 

[72], since such complex technologies must provide physiological actions similar to those of motor 

commands (e.g., muscle activation) produced by the healthy neural control system [25]. Therefore, 

characterizing the neural control of non-impaired seated stability is a prerequisite for bio-inspired 

closed-loop neuromodulation technology [60].  
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To characterize neural control, it is essential to determine the task goals representing high-

level functional goals of the CNS that regulate seated stability. However, characterizing the task 

goals for given motor behaviour, such as seated stability, and how the CNS accomplishes these 

goals via neural control, has been a long-standing question in human motor control research [23]. 

The literature has proposed different task goals for maintaining an upright standing posture based 

on the reduction of the body center of mass (COM) sway and pace of sway [44]. Nevertheless, 

determining the task goals for seated stability, their relative importance in the neural control 

strategy, and how the neural control regulates this motor task is still an open question. Answering 

this question requires characterizing the complex interrelation between the underlying 

neuromuscular stabilization mechanisms and a mechanistic understanding of the closed-loop 

control system for seated stability.  

To characterize the closed-loop postural control system and the interrelation between 

neuromuscular mechanisms, previous studies have proposed neuromechanical models of human 

stability. The closed-loop postural control system during sitting can be explained using an inverted 

pendulum with passive and active stabilization control mechanisms [25], [44], [46], [60], [61]. 

Identifying the dynamics associated with the process of converting sensory information into motor 

commands through active feedback control by the CNS characterizes the neural control and its 

task goals. 

Previous studies have identified the neural control as well as the passive and active control 

of standing and seated stability using linear closed-loop system identification techniques applied 

to body kinematics and muscle activation data recorded when the body was perturbed via external 

stimuli (e.g., moving support surface, external forces, or perturbed visual surround) [46], [65].  

This work proposed that the neural control generates motor commands based on task goals of 

minimizing the angular position and velocity [44], [59], [62], [94] as well as acceleration [44], 

[59] with respect to the static upright posture. Many studies have provided non-parametric 

estimates of the neural dynamics in both standing and sitting postures using linear closed-loop 

system identification [44], [59], [60], [197]. Other studies have provided parametric estimates of 

the neural dynamics by using linear controllers such as proportional-integral-derivative (PID) 

control [60], [61], [198], [199], proportional-derivative (PD) control [62], [65], and PD control 

with acceleration feedback [59], [207] to model the neural control functioning for controlling 

postural stability.  
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Another approach has been proposed to use linear optimal control theory to characterize 

the task goals for motor behaviour [44]. This theory characterizes task goals as the minimization 

of cost functions to obtain optimal performance of the neural control system [280], [281].  In 

contrast to classic models (e.g., PD or PID) for neural control, the optimal feedback control theory 

relies on a performance criterion allowing the motor task and neuromechanical model of the body 

to dictate a control scheme that best describes the actual physiological process and, thus, results in 

a control law that leads to the best performance [281]. Oftentimes, this approach assumes that the 

neural feedback is minimizing a cost function that penalizes large motor commands (e.g., muscle 

activations) and state variables (e.g., body angular kinematics) toward minimizing energy 

expenditure and guaranteeing stability, respectively. Parameterizing the cost function enables 

prioritizing the task goals of the neural control for motor behaviour [44]. For a given 

neuromechanical model of the body, there is optimal neural feedback that minimizes this cost 

function. Hence, identifying the neural feedback control strategy for a given motor task (e.g., 

seated stability) would allow us to interpret the cost function and, therefore, explain the relative 

importance of the task goals [44].  

Despite its potential, optimal control theory has not been utilized to characterize neural 

control and its task goals for regulating seated stability. Characterizing the neural control using PD 

or PID control schemes along with linear time-invariant neuromechanical models ignores the time-

varying nonlinear behaviour of the underlying neuromechanical dynamics associated with 

physiological uncertainties in real-world conditions [68]–[71]. In addition, the use of control 

structures such as PID does not reflect optimal neural control strategies and psychological task 

goals for regulating seated stability. Therefore, utilizing a nonlinear neuromechanical model along 

with the nonlinear control theory for identifying the neural control would lead to a better 

mechanistic understanding of the task goals for a given motor behaviour (e.g., seated stability). 

Such an identification approach may help researchers to overcome a fundamental challenge in 

human motor control, may facilitate the mathematical identification of neuromechanical 

mechanisms, and may contribute to objective balance evaluation, development of targeted 

rehabilitative interventions, and bio-inspired design of assistive technologies, all aimed to improve 

impaired balance. 

This study aimed to address the abovementioned issues by identifying the task goals of the 

intact neural control associated with seated stability. First, we used a nonlinear neuromechanical 
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model of the seated human along with a full-state feedback linearization approach and optimal 

control theory for identifying the neural control. Second, we identified the parameters associated 

with a cost function that penalizes the motor commands and state variables to achieve seated 

stability via nonlinear neural feedback. Third, we characterized the task goals for seated stability 

by interpreting the identified cost function. 

9.2 Methods 

9.2.1 Participants 

Ten healthy, young male individuals volunteered to participate in this study (age: 24 ± 4 

years; weight: 76 ± 13 kg; height: 178 ± 8 cm; mean ± standard deviation). All volunteers reported 

no history of neuromusculoskeletal disorders or any impairments that may have affected their 

seated stability. Participants gave written informed consent to the experimental procedures, which 

were approved by the research ethics board of the University of Alberta (Study ID: Pro00063998). 

9.2.2 Data acquisition 

We placed retro-reflective markers, bilaterally, on the anatomical landmarks [259] of the 

head, thoracic and lumbar segments of the trunk, arms, hands, pelvis, legs, and feet (Figure 9-1). 

We also placed four markers on the four corners of the seat. We recorded the trajectory of the body 

and base-of-support during the experiments using a twelve-camera motion capture system (Vicon 

Motion Systems Ltd., Oxford, UK) at a sampling rate of 100 Hz.  

We placed bipolar electromyography (EMG) electrodes (Bagnoli, DELSYS, Natick, MA, 

USA) bilaterally over the muscle belly of the erector spinae (T9 level and L3 level), biceps femoris, 

rectus abdominis, external oblique, and rectus femoris (Figure 9-1) [67]. The selected muscles are 

known for their major contribution to seated stability [266]. We used a self-adhesive reference 

electrode placed over the right iliac crest. We amplified EMG data with a muscle- and participant-

dependent gain varying from 102 to 104, sampled and digitized at 2 kHz.  
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Figure 9-1 The experimental study was conducted at a Computer Assisted Rehabilitation Environment (CAREN): (a, 

b) Placement of the retroreflective markers; (c, d) Placement of electromyography (EMG) electrodes; (e) A T-pose 

anatomical calibration was carried out; (f) Participants were asked to sit on a customized seat fastened to the CAREN 

platform, while base-of-support perturbations in the form of anteroposterior translation of the platform were applied 

to the seat. 

9.2.3 Experimental procedure 

We recorded the baseline muscle activity while the participants lay down in the supine 

position with their eyes closed for 60 seconds. We also recorded the maximum voluntary 

contraction (MVC) for each muscle while participants performed a series of exercises [67]. Each 

MVC was performed three times consecutively, with each time lasting 30 seconds. Participants 

were given a 30-second resting break between MVC exercises to minimize the effect of fatigue. A 

T-pose anatomical calibration trial was conducted (Figure 9-1). The anatomical markers of the 

thoracic, lumbar, and pelvic segments were removed prior to the main trials. The anatomical 

calibration data were then later used to reconstruct the anatomical markers for the main trials.  

We fastened a customized seat on a six-degree-of-freedom Stewart platform of a 

Computer-Assisted Rehabilitation Environment (CAREN; Motek Medical, Amsterdam, The 

Netherlands) before the session started. A consistent visual surround was provided for all 

participants by projecting two-dimensional, white grid lines on a black background on a 180-

degree curved virtual-reality projection screen (Figure 9-1). Participants sat on a customized seat 

with their arms crossed over the chest and their legs hanging vertically downward without foot 

support (Figure 9-1). We asked the participants to keep their vision on the virtual-reality screen 

and maintain their seated stability while external disturbances were applied in the form of 

anteroposterior translation of the platform. First, we used a low-amplitude ramp-shaped 

perturbation suddenly applied to the seat. Subsequently, we used three 240-second white noise 
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profiles as the perturbation. We designed the white noise profiles with a mean power spectral 

density of 4 cm2/Hz, filtered via zero-lag first-order high-pass and eight-order low-pass 

Butterworth filters with cut-off frequencies of 0.1 Hz and 5 Hz, respectively. Each profile was 

initiated with a 5-second hold followed by a 5-second increasing ramp and terminated with a 5-

second decreasing ramp followed by a 5-second hold to eliminate any abrupt initiation and 

termination effects. Therefore, the middle 220 seconds of each trial were used for analyses. 

Between-trial rest breaks were given upon request by the participant. 

9.2.4 Data pre-processing 

We filtered the motion trajectories via a zero-lag fourth-order low-pass Butterworth filter 

with a cut-off frequency of 10 Hz. We estimated participant-specific body segment parameters, 

including mass, moments of inertia, COM, and joint center of rotation positions, by scaling 

cadaveric data of the upper body [254] and lower limbs [223] using each participant’s weight and 

height [233], [260]. We obtained segmental kinematics based on the marker trajectories as 

explained in our previous studies [76], [80]. We calculated the instantaneous position of the upper 

body COM using the weighted summation of the instantaneous COM position of the head and 

neck, thoracic, lumbar, arms, and pelvic segments. We used an inverted pendulum model to obtain 

the trunk sway angle as the motion of the upper body COM rotating about the L5-S1 joint.  

We divided the EMG time series by gain, and we then demeaned, rectified, and filtered the 

scaled time series using a moving-average filter with a window size of 100 milliseconds [270]. We 

down-sampled the EMG time series to 100 Hz and normalized them for the perturbation trials 

using a Min-Max Scaling approach based on the baseline and maximum MVC (highest values 

among the three recorded MVCs) of each muscle as the minimum and maximum values, 

respectively. 

9.2.5 Nonlinear neuromechanical model 

This section is explained in detail in our previous study [81] and is briefly described here. 

The nonlinear neuromechanical dynamics of the seated stability were modelled, as illustrated in 

Figure 9-2. A state-space representation of this model has four state variables, one input and one 

output. The first two state variables represent the angular position and velocity of the trunk 

modelled as an inverted pendulum controlled by gravitational, active, and passive joint moments. 

The other state variables represent critically-damped second-order transfer function associated 
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with the muscle activation dynamics due to calcium release dynamics, muscle fibre conduction 

velocities, and the time delay associated with chemical reactions [69], [211]. The state-space 

representation is as follows: 

�̇� = [

�̇�1
�̇�2
�̇�3
�̇�4

] = 𝐹(𝑥, 𝑢, ∅) =  𝑓(𝑥) + 𝑔(𝑥, 𝑢) (1) 

𝑓(𝑥) =  

[
 
 
 
 

𝑥2
1

𝐽
[𝑀𝑔(𝑥1) + 𝑀𝑒(𝑥1) + 𝑀𝑣(𝑥2) + 𝑀𝑎(𝑥1, 𝑥2, 𝑥3) + 𝑀𝑑𝑖𝑠𝑡]
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−2𝜔0𝛽𝑥4 −𝜔0

2𝑥3 ]
 
 
 
 

 (2) 

𝑔(𝑥, 𝑢) =  [

0
0
0
𝜔0

2

] 𝑢(𝑡 − 𝑇𝑑) (3) 

𝑦 = ℎ(𝑥) = 𝑥1 (4) 

In Equations 1-4, 𝑓 and 𝑔 are the system functions; ℎ is the measurement function; �̇� is the time 

derivative of the state-vector 𝑥; 𝑢 is the total motor command;  𝑦 is the system measurement; 𝑥1 is 

the trunk sway angle; 𝑥2 is the angular velocity; 𝑥3 is the normalized activation; 𝑥4 is the rate of 

change of activation; 𝑀𝑔 is the gravitational joint moment; 𝑀𝑒 is the passive elastic joint moment; 

𝑀𝑣 is the passive viscous joint moment; 𝑀𝑎  is the active joint moment; 𝑀𝑑𝑖𝑠𝑡 is the joint moment 

due to external disturbances; 𝐽 is the moment of inertia; 𝜔0 is the natural frequency; 𝛽 is a damping 

coefficient equal to unity; and 𝑇𝑑 is the input time delay. 
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Figure 9-2. The nonlinear neuromechanical model of seated stability was validated in our previous study [81]. A state-

space representation of this model has four state variables, and one input and one output. The first two state variables 

represent the angular position (𝑥1) and velocity (𝑥2) of the trunk center of mass (COM) controlled by gravitational 

(𝑀𝑔 = −𝑚𝑔𝑙 𝑠𝑖𝑛(𝑥1 − 𝜃0)), active (𝑀𝑎 = ℱ𝑚(𝑥1, 𝑥2)𝑥3), and passive joint moments (𝑀𝑝 = 𝑀𝑒 +𝑀𝑣) composed of 

elastic (𝑀𝑒 = −𝐾1𝑒
(−𝐾2𝑥1)(𝑥1−𝐾3)) and viscous (𝑀𝑣 = 𝐵1 sign(𝑥2) |𝑥2|

𝐵2) components where 𝑚 is the total mass of 

the upper body; 𝑔 is the gravitational acceleration; 𝑙 is the length of the inverted pendulum, 𝜃0 is the trunk angle 

deviation from the vertical axis during upright posture; 𝐾1, 𝐾2, and 𝐾3 are the stiffness coefficient, exponential 

elasticity, and resting elastic angle of the trunk, respectively [69], [271]; 𝐵1 and 𝐵2 are the damping coefficient and 

exponential term, respectively [68]; and ℱ𝑚 is an arbitrary function (e.g., a polynomial or a neural network) modelling 

the maximal active moment in the case of full muscle activation based on the trunk angular position (𝑥1) and velocity 

(𝑥2). The other state variables (𝑥3 and 𝑥4) represent a critically damped second-order transfer function associated with 

the dynamic behaviour of the muscle activation due to calcium release dynamics and muscle fibre conduction 

velocities, with the parameters 𝜔0 as the natural frequency and 𝛽 as a damping coefficient equal to unity as well as 

the time delay (𝑇𝑑) associated with chemical reactions. The total motor command (𝑢) was calculated as the summation 

of the back muscles’ motor commands (extensors) subtracted by the summation of the front muscles’ motor commands 

(flexors): Each muscle activation was normalized via Min-Max scaling using its Maximum Voluntary Contraction 

(MVC) and baseline. External disturbances were modelled as a joint moment 𝑀𝑑𝑖𝑠𝑡 . 

9.2.6 Identification of passive-active controls 

This section is explained in detail in our previous study and is briefly described here [81]. 

We used the nonlinear neuromechanical model to characterize the passive and active stabilization 

mechanisms (Figure 9-2). We used the data of the sudden perturbation trial to estimate the 

parameters of the passive stiffness (𝐾1, 𝐾2, 𝐾3) and damping (𝐵1, 𝐵2) by using a Nonlinear Least 

Squares algorithm by assuming that low-amplitude perturbations mostly elicit passive mechanisms 

rather than active postural control mechanisms [212]. Subsequently, we used an Unscented 

Kalman Filter (UKF) [272] on three 240-second perturbation trials to estimate the parameters of 

the active control in addition to the state variables for each participant using a dual-estimation 

scheme by forming an augmented state vector: 
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�̇� = [
�̇�
∅̇
] = [

𝐹(𝑥, 𝑢, ∅)
0

] = 𝒻(𝑋, 𝑢), 𝑋 = [
𝑥
∅] , ∅ = [

𝜔0
𝜓 ] (5) 

Where 𝑋 is the augmented state vector; 𝒻 is the state-space representation of the augmented state-

space model, and ∅ is the active control parameters, including the natural frequency (𝜔0) of the 

activation dynamics and the coefficients (𝜓) of the arbitrary function ℱ𝑚. It was assumed that ∅ 

was slowly varying compared to the process dynamics [69]. We have previously shown that such 

an identification approach, along with the nonlinear neuromechanical model, allows us to 

quantitatively characterize the active and passive postural control mechanisms with high accuracy 

[81]. 

9.2.7 Nonlinear neural feedback: full-state feedback linearization 

The use of UKF in the previous study allowed us to observe the state vector (𝑥) of the 

nonlinear system based on the measurement of the trunk sway angle (𝑦) and the total motor 

command (𝑢) [81]. In the present study, to characterize the task goals of the neural control, we 

assumed that  

(1) the neural control system acts as an optimal linear quadratic regulator (LQR) that receives 

full-state linearized feedback from the neuromechanical model, and  

(2) the neural feedback minimizes a quadratic cost function that penalizes the motor 

commands and poor stability performance expressed as the state variables in the linearized 

space.  

Hence, identifying the neural control is to determine:  

(1) a diffeomorphism that transforms the state variables of the nonlinear neuromechanical 

model into a linear space where LQR can be applied.  

(2) the weights of the quadratic cost function associated with the LQR control; and  

(3) the gains of the LQR that minimizes the quadratic cost function.  

This allows us to interpret the cost function and the optimal neural control and, therefore, 

explain the task goals used by the neural control for seated stability [44]. The process of identifying 

the neural control is depicted in Figure 9-3, and the details are provided in the following sections. 

First, we prove that there exists a transformation that transforms the nonlinear neuromechanical 

model into a linear space where linear optimal control theory can be applied. 
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Figure 9-3. We used an unscented Kalman filter (UKF) along with the identified neuromechanical model (shown in 

purple in both Figure 9-2 and Figure 9-3) to obtain full-state neural feedback. We used a full-state feedback 

linearization approach to linearize the nonlinear neural feedback and then employed optimal control theory to identify 

the actual neural control (shown in blue in both Figure 9-2 and Figure 9-3) and its task goals associated with seated 

stability. We assumed that the neural control acts as a linear quadratic regulator (LQR), and the neural feedback 

minimizes a quadratic cost function that penalizes the motor commands and state variables in the linearized space. 

We used a genetic algorithm to obtain �̅� and �̅� that minimized the difference between the predicted motor command 

(�̂�) and the actual motor command (𝑢) measured by EMG. 

  

9.2.7.1 Proof of existence of a transformation 

We obtained a diffeomorphism 𝑧 = 𝑇(𝑥) that transformed our nonlinear system �̇� =

𝑓(𝑥) + 𝑔(𝑥)𝑢 into the linear space with (𝐴,  𝐵) controllable and 𝑊(𝑥) nonsingular on a domain 

𝐷 ⊂ ℜ𝑛, for all 𝑥 ∈ 𝐷: 

�̇� = 𝐴𝑧 + 𝐵𝑣 (6) 

𝑢 =  𝜑(𝑥) +  𝑊−1(𝑥)𝑣 (7) 

𝐴 = [
0𝑛−1×1 𝐼𝑛−1×𝑛−1
0 01×𝑛−1

] ;  𝐵 = [
0𝑛−1×1
1

] (8) 

where 𝑧 and 𝑣 are the transformed state vector and control command in linearized space, 

respectively; 𝜑(𝑥) and 𝑊(𝑥) are the control mapping functions; 𝐴 and 𝐵 are linear system 

matrices in a canonical form, and 𝑛 is the number of state variables (𝑛 = 4 in our study).  

Accordingly, our nonlinear system �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 is feedback linearizable if and only if 

there is a domain 𝐷0 ⊂ 𝐷 such that: (1) set of vector fields {𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓
𝑛−1𝑔} are linearly 

independent for all 𝑥 ∈ 𝐷0; and (2) the set {𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓
𝑛−2𝑔} is involutive in 𝐷0. Note, 𝑎𝑑𝑓

𝑖𝑔 
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represents the 𝑖-order Lie bracket of 𝑓 and 𝑔 [282]. We investigated these two conditions for our 

nonlinear neuromechanical model as follows: 

Condition (1): it shows the controllability of the nonlinear system and is satisfied if 

𝐺(𝑥) = [𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓
𝑛−1𝑔] has rank 𝑛 = 4 for all 𝑥 ∈ 𝐷0. Based on our neuromechanical 

model, we can show: 

𝐺(𝑥) =

[
 
 
 
 
 
 0 0 0 −

1

𝐽
ℱ𝑚𝜔0

2

0 0
1

𝐽
ℱ𝑚𝜔0

2
1

𝐽2
ℱ𝑚𝜔0

2 (
𝜕𝑀𝑣

𝜕𝑥2
+
𝜕ℱ𝑚
𝜕𝑥2

𝑥3 + 2𝐽𝜔0)

0 −𝜔0
2 −2𝜔0

3 −3𝜔0
4

𝜔0
2 2𝜔0

3 3𝜔0
4 4𝜔0

5 ]
 
 
 
 
 
 

 (9) 

Since 𝑟𝑎𝑛𝑘{𝐺(𝑥)} = 4, Condition (1) is satisfied. 

Condition (2): The distribution 𝑠𝑝𝑎𝑛{𝑔(𝑥),  𝑎𝑑𝑓𝑔(𝑥),  … , 𝑎𝑑𝑓
𝑛−2𝑔(𝑥)} is involutive 

{∀𝑥 ∈ 𝐷 𝑎𝑛𝑑 ∀𝑖, 𝑗 ∈ [0, 𝑛 − 2]} if and only if: 

𝑟𝑎𝑛𝑘{𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓
𝑛−2𝑔} =  𝑟𝑎𝑛𝑘{[𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓

𝑛−2𝑔,  [𝑎𝑑𝑓
𝑖𝑔, 𝑎𝑑𝑓

𝑗
𝑔]]} (10) 

Using our nonlinear neuromechanical model, we can obtain: 

𝑟𝑎𝑛𝑘{𝑔,  𝑎𝑑𝑓𝑔,  … , 𝑎𝑑𝑓
𝑛−2𝑔} =  𝑟𝑎𝑛𝑘

{
 
 

 
 

[
 
 
 
 
0 0 0

0 0
1

𝐽
ℱ𝑚𝜔0

2

0 −𝜔0
2 −2𝜔0

3

𝜔0
2 2𝜔0

3 3𝜔0
4 ]
 
 
 
 

}
 
 

 
 

= 3 

 

(11) 

𝑟𝑎𝑛𝑘{[𝑔,  𝑎𝑑𝑓𝑔, 𝑎𝑑𝑓
2𝑔, [𝑎𝑑𝑓

𝑖𝑔, 𝑎𝑑𝑓
𝑗
𝑔]]} = 𝑟𝑎𝑛𝑘

{
 
 

 
 

[
 
 
 
 
0 0 0 0

0 0
1

𝐽
ℱ𝑚𝜔0

2 0

0 −𝜔0
2 −2𝜔0

3 0

𝜔0
2 2𝜔0

3 3𝜔0
4 0]

 
 
 
 

}
 
 

 
 

= 3 (12) 

Based on Equations 15-17, Condition (2) is also satisfied. Therefore, the existence of full-state 

feedback linearization is proved. 
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9.2.7.2 Linearized full-state feedback 

We obtained the linearized full-state feedback as the input of the neural control by solving a set of 

partial differential equations for the diffeomorphism 𝑧 = 𝑇(𝑥). Combining Equations 1-3 and 

Equations 6-8 gives:  

�̇� =
𝜕𝑇(𝑥)

𝜕𝑥
�̇� = 

𝜕𝑇(𝑥)

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) (13) 

�̇� = 𝐴𝑧 + 𝐵𝑣 = 𝐴𝑧 + 𝐵𝑊(𝑥)(𝑢 − 𝜑(𝑥)) (14) 

Since Equation 13 and Equation 14 are equal, we can obtain:  

𝜕𝑇(𝑥)

𝜕𝑥
𝑓(𝑥) = 𝐴𝑇(𝑥) − 𝐵𝑊(𝑥)𝜑(𝑥) (15) 

𝜕𝑇(𝑥)

𝜕𝑥
𝑔(𝑥) = 𝐵𝑊(𝑥) (16) 

𝑇(𝑥) is not uniquely defined by this system of differential equations and any linear transformation 

𝑀 that leads to �̃�(𝑥) = 𝑀. 𝑇(𝑥) will also satisfy this set of equations; however, with �̃� = 𝑀𝐴𝑀−1 

and �̃� = 𝑀𝐵. One possible solution to this set of equations can be obtained as follows [282]: 

𝑧1 = 𝑇1(𝑥) = ℎ(𝑥) = 𝑥1 (17) 

𝑧2 = 𝑇2(𝑥) =  𝐿𝑓ℎ(𝑥) =  𝑥2 (18) 

𝑧3 = 𝑇3(𝑥) =  𝐿𝑓
2ℎ(𝑥) = �̇�2 =

1

𝐽
(𝑀𝑔 +𝑀𝑒 +𝑀𝑣 + ℱ𝑚. 𝑥3) (19) 

𝑧4 = 𝑇4(𝑥) = 𝐿𝑓
3ℎ(𝑥) =

1

𝐽
(
𝜕𝑀𝑔

𝜕𝑥1
+
𝜕𝑀𝑒

𝜕𝑥1
+
𝜕ℱ𝑚

𝜕𝑥1
𝑥3) 𝑥2 +

1

𝐽
(
𝜕𝑀𝑣

𝜕𝑥2
+
𝜕ℱ𝑚

𝜕𝑥2
𝑥3) 𝑇3 + 

1

𝐽
𝐹𝑚𝑥4 (20) 

 𝑊(𝑥) =
1

𝐽
ℱ𝑚𝜔0

2 (21) 

𝜑(𝑥) =  
−1

𝑊(𝑥)
(
𝜕𝑇4(𝑥)

𝜕𝑥1
𝑓1 +

𝜕𝑇4(𝑥)

𝜕𝑥2
𝑓2 +

𝜕𝑇4(𝑥)

𝜕𝑥3
𝑓3 +

𝜕𝑇4(𝑥)

𝜕𝑥3
𝑓4) (22) 

where 𝐿𝑓
𝑖 ℎ(𝑥) is the 𝑖-order Lie derivative of ℎ with respect to 𝑓. Interestingly, the linear state-

space 𝑧 represents the angular kinematics of the trunk with 𝑧1, 𝑧2, 𝑧3, and 𝑧4 having the dimension 

of angular position [rad], velocity [rad/s], acceleration [rad/s2], and jerk [rad/s3], respectively. 

Therefore, the input of the neural control would be the angular kinematics of the trunk. 
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9.2.7.3 Neural control identification 

The process of identifying the neural control is depicted in Figure 9-3. The UKF provided 

the state vector 𝑥 based on the measured trunk angle 𝑦 using the processed motion capture data 

and the measured total motor command using the EMG data for each participant and each trial. 

We used the transformation matrix 𝑇(𝑥) (Equations 17-20) to obtain the state vector 𝑧  in the linear 

space expressing the trunk’s angular kinematics and fed it into the neural control defined as an 

LQR with a quadratic cost function. The neural control then output linearized control command 𝑣 

which was then converted into the motor command �̂� in the nonlinear space using control mapping 

functions, 𝑊(𝑥) and 𝜑(𝑥), based on Equations 7, 21, and 22. 

The quadratic cost function penalized the motor commands (muscle activations), and 

linearized state variables as follows: 

𝐶𝑜𝑠𝑡 =  ∫(𝑧𝑇𝑄𝑧 +  𝑣𝑇𝑅𝑣)

∞

𝑡=0

𝑑𝑡 (23) 

𝑄 is a diagonal four-by-four and 𝑅 one-by-one positive definite matrices. To quantify the task goals 

associated with seated stability, we used a genetic algorithm to obtain 𝑄 and 𝑅 that minimized the 

difference between predicted motor command (�̂�) via the neural control model and the actual 

motor command (𝑢) measured by EMG. The obtained 𝑄 and 𝑅 were then used to calculate LQR 

gains according to Equations 24 and 25 below. The algebraic Riccati equation (Equation 24) is 

solved to obtain 𝑆 based on 𝑄 and 𝑅. The LQR gain vector (𝑘) is obtained based on Equation 25 

(see Figure 9-3). Note that Equation 24 has multiple answers; however, the answer that makes the 

closed-loop system stable via 𝑘 is selected. Also, inferring the obtained cost function via 

comparing the values of elements in 𝑄 and 𝑅 allows us to characterize the task goals associated 

with seated stability. 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0 (24) 

𝑘 = 𝑅−1𝐵𝑇𝑆 (25) 

9.2.8 Analysis of neural control model performance 

We divided each 240-second trial into two sets to assess the performance of the identified 

neural control for each participant and trial: (1) an identification set, as the first 150 seconds of 

each trial, used to identify the neural control (𝑄, 𝑅); and (2) a test set, as the last 90 seconds of the 
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trial, used to cross-validate the performance of the identified model. We used the Friedman test 

with a significance level of 0.05 to statistically compare the weights of the LQR quadratic cost 

function (𝑄, 𝑅) as well as the LQR gains among all participants and trials. We used the Friedman 

test for statistical comparison since the normal distribution condition was not met for our data. We 

used the mean squared error (MSE) and correlation coefficient between the actual measurements 

(𝑢) and the output of the identified model (�̂�) on the test set to quantify the performance. Finally, 

we investigated the robustness of the estimated neural control by deviating the neuromechanical 

parameters by ten percent to see the effect of erroneous neuromechanical model parameters.  We 

used the Friedman test with a significance level of 0.05 to find any significant differences between 

the predictions before and after deviating the parameters in terms of accuracy and correlation. 

9.3 Results 

9.3.1 Identification of the neural control 

We identified the passive and active control components of a nonlinear neuromechanical 

model of seated stability (Figure 9-2) based on our previous study [81]. We used data collected 

during the sudden perturbation trial to identify the passive control parameters using a Nonlinear 

Least Squares algorithm [81]. We used the data of the 240-second trials to identify the active 

control parameters using an Unscented Kalman Filter (UKF) according to our previous study [81]. 

The use of UKF, along with the identified neuromechanical model in our previous study [81] 

enabled us to obtain full-state feedback as the input to the neural control.  

In the present study, we used a full-state feedback linearization approach to globally 

linearize the nonlinear neural feedback and then employed optimal control theory to identify the 

neural control and the task goals associated with seated stability, as follows: 

Feedback linearization: We mathematically proved that the neuromechanical model, used to 

quantify passive and active controls of seated stability, is full-state feedback linearizable. Then, 

we obtained a diffeomorphism that transformed the state variables of the nonlinear 

neuromechanical model into a linear space where linear optimal control theory could be applied. 

This mapping was bioinspired since the linearized full-state neural feedback variables were the 

angular position, velocity, acceleration, and jerk of the trunk COM during sitting representing 

sensory information received by the neural control (see Methods for details). 
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Characterization of the neural control: We used a full-state feedback linearization approach to 

globally linearize the feedback from the nonlinear neuromechanical model and then employed 

optimal control theory to identify the neural control and the task goals associated with seated 

stability (Figure 9-2 and Figure 9-3). We assumed that the neural control receives full-state 

linearized feedback from the neuromechanical model and penalizes the muscle activations and 

poor stability performance [44], [281]. To implement this assumption, we modelled the neural 

control as an optimal linear quadratic regulator (LQR), with a quadratic cost function that penalizes 

the motor commands and state variables in the linearized space using weight matrices 𝑅 and 𝑄, 

respectively (Figure 9-3) (see Methods for details). We used a genetic algorithm to obtain the 

weights of the LQR quadratic cost function that minimized the difference between the predicted 

motor command via the neural control model (�̂�) and the actual motor command (𝑢) measured by 

EMG sensors.  

9.3.2 Characterized task goals of the neural control 

  Figure 9-4a shows the normalized weights of the quadratic cost function associated with 

the LQR control for all participants and trials. The obtained cost function weights, 𝑄 and 𝑅, were 

normalized by the maximum absolute value of the associated state variables and motor command, 

respectively, for comparison. 𝑄1, 𝑄2, 𝑄3, and 𝑄4 penalized poor angular position, velocity, 

acceleration, and jerk, respectively, while 𝑅 penalized the motor command representing muscle 

activations. Friedman test showed that 𝑅 was significantly larger than 𝑄2 and 𝑄4 (P < 0.0001). 

Among the state variables, we observed that 𝑄1 and 𝑄3 were significantly larger than 𝑄2 and 𝑄4 

(P < 0.05).  

The LQR gains 𝑘1, 𝑘2, 𝑘3, and 𝑘4 were normalized by the maximum absolute value of the 

linearized feedback: angular position, velocity, acceleration, and jerk, respectively. We observed 

that acceleration feedback had a significantly higher gain compared to other kinematics 

information (Figure 9-4b).  
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(a) 
  

 
(b) 
 

 
Figure 9-4. (a) Optimized weights of the quadratic cost function. The obtained weights in Figure 9-3,  𝑄 and 𝑅, were 

normalized by the maximum absolute value of the associated state variables and motor command, respectively, for 

comparison among weights. 𝑄1, 𝑄2, 𝑄3, and 𝑄4 penalized poor angular position, velocity, acceleration, and jerk, 

respectively, while 𝑅 penalized the motor command representing muscle activations; (b) The linear quadratic regulator 

(LQR) gains 𝑘1, 𝑘2, 𝑘3, and 𝑘4 were normalized by the maximum absolute value of the linearized feedback: angular 

position, velocity, acceleration, and jerk, respectively. Statistical Friedman test was performed to identify significant 

differences at a significance level of 0.05. 

 

We observed that the mean squared error (MSE) between the predicted motor command 

(�̂�) and measured motor command (𝑢) was less than 0.6% of the Min-Max scaled value among all 

trials and participants for both identification and test sets (Figure 9-5). The correlation coefficient 

between �̂� and 𝑢 was higher than 90% as the median among all trials and participants for both 

identification and test sets. The most and least accurate estimations of the motor command had a 

correlation coefficient of 99.3% and 82.02%, respectively (Figure 9-6a). In addition, Figure 9-6b 
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shows an example of the performance of the identified neural control and neuromechanical model 

compared to the measured inertial trunk moment for one participant and trial. 

 

Figure 9-5. The correlation coefficient and mean squared error between the predicted motor command (�̂�) and actual 

motor command (𝑢) evaluated on the identification and test datasets to quantify the accuracy of the modelled neural 

control in Figure 9-3. 

 

(a) 
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(b) 

 
Figure 9-6. (a) The most and least accurate estimations of the motor command had a correlation coefficient of 99.3% 

and 82.02%, respectively; (b) an example of the performance of the identified neural control and neuromechanical 

model when used in a simulation compared to the measured inertial trunk moment for one participant and trial. 

 

We investigated the effect of erroneous neuromechanical parameters on the performance 

of the identified neural control. To this end, we deviated the neuromechanical parameters by 10%. 

We observed no significant effect on the performance of the identified neural control in terms of 

the correlation coefficient and MSE (Figure 9-7). 

 

Figure 9-7. The performance of the identified neural control in terms of correlation coefficient and mean squared error 

(MSE) for three 240-second perturbation trials when the neuromechanical parameters were deviated by 10% to 

introduce error into the feedback linearization and control mapping. 

9.4 Discussion 

This study aimed to characterize the task goals of the neural control system for seated 

stability by experimentally applying a nonlinear neural feedback model in able-bodied individuals. 

We obtained full-state feedback from a nonlinear neuromechanical model of seated stability via a 
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UKF and then used a full-state feedback linearization along with optimal control theory to quantify 

the neural control and its task goals. 

9.4.1 Task goals of neural control for seated stability 

To infer the task goals, we assumed the neural control system acted as an optimal controller 

that receives full-state linearized feedback from the nonlinear neuromechanical model of seated 

stability. Full-state feedback linearization transformed the nonlinear state vector into linear space 

where the state vector included trunk COM angular position, velocity, acceleration, and jerk. 

Therefore, the quadratic cost function of the LQR penalized the motor commands (e.g., muscle 

activations) and COM angular kinematics representing sensory information. Inferring the 

optimized weights of the cost function allowed us to determine the task goals for seated stability 

via the optimal control theory [44]. The obtained weights showed that the neural control had 

significantly higher penalties for the motor command, and the COM angular position and 

acceleration compared to the COM angular velocity and jerk (Figure 9-4a). This suggests that the 

identified neural feedback stabilizes the trunk while achieving near-minimum muscle activations 

as a task goal.  

Kiemel et al. [44] showed that the neural control adopted minimization of muscle activation 

for stabilizing upright stance, and the neural feedback did not substantially increase muscle 

activation to reduce deviations of the COM position. A significantly high penalty for the motor 

command may suggest that there is no functional benefit to further minimizing COM angular sway 

that would demand higher muscle activation when sitting is stable. In addition to what Kiemel et 

al. [44] observed for standing stability, the high penalty associated with COM angular position in 

our study may reflect that the neural control attempted to sufficiently minimize the deviation of 

the COM angular position from upright sitting posture while maintaining minimum muscle 

activation.  Todorov [281] explained that such behaviour is due to the ‘minimal intervention 

principle,’ meaning that there is no need to correct deviations away from the average behaviour 

unless such deviations hinder the task performance. This is because correction is expensive due to 

the energy costs, i.e., muscle activation. Satisfying task goals of simultaneously minimizing both 

muscle activation and COM angular position seems to be conflicting in terms of energy 

expenditure since minimizing COM position demands high muscle activation. However, the neural 

feedback law that maintains the deviations of COM sufficiently smaller than the size of the base 

of support can achieve seated stability while keeping muscle activation to a minimum [44]. Such 
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a stabilization strategy, while ensuring stable posture, avoids overcorrection of COM position and 

high muscle activation that could lead to a rapid onset of muscle fatigue. 

We also found that, in addition to the COM angular position, the neural control penalized 

the COM angular acceleration significantly more than COM angular velocity and jerk. This 

suggests that acceleration information plays a more important role than velocity information which 

may be different from previous studies that modelled the neural control via PD control with no 

acceleration feedback [62], [65]. The literature has highlighted that acceleration feedback provides 

reliable information on the trunk’s inertia during the stabilization task [283]. Furthermore, angular 

acceleration information provides sensory input about the sum of joint moments applied to the 

trunk. The literature has shown that COM acceleration during standing is highly correlated with 

the distance between the COP and the vertical projection of the COM position [164]. This distance 

reflects the relationship between the controlling and controlled variables of postural control [164]. 

As a result, COM acceleration contains information on the neural control system’s performance in 

correcting sitting or standing posture. Therefore, such information can be relevant and employed 

by the neural control to generate motor commands resulting in proper stabilizing active joint 

moments in response to external disturbances. Moreover, we observed significantly higher LQR 

gain associated with acceleration input compared to position and velocity (Figure 9-4b). This may 

reflect a larger contribution of the trunk COM angular acceleration to optimal motor command 

and, thus, active joint moments, further highlighting the importance of acceleration feedback. One 

additional reason that COM angular acceleration had more contribution to the motor command 

compared to COM angular position might be due to minimizing the muscle activation without 

overcorrecting COM position that would demand higher muscle activation levels. 

Overall, inferring the cost function of the optimal neural feedback revealed that the task 

goals of the neural control for seated stability could be to achieve near-minimum muscle activation 

while keeping the deviations of the COM angular position and acceleration sufficiently small. To 

achieve seated stability, the neural control system may predominantly use COM angular 

acceleration information to generate motor commands resulting in activating relevant muscles and 

generating active joint moments against external disturbances while avoiding overcorrecting COM 

angular position and rapid onset of muscle fatigue. 



 

195 

 

9.4.2 Nonlinear neural feedback model and its validity 

The inherently nonlinear dynamics of neuromuscular mechanisms involved in seated 

stability and their complex interrelations hinder our mechanistic understanding of how the CNS 

stabilizes the human trunk during sitting. Previous studies have assumed linear neuromechanical 

models of stability to quantify neural control by using linear controllers such as PID control [60], 

[61], [198], [199], PD control [62], [65], PD control with acceleration feedback [59], [207], and 

LQR optimal control [44]. For the approximation of the human body dynamics during sitting as a 

linear model, the COM motion must be small, which is not necessarily true under challenging 

conditions or in the presence of significant perturbations [44]. Therefore, neglecting the nonlinear 

behaviour of the underlying neuromechanical system could lead to an erroneous estimation of the 

neural control, which, consequently, affects our understanding of the task goals used by the neural 

control system to regulate stability. To address this challenge, we proposed a two-step approach. 

First, we used our previously validated nonlinear neuromechanical model of seated stability [81]. 

Second, in the present study, we identified the nonlinear neural feedback control strategy in the 

CNS for seated stability by employing a full-state feedback linearization technique along with a 

linear optimal control model, i.e., LQR.  

In contrast to the literature, our identified neural feedback is not limited to a small range of 

motions and is applicable to a wide range of COM motion states. This is due to the global 

transformation from the nonlinear state-space into a linear state-space where linear optimal control 

theory is globally valid. By modelling the nonlinearity, we showed that the identified neural 

feedback could not be approximated using a PD control and linear neuromechanical models, 

previously reported in the literature [62], [65]. We showed that the neural feedback depends not 

only on the COM angular position and velocity but also on the COM angular acceleration and jerk, 

while the COM position and acceleration information contributed significantly more to the motor 

command compared to its velocity and jerk. As such, using PD control with a linear 

neuromechanical model limits our ability to explain the task goals used by the neural control for 

seated stability. In contrast, the use of optimal control with quadratic cost function may allow us 

to infer the task goals associated with seated stability.   

An optimal control scheme relies on a performance criterion (e.g., cost function) explaining 

what the goal is and subsequently finds the control law that leads to the best performance [280], 

[281]. Therefore, instead of assuming what control schemes the neural control might utilize (e.g., 



 

196 

 

PD or PID), optimal feedback control allows the task and the neuromechanical model to dictate 

the control scheme that best describes the process of regulating seated stability [281]. This gives 

the optimal control a generality in practice [281]. Moreover, since the sensorimotor system consists 

of components with actions aimed to continuously enhance behavioural performance (e.g., natural 

optimality), the optimal control can precisely describe the optimal nature of the sensorimotor 

function compared to PD or PID control schemes [280], [281]. This gives the optimal control a 

theoretical advantage over classic alternatives (e.g., PD or PID) for describing the behaviour of the 

neural control [281].  

It should be noted that by using LQR control, we assumed the external perturbations used 

in the study do not alter the neural feedback law. This assumption was based on previous studies 

that suggested mechanical perturbations do not significantly change neural feedback law, in 

contrast to sensory perturbations, which may cause alteration in sensory reweighting and, 

consequently, may change the neural feedback law [44], [45]. 

9.4.3 Accuracy of the identified parameters of the neural feedback model 

We examined the performance of the identified neural control for each participant and trial 

using MSE and correlation coefficient. The MSE between the predicted motor command and 

measured motor command (i.e., EMG recording) was less than 0.6% among all trials and 

participants, while the correlation coefficient between them was higher than 90% as the median 

among all trials and participants for both identification and test sets (Figure 9-5). The MSE values 

were within the range of accuracy of the measurement devices, suggesting that the identified neural 

feedback model was highly accurate. This accuracy can be seen in Figure 9-6 for the most and 

least accurate estimations of the motor command as the output of the neural control system among 

all trials. 

We also examined the robustness of the identified neural control by introducing errors into 

the parameters of the identified neuromechanical model. We deviated neuromechanical parameters 

by 10%. The introduced error affects the feedback linearization and control mapping processes. 

We observed that the addition of these errors in neuromechanical parameters did not significantly 

change the performance of the identified neural control (Figure 9-7). This shows that the identified 

neural controls were robust against potential variation in the neuromechanical properties (e.g., due 

to muscle fatigue). Note that we utilized UKF and a dual-estimation scheme for identifying the 
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properties of the nonlinear neuromechanical model as well as the state vector (Figure 9-2 and 

Equation 1) [81]. This may allow for online correction of the neuromechanical parameters (e.g., 

using forgetting factors), which may enable tracking system variations due to muscle fatigue and 

physiological uncertainties [81]. However, future research studies should be conducted to 

investigate the applicability of the proposed identification scheme to identify changes in neural 

control under uncertain conditions, such as a fatigue-induced condition or in individuals with 

neuromuscular impairments who may exhibit different control mechanisms due to the motor 

and/or sensory deficits. 

9.4.4 Limitations 

First, we only recruited healthy, young, and male participants highlighting the need for 

further investigation on other populations with different sex, age group, and/or neuromuscular 

impairments. Second, we scaled cadaveric anthropometric data by participant’s height and weight 

to obtain individual-specific body-segment parameters, which may have introduced errors into the 

neuromechanical parameters [233]. Third, we used a one-segment model of the trunk, assuming 

intervertebral motions are negligible. Future studies should investigate the effect of multi-segment 

trunk models on seated stability [233], [260]. Utilizing multi-segment models requires 

uncorrelated external perturbation profiles simultaneously applied to each segment level. Fourth, 

in future studies, the external perturbation should also be applied in mediolateral directions to 

investigate seated stability in the frontal plane. Fifth, we used a quadratic cost function for the 

LQR, assumed as the neural control scheme. The type of the cost function could also be an 

optimization variable, among others. Nevertheless, the present study took a step toward 

understanding the neural control system’s task goals associated with seated stability, which could 

provide the foundation for future work. 

It is worth mentioning that the similarity between the behaviour of the neuromechanical 

and neural control models and the behaviour of the actual system does not necessarily imply that 

these models can predict every aspect of the actual physiological mechanisms and their 

performance. However, such modelling approaches may lead to a better understanding of how the 

CNS and the musculoskeletal system interact to produce movement or maintain postural stability.  

Audu and Triolo [60] suggested that modelling the behaviour of the neuromusculoskeletal system 

contributes to expanding our knowledge about how the balance mechanisms operate. Such 

knowledge may be helpful for identifying differences between able-bodied individuals and those 
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with neuromuscular impairment (e.g., iSCI) and, consequently, would be invaluable toward the 

development of control systems for restoring seated stability and guiding the rehabilitative efforts 

toward a better outcome [60].  

Todorov [281] explained that many motor function theories were described based on 

“optimal performance” by applying sophisticated optimal control theory to achieve behavioural 

predictions. Although the assumption of optimality is not without its limitations, such 

methodology has enabled explaining many empirical phenomena compared to other modelling 

methods [281]. Moreover, the sensorimotor system is comprised of natural processes with 

continuous actions aimed at improving behavioural performance (e.g., natural optimality). 

Therefore, the optimal control potentially has a theoretical advantage compared to other modelling 

approaches to describe the optimal nature of the sensorimotor function. Hence, Todorov [281] 

stated that “optimality provides a natural starting point for computational investigations of 

sensorimotor function.”  

9.5 Conclusion 

In this study, we experimentally identified a nonlinear model for neural feedback control 

of seated stability. By using a nonlinear neuromechanical model along with feedback linearization 

and optimal control theory, we inferred the task goals used by the neural control system to regulate 

seated stability. We showed that the neural feedback may use angular position, velocity, 

acceleration, and jerk in a linearized space. We observed that the neural control may try to achieve 

near-minimum muscle activation while keeping the deviations of the trunk COM angular position 

and acceleration sufficiently small. To achieve seated stability, the neural control may use COM 

angular acceleration information to activate relevant muscles to generate required active joint 

moments against external disturbances. Our proposed approach to identifying the neural feedback 

control facilitates a better mechanistic understanding of the neuromuscular mechanisms involved 

in seated stability while enabling inferring the task goals used by the neural control system to 

achieve the targeted motor behaviour. 

9.6 What is next?  

The algorithms proposed in Chapters 7 to 9 for assessing dynamic stability and 

characterizing neuromuscular mechanisms were validated for able-bodied individuals. Future 
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studies may investigate the feasibility and validity of using the developed algorithms for assessing 

the dynamic stability in individuals with impaired balance. Future studies may investigate the 

feasibility of using the algorithm developed in Chapter 7 to assess the risk of loss of balance in 

individuals with degraded trunk control in real-world conditions. This algorithm may also be useful 

for evaluating the effect of rehabilitation on the dynamic seated balance by measuring the margin 

of stability pre- and post-rehabilitation in individuals with impaired seated balance with the aim of 

improving the margin of stability post-rehabilitation. Future studies may also investigate the use 

of methodologies introduced in Chapter 8 and Chapter 9 to characterize the changes in 

neuromuscular stabilization mechanisms due to neuromuscular impairments with the aim of 

understanding the underlying mechanisms associated with balance difficulties pre-therapy. Such 

methodologies may also be helpful in investigating the effect of therapy on neuromuscular 

mechanisms as an objective method of assessment. Future studies may also investigate the 

feasibility of utilizing the algorithms proposed in Chapters 7 to 9 to design assistive technologies 

focused on improving the dynamic seated stability in individuals with impaired trunk control 

during activities of daily living. Nevertheless, extensive research studies must be conducted to 

investigate the applicability of the proposed method to developing effective assistive technologies. 
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Chapter 10 

This chapter provides a summary of the outcomes and future directions for this research. 

10 Conclusions & Future Perspectives 

10.1  Main Outcomes and Original Contributions 

We developed and validated an algorithm that allows for obtaining clinically meaningful 

balance biomarkers using wearable technology. This technology allows for (a) the characterization 

of complex balance mechanisms without a dedicated laboratory; (b) an increase in the sensitivity 

of characterizing impaired balance in individuals with mild balance deficits (e.g., individuals with 

iSCI AIS level D); (c) the capability of integration into conventional clinical tests; and (d) the 

objective outcome evaluation of rehabilitative interventions in clinical environments for elderly 

patients with moderate-to-severe balance difficulty. 

We identified the limits of dynamic seated stability based on the concept of the FSR and 

developed an algorithm for assessing dynamic seated stability using wearable technology out of 

equipped laboratories. We provided a detailed characterization of the underlying neuromuscular 

stabilization mechanisms involved in human sitting to address a long-lasting issue in motor 

control. We proposed a method that allows for a mechanistic understanding of the task goals used 

by the CNS to achieve seated stability. The original contributions of each of Chapters 3 to 9 are 

described below. 

10.1.1  Wearable Technology for Balance Assessment (Chapter 3) 

A review of the literature showed a lack of a validation study comparing the accuracy of 

the wearable technology against gold-standard in-lab equipment for assessing the dynamics of 

standing balance. We validated an algorithm to obtain the kinematics and kinetics of standing 

balance using wearable technology. The primary outcome of this research was a wearable 

technology consisting of three accelerometers mounted on the leg, sacrum, and sternum along with 

an algorithm that exhibited sufficient accuracy for estimating segments’ orientation, joint 

moments, 3D GRF, and COP position and could be recommended for standing balance assessment.  
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10.1.2  Characterization of Standing Balance after iSCI (Chapter 4) 

A review of the literature revealed that the use of body-worn IMUs to obtain clinically 

meaningful measures of standing balance in individuals with iSCI has not been fully investigated. 

We used our validated algorithm to perform a comprehensive balance evaluation using wearable 

technology for a group of ambulatory individuals with iSCI (AIS level D) during standing on HS 

and FS with EO and EC conditions. Our method allowed us to characterize standing balance in 

individuals with iSCI AIS level D compared to able-bodied individuals. Our proposed 

methodology could potentially identify reduced stability performance, increased control demand, 

and less effective active correction in the iSCI group in all test conditions. The iSCI group 

exhibited higher and lower reliance on visual and somatosensory information, respectively, for 

maintaining balance caused by the impaired somatosensory feedback. Our proposed technology 

and methodology exhibited sufficient resolution with the discriminatory ability for objective 

balance evaluation based on unperturbed static standing in a group of ambulatory individuals with 

iSCI (AIS level D). 

10.1.3  Postural Control Strategy after iSCI (Chapter 5) 

A review of the literature showed that identifying alteration of postural control strategies 

post-iSCI under different sensory conditions has not been investigated. We used our validated 

algorithm to assess the postural control strategy using wearable technology based on the coherence 

between the trunk and leg accelerations for a group of ambulatory individuals with iSCI (AIS level 

D) during standing on HS and FS with EO and EC conditions. The iSCI group exhibited a similar 

balance strategy at lower frequencies compared to able-bodied populations. However, they showed 

difficulty in adapting inter-segment coordination from ankle strategy to hip strategy as the sway 

frequency increases. The alteration of somatosensory input had an adverse effect on trunk-leg 

movement coordination in both groups. Our proposed technology and methodology showed 

sufficient sensitivity, discriminatory ability and excellent test-retest reliability to identify changes 

in postural control strategy in ambulatory individuals with iSCI (AIS level D). 

10.1.4  Instrumented Clinical Balance Evaluation (Chapter 6) 

A review of the literature showed that balance assessment using wearable IMUs has not 

been employed in a clinical setting to obtain an objective outcome evaluation of rehabilitative 

interventions. We investigated, in a clinical setting, the use of our validated wearable technology 
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integrated into the BBS test for objective outcome evaluation of balance rehabilitation in elderly 

fallers compared to conventional BBS scores. Our proposed methodology enabled objective 

outcome evaluation of rehabilitative interventions with high sensitivity to detect subtle changes in 

balance without a significant increase in assessment time. Our proposed methodology enabled 

characterizing underlying causes of impaired balance pre-rehabilitation and allowed identifying 

the improved and yet impaired aspects of balance post-rehabilitation.  

10.1.5  Feasible Seated Stability Region (Chapter 7) 

We found the FSR against loss of balance during sitting and validated the FSR against 

experimental data for perturbed sitting. We developed and validated a wearable device composed 

of IMUs for estimating the margin of stability for quantification of seated stability and risk of loss 

of balance. The primary outcome of this research was a wearable device that can assess the risk of 

loss of balance based on the margin of stability calculated from the real-time trunk kinematics and 

the pre-obtained FSR. 

10.1.6  Neuromuscular Control of Seated Stability (Chapter 8) 

A survey of the literature revealed that determining the roles of underlying neuromuscular 

mechanisms involved in stabilizing the human trunk during sitting is a fundamental challenge in 

human motor control. We characterized the underlying passive and active stabilization 

mechanisms involved in human sitting by identifying a nonlinear physiologically meaningful 

neuromechanical model of seated stability. Our proposed model predicted the trunk sway 

behaviour during perturbed sitting with high accuracy and correlation, allowing a better 

mechanistic understanding of the roles of passive and active stabilization mechanisms involved in 

sitting. The primary outcome of our research was a nonlinear characterization of the 

neuromuscular control that accounts for physiological uncertainties. Such an identification 

approach may allow for real-time tracking and correction of parameters’ variations due to external 

disturbances and muscle fatigue. 

10.1.7  CNS Task Goals of Seated Stability (Chapter 9) 

We identified the task goals of the CNS for regulating dynamic seated stability using a 

nonlinear neuromechanical model along with feedback linearization and optimal control. We 

observed the neural dynamics may use trunk angular kinematics as the input to achieve near-

minimum muscle activation while keeping the deviations of the trunk angular position and 
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acceleration sufficiently small. To achieve these high-level task goals, the neural control may 

significantly use trunk angular acceleration information to generate motor commands leading to 

proper active joint moments against external disturbances. 

10.2  Future Perspectives 

10.2.1  Static Balance 

10.2.1.1 Personalized Therapy 

Future studies should determine the sensitivity of instrumented tests with IMUs for 

detecting changes in balance biomarkers due to specific rehabilitation programs among patients 

with impaired balance in clinical settings. Future studies should also evaluate the effectiveness of 

such targeted interventions to reduce future fall incidences and their adverse consequences among 

individuals with impaired balance. First, future studies may use IMU-based objective measures to 

diagnose balance disorders that BBS may miss and determine the underlying causes by comparing 

balance biomarkers of the patients with those of able-bodied individuals as the baseline. Second, 

a personalized therapy could be implemented to target the underlying causes determined by the 

balance biomarkers. Third, an IMU-based objective balance assessment methodology has the 

potential to be used by researchers to track subtle changes in a patient’s balance and follow the 

patient’s progress over the course of the rehabilitation. Fourth, the balance biomarkers obtained 

pre- and post-rehabilitation may be used objectively evaluate the effectiveness of the introduced 

interventions. 

10.2.1.2 Remote Health Monitoring 

Future studies should investigate the use of IMUs for remote balance evaluation at patients’ 

homes. This enables remote health monitoring without requiring the physical presence of 

healthcare professionals, wherever professional resources are limited or during healthcare crises, 

such as the COVID-19 pandemic when access to healthcare is a challenge for high-risk individuals 

with other underlying medical conditions.  

10.2.2  Dynamic Balance 

10.2.2.1 Fall Risk Assessment 

Future studies should pursue the application of our proposed algorithm to fall prevention 

for wheelchair users in several ways. Our algorithm may be used for alarming wheelchair users on 
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fall risk during daily wheeling quantified by the margin of stability. This technology may also be 

used for training individuals with impaired trunk stability to improve dynamic sitting balance in 

rehabilitation programs with the aim of increasing the margin of stability under challenging sitting 

conditions.  

10.2.2.2 Neuromuscular Characterization 

The identification approach, along with the nonlinear neuromechanical model of seated 

stability used in this thesis research, allows for frequent tracking and correction of model 

parameters’ variations due to external disturbances and muscle fatigue. Future studies should 

investigate the application of the proposed approach to identify changes in active control in a 

fatigue-induced condition or any condition that may affect the neuromuscular mechanism. Future 

research should also investigate the capability of our proposed system identification scheme in 

detecting changes in neuromuscular mechanisms in impaired individuals. Particularly, future 

studies should investigate how a neurological condition affects the active and passive control 

mechanisms. They should also investigate how neuromuscular impairment could affect the task 

goals of the CNS for regulating seated stability. Future research may focus on using our system 

identification scheme for the objective evaluation of sitting balance and introducing targeted 

rehabilitative interventions.  

10.2.2.3 Closed-loop FES Control 

The margin of stability, obtained via the identified FSR and validated algorithm using 

wearable technology in this study, can be used as feedback to a neuroprosthesis for activating 

relevant muscles in case of increased risk of loss of balance using a closed-loop FES system. Future 

work can also benefit from the proposed system identification scheme to design bio-inspired 

assistive technologies for improving trunk instability. The neural dynamics identified in the present 

study may also be used to develop bio-inspired controllers for closed-loop FES systems. The gains 

of the LQR feedback linearization controller may be dynamically adapted based on online tracking 

and correction of the parameters associated with the neuromechanical model of seated stability. 

10.2.2.4 Technical Considerations 

The present study characterized active and passive control mechanisms of seated stability 

and determined the task goals of the neural control for regulating seated stability in the sagittal 

plane. Future studies may look into how the neuromechanical model of seated stability and the 
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task goals of the neural control would differ in the frontal plane. Furthermore, we assumed a single-

segment model of the trunk, which did not account for intervertebral and upper limb motion. Future 

studies should investigate the effect of trunk segmentation on the neuromechanical model and 

neural control task goals of seated stability. 
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Supplementary Material 

Supplementary Material of Chapter 4 

American Spinal Injury Association Impairment Scale 

The International Standards for Neurological Classification of Spinal Cord Injury 

(ISNCSCI) was introduced by the American Spinal Injury Association (ASIA) as a standard tool 

to categorize spinal cord injuries based on sensory and motor assessments [284]. It consists of a 

motor and sensory examination to determine the sensory level and motor level for the right and 

left sides of the body, the Neurological Level of Injury (NLI) and whether the injury is complete 

or incomplete [285]. ASIA impairment scale (AIS) is used to describe the functional impairment 

of an individual as a consequence of SCI. The AIS is a measure of how much sensation an 

individual feels after light touch and a pin prick at several locations on both sides of the person’s 

body. The AIS has five levels, ranging from complete loss of neural function (Grade A) to 

completely normal (Grade E). 

Supp Table 1 AIS grading system [286] 

Grade A Complete. No sensory or motor function is preserved in the sacral segments S4-5. 

Grade B Sensory Incomplete. Sensory but not Motor Function is preserved below the 

neurological level and includes the Sacral Segments S4-S5, AND no motor 

Function is preserved more than three levels below the Motor Level on either side 

of the body 

Grade C Motor Function is preserved below the Neurological Level, AND more than half 

of key muscle functions below the Neurological Level of Injury have a muscle 

grade less than 3 (Grades 0-2) 

Grade D Motor function is preserved below the neurological level, AND at least half (half 

or more) of key muscle functions below the NLI have a muscle grade ≥ 3 

Grade E If sensation and motor function as tested with the ISNCSCI are graded as normal 

in all segments AND the patient had prior deficits, then the AIS Grade is E. 
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Sensory Score 

The key sensory points are located with respect to bony anatomical landmarks as shown in 

the dermatomes C2 to S5 in Supp Figure 1. These points are bilaterally examined using light touch 

and pin-prick. In clinical settings, a cotton tip is used for the light touch, and a neuro-tip or safety 

pin is used for the pin-prick. The reference for comparing the sensory key points is commonly the 

sensation on the patient’s cheek [285]. Scoring is based on a three-point scale as follows [285], 

[286]: 

• 0: Absent 

• 1: Altered - Impaired or partial appreciation, including Hyperesthesia (increased 

sensitivity of any of the senses, such as sight, sound, touch, and smell) 

• 2: Normal or intact - similar as on the cheek 

• NT: Not stable 

The sensory level is defined as the most caudal, intact dermatome for both light touch and 

pin-prick sensations [285], [286]. The sensory level is determined by conducting the 

abovementioned sensory examination of the key sensory points (28 dermatomes) on each side of 

the body which may differ for the right and left sides. The sensory level is the dermatome level 

that is intact and located immediately rostral to the first impaired dermatome or the first dermatome 

with an absent light touch or pin-prick sensation [285], [286]. The sensory level should be 

determined for each side. Four sensory levels may be determined for each dermatome, including 

(1, 2) right pin-prick and light, and (3, 4) left pin-prick and light touch. The overall single sensory 

level is the most rostral intact sensory point [285], [286]. The overall sensory level is determined 

as the most rostral intact sensory point. Finally, the sensory scores of each dermatome for both 

light touch and pin-prick are added up across the dermatomes and body side to have two summary 

scores for pin-prick and light touch. The maximum score for each pin-prick and light touch is 56 

[285], [286]. 

Motor Examination 

The motor function is examined bilaterally for ten paired myotomes (a group of muscles 

innervated by a single spinal nerve root) for C5-T1 and L2-S (Supp Table 2). Scoring is based on 

a six-point scale as follows [285], [286]: 

• 0: Total paralysis 
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• 1: Palpable or visible contraction 

• 2: Active movement, full range of motion with gravity eliminated 

• 3: Active movement, full range of motion against gravity 

• 4: Active movement, full range of movement against gravity and moderate 

resistance in a muscle-specific position 

• 5: Normal active movement, full range of motion against gravity and full resistance 

in a muscle-specific position expected from an unimpaired person 

• 5*: Normal active movement, full range of motion against gravity and sufficient 

resistance to be considered normal if identified inhibiting factors (i.e., pain, disuse) 

were not present 

• NT: Not testable, i.e., due to immobilization, severe pain such that the patient 

cannot be graded, amputation of the limb, or contracture of >50% of the range of 

motion 

For conducting the test, the patient must be in a supine-lying position throughout the test, 

except during the examination of the rectal, which must be in a side-lying position. 

Supp Table 2. Key motor function [285], [286] 

Level Key Muscle Function Description of Muscle Function Testing Position for Grade 4 or 5 

C5 Elbow Flexion 

Biceps Brachii 

Biceps Brachialis 

Elbow Flexed at 90, Forearm Supinated 

C6 Wrist Extension 

Extensor Carpi Radialis Longus 

Extensor Carpi Radialis Brevis 

Full Wrist Extension 

C7 Elbow Extension 

Triceps Brachii 

Shoulder Neutral Rotation, Adducted at 90 Flexion with Elbow at 45 

Flexion 

C8 Flexion of Middle Finger 

Flexor Digitorum Profundus 

Full Flexed Distal Phalanx with Proximal Finger Joint Stabilised in 

Extension 

T1 Abduction of Little Finger 

Abductor Digiti Minimi 

Full Abduction Fingers 

L2 Hip Flexion 

Iliopsoas 

Hip Flexed at 90 

L3 Knee Extension 

Quadriceps 

Knee Flexed at 15 

L4 Ankle Dorsiflexion 

Tibialis Anterior 

Full Dorsiflexion 

L5 Long Toe Extensors 

Extensor Hallucis Longus 

Full Extension 1st Toe 

S1 Ankle Plantarflexion 

Gastrocnemius 

Soleus 

Hip Neutral with Full Knee Extension and Full Ankle Plantarflexion 



 

249 

 

 

The motor level is the lowest key muscle function that shows a grade of at least 3 on supine 

testing, and the key muscle functions at the level above should grade as intact. The motor level is 

determined by examining the key muscle functions for each of the myotomes on the right and left 

sides of the body. The motor scores for each myotome are then obtained by adding up the score 

across myotomes and sides of the body to determine a single motor score for each of the upper 

limbs and lower limbs. There are five key muscle functions for each upper extremity which would 

give a maximum score of 25 for each upper extremity and a total score of 50 for the upper limbs. 

There are five key muscle functions for each lower extremity which would give a maximum score 

of 25 for each lower extremity and a total score of 50 for the lower limbs [285], [286]. 

 

 

 

 

 

 

 

 



 

250 

 

 

 

 



 

251 

 

 

Supp Figure 1. Standard Neurological Classification of Spinal Cord Injury 
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Supplementary Material of Chapter 6 

Supp Table 3. Berg Balance Scale (BBS) scores for each task and participant at admission and discharge test sessions. 

 Task 1 Task 2 Task 3 Task 4 

ID Admission Discharge Admission Discharge Admission Discharge Admission Discharge 

1 3 4 4 4 4 4 3 4 

2 3 4 4 4 4 4 3 4 

3 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 

5 4 4 4 4 4 4 4 4 

6 2 3 1 4 4 4 0 3 

7 3 3 4 4 4 4 3 4 

8 3 3 4 4 4 4 3 4 

9 3 3 4 4 4 4 4 4 

10 3 4 4 4 4 4 3 4 

11 4 4 3 4 4 4 3 4 

12 1 3 3 4 4 4 1 4 

13 3 3 4 4 4 4 4 3 

14 4 4 4 4 4 4 4 4 

15 4 4 4 4 4 4 4 4 

16 3 3 4 4 4 4 3 3 

17 4 4 4 4 4 4 4 4 

18 0 4 3 4 4 4 3 4 

19 4 4 4 4 4 4 4 4 

20 4 4 4 4 4 4 4 4 

21 1 3 3 4 4 4 2 3 

22 1 3 4 4 4 4 3 4 

23 4 4 4 4 4 4 4 4 

24 3 4 4 4 4 4 3 4 

25 4 4 4 4 4 4 4 4 

26 4 4 4 4 4 4 4 4 

27 3 3 4 4 4 4 3 4 

28 1 4 3 3 4 4 3 4 

29 3 4 4 4 4 4 3 4 

30 3 4 4 4 4 4 4 4 

31 4 4 4 4 4 4 4 4 

32 4 4 4 4 4 4 4 4 

33 3 4 3 4 4 4 2 4 

34 3 4 4 4 4 4 3 4 

35 3 3 4 4 4 4 4 4 

36 3 3 4 4 4 4 1 2 
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 Task 5 Task 6 Task 7 Task 8 

ID Admission Discharge Admission Discharge Admission Discharge Admission Discharge 

1 3 3 4 4 4 4 3 3 

2 3 3 4 4 3 4 3 3 

3 4 4 4 4 4 4 3 3 

4 4 4 4 4 3 4 2 2 

5 4 4 4 4 4 4 3 3 

6 1 2 3 4 1 4 0 0 

7 4 4 4 4 4 4 3 3 

8 3 3 3 4 3 4 3 3 

9 4 4 4 4 4 4 3 3 

10 2 3 4 4 3 3 3 3 

11 4 4 3 4 2 3 3 3 

12 1 3 3 4 2 3 1 3 

13 4 3 3 4 1 1 2 3 

14 4 4 4 4 4 4 3 3 

15 4 4 4 4 4 4 3 3 

16 3 3 3 4 1 1 2 3 

17 4 4 4 4 4 2 2 4 

18 3 4 3 4 3 3 2 4 

19 4 4 4 4 3 4 3 3 

20 4 4 4 4 4 4 4 4 

21 2 3 3 4 0 0 1 2 

22 3 3 3 4 1 4 0 0 

23 4 4 4 4 3 4 3 4 

24 3 4 3 4 3 4 3 3 

25 4 4 4 4 2 4 3 3 

26 4 4 4 4 3 4 3 3 

27 3 3 3 4 4 4 3 4 

28 1 4 3 3 1 3 1 3 

29 4 4 3 4 2 3 3 3 

30 4 4 4 4 0 1 3 1 

31 4 4 4 4 3 3 4 3 

32 4 4 4 4 4 4 4 4 

33 3 4 3 4 0 0 1 3 

34 3 4 4 4 1 3 2 2 

35 3 3 4 4 3 4 3 4 

36 3 2 2 3 1 1 2 3 
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 Task 9 Task 10 Task 11 Task 12 

ID Admission Discharge Admission Discharge Admission Discharge Admission Discharge 

1 4 4 2 2 0 2 0 3 

2 3 4 2 2 1 2 0 0 

3 4 4 2 2 2 3 2 4 

4 1 3 2 2 2 2 1 2 

5 3 4 2 3 2 2 2 4 

6 3 0 2 2 0 1 0 0 

7 4 4 2 3 2 2 3 3 

8 3 3 2 3 1 1 1 1 

9 3 4 2 2 2 2 4 3 

10 3 3 4 4 1 1 1 1 

11 3 3 2 3 2 2 1 1 

12 0 4 1 4 0 2 0 2 

13 3 4 2 4 2 3 0 3 

14 4 4 4 4 4 4 4 4 

15 3 4 2 3 2 4 4 4 

16 3 4 2 4 0 2 0 0 

17 4 4 4 4 4 4 4 4 

18 0 4 3 4 2 2 4 4 

19 4 4 4 4 1 2 2 2 

20 4 4 4 4 4 4 4 4 

21 0 3 1 2 0 1 0 0 

22 3 4 3 3 2 2 0 1 

23 3 4 4 4 1 4 1 4 

24 3 4 4 4 3 4 0 4 

25 4 4 2 3 2 2 4 4 

26 4 4 2 4 2 2 1 3 

27 4 4 3 4 2 2 0 3 

28 0 3 1 2 0 2 0 2 

29 3 4 3 4 2 3 3 4 

30 4 4 4 4 0 2 3 3 

31 3 4 2 3 1 2 2 4 

32 4 4 2 4 4 4 0 4 

33 3 4 1 2 1 3 2 4 

34 4 4 3 3 3 3 0 2 

35 3 4 4 3 1 4 1 4 

36 3 4 4 2 0 1 0 0 
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 Task 13 Task 14 Total Score 
Improvement 

ID Admission Discharge Admission Discharge Admission Discharge 

1 2 2 1 1 37 44 7 

2 2 2 1 1 36 41 5 

3 2 3 1 1 44 48 4 

4 3 3 1 2 39 44 5 

5 0 4 0 2 40 50 10 

6 0 1 0 1 17 29 12 

7 3 3 1 1 44 46 2 

8 3 3 1 1 37 41 4 

9 3 3 1 1 45 45 0 

10 3 3 0 0 38 41 3 

11 1 2 1 1 36 42 6 

12 2 3 0 1 19 44 25 

13 2 2 0 1 34 42 8 

14 2 2 2 2 51 51 0 

15 2 3 2 2 46 51 5 

16 2 3 0 1 30 39 9 

17 3 3 1 1 50 50 0 

18 2 2 2 2 34 49 15 

19 3 3 1 1 45 47 2 

20 4 4 2 2 54 54 0 

21 0 1 0 0 17 30 13 

22 2 2 1 1 30 39 9 

23 3 3 1 2 43 53 10 

24 2 3 2 3 40 53 13 

25 3 3 1 1 45 48 3 

26 3 3 0 1 42 48 6 

27 4 4 1 1 41 48 7 

28 2 3 0 1 20 41 21 

29 2 3 1 2 40 50 10 

30 3 2 0 1 40 42 2 

31 3 3 1 1 43 47 4 

32 0 2 0 1 42 51 9 

33 2 3 0 1 28 44 16 

34 2 3 1 1 37 45 8 

35 3 2 1 4 41 51 10 

36 2 2 0 1 29 32 3 
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Supp Table 4. Spearman's correlation between each Berg Balance Scale (BBS) task score and center-of-pressure 

(COP) balance biomarkers presented as [ρ, P] at both admission and discharge test sessions. Highlighted cells are 

significant values (P < 0.05). 

  Task 1 Task 2 Task 3 

COP-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [0.11, 0.5403] [0.07, 0.6691] [-0.05, 0.7673] [-0.06, 0.7415] [NaN, NaN] [NaN, NaN] 

MDIST [0.03, 0.8604] [0.1, 0.5535] [-0.12, 0.4983] [-0.06, 0.7415] [NaN, NaN] [NaN, NaN] 

TOTEX [-0.02, 0.9145] [0.13, 0.4482] [0.17, 0.3283] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MVELO [-0.05, 0.7862] [0.14, 0.4094] [0.1, 0.5635] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

95% Conf. Ellipse [0.2, 0.2452] [0.05, 0.7927] [0.09, 0.6161] [0.01, 0.9624] [NaN, NaN] [NaN, NaN] 

Sway Area [0.02, 0.8947] [0.09, 0.5986] [0.03, 0.8735] [-0.14, 0.4212] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.17, 0.3259] [0.07, 0.6932] [0.18, 0.2843] [-0.24, 0.166] [NaN, NaN] [NaN, NaN] 

MEDFREQ [0.14, 0.404] [0.02, 0.9215] [0.23, 0.1787] [0.04, 0.8138] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.05, 0.7627] [0.07, 0.6691] [0.24, 0.1544] [-0.19, 0.2745] [NaN, NaN] [NaN, NaN] 

FREQD [0.11, 0.521] [-0.05, 0.7675] [-0.16, 0.3439] [0.11, 0.5393] [NaN, NaN] [NaN, NaN] 

AP 

RDIST [0.18, 0.304] [0.13, 0.4482] [0.01, 0.9758] [-0.09, 0.6037] [NaN, NaN] [NaN, NaN] 

MDIST [0.05, 0.7553] [0.09, 0.6217] [-0.09, 0.6054] [-0.09, 0.6037] [NaN, NaN] [NaN, NaN] 

TOTEX [0.01, 0.9762] [0.15, 0.3907] [0.25, 0.1389] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MVELO [-0.06, 0.7394] [0.15, 0.3725] [0.1, 0.5635] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.14, 0.4208] [0.06, 0.7425] [0.14, 0.4149] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MEDFREQ [-0.2, 0.2531] [0.08, 0.6452] [0.02, 0.8914] [-0.01, 0.9624] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.15, 0.3751] [0.01, 0.9476] [0.16, 0.34] [-0.12, 0.4783] [NaN, NaN] [NaN, NaN] 

FREQD [0.25, 0.1483] [-0.19, 0.2743] [0.01, 0.9396] [0.14, 0.4212] [NaN, NaN] [NaN, NaN] 

ML 

RDIST [0.02, 0.919] [0.09, 0.5986] [-0.13, 0.4509] [-0.02, 0.8876] [NaN, NaN] [NaN, NaN] 

MDIST [-0.05, 0.759] [0.11, 0.5315] [-0.2, 0.254] [-0.02, 0.8876] [NaN, NaN] [NaN, NaN] 

TOTEX [-0.01, 0.9665] [0.15, 0.3725] [0.05, 0.7848] [-0.24, 0.166] [NaN, NaN] [NaN, NaN] 

MVELO [0, 0.9981] [0.14, 0.4285] [0.03, 0.8735] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.09, 0.6043] [-0.05, 0.7927] [0.17, 0.317] [-0.24, 0.166] [NaN, NaN] [NaN, NaN] 

MEDFREQ [-0.18, 0.2979] [-0.01, 0.9476] [0.05, 0.7906] [-0.19, 0.2745] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.23, 0.177] [-0.21, 0.2192] [0.12, 0.4935] [-0.19, 0.2745] [NaN, NaN] [NaN, NaN] 

FREQD [0.12, 0.5037] [-0.14, 0.4285] [-0.13, 0.4418] [0.17, 0.3191] [NaN, NaN] [NaN, NaN] 

 

 

  Task 4 Task 5 Task 6 

COP-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.05, 0.7798] [-0.07, 0.6909] [0.14, 0.4038] [0.02, 0.9163] [-0.08, 0.6465] [-0.01, 0.9461] 

MDIST [-0.11, 0.5228] [-0.05, 0.7562] [0.05, 0.7676] [0.04, 0.8217] [-0.13, 0.4635] [-0.01, 0.9461] 

TOTEX [0.06, 0.7197] [0.01, 0.9505] [0.16, 0.3392] [0.04, 0.8148] [0.11, 0.51] [0, 1] 

MVELO [0.04, 0.8297] [0.03, 0.8718] [0.14, 0.4283] [0.04, 0.8059] [0.07, 0.6779] [0.02, 0.8925] 

95% Conf. Ellipse [0.2, 0.249] [-0.16, 0.3424] [0.34, 0.0415] [0.01, 0.9493] [0.11, 0.5327] [0.07, 0.6848] 

Sway Area [0.01, 0.9636] [-0.09, 0.5928] [0.14, 0.4014] [-0.01, 0.931] [0.02, 0.9243] [0, 1] 

MFREQ [0.07, 0.6684] [0.05, 0.7704] [0.06, 0.7338] [0.05, 0.7685] [0.18, 0.3062] [0.01, 0.9461] 

MEDFREQ [0.15, 0.3984] [0.08, 0.6411] [0.28, 0.0936] [-0.01, 0.9472] [0.08, 0.6465] [0.21, 0.2187] 

CFREQ [0.15, 0.3861] [0.13, 0.4623] [0.15, 0.3944] [-0.07, 0.6692] [0.25, 0.1426] [0.06, 0.7353] 

FREQD [-0.13, 0.4497] [0.1, 0.5545] [-0.19, 0.2749] [-0.08, 0.6296] [-0.1, 0.5587] [0, 1] 

AP 

RDIST [-0.02, 0.8956] [0.05, 0.7609] [0.21, 0.2283] [0.1, 0.5794] [-0.03, 0.8798] [-0.02, 0.8925] 

MDIST [-0.13, 0.4374] [0.02, 0.8963] [0.07, 0.6821] [0.04, 0.8093] [-0.09, 0.6064] [-0.02, 0.8925] 

TOTEX [0.14, 0.4181] [0.05, 0.7895] [0.23, 0.1822] [0.06, 0.7369] [0.17, 0.3254] [-0.02, 0.8925] 

MVELO [0.02, 0.9098] [0.06, 0.7421] [0.13, 0.4637] [0.05, 0.7509] [0.1, 0.5794] [0.01, 0.9461] 

MFREQ [0.12, 0.4866] [-0.09, 0.6015] [0.09, 0.5877] [0.04, 0.8272] [0.2, 0.2332] [-0.04, 0.8393] 

MEDFREQ [0.06, 0.732] [-0.19, 0.2705] [0.11, 0.5285] [-0.03, 0.8472] [0.14, 0.3994] [0.11, 0.542] 

CFREQ [0.1, 0.577] [0.14, 0.4322] [0.08, 0.652] [-0.07, 0.6861] [0.16, 0.3453] [0.12, 0.4978] 

FREQD [0.04, 0.8347] [0.07, 0.6818] [-0.02, 0.895] [-0.09, 0.5935] [-0.05, 0.7787] [0.01, 0.9461] 

ML 

RDIST [0.03, 0.8661] [-0.23, 0.1804] [0.09, 0.6032] [0.07, 0.6724] [-0.08, 0.6527] [-0.01, 0.9461] 

MDIST [-0.04, 0.8037] [-0.24, 0.1546] [0.01, 0.9697] [0.05, 0.7834] [-0.14, 0.4068] [-0.08, 0.6357] 

TOTEX [0.08, 0.6637] [-0.04, 0.8329] [0.11, 0.529] [0.01, 0.9493] [0.04, 0.8188] [-0.04, 0.8393] 

MVELO [0.08, 0.6637] [-0.05, 0.7704] [0.12, 0.5021] [-0.02, 0.8981] [0.02, 0.914] [-0.01, 0.9461] 

MFREQ [-0.03, 0.8686] [0.14, 0.4176] [0, 0.9908] [-0.1, 0.563] [0.11, 0.5213] [0, 1] 

MEDFREQ [0, 0.9799] [0.09, 0.5842] [0.03, 0.8729] [-0.04, 0.8176] [0.01, 0.938] [0.04, 0.8393] 

CFREQ [-0.13, 0.4379] [0.13, 0.4661] [-0.06, 0.7201] [-0.27, 0.1134] [-0.08, 0.6527] [-0.04, 0.8393] 

FREQD [-0.03, 0.8501] [-0.13, 0.4396] [-0.09, 0.5825] [-0.06, 0.7282] [-0.05, 0.7589] [-0.06, 0.7353] 
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  Task 7 Task 8 Task 9 

COP-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.25, 0.1489] [-0.31, 0.0676] [-0.09, 0.5925] [-0.21, 0.2285] [-0.03, 0.8757] [-0.06, 0.7327] 

MDIST [-0.31, 0.0653] [-0.29, 0.0876] [-0.14, 0.4059] [-0.26, 0.1266] [-0.12, 0.4708] [-0.09, 0.5948] 

TOTEX [-0.02, 0.9116] [-0.21, 0.2258] [0.15, 0.3905] [-0.25, 0.1461] [0.11, 0.5195] [-0.08, 0.6486] 

MVELO [-0.04, 0.8093] [-0.2, 0.2535] [0.1, 0.5687] [-0.24, 0.153] [0.09, 0.6155] [-0.11, 0.5379] 

95% Conf. Ellipse [0.03, 0.8411] [-0.29, 0.0894] [0.05, 0.7682] [-0.16, 0.3616] [0.08, 0.6371] [0.03, 0.8735] 

Sway Area [-0.12, 0.4714] [-0.29, 0.0821] [0.01, 0.9534] [-0.31, 0.0626] [0.05, 0.7837] [-0.13, 0.4602] 

MFREQ [0.16, 0.3471] [0.09, 0.5984] [0.16, 0.3629] [-0.1, 0.5686] [0.2, 0.2447] [-0.04, 0.8377] 

MEDFREQ [0.33, 0.0465] [-0.04, 0.8366] [0.28, 0.1002] [0.07, 0.6736] [0.24, 0.1593] [0.12, 0.4791] 

CFREQ [0.26, 0.1305] [0.06, 0.7346] [0.16, 0.3576] [-0.16, 0.3446] [0.25, 0.148] [-0.17, 0.3283] 

FREQD [-0.08, 0.6444] [0.06, 0.7372] [-0.29, 0.082] [-0.15, 0.3942] [-0.21, 0.2215] [-0.24, 0.1544] 

AP 

RDIST [-0.22, 0.2056] [-0.26, 0.1259] [0, 0.9987] [-0.11, 0.5317] [0.02, 0.8931] [-0.01, 0.9637] 

MDIST [-0.3, 0.0782] [-0.26, 0.1216] [-0.04, 0.812] [-0.17, 0.3224] [-0.09, 0.5846] [-0.06, 0.7213] 

TOTEX [0.07, 0.682] [-0.22, 0.1976] [0.17, 0.3098] [-0.18, 0.2859] [0.12, 0.4688] [-0.04, 0.8082] 

MVELO [0.01, 0.9668] [-0.22, 0.2015] [0.08, 0.6611] [-0.19, 0.2601] [0.1, 0.5627] [-0.08, 0.6541] 

MFREQ [0.22, 0.1919] [-0.03, 0.8728] [0.1, 0.5448] [-0.13, 0.4488] [0.16, 0.3651] [-0.06, 0.727] 

MEDFREQ [0.18, 0.2949] [-0.18, 0.307] [0.01, 0.9357] [-0.11, 0.5078] [0.08, 0.6289] [0.06, 0.7156] 

CFREQ [0.17, 0.3343] [-0.08, 0.6406] [0.04, 0.8376] [-0.01, 0.9507] [0.12, 0.4729] [-0.27, 0.1097] 

FREQD [-0.12, 0.4834] [0, 0.9973] [-0.04, 0.8376] [0.06, 0.7359] [-0.02, 0.9236] [-0.13, 0.4556] 

ML 

RDIST [-0.24, 0.1561] [-0.3, 0.078] [-0.19, 0.2658] [-0.38, 0.0221] [-0.15, 0.3853] [-0.05, 0.7789] 

MDIST [-0.31, 0.0674] [-0.31, 0.065] [-0.25, 0.1473] [-0.38, 0.0224] [-0.22, 0.2053] [-0.05, 0.7557] 

TOTEX [-0.12, 0.4699] [-0.17, 0.3115] [0.05, 0.7562] [-0.35, 0.0389] [0.08, 0.6465] [-0.14, 0.4018] 

MVELO [-0.15, 0.3971] [-0.18, 0.2974] [0.04, 0.8005] [-0.37, 0.025] [0.06, 0.7257] [-0.19, 0.2774] 

MFREQ [0.1, 0.5586] [0.15, 0.3871] [0.31, 0.0655] [-0.08, 0.6295] [0.28, 0.0993] [-0.17, 0.336] 

MEDFREQ [0.04, 0.8003] [0.09, 0.606] [0.1, 0.5642] [-0.19, 0.2582] [0.12, 0.4888] [-0.05, 0.7789] 

CFREQ [-0.06, 0.7378] [0.01, 0.9479] [0.09, 0.5931] [-0.15, 0.3734] [0.13, 0.4349] [-0.13, 0.4509] 

FREQD [-0.04, 0.7968] [-0.15, 0.3815] [-0.24, 0.1549] [0.02, 0.9119] [-0.13, 0.4552] [0.01, 0.9396] 

 

 

  Task 10 Task 11 Task 12 

COP-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.06, 0.7419] [-0.04, 0.8118] [-0.03, 0.8471] [-0.19, 0.2781] [-0.04, 0.8372] [-0.11, 0.5366] 

MDIST [-0.1, 0.5741] [-0.07, 0.6728] [-0.13, 0.4451] [-0.22, 0.1892] [-0.09, 0.616] [-0.14, 0.4278] 

TOTEX [0.06, 0.7383] [-0.05, 0.765] [-0.12, 0.4806] [-0.06, 0.7313] [0.06, 0.7119] [-0.16, 0.3402] 

MVELO [0.04, 0.8025] [-0.05, 0.7773] [-0.14, 0.4202] [-0.06, 0.7471] [0.05, 0.7629] [-0.16, 0.3536] 

95% Conf. Ellipse [0.03, 0.8649] [0.03, 0.8567] [0.21, 0.2268] [-0.02, 0.9136] [0.16, 0.3435] [0.03, 0.8663] 

Sway Area [0.03, 0.8768] [-0.09, 0.5996] [-0.08, 0.6259] [-0.18, 0.2803] [0, 0.9876] [-0.16, 0.3446] 

MFREQ [0.17, 0.332] [0.02, 0.9173] [-0.12, 0.4895] [0.11, 0.5381] [0.12, 0.4679] [-0.1, 0.5665] 

MEDFREQ [0.24, 0.1646] [0.13, 0.4403] [0.34, 0.0446] [0.23, 0.171] [0.2, 0.2395] [0.19, 0.2707] 

CFREQ [0.21, 0.2252] [-0.04, 0.8143] [-0.03, 0.8605] [-0.12, 0.4987] [0.24, 0.164] [-0.26, 0.1258] 

FREQD [-0.14, 0.4005] [-0.27, 0.1084] [-0.11, 0.5339] [-0.28, 0.1038] [-0.15, 0.3926] [-0.08, 0.6526] 

AP 

RDIST [-0.07, 0.7023] [0, 0.9924] [-0.04, 0.8349] [-0.08, 0.6383] [-0.01, 0.9499] [-0.02, 0.9076] 

MDIST [-0.1, 0.5605] [-0.01, 0.944] [-0.15, 0.3812] [-0.14, 0.4086] [-0.08, 0.6593] [-0.09, 0.6015] 

TOTEX [0.03, 0.8731] [-0.08, 0.6404] [-0.03, 0.8838] [-0.11, 0.5312] [0.15, 0.3879] [-0.15, 0.3806] 

MVELO [0, 0.9975] [-0.07, 0.667] [-0.1, 0.5759] [-0.11, 0.5312] [0.08, 0.6392] [-0.15, 0.3759] 

MFREQ [0.12, 0.4876] [-0.01, 0.9643] [-0.05, 0.7521] [0.02, 0.8894] [0.19, 0.2569] [-0.15, 0.3832] 

MEDFREQ [0.12, 0.4871] [0.16, 0.3596] [0.08, 0.6359] [0.1, 0.5597] [0.21, 0.2252] [-0.04, 0.8206] 

CFREQ [0.1, 0.5513] [-0.06, 0.7456] [-0.09, 0.6028] [-0.21, 0.2248] [0.19, 0.2698] [-0.25, 0.149] 

FREQD [-0.02, 0.9192] [-0.08, 0.6221] [-0.05, 0.7747] [-0.22, 0.2045] [-0.08, 0.6275] [-0.09, 0.6075] 

ML 

RDIST [-0.03, 0.8429] [-0.04, 0.8379] [-0.02, 0.9047] [-0.16, 0.354] [-0.03, 0.8799] [-0.08, 0.6447] 

MDIST [-0.06, 0.7214] [-0.08, 0.6438] [-0.08, 0.6315] [-0.23, 0.1742] [-0.08, 0.6543] [-0.12, 0.4909] 

TOTEX [0.1, 0.5486] [-0.06, 0.7298] [-0.15, 0.3702] [0.01, 0.9756] [-0.01, 0.9734] [-0.19, 0.2784] 

MVELO [0.09, 0.6063] [-0.07, 0.6717] [-0.15, 0.389] [-0.02, 0.913] [-0.02, 0.8915] [-0.21, 0.2205] 

MFREQ [0.21, 0.2095] [-0.11, 0.505] [-0.2, 0.2504] [0.11, 0.5381] [0.06, 0.7137] [-0.13, 0.4536] 

MEDFREQ [0.17, 0.3113] [-0.13, 0.4548] [0.04, 0.8095] [0.2, 0.2417] [0.15, 0.3879] [-0.06, 0.7303] 

CFREQ [0.13, 0.4484] [-0.1, 0.5807] [-0.3, 0.0735] [-0.07, 0.6869] [-0.08, 0.6431] [-0.26, 0.1307] 

FREQD [-0.21, 0.2287] [0.03, 0.8505] [-0.01, 0.969] [-0.35, 0.0375] [-0.21, 0.2227] [-0.09, 0.6163] 
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  Task 13 Task 14 Total Score 

COP-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.22, 0.205] [-0.02, 0.9039] [-0.07, 0.6647] [-0.19, 0.2659] [-0.09, 0.5887] [-0.22, 0.1885] 

MDIST [-0.22, 0.2064] [0.01, 0.9416] [-0.11, 0.5403] [-0.21, 0.2174] [-0.18, 0.3064] [-0.25, 0.1423] 

TOTEX [-0.05, 0.7839] [-0.11, 0.5222] [0.11, 0.5414] [-0.06, 0.7067] [0.04, 0.8048] [-0.25, 0.1466] 

MVELO [-0.09, 0.5972] [-0.11, 0.5108] [0.08, 0.6475] [-0.07, 0.6994] [0, 0.9911] [-0.24, 0.1526] 

95% Conf. Ellipse [-0.22, 0.1916] [-0.13, 0.4531] [0.1, 0.5436] [-0.14, 0.4023] [0.18, 0.2908] [-0.14, 0.4194] 

Sway Area [-0.21, 0.2146] [-0.14, 0.4188] [0.03, 0.8408] [-0.14, 0.4013] [-0.04, 0.8037] [-0.3, 0.0763] 

MFREQ [0.08, 0.6347] [0, 0.9807] [0.09, 0.5843] [0.08, 0.6399] [0.1, 0.5585] [-0.06, 0.7212] 

MEDFREQ [-0.02, 0.8897] [-0.05, 0.7923] [0.26, 0.1269] [0.11, 0.5334] [0.32, 0.057] [0.09, 0.5865] 

CFREQ [0.16, 0.3399] [-0.11, 0.5108] [0.11, 0.5326] [-0.03, 0.8467] [0.22, 0.2004] [-0.25, 0.1494] 

FREQD [-0.24, 0.1536] [0.02, 0.9072] [-0.15, 0.3718] [-0.12, 0.4774] [-0.17, 0.3263] [-0.13, 0.4456] 

AP 

RDIST [-0.13, 0.433] [0.02, 0.923] [-0.05, 0.7703] [-0.08, 0.6309] [-0.06, 0.7166] [-0.12, 0.4906] 

MDIST [-0.13, 0.4368] [0.02, 0.8973] [-0.06, 0.7077] [-0.08, 0.6547] [-0.17, 0.3141] [-0.17, 0.3195] 

TOTEX [-0.02, 0.9113] [-0.04, 0.833] [0.12, 0.4958] [-0.14, 0.4289] [0.11, 0.5325] [-0.25, 0.1401] 

MVELO [-0.13, 0.446] [-0.04, 0.7961] [0.04, 0.7949] [-0.14, 0.4183] [0, 0.9833] [-0.26, 0.1305] 

MFREQ [-0.04, 0.8118] [-0.05, 0.7923] [0.06, 0.7285] [-0.09, 0.6182] [0.12, 0.4828] [-0.12, 0.4973] 

MEDFREQ [0, 0.9974] [-0.31, 0.0663] [0.08, 0.6392] [-0.13, 0.4401] [0.13, 0.4464] [-0.06, 0.7392] 

CFREQ [0.03, 0.8632] [-0.02, 0.9204] [0.02, 0.9197] [-0.13, 0.458] [0.11, 0.5149] [-0.26, 0.1211] 

FREQD [0.11, 0.5387] [0.3, 0.0796] [-0.07, 0.6761] [-0.06, 0.7128] [0, 0.9982] [-0.08, 0.6425] 

ML 

RDIST [-0.4, 0.0159] [-0.17, 0.3348] [0.01, 0.9686] [-0.17, 0.317] [-0.1, 0.558] [-0.22, 0.2005] 

MDIST [-0.41, 0.0125] [-0.17, 0.3356] [-0.03, 0.8498] [-0.22, 0.2039] [-0.18, 0.2992] [-0.25, 0.1488] 

TOTEX [-0.11, 0.517] [-0.23, 0.1715] [0.16, 0.3656] [0.05, 0.7841] [0, 0.9899] [-0.26, 0.1317] 

MVELO [-0.13, 0.4335] [-0.24, 0.1552] [0.15, 0.3936] [0.01, 0.9472] [-0.03, 0.8614] [-0.29, 0.0904] 

MFREQ [0.35, 0.0359] [-0.1, 0.5471] [0.09, 0.5826] [0.18, 0.2861] [0.09, 0.5877] [-0.1, 0.5711] 

MEDFREQ [0.3, 0.0791] [-0.19, 0.2761] [0.24, 0.1608] [0.27, 0.1116] [0.09, 0.6217] [-0.04, 0.8173] 

CFREQ [0.18, 0.2853] [-0.15, 0.3708] [-0.09, 0.5917] [0.07, 0.7007] [-0.08, 0.6255] [-0.26, 0.1238] 

FREQD [-0.45, 0.0064] [0.02, 0.9164] [-0.23, 0.1772] [-0.35, 0.0367] [-0.13, 0.4478] [-0.14, 0.4295] 

 



 

259 

 

 

Supp Table 5. Spearman's correlation between each Berg Balance Scale (BBS) task score and center-of-mass (COM) 

acceleration balance biomarkers presented as [ρ, P] at both admission and discharge test sessions. Highlighted cells 

are significant values (P < 0.05). 

  Task 1 Task 2 Task 3 

COM-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [0.26, 0.1239] [0.21, 0.2192] [-0.02, 0.8854] [-0.25, 0.1378] [NaN, NaN] [NaN, NaN] 

MDIST [0.26, 0.1324] [0.24, 0.1517] [-0.05, 0.7557] [-0.25, 0.1378] [NaN, NaN] [NaN, NaN] 

TOTEX [0.04, 0.8225] [0.36, 0.0295] [0.04, 0.7965] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

MVELO [-0.07, 0.6971] [0.36, 0.0295] [-0.16, 0.3599] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

95% Conf. Ellipse [0.15, 0.384] [0.1, 0.5758] [-0.09, 0.5948] [-0.15, 0.368] [NaN, NaN] [NaN, NaN] 

Sway Area [0.06, 0.7498] [0.26, 0.1243] [-0.2, 0.235] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.28, 0.0967] [-0.07, 0.6932] [-0.14, 0.4282] [0.09, 0.6037] [NaN, NaN] [NaN, NaN] 

MEDFREQ [-0.18, 0.2809] [-0.11, 0.51] [-0.07, 0.6763] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.3, 0.0744] [-0.12, 0.489] [-0.02, 0.9094] [0.24, 0.166] [NaN, NaN] [NaN, NaN] 

FREQD [0.07, 0.6851] [0.16, 0.3377] [0.03, 0.8794] [-0.04, 0.8138] [NaN, NaN] [NaN, NaN] 

AP 

RDIST [0.21, 0.2198] [0.2, 0.2457] [-0.04, 0.8318] [-0.25, 0.1378] [NaN, NaN] [NaN, NaN] 

MDIST [0.22, 0.1891] [0.23, 0.1833] [-0.01, 0.9637] [-0.25, 0.1378] [NaN, NaN] [NaN, NaN] 

TOTEX [0.04, 0.8388] [0.32, 0.059] [0.13, 0.4509] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

MVELO [-0.08, 0.6399] [0.31, 0.0692] [-0.09, 0.6215] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.16, 0.3525] [-0.13, 0.4482] [-0.03, 0.8615] [0.09, 0.6037] [NaN, NaN] [NaN, NaN] 

MEDFREQ [-0.21, 0.2236] [-0.35, 0.0354] [-0.18, 0.3022] [0.22, 0.198] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.39, 0.0196] [-0.07, 0.6932] [-0.21, 0.2199] [0.28, 0.0923] [NaN, NaN] [NaN, NaN] 

FREQD [-0.01, 0.9743] [0.07, 0.6691] [-0.14, 0.4149] [0.06, 0.7415] [NaN, NaN] [NaN, NaN] 

ML 

RDIST [0.08, 0.6226] [0.22, 0.1948] [-0.09, 0.6001] [0.14, 0.4212] [NaN, NaN] [NaN, NaN] 

MDIST [0.09, 0.6043] [0.26, 0.1243] [-0.07, 0.6652] [0.11, 0.5393] [NaN, NaN] [NaN, NaN] 

TOTEX [-0.07, 0.6905] [0.35, 0.0354] [-0.06, 0.7442] [-0.2, 0.2341] [NaN, NaN] [NaN, NaN] 

MVELO [-0.14, 0.4294] [0.34, 0.0423] [-0.17, 0.3207] [-0.2, 0.2341] [NaN, NaN] [NaN, NaN] 

MFREQ [-0.26, 0.1216] [-0.03, 0.8696] [-0.19, 0.2638] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

MEDFREQ [-0.2, 0.2375] [-0.01, 0.9476] [-0.29, 0.0838] [-0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

CFREQ [-0.34, 0.0434] [-0.05, 0.7927] [-0.15, 0.3805] [-0.15, 0.368] [NaN, NaN] [NaN, NaN] 

FREQD [0.22, 0.196] [-0.11, 0.51] [0.16, 0.3558] [0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

ISway 

JERK [-0.04, 0.82] [0.26, 0.1243] [-0.07, 0.6763] [-0.22, 0.198] [NaN, NaN] [NaN, NaN] 

RMS-ACC [0.13, 0.4361] [0.23, 0.1723] [0.01, 0.9758] [-0.24, 0.166] [NaN, NaN] [NaN, NaN] 

CF-ACC [-0.35, 0.0351] [-0.17, 0.3211] [-0.13, 0.4463] [0.27, 0.1134] [NaN, NaN] [NaN, NaN] 

 

  Task 4 Task 5 Task 6 

COM-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [0.05, 0.7518] [0.05, 0.7609] [0.24, 0.1615] [0.14, 0.4079] [-0.05, 0.7556] [-0.22, 0.1936] 

MDIST [0.04, 0.8163] [0.07, 0.6909] [0.23, 0.1778] [0.17, 0.3211] [-0.06, 0.7164] [-0.21, 0.2187] 

TOTEX [0.19, 0.2699] [0.11, 0.5215] [0.2, 0.2404] [0.2, 0.2498] [0.17, 0.3341] [-0.09, 0.588] 

MVELO [0.04, 0.8144] [0.1, 0.5757] [0.06, 0.722] [0.19, 0.2647] [0.07, 0.7003] [-0.08, 0.6357] 

95% Conf. Ellipse [0.08, 0.6507] [-0.08, 0.6636] [0.23, 0.1707] [0.07, 0.7037] [-0.08, 0.6402] [-0.07, 0.6848] 

Sway Area [0.02, 0.9299] [0.11, 0.5256] [0.15, 0.3949] [0.17, 0.3076] [-0.05, 0.7688] [-0.07, 0.6848] 

MFREQ [-0.05, 0.7518] [0.02, 0.8914] [-0.21, 0.2205] [-0.04, 0.8341] [0.06, 0.7196] [0.2, 0.2459] 

MEDFREQ [-0.12, 0.4687] [-0.12, 0.4816] [-0.17, 0.3362] [-0.23, 0.1781] [-0.22, 0.2] [-0.33, 0.0517] 

CFREQ [-0.06, 0.7308] [-0.08, 0.6367] [-0.14, 0.4152] [-0.24, 0.1606] [0, 0.9931] [0.3, 0.0719] 

FREQD [-0.01, 0.9487] [-0.02, 0.9111] [0.03, 0.856] [-0.02, 0.889] [-0.02, 0.914] [0.05, 0.7868] 

AP 

RDIST [0.01, 0.9656] [0.04, 0.8377] [0.22, 0.1952] [0.12, 0.4759] [-0.09, 0.5853] [-0.25, 0.1496] 

MDIST [0.03, 0.8783] [0.04, 0.8039] [0.23, 0.1696] [0.14, 0.4212] [-0.1, 0.5646] [-0.25, 0.1496] 

TOTEX [0.11, 0.5374] [0.04, 0.8135] [0.18, 0.3058] [0.14, 0.4187] [0.16, 0.343] [-0.2, 0.2459] 

MVELO [-0.06, 0.7204] [0.04, 0.8183] [0.02, 0.9146] [0.12, 0.4848] [0.07, 0.7035] [-0.13, 0.4555] 

MFREQ [0.02, 0.9156] [-0.05, 0.7515] [-0.14, 0.4062] [-0.11, 0.5369] [0.17, 0.3254] [0.16, 0.3409] 

MEDFREQ [-0.19, 0.2652] [-0.15, 0.3823] [-0.22, 0.1926] [-0.28, 0.1033] [-0.05, 0.7787] [0.2, 0.2459] 

CFREQ [-0.32, 0.0546] [0.1, 0.5757] [-0.3, 0.0768] [-0.11, 0.5108] [-0.2, 0.2457] [0.4, 0.0165] 

FREQD [-0.1, 0.5703] [0.15, 0.3823] [-0.08, 0.6598] [0.03, 0.8528] [-0.18, 0.2897] [0.16, 0.3409] 

ML 

RDIST [0.01, 0.9422] [-0.04, 0.8232] [0.11, 0.5176] [0.11, 0.5404] [-0.08, 0.6402] [0.29, 0.0842] 

MDIST [0.01, 0.9461] [-0.01, 0.9604] [0.1, 0.574] [0.14, 0.427] [-0.08, 0.6621] [0.27, 0.1133] 

TOTEX [0.12, 0.4732] [0.15, 0.3962] [0.09, 0.6061] [0.26, 0.1221] [0, 0.9966] [0.01, 0.9461] 

MVELO [0.03, 0.8654] [0.13, 0.4471] [0, 0.9895] [0.25, 0.1447] [-0.06, 0.7196] [0.01, 0.9461] 

MFREQ [-0.06, 0.7197] [0.08, 0.6411] [-0.13, 0.4366] [-0.01, 0.9739] [-0.06, 0.7229] [-0.34, 0.0434] 

MEDFREQ [0, 0.9864] [-0.14, 0.4176] [0, 0.977] [-0.01, 0.969] [-0.09, 0.5913] [-0.36, 0.0301] 

CFREQ [-0.18, 0.2977] [-0.03, 0.8816] [-0.28, 0.098] [-0.21, 0.2224] [-0.1, 0.5734] [-0.27, 0.1133] 

FREQD [-0.03, 0.8437] [-0.09, 0.6146] [-0.03, 0.8696] [-0.14, 0.4202] [0.12, 0.4851] [0.35, 0.0363] 

ISway 

JERK [0.06, 0.7228] [0.07, 0.6772] [0.11, 0.5053] [0.09, 0.6214] [0.09, 0.6186] [-0.07, 0.6848] 

RMS-ACC [0, 0.9838] [0.01, 0.9357] [0.11, 0.54] [0.06, 0.7416] [-0.08, 0.6248] [-0.22, 0.1936] 

CF-ACC [-0.21, 0.2206] [0.1, 0.5714] [-0.25, 0.1446] [-0.1, 0.5685] [0.01, 0.9587] [0.4, 0.0165] 
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  Task 7 Task 8 Task 9 

COM-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.17, 0.3142] [-0.46, 0.0048] [-0.08, 0.6456] [-0.15, 0.3687] [0.03, 0.8492] [-0.19, 0.2706] 

MDIST [-0.23, 0.1727] [-0.45, 0.0061] [-0.09, 0.6145] [-0.19, 0.2775] [-0.01, 0.9582] [-0.2, 0.2381] 

TOTEX [-0.02, 0.9049] [-0.15, 0.3871] [0.18, 0.2913] [-0.11, 0.5185] [0.03, 0.8557] [-0.19, 0.2774] 

MVELO [-0.12, 0.4878] [-0.13, 0.436] [0.04, 0.8094] [-0.15, 0.3869] [0, 0.998] [-0.23, 0.1761] 

95% Conf. Ellipse [-0.08, 0.6344] [-0.44, 0.0075] [-0.09, 0.5954] [-0.01, 0.9535] [-0.01, 0.966] [-0.15, 0.3889] 

Sway Area [-0.23, 0.1755] [-0.34, 0.0436] [-0.1, 0.5806] [-0.15, 0.3758] [-0.02, 0.8892] [-0.27, 0.1061] 

MFREQ [0.07, 0.6911] [0.4, 0.016] [0.05, 0.7663] [0.17, 0.3285] [-0.06, 0.7207] [0.1, 0.543] 

MEDFREQ [0, 0.9957] [-0.31, 0.0648] [-0.07, 0.681] [0.13, 0.443] [-0.04, 0.8268] [0.01, 0.9758] 

CFREQ [0.05, 0.7896] [0.36, 0.0314] [0, 0.9928] [0.16, 0.346] [0.14, 0.3991] [-0.1, 0.5532] 

FREQD [-0.12, 0.4762] [-0.02, 0.9026] [-0.09, 0.6168] [-0.44, 0.0077] [0.26, 0.1253] [-0.4, 0.015] 

AP 

RDIST [-0.21, 0.2217] [-0.45, 0.006] [-0.08, 0.6332] [-0.23, 0.1768] [-0.04, 0.8313] [-0.2, 0.254] 

MDIST [-0.24, 0.1587] [-0.44, 0.0078] [-0.07, 0.6707] [-0.26, 0.1245] [-0.05, 0.7887] [-0.2, 0.2381] 

TOTEX [0, 0.9914] [-0.3, 0.0804] [0.21, 0.2294] [-0.06, 0.7149] [0.11, 0.5395] [-0.12, 0.4886] 

MVELO [-0.09, 0.6207] [-0.28, 0.1026] [0.05, 0.755] [-0.11, 0.5066] [0.07, 0.6733] [-0.18, 0.2985] 

MFREQ [0.15, 0.3867] [0.28, 0.0962] [0.1, 0.5811] [0.25, 0.1379] [0.03, 0.855] [0.1, 0.5481] 

MEDFREQ [-0.06, 0.7192] [0.1, 0.5535] [-0.07, 0.6986] [0.35, 0.0363] [-0.19, 0.2746] [0.27, 0.1097] 

CFREQ [-0.22, 0.2022] [-0.03, 0.8517] [-0.38, 0.0225] [-0.07, 0.6883] [-0.14, 0.4061] [-0.23, 0.1736] 

FREQD [-0.23, 0.1679] [-0.15, 0.3759] [-0.34, 0.0451] [-0.36, 0.0311] [-0.01, 0.9601] [-0.35, 0.0336] 

ML 

RDIST [-0.12, 0.4976] [-0.3, 0.0707] [-0.1, 0.552] [-0.02, 0.8905] [-0.08, 0.6436] [-0.25, 0.1347] 

MDIST [-0.14, 0.4059] [-0.3, 0.0776] [-0.09, 0.5851] [-0.06, 0.7195] [-0.08, 0.6465] [-0.31, 0.069] 

TOTEX [-0.13, 0.4675] [0, 0.9793] [0.04, 0.8107] [-0.12, 0.4783] [-0.03, 0.8666] [-0.21, 0.2111] 

MVELO [-0.17, 0.3207] [0.02, 0.9272] [-0.04, 0.8241] [-0.13, 0.443] [-0.05, 0.783] [-0.23, 0.1787] 

MFREQ [-0.07, 0.6662] [0.37, 0.0263] [-0.08, 0.6498] [-0.06, 0.7438] [-0.06, 0.7085] [0.12, 0.5032] 

MEDFREQ [-0.2, 0.2391] [0.01, 0.9339] [-0.09, 0.5908] [-0.08, 0.6326] [-0.2, 0.2326] [0.09, 0.6001] 

CFREQ [-0.06, 0.7169] [0.15, 0.3773] [-0.12, 0.4678] [-0.07, 0.6736] [-0.04, 0.8268] [-0.17, 0.336] 

FREQD [0.16, 0.3399] [-0.23, 0.1817] [0.02, 0.9161] [0.06, 0.7273] [0.18, 0.3028] [-0.06, 0.7442] 

ISway 

JERK [-0.06, 0.7332] [-0.12, 0.4707] [0.02, 0.9044] [-0.06, 0.73] [0.02, 0.8918] [-0.18, 0.3022] 

RMS-ACC [-0.13, 0.437] [-0.44, 0.007] [-0.15, 0.3881] [-0.18, 0.2887] [0.04, 0.8071] [-0.32, 0.0596] 

CF-ACC [-0.25, 0.1458] [0.01, 0.9312] [-0.28, 0.0986] [-0.04, 0.8269] [-0.15, 0.3695] [0.15, 0.3805] 

 

  Task 10 Task 11 Task 12 

COM-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [0.11, 0.5216] [-0.02, 0.9021] [0.17, 0.3325] [-0.2, 0.2387] [-0.01, 0.9555] [-0.09, 0.5884] 

MDIST [0.08, 0.6553] [-0.02, 0.9021] [0.15, 0.371] [-0.21, 0.2179] [-0.04, 0.8324] [-0.1, 0.5522] 

TOTEX [-0.01, 0.972] [-0.06, 0.7119] [-0.06, 0.7146] [-0.02, 0.9009] [0.04, 0.8101] [-0.06, 0.728] 

MVELO [-0.06, 0.748] [-0.09, 0.594] [-0.18, 0.307] [-0.04, 0.8119] [-0.06, 0.7212] [-0.07, 0.6758] 

95% Conf. Ellipse [0.11, 0.5294] [0.08, 0.6496] [0.22, 0.1957] [-0.1, 0.5784] [0.04, 0.8312] [-0.04, 0.823] 

Sway Area [0.01, 0.9357] [0, 0.9898] [0.03, 0.8471] [-0.2, 0.2464] [-0.02, 0.8909] [-0.11, 0.5115] 

MFREQ [-0.18, 0.2869] [0.02, 0.9046] [-0.37, 0.0277] [0.18, 0.3056] [-0.06, 0.7405] [0.1, 0.5691] 

MEDFREQ [0.19, 0.277] [0.08, 0.6221] [0.06, 0.7123] [-0.12, 0.4879] [-0.12, 0.4918] [-0.05, 0.7778] 

CFREQ [0.1, 0.5567] [-0.03, 0.848] [-0.26, 0.1294] [0, 0.9897] [-0.07, 0.6832] [-0.04, 0.8012] 

FREQD [0.28, 0.1034] [-0.4, 0.0148] [0.04, 0.8337] [-0.31, 0.0623] [-0.11, 0.5223] [-0.25, 0.1419] 

AP 

RDIST [-0.01, 0.9669] [-0.05, 0.7675] [0.17, 0.3177] [-0.21, 0.2117] [-0.01, 0.9413] [-0.15, 0.3954] 

MDIST [-0.02, 0.916] [-0.06, 0.7083] [0.19, 0.2715] [-0.23, 0.1861] [-0.05, 0.776] [-0.16, 0.3661] 

TOTEX [-0.03, 0.8461] [0, 0.9987] [-0.08, 0.6348] [-0.07, 0.6928] [-0.01, 0.9382] [-0.08, 0.6582] 

MVELO [-0.09, 0.6068] [0.01, 0.9491] [-0.19, 0.2625] [-0.08, 0.6314] [-0.12, 0.4713] [-0.1, 0.5533] 

MFREQ [-0.02, 0.9078] [0.1, 0.5643] [-0.34, 0.0407] [0.18, 0.3067] [0.02, 0.9099] [0.07, 0.6758] 

MEDFREQ [0.09, 0.6187] [0.21, 0.2146] [-0.28, 0.0966] [0.22, 0.1998] [-0.01, 0.9308] [0.07, 0.6977] 

CFREQ [-0.11, 0.508] [-0.05, 0.7675] [-0.46, 0.0044] [-0.24, 0.1663] [-0.12, 0.4713] [-0.04, 0.7982] 

FREQD [-0.12, 0.469] [-0.24, 0.1659] [-0.04, 0.8059] [-0.33, 0.0523] [-0.12, 0.4819] [-0.13, 0.4631] 

ML 

RDIST [0.11, 0.5111] [0.19, 0.259] [0.04, 0.8325] [-0.01, 0.9532] [-0.01, 0.9358] [-0.05, 0.7934] 

MDIST [0.13, 0.4567] [0.15, 0.3751] [0.01, 0.9393] [-0.02, 0.8862] [-0.04, 0.7962] [-0.06, 0.7198] 

TOTEX [-0.01, 0.9401] [-0.03, 0.8743] [-0.02, 0.922] [-0.01, 0.9731] [-0.05, 0.7552] [0.02, 0.9008] 

MVELO [-0.05, 0.7932] [-0.04, 0.8007] [-0.1, 0.5652] [-0.02, 0.906] [-0.11, 0.5233] [0.01, 0.9627] 

MFREQ [-0.29, 0.0908] [-0.23, 0.1764] [-0.19, 0.2584] [-0.03, 0.8742] [-0.12, 0.4742] [-0.01, 0.9447] 

MEDFREQ [-0.21, 0.2164] [-0.12, 0.4856] [-0.08, 0.646] [-0.08, 0.647] [0, 0.9876] [-0.08, 0.6622] 

CFREQ [-0.13, 0.4631] [-0.2, 0.2474] [-0.3, 0.073] [-0.29, 0.0826] [-0.16, 0.346] [-0.24, 0.1527] 

FREQD [0.31, 0.0695] [0.06, 0.7238] [-0.04, 0.7975] [-0.03, 0.8812] [0.08, 0.6236] [-0.07, 0.6816] 

ISway 

JERK [-0.03, 0.8429] [-0.02, 0.9021] [-0.08, 0.6304] [-0.05, 0.7593] [-0.05, 0.7611] [-0.04, 0.8346] 

RMS-ACC [0.04, 0.8311] [-0.07, 0.6752] [0.04, 0.8023] [-0.33, 0.0475] [-0.07, 0.6832] [-0.15, 0.3729] 

CF-ACC [-0.13, 0.4465] [0.13, 0.4616] [-0.37, 0.0277] [-0.01, 0.95] [-0.09, 0.5829] [0, 0.9814] 
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  Task 13 Task 14 Total Score 

COM-based Biomarkers Admission Discharge Admission Discharge Admission Discharge 

RD 

RDIST [-0.25, 0.138] [-0.02, 0.9058] [0.09, 0.5871] [-0.34, 0.0435] [0.04, 0.8205] [-0.21, 0.2082] 

MDIST [-0.22, 0.1882] [-0.05, 0.7897] [0.03, 0.8762] [-0.32, 0.0572] [0, 0.9839] [-0.22, 0.2062] 

TOTEX [-0.07, 0.7056] [-0.12, 0.4862] [0.17, 0.3197] [0.05, 0.7608] [0.02, 0.9221] [-0.1, 0.5788] 

MVELO [-0.2, 0.2529] [-0.15, 0.3874] [0.05, 0.7521] [0.06, 0.739] [-0.12, 0.4744] [-0.11, 0.5079] 

95% Conf. Ellipse [-0.36, 0.0305] [-0.02, 0.9072] [0.2, 0.2516] [-0.18, 0.2878] [0.05, 0.7749] [-0.14, 0.4203] 

Sway Area [-0.25, 0.1418] [-0.06, 0.7125] [0.07, 0.7052] [-0.2, 0.2311] [-0.08, 0.6372] [-0.18, 0.297] 

MFREQ [0.03, 0.8525] [0.02, 0.9277] [-0.12, 0.4751] [0.37, 0.0257] [-0.15, 0.3709] [0.19, 0.2718] 

MEDFREQ [-0.22, 0.2008] [0.07, 0.7025] [0.12, 0.472] [-0.36, 0.0336] [-0.07, 0.6872] [-0.24, 0.1677] 

CFREQ [0.25, 0.1479] [-0.01, 0.9754] [-0.02, 0.9262] [0.19, 0.2662] [-0.09, 0.5861] [0.05, 0.7843] 

FREQD [0.26, 0.1238] [-0.25, 0.1334] [-0.1, 0.5741] [-0.21, 0.2129] [0.02, 0.9245] [-0.35, 0.0377] 

AP 

RDIST [-0.2, 0.2444] [-0.02, 0.8854] [0.04, 0.8261] [-0.39, 0.0185] [-0.01, 0.9429] [-0.26, 0.1327] 

MDIST [-0.15, 0.3792] [-0.02, 0.9058] [-0.03, 0.873] [-0.38, 0.0229] [-0.03, 0.8808] [-0.26, 0.1321] 

TOTEX [0, 0.9942] [-0.09, 0.6043] [0.14, 0.4258] [-0.07, 0.6763] [0.02, 0.8961] [-0.14, 0.403] 

MVELO [-0.16, 0.3605] [-0.13, 0.4475] [0.04, 0.8292] [-0.09, 0.6055] [-0.12, 0.4795] [-0.17, 0.3158] 

MFREQ [0.11, 0.5197] [0.01, 0.9767] [-0.04, 0.8222] [0.34, 0.0452] [-0.01, 0.947] [0.17, 0.3162] 

MEDFREQ [-0.22, 0.1922] [-0.02, 0.9177] [0.08, 0.641] [0.16, 0.3387] [-0.14, 0.4051] [0.11, 0.5147] 

CFREQ [0.01, 0.9629] [-0.01, 0.9356] [-0.33, 0.0531] [-0.25, 0.1354] [-0.39, 0.0194] [-0.18, 0.3067] 

FREQD [0.01, 0.9323] [-0.17, 0.328] [-0.31, 0.0622] [-0.38, 0.0215] [-0.2, 0.2537] [-0.29, 0.0833] 

ML 

RDIST [-0.27, 0.1055] [-0.09, 0.6183] [0.23, 0.1704] [-0.08, 0.6296] [-0.02, 0.9032] [-0.03, 0.8729] 

MDIST [-0.23, 0.1789] [-0.12, 0.4973] [0.22, 0.1986] [-0.08, 0.6239] [-0.03, 0.8661] [-0.05, 0.7889] 

TOTEX [-0.11, 0.5329] [-0.09, 0.613] [0.07, 0.6864] [0.17, 0.3286] [-0.08, 0.6324] [0.01, 0.944] 

MVELO [-0.19, 0.2661] [-0.1, 0.5799] [0.02, 0.8911] [0.16, 0.3382] [-0.17, 0.3335] [0, 0.997] 

MFREQ [-0.03, 0.8714] [0.1, 0.5708] [-0.26, 0.1214] [0.16, 0.3651] [-0.21, 0.2101] [0, 0.9851] 

MEDFREQ [-0.32, 0.0605] [-0.02, 0.8867] [-0.23, 0.1756] [0.03, 0.8748] [-0.18, 0.2818] [-0.15, 0.3941] 

CFREQ [0.01, 0.9342] [0.01, 0.9383] [-0.39, 0.0202] [-0.14, 0.4168] [-0.27, 0.116] [-0.23, 0.1777] 

FREQD [0.2, 0.2417] [-0.15, 0.3883] [0.14, 0.4086] [-0.23, 0.1759] [0.17, 0.3144] [-0.08, 0.6436] 

ISway 

JERK [-0.19, 0.2577] [-0.04, 0.8337] [0.08, 0.6357] [0.05, 0.7649] [-0.07, 0.696] [-0.08, 0.6582] 

RMS-ACC [-0.1, 0.5532] [-0.06, 0.7187] [0.06, 0.7409] [-0.34, 0.0432] [-0.01, 0.9459] [-0.28, 0.1031] 

CF-ACC [-0.08, 0.6364] [0.21, 0.2282] [-0.36, 0.0296] [-0.32, 0.0602] [-0.36, 0.0306] [-0.08, 0.655] 
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Supp Table 6. Spearman's correlation between each Berg Balance Scale (BBS) task score and inter-segment 

coordination balance biomarkers presented as [ρ, P] at both admission and discharge test sessions. Highlighted cells 

are significant values (P < 0.05). 

  Task 1 Task 2 Task 3 

Inter-Segment Coordination Admission Discharge Admission Discharge Admission Discharge 

Pelvis-Leg Coherence (f ≤ 1 Hz) [-0.18, 0.2966] [-0.08, 0.6334] [0.09, 0.5842] [0.06, 0.7414] [NaN, NaN] [NaN, NaN] 

Trunk-Leg Coherence (f ≤ 1 Hz) [-0.07, 0.6941] [-0.08, 0.6452] [0, 1] [0.01, 0.9624] [NaN, NaN] [NaN, NaN] 

Pelvis-Leg Coherence (f > 1 Hz) [-0.25, 0.1335] [0.11, 0.51] [-0.34, 0.0456] [-0.28, 0.0923] [NaN, NaN] [NaN, NaN] 

Trunk-Leg Coherence (f > 1 Hz) [-0.22, 0.1966] [0, 1] [-0.29, 0.0883] [-0.28, 0.0923] [NaN, NaN] [NaN, NaN] 

 

  Task 4 Task 5 Task 6 

Inter-Segment Coordination Admission Discharge Admission Discharge Admission Discharge 

Pelvis-Leg Coherence (f ≤ 1 Hz) [-0.1, 0.5664] [0.01, 0.9728] [-0.24, 0.1666] [0, 0.9965] [0, 0.9862] [0.11, 0.5419] 

Trunk-Leg Coherence (f ≤ 1 Hz) [-0.06, 0.7246] [0.07, 0.7001] [-0.15, 0.3671] [0.07, 0.7024] [0.09, 0.5853] [-0.05, 0.7868] 

Pelvis-Leg Coherence (f > 1 Hz) [-0.2, 0.2525] [-0.17, 0.3265] [-0.16, 0.356] [0.06, 0.7189] [-0.01, 0.969] [-0.2, 0.2459] 

Trunk-Leg Coherence (f > 1 Hz) [-0.17, 0.3219] [-0.27, 0.1082] [-0.17, 0.3249] [-0.11, 0.5056] [0.05, 0.7887] [-0.27, 0.1133] 

 

  Task 7 Task 8 Task 9 

Inter-Segment Coordination Admission Discharge Admission Discharge Admission Discharge 

Pelvis-Leg Coherence (f ≤ 1 Hz) [-0.16, 0.34] [0.08, 0.6596] [-0.28, 0.0945] [-0.05, 0.7663] [0.03, 0.8406] [0.03, 0.8526] 

Trunk-Leg Coherence (f ≤ 1 Hz) [-0.05, 0.7671] [0.2, 0.2332] [-0.11, 0.5278] [0.17, 0.3298] [0.06, 0.7226] [0.24, 0.1591] 

Pelvis-Leg Coherence (f > 1 Hz) [-0.28, 0.094] [-0.45, 0.0056] [-0.27, 0.1127] [-0.4, 0.0147] [-0.03, 0.8473] [-0.38, 0.0213] 

Trunk-Leg Coherence (f > 1 Hz) [-0.18, 0.288] [-0.37, 0.0264] [-0.16, 0.3386] [-0.3, 0.075] [-0.02, 0.9158] [-0.42, 0.0099] 

 

  Task 10 Task 11 Task 12 

Inter-Segment Coordination Admission Discharge Admission Discharge Admission Discharge 

Pelvis-Leg Coherence (f ≤ 1 Hz) [0, 0.9946] [0.08, 0.6403] [-0.17, 0.3088] [-0.05, 0.7706] [-0.32, 0.0546] [-0.02, 0.9168] 

Trunk-Leg Coherence (f ≤ 1 Hz) [-0.19, 0.2695] [0.16, 0.3461] [-0.14, 0.4022] [0.07, 0.7042] [-0.14, 0.4216] [0.21, 0.2273] 

Pelvis-Leg Coherence (f > 1 Hz) [-0.45, 0.0059] [-0.3, 0.0766] [-0.43, 0.0097] [-0.43, 0.0083] [-0.21, 0.2114] [-0.45, 0.0056] 

Trunk-Leg Coherence (f > 1 Hz) [-0.35, 0.0358] [-0.29, 0.0884] [-0.3, 0.073] [-0.38, 0.0219] [-0.23, 0.1795] [-0.42, 0.0109] 

 

  Task 13 Task 14 Total Score 

Inter-Segment Coordination Admission Discharge Admission Discharge Admission Discharge 

Pelvis-Leg Coherence (f ≤ 1 Hz) [0.07, 0.6838] [0.05, 0.7609] [-0.43, 0.0081] [-0.15, 0.3747] [-0.2, 0.2344] [-0.01, 0.9359] 

Trunk-Leg Coherence (f ≤ 1 Hz) [0.13, 0.4636] [0.19, 0.2559] [-0.29, 0.0876] [0.11, 0.5169] [-0.08, 0.6388] [0.25, 0.1395] 

Pelvis-Leg Coherence (f > 1 Hz) [-0.12, 0.4943] [-0.25, 0.1405] [-0.32, 0.0566] [-0.43, 0.0087] [-0.37, 0.0283] [-0.55, 0.0005] 

Trunk-Leg Coherence (f > 1 Hz) [-0.06, 0.7284] [-0.26, 0.1241] [-0.24, 0.1513] [-0.34, 0.0429] [-0.29, 0.0876] [-0.52, 0.001] 
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Supp Table 7. Wilcoxon signed rank test effect sizes of balance biomarkers for senior adults between admission and 

discharge test sessions. Note that since the non-parametric Wilcoxon signed rank test was used in this study due to 

non-normal data, the effect sizes reported in this table are for the Wilcoxon signed rank test calculated according to 

[Cohen J. A power primer. Psychol Bull. 1992;112(1):155-159] as Effect size =  
Z

√nx+ny
 where Z is the z-value from 

the Wilcoxon signed rank test, and nx and ny are population sizes. 

 

COP-based 

Biomarkers 

Effect Size 

RD 

RDIST 0.07 

MDIST 0.06 

TOTEX 0.09 

MVELO 0.11 

95% Conf. 

Ellipse 
0.12 

Sway Area 0.09 

MFREQ 0.16 

MEDFREQ 0.09 

CFREQ 0.09 

FREQD 0.07 

AP 

RDIST 0.04 

MDIST 0.01 

TOTEX 0.01 

MVELO 0.08 

MFREQ 0.21 

MEDFREQ 0.17 

CFREQ 0.16 

FREQD 0.05 

ML 

RDIST 0.11 

MDIST 0.10 

TOTEX 0.09 

MVELO 0.11 

MFREQ 0.06 

MEDFREQ 0.03 

CFREQ 0.09 

FREQD 0.01 
 

COM-based Biomarkers 
Effect 

Size 

RD 

RDIST 0.03 

MDIST 0.01 

TOTEX 0.21 

MVELO 0.26 

95% Conf. 

Ellipse 
0.11 

Sway Area 0.09 

MFREQ 0.20 

MEDFREQ 0.10 

CFREQ 0.14 

FREQD 0.04 

AP 

RDIST 0.05 

MDIST 0.11 

TOTEX 0.11 

MVELO 0.20 

MFREQ 0.22 

MEDFREQ 0.20 

CFREQ 0.12 

FREQD 0.18 

ML 

RDIST 0.25 

MDIST 0.26 

TOTEX 0.23 

MVELO 0.27 

MFREQ 0.09 

MEDFREQ 0.01 

CFREQ 0.07 

FREQD 0.10 

ISway 

JERK 0.19 

RMS-ACC 0.03 

CF-ACC 0.02 
 

Inter-Segment Coordination Effect Size 

Pelvis-Leg Coherence (f ≤ 1 Hz) 0.06 

Trunk-Leg Coherence (f ≤ 1 Hz) 0.10 

Pelvis-Leg Coherence (f > 1 Hz) 0.06 

Trunk-Leg Coherence (f > 1 Hz) 0.14 
 

 

 

 

 

 

 


