
Image Analysis and Machine Learning for Medical
Images

by

Lina Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Signal and Image Processing

Department of Electrical and Computer Engineering

University of Alberta

© Lina Liu, 2022



Abstract

Medical images play an essential role in detecting and diagnosing numerous

diseases. With different medical imaging modalities, a large volume of images

is generated every day across healthcare organizations worldwide, providing

visualization of lesion appearance (e.g., dermoscopic images) anatomical in-

formation (e.g., MRI images), or cellular structures (e.g., laser scattering im-

ages). After obtaining the medical images, manual analysis and diagnosis is

done by clinicians based on their prior knowledge and experiences. However,

the diagnosis process can take a significant amount of time and the decision

is subjective and biased toward different clinicians.

The main goal of this dissertation is to develop machine learning methods

for automatic medical image analysis and diagnosis. In this dissertation, two

types of medical images, including dermoscopic images and laser scattering

images, are used. The dermoscopic images are used to detect the malignant

lesions from the benign lesions. Experimental and simulated laser scattering

images are used for label-free cell identification, and cell property characteri-

zation, respectively.

This thesis presents two methods based on machine learning for automatic

skin lesion analysis. Skin lesion segmentation with auxiliary task is proposed

for the accurate segmentation of the pigment regions, which does not require

extra labeling information compared with the multi-task learning methods. An

automatic skin lesion classification method based on mid-level feature learn-

ing is proposed for melanoma detection. State-of-the-art results have been
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obtained and performances are discussed by extensive verification. This thesis

further presents a machine learning technique for the analysis of laser scat-

tering images. Typically, scattering patterns of the staurosporine-treated and

non-treated SH-SY5Y neuroblastoma cells are obtained and classified, aiming

at providing a better understanding of Parkinson’s disease. In addition, multi-

wavelength multi-direction laser scattering patterns of single cells have also

been simulated to discuss the roles of two factors, cell surface roughness, and

mitochondria number, in contributing to the scattering patterns. A system-

atic and thorough study has been done by extensive experiments. Theoretical

analysis about the influence of the multi-wavelength multi-direction scattering

patterns has been included. Satisfactory performance has been achieved for

both the experimental and simulated data.
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Preface

• Chapter 3 of this thesis has been published as Lina Liu, Lichao Mou,

Xiao Xiang Zhu, and Mrinal Mandal. ”Skin Lesion Segmentation based

on improved U-net.” In 2019 IEEE Canadian Conference of Electrical

and Computer Engineering (CCECE), pp. 1-4, 2019. I was responsible

for the proposed method, experiment design, code implementation, and

manuscript composition. Lichao Mou and Prof. Xiao Xiang Zhu helped

in the implementation process. Prof. Mrinal Mandal was the supervi-

sory author and was involved with concept formation and manuscript

composition. Meanwhile, another paper has been published as Lina Liu,

Ying Yin Tsui, and Mrinal Mandal. ”Skin lesion segmentation using

deep learning with auxiliary task.” Journal of Imaging, vol. 7, no. 4,

pp. 67-82, 2021. I was responsible for the proposed method, experiment

design, code implementation, and manuscript composition. Prof. Ying

Yin Tsui helped in the manuscript composition. Prof. Mrinal Mandal

was the supervisory author and was involved with concept formation

and manuscript composition. This chapter proposes an automated tech-

nique to segment the pigment regions of dermoscopic images. Which is

beneficial for the subsequent skin cancer (e.g., melanoma) detection.

• Chapter 4 of this thesis has been accepted in Computerized Medical

Imaging and Graphics Journal as Lina Liu, Lichao Mou, Xiao Xiang

Zhu, and Mrinal Mandal. ”Automatic skin lesion classification based on

mid-level feature learning.” Computerized Medical Imaging and Graph-

ics vol. 74, 2020. I was responsible for the proposed method and code

implementation, signal processing, Prof. Lichao Mou and Prof. Xiao Xi-
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ang Zhu helped in the manuscript composition process. Mrinal Mandal

was the supervisory author and was involved with concept formation and

manuscript composition. This chapter proposes an automated technique

for skin lesion classification.

• Chapter 5 of this thesis has been published as Wendy Yu Wan, Lina Liu,

Xiaoxuan Liu, Wei Wang, Md Zahurul Islam, Chunhua Dong, Craig R.

Garen, Michael T. Woodside, Manisha Gupta, Mrinal Mandal, Wojciech
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chine learning for label free cell detection.” Biomedical Optics Express,

vol. 12, no. 6, pp. 3512-3529, 2021. I was the co-first author and

was responsible for the machine learning technique, data analysis and

code implementation. Wendy Yu Wan was responsible for the experi-

ment setup and data collection. Wei Wang had conributed to the data

simulation. Xiaoxuan Liu, Prof. Md Zahurul Islam, Prof. Wojciech Roz-

mus, and Prof. Mrinal Mandal helped in the manuscript composition.

Chunhua Dong, Craig R. Garen, Michael T. Woodside helped in cell col-

lection and processing. Prof. Ying Yin Tsui was the supervisory author

and was involved with concept formation and manuscript composition.

This chapter proposes a label-free technique to classify the non-treated

and staurosporine-treated SH-SY5Y cells.

• Chapter 6 of this thesis will be submitted to a journal paper. I was re-

sponsible for the experiment design, code implementation, and manuscript

composition. Prof. Md Zahurul Islam generated the simulated images.

Xiaoxuan Liu helped in the data collection and manuscript composition

process. Prof. Mandal helped in the method formulation and manuscript

composition. Ying Yin Tsui was the supervisory author and was in-

volved with the concept formation and manuscript composition. The

technique uses machine learning method for the anlaysis of scattering

patterns characterization regarding with the cell surface roughness and

cell mitochondria number, which provides highlights for the future real

experiment setup.

v



This dissertation is dedicated to my parents, who have been supporting and

encouraging me over years.

vi



Acknowledgements

Prof. Mrinal Mandal has been my supervisor for the last five years, and

I would like to express my sincere gratitude towards him. Thanks for his

patience, continuous support, and guidance during my graduate studies. I

have benefited a lot from his knowledge and inspiration. Prof. Ying Yin Tsui

has become my co-supervisor since the fourth year of the collaborative research

with the label-free cytometry group. I learned and gained enormously from

his experience and knowledge and would appreciate his support and valuable

suggestions.

I would also like to thank the members of my defense committee, for tak-

ing their precious time to review my thesis and providing valuable sugges-

tions. Much respect to the team members of the label-free cytometry, Wendy

Yu Wan, Xiaoxuan Liu, Wei Wang, Prof. Md Zahurul Islam, Prof. Man-

isha Gupta, Prof. Wojciech Rozmus. Thanks for the meetings and all the

conversations and discussions we have made. They have given me lots of in-

spiration and it is an enjoyable experience to work with them. Many thanks to

my friends, who had make life at the University of Alberta colorfull. Thanks

to the China Scholarship Council, who has awarded me the scholarship for

studying at the University of Alberta.

Last but not least, thanks to my parents, my boyfriend Ruoheng Zhang,

thanks for their continuous support, encouragement, careness, and love.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1
1.1 Skin Cancer Detection and Dermoscopic Images . . . . . . . . 1
1.2 Label-free Cell Identification and Scattered Laser Light Patterns 5
1.3 Problem Statements and Motivations . . . . . . . . . . . . . . 8
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12
2.1 Conventional Machine Learning and Deep Learning . . . . . . 12
2.2 Automatic Skin Lesion Segmentation . . . . . . . . . . . . . . 14
2.3 Automatic Skin Lesion Classification . . . . . . . . . . . . . . 17
2.4 Scattering Image Analysis Based on Machine Learning . . . . 20
2.5 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . 21

3 Skin Lesion Segmentation Using Deep Learning with Auxil-
iary Task 23
3.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Convolutional Neural Networks (CNN) Backbone . . . 25
3.1.2 Cross-connection Layer (CCL) . . . . . . . . . . . . . . 27
3.1.3 Multi-scale Feature Aggregation (MSFA) . . . . . . . . 28

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Implementation Details . . . . . . . . . . . . . . . . . . 32
3.3.2 Parameter Setting of the Loss Function . . . . . . . . . 33
3.3.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Comparison with State-of-the-art Methods . . . . . . . 35

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Quantitative Analysis of Test Results . . . . . . . . . . 35
3.4.2 Qualitative Analysis of Test Results . . . . . . . . . . . 36

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Automatic Skin Lesion Classification Based on Mid-level Fea-
ture Learning 40
4.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Skin Lesion Segmentation with Improved U-Net . . . . 43
4.1.2 Deep Feature Extraction . . . . . . . . . . . . . . . . . 45

viii



4.1.3 Mid-level Feature Learning . . . . . . . . . . . . . . . . 46
4.1.4 Classification Using SVM . . . . . . . . . . . . . . . . 50

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Platform Information . . . . . . . . . . . . . . . . . . . 51
4.3.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 51
4.3.3 Comparison with Features Extracted via Pretrained CNN 52
4.3.4 Comparison with Features Extracted via Finetuned CNN 54
4.3.5 Comparison with State-of-the-art Methods . . . . . . . 56

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Segmentation Performance . . . . . . . . . . . . . . . . 59
4.4.2 Effect of Lesion Segmentation . . . . . . . . . . . . . . 60
4.4.3 Effect of Weighting Factor for Accelerated Proximal Gra-

dient (APG) Algorithm . . . . . . . . . . . . . . . . . . 61
4.4.4 Advantage of Soft Discriminative Feature . . . . . . . . 62
4.4.5 Robustness of the Proposed Mid-level Features Against

Parameters . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.6 Time Complexity . . . . . . . . . . . . . . . . . . . . . 64

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Integration of Light Scattering with Machine Learning for La-
bel Free Cell Classification 65
5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Platform Information . . . . . . . . . . . . . . . . . . . 72
5.4.2 Comparison with Conventional Machine Learning Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3 Percentage Prediction in A Mixed Solution . . . . . . . 74

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.1 Comparison of the Proposed Technique Using Scattering

Images From the Side Direction . . . . . . . . . . . . . 75
5.5.2 Inference Time . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Multi-wavelength Multi-direction Laser Light Scattering for
Cell Characterization Using Machine Learning 77
6.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Numerical Simulation of Cell Surface Roughness . . . . 79
6.2.2 Numerical Simulation Models and the Angular Scatter-

ing Patterns . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Dataset for Machine Learning . . . . . . . . . . . . . . . . . . 83
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Classification of Different Roughness Levels . . . . . . 85
6.4.2 Classification of Different Mitochondrial Numbers . . . 88

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.1 Quantitive Result Analysis . . . . . . . . . . . . . . . . 91
6.5.2 t-SNE Visualization . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Insights Relevant to Previous Studies . . . . . . . . . . 94

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



7 Conclusions and Future Research Directions 97
7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . 98

References 100

Appendix A Background Material 109
A.1 Cell Preparation in Chapter 5 . . . . . . . . . . . . . . . . . . 109

x



List of Tables

3.1 Architecture of the proposed method. The input image size is
448× 448. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Experimental results with different values of α on the test set. 33
3.3 Ablation study of the proposed method . . . . . . . . . . . . . 35
3.4 Experimental results compared with state-of-the-art methods

on ISBI2017 test data. . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Parameters used for performance evaluation. . . . . . . . . . . 52
4.2 Comparison of the proposed method with and without Mid-level

Feature Learning (MFL) module. . . . . . . . . . . . . . . . . 52
4.3 Comparison of the proposed method with and without MFL

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Comparison of the proposed method with the finetuned CNN

and finetuned features using Area Under Curve (AUC) scores
(in %). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Average AUC of the proposed method with different input sizes. 57
4.6 Ensemble performance with input of different scales on the val-

idation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Performance comparison with state-of-the-art methods on ISIC

2017 dataset (AUC score). . . . . . . . . . . . . . . . . . . . . 58
4.8 Comparison of different methods on ISIC 2017 skin lesion seg-

mentation dataset. . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Average AUC of the proposed method with and without skin

lesion segmentation. . . . . . . . . . . . . . . . . . . . . . . . 60
4.10 Effect of weighting factor for APG algorithm. . . . . . . . . . 61
4.11 Comparison of AUC scores of the proposed method using dis-

criminative features and mid-level features. . . . . . . . . . . . 62

5.1 Classification Performance of the proposed method. . . . . . . 74
5.2 Prediction of Percentage of the ST Cells (PTST). . . . . . . . 75
5.3 Performance comparison of the proposed technique with scat-

tering images from the side direction and forward direction. . . 76

6.1 Classification of scattering patterns with r = 0.01 and r = 0.03.
The mitochondria number is 75. 5-fold cross validation is used,
and the average performance is given. . . . . . . . . . . . . . . 86

6.2 Classification of scattering patterns with r = 0.01 and r = 0.03.
The mitochondria number is 100. 5-fold cross validation is used,
and the average performance is given. . . . . . . . . . . . . . . 87

6.3 Classification of scattering patterns with r = 0.01 and r = 0.03.
For each group, an equal number of scattering patterns with
75 and 100 number of mitochondria are included. 5-fold cross
validation is used, and the average performance is given. . . . 87

xi



6.4 Classification of scattering patterns with different numbers of
mitochondria 75 and 100. The roughness value is r = 0.01.
5-fold cross validation is used, and the average performance is
given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Classification of scattering patterns with different numbers of
mitochondria 75 and 100. The roughness value is r = 0.03.
5-fold cross validation is used, and the average performance is
given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Classification of scattering patterns with different numbers of
mitochondria 75 and 100. For each group, an equal number
of scattering patterns with r = 0.01 and r = 0.03 roughness
values are included. 5-fold cross validation is used, and the
average performance is given. . . . . . . . . . . . . . . . . . . 90

xii



List of Figures

1.1 Layers of the skin and different types of skin cancers. Skin can-
cers are named for the type of cells where they start. Melanoma
is the most aggressive skin cancer among different kinds of skin
cancers (Image Credit: [15]). . . . . . . . . . . . . . . . . . . . 2

1.2 Skin lesion examination using dermoscopy imaging. The der-
moscopy images are of high-resolution, and are used as an es-
sential adjunct to visual inspection of suspicious skin cancers
(Image Credit: [58]). . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Block diagram for automatic skin lesion analysis. The blue
dashed box indicates the segmentation module, which may not
exist in some methods. The yellow block represents a single
CNN model, which can automatically learn the features and
make predictions simultaneously. . . . . . . . . . . . . . . . . 3

1.4 Example images from ISIC 2017 dataset on skin lesion analysis
towards melanoma detection. The images suffer from severe
lighting condition variation, the existence of hairs, color marks,
glue, and etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 (a) (b) (c) are experimental and (g) (h) (i) simulated 2D laser
scattered light patterns in the side direction for Platelet, Myeloid
and CD 34+ Hematopoietic Stem Cell (HSC) respectively. (d)
(e) (f) are their corresponding cell models used in the numerical
simulation of 2D laser scattered light patterns of these cells. A
red laser with a wavelength of 632.8 nm is used in the experiment. 6

2.1 Training of a model in machine learning. . . . . . . . . . . . . 12
2.2 Architecture of deep neural networks. . . . . . . . . . . . . . . 13
2.3 Typical architecture of CNN for a classification task. The cur-

rent convolutional layers are obtained by convoluting previous
layers with a set of 2-D convolution kernels. The pooling layers
are obtained by subsampling the previous layers by a factor of 2. 15

2.4 Normal and abnormal skin lesions explained with the ABCDE
rules. The abnormal skin lesion images are usually with asym-
metric shape, irregular, jagged or blurred borders, multiple col-
ors within the pigment regions, large diameter and evolving
appearances over time. . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Some skin lesion images from the ISBI2017 dataset for skin
lesion segmentation. The ground truth masks are marked using
the green contours. Fuzzy boundaries and noisy items such as
hairs and color-marks are also witnessed. . . . . . . . . . . . . 25

xiii



3.2 Schematic diagram of the proposed method. Edge prediction is
used as an auxiliary task to assist the segmentation task. Two
parallel networks with Cross-connection Layer (CCL) module
are implemented so that the learned two tasks can interact with
each other during training and hence boost each other’s perfor-
mance in turn. Multi-scale Feature Aggregation (MSFA) mod-
ule is used to aggregate the multi-scale information from the
intermediate feature maps of different scales. . . . . . . . . . . 26

3.3 Implementations of the CCL module. The inputs are feature
maps F obtained from the backbone CNN. Fig. 3.3(a) shows
the implementation details of a Residual block in Fig. 3.3(a),
and blocks with the same color indicate the same operation. . 29

3.4 Implementations of the MSFA module, where the segmenta-
tion branch is used as an example. The inputs are feature
maps of different scales from the segmentation branch, e.g.,
Sconv1, Sconv2, Sconv3. Four prediction masks are obtained after
some convolution and pooling operation. The final output is
weighted sum of these predictions which can be automatically
learned by 1× 1 convolution. . . . . . . . . . . . . . . . . . . 30

3.5 Experiment results with different values of α on the test set. . 34
3.6 Cumulative histograms of the Jaccard Index (JA) values on the

test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Output visualization of the proposed method. (a) input test

image; (b) the corresponding ground truth segmentation mask;
(c) the output probability map of the segmentation prediction
branch; (d) the output probability map of the edge prediction
branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Some examples about the failed cases for the proposed method.
(a) the input test images; (b) the corresponding ground truth
segmentation masks; (c) the probability map of the proposed
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Example images from ISIC 2017 dataset on skin lesion analysis
towards melanoma detection. Each green box indicates a pair of
inter-class samples (left: melanoma vs. right: benign), and each
red box indicates a pair of intra-class samples (both images are
melanoma). Strong inter-class visual similarity and intra-class
variations are observed across different types of skin lesions. . 41

4.2 Block diagram of the proposed method. . . . . . . . . . . . . . 42
4.3 Schematic of the proposed CNN based model for skin lesion seg-

mentation. The proposed method contains an encoder network
and decoder network, each network is consisted by a sequence
of encoder blocks and decoder blocks. . . . . . . . . . . . . . . 44

4.4 The first row shows the original images, and the second row
shows the images after pre-processing using Retinex method.
The color distributions of different images are enhanced via the
use of Retinex method. The resulted images are of similar light-
ing conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Schematic plot of the proposed method. . . . . . . . . . . . . 48
4.6 t-distributed Stochastic Neighbor Embedding (t-SNE) visual-

ization of the raw features extracted via pretrained ResNet and
the learned mid-level features given raw features obtained from
pretrained ResNet. The first and second row show scatter plots
of the training data and testing data, respectively. . . . . . . . 54

xiv



4.7 Examples of correctly classified images: left: melanoma; right:
seborrheic keratosis. . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Segmentation results of the proposed method. The red contours
are the ground truths, and the blue contours are the segmenta-
tion results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Performance of the proposed method (with and without the
MFL module) on the parameter space. The learned mid-level
features are more robust and discriminative compared with the
original features. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Scanning Electron Microscopy (SEM) images of non-treated
(left) and staurosporine-treated (right) SH-SY5Y cells. The two
images correspond to cells of the similar size approximately 8
µm in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 A schematic diagram of the experimental setup used to obtain
two-dimensional light scattered patterns of cells in three direc-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Scattered light patterns from treated SH-SY5Y with red laser.
The angular ranges corresponding to the three directions of
measurements: 18°- 42° (forward), 79°-101° (side), and 141°-
159° (backward). . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Scattered light patterns from non-treated SH-SY5Y with red
laser. The angular ranges corresponding to the three directions
of measurements: 18°- 42° (forward), 79°-101° (side), and 141°-
159° (backward). . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Scattered light patterns from treated SH-SY5Y with green laser.
The angular ranges corresponding to the three directions of
measurements: 18°- 42° (forward), 79°-101° (side), and 141°-
159° (backward). . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Scattered light patterns from non-treated SH-SY5Y with green
laser. The angular ranges corresponding to the three directions
of measurements: 18°- 42° (forward), 79°-101° (side), and 141°-
159° (backward). . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Schematic of the machine learning module. . . . . . . . . . . . 71

6.1 A cell cytoplasm model with the roughness model implemented.
The following parameters are used: σ = 0.9 ∗ 520 nm, Λ = 2πr

20
and r = 5nm, where r is the radius of the cell cytoplasm. . . 80

6.2 Example images of the cell models and their corresponding scat-
tering patterns. The amplitudes of modulation for the cell sur-
face roughness are 1%, 3%, 5% and 7% (sequentially from the
left column to right column) of the the cell diameter (6.6 mi-
cron). Row 3-5 show the scattering patterns collected in the
backward, side and forward direction. The wavelength is 432
nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Example of simulated scattering images collected in the forward
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Example of simulated scattering images collected in the side
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Example of simulated scattering images collected in the back-
ward direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Scattering images with different roughness values r, which are
collected in the backward direction. The mitochondria number
is 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



6.7 Example images with different mitochondria numbers N . The
roughness value r is 0.01. . . . . . . . . . . . . . . . . . . . . 92

6.8 t-SNE visualization of light scattering patterns collected in the
forward, side and backward directions with λ = 432 nm, 532
nm and 632 nm, and N = 75. The two groups of data with
different roughness values r are denoted using different colours. 93

6.9 t-SNE visualization of scattering patterns collected in the for-
ward, side and backward direction with wavelength λ = 432
nm, 532 nm and 632 nm. The roughness value is r = 0.01. The
two groups of data with different mitochondrial number N are
denoted using different colours. . . . . . . . . . . . . . . . . . 94

xvi



Abbreviations

ABCDE Asymmetry, Border, Color, Diameter, Evolving.

ACC Accuracy.

APG Accelerated Proximal Gradient.

AUC Area Under Curve.

BCC Basal Cell Carcinoma.

BN Batch Normalization.

BP Bilinear Pooling.

CAD Computer-aided Diagnosis.

CAM Class Activation Mapping.

CCD Charged-coupled Device.

CCL Cross-connection Layer.

CNN Convolutional Neural Networks.

DC Dice Coefficient.

DL Deep Learning.

FACS Fluorescence-activated Cell Sorting.

FCM Fuzzy C-Means.

FCN Fully Convolutional Network.

FDTD Finite-Difference Time-Domain.

FPR False Positive Rate.

GAP Global Average Pooling.

GLCM Gray Level Co-occurrence Matrix.

GVF Gradient Vector Flow.

HOG Histogram of Oriented Gradient.

HSC Hematopoietic Stem Cell.

xvii



JA Jaccard Index.

LBP Local Binary Patterns.

MEL Melanoma.

MFL Mid-level Feature Learning.

MSFA Multi-scale Feature Aggregation.

NT None-treated.

PCA Principal Component Analysis.

PD Parkinson’s Disease.

PML Perfectly Matched Layer.

PPM Pyramid Pooling Module.

PTST Percentage of the ST Cells.

RBF Radial Basis Function.

RCNN Region Based Convolutional Neural Networks.

RELU Rectified Linear Unit.

ROI Regions of Interest.

SCC Squamous Cell Carcinoma.

SEM Scanning Electron Microscopy.

SEN Sensitivity.

SF Speckle Features.

SIFT Scale Invariant Feature Transformations.

SK Seborrheic Keratosis.

SPE Specificity.

ST Staurosporine-treated.

SVM Support Vector Machine.

TPR True Positive Rate.

t-SNE t-distributed Stochastic Neighbor Embedding.

VSEL Very Small Embryonic-like.

xviii



Chapter 1

Introduction

Computer-aided Diagnosis (CAD) systems are becoming increasingly impor-

tant in diagnosing a wide range of diseases. The purpose of this thesis is

to propose a methodology for CAD systems using medical images. Machine

learning methods will be used for automatic analysis. Especially, two types

of medical images: dermoscopic images and scattering images are considered

in this thesis. The dermoscopic images are high-resolution RGB images that

have been used as a primary step for skin cancer detection. On the other

hand, laser scattering images are gaining popularity for cell identification in

label-free cytometry application. In this chapter, a brief background of the

dermoscopic images and scattering images will be introduced.

1.1 Skin Cancer Detection and Dermoscopic

Images

The skin is the largest organ of human body, which is composed of three layers

of tissue: the epidermis, dermis, and hypodermis. When the cells become

disordered and grow out of control, they can develop into skin cancers and

may spread to other body parts. Skin cancers are named based on the type

of cells where they start. Melanocyte is a type of cell that is scattered in

the area where the epidermis meets the dermis. It can produce melanin, the

pigment that colors our skin. Skin cancer that starts in melanocytes is called

melanoma, and those not are named as non-melanoma since they act very

differently from melanomas. The two most common types of non-melanoma
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are Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC). The

schematic plot of the skin tissues and three types of skin cancers are shown

in Fig. 1.1. There are sldo other types of unusual skin cancers, such as the

Merkel cell tumor, actinic keratosis, and dermatofibrosarcoma protuberans.

Among all the different kinds of skin cancers, melanoma is the most ag-

gressive one, whose incidence has increased rapidly over the past 30 years [72].

About 20% of Americans will get skin cancer during their lifetime [21]. Early

detection is the best way to deal with melanoma since it is highly curable be-

fore spreading into other body parts. Specifically, the 5-year relative survival

rate is 98% for the localized stage. To detect melanoma or suspected skin

lesions, dermoscopy imaging is used to detect the pigmented skin lesions. It

is a non-invasive technique and is used worldwide as a primary step. The der-

moscopic images are with high resolution and enhanced visualization ability,

which allow dermatologists to examine the skin lesions with naked eyes. Fig.

1.1 shows the process of skin lesion examination. A patient would be asked

for further examination using the histopathological imaging if he or she has a

high risk of skin cancer after analyzing his or her dermoscopic images.

Figure 1.1: Layers of the skin and different types of skin cancers. Skin cancers
are named for the type of cells where they start. Melanoma is the most
aggressive skin cancer among different kinds of skin cancers (Image Credit:
[15]).
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(a) Skin examination (b) Photograpy

Figure 1.2: Skin lesion examination using dermoscopy imaging. The der-
moscopy images are of high-resolution, and are used as an essential adjunct to
visual inspection of suspicious skin cancers (Image Credit: [58]).

The dermoscopic images are of high resolution. Therefore, subpatterns and

tiny structures can be visualized. The general pipeline for existing automated

methods follows three steps: preprocessing, feature extraction, and classifi-

cation. Skin lesion segmentation may also be performed before the feature

extraction step to provide the boundary information or the Regions of Inter-

est (ROI) to assist the subsequent classification task. Fig. 1.3 shows the block

diagram for automatic skin lesion analysis. Notice that the yellow block, which

includes three modules (segmentation, feature extraction, and classification)

can be implemented using a convolutional neural network (CNN) model.
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Figure 1.3: Block diagram for automatic skin lesion analysis. The blue dashed
box indicates the segmentation module, which may not exist in some methods.
The yellow block represents a single CNNmodel, which can automatically learn
the features and make predictions simultaneously.

Fig. 1.4 shows some image samples from the ISIC 2017 dataset for skin

lesion analysis, which is the most difficult dataset for skin lesion image anal-

ysis. The ISIC 2017 skin lesion analysis dataset includes three types of skin

lesion images: the nevus and seborrheic keratosis, which are benign skin le-

sions; and melanoma, which is the most aggressive skin cancer. The images
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present different lighting conditions and characteristics since they are collected

across multiple institutes and hospitals using different photography instru-

ments, which can reflect real cases mostly. As shown in Fig. 1.4, regardless

of the strong lighting condition change, disturbing items such as hairs, color

marks, rulers, and glue are also observed in the images. Therefore, the skin

conditions are very complex, which further adds to the difficulty for automatic

melanoma detection techniques. To address this problem, preprocessing tech-

niques, such as color-enhancing [19], [20], hair removal [13], [37], [83] have

been proposed in order to get clean images for the machine learning meth-

ods. However, such preprocessing methods rely heavily on prior knowledge,

and may result in degenerated images with information loss, which can harm

classification performance. Hence, the majority of machine learning methods

focus on proposing more advanced models to deal with complex data. What is

more, strong intra-class differences and inter-class similarities are also observed

among different types of skin cancers.

     nevus                                       seborrheic_keratosis                                  melanoma     

Figure 1.4: Example images from ISIC 2017 dataset on skin lesion analysis
towards melanoma detection. The images suffer from severe lighting condition
variation, the existence of hairs, color marks, glue, and etc.

In summary, skin lesion analysis is a very difficult task, and the main

challenges for this can be summarized as follows:

• Skin lesion images corresponding to the same type of cancer can present

different visual patterns with dramatic appearance changes, while skin

lesion images of different types of skin cancers can share strong visual
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similarities. Therefore, large intra-class differences and inter-class simi-

larities are observed for skin lesion images. For some difficult cases, it is

even difficult for dermatologists to make decisions.

• For some skin lesions with light coloring, visual patterns and color of the

pigment and skin regions are similar, with fuzzy and unclear boundaries,

making it extremely difficult for the skin lesion segmentation task.

• The original dermoscopic images are usually of high resolution, which

allows the observation of fine-grained structures and subpatterns. How-

ever, it is intractable for the computer to process the original image due

to the large computation required for the high-resolution images.

• The original dermoscopic images suffer from severe lighting condition

changes. In addition, the existence of disturbing items, such as hairs,

color marks, and glues, may also deteriorate the learning performance.

1.2 Label-free Cell Identification and Scattered

Laser Light Patterns

Another type of medical image, scattering patterns, is also considered in this

PhD research. Scattering patterns can be used in label-free flow cytometry

application. In this section, we will give a brief introduction to the label-free

cell identification technique and the scattering patterns.

Cell identification plays a crucial role in many biology- and health-related

applications. Conventional Fluorescence-activated Cell Sorting (FACS) flow

cytometry is the current tool for cell identification. It is based on the mea-

surement of fluorescence emissions of biomarkers that attach to a target cell

when it is illuminated [62]. However, these biomarkers can interfere with the

function of the cells they bind to, hindering further analysis of these cells [5].

Additionally, adequate biomarkers are not available for all cell types, and can

be difficult and expensive to develop for new cell types. For example, the ex-

traction of the newly discovered rare very Very Small Embryonic-like (VSEL)

stem cells requires multiple steps and more than half a dozen biomarkers [63],
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[98] led to significant loss and low purity. In addition, labeling requires con-

siderable technical skills and often leads to inconsistent results.

Figure 1.5: (a) (b) (c) are experimental and (g) (h) (i) simulated 2D laser
scattered light patterns in the side direction for Platelet, Myeloid and CD
34+ HSC respectively. (d) (e) (f) are their corresponding cell models used in
the numerical simulation of 2D laser scattered light patterns of these cells. A
red laser with a wavelength of 632.8 nm is used in the experiment.

Cells have different properties in their shapes, sizes, number and distribu-

tion of the internal structures, etc. Variations of these properties will result in

variations of the amplitude of scattered light in different directions. In other

words, different scattering patterns can be obtained due to the variation of

the cell properties. Therefore, the scattering patterns can characterize inner

cellular structures and distributions within cells and have been studied as a

label-free technique for single-cell analysis. The 2D laser light scattering pat-

terns of single cells including a platelet cell, a myeloid precursor cell, a CD34+
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HSC, in the side direction (polar angle of 70◦ – 101◦ respective to the laser

axis) are shown in Fig. 1.5 [79]. The top and bottom row of images show

the experimentally measured and computer-simulated scattering patterns, re-

spectively. The second row of images are the cell models for the numerical

simulation of 2D laser scattered light patterns. The 2D laser light scattered

patterns can be simulated by solving the Maxwell Equation with relatively

simple numerical models of cells that contain the main scattering components,

such as the nucleus and mitochondria, and by describing non-spherical shape

and surface irregularities. The platelet cell is assumed to be ellipsoidal with

a minor axis of 1 µm and a major axis of 3 µm and contains only a small

number of mitochondria as shown in Fig. 1.5 (a). The refractive index of the

mitochondrion is assumed to be 1.42 inside a cell with a refractive index of

1.38. The myeloid precursor cell is assumed to be a 10 µm diameter sphere

with a 6 µm diameter nucleus (in cyan) located at the center of the cell, as

shown in Fig 1.5 (b). There are also 120 spherical mitochondria arbitrarily

distributed inside the cell, each with a diameter of 1 µm. The refractive indices

for the myeloid precursor cell cytoplasm, nucleus, and mitochondria are set as

1.35, 1.39, and 1.42, respectively. The CD34+ HSC is also assumed to be a

10 µm diameter sphere containing mitochondria with aggregated distribution

as shown in Fig. 1.5 (c) [79]. There are 70 mitochondria (diameter is set as 1

µm), arbitrarily distributed in an ellipsoid centered at the origin with a major

axis of 8 µm and a minor axis of 4 µm. The refractive indices for the CD34+

HSC cytoplasm, mitochondria, and surrounding medium are assumed to be

1.35 , 1.42, and 1.334, respectively. The laser beam is assumed to be a plane

wave with an appropriate frequency. Both the experimental and simulated

patterns of platelet cell show fringe structure as would be expected from a

dielectric object lack of internal structures [79]. Both the experimental and

simulated patterns of myeloid precursor cell and CD34+ HSC are dominated

by the small-scale 2D speckle patterns originating from light scattering caused

by mitochondria in the cells [78], [79]. The difference in these 2D laser light

scattered patterns can be considered a signature for use in cell identification.

For example, a relatively simple analysis using two observables in the 2D scat-
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tered laser light patterns, the number of speckles and the average area of their

cross-sections, are able to distinguish several blood cell types successfully [78],

[79].

We have also studied two groups of SH-SY5Y neuroblastoma cells, in-

cluding the Staurosporine-treated (ST) and None-treated (NT) neuroblastoma

cells, using our laser light scattering technique to characterize the change of

state of the cells when they are interacting with staurosporine. Death of

dopamine-related neurons is one of several pathological indicators of Parkin-

son’s Disease (PD); therefore, SH-SY5Y neuroblastoma cells have been widely

used in PD research. Staurosporine is a natural substance that has been re-

ported to induce SH-SY5Y cell death [57], while others have reported using

staurosporine for SH-SY5Y differentiation into mature, neuron-like phenotypes

[8]. The interaction of staurosporine with SH-SY5Y cells is therefore of inter-

est to investigate whether a particular treatment dose will result in cell death

or differentiation, which may benefit PD research. The scattered laser light

patterns of the two groups of SH-SY5Y neuroblastoma cells look very similar.

The simple two parameters method [78] used successfully for several blood

cells identification is not sufficient to distinguish these two groups of cells from

each other and hence there is a need for the development of machine learning

analysis techniques.

1.3 Problem Statements and Motivations

We grade our PhD research into three applications, including skin lesion

segmentation, skin lesion classification, cell classification and characteriza-

tion. Prevalent machine learning methods for computer vision can be roughly

grouped into the shallow learning method (conventional method) and the Deep

Learning (DL) method. The DL method has become very popular since it can

automatically learn the task-oriented optimal features and obtain state-of-the-

art performance from the raw input data with little or no preprocessing, and

has gained great interest in various research fields. With the encouraging re-

sults, deep neural networks have been regarded as the key method for future
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applications in the industry domain. Among the neural networks of differ-

ent architectures, the CNN has been widely used in computer vision tasks for

image and video analysis. In this PhD thesis, I will focus on medical image

analysis based on CNN.

For skin lesion segmentation task, despite the current research achieve-

ment, it is still a challenging task due to the following reasons: 1) For some

skin lesions with light pigment, the color and visual patterns of the pigment

regions and the skin regions are similar, with fuzzy and unclear boundaries,

make it extremely difficult for the skin lesion segmentation task. 2) Complex

skin conditions, including color inconsistency and disturbing items, such as

hairs, veins, color marks, and other artifacts are also observed in the skin

lesion images. Prevalent machine learning methods ensemble different CNN

backbones to get the final performance, ignoring the intrinsic characteristics

and auxiliary information of skin lesion images, which may benefit segmenta-

tion. Based on the aforementioned observation, a novel method based on the

auxiliary task will be explored, which can segment the ROI accurately.

For the skin lesion classification task, strong intra-class difference and inter-

class similarity is observed across different types of skin lesion. Dermatologists

have to focus on the subtlety of details in order to distinguish malignant cases

from benign ones, yet the large inter-class similarity and intra-class variations

make it more formidable. In addition, the existence of complex skin conditions

may introduce noisy items which can affect the color and texture description

of a given image and deteriorate classification performance. Most CNN based

methods for skin lesion analysis use different backbone structures, ignoring

the discriminative power of the proposed model, which may lead to poor per-

formance. They are also suffering from limitations such as lack of use of side

information, no interpretability, etc. To address the aforementioned problems,

the proposed methods should be discriminative, representative, and robust for

various types of skin lesion images. The key idea is to learn an optimal fea-

ture representation, which satisfies the aforementioned characteristics. Novel

methods regarding the aforementioned issues will be proposed.

For cell classification task, previous label-free cytometry techniquse col-
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lected scattering patterns from one direction using one wavelength laser, and

few machine learning methods have been proposed for scattering image anal-

ysis. In our work, scattering patterns are collected in three directions simulta-

neously, with red and green laser. Different from the convention RGB images

from the digital camera, the laser scattering images are grayscale images, which

share similar appearances and are difficult to discriminate with human eyes.

A previous study has shown that using statistical analysis of the spatial dis-

tribution of the speckles in the scattered light patterns allows us to effectively

distinguish one type of cell from the other. However, it has been found insuf-

ficient to use statistical features to discriminate between the non-treated and

treated cells. Therefore, it is interesting to explore machine learning meth-

ods so as to classify these two types of cells. Conventional machine learning

methods with hand-crafted features as well as CNN methods will be explored

during the PhD period in order to make a thorough analysis. Since the data

is small in size, transfer learning based on CNN will be used.

Based on the previous research on cell classification, the proposed machine

learning technique will also be used for cell property characterization. Our

motivation is that the internal and surface structures of a cell are complex

and many features are sub-micron in scale, which cannot be obtained using

optical microscopy. However, scattering patterns are affected by the cell prop-

erties and can be used as a potential way for cell characterization. Scattering

patterns can also be affected by the laser wavelength and light collection direc-

tion. A systematic study about two cell properties (cell surface roughness and

the number of mitochondria), probing wavelength and observation direction is

conducted. The optimum wavelength and observation direction for each cell

property are determined using extensive experiments.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents a broad

literature review of the prevalent machine learning methods for the dermo-

scopic image and scattering image analysis. In chapter 3, we first introduce
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the benchmark CNN based method for skin lesion segmentation. An improved

CNN model with auxiliary task learning is then proposed for accurate skin le-

sion segmentation. Chapter 4 introduces the skin lesion classification method

based on mid-level feature learning. In Chapter 5, transfer learning is used for

extracting features from real scattering images. A classifier is trained for cell

classification. In Chapter 6, synthetic scattering images are generated with

different cell properties (cell surface roughness, and mitochondria number) us-

ing multi-color multi-direction lasers. Machine learning methods are then used

to analyze the role of these two factors in contributing to different scattering

patterns. Finally, summaries and future work are introduced in chapter 7.
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Chapter 2

Literature Review

In this section, we present a brief overview of the machine learning techniques

for dermoscopic images and laser scattering images. The literature review in-

cludes a range of well-used image processing algorithms for ROI segmentation

(skin lesion segmentation), skin cancer detection (skin lesion classification)

and label-free cell classification. To better understand the machine learning

methods, we first introduce two groups of methods of machine learning, the

conventional machine learning methods and the DL methods.

2.1 Conventional Machine Learning and Deep

Learning

Prevalent machine learning methods can be roughly grouped into the con-

ventional machine learning methods (shallow learning method) and the DL

methods.

Figure 2.1: Training of a model in machine learning.

The conventional machine learning methods learn a trained model by us-

ing the training set as shown in Fig. 2.1. The learned model is typical a

shallow model compared with the DL methods, where multiple hidden layer

architectures are used to model the complex relationships between the input

12



and output. Fig. 2.2 shows a simple diagram of conventional DL methods,

where the previous layers, after some calculation or operation, are fed into the

later layers. The hidden layers can include conventional convolution layers,

activation layers, pooling layers, etc. The networks can be very deep and up

to several thousands hidden layers.

Figure 2.2: Architecture of deep neural networks.

The extracted features play a crucial role in the machine learning methods.

Conventional machine learning methods achieve good performance by feature

engineering, where multiple manually designed features are extracted to repre-

sent the given input image. Such features are typically known as hand-crafted

features as these features are selected by experts based on the image charac-

teristics and the domain knowledge. The hand-crafted features and associated

parameters need careful design to fit different tasks. Prevalent features com-

prise the color features (e.g., color histograms), texture features (e.g., Local

Binary Patterns (LBP) [3], Scale Invariant Feature Transformations (SIFT)

[46], Histogram of Oriented Gradient (HOG) [17] and etc.) and morphological

features (e.g., shapes). However, even with fine parameter setting and careful

design, the extracted hand-crafted features usually fail in complex tasks as

they are not representative and discriminative enough.

The DL method has become very popular and prominent in many computer

vision applications. Especially, the CNN based methods provide encouraging

results in the processing of images and videos. Typical architecture of CNN

has been shown in Fig. 2.3. The current convolutional layers are obtained by
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convoluting previous layers (input of current layers) with a set of 2-D convolu-

tion kernels. The pooling layers are obtained by pooling (usually subsampling

by a factor of 2) operation given the previous layers as input. The CNN can

automatically learn the optimal features and perform classification simultane-

ously with little or no preprocessing of the inputs. This is mainly because that

the deep layer architecture can model the non-linear and complex relationship

between the output and input by learning large number of parameters given

sufficient training data.

While developing CAD systems for medical images has become a popu-

lar and promising direction, it is expensive and difficult to collect sufficient

training data for medical image analysis. Transfer learning has been used,

which aims at transferring knowledge learned in the source domain to the tar-

get domain, and improving the performance of the target learners [97]. One

commonly used approach is using a pretrained neural network trained on a

large dataset (e.g., ImageNet [18], an image database with more than fourteen

million labeled images) as an initialization or fixed feature extractor. For ex-

ample, Muazzam et al. finetuned AlexNet [36] to assist the classification and

detection of Alzheimer’s disease based on MRI images. Similarly, Khan et al.

finetuned VGG [73] for brain tumor classification with MRI images. In this

PhD thesis, transfer learning has been used for the skin lesion and scattering

image analysis. Because of the small size of scattering images, the transfer

learning method that uses a pretrained neural network as an offline feature

extractor has been used.

2.2 Automatic Skin Lesion Segmentation

A skin lesion has a higher chance of skin cancer if it has an irregular, blurred

or jagged border. Hence, it is beneficial to first segment the ROI, which can

benefit the subsequent skin cancer detection. Skin lesion segmentation can be

a primary step for skin lesion classification and is also an important research

area itself. Numerous segmentation methods have been developed for the skin

lesion images. The pigment regions of suspicious lesions usually exhibit a
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Figure 2.3: Typical architecture of CNN for a classification task. The current
convolutional layers are obtained by convoluting previous layers with a set of
2-D convolution kernels. The pooling layers are obtained by subsampling the
previous layers by a factor of 2.

darker color than the surrounding skin. Hence many conventional machine

learning methods based on thresholding [32], region-merging [89], active con-

tour models [1], [65] have been proposed. Among these methods, different

clustering techniques with morphological operations have been used [4], [35].

Jafari et al. [35] used K-means clustering to segment the skin lesion into the

foreground and background regions. Similarly, Ali et al. [4] used Fuzzy C-

Means (FCM) to get the boundary of the pigment regions. Another popular

class of approaches is the active contour models [1], [82], where the contour

evolves toward the border of ROI in each iteration. [1] first get the candidate

region by using the thresholding-based methods, active contour model driven

by multi-direction Gradient Vector Flow (GVF) snake [82] or local histogram

fitting energy [1] is then used to refine the coarse segmentation mask and make

accurate segmentation. However, these conventional methods usually involve

many intermediate steps (pre-processing and post-processing), which can af-

fect performance of the proposed technique by a large margin. Such methods

can achieve good performance with some simple datasets, where all the im-

ages share similar characteristics. Nevertheless, the real cases from clinics are

more complex than the ideal situation. It will fail when the skin boundary

is blurred and the skin conditions are complex. Moreover, the dermoscopic

images collected using different instruments hold different specifications and

characteristics, it is important to develop a technique that is optimized for

datasets with different characteristics.
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The CNN based methods have achieved great success in many computer

vision applications, including skin lesion segmentation. The overall architec-

ture of the segmentation network is similar to the classification network shown

in Fig. 2.3, but usually with a decoder network. The neural network shown in

Fig. 2.3 can be named as an encoder network, as it encodes the input image as

a feature vector at the very end, before the fully connected layers. The decoder

network usually shares a symmetric architecture with the encoder network but

use upsampling in the pooling layers, which aims to increase the resolution of

outputs and provide a segmentation mask with the same size as the input.

U-net [67] proposed by Ronneberger et al. uses a typical encoder and de-

coder architecture. It is very popular and has achieved huge success in medical

images, and methods based on U-net [9], [14] for skin lesion segmentation and

classification have been proposed. One can also perform the segmentation

task and use the classification network with only the encoder architecture by

performing pixel-level classification. Then, input is an image patch centered

at a certain pixel, and the output is the probability of the pixel of being the

foreground or background. The segmentation task is treated as a classification

task in this case. Jafari et al. [34] proposed a skin lesion segmentation method

using the Fully Convolutional Network (FCN). The inputs are image patches of

different scales to make use of the local context information of multiple scales.

However, the pixel-level classification requires dense prediction, which is time-

consuming and computation-expensive. The global context information is not

considered in this case. Hence, more recent works use the encoder and de-

coder architecture for the segmentation task [25], [90], [94]. Cross-entropy loss

has been used as the standard loss function for optimizing the CNN models.

Some methods have also been proposed, where novel loss functions are used to

improve the performance of CNN. Yuan et al. [94] used Jaccard distance loss

instead of the regular cross-entropy loss as the loss function and achieved better

performance for skin lesion segmentation. The multi-task methods learn mod-

els by making predictions of multiple relevant tasks, given the extra labeling

information. The extra labeling of these tasks can provide useful information

which can promote the learning of the main task. Recently, [90] proposed
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a mutual bootstrapping method based on CNN, where skin lesion segmenta-

tion and classification are performed simultaneously. Each task facilitates the

other task in a bootstrapping way. More specifically, a coarse segmentation

network is learned based on a standard CNN, which is then incorporated with

the classification network to guide the learning of the classification network

and make it focus on the ROI. At the same time, class-specific localization

maps generated are concatenated into a segmentation network for the predi-

cation of enhanced mask, which is more accurate. The multi-task framework

requires datasets with extra labeling information, which is not easy to obtain

for many medical images. State-of-the-art research has shown that combining

the extreme points (points on the boundaries) with the original RGB images as

the input of CNN can improve performance for segmentation tasks [51]. The

extreme points provide extra information regarding the segment regions, and

they can be obtained from the ground-truth segmentation masks without any

extra labeling efforts. Based on this motivation, [25] proposed to use the RGB

images and the corresponding predicted bounding boxes as inputs of a CNN

model for skin lesion segmentation. The bounding box can be first learned

by using Faster Region Based Convolutional Neural Networks (RCNN). Supe-

rior performance has been obtained compared with the methods that only use

RGB images as inputs, and the best performance has been obtained for skin

lesion segmentation.

2.3 Automatic Skin Lesion Classification

To detect skin cancers, multiple clinical metrics have been proposed using

dermoscopy images based on the appearance of local patterns, including the

Asymmetry, Border, Color, Diameter, Evolving (ABCDE) rules [28], [75], clas-

sical pattern analysis [61] and seven-point checklist [6]. The ABCDE rules pro-

vide an easy and quick way for the clinicians and patients to self-identification.

The ABCDE rules are shorts for Asymmetry, Border irregularity, Color that

is not uniform, Diameter greater than 6mm, and Evolving shapes (size, shape,

or color). Fig. 2.4 presents some typical images of the normal and abnormal
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(skin cancers) skin lesions that can be diagnosed with the ABCDE rules.

Normal

Abnormal

Criteria A B DC E

Features
Half of the skin 
lesion look 
different from 
the other half in 
color and/or 
shape.

The skin lesion 
has an irregular, 
jagged or 
blurred border.

The skin lesion 
has different 
colors or 
different shades 
of one color.

Diameter of the 
skin lesion is 
larger than 6mm.

Change in size, 
shape or bump 
evolved.

Figure 2.4: Normal and abnormal skin lesions explained with the ABCDE
rules. The abnormal skin lesion images are usually with asymmetric shape,
irregular, jagged or blurred borders, multiple colors within the pigment regions,
large diameter and evolving appearances over time.

However, the actual cases of suspicious skin lesions are far more complex.

Different types of skin lesions can share a similar appearance, e.g., nevus and

melanoma, which makes it even difficult for the experienced dermatologists

to differentiate skin lesions accurately. Recent work has shown that the CNN

based method can obtain comparable and even better performance compared

with the experienced dermatologists [21], which demonstrates the potential

and appealing prospect of automatic skin lesion analysis using the advanced

CNN models.

As mentioned in section 1.1, the original skin lesion images suffer from

lighting condition variation and interference from hairs and other artifacts.

To tackle these problems, preprocessing techniques like hair removal [13], [64]

and color enhancement [64] have been proposed for skin lesion analysis. After
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the preprocessing step, color and texture features are extracted, and a classi-

fier is then trained for skin lesion classification. The features play a key role

in accurate prediction, and many conventional machine learning methods that

utilize hand-crafted features have been proposed for skin lesion classification.

Previous studies have demonstrated that the integration of various feature rep-

resentations, such as color, texture, and shape features, is more powerful than

a single type of feature representation [48], [59]. Unfortunately, hand-crafted

features are not able to handle the complex tasks due to their inherent limita-

tions, and they perform poorly in many cases for the skin lesion classification

task.

Recently CNN based methods have achieved huge success in various re-

search areas, and many popular CNN architectures have been proposed for

the image classification tasks with good performance. One advantage of the

CNN based methods is that it can automatically learn the optimal features

and make predictions in an end-to-end manner. The features are task-specific

and automatically learned during the training procedure based on the training

data. Therefore, the deep features are semantically more representative and

discriminative than the conventional hand-crafted features. The successful

training of CNN depends on the initialization of the weights of neural net-

works. Many existing models for skin lesion classification use existing CNN

models, and the parameters are optimized by finetuning with the skin lesion

images as inputs. Model ensemble and test augmentation techniques are also

used to further improve the experimental results [10], [50], [53], [54]. The

multi-task framework has also been proposed for the skin lesion classification

task [91], where the segmentation task and classification task are performed

simultaneously. Generally speaking, the multi-task-based methods can obtain

better performance than the single-task-based method since they can incorpo-

rate the shared information between different tasks. Existing CNN methods

for the skin lesion analysis lack the interpretability of experimental results,

which is important in assisting the clinicians in making decisions. [24] pro-

posed a method named DermakNet, which used 50-layer ResNet [29] as the

CNN backbone. Dermatologists’ knowledge (e.g., attributes, asymmetry in-
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formation) modeled by different sub-learning systems and meta-data are also

used for interpretability and better performance.The CNN models can extract

global semantic features of input images but ignore the local clues. To ad-

dress this problem, [22] used both the global and local features for melanoma

detection. The global features are extracted using standard ResNet [29] and

the local features are obtained by using VGG-16 Network [73] with Bilinear

Pooling (BP), which can distinguish skin lesions with subtle visual differences

in local regions. To learn discriminative features and use images from different

sources, [23] proposed a triple deep architecture, where a pair of digital and

dermoscopic images of a single lesion is used as the input. Information from

different sources is shared in the middle layers of neural networks. The fea-

tures are then spatially weighted using the Class Activation Mapping (CAM)

technique. BP is also used to generate the discriminative feature representa-

tion.

2.4 Scattering Image Analysis Based on Ma-

chine Learning

While dermoscopic images can be used for skin cancer detection, scattering

patterns can also be used to detect the cancerous cells from healthy cells at

the cell-level [41], [78], [81]. Laser scattering images provide essential infor-

mation regarding cellular information and have been used in label-free cell

identification. Conventional machine learning methods, as well as deep learn-

ing methods, have been proposed for scattering image analysis. Hand-crafted

features such as the Gray Level Co-occurrence Matrix (GLCM), HOG have

been used for scattering image analysis. The scattering images are domi-

nated by randomly distributed white speckles on a dark background. [78], [79]

showed that two speckle properties: the number and average area of speckles,

are sufficient for accurate classification of different types of cells (CD34+ with

mature myeloid precursor or Jurkat cells). [80] used GLCM features along with

Support Vector Machine (SVM) to classify prostate cancer and healthy cells.

[41] propose to use HOG features to discriminate ovarian cancer cells with the
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normal cells. In contrast, deep learning methods can automatically learn the

optimal features and classifiers in an end-to-end manner. A large number of

parameters are used to learn the complex and non-linear relationships between

the input and output by using multiple hidden layers. [45] proposed to use a

simple CNN model for the classification of cervical cells using static cytometry.

[81] used VGG [73], a popular well-known CNN architecture, to detect cancer

cells in blood by multicolor stimulated Raman scattering.

2.5 Performance Evaluation Metrics

Different evaluation metrics are used for different tasks. Especially, to evaluate

the segmentation results of skin lesions, the JA, Dice Coefficient (DC), Accu-

racy (ACC), Sensitivity (SEN) and Specificity (SPE) are used in this thesis.

The criteria are calculated as follows:

JA =
TP

TP + FP + FN
(2.1)

DC =
2 · TP

2 · TP + FP + FN
(2.2)

ACC =
TP + TN

TP + TN + FP + FN
(2.3)

SEN =
TP

TP + FN
(2.4)

SPE =
TN

TN + FP
(2.5)

where TP, TN, FP and FN are the count of true positives, true negatives,

false positives, and false negatives, respectively. JA represents the ratio of the

overlapping area and the union area between the predicted segmentation mask

and ground truth mask. DC is twice the overlapping area divided by the total

number of pixels in both images. Both metrics reflect how close the prediction

mask to the ground truth. SEN represents the proportion of foreground pix-

els being correctly segmented against the total number of foreground pixels.

Similarly, SPE represents the proportion of background pixels being correctly

segmented against the total number of background pixels.
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To evaluate the skin lesion classification results, ACC and AUC have been

used as the evaluation metrics for skin lesion classification, which is the main

evaluation metric for skin lesion classification task and is widely used in the

ISIC dataset [16].

For scattering image classification, ACC, SEN, SPE and AUC criteria have

been used. The definitions of these criteria are introduced as follows:

ACC =
TP + TN

TP + TN + FP + FN
(2.6)

FPR =
FP

FP + TN
(2.7)

TPR =
TP

TP + FN
(2.8)

AUC =

∫ 1

0

T (F0)dF0 (2.9)

where TP, TN, FP, and FN are the same definition as those in the segmen-

tation task. False Positive Rate (FPR) and True Positive Rate (TPR) are

shorts for false positive rate and true positive rate, respectively. T (F0) is the

corresponding TPR when the FPR is F0. ACC measures the proportion of

correct predictions (both true positives and true negatives) among the total

number of cases. AUC provides an aggregate measure of performance against

different classification thresholds.
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Chapter 3

Skin Lesion Segmentation Using
Deep Learning with Auxiliary
Task

Skin lesion segmentation has been proved to be beneficial for the classification

task and is an important research topic. For some skin lesions with light pig-

ment, the colors and visual patterns of the pigment and the surrounding skin

regions are very similar, resulting in fuzzy and unclear boundaries, making the

skin lesion segmentation task extremely difficult. Moreover, the skin lesions

also contain items such as hairs, veins, color-makers, rulers and glues, which

affect the color and texture distribution of the skin lesions and impede success-

ful learning. Fig. 3.1 displays some example images from the ISBI2017 dataset

[16] for skin lesion analysis. To address these problems, literature studies that

deploy different CNN architectures with multi-scale information [38], [44], [74],

or multi-task learning framework [90], [91] have been proposed for skin lesion

segmentation. The core idea of these methods can be regarded as trying to use

as much information as possible to make robust predictions. However, these

strategies either introduce extensive extra parameters for training or require

extra labeling information, which may be inapplicable in practical situations.

In this chapter, a novel CNN method that uses auxiliary information is pro-

posed for the skin lesion segmentation. The proposed method can be trained

The content of this chapter has been published as L. Liu, Y. Y. Tsui, and M. Mandal, ”Skin
lesion segmentation using deep learning with auxiliary task,” Journal of Imaging, vol, 7, no.
4, 2021.
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in an end-to-end manner without any pre-processing or post-processing steps.

The contribution of this work is two-fold:

• Edge prediction is used in skin lesion segmentation as an auxiliary task.

The proposed method learns the edge prediction and segmentation tasks

simultaneously by two parallel branches. The edge prediction can guide

the neural network to focus on the boundaries of the interest regions.

Up to the authors’ knowledge, this is the first work that uses edge in-

formation to help the skin lesion segmentation task. Note that the edge

of a skin lesion can be automatically obtained by applying the contour

detection technique and hence requires no extra labeling effort.

• A CCL module and a MSFA module have been proposed in this work.

The CCL module can implicitly guide the learning, and boost each task’s

performance by feature interaction. The MSFA module can leverage

the multi-scale information of the intermediate feature maps of different

resolutions, whose weights can be automatically learned during training.

• Extensive experimental results verify that the edge prediction task can

help the skin lesion segmentation task, and the proposed method achieves

state-of-the-art performance.
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Figure 3.1: Some skin lesion images from the ISBI2017 dataset for skin lesion
segmentation. The ground truth masks are marked using the green contours.
Fuzzy boundaries and noisy items such as hairs and color-marks are also wit-
nessed.

3.1 Proposed Method

In this section, we present details of the proposed method. During the train-

ing phase, the proposed method will simultaneously predict the segmentation

mask and its corresponding edge of an input image. During the testing phase,

only the segmentation mask is used for prediction. Schematic diagram of the

proposed method is shown in Fig. 3.2. The proposed method consists of three

main modules: the CNN backbone, the CCL module and the MSFA module.

Details of each module are introduced in the following sections.

3.1.1 CNN Backbone

As shown in Fig. 3.2, an input image first goes through a backbone CNN to get

the intermediate feature maps F for the edge prediction and mask prediction

task. In this paper, ResNet-101 [29] and Pyramid Pooling Module (PPM) [96]

are utilized as the backbone CNN, which can also be regarded as a strong

baseline model for automatic skin lesion segmentation. The input images are

first rescaled to 448 × 448 and then fed into the backbone CNN. To obtain
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Figure 3.2: Schematic diagram of the proposed method. Edge prediction is
used as an auxiliary task to assist the segmentation task. Two parallel net-
works with CCL module are implemented so that the learned two tasks can
interact with each other during training and hence boost each other’s perfor-
mance in turn. MSFA module is used to aggregate the multi-scale information
from the intermediate feature maps of different scales.

a reasonable feature resolution of F , the Conv4 layer in the ResNet-101 is

modified with stride and dilate rate has been set as 1 and 2, respectively [51].

By doing this, the resolution of the Conv4 layer will not decrease. Details

about the backbone CNN architecture are shown in Table 3.1. Especially,

[1× 1, 64] represents that the filter size used during training is 1× 1, and the

number of filters is 64, which also equals the number of output feature maps.

[ . ]× 3 means the operations are applied three times sequentially. We set the

stride to be 1 and use zero padding so that the size of the output feature maps

will be the same. The PPM module [96] can leverage the context information

of different resolutions and has been widely used as a plug and play tool. The

same setting as [96] was used, except that the number of output channels was

set to be 128. The PPM module fuses features under four different pyramid

scales, with bin sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6, respectively. The

input of the PPM module is the output feature maps of Conv4 layer with size

[1024, 56, 56], where 1024 is the number of feature channels and the spatial

26



Table 3.1: Architecture of the proposed method. The input image size is
448× 448.

layer name output size output channel dimension operations

Conv1 224× 224 64

[
7× 7, 64, stride 2

3× 3, max pool, stride 2

]

Conv2 112× 112 256

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv3 56× 56 512

1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv4 56× 56 1024

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

F 56× 56 128 PPM [51]

E conv1/S conv1 112× 112 128

1× 1, 128
3× 3, 32
1× 1, 128

× 1

E conv2/S conv2 224× 224 128

1× 1, 128
3× 3, 32
1× 1, 128

× 1

E conv3/S conv3 448× 448 128

1× 1, 128
3× 3, 32
1× 1, 128

× 1

size of the feature maps is 56× 56. The output of the PPM module is feature

maps of size [128, 56, 56].

3.1.2 Cross-connection Layer (CCL)

The proposed method uses two parallel networks to predict the edge and seg-

mentation mask simultaneously. Interactions between these two networks are

realized by using the CCL module, where each task’s intermediate feature

maps are used as the inputs of the next sub-block of the other task. In

this case, the edge information is used during the forward prediction of the
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mask, which can implicitly regularize the boundary of the mask and guide

the model to focus more on the contours. Similarly, the mask prediction sub-

net, which contains dense pixel and contextual information, is also used to

guide the learning of the edges. S conv1, S conv2, S conv3 are the sequen-

tial operation blocks of the Seg subnet, while E conv1, E conv2, E conv3 are

the sequential operation blocks of the Edge subnet. Specifically, the layers

S conv1, S conv2, S conv3, E conv1, E conv2, E conv3 in CCL are obtained

using the residual blocks, which have been shown in Fig. 3.3(a). Details

about the implementation of the residual block are shown in Fig. 3.3(b). The

residual block first uses 1 × 1 kernels to rescale the input feature maps. Af-

terward, 32 3 × 3 kernels are used, and hence the output channel number is

shrunk to 32. The final output feature maps remain the same size as the in-

put. This can be easily realized by using 1× 1 kernels and setting the number

of output channels to 128. Upsampling (by a factor of 2) is used after each

residual block so as to increase the feature resolution. The size of the output

feature maps at layer S conv3 and E conv3 is 448× 448, which is equal to the

size of the input images.

3.1.3 Multi-scale Feature Aggregation (MSFA)

The MSFA module, shown in Fig. 3.4(a), is used to aggregate the feature

maps from each resolution and make the final prediction. It first uses the

Conv block to generate an output prediction map for feature maps at each

resolution, which can be regarded as the process of making predictions at a cer-

tain scale. The Conv block consists of standard convolution operations: first,

convolution with 3 × 3 kernels (the number of channels is 128) is performed.

Batch Normalization (BN) and Rectified Linear Unit (RELU) are used af-

terward. The output of the Conv is a feature map with depth one, which is

obtained by convolving with a 3×3 kernel. For instance, feature maps at layer

S conv1, S conv2, S conv3 are fed into the MSFA module and three feature

maps are generated at different scales via the Conv block. To leverage the

feature maps at higher resolution more effectively, we also generate the fourth

feature map by directly convoluting S conv3 with a 1 × 1 kernel. These four
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(a) CCL (Cross-connection Layer) module

(b) Implementations of the Residual Block

Figure 3.3: Implementations of the CCL module. The inputs are feature maps
F obtained from the backbone CNN. Fig. 3.3(a) shows the implementation
details of a Residual block in Fig. 3.3(a), and blocks with the same color
indicate the same operation.
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(a) MSFA (Multi-scale feature aggregation) module

(b) Conv block of MSFA

Figure 3.4: Implementations of the MSFA module, where the segmentation
branch is used as an example. The inputs are feature maps of different
scales from the segmentation branch, e.g., Sconv1, Sconv2, Sconv3. Four predic-
tion masks are obtained after some convolution and pooling operation. The
final output is weighted sum of these predictions which can be automatically
learned by 1× 1 convolution.

predictions are then upsampled to size 448×448 and are concatenated, result-

ing in feature maps of size 4× 448× 448. Finally, these four prediction masks

are convolved with 1× 1 kernel to aggregate these feature maps into one final

prediction. The weight for the prediction of each scale can be automatically

learned in this case. Fig. 3.4 shows the schematic of the MSFA module for the

Seg subnet, the schematic of the MSFA module for the edge subnet is similar.

For both segmentation and edge prediction, shared parameters are used in the

MSFA module, which encourages the prediction masks and edges to share a

similar quality.

The class-balanced cross-entropy loss is used as the cost function for the

segmentation and the edge prediction task. The class-balanced cross-entropy
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loss l of a prediction is calculated using the following equation:

l = − 1

N

N∑
n=1

[w1 × yn × log(hθ(xn)) + w0 × (1− yn)× log(1− hθ(xn))] (3.1)

where

N : number of pixels;

yn: target label for pixel n;

xn: input pixel n;

hθ: model with neural network weights θ;

w1: weight for foreground pixels;

w0: weight for background pixels;

w1 and w0 are the class balanced weights and can be calculated by inverse

class frequency: w1 = Nneg
N

and w0 = Npos
N

. Nneg and Npos represent the number

of background and foreground pixels of a ground truth mask, respectively. The

losses of the segmentation and edge prediction functions can be very different,

hence, a paremeter α is used to balance these two tasks. The final loss function

L is given by:

L = αLseg + Ledge (3.2)

where Lseg and Ledge are the loss for segmentation and edge prediction task

over the entire training data, respectively. Both Lseg and Ledge use Eq. (3.1)

to calculate the loss. For the proposed method, we manually set α = 0.05

to make the Lseg and Ledge in a similar range of values during training. The

proposed method can be trained in an end-to-end manner.

3.2 Dataset

For performance evaluation of the proposed method, we have used the dataset

from ISIC 2017 for skin lesion detection [16], which is a very challenging dataset

for skin lesion classification. There are 2000 images in the training set, in-

cluding 374 melanoma, 254 seborrheic keratosis, and 1372 benign nevi. The
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validation dataset contains 150 images and the final testing dataset contains

600 images. All the images are of various resolutions, ranging from 767×1022

to 4499×6748 pixels. Severe illumination variation, noise and various artifacts

are also witnessed in this dataset.

3.3 Experimental Results

In this section, we first present implementation details of the proposed ap-

proach. Ablation studies have been conducted to show the benefits of each

module. Finally, the technique’s performance is evaluated and compared with

the state-of-the-art techniques.

3.3.1 Implementation Details

The proposed model is learned using the training data of ISBI2017, and the

performance is evaluated on the testing data. To train the proposed model,

a dermoscopic image (input), its corresponding ground-truth segmentation

mask and edge (contour) image (outputs) are required. The ground truth of

the edge image can be automatically obtained from the ground truth of the

segmentation mask by contour detection technique. During the training phase,

data augmentation is used to increase the number of training images. Data

augmentation techniques, including random horizontal and vertical flipping,

center cropping at a random scale between [0.75, 1.25], random rotation in the

degree range [-20, 20], ground truth cropping with zero-padding of 50 pixels,

and an image deformation method named Rigid Moving Least Squares [70]

are used to generate more training images. All the images are then rescaled

to the size of 448 × 448. To train the proposed neural network, we set the

batch size to be 8 and train it for 30 epochs. Adam optimization algorithm

with an initial learning rate of 0.0001 is used, which decreases exponentially

with a learning rate decay γ = 0.9.

During the testing phase, only the segmentation mask is needed to evaluate

the performance of the proposed method. Test augmentation is also performed

by rotating the input test image by 90◦, 180◦,270◦, flipping horizontally and
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vertically. The prediction of the original image can be obtained by reverse

operation of the predictions to the transformed images. The average of these

prediction outputs is then used as the final segmentation output.

The skin lesion segmentation method is implemented using PyTorch. All

the experiments were conducted on a server with an Intel Xeon Processor (Sky-

lake, IBRS) CPU and two GPUs of Nvidia Tesla V100 with 16 GB memory.

3.3.2 Parameter Setting of the Loss Function

As in Eq. 3.2, there is one important parameter α that balances the loss

between the segmentation task and the edge prediction task. To investigate

the impact of parameter α, experiments regarding different values of α are

conducted. The experimental results are shown in Fig. 3.5, where JA is used

as the evaluation metric. More results are provided in Table 3.2.

As we can see from Fig. 3.5 and Table 3.2, α = 0.05 can give us the best

performance regarding the JA. Performances of the proposed method are rela-

tively stable when the values of α are smaller than 0.25, and the JA gradually

decreases with increasing values of α. For instance, the JA drops from 79.46

to 79.01 when the value of α increases from 0.05 to 0.5. This is because a

larger value of α suggests a weaker role of edge prediction, which has proved

that the edge prediction task can benefit the segmentation task. The proposed

model will focus more on the boundaries of ROI, which is crucial for successful

segmentation. Notice that in the extreme case, only the segmentation branch

is updated and learned during the training phase when the parameter α is

significantly large. Therefore, in this study, we have set α = 0.05 to obtain a

balanced segmentation and edge prediction loss.

Table 3.2: Experimental results with different values of α on the test set.

α ACC DC SEN SP JA
0.005 94.17 87.14 88.77 95.56 79.43
0.05 94.32 87.13 88.76 96.51 79.46
0.25 94.33 87.09 88.06 96.40 79.30
0.5 94.11 86.78 89.25 93.39 79.01
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Figure 3.5: Experiment results with different values of α on the test set.

3.3.3 Ablation Study

To show the effectiveness of the proposed method, an ablation study of the

proposed method on the ISBI2017 test data is conducted. We name the three

yellow blocks (in Fig. 3.2) in the segmentation branch as the Seg Subnet.

Similarly, the three green blocks in the edge prediction branch are named

the Edge Subnet. Results of the ablation study are shown in Table 6.1.

ResNet+PPM+Seg is the backbone CNN with a Seg subnet for the segmen-

tation task, which can be regarded as a strong baseline model for the skin

lesion segmentation task. JA is regarded as the main evaluation metric for

the segmentation task as in the literary works, which reflects the percentage

of overlap between the prediction mask and the ground-truth mask. A JA

value of 77.01% is obtained for this baseline method. By adding the Edge

subnet, we further increase the JA by 0.57%, which verifies that the auxiliary

task (edge prediction) can benefit the segmentation mask. Our final model is

the proposed method with the Seg subnet, the Edge subnet, and the MSFA

module, which obtains the best performance with JA value of 79.46. An in-

crease of 2.45% JA value is observed for the proposed method compared with

the baseline method, which verifies the effectiveness of the proposed method.
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In addition to JA, the proposed method provides an improvement of 1.16%,

1.92%, and 1.39% for ACC, DC and SPE over the baseline method.

Table 3.3: Ablation study of the proposed method .

Method ACC DC SEN SPE JA
ResNet+PPM+Seg 93.16 85.21 88.87 95.12 77.01

ResNet+PPM+Seg+Edge 93.54 85.66 87.11 96.61 77.58
Proposed 94.32 87.13 88.76 96.51 79.46

3.3.4 Comparison with State-of-the-art Methods

In this section, we compare the proposed method with other state-of-the-

art methods using the ISBI2017 test data. The experimental results are

shown in Table 6.2. Since ISBI2017 is a challenge dataset for skin lesion seg-

mentation, ensembling techniques by using different CNN models [93], post-

processing [11], [43], [93] are widely used. In comparison, our method only

learns one model in an end-to-end manner without any pre-processing and

post-processing methods and still achieves the best performance with JA of

79.46, ACC of 94.32, SEN of 88.76.

Table 3.4: Experimental results compared with state-of-the-art methods on
ISBI2017 test data.

Method ACC DC SEN SEN JA
Liu et al. [43] 93.00 84.00 82.90 98.00 75.20

Abhishek et al. [2] 92.22 83.86 87.06 95.16 75.70
Yuan et al. [93] 93.40 84.90 82.50 97.50 76.50

AI-Masni et al. [52] 94.03 87.08 85.40 96.69 77.11
Bi et al. [11] 94.08 85.66 86.20 96.71 77.73

Sarker et al. [69] 93.60 87.80 81.60 98.30 78.20
Proposed 94.32 87.13 88.76 96.51 79.46

3.4 Discussions

3.4.1 Quantitative Analysis of Test Results

In this section, quantitative analysis about the performance of the proposed

method on the test data is also conducted. The histograms regarding the JA
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Figure 3.6: Cumulative histograms of the JA values on the test data.

distribution on the test data are shown in Fig. 3.6. As shown in Fig. 3.6, over

70% of test images can be segmented with JA larger than 70.

3.4.2 Qualitative Analysis of Test Results

The final outputs of the edge prediction and segmentation branches are dis-

played in Fig. 3.7. As shown in Fig. 3.7, the proposed approach can segment

the ROI accurately in most cases. The first row displays the predictions given

an easy input image, whose color contrast is high between the foreground and

background regions. The proposed approach can detect the pigment region

with high accuracy. The second, third, and fourth rows present the predic-

tions of input images with fuzzy boundaries and low contrast. In addition,

the existence of glue is also observed among these images, which will make

it extremely difficult to identify the boundaries. Output prediction maps of

the edge prediction and segmentation branches become slightly fuzzy on the

boundaries in these cases, but still with decent results. The bottom row shows

the predictions given an input image with hairs and low color contrast, which
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can affect the textures of the skin lesions and prohibit successful learning. Nev-

ertheless, the proposed method still successfully segments the pigment regions.

In other words, the proposed method is robust to noisy items and obtains an

overall good performance.

Fig. 3.7 shows some test images that have been segmented successfully.

To further evaluate the performance of the proposed approach, we have also

display some failed cases in Fig. 3.8. The first row displays the input images,

the second row shows the corresponding ground truth masks, and the third row

is the prediction mask of the proposed approach. As we can see from the first

two columns in Fig. 3.8, the proposed approach generates larger prediction

masks than the ground truths, which is mainly due to the existence of the

glue and the unclear boundaries. They will distract the proposed method

and deteriorate the segmentation performance. In contrast, outputs in the

third and fourth columns show that the proposed method predicts smaller

segmentation masks than the ground truth masks. The learned model tends to

treat the dark areas as the foreground regions (which is the most frequent cases

for dermoscopic images), and it fails when there are multiple colors scattered

within the same lesions in some difficult cases. For instance, the proposed

method fails when the foreground region contains a dark area surrounded by

an area of light color, whose appearance is more similar to the healthy skin

region (see the last two columns of Fig. 3.8). Such a phenomenon has also been

found in previous works [84], [88], which may be caused by the scarce samples

and it will be the focus of our future research. It is also worth noting that

the ground truths of the segmentation masks of ISBI2017 are labeled using

different methods (e.g., manual labeling, thresholding methods, interactive

labeling methods). Therefore, there are annotation disagreements among the

labeled images, which has been described in [25], [66] and may hinder the

learning of the proposed method.
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Figure 3.7: Output visualization of the proposed method. (a) input test image;
(b) the corresponding ground truth segmentation mask; (c) the output prob-
ability map of the segmentation prediction branch; (d) the output probability
map of the edge prediction branch.
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Figure 3.8: Some examples about the failed cases for the proposed method.
(a) the input test images; (b) the corresponding ground truth segmentation
masks; (c) the probability map of the proposed method.

3.5 Conclusions

In this chapter, a novel CNN based method with auxiliary task learning is pro-

posed. Edge prediction, as an auxiliary task, is performed simultaneously with

the segmentation prediction to help the segmentation task. The ground truth

of the edge prediction task can be obtained automatically from the ground

truth segmentation masks by using a standard contour detection method, and

hence no extra labeling effort is required. A CCL module is proposed, where

the intermediate feature maps of each task are fed into the other task’s sub-

block, which implicitly guides the neural networks to focus on the boundary

region and boosts the performance of the segmentation task. A MSFA mod-

ule is proposed, which can automatically learn the final mask by aggregat-

ing the output of different scales. An ablation study has shown the benefits

of these proposed modules. Experimental results with the ISBI2017 dataset

have shown that the proposed method outperforms the other state-of-the-art

methods in terms of performance measures such as the JA and accuracy.
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Chapter 4

Automatic Skin Lesion
Classification Based on
Mid-level Feature Learning

In this chapter, a novel mid-level feature learning method is proposed for the

skin lesion classification. Our motivation is that: the dermoscopic images suf-

fer from strong visual similarities among different types of skin lesions and

visual variations within the same class of samples. Several image pairs with

their Euclidean distances values d are displayed in Fig. 4.1. The Euclidean

distance values are calculated by using the features extracted via pretrained

ResNet [29]. The average distance for intra-class pairs of images is 37.5, while

for some hard samples, the intra-class distances can be larger than the average

value. Similarly, the inter-class distances can be smaller than 37.5. There-

fore, it is very difficult to learn an optimal feature representation that can

well separate all the training images. Instead of using the original features as

the input, relationships among different sample images are used as the feature

representation. The relationships are modeled using the similarity measure-

ment based on metric learning (learned using the training set) with a given

reference set. An SVM classifier is finally used for the classification task by

using the mid-level features as input.

The content of this chapter has been published as L. Liu, L. Mou, X. Zhu, and M. Mandal,
”Automatic skin lesion classification based on mid-level feature learning,” Computerized
Medical Imaging and Graphics, vol. 84, 2020.
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Figure 4.1: Example images from ISIC 2017 dataset on skin lesion analysis
towards melanoma detection. Each green box indicates a pair of inter-class
samples (left: melanoma vs. right: benign), and each red box indicates a pair
of intra-class samples (both images are melanoma). Strong inter-class visual
similarity and intra-class variations are observed across different types of skin
lesions.

We name it mid-level feature representation since it captures higher-level

affinity information of the original features, and can be regarded as an inter-

mediate semantic feature representation, which bridges the raw features and

the classification task The affinity information of an image pair can be ob-

tained by calculating their distance values. However, the Euclidean distance,

although widely used in machine learning, cannot capture precise relation-

ships among different image pairs, due to its limitations and incapabilities.

Therefore, Mahalanobis distance is learned by using a distance metric learn-

ing method. The distance metric learning can be regarded as a method for

learning discriminative feature representation. Compared with the discrimina-

tive features learned by metric learning, the proposed mid-level feature is a soft

discriminative feature representation, where the relationships of visual simi-

larities and distinctions can be kept for some difficult cases (hard samples) as

long as the remaining relationships are captured correctly. The learned image

features are thus more robust to the large visual similarities between different

classes of skin lesions and noisy items.

Specifically, a CNN based skin lesion segmentation model is used as a

primary step for ROI detection. The skin lesion segmentation method is based
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on U-net [67] and dilated convolution [92]. Features are then extracted from

the ROI via the pretrained neural networks (ResNet [29] and DenseNet [31].

Finally, SVM is used to perform skin lesion classification. Block diagram of

the proposed approach has been shown in Fig. 4.2.

Skin Lesion 
Segmentaion

 Deep Feature 
Extraction

Mid-level Feature 
Learning

SVM

Input Images

melanoma or not ?
seborrheic keratosis or not ?

Output Predictions

Figure 4.2: Block diagram of the proposed method.

The contributions of this work can be summarized as follows:

• A novel mid-level feature representation that utilizes the relationships

among image samples (e.g. between an input image and the reference

image set) is proposed for skin lesion classification. The new feature

representation contains high-level affinity information between samples.

It is a soft discriminative feature, having more tolerance to difficult cases,

and is more robust to noise, large inter-class similarity and intra-class

variations.

• A novel framework that integrates skin lesion segmentation has been

proposed for skin lesion classification. Pretrained CNN models are used

as the off-the-shelf feature extractors of ROI, and metric learning is then

utilized to learn the mid-level features for classification.

• Extensive experiments have been conducted to show the advantages of

the proposed approach, and experimental results show that the proposed

method outperforms state-of-the-art CNN based methods.

4.1 Proposed Method

The proposed method contains four steps: skin lesion segmentation, feature

extraction, mid-level feature learning, and SVM classification. Details about

each step are presented in the following sections.
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4.1.1 Skin Lesion Segmentation with Improved U-Net

Skin lesion segmentation is still a challenging task due to the complex skin

conditions and blurred boundaries. To address the aforementioned problems,

an improved CNN model based on U-net architecture is proposed in this sec-

tion. Different from the original U-net, batch normalization layer [33] and

dilated convolution [92] are introduced in this method. The batch normal-

ization layer can tackle the internal covariate shift problem [33] and promote

the performance of CNN. Dilated convolution is used to enlarge the percep-

tive field without losing resolution during the training procedure. Moreover,

a simple test augmentation technique is proposed in this paper, which boosts

the performance significantly. Compared with existing ensemble techniques,

which usually need to train multiple models, our method integrates results

only in the testing phase, which does not require extra training efforts, thus is

very efficient.

Schematic plot of the proposed method model is shown in Fig. 4.3. The in-

put image consists of 6 channels corresponding to RGB and HSV color spaces,

and the output is the (segmentation) probability map. The number of feature

maps are shown under each operation block. All convolutional kernels used in

this model are of size 3×3. As we can see from Fig. 4.3, the proposed method

contains an encoder network and a decoder network. The encoder blocks use

the following structure: conv, BN, conv, BN, dilated conv and max pool. The

conv is the convolution layer, BN is the batch normalization layer, dilated conv

is the dilated convolution layer at stride of [2, 2], and max pool is the max pool-

ing layer with factor 2. For each decoder block, upsampling layer of factor 2 is

first used to increase the feature maps’ resolution. We then concatenate these

feature maps with feature maps of the same size from the encoder path (as the

green arrows show in Fig. 4.3). The overall structure of the decoder block is:

up sampling, concatenate, conv, BN, conv, BN and dilated conv. The yellow

block Conv 5 in Fig. 4.3 is the connection layer for the encoder network and

The content of this section has been published as L. Liu, L. Mou, X. Zhu, and M. Man-
dal, ”Skin Lesion Segmentation Based on Improved U-net,” IEEE Canadian Conference of
Electrical and Computer Engineering, 2019, pp. 1-4.
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[conv, BN, conv, BN, dilated_conv] ROI bounding box

Figure 4.3: Schematic of the proposed CNN based model for skin lesion seg-
mentation. The proposed method contains an encoder network and decoder
network, each network is consisted by a sequence of encoder blocks and decoder
blocks.

decoder network, and it is consisted of conv, BN, conv, BN and dilated conv.

The original images are of high resolution, to train the deep model more

efficiently, we first resize the input image size 256×256 pixels. RGB and HSV

color channels (i.e., 6 channels) are used as the inputs. Each color channel is

normalized to the range of [0, 1] by using standard min-max normalization.

During the testing phase, a simple test ensemble technique is used by data

augmentation with the test data. For a test image, we obtain its augmented

images by rotating the original images by 90, 180, 270 degrees, flipping them

vertically and horizontally. Predicted masks of these transformed test images

can be obtained using the trained model. We can get the predictions of the

original image by reverse operation by using the transformed masks. The final

prediction mask is the average values of these reconstruction maps and the

original prediction mask.

For all the convolution layers, the stride is set to be 1, same padding and

Rectified Linear Units (ReLus) are used. Adam optimization algorithm is used

for neural network training. The learning rate is set to be 0.0001, and cross-

entropy loss is used as the lost function. The number of epochs during training

is set to be 3, and the batch size is set to be 16. Therefore, the steps per epoch

equal to 48000/16 = 3000.
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Figure 4.4: The first row shows the original images, and the second row shows
the images after pre-processing using Retinex method. The color distributions
of different images are enhanced via the use of Retinex method. The resulted
images are of similar lighting conditions.

4.1.2 Deep Feature Extraction

In this section, deep features are extracted from the ROI images using the

pretrained neural networks. The pretrained neural networks can extract rich

and meaningful texture information of images, and have been successfully used

as offline feature extractors for medical image analysis [27], [50]. In this study,

pre-trained ResNet-50 [29] and DenseNet-201 [31] are used as off-the-shelf fea-

ture extractors. We denote them as ResNet and DenseNet for clarity in the

following paper. Before feature extraction, Retinex algorithm [20] is used to

enhance the color consistency among different images. The resulting images

are shown in Figure 4.4. The colors of different images are more comprehen-

sive and consistent after using the Retinex method. The ROI bounding boxes

obtained from the previous segmentation module are superimposed on the pre-

processed images to obtain the ROI images, which are then resized to 224×224

for feature extraction. For both CNN, the output of the Global Average Pool-

ing (GAP) layer is used as the feature. The output features corresponding to

the two CNN are of dimension 2048 (ResNet) and 1920 (DenseNet), respec-

tively. Principal Component Analysis (PCA) is used to reduce the feature

dimension by keeping 99% energy. The reduced feature dimensions for ResNet

and DenseNet are 700 and 532, respectively.
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4.1.3 Mid-level Feature Learning

Due to the complex skin conditions, noise, artifacts, and severe visual simi-

larities among different types of skin lesions, the extracted features may have

limitations in describing characteristics of the original data and have poor

discrimination power. Instead of using the original features as input, a novel

mid-level feature representation, which describes relationships among images,

is learned and used as the input of the SVM classifier. The mid-level features of

an image are obtained by learning the similarities between a given image and a

reference image set. Since the discriminative power of the original features on

the Euclidean space is poor due to the strong visual similarities among differ-

ent classes of skin lesions, metric learning is used to address this problem. The

metric learning method can learn a similarity measure to separate samples of

different classes. Here, we present a brief introduction to the metric learning

method. The squared Euclidean distance between two features xi and xj can

be calculated by:

d(xi, xj) = (xi − xj)T (xi − xj) = (xi − xj)T I(xi − xj)

where I is an identity matrix. Similar to the formulation of Euclidean distance,

instead of using an identity matrix, the Mahalanobis distance between features

is defined as:

dM(xi, xj) = (xi − xj)TM(xi − xj), s.t. M ≥ 0 (4.1)

where M is a positive semidefinite matrix to be learned during the training

procedure. Since M is a positive semidefinite matrix, it can be represented as

LTL, and the above function can be reformulated as:

dM(xi, xj) = (xi − xj)TM(xi − xj)
= (xi − xj)TLTL(xi − xj)
= ‖L(xi − xj)‖2

s.t. M ≥ 0

(4.2)

By observing Eq. 4.2, the distance metric learning method can also be treated

as a discriminative subspace learning problem that aims at learning L, and the

new discriminative feature of xi is denoted as Lxi. The metric learning method
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expects the distance between within-class samples to be small, and the distance

between inter-class samples to be large. Compared with the discriminative

feature Lxi, the learned feature in this paper is a soft discriminative feature.

Experiments in Sec. 4.4.4 have shown the advantage of the soft discriminative

features over the discriminative features.

The optimal distance metric can be learned by separating images of the

same class and different classes by a margin of µ. The objective with the

logistic loss is shown in the following:

fM(xi, xj) = log(1 + eyij(dM (xi,xj)−µ)), (4.3)

yij =

{
1 if y(xi) = y(xj)

−1 if y(xi) 6= y(xj)

where y(xi) is the label of input feature xi. The above function can drive

distances between intra-class instances to become smaller than µ, and distances

between inter-class instances to become larger than µ. In this paper, we set

µ as the average Euclidean distance between samples of the same class. The

optimal solution is learned by minimizing the following function:

P (M) =
∑

xi,xj∈V

wijfM(xi, xj), (4.4)

where wij is a weighting factor for each training pair. Instead of using a

fixed weight for each pair of inputs, we update wij according to its difficulty of

training the input pair (xi, xj). Especially, we only focus on the violating pairs

and give higher weights to those who violate the rules more. A violating pair

is defined as a pair of samples that violates the learning rule. For instance,

if the distance between two samples of the same class is larger than µ, the

two samples are regarded as a violating pair. Similarly, two samples are also

regarded as a violating pair if their distance is smaller than µ and they are

from two different classes. Examples of violating pairs are shown in Figure 4.5.

In this paper, we use V to denote the collection of violating pairs. The value

of wij is initialized as 1 and it is updated in each training iteration according

to:

wij
τ = N (|dMτ−1(xi, xj)− µ|), (xi, xj) ∈ V (4.5)
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Type equation here.
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violating
pairs

Euclidean Distance Mahalanobis Distance

distance metric learning
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(a) Schematic plot of the distance metric learning algorithm
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(b) Schematic plot for the skin lesion classification method

Figure 4.5: Schematic plot of the proposed method.
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in which τ is the number of iterations. N (.) is the normalization process,

which is min-max normalization in this paper.

The learned distance values among different samples vary dramatically,

some violating pairs’ distance values are an order of magnitude different com-

pared with the others. These violating input pairs are known as the hard

samples (difficult cases), which are mainly caused by the appearance variation

within the same class. Directly normalizing the distance values using standard

min-max normalization will make the majority of weights wij be closer to 0,

which indicates that the algorithm will only use these hard samples. Therefore,

min-max normalization at a cutoff distance value is performed to normalize

the distance difference values |dMτ−1(xi, xj)−µ| to a fixed range [0, 1]. In this

paper, the cutoff value is decided automatically by calculating the cumulative

histogram of the distance differences. For the cumulative histogram, the y-

axis of a bin represents the percentage of observations that are smaller than a

specific value (x-axis of the bin). We use the bin value that accounts for 97%

as the cut-off value, and distance values that are larger than the cutoff value is

set to be 1. In this case, the weights are updated dynamically in each iteration

and hard violating samples are given more importance during training.

The objective function in Eq. 4.4 can be solved using APG (Accelerated

Proximal Gradient) algorithm [39], [42] by using Taylor series and approxi-

mating it quadratically with Lipschitz coefficient α at M = Mτ :

P̃ (M,Mτ ) = P (Mτ ) + 〈∇P (Mτ ),M −Mτ 〉 +
α

2
‖M −Mτ‖2F , (4.6)

in which P̃ (M,Mτ ) is the quadratic approximation of P (M) at M = Mτ .

Expression of Eq. (4.6) can be rewritten as follows:

P̃ (M,Mτ ) =
α

2
‖M −Qτ‖2F + P (Mτ )−

1

2α
‖∇P (Mτ )‖2F , (4.7)

where ∇P (Mτ ) is the gradient of P (M), and Qτ = Mτ−α−1∇P (Mτ ). Assume

Mτ is the value of M at iteration step τ , then the optimization problem is

seeking the answer to the following problem at each iteration τ :

min P̃τ (M,Mτ ), s.t.M ≥ 0 (4.8)
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Steps for solving the problem using APG algorithm are provided in Algorithm

1.

Algorithm 1 APG Algorithm for Eq. 4.4

Require: X: original data;
Ensure: M

1: initial Mτ = I, τ = 0, α = α0 and t0 = t−1 = 1;
2: repeat
3: Yτ = Mτ + tτ−1−1

tτ
(Mτ −Mτ−1)

4: repeat
5: set Qτ=Yτ−α−1∇P(Mτ ); Mτ = (Mτ +Mτ

T )/2;
6: updata Mτ+1 ← Udiag(σ − 1

α
)+U

T ; where
7: Udiag(σ) is the EVD of Qτ ;
8: set α = ηα;
9: until P(Mτ+1)+ ≤ P̃(Mτ+1,Mτ );

10: τ = τ + 1; tτ+1 =
1+
√

1+4tτ 2

2
;

11: until Maximum iteration number or convergence achieves.

After learning the metric M , a new feature representation is obtained by

using the similarity information among a reference set. In this paper, the

validation set is used as the reference set. Let Xr ∈ Rp×Nr denote feature

representations of the reference set. Nr is the number of images in the reference

set, and Xr
j is the jth column of Xr, which represents the feature vector of

jth image in the reference set. For a feature vector xi coming from training

or testing set, its corresponding new feature representation vi is obtained by

calculating its distance with all samples in the reference set.

vi =
{
dM(xi, Xr

1), dM(xi, Xr
2), ..., dM(xi, Xr

Nr),
}

(4.9)

After vi is calculated, ”L2” normalization is performed. The dimension of

the new feature space equals to the number of samples in the referent set Nr,

which is 150 in this paper.

4.1.4 Classification Using SVM

In this work, SVM with the Radial Basis Function (RBF) kernel is used for

classification, which is a common choice due to its good generalization ability

and competing performance [59]. There are two parameters that need to be
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tuned for the RBF kernel SVM, the parameter C, which is known as the

capacity constant, the parameter g for the RBF kernel, which is a multiplier

for the squared Euclidean distance between the two feature vectors. Details

about the parameter selection can be found in Sec. 4.3.3.

4.2 Dataset

For performance evaluation, we have used the dataset from ISIC 2017 for skin

lesion detection [16], which is a very challenging dataset for skin lesion classi-

fication. There are 2000 images in the training set, including 374 melanoma,

254 seborrheic keratosis, and 1372 benign nevi. The validation dataset con-

tains 150 images and the final testing dataset contains 600 images. All the

images are of various resolutions, ranging from 767×1022 to 4499×6748 pixels.

Severe illumination variation, noise and various artifacts are also witnessed in

this dataset.

4.3 Experimental Results

4.3.1 Platform Information

The skin lesion segmentation method is implemented using Keras while the

classification method is implemented using Matlab. All the experiments were

conducted on a desktop with Intel(R) i7-7700 4.2 GHz CPU and a GPU of

Nvidia GeForce GTX 1080Ti with 11 GB memory.

4.3.2 Parameter Selection

There are two parameters of SVM that need to be tuned for the proposed

skin lesion classification method. The best parameters C and g of the pro-

posed method are selected by conducting 5-fold cross-validation on the training

dataset using the deep features extracted by ResNet. Note that 2 binary clas-

sifiers for the classification Seborrheic Keratosis (SK) and Melanoma (MEL),

are trained in the skin lesion classification task, therefore, we select different

sets of parameters for different tasks. The best parameters used in this paper
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are shown in Table 4.1. In addition, the best parameters for the proposed

method without MFL are also provided.

Table 4.1: Parameters used for performance evaluation.

Proposed without MFL
C g C g

SK 1 0.001 0.5 0.0156
MEL 2 0.002 0.5 0.0313

4.3.3 Comparison with Features Extracted via Pretrained
CNN

To show the advantages of the learned mid-level feature representation, we

first compare the learned mid-level features with the raw features obtained by

the pretrained CNN models. We achieve this goal by comparing the proposed

method with and without the MFL on the same test data. The best parame-

ters of the proposed method without the MFL module have also been selected

to make a fair comparison. Test data augmentation is used to increase perfor-

mance as in previous work [24], [50]. In addition, to show the influence of the

input features, we provide experimental results with input features extracted

via the pretrained ResNet and DenseNet, respectively. Dimensions of the ex-

tracted features for ResNet and DenseNet are 2048 and 1920, respectively.

After applying PCA (with 99% energy preserved), the reduced dimensions are

700 and 532 correspondingly. The results are shown in Table. 4.2 and Table

4.3.

Table 4.2: Comparison of the proposed method with and without MFL mod-
ule.

Networks ResNet
Metric AUC (in %) ACC (in %)

Task
Method without

MFL
with
MFL

without
MFL

with
MFL

Mel 77.67 84.29 81.17 84.33
SK 91.00 93.71 87.00 90.17

Average 84.34 89.00 84.09 87.25
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Table 4.3: Comparison of the proposed method with and without MFL mod-
ule.

Networks DenseNet
Metric AUC (in %) ACC (in %)

Task
Method without

MFL
with
MFL

without
MFL

with
MFL

Mel 76.34 84.29 81.17 84.33
SK 93.32 93.42 87.83 89.67

Average 84.83 88.85 84.50 87.00

As observed in Table 4.2 and Table 4.3 , the learned mid-level features

consistently outperform the raw features extracted by pretrained CNN. Fea-

tures extracted via ResNet achieve comparable performance with the features

extracted via DenseNet. Especially, for the ResNet features, the proposed

method with MFL module achieves 4.7% higher for the average AUC score and

3.2% higher for the average ACC score compared with the proposed method

without MFL module. For the features extracted by DenseNet, the proposed

method with mid-level features as input outperforms the one with original

features as input by 4.0% and 2.5% for the average AUC and ACC scores. Ex-

perimental results show that the mid-level features can significantly improve

the performance, this is because additional discriminative power is gained us-

ing mid-level feature learning.

To visualize the distribution of raw features obtained using pretrained

ResNet and corresponding mid-level feature representation, t-SNE is used to

visualize the high-dimensional data following [50]. The t-SNE first reduces

the dimension of original features to 50 by PCA (for speed up), and then to

2 by using the t-SNE Barnes-Hut algorithm [49]. It allows us to visualize the

cluster of high-dimensional data to some degree. The Visualization plot is

shown in Figure 4.6. From Figure 4.6, we can see that the raw features are

more likely to mix together (for both the training and testing data), especially

for the samples of melanoma and nevus. This means the raw features have

limitations in dealing with those hard samples. The mid-level features learned

from pretrained ResNet show obvious grouping behavior for the training data.

Samples are more likely to cluster together if they are of the same class, and
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hence the three-class skin lesions become more discriminative after using MFL.

For the mid-level features of testing data, the melanoma and nevus become

more distinguishable, although not completely separable. Some hard samples

are identified during the learning phase.

Figure 4.6: t-SNE visualization of the raw features extracted via pretrained
ResNet and the learned mid-level features given raw features obtained from
pretrained ResNet. The first and second row show scatter plots of the training
data and testing data, respectively.

4.3.4 Comparison with Features Extracted via Finetuned
CNN

In this section, we first finetune the pretrained ResNet and DenseNet for the

classification tasks by changing the output dimensions of the last fully con-

nected layers to be 2 (i.e., the number of classes). For each neural network,

we set the batch size to be 24 and train it for 100 epochs. Adam optimization
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Table 4.4: Comparison of the proposed method with the finetuned CNN and
finetuned features using AUC scores (in %).

Method MEL SK Avg
ResNet 77.30 94.19 85.75

ResNet + SVM 80.92 93.94 87.43
Proposed (ResNet) 84.29 93.71 89.00

DenseNet 84.52 92.51 88.52
DenseNet + SVM 84.66 90.62 87.64

Proposed (DenseNet) 84.29 93.42 88.85

algorithm with a learning rate of 0.0001 is used. The best models are selected

by the validation performance. Data augmentation techniques including ran-

dom resize cropping (70% to 100% of the original size), random horizontal and

vertical flipping, random rotation (−20◦ to 20◦) and normalization are used.

Afterward, finetuned features are extracted and SVM classifiers are trained in

order to compare the mid-level features with the finetuned CNN features. The

same steps described in Sec. 4.3.3 are used but with finetuned CNN features

as inputs. It is worth noting that parameter selection and test augmentation

are also performed to make a fair comparison.

Experimental results are shown in Table 4.4. Method ” ResNet” is the

finetuned ResNet for classification. ”ResNet + SVM” method uses the SVM

to classify the features extracted via finetuned ResNet. ”Proposed (ResNet)”

is the proposed method, which uses features extracted via pretrained ResNet.

The same definition is used for DenseNet. As shown in Table 4.4, the proposed

method achieves the best average performance for both features extracted by

pretrained ResNet and DenseNet. The proposed method (ResNet) outper-

forms the finetuned ResNet by 3.25%, and ResNet + SVM by 1.57%. The

three methods obtain similar performance when using the DenseNet models.

The proposed method outperforms the finetuned DenseNet by 0.33%, and

DenseNet + SVM by 1.21%. The best performance for seborrheic keratosis

classification is obtained when using the finetuned ResNet (94.19%). For the

melanoma classification, the best performance is obtained by using SVM over

finetuned DenseNet (84.66%).
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4.3.5 Comparison with State-of-the-art Methods

In this section, the proposed approach is compared with the state-of-the-art

methods. Due to the fact that ISIC 2017 dataset is a challenge dataset, tricks

such as ensemble are widely used among the existing methods. Prevalent

methods get the final performance by fusing outputs from different trained

neural networks. Here we give a brief introduction about the compared meth-

ods in Table 4.7: [53] trained ResNet-50 with different optimization methods,

and selected the best combination of fine-tuned CNN through cross validation.

Besides, a manual decision rule with metadata (age, sex information) is also

adopted. [54] used ResNet-101 and Inception-v4 models. The final results

were obtained by ensembling 7 trained neural networks with a meta learning

model to assemble these models. [10] fused outputs of the binary ResNet and

3-class ResNet to get the final results. [50] used AlexNet, VGG16, ResNet-18

and ResNet-101 models. Extensive models are used to boost performance.

The final results of a single architecture (e.g., ResNet-18) were acquired from

18 different models (obtained by different training settings). [91] used multi-

task framework (GoogleNet and U-net) for learning skin lesion segmentation

and classification jointly. [24] trained a FCN for detecting ROI. In addition,

[24] also incorporates the meta-data information and attribute information to

improve performance.

In the proposed method, ensemble method is used during the testing time

to improve the performance. Our final model is obtained by fusing outputs

given input images from multiple scales (based on performance on the vali-

dation set), which does not require extra training process. Performances of

inputs with different scales are shown in Table 4.5. As shown in Table 4.5, for

input images with different scales, the best performance is obtained at scale

224. Scale 672 comes the second best, and scale 448 gives the least satisfactory

performance.
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Table 4.5: Average AUC of the proposed method with different input sizes.

Scale ResNet DenseNet Fusion
I[224,224] 89.00 88.85 90.67
I[448,448] 88.22 88.13 89.35
I[672,672] 89.04 88.28 89.40

Experimental results regarding the ensemble of scales on the validation set

are shown in Table 4.6. From Table 4.6, we can see that, in general, adding

more scale information can improve the performance, but the best performance

(AUC of 95.2%) is obtained by fusing results with input scale 224, 224 entire

(i.e., the whole image without ROI segmentation), and 672. The fusion with

scale 448 gives less satisfactory performance compared with the other scales.

This is consistent with the results reported in Table 4.5 that scale 448 performs

the least satisfactory and fusing a less satisfactory output (obtained with input

scale 224) would not increase the performance. This may be due to the fact

that the parameters of SVM are not selected for these inputs with different

scales. When the input size is larger than [224×224], the output of pretrained

neural networks will be multi-channel features instead of one feature vector.

We reshape the multi-channel features into one feature vector, and PCA is then

used to reduce the feature dimension, which is described in Sec. 4.1.2. This

will result in raw features with different input dimensions, given the inputs

of different scales. The finetuned parameters of scale 224 are used for the

proposed method for simplicity. The use of entire images is to get information

about the lesion size and skin regions, which can benefit the proposed model

[12]. Therefore, our final performance is obtained by fusing the outputs with

input scale [224×224], [672×672] and the entire image with scale [224×224].

It is worth noting that a consistent ensemble trend regarding the fusing of

different input scales has also been found on the testing set.

57



Table 4.6: Ensemble performance with input of different scales on the valida-
tion set.

224 224 entire 448 672 AUC
X X 94.0
X X 93.6
X X 94.1
X X X 94.5
X X X 95.2
X X X 94.3
X X X X 94.9

Final results compared with state-of-the-art methods are shown in Table

4.7. The column ”ensemble” indicates whether the compared methods use

ensemble technique or not, and the column ”external data” shows the number

of external data used for training neural networks. The external data plays a

vital role in the training of CNN models for the skin lesion classification task.

For instance, [24] got the best performance of 90.8% (vs. 91.7%) for the models

with fewer external training sets, even when it incorporated the meta-data and

attribute data. From Table 4.7, we can see that the proposed method provides

superior performance compared with state-of-the-art methods without using

external data. The proposed method achieves the best AUC of 97.1% for

seborrheic keratosis, which verifies the effectiveness of the proposed method.

Table 4.7: Performance comparison with state-of-the-art methods on ISIC
2017 dataset (AUC score).

Method ensemble external data MEL SK Avg
[53] Y 1444 86.8 95.3 91.1
[54] Y 7544 87.4 94.3 90.8
[10] Y 1600 87.0 92.1 89.6
[91] N 0 83.0 94.2 88.6
[24] N 2828 87.3 96.2 91.7
[50] Y 187 87.3 95.5 91.4

Proposed Y 0 87.0 97.1 92.1

We also display some challenging images that have been correctly classi-

fied by the proposed method in Figure 4.7. The left images are skin lesions

of melanoma, while the right images are skin lesions of seborrheic keratosis.
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Figure 4.7: Examples of correctly classified images: left: melanoma; right:
seborrheic keratosis.

Strong visual similarities and artifacts are observed in these two types of im-

ages, yet the proposed method successfully classifies these hard samples, which

implies that the proposed method can tackle difficult samples.

4.4 Discussions

4.4.1 Segmentation Performance

In this section, we compare the proposed segmentation model with the U-net

[67] and SegNet [7]. In order to make a fair comparison, the inputs of these

neural networks are the same. Experimental results can be found in Table

4.8. Proposed 1 and Proposed 2 represent the proposed method without a test

ensemble and with a test ensemble technique, respectively. As we can see from

Table 4.8, the proposed method obtains the best performance, which implies

that the adoption of dilated convolution layers can significantly improve the

performance. Meanwhile, Proposed 2 outperforms Proposed 1, which shows

the importance of test data ensemble.
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Table 4.8: Comparison of different methods on ISIC 2017 skin lesion segmen-
tation dataset.

Method JA DC ACC SEN SPE
SegNet [7] 0.700 0.797 0.917 0.815 0.974
U-net [67] 0.686 0.788 0.915 0.755 0.969
Proposed 1 0.740 0.830 0.926 0.828 0.965
Proposed 2 0.752 0.840 0.930 0.829 0.988

4.4.2 Effect of Lesion Segmentation

To determine the influence of the skin lesion segmentation, we conduct ex-

periments with and without skin lesion segmentation as a primary step, and

experiment results are shown in Table 4.9.

Iwhole means using the whole images as inputs, and IROI means using the

ROI images obtained with skin lesion segmentation method as inputs. As

shown in Table 4.9, the proposed method obtains significant improvement if

we use the ROI images as input. This is mainly because the interest regions

of skin lesions are of various scales, and some targets are very small and only

occupy a small region of the entire skin lesion. Directly down-sampling all

images to the same size ([224, 224]) will lose detail information about skin

lesions, and make it even difficult to observe patterns of skin lesions. Some

examples of the predicted binary masks are shown in Figure 4.8.

Table 4.9: Average AUC of the proposed method with and without skin lesion
segmentation.

Input ResNet DenseNet Fusion
Iwhole 84.11 84.62 86.10
IROI 89.00 88.85 90.67
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Figure 4.8: Segmentation results of the proposed method. The red contours
are the ground truths, and the blue contours are the segmentation results.

4.4.3 Effect of Weighting Factor for APG Algorithm

In this section, experiments with different weighting schemes are conducted to

show the benefits of the proposed approach. Specifically, we compare the pro-

posed method with uniform weights, and the experimental results are shown in

Table 4.10. The weighting scheme used in this paper can get an improvement

of 1.12% and 0.15% with features extracted via ResNet and DenseNet, respec-

tively. Though minor improvement is observed for the features extracted via

DenseNet with online weighting, it can still be regarded as useful overall. One

possible reason is that focusing more on hard violating pairs can benefit the

training phase of metric learning.

Table 4.10: Effect of weighting factor for APG algorithm.

Weighting ResNet DenseNet
Uniform 87.88 88.60
Proposed 89.00 88.85
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4.4.4 Advantage of Soft Discriminative Feature

As shown in Eq. 4.2, the metric learning problem can also be regarded as

a discriminative subspace learning problem. The new feature representation

can be represented as Lxi given the input feature xi, which is a discriminative

feature representation. Compared with the discriminative feature Lxi learned

based on metric learning, the proposed mid-level feature representation vi in

Eq. 4.9 is a soft descriptor, which uses affinity information as the new feature

representation. In this section, we also implement experiments to compare the

proposed mid-level features vi with the discriminative feature Lxi. To make

a fair comparison, the best parameters of the discriminative features based

on metric learning are also selected as described in Sec. 4.3.3. Experimental

results are shown in Table 4.11.

Table 4.11: Comparison of AUC scores of the proposed method using discrim-
inative features and mid-level features.

Input ResNet DenseNet Fusion
Discrim Fea 86.53 87.68 88.71

Mid-level Fea 89.00 88.85 90.67

From Table 4.11 we can see that the mid-level features outperform the dis-

criminative features for both the features extracted via ResNet and DenseNet.

This is because learning an optimal feature representation that can well sepa-

rate all the samples (especially the hard samples) is very difficult. In contrast,

the proposed mid-level feature representation is a soft discriminative descrip-

tor, where the relationships of visual similarities and distinctions can be kept

for some difficult cases (hard samples) as long as the remaining relationships

are captured correctly. Also note that, compare with Table 4.2 and Table 4.3,

the discriminative features obtain better performance than the original fea-

tures, which demonstrates that the original features have poor discriminative

power, and using the discriminative features can promote the classification

task.
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Figure 4.9: Performance of the proposed method (with and without the MFL
module) on the parameter space. The learned mid-level features are more
robust and discriminative compared with the original features.

4.4.5 Robustness of the Proposed Mid-level Features
Against Parameters

In this section, to show the robustness of the proposed mid-level feature rep-

resentation against parameters, performance (5-fold cross-validation on the

training set) of the proposed method on the parameter space is given in Fig-

ure 4.9. As shown in Figure 4.9, the mid-level features outperform the original

features by a large margin for both binary classifiers. Especially, the AUC

of proposed method for the SK classifier ranges from 90% to 95% across the

parameter space, while the AUC of proposed method without MFL ranges

from 86% to 90%. The best performance of the proposed method is about

5% higher than the proposed method without MFL, which proved that the

mid-level features contain more discriminative power. A similar trend is also

observed for the MEL classification. Also note that the ranges of color bars are

similar for the method with and without MFL, and as the score increases, the

color of the parameter space changes from blue to yellow. A large area of the
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proposed method’s parameter space is yellow while only a minor part is yellow

for the proposed method without MFL, which demonstrates the robustness of

the proposed mid-level features.

4.4.6 Time Complexity

There are two binary classification tasks in this study. For simplicity, the fol-

lowing time complexity is calculated on the classification task of seborrheic

keratosis using features extracted via ResNet. The platform information has

been described in Sec. 4.3.1. The training time of the proposed method is a

total of 96 minutes. Out of 96 minutes, 92.4 minutes are spent to train the

segmentation network, and about 3.6 minutes are used to train the classifica-

tion model. The testing time is 0.39 seconds on average for one given image.

Typically, the extra time induced by the proposed method (mid-level feature

processing) is 0.13 seconds, which is relatively fast. The fast inference time of

the proposed method indicates its potential in clinical application.

4.5 Conclusions

Automatic melanoma detection is a challenging task due to the large inter-

class similarity and intra-class variation, and complex skin conditions among

different skin lesions. In this paper, a novel framework for skin lesion classifi-

cation is proposed. Skin lesion segmentation is first performed to get the ROI

images for the later classification task. A novel mid-level feature represen-

tation is obtained by using metric learning and a reference set. The learned

mid-level feature representation contains affinity information among image

samples, which is a soft discriminative feature, having more tolerance to the

hard samples and thus being more robust. Experimental results show that skin

lesion segmentation can benefit the subsequent classification task. Meanwhile,

the learned mid-level features obtain much better performance compared with

the original features. Experimental results have verified that the proposed

approach outperforms state-of-the-art CNN based methods, which verify the

effectiveness of the proposed method.
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Chapter 5

Integration of Light Scattering
with Machine Learning for
Label Free Cell Classification

In the previous chapters, high-resolution RGB images (dermoscopic images)

have been used to detect skin cancer. In this chapter, a different type of medi-

cal modality (single-cell angular light scattering patterns) is used to provide a

way for cell identification and analysis. Typically, it can be used for the iden-

tification of any type of cell once useful signatures have been obtained based

on the scattering patterns. Previous studies have shown that machine learning

techniques based on scattering patterns can successfully detect the malignant

cells from healthy cells [41], [78], [81]. In this chapter, a more challenging task,

the identification of cells of different states, is introduced.

Conventional bench-top flow cytometer, also known as the FACS, is a valu-

able tool for cell identification in many biological and health-related applica-

tions [62]. It is based on the measurement of fluorescence of molecules that

are attached to the illuminated target cells [62]. However, these fluorescent

biomarkers can interfere with the function of the cells they bind to, hindering

further potential analyses and complicating interpretation [30]. Additionally,

adequate biomarkers are not available for many cell types, and they can be

An extended verison of this chapter has been published as W. Yu*, L. Liu*, X. Liu, W.
Wang, M. Z. Islam, C. Dong, C. R. Garen, C. R. Woodside, M. T. Gupta, M. Mandal, W.
Rozmus, Y. Y. Tsui, ”Integration of light scattering with machine learning for label free
cell detection,” Biomedical Optics Express, vol. 12, no. 6, pp. 3512-3529, 2021. (* co-first
author)
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difficult or expensive to develop for organisms such as microbes and viruses

[30]. The development of label-free techniques for cell identification is thus of

high interest to scientists to avoid such complications.

The cell light scattering patterns are dominated by the small-scale 2D

speckle patterns originating from light scattering from the mitochondria as

they have a higher refractive index than other organelles [71], [76], [78], [79].

These patterns are different due to the variation in the shape, number and

distribution of the mitochondria. Light scattering has been studied as a label-

free technique for single-cell analysis by several research groups [60], [68], [87],

[95]. In earlier studies in our group, we have used angular light scattering

patterns as signatures for label-free cell identification [40], [71], [76], [77], [79].

This technique was applied to study yeast, human Raji [76] and hematopoietic

stem cells [71]. Single cells were identified by comparing the experimental

2D scattered light patterns measured using a Charged-coupled Device (CCD)

camera with the numerical simulation results. In these studies, two statistical

features, including the number and average area of speckles, were used to

distinguish the cells. The simulations were carried out by solving the Finite-

Difference Time-Domain (FDTD) technique with simplified models for optical

properties of the cells [40]. The cells have been defined in simulations as

three-dimensional dielectrics of spherical or oval shapes, containing different

cell organelles of varying indices of refraction [71], [78]. Numerical simulations

identify the main scattering centers in cells such as nuclei, small organelles,

e.g., mitochondria or lysosomes, and reproduce the characteristic features of

the experimental angular scattering spectra.

Statistical study of the speckles’ spatial distribution in the scattered light

patterns allows us to effectively distinguish one cell type from the other. In this

chapter, laser scatter patterns of two groups of SH-SY5Y neuroblastoma cells,

including the ST and NT cells, are collected. The SEM images for the ST and

NT SH-SY5Y cells were taken to better understand their morphology, which

are shown in Fig. 5.1. As shown in Fig. 5.1, there is an obvious difference

between SEM images of the ST and NT SH-SY5Y cells. The NT cells in Fig.

5.1 are characterized by a relatively smooth surface and quasi-spherical shapes,
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while the ST cells have rough and almost sponge-like surfaces with various

shapes. Despite such different physical features that are displayed in Fig. 5.1,

the apparent similarities between the scattering patterns of these two kinds of

cells add difficulties in identifying the main components contributing to the

scattered light spectra. The simple analysis for cell identification proposed in

the previous work [71], [78] is proved insufficient in discriminating these two

groups of cells, and more sophisticated techniques are needed. In this study,

DL methods have been developed for the evaluation of 2D scattered laser light

patterns for cell identification. More details about the proposed method are

introduced in the following sections. The objective is to classify the patterns

into two classes: ST and NT cells.

(a) (b)

Figure 5.1: SEM images of non-treated (left) and staurosporine-treated (right)
SH-SY5Y cells. The two images correspond to cells of the similar size approx-
imately 8 µm in diameter.

5.1 Experiment Setup

Because it is relatively straightforward to obtain side scattering patterns ex-

perimentally, most of the previous experimental studies [41], [45], [76], [77],

[80] collected scattered light from single cells in the side direction with a sin-

gle probing wavelength. A label-free cell identification technique pioneered by

University of Alberta researchers has been developed for the identification and

analysis of any cells, which can collect scattering patterns in three directions

(forward, side, and backward) simultaneously. Both red laser and green laser

have been used to analyze the effect of wavelength. It is compatible with au-
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Figure 5.2: A schematic diagram of the experimental setup used to obtain
two-dimensional light scattered patterns of cells in three directions.

tomation technology, and if it is successfully developed, it will overcome many

of the drawbacks of the conventional FACS flow cytometry technology. The

technique identifies single cells by identifying their 2D scattered laser light

patterns measured using CCD cameras. A schematic diagram of a typical

experimental setup for collecting 2D scattered laser light patterns from cells

is shown in Fig. 5.2 [71]. Key components of the system include a probing

laser, a sample holder, and CCD cameras with microscope objectives. Each

microscope objective and CCD camera were connected by a tube, and the

system was placed on three-directional translation stages. The central lines

of the forward, side, and backward microscope objectives were 30°, 90°, and

150° away from the laser beam direction, respectively. The ranges of light

collection angles were between 18° and 42° in the forward direction, between

79° and 101° in the side direction, and between 141° and 159° in the backward

direction, with respect to the laser beam direction (z-direction). The overlap

of the laser beam and the observation region of each CCD camera with micro-
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scope objectives defines a small measurement volume of approximately 0.002

mm3. Normally a cuvette that contains a dilute cell solution is used as the

sample. The cell solution is diluted to a concentration typically around 2000

cells per ml to ensure single-cell measurement. The laser scattered light from

a single cell is captured by the microscope objectives and CCD cameras for

further analysis.

Scattering patterns from the red laser illumination are shown in Fig. 5.3

and Fig. 5.4, while those from green laser illumination are shown in 5.5 and

Fig, 5.6. The top, middle, and bottom rows show scattering patterns measured

in forward, side, and backward directions, respectively. As we can see from

these scattering patterns, it is very difficult to discriminate between the ST

and NT cells by human eyes.

Figure 5.3: Scattered light patterns from treated SH-SY5Y with red laser.
The angular ranges corresponding to the three directions of measurements:
18°- 42° (forward), 79°-101° (side), and 141°-159° (backward).

Figure 5.4: Scattered light patterns from non-treated SH-SY5Y with red laser.
The angular ranges corresponding to the three directions of measurements:
18°- 42° (forward), 79°-101° (side), and 141°-159° (backward).
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Figure 5.5: Scattered light patterns from treated SH-SY5Y with green laser.
The angular ranges corresponding to the three directions of measurements:
18°- 42° (forward), 79°-101° (side), and 141°-159° (backward).

Figure 5.6: Scattered light patterns from non-treated SH-SY5Y with green
laser. The angular ranges corresponding to the three directions of measure-
ments: 18°- 42° (forward), 79°-101° (side), and 141°-159° (backward).

5.2 Proposed Method

In this section, we present the machine learning technique used in this chapter

for the classification of scattered light patterns. Since the dataset is small,

transfer learning based on CNN is used. In transfer learning, a model trained

on a large dataset is used, and its knowledge is transferred to a smaller dataset.

It has been widely used as a feature extraction method. The early convolu-

tional layers of the pretrained CNN are frozen, and the features at a certain

layer are used as the feature representation.

In the experiment, we use pretrained DenseNet as the offline feature ex-

tractor [31]. Typically, DenseNet-201 [31] is used which consists of 201 layers,

including convolutional (Conv), ReLU activation (ReLU), batch normalization

(BN), pooling layers, etc. It is named as DenseNet since dense connections

between all layers are utilized, which are achieved by merging all the previous

layers as the inputs of the later layers. The overall schematic of the ML mod-
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ule is shown in Fig. 5.7. The arcs indicate the dense connections between two

layers.

The input images are resized to 224x224 pixels and are fed to a pretrained

CNN for feature extraction. A feature vector of length 1920 is obtained at

the GAP layer of the DenseNet for each image. The feature vectors are then

fed to an RBF-kernel SVM that outputs a real value score in the range [0, 1].

The score determines the probability of the image class (i.e., the probability

of being an NT or ST). As the pretrained DenseNet is used only as a feature

extractor, there is no training required for the DenseNet, and only the SVM

needs to be trained to obtain the classification output. There are two param-

eters c and g that need to be optimized for the kernel SVM. In this study, the

best parameters are automatically selected by 5-fold cross-validation using the

training data.

Figure 5.7: Schematic of the machine learning module.

5.3 Dataset

Experimental scattered light patterns of both the ST and NT SH-SY5Y cells

in all three directions have been successfully obtained using our experimental

setup in Fig. 5.2. In this section, we did not use the scattering images from

the backward direction, as it is difficult to collect the scattering images, which
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are usually of low-intensity values. Scattering patterns obtained using the red

laser are used, as they can give us better performance.

To verify the effectiveness of the proposed technique for cell classification,

a dataset consisting of 360 images, including 180 NT and 180 ST cell images,

is used in the following experiments. All the images are resized to [224, 224]

before they are fed into the CNN model. 5-fold cross-validation is performed

to avoid the randomness of the train-test split. And the average performance

is used as the final result.

5.4 Experimental Results

5.4.1 Platform Information

The proposed method is evaluated on a Desktop with Intel(R) i7-7700 4.2 GHz

CPU with 32 GB memory and a GPU of Nvidia GeForce GTX 1080Ti with

11 GB memory. The features are extracted using pretrained DenseNet-201 in

Pytorch, and the SVM classifier is implemented using Matlab.

5.4.2 Comparison with Conventional Machine Learning
Methods

To analyze the performance of the proposed technique, we also compare the

proposed method with other scattering analysis techniques [41], [78], [80]. Two

Speckle Features (SF) including the speckle number and average area, are used

for cell classification in [78]. GLCM features are used in [41], and similarly,

HOG features are used in [80]. To extract SF, we first use a Gaussian filter to

smooth the original images, and speckle segmentation is then performed so as

to extract the number and average area of the speckles. For GLCM features,

the gray level range is set to be [0,255], the pixel pair distance is set as 1, and

four directions of 0°, 45°, 90°, and 135° are used to calculate the GLCM. 22

statistical features can be calculated from the GLCM in each direction. The

final feature representation is obtained by concatenating the features from

these 4 directions, resulting in a feature vector with a dimension equal to 88.

For HOG features, we divide the original images into non-overlapping 16x16
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pixel blocks, and 9 bins are used for calculating the histogram within each

block. The dimension of the HOG features used in this paper is 1764 for

each image. In order to make a fair comparison of these methods, all the

experiments are conducted using the same experimental setup.

Experimental results are shown in Table 6.1. The hand-crafted features

(Hand-Crafted) use the concatenation of the SF, GLCM and HOG features.

Among all the methods, the proposed method obtains the best performance

with an accuracy rate of 91.11%, sensitivity of 92.78%, specificity of 89.44%

and AUC score of 96.95%, which shows the effectiveness of the proposed

method. SF features perform the worst among all the features. This is be-

cause the SF is only a two-dimensional statistical feature representation, which

can not provide sufficient information for characterizing different classes of

cells. The GLCM and HOG features can capture the texture features of im-

ages. Over 10% of accuracy improvements are observed for the GLCM and

HOG features, compared with the SF. This indicates that the texture features

are more useful for scattering patterns discrimination compared with the two

statistical features SF. Among the hand-crafted features, the HOG features

present the best performance. The concatenation of the three features pro-

vides further improved performance since it captures more diverse and useful

information. However, it still gives poorer performance compared with the

proposed technique. This is because the hand-crafted features are low-level

features. They need careful design given different images, and hence they are

data-dependent. They perform unsatisfactorily when the task is difficult. For

instance, when the visual patterns are extremely similar for different groups

of cells in this case. However, the deep features can extract rich texture and

semantic features. They are designed for the classification task. Therefore,

they have more discriminative power. The experimental results in Table 5.2

have verified that the deep features are more powerful for scattering patterns

discrimination compared with the hand-crafted features.
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Table 5.1: Classification Performance of the proposed method.

Classification Method ACC SEN SPE AUC
SF [78] 61.67 63.33 60.00 64.86

GLCM [41] 71.11 70.56 71.67 77.19
HOG [80] 75.28 76.11 74.44 83.15

Hand-Crafted 77.78 82.78 72.78 86.62
Proposed ML 91.11 92.78 89.44 96.95

5.4.3 Percentage Prediction in A Mixed Solution

In some medical applications, one cares more about the percentage of a certain

type of cell, which can be a diagnostic factor for some diseases. In this paper,

the PTST is defined below:

PSTC =
No.ofSTcells

TotalNo.ofcells
× 100%

=
TN + FN

TP + FP + TN + FN
× 100%

(5.1)

To measure PTST, the same testing dataset is used but with different

percentages of ST cells (selected randomly). In this way, a calibrated testing

set with different percentages of ST cells is constructed. This procedure is

repeated 10 times, and the average PTST value is used as the prediction result.

Specifically, three experiments with ground truth PTST values of 50%, 33%,

and 20%, are conducted. Experimental results for the prediction of the PTST

are shown in Table 5.2. It is observed the predicted PTST value is very close

to the ground truth PTST when the dataset includes the same percentage of

NT and ST cells. However, when the number of NT cells exceeds the number

of ST cells by a large margin, the predicted PTST value deviates slightly and is

usually larger than the ground truth value. However, the predicted percentages

are still within 5% error compared with the ground truth PTST values, which

may be acceptable for some diseases in making diagnostic decisions.
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Table 5.2: Prediction of PTST.

Testing Dataset Ground Truth Percentage Predicted Percentage
36 ST, 36 NT 50.0 49.1
18 ST, 36 NT 33.3 35.2
9 ST, 36 NT 20.0 24.2

5.5 Discussions

5.5.1 Comparison of the Proposed Technique Using Scat-
tering Images From the Side Direction

The angular direction of the CCD cameras with the laser beam can affect the

scattering patterns. To analyze which direction is better for the cell discrimi-

nation, we also collected a dataset in the side direction with the red laser. The

same experimental setup is used to make a fair comparison, and the experi-

mental results are shown in Table. 5.3. As shown in Table .5.3, the proposed

technique with laser scattering images from the side direction can obtain an

accuracy of 88.89%, which is slightly worse than the scattering images collected

in the forward direction. However, it is still a satisfactory performance over-

all. Since the induce of the staurosporine treatment can result in mitochondria

change, the satisfactory experimental results also demonstrate that both the

side and forward direction carry information regarding the mitochondria infor-

mation. The forward direction laster scattering images are more beneficial for

the cell discrimination. Hence, we use the laser scattering patterns in the for-

ward direction as the input of the proposed technique. Combining scattering

patterns from different directions of the same single cell by the fusion method

can promote classification performance. However, the current experimental

setup cannot guarantee which pair of scattering images (one from the forward

direction and the other one from the side direction) corresponds to the same

cell. The standard fusion method of the machine learning technique can not be

used in this case. However, combining scatter images from different directions

can provide more information, and it will be of significant meaning to analyze

this in our future research.
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Table 5.3: Performance comparison of the proposed technique with scattering
images from the side direction and forward direction.

Direction ACC SEN SPE AUC
Side 88.89 91.67 86.11 95.98

Forward 91.11 92.7 89.44 96.95

5.5.2 Inference Time

The inference time is approximately 0.033 seconds on average for a single cell

image. Feature extraction costs most of the time, which is approximately

0.0326 seconds. However, the time for feature extraction can be sped up by

using some compression technology of deep neural networks or some more

advanced CNN methods, which can obtain similar performance but are more

lightweight and efficient. The testing time is relatively speedy, and hence the

proposed technique has the potential for real-time cell classification.

5.6 Conclusions

In this chapter, a deep learning based method has been developed for the cell

scattering image classification of the staurosporine-treated and non-treated

SH-SY5Y cells. A label-free cytometry setup is used to obtain the scattering

patterns of cells. The scattered lights are observed with CCD in the forward

direction with a red laser as the incidence beam. The proposed method obtains

the best performance with an accuracy rate of 91.11%, sensitivity of 92.78%,

specificity of 89.44% and AUC score of 96.95%. The classification technique is

then applied to predict the fraction of treated cells in a mixed solution. Exper-

imental results show that good predict accuracy, less than 5% error compared

with the ground truth, has been achieved. The inference time is very fast,

about 0.033 seconds on average for a single cell image. Experimental results

show that our label-free cytometry has the potential for real-time detection of

different cells and may assist the fundamental apoptosis study in neuroscience

research.
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Chapter 6

Multi-wavelength
Multi-direction Laser Light
Scattering for Cell
Characterization Using Machine
Learning

Scales and distributions of the inner cell organelles are complex. Because of the

sub-micron sizes of these inner organelles, their images cannot be well-resolved

by using optical microscopy. However, information about cells, including their

inner organelles, can be obtained from the light scattering patterns using the

label-free cell analysis technique as described in section 1.2. In our previous

study, the light scattering cell identification technique was used to distinguish

blood cells based on their distinct 2D scattered light patterns in the side di-

rection originating from their different mitochondria distributions [79]. In our

recent study, as described in Chapter 5 [85], 2D scattered light patterns in the

side and near forward directions probed by a red or a green laser were used

to study the non-treated and staurosporine-treated SH-SY5Y neuroblastoma

cells. We found that the 2D angular light scattering patterns from the near

direction probing by a red laser provided the best results in distinguishing be-

tween the non-treated and staurosporine-treated cells. We speculated that the

An extended version of this chapter has be submitted to a journal as L. Liu*, M. Z. Islam*,
X. Liu, M. T. Gupta, W. Rozmus, M. Mandal and Y. Y. Tsui, “Multi-wavelength multi-
direction laser light Scattering for cell characterization using machine learning,” 2022. (*
co-first author).
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main contributions of the angular light scatterings originated from their mito-

chondria content and cell membrane roughness. In this chapter, the machining

technique is used to better understand the contributions of two factors (cell

surface roughness and the number of mitochondria) to single-cell scattering

patterns.

In addition to the cell properties, scattered patterns are also influenced by

the observation angles of the light. Especially, scattered patterns collected in

different directions reflect different cell properties. The forward scattered light

that is collected in a small angular range ( θ < 2◦) is related to the refrac-

tive index and cell’s size [56]. Forward light collected at larger angular range

5◦ < θ < 30◦ contains more information regarding the cell size [86], cell nu-

cleus and the nucleus/cell volume ratio [87]. Small internal organelles such as

mitochondria contribute to the light scattering patterns at larger angles, e.g.,

side direction [86], [87]. The backward scattered patterns (160◦ < θ < 180◦)

are mainly related with the cell membrane [55]. Moreover, scatter patterns

collected using different wavelengths of light also carry different information

about cells, which may provide complementary information and are beneficial

for cell classification [81]. A systematic study about the effects of observation

angles and probing wavelengths is also conducted in addition to the two cell

properties. The results can also help us to better characterize and understand

the morphology and mitochondria content change that may occur during cell

treatment, aging, or disease development. The results can also be used to

optimize our label-free cell analysis technique.

6.1 Proposed Method

Simulated data is used in this work. Lumerical FDTD software [47] was used

to obtain the multi-wavelength multi-direction scattering images of the same

single cell. To analyze the surface roughness and the number of mitochondria’s

contributions to specific scattering patterns, we have set up two sets of exper-

iments (the simple cases and the complex cases) with parameter control. We

achieve this goal by using data with one fixed parameter and one varying pa-
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rameter and observing their scattering patterns and classification performance

with machine learning analysis techniques. We name this experiment a simple

case study. In real cases, the internal structures of cells present a small range

of variations; therefore, there is certain randomness regarding the cell prop-

erty. To simulate these cases, we conduct experiments by mixing scattering

patterns with different parameters and observe their classification performance

when the other parameter changes. For instance, we tried to classify scattering

patterns into two groups with different numbers of mitochondria (75 and 100

in this study), while there are an equal number of scattering images with dif-

ferent roughness levels within each group. We call this a complex case. Details

about the experiment implementation are introduced in the following sections.

The same machine learning technique, which has been introduced in Sec. 5.2,

is used in this method.

6.2 Data Generation

In the simulations, the cell models are constructed by considering different

cell organelles as optical materials with scale values obtained from the pre-

viously published article [85]. The spherical shape is used for the dielectric

model of the cell cytoplasm and nucleus. An elliptic shape (with minor and

major axes diameters of 0.75 micron and 1 micron, respectively) is used for

the mitochondria. The simulated datasets are generated with two different cell

properties, surface roughness and the number of mitochondria. Since it is easy

to set different numbers of mitochondria in a cell model, we only introduce the

simulation of different cell surface roughnesses.

6.2.1 Numerical Simulation of Cell Surface Roughness

To introduce roughness to the cell membrane model, a computer model using

a spherical dielectric with pseudo-random Gaussian fluctuations in its radius is

developed. There are two parameters that control the cell surface roughness:

amplitude of modulation σ and correlation length of the modulation Λ. They

can control the fluctuations of the radius of a circle in a two-dimensional space.
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A rough sphere is generated by first slicing the spherical cytoplasm into many

circular discs in one dimension. Afterward, the roughness model is applied

to each disc, and the final model is obtained by fusing these discs together.

More specifically, we use h to indicate the small variation of the radius of each

circular disc, such that:

〈h〉 = 0 (6.1)〈
h2
〉

= σ2. (6.2)

Variation (modulation) of along the periphery of a disc, h, satisfies the Gaus-

sian distribution:

p(h) =
1

σ
√

2π
exp(
−h2

2σ2
) (6.3)

Hence, correlation function can be used to represent the occurrence of the

radius modulation:

C(R) =
h(ρ)h(ρ+R)

σ2
= exp(

−R2

Λ2
) (6.4)

where R is the length of an arc along the periphery of a disc. Fig. 6.1 shows a

resulting model of a cell cytoplasm with σ = 0.9 ∗ 520 nm and Λ = 2πr
20

, where

r is the radius of the cell cytoplasm and we set r = 5nm in this figure.

Figure 6.1: A cell cytoplasm model with the roughness model implemented.
The following parameters are used: σ = 0.9 ∗ 520 nm, Λ = 2πr

20
and r = 5nm,

where r is the radius of the cell cytoplasm.

Cell models with two different (75 and 100) numbers of mitochondria hav-

ing four different cell surface roughness amplitudes (1%, 3%, 5% and 7% of

the cell diameter with a suitable correlation length of 2π ∗ cell dia/100) were

used for numerical simulation in this study.
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6.2.2 Numerical Simulation Models and the Angular
Scattering Patterns

Lumerical FDTD [47], a popular commercial finite-difference time-domain

(FDTD) solver, was utilized for solve the 3D full-vector Maxwell’s equations.

A plane-wave excitation source was used to interrogate the cell. Perfectly

Matched Layer (PML) boundary conditions were employed along all the plane

boundary walls of a cubic computational domain. A non-uniform custom

meshing scheme with finer meshes in the vicinity of smaller length features

(e.g., cell surface roughness) was used to maintain the accuracy of computa-

tion throughout the domain. The simulation was performed using three wave-

lengths (432 nm, 532 nm, and 632 nm). After solving the full-vectorial electric

and magnetic fields computation, near-to-far field transformations were used

to obtain the scattering patterns placed at different angular positions, resem-

bling the placement of digital cameras that are expected to be used during

the experiment process. In our study, scattering patterns were collected in the

perfect-forward, perfect-backward, and side directions, where the center of the

observation windows is placed at the 0, 180, and 90-degree angles with respect

to the laser light, respectively. All the observation windows have an angular

cone of 30 degrees. The light scattering from the whole cell or the large nu-

clei produces angular distribution corresponding to rings in the forward and

backward directions and fringes in the side direction, which is similar to the

Mie scattering patterns. Scattering on the small-scale structures, such as mi-

tochondria, leads to the interference patterns displaying speckle distributions

that dominate the far-field images in the side direction (row 4 in Fig. 2). We

have also found that such small-scale variations in the cell surface roughness

can also have a similar effect on the angular distribution of the scattered light.

The backward scattered light (row 3 in Fig. 2) illustrates the superposition of

the ring-like scattering patterns and the small-scale speckles due to the mito-

chondria. The forward scattered light (row 5 in Fig. 2) is dominated by the

scattering from the cell and nucleus with the very faint contributions from the

rest of the scattering centers.
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Figure 6.2: Example images of the cell models and their corresponding scat-
tering patterns. The amplitudes of modulation for the cell surface roughness
are 1%, 3%, 5% and 7% (sequentially from the left column to right column)
of the the cell diameter (6.6 micron). Row 3-5 show the scattering patterns
collected in the backward, side and forward direction. The wavelength is 432
nm.
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6.3 Dataset for Machine Learning

The final dataset contains scattering patterns of 4 levels of roughness in the

forward, side, and backward directions, with three wavelengths, 432 nm, 532

nm, and 632 nm. The number of scattering images for each sub-category is

100. During the experiments, 200 scattering patterns are used for both the

simple and the complex cases to make a fair comparison.

Fig. 6.3, Fig. 6.4 and Fig. 6.5 display the simulated scattering patterns

that are generated with different roughness value r, with wavelength 432 nm,

532 nm, 632 nm, in the forward, side, and backward direction, respectively.

As shown in Fig. 6.3, the scattering pattern collected in the forward direction

contains a bright circular spot centered in the image on a dark background.

As the wavelength increases, the radius of the spot increases. Some circu-

lar fringe patterns can be observed along the radius of a spot (best shown in

Fig. 1.2, row 5). There seems no visible difference when the roughness levels

and the number of mitochondria are different. Fig. 6.4 displays the scatter-

ing patterns collected in the side direction, which are dominated by scattered

speckles. The speckle size increases and the number of speckles decreases when

the wavelength increases from 432 nm to 632 nm. Although the scatted pat-

terns are different considering two different cells, there is no visible difference

by observing the entire dataset when the roughness levels and the number of

mitochondria are different. Fig. 6.5 shows the scattering patterns collected in

the backward direction. As the roughness value increases, the speckles grad-

ually form into bright circular fringes. Different visual patterns are observed

when the wavelength varies from 432 nm to 632 nm. Especially, a bright spot

appears in the center of images with the wavelength 632 nm. In contrast, a

hollow is observed when the wavelength is 432 nm and the roughness level is

0.01, 0.03, 0.05. No apparent visual difference is observed when the number of

mitochondria is different.
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Figure 6.3: Example of simulated scattering images collected in the forward
direction.

Figure 6.4: Example of simulated scattering images collected in the side di-
rection.
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Figure 6.5: Example of simulated scattering images collected in the backward
direction.

6.4 Experimental Results

6.4.1 Classification of Different Roughness Levels

In this section, scattering patterns with different roughness levels are analyzed,

and their classification performances are also included. The surface roughness

is indicated by r, and a larger value of r means a rougher cell surface. In

a simple case, the roughness values of the scattering patterns are different

(r = 0.01 and r = 0.03) while the number of mitochondria is the same (75 or

100). Experimental results regarding the simple cases are shown in Table 6.1

(the number of mitochondria is 75) and Table 6.2 (the number of mitochon-

dria is 100). From Table 6.1 and Table 6.2, we can find that the scattered

light patterns collected in all the three directions contain useful information

regarding cell surface roughness since an over 72% of accuracy is observed for

scattered light in the forward, side and backward directions. Scattering pat-

terns collected in the backward direction perform the best, with almost 100%

of accuracy, which indicates that backward scattering is most relevant to the

cell surface roughness. This finding is reasonable as the majority of scattered
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light in the backward direction may be from the cell surface, which is consis-

tent with previous research that the backscattering is most relevant with the

cell membrane [55]. The wavelength of the laser beam also plays an important

role in the scattered light patterns. The forward scattered light with wave-

length λ = 632 nm provides an accuracy of 98%, compared with around 76.0

when the wavelength is 432 nm or 532 nm.

Table 6.1: Classification of scattering patterns with r = 0.01 and r = 0.03.
The mitochondria number is 75. 5-fold cross validation is used, and the average
performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 76.0 78.0 74.0 86.0
S 83.0 85.0 81.0 92.0
B 97.0 98.0 96.0 99.6

λ = 532 nm
Direction ACC SEN SPE AUC

F 76.5 77.0 76.0 82.9
S 86.5 84.0 89.0 94.3
B 100 100 100 100

λ = 632 nm
Direction ACC SEN SPE AUC

F 98 99 97 99.95
S 83 82 84 92.8
B 100 100 100 100
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Table 6.2: Classification of scattering patterns with r = 0.01 and r = 0.03.
The mitochondria number is 100. 5-fold cross validation is used, and the
average performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 72.0 85.0 59.0 75.2
S 87.5 88.0 87.0 94.5
B 99 100 98 100

λ = 532 nm
Direction ACC SEN SPE AUC

F 72.5 70.0 75.0 78.9
S 85.5 87.0 84.0 93.5
B 100 100 100 100

λ = 632 nm
Direction ACC SEN SPE AUC

F 98.5 98.0 99.0 99.8
S 76.5 74.0 79.0 83.2
B 100 100 100 100

Table 6.3: Classification of scattering patterns with r = 0.01 and r = 0.03. For
each group, an equal number of scattering patterns with 75 and 100 number
of mitochondria are included. 5-fold cross validation is used, and the average
performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 78.5 75.0 82.0 84.7
S 83.5 84.0 83.0 93.2
B 98.0 98.0 98.0 99.5

λ = 532 nm
Direction ACC SEN SPE AUC

F 75.5 77.0 74.0 83.3
S 85.5 86.0 85.0 93.3
B 100 100 100 100

λ = 632 nm
Direction ACC SEN SPE AUC

F 97.0 97.0 97.0 99.6
S 84.0 85.0 83.0 92.6
B 100 100 100 100

In a real case, the inner cellular structure is more complex, and there will

be some randomness in the parameter space of cells. We simulate this com-
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plex situation by mixing an equal number of scattering patterns with 75 and

100 mitochondria in each group. Experimental results are shown in Table 6.3,

which are similar to the performance of the simple cases. We can still ob-

tain an accuracy of 100% using scattering patterns in the backward direction.

This indicates that the backward scattered light is not affected by the small

variations (mitochondria number in this case) of the cell’s internal structure.

Machine learning techniques can still learn useful information from the mixing

samples.

In our previous experimental study of the NT and ST SH-SY5Y neuroblas-

toma cells (see chapter 5), we had found that the 2D light scattering patterns

from the near direction (18 to 42 degrees) probing by a red laser (632 nm)

provided the best results in distinguishing the NT and ST cells. The machine

learning method achieved high performance with ACC = 91.11, SEN = 92.78,

SPE = 89.44 and AUC = 96.95 (see Table 5.1). Since the non-treated and

staurosporine-treated SH-SY5Y neuroblastoma cells have distinct cell mem-

brane roughness (see Fig 5.1), we speculated that the difference in surface

roughness could significantly contribute to their scattering patterns [85]. The

results from Table 6.3 indicated the performance metrics for the forward (-15

to 15 degrees) and side (75 to 105 degrees) are in the range of 85 - 100 for

identifying synthetic cells with different roughness levels. The results support

the speculation suggested in [85]. In addition, the better performance of the

forward direction versus side direction and red versus green laser also agree

with the experimental data presented in chapter 5 [85].

6.4.2 Classification of Different Mitochondrial Numbers

In this section, we change the number of mitochondria and generate their sim-

ulated scattering patterns. The scattering patterns with different numbers of

mitochondria are analyzed, and classification performances are also included.

In the simple case, the mitochondrial number is different (75 or 100) while the

roughness values are the same (r = 0.01 or r = 0.03). Experimental results are

shown in Table 6.4 and Table 6.5. In complex cases, we set an equal number

of scattering images with different roughness values (r = 0.01 and r = 0.03 )
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in each group.

From Table 6.4 and Table 6.5, we can see that the forward direction per-

forms the best for laser light with different wavelengths, with an accuracy of

over 86.5%. This indicates that the forward scattering carries the most useful

information regarding the number of mitochondria. This may be due to the

fact that a higher number of mitochondria may cause a high reflection index,

which is most relevant with the forward scattered light [56]. The side direc-

tion always gets an accuracy of around 50%, which means it has failed in the

discrimination of these two groups of cells. The side scattered light may not

carry useful information regarding the mitochondria number. This is different

from our previous research, as the side direction can carry useful information

regarding the mitochondria distribution [78].

Table 6.4: Classification of scattering patterns with different numbers of mito-
chondria 75 and 100. The roughness value is r = 0.01. 5-fold cross validation
is used, and the average performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 90.5 90.0 91.0 97.9
S 41.5 44.0 39.0 46.0
B 66.5 66 .0 67.0 75.6

λ = 532 nm
Direction ACC SEN SPE AUC

F 96.5 95.0 98.0 99.5
S 56.5 52.0 61.0 55.5
B 78.0 76.0 80.0 87.1

λ = 632 nm
Direction ACC SEN SPE AUC

F 98.5 100.0 97.0 99.9
S 65.0 63.0 67.0 70.8
B 66.0 80.0 52.0 71.2
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Table 6.5: Classification of scattering patterns with different numbers of mito-
chondria 75 and 100. The roughness value is r = 0.03. 5-fold cross validation
is used, and the average performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 86.5 88.0 85.0 96.3
S 47.5 60.0 35.0 43.8
B 72.0 72.0 72.0 80.4

λ = 532 nm
Direction ACC SEN SPE AUC

F 97.0 98.0 96.0 99.9
S 50.5 48.0 53.0 46.3
B 73.5 74.0 73.0 82.0

λ = 632 nm
Direction ACC SEN SPE AUC

F 97 97 97 99.3
S 46.0 54.0 38.0 45.8
B 77.0 75.0 79.0 85.5

Experimental results of the complex case are shown in Table 6.6. We can

still achieve similar performance when the wavelength are 532 nm and 632 nm.

Table 6.6: Classification of scattering patterns with different numbers of mito-
chondria 75 and 100. For each group, an equal number of scattering patterns
with r = 0.01 and r = 0.03 roughness values are included. 5-fold cross valida-
tion is used, and the average performance is given.

λ = 432 nm
Direction ACC SEN SPE AUC

F 91.0 89.0 93.0 97.5
S 45.0 52.0 38.0 44.7
B 68.5 70.0 67.0 75.9

λ = 532 nm
Direction ACC SEN SPE AUC

F 97.5 98 97 99.3
S 56.0 57.0 55.0 54.7
B 77.5 79.0 76.0 86.2

λ = 632 nm
Direction ACC SEN SPE AUC

F 97.5 96.0 99.0 100
S 61.5 66.0 57.0 64.6
B 69.5 60.0 79.0 76.7
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6.5 Discussions

6.5.1 Quantitive Result Analysis

As shown in Sec. 6.4.1, the backward scattered light is most useful for the

classification of the surface roughness. To analyze this phenomenon, some

example images are shown in Fig. 6.6. As we can see from Fig. 6.6, there are

distinct visual differences when the roughness varies. A centered bright spot

and a circular structure are observed as the roughness increases. Therefore,

excellent performance can be achieved by using scattering images collected in

the backward direction.

Figure 6.6: Scattering images with different roughness values r, which are
collected in the backward direction. The mitochondria number is 100.

Similarly, Sec. 6.4.1 has shown that the forward direction is most useful

for the classification of the mitochondrial number. The original scattering

patterns in the forward direction have been shown in Fig. 6.3, where no visible

difference is observed given cells with different numbers of mitochondria. This

may be due to the fact that the original images are represented in linear scale,

and it is too dark to visualize the fine textures. Hence, we first preprocess the

original images using log transform. The processed images are shown in Fig.

6.7. As we can see from Fig. 6.7, as the mitochondrial number decreases, the

circular fringe patterns shrink and become deformed, and more textures are

found on the boundary of the scattering patterns.
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Figure 6.7: Example images with different mitochondria numbers N . The
roughness value r is 0.01.

6.5.2 t-SNE Visualization

The t-SNE [49] allows us to visualize the distribution of high dimensional data

to some degree. The t-SNE technique first map the original high-dimensional

features from 1920 to 50 dimension by using PCA, and then to 2 by using the

t-SNE Barnes-Hut algorithm [49]. The x-axis and y-axis correspond to the

values of the two features after using the t-SNE method.

The t-SNE plots of light scattering patterns collected in the forward, side,

and backward directions with different roughness levels are shown in Fig. 6.8.

The number of mitochondria is N = 75. As we can see from Fig. 6.8, the

two groups of data (with different levels of roughness) are well separated for

light scattering patterns collected in the backward direction with different

wavelengths. In addition, clustering behavior is also observed in the forward

direction when the wavelength λ = 632 nm. This means that these light scat-

tering patterns have distinct features in the raw feature space, which matches

with our previous findings in Tables 6.3, 6.4, 6.5. Notice that we can also ob-
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Figure 6.8: t-SNE visualization of light scattering patterns collected in the
forward, side and backward directions with λ = 432 nm, 532 nm and 632 nm,
and N = 75. The two groups of data with different roughness values r are
denoted using different colours.

serve strong appearance variations from the original light scattering patterns

collected in the backward direction when the roughness levels are different,

which has been shown in Fig. 6.6.

We also provide the t-SNE scatter plot of light scattering patterns collected

in the forward, side, and backward with λ = 432 nm, 532 nm, and 632 nm in

Fig. 6.9. The roughness value is r = 0.01. The two groups of data with dif-

ferent numbers of mitochondria N are denoted using different colors. As Fig.

6.9 shows, the majority of the two groups of data from the forward direction

can be well separated, and only a small amount of points are overlapped and

mixed. This indicates that the forward scattered light carries useful informa-

tion regarding the number of mitochondria which is consistent with the results

shown in Table 6.4, Table 6.5 and Table 6.6.
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Figure 6.9: t-SNE visualization of scattering patterns collected in the forward,
side and backward direction with wavelength λ = 432 nm, 532 nm and 632
nm. The roughness value is r = 0.01. The two groups of data with different
mitochondrial number N are denoted using different colours.

6.5.3 Insights Relevant to Previous Studies

In the previous chapter, we obtained angular light scattering patterns in the

side (79◦ - 101◦) and near-forward direction (18◦ - 42◦) probing by green (532

nm) or red (633 nm) laser light. We observed that the near-forward scattering

using red light provided the best results in discriminating between the non-

treated and staurosporine-treated cells. Satisfactory performance with ACC

= 91%, SEN = 92%, SPE = 89% and AUC = 97% [85] were achieved in dis-

criminating the two groups of cells by using our ML analysis method. The

NT and ST SH-SY5Y neuroblastoma cells have significant differences in cell

surface roughness, as observed from their SEM images [85]. We proposed that

the differences in the surface roughness contributed to their unique scattering

patterns, which can be effectively captured by the machine learning analysis

[85]. The results from Table 6.3 shows that the performance metric for for-
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ward and side scattering using red laser light are in the range of [83, 100] for

identifying cells with different roughness, which are consistent with the results

presented in [85]. In addition, the better performance of forward direction

versus side direction and red versus green laser light is also consistent with the

experimental results presented in [85]. While the performance of discriminat-

ing the two groups of cells in the near forward direction was better than the

side direction in [85], the side direction performance was reasonable. Results

from section 6.4.2 indicate poor performance for side direction in discriminat-

ing the variations in the number of mitochondria in cells. These results suggest

that the change in the number of mitochondria in the treated cell as a result

of apoptosis induced by staurosporine [26] might not contribute significantly

to the differences in the angular light scattering patterns of the treated and

non-treated cells in [85].

It was well-established that light scattering in the side direction can pro-

vide information about small internal organelles such as mitochondria [86],

[87]. Several studies [71], [76]–[79] reported that single-cell light scattering

patterns depended on mitochondrial distributions and formed the basis for

the identification and analysis of many cells. However, as shown in Tables 4-6,

the performance of discrimination of variations in the number of mitochon-

dria in cells from their light scattering patterns collected in the side direction

is poor. Although the side scattered light carries valuable information about

the cells’ mitochondrial distributions (distinct scattering patterns are observed

with the aggregated and the randomly distributed mitochondria) [78], it may

not carry helpful information regarding the number of mitochondria.

6.6 Conclusions

In this study, multi-wavelength multi-direction laser scattering patterns have

been achieved with numerical simulation. Two factors, including the cell sur-

face roughness and the number of mitochondria, have been analyzed for their

roles in contributing to specific scattering patterns. Machine learning tech-

niques have been used to analyze and classify these scattering patterns. Re-
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sults of the analysis have shown that both roughness values and mitochondria

number affect scattering patterns. Especially, the backward light scattering

is the best direction for characterizing the cell surface roughness, while the

forward light scattering is the best direction for characterizing the mitochon-

dria number. The results in this chapter are consistent with the experimental

results in chapter 5 and provide insights into the origins of the experimental

angular scattering patterns. This research provides a theoretical analysis of the

contributions of cell surface roughness and mitochondria number in scattering

patterns, which is potentially useful for the statistical analysis and measure-

ments of inner-cellular organelles. A systematic study about the influences of

the wavelength and angular direction has been included, which is beneficial

for the real experiment setup of future research.
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Chapter 7

Conclusions and Future
Research Directions

In this thesis, machine learning methods, especially the CNN based methods,

have been proposed for the automatic analysis of dermoscopic images and laser

scattering images. In this chapter, we summarize the main contributions of

each chapter and discuss potential future research work.

7.1 Main Contributions

Chapter 3 presents the automatic system for accurate skin lesion segmentation.

Compared with the multi-task learning methods, the proposed method uses

edge prediction as an auxiliary task, which does not require extra labeling

efforts. The proposed model makes predictions of the boundaries and the

segmentation mask by learning two sub-networks simultaneously, with cross-

connected intermediate feature maps. Experimental results prove that the

auxiliary task framework can promote the skin lesion segmentation task. State-

of-the-art performance has been obtained.

Chapter 4 presents a novel technique for skin lesion classification based

on mid-level feature learning. The learned features are more discriminative

and representative compared to the original features by using distance metric

learning. The features can capture the relationships between samples and

hence are more robust. Experimental results have verified the effectiveness of

the mid-level features.

97



Chapter 5 presents a technique for label-free cell classification using laser

scattering patterns. A pretrained CNN model is used as an off-the-shelf fea-

ture extractor. Results show that the proposed technique can successfully

discriminate between the two groups of cells: the staurosporine-treated and

non-treated SH-SY5Y neuroblastoma cells, which is beneficial for a better

understanding of the PD disease. Superior performance has been achieved

compared with conventional machine learning methods.

Chapter 6 presents a systematic and thorough study towards the influ-

ences of two cell properties (surface roughness and mitochondria number)

in contributing to the scattering patterns. Multi-wavelength multi-direction

laser scattering images of the same single cell have been achieved by simula-

tion. Analysis of these simulated laser scattering images has shown that both

roughness values and mitochondria number affect scattering patterns. Espe-

cially, the backward light scattering is the best direction for characterizing the

surface roughness, while the forward light scattering is the best direction for

characterizing the mitochondria number. This research provides a theoreti-

cal analysis of the contributions of cell surface roughness and mitochondria

number in scattering patterns, which is potentially useful for the statistical

analysis and measurements of inner-cellular organelles.

7.2 Future Research Directions

- Skin Lesion Analysis with Vision Transformer

The CNN methods do not encode information about the relative position

of local features. Recently, some methods based on vision transformers

emerged in various computer vision tasks. The vision transformers can

model the long-range dependencies of the input image patches. Since the

pigment regions of the skin lesions and the surrounding skin areas share

strong visual dependencies, the introduction of the transformer models

may promote the segmentation and classification performance.
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- Laser Scattering Images with Hybrid CNN

Existing deep learning methods for laser scattering images use popular

CNN models for cell classification. The scattered speckles of laser scatter

patterns may share dependencies, which have been ignored in literature

works. A hybrid CNN which integrates the dependency information of lo-

cal patches (e.g., by using the adjacency matrix of the feature maps) can

provide more information regarding the relationships of local patches,

which may facilitate the training of the CNN-based methods.
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Appendix A

Background Material

A.1 Cell Preparation in Chapter 5

SH-SY5Y cells were from the American Type Culture Collection (ATCC, Man-

assas, Va, USA) and cultured using a 1:1 mixture of Eagle’s Minimum Essen-

tial Medium supplemented with F12 Medium containing 10% v/v fetal bovine

serum and penicillin/streptomycin mixture. Cultures were seeded at 20% cell

density and then allowed to grow for approximately 48 h until they had reached

70% confluence of adherent cells. At this point, staurosporine was added to a

final concentration of 5 µM to make the treated SH-SY5Y cells group, while

an equivalent volume of PBS was added to the control SH-SY5Y cells group

without staurosporine. Both groups were allowed to incubate for 48 h, and

then cells were fixed with 10% p-formaldehyde for 15 minutes. Cells were sam-

pled for each of the two conditions and were counted using a hemocytometer

to determine cell density present for each aliquot. Undiluted samples had a

concentration of approximately 106 to 107 cells/ml and were diluted to a final

assay concentration of around 3000 cells/ml so that light scattering patterns

of single cells could be obtained.
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