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Abstract

Disordered biopolymer gels, such as those synthesized from polysaccharide and gelatin,

play a crucial role in biomedical applications, particularly in tissue engineering. Dur-

ing the gelation process of these gels, polymer chains associate in the presence of

gelling agents, forming physical cross-links known as the junction zones. In con-

trast to rubber-like networks, the resulting network comprises two main regions: the

ordered region due to the junction zones and the amorphous region due to the unas-

sociated chains. Under thermal fluctuations and/or external loading, the number

and locations of junction zones can change leading to “zipping” (lengthening, i.e.,

expansion of the junction zones) and “unzipping” (shortening, i.e., shrinkage of the

junction zones). This gives rise to intriguing features in biopolymer gels such as

healing and damage-like energy dissipation. Despite the recognition of zipping and

unzipping in such gels, the development of mathematical models that incorporate the

microscopic mechanisms into the material’s macroscopic mechanical properties is still

in its early stages. The current study is devoted to providing a systematic framework

that describes the overall behaviour of the biopolymer gels with zipping/unzipping

under mechanical loading. The entire polymer network can be envisaged as a collec-

tion of coil-rod structures serving as the building blocks, where the coil and rod are

representative of the disordered and ordered zones, respectively. The coil-rod struc-

ture is modelled by a rod attached to a freely jointed chain, where the length of the

rod and the number of segments in the freely jointed chain are variable. During the

zipping/unzipping process, segments can be exchanged between the coil and the rod,

and the extent of exchange is governed by the binding energy of segments to form the
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junction zone.

Prior to identifying coil-rod structures, an in-depth study of the statistical me-

chanics of the freely-jointed chain model is conducted. The analysis reveals that the

conventional approach to deriving the canonical ensemble of this structure relies on

the condition of “fixed displacement” rather than the desirable “fixed end-to-end dis-

tance”. This nuanced distinction becomes negligible as the number of constituent

segments increases. However, for coil-rod structures, this distinction between en-

sembles must be carefully taken into account, as the predictions from each ensemble

result in markedly different force-extension relationships. The precise treatment of

coil-rod structures establishes the foundation for the subsequent construction of a

grand-canonical ensemble with a fixed end-to-end distance but a variable number of

segments. The latter ensemble can appropriately formulate the zipping/unzipping

when the individual chain, such as DNA is subjected to mechanical force. The pro-

posed force-extension relationship for a single coil-rod can be integrated to generate

stress-stretch relations for the collection of coil-rod structures forming a network.

However, the presence of solvent and its interaction with the coil-rod structures lead

to phenomena such as network swelling, thereby complicating the overall response.

Another critical aspect pertains to the identification of a state devoid of residual

stress, commonly known as the stress-free state. These concepts will be rigorously

examined from the perspective of micro-scale network models. Experimental evi-

dence demonstrates that the disordered biopolymer gel exhibits dissipation under

cyclic loading. Furthermore, upon complete removal of the load, the sample experi-

ences residual strain, commonly referred to as permanent set. These phenomena can

be captured by the zipping/unzipping within the coil-rod structures in the proposed

network model. Despite this model’s ability to predict material response, it lacks

explicit interactions between coils and rods. For this reason, the canonical ensem-

ble of the more explicit network, where two coils share the same rod as a junction

zone, is also elaborated upon. It is demonstrated that if the constituent freely-jointed
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chains follow a Gaussian distribution, this system can be equivalently described as a

collection of coil-rod structures.

The proposed multiscale formulation not only advances understanding of disor-

dered biopolymer gels and underlying mechanism but also lays the groundwork for

modeling hybrid gels that include coil-rod structures as a component.
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êx, êy, êz Unit vectors of the Cartesian coordinate system in Fourier space

E0 Intrinsic energy within the rod structure

F Deformation gradient tensor

f External force vector applied at the end of the chain while the other end is

fixed

Fe Elastic deformation gradient tensor

Fp Plastic deformation gradient tensor

⟨fr⟩ Average force required to maintain the structure at fixed end-to-end distance

r

xviii



⟨fx⟩ Average force required to maintain the structure at fixed end-to-end distance

along x−direction

⟨fx⟩r Average force required to maintain the structure at fixed end-to-end vector

r = xi

⟨fG
r ⟩ Average force required to maintain the structure at fixed end-to-end distance

r with activated zipping/unzipping

fx Components of the force vector applied on the chain end along x direction

while the other end is fixed

f1, f2 Labels of nodes at the rod ends in the general network with one rod

G Modulus

G Gibbs free energy

H The governing Hamiltonian of the system
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Chapter 1

Introduction

1.1 Background

Owing to the extensive commercial utilization of polymers in both natural and syn-

thetic materials, recent decades have seen substantial research into the design and

synthesis of polymer-based structures, such as elastomers and gels. Since the 1950s,

biopolymers, with their unique biocompatibility, have emerged as ideal candidates

for a wide range of applications across various fields, including biomedical applica-

tions [1–4], the food industry [5, 6], cosmetics [7, 8], environmental applications [9],

and industrial applications [10].

Biopolymer chains are long sequences of biological macromolecules synthesized

by living organisms and are primarily categorized into three distinct groups [11]:

(i) Polynucleotides, such as DNA, (ii) Polypeptides or polyamino acids, (iii) Polysac-

charides. Many biopolymer chains such as polysaccharides naturally form gels due

to their inherent properties [12]. Gels are generally defined as three-dimensional hy-

drophilic polymer networks swollen by a solvent. Due to the diverse types of biopoly-

mer chains, biopolymer gels are classified into two main categories [13]: (i) rod-like

ordered biopolymer gels, such as globular protein gels with branched networks; and

(ii) disordered biopolymer gels, such as polysaccharide gels, where individual chains

associate laterally through physical interactions (such as hydrogen bonding, ionic in-

teractions, and van der Waals forces) to form the so-called “junction zones”. As
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shown in Fig. 1.1, macromolecules connect through these junction zones to form a

coherent network capable of resisting mechanical loadings. Depending on the type of

biopolymer gel, the junction zones can take various forms, such as egg-box structures

in alginate, double helices in agar, associations of double helices with intermediate

cations in carrageenan, and triple helices in gelatin.

Disordered biopolymer gels differ from rubber-like materials in many aspects such

as cross-linking mechanisms, and synthesis processes. In addition to the vast applica-

tion of disordrered biopolymer gels, there is growing research interest in hybrid gels,

such as polyacrylamide-alginate gels, where disordered biopolymers play a vital role

as one of the components [14]. The structure of biopolymer gels is highly dependent

on synthesis processes such as temperature and solution concentration [15]. At the

microscale, the lengths of junction zones can be comparable to those of the coil re-

gions, playing a significant role in the gel’s load-bearing mechanism. Due to the weak

physical interactions therein, these junction zones exhibit a temporary nature, allow-

ing them to dissociate in some locations and re-associate in others under external

stimuli. This mechanism, termed zipping/unzipping, is the basis for novel properties

such as self-healing. Such behaviour along with the complex interaction between the

network and solution [16] makes the mathematical modeling of gels more challenging

compared to rubber-like materials.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1.1: Examples of conformation and aggregation of junction zones in disor-
dered biopolymer gel networks: (a)-(b) egg-box multimer (alginate), (c) double helix
(agar), (d) egg-box dimer, (e) association of double helices with intermediate cations
(carrageenan), (f) triple helix (gelatin), (g) association of double helices without in-
termediate cations (agarose gels). Each junction zone can be considered as a rod
while the remaining disordered region can be considered as coils.

1.2 Motivation and objective

Given the wide range of applications of disordered biopolymer gels such as polysac-

charide gels, understanding their mechanical properties is both intriguing and crucial.

There are two main approaches to study the mechanical properties of gels. The first

involves phenomenological models that describe the Helmholtz free energy in terms

of a priori mathematical function of principal stretches or stretch invariants, cap-

turing material behavior through fitting various experimental tests [17]. Originally

developed for rubber-like materials, this approach has also been extensively applied

to biopolymer gels [18–25]. In contrast, constitutive models in the second paradigm

are formulated based on the statistical mechanics of polymer chains and associated

conformations. This approach involves more complex calculations, such as the inverse

Langevin functions. Parameters in these constitutive relations reflect the fundamental

physical characteristics of polymer networks, distinguishing it from the phenomeno-
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logical approach. Compared to the significant advancement in multiscale modelling of

rubber-like materials containing mostly chemical crosslinks, the modelling of biopoly-

mer gels with physical junction zones is still in its infancy. In this study, by adopting

the second approach, the objective is to establish a framework that bridges microme-

chanics of disordered biopolymer gels with the corresponding constitutive relations at

the macroscopic scale through statistical mechanics. Establishing an accurate model

enables precise material design without the necessity for time-consuming experimental

trials involving exhaustive parametric studies.

1.3 Thesis Outline

In Chapter 2, the conventional treatment of the canonical partition function for the

freely-jointed chain model is challenged. It is shown that, although the erroneous

treatment in the literature does not affect the coil partition function considerably,

a careful remedy is crucial for the coil-rod structure. In Chapter 3, the disordered

biopolymer gel is envisioned as a collection of coil-rod structures, where the coil rep-

resents the disordered (amorphous) region, and the rod represents the junction zone.

At the chain scale, the coil-rod structure is studied under different ensembles, and

the force-extension relationship for each case is derived. To account for zipping/un-

zipping, the grand canonical ensemble is introduced, allowing for the exchange of

segments between the rod and coil. The precise recognition of the force-extension

relationship for coil-rod structure enables us to develop network model of biopoly-

mer gels in Chapter 4. The Helmholtz free energy of the coil-rod structure within

the eight-chain network with and without swelling is extracted. Subsequently the zip-

ping/unzipping present in the coil-rod model is reflected in the governing stress-stretch

relations of the gel. Although the coil-rod structure is a simple and effective micro-

scopic element that allows for a systematic framework for biopolymer gel modelling, a

more realistic network model should include the explicit interaction of different coils

through a common junction zone. For this purpose, in Chapter 5, a more advanced
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network model is introduced in which two coils share the same junction zone through

one rod. It is shown that it is possible to find convergence of the two approaches (coil-

rod as elements vs. coils sharing rod as elements) when the coils are represented by

Gaussian statistics. This further confirms the applicability of considering the coil-rod

structure as the building blocks for the biopolymer gel network. The study concludes

in Chapter 5 with recommendations for potential expansions of the proposed model

and an acknowledgment of its current limitations.
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Chapter 2

A Critical Examination of
Force-extension Relationship for
Freely-jointed Chain Model

A version of this chapter has been published. Reprinted with permission

fromMoosavian, H., and Tang, T. “A critical examination of force–extension

relationship for freely jointed chain model,” Extreme Mechanics Letters 60

(2023): 101987. https://doi.org/10.1016/j.eml.2023.101987 © Copyright

2023 Elsevier.

2.1 Introduction

The statistical mechanics of the freely-jointed chain (FJC) model has a profound

influence on the development of micromechanical insight into the macroscopic prop-

erties of polymers. Owing to its simplicity, the model has been widely applied in

various branches of polymer science [1]. A FJC is assumed to consist of n consecutive

rigid segments with identical length b (the Kuhn length) such that each segment is

free to rotate in any direction. To determine the entropic elasticity of the chain, the

primary objective of the FJC model is to evaluate the entropy of the system or equiv-

alently the number of available conformations of the chain at any given end-to-end

vector r. Alternatively, the relative number of chain conformations can be related

to the probability distribution of a “free” chain (not subjected to any forces) as a
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function of r, i.e., Wn(r). More precisely, Wn(r)dr denotes the probability of finding

one end of the free chain at volume element dr, while the other end is fixated at the

origin. The simplest possible treatment is to postulate the Gaussian distribution for

Wn(r) [2]. However, studies show that this distribution becomes increasingly inade-

quate as the end-to-end distance of the chain |r| approaches the fully extended length

nb, especially with unrealistic nonzero values in the impermissible range |r| ≥ nb.

To overcome this difficulty, Kuhn and Grün [3] propounded a more elaborate the-

ory for the probability distribution of FJC with large n in the entire range of ex-

tension. Their proposed non-Gaussian formulation led to a probability distribution

involving the inverse Langevin function (Hereafter referred to as the inverse Langevin

distribution), which recovers the Gaussian distribution for small end-to-end distance

(|r| → 0). The pertinent force-extension relationship was also derived based on this

probability distribution. Later, Treloar [4] provided an exact form of the probability

distribution for arbitrary values of n and end-to-end vector r, at the cost of consider-

able sacrifice of simplicity. Accordingly, for practical purposes, the inverse Langevin

distribution and the resulting force-extension relation are still in the spotlight of

abundant research studies. They have contributed to different fields including the

modelling of single chain behaviour [1, 5–8], its augmented versions accounting for

extensibility [9–11] and coil-rod structure [12], the development of macroscopic con-

stitutive equations for single polymer networks [13–22], filled elastomers [23], double

networks [24–26], nanocomposite hydrogels [27] and mechanochemically responsive

polymers [28], as well as the study of photoelasticity [14, 29], damage and fracture

phenomena [30–35], to name but a few.

In contrast to the wide application of the model by Kuhn and Grün [3], a notewor-

thy correction model by Flory [36] has received scant attention. Specifically, Flory

pointed out that the proposed probability by Kuhn and Grün [3] is established on the

premise that the chain conformations have a given end-to-end displacement along an

arbitrarily chosen direction rather than having a specific end-to-end vector r. Subse-
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quently, a modified version of the probability distribution Wn(r) was provided. How

should one understand the source of deviation between the original work by Kuhn

and Grün and the modified version? What is the implication of this modification

to the force-extension relationship for a single chain? How much will it impact the

micromechanics-based constitutive models for polymer networks? The present study

aims at answering these questions through a critical examination on the derivation

of Wn (r) and its influence on several network models.

For this purpose, in Section 2.2, different statistical ensembles are introduced to

expound the difference between their associated probability distributions and clarify

the force-extension relationship that can be derived from each ensemble. It is em-

phasized that both “force” and “extension” can have different meanings in different

ensembles. Next, in Section 2.3, Flory’s modification is implemented to the probabil-

ity by Kuhn and Grün to determine the corrected force-extension relationship which

is given by

⟨fx⟩r = kBT
ξ

b
+ kBT

(︄
1

x
− ξ

nb
(︁
1− ξ2csch2ξ

)︁)︄ . (2.1)

In this equation, ⟨fx⟩r is the average force applied at the ends of an FJC with a fixed

end-to-end vector r = xî, kB is the Boltzmann constant, and T is temperature. ξ is

defined as

ξ = L −1
(︂ x
nb

)︂
, (2.2)

where L −1 (· · · ) is the inverse of the Langevin function L (· · · ) and L (s) = coth (s)−

1/s. In comparison, the original force-extension relationship derived by Kuhn and

Grün is

⟨fx⟩ =
kBT

b
ξ. (2.3)

It will be shown that Equation (2.3) predicts the average force on an FJC when

its end-to-end displacement in x direction is fixed while the displacements along y
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and z directions can change freely. Fundamentally, ⟨fx⟩ and ⟨fx⟩r are different, but

the former has been commonly used in the place of the latter. In Section 2.4, the

preceding results are utilized to extract the stress-stretch curves for several network

models under different loading conditions. Although results in Section 2.4 show that

for large n the correction alters the results only slightly, Section 2.5 demonstrates

that misuse of the probability distribution can cause large discrepancies, for instance,

in the development of a force-extension relationship for a coil-rod structure.

2.2 FJC in different ensembles

In order to understand the nature of Flory’s correction, it is beneficial to study several

pertinent ensembles. In this section, different ensembles are described in detail, all

with fixed temperature T and fixed number of Kuhn segment n.

2.2.1 Isothermal-isotension ensemble

Suppose that a chain is fixed at one end, while the other end is subjected to a force f.

The corresponding partition function is dependent on f, temperature T , and n. For

FJC, the exact form of the isothermal-isotension partition function is given by [36]

Q(f, T, n) = Z0

{︄
sinh

[︁
(kBT )

−1 b|f|
]︁

(kBT )−1b|f|

}︄n

, (2.4)

where |f| denotes the magnitude of vector f. Z0 refers to the same partition function

in the absence of any external force f (i.e., for a free chain). The Gibbs free energy is

calculated from Q(f, T, n) by

G (f, T, n) = −kBT lnQ(f, T, n). (2.5)

Thus, the average of the chain’s end-to-end vector is

⟨r⟩ = −∂G
∂f

= kBT
∂Q/∂f

Q
. (2.6)
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Now, if the coordinate system is set up such that the x axis is aligned with the force

direction (see Figure 2.1a), then

|f| = fx, (2.7)

fy = fz = 0. (2.8)

The isothermal-isotension partition function (2.4) is rephrased as

Q(fx, fy = 0, fz = 0, T, n) = Z0

{︄
sinh

[︁
(kBT )

−1 bfx
]︁

(kBT )−1bfx

}︄n

. (2.9)

Substitution of Equation (2.9) into (2.6) leads to

⟨x⟩ = nbL

(︃
fxb

kBT

)︃
, (2.10)

and

⟨y⟩ = ⟨z⟩ = 0, (2.11)

since the partition function (2.9) is independent of fy and fz.

2.2.2 Canonical ensemble

Suppose that the chain ends are fixed at two points separated by the end-to-end

vector r. Different conformations of the chain constitute the canonical ensemble with

fixed r, T , and n. The Helmholtz free energy is related to the canonical partition

function Z(r, T, n) by

ψ(r, T, n) = −kBT lnZ(r, T, n). (2.12)

The average force exerting on the chain ends is

⟨f⟩ = ∂ψ

∂r
= −kBT

∂Z/∂r

Z
. (2.13)

If the coordinate system is chosen such that the x axis is along the end-to-end vector

(see Figure 2.1b), then

|r| = x, (2.14)

y = z = 0. (2.15)
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Herein, the canonical partition function is written as Z(x, y = 0, z = 0, T, n), and

Equation (2.13) is simplified to

⟨fx⟩r = −kBT
∂Z/∂x

Z
, (2.16)

where ⟨fx⟩r denotes the component of the average force along x direction. Since

Z(x, y = 0, z = 0, T, n) is independent of y and z,

⟨fy⟩r = ⟨fz⟩r = 0, (2.17)

and ⟨fx⟩r is equal to the magnitude of ⟨f⟩. The subscript r emphasizes this is the

average force along the end-to-end vector of the chain.

To compute the canonical partition function, we note that Z(r, T, n) and Q(f, T, n)

are related via the Laplace transform [36]

Q(f, T, n) =

∫︂∫︂∫︂
Z(r, T, n)exp

[︁
(kBT )

−1 f · r
]︁
dr. (2.18)

In essence, Q(f, T, n) is determined by summing all possible Z(r, T, n) over differ-

ent r, weighted by the Boltzmann factor exp
[︁
(kBT )

−1 f · r
]︁
. By substituting Equa-

tion (2.18) into Equation (2.6), we obtain

⟨r⟩ =
∫︂∫︂∫︂

rW f
n(r) dr, (2.19)

where W f
n(r) is the distribution function defined as

W f
n(r) =

Z(r, T, n)exp
[︁
(kBT )

−1 f · r
]︁∫︂∫︂∫︂

Z(r, T, n)exp
[︁
(kBT )

−1 f · r
]︁
dr
. (2.20)

W f
n(r)dr can be identified as the probability that, under the force f, one end of the

chain is at dr while the other end is fixed at the origin. By setting f = 0, one can

obtain the probability density for one chain end to be at r in the absence of applied

force, while the other end is fixed at the origin:

Wn(r) =
Z(r, T, n)∫︂∫︂∫︂
Z(r, T, n) dr

. (2.21)
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For a chain subjected to zero force the probability Wn(r) merely depends on the

end-to-end distance r and not direction of r; hence the vector r can be replaced by

r in Wn(r) and Z(r, T, n). Since Wn(r) is proportional to Z(r, T, n), it can replace

Z(r, T, n) in the calculation of ⟨fx⟩r in Equation (2.16), i.e.,

⟨fx⟩r = −kBT
∂Wn(x, y = 0, z = 0)/∂x

Wn(x, y = 0, z = 0)
. (2.22)

Now we define another probability distribution as follows. Let pfn(x)dx be the

probability of finding one end of a chain under applied force f located in dx along

x−direction, while the other end is fixed at the origin. Apparently,

pfn(x) =

∫︂ +∞

y=−∞

∫︂ +∞

z=−∞
W f

n (r) dydz. (2.23)

Substitution of (2.20) into (2.23) yields

pfn(x) =
Π(x, fy, fz, T, n)exp

[︁
(kBT )

−1 fxx
]︁∫︂

Π(x, fy, fz, T, n)exp
[︁
(kBT )

−1 fxx
]︁
dx
, (2.24)

where

Π(x, fy, fz, T, n) =

∫︂ +∞

y=−∞

∫︂ +∞

z=−∞
Z(r, T, n)exp

[︁
(kBT )

−1 (fyy + fzz)
]︁
dydz. (2.25)

In the absence of applied force, the corresponding probability simplifies to

pn(x) =
Π(x, fy = 0, fz = 0, T, n)∫︂
Π(x, fy = 0, fz = 0, T, n) dx

. (2.26)

Through analogy of the above result with (2.21), one can introduce a new ensemble

which has Π(x, fy = 0, fz = 0, T, n) as its partition function. We name this ensemble

“semi-canonical ensemble” and explain it in detail below.

2.2.3 Semi-canonical ensemble

Consider an ensemble of chains with one end fixed at the origin. The other end is

fixed along an arbitrarily chosen x axis, while its y and z positions are free to move.
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Moreover, the force applied at this end is zero along y and z directions. Evidently, this

is neither the isothermal-isotension nor the canonical ensemble. The only difference

between this new ensemble and the isothermal-isotension ensemble is the specification

of x rather than fx (see Figure 2.1c). It can be seen that

⟨y⟩ = ⟨z⟩ = 0. (2.27)

Similar to Equation (2.16), the average of the applied force is given by

⟨fx⟩ = −kBT
∂Π(x, fy = 0, fz = 0, T, n)/∂x

Π(x, fy = 0, fz = 0, T, n)
. (2.28)

By using Equation (2.26), the average force can also be calculated from pn(x):

⟨fx⟩ = −kBT
∂pn(x)/∂x

pn(x)
. (2.29)

2.3 FJC model of Kuhn and Grün

Kuhn and Grün [3] determined the probability that the end-to-end vector of a FJC

under no external force has a projection of x along an arbitrarily chosen x axis without

constraints on y or z. This is precisely pn(x)dx discussed in Section 2.2.3. The

expression derived by Kuhn and Grün is

pCn (x) =
A0√
n

(︃
sinhξ

ξ

)︃n

exp

[︃
−ξx
b

]︃
, (2.30)

where A0 is the normalization factor and ξ is defined in Equation (2.2). The detailed

proof of Equation (2.30) was provided in Kuhn and Grün [3] as well as in Flory [36].

However, for the sake of self-containment, the derivation is given in Appendix A.1.

With the aid of (2.29), the associated force-extension relationship is obtained as given

in Equation (2.3). It should be emphasized that x here does not denote the end-to-

end distance, instead it is the end-to-end displacement of the chain along x direction.

Therefore, ⟨fx⟩ represents the average force applied along the x axis in order to fix

the end-to-end displacement along x while allowing the displacements along y and z
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î

Figure 1: Figure with formula

1

(a)

j

i
O

=x i

f x r

f y = f z =

y  z
î

ĵ

î
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Figure 2.1: Different ensembles for a FJC with fixed number of Kuhn segments under
constant temperature: (a) the isothermal-isotension ensemble in which the applied
force is specified such that fy = fz = 0; (b) the canonical ensemble in which the
components x, y, and z are fixed such that y = z = 0; (c) the semi-canonical ensemble
in which different conformations occur with fixed x and fixed fy = fz = 0.
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directions to freely change. This average force is described in the framework of the

partition function Π(x, fy = 0, fz = 0, T, n) rather than Z(x, y, z, T, n). However, in

Kuhn and Grün [3] an erroneous distribution W ∗(r) is derived by simply replacing x

with r,

WC
n

∗
(r) =

A0√
n

(︃
sinhβ

β

)︃n

exp

[︃
−βr
b

]︃
, (2.31)

where β = L −1
(︂ r
nb

)︂
.

When the FJC model is applied to evaluate the entropy of a polymer network, the

probability relevant to the chains is WC
n (r) = WC

n (x = r, y = 0, z = 0) discussed in

Section 2.2.2, and the relevant force-extension relationship is given by Equation (2.22).

However, (2.3) and the probability distribution (2.31) are used by many researchers

unwittingly. WC
n (r) can be determined from pCn (x) using the following relation [4]

−
(︃
dpCn (x)

dx

)︃
x=r

= 2πrWC
n (r). (2.32)

The proof of the above relation is deferred to Appendix A.2. By adopting the chain

rule, the left-hand side of the above relation is rephrased as

dpCn (x)

dx
=

(︃
∂pCn (x)

∂ξ

)︃
x

dξ

dx
+

(︃
∂pCn (x)

∂x

)︃
ξ

. (2.33)

On the other hand the following identity holds for Equation (2.30):(︃
∂pCn (x)

∂ξ

)︃
x

= A0

√
n (ξ sinhξ)n exp

[︃
−ξx
b

]︃(︃
cothξ − 1

ξ
− x

nb

)︃
= 0. (2.34)

Now applying Equations (2.33) and (2.34) in Equation (2.32) yields

WC
n (r) =

A0β

2π
√
nbr

(︃
sinhβ

β

)︃n

exp

[︃
−βr
b

]︃
, (2.35)

which was mentioned in Flory [36]. Finally, substitution of Equation (2.35) in (2.22)

leads to Equation (2.1). It should be noted that in Equation (2.1) the second term is

not singular as x→ 0, since 1− ξ2csch2ξ ∼ ξ2/3 for small ξ and thus the second term

converges to 0. The vast majority of the works using force-extension relationship
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of FJC have adopted ⟨fx⟩ in (2.3) rather than ⟨fx⟩r in (2.1). Unlike (2.3), ⟨fx⟩r is

not merely a function of x/nb, but also depends on n separately. Figure 2.2 depicts

the relative difference

⃓⃓⃓⃓
⟨fx⟩r − ⟨fx⟩

⟨fx⟩r

⃓⃓⃓⃓
vs. x/nb. Decreasing n as well as increasing

x/nb give rise to larger discrepancies between the two formulations. On the other

hand, for n ≥ 50 the relative difference is less than 2%. The inset also compares

the normalized forces ⟨fx⟩rb/kBT with ⟨fx⟩b/kBT against x/nb for n = 5. Clearly,

⟨fx⟩b/kBT overestimates the stiffness of the chain, especially near the fully extended

state.

Figure 2.2: The relative difference between the average forces predicted by Equa-
tions (2.3) and (2.1) vs. the normalized end-to-end distance, for n = 5, 15, 50, and
150. The inset shows the normalized force vs. x/nb obtained from (2.3) and (2.1) for
n = 5.

The above results show that increasing n causes the force-extension curves pre-

dicted from Equations (2.3) and (2.1) to converge. As n → ∞, the statistical aver-

age of each property can be replaced by its thermodynamic value. In other words,
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the three pictures in Figure 2.1 all correspond to the scenario where y = z = 0,

fy = fz = 0, and fx is applied to obtain x. Hence, the different ensembles can be em-

ployed interchangeably in the thermodynamic limit. Experimentally, single molecule

stretching has been achieved by techniques such as atomic force microscopy (AFM).

In the majority of the cases, the force-extension relationship given by Equation (2.3)

or similar entropic elasticity based models is able to fit the experimental data up to a

certain extension [7, 37], beyond which entropic elasticity is insufficient and enthalpic

elasticity needs to be considered. The good agreement with experimental data is

due to the large length of the chain (i.e., large n), despite the application of erro-

neous Equation (2.3). We should also point out that the corrected Equation (2.1)

suffers from the same limitation as Equation (2.3) in the high-stretch regime, where

adding extensibility is necessary to match experimentally measured force-extension

relationship.

2.4 Implementation in macroscopic constitutive mod-

els

In the construction of macroscopic network models two factors are of cardinal impor-

tance: (a) the arrangement of the chains constituting the whole network structure; (b)

the relation between force and end-to-end distance of the individual chains. For those

models that use the FJC to account for entropic elasticity, the force-extension rela-

tionship of the chain plays an important role in the subsequent stress-stretch relation

for the network. In accordance with the wide usage of the original inverse Langevin

statistics, well-known models such as the three chain model [13], eight chain model

[16], full network model [17] and micro-sphere model [20] utilized the ⟨fx⟩-x relation

in (2.3). In the current study, it is of interest to probe into the influence of using the

⟨fx⟩r-x relation (2.1) for deriving the macroscopic stress-stretch relation rather than

Equation (2.3). Herein, the full network and micro-sphere models (without any in-

clusion of tube-like constraints) are revisited with both (2.3) and (2.1); subsequently
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the pertinent results are compared for the equi-biaxial, uniaxial, and pure shear tests.

From macroscopic viewpoint, the Helmholtz free energy density (energy per unit

reference volume) Ψ is defined as a function of deformation gradient F and tempera-

ture T :

Ψ = Ψ0 +Ψ(F, T ), (2.36)

where Ψ0 is the Helmholtz free energy density of the reference configuration. For

incompressible materials, the Cauchy stress tensor is defined as

σ =
∂Ψ

∂F
FT − p0I, (2.37)

where I and p0 are the identity tensor and unknown hydro-static pressure, respectively.

For the collection of chains forming a network, Ψ can be written as the summation of

the Helmholtz free energy of the individual chains in a unit reference volume. Thus,

Ψ(F, T ) =

ϱ∑︂
i=1

ψi(λ
N), (2.38)

where ϱ is the number of chains in the unit reference volume, and λN refers to the

micro-stretch of the chain initially oriented along unit vector N. The micro-stretch

is defined as the ratio of the current chain end-to-end distance to the corresponding

value in the reference configuration, r0. ψi is the Helmholtz free energy of the ith

chain and can be related to ⟨fx⟩r by

ψi(λ
N) =

∫︂ r0λN

r0

⟨fx⟩r dx. (2.39)

For the full network model [17] the chains are assumed to be uniformly distributed

in all directions in the reference configuration. Hence

Ψ(F) =
1

4π

∫︂∫︂
ω

ϱψ(λN)dω, (2.40)

where ω denotes a spherical surface with unit radius in the reference configuration

and ψ = ψi given in (2.39). Insertion of the above relation in Equation (2.37) yields

σ + p0I =
1

4π

∫︂∫︂
ω

ϱ
∂ψ(λN)

∂λN
∂λN

∂F
FTdω. (2.41)
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By taking r0 =
√
nb as the end-to-end distance of the chain in the reference configu-

ration, one can deduce that

σ + p0I =
1

4π

∫︂∫︂
ω

ϱ
√
nb⟨fx⟩r

⃓⃓⃓
x=

√
nbλN

(︃
∂λN

∂F
FT

)︃
dω. (2.42)

To construct a proper relationship between the macroscopic deformation and micro-

stretch, let us define the macro-stretch of a line element located along direction N in

the reference configuration:

λ̄
N
=
√︁

N·FTFN. (2.43)

For the affine network models, it is assumed that the micro-stretch of the chain is

identical to the macro-stretch along the same direction N, i.e.,

λN = λ̄
N
. (2.44)

Figure 2.3(a) and 2.3(b) illustrate this relationship. Now, applying Equations (2.43)

and (2.44) in Equation (2.42) leads to

σ + p0I =
1

4π

∫︂∫︂
ω

ϱ
√
nb⟨fx⟩r

⃓⃓⃓
x=

√
nbλN

(︂
λ̄
N
)︂−1

(FN) (FN) dω, (2.45)

which completes the constitutive relation for the full network model.

Analogous to the previous treatment, a non-affine micro-sphere model can be de-

veloped in which (2.44) is no longer assumed. Instead, the following relation

λ∗ =

(︃
1

4π

∫︂∫︂
ω

(︂
λ̄
N
)︂p∗

dω

)︃1/p∗

(2.46)

is introduced to replace λN, where p∗ is an additional material parameter of the model.

λ∗ is essentially the stretch of the volume element averaged over different directions,

as illustrated by Figure 2.3(a) and 2.3(c). The free energy density of the network,

Ψ (F), can now be simplified to ϱψ(λ∗), where ψ(λ∗) =

∫︂ r0λ∗

r0

⟨fx⟩rdx. The Cauchy

stress tensor is then given by

σ + p0I = ϱ
∂ψ(λ∗)

∂λ∗
∂λ∗

∂F
FT. (2.47)
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Applying (2.46) in the above relation and assuming the end-to-end distance of
√
nb

in the reference configuration results in

σ + p0I =
1

4π
(λ∗)1−p∗ ϱ

√
nb⟨fx⟩r

⃓⃓⃓
x=

√
nbλ∗

∫︂∫︂
ω

(︂
λ̄
N
)︂p∗−2

(FN) (FN) dω. (2.48)

It should be emphasized that in the present formulation, the tube-like constraints

on the individual chains are excluded for the sake of simplicity. In this case, the

non-affine micro-sphere model with p∗ = 2 collapses to the eight-chain model [20].

√nb*λ

λ1

λ =λ2 1

Deformed body

N
Nλ dX

√nbNλ

Full network model
(Affine deformation)

    Micro-sphere model
(Non-affine deformation)

(b) (c)(

A

B

(a)

Figure 2.3: Schematic illustrations for the relationship between macroscopic stretch
and microscopic chain extension in the full network and micro-sphere models. (a)
Macroscopic deformation where a line element AB, originally oriented along N with

length dX, is deformed into λ̄
N
dX. (b) The full network model with affine deforma-

tion where the micro-stretch of the chain λN is assumed equal to the macro-stretch

λ̄
N
. The ellipsoid drawn indicates the dependence of λN on N. (c) The micro-sphere

model with non-affine deformation where the micro-stretch of the chain λ∗ is obtained
by an averaging process over different directions (indicated by the sphere drawn). In
both (b) and (c) the initial end-to-end distance of the chain is considered as

√
nb.

Equations (2.45) and (2.48) connect the deformation gradient F to the Cauchy

stress σ; however, the selection of proper force-extension relation of the individual
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chains is a key factor in the constitutive equations. By applying different relations

such as those given in Equation (2.3) or (2.1), different stress states in the macro-

scopic sample can be obtained for the same deformation. Figure 2.4 displays the

normalized Cauchy stress σ1/G vs. the principal stretch λ1 in equi-biaxial test, uni-

axial test, and pure shear test for both affine (Equation (2.45)) and non-affine models

(Equation (2.48)). G = ϱkBT is a modulus. In the non-affine model, the parameter

p∗ is set to 2 to recover the eight-chain model. The results are provided with different

force-extension relationships (2.3) and (2.1) for n = 10 in order to depict the impact

of Flory’s correction at the macroscopic level. All integrations over the unit sphere

were calculated numerically through the 21-point integration scheme of Bažant and

Oh [38].

By introducing the following dimensionless quantity as a measure of deviation

η =
1√

G(λ̂− 1)

∫︂ λ̂

1

√︃⃓⃓⃓
σ
(1)
1 (λ1)− σ

(2)
1 (λ1)

⃓⃓⃓
dλ1 (2.49)

the total difference between the stress components σ
(1)
1 and σ

(2)
1 can be evaluated

from the two different methods (superscripts (1) and (2) represent the use of Equa-

tions (2.3) and (2.1), respectively). The variable λ̂ denotes the stretch at which the

sample encounters chain locking without any further extension. All figures are drawn

for extension λ1 between 1 and λ̂. Since the stress components are proportional to

λ−1
1 as λ1 → λ̂, the square root function is introduced to the integrand to ensure

convergent integration for η. Based on η reported in the plots, for the full network

model (Figures 2.4a, 2.4c, 2.4e) the normalized stress in the equi-biaxial test possesses

the maximum difference, while the differences for uniaxial and pure shear tests are

smaller and approximately the same. In the eight-chain model (Figures 2.4b, 2.4d,

2.4f), the equi-biaxial test has the minimum departure between the curves, while

the uniaxial and pure shear tests exhibit larger deviations. Furthermore, compari-

son between the full network and eight-chain models shows larger η for the latter.

Hence, the eight-chain model is more sensitive to the correction of the force-extension
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relationship.
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Figure 2.4: The normalized stress σ1/G vs. λ1 for equi-biaxial test in (a)-(b), uniaxial
test in (c)-(d), and pure shear test in (e)-(f). (a), (c), (e) represent the affine (full
network) model, while (b), (d), (f) display the non-affine micro-sphere model with
p∗ = 2. In all plots, λ1 is the principal stretch in direction 1 (horizontal), and
the other two principal directions are vertical, 2, and perpendicular to the page, 3.
σ1 is the normal stress in direction 1. In pure shear, the deformation is given by
x1̄ =

√︁
1 + γ2X1̄ + γX2̄, x2̄ = γX1̄ +

√︁
1 + γ2X2̄, and x3̄ = X3̄ where xi and Xi,

i = 1̄, 2̄, 3̄ respectively denote the spatial and material coordinates. Directions 1̄ and
2̄ are shown in the insets of (e) and (f).



2.5 Impact of misusing the probability

While Figure 2.2 shows that for large number of Kuhn segments n, the difference

caused by using ⟨fx⟩ in (2.3) as opposed to ⟨fx⟩r in (2.1) is small, this section demon-

strates an example where the difference caused by misusing the probability is signif-

icant. The example considered is a coil-rod structure, which contains a FJC with n

Kuhn segments connected to a rigid rod with length a. Such a structure has been

studied as a building block for some biopolymer gels [39]. Based on the work by Higgs

and Ball [12], if the coil part obeys the Gaussian statistics, then

WCR
n (r) =

√︃
3

8nπ3a2b2
1

r
exp

[︃
− 3

2nb2
(r2 + a2)

]︃
sinh

[︃
3

nb2
ar

]︃
. (2.50)

By using Equation (2.50) in Equation (2.22), the following relation is obtained

⟨fx⟩r =
3akBT

nb2

(︃
x

a
− L

[︃
3ax

nb2

]︃)︃
. (2.51)

We now show that using the probability pn(x) and Equation (2.29) results in a signifi-

cantly different outcome for the ⟨fx⟩-x relationship. By usingWCR
n (r) in Eq (2.50) and

the relation in Equation (2.32) which is equivalent to pCR
n (x) =

∫︂ +∞

|x|
2πrWCR

n (r)dr,

one can calculate pn(x) as:

pCR
n (x) =

1

2

(︄
erf

[︄√︃
3

2nb2
(x+ a)

]︄
− erf

[︄√︃
3

2nb2
(x− a)

]︄)︄
, (2.52)

where erf(· · · ) denotes the error function. Substitution of Equation (2.52) in Equa-

tion (2.29) gives rise to

⟨fx⟩ = kBT

√︃
6

πnb2

exp

[︃
−3

2nb2
(x− a)2

]︃
− exp

[︃
−3

2nb2
(x+ a)2

]︃
erf

[︄√︃
3

2nb2
(x+ a)

]︄
− erf

[︄√︃
3

2nb2
(x− a)

]︄ . (2.53)

Figure 2.5 compares the results of Equations (2.51) and (2.53) for a/b = 5. Rec-

ognizing that Gaussian statistics is inaccurate for large extension, the comparison

is made for x/a up to 1.75. When n = 10, ⟨fx⟩r shows compressive force at small
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x/nb, while such phenomenon is absent for ⟨fx⟩. Physically, this can be understood

by recognizing that ⟨fx⟩r is the force evaluated in the canonical ensemble where y

and z are fixed at zero (Figure 2.5, inset (II)), while ⟨fx⟩ is the force calculated in

the semi-canonical ensemble where y and z are free to change (Figure 2.5, inset (I)).

Due to the presence of the rigid rod, for sufficiently small x, conformations in inset

(II) of Figure 2.5 can only be accommodated by a compressive force. In inset (I)

of Figure 2.5, however, conformations with large y and z can form, which removes

the requirement of a compressive force. ⟨fx⟩r and ⟨fx⟩ therefore exhibit qualitatively

different behaviours. By increasing the number of Kuhn segments to n = 30, the dif-

ferences between the curves become negligible. However, it is important to recognize

that ⟨fx⟩r and ⟨fx⟩ are fundamentally different, and cannot be used interchangeably

without caution. In disordered biopolymer gels, the rigid rod models the junction

zone formed by association of chains and the length of the coil trapped between the

junction zones can be much smaller than that of the coiled chain in rubber-like mate-

rials [40]. In fact, the length of the junction zone (a) can be comparable to the length

of coil (nb), and misusing the probability can lead to physically incorrect predictions.
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(2.53)
(2.51)
(2.53)

Figure 2.5: The comparison of normalized average force vs. x/a predicted from
Equations (2.51) and (2.53) for a/b = 5, and n = 10 and 30. Both ⟨fx⟩r (Equa-
tion (2.51)) and ⟨fx⟩ (Equation (2.53)) are normalized by kBT/b. Insets I and II
show the schematics of the coil-rod structure with n = 10 for semi-canonical and
canonical ensembles, respectively.

2.6 Conclusion

The current study provides a critical examination on the different probability dis-

tributions for an FJC, which leads to different force-extension relationships. We

demonstrate that such difference arises from different statistical ensembles used to

investigate the FJC: 1) the canonical ensemble where the end-to-end distance is fixed

vs. 2) an ensemble where the projection of the end-to-end vector is fixed along an ar-

bitrary direction (which we referred to as the semi-canonical ensemble in this work).

The seminal work by Kuhn and Grün [3] did not make such a distinction; the re-

ported force-extension relationship should have been for the semi-canonical ensemble

and not for the canonical ensemble. Flory [36] pointed out this difference but to the

best of the authors’ knowledge, almost all works in the literature still use the original
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result of Kuhn and Grün [3] to relate the force acting on the chain ends to the chain’s

end-to-end distance. Recognizing this misconception, a correction is introduced to

the model of Kuhn and Grün [3], and this modified force-extension relationship is

applied to macroscopic constitutive models (full network model, non-affine micro-

sphere model) to examine its impact. While results from both ensembles converge in

the thermodynamic limit (when the number of Kuhn segments n approaches infinity),

they are distinguishable for smaller n. We further demonstrate that the misuse of

the probability distributions can lead to large and even qualitative differences for a

coil-rod structure consisting an FJC connected to a rigid rod, often considered as a

building element for biopolymer gels. Care therefore should be exercised when using

the probability distributions to study FJC-based mechanics models.
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Chapter 3

Statistical Mechanics of Coil-rod
Structure in Biopolymer Gels

A version of this chapter has been published. Reprinted with permis-

sion from Moosavian, H., and Tang, T.“Statistical mechanics of coil–rod

structure in biopolymer gels,” Journal of the Mechanics and Physics of

Solids 175 (2023): 105272. https://doi.org/10.1016/j.jmps.2023.105272

© Copyright 2023 Elsevier.

3.1 Introduction

To describe the mechanical properties of a wide range of synthetic polymers, such

as rubber-like materials, it is conventional to model a uniform network containing

the macromolecules as flexible chains connected together through covalent cross-

linking [1]. However, studies reveal that the proposed strategy is inadequate for

identifying the physical properties of many biopolymer gels [2]. In contrast to rubber-

like materials, the constituting chains in many biopolymer gels randomly interlock

with neighboring chains by means of physical rather than covalent cross-linking. The

significance of such physical cross-linkages has been widely reported, for example in

high strength hydrogels [3]. As a result, models describing rubber elasticity encounter

difficulties for capturing mechanical response of biopolymer gels. For example, the

unorthodox relationship between the elastic moduli of Na- and Ca-alginate gels and
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the temperature cannot be justified through a linear relationship predicted from the

traditional rubber elasticity model [4]. In addition, studies on biopolymer gels show

that the thermal, mechanical, and chemical history of synthesis, including the type of

polymer precursors, swelling/de-swelling, or heating/cooling gelation process, signif-

icantly affect the final properties of such gels. For instance, the mechanical features

of Ca-alginate gels depend on the type of alginate and the preparation method [5].

Based on Clark and Ross-Murphy [6], biopolymer gels are divided into two main

groups: (i) rod-like ordered biopolymer gels such as globular proteins with branched

networks where the pertinent networks are formed by junction points resembling

synthetic polymers; (ii) disordered biopolymer gels such as polysaccharide gels in

which the individual chains associate together laterally, forming helical junction zones

and/or ion-mediated aggregation zones (egg-box structures) with length comparable

to that of the coil parts of the chain. Compared with covalent bonds, the non-

covalent links within the junction zones can more easily dissociate and re-associate.

Consequently, when an external loading is applied, the junction zones can shrink

by unwinding or expand by zipping, allowing the exchange of segments between the

junction zone and coil region of the network. The rate of zipping/unzipping of the

junction zones can be governed by several factors, including the concentration of

cations or the temperature [7]. Polymer networks such as gelatin or polysaccharide

gels can therefore be envisaged as a collection of coil-rod structures serving as building

blocks, where the rod and coil respectively represent the ordered junction zone and

the remaining disordered region. For this reason, the elucidation of the mechanics of

the coil-rod structure is of cardinal importance to gain insight into the properties of

disordered biopolymer networks.

In the literature, there have been abundant studies that develop phenomenolog-

ical models for the description of constitutive relations of biopolymer gels [8–12].

Readers are referred to the comprehensive review of the continuum elastic models for

biopolymer gels by Wang and Xu [13]. On the contrary, micro-mechanical studies
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accounting for behaviours at the molecular level are fairly limited. Some research

focused on the constitutive relations of ordered biopolymer networks consisting of

rod-like macromolecules. For example, Doi and Kuzuu [14] attempted to capture

the energetic contribution of entanglements in such networks. Dobrynin and Carrillo

[15] proposed a micromechanical-based constitutive model capable of predicting the

strain-hardening of synthetic polymer networks as well as ordered biopolymer gels

such as actin. De Tommasi et al. [16] adopted a multi-scale approach to derive a

constitutive relationship for polymeric networks containing macromolecules with un-

folding domains. Likewise, there is scant information on the micro-scale modelling of

disordered biopolymer networks. Nishinari et al. [17] proposed a reel model for the

zipping/unzipping mechanism to explain the nonlinear effect of the temperature on

the elastic modulus in thermoreversible gels. In their treatment, the junction zones

served as a reservoir capable of changing the number of the Kuhn segments in the

coils, although the junction zone itself was not explicitly incorporated in the formula-

tion. Mechanics of the coil was described by the inverse Langevin model, with energy

levels assigned to each conformation proportional to the number of Kuhn segments in

the coil. This model was verified for different types of biopolymer gels [18]. Inspired

by this study, Higgs and Ball [19] simplified the reel model using Gaussian approxi-

mation and obtained the partition function of a reel structure attached to a rigid rod

with a fixed length. Subsequently, they studied the effects of the zipping mechanism

by comparing the properties of the reel structure with the conventional coil structure.

In their zipping/unzipping treatment, the total number of segments is not conserved

as the length of the rod remains fixed while the number of Kuhn segments in the coil

is allowed to change. In addition, a number of assumptions were made which led to

some unphysical features such as discontinuity in the force-extension curve.

The main goal of this study is to provide a comprehensive statistical mechanics

framework for modelling the coil-rod structure considering the exchange of segments

between the disordered region (the coil) and the junction zone (the rod). Since the
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choice of ensemble depends on the question to be addressed and it can impact the

results of the analysis, in Section 3.2, the fundamental concepts behind different en-

sembles are clarified. Subsequently, in Section 3.3, the statistical mechanics analysis

of a rod structure is carried out with different ensembles. The formulation is ex-

tended to the coil-rod structure with fixed rod length in Section 3.4, to derive the

relationship between the force applied at the ends of the structure and the end-to-end

separation. In Section 3.5 the treatment of coil-rod structure is cast in a more gen-

eral form to incorporate zipping and unzipping behaviour. Finally, as examples of its

applications, in Section 3.6 the model is implemented into the eight-chain model to

describe the macroscopic mechanical response of a network, as well as used to predict

the unwinding of a double-stranded DNA under a tensile force.

3.2 Statistical mechanics considerations of a macro-

molecule

The main focus of this work, which is a general interest for the study of macro-

molecules, is the relationship between the force applied at the two ends of the structure

and the end-to-end extension. The theoretical assessment of this mechanical property

necessitates the formulation of a partition function via statistical mechanics. Since

the temperature, extension, applied force and number of units in the molecule are

convenient measurable properties, we generally deal with three ensembles: Canonical

ensemble, isothermal-isotension ensemble, and grand canonical ensemble.

3.2.1 Canonical ensemble

In the canonical ensemble, two possible scenarios can be considered:

(i) The structure is maintained at a fixed end-to-end position vector r, fixed tem-

perature T and fixed number of segments Nt. An average force ⟨fr⟩ is required

to maintain the structure with fixed end-to-end distance |r| = r along the di-

rection
1

r
r. If the canonical partition function Z(r, T,Nt) is at hand, one can
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derive a relationship between the ⟨fr⟩ and r. For a single molecular structure,

the direction of r is immaterial to the partition function Z(r, T,Nt). Thus, with

no loss of generality, the end-to-end vector r can be replaced by “end-to-end

distance r”. The Helmholtz free energy ψ is calculated from

ψ(r, T,Nt) = −kBT ln [Z(r, T,Nt)] , (3.1)

in which kB is the Boltzmann constant. The average force is colinear with the

fixed end-to-end vector r and its magnitude ⟨fr⟩ is calculated by

⟨fr⟩ =
∂ψ(r, T,Nt)

∂r
. (3.2)

This ensemble has been in the spotlight of abundant research due to its signifi-

cance in incorporating the chain properties into a network. For instance, Higgs

and Ball [19] merely focused on canonical ensemble for the coil-rod structure.

(ii) The structure is kept at a fixed end-to-end “displacement”, fixed temperature

T and fixed number of segments Nt. The displacement can be imposed in any

arbitrary direction, while the other components of the end-to-end vector are

free to move. Without loss of generality, we will call this arbitrary direction x

in this work. The average force ⟨fx⟩ required to keep the structure with fixed x

can be determined with the aid of this canonical ensemble, by recognizing that

it is the work conjugate of x and its direction is along the x axis. Once the

partition function Π(x, T,Nt) is available, the Helmholtz free energy is obtained

as

ψ(x, T,Nt) = −kBT ln [Π(x, T,Nt)] . (3.3)

Now, by taking its derivative with respect to x, one can obtain the average force

as

⟨fx⟩ =
∂ψ(x, T,Nt)

∂x
. (3.4)
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Evidently, the number of conformations with fixed displacement is much larger

than the previous ensemble. This stems from the fact that in the previous sce-

nario, all displacement components x, y, and z are fixed. Although studying

scenario (i) is of more practical relevance, there is an interesting relationship be-

tween the two scenarios which facilitates the derivation of the partition function

with fixed end-to-end distance. This relationship is established below.

Consider a chain with one end fixed at the origin and without any applied external

forces. The probability that the other end of the chain is located in a volume element

dr is given by [20]

W (r)dr =
Z (r, T,Nt) dr

Z0

, (3.5)

where

Z0 =

∫︂∫︂∫︂
Z (r, T,Nt) dr, (3.6)

and W (r) denotes the probability distribution as a function of r, commonly referred

to simply as the “distribution function”. The volume element dr in (3.5) is located

at the end of the position vector r with Cartesian coordinates (x, y, z). Similar to

Z(r, T,Nt),W (r) depends on the end-to-end distance r rather than end-to-end vector

r. Now, Equation (3.1) is rewritten as

ψ(r, T,Nt) = −kBT ln [W (r)] + cte. (3.7)

This alternative formulation enables us to use W (r) to determine ⟨fr⟩ vs. r for the

coil-rod structure. Likewise, if p(x)dx is the probability that one end of a structure,

free of any external forces, is located between x and x + dx, while the other end is

fixed at the origin, then:

p(x)dx =
Z (x, T,Nt) dx∫︂ +∞

x=−∞
Z (x, T,Nt) dx

. (3.8)
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(a) Probability distribution WCR
n (r) (b) Probability distribution pCR

n (x)

Figure 3.1: Schematics of the coil-rod structure and the two different probabilities.
The superscript CR denotes the coil-rod structure, and the subscript n indicates the
number of Kuhn segments in the coil.

Figure 3.1 depicts the aforementioned probabilities for the coil-rod structure with

number of Kuhn segments n, Kuhn length b, and rod-length a. It can be readily

shown that W (r) and p(x) satisfy the following equation:

−
(︃
dp(x)

dx

)︃
x=r

= 2πrW (r). (3.9)

The detailed derivation of (3.9) is provided in Appendix B.1. To emphasize that

W (r) and p(x) are obtained in the absence of external forces, they are termed as the

probability distribution of the “free” chains hereafter.

3.2.2 Isothermal-isotension ensemble

In this case, the structure with one fixed end is acted upon by a fixed force f at

the other end under fixed temperature T and a fixed number of segments Nt [20]
1.

With no loss of generality, the coordinate system is set up such that x axis is in

the direction of the applied force and the magnitude of the force is designated by

1This is analogous to the isothermal-isobaric ensemble for ideal gas with a fixed number of
particles, fixed temperature T , and fixed applied pressure.
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fx. In this sense, different conformations with different x can be established as a

concomitant of the applied force. The average ⟨x⟩ is the work conjugate of the force

fx and can be determined in the isothermal-isotension ensemble. Specifically, the

isothermal-isotension partition function Q(fx, T,Nt) can be related to the partition

function Π(x, T,Nt) by [21]

Q(fx, T,Nt) =
1

∆l

∫︂ +∞

−∞
Π(x, T,Nt)exp

[︃
fxx

kBT

]︃
dx, (3.10)

where ∆l is a quantity with a dimension of length to ensure the dimensionless nature

of the partition function. Because the derivation of the force-extension relationship

involves differentiating the logarithm of the partition function, it is not influenced by

the actual value of ∆l. Alternatively, the isothermal-isotension partition function can

be written in terms of Z(r, T,Nt) by using spherical coordinates as below [20]

Q(fx, T,Nt) =
1

∆l3

∫︂ 2π

θ=0

∫︂ π

ϕ=0

∫︂ +∞

r=0

Z(r, T,Nt)exp

[︃
fxrcosϕ

kBT

]︃
r2sinϕ dr dϕ dθ. (3.11)

After specification of Q(fx, T,Nt), the Gibbs free energy G is derived as

G (fx, T,Nt) = −kBT lnQ(fx, T,Nt). (3.12)

Subsequently,

⟨x⟩ = −∂G (fx, T,Nt)

∂fx
(3.13)

is utilized to obtain a relation between ⟨x⟩ and fx.

3.2.3 Grand canonical ensemble

In the ensembles discussed above, the length of the rod is considered fixed, which

becomes inadequate if phenomena such as zipping and unzipping are to be accounted

for. To allow for variable rod length and exchange of segments between the rod

and coil portions of the structure, the grand canonical ensemble will be employed

such that the structure is maintained at a fixed end-to-end position vector r, fixed
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temperature T and fixed chemical potential. This ensemble samples, according to

the appropriate probability distribution, all possible conformations with different rod

length or equivalently different number of Kuhn segments in the coil. The formulation

in the grand canonical ensemble will be presented in Section 3.5.

It should be acknowledged that there have been many discussions on the equiv-

alence of ensembles in the thermodynamic limit which, in the context of chain me-

chanics, refers to Nt → ∞. For the standard coil structure, different ensembles can

lead to different results for small or moderate Nt [22], while convergence of different

ensembles has been demonstrated for large Nt [23]. The equivalence is no longer

valid for certain polymer lattice models involving two equilibrium states for each seg-

ment. In this case, the force-extension relationships predicted from canonical and

isothermal-isotension ensembles can be qualitatively different even for large Nt [24].

The equivalence of these two ensembles will be examined below for a single rod as

well as for the coil-rod structure.

3.3 Analysis of a single rod

In this work, the junction zone is modeled as a single rigid rod. Different treatments

are available in the literature. For example, in ordered biopolymer gels such as actin

and collagen, the rod structures have been modeled using a semi-flexible chain with

bending and axial stiffnesses [25]. The worm-like chain model [26] is another popular

model often adopted for semi-flexible rod-like structures. The use of a non-deformable

rod to represent the junction zone is a further simplification from the worm-like chain

model, which is a reasonable assumption when the length of the rod is small compared

to the persistence length of the worm-like chain [27]. According to Weiner [28], there

are two distinct paths for the extraction of the partition function for a single rigid

rod: (1) The rigid model in which the Hamiltonian of the rod is established based

on the existing kinematic constraint. Hereafter, this model is referred to as Weiner’s

rigid model. (2) The flexible model in which the rod is first assumed to be flexible
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with a finite axial stiffness κ. Then, the result of a stiff rod is achieved by setting κ to

infinity. It should be noted that the term “flexible” for infinite κ may be misleading as

it represents the rigid rod structure per se; nevertheless, the results may be different

from Weiner’s rigid model. In the current section, the flexible model is examined

in detail and the results from the canonical and isothermal-isotension ensembles are

compared. The description of Weiner’s rigid model is deferred to Appendix B.2 where

the differences between the approaches are clarified.

Consider a segment AB placed between two fixed walls with distance x at fixed

temperature T (see Figure 3.2). The segment is modelled by a Hookean spring with

stiffness κ and unstretched length a. Furthermore, the mass m of the segment is

lumped at point B. Point A is affixed at the origin, while B is allowed to occupy any

points on the right wall. Hence, the Hamiltonian of the segment is determined as

H =
1

2m
(p2y + p2z) +

1

2
κ
(︂√︂

q2y + q2z + x2 − a
)︂2
. (3.14)

In the above relation, py and pz denote the components of the linear momentum of the

concentrated mass m. qy and qz are the y− and z− components of the position vector

of point B, respectively. Since the concentrated mass at B is confined to move in the

yz plane, the system has two degrees of freedom and the corresponding canonical

ensemble partition function is

ZR(x, T ) =
1

h2

∫︂ +∞

py=−∞

∫︂ +∞

pz=−∞
exp

[︃
−
p2y + p2z
2mkBT

]︃
dpydpz

×
∫︂ +∞

qy=−∞

∫︂ +∞

qz=−∞
exp

[︃
− κ

2kBT

(︂√︂
q2y + q2z + x2 − a

)︂2]︃
dqydqz, (3.15)

in which the Planck’s constant h is introduced to preserve the partition function

dimensionless. In the above relation, superscript R is utilized to indicate the rod

structure. After some mathematical manipulations, the above partition function is
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expressed as below:

ZR(x, T ) =
4π2mkBTa

2

h2

×

⎧⎨⎩kBTκa2 exp
[︄
−κa2

2kBT

(︃
|x|
a

− 1

)︃2
]︄
+

√︃
πkBT

2κa2
erfc

⎡⎣√︄ κa2

2kBT

(︃
|x|
a

− 1

)︃⎤⎦⎫⎬⎭ ,

(3.16)

in which erfc (· · · ) signifies the complementary error function. In the limit of very

large κ, one can obtain

ZR(x, T ) =

√︃
32π5m2k3BT

3a2

h4
H(x+ a)−H(x− a)√

κ
, (3.17)

where H(· · · ) is the Heaviside step function. By employing Equation (3.17) in (3.8)

it is found that

pR(x)dx =
dx

2a
(H(x+ a)−H(x− a)) . (3.18)

which agrees with Treloar [29] for a single rigid rod. Finally, by substituting Equa-

tion (3.16) in (3.10), one can obtain the isothermal-isotension partition function as

QR(fx, T ) =
1

∆l

√︃
8π5m2k5BT

5

κ3h4
kBT

fxa

×

{︄
exp

[︃
− fxa

kBT

(︃
1− fx

2κa

)︃]︃(︃
fxa

kBT
− κa2

kBT

)︃(︃
1 + erf

[︃
κa2 − fxa√
2kBTκa2

]︃)︃

+ exp

[︃
fxa

kBT

(︃
1 +

fx
2κa

)︃]︃(︃
fxa

kBT
+
κa2

kBT

)︃(︃
1 + erf

[︃
κa2 + fxa√
2kBTκa2

]︃)︃}︄
,

(3.19)

in which erf(· · · ) represents the error function. For very large values of κ,

QR(fx, T ) =
1

∆l

√︃
128π5m2a4k3BT

3

κh4
kBT

fxa
sinh

(︃
fxa

kBT

)︃
, (3.20)

which is equivalent to the well-known result of the partition function for a single

segment of a freely jointed chain [30].
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Figure 3.2: The single segment modelled by a Hookean spring is constrained between
two fixed walls with a distance of x. Since the B end is allowed to occupy any position
on the right wall, there are two degrees of freedom. The spring stiffness is κ and the
unstretched length of the segment is a.

After calculation of partition functions (3.16), the average applied force ⟨fx⟩ can

be obtained using Equations (3.3) and (3.4). In the normalized form,

⟨fx⟩a
kBT

=
2 (kBT )

−1 κax

2 +

√︃
2πκa2

kBT
exp

[︄
κa2

2kBT

(︃
|x|
a

− 1

)︃2
]︄
erfc

[︄√︄
κa2

2kBT

(︃
|x|
a

− 1

)︃]︄

=
2 (kBT )

−1 κax

2 +

√︃
2πκa2

kBT
exp

[︃
κa2

2kBT

]︃(︄
1 + erf

[︄√︃
κa2

2kBT

]︄)︄ + O

(︃(︂x
a

)︂2)︃
. (3.21)

The second step in Equation (3.21) is obtained as a result of the Taylor expansion of

the function about x/a = 0. Similarly, the average displacement ⟨x⟩ can be obtained

in the isothermal-isotension ensemble by substituting (3.19) in Equations (3.12) and
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(3.13), which in the normalized form is given by

⟨x⟩
a

= −kBT
fxa

+
kBT

κa2

{︄√︄
8κ3a6

πk3BT
3
exp

[︃
− κa2

2kBT

]︃

+ exp

[︃
− fxa

kBT

(︃
1− fxa

2κa2

)︃]︃[︄
κa2

kBT
+

(︃
fxa

kBT
− κa2

kBT

)︃2
]︄(︃

1 + erf

[︃
κa2 − fxa√
2kBTκa2

]︃)︃

+ exp

[︃
fxa

kBT

(︃
1 +

fxa

2κa2

)︃]︃[︄
κa2

kBT
+

(︃
fxa

kBT
+
κa2

kBT

)︃2
]︄(︃

1 + erf

[︃
κa2 + fxa√
2kBTκa2

]︃)︃}︄

×

{︄
exp

[︃
− fxa

kBT

(︃
1− fxa

2κa2

)︃]︃(︃
fxa

kBT
− κa2

kBT

)︃(︃
1 + erf

[︃
κa2 − fxa√
2kBTκa2

]︃)︃

+ exp

[︃
fxa

kBT

(︃
1 +

fxa

2κa2

)︃]︃(︃
fxa

kBT
+
κa2

kBT

)︃(︃
1 + erf

[︃
κa2 + fxa√
2kBTκa2

]︃)︃}︄−1

.

(3.22)

For very large κ the leading order term is

⟨x⟩
a

= L

(︃
fxa

kBT

)︃
=

1

3

fxa

kBT
fx + O

(︄(︃
fxa

kBT

)︃3
)︄
, (3.23)

where L (· · · ) represents the Langevin function.

Figure 3.3 shows the normalized force ⟨fx⟩a/kBT versus x/a obtained from the

canonical ensemble for different values of κa2. By increasing κa2/kBT the curves

tend to level off for sufficiently small x/a with a sharper increase toward infinity

as x approaches a. Figure 3.3 also depicts the normalized applied force fxa/kBT

versus normalized average displacement ⟨x⟩/a obtained from the isothermal-isotension

ensemble for different values of κa2. Clearly, for a given κa2/kBT this ensemble

predicts stiffer behaviour compared to the canonical ensemble. The discrepancies

between the two ensembles are negligible for κa2 = kBT , while larger differences

between the ensembles are detected as κa2 increases to 10000 kBT . This feature

confirms that the rod structure cannot be considered as a macroscopic thermodynamic

system.
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Figure 3.3: Normalized force vs. normalized displacement along the x−axis for differ-
ent values of κa2. For the isothermal-isotension ensemble fxa/kBT is plotted against
⟨x⟩/a, while for the canonical ensemble ⟨fx⟩a/kBT is plotted against x/a.

3.4 Coil-rod structure with fixed rod length

In this section, we will present the formulation for the determination of the force versus

end-to-end distance (or x displacement) of the coil-rod structure in the canonical and

isothermal-isotension ensembles.

To calculate the probability distribution of the coil-rod structure WCR
n (r), it is

preferable to obtain the probability distribution along x direction pCR
n (x) in advance.

Hereafter, the superscript CR indicates the coil-rod structure. For this purpose, it is

convenient to employ the convolution property to relate pCR
n (x) to pR(x) for the rod
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(Equation (3.18)) and pCn (x) for the coil (see Figure 3.1b):

pCR
n (x) =

∫︂ +∞

−∞
pCn (x

′)pR(x− x′)dx′ =
1

2a

∫︂ x+a

x−a

pCn (x
′)dx′. (3.24)

The latter identity is achieved through the use of Equation (3.18). For the coil the

superscript C has been added and the subscript n is the number of Kuhn segments it

contains. Carrying the above result into Equation (3.9) and applying Leibniz integral

rule yield

WCR
n (r) =

1

4πar

[︁
pCn (r − a)− pCn (r + a)

]︁
. (3.25)

Herein, without the explicit calculation of WC
n (r) and W

R(r), the distribution func-

tion of the coil-rod structure WCR
n (r) is achieved in terms of the probability distribu-

tion of the coil along x direction, i.e., pCn (x).

3.4.1 Gaussian approximation

Let us first approximate the coil structure by a Gaussian chain with Kuhn length b

and the number of Kuhn segment n. The probability pCn (x) of such structure is given

by [1]

pCn (x) =

√︃
3

2πnb2
exp

[︃
− 3x2

2nb2

]︃
. (3.26)

Combining Equations (3.25) and (3.26) leads to

WCR
n (r) =

√︃
3

8nπ3a2b2
1

r
exp

[︃
− 3

2nb2
(r2 + a2)

]︃
sinh

(︃
3

nb2
ar

)︃
, (3.27)

which is equivalent to the model of Higgs and Ball [19]. It is important to note that the

term “Gaussian distribution” only applies to the coiled part of the coil-rod structure,

while the coil-rod does not exhibit the Gaussian behaviour. By differentiating the

Helmholtz free energy (3.7) with respect to r, the average external force ⟨fr⟩ is derived

as

⟨fr⟩a
kBT

= −3ζ2

n
L

(︃
3ζ2

n

r

a

)︃
+

3ζ2

n

(︂r
a

)︂
, (3.28)
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where ζ = a/b. For small extension r/a, it can be readily shown that

⟨fr⟩a
kBT

=
3ζ2

n

(︃
1− ζ2

n

)︃
r

a
+ O

(︃(︂r
a

)︂2)︃
. (3.29)

The above relation shows that the initial slope of the ⟨fr⟩ − r curve is negative when

ζ >
√
n. This feature stems from the fact that under zero external force the coil

structure has a maximum probability at zero end-to-end distance (see (3.26)), but

the presence of the rod shifts the maximum of the probability (3.27) toward a non-zero

end-to-end distance. Hereafter this distance will be denoted by r∗. It is worthwhile

to mention that the above result is valid only if the number of Kuhn segments is large

and the end-to-end distance of the coil is very small. In other words, the Gaussian

description of the coil-rod structure is legitimate when r → a and n≫ 1. Performing

Taylor series expansion of Equation (3.28) about r = a, one can obtain an estimation

of r∗ at which the average force ⟨fr⟩ vanishes:

r∗

a
≈

L

(︃
3ζ2

n

)︃
− 3ζ2

n
L ′
(︃
3ζ2

n

)︃
1− 3ζ2

n
L ′
(︃
3ζ2

n

)︃ , (3.30)

where L ′(· · · ) is the first derivative of the Langevin function.

In the following, we provide a more rigorous calculation and the validity of the

Gaussian approximation is inspected through comparison with the exact result.

3.4.2 Exact treatment

Compared to the coiled chain in rubber-like materials, the length of the coil between

junction zones in biopolymers is not necessarily large. Therefore, the Gaussian dis-

tribution assumption for the coil may be invalid, and it is necessary to account for

the finite number of segments in the coil [8].

Consider a freely jointed chain with an arbitrary number of Kuhn segment n sub-

jected to no external force. If one end of this coil is located at the origin, the proba-

bility that the other end is located between x and x+dx, along an arbitrary direction
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x, is given by [29]

pCn (x)dx =

1

2b

k∑︂
s=0

n(−1)s

s!(n− s)!

[︃
1

2

(︂
n− x

b

)︂
− s

]︃n−1

dx if − (2k + 2− n)b ≤ x ≤ (n− 2k)b,

(3.31)

and zero for |x| ≥ nb. In the above relation, k = 0, 1, · · · , n− 1. The substitution of

Equation (3.31) in Equation (3.25) results in the exact form of WCR
n (r), from which

the average force can be determined:

⟨fr⟩a
kBT

=
a

r
− a

(︃
dpCn (r − a)

dr
− dpCn (r + a)

dr

)︃(︁
pCn (r − a)− pCn (r + a)

)︁−1
. (3.32)

As a side note, in Appendix B.3, the closed-form expression of the probability distri-

bution pCR
n (x) is derived from (3.24) and (3.31).

3.4.3 Approximation for a large number of Kuhn segments

As x approaches −nb, the numerical calculation of summation in (3.31) for large

n encounters fluctuations. To circumvent this issue, we will devise an alternative

remedy for large n. It should be emphasized that the Gaussian approximation in

3.4.1 is only valid if the end-to-end distance r/b ≪ 1 and n ≫ 1, while the current

treatment is applicable for n≫ 1 irrespective of r values.

The probability distribution of a freely jointed coil along x direction can be ex-

pressed in a single term under certain conditions [20]2,

pCn (x) =
A0√
n

[︃
sinhξ

ξ

]︃n
exp

[︃
−ξx
b

]︃
, (3.33)

in which

ξ = L −1
(︂ x
nb

)︂
, (3.34)

2These conditions are thoroughly discussed in Flory’s book. During the derivation, the sum-
mation of probabilities in (3.31) is replaced by an approximate expression, and then the factorial
functions are estimated with Stirling’s approximation.
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and A0 is a normalization factor and a function of b. Substituting (3.33) into Equa-

tion (3.25) yields

WCR
n (r) =

A0

4πar
√
n

{︃[︃
sinhξ1
ξ1

]︃n
exp

[︂
−ξ1ζ

(︂r
a
− 1
)︂]︂

−
[︃
sinhξ2
ξ2

]︃n
exp

[︂
−ξ2ζ

(︂r
a
+ 1
)︂]︂}︃

,

(3.35)

in which

ξ1 = L −1

[︃
ζ

n

(︂r
a
− 1
)︂]︃

, (3.36a)

ξ2 = L −1

[︃
ζ

n

(︂r
a
+ 1
)︂]︃

. (3.36b)

The average force applied at the ends of the coil-rod structure can therefore be cal-

culated from the Helmholtz free energy,

⟨fr⟩a
kBT

=
a

r
+ ζ

ξ1

[︃
sinhξ1
ξ1

]︃n
exp

[︂
−ξ1ζ

(︂r
a
− 1
)︂]︂

− ξ2

[︃
sinhξ2
ξ2

]︃n
exp

[︂
−ξ2ζ

(︂r
a
+ 1
)︂]︂

[︃
sinhξ1
ξ1

]︃n
exp

[︂
−ξ1ζ

(︂r
a
− 1
)︂]︂

−
[︃
sinhξ2
ξ2

]︃n
exp

[︂
−ξ2ζ

(︂r
a
+ 1
)︂]︂ .

(3.37)

For small values of r/a, and a < nb (ζ < n) it can be shown that

⟨fr⟩a
kBT

= ζ2
3− nϑ2L ′(ϑ)

3nL ′(ϑ)

r

a
+ O

(︃(︂r
a

)︂2)︃
, (3.38)

where ϑ = L −1

(︃
ζ

n

)︃
. For large n the result of the Gaussian approximation (3.29)

can be recovered from Equation (3.38).

3.4.4 Comparison of different results in the canonical ensem-
ble

The normalized average force ⟨fr⟩a/kBT is plotted against the normalized end-to-

end distance r/a for fixed ζ = 5 and n = 5, 10, 25 in Figure 3.4. Three cases are

considered below and the results are provided for the exact model (3.32), Gaussian

approximation (3.28), and large n approximation (3.37).
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Case 1: ζ2 ≤ n

Demonstrated by the curves with n = 25 in Figure 3.4, the coil component in this case

is dominant, and hence the behaviour of the curves resembles that of coiled chains

without a rod component. The average force monotonically increases as the structure

extends. The Gaussian and large n approximations both have reasonable agreement

with the exact model for small r/a. For r/a > 2.5 the large n approximation still

agrees well with the exact model, while there is a substantial deviation from the

Gaussian approximation. This is due to the assumption of small end-to-end distance

for the coiled structure inherited from the Gaussian approximation.

Case 2: ζ < n < ζ2

As shown in Figure 3.4, for n = 10 there are two states with zero force, at r = 0

and r∗ = 0.83a. Recall that r∗ represents the end-to-end distance with maximum

probability. In this case, the curves behave completely differently from the conven-

tional force-extension curves in that a convexity appears in the plots. The convex

behaviour reflects the fact that the maximum probability of the free coil-rod struc-

ture occurs at a non-zero end-to-end distance (r∗) as opposed to zero in the pure free

coil chain model. For this reason, such a structure can sustain compressive forces if

r < r∗. Physically, the phenomenon is caused by the presence of the rod, which has

a rigid structure and when its length is comparable to the contour length of the coil,

a compressive force is required to reach sufficiently small end-to-end distance for the

coil-rod structure. The zero end-to-end distance r = 0 still represents an equilibrium

state, albeit unstable. Similar to the previous case, the large n approximation agrees

with the exact model for the entire range of r, while the Gaussian approximation

departs from the exact model significantly as the end-to-end distance increases. In

particular, under the Gaussian approximation, the coil-rod structure is permitted to

be stretched more than its contour length, i.e., r/a = 3, which is not realistic within

the framework of entropic elasticity.
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Case 3: ζ ≥ n

For this case, the length of the rod is greater than the contour length of the coil,

i.e., nb < a, and it is impossible to reach zero end-to-end distance. This feature

can be captured by the curves in Figure 3.4 with n = 5 (exact result and large n

approximation) in which infinite compressive force is required to push the two ends

toward each other. Zero force is found to occur at r∗ = 0.92a which is the end-to-end

distance with the highest probability of the free coil-rod structure. Clearly, the curve

predicted from the Gaussian approximation differs drastically from the other two

curves not only for large extension r/a > 1.5 but also for small extension r/a < 0.5.

Such a poor performance of the Gaussian approximation is expected and necessitates

the application of the non-Gaussian model for smaller n or large a.

It is worthwhile to mention that in all cases, the average force predicted from the

exact model goes to infinity as the end-to-end distance approach the fully stretched

state, i.e., r → a+ nb. Moreover, as r/a approaches 1, the accuracy of the Gaussian

approximation increases because of the small extension of the coil.
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Figure 3.4: Normalized force ⟨fr⟩a/kBT vs. normalized end-to-end distance r/a of
the coil-rod structure with fixed ζ = 5 and Kuhn segments n = 5, 10, 25 in the coil.

3.4.5 Comparison between canonical and isothermal-isotension
ensembles

When an applied force is prescribed in x−direction, the coil-rod structure can take dif-

ferent conformations with various end-to-end vectors r. The exact canonical partition

function has been obtained via Equations (3.25), (3.31), and (3.5). By substituting

the result in (3.11) it can be shown that

Q(fx, T, n+ 1) = Z0 sinh

(︃
fxa

kBT

)︃
4πkBT

fxa

(︃
sinh

(︃
fxb

kBT

)︃
4πkBT

fxb

)︃n

. (3.39)

Now, by utilizing Equation (3.13), we have

⟨x⟩
a

= L

(︃
fxa

kBT

)︃
+
nb

a
L

(︃
fxb

kBT

)︃
=

afx
3kBT

[︃
1 +

n

ζ2

]︃
+ O

(︄(︃
fxa

kBT

)︃2
)︄
. (3.40)

The second step of the above equation shows the asymptotic behaviour of the func-

tion near the origin. The normalized value of fxa/kBT is depicted versus ⟨x⟩/a in
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Figure 3.5 for ζ = 5 and different n = 5, 10, 15. By increasing n the curves tend

to behave more linearly, and the Gaussian characteristics of the coil-rod structure

are more pronounced. Figure 3.5 also shows the results from the canonical ensemble

in dashed lines, which are obtained by applying Equations (S19) and (3.8) in (3.3)

and (3.4). Although one ensemble measures the average of the displacement ⟨x⟩ and

the other measures the average of the applied force ⟨fx⟩, good agreement between

the two ensembles is observed. The results at small x are still distinguishable due

to the presence of the rod structure mentioned in Section 3.3, but the discrepancies

fade away as x increases. One feature of the fx (or ⟨fx⟩) vs. ⟨x⟩ (or x) is that the

initial slope is always positive, which is different from the ⟨fr⟩ vs. r result derived

from the canonical ensemble (Figure 3.4). In fact, for canonical ensemble with pre-

scribed displacement x, even for very small x, the coil-rod structure can still access

conformations with large end-to-end distance r due to the displacements along y and

z directions. Consequently, a compressive force is not required to maintain a small

displacement x as opposed to the case with a small end-to-end distance r.
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Figure 3.5: Normalized force vs. normalized displacement along x direction for ζ = 5
and n = 5, 10, 25. For the isothermal-isotension ensemble fxa/kBT is plotted against
⟨x⟩/a, while for the canonical ensemble ⟨fx⟩a/kBT is plotted against x/a.

3.5 Coil-rod structure with zipping/unzipping mech-

anism

As it was alluded to, external mechanical loading may cause the unzipping of the

segments contributing to the junction zones. For example, in ion-mediated biopoly-

mers, the trapped cations are set free from the junction zones under the external

loading, and the length of the associated junction zones is reduced accordingly. To

incorporate the zipping/unzipping mechanism, the Boltzmann average of statistical

mechanics will be used. This treatment considers each coil-rod conformation with a

different rod length as an equilibrium point in the phase space. The energy of each

conformation is ascertained based on the binding energy of the constituent units of
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the rod. As the number of these units increases, the total energy of the coil-rod

structure decreases and the structure tends to be more stable. The number of Kuhn

segments in the coil is reduced during the formation of new units in the rod. If we

suppose that N is the number of Kuhn segments in the completely unwound system

(purely coiled structure), then the number of Kuhn segments participating in the rod

is N − n. Without loss of generality, we define an effective unit in the rod such that

it is formed from one Kuhn segment from the coil. The number of effective units in

the rod is therefore N − n. The length of each effective unit is denoted by αb with

α being the ratio between the length of one unit in the rod and the Kuhn length.

Accordingly, the length of the rod a is dependent on n as below

a = (N − n)αb. (3.41)

We denote the energy required to liberate one effective unit from the rod by ε. Fig-

ure 3.6 illustrates the energy landscape of the rod, using the egg-box model as an

example. As n increases and the effective units are released from the rod, the energy

of the rod increases, reaching different equilibrium states (energy wells) separated by

multiple of ε. The length αb is also shown in the rod structure.
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Figure 3.6: Schematics representation of the energy landscape for the rod, using egg-
box model for illustration.
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By applying the Boltzmann average and Equation (3.5), one can write the partition

function for a coil-rod with prescribed end-to-end vector r but variable n,

Ω(r, T, ε) = Z0exp

[︃
Nε

kBT

]︃ nmax∑︂
n=nmin

WCR
n (r)exp

[︃
− nε

kBT

]︃
, (3.42)

where nmin and nmax are respectively the minimum and maximum allowable numbers

of Kuhn segments in the coil during zipping/unzipping. This form is equivalent to

the grand canonical partition function with fixed chemical potential ε. Let us rewrite

Equation(3.42) as

Ω(r, T, ε) = Z0exp

[︃
Nε

kBT

]︃ nmax∑︂
n=nmin

exp

{︃
ln
[︁
WCR

n (r)
]︁
− nε

kBT

}︃
, (3.43)

where the vector r has been replaced by r due to the dependence of WCR
n (r) through

r. At fixed r, by increasing n the probability distribution WCR
n (r) increases as a

result of having more conformations. On the other hand, the energy level goes up

due to the liberation of the units from the rod. These two competing effects can

yield a specific value of n0(r) for which the argument of the exponential function in

(3.43) is maximum. This term makes the most contribution to the sum in (3.43), and

examination of the variation of n0 with respect to r allows us to detect the occurrence

of zipping/unzipping. Specifically, a flat region of n0 vs. r indicates the tendency of

the structure to have a fixed number of Kuhn segments in the coil, while a region of

varying n0 vs. r shows the tendency of the structure to update the number of Kuhn

segments through zipping or unzipping processes. After the calculation of Ω(r, T, ε)

in Equation (3.43), the grand canonical potential can be determined as

Φ(r, T, ε) = −kBT ln [Ω(r, T, ε)] , (3.44)

from which the average force is evaluated by

⟨fG
r ⟩ =

∂Φ(r, T, ε)

∂r
. (3.45)

Figure 3.7a shows the normalized force ⟨fG
r ⟩b/kBT vs. the normalized end-to-end

distance r/b for N = 20, nmin = 5, nmax = 19, α = 0.8 and ε = 0.1kBT . Here the large
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n approximation for WCR
n (r) (Equation (3.35)) has been used to ensure numerical

stability. Results for fixed n at nmin and at nmax are also plotted for comparison. The

inset shows the variation of n0 with r/b. A qualitative comparison of the main plot

with the inset identifies five different regimes. For r/b ≤ 2, the structure has a fixed

number of Kuhn segments, n0 is constant and the force-extension curve converges to

that of the coil-rod structure with fixed n = 19. For 2 ≤ r/b ≤ 11.7, n0 decreases

with r/b suggesting the occurrence of zipping. The force-extension relationship starts

deviating from the curve that corresponds to n = 19 and moving towards the curve

that corresponds to n = 5. Meanwhile the plot exhibits negligible average force and

hence stiffness. In other words, when the applied force is small, the coil-rod structure

is able to achieve different end-to-end distances by varying the number of units in

the rod. For 11.7 ≤ r/b ≤ 16.7, n0 is constant again, and the force-extension curve

almost overlaps with the curve corresponding to fixed n = 5. With this maximum rod

length, the structure can bear the normalized tensile force up to 17. In the regime

of 16.7 ≤ r/b ≤ 18.4, n0 increases with r/b indicating the unwinding of the coil-rod

structure and its transition towards n = 19. The unwinding alleviates the loading on

the structure and a slightly decreasing trend is observed in the force-extension curve.

It should be noted that some small fluctuations exist in the curve in this regime, which

is not due to the numerical issues. Rather, this is caused by the discrete nature of

n in the summation (3.43). In other words, each oscillation in the curve corresponds

to, on average, the liberation of one unit from the rod. Finally, when r/b ≥ 18.4,

n0 stays at 19 and the load-bearing nature of the structure is activated, with sharp

increase in the normalized force at the minimum rod length.

To demonstrate the effects of binding energy, Figure 3.7b shows the results under

the same condition as in Figure 3.7a except for a larger binding energy of ε = 5kBT .

A close examination of the main curve with the inset shows the presence of four

regimes. When r/b ≤ 8.3, n0 decreases with r/b and zipping occurs. Unlike in

Figure 3.7a, at r/b = 0, n0 = 10 instead of nmax = 19 and its decreasing trend starts
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immediately after r/b deviates from zero. This distinct feature is caused by the larger

binding energy, which drives the units to zip and form the rod. The force-extension

curve is substantially different from both reference curves (corresponding to n = 19

and 5) in this regime. Notably, the force is compressive, this can be explained by

the lengthening of the rod and shortening of the coil part which tend to generate

a bulkier structure. A similar observation is made in Figure 3.4 where short coil

require compressive force to achieve a small end-to-end distance. For 8.3 ≤ r/b ≤

16.9, n0 is at nmin = 5 and the force-extension curve also agrees with the one at

maximum rod length. In addition, the force transitions from compression to tension

at r/b = 11.8. Further extension causes unzipping in the range of 16.9 ≤ r/b ≤ 19.4.

Similar to Figure 3.7a, upon unzipping the force shows an overall decreasing trend,

but the oscillations in the curve are much more pronounced because the liberation

of one unit from the rod is associated with more substantial change in the energy.

Beyond r/b ≥ 19.4, the rod reaches its minimum length and the force on the structure

increases significantly with the end-to-end distance. It is worth pointing out that in

the formulation of zipping/unzipping, (kBT )
−1 and ε always appear together as the

product
ε

kBT
. Therefore, increasing the binding energy ε is equivalent to increasing

(kBT )
−1 or decreasing the temperature. The comparison between Figure 3.7a and

Figure 3.7b hence also demonstrates the change in the behaviour of the coil-rod

structure caused by decreasing the temperature. Figures 3.7a and 3.7b also remove

the discontinuity that appeared in the force vs. extension curve obtained by Higgs

and Ball [19]. The discontinuity was caused by a number of assumptions in their

partition function calculation which are avoided in the current work.
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(a)

(b)

Figure 3.7: Normalized force ⟨fG
r ⟩b/kBT vs. normalized end-to-end displacement r/b

of the coil-rod structure for ε/kBT = 0.1 in (a) and 5 in (b). The insets show the
associated value of n0 against r/b. The results are produced with N = 20, nmax = 19,
nmin = 5, and α = 0.8.



3.6 Demonstration of model application

3.6.1 Implementation in eight-chain model

In this section, the force-extension relationship developed in this work is implemented

into the macroscopic eight-chain model of Arruda and Boyce [31] to predict the me-

chanical response of a network containing coil-rod structures. Following the idea of

Arruda and Boyce [31], eight coil-rod structures are placed in a cube such that for

each structure, one of its ends is fixed at the center while the other is tethered at

a corner of the cube. The Helmholtz free energy per unit reference volume can be

written in terms of the end-to-end distance of the chain r in the current configuration

Ψ =

ϱ∑︂
i=1

ψi(r), (3.46)

where ϱ refers to the number of chains per unit reference volume. ψi is the energy

stored in the ith chain

ψi(r) =

∫︂ r

r0

⟨fr⟩ dr, (3.47)

where r0 is the end-to-end distance of the chain in the reference configuration. If the

cube edges are parallel to the principal stretches λ1, λ2, and λ3, it can be shown that

the stretch of each chain in the current configuration λchain is given as [31]:

λchain =
r

r0
=

1√
3

(︁
λ21 + λ22 + λ23

)︁1/2
. (3.48)

Differentiating (3.46) while assuming all chains to be identical and imposing incom-

pressibility λ1λ2λ3 = 1, the principal Cauchy stresses (σi, i = 1, 2, 3) can be obtained

σi = λi
dΨ

dλi
− p0 =

ϱr0λ
2
i√

3 (λ21 + λ22 + λ23)
1/2

⟨fr⟩
⃓⃓⃓
r0λchain

− p0, (3.49)

where p0 is the unknown pressure to be determined from the boundary conditions.

Clearly, the stress-stretch relations directly depend on the force-extension behaviour

of the constituent chains, i.e., ⟨fr⟩-r . For coil-rod structures with fixed rod and

coil lengths, ⟨fr⟩ can be obtained via Equations (3.28), (3.32), or (3.37) for various
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approximations. It should be noted that the end-to-end distance r0 in the reference

configuration is taken to be
√
nb for a freely jointed chain [1], which is not applicable

for the coil-rod structure. Instead, we determine r0 from

r0 =

∫︂ ∞

0

rWCR
n (r)dr, (3.50)

which is the average end-to-end distance of a coil-rod structure subjected to zero

force. Figure 3.8 shows the normalized principal stress σ1/G (G = ϱkBT ) vs. the

principal stretch λ1 for three different loading conditions: biaxial (with equal stretches

in directions 1 and 2), uniaxial (stretch in direction 1) and pure shear (in the 1-2

plane). ⟨fr⟩-r relation in Equation (3.37) is used for n = 25 and different ζ = 0, 5, 25.

ζ = 0 corresponds to the case where the rod is absent and the coil-rod structure

reduces to a freely jointed chain. For any given loading condition, as the length of

the rod increases, the network becomes stiffer and the difference can be significant.

For instance, by introducing a rod with the length equal to 5 Kuhn segments, σ1

is doubled at λ1 = 3 for uniaxial tension and pure shear, and more than doubled

for biaxial loading. This signifies the importance of considering the rod element in

macroscopic modeling of biopolymer gel networks.
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Figure 3.8: Normalized Cauchy stress σ1/G vs. the principal stretch λ1 for biaxial,
uniaxial and pure shear loadings of a biopolymer gel network modeled by implement-
ing Equation (3.37) into the eight-chain model of Arruda and Boyce [31]. The coil has
a fixed number of Kuhn segments n = 25, while different rod lengths are considered,
ζ = 0, 5, 25.

3.6.2 Prediction of DNA unwinding

In this section, we test the validity of the proposed zipping/unzipping mechanism

against existing experimental data. For this purpose, the experiments performed

by Clausen-Schaumann et al. [32] are considered, which involve the unwinding of a

double-stranded DNA. The exploration of DNA unwinding is crucial as it occurs ex-

tensively in biological processes, including replication, transcription and DNA-protein

interaction [33]. Clausen-Schaumann et al. [32] reported the stretching of a 1.5 µm-

long segment of double-stranded λ-BstE II digest DNA at T = 20◦C using atomic

force microscopy (AFM). They observed that after a highly cooperative mechanism,
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a conformational transition occurred at force 65 pN. At this point, the DNA double

helix started to shrink, and only one of the two strands remained attached to the

AFM tip and to the substrate. Below we show that the current model is capable of

capturing the unwinding process and the conversion of the double-stranded DNA to

single-stranded ones. Here, the double-stranded DNA is modelled as the rigid rod,

while the single-stranded DNA is treated as a freely jointed coil structure. Under

applied loading, the double-stranded DNA unwinds completely so that N = nmax,

and the number of unknown parameters in the model reduces to nmin, nmax, b, α and

ε. Figure 3.9 shows the original experimental data and the model prediction using

the following parameter values:

nmin = 600, nmax = 12000, b = 3 Å, α = 0.46, ε = 0.1 kBT. (3.51)

Due to the large values of n ∈ [nmin, nmax] and exponential decay in (3.43), it is suffi-

cient to approximate the sum in (3.43) by considering only the term n0 with maximum

contribution. Good agreement is found between the model and experiments. In par-

ticular, the model suggests four regimes: 0 ≤ r ≤ 1.56µm at which the system

demonstrates negligible stiffness, 1.56µm ≤ r ≤ 1.71µm where the system can en-

dure limited tensile force up to 65 pN with fixed n = 600, 1.71µm ≤ r ≤ 2.71µm

where the double helix unwinds and the force plateus, and r ≥ 2.71µm where the

force-bearing mechanism is reactivated at fixed n = 12000. It is of interest to note

that the binding energy per unit length is given by ε/αb ≈ 0.04 kcalmol−1 Å
−1
. Tak-

ing the binding energy of a base pair to be 2kBT [33] and considering the base pair

step length as 36 Å [34], the binding energy per unit length for the DNA is estimated

to be 0.03 kcalmol−1 Å
−1
. In Clausen-Schaumann et al. [32], the data corresponding

to single-stranded DNA were fitted using a modified freely-jointed chain model [35]

with stretchable Kuhn segments of length 15 Å. Admittedly, the Kuhn length for the

coil used in the present work is smaller, but considering the correct order of magni-

tude and the simplicity of our model, the parameters in (3.51) are deemed physically
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reasonable. The model is therefore able to capture the entire force-extension curve of

the DNA which underwent conformation transition through unwinding of the double

helix. It should be pointed out that in Figure 3.9 the negative force in the experimen-

tal data near zero extension originates from the contact between the substrate and

the AFM tip [36], not from the elasticity of the DNA chain. This part of the data

is therefore not considered when comparison is made with the model. Also, while

the stiffness of the AFM tip can play a significant role in the measurement [37, 38],

its stiffness is likely large enough to allow the end-to-end distance to be prescribed

(Equation (3.42)) when empolying the grand canonical ensemble [39].

Figure 3.9: Force-extension curve of the double-stranded DNA in Clausen-Schaumann
et al. [32] (purple points). The solid curve is the prediction from the current model
with the parameters in (3.51). The dashed lines represent results with fixed n at
nmin = 600 and nmax = 12000.
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Some discussions are warranted on the modeling of unwinding/unfolding of biomacro-

molecules. It is acknowledged that there are other works that study the unwinding of

double-stranded DNA via more elaborated description of intramolecular interactions.

For example, in the model of denaturation by Theodorakopoulos et al. [40], the in-

teraction between a base pair is modelled via the Morse potential [41] and the DNA

unzipping is explained through the formation of domain walls in the one-dimensional

lattice model. In comparison, in the present work the strength of interaction be-

tween the two DNA strands is represented by a single quantity, namely the binding

energy ε. Despite the simplicity, it is encouraging to see that the model is capable

of predicting the DNA unzipping phenomenon with physically reasonable parameter

values. Although absent in Figure 3.9, Figure 3.7 shows the potential existence of

sawtooth-like behaviour in the force-extension curve caused by unzipping. This type

of phenomenon has been reported in the unfolding of proteins such as titin [42]. A

number of attempts have been made to model this phenomenon by considering folded

and unfolded domains of a polymer structure. For example, Qi et al. [43] investi-

gated the effect of folded domains on the mechanics of biomacromolecules and their

networks. The molecule is represented by a freely jointed chain or a worm-like chain

while the Eyring model is used to capture the kinetics of unfolding. The model is able

to achieve good fitting with the experimental data on the stretching of spectrin which

exhibit sawtooth patterns. Based on the extensible freely jointed chain model [44],

Manca et al. [39] represented a polymer chain by connected domains each having a

potential energy with two local minima. These two minima corresponds to two sta-

ble equilibrium states, one folded and the other unfolded. Monte-Carlo simulations

using this model show sawtooth behaviour in the force-extension curves. Inspired

by this work, Cannizzo et al. [45] analyzed a discrete chain containing bistable units

using three different models (Ising scheme, zipper model, and the stationary phase

approximation) and studied the temperature effect on the force-extension response.

De Tommasi et al. [46] proposed a microstructure-based continuum model for the
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mechanics of spider silks, based on the original idea of De Tommasi et al. [47]. The

material is assumed to consists of hard (folded) and soft (unfolded) domains, which

can transition between them. The total bearing force is taken to be the summation

of the forces associated with the soft and hard domains. Via energy minimization

of a two-state system, the same group [48] also proposed a model for macromolecule

unfolding and demonstrated its ability to match experimental data on the stretching

of titin protein. These previous studies are valuable and provides different perspec-

tives on how unwinding/unfolding may be modeled. Compared with these works,

our approach to modeling unfolding is different in that: 1) we explicitly consider

the rod element and its associated probability distribution; and 2) we employ the

grand-canonical ensemble to statistically sample all the conformations corresponding

to different number of segments in the coil. Since all the models are capable of repro-

ducing experimental observations (with certain fitting parameters), it is of interest to

conduct more examination in the future to compare their advantages and limitations.

3.7 Conclusion

Macroscopic responses of disordered biopolymer gels to external mechanical loading

originate from the interaction between constituting macromolecules inside the net-

work. To capture the presence of junction zones in disordered biopolymer gels, a

coil-rod structure can be considered as a building block which consists of a freely

jointed chain and a rigid rod segment. In this study, the force-extension relations

of the coil-rod structure are explored via a statistical mechanics formulation. The

proposed formulation not only improves previous models in the literature but also

unveils new features such as the requirement of compressive force to reach small end-

to-end distance when the rod length is sufficiently large relative to the coil. When

allowing the exchange between units in the rod and Kuhn segments in the coil, the

model is capable of capturing zipping/unzipping in the junction zone and the associ-

ated changes in the force-extension curve. The application of the current model is not
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merely limited to zipping/unzipping in the junction zones of biopolymer networks. It

can also serve as a tool that provides a perspicuous explanation for the unwinding of

interlocked strands, such as double helix structures. As an example of the application

and based on availability of data, the coil-rod model is used to simulate the unwinding

of double-stranded DNA subjected to external loading. The model is shown to be

able to predict the transition of the double helical structure to single strands with

satisfactory accuracy. An attempt is also made to implement the coil-rod model into

the eight-chain model to predict the mechanical response of a coil-rod network under

different loading conditions.
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Chapter 4

A Multiscale Mechanics Model for
Disordered Biopolymer Gels
Containing Junction Zones with
Variable Length

A version of this chapter has been published. Reprinted with permis-

sion from Moosavian, H., and Tang, T. “A Multiscale Mechanics Model

for Disordered Biopolymer Gels Containing Junction Zones with Vari-

able Length,” Journal of the Mechanics and Physics of Solids 192 (2023):

105792. https://doi.org/10.1016/j.jmps.2024.105792 © Copyright 2023

Elsevier.

4.1 Introduction

Biopolymer gels have found ubiquitous applications in various aspects of our daily life,

including the food industry, biomedicine, and tissue engineering, owing to their abun-

dance, cost-effectiveness, biocompatibility, and biodegradability [1–3]. For instance,

polysaccharides gels can emulate extracellular scaffolds, making them suitable can-

didates for in vivo tissue replacement, as seen in applications like artificial cartilage

[4]. Recently, there has been a growing interest in applying biopolymer gels as an

interpenetrating network with other networks to tailor advanced hydrogels with su-
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perior properties such as extra toughness, strength, or self-healing capabilities [5–8].

To enable effective strategies for designing and fabricating hydrogels with the afore-

mentioned properties, it is essential to develop mathematical models predicting the

mechanical behavior of biopolymer gels under external loading.

Among biopolymer gels, of particular interest is disordered biopolymer gels where

the network consists of disordered domains of unassociated polymer chains as well

as quasi-crystalline junction zones formed from chain association in the presence of

an electrolyte or a change in temperature. Depending on the type of biopolymers,

these junction zones may take on different forms, examples including double helices in

agar, triple helices in gelatin, and cation-bridged chains in alginate gels [9]. Compared

to the significant advancement in multiscale modeling for rubber-like materials with

chemical cross-links, the modeling of biopolymer gels with junction zones is still in its

infancy. The mechanical properties of biopolymer gels are affected by many factors

such as the chain’s sequence, polydispersity, and the type of ions involved [10, 11].

Even the statistical mechanics of two polymer chains sharing a junction zone has been

shown to be quite involved [12]. Understanding the network with junction zones is

more complex since the number of junction zones and their positions fluctuate with

time [13]. More importantly, under mechanical loading, the size of the junction zones

can undergo substantial changes, referred to as unzipping (shortening or shrinkage

of a junction zone) or zipping (lengthening or expansion of a junction zone), which

plays a crucial role in the overall response of the gel network [14]. Nishinari et al.

[15] pioneered the statistical mechanics analysis of disordered biopolymer gels. In

their work, the unassociated polymer chains (coils) in the disordered regions were

represented by the freely-jointed chain model but the number of Kuhn segments in

each coil was permitted to alter to account for zipping/unzipping. A partition function

was introduced by averaging possible configurations of coils with different numbers

of Kuhn segments. Inspired by this work, Higgs and Ball [16] attempted to model

the junction zones in addition to the coils. They proposed a structure where a coil
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is attached to a rigid rod representing the junction zone, albeit with a fixed length.

Chapter 3 extended the analysis of the coil-rod structure, allowing changes in the rod

length to capture zipping/unzipping.

Compared with the above chain-level studies and other modeling work on zip-

ping/unzipping of individual chains such as unwinding of DNA helices [17, 18], the

literature on zipping/unzipping inside a network is more limited. Kutter and Ter-

entjev [19] and Courty et al. [20] calculated the content of helical junction zones in

a network when subjected to external strain. The model by Nishinari et al. [15],

allowing the Kuhn segments in the coils to change but without explicit consideration

of junction zones, was applied to a network and shown to capture the temperature-

dependence of the elastic modulus. Zhang et al. [21] proposed a stress-stretch relation

that considers the contributions from unassociated coils and the junction zones. While

their model captured strain hardening observed during the torsion and compression

of alginate gels, the coil and the junction zone do not interact, hence the lack of

exchange between them via zipping/unzipping. Studies such as Magnenet et al. [22]

have merely focused on the chemical and mechanical properties of junction zones

of alginate gels and their effects on the constitutive equations through irreversible

thermodynamics. Chapter 3 demonstrated the application of the micromechanical

coil-rod model in a network by implementing it into the eight-chain model [23], but

with a fixed rod length. Accordingly, there is a lack of multiscale formulation that

links zipping/unzipping at the chain scale to mechanical responses observed for the

network at macroscopic scale.

In fact, some intriguing phenomena observed experimentally were hypothesized to

be related to zipping/unzipping. For instance, after one complete cycle of loading

and unloading, a gel sample can be left with a “permanent set” – a new stress-free

configuration with an isotropic volume change compared with the sample before the

loading [5, 22, 24, 25]. This suggests the occurrence of some irreversible processes

potentially caused by zipping/unzipping of the junction zones. Can we establish
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a multiscale framework that integrates force-extension relationship of the building

blocks (i.e., coil-rod structures) of disordered biopolymer gels, the variable junction

zones due to zipping/unzipping, and the collective contribution of the building blocks

to the network? And can this framework provide rational explanations to the exper-

imental observations? This study aims at addressing these questions and by doing

so, we contribute novel insights into the behavior of disordered biopolymer gels under

mechanical loading, which is crucial for advancements in their design and engineering.

The rest of the context is organized as follows. Section 4.2 outlines the statisti-

cal mechanics of coil-rod structure and associated zipping/unzipping behavior. The

micromechanics model is integrated with the well-known eight-chain model [23] in

Section 4.3, but with a critical examination on the end-to-end distance of the coil-rod

structure in a stress-free network. This end-to-end distance depends on the length

of the rod, and must be determined from a model that accounts for finite compress-

ibility. In Section 4.4, the effect of solvent introduction during the gelation process

is included. Finally, the proposed model is compared with experimental data on an

alginate gel in Section 4.5, followed by a discussion on the limitations of the model

and its prospects for future enhancements.

4.2 Micromechanics of coil-rod structure

The formulation of a single coil-rod structure has been previously established within

the framework of statistical mechanics in Chapter 3. Herein, those results necessary

for constructing the multiscale model are briefly summarized.

Consider an ideal coil-rod structure consisting of a single rigid rod with length a,

attached to a non-Gaussian freely-jointed chain with Kuhn length of b and number

of Kuhn segments n. Excluded volume effect is not considered in the ideal coil-rod

model such that long-range energetic interactions between the constituent segments

are neglected. If one end of the coil-rod structure (hereafter interchangeably referred

to as the “chain”) is anchored at the origin, the probability WCR
n (r) dV of finding the
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other end inside the volume element dV at a position vector r depends solely on the

distance from the origin r. For n > 10, WCR
n (r) is accurately captured in Chapter 3:

WCR
n (r) =

Cn

4πar

{︃[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b

)︃]︃
−
[︃
sinhξ2
ξ2

]︃n
exp

[︃
−ξ2

(︃
r + a

b

)︃]︃}︃
,

(4.1)

in which

ξ1 = L −1

[︃
r − a

nb

]︃
, (4.2a)

ξ2 = L −1

[︃
r + a

nb

]︃
, (4.2b)

and Cn is a normalization factor, as a function of n and b, and independent of the

end-to-end distance r. The analytical expression for Cn is given in Appendix C.1.

In Equations (4.2a) and (4.2b), L −1 (x) denotes the inverse Langevin function and

L (x) = cothx − 1/x. The Helmholtz free energy of an individual chain in the

canonical ensemble ψ = −kBT ln
[︁
WCR

n (r)
]︁
, where kB and T are respectively the

Boltzmann constant and the absolute temperature. Given a specified end-to-end

vector r, the magnitude of the average force applied on the chain in the direction of

r is:

⟨fr⟩ =
∂ψ(r, T, n)

∂r
= −kBT

∂ ln
[︁
WCR

n (r)
]︁

∂r
. (4.3)

The substitution of (4.1) into (4.3) results in the following normalized form:

b⟨fr⟩
kBT

=
b

r
+

ξ1

[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b
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− ξ2

[︃
sinhξ2
ξ2

]︃n
exp

[︃
−ξ2

(︃
r + a

b

)︃]︃
[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b

)︃]︃
−
[︃
sinhξ2
ξ2

]︃n
exp

[︃
−ξ2

(︃
r + a

b

)︃]︃ .

(4.4)

The limiting case of a → 0 is attainable from Equation (4.4), and demonstrated in

Appendix C.2 to be in accordance with previous findings for a coil structure without

rod.

Based on the above formulation which assumes the rod length a to be constant,

the shrinkage or expansion of junction zones during mechanical loading or unloading
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can be captured by considering zipping/unzipping modeled in the grand canonical

ensemble. In essence, the chain’s overall behavior arises from a trade-off between

two mechanisms: achieving lower energy with increased association of coil segments,

which tends to lengthen the rod; and maximizing entropy through more liberated

segments which tends to shorten the rod. If the number of Kuhn segments in the

fully unwound coil is N , then for the coil-rod structure with n Kuhn segments in

the coil there are N − n segments in the rod. Assuming that the length of each

Kuhn segment, being b in the coil, is changed to αb when confined in the rod, the

length of the rod is therefore αb(N − n). The length αb is typically less than b as

it represents the projected length of a Kuhn segment onto the rod. By performing

Boltzmann averaging of different configurations, and denoting the required energy for

the liberation of one Kuhn segment from the rod as ε, one can arrive at the grand

canonical partition function Ω(r, T, ε) under fixed temperature, end-to-end vector and

binding energy

Ω(r, T, ε) ∝
nmax∑︂

n=nmin

exp

{︃
ln
[︁
WCR

n (r)
]︁
− nε

kBT

}︃
, (4.5)

where nmin and nmax respectively specify the minimum and maximum allowable num-

ber of Kuhn segments in the coil. Due to the heterogeneous nature of real networks,

it is unlikely to observe extreme cases where there are only coils with no rods or

only rods with no coils. Therefore, the two parameters nmin and nmax are introduced

to avoid such extreme situations. The average force ⟨fG
r ⟩ required to maintain r is

obtained as

⟨fG
r ⟩ = −kBT

∂ lnΩ(r, T, ε)

∂r
, (4.6)

where the superscript G signifies the grand canonical ensemble. It should be noted

that any proportionality constant in (4.5) is immaterial in Equation (4.6), due to the

differentiation with respect to r.

It is of interest to determine the term (n = n0) with the maximum contribution to

the sum in (4.5), as an indicator for the degree of zipping/unzipping. Applying the
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condition for an extermum

∂WCR
n (r)

∂n

⃓⃓⃓⃓
n=n0

=
εWCR

n0
(r)

kBT
(4.7)

along with Equation (4.1) leads to

ε

kBT
= − 1
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+

1
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+

ln
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sinh ξ1
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sinhξ1
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−ξ1

(︃
r − a

b

)︃]︃
− ln
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sinh ξ2
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sinhξ2
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exp
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−ξ2
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)︃]︃
[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b

)︃]︃
−
[︃
sinhξ2
ξ2

]︃n
exp

[︃
−ξ2

(︃
r + a

b

)︃]︃ ⃓⃓⃓⃓
⃓
n=n0

.

(4.8)

Appendix C.3 provides the detailed derivation of Equation (4.8) as well as the sim-

plification for pure coil with a = 0. Upon solving the aforementioned equation, n0

is determined as a function of r, subjected to the constraint nmin ≤ n0 ≤ nmax. The

proposed force-extension relationships (3.2) and (4.6) can be incorporated into the

macroscopic constitutive equations of the network containing coil-rod structures, as

elucidated in the next section.

4.3 Implementation into a network model

Due to its simplicity and efficiency, the eight-chain model, proposed by Arruda and

Boyce [23], serves as the foundation network model and is extended such that the

coils in the original model are replaced by coil-rod structures (see Figure 4.1). To

formulate the stress-stretch relation accurately, several considerations must be taken

into account. Of particular importance is the status of the coil-rod structures when

the bulk network is in its reference, typically chosen to be stress-free state. For an

affine network encompassing Gaussian coil structures, the end-to-end distance of the

coils in the stress-free network is taken to be
√
nb, which is the square-root of the

mean-square end-to-end distance of a corresponding set of free chains [26]. However,

this assumption was rarely justified and may not be valid for more complex models
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such as non-Gaussian chains1. As pointed out by Cioroianu et al. [28], the coils with

end-to-end distance of
√
nb are in fact subjected to a pre-stress, which can influence

the constitutive relations. Nonetheless, it is perpetuated in other works and has led

many researchers to unwittingly consider this value for coils in a stress-free network.

When the coils are replaced by coil-rod structures, the less flexible rod part likely will

lead to an end-to-end distance that is different from
√
nb. It is important to determine

this end-to-end distance from a rational approach, which requires the relaxation of

the incompressibility constraint in the original eight-chain model. In addition, the

incorporation of zipping/unzipping modifies the original eight-chain model, designed

for capturing entropic elasticity, to include the consideration of binding energy in the

junction zone. Finally, as zipping/unzipping occurs, the length of the rod changes,

which in turn alters the end-to-end distance of the chain in a stress-free network

and the stress-stretch relation. These considerations are discussed in detail in the

formulations below.

1Herein, the term ‘non-Gaussian’ is tacitly used to emphasize the finite extensibility of the in-
dividual ‘ideal’ chains beyond the Gaussian limit, as per the terminology of Treloar [26]. It is
acknowledged that non-ideal chains, such as those with excluded volume effects, can also be referred
to as non-Gaussian [27]. Such considerations, however, fall outside the scope of the current study.
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Figure 4.1: Different states of the gel containing coil-rod structures within the eight-
chain network model. To prevent visual clutter, only one chain is shown inside each
cube. The red spheres represent gelation agents and can associate the Kuhn segments
forming a rod. During unzipping, the gelation agents are released. (I) The reference
state which is also a stress-free state with n1 Kuhn segments in the coil. The length
of the cube associated with the eight-chain model is 2r0/

√
3 where r0 is the end-to-

end distance of the chain. (II) A deformed state in which the polymer chains are
extended but the number of Kuhn segment in coils remains fixed as n1. (III) Further
deformation triggers unzipping such that the number of Kuhn segments in the coil
increases to n3 > n1. The principal stretches λ1, λ2, and λ3 are measured with
respect to state (I). (IV) A new stress-free state with n4 Kuhn segments in the coils.
Compared to state (I), the dimensions of the cube cell is modified by a factor of λp.



In the current framework, it is postulated that all coil-rod structures have the same

total number of Kuhn segments N , number of Kuhn segments n in the coil, Kuhn

length b, and rod length a. In accordance with the original model, the sides of the

cube undergo principal stretches λ1, λ2, and λ3 in the deformed state. Hence, all the

chains situated along the diagonals experience the same stretch λchain as:

λchain =

√︃
λ21 + λ22 + λ23

3
. (4.9)

4.3.1 Identification of the stress-free state

Let r0 denote the end-to-end distance of the constituting chains of a stress-free net-

work. To precisely determine r0, we begin with a formulation that allows volume

change in the network [29]. This technique is not applicable to incompressible ma-

terials, where the unknown hydrostatic pressure is responsible for maintaining the

reference state free of stress. Let us define the reference state with volume V0, and all

subsequent applied stretches are measured with respect to this state. The entropy of

an individual coil-rod structure with an end-to-end distance r0, where one end is fixed

and the other end occupies the volume dV0, is given by s0 = c+kB ln
[︁
WCR

n (r0)dV0
]︁
, c

being a constant. Similarly, the entropy of this coil-rod structure with a different end-

to-end distance r in the deformed state with volume V is s = c+ kB ln
[︁
WCR

n (r)dV
]︁
.

Therefore, the change of entropy of the chain from the reference state to the deformed

state is written as

∆s = kBln

[︃
WCR

n (r)

WCR
n (r0)

]︃
+ kB ln J, (4.10)

with J = dV/dV0 being the volume ratio.

In the eight-chain model, the macroscopic stretches are related to microscopic chain

extension via

r = λchainr0. (4.11)

Additionally, the volume ratio on the micro-scale is linked to the principal stretches

by J = λ1λ2λ3. The change in entropy ∆S of the network per unit reference volume
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V0 is equal to the sum of entropy change of all constituent individual chains expressed

as follows:

∆S = ϱkBln

[︃
WCR

n (λchainr0)

WCR
n (r0)

]︃
+ ϱkB ln J, (4.12)

in which ϱ denotes the number of chains per unit reference volume V0. Hence the

Helmholtz free energy of the deformed state is

Ψ = Ψ0 − T∆S = Ψ0 − ϱkBT ln

[︃
WCR

n (λchainr0)

WCR
n (r0)

]︃
− ϱkBT ln J, (4.13)

where Ψ0 denotes the Helmholtz free energy in the reference state. The principal

Cauchy stresses for compressible material is calculated by [30]

σi =
λi
J

∂Ψ

∂λi
, i = 1, 2, 3, (no sum on i). (4.14)

Based on Equation (4.13), (4.14), as well as (3.2), (4.9), and (4.11) one can conclude

that

σi =
Gλ2i

3Jλchain

r0
b

b⟨fr⟩
⃓⃓⃓
r0λchain

kBT
− G

J
, i = 1, 2, 3, (4.15)

where

G = ϱkBT (4.16)

represents a modulus of the network. The normalized form (4.4) can be directly

applied in (4.15) to represent the stress components in terms of G, without kB and T .

Alternatively, the principal values of first Piola-Kirchhoff (or nominal) stress tensor

are given in terms of principal stretches as follows:

Pi =
Gλi

3λchain

r0
b

b⟨fr⟩
⃓⃓⃓
r0λchain

kBT
− G

λi
, i = 1, 2, 3. (4.17)

Evidently, the calculation of stress components necessitates knowledge of r0. To

evaluate r0, the condition of stress-free state σ1 = σ2 = σ3 = 0 when λ1 = λ2 = λ3 = 1

is adopted. Hence, Equation (4.15) is simplified to

r0
b

b⟨fr⟩
⃓⃓⃓
r0

kBT
= 3. (4.18)
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The above equation determines r0/b for coil-rod structures in a network under zero

stress, and it is a function of n and a. In the limiting case of very small rod

length a, and very large number of Kuhn segments n, ⟨fr⟩
⃓⃓⃓
r0

=
kBT

b
L −1

[︂ r0
nb

]︂
(see

Equation (C.25) in Appendix C.2). With further assumption of Gaussian behaviour

L −1
[︂ r0
nb

]︂
→ 3r0

nb
as n → +∞, one can conclude that r0 =

√
nb. This result is the

prevailing assumption in the majority of works in the literature for the end-to-end

distance of pure coils in a stress-free eight-chain network.

According to Equation (4.18), r0 depends on the number of Kuhn segments n in

the coil. If a coil-rod structure undergoes zipping or unzipping, n changes which

subsequently modifies r0, i.e., the state of the chain in a stress-free network. Let us

consider a coil-rod structure with fixed N but varying Kuhn segments n in the coil

and rod length a = αb(N − n). Physically, the determination of r0 prevails through

two competing mechanisms. The formation of longer rod imparts greater rigidity to

the structure, to the extent that in the extreme case of pure rod with no coil, the

structure assumes only one conformation with a length of Nbα. On the other hand,

the presence of more segments in the coil leads to a longer structure (since b > αb),

even though the end-to-end distance can be much less than the contour length. For

example, in the extreme case of no rod, for large n, r0 =
√
nb≪ nb. Figures 4.2(a)-(c)

illustrate the variations of r0/b with n for different values of N and α. For α = 0.5

(Figure 4.2(a)), at any given N an increase in n results in a decrease in r0 due to

shrinkage of the rod. However, when n is sufficiently close to N , the rod length

becomes negligible, and r0 undergoes minimal change with respect to n. In this case,

the r0 =
√
nb curve (dash-dotted) serves as the minimum envelope for the sets of

curves. It is also clear that at a given n (or fixed coil), larger N leads to a larger r0

due to the longer rod. As α decreases to 0.1 (Figure 4.2(b)), the conversion from rod

to coil is accompanied by significant lengthening of the chain’s contour length (from

0.1b in the rod to b in the coil for each Kuhn segment), and the monotonic decreasing

behavior observed in Figure 4.2(a) disappears. In fact, for N ≤ 60, r0 increases
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with n, while for N > 60, there is a convex trend in r0 vs. n. For instance, for

N = 100, r0 is the same for both n = 0 and n = 100. Consequently, in the presence

of zipping/unzipping, different coil-rod configurations can have the same end-to-end

distance when subjected to zero external stress. For α = 0.01 (Figure 4.2(c)), the

contribution of rod length is almost negligible. Consequently, r0 increases with n and

essentially follows r0 =
√
nb.
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(a)

(b)

(c)

Figure 4.2: Normalized end-to-end distance r0/b in a stress-free eight-chain network
vs. n for different values of N = 10 to 100. α = 0.5, 0.1, 0.01 respectively for (a), (b),
and (c). Dash-dotted curve in each subfigure corresponds to r0 =

√
nb.



Different r0 associated with different n has an impact on the stress-stretch relation.

To demonstrate this, Figure 4.3 shows the normalized first Piola-Kirchhoff stress,

P1/G, against the stretch λ1 during the uniaxial tensile test along direction 1. For

a given λ1, Equation (4.17) is used in junction with the condition P2 = P3 = 0 to

determine P1, as well as λ2 and λ3 (equal in uniaxial tension). All curves correspond

to the same N and α, but have different n and r0. According to Figure 4.2(b), for

a gel network under zero stress, the end-to-end distance of the chain is respectively

r0 = 5.26 b and 7.10 b for n = 10 and 50. The blue curve in Figure 4.3 is generated for

n = 10 with r0 = 5.26 b, resulting in the expected stress vanishing at λ1 = 1. Similar

behavior is observed for the dashed black curve, produced for n = 50 and r0 = 7.10 b.

The solid black curve, however, corresponds to n = 50 (no rod in the chains) and

r0 = 5.26 b, the stress-free state for a network containing chains with a finite rod

(n = 10, N − n = 40). The inset shows that at zero stress, λ1 = 1.35 (= λ2 = λ3),

which corresponds to the stress-free state of the network with n = 50 measured with

respect to r0 = 5.26 b. (1.35=7.10/5.26 is the ratio of r0 between n = 50 and n = 10).

Imagine that during a uniaxial tensile test of a sample that begins with n = 10,

unzipping occurs increasing n to 50. If at this point, the sample is unloaded but the

coil-rod structure does not have time to recover (i.e., through zipping) to the original

n, then one would expect that loading would follow the blue curve in Figure 4.3

upwards while unloading would follow the solid black curve downwards, since the

macroscopic stretch in this test is measured with respect to the original sample.

This would then lead to an isotropic deformation (relative to the original sample,

1.35 in Figure 4.3) when the stress is reduced to zero, which has been reported

as a “permanent set” in the literature [31, 32]. In the next section, we present

a formulation that can capture the length change in the rod during loading and

unloading of the network, i.e., transition between stress-stretch curves such as the

blue and solid black ones in Figure 4.3.
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Figure 4.3: Normalized first Piola-Kirchhoff stress P1/G vs. stretch λ1 for uniaxial
tension of a eight-chain network containing coil-rod structures, N = 50, α = 0.1 while
different n and r0 are used as shown in the legend.

4.3.2 Mechanics of the network with zipping/unzipping

The stress-stretch relations (4.15) and (4.17) were formulated based upon coil-rod

structures with a fixed rod length. By replacing ⟨fr⟩ in these equations with ⟨fG
r ⟩

from (4.6), the constitutive relation is extended to incorporate zipping/unzipping:

σi =
Gλ2i

3Jλchain

r0
b

b⟨fG
r ⟩
⃓⃓⃓
r0λchain

kBT
− G

J
, i = 1, 2, 3, (4.19a)

Pi =
Gλi

3λchain

r0
b

b⟨fG
r ⟩
⃓⃓⃓
r0λchain

kBT
− G

λi
, i = 1, 2, 3. (4.19b)

From this point onward, the value of nmax in Equation (4.5) is taken as N unless

otherwise specified.

The terminology of λi and r0 will now be clarified in the presence of zipping/un-

zipping. As shown in Figure 4.1, suppose that there is a stress-free state (I) for the

network, where the coil-rod structures in the network have n1 Kuhn segments in the
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coil and the end-to-end distance of r0. In this case, the cube with a diagonal of

2r0 has an edge length of 2r0/
√
3. This state is considered as the reference state

and all deformations are measured with respect to this one. Next, under external

loading the cube is deformed from its original state to state (II) where the chains

are on the threshold of unzipping. By applying further deformation, the rod part of

each chain begins to shrink, while the coil part expands. This causes the number of

Kuhn segments in the coil to become larger than n1. If the principal stretches are

designated by λi, the lengths of the cube edges are given by 2λir0/
√
3, as shown in

(III). The entire process of loading from (I) to (III) can be formulated by applying

Equations (4.5), (4.6), (4.19), with nmin = n1. Next the loads are gradually removed

from the sample. If the process is entirely reversible, zipping would occur and the

sample would trace back from (III) to (II) and from (II) to (I) without any changes

in the initial undeformed state. However, given that the rate of chain association is

different from dissociation [33], removal of the external loads from state (III) results in

a new stress-free state (IV) where the coil-rod structures have an end-to-end distance

of λpr0 rather than r0. Here the chains have n4 Kuhn segments in the coil and the

condition of n1 < n4 < n3 leads to partial zipping during unloading. The transition

from states (III) to (IV) can be mathematically modelled by using Equations (4.5),

(4.6), and (4.19), with nmin = n4. Since n3 > n1, as illustrated in Figure 4.2(c), if

α is sufficiently small, it can be confidently asserted that λp > 1. Thus, state (IV)

experiences an expansion λp with respect to state (I) and can capture the permanent

set at the end of the unloading.

Figure 4.4(a) depicts the variation of the normalized first Piola-Kirchhoff stress,

P1/G in terms of the principal stretch λ1 during a uniaxial loading-unloading cycle

along direction 1. The parameters N = 150, α = 0.05, ε = 1.5 kBT . The reference

state (I) (λ1 = λ2 = λ3 = 1) is chosen for coil-rod structures with nmin = 10, resulting

in r0 = 7.85 b. As λ1 increases from 1, the values of P1 and λ2 = λ3 are computed

from (4.19b) such that the condition P2 = P3 = 0 holds. The blue curve exhibits
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an increasing trend that precisely tracks the dashed yellow curve which corresponds

to a fixed n = 10, until reaching λ1 = 2.25 (state II), where unzipping is triggered.

Afterwards, P1 transitions from the dashed yellow curve towards the dash-dotted

purple curve which corresponds to a fixed n = 15. After stretching the sample to

λ1 = 4.32 and P1 = 16.39G (state (III)), the load is gradually removed. At this stage

the formulation (4.19b) is updated with nmin = 15 instead of 10. Evidently, after λ1 is

reduced to below 2.82 the unloading (red) curve follows the dash-dotted purple curve

with fixed n = 15. Complete removal of the load leads to a new stress-free state (IV)

at λ1 = 1.02 (as shown in the inset of Figure 4.4(a)).
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Figure 4.4: Different parameters vs. stretch λ1 for a uniaxial loading-unloading cycle
along direction 1; N = 150, α = 0.05, ε = 1.5kBT . Dashed yellow and dash-
dotted purple curves assume fixed n = 10 and 15, respectively. Blue and red curves
depict the presence of zipping/unzipping with nmin = 10 and 15, respectively. (a)
Normalized Piola-Kirchhoff stress P1, (b) Number of Kuhn segments n0 in the coil
with maximum contribution to the grand canonical partition function, (c) Stretch
ratio λ2, (d) Volume ratio J .

Figure 4.4(b) illustrates the variation of n0, as introduced in Equation (4.8), against

λ1. The horizontal line between states (I) and (II) represents the behavior with a

fixed n0 = 10. The increase in n0 from 10 is initiated at λ1 = 3.09 and continues

till state (III) where n0 = 18. During unloading, n0 decreases to 15 at λ1 = 3.86
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through zipping, and subsequently remains constant until reaching state (IV). It can

be observed that the initiation of unzipping at state (II) does not necessarily cause

a simultaneous change in n0. To explain this, the contribution of different n to the

grand canonical partition function, in a normalized form, is illustrated in Figure 4.5

for λ1 = 2, 3, 3.5. The curve for λ1 = 2 shows the significant contribution of n0 = 10

before state (II). The curve for λ1 = 3 shows that shortly after state (II) while

n0 = 10 still contributes the most, other configurations also begin to play a more

important role. This justifies why the loading curve (Figure 4.4(a)) diverges from the

fixed n = 10 curve prior to the deviation of n0 from 10 in Figure 4.4(b). Finally,

for λ1 = 3.5, n0 shifts to 13, consistent with the increasing trend in Figure 4.4(b)

observed for λ1 > 3.09.

Figure 4.5: The contribution of different n to the grand canonical partition function in
Equation (4.5) under the stretches of λ1 = 2, 3, and 3.5. The terms in Equation (4.5)
are normalized by the grand canonical partition function Ω. The parameters are
N = 150, α = 0.05, ε = 1.5 kBT , nmin = 10.

Figure 4.4(c) illustrates the calculated principal stretch λ2 (equal to λ3) as a func-
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tion of λ1 by solving P2 = P3 = 0 in Equation (4.19b). λ2 starts from 1 in state

(I) and decreases to 0.62 in state (II) where λ1 = 2.25. If unzipping is deactivated,

the curve would follow the dashed yellow curve, with λ2 ultimately approaching 0

at λ1 = 3.76. With the activation of unzipping, further stretching from state (II)

causes λ2 to decrease to 0.42 and subsequently increase, transitioning from state (II)

to state (III). During unloading, λ2 gradually increases and converges to the result

with a fixed n = 15, as indicated by the dash-dotted purple curve. It eventually

reaches λ2 = λ3 = 1.02 at λ1 = 1.02 in state (IV). The variation of the volume ratio

J , measured with respect to state (I), is plotted against λ1 in Figure 4.4(d). As de-

picted by the blue curve, the sample exhibits a slight expansion, returns to the initial

volume, and subsequently contracts upon reaching state (II). Afterwards, the sample

starts unzipping, and further stretching gives rise to contraction and then expansion

of the sample until state (III). The changes in the volume ratio are less pronounced

during unloading for larger nmin, as shown by the red curve. In Appendix C.4, an-

other example is given with a different set of parameters, which shows more drastic

unzipping during loading, accompanied by a larger change in J .

Since biopolymer networks only exist as solvated medium, the analysis of such

networks highly depends on the thermodynamics of aqueous polymer solutions, and

the role of solvation forces [9]. More specifically, the introduction of diluents can

lead to considerable changes in the stress-stretch curves of gels due to swelling [34,

35]. Consistent with traditional constitutive modeling of gel network in the literature,

the above formulation does not explicitly consider swelling. To include the effect of

swelling, a typical approach is to scale r0 to λvr0 and replace G with Gλ−3
v , where λv

represents the isotropic expansion due to swelling, regardless of whether the reference

state is stress-free or not [26]. Since the stress-free state is demonstrated to be crucial

for the constitutive relation, below we carry out a rigorous formulation to consider

swelling, which incorporates the entropy of mixing alongside the expansion due to

swelling and acknowledges the delicate issue of stress-free state.

96



4.4 Consideration of swelling

Figure 4.6 illustrates the schematics of different states during swelling and additional

deformation. The unswollen state (0), characterized by a cube with edge length

2r0/
√
3 contains coil-rod structures with n1 Kuhn segments in the coil. This state is

expanded isotropically by a ratio of λs due to the introduction of solvents, resulting in

state (I). Throughout this process, it is assumed that the number of Kuhn segments in

the coil remains fixed at n1. Similar to Figure 4.1, state (II) represents the threshold

of the deformed state before which no unzipping occurs. With further deformation,

unzipping takes place, leading to the new configuration (III) with larger number of

Kuhn segments in the coil. Since experimentally the reference state (I) serves as the

basis for measuring stretches λ1, λ2, and λ3, the dimensions of the deformed cell in

state (III) are 2λsλir0/
√
3, where i = 1, 2, 3. Finally, upon releasing of the load,

the system reaches state (IV) where all chains are extended by λsλpr0, due to the

presence of some irrecoverable unzipping. The mathematical analysis of theses states

is provided in the following.
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Figure 4.6: Different states of the gel containing coil-rod structure within an eight-
chain network model in the presence of solvent. For visual clarity, only one chain
is shown inside each cube. The red spheres represent the gelation agents and can
associate the Kuhn segments forming a rod, while the large blue spheres represent
the solvent molecules. (0) The unswollen state has no solvents, and the constituting
coil-rod structures with n1 Kuhn segments in the coil have an end-to-end distance
of r0 to ensure a stress-free state. (I) The swollen stress-free state in which the
solvents expand the cell isotropically by stretch λs while maintaining the number of
Kuhn segments in the coil. (II) The deformed state in which the polymer chains are
further extended, but the number of Kuhn segment in coils remained fixed at n1.
(III) Further deformation triggers unzipping, changing the number of Kuhn segments
in the coil to a larger value. The stretches λ1, λ2, and λ3 are measured with respect
to state (I). (IV) Stress-free state after complete unloading from state (III). During
this process the minimum allowable number of Kuhn segments in the coil is set as
n4 > n1. Compared to state (I), the dimensions of the cube are enlarged by λp.



Starting from the unswollen state (0) in which the end-to-end distance of the

constituent chains has been calculated via Equation (4.18). Next,M solvent molecules

per unit unswollen volume are added such that the sample is expanded isotropically

by a stretch λv and converted to a swollen state. Assuming no zipping/unzipping

during swelling, according to Equation (4.12), the entropy change per unit unswollen

volume due to the volume expansion is given by

∆Sd = ϱkBln

[︃
WCR

n (λvr0)

WCR
n (r0)

]︃
+ ϱkB lnλ3v, (4.20)

where the superscript “d” represents the entropy change due to deformation. Besides

∆Sd, there is additional entropy change due to mixing of solvent molecules with coil-

rod structures. To compute this entropy, one can apply the Flory-Huggins theory [36,

37] to the network. The fundamental concept involves assigning a specific volume

to each solvent molecule, while each coil-rod structure in the unswollen state (0)

occupies τ times the volume of a solvent molecule. The entropy of mixing as the

sample experiences stretching by λv is expressed as

∆Sm =−MkB ln
[︁
µτ−1λ−3

v

]︁
− ϱkB ln

[︃
λ3v − µτ−1

λ3v

]︃
, (4.21)

where the superscript “m” denotes the entropy change due to mixing and

µ =M/ϱ. (4.22)

The total entropy change per unit unswollen volume is obtained by adding Equa-

tions (4.20) and (4.21):

∆S = ∆Sd +∆Sm = ϱkB ln

[︃
WCR

n (λvr0)

WCR
n (r0)

]︃
−MkB ln

[︁
µτ−1λ−3

v

]︁
− ϱkB ln

[︃
λ3v − µτ−1

λ6v

]︃
.

(4.23)

The detailed derivation of Equation (4.23) is deferred to Appendix C.5. The Helmholtz

free energy of the swollen state, per unit unswollen volume, for an arbitrary stretch

λv is given by

Ψ = Ψ0 +G

{︃
−ln

[︃
WCR

n (λvr0)

WCR
n (r0)

]︃
+ ln

[︃
λ3v − µτ−1

λ6v

]︃
+ µ ln

[︁
µτ−1λ−3

v

]︁}︃
, (4.24)
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where Ψ0 represents the Helmholtz free energy of state (0). By utilizing Equa-

tion (4.14) one can obtain the Cauchy stress components of the swollen state as

σ1 = σ2 = σ3 = G

⎧⎪⎨⎪⎩ 1

3λ2v

r0
b

b⟨fr⟩
⃓⃓⃓
r0λv

kBT
+

1

λ3v − µτ−1
− 2 + µ

λ3v

⎫⎪⎬⎪⎭ . (4.25)

In the above relation r0 is determined based on Equation (4.18). For sufficiently large

τ (generally true for biopolymer gels), Equation (4.25) is further simplified to

σ1 = σ2 = σ3 = G

⎧⎪⎨⎪⎩ 1

3λ2v

r0
b

b⟨fr⟩
⃓⃓⃓
r0λv

kBT
− 1 + µ

λ3v

⎫⎪⎬⎪⎭ . (4.26)

Figure 4.7 shows the normalized Cauchy stress vs. λv for n = 10, 15, 30, and 50.

The stretch λv for each n is measured with respect to its own r0 as calculated from

Equation (4.18). The intercept of each curve with the horizontal axis corresponds to

the swollen stress-free state (I) with stretch λs measured with respect to the unswollen

state (0) (see Figure 4.6). For instance λs = 1.13 if n = 10 and N = 150, α =

0.05, µ = 1. At λs, the tensile stress given by the first term of Equation (4.26) is

counterbalanced by the compressive stress of the second term, resulting in vanishing

total stress.
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λ=1.76s
λ=2.04sλ=1.13s

Figure 4.7: Normalized Cauchy stress σ1/G (σ1 = σ2 = σ3) vs. the stretch λv for
N = 150, µ = 1, α = 0.05, and different number of Kuhn segments n in the coil.
The intersection with the abscissa indicates the swollen stress-free state under the
isotropic stretch of λs.

Once λs is at hand, one can study the application of additional mechanical de-

formation. Suppose that the swollen stress-free state (I) is subjected to principal

stretches λ1, λ2, and λ3 measured with respect to state (I), converting it to state (II)

(see Figure 4.6). The associated entropy change per unit unswollen volume from state

(0) to state (II) is given by

SII − S0 = ϱkB ln

[︃
WCR

n (λsλchainr0)

WCR
n (r0)

]︃
− ϱkB ln

[︃
λ3sJ − µτ−1

J2λ6s

]︃
−MkB ln

[︁
µτ−1λ−3

s J−1
]︁
,

(4.27)

where the details of the derivation is provided in Appendix C.5. The Helmholtz free

energy of the deformed state (II) per unit unswollen volume is therefore

ΨII = Ψ0 +G

{︃
−ln

[︃
WCR

n (λsλchainr0)

WCR
n (r0)

]︃
+ ln

[︃
λ3sJ − µτ−1

J2λ6s

]︃
+ µ ln

[︁
µτ−1λ−3

s J−1
]︁}︃

.

(4.28)
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For sufficiently large τ , applying Equation (4.14) leads to

σi = G

⎧⎪⎨⎪⎩ λ2i
3Jλ2sλchain

r0
b

b⟨fr⟩
⃓⃓⃓
λsλchainr0

kBT
− 1 + µ

Jλ3s

⎫⎪⎬⎪⎭ , i = 1, 2, 3. (4.29)

To account for unzipping in state (III), ⟨fr⟩ is replaced by ⟨fG
r ⟩:

σi = G

⎧⎪⎨⎪⎩ λ2i
3Jλ2sλchain

r0
b

b⟨fG
r ⟩
⃓⃓⃓
λsλchainr0

kBT
− 1 + µ

Jλ3s

⎫⎪⎬⎪⎭ , i = 1, 2, 3, (4.30)

which is the extension of Equation (4.19a) in the presence of swelling consideration.

The above relation measures the applied force in state (III) per unit area of state (III).

However, G and µ introduced respectively in (4.16) and (4.22) are parameters defined

based on the unswollen state (0). For λ1 = λ2 = λ3 = 1 (J = 1), Equation (4.30)

converts to the special case of Equation (4.26) for λv = λs and consequently the stress

components vanish. The principal components of the first Piola-Kirchhoff stress, while

allowing for zipping/unzipping, is given by

Pi = G

⎧⎪⎨⎪⎩ λi
3λ2sλchain

r0
b

b⟨fG
r ⟩
⃓⃓⃓
λsλchainr0

kBT
− 1 + µ

λ3sλi

⎫⎪⎬⎪⎭ , i = 1, 2, 3, (4.31)

which measures the applied force in state (III) per unit area of the swollen stress-

free state (I). In Appendix C.6, the second law of thermodynamics is examined

with the above constitutive relation by decomposing the deformation gradient into

its elastic and plastic components. It is shown that the second law of thermodynamics

is satisfied by the multiscale framework presented here.

Figure 4.8(a) depicts the normalized first Piola-Kirchhoff stress P1/G against the

principal stretch λ1 of the swollen network during a uniaxial loading-unloading test

for µ = 1, where N , α, and ε are set to the same values as those in Figure 4.4. For this

case, the parameter r0 = 7.85 b has been previously computed for the unswollen state,

and λs = 1.13 has been determined from Figure 4.7. Two solid curves, blue and red,

utilize Equation (4.31), in which ⟨fG
r ⟩ is computed for nmin = 10 and 15, respectively.
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The dashed yellow curve and the dash-dotted purple curve are obtained from the

same equation but using ⟨fr⟩ rather than ⟨fG
r ⟩ with fixed n = 10 and 15, respectively.

For clarification, different states (I) to (IV) explained in Figure 4.6 are also marked

in Figure 4.8. The stress component P1 has a similar behavior to Figure 4.4(a), but

the threshold for unzipping is reduced from P1 = 5.47G at λ1 = 2.25 to P1 = 5.11G

at λ1 = 2.09 for state (II). This reduction for triggering unzipping can be justified

due to the presence of pre-stretch λs in the swollen state (I). The sample undergoes

further extension up to λ1 = 3.82 in state (III). After unloading from (III) to (IV),

the permanent set of state (IV) is λp = 1.06 (as shown in the inset), larger than

1.02 observed in the inset of Figure 4.4(a). Figures 4.8(b), (c), and (d) respectively

demonstrate n0, λ2 (or λ3), and volume ratio J vs. λ1 for the same uniaxial loading-

unloading test. Although all states (I) to (IV) have changed due to swelling, the

qualitative behavior is similar to their counterparts in Figure 4.4(b)-(d).
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Figure 4.8: Different mechanical parameters in a uniaxial loading-unloading test vs.
stretch ratio λ1 for a gel network containing coil-rod structures and with swelling
effects explicitly considered; µ = 1, N = 150, α = 0.05, ε = 1.5kBT . Dashed
yellow and dash-dotted purple curves assume fixed n = 10 and 15, respectively. Blue
and red curves allow zipping/unzipping with nmin = 10 and 15, respectively. (a)
Normalized Piola-Kirchhoff stress P1, (b) Number of Kuhn segments n0 in the coil
with maximum contribution to the grand canonical partition function, (c) Stretch
ratio λ2, (d) Volume ratio J .

4.5 Discussion

The proposed model is compared with experimental data from a uniaxial tensile

test carried out on alginate gel, as reported by Sun et al. [5]. While their primary
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interest is in alginate-polyacrylamide hybrid gels, the authors provided loading and

unloading data for alginate gel separately, demonstrating that the hysteresis observed

in the hybrid gel could be attributed to the inherent behavior of the parent alginate

gel. Alginate, characterized as an ionic hydrophilic polysaccharide, is a copolymer

consisting of two guluronic residues: β-D-mannuronic acid (M) and α-L-guluronic acid

(G). According to the egg-box model [38], gelation takes place through the chelation

of divalent cations, typically Ca2+, between specific sites on the polyguluronic chains.

Figure 4.9(a) presents the experimental data of first Piola Kirchhoff stress (in

kPa) against the principal stretch λ1 from Sun et al. [5]. In the proposed model the

egg-box structure is treated as the rod and the remaining parts of the network are

considered as the coil. Based on Baumberger and Ronsin [39] and taking the Kuhn

segment as two consecutive G units, the binding energy for one Kuhn segment in the

rod is ε = 12kBT . Applying the constitutive relation (4.31) for the swollen sample,

all remaining five parameters in Equation (4.32) are determined through a fitting

procedure using the loading branch of the experimental data, resulting in the blue

curve:

G = 0.002 kPa, N = 495, µ = 7743, α = 0.739, nmin = 10. (4.32)

Considering water content in the gel as 86 wt % [5], µ value in (4.32) corresponds to an

estimated molar weight of 22 689 g/mol for the polymer chains, which falls within the

range of 20 000 g/mol to 1 000 000 g/mol as reported by Vold et al. [40]. Moreover, the

parameter α is close to the ratio between the length of one egg-box unit (9Å, [39]) and

the length of two unassociated G units (≃ 11Å, [41]), which is 0.82. Corresponding

to the parameters in Equation (4.32), the swelling stretch to reach a stress-free state

is determined to be λs = 1.03, and the end-to-end chain distance in the unswollen

stress-free state is calculated as r0 = 358.43 b. The same parameters with a different

nmin = 138 result in the unloading curve of the sample (red curve). Clearly, both

curves properly capture the loading and unloading behaviour with physically realistic

105



parameters. The larger prediction of permanent set by the model (1.09) compared to

1.05 found in the experiment can possibly be attributed to the model’s inability to

capture chain entanglements [42]. Figure 4.9(b) shows the values of n0 vs. λ1. The

sample begins with n0 = 10 but undergoes immediate unzipping upon loading. The

number of Kuhn segments in the coil increases up to λ1 = 1.22. During unloading,

the red curve shows partial zipping converging to the state with fixed n0 = 138.

Figure 4.9(c) illustrates the variation of J with respect to λ1. Herein, the sample

experiences a maximum J of 1.27 during loading and unloading.
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Figure 4.9: (a) The first Piola-Kirchhoff stress P1 as a function of stretch λ1 for a
uniaxial loading-unloading test with parameters N = 495, G = 0.002 kPa, µ = 7743,
ε = 12 kBT , and α = 0.739, along with experimental data from Sun et al. [5]. (b)
The relationship between n0 and λ1. (c) The variation of J with λ1.



Finite compressibility considered in the current treatment plays a pivotal role as

it enables us to determine the unknown parameter r0 from (4.18), instead of the

conventionally approach of setting r0 =
√
nb for incompressible materials. Physi-

cally, it is also reasonable to expect certain degree of compressibility arising from

zipping/unzipping and the dependence of r0 on the length of the rod. When swelling

is considered, the finite compressibility allows us to obtain λs from (4.26). If the

material were treated as incompressible, one would not be able to uniquely determine

λs since an arbitrary hydrostatic pressure can be imposed so that the reference state

remains stress-free. Consequently, the recognition of stress-free states is obscured in

incompressible formulations, and λs must be treated as an additional material pa-

rameter [34]. The importance of a rational relation between stress-free state and r0 is

also recognized by Trentadue et al. [43] and Fazio et al. [44]. However, their strategy

differs from the one adopted here and in Bischoff et al. [29]. In their works [43, 44], the

microscopic worm-like chain model is tailored to give ⟨fr⟩
⃓⃓⃓
r0
= 0. Such models, when

implemented macroscopically, automatically render a stress-free state under incom-

pressible condition for a chain end-to-end distance of r0. Other approaches to defining

stress-free state also exist, notably the one pointed out by De Tommasi et al. [45].

In particular, the authors attempted to address the folding/unfolding phenomenon

in biopolymers such as proteins using the affine network model. By neglecting the

effects of folded domains it was assumed that chains with different number of Kuhn

length n have different initial end-to-end distances r0 =
√
nb. An extra internal

variable was introduced in the constitutive relation that depends on the maximum

stretch experienced by the sample in its loading history. This variable, conceptually

analogous to nmin introduced here, is responsible for the observed permanent set as

well as capturing the unfolding phenomenon.

While application of the model is demonstrated using an experiment involving

homogeneous deformation, the model is able to handle inhomogeneous deformation

where zipping/unzipping occurs locally in the material. It should also be recognized
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that the rod in the model represents the junction zones in biopolymer gels, each

shared by multiple coils attached to it. Therefore, although by using an affine network

model it may appear that zipping/unzipping occurring in one chain is unaffected by

the others, different coils in the network can be considered interacting through a

common junction zone. Certainly, by relaxing the affine network assumption, which

originates from the eight-chain model [23], different results may be observed, including

the determination of r0 (Equation (4.18), Figure 4.2).

In the present formulations, the swelling effects are established based upon the as-

sumption that the number of Kuhn segments in the coil remains fixed during swelling.

This assumption can be relaxed by replacing ⟨fr⟩ in Equation (4.26) by ⟨fG
r ⟩. In ma-

terials like alginate gels, the solvent contains ions such as Ca2+, and they may become

trapped or released during zipping or unzipping. While this phenomenon can modify

the entropy of mixing, such an effect is neglected to avoid adding complexity to the

model. More advanced models that incorporate this and other effects such as fluid

diffusion [46] can be investigated in future studies.

While damage-based models in the literature can serve as an alternative for cap-

turing unzipping-caused hysteresis, the current model is equipped with the ability to

incorporate healing effects through partial zipping. A more comprehensive analysis

for time-dependent healing requires modeling the kinetics of zipping/unzipping or vis-

coelasticity. The current model can be combined with damage mechanisms associated

with chemical cross-links, such as chain scission, to predict fracture and failure. For

instance, according to Sun et al. [5], the stress and stretch at rupture are 3.7 kPa and

1.2, respectively. However, in the current formulation, the chains can sustain higher

forces and extensions. Another crucial aspect to consider is the incorporation of

anisotropy during zipping/unzipping, a feature currently lacking in the formulation

here. Research by Puglisi et al. [47] and Vitucci et al. [48] has demonstrated that

accounting for anisotropic damage in different directions enhances the models’ ability

to capture the Mullins effect and permanent set not only in uniaxial experiments but
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also in shear and equibiaxial deformation tests. The consideration of these factors

will be of interest in future studies.

4.6 Conclusion

A multiscale mechanics model is developed for disordered biopolymer gels that con-

tains coil-rod structures as their building blocks, where the coil represents the amor-

phous region of the gel and the rod represents the junction zone formed from physical

crosslinking between coils. Under external loading, the junction zone can expand or

contract, arising from increased (“zipping”) or decreased (“unzipping”) coil associa-

tion. Built on the statistical mechanics model of a single coil-rod structure proposed

in Chapter 3, a network model is developed for the constitutive relation of the gel,

where zipping/unzipping is incorporated via the grand canonical ensemble allowing

exchange of Kuhn segments between the coil and rod portions. While using the

eight-chain model [23] as a starting point, it is demonstrated that finite compressibil-

ity must be enabled to determine the end-to-end distance of the coil-rod structures in

a stress-free network. This delicate point, often neglected in the literature, is crucial

in capturing the permanent set observed in loading-unloading experiments. Swelling

effects during gelation, including volume change and the entropy of polymer/solvent

mixing, are explicitly included in the formulation. Results from the model shows

interesting behaviors such as unzipping-caused leveling off of the stress-stretch curve,

partial zipping during unloading as a signature of healing, and the presence of hys-

teresis and a permanent set during a loading-unloading cycle as a result of irreversible

unzipping. Finally, the model is applied to the uniaxial loading-unloading test for

an alginate gel, with experimental data from Sun et al. [5]. The present model

serves as a foundation for modeling more advanced biopolymer gels such as hybrid

polyacrylamide-alginate gels [5] which have attracted significant attention in recent

years.
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Chapter 5

Statistical Mechanics and Phantom
Network Modelling of Disordered
Biopolymer Gels

5.1 Introduction

Polymer networks are established through the copious interpenetration of chains. The

complex interactions between them as well as network defects such as topological loops

[1] make studying their statistical thermodynamics formidable. In the method pro-

posed by James and Guth [2], known as the affine network model, the chain vectors

are situated randomly within the network, and their extension is assumed to follow

the macroscopic deformation controlled by external loading. In this framework, since

the interaction of chains are only considered via cross-links, the partition function

of each chain provides sufficient information to obtain the partition function of the

entire network. Building upon this pioneering work, subsequent literature endeav-

ors to develop more advanced models that describe observed phenomena in polymer

networks while being numerically affordable. To name but a few, these includes the

three-chain model [3], the full-network model [4, 5], the eight-chain model [6, 7], and

the micro-sphere model [8]. In the method proposed by Flory [9], known as the phan-

tom network model, the constraints of macroscopic deformation are relaxed, allowing

the chains to maintain their topology while freely passing through each other. In
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this framework, the network is treated as a collection of chains where only a subset

of junctions is restricted by macroscopic deformation, while the remaining junction

points fluctuate around their average positions.

In disordered biopolymer gels, amorphous regions known as coils are interconnected

through ordered regions called junction zones [10, 11]. The process of junction zone

formation varies depending on the specific biopolymers involved. For instance, in

agar gels, the chains intertwine to create a double helix structure, while in alginate

gels, the junction zone is formed through the mediation of external cation agents,

resulting in egg-box structures. Disordered biopolymer gels can be decomposed into

two fundamental building blocks: coils and junction zones. Coils are often modeled

as freely-jointed chains, while junction zones are represented by rigid rods. Within

affine network framework, the end-to-end extension of each component (coil or rod)

is assumed to be proportional to the corresponding macroscopic displacement. Given

the infinite stiffness of a rigid rod, it cannot undergo extension. This assumption im-

plies that the macroscopic behavior encompassing the rod reflects an unrealistically

high stiffness under affinity assumptions. To mitigate such unrealistic phenomenon,

Higgs and Ball [12] considered the network as a collection of “coil-rod” structures,

in each structure the freely-jointed chain is connected to a rigid rod. The associated

end-to-end extension of this combined structure (rather than treating the coil and rod

separately), still follows the macroscopic deformation akin to an affine network. How-

ever, the node connecting the coil and rod can freely move resembling the phantom

network model.

Since this structure is defined by two nodes, hereafter it is referred to as “two-

node coil-rod structure” and can be directly applied to the well-known affine network

models in the literature (see Fig. 5.1a). Additionally, this model allows us to capture

the phenomenon of zipping/unzipping, where junction zones in biopolymer gels ex-

pand or shrink due to applied loading. In Chapter 4, it has been demonstrated that

combining the coil-rod structure with zipping/unzipping in the eight-chain network
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effectively captures both the dissipation caused by unzipping and the phenomenon

of permanent set observed during cyclic loading and unloading. Despite these ad-

vantages, the coil-rod structure in the aforementioned model is treated as a single

entity. The decomposition of the complicated network, involving different regions of

coils and rods, into a collection of coil-rod structures is a simplification worth further

examination. This prompts us to advance the coil-rod structure model into a more

explicit network where two or more coils are connected through a single junction zone

in the middle (see Fig. 5.1b). By providing such a model, the ranges of applicability

and limitations of the coil-rod structure can also be explored, addressing whether it

can adequately model the complex interactions between coils and rods.

In Section 5.2, the model of the coil-rod structure is reviewed, and a new four-node

coil-rod structure is formulated within the framework of statistical mechanics. Two

formalisms for deriving the probability distribution are explained. Subsequently, the

results are simplified by invoking Gaussian statistics for the coils. It is shown that

under this assumption, the four-node coil-rod structure can be decomposed into a

collection of one coil-rod structure and two pure coils. In Section 5.3, using the latter

result, the properties of the four-node coil-rod structure are further inspected by

confining the structure’s nodes to an in-plane rectangular cell. The stress-free state

of the proposed network model is obtained, and the constitutive relations are derived.

Subsequently, the Gaussian approximation is compared with the exact result, and its

applicability is discussed. The concept of unzipping and its underlying features are

then integrated into the proposed network model. With the aid of the in-plane result,

the four-node coil-rod structure is introduced in Section 5.4 for a three-dimensional

rectangular prism network, and the results are compared with the coil-rod structure

in the eight-chain network model.
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5.2 Statistical mechanics of a four-node coil-rod

structure

Prior to development of the four-node coil-rod structure, the formulation of a two-

node coil-rod structure is reviewed. For the freely-jointed chain model with Kuhn

length b and number of Kuhn segments n, if the end-to-end distance |r| is sufficiently

small and n is sufficiently large, one can find the probability distribution WC
n (|r|) as

WC
n (|r|) =

(︃
3

2πnb2

)︃3/2

exp

[︄
−3 |r|2

2nb2

]︄
, (5.1)

where r represents the end-to-end vector of the coil and | · · · | denotes the norm

of the vector. This probability is commonly referred to as Gaussian distribution.

Additionally, for a single rigid rod with length a, the probability distribution can be

described through

WR(|r|) = 1

4πa2
δ(|r| − a), (5.2)

where δ(· · · ) denotes the one-dimensional Dirac delta function applied to a scalar

argument. In the work in Chapter 4, it was shown that if the Gaussian coil is followed

by a rigid rod (see Fig. 5.1a), the probability distribution of the resultant structure

is modified to

WCR
n (|r|) =

√︄
3

(2π)3 na2b2
1

|r|
exp

[︃
− 3

2nb2
(|r|2 + a2)

]︃
sinh

(︃
3a |r|
nb2

)︃
. (5.3)

The superscripts C, R, and CR respectively signifies the coil, rod, and coil-rod struc-

ture. For a → 0 the rod vanishes, and Equation (5.3) converts back to that of

Gaussian coil (5.1). The result given by (5.3) is applicable to the affine network

models by simply replacing the coils in the traditional models such as eight-chain

network [6] with the coil-rod structures. As elaborated in the forthcoming sections,

the information on the probability distribution and the geometry of network model

is sufficient to derive the constitutive relations of the material. The entropy and

Helmholtz free energy of each chain are obtained by taking the natural logarithm of
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the probability distribution. Depending on construction of geometry that places the

microstructure into the network, the end-to-end distance of the chains is related to

the macroscopic deformation, and the Helmholtz free energy of the network is then

given by the summation of the corresponding values of the chains in terms of the de-

formation gradient tensor. Once the Helmholtz free energy is available, the derivation

of stress-stretch relations is straightforward.

(a) (b)

Figure 5.1: (a) The two-node coil-rod structure with nodes 1 and 2 attached to the
macroscopic element and fluctuating node 3. The zigzag structure represents the
schematic of the egg-box structure, with hollow circles indicating the gelling agents.
Segment between 1 and 3 is modelled by a rigid rod and coil 23 is modelled by
freely-jointed chain. (b) The topology of the four-node coil-rod structure with nodes
1 to 4 attached to the macroscopic element and fluctuating nodes 5 and 6. The
zigzag structure 56 represents the rigid rod and the remaining four coils follow the
freely-jointed chain model.

5.2.1 Four-node coil-rod structure

The simplest scenario illustrating the explicit interaction of coils and rods involves

two coils sharing a single junction zone between them. Let us consider two coils,

labeled 13 and 24, which are laterally associated, thereby creating the junction zone

56 and regenerating four new coils 15, 25, 36, and 46. In three-dimensional space, the

four nodes can form a cell as demonstrated by a tetrahedral in Fig. 5.1b. Hereafter,

such a structure is referred to as the “four-node coil-rod structure”.
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By defining Rij = Ri−Rj, with Ri being the position vector of node i and setting

node 1 fixed, the probability of locating node i within dR1i for i = 2, . . . , 6 is ex-

pressed as P (R12,R13,R14,R15,R16)
6∏︂

i=2

dR1i. To derive the probability distribution

function of such system, all coils are represented by freely-jointed chain models, while

the junction zone is envisioned as a rigid rod of length a. In the affine network model,

all nodes 1 to 6 are tethered to the macroscopic element, ensuring that the extension

of vectors Rij follows the applied macroscopic deformation. Although deriving the

probability distribution based on this viewpoint is relatively straightforward, the pres-

ence of a rigid rod imparts significant stiffness to the macroscopic element, rendering

the overall response unrealistic. To circumvent this issue, the phantom network is

adopted, enabling nodes 1 to 4 to undergo manipulation by macroscopic deforma-

tion, while nodes 5 and 6 are capable of fluctuating around their mean positions. The

probability of finding the nodes i inside the volume element dR1i (i = 2, 3, 4) is de-

noted by P (R12,R13,R14) dR12 dR13 dR14. The repetition of such structures results

in a network forming a body with volume V0 in the undeformed state. Accordingly,

the entropy of the deformed state per unit volume V0 is presented by the Boltzmann

equation:

S = c+ ϱkB ln [ dR12 dR13 dR14] + ϱkB ln P (R13,R13,R14), (5.4)

where ϱ is the chain density per unit volume V0, kB is the Boltzmann constant and c

is an arbitrary constant. The entropy change from the undeformed to the deformed

state is readily obtained by subtracting their respective values. Once ∆S is at hand,

the Helmholtz free energy per unit reference volume V0, Ψ is obtained as

Ψ = −T∆S, (5.5)

where T is the absolute temperature. Depending on the geometry of four-node coil-rod

structure the dimensions dR1i (i = 2, 3, 4) should be related to the principal stretches

of the bulk material, λ1, λ2, and λ3. Consequently, for compressible material, the
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principal components of First Piola-Kirchhoff stress P1, P2, and P3 can be obtained

as [13]

Pi =
∂Ψ

∂λi
, i = 1, 2, 3. (5.6)

It can be seen that the constitutive equation directly depends on the probability

distribution P (R13,R13,R14). In general, there are two approaches to find this prob-

ability: the real space method and the Fourier space method, which will be elaborated

upon in the next sections.

5.2.2 Real space representation of the probability

Suppose the probability distribution for a coil with npq = nqp Kuhn segments trapped

between nodes p and q is denoted asWC
npq

(|r|). By setting node 1 fixed, the probability

of locating node i within dR1i for i = 2, . . . , 6 is expressed as:

P (R12,R13,R14,R15,R16)
6∏︂

i=2

dR1i

= WC
n15

(|R15|)WC
n52

(|R52|)WC
n63

(|R63|)WC
n46

(|R46|)WR (|R56|)
6∏︂

i=2

dR1i. (5.7)

Now, the probability of finding nodes 1 to 4 within their own volume elements dRi is

given by integration of the aforementioned probability over all possible locations of

nodes 5 and 6, i.e.,

P (R12,R13,R14)
4∏︂

i=2

dR1i =
4∏︂

i=2

dR1i×∫︂ ∫︂
WC

n15
(|R15|)WC

n52
(|R52|)WC

n63
(|R63|)WC

n46
(|R46|)

1

4πa2
δ(|R56| − a)dR15dR16.

(5.8)

By employing the following change of variables

v =
1

2
(R15 −R16) , (5.9a)

u =
1

2
(R15 +R16) , (5.9b)
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Equation (5.8) is rephrased as

P (R12,R13,R14) =
2

πa2

∫︂ ∫︂
WC

n15
(|v + u|)WC

n52
(|R12 − v − u|)

×WC
n63

(|R13 + v − u|)WC
n46

(|R14 + v − u|) δ(2|v| − a)dudv. (5.10)

Utilizing δ (2|v| − a) =
1

2
δ
(︂
|v| − a

2

)︂
, and applying the sifting property of the Dirac

delta function, one layer of integration is eliminated, resulting in

P (R12,R13,R14) =
1

4π

∫︂ [︃ ∫︂ π

ϕ=0

∫︂ 2π

θ=0

WC
n15

(|v + u|)WC
n52

(|R12 − v − u|)

×WC
n63

(|R13 + v − u|)WC
n46

(|R14 + v − u|) sinϕ dϕ dθ
]︃
du,

(5.11)

where v is given in spherical coordinate as

v =
a

2
(sinϕ cosθ, sinϕ sinθ, cosϕ) . (5.12)

The schematics of the above variables are illustrated in Fig. 5.2. It should be recalled

that in freely-jointed chain models, coils cannot extend beyond their fully extended

state, where the associated probability is zero. Analogously, the maximum value of |u|

is the fully extended length of chain 15 plus half of the rod length, n15b + a/2. Any

probability larger than this critical value is zero. However, constraints from other

ends can impose stricter conditions on the probability, leading to smaller critical

values of |u|, which may not be immediately apparent. This critical value helps us

in performing numerical integration without encountering infinity in the bounds of

integrals.
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Figure 5.2: The five layers of integration in Equation (5.11) include three-dimensional
integration over all possible vectors u and the surface integral with variable ϕ and θ
over the sphere with position center u and radius a/2.

In the context of more complicated system of coils and rods, the number of integra-

tion layers is given by 3nf − nr, where nf represents the count of free nodes (in this

case, two nodes 5 and 6), and nr denotes the number of rigid rods. In the scenario

shown in Fig. 5.2, the number of integration layers is 3× 2− 1 = 5.

5.2.3 Fourier space representation of the probability

Fourier space representation sometimes offers a simpler approach to calculating the

probability distribution. Since nodes 1 to 4 are attached to the macroscopic element,

the following constraints between the end-to-end vectors hold:

R12 = R15 +R52, (5.13a)

R13 = R15 +R56 +R63, (5.13b)

R14 = R15 +R56 +R64. (5.13c)

125



Now, the probability (5.8) is restated as follows:

P (R12,R13,R14) =

∫︂
WC

n15
(|R15|)WC

n52
(|R52|)WR(|R56|)WC

n63
(|R63|)WC

n64
(|R64|)

× δ(R12 −R15 −R52)δ(R13 −R15 −R56 −R63)δ(R14 −R15 −R56 −R64)

× dR15 dR52 dR56 dR63 dR64, (5.14)

where the constraints (5.13) are enforced through three-dimensional Dirac delta func-

tions δ(r). It can be readily verified that the above integration can be transformed

back into Equation (5.8) by applying the sifting property of the three-dimensional

Dirac delta function, together with a change of variables. By utilizing the following

property of the three-dimensional Dirac delta function,

δ(r) = (2π)−3

∫︂
exp [−ik · r] dk, (5.15)

where i =
√
−1 is the imaginary unit, and rearranging the integration in (5.14), we

obtain the following expression:

P (R12,R13,R14) =

(2π)−9

∫︂
WC

n15
(|k12 + k13 + k14|)WC

n52
(|k12|)WR(|k13 + k14|)WC

n63
(|k13|)WC

n64
(|k14|)

× exp [−ik12 ·R12] exp [−ik13 ·R13] exp [−ik14 ·R14] dk12dk13dk14. (5.16)

In the above formulation, the bar over a symbol denotes the Fourier transform of the

function defined as:

W (k) =

∫︂
W (r)exp (ik · r) dr. (5.17)

For the rigid rod with length a, the Fourier transform of Equation (5.2) gives rise to

WR(|k|) = sin |k|a
|k|a

, (5.18)

and |k| =
√
k · k.
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5.2.4 Gaussian coil approximation

Thus far, the probability distribution has been expressed in the form of five layers of

integration, involving a substantial numerical burden. In this section, it will be shown

that Gaussian approximation of coils can significantly simplify the calculations.

The probability distribution function of the Gaussian phantom network (with no

rods) has been obtained by Flory [9] using real space representation. In Appendix D.1,

the same network is formulated with the aid of Fourier transform and it is shown

that the result has an analytical closed form. Likewise, the integration described in

(5.16) can be simplified by assuming a Gaussian distribution for coils 15, 52, 63, and

46. Suppose that WC
n (r) follows a Gaussian distribution (5.1). Then, the Fourier

transform of Equation (5.1) is given as

WC
n (|k|) = exp

[︄
−nb2 |k|2

6

]︄
. (5.19)

Let us represent the vectors Rij and kij in the Cartesian coordinate system respec-

tively with unit vectors (î, ĵ, k̂) and (êx, êy, êz) as

Rij = (Rij)x î+ (Rij)y ĵ+ (Rij)z k̂, (5.20a)

kij = (kij)x êx + (kij)y êy + (kij)z êz. (5.20b)

Now, by defining the matrices

KT = {(k12)x (k12)y (k12)z (k13)x (k13)y (k13)z (k14)x (k14)y (k14)z},
(5.21a)

RT = {(R12)x (R12)y (R12)z (R13)x (R13)y (R13)z (R14)x (R14)y (R14)z},
(5.21b)

with label T denotes the transpose of the matrix, the integration (5.16) is simplified

to the following compact form:

P (R12,R13,R14) = (2π)−9

∫︂
WR(

√
KTΛK)exp

[︂
− 1

2
KTΓK− iRTK

]︂
dK, (5.22)
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where

Γ =
b2

3

⎛⎜⎜⎜⎝
(n15 + n52) [I]3×3 n15 [I]3×3 n15 [I]3×3

n15 [I]3×3 (n15 + n63) [I]3×3 n15 [I]3×3

n15 [I]3×3 n15 [I]3×3 (n15 + n64) [I]3×3

⎞⎟⎟⎟⎠ , (5.23)

and

Λ =

⎛⎜⎜⎜⎝
[0]3×3 [0]3×3 [0]3×3

[0]3×3 [I]3×3 [I]3×3

[0]3×3 [I]3×3 [I]3×3

⎞⎟⎟⎟⎠ . (5.24)

In the above relations, [I]3×3 and [0]3×3 respectively denote the 3 × 3 identity and

zero matrices. Furthermore, let us define the change of variable

Y = AK (5.25)

where

YT = {(k12)x (k12)y (k12)z (k13)x (k13)y (k13)z wx wy wz}, (5.26)

w = wxêx + wyêy + wzêz, (5.27)

and

A =

⎛⎜⎜⎜⎝
[I]3×3 [0]3×3 [0]3×3

[0]3×3 [I]3×3 [0]3×3

[0]3×3 [I]3×3 [I]3×3

⎞⎟⎟⎟⎠ . (5.28)

Since detA = 1, the integration (5.22) is rewritten as:

P (R12,R13,R14) = (2π)−9

∫︂
sin(

√
wTw a)√

wTw a
exp
[︂
− 1

2
YT

∼
ΓY − i

∼
R

T
Y
]︂
dY, (5.29)

where

∼
Γ = A−TΓA−1 =

b2

3

⎛⎜⎜⎜⎝
(n15 + n52) [I]3×3 [0]3×3 n15 [I]3×3

[0]3×3 (n63 + n64) [I]3×3 −n64 [I]3×3

n15 [I]3×3 −n64 [I]3×3 (n15 + n64) [I]3×3

⎞⎟⎟⎟⎠ ,

(5.30)

128



and
∼
R = A−TR, i.e.,

∼
R

T
= {(R12)x (R12)y (R12)z (R43)x (R43)y (R43)z (R14)x (R14)y (R14)z}.

(5.31)

Label -T in the superscript represents the inverse transpose of the matrix. Based on

the results provided in Appendix D.2 (Equation (D.16) with p = 3), Equation (5.29)

can be written in a closed form:

P (R12,R13,R14) =√︄
ζ̃33

(2π)9det
∼
Γaa

1

a
⃓⃓⃓
∼
L
⃓⃓⃓exp[︄−1

2

(︂
∼
R

T

a

∼
Γ

−1

aa

∼
Ra

)︂
− ζ̃33

2

(︃
a2 +

⃓⃓⃓
∼
L
⃓⃓⃓2)︃]︄

sinh
[︂
a
⃓⃓⃓
∼
L
⃓⃓⃓
ζ̃33

]︂
,

(5.32)

in which

∼
Γ

−1

aa =
3

b2

⎛⎝ (n15 + n52)
−1 [I]3×3 [0]3×3

[0]3×3 (n63 + n64)
−1 [I]3×3

⎞⎠ , (5.33a)

∼
R

T

a = {(R12)x (R12)y (R12)z (R43)x (R43)y (R43)z}, (5.33b)

∼
L =

n63

n63 + n64

R14 +
n64

n63 + n64

R13 −
n15

n15 + n52

R12, (5.33c)

ζ̃33 =
3

b2
(n15 + n52) (n63 + n64)

n52n63n64 + n15 (n63n64 + n52 (n63 + n64))
, (5.33d)

det
∼
Γaa =

b12

36
(n15 + n52)

3 (n63 + n64)
3 . (5.33e)

The position vectors R12, R13, and R14 along with the geometric interpretation of
∼
L

are shown in Figs. 5.3a and 5.3b.
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(a)

(b) (c)

Figure 5.3: (a) The topology of the four-node coil-rod structure with rod length a
and corresponding end-to-end vectors R12, R13, and R14. (b) The Geometric inter-

pretation of
∼
L in (5.33c). (c) The equivalent network model with three chains: one

two-node coil-rod and two pure coils based on Equation (5.34).

The probability distribution of the four-node coil-rod structure can be generalized

to p-node structure with one rod as shown in Appendix D.3. Based on the inter-

pretation given in Appendix D.3, p-node structure with one rod can be decomposed

to p − 1 coils and one two-node coil-rod structure fixated between p + 1 nodes. For

the simple case of four-node coil-rod structure, as shown in Fig. 5.3c, the associated

probability distribution can be decomposed to three chains: one two-node coil-rod
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structure with rod length a,
3

b2ζ̃33
Kuhn segments in the coil and end-to-end vector

∼
L;

one Gaussian coil with n15 + n52 Kuhn segments and end-to-end vector R12; and the

other Gaussian coil with n63 + n64 Kuhn segments and end-to-end vector R43. With

the aid of (5.3) and (5.1), the probability distribution function (5.32) is rewritten as:

P (R12,R13,R14) = WC
n15+n52

(|R12|)WC
n63+n64

(|R43|)WCR

3b−2ζ̃
−1
33

(︂⃓⃓⃓
∼
L
⃓⃓⃓)︂
. (5.34)

The above representation not only makes the notation simpler but also lays the solid

base for comparing the present models with models in the literature based on two-

node coil-rod structure and pure coils. Now suppose that the chains 15 and 52, as well

as chains 63 and 46 are identical such that n15 = n52 = n and n63 = n46 = n + 2m∗,

where n is the number of Kuhn segments in chains 15 and 52, while 2m∗ indicates the

extra number of segments 46 and 63 compared to 15 and 52. Then, Equations (5.33c)

and (5.33d) can be further simplified to

∼
L =

1

2
(R14 +R13 −R12) , (5.35a)

ζ̃33 =
3

(n+m∗) b2
. (5.35b)

Therefore, Equation (5.34) is rewritten as

P (R12,R13,R14) = WC
2n (|R12|)WC

2n+4m∗ (|R43|)WCR
n+m∗

(︃
1

2
|R14 +R13 −R12|

)︃
.

(5.36)

5.3 Application: in-plane placement of four nodes

As mentioned earlier, once the probability distribution is established, the mechanical

response of the gel can be determined by placing the four-node coil-rod structure

within a macroscopic network with specific geometry. In this manner, the macroscopic

deformation can be properly translated to the constituent structure. To examine the

features of the four-node coil-rod structure, a simple scenario is considered where the

four nodes are placed in the same plane in the form of a rectangular cell as seen in
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Fig. 5.4a. It should be noted that while the nodes form a two-dimensional cell, the

chains can occupy the three-dimensional space.

Referring to Fig. 5.4a, suppose the nodes 1 to 4 are initially positioned at the

vertices of a rectangle with edge lengths of l1 and l2. To avoid any unnecessary com-

plexity, the number of Kuhn segments of all coils is set to be equal to n. Deformations

are assumed to be applied such that the principal stretches λ1 and λ2 align with the

horizontal and vertical edges of the rectangle. By setting the Cartesian coordinate

system at node 1 with coordinate axes along the rectangle edges, the position vectors

of the nodes of the deformed cell can be expressed as:

R1 = (0, 0, 0), R2 = (λ1l1, 0, 0), R3 = (λ1l1, λ2l2, 0), R4 = (0, λ2l2, 0),
(5.37)

where setting λ1 = λ2 = 1 reverts the cell to its undeformed state. Such representation

is capable of capturing any in-plane deformations including shear and extension within

the plane x1x2. By replacing (5.37) in Equation (5.36), and considering an equal

number of Kuhn segments n for the coils (m∗ = 0), one can conclude that

P (R13,R13,R14) = WCR
n (λ2l2)W

C
2n(λ1l1)W

C
2n(λ1l1). (5.38)

Now, by substitution of Equation (5.38) into Equations (5.4) and (5.5), the Helmholtz

free energy can be calculated as follows:

Ψ + Ψ0 = −G ln
[︁
l21λ

2
1l2λ2

]︁
−G ln

[︃
sinh

(︃
3aλ2l2
nb2

)︃]︃
+

3G

2nb2
(︁
l21λ

2
1 + l22λ

2
2

)︁
, (5.39)

in which G = ϱkBT . Ψ0 is the Helmholtz free energy where λ1 = λ2 = 1 so that the

condition Ψ(λ1 = λ2 = 1) = 0 is imposed. For coil-rod structure with n = 25 and

a = 5 b, the contour of (Ψ + Ψ0) /G is depicted in Fig. 5.4b as a function of λ1l1/b and

λ2l2/b. The minimum value of Helmholtz free energy is indicated by the red point

on the contour. By setting λ1 = λ2 = 1 in the reference state, this point signifies the

initial stress-free state.
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(a) (b)

Figure 5.4: (a) The four-node coil-rod structure with the four nodes placed in the same
plane in a rectangular manner with dimensions λ1l1 and λ2l2. (b) The Helmholtz free
energy contour (Ψ + Ψ0) /G of the four-node structure with n = 25, a = 5 b, showing
the minimum at l1λ1 = 4.09 b and l2λ2 = 6.33 b.

Based on the free energy (5.39), Equation (5.6) is simplified to

P1 =
∂Ψ

∂λ1
= G

(︃
3l21λ1
nb2

− 2

λ1

)︃
, (5.40)

P2 =
∂Ψ

∂λ2
= G

(︃
3l22λ2
nb2

− 1

λ2
− 3al2
nb2

coth

[︃
3al2λ2
nb2

]︃)︃
. (5.41)

Clearly, the Gaussian coils decouple the behavior of the system along the two principal

directions, such that P1 and P2 depend solely on λ1 and λ2, respectively. This is due

to the fact that the Gaussian probability function always gives nonzero values even

for large extensions. In reality, approaching the fully extended state in one principal

direction triggers the deformation along other principal directions and this cannot

be achieved through Gaussian distribution. By the same token, the formulation

highlights that P1 remains unaffected by the values of a because the average position

of the rod aligns with the vertical axis. The above stress components can be set to
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zero for λ1 = λ2 = 1 to ensure that the initial state is stress-free. Hence,

l1 =

√︃
2

3
nb, (5.42a)

3l22
nb2

− 3al2
nb2

coth

[︃
3al2
nb2

]︃
= 1. (5.42b)

Equation (5.42b) is an implicit function of a and typically requires numerical compu-

tations. However, for a >
√
nb2, the following approximation can be utilized:

l2 =
a

2
+

√
3a2 + 4nb2√

12
. (5.43)

In this case, as n→ 0, l2 → a verifying that the pure rod with no coil forms a rectangle

with dimension l1 = 0 and l2 = a. Additionally, by applying Padé approximation

about a = 0 to the second order for coth(x), one can show that

l2 =

√︃
nb2

6a2

√︂
7a2 − 5nb2 +

√
25n2b4 − 30a2nb2 + 49a4 (5.44)

holds for a < 0.5
√
nb2. For a ≪

√
nb2, l2 → l1, in this case the stress-free state

of the rectangular cell becomes a square for the four-node structure with a junction

point rather than a junction zone. For a = 5 b and n = 25, l2 = 1.27
√
nb2 and

l1 = 0.82
√
nb2, corresponding to the values that minimize the Helmholtz free energy

in Fig. 5.4b for λ1 = λ2 = 1.

5.3.1 Applicability of Gaussian approximation

As it was alluded to, the applicability of Gaussian coils in the freely-jointed chain

model is constrained to small extensions of the coils and a large number of Kuhn

segments. To assess the validity of such approximation in determining l1 and l2, the

exact Helmholtz free energy of the system is minimized based on Equation (5.11)

combined with (5.4) and (5.5). To obtain the exact result, all chains 15, 52, 63, and

46 in Equation (5.11) with the same number of Kuhn segments n, are assumed to

obey the following non-Gaussian probability distribution (see Chapter 2)

WC
n15

(r) = WC
n52

(r) = WC
n63

(r) = WC
n46

(r) =
A0β

r

(︃
sinhβ

β

)︃n

exp

[︃
−βr
b

]︃
, (5.45)
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with

β = L −1
(︂ r
nb

)︂
, (5.46)

and A0 being the normalization factor. L (x) = coth x − 1/x denotes the Langevin

function and to calculate its inverse, the Padé approximation [14] is utilized. The

five-tuple integration (5.11) in our analysis is performed by employing the adaptive

quadrature techniques [15]. To obtain l1 and l2 associated with the minimum free

energy, the differential evolution algorithm [16] is adopted, with a convergence toler-

ance of 0.01. The initial length l1 and l2 are depicted vs. n for a = 5 b in Figs. 5.5a

and 5.5b, respectively where the results are compared with the Gaussian approxima-

tion (5.42a) and (5.42b). It can be inferred that the Gaussian approximation can be

satisfactorily applied to determine l1 and l2.
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(a)

(b)

Figure 5.5: (a) l1 vs. n, (b) l2 vs. n for a = 5 b. Comparison is made between
the Gaussian appproximations (5.42a) and (5.42b) and exact result based on Equa-
tion (5.11).
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Now, the performance of the constitutive relations (5.40) and (5.41) should be

compared with the exact result. As mentioned earlier, after calculation of the ex-

act Helmholtz free energy via Equations (5.11), (5.4), (5.5), and (5.45), the stress

components can be determined through Equation (5.6). These results serve as the

basis for evaluation. Since the numerical calculation burden of (5.11) is heavy, the

biaxial test is preferred over the uniaxial test. In the biaxial test, P1 and P2 are

directly given by known λ1 and λ2, unlike the uniaxial test, which requires solving

for unknown stretches to achieve zero stress in the direction perpendicular to the

loading axis. The values of P1/G against λ1 is illustrated for λ2 = 1, n = 25 and

a = 5 b in Fig. 5.6a. Acknowledging the solid blue curve as the exact representation,

the Gaussian result from distribution (5.38) (Equation (5.40)) shows minimal error

and reliability in compression (λ1 < 1). This holds true in tension as well, up to

the extension of λ1 = 3. Beyond this point, due to significant elongation of the coils

within the cell, the Gaussian approximation diverges from the blue curve. The perfor-

mance of Gaussian approximation is similar in the other direction, as demonstrated

in Fig. 5.6b for the biaxial test along direction 2 with λ1 = 1, n = 25 and a = 5 b. In

this experiment, the rod effect is more dominant, resulting in higher stiffness under

both tension (λ2 > 1) and compression (λ2 < 1) compared to direction 1. Similar to

direction 1, Gaussian approximations in (5.38) hold true in compression. However,

the results deviate from the solid blue curve at λ2 > 2.
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(a)

(b)

Figure 5.6: The normalized principal stress vs. the principal stretch for biaxial test
and a = 5 b, l2 = 6.33 b, l1 = 4.09 b with and without Gaussian approximation, (a)
P1/G vs. λ1 with λ2 = 1 (b) P2/G vs. λ2 with λ1 = 1.
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5.3.2 Inclusion of unzipping

So far, the four-node coil-rod structure has been developed based on the assumption

of a fixed number of Kuhn segments in the coils (denoted as n if all four coils are

identical) and a fixed rod length a. However, studies have shown that the junction

zones in disordered biopolymer gels may shrink when the gel is subjected to loading.

To account for this phenomenon, known as unzipping, the conditions of fixed n and a

are relaxed, allowing segments in the rod to be transferred to the coils while conserving

the total number of segments in the entire system. The grand canonical ensemble

is used to enable segment exchange, and the partition function in this ensemble is

formulated. Based on Chapter 3, this partition function is expressed as a summation

of different configurations with fixed n (or fixed a), with the Boltzmann weight. Once

the partition function is established, the determination of entropy, free energy, and

stress-stretch relations follows the same procedure as in the previous sections.

Let us focus on the configuration in Fig. 5.4a, where all coils in the four-node

coil-rod structure have the same number of Kuhn segments n and the rod length is

a. If the fully dissociated state of the four-node coil-rod structure contains two coils,

each having N Kuhn segments, then the conservation of segments for the structure

implies that there are N − 2n Kuhn segments in the rod. It is further postulated

that each Kuhn segment, which has a length of b in the coil, changes to a new length

of αb when it becomes part of the rod structure. In this case, the rod length can

be represented as a = (N − 2n)αb. Now, let ε denote the energy needed to liberate

one Kuhn segment from the rod into the coil. The energy of a four-node coil-rod

structure with n Kuhn segments in the coil and rod length (N − 2n)αb can then

be written as −(N − 2n)ε. For this specific configuration, the designation of energy

enables us to recognize the value of Boltzmann factor as exp

[︃
(N − 2n)ε

kBT

]︃
. On the

other hand, the probability distribution function of this configuration can be given

by Equation (5.38) using Gaussian statistics. Thus, the probability distribution of
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this configuration weighted by the Boltzmann factor is given by

WCR
n (λ2l2)W

C
2n(λ1l1)W

C
2n(λ1l1) exp

[︃
(N − 2n) ε

kBT

]︃
. (5.47)

If the available configurations of four-node coil-rod structure are restricted to those

with equal Kuhn segments for all coils, then varying the variable n allows for the

exploration of all possible configurations. In other words, segment exchange between

the coils and the rod is only permitted simultaneously from both ends of the rod,

ensuring that the coils remain identical. Under this assumption, n is supposed to start

from a minimum allowable Kuhn segment nmin in each of the four coils. Furthermore,

n can take a maximum value ofN/2−1, in which case the rod with two Kuhn segments

maintains a minimum length of 2αb. Further symmetric migration of segments from

the rod ends to the coils results in a fully dissociated state, where the two pure

coils, each with N Kuhn segments, are no longer connected through the rod and thus

behave independently. For this dissociated configuration, the distribution function

weighted by Boltzmann factor is given by[︁
WC

N (λ2l2)
]︁2
, (5.48)

where the associated Boltzmann factor is one due to the vanishing rod. Moreover,

the power of two arises from the presence of two independent pure coils.

Summing the expressions (5.47) from nmin to N/2− 1 and (5.48) yields the grand

canonical partition function as

Ω(λ1, λ2) =
[︁
WC

N (λ2l2)
]︁2

+

N/2−1∑︂
n=nmin

WCR
n (λ2l2)W

C
2n(λ1l1)W

C
2n(λ1l1) exp

[︃
(N − 2n) ε

kBT

]︃
.

(5.49)

The above formulation not only models the unzipping of the system due to the rod

shrinkage but also considers the transition from the four-node coil-rod structure to

the two fully dissociated pure coils. After obtaining the grand canonical ensemble,

the entropy per unit reference volume is obtained as

S = c+ ϱkB ln [ dR12 dR13 dR14] + ϱkB ln Ω(λ1, λ2). (5.50)
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Applying (5.5) together with (5.37) results in

Ψ + Ψ0 = −G ln
[︁
l21λ

2
1l

2
2λ

2
2

]︁
−G ln Ω (λ1, λ2) . (5.51)

The first term on the right-hand side represents the free energy associated with the

change in the area of the rectangular cell. Now, the stress-stretch relation can be

obtained from (5.6). Unlike (5.39), it can be seen that P1 and P2 during unzipping

are functions of both λ1 and λ2.

Fig. 5.7 illustrates the unzipping phenomenon under a uniaxial test for the four-

node coil-rod structure with nmin = 25, N = 60, α = 0.5, and ε = 5kBT (solid curves),

along with the fully dissociated state with no rod, N = 60 (dotted-dashed curves), and

the fixed four-node coil-rod structure with n = 25 (dashed curves). The reference state

is set as l1 = 4.09 b and l2 = 55.15 b, corresponding to nmin = 25 and a = (N−2n)αb =

55 b. Plot 5.7a shows the normalized values of P1/G vs. λ1. The solid curve follows

the dashed curve up to λ1 = 23.21, indicating that the rod length remains fixed with

n = 25. Beyond this point, the solid curve diverges, signaling the onset of unzipping.

The decreasing trend in the stress continues up to λ1 = 27.87. After this point, the

plot experiences a sharp drop toward zero stress, indicating the transition from the

four-node structure to the fully dissociated state. This phenomenon is more clearly

illustrated in Plot 5.7b, where the number n that contributed most to the sum in

Equation (5.49), denoted by n0, is plotted against λ1. n0 = 80 designates the fully

dissociated chains and is equivalent to N = 160. The fixed n0 from λ1 = 1 to

23.21 indicates that the structure’s configuration remains unchanged. Beyond this

point, the increase in n0 from 25 to 28 shows that unzipping occurs and the rod

shrinks accordingly up to λ1 = 27.87. The sudden increase to n0 = 80 indicates

that the contribution from the dissociated state becomes predominant, leading to full

dissociation of the junction zone. Further extension shows that the system follows the

dotted-dashed curve, where the two pure coils extend independently. In Plot 5.7c,

the stretch λ2 is depicted against the prescribed λ1 by solving P2 = 0. As shown
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in Equations (5.40) and (5.41), the stress versus stretch of the four-node coil-rod

structure with fixed n is decoupled. Hence, the stretch λ2 is not affected by stretching

along λ1. This is demonstrated by the horizontal dashed curve and dash-dotted curve,

where λ2 = 1 for the four-node coil-rod structure with fixed n = 25, and λ2 = 0.13

for the fully dissociated two-node coil-rod structure. By activating unzipping, the

solid curve experiences a smooth transition from λ2 = 1 at λ1 = 23.21 to λ2 = 0.85

at λ1 = 27.87. During full dissociation, this transition becomes sharper, approaching

λ2 = 0.13. While the example in Fig. 5.7 shows a gradual unzipping process prior

to full dissociation, this can change with different parameter values. For example,

Fig. 5.8 depicts the same plots for the same variables, but with N decreased from

160 to 60 (a = 5). The initial state is set as l1 = 4.09 b and l2 = 6.33 b. In this

case, as shown in Plot 5.8a, full dissociation occurs in a sudden fashion, without any

gradual unzipping behavior is observed. Compared to Fig. 5.7a, the sudden drop

occurs at a smaller stretch, λ1 = 6.7. Plot 5.8b also confirms that the transition from

n = 25 to n = 30 leads the system to prefer the fully dissociated state, bypassing the

intermediate unzipping states with a finite rod. The same interpretation applies to

λ2 vs. λ1 in Plot. 5.8c where the sharp decrease is observed due to full dissociation.
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(a)

(b)

(c)

Figure 5.7: Uniaxial test allowing unzipping with nmin = 25, N = 160, α = 0.5,
ε = 5kBT : (a) The normalized principal stress P1/G vs. λ1, (b) the number n that
contributes most to the sum in Equation (5.49), n0, vs. λ1, (c) the principal stretch
λ2 vs. λ1.



(a)

(b)

(c)

Figure 5.8: Uniaxial test allowing unzipping with nmin = 25, N = 60, α = 0.5,
ε = 5kBT : (a) The normalized principal stress P1/G vs. λ1, (b) the number n that
contributes most to the sum in Equation (5.49), n0, vs. λ1, (c) the principal stretch
λ2 vs. λ1.



5.4 Discussion

Based on the formulation in Section 5.3, the four-node coil-rod structure shown in

Fig. 5.4a can be incorporated into the three-dimensional network to account for more

general deformation states. One example is shown in Fig. 5.9, where identical four-

node coil-rod structures are placed, with different orientations, on three faces of the

rectangular prism: 1234, 1256, and 1458. Suppose that the principal stretches are

aligned with the prism edges. The arrangement of the four-node coil-rod structures

is such that the length of the cell for λ1 = λ2 = λ3 = 1 has a cube shape in the

stress-free state. In the Cartesian coordinate system fixed at the centre of the cell,

the positions of Ri are specified as follows:

R1 =

(︃
−hλ1

2
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2
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. (5.52)

Similar to (5.4), the entropy of the deformed cell per unit reference volume can be

written as

S = c+ ϱkB ln
[︁
(dR12)

2 dR13 (dR14)
2 (dR15)

2 dR16 dR18

]︁
+ ϱkB ln [P (R12,R15,R16)P (R15,R14,R18)P (R14,R12,R13)] . (5.53)

By setting Ψ(λ1 = λ2 = λ3 = 1) = 0 and using (5.5), it can be shown that

Ψ = −Ψ0 −G ln
[︁
h3λ1λ2λ3

]︁
−G

3
ln

[︃
sinh

(︃
3ahλ1
nb2

)︃
sinh

(︃
3ahλ2
nb2

)︃
sinh

(︃
3ahλ3
nb2

)︃]︃
+
Gh2

nb2
(︁
λ21 + λ22 + λ23

)︁
, (5.54)
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and Ψ0 is the free energy of the stress-free state. Now by using (5.6), the principal

components of stress are

Pi = G

(︃
−1

λi
+

2h2λi
nb2

− ah

nb2
coth

[︃
3ahλi
nb2

]︃)︃
, i = 1, 2, 3. (5.55)

Analogous to the treatment in Section 5.3, the stress-free state at λ1 = λ2 = λ3 = 1

can provide the value of h obtained by solving the following equation:

2h2

nb2
− ah

nb2
coth

[︃
3ah

nb2

]︃
= 1. (5.56)

By decomposing the four-node coil-rod structure positioned at each prism face into

one coil-rod and two coil structures, one can conclude that the three-dimensional

network model is equivalent to the summation of three three-chain networks (Fig. 5.9):

one containing three two-node coil-rod structures on the prism edges, each having rod

length a and n Kuhn segments in the coil; and two identical networks each containing

three Gaussian coils with 2n Kuhn segments. The overall interaction of these three

networks yields the Helmholtz free energy (5.54).
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Figure 5.9: The topology of the four-chain coil-rod structure in the faces of the
rectangular prism which is equivalent to combination of three three-chain networks.

In the literature, there is a correspondence between three-chain network models

and a well-known type of material referred to as Valanis-Landel [17], where the strain

energy is written as the sum of three scalar functions, each evaluated independently

for three principal stretches. Due to the simplicity of this model, there are some gen-

eralizations for such network models, as shown by Ehret and Stracuzzi [18]. However,

more involved network models, such as the eight-chain model, demonstrate superior

performance in handling different types of experiments [6]. The comparison and re-

lationship between the three-chain model and the eight-chain model are provided

by Carroll [19] for pure coils without the presence of a junction zone. To examine

the performance of the proposed chain network model (Fig. 5.9), first we formulate
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the eight-chain network model of the Gaussian coil-rod structure based on Chap-

ter 3. Following the original model of Arruda and Boyce [6], eight two-node coil-rod

structures are placed inside a diagonals of the cell with edges λ1h, λ2h, and λ3h.

The probability of finding a two-node coil-rod with one end fixed at the center and

the other inside the volume element dR7 is given by WCR
n (|R7|) dR7. Likewise, the

probability of the other seven chains is established. Therefore, the entropy of the

deformed state per unit volume is given by:

S = c+ ϱkB ln [ dR7] + ϱkB ln WCR
n (|R7|) . (5.57)

Now by applying (5.5), and relation (5.52), one can conclude that

Ψ + Ψ0 =

−G ln[h3λ1λ2λ3]−G ln

⎡⎢⎢⎣sinh
(︃
3ah

2nb2

√︁
λ21 + λ22 + λ23

)︃
√︁
λ21 + λ22 + λ23

⎤⎥⎥⎦+
3Gh2

8nb2
(︁
λ21 + λ22 + λ23

)︁
,

(5.58)

where Ψ0 is the Helmholtz free energy at λ1 = λ2 = λ3 = 1 yielding Ψ(λ1 = λ2 =

λ3 = 1) = 0. By employing (5.6), the principal components of stress are written as

Pi = G

⎛⎜⎜⎝− 1

λi
+

3h2λi
4nb2

+
λi

λ21 + λ22 + λ23
− 3ahλi

2nb2

coth

[︃
3ah

2nb2

√︁
λ21 + λ22 + λ23

]︃
√︁
λ21 + λ22 + λ23

⎞⎟⎟⎠ ,

i = 1, 2, 3. (5.59)

Setting P1 = P2 = P3 = 0 for λ1 = λ2 = λ3 = 1 gives rise to the following relation

between h, a, and
√
n b:

2

3
=

3h2

4nb2
−

√
3ah

2nb2
coth

(︄
3
√
3ah

2nb2

)︄
. (5.60)

Using the above relation, the initial stress-free state of the network with cube edge

length h can be determined for given values of a and n.

Fig. 5.10 illustrates the difference between P1 vs. λ1 in the uniaxial test for Equa-

tions (5.55) and (5.59) with a = 5 b and n = 25. To ensure a fair comparison, for
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Equation (5.55), G = 0.73 kPa, while for (5.59), G = 1 kPa, such that the shear

modulus (curve slope) of the biopolymer networks is identical at λ1 = λ2 = 1. Fur-

thermore, the values of h are obtained by solving Equations (5.56) and (5.60) as

h = 5.00 b and h = 8.40 b, respectively. Although, in compression the results show

indistinguishable behavior, in tension the eight-chain two-node coil-rod structure ex-

hibits larger stress for λ1 > 1.9. The results are also compared with the eight-chain

non-Gaussian coil-rod structure proposed in Chapter 4, as shown by the dotted curve.

Non-Gaussian effects emerge when the sample is stretched beyond λ1 = 2.0, while the

results remain consistent under compression. Based on these results, it can be ob-

served that the overall behavior of the proposed network model is similar to that of the

eight-chain network model when Gaussian statistics are assumed for the coils. Based

on the current framework, it is also possible to construct other three-dimensional net-

work models, such as the symmetric eight-node structure with a rod, as elaborated

in Appendix D.3. However, a more detailed comparison between different networks

requires testing them on real disordered biopolymer gels, where various mechanical

tests are conducted on the samples.
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Figure 5.10: P1 vs. λ1 in the uniaxial test with a = 5 b and n = 25. For Equa-
tion (5.55), G = 0.73 kPa and h = 5.00 b, while for the eight-chain network (Equa-
tion (5.59) and Equation (4.19b)), G = 1 kPa and h = 8.40 b.

As shown in Section 5.3, the promising formulation of unzipping can also be ex-

tended to the three-dimensional network in Fig. 5.9. This extension can account for

unzipping in different principal directions, leading to anisotropic effects – a property

still unaddressed in the developed eight-chain network models in Chapter 4. The

sharp drop during dissociation observed in Fig. 5.8 can also be related to the failure

point of the macroscopic sample and will be examined in future studies.

The current study aimed to provide explicit modeling of interactions within junc-

tion zones, and it can be concluded that under the Gaussian statistics assumption,

the two-node coil-rod structure network can be effectively applied. It should be re-

called that the phantom network model assumes that components can easily pass

through each other. Therefore, the interaction between coils and rods can be ex-

tended by considering long-range interaction effects, such as excluded volume effects

or entanglement between components [20–22], which would render the governing for-
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mulation more realistic but also computationally more challenging. Additionally, the

current results are based on the presence of a single rod within the system. For a

more comprehensive generalization, the inclusion of multiple rods and their associ-

ated configurations needs to be considered. In the latter case, the unzipping behavior

of different rods is another intriguing subject that warrants future investigation.

5.5 Conclusion

The present work provides preliminary insight into modeling junction zones and their

explicit interactions with the amorphous regions in disordered biopolymer gels. The

previous model of a two-node coil-rod structure is generalized to a four-node coil-rod

structure, where two chains intertwine to form a common rod as a junction zone.

The probability distribution function in the context of a phantom network is devel-

oped, which is mathematically more involved than the two-node coil-rod structure.

Nevertheless, within the Gaussian statistics of the coils, the analytical probability

distribution function can be derived with the aid of Fourier transform. It is demon-

strated that, under this assumption, the four-node coil-rod structure is equivalent to

a collection of two coils and one two-node coil-rod structure situated inside an affine

network. This argument can also be generalized to multiple Gaussian coils sharing a

single rod. To examine the characteristics of this structure, the four nodes are placed

on the same plane to form a rectangular cell. The stress-stretch relationship of this

network is derived, and the applicability of the Gaussian distribution is evaluated

through comparison with the exact distribution. Additionally, by introducing the

grand canonical ensemble, the unzipping of the junction zone is incorporated into

the constitutive relation. Lastly, a three-dimensional network model is developed

by arranging the four-node coil-rod structures on the faces of a rectangular prism.

Results from this model is compared with the eight-chain network model combined

with two-node coil-rod structure developed in Chapter 3, which confirms that the

network model with the two-node coil-rod structure is suitable for investigating the
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effects of more explicit interactions between coils and rods, as long as the Gaussian

approximation for the coils remains valid. Moreover, the proposed model provides a

systematic framework for developing more complex networks that involve collections

of coils connected by multiple rods.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The present study aimed to provide a framework for modeling disordered bipolymer

gels by considering, at the microscopic level, statistical mechanics of the constitut-

ing elements and, at the macroscopic level, the implementation of network models.

In these gels, amorphous coils are interconnected through ordered regions known as

junction zones. The behavior of junction zones is notably more intricate than that

of cross-links in rubber-like materials, and they constitute significant portions of the

network. Under applied loading, junction zones can change in length, leading to

zipping/unzipping phenomena. Chapter 2 targets the modeling of the coils where

a critical gap in the traditional development of the force-extension relationship for

freely-jointed chain (FJC) is identified. A widely neglected error, although pointed

out by Flory [1], is corrected by examining the different ensembles and their associated

probability distributions. Subsequently, the significance of the accurate treatment is

highlighted for the two-node coil-rod structure as a building block for the biopolymer

gels. In Chapter 3, this consideration is applied to derive the partition function of

the coil-rod structure without assuming the coil to be Gaussian. To address the zip-

ping/unzipping phenomena within coil-rod structures, the grand canonical ensemble

is used to allow for segment exchange between the coil and rod components. It is

demonstrated that this approach predicts a force-extension relationship that captures
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unzipping-induced relaxation, which successfully models the unwinding of a double-

stranded DNA under force. In Chapter 4, the force-extension relationship of the

coil-rod structure is utilized to establish the Helmholtz free energy for the eight-chain

network model [2]. The end-to-end distance of the coil-rod structure in a stress-free

network is thoroughly examined. It is demonstrated that to accurately determine the

stress-free state, it is necessary to relax the assumption of incompressibility and allow

for changes in volume. Subsequently, the statistical mechanics of solvent introduc-

tion and the effects of mixing are developed based on the Flory-Huggins theory [3,

4]. Using these considerations, the resulting stress-stretch relationship illustrates how

unzipping within the coil-rod structure contribute to dissipation in disordered biopoly-

mer gels and the presence of a permanent set after complete unloading. Experimental

evidence is also validated for alginate gels, with material parameters within the model

derived based on chemical structure combined with fitting. Formulations up to this

point are based on the two-node coil-rod structure and the affinity assumption. To

take a step closer to explicitly modeling the formation of junction zone from asso-

ciation of multiple coils, Chapter 5 extends the statistical mechanics of a four-node

coil-rod structure, where two coils share the same rod. Compared to the two-node

coil-rod structure, the governing partition function in this case is more complex and

can only be simplified to a five-tuple integration. However, through the application

of Gaussian coil statistics in conjunction with Fourier transform, the closed-form par-

tition function was derived and generalized to any p-node structure sharing the same

rod. Under these circumstances, it is demonstrated that the structure can be equiv-

alently represented as a collection comprising one coil-rod and multiple coils in the

affine network model. Finally, the four-node coil-rod structure is implemented into a

network model to demonstrate its capability to describe bulk material behavior.
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6.2 Future work

There exists substantial potential for further development of the framework explored

in this study. In Chapter 3, the coil component of the coil-rod structure was mod-

eled using the FJC model. However, more sophisticated approaches, such as em-

ploying freely-rotating chains [1], chain models with extensible links [5, 6], or de-

formable active bonds [6], could be employed. Furthermore, the rod was assumed to

be rigid, yet literature suggests that utilizing the worm-like chain model [7] may offer

a more precise representation [8]. Such considerations warrant scrutiny; however, as

the mathematical complexity may compromise their efficacy. Other considerations

on the chain scale, such as long-range interactions between the chain segments (ex-

cluded volume effect)[9, 10] and polydispersity[11], remain undeveloped for coil-rod.

In particular, some biopolymer chains, such as alginate, consist of guluronic residues

β-D-mannuronic acid (M) and α-L-guluronic acid (G). The order of such units can

significantly affect the behavior of the junction zone as well as the coils [12, 13]. An-

other important issue is related to the kinetics [14, 15] of zipping/unzipping, where

the effects of loading rate are taken into account. The coil-rod structures can also

be equppied with the full dissociation of the chain as a result of unwinding or bond

scission [16, 17].

All such considerations are also extensible to the network models in Chapter 4

for capturing phenomena on a macro-scale and developing stress-stretch relations.

For instance, including kinetic theory enables us to incorporate viscoelastic effects

in the constitutive relations of disordered biopolymer gels. The formulation of non-

affine network models [18, 19], such as the micro-sphere model [20], is another path

worth exploring for future studies. The entanglement effects between the coil-rod

structures can also be accounted for through the introduction of well-known models

such as the tube model [21, 22]. Parallel to such augmentation, it is also necessary

to investigate the application of the proposed model in inhomogeneous deformation

158



where zipping/unzipping occurs locally in the sample. Regarding the network/sol-

vent interaction, there is room for modeling phenomena such as diffusion [23] or the

introduction of a sequence of solvents [24], as is customary in the gelation of biopoly-

mer gels. Moreover, studying ion concentration, such as Ca2+, on the mechanical

properties of gels, such as alginate, is also possible if detailed experimental data are

available.

In Chapter 5, the phantom network can be extended to more involved models where

coils and rods are not allowed to pass through each other. In this regard, it can be

generalized from long-range interactions, such as excluded-volume effects, to account

for rod interactions and possible rod bending [25, 26]. Moreover, the influence of loops

and other imperfections in the network topology [27] on the proposed formulation

deserves further investigation. Lastly, the model can be examined for more complex

networks with multiple rods where unzipping/zipping can occur in different rods.
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Appendix A: Supporting
Information for Chapter 2

A.1 Proof of Equation (2.30)

Let us consider an ensemble of the chain such that the projection of end-to-end

vector along an arbitrary direction is fixed. With no loss of generality, this arbitrary

direction is chosen along x axis of the coordinate system. Next, segments of the chain

are divided into subgroups. If ñj is the number of segments possessing a projection

between lxj and lxj + δlxj on the x axis, then the set {ñ1, ñ2, · · · } subjected to the

following conditions

∑︂
j

ñj = n, (A.1)∑︂
j

ñjlxj = x (A.2)

provides a distribution for the conformations in the above-mentioned ensemble. The

first condition specifies the fixed number of segments, while the second ensures that

the projection of the chain onto the x axis remains fixed. It is worthwhile to mention

that there is no constraint on the displacements along y or z axes and accordingly

the end-to-end vector r of the chain is allowed to change. The projection of each

rigid segment can vary in the range of −b < lxj < b. For a FJC not subjected to any

external forces, the probability distribution for lxj is uniform in this range. Therefore,

the probability that the projection of a segment is within any interval lxj to lxj + δlxj

is
δlxj
2b

. Considering the number of ways to assign lxj to the n segments, the total
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number of conformations for a free chain is calculated as

Ω̄ =
∑︂

{n1,n2,··· }

n!
∏︂
j

1

ñj!

(︃
δlxj
2b

)︃ñj

, (A.3)

in which {ñ1, ñ2, · · · } must satisfy the constraints (A.1) and (A.2). The simplification

of (A.3) is a formidable task. However, for sufficiently large n, it is possible to

approximate the entire sum by its largest term. In this regard, the expression in

(A.3) is replaced by

Ω̄ = n!
∏︂
j

1

ñj!

(︃
δlxj
2b

)︃ñj

, (A.4)

where ñj’s are to be determined by maximizing Ω̄. To facilitate the calculation,

factorials are replaced by Stirling’s approximation, which is only justified for ñj ≫ 1.

With this simplification and keeping only the leading order terms,

ln Ω̄(x) = n lnn− n+
∑︂
j

ñj

(︃
ln

[︃
δlxj
2b

]︃
− ln ñj + 1

)︃
. (A.5)

The above function can be maximized subject to (A.1) and (A.2). For this purpose,

α and ξ/b are introduced as Lagrange multipliers to define the following function that

needs to be maximized with respect to ñj’s.

ln Ω̄(x) + α

(︄∑︂
j

ñj − n

)︄
+ ξ

(︄
j∑︂

i=1

ñj
lxj
b

− x

b

)︄
. (A.6)

Setting the derivatives of the above expression with respect to ñj to zero yields

∂lnΩ̄

∂ñj

+ α + ξ
lxj
b

= 0. (A.7)

Differentiation of Equation (A.5) yields

∂lnΩ̄

∂ñi

= ln

[︃
δlxj
2b

]︃
− ln ñj. (A.8)

Substitution of Equation (A.8) into Equation (A.7) results in

ln ñj = ln

[︃
δlxj
2b

]︃
+ α +

ξlxj
b
, (A.9)
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leading to

ñj = expα exp

[︃
ξlxj
b

]︃
δlxj
2b

. (A.10)

By substituting the above expression into Equation (A.1) and rewriting the summa-

tion into integration, the following relation is obtained:

n = expα

∫︂ b

lxj=−b

exp

[︃
ξlxj
b

]︃
dlxj
2b

= expα
sinhξ

ξ
. (A.11)

Hence, α is determined as

α = ln

[︃
nξ

sinhξ

]︃
. (A.12)

Now, Equation (A.10) becomes

ñj =
nξ

sinhξ
exp

[︃
ξlxj
b

]︃
δlxj
2b

. (A.13)

Similarly by substitution of (A.13) and replacing summation with integration, one

can convert Equation (A.2) to

x =
nξ

sinhξ

∫︂ b

lxj=−b

lxjexp

[︃
ξlxj
b

]︃
dlxj
2b

= nbL (ξ) . (A.14)

To this end, let us rewrite Equation (A.5) as

ln Ω̄(x) = n lnn− n+
∑︂
j

ñj

(︃
ln

[︃
δlxj
2b

]︃
− ln [ñj]

)︃
+
∑︂
j

ñj

= lnn
∑︂
j

ñj +
∑︂
j

ñj

(︃
ln

[︃
δlxj
2b

]︃
− ln [ñj]

)︃
=
∑︂
j

ñj

(︃
ln

[︃
δlxj
2b

]︃
− ln

[︃
ñj

n

]︃)︃
. (A.15)

On the other hand, by taking the natural logarithm of both sides of (A.13) and

rearranging the terms,

ln

[︃
δlxj
2b

]︃
− ln

[︃
ñj

n

]︃
= −ln

[︃
ξ

sinhξ

]︃
− ξlxj

b
. (A.16)
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With the aid of (A.16), one can simplify Equation (A.15) to

ln Ω̄(x) =
∑︂
j

ñj

(︃
ln

[︃
sinhξ

ξ

]︃
− ξlxj

b

)︃
. (A.17)

Since ξ is a Lagrange multiplier and by definition independent of ñj, by utilizing

Equations (A.1) and (A.2) the above relation can be finally written as

ln Ω̄(x) = nln

[︃
sinhξ

ξ

]︃
− ξ x

b
. (A.18)

The probability pCn (x)dx is proportional to the number of chain conformations at

given x, i.e., pCn (x) ∝ Ω̄(x). Let

pCn (x) =
A0√
n

(︃
sinhξ

ξ

)︃n

exp

[︃
−ξx
b

]︃
, (A.19)

with

ξ = L −1
(︂ x
nb

)︂
(A.20)

obtained from (A.14), Equation (2.30) is thus proved.

A.2 Proof of Equation (2.32)

By setting f = 0 in Equation (2.23), it is seen that

pn(x) =

∫︂ +∞

y=−∞

∫︂ +∞

z=−∞
Wn (r) dydz. (A.21)

If Wn(r) is insensitive to the chain orientation, it can be replaced by Wn(r). By

applying the polar coordinates ρ−φ in the y− z plane (y = ρ cosφ, z = ρ sinφ), and

using r =
√︁
x2 + ρ2, the above integration is converted to

pn(x) = 2π

∫︂ +∞

ρ=0

Wn

(︂√︁
x2 + ρ2

)︂
ρdρ = 2π

∫︂ +∞

u=|x|
Wn (u)udu, (A.22)

where the last identity is arrived at by using the change of variable u =
√︁
x2 + ρ2.

Now, the Leibniz integral rule implies that

−
(︃
dpn(x)

dx

)︃
x=r

= 2πrWn(r). (A.23)
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Appendix B: Supporting
Information for Chapter 3

B.1 Proof of Equation (3.9)

Based on the definitions given in Equations (3.5) and (3.8), it is straightforward to

verify that

p(x) =

∫︂ +∞

y=−∞

∫︂ +∞

z=−∞
W (r) dydz. (B.1)

By applying the polar coordinates ρ− ϕ in y− z plane (y = ρ cosϕ, z = ρ sinϕ), and

using r =
√︁
x2 + ρ2, the above integration is converted to

p(x) = 2π

∫︂ +∞

ρ=0

W
(︂√︁

x2 + ρ2
)︂
ρdρ = 2π

∫︂ +∞

u=|x|
W (u)udu, (B.2)

where the last identity is arrived at by using the change of variable u =
√︁
x2 + ρ2.

Now, the Leibniz integral rule implies that

−
(︃
dp(x)

dx

)︃
x=r

= 2πrW (r). (B.3)

B.2 Weiner’s rigid model for a single rod

In this part, the rigid model of Weiner and Perchak [1] is expounded and the differ-

ences from the flexible model in the limit of infinite stiffness are explored.

Suppose that a rigid rod with fixed length a is placed between two fixed walls

separated by a distance x under a fixed temperature T as shown in Figure B.1a. If

one end of the rod is fixed at A, the other end is allowed to move along the circle with
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radius
√
a2 − x2, which is interpreted as a single degree of freedom. To describe such

a system, it is necessary to introduce the generalized coordinate φ and its conjugate

variable, angular momentum L about x−axis. It is further assumed that the intrinsic

energy within the rod structure is E0 and remains fixed for different conformations.

Hence, the Hamiltonian of such a system reads as

H = E0 +
L2

2I∗
, (B.4)

where I∗ stands for the moment of inertia of the rod around the x−axis. It can be

shown that I∗ is proportional to a2 − x2 regardless of the mass distribution along the

rod:

I∗ = c0m(a2 − x2), (B.5)

in which m is the total mass of the rigid rod. The factor c0 depends on the rod’s

mass distribution and equals 1 for concentrated masses at the two ends. In the

forthcoming derivations, it will be seen that c0 does not affect the final result. By

utilizing Equations (B.4) and (B.5), the canonical partition function for fixed x and

T is written as

ZW(x, T ) =

1

h

∫︂ +∞

L=−∞

∫︂ 2π

φ=0

exp

[︃
− H

kBT

]︃
dL dφ = exp

[︃
− E0

kBT

]︃√︃
8kBTπ

3ma2

h2

√︃
1−

(︂x
a

)︂2
, |x| < a.

(B.6)

The superscript W indicates Weiner’s rigid model. Although the primary goal of

both Weiner’s rigid model and flexible model with large stiffness is to impose the

constraint of rigidity on the formulation of the partition function, the results of (3.17)

and (B.6) are different. In the flexible model, the position and momentum vectors

are treated independently and the constraints of fixed length are only applied on the

position vectors, while in the rigid model, the constraint of fixed length implies extra

constraints on the momentum vector. In other words, the Hamiltonian of Weiner’s
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rigid model can be rewritten in the same way as Equation (3.15) under the following

constraints:

x2 + q2y + q2z = a2, (B.7a)

qypy + qzpz = 0, (B.7b)

where the second relation is the time derivative of the first one. As a result of the

second constraint, the kinetic and potential energy parts in (3.15) become coupled

together in Weiner’s rigid model, yielding the reduction of the accessible conforma-

tions of the system in the phase space. Accordingly, the degree of freedom reduces

from two in the flexible model to one in Weiner’s rigid model, and Equation (3.15)

collapses to Equation (B.6). Hence, the rigid model cannot be derived through the

decomposition of the kinetic and configurational parts of the partition function as in

the flexible model.

Next, the isothermal-isotension partition function of the rigid rod is formulated

considering Figure B.1b. One end (A) of the rigid rod is fixed at the origin and a

fixed force fx is applied on the other end B. The internal energy of the rod is E0

independent of the conformations. For simplicity, it is assumed that the mass m is

concentrated at point B. The system has two degrees of freedom such that the end B

is allowed to move on the surface of a sphere centered at A with radius a. By using

spherical coordinate, one can establish the position of the mass as follows

qx = a sinφ cos θ,

qz = a sinφ sin θ,

qy = a cosφ. (B.8)

Taking time derivatives, the components of velocity are given as

px = ma φ̇ cosφ cos θ −ma θ̇ sinφ sin θ,

pz = ma φ̇ cosφ sin θ +ma θ̇ sinφ cos θ,

py = −ma φ̇ sinφ. (B.9)
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An overdot indicates the time derivative of the variable. The kinetic energy is written

as

1

2m

(︁
p2x + p2y + p2z

)︁
=

1

2
ma2

(︂
φ̇2 + θ̇

2
sin2 φ

)︂
. (B.10)

Now, by defining generalized momentum Lθ and Lφ as

Lφ = ma2φ̇,

Lθ = ma2sin2φ θ̇, (B.11)

the Hamiltonian can be obtained

H = E0 +
Lφ

2ma2
+

Lθ

2ma2sin2φ
− fxacosφ. (B.12)

The isothermal-isotension partition function is therefore

QW(fx, T ) =
1

h2

∫︂ +∞

Lφ=−∞

∫︂ +∞

Lθ=−∞

∫︂ π

φ=0

∫︂ 2π

θ=0

exp

[︃
− H

kBT

]︃
dLφ dLθ dφ dθ

= exp

[︃
− E0

kBT

]︃
8kBTπ

2ma2

h2
kBT

fxa
sinh

(︃
fxa

kBT

)︃
. (B.13)

Interestingly, the above result is in the same form as Equation (3.20) with the differ-

ence being the coefficient. It is worthwhile to mention that the above result cannot

be recovered through substitution of Equation (B.6) in (3.10). Consequently, the for-

mulations of (3.10) (or equivalently (3.11)) no longer hold for Weiner’s rigid model.

After calculation of partition functions (B.6), the average force ⟨fx⟩ can be obtained

in terms of displacement x by using Equations (3.3) and (3.4). The result is

⟨fx⟩a
kBT

=
x

a

[︃
1−

(︂x
a

)︂2]︃ =
x

a
+ O

(︃(︂x
a

)︂3)︃
. (B.14)

As a consequence of the stronger constraint imposed by the rigid model, it predicts

stiffer behaviour compared to the flexible model with infinite stiffness, see Figure B.2

and comparison with Figure 3.3. In a similar fashion, substitution of (B.13) in Equa-

tions (3.12) and (3.13) leads to

⟨x⟩
a

= L

(︃
fxa

kBT

)︃
=

1

3

fxa

kBT
+ O

(︄(︃
fxa

kBT

)︃3
)︄
. (B.15)
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x

y

z

y
φ

(a) Canonical ensemble with fixed x

(b) Isothermal-isotension ensemble with fixed fx

Figure B.1: Weiner’s rigid model of a single rod: (a) Canonical ensemble in which
the rod is constrained between two fixed walls with distance x. The projection of
the rigid rod on the right wall shows that there is only one degree of freedom and
the end B is confined to the circumference of the circle with radius

√
a2 − x2. (b)

Isothermal-isotension ensemble in which the rod is subjected to the force fx and the
end B with two degrees of freedom can be located on the surface of a sphere with
radius a.
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The latter result is identical to Equation (3.23) for the flexible model with infinite

stiffness. In both Weiner’s rigid model and flexible model with infinite stiffness, the

isothermal-isotension ensemble predicts stiffer behaviour compared to the canonical

ensemble.

Figure B.2: Normalized force vs. normalized displacement along the x−axis for
Weiner’s rigid model. For the isothermal-isotension ensemble fxa/kBT is plotted
against ⟨x⟩/a, while for the canonical ensemble ⟨fx⟩a/kBT is plotted against x/a.

So far, two different approaches for modelling a rigid rod have been briefly outlined.

In the original work of Weiner and Perchak [1], a similar analysis was proposed

for a structure consisting of two rigid rods connected together with fixed end-to-

end distance through the analogy with Frenkel’s governor model Frenkel [2]. It was

concluded that the results are radically distinctive such that by increasing the end-to-

end distance, the average force in the flexible model with infinite stiffness decreases

while that in the Weiner’s rigid model increases.
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The same discrepancy between the rigid and flexible models was reported in the

modelling of the angles between consecutive segments in the freely rotating chain

structure. It is a highly controversial issue which method can describe the chain prop-

erties more realistically. For example, Gō and Scheraga [3] showed that although both

methods have errors when compared to the quantum statistical mechanics, the results

driven from the flexible model with infinite stiffness are more accurate. Furthermore,

as shown by Weiner [4] the entropy change of the flexible model is proportional to the

logarithm of the probability density based on the random walk model. In the current

study, for the sake of consistency with other works in the literature, we focused on

the flexible model in the limiting case of κ → +∞. For further information, readers

are referred to chapter 6 of the book by Weiner [5].

B.3 Derivation of the probability distribution of

the coil-rod structure along x- direction

Let us reconsider Equation (3.24),

pCR
n (x) =

1

2a

∫︂ x+a

x−a

pCn (x
′)dx′, (B.16)

where pCn (x) is given by Equation (3.31). Now define the following function

F (x, k) =
k∑︂

s=0

(−1)s

s!(n− s)!

[︃
1

2

(︂
n− x

b

)︂
− s

]︃n
, if − (2k + 2− n)b ≤ x ≤ (n− 2k)b

(B.17)

where |x| ≤ nb and zero otherwise. Then, it can be verified that∫︂ x

−nb

pCn (x
′)dx′ = 1− F (x, k). (B.18)

Using Equations (B.16) and (B.18) leads to

pCR
n (x) =

1

2a
[F (x− a, k′)− F (x+ a, k′′ − 1)] . (B.19)
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in which k′ and k′′ hold in the following relations:

nb+ a− x

2b
− 1 ≤ k′ ≤ nb+ a− x

2b
, (B.20a)

nb− a− x

2b
≤ k′′ ≤ nb− a− x

2b
+ 1. (B.20b)

Special case: a = b

Since Equation (B.19) is valid for any a > 0, we can check the result for the special

case of a = b. In this case, by comparing Equations (B.20a) and (B.20b), it can be

concluded that k′ = k′′. With the aid of Equation (B.17), the first term in (B.19) is

simply

F (x− b, k′) =
k′∑︂
s=0

(−1)s(n− s+ 1)

s!(n− s+ 1)!

[︃
1

2

(︂
n− x

b
+ 1
)︂
− s

]︃n
. (B.21)

On the other hand, by using Equation (B.17) the second term in (B.19) is rewritten

as

F (x+ b, k′ − 1) =
k′−1∑︂
s=0

(−1)s

s!(n− s)!

[︃
1

2

(︂
n− x

b
− 1
)︂
− s

]︃n
. (B.22)

Now, applying s′ = s+ 1, we have

F (x+ b, k′ − 1) =
k′∑︂

s′=1

(−1)s
′−1

(s′ − 1)!(n− s′ + 1)!

[︃
1

2

(︂
n− x

b
+ 1
)︂
− s′

]︃n

=
k′∑︂
s=0

−(−1)ss

s!(n− s+ 1)!

[︃
1

2

(︂
n− x

b
+ 1
)︂
− s

]︃n
. (B.23)

In the latter step, we replaced s′ = 1 by s′ = 0 and change the notation to s with no

loss of generality. By combining the results of (B.21) and (B.23),

pCR
n (x) =

1

2b
[F (x− b, k′)− F (x+ b, k′ − 1)]

=
1

2b

k′∑︂
s=0

(−1)s(n+ 1)

s!(n− s+ 1)!

[︃
1

2

(︂
n− x

b
+ 1
)︂
− s

]︃n
. (B.24)

This equation is true for condition (B.20a),

nb− b− x

2b
≤ k′ ≤ nb+ b− x

2b
, (B.25)
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or equivalently,

(n− 1− 2k′)b ≤ x ≤ (n+ 1− 2k)b. (B.26)

Equation (B.24) together with (B.26) recovers the probability density in Equation (3.31),

with the number of Kuhn segments being increased from n to n+1. This is expected

since when a = b, the rod can be treated as a Kuhn segment added to the coil,

rendering a new coil structure with n+ 1 Kuhn segment.
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Appendix C: Supporting
Information for Chapter 4

C.1 Analytical expressions for Cn

To determine Cn, one can refer to the work in Chapter 3 in which Wn(r) is given by

WCR
n (r) =

1

4πar
[pn(r − a)− pn(r + a)] , (C.1)

and for large n

pn(r) = Cn

[︃
sinhβ

β

]︃n
exp

[︃
−βr
b

]︃
, (C.2)

where

β = L −1
[︂ r
nb

]︂
. (C.3)

Now, the normalization condition∫︂ +∞

0

WCR
n (r) 4πr2dr = 1 (C.4)

can be rephrased as∫︂ +∞

0

pn(r − a)rdr −
∫︂ +∞

0

pn(r + a)rdr = a. (C.5)

By change of variables y = r − a and z = −r − a in the first and second integrations

respectively, Equation (C.5) reads∫︂ +∞

−a

pn(y)(y + a)dy +

∫︂ −a

−∞
pn(−z)(z + a)dz = a. (C.6)
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Since pn(x) is an even function, one can simply deduce that∫︂ +∞

−∞
pn(r)dr = 1. (C.7)

Substitution of Equation (C.2) into the above normalization condition implies that

Cn

∫︂ +∞

−∞
exp

{︃
−βr
b

+ n ln

[︃
sinhβ

β

]︃}︃
dr = 1. (C.8)

For large n, β can be asymptotically approximated by
3r

nb
, and the argument of the

exponential function can be expanded using the series expansion:

−βr
b

+ n ln

[︃
sinhβ

β

]︃
= −n

(︃
3

2

(︂ r
nb

)︂2
+

9

20

(︂ r
nb

)︂4
+ · · ·

)︃
. (C.9)

By keeping only the lowest order term, one can solve Equation (C.8) analytically

leading to

C(1)
n =

√︃
3

2πnb2
, (C.10)

which corresponds to the normalization factor in the Gaussian coil distribution [1].

However, by applying the expansion of (C.9) up to the second term, one can compute

the normalization factor as

C(2)
n =

√︃
6

5b2n2

exp (−5n/8)

K 1
4
(5n/8)

, (C.11)

where K 1
4
(x) is the (1/4)th order modified Bessel function of the second kind. For

large values of n [2]

Kρ(ρx) ∼
√︃

π

2ρ

exp (−ρx)√
x

, (C.12)

and consequently C
(2)
n converges to C

(1)
n . To probe into the validity range of C

(1)
n and

C
(2)
n , Cn is computed through numerical evaluation of the integral in (C.8). The ratios

of estimated values to the exact value, C
(i)
n /Cn, (i = 1, 2) are shown in Figure C.1.

As can be seen C
(1)
n and C

(2)
n can predict Cn with an error of less than 2% for n ≥ 10.

Therefore, the application of C
(1)
n in the current study is deemed reliable.
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Figure C.1: The ratio of C
(i)
n /Cn as a function of n for two different approximations.

C.2 Simplification of Equation (3.37) for a→ 0

By taking a→ 0, Equations (3.36a) and (3.36b) convert to

lim
a→0

ξ1 = lim
a→0

ξ2 = L −1
[︂ r
nb

]︂
= β. (C.13)

Thus, the second term in Equation (3.37) encounters the indeterminate form of

0/0. To evaluate this expression, L’Hospital’s rule is applied. Let us rewrite Equa-

tion (3.37) as

b⟨fr⟩
kBT

=
b

r
+
ξ1I1 − ξ2I2

I1 − I2

. (C.14)

where

I1 =

[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b

)︃]︃
, (C.15a)

I2 =

[︃
sinhξ2
ξ2

]︃n
exp

[︃
−ξ2

(︃
r + a

b

)︃]︃
. (C.15b)

By adopting the chain rule,

dI1

da
=

(︃
∂I1

∂ξ1

)︃
a

dξ1
da

+

(︃
∂I1

∂a

)︃
ξ1

. (C.16)
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While from Equation (C.15a):(︃
∂I1

∂ξ1

)︃
a

= n

[︃
sinhξ1
ξ1

]︃n
exp

[︃
−ξ1

(︃
r − a

b

)︃]︃(︃
cothξ1 −

1

ξ1
− r − a

nb

)︃
= 0. (C.17)

Now, Equation (C.16) is simplified to

dI1

da
=

(︃
∂I1

∂a

)︃
ξ1

=
ξ1
b

I1. (C.18)

Similarly,

dI2

da
=

(︃
∂I2

∂a

)︃
ξ2

= −ξ2
b

I2. (C.19)

Consequently, by defining

I = lim
a→0

I1 = lim
a→0

I2 =

[︃
sinhβ

β

]︃n
exp

[︃
−βr
b

]︃
, (C.20)

and using Equations (C.13), (C.18), and (C.19) one can write

lim
a→0

dI1

da
= − lim

a→0

dI2

da
=
β

b
I . (C.21)

On the other hand, if a→ 0, Equations (3.36a) and (3.36b) lead to

lim
a→0

dξ1
da

= − lim
a→0

dξ2
da

=
−1

nb

(︁
L −1

)︁′
(x)

⃓⃓⃓⃓
x= r

nb

=
−1

nb

1

L ′
(︂
L −1

[︂ r
nb

]︂)︂ , (C.22)

where the inverse function rule has been applied for the last identity. Now adopting

(C.13) and using the fact that L (x) = coth(x)− 1/x yield the following result

lim
a→0

dξ1
da

= − lim
a→0

dξ2
da

=
−1

nb

β2

1− β2 csch2β
. (C.23)

With the aid of Equations (C.20), (C.21) and (C.23), Equation (C.14) in the limit of

a→ 0 is given by

lim
a→0

b⟨fr⟩
kBT

=
b

r
+ lim

a→0

ξ1
dI1

da
− ξ2

dI2

da
dI1

da
− dI2

da

+ lim
a→0

I1
dξ1
da

− I2
dξ2
da

dI1

da
− dI2

da

= β +

(︄
b

r
− β

n
(︁
1− β2csch2β

)︁)︄ . (C.24)
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This result corresponds to the force-extension relationship for a pure coil as shown

in Chapter 2. It should be noted that for n → ∞ the term in the parenthesis is

negligible and the following well-known result is recovered:

lim
a→0

⟨fr⟩ =
kBT

b
β. (C.25)

With the same approach, by employing L’Hospital’s rule and using Equations (C.18)

and (C.19), one can simplify Equation (3.35) for a→ 0 to

lim
a→0

WCR
n (r) =

Cnβ

2πb r

[︃
sinhβ

β

]︃n
exp

[︃
−βr
b

]︃
. (C.26)

C.3 Derivation of Equation (4.8) and simplification

for a→ 0

Let us rewrite Equation (3.35) as

WCR
n (r) =

Cn (I1 − I2)

4πar
, (C.27)

where I1 and I2 have been introduced in (C.15a) and (C.15b), respectively. By

applying the chain rule, one can write

dI1

dn
=

(︃
∂I1

∂ξ1

)︃
n

dξ1
dn

+

(︃
∂I1

∂n

)︃
ξ1

=

(︃
∂I1

∂n

)︃
ξ1

= ln

[︃
sinh ξ1
ξ1

]︃
I1. (C.28)

in which the partial derivative of I1 with respect to ξ1 vanishes according to (C.17).

It can be similarly concluded that

dI2

dn
=

(︃
∂I2

∂ξ2

)︃
n

dξ2
dn

+

(︃
∂I1

∂n

)︃
ξ2

=

(︃
∂I1

∂n

)︃
ξ2

= ln

[︃
sinh ξ2
ξ2

]︃
I2. (C.29)

Now, the partial derivative of (C.27) with respect to n is carried out by utilizing

Equations (C.28) and (C.29) as

∂WCR
n

∂n
=

1

4πar

{︃
∂Cn

∂n
(I1 − I2) + Cn

(︃
ln

[︃
sinh ξ1
ξ1

]︃
I1 − ln

[︃
sinh ξ2
ξ2

]︃
I2

)︃
− Cn(I1 − I2)

a

∂a

∂n

}︃
(C.30)
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Carrying Equation (C.30) into Equation (4.7) and setting a = (N − n)α yields

∂Cn

∂n
Cn

⃓⃓⃓⃓
n=n0

+

ln

[︃
sinh ξ1
ξ1

]︃
I1 − ln

[︃
sinh ξ2
ξ2

]︃
I2

I1 − I2

⃓⃓⃓⃓
n=n0

+
1

N − n
=

ε

kBT
. (C.31)

For n > 10, Cn can be approximated by Equation (C.10). Thus,

∂Cn

∂n
=

−Cn

2n
, (C.32)

and Equation (C.31) collapses to Equation (4.8).

For a → 0, it is required to substitute Equation (C.26) into (4.7). After some

mathematical manipulation, it can be shown that Equation (4.8) reduces to

−1

2n
+ ln

[︃
sinh β

β

]︃
− r

n2b

β

1− β2csch2β
=

ε

kBT
. (C.33)

If n→ ∞, the first and third terms on the left hand side are negligible, hence

ln

[︃
sinh β

β

]︃
=

ε

kBT
, (C.34)

which is a relationship presented by Higgs and Ball [3].

C.4 Another example of uniaxial loading-unloading

with different material parameters

Parallel to Figure 2.2 in the main text, Figure C.2 shows another example of unaxial

loading-unloading for a different set of parameters: N = 50, α = 0.1, ε = 5kBT . The

loading curve is generated for nmin = 10, while the unloading curve is provided for

nmin = 30. Fig C.2(a) shows the normalized first Piola Kirchhoff stress P1/G against

λ1 with a permanent set 1.1 as shown in the inset. The curve exhibits fluctuations

during unzipping, where each drop indicates, on average, the release of one Kuhn

segment from the rod to the coil. As stretching continues, the curve maintains a

plateau-like behavior, but the magnitude of fluctuations diminishes as the rod shrinks.

Upon reaching state (III), the load is gradually removed, and the unloading curve

201



converges to the curve with a fixed n = 30. Fig C.2(b) shows the change of n0 as a

function of λ1, and different from Figure 2.2, the deviation of n0 from 10 starts at

state (II). Finally, Figures C.2(c) and (d) illustrate the variations of λ2 and J with

respect to λ1, which also contain fluctuation regions corresponding to the occurrence

of unzipping.
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Figure C.2: Different parameters vs. stretch λ1 for a uniaxial loading-unloading
cycle along direction 1; N = 50, α = 0.1, ε = 5kBT . Dashed yellow and dash-
dotted purple curves assume fixed n = 10 and 30, respectively. Blue and red curves
depict the presence of zipping/unzipping with nmin = 10 and 30, respectively. (a)
Normalized Piola-Kirchhoff stress P1, (b) Number of Kuhn segments n0 in the coil
with maximum contribution to the grand canonical partition function, (c) Stretch
ratio λ2, (d) Volume ratio J .

C.5 Derivation of (4.23) and (4.27)

Let us suppose that the unswollen state (0′) comprises ϱ free chains per unit unswollen

volume. As shown in Figure C.3, the volume of the body is denoted as V0 and assumed



to be the summation of the volume occupied by each chain. State (I′) is the swollen

state resulting from the addition of M solvent molecules (per unit unswollen volume

in 0′) to state (0′). The total volume of the swollen body (I′) is assumed to be Vp+Vs

where Vs and Vp are the volumes occupied by solvent and polymer chains, respectively.

The entropy change per unit unswollen volume from state (0′) to (I′) is written based

on the Flory-Huggins model as [4, 5]:

∆S0′→I′ = −kB
(︃
M ln

[︃
Vs

Vs + Vp

]︃
+ ϱ ln

[︃
Vp

Vs + Vp

]︃)︃
. (C.35)

Due to gelation, coil-rod structures with n Kuhn segments in the coil are formed in

state (I) on the diagonals of the cubes in Figure 4.6. If it is assumed that the volume

change from state (I′) to (I) is zero, the entropy change per unit unswollen volume

from state (I′) to (I) is given by

∆SI′→I = ϱkB ln
[︁
WCR

n (λvr0)λ
3
vdV0

]︁
, (C.36)

where the stretch λ3v represents the ratio of volume in (I′) (or (I)) to the volume in

(0′), and is equal to

λ3v =
Vs + Vp
V0

. (C.37)

If we consider that each solvent molecule occupies one lattice cell in the Flory-Huggins

theory, while each chain in the unswollen state (0′) occupies τ cells, then V0/Vs =

ϱτ/M . Consequently, Equation (C.37) can be rewritten as

Vp =
(︁
µ−1τλ3v − 1

)︁
Vs, (C.38)

where µ is defined in (4.22). The combination of (C.35) and (C.36), along with

Equation (C.38), results in

∆S0′→I = −MkB ln
[︁
µτ−1λ−3

v

]︁
− ϱkB ln

[︁
1− µτ−1λ−3

v

]︁
+ ϱkB ln

[︁
WCR

n (λvr0)λ
3
vdV0

]︁
.

(C.39)

Now, let us define state (0) with the same volume as (0′), in which the unswollen net-

work is formed by constructing coil-rod structures along the diagonals of the cubes in
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Figure 4.6. In a manner similar to the change from (I′) to (I) but without introducing

any solvents, the entropy change from state (0′) to (0) is simply obtained by setting

λv = 1 and M = 0 (µ = 0) in Equation (C.39):

∆S0′→0 = ϱkB ln
[︁
WCR

n (r0) dV0
]︁
. (C.40)

By utilizing (C.39) and (C.40), one can conclude that

∆S0→I =−MkB ln
[︁
µτ−1λ−3

v

]︁
− ϱkB ln

[︃
λ3v − µτ−1

λ6v

]︃
+ ϱkB ln

[︃
WCR

n (λvr0)

WCR
n (r0)

]︃
.

(C.41)

Equation (C.41) presents the change of entropy due to the addition of the solvents

to the unwollen network as given by (4.23). By simply replacing λv with λs in the

above relations, it is emphasized that the states (I) and (I′) are stress-free.
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Figure C.3: Different states of the body during gelation in a schematic two-
dimensional representation: State (0′) illustrates free chains inside the body with
volume V0. The lattice in the context of Flory-Huggins theory is also shown. Each
chain occupies a certain number x of lattice cells (in this specific schematic, τ = 8).
State (0) shows the formation of junction zones in the network with the same volume
V0. State (I′) is achieved through the mixing of solvents with the chains in state
(0′), resulting in isotropic expansion of the body with a new volume Vs + Vp. Each
solvent molecule occupies one cell in the swollen state (I′), while each chain undergo-
ing extension occupies more cells compared to state (0′) (in this schematic, it is 15
cells). State (I) with volume Vs+Vp represents the formation of junction zones in the
network in the presence of the solvent molecules.



Now consider the swollen stress-free state (I) deforming to a new state (II), in which

the number of solvents remains fixed, but the sample undergoes stretches of λ1, λ2,

and λ3 with a volume expansion J = λ1λ2λ3 measured with respect to state (I).

Likewise, an intermediate state (II′) can be constructed through isotropic expansion

of state (I′) by J with respect to (I′), while the number of solvents does not change.

By defining V ′
p as the volume occupied by the polymers in state (II) (or (II′)) and

considering fixed M , the entropy of mixing per unit unswollen volume between (0′)

and (II′) is given by

∆S0′→II′ = −kB
(︃
M ln

[︃
Vs

Vs + V ′
p

]︃
+ ϱ ln

[︃
V ′
p

Vs + V ′
p

]︃)︃
. (C.42)

Additionally, the volume ratio J can also be expressed as

J =
V ′
p + Vs

Vp + Vs
. (C.43)

By employing (C.37) in the above relation, it can be shown that

V ′
p =

(︁
µ−1τJλ3s − 1

)︁
Vs. (C.44)

Substitution of (C.44) into (C.42) yields

∆S0′→II′ = −kB
(︁
M ln

[︁
µτ−1λ−3

s J−1
]︁
+ ϱ ln

[︁
1− µτ−1λ−3

s J−1
]︁)︁
. (C.45)

On the other hand, the entropy change per unit unswollen volume between states

(II′) and (II) is constructed in a manner similar to Equation (C.36):

∆SII′→II = ϱkB ln
[︁
WCR

n (λsλchainr0) Jλ
3
sdV0

]︁
, (C.46)

where it is assumed that the number of Kuhn segments in the coil is n, the same as

that of state (I). Summation of (C.45) and (C.46) gives rise to

∆S0′→II

= −MkB ln
[︁
µτ−1λ−3

s J−1
]︁
− ϱkB ln

[︃
1− µτ−1λ−3

s J−1

Jλ3s

]︃
+ ϱkB ln

[︁
WCR

n (λsλchainr0) dV0
]︁
.

(C.47)
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To this end, the entropy change per unit unswollen volume from state (0) to (II) is

given by subtracting (C.40) from (C.47) as

∆S0→II = −MkB ln
[︁
µτ−1λ−3

s J−1
]︁
− ϱkB ln

[︃
λ3sJ − µτ−1

J2λ6s

]︃
+ ϱkB ln

[︃
WCR

n (λsλchainr0)

WCR
n (r0)

]︃
,

(C.48)

which is equivalent to Equation (4.27).

C.6 Thermodynamics consideration of the consti-

tutive relation

In this section, the second law of thermodynamics as applied to the constitutive

relation developed in this work is discussed. For a spontaneous process, in the absence

of heat transfer, the Clausius-Duhem inequality implies that [6]

P : Ḟ− Ψ̇− SṪ ≥ 0, (C.49)

where overdot denotes the material time derivative, A : B = tr
(︁
ABT

)︁
and super-

script T is the transpose. P and F are respectively the first Piola-Kirchhoff stress

tensor and the deformation gradient tensor. Since our formulation involves dissipa-

tion mechanism represented by change in nmin, nmin can be considered as an internal

variable for the Helmholtz free energy, in addition to F and T . The elastic and plastic

deformations can be stated using the multiplicative decomposition of [7]:

F = FeFp, (C.50)

where the plastic deformation Fp is expressed in terms of λp introduced in section 4.4

Fp = λpI, (C.51)

and I is the identity tensor. By applying Equation (4.26), one can find a relationship

between λp and nmin as below:

λpr0
b

b⟨fr⟩
⃓⃓⃓
r0λp

kBT
= 3 (1 + µ), (C.52)
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where ⟨fr⟩ is given by Equation (3.37) with n is replaced by nmin. This relation is

analogous to Equation (4.18) but with the consideration of swelling. Since Fp is given

in terms of nmin, the Helmholtz free energy can be written as

Ψ = Ψ(Fe, T, nmin). (C.53)

Using (C.50) and (C.53), Equation (C.49) is rewritten as [8](︃
FpP− ∂Ψ

∂Fe

)︃
: Ḟ

e
+PFe : Ḟ

p − ∂Ψ

∂nmin

ṅmin ≥ 0. (C.54)

The partial differentiation with respect to each variable, Fe, T , or nmin, implicitly

implies that the other two are kept fixed. By applying the definition

P =
∂Ψ

∂F
, (C.55)

the first term in (C.54) automatically vanishes. Furthermore, by applying the chain

rule

∂Ψ

∂nmin

=

(︃
∂Ψ

∂Fp

)︃
nmin

∂Fp

∂nmin

+

(︃
∂Ψ

∂nmin

)︃
F

, (C.56)

and (C.55), the inequality (C.54) is simplified to

−
(︃

∂Ψ

∂nmin

)︃
F

ṅmin ≥ 0. (C.57)

In the above relation, the subscript F emphasizes that the partial differentiation is

conducted while not only Fe but also Fp are treated as fixed. To derive a more

explicit expression for the inequality (C.57), one should generalize Equation (4.28) in

the presence of zipping/unzipping. For this purpose, in Equation (4.28), the canonical

partition functionsWn is replaced by the grand canonical partition function Ω. Under

general deformation F, the Helmholtz free energy can be stated as:

Ψ = ΨI +G

{︃
−ln

[︃
Ω(λsλchainr0, T, ε)

Ω(λsr0, T, ε)

]︃
− (µ+ 1) lnJ

}︃
, (C.58)

where the large τ approximation has been used,

λchain =

√︃
F : F

3
, (C.59)
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and J = detF. It should be noted that using Equation (C.58) together with Equa-

tion (4.14) recovers the constitutive relation (4.30) presented earlier. By treating nmin

as a continuous variable, Ω in Equation (3.43) can be rewritten into the following in-

tegral form:

Ω(r, T, ε) ∝
∫︂ N

n=nmin

exp

(︃
ln
[︁
WCR

n (r)
]︁
− nε

kBT

)︃
dn. (C.60)

Applying the above result in (C.57) leads to

G exp

[︃
−nminε

kBT

]︃(︃
WCR

nmin
(λsr0)

Ω (λsr0)
−
WCR

nmin
(λsλchainr0)

Ω (λsλchainr0)

)︃
ṅmin ≥ 0. (C.61)

Since G and exp

[︃
−nminε

kBT

]︃
are positive, the second law of thermodynamics leads to

(︃
WCR

nmin
(λsr0)

Ω (λsr0)
−
WCR

nmin
(λsλchainr0)

Ω (λsλchainr0)

)︃
ṅmin ≥ 0. (C.62)

Physically, (C.62) can be understood in the context of zipping/unzipping. Specifically,
WCR

nmin
(λsr0)

Ω (λsr0)
and

WCR
nmin

(λsλchainr0)

Ω (λsλchainr0)
represent, respectively, the contributions of nmin

to the grand canonical partition function Ω when the chains are in a stress-free bulk

and when the chains are subjected to λchain. Although Figure 4.5 is generated for

the case without swelling and a common factor of exp

[︃
−nε
kBT

]︃
is included in the plot

(which is inconsequential for this discussion), it can be used as an example to assess

the contribution of nmin to Ω. By looking at the data along the vertical axis where

n = nmin = 10 , it can be seen that as λ1 and hence λchain increases, the contribution

of nmin to Ω decreases, i.e.,
WCR

nmin
(λsr0)

Ω (λsr0)
>
WCR

nmin
(λsλchainr0)

Ω (λsλchainr0)
. Meanwhile, unzipping

occurs indicating ṅmin > 0. Together the inequality (C.62) is satisfied. Likewise, if

ṅmin < 0 i.e., the chains tend to zip and form longer rods, the contribution of nmin

to Ω is expected to increase causing the term inside the parenthesis of (C.62) to be

negative. The second law of thermodynamics is again satisfied under the scenario of

zipping.
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Appendix D: Supporting
Information for Chapter 5

D.1 Formulation for a phantom network of Gaus-

sian coils

Suppose there is a collection of ν Gaussian chains forming a network structure, with

no independent cyclic paths 1. The total number of nodes in this structure is ν + 1,

out of which p + 1 nodes (labelled as s1, s2, · · · , sp+1) are fixed while the rest are

free to fluctuate. These fixed nodes may later be transformed under macroscopic

deformation. However, for the time being, they are called as fixed. With p+ 1 fixed

nodes, there are p constraints. Following the same approach presented in Section 5.2.3,

all constraints are formulated using the three-dimensional Dirac delta function defined

in Equation (5.15). Now, the probability distribution can be expressed using Fourier

space representation:

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
= (2π)−3p

∫︂
exp
[︂
− 1

2
KTΓK− iRTK

]︂
dK, (D.1)

where K is a 3p× 1 vector, and Γ is a 3p× 3p symmetric matrix. Herein, it will be

shown that Equation (D.1) can be envisioned as the probability distribution function

of the p+ 1 Gaussian chains with different orientation.

Theorem 1 If K is a 3p × 1 variable vector, R is an arbitrary 3p × 1 parametric

vector, and ΓT = Γ is a symmetric 3p × 3p matrix. Then it can be shown that the

1In graph theory, such a structure is referred to as a “tree”.
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following 3p-layer integration satisfies:∫︂
exp
[︂
− 1

2
KTΓK− iRTK

]︂
dK =

√︄
(2π)3p

detΓ
exp
[︂
− 1

2
RTΓ−1R

]︂
. (D.2)

Proof. By change of variable K = Y − iΓ−1R, the left hand side of Equation (D.2)

is converted to

exp
[︂
− 1

2
RTΓ−1R

]︂ ∫︂
exp
[︂
− 1

2
YTΓY

]︂
dY. (D.3)

Since Γ is symmetric, it can be orthogonally diagonalized. Then determination of the

above integration is simply achieved through introduction of orthogonal matrix M:

MTΓM =

⎛⎜⎜⎜⎜⎜⎜⎝
η1 0 · · · 0

0 η2 · · · 0
...

...
. . .

...

0 0 · · · η3p

⎞⎟⎟⎟⎟⎟⎟⎠ , (D.4)

such that ηi, i = 1, 2, · · · , 3p are the eigenvalues of the matrix Γ. Applying the

following change of variables

X = MTY (D.5)

leads to∫︂
exp
[︂
− 1

2
YTΓY

]︂
dY =

3p∏︂
k=1

∫︂
exp
[︂
− 1

2
ηkX

2
k

]︂
dXk =

3p∏︂
k=1

√︃
2π

ηk
=

√︄
(2π)3p

detΓ
, (D.6)

where Xk is the kth element of vector X. The last identity in the above relation is

given based on the fact that

detΓ =

3p∏︂
k=1

ηk. (D.7)

Substitution of Equation (D.6) in (D.3) completes the proof.

By applying (D.2), one can show that

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

√︄
1

(2π)3p detΓ
exp
[︂
− 1

2
RTΓ−1R

]︂
. (D.8)
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Since Γ−1 is symmetric, the orthogonal matrix M (M−1 = MT) diagonalizes Γ−1 as

D = MTΓ−1M, (D.9)

and D is the diagonal matrix with eigenvalues entities. By defining

R̄ = MTR, (D.10)

and knowing the fact that Γ−1 contains the components of [I]3×3, one can conclude

that there are p eigenvalues in the form of
3

n̄ib2
, i = 1, 2, · · · , p, with each eigenvalue

having a triple degeneracy. Hence,

detΓ =

p∏︂
i=1

(︃
n̄ib

2

3

)︃3

. (D.11)

Then,

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

p∏︂
i=1

(︃
3

2πn̄ib2

)︃3/2

exp

⎡⎣−3
(︁
R̄i

)︁2
x

2n̄ib2
−

3
(︁
R̄i

)︁2
y

2n̄ib2
−

3
(︁
R̄i

)︁2
z

2n̄ib2

⎤⎦ ,
(D.12)

This result shows that any Gaussian phantom network with no cyclic paths can be

modelled by equivalent p Gaussian chains where n̄i is the number of Kuhn segments

of the equivalent ith chain with end-to-end vector R̄i obtained from eigensystem Γ

or Γ−1.

D.2 Calculation of integration (5.29)

Theorem 2 If K is a 3p × 1 vector, consisting of a (3p− 3) × 1 vector Ka and a

3× 1 vector Kb, where p is an arbitrary positive integer:

K =

⎛⎝Ka

Kb

⎞⎠ , (D.13)

R is a 3p× 1 vector as

R =

⎛⎝Ra

Rb

⎞⎠ , (D.14)
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and Γ is a 3p× 3p symmetric matrix in the form of

Γ =

⎛⎜⎜⎜⎝
γ11 [I]3×3 · · · γ1p [I]3×3

...
. . .

...

γ1p [I]3×3 · · · γpp [I]3×3

⎞⎟⎟⎟⎠ , (D.15)

then it can be shown∫︂
1

KT
bKb a

sin

(︃√︂
KT

bKb a

)︃
exp
[︂
− 1

2
KTΓK− iRTK

]︂
dK

=

√︄
(2π)3pζpp
detΓaa

1

a|L|
exp

[︃
−1

2

(︁
RT

aΓ
−1
aa Ra

)︁
− ζpp

2

(︁
a2 + |L|2

)︁]︃
sinh [a|L|ζpp] , (D.16)

where

L = Rb +

(︃
ζ1p
ζpp

[I]3×3

ζ2p
ζpp

[I]3×3 · · ·
ζ(p−1)p

ζpp
[I]3×3

)︃
Ra, (D.17)

Γaa =

⎛⎜⎜⎜⎝
γ11 [I]3×3 · · · γ1(p−1) [I]3×3

...
. . .

...

γ1(p−1) [I]3×3 · · · γ(p−1)(p−1) [I]3×3

⎞⎟⎟⎟⎠ , (D.18)

and ζij, i, j = 1, 2, · · · , p are defined based on the inverse of Γ:

Γ−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
ζ11 [I]3×3 · · · ζ1(p−1) [I]3×3 ζ1p [I]3×3

...
...

. . .
...

ζ1(p−1) [I]3×3 · · · ζ(p−1)(p−1) [I]3×3 ζp(p−1) [I]3×3

ζ1p [I]3×3 · · · ζp(p−1) [I]3×3 ζpp [I]3×3

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.19)

Proof. Let us define

I0 =

∫︂
1

KT
bKb a

sin

(︃√︂
KT

bKb a

)︃
exp
[︂
− 1

2
KTΓK− iRTK

]︂
dKadKb. (D.20)

By rewriting Equation (D.15) in the form of block matrix:

Γ =

⎛⎝Γaa Γab

ΓT
ab Γbb

⎞⎠ , (D.21)
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where Γbb = γpp [I]3×3, one can expand the left hand side of Equation (D.20) in the

block matrix form

I0 =

∫︂
1

KT
bKb a

sin

(︃√︂
KT

bKb a

)︃
exp
[︂
− 1

2
KT

b ΓbbKb − iRT
bKb

]︂
×
(︃∫︂

exp
[︂
− 1

2
KT

aΓaaKa − i
(︁
RT

a − iKT
bΓ

T
ab

)︁
Ka

]︂
dKa

)︃
dKb. (D.22)

With the aid of Theorem 1, the integration in the parenthesis of Equation (D.22) can

be obtained as∫︂
exp

[︂
− 1

2
KT

aΓaaKa − i
(︁
RT

a − iKT
bΓ

T
ab

)︁
Ka

]︂
dKa

=

√︄
(2π)3p−3

detΓaa

exp
[︂
− 1

2

(︁
RT

a − iKT
bΓ

T
ab

)︁
Γ−1

aa (Ra − iΓabKb)
]︂
. (D.23)

Carrying Equation (D.23) into (D.22) and rearranging the expanded terms yields

I0 =

√︄
(2π)3p−3

detΓaa

exp
[︂
− 1

2

(︁
RT

aΓ
−1
aa Ra

)︁ ]︂ ∫︂ 1

KT
bKb a

sin

(︃√︂
KT

bKb a

)︃
× exp

[︂
− 1

2
KT

b

(︁
Γbb − ΓT

abΓ
−1
aa Γab

)︁
Kb

]︂ (︂
exp
[︂
− i
(︁
RT

b −RT
aΓ

−1
aa Γab

)︁
Kb

]︂)︂
dKb.

(D.24)

Now, based on the definition (D.21), the inverse of symmetric matrix Γ is:

Γ−1 =⎛⎝ Γ−1
aa + Γ−1

aa Γab

(︁
Γbb − ΓT

abΓ
−1
aa Γab

)︁−1
ΓT

abΓ
−1
aa −Γ−1

aa Γab

(︁
Γbb − ΓT

abΓ
−1
aa Γab

)︁−1

−
(︁
Γbb − ΓT

abΓ
−1
aa Γab

)︁−1
ΓT

abΓ
−1
aa

(︁
Γbb − ΓT

abΓ
−1
aa Γab

)︁−1

⎞⎠ .

(D.25)

By comparing Equations (D.25) and (D.19), one can easily conclude that

Γbb − ΓT
abΓ

−1
aa Γab =

1

ζpp
[I]3×3 . (D.26)

Likewise, by defining

L = (RT
b −RT

aΓ
−1
aa Γab)

T (D.27)
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and analogy between the block matrices in (D.25) and (D.19), one can verify Equa-

tion (D.17). Substitution of Equations (D.26) and (D.17) in (D.24) gives rise to

I0 =

√︄
(2π)3p−3

detΓaa

exp
[︂
− 1

2

(︁
RT

aΓ
−1
aa Ra

)︁ ]︂
∫︂

1

KT
bKb a

sin

(︃√︂
KT

bKb a

)︃
exp
[︂
− 1

2ζpp
KT

b Kb

]︂
exp
[︂
− iL ·Kb

]︂
dKb. (D.28)

The integration on the right hand side is simplified by utilizing Equation (5.18), and

dKb = dw as∫︂ 2π

θ=0

∫︂ +∞

w=0

∫︂ π

ϕ=0

sin (wa)

wa
exp
[︂
− w2

2ζpp

]︂
exp
[︂
−i |L|w cosϕ

]︂
w2 sinϕ dϕ dw dθ

=
4π

a |L|

∫︂ +∞

w=0

sin (wa) sin (|L|w) exp
[︂
− w2

2ζpp

]︂
dw

=

√︂
(2π)3 ζpp

a |L|
exp

[︃
−ζpp

2

(︁
a2 + |L|2

)︁]︃
sinh [a |L| ζpp] , (D.29)

where spherical coordinates were used and w = |w|. Finally, replacement of (D.29)

in (D.28) completes the proof.

D.3 General formulation for one rod shared by

multiple coils

Consider nodes s1, s2, · · · , and st are located on one side of the rod, and the nodes st+1

to sp+1 are located on the other side as seen in Fig. D.1a. The follwoing constraints

hold

Rs1sj = Rs1f1 +Rf1sj , j = 2, 3, · · · , t, (D.30)

and the second set of constraints are

Rs1sj = Rs1f1 +Rf1f2 +Rf2sj , j = t+ 1, · · · , p+ 1. (D.31)

In total, there are 3p constraints.
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Rs1s2

Rs1st

Rs1sp+1

Rs1st+2
Rs1st+1

Figure 1: Figure with formula

1

(a) (b)

(c) (d)

Figure D.1: (a) The topology of (p + 1)-node coil-rod structure with one rod, (b)
asymmetric four-node coil-rod structure, (c) symmetric six-node coil-rod structure,
(d) symmetric eight-node coil-rod structure.



Similar to the four-node coil-rod structure, the probability density functioncan be

written in the Fourier space as

P
(︁
Rs1s2 , · · · ,Rs1sp

)︁
= (2π)−3p∫︂

WC
s1f1

(︄⃓⃓⃓⃓
⃓
p+1∑︂
j=2

ks1sj

⃓⃓⃓⃓
⃓
)︄

t∏︂
j=2

WC
sjf1

(︁⃓⃓
ks1sj

⃓⃓)︁ p+1∏︂
j=t+1

WC
sjf2

(︁⃓⃓
ks1sj

⃓⃓)︁
×WR

(︄⃓⃓⃓⃓
⃓

p+1∑︂
j=t+1

ks1sj

⃓⃓⃓⃓
⃓
)︄
exp

[︄
−i

p+1∑︂
j=2

k1j ·R1j

]︄
p+1∏︂
j=2

dk1j. (D.32)

The integration given by (D.32) is now expressed in the following compact form:

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
= (2π)−3p

∫︂
WR(

√
KTΛK)exp

[︂
− 1

2
KTΓK− iRTK

]︂
dK,

(D.33)

where Γ is a 3p× 3p matrix given as below

Γ =
b2

3
×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ns1f1 + ns2f1)[I]3×3 · · · ns1f1 [I]3×3 ns1f1 [I]3×3 · · · ns1f1 [I]3×3

...
. . .

...
...

. . .
...

ns1f1 [I]3×3 · · · (ns1f1 + nstf1)[I]3×3 ns1f1 [I]3×3 · · · ns1f1 [I]3×3

ns1f1 [I]3×3 · · · ns1f1 [I]3×3 (ns1f1 + nst+1f2)[I]3×3 · · · ns1f1 [I]3×3

...
. . .

...
...

. . .
...

ns1f1 [I]3×3 · · · ns1f1 [I]3×3 ns1f1 [I]3×3 · · · (ns1f1 + nsp+1f2)[I]3×3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D.34)

and Λ is a 3p× 3p written as

Λ =

⎛⎜⎜⎜⎜⎜⎜⎝
0(3t−3)×(3t−3) 0(3t−3)×3 · · · 0(3t−3)×3

03×(3t−3) [I]3×3 · · · [I]3×3

...
...

. . .
...

03×(3t−3) [I]3×3 · · · [I]3×3

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.35)
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and

KT =

{(ks1s2)x (ks1s2)y (ks1s2)z (ks1s3)x (ks1s3)y (ks1s3)z · · · (ks1sp+1)x (ks1sp+1)y (ks1sp+1)z},
(D.36a)

RT =

{(Rs1s2)x (Rs1s2)y (Rs1s2)z (Rs1s3)x (Rs1s3)y (Rs1s3)z · · · (Rs1sp+1)x (Rs1sp+1)y (Rs1sp+1)z}.
(D.36b)

Analogous to the method given for integration (5.22), one can employ the follwoing

change of variable

Y = AK (D.37)

where

YT = {(ks1s2)x (ks1s2)y (ks1s2)z · · · (ks1sp)x (ks1sp)y (ks1sp)z wx wy wz},
(D.38)

and A is a 3p× 3p matrix defined as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3t− 3 columns⏟ ⏞⏞ ⏟
[I]3×3 · · · [0]3×3

...
. . .

...

[0]3×3 · · · [I]3×3

[0]3×3 · · · [0]3×3

...
. . .

...

[0]3×3 · · · [0]3×3

[0]3×3 · · · [0]3×3

[0]3×3 · · · [0]3×3 [0]3×3

...
. . .

...
...

[0]3×3 · · · [0]3×3 [0]3×3

[I]3×3 · · · [0]3×3 [0]3×3

...
. . .

...
...

[0]3×3 · · · [I]3×3 [0]3×3

[I]3×3 · · · [I]3×3 [I]3×3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D.39)

with detA = 1. Now Equation (D.33) is rewritten as

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

(2π)−3p

∫︂
1√

wTw a
sin
(︂√

wTw a
)︂
exp
[︂
− 1

2
YT

∼
ΓY − i

∼
R

T
Y
]︂
dY, (D.40)
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where

∼
Γ = A−TΓA−1, (D.41)

and

∼
R = A−TR. (D.42)

Using (D.16), the result is simplified to

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=√︄

ζ̃pp

(2π)3p det
∼
Γaa

1

aL̃
exp

[︄
−1

2

(︂
∼
R

T

a

∼
Γ−1

aa

∼
Ra

)︂
−
ζ̃pp
2

(︂
a2 + L̃

2
)︂]︄

sinh
[︂
aL̃ζ̃pp

]︂
, (D.43)

in which

∼
Γ =

⎛⎝∼
Γaa

∼
Γab

∼
ΓT

ab

∼
Γbb

⎞⎠ , (D.44)

and

∼
L =

∼
Rb +

(︄
ζ̃1p

ζ̃pp
[I]3×3

ζ̃2p

ζ̃pp
[I]3×3 · · ·

ζ̃(p−1)p

ζ̃pp
[I]3×3

)︄
∼
Ra. (D.45)

Now, Equation (D.43) can be rewritten as

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

√︄
ζ̃pp
(2π)3

1

aL̃
exp

⎡⎣− ζ̃pp
(︂
a2 + L̃

2
)︂

2

⎤⎦ sinh
[︂
aL̃ζ̃pp

]︂

×
√︄

1

(2π)3p−3 det
∼
Γaa

exp

[︃
−1

2

(︂
∼
RT

a

∼
Γ−1

aa

∼
Ra

)︂]︃
. (D.46)

The above relation shows that the probability distribution of the any structure with

one rod can be equivalent to the probability distribution of a coil-rod structure with

rod length a and number of Kuhn segments
3

ζ̃ppb
2
in coil with end-to-end vector

∼
L,

and the p− 1 coils which is obtained from the eigenvector
∼
Γ−1

aa following the provided

approach in D.1.

In the rest of this appendix, the proposed probability distribution function is fur-

ther simplified for the special cases.
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The extreme case a→ 0

Setting a→ 0 in Equation (D.46) leads to

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

⌜⃓⃓⎷ ζ̃
3

pp

(2π)3p det
∼
Γaa

exp

[︃
−1

2

(︂
∼
RT

a

∼
Γ−1

aa

∼
Ra − ζ̃ppL̃

2
)︂]︃

. (D.47)

By applying Equations (D.13), (D.25), (D.26), and (D.27) the identity

RTΓ−1R = RT
aΓ

−1
aa Ra + ζppL

2 (D.48)

holds. The analogous conclusion can be drawn for the same variables with overtilde:

∼
RT

∼
Γ−1

∼
R =

∼
RT

a

∼
Γ−1

aa

∼
Ra + ζ̃ppL̃

2
. (D.49)

On the other hand, by applying the properties of the block matrix, from Equa-

tion (D.44),

det
∼
Γ = det

∼
Γaa det

(︂
∼
Γbb −

∼
Γ

T

ab

∼
Γ−1

aa

∼
Γab

)︂
=

1

ζ̃
3

pp

det
∼
Γaa, (D.50)

where for the latter identity the similar properties of (D.26) is adopted. In the extreme

case of a→ 0, it can be readily seen that

P
(︁
Rs1s2 , · · · ,Rs1sp+1

)︁
=

√︄
1

(2π)3p det
∼
Γ
exp

[︃
−1

2

(︂
∼
RT

∼
Γ−1

∼
R
)︂]︃

. (D.51)

The relation (D.51) was already provided by Flory [1] for a general phantom network

containing only coils.

Asymmetric four-node structure with a rod

Using Equation (D.46) for p = t = 3 (see Fig. D.1b) yields

P (R12,R13,R14) =

√︄
ζ̃33

(2π)9 det
∼
Γaa

1

aL̃
exp

⎡⎣− ζ̃33
(︂
a2 + L̃

2
)︂

2

⎤⎦ sinh
[︂
aL̃ζ̃33

]︂
× exp

[︃
−1

2

(︂
∼
RT

a

∼
Γ−1

aa

∼
Ra

)︂]︃
, (D.52)
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where

∼
Γaa =

b2

3

⎛⎝ (n15 + n52) [I]3×3 n15 [I]3×3

n15 [I]3×3 (n15 + n53) [I]3×3

⎞⎠ , (D.53a)

det
∼
Γaa =

b12

36
(n15n52 + n52n53 + n15n53)

3 , (D.53b)

and

∼
R

T

a = {(R12)x (R12)y (R12)z (R13)x (R13)y (R13)z}. (D.54)

Moreover, ζ̃33 is defined according to Equation (D.19) for
∼
Γ

−1
, i.e.,:

ζ̃33 =
3

b2
n52n53 + n15 (n52 + n53)

n52n53n64 + n15 (n53n64 + n52 (n53 + n64))
. (D.55)

Lastly, by using (D.17), and definition (D.13) one can show that

∼
L = R14 −

n15n53

n15n52 + n15n53 + n52n53

R12 −
n15n52

n15n52 + n15n53 + n52n53

R13. (D.56)

For n15 = n52 = n53 = n64 = n, It can be concluded that ζ̃33 = 9/ (4nb2) and

∼
L = R14 −

1

3
R12 −

1

3
R13. (D.57)

Symmetric six-node structure with a rod

Using Equation (D.46) for t = 3, and p = 5 (see Fig. D.1c) results in

P (R12,R13,R14,R15,R16) =

√︄
ζ̃55

(2π)15 det
∼
Γaa

1

aL̃
exp

⎡⎣− ζ̃55
(︂
a2 + L̃

2
)︂

2

⎤⎦ sinh
[︂
aL̃ζ̃55

]︂
× exp

[︃
−1

2

(︂
∼
RT

a

∼
Γ−1

aa

∼
Ra

)︂]︃
. (D.58)

where

∼
Γaa =

b2

3

⎛⎜⎜⎜⎜⎜⎜⎝
(n17 + n72) [I]3×3 n17 [I]3×3 [0]3×3 [0]3×3

n17 [I]3×3 (n17 + n73) [I]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 (n84 + n86) [I]3×3 n86 [I]3×3

[0]3×3 [0]3×3 n86 [I]3×3 (n85 + n86) [I]3×3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(D.59a)

det
∼
Γaa =

b24

312
(n17n72 + n72n73 + n17n73)

3 (n84n85 + n85n86 + n85n86)
3 , (D.59b)
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∼
R

T

a = {(R12)x (R12)y (R12)z (R13)x (R13)y (R13)z (R64)x (R64)y (R64)z

(R65)x (R65)y (R65)z}, (D.60)

and

ζ̃55 =
3

b2

× (n72n73 + n17 (n72 + n73)) (n85n86 + n84 (n85 + n86))

n17n73n84n85n86 + n72n73n84n85n86 + n17n72(n73n85n86 + n84n85n86 + n73n84(n85 + n86))
.

(D.61)

Lastly, by using (D.17), (5.31) and definition (D.13).

∼
L =− n17n73

n17n72 + n17n73 + n72n73

R12 −
n17n72

n17n72 + n17n73 + n72n73

R13

+
n85n86

n85n86 + n84n85 + n84n86

R14 +
n84n85

n85n86 + n84n85 + n84n86

R15

+
n84n85

n85n86 + n84n85 + n84n86

R16. (D.62)

For n17 = n72 = n73 = n and = n84 = n85 = n86 = n + 2m, It can be concluded that

ζ̃55 = 9/ (2(n+m)b2) and

∼
L =

1

3
(R14 +R15 +R16 −R12 −R13) . (D.63)

For n17 = n72 = n73 = n84 = n85 = n86 = n, It can be concluded that ζ̃55 = 9/ (2nb2).

Symmetric eight-node structure with a rod

Using Equation (D.46) for t = 4, and p = 7 (see Fig. D.1d) leads to

P (R12,R13, · · · ,R18) =

√︄
ζ̃77

(2π)21 det
∼
Γaa

1

aL̃
exp

⎡⎣− ζ̃77
(︂
a2 + L̃

2
)︂

2

⎤⎦ sinh
[︂
aL̃ζ̃77

]︂
× exp

[︃
−1

2

(︂
∼
RT

a

∼
Γ−1

aa

∼
Ra

)︂]︃
, (D.64)
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where

∼
Γaa =

b2

3
×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(n19 + n92)[I]3×3 n19[I]3×3 n19[I]3×3 [0]3×3 [0]3×3 [0]3×3

n19[I]3×3 (n19 + n93)[I]3×3 n19[I]3×3 [0]3×3 [0]3×3 [0]3×3

n19[I]3×3 n19[I]3×3 (n19 + n94)[I]3×3 [0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 (n05 + n08)[I]3×3 n08[I]3×3 n08[I]3×3

[0]3×3 [0]3×3 [0]3×3 n08[I]3×3 (n06 + n08)[I]3×3 n08[I]3×3

[0]3×3 [0]3×3 [0]3×3 n08[I]3×3 n08[I]3×3 (n07 + n08)[I]3×3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D.65)

det
∼
Γaa =

b36

318
(n05n07n08 + n06n07n08 + n05n06(n07 + n08))

3

× (n19n93n94 + n92n93n94 + n19n92(n93 + n94))
3 , (D.66)

∼
R

T

a = {(R12)x (R12)y (R12)z (R13)x (R13)y (R13)z (R14)x (R14)y (R14)z

(R85)x (R85)y (R85)z (R86)x (R86)y (R86)z (R87)x (R87)y (R87)z},
(D.67)

and

ζ̃77 =
3

b2
(n05n07n08 + n06n07n08 + n05n06 (n07 + n08))

× (n19n93n94 + n92n93n94 + n19n92 (n93 + n94))

×
[︁
n05n07n08n19n92n93n94 + n06n07n08n19n92n93n94 + n05n06(n07n19n92n93n94

+ n08n19n92n93n94 + n07n08(n19n93n94 + n92n93n94 + n19n92(n93 + n94)))
]︁−1

.
(D.68)
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Lastly, by using (D.17), (5.31) and definition (D.13).

∼
L =− n19n93n94R12

n19n93n94 + n92n93n94 + n19n92(n93 + n94)

− n19n92n94R13

n19n93n94 + n92n93n94 + n19n92(n93 + n94)

− n19n92n93R14

n19n93n94 + n92n93n94 + n19n92(n93 + n94)

+
n06n07n08R15

n05n07n08 + n06n07n08 + n05n06(n07 + n08)

+
n05n07n08R16

n05n07n08 + n06n07n08 + n05n06(n07 + n08)

+
n05n06n08R17

n05n07n08 + n06n07n08 + n05n06(n07 + n08)

+
n05n06n07R18

n05n07n08 + n06n07n08 + n05n06(n07 + n08)
. (D.69)

For n19 = n92 = n93 = n94 = n and n05 = n06 = n07 = n08 = n + 2m∗, It can be

concluded that ζ̃77 = 6/ ((n+m∗)b2).

∼
L =

1

4
(R15 +R16 +R17 +R18 −R12 −R13 −R14) . (D.70)

By finding the eigenvalues of
∼
Γaa, one can write the expression (D.64) in terms of the

probability distribution function of the system of one coil-rod and six coil structures

as follows:

P (R12,R13, · · · ,R18) = WCR
(n+m∗)/2

(︂
∼
L
)︂
WC

n

(︃
1√
2
R23

)︃
WC

n+2m∗

(︃
1√
2
R56

)︃
×WC

n

(︄
1√
6
R12 +

1√
6
R13 −

√︃
2

3
R14

)︄
WC

n+2m∗

(︄
1√
6
R85 +

1√
6
R86 −

√︃
2

3
R87

)︄

×WC
4n

(︃
1√
3
(R12 +R13 +R14)

)︃
WC

4n+8m∗

(︃
1√
3
(R85 +R86 +R87)

)︃
. (D.71)
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