
The Event Calculus as a Linear Logic Program
TR�����

Vladimir Alexiev �

University of Alberta� Dept of Comp Sci� ��� GSB� Edmonton� AB T�K �A�� Canada�
�vladimir�cs�ualberta�ca�

Abstract� The traditional presentation of Kowalski�s Event Calculus as a logic program uses Negation�
as�Failure �NAF	 in an essential way to support persistence of 
uents� In this paper we present an
implementation of Event Calculus as a purely logical �without NAF	 Linear Logic �LL	 program� This
work demonstrates some of the internal non�monotonic features of LL and its suitability for knowledge
update �as opposed to knowledge revision	� Although NAF is an ontologically su�cient solution to
the frame problem� the LL solution is implementationally superior� Handling of incomplete temporal
descriptions and support for rami�cations �derived 
uents	 are also considered�
Keywords� event calculus� linear logic� negation as failure� knowledge update�

� Introduction

The Event Calculus �EC� of �Kowalski and Sergot� 	�
�� is a theory of events �actions� and the 
uents
�predicates� that they precipitate� An important property of the theory is that it is rendered as a logic
program� and is thus executable� Negation�as�Failure �NAF� plays an important role in this program� ensuring
the persistence of 
uents through time until the occurrence of an event that terminates them�

Historically� EC has been an antithesis of another theory of actions� the Situation Calculus �SC� �Mc�
Carthy and Hayes� 	����� The SC adopts as primitive the notion of situation� the set of all 
uents that hold
between two events� Events map one situation to another� the result of applying the event in the situation�
The EC purports to make the global notion of situation unnecessary� by letting 
uents evolve �indepen�
dently� in time� This solves the Frame problem� the necessity to reason explicitly about the persistence of

uents between situations� However� EC�s use of NAF for persistence somewhat undermines this e�ort� by
presenting both representation and implementation problems �Section ��	��

Linear Logic �LL� �Girard� 	�
�� is rapidly gaining popularity and applications in Computing Science
�Alexiev� 	����� mainly due to its interpretation of formulas as resources and not as timeless properties� This
feature of LL makes it possible to account for change in a clean� logical and simple way�

This paper purports to use the resource�consciousness of LL to reimplement EC in a purely logical
way and thus overcome the problems related with NAF� We hope that this paper delivers on some of the
promises of LL for applications in AI where change is essential� The rest of the paper is as follows� Section
� introduces the two LL programming languages that we use� Lolli and Lygon� Section � describes a
simpli�ed version of EC� implements it in LL� and proves a correspondence between the original de�nition
and the LL implementation� Section � introduces several extensions to SEC and presents considerations how
they can be accommodated in LL� Finally� Section � contains some concluding remarks�

� Linear Logic Programming

We implemented our LL theory of EC in two di�erent LL programming languages� because each of them
contains some features that are not present in the other� Although similar in spirit and genesis� they are
quite di�erent in detail� We introduce them brie
y below�

� The author gratefully acknowledges the support of a Killam Memorial Scholarship



��� Lolli

The language Lolli� was introduced by �Hodas� 	���� Hodas and Miller� 	����� It is based on an intuitionistic
fragment of LL and Miller�s earlier work on �Prolog �and more generally� Uniform Proofs�� Accordingly�
Lolli is higher�order and handles only single�conclusion sequents� Lolli is implemented in SML and is quite
e�ective� A simple module system is provided� however no debugger is available at present� The fragment of
LL that Lolli supports is�

R ��� A j � j R�R j A��G j A� G j �X�G

G ��� A j � j G�G j R��G j R� G j �X�G

j � j G�G j G�G j �G j �X�G j G	 GjG

The concrete syntax used by Lolli is as follows�
� P � � �� �� � � � � � � � 
 � � ���� if�then�else
� � � �� �o �� �� f�g forall exists true erase ����j�

��� Lygon

The language Lygon� was introduced by �Harland and Winiko�� 	���� Winiko� and Harland� 	���� based
on earlier work of �Harland and Pym� 	���� Harland and Pym� 	����� It is based on classical LL �and so
works with multiple�conclusion sequents�� but is essentially �rst�order�� Lygon is implemented as a meta�
interpreter over BinProlog� An unsophisticated debugger is provided� The fragment of LL that Lygon
implements is�

D ��� �X�Y�D� j D�D

D� ��� A j A��G

G ��� � j 
 j � j � j A j A� j G�G j GPG j G�G j G�G j �X�G j �G j �G� j once G

Lygon has a richer goal sub�language than Lolli� but a poorer clause sub�language� The paper �Har�
land et al�� 	���� proposes a richer clause language �including integrity constraints G��
�� but the current
implementation supports only the fragment listed above�

The concrete syntax used by Lolli is as follows�
� P � � �� �� � � � � � � � 
 � � ���� commitment
� 	 � 
 �� � � forall� quant exists� query one bot top zero neg � once

� Simpli�ed Event Calculus

We �rst consider the simpli�ed version of EC �SEC� �Kowalski� 	����� which historically was more widely
used� In subsequent sections we consider extensions of SEC� For simplicity�s sake� we assume that the
occurrence times of all events are known� or equivalently� that the events are totally ordered� It would not
be hard to adapt our results for the case of partial ordering of events� but this is not the emphasis of the
present work�

One possible presentation of SEC as a Prolog program is�

� http���www�cs�hmc�edu� hodas�research�lolli�
� http���www�cs�mu�oz�au� winikoff�lygon�lygon�html
� One can use the builtin call of the underlying Prolog system though�



holds
F�T� ��

happens
Ei�Ti�� initiates
Ei�F��

happens
Et�Tt�� terminates
Et�F��

between
Ti�T�Tt�� not broken
Ti�F�Tt��

broken
Ti�F�Tt� ��

happens
E�T�� between
Ti�T�Tt��


initiates
E�F��� terminates
E�F����

exclusive
F�F���

between
T��T��T�� ��

T��T�� T��T��

exclusive
F�F��

�here we use mnemonic variables of the form E� Event� F� Fluent� T� Time point�� Please note the essential
use of NAF �not broken� to implement the default persistence of the 
uent between event occurrences�
The �initial conditions� of a narrative and the possibility of non�terminated 
uents are accounted for by the
following additional clauses�

initiates
start�F� ��

initially
F��

happens
start����

holds
F�T� ��

happens
Ei�Ti�� initiates
Ei�F��

Ti�T� not broken
Ti�F�T��

The generic theory above is complemented with a domain�speci�c theory of the form

initially
unloaded�� initially
alive��

initiates
load�loaded�� terminates
load�unloaded��

� the following two facts will be qualified later with a precondition holds
loaded�

initiates
shoot�dead�� terminates
shoot�alive��

initiates
shoot�unloaded�� terminates
shoot�loaded��

exclusive
alive�dead�� exclusive
loaded�unloaded��

happens
load���� happens
wait���� happens
shoot����

��� Shortcomings of NAF

SEC as formulated above is an acyclic program� �Provetti� 	���� Sec� ����� therefore all major semantics for
logic programs with NAF agree for the SEC� However� we still see several problems with the use of NAF in
EC� some representational and some implementational�

� Some implementations of the Frame axiom through NAF su�er from the following formof over�commitment�
if a 
uent F � is derived from a 
uent F then default persistence may cause F � to persist in time even
after its base F is terminated� This problem is not present in the above presentation of SEC� at least
for domain theories in which base and derived 
uents are separated in the sense that no derived 
uent
occurs in a initiates or terminates clause� See Section ��� for further discussion�

� In the extension of SEC with incomplete information �see Section ����� NAF leads to over�committed
conclusions that certain 
uents do not hold� Consider this example �from �Pinto and Reiter� 	������

happens
e����� happens
e�����

initiates
e��f��� terminates
e��f���

exclusive
f��f���

� But not a locally strati�ed one�



Clark�s completion of the EC theory given in �Kowalski and Sergot� 	�
�� is able to infer the existence
of an intervening event e that initiates f�� but for any t � �	� ��� the query holds
f��t� fails because
there is no speci�c information about the occurrence of e� This 
aw largely undermines the usefulness
of the extended EC as described in �Kowalski and Sergot� 	�
���

� The present implementation of temporal persistence through NAF is very ine�cient� The predicate
broken has to check all event occurrences� even the events that have nothing to do with the 
uent
at hand� The most constraining subgoal in the clause for broken is exclusive
F�F��� which however
cannot be used early in the clause because initiates and terminates are not necessarily exclusive� One
solution to this problem is described in �Kowalski� 	���� p�	�
��� every fact happens
E�T� is executed
forward a couple of steps to derive its initiates and terminates consequences� and these are stored as
a cluster indexed by F� This allows fast retrieval of the events that are related to F� In fact the present
paper implements more or less this solution� in a purely logical theory�

��� SEC in Lolli

The basic idea of our LL implementation of SEC is simple� �rst� we record the initial state of every 
uent
F as an atom int
F���infty� �F holds for an interval from � to in�nity�� These atoms are stored in the
linear part of the execution context� so it is easy to delete and update them� Then an event occurrence
happens
E�T� splits the validity intervals of all concerned events in two� the �rst part keeping the same
truth value as the old interval� and the second part determined by the new event�

A Lolli program implementing this ideas is�

MODULE sec�

LOCAL init record insert�

start G �� initially Fs� init Fs G�

init nil G �� G�

init 
F��Fs� G �� int F � infty �o init Fs G�

happens E T G �� causes E Fs� record Fs T G�

record nil T G �� G�

record 
F��Fs� T G �� insert F T 
record Fs T G��

insert F� T G �� exclusive F� F�� int F� T� T�� between T� T T��


int F� T� T �o int F� T T� �o G��

exclusive F F�

exclusive F 
not F��

exclusive 
not F� F�

between T� T� T� �� less T� T�� less T� T��

less T� T� �� T��infty �� true � 
T��infty �� fail � T��T���

holds F T G �� 
int F T� T�� between T� T T�� erase� � G�

holds F T �� holds F T erase�

holds F �� holds F infty�

prtint�

prtint �� int F T� T�� write 
int F T� T��� nl� prtint�

Notes on the Lolli syntax�

� MODULE and LOCAL are declarations concerning the Lolli module system� A module is used by loading
it with the following syntax� M ��o G�

� We use the following mnemonic variable names� E� Event� T� Time point� F� Fluent� Fs� a list of Fluents�
G� subsequent Goal �continuation��



� Lolli uses curried predicate syntax �no parentheses and commas��
� The language is higher�order� and this is why we do not have to wrap the variable subgoal G in a

meta�predicate call�
� The double colon in 
F��Fs� is cons �the list constructor�� and nil is the neutral element of lists�

Notes about the program�

� We use extensively continuation�passing style� Most often the continuation G is simply passed to the
subgoals� but sometimes more specialized treatment is required� For example the clause

init 
F��Fs� G �� int F � infty �o init Fs G�

executes the continuation in a context amended with the atom int F � infty� As a matter of fact�
the reason we used continuations is exactly because there is no other way to insert atoms in the linear
context� Lolli does not support linear negation� The clause

holds F T G �� 
int F T� T�� between T� T T�� erase� � G�

executes the continuation in an unchanged context� in other words it insulates the computation from the
part enclosed in parentheses� or e�ectively makes that part behave as a simple test�

� start fetches the domain�theory atom initially �see below�� starts the list�iterating predicate init

and continues with the rest of the goal G�
� Every subgoal happens E T fetches the domain�theory atom causes E Fs� describing the e�ect of the

event E and then iterates over the list of a�ected 
uents Fs using record�
� insert F� T consumes the recorded validity interval int F� T� T� of an exclusive 
uent and splits it

in two�� Before invoking the continuation� it inserts the two subintervals in the linear context�
� exclusive states that every 
uent is exclusive with itself� and with its negation� The word not here is

a simple data constructor and has nothing to do with NAF� For uniformity� we chose to represent the
domain theory with axioms of the form

causes e� f� causes e� 
not f��

instead of the traditional

initiates e� f� terminates e� f�

� less implements a comparison operator that can deal with the special value infty �in�nity�� In its
implementation we used the impure builtin ���j� �if�then�else� because neither type�checking predicates
�number
T��� nor disequality check� are available�

� holds F T checks if 
uent F holds at time T� It has two variations� one that have a continuation� and
another that checks at time in�nity� which can be interpreted as the current time�

� Finally� o�prtint prints all accumulated validity intervals�

Complemented with a domain theory of the form

MODULE yale�

causes load 
loaded �� nil��

causes unload 
not loaded �� nil��

causes shoot 
not loaded �� dead �� nil�� � will be qualified with holds
loaded�

causes wait nil�

initially 
not loaded �� not dead �� nil��

the above program can answer queries such as

� We can assume that there is only one such interval� because there cannot be two exclusive 
uents holding at the
same time�



�� sec ��o yale ��o start 
happens wait � 
happens shoot � 
happens load � prtint����

int 
not loaded� � �

int loaded � �

int 
not loaded� � infty

int 
not dead� � �

int dead � infty

solved

0 1 2 3 infty

loaded

dead

The output above signi�es that loaded holds between times 	 and �� and that dead holds from � to in�nity�
The events are speci�ed in the goal instead of in the domain theory in order to activate forward�chaining over
the causes facts� Please note that events do not have to be speci�ed in chronological order� and that wait
does not cause the problem described in �Hanks and McDermott� 	�
�� that plagues circumscription�based
implementations of the Situation Calculus�

��� SEC in Lygon

As motivated in Section �� we implemented SEC in two di�erent LL programming languages� because neither
of them gives us the full 
exibility that we need� The Lygon program is similar to the Lolli program�

start �� initially
Fs� � init
Fs��

init
��� �� bot�

init
�F�Fs�� �� neg int
F���infty� 	 init
Fs��

happens
E�T� �� causes
E�Fs� � record
Fs�T��

record
���T� �� bot�

record
�F�Fs��T� �� insert
F�T� 	 record
Fs�T��

insert
F��T� �� exclusive
F��F�� � int
F��T��T�� � between
T��T�T�� �


neg int
F��T��T� 	 neg int
F��T�T����

exclusive
F�F��

exclusive
F�not
F���

exclusive
not
F��F��

between
T��T��T�� �� less
T��T�� � less
T��T���

less
T��T�� ��

prolog
number
T��� � prolog
number
T��� � lt
T��T��


 prolog
number
T��� � eq
infty�T���

eq
X�X��

holds
F�T� �� int
F�T��T�� � between
T��T�T�� � top�

holds
F� �� holds
F�infty��

prtint�

prtint �� int
F�T��T�� � print
int
F�T��T��� � nl � prtint�

The main di�erences are that in init and insert we use linear negation neg to insert the atoms int in the
linear context� and in less we use the underlying BinProlog system for the predicate number�

Complemented with a domain theory of the form

causes
load� �loaded���

causes
unload� �not
loaded����

causes
shoot� �not
loaded�� dead���

causes
wait� ����

initially
�not
loaded�� not
dead����

our program can answer queries of the form



�� start	happens
wait���	happens
shoot���	happens
load���	prtint�

int
not loaded�����

int
loaded�����

int
not loaded���infty�

int
not dead�����

int
dead���infty�

Succeeded�

��� Faithfulness of the Proposed Implementation

In this section we prove that our implementation of SEC in LL is sound and complete with respect to the
original de�nition of SEC� i�e� that they produce the same answers�

We �rst prove the property informally stated at the end of Section ����

Lemma� �Order�independence	� Assuming complete initial information �every �uent or its negation is
speci�ed in the initially fact� the answers of the Lolli program of Section ��� do not depend on the order
in which happens atoms are given in the goal��

Proof� Let�s consider an arbitrary 
uent F� At any time the set of validity interval atoms about F forms a non�
overlapping cover of the interval ����infty�� This is proved by an easy induction� initially the linear context
contains exactly one such interval� either int F � infty or int 
not F� � infty� Let�s consider the e�ect
that a fact happens E T has on F �assuming that E a�ects F�� It splits the unique interval �T���T�� that
contains T in two� �T���T� and �T��T��� even if the two parts assert the same truth value for F� Furthermore�
the �nal set of such splittings does not depend on the order the splittings were done� ut

Theorem� �Faithfulness	� The Prolog program of Section � and the Lolli program of Section ��� with
corresponding domain theories give the same answers to queries of the form holds
F�t� where t is bound
and does not coincide with any of the event occurrence times�

Proof� Given the previous lemma �and the trivial fact that the Prolog program does not have an �order of
events��� we can assume that the events are described in chronological order� Now we can perform a proof
by induction on the number of events�

Base Case If no events are recorded� both programs answer the query holds
F�t� with the 
uents F that
are mentioned in initially� independent of the concrete time t �provided it is positive��

Induction Step Assume that the claimholds for a sequence of events and let�s append an event holds
E�T�
at its end� The Lolli program splits the last interval �which extends to in�nity� of every a�ected 
uent
in two� the �rst part retaining the old truth value� and the second part assuming the new truth value�
Therefore for any t�T the answers will not be a�ected by the new event� while for T�t�infty the answers
correspond simply to the 
uent list in causes E Fs�
Now let�s turn to the Prolog program� A bit subtler analysis is required because of the interference of
the two holds clauses �for an internal interval and for the last interval�� because in the Prolog program
the new event does not enable any derivations

ut

� Extensions to SEC

In this section we extend the SEC program described above in various ways� the last of which �Section ����
provides for most of the 
exibility of the original EC �Kowalski and Sergot� 	�
��� Other conceivable exten�
sions of our approach which are not treated in this paper include�

� Of course� the answers do depend on the times speci�ed in the holds atoms� Also� this lemma will not be valid
when we introduce preconditions to causes predicates�



� Partially�ordered events�
� Branching time�line and hypothetical events� This would require the maintenance of a more complex

interval structure in the linear context than the simple set of �arrays� we use now�

��� Preconditions

Many events are preconditioned on 
uents that must hold for the event to be applicable� In fact the Yale
shooting example as stated above �Section ���� does not take into account the domain knowledge that only
shooting a loaded gun is e�ective� Here we show how preconditions can be added to our formalism�

First of all� we assume that the events are recorded in their chronological order� because otherwise a
precondition P of an event E� depending on a previous event E� will not be satis�ed if E� is recorded after
E�� This limitation can be lifted by recording all events in a chronologically�ordered list and then �replaying�
them for every query� However such a solution would defy the very spirit of our LL approach� namely that the
consequences of events are computed as soon as possible and queries simply lookup this cached information�

To implement this sequencing of events� we found continuations very useful� The �traditional� connectives
of LL are commutative �except for ���� therefore one should not use them to represent sequentially occurring
events�� Therefore� we drop Lygon at this point and present this extension in Lolli�

There are several conceivable approaches to implementing preconditions�

	� Preconditions can be �sampled� at the current time� i�e� the time of the event concerned�
�� Preconditions can be sampled at time in�nity� In light of the previous remark �the event time being the

latest recorded time point�� this is equivalent to 	�
�� Preconditions can be sampled at arbitrary times �hopefully somehow related to the current time�� This

approach allows the greatest 
exibility� but it requires passing the current time to the causes facts� This
can be achieved using quanti�cation in Lolli�

As an example we implement the approach �� First� we change the relevant domain clause from

causes shoot 
not loaded �� dead �� nil��

to

causes shoot 
precond dead 
holds loaded� �� not loaded �� nil��

Please note that we had to change the list order of the two results �not loaded and dead�� because if not
loaded was recorded �rst� it would render the precondition of dead false� To conform to the notion that all
results are e�ected simultaneously� one could adopt approach 	� and postulate that validity intervals include
their endpoints�

We also change one of the clauses for record�

record 
F��Fs� T G ��

F�
precond F� Pre� �� 
Pre �� insert F� T 
record Fs T G�

� record Fs T G�

� insert F T 
record Fs T G��

This involves using the impure operator if�then�else to recognize the type of list element �one with or without
a precond�� however this use has nothing to do with temporal information� In the clause above� if the element
does not have a precondition or the precondition is satis�ed� the element is inserted� else record just continues
with the end of the list�

� In fact Lygon does not take into account the ordering of goals in the text of a program� For example a query a�b�c

is run in the order b�c�a�



��� Rami
cations

Adding rami�cations �derived 
uents� does not pose any problem to our approach� Furthermore� rami�cations
can be involved in causes facts��� For example� if we extend our domain theory with

holds alive T G �� holds 
not dead� T G�

holds unloaded T G �� holds 
not loaded� T G�

then we can reason about alive on the same footing as its base 
uent dead�
If we also add

exclusive alive dead�

exclusive unloaded loaded�

holds dead T G �� holds 
not alive� T G�

holds loaded T G �� holds 
not unloaded� T G�

and the general clauses

exclusive F 
not F�� �� exclusive F F��

exclusive 
not F� F� �� exclusive F F��

then we can assert causes facts involving either of the 
uents at will�
Accommodating 
uents that are not related so directly �one being the negation of the other� is slightly

more di�cult� For example we could add a 
uent peaceful with the clause

holds peaceful T G �� holds 
not loaded� T G� holds alive T G�

However� the involvement of such 
uents in causes is more problematic� If we assert that an event causes
peaceful� how should this be interpreted� as the event causing both not loaded and alive� What about
a derived 
uent being the disjunction of two others� or an even more complex formula� Since there is no
direct correspondence between logic connectives and the combinators of a logic of actions �e�g� Dynamic
Logic �Harel� 	������ the best approach seems to be to limit such derived 
uents to the role of observations�

��� Handling of Incomplete Information

The original EC �Kowalski and Sergot� 	�
�� can handle several cases of incompletely speci�ed events� and
infer the existence of unspeci�ed events from constraints imposed by speci�ed events� Assume the domain
theory

initiates
give
X�Y�Z�� has
Z�Y��� terminates
give
X�Y�Z�� has
X�Y���

exclusive
has
X�Y�� has
Z�Y�� �� not X�Z�

happens
give
bob�book�mary����� happens
give
john�book�jim�����

�here give
X�Y�Z� means �person X gives the object Y to person Z��� Then it can be inferred from the
Clark�s completion of the EC program that an intervening event of Mary giving the book to John �or even
a chain of transfers of the book between persons� must have existed� However� due to the over�commitment
caused by the use of NAF for temporal persistency� for every time T between 	 and �� the program would
answer that both Mary and John have the book� �Sadri and Kowalski� 	���� propose to solve this problem
and make the framework generally more 
exible through the use of positive programs amended with general
integrity constraints�

One form of incomplete information is already handled by the LL programs in Section ��� and Sec�
tion ���� Namely� since the e�ects of an event are recorded even if they already hold �due to the clause
exclusive
F�F���� we can handle the case of an unspeci�ed terminating event��	 More complex cases can

� In the terms of deductive databases� the same predicate can be both EDB and IDB
�	 This same mechanism allows for event occurrences recorded not in the chronological order



be accommodated by allowing variables in the validity intervals recorded in the linear context� E�g� the
example above can be handled by recording intervals��

int
has
mary�book����X�� int
not has
mary�book��X�infty��

int
has
john�book��X���� int
not has
john�book����infty��

�under an assumption of minimal number of unspeci�ed transfers�� where the variable time X serves to
tie the 
uents has
mary�book� and has
john�book� in an appropriate way� One will have to assert the
appropriate chronological order by ordering the intervals sequentially in a data structure �e�g� list�� but on
more complicated cases a full temporal constraint system will be required�

Note A more systematic account of this problem will appear in the �nal version of this paper� More specif�
ically� we are interested in investigating the expressiveness of our approach not simply on the examples of
�Hanks and McDermott� 	�
�� and �Kowalski and Sergot� 	�
��� but in a more formal setting� such as the
one given in �Gelfond and Lifschitz� 	�����

� Concluding Remarks

��� Related Work

This work is in the general direction of applying LL to AI problems� especially ones where Non�Monotonic
Reasoning is �or was thought to be� necessary� For a large class of problems only a limited form of non�
monotonicity is su�cient� one which does not involve belief revision and database updates with complex
formulas� For these problems LL seems to provide a natural purely�logical solution� Examples of such prob�
lems are conjunctive planning �Masseron et al�� 	���� H�olldobler� 	���� Jacopin� 	���� and hierarchies with
exceptions �Fouquer e and Vauzeilles� 	����� �Arima and Sawamura� 	���� argue that LL is appropriate for a
logic of explanation and abduction�

The only work relating EC and LL that we are aware of is �Cervesato et al�� 	����� An implementation
of Modal EC in Lolli is presented� The Modal EC is a modi�cation of EC which presumes all events and
some partial ordering given in advance� and determines which 
uents must necessarily hold or can possibly
hold under all possible re�nements of the ordering�

There is no deep relation between the present work and �Cervesato et al�� 	����� It seems that the latter
makes no essential use of the linearity properties of Lolli� in fact the implementation could have been
done in Lolli�s non�linear predecessor �Prolog as well� NAF is used to provide temporal persistence in
the same way as in �Kowalski� 	����� erase is overused� and hypothetical re�nements on the order of events
�beforeFact E� E�� are introduced in the non�linear part of the context �with intuitionistic instead of linear
implication��

��� Future Work

Using LL context management provides for a simple purely�logical way of updating temporal information�
and it seems preposterous to employ the heavy machinery of NAF for this purpose� However� NAF is still
useful for more general patterns of deduction� The ability to check for the lack of certain information is useful�
However� the result of this check should not be treated in the same way as the information it was based
upon� or else paradoxes� con
icting extensions� or at least infeasible techniques� emerge� We are currently
working on a �Logic of Objects and Properties� where some �linearly managed� formulas are regarded
as �material objects� �resources� that can be produced� consumed� and transformed� and other formulas
�classically managed� are regarded as properties of such objects� The absence of a certain object from the
context �which we see as the main application of NAF� should be regarded as a property of the context�

�� Together with the regular intervals int�not has�bob�book����infty�� int�has�jim�book��	�infty��



Seemingly the Logic of Unity �Girard� 	���� will be useful for such a formalism� but we anticipate several
di�erences� the most important being presence of two kinds of negation �object�level and property�level��

Similar ideas are already appearing in the LL programming literature� e�g� �Harland et al�� 	���� p	��

say�

We would require a Lygon version of Negation�as�Failure� in that we wish to be able to test whether
a given resource has been exhausted or not� There is clearly some technical work to be done here� but
such a facility� which seems a natural feature for a logic programming language� would signi�cantly
enhance the resource�oriented facilities of Lygon�

The Lygon documentation mentions that once �will be removed form the language in a future version��

��� Conclusions

Our presentation of EC as a LL theory demonstrates the possibility of representing change without involving
the heavy machinery of non�monotonic reasoning� One advantage of using LL in this way over most non�
monotonic logics is that they depend on the notion of non�derivability ��if P is not derivable then derive
Q��� whereas change in LL is a straightforward deductive operation� The main advantages of LL over modal
logics and their descendants �temporal logics� dynamic logic� are�

Locality LL change is local to the involved property!predicate� whereas modal logic has to go to a completely
new world which is only indirectly related �through the accessibility relation� to the current world�

Simplicity LL was conceived on the road to simplicity� certain structural rules of classical logic were
banned� Modal logic� on the other hand� was conceived by enriching the set of connectives� and by
making semantical structures much more complex�

Of course� �full�strength� NMR is indispensable in certain reasoning contexts� for example common�sense
reasoning� We argue however that it has been overused in contexts where it is better left alone�

References


Alexiev� ����� V� Alexiev� Applications of linear logic to computation� An overview� Bulletin of the IGPL� ���	����
���� March ����� Also University of Alberta TR������ December �����


Arima and Sawamura� ����� J� Arima and H� Sawamura� Reformulation of explanation by linear logic� Toward logic
for explanation� In K� P Jantke� editor� �th International workshop on Algorithmic learning theory� number ��� in
LNCS� pages ������ Tokyo� Japan� November �����


Cervesato et al�� ����� I� Cervesato� L� Chittaro� and A� Montanari� Modal event calculus in Lolli� Technical
Report CMU�CS�������� Carnegie Mellon University� Pittsburgh� PA� September �����


Fouquer�e and Vauzeilles� ����� C� Fouquer�e and J� Vauzeilles� Linear logic and exceptions� Journal of Logic and
Computation� ���	��������� �����


Gelfond and Lifschitz� ����� M� Gelfond and V� Lifschitz� Representing actions and change by logic programs� Jour�
nal of Logic Programming� ��������	��������� �����


Girard� ����� J��Y� Girard� Linear logic� Theoretical Computer Science� ��������� �����

Girard� ����� J��Y� Girard� On the unity of logic� Annals of Pure and Applied Logic� ����������� �����

Hanks and McDermott� ����� S� Hanks and D� McDermott� Nonmonotonic logic and temporal projection� Arti�cial
Intelligence� ����	��������� �����


Harel� ����� D� Harel� First�Order Dynamic Logic� volume �� of LNCS� Springer�Verlag� �����

Harland and Pym� ����� J� Harland and D� Pym� On resolution in fragments of classical linear logic �extended
abstract	� In A� Voronkov� editor� Logic Programming and Automated Reasoning �LPAR����� number ��� in LNAI
�subseries of LNCS	� pages ������ St� Petersburg� Russia� July �����


Harland and Pym� ����� J� Harland and D� Pym� A uniform proof�theoretic investigation of linear logic program�
ming� Journal of Logic and Computation� ���	��������� April �����




Harland and Winiko�� ����� J� Harland and M� Winiko�� Implementation and development issues for the linear
logic programming language Lygon� In Proceedings of the Eighteenth Australasian Computer Science Confer�
ence� pages �������� Adelaide� Australia� February ����� Also available as Technical Report TR ����� Melbourne
University� Department of Computer Science�


Harland et al�� ����� J� Harland� D� Pym� and M� Winiko�� Programming in Lygon� An overview� April �����

Hodas and Miller� ����� J� S� Hodas and D� Miller� Logic programming in a fragment of intuitionistic linear
logic� Journal of Information and Computation� �����	��������� May ����� An extended abstract appeared in
LICS���������� July �����


Hodas� ����� J� S� Hodas� Lolli� An extension of ��Prolog with linear logic context management� In 	��� �Prolog
Workshop� ����� Available from ftp�cis�upenn�edu� pub�Lolli�


H�olldobler� ����� S� H�olldobler� On deductive planning and the frame problem� In A� Voronkov� editor� Logic
Programming and Automated Reasoning �LPAR����� number ��� in LNAI �subseries of LNCS	� pages ������
St� Petersburg� Russia� July �����


Jacopin� ����� E� Jacopin� Classical AI planning as theorem proving� The case of a fragment of linear logic� In
AAAI Fall Symposium on Automated Deduction in Nonstandard Logics� pages ������ Palo Alto� California� �����
AAAI Press Publications�


Kowalski and Sergot� ����� R� Kowalski and M� Sergot� A logic�based caclulus of events� New Generation Comput�
ing� ��	������� �����


Kowalski� ����� R� Kowalski� Database updates in the event calculus� Journal of Logic Programming� pages ��������
December �����


Masseron et al�� ����� M� Masseron� C� Tollu� and J� Vauzeilles� Generating plans in linear logic� I Actions as proofs�
Theoretical Computer Science� ���� June ����� Also in Proc� ���th Conf� Foundations of Software Technology and
Theoretical Computer Science �FST�
Theoretical Computer Science
����� Banglore� India� LNCS ���� �����


McCarthy and Hayes� ����� J� McCarthy and P� Hayes� Some philosophical problems from the standpoint of arti��
cial intelligence� In B� Meltzer and D� Michie� editors� Machine Intelligence �� pages �������� Edinburgh University
Press� ����� Also appears in N� Nilsson and B� Webber �editors	� Readings in Arti�cial Intelligence� Morgan�
Kaufmann�


Pinto and Reiter� ����� Javier Pinto and Raymond Reiter� Temporal reasoning in logic programming� A case for
the situation calculus� In Intl� Conf� on Logic Programming �ICLP����� pages �������� �����


Provetti� ����� A� Provetti� Hypothetical reasoning� From situation calculus to event calculus� In Workshop
TIME���� Pensacola Beach� FL� May ����� Submitted to Computational Intelligence Journal�


Sadri and Kowalski� ����� Fariba Sadri and Robert A� Kowalski� Variants of the event calculus� In Intl� Conf� on
Logic Programming �ICLP��
�� Tokyo� Japan� June �����


Winiko� and Harland� ����� M� Winiko� and J� Harland� Implementing the linear logic programming language
Lygon� Technical Report ������ University of Melbourne� �����

This article was processed using the LaTEX macro package with LLNCS style


