The Event Calculus as a Linear Logic Program
TR95-24

Vladimir Alexiev *

University of Alberta, Dept of Comp Sci, 615 GSB, Edmonton, AB T5K 1A2, Canada.
<vladimir@cs.ualberta.ca>

Abstract. The traditional presentation of Kowalski’s Event Calculus as a logic program uses Negation-
as-Failure (NAF) in an essential way to support persistence of fluents. In this paper we present an
implementation of Event Calculus as a purely logical (without NAF) Linear Logic (LL) program. This
work demonstrates some of the internal non-monotonic features of LL and its suitability for knowledge
update (as opposed to knowledge revision). Although NAF is an ontologically sufficient solution to
the frame problem, the LL solution is implementationally superior. Handling of incomplete temporal
descriptions and support for ramifications (derived fluents) are also considered.

Keywords: event calculus, linear logic, negation as failure, knowledge update.

1 Introduction

The Event Calculus (EC) of [Kowalski and Sergot, 1986] is a theory of events (actions) and the fluents
(predicates) that they precipitate. An important property of the theory is that it is rendered as a logic
program, and is thus executable. Negation-as-Failure (NAF) plays an important role in this program, ensuring
the persistence of fluents through time until the occurrence of an event that terminates them.

Historically, EC has been an antithesis of another theory of actions, the Situation Calculus (SC) [Me-
Carthy and Hayes, 1969]. The SC adopts as primitive the notion of situation, the set of all fluents that hold
between two events. Events map one situation to another, the result of applying the event in the situation.
The EC purports to make the global notion of situation unnecessary, by letting fluents evolve “indepen-
dently” in time. This solves the Frame problem: the necessity to reason explicitly about the persistence of
fluents between situations. However, EC’s use of NAF for persistence somewhat undermines this effort, by
presenting both representation and implementation problems (Section 3.1).

Linear Logic (LL) [Girard, 1987] is rapidly gaining popularity and applications in Computing Science
[Alexiev, 1994], mainly due to its interpretation of formulas as resources and not as timeless properties. This
feature of LL makes it possible to account for change in a clean, logical and simple way.

This paper purports to use the resource-consciousness of LL to reimplement EC in a purely logical
way and thus overcome the problems related with NAF. We hope that this paper delivers on some of the
promises of LL for applications in Al where change is essential. The rest of the paper is as follows: Section
2 introduces the two LL programming languages that we use, LOLLI and LyGON. Section 3 describes a
simplified version of EC, implements it in LL, and proves a correspondence between the original definition
and the LL implementation. Section 4 introduces several extensions to SEC and presents considerations how
they can be accommodated in LL. Finally, Section 5 contains some concluding remarks.

2 Linear Logic Programming

We implemented our LL theory of EC in two different LL programming languages, because each of them
contains some features that are not present in the other. Although similar in spirit and genesis, they are
quite different in detail. We introduce them briefly below.

* The author gratefully acknowledges the support of a Killam Memorial Scholarship

2.1 LoLLI

The language LoLLI? was introduced by [Hodas, 1992; Hodas and Miller, 1994]. It is based on an intuitionistic
fragment of LL and Miller’s earlier work on APROLOG (and more generally, Uniform Proofs). Accordingly,
Lovri is higher-order and handles only single-conclusion sequents. LOLLI is implemented in SML and is quite
effective. A simple module system is provided, however no debugger is available at present. The fragment of
LL that LoLLI supports 1s:

Ru=A|T|R&R|A—G | A< G|VX.G
Gu=A|T|G&G | R—G | R= G| VX.G
| 1]GOG|GHG |G |3X.G |G — G|G

The concrete syntax used by LoOLLI is as follows:
QR|&|B|o—|—o|<=|=| ! |?] V | 3 1 [L] T [o](-)t]if-then-else
.| &[5]:=|-ol<=[=>[{}] [foralllexists|true| [erase =>

2.2 LyGonN

The language LyGoN® was introduced by [Harland and Winikoff, 1995; Winikoff and Harland, 1994] based
on earlier work of [Harland and Pym, 1994; Harland and Pym, 1992]. It is based on classical LL (and so
works with multiple-conclusion sequents), but is essentially first-order.* LyGoN is implemented as a meta-
interpreter over BINPROLOG. An unsophisticated debugger is provided. The fragment of LL that LyGcoN
implements 1s:

D :=3XVYY.D' | DD
D = A Ao-G
Gu=1|L|T|0|A| A" |GOG|GAG | G&G | GBG | IX.G |G | 7G* | once G

LYGON has a richer goal sub-langnage than LOLLI, but a poorer clause sub-language. The paper [Har-
land et al., 1995] proposes a richer clause language (including integrity constraints G—oL), but the current
implementation supports only the fragment listed above.

The concrete syntax used by LoOLLI is as follows:

QD& |D|o—|—o|=|=|!|7? Y 3 1[L][T]o ()t commitment|
*|#(&|Q|<- '|?|forall, quant|exists, query|onelbot|top|zerolneg - once |

3 Simplified Event Calculus

We first consider the simplified version of EC (SEC) [Kowalski, 1992], which historically was more widely
used. In subsequent sections we consider extensions of SEC. For simplicity’s sake, we assume that the
occurrence times of all events are known, or equivalently, that the events are totally ordered. It would not
be hard to adapt our results for the case of partial ordering of events, but this is not the emphasis of the
present work.

One possible presentation of SEC as a PROLOG program is:

2 http://www.cs.hmc.edu/ hodas/research/lolli/
® http://www.cs.mu.oz.au/ winikoff/lygon/lygon.html
* One can use the builtin call of the underlying PROLOG system though.

holds(F,T) :-
happens(Ei,Ti), initiates(Ei,F),
happens(Et,Tt), terminates(Et,F),
between(Ti,T,Tt), not broken(Ti,F,Tt).

broken(Ti,F,Tt) :-—
happens(E,T), between(Ti,T,Tt),
(initiates(E,F1); terminates(E,F1)),
exclusive(F,F1).

between(T1,T2,T3) :-—
T1<T2, T2<T3.

exclusive(F,F).

(here we use mnemonic variables of the form E: Event, F: Fluent, T: Time point). Please note the essential
use of NAF (not broken) to implement the default persistence of the fluent between event occurrences.
The “initial conditions” of a narrative and the possibility of non-terminated fluents are accounted for by the
following additional clauses:

initiates(start,F) :-
initially(F).

happens(start,0).

holds(F,T) :-
happens(Ei,Ti), initiates(Ei,F),
Ti<T, not broken(Ti,F,T).

The generic theory above is complemented with a domain-specific theory of the form

initially(unloaded). initially(alive).

initiates(load,loaded). terminates(load,unloaded).

% the following two facts will be qualified later with a precondition holds(loaded)
initiates(shoot,dead). terminates(shoot,alive).

initiates(shoot,unloaded). terminates(shoot,loaded).

exclusive(alive,dead). exclusive(loaded,unloaded).

happens(load,1). happens(wait,2). happens(shoot,3).

3.1 Shortcomings of NAF

SEC as formulated above is an acyclic program® [Provetti, 1994, Sec. 4.3], therefore all major semantics for
logic programs with NAF agree for the SEC. However, we still see several problems with the use of NAF in
EC, some representational and some implementational.

— Some implementations of the Frame axiom through NAF suffer from the following form of over-commitment:
if a fluent F' is derived from a fluent F' then default persistence may cause F' to persist in time even
after its base F' is terminated. This problem is not present in the above presentation of SEC, at least
for domain theories in which base and derived fluents are separated in the sense that no derived fluent
occurs in a initiates or terminates clause. See Section 4.2 for further discussion.

— In the extension of SEC with incomplete information (see Section 4.3), NAF leads to over-committed
conclusions that certain fluents do not hold. Consider this example (from [Pinto and Reiter, 1993])

happens(el,1). happens(e2,2).
initiates(el,f1). terminates(e2,f2).
exclusive(f1,f2).

® But not a locally stratified one.

Clark’s completion of the EC theory given in [Kowalski and Sergot, 1986] is able to infer the existence
of an intervening event e that initiates £2, but for any t € [1,2], the query holds(£2,t) fails because
there is no specific information about the occurrence of e. This flaw largely undermines the usefulness
of the extended EC as described in [Kowalski and Sergot, 1986].

— The present implementation of temporal persistence through NAF is very inefficient. The predicate
broken has to check all event occurrences, even the events that have nothing to do with the fluent
at hand. The most constraining subgoal in the clause for broken is exclusive(F,F1), which however
cannot be used early in the clause because initiates and terminates are not necessarily exclusive. One
solution to this problem is described in [Kowalski, 1992, p.138ff]: every fact happens(E,T) is executed
forward a couple of steps to derive its initiates and terminates consequences, and these are stored as
a cluster indexed by F. This allows fast retrieval of the events that are related to F. In fact the present
paper implements more or less this solution, in a purely logical theory.

3.2 SEC in LoLLI

The basic idea of our LL implementation of SEC is simple: first, we record the initial state of every fluent
F as an atom int(F,0,infty) (F holds for an interval from 0 to infinity). These atoms are stored in the
linear part of the execution context, so it is easy to delete and update them. Then an event occurrence
happens(E,T) splits the validity intervals of all concerned events in two, the first part keeping the same
truth value as the old interval, and the second part determined by the new event.

A LovrLI program implementing this ideas is:

MODULE sec.
LOCAL init record insert.

start G :— initially Fs, init Fs G.
init nil G :- G.
init (F::Fs) G :- int F 0 infty -o init Fs G.

happens E T G :- causes E Fs, record Fs T G.

record nil T G :— G.

record (F::Fs) T G :- insert F T (record Fs T G).

insert F2 T G :- exclusive F1 F2, int F1 T1 T2, between T1 T T2,
(int F1 T1 T -0 int F2 T T2 -0 G).

exclusive F F.

exclusive F (not F).

exclusive (not F) F.

between T1 T2 T3 :— less T1 T2, less T2 T3.

less T1 T2 :- T2=infty -> true | (Ti=infty -> fail | T1<T2).

holds F T G :- (int F T1 T2, between T1 T T2, erase) & G.
holds F T :- holds F T erase.

holds F :- holds F infty.

prtint.

prtint :- int F T1 T2, write (int F T1 T2), nl, prtint.

Notes on the LOLLI syntax:

— MODULE and LOCAL are declarations concerning the LOLLI module system. A module is used by loading
it with the following syntax: ¥ --o G.

— We use the following mnemonic variable names: E: Event, T: Time point, F: Fluent, Fs: a list of Fluents,
G: subsequent Goal (continuation).

— LoLLI uses curried predicate syntax (no parentheses and commas).

— The language is higher-order, and this is why we do not have to wrap the variable subgoal G in a
meta-predicate call.

— The double colon in (F::Fs) is cons (the list constructor), and nil is the neutral element of lists.

Notes about the program:

— We use extensively continuation-passing style. Most often the continuation G is simply passed to the
subgoals, but sometimes more specialized treatment is required. For example the clause

init (F::Fs) G :- int F 0 infty -o init Fs G.

executes the continuation in a context amended with the atom int F 0 infty. As a matter of fact,
the reason we used continuations is exactly because there is no other way to insert atoms in the linear
context: LOLLI does not support linear negation. The clause

holds F T G :— (int F T1 T2, between T1 T T2, erase) & G.

executes the continuation in an unchanged context, in other words it insulates the computation from the
part enclosed in parentheses, or effectively makes that part behave as a simple test.

— start fetches the domain-theory atom initially (see below), starts the list-iterating predicate init
and continues with the rest of the goal G.

— Every subgoal happens E T fetches the domain-theory atom causes E Fs, describing the effect of the
event E and then iterates over the list of affected fluents Fs using record.

— insert F2 T consumes the recorded validity interval int F1 T1 T2 of an exclusive fluent and splits it
in two.® Before invoking the continuation, it inserts the two subintervals in the linear context.

— exclusive states that every fluent is exclusive with itself, and with its negation. The word not here is
a simple data constructor and has nothing to do with NAF. For uniformity, we chose to represent the
domain theory with axioms of the form

causes el f. causes e2 (not f).
instead of the traditional
initiates el f. terminates e2 f.

— less implements a comparison operator that can deal with the special value infty (infinity). In its
implementation we used the impure builtin =>-|- (if-then-else) because neither type-checking predicates
(number (T)), nor disequality check, are available.

— holds F T checks if fluent F holds at time T. It has two variations, one that have a continuation, and
another that checks at time infinity, which can be interpreted as the current time.

— Finally, o9prtint prints all accumulated validity intervals.

Complemented with a domain theory of the form
MODULE yale.
causes load (loaded :: nil).
causes unload (not loaded :: nil).
causes shoot (not loaded :: dead :: nil). % will be qualified with holds(loaded)

causes wait nil.
initially (not loaded :: not dead :: nil).

the above program can answer queries such as

5 We can assume that there is only one such interval, because there cannot be two exclusive fluents holding at the
same time.

?7- sec —-o yale --o start (happens wait 2 (happens shoot 3 (happens load 1 prtint))).
int (not loaded) 0 1

int loaded 1 3

int (not loaded) 3 infty dead

int (not dead) 03 — T TTT-="

int dead 3 infty

solved ./ J loaded

{ %
0 1 2 3 infty
The output above signifies that Lloaded holds between times 1 and 3, and that dead holds from 3 to infinity.
The events are specified in the goal instead of in the domain theory in order to activate forward-chaining over
the causes facts. Please note that events do not have to be specified in chronological order, and that wait
does not cause the problem described in [Hanks and McDermott, 1987] that plagues circumscription-based

implementations of the Situation Calculus.

3.3 SEC in LyGonN

As motivated in Section 2, we implemented SEC in two different LL programming languages, because neither
of them gives us the full flexibility that we need. The LYGON program is similar to the LOLLI program:

start <- initially(Fs) * init(Fs).
init([1) <- bot.
init ([F|Fs]) <- neg int(F,0,infty) # init(Fs).
happens(E,T) <- causes(E,Fs) * record(Fs,T).
record([],T) <- bot.
record([F|Fs],T) <- insert(F,T) # record(Fs,T).
insert(F2,T) <- exclusive(F1,F2) * int(F1,T1,T2) * between(T1,T,T2) *
(neg int(F1,T1,T) # neg int(F2,T,T2)).
exclusive(F,F).
exclusive(F,not(F)).
exclusive(not(F),F).
between(T1,T2,T3) <- less(T1,T2) * less(T2,T3).
less(T1,T2) <-
prolog(number(T1)) * prolog(number(T2)) * 1t(T1,T2)
@ prolog(number(T1)) * eq(infty,T2).
eq(X,X).
holds(F,T) <- int(F,T1,T2) * between(T1,T,T2) * top.
holds(F) <- holds(F,infty).
prtint.
prtint <- int(F,T1,T2) # print(int(F,T1,T2)) * nl * prtint.

The main differences are that in init and insert we use linear negation neg to insert the atoms int in the
linear context, and in less we use the underlying BINPROLOG system for the predicate number.
Complemented with a domain theory of the form

causes(load, [loaded]).
causes(unload, [not(loaded)]).
causes(shoot, [not(loaded), dead]).
causes (wait, [1).
initially([not(loaded), not(dead)]).

our program can answer queries of the form

?7- start#happens(wait,2)#happens(shoot,3)#happens(load,1)#prtint.
int(not loaded,0,1)

int(loaded,1,3)

int(not loaded,3,infty)

int(not dead,0,3)

int(dead,3,infty)

Succeeded.

3.4 Faithfulness of the Proposed Implementation

In this section we prove that our implementation of SEC in LL is sound and complete with respect to the
original definition of SEC, 7.e. that they produce the same answers.
We first prove the property informally stated at the end of Section 3.2.

Lemma1l (Order-independence). Assuming complete initial information (every fluent or its negation is
specified in the initially fact, the answers of the LOLLI program of Section 3.2 do not depend on the order
in which happens atoms are given in the goal.”

Proof. Let’s consider an arbitrary fluent F. At any time the set of validity interval atoms about F forms a non-
overlapping cover of the interval [0..infty]. This is proved by an easy induction: initially the linear context
contains exactly one such interval, either int F 0 infty or int (not F) 0 infty. Let’s consider the effect
that a fact happens E T has on F (assuming that E affects F). It splits the unique interval [T1..T2] that
contains T in two, [T1..T] and [T..T2], even if the two parts assert the same truth value for F. Furthermore,
the final set of such splittings does not depend on the order the splittings were done. a

Theorem 2 (Faithfulness). The PROLOG program of Section 3 and the LOLLI program of Section 3.2 wilh
corresponding domain theories give the same answers to queries of the form holds(F,t) where t is bound
and does not coincide with any of the event occurrence times.

Proof. Given the previous lemma (and the trivial fact that the PRoLoG program does not have an “order of
events”), we can assume that the events are described in chronological order. Now we can perform a proof
by induction on the number of events.

Base Case If no events are recorded, both programs answer the query holds(F,t) with the fluents F that
are mentioned in initially, independent of the concrete time t (provided it is positive).

Induction Step Assume that the claim holds for a sequence of events and let’s append an event holds(E,T)
at its end. The LoLLI program splits the last interval (which extends to infinity) of every affected fluent
in two, the first part retaining the old truth value, and the second part assuming the new truth value.
Therefore for any t<T the answers will not be affected by the new event, while for T<t<infty the answers
correspond simply to the fluent list in causes E Fs.

Now let’s turn to the PROLOG program. A bit subtler analysis is required because of the interference of
the two holds clauses (for an internal interval and for the last interval). because in the PRoLOG program
the new event does not enable any derivations

a

4 Extensions to SEC

In this section we extend the SEC program described above in various ways, the last of which (Section 4.3)
provides for most of the flexibility of the original EC [Kowalski and Sergot, 1986]. Other conceivable exten-
sions of our approach which are not treated in this paper include:

T Of course, the answers do depend on the times specified in the holds atoms. Also, this lemma will not be valid
when we introduce preconditions to causes predicates.

— Partially-ordered events.
— Branching time-line and hypothetical events. This would require the maintenance of a more complex
interval structure in the linear context than the simple set of “arrays” we use now.

4.1 Preconditions

Many events are preconditioned on fluents that must hold for the event to be applicable. In fact the Yale
shooting example as stated above (Section 3.2) does not take into account the domain knowledge that only
shooting a loaded gun is effective. Here we show how preconditions can be added to our formalism.

First of all, we assume that the events are recorded in their chronological order, because otherwise a
precondition P of an event E2 depending on a previous event E1 will not be satisfied if E1 is recorded after
E2. This limitation can be lifted by recording all events in a chronologically-ordered list and then “replaying”
them for every query. However such a solution would defy the very spirit of our LL approach, namely that the
consequences of events are computed as soon as possible and queries simply lookup this cached information.

To implement this sequencing of events, we found continuations very useful. The (traditional) connectives
of LL are commutative (except for —o), therefore one should not use them to represent sequentially occurring
events.® Therefore, we drop LYyGoN at this point and present this extension in LOLLI.

There are several conceivable approaches to implementing preconditions:

1. Preconditions can be “sampled” at the current time, i.e. the time of the event concerned.

2. Preconditions can be sampled at time infinity. In light of the previous remark (the event time being the
latest recorded time point), this is equivalent to 1.

3. Preconditions can be sampled at arbitrary times (hopefully somehow related to the current time). This
approach allows the greatest flexibility, but it requires passing the current time to the causes facts. This
can be achieved using quantification in LOLLI.

As an example we implement the approach 2. First, we change the relevant domain clause from

causes shoot (not loaded :: dead :: nil).
to
causes shoot (precond dead (holds loaded) :: not loaded :: nil).

Please note that we had to change the list order of the two results (not loaded and dead), because if not
loaded was recorded first, it would render the precondition of dead false. To conform to the notion that all
results are effected simultaneously, one could adopt approach 1, and postulate that validity intervals include
their endpoints.

We also change one of the clauses for record:

record (F::Fs) T G :-
F=(precond F1 Pre) -> (Pre -> insert F1 T (record Fs T G)
| record Fs T G)
| insert F T (record Fs T G).

This involves using the impure operator if-then-else to recognize the type of list element (one with or without
a precond), however this use has nothing to do with temporal information. In the clause above, if the element
does not have a precondition or the precondition is satisfied, the element is inserted; else record just continues
with the end of the list.

& In fact LYGON does not take into account the ordering of goals in the text of a program. For example a query a#tb#c
1s run in the order b,c,a.

4.2 Ramifications

Adding ramifications (derived fluents) does not pose any problem to our approach. Furthermore, ramifications
can be involved in causes facts.”. For example, if we extend our domain theory with

holds alive T G :— holds (not dead) T G.
holds unloaded T G :- holds (not loaded) T G.

then we can reason about alive on the same footing as its base fluent dead.
If we also add

exclusive alive dead.

exclusive unloaded loaded.

holds dead T G :— holds (not alive) T G.
holds loaded T G :— holds (not unloaded) T G.

and the general clauses

exclusive F (not F1) :- exclusive F F1.
exclusive (not F) F1 :- exclusive F F1.

then we can assert causes facts involving either of the fluents at will.
Accommodating fluents that are not related so directly (one being the negation of the other) is slightly
more difficult. For example we could add a fluent peaceful with the clause

holds peaceful T G :- holds (not loaded) T G, holds alive T G.

However, the involvement of such fluents in causes is more problematic. If we assert that an event causes
peaceful, how should this be interpreted, as the event causing both not loaded and alive? What about
a derived fluent being the disjunction of two others, or an even more complex formula? Since there is no
direct correspondence between logic connectives and the combinators of a logic of actions (e.g. Dynamic
Logic [Harel, 1979]), the best approach seems to be to limit such derived fluents to the role of observations.

4.3 Handling of Incomplete Information

The original EC [Kowalski and Sergot, 1986] can handle several cases of incompletely specified events, and
infer the existence of unspecified events from constraints imposed by specified events. Assume the domain
theory

initiates(give(X,Y,Z), has(Z,Y)). terminates(give(X,Y,Z), has(X,Y)).
exclusive(has(X,Y), has(Z,Y)) :- not X=Z.
happens(give(bob,book,mary),1). happens(give(john,book,jim),2).

(here give(X,Y,Z) means “person X gives the object Y to person Z”). Then it can be inferred from the
Clark’s completion of the EC program that an intervening event of Mary giving the book to John (or even
a chain of transfers of the book between persons) must have existed. However, due to the over-commitment
caused by the use of NAF for temporal persistency, for every time T between 1 and 2, the program would
answer that both Mary and John have the book. [Sadri and Kowalski, 1995] propose to solve this problem
and make the framework generally more flexible through the use of positive programs amended with general
integrity constraints.

One form of incomplete information is already handled by the LL programs in Section 3.2 and Sec-
tion 3.3. Namely, since the effects of an event are recorded even if they already hold (due to the clause
exclusive(F,F).), we can handle the case of an unspecified terminating event.!'” More complex cases can

® In the terms of deductive databases, the same predicate can be both EDB and IDB
1% This same mechanism allows for event occurrences recorded not in the chronological order

be accommodated by allowing variables in the validity intervals recorded in the linear context. E.g. the
example above can be handled by recording intervals'!

int(has(mary,book),1,X). int(not has(mary,book),X,infty).
int(has(john,book),X,2). int(not has(john,book),2,infty).

(under an assumption of minimal number of unspecified transfers), where the variable time X serves to
tie the fluents has(mary,book) and has(john,book) in an appropriate way. One will have to assert the
appropriate chronological order by ordering the intervals sequentially in a data structure (e.g. list), but on
more complicated cases a full temporal constraint system will be required.

Note A more systematic account of this problem will appear in the final version of this paper. More specif-
ically, we are interested in investigating the expressiveness of our approach not simply on the examples of
[Hanks and McDermott, 1987] and [Kowalski and Sergot, 1986], but in a more formal setting, such as the
one given in [Gelfond and Lifschitz, 1993].

5 Concluding Remarks

5.1 Related Work

This work 1s in the general direction of applying LL to Al problems, especially ones where Non-Monotonic
Reasoning is (or was thought to be) necessary. For a large class of problems only a limited form of non-
monotonicity is sufficient, one which does not involve belief revision and database updates with complex
formulas. For these problems LL seems to provide a natural purely-logical solution. Examples of such prob-
lems are conjunctive planning [Masseron et al., 1993; Holldobler, 1992; Jacopin, 1993] and hierarchies with
exceptions [Fouqueré and Vauzeilles, 1994]. [Arima and Sawamura, 1993] argue that LL is appropriate for a
logic of explanation and abduction.

The only work relating EC and LL that we are aware of is [Cervesato et al., 1994]. An implementation
of Modal EC in LoLLI is presented. The Modal EC i1s a modification of EC which presumes all events and
some partial ordering given in advance, and determines which fluents must necessarily hold or can possibly
hold under all possible refinements of the ordering.

There is no deep relation between the present work and [Cervesato et al., 1994]. It seems that the latter
makes no essential use of the linearity properties of LoLLI; in fact the implementation could have been
done in LOLLI’s non-linear predecessor APROLOG as well. NAF is used to provide temporal persistence in
the same way as in [Kowalski, 1992]; erase is overused; and hypothetical refinements on the order of events
(beforeFact E1 E2) are introduced in the non-linear part of the context (with intuitionistic instead of linear
implication).

5.2 Future Work

Using LL context management provides for a simple purely-logical way of updating temporal information,
and 1t seems preposterous to employ the heavy machinery of NAF for this purpose. However, NAF is still
useful for more general patterns of deduction. The ability to check for the lack of certain information is useful.
However, the result of this check should not be treated in the same way as the information 1t was based
upon, or else paradoxes, conflicting extensions, or at least infeasible techniques, emerge. We are currently
working on a “Logic of Objects and Properties” where some (linearly managed) formulas are regarded
as “material objects” (resources) that can be produced, consumed, and transformed; and other formulas
(classically managed) are regarded as properties of such objects. The absence of a certain object from the
context (which we see as the main application of NAF) should be regarded as a property of the context.

H Together with the regular intervals int (not has(bob,book),1,infty). int(has(jim,book),2,infty).

Seemingly the Logic of Unity [Girard, 1993] will be useful for such a formalism, but we anticipate several
differences, the most important being presence of two kinds of negation (object-level and property-level).

Similar ideas are already appearing in the LL programming literature, e.g. [Harland et al., 1995, p13]
say:

We would require a LyGoN version of Negation-as-Failure, in that we wish to be able to test whether
a given resource has been exhausted or not. There is clearly some technical work to be done here, but
such a facility, which seems a natural feature for a logic programming language, would significantly
enhance the resource-oriented facilities of LYGON.

The LyGoN documentation mentions that once “will be removed form the language in a future version”.

5.3 Conclusions

Our presentation of EC as a LL theory demonstrates the possibility of representing change without involving
the heavy machinery of non-monotonic reasoning. One advantage of using LL in this way over most non-
monotonic logics is that they depend on the notion of non-derivability (“if P is not derivable then derive
Q”), whereas change in LL is a straightforward deductive operation. The main advantages of LL over modal
logics and their descendants (temporal logics, dynamic logic) are:

Locality LL change islocal to the involved property/predicate, whereas modal logic has to go to a completely
new world which is only indirectly related (through the accessibility relation) to the current world.
Simplicity LL was conceived on the road to simplicity: certain structural rules of classical logic were
banned. Modal logic, on the other hand, was conceived by enriching the set of connectives, and by

making semantical structures much more complex.

Of course, “full-strength” NMR is indispensable in certain reasoning contexts, for example common-sense
reasoning. We argue however that it has been overused in contexts where it is better left alone.

References

[Alexiev, 1994] V. Alexiev. Applications of linear logic to computation: An overview. Bulletin of the IGPL, 2(1):77-
107, March 1994. Also University of Alberta TR93-18, December 1993.

[Arima and Sawamura, 1993] J. Arima and H. Sawamura. Reformulation of explanation by linear logic: Toward logic
for explanation. In K. P Jantke, editor, 4th International workshop on Algorithmic learning theory, number 744 in
LNCS, pages 45-58, Tokyo, Japan, November 1993.

[Cervesato et al., 1994] 1. Cervesato, L. Chittaro, and A. Montanari. Modal event calculus in LoLLl. Technical
Report CMU-CS-94-198, Carnegie Mellon University, Pittsburgh, PA, September 1994.

[Fouqueré and Vauzeilles, 1994] C. Fouqueré and J. Vauzeilles. Linear logic and exceptions. Journal of Logic and
Computation, 4(6):859-875, 1994.

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifschitz. Representing actions and change by logic programs. Jour-
nal of Logic Programming, 17(2,3,4):301-323, 1993.

[Girard, 1987] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[Girard, 1993] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201-217, 1993.

[Hanks and McDermott, 1987] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Artificial
Intelligence, 33(3):379-412, 1987.

[Harel, 1979] D. Harel. First-Order Dynamic Logic, volume 68 of LNCS. Springer-Verlag, 1979.

[Harland and Pym, 1992] J. Harland and D. Pym. On resolution in fragments of classical linear logic (extended
abstract). In A. Voronkov, editor, Logic Programming and Automated Reasoning (LPAR’92), number 624 in LNAI
(subseries of LNCS), pages 30-41, St. Petersburg, Russia, July 1992.

[Harland and Pym, 1994] J. Harland and D. Pym. A uniform proof-theoretic investigation of linear logic program-
ming. Journal of Logic and Computation, 4(2):175-207, April 1994.

[Harland and Winikoff, 1995] J. Harland and M. Winikoff. Implementation and development issues for the linear
logic programming language LYGON. In Proceedings of the Eighteenth Australasian Computer Science Confer-
ence, pages 563-572, Adelaide, Australia, February 1995. Also available as Technical Report TR 95/6, Melbourne
University, Department of Computer Science.

[Harland et al., 1995] J. Harland, D. Pym, and M. Winikoff. Programming in LYGON: An overview, April 1995.

[Hodas and Miller, 1994] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Journal of Information and Computation, 110(2):327-365, May 1994. An extended abstract appeared in
LICS’91:32-42, July 1991.

[Hodas, 1992] J. S. Hodas. LOLLL: An extension of A-PROLOG with linear logic context management. In 1992 X Prolog
Workshop, 1992. Available from ftp.cis.upenn.edu: pub/Lolli.

[Hélldobler, 1992] S. Hélldobler. On deductive planning and the frame problem. In A. Voronkov, editor, Logic
Programming and Automated Reasoning (LPAR’92), number 624 in LNAI (subseries of LNCS), pages 13-29,
St. Petersburg, Russia, July 1992.

[Jacopin, 1993] E. Jacopin. Classical AI planning as theorem proving: The case of a fragment of linear logic. In
AAAT Fall Symposium on Automated Deduction in Nonstandard Logics, pages 62—66, Palo Alto, California, 1993.
AAAIT Press Publications.

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A logic-based caclulus of events. New Generation Comput-
ing, (4):67-95, 1986.

[Kowalski, 1992] R. Kowalski. Database updates in the event calculus. Journal of Logic Programming, pages 121-146,
December 1992.

[Masseron et al., 1993] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic: I Actions as proofs.
Theoretical Computer Science, 113, June 1993. Also in Proc. 10-th Conf. Foundations of Software Technology and
Theoretical Computer Science (FST-"Theoretical Computer Science”’90), Banglore, India, LNCS 472, 1990.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artifi-
cial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463—-502. Edinburgh University
Press, 1969. Also appears in N. Nilsson and B. Webber (editors), Readings in Artificial Intelligence, Morgan-
Kaufmann.

[Pinto and Reiter, 1993] Javier Pinto and Raymond Reiter. Temporal reasoning in logic programming: A case for
the situation calculus. In Intl. Conf. on Logic Programming (ICLP’93), pages 203-221, 1993.

[Provetti, 1994] A. Provetti. Hypothetical reasoning: From situation calculus to event calculus. In Workshop
TIMFE’94, Pensacola Beach, FL., May 1994. Submitted to Computational Intelligence Journal.

[Sadri and Kowalski, 1995] Fariba Sadri and Robert A. Kowalski. Variants of the event calculus. In Intl. Conf on
Logic Programming (ICLP’95), Tokyo, Japan, June 1995.

[Winikoff and Harland, 1994] M. Winikoff and J. Harland. Implementing the linear logic programming language
LyGoN. Technical Report 94/23, University of Melbourne, 1994.

This article was processed using the INTpX macro package with LLNCS style

