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ABSTRACT

A coral-starfish model which simulates the population dynamic of coral
and starfish on the Great Barrier Reefs in Australia is considered. By employing
the Hopf bifurcation theory, the Bautin’s theory and Li’s algorithm, it is shown
that a unique Hopf bifurcation appears for this model and it is supercritical.
These results support the recent finding of a wave pattern in the Great Barrier
Reefs.

Next, an epidemic model with a time delay in the recovered class is con-
sidered. A conjecture of Hethcote et al. is solved. Furthermore, the global
asymptotic behavior of this model is analyzed when the parameters are chosen
so that a threshold is reached.

For an epidemic model with subpopulations, it is shown that the existence
of an endemic equilibrium implies the persistence of the disease. A sufficient
condition is given, on which the endemic equilibrium is globally asymptotically
stable.

Finally, an HIV/AIDS transmission model is studied. A threshold theorem
is obtained by applying techniques from the theory of monotone flows. It is also
shown that AIDS will be epidemic if the threshold is exceeded. Several sufficient
conditions are given to ensure the uniqueness, local stability and global stability

of the endemic equilibrium.
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CHAPTER 1
INTRODUCTION

Analyzing mathematical models has always been an important activity in
theoretical ecology and epidemiology. After the formulation of questions about
an observed phenomenon in terms of mathematical models, mathematical anal-
ysis of them then become essential. The qualitative conclusions based on ‘the
model analysis will not only increase our understanding but help us to make
better predictions in the future.

The use of the qualitaiive theory of differential equations in analyzing
ecological models has a rich and long history dating back over half a century
and including the fundamental work of Volterra, Lotka and Gause. Further
progress was made by Kolmogorov who systematically studied a class of ordinary
differential equations arising from ecological models. With many discoveries in
the qualitative theory of differential equations, such as the theory of Liapunov
functions, the Poincare-Bendixon theory and the newly developed bifurcation
theory, the mathematical theory of ecology has had a rapid growth in this
decade. Many new mathematical methods and concepts for model analysis have
been introduced. A lot of work has been done to investigate a wide range
of ecological problems by many mathematician and biologists like May, Levin,
Maynard Smith, Hirsch, Hoppensteadt, Antonelli and Kazarinoff, to name a

few.
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The ecological problem on the Great Barrier Reef(GBR) of Australia has
attracted a lot of attention in the recent years. Between the 1960’s and 1970’s,
there were two population outbreaks of a coral-eating starfish, called Acanthaster
planci. Many coral reefs in the GBR were devastated by the huge numbers of
this large starfish preying on coral. In 1989, Reichelt et al. revealed that there
exists a wave pattern of the starfish population by analyzing the distribution
of this coral-eating starfish over the GBR. However, there has been no sat-
isfying theoretical analysis of this phenomenon so far. Hence, mathematical
models are needed in order to give this phenomenon a satisfactory explana-
tion and to predict the growth trendency of the populations of the starfish and
7ts coral prey. Antonelli, Kazarinoff and their Australian marine scientist co-
workers [2,3,4] have recently designed a series of mathematical models for this
problem by taking the aggregation beha.\'rior of A. planci into account and using
the adult-aggregation hypothesis of Dana et al.[13).

In the field of mathematical epidemiology, the modern research began
with the study of Kermack and McKendrick. These authors use a simple ODE
model(an SIR model-see the explanation later for the terminology) to investigate
the problem of infectious diseases and found the celebrated Threshold Theorem,
which showed that introducing infectious cases into susceptibles would not trig-
ger an epidemic provided the density of susceptibles were below a certain value
and there would be an epidemic if this value were exceeded. Since then, hun-

dreds of mathematical models have been formulated to study the spreading of
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infectious diseases. In these studies, a population is often separated into dis-
joint classes: susceptibles class S, exposed(latent) class E, infectious class
I and removed(recovered) class R by immunity, isolation or death, respec-
tively( some models may have less classes depending on the characteristic of
the diseases studied in these models ). Models are usually referred to by a
sequence of letters which indicate the flow of people between classes. For in-
stance, in an SIRS model, people are initially suseptibles, then become infected,
then recovered, and finally become susceptibles again after a period of immu-
nity. An SIS model with two subpopulations were considered by Hethcote[19)].
Lajmanovich and Yorke[31] studied an SIS model with n subpopulations by
using a Liapunov function. The generalization of the Lajmanovich-Yorke model
was studied by Nold[38]. SIS models with a time delay in the infectious class
were analyzed by Cooke and Yorke[12], Greenberg and Hoppensteadt[16] and
Brauer|8]. Hethcote and Waltman[24] analyzed an SIR model. Hethcote[19]
also considered an SIR model with n subpopulations. SIRS models have been
considered by many authors. Liu et al.[33,34] studied an ODE SIRS model.
Hethcote, Lewis and van den Driessche[20], and Hethecote, Stech and van den
Driessche[21] considered SIRS models with a time delay in the recovered class.
It was shown that a Hopf bifurcation may occur if proper parameters are cho-
sen in their SIRS model with a time delay. Since the discovery of the human
immunodeficiency virus(HIV), the etiological agent of AIDS in 1983, research

on modeling the dynamics of AIDS epidemic in human communities has become
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a major research topic in mathematical epidemiology. HIV/AIDS models have
been developed by Anderson et al.[1], Castillo-Chavez et al.[11,27], Busenburg

et al.[10], Jacquez et al.[28] and others.

The objective of this thesis is to analyze some mathematical models in
the above areas by using various mathematical tools. In Chapter 2, we con-
sider a coral-starfish model proposed by Antonelli and Kazarinoff. The model
was formulated to describe the dynamics of the coral and starfish populations
in the GBR. In this model, it is assumed that there are one coral and one
starfish(actually, there are many kinds of coral in the GBR, but their behavior
is very similar and the starfish , 4. planci preys on them indiscriminately). We
show that there exists a Hopf bifurcation for the model, which supports the
recent finding of a wave pattern in the GBR. Then, using the Bautin’s theory
and Li’s algorithm, we determine the direction of the Hopf bifurcation. The
numerical results obtained by running the two computer codes, the Hassard’s
code BIFOR2 and Doedel’s code AUTO also confirms our assertions. Chapter
3 is concerned with an SIRS model with a constant time delay in the recovered
class. A conjecture of Hethcote et al. is solved. Furthermore, we analyze the
asymptotic behavior of the model when the parameters are chosen so that the
threshold is reached. The method we use in this chapter can also be adopted
to more general model. In Chapter 4, we deal with an SIRS model with n
subpopulations. We first give-a.new proof of the threshold theorem and the sta-

bility of the endemic equilibrium. Applying the persistence theory, we show that
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the disease will be epidemic when the threshold is exceeded. Finally, we present
a sufficient condition on which the endemic equilibrium is globally asymptot-
ically stable. A new method is developed in this proof. In Chapter 5, we
discuss an HIV/AIDS transmission model with n subpopulations, which was
proposed by Jacquez et al. The contact pattern between subpopulations is the
widely used preferred mixing. We obtain the threshold theorem by applying
techniques from the theory of monotone flow. We then use some results in the
pesistence theory to show that the diseése will be epidemic if the threshold
is exceeded. Moreover, sufficient conditions are given to ensure the local and
global stability of the endemic equilibrium. In the final chapter, we study the
géneraliza.tion of the model in Chapter 5. By dropping the restriction on the
transmission rates, we find that there may exist multiple endemic equilibria. A
sufficient condition is obtained on the existence and uniqueness of the endemic
equilibrium.

Bibliography
[1] Andersen, R.M., Medley, G.F., May, R.M., Johnson, A., A preliminary
' study of the transmission dynamics of the human immunodeficiency

virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Biol.
3:229-263 (1986).

[2] Antonelli, P.L. (Editor), Mathematical Essays on Growth and the Emer-
gence of Form, University of Alberta Press, Edmonton, Alberta,
1985.

[3] Antonelli, P.L. and Kazarinoff, N.D., Modelling density-dependent aggre-
gation and reproduction in certain terrestrial and marine ecosystems:
a comparative study, Ecol. Modelling, 41:2190-227(1988).

[4] Antonelli, P.L., Kazarinoff, N.D., Reichelt, R.E., Brabury, R.H. and Moran,
P.J., A reaction-diffusion-transportation model for large-scale waves



6

in crown-of thorns starfish outbreaks on the GBR, IMA J. Math.
Med. Biol, 6:81-89(1989).

[5] Bailey, N.T.J., The Mathematical Theory of Infectious Diseases, Second
Edition, Hafner Press, New York, 1975.

[6] Bautin, N.N., On the number of limit cycles which appear with the vari-
ation of coefficients from an equilibrium position of focus or center
type, In Stability and Dynamic Systems, Translation Ser. 1, Vol.5,
AMS, RI, 1962.

[7] Bradbury, R.H., Hammond, L.S., Moran, P.J. and Reichelt, R.E., Coral
reef communities and the Crown-of-Thorns starfish: evidence forqual-
itative stable cycles. J. Theoret. Biol. 113:69-81(1089).

[8] Brauer, F., Some infectious disease models with population dynamics and
general contact rates.(preprint)

[9] Busenberg, S.N. and Cooke, K.L., Periodic solutions of delay differen-
tial equations arising in some models of epidemic, In Proceedings of
the Applied Nonlinear Analysis Conference. U. of Taxas, Arlington,
Academic Press, New York, 1978.

[10] Busenberg, S.N., Cooke, K.L. and Thieme, H.R., Demographic change and
persistence of HIV/AIDS in a heterogeneous population.(preprint)

[11] Castillo-Chavez, C., Cooke, K.L., Huang, W. and Levin, S.A., On the
role of long incubation periods in the dynamics of acquired immun-
odeficiency syndrome (AIDS), Part 1: Single population models, J.
Math. Biol. 27:373-398 (1989).

[12] Cooke, K.L. and Yorke, J.A., Some equations modelling growth processes
and gonorrhea epidemics, Math. Biosci.  16:75-101(1973).

(13] Dana, T.F., Newman, W.A. and Fager, E.W., Acanthaster aggregations:
interpreted as primarily responses to natural phenomena, Pacific Sci.
26:355-372(1972).

(14] Dietz, K., On the transmission dynamics of HIV, Math. Biosci. 90:397-
414 (1988).

[15] Gause, G.F., The Struggle for Existence. The Williams and Wilkins Com-
pany,Baltimore, 1934.

[16] Greenberg, J.M. and Hoppensteadt, F., Asymptotic behavio; of solutions
to a population equation, SIAM J. Appl. Math. 28:662-674(1975).



7

[17] Hassard, B.D., Kazarinoff, N.D. and Wan, Y.-H., Theory and Applica-
" tions of Hopf bifurcation, London Mathematical Society Lecture Note
Series, No.41, Cambridge University Press, London, 1981.

[18] Hethcote, H.W., Qualitative analyses of communicable disease models, M. ath.
Biosci. 28:335-356(1976).

[19] Hethcote, H.-W., An immunization model for a heterogeneous population,
Theo. Pop. Biol. 14:338-349 (1978).

[20] Hethcote, H.W., Lewis, M.A. and van den Driessche, P., An epidemiologi-
cal model with a delay and a nonlinear incidence rate,J. Math. Biol.
27:49-64(1989).

[21] Hethcote, H. W., Stech, H.W. and van den Driessche, P., Nonlinear oscil-
lations in epidemic models, SIAM J. Appl. Math. 40:1-9(1981).

[22] Hethcote, H. W., Stech, H.-W. and van den Driessche, P., Periodicity and
stability in epidemic models: A survey, In Differential Equations
and Applications in Ecology, Epidemics and Population Problems,
Busenberg, S.W., Cooke, K.L. (eds.), Academic Press, New York,
1981.

[23] Hethcote, H.W. and Thieme, H.R., Stability of the endemic equilibrium
in epidemic models with subpopulations, Math. Bioscs. 75:205-277
(1985).

[24] Hethcote H.W. and Waltman, P., Optimal vaccination schedules in a de-
terministic epidemic model, Math. Biosci. 18:365-382(1973).

(25] Hirsch, M.W., Systems of differential equations which are competitive or
cooperative, I: Limit sets. SIAM J. Math. Anal. 13:167-179 (1982).

[26] Hirsch, M.W., Systems of differential equations that are competitive or co-
operative, II: Convergence almost everywhere. SIAM J. Math. Andl.
16:423-439 (1985).

[27] Huang, H., Castillo-Chavez, C., Cooke, K.L. and Levin, S.A., On the role
of long incubation periods in the dynamics of acquired immunode-
ficiency syndrome, Part 2:Multiple group models, In Mathematical
and statistical approaches to AIDS transmission and epidemiology.
C. Castillo-Chavez ed. Lecture Notes in Biomathematics, Springer-
Verlag, New York, 1989.



8

[28] Jacquez, J.A., Simon, C.P., Koopman, J., Sattenspiel, L. and Perry, T.,
Modelling and analyzing HIV transmission: the effect of contact pat-
terns, Math. Biosci. 92:119-199 (1988).

[29] Kermack, W.0O. and McKendrick, A.G., A contribution to the mathemat-
ical theory of epidemics, Proc. Roy. Soc. A 155:700-721(1927).

[30] Kolmogorov, A.N., Sulla teoria di Volterra della lotta per I'esistenza,
Giorn. Ist. Ital. Attuari. T:74-80(1936).

[31) Lajmanovich, L.A. and Yorke, J.A., A deterministic model for gonorrhea
in a nonhomogeneous population, Math. Biosci. 28:221-236 (1976).

[32] Li, C., Two problems of planar quadratic systems, Sci. Sinica, Ser. A
26:471-481(1983).

[33] Liu, W.M., Hethcote, H.W. and Levin, S.A., Dynamical behavior of epi-
demiological models with nonlinear incidence rates, J. Math. Biol.

25:359-380(1987).

{34] Liu, W.M., Levin, S.A. and Iwasa, Y., Influence of nonlinear inciednce
rates upon the behavior of SIRS epidemiological models, J. Math.
Biol. 23:187-204(1986).

[35] Lotka, A.J., Elements of Mathematical Biology, Dover Press, 1956.

[36] May, R.M., Stability and Complexity oin Model Ecosystems, Second Ed-
tion, Priceton Univ. Press, Priceton, NJ, 1974.

[37) May, R.M. and Anderson, R.M., Transmission dynamics of HIV infection,
Nature 326:137-142 (1987).

[38] Nold, A., Heterogeneity in disease-transmission modeling, Math. Biosci.
46:131-139(1980).

[39] Smith, J.M., Models in Ecology, Cambridge U. Press, London, 1974.

[40] Volterra, V., Principles of mathematical biology (English translation), In
Mathematical Essays on Growth and the Emergence of Form. P.L.
Antonelli ed. University of Alberta Press, Edmonton, Alberta, 1985.



CHAPTER 2

BIFURCATION ANALYSIS ON A -:CORAL STARFISH MODEL

2.1 Introduction.

Australian marine scientists became aware of the devastation of the Great
Barrier Reef (GBR) by coral eating crown-of-thorns starfish about 25 years ago.
This starfish, which preys on hard corals, has outbroken twice between the 60’s
and 70’s which caused large changes in coral reef communities. But still, there
has been no completely satisfying explanation of why massive outbreaks of the
coral eating starfish occur. The consensus opinion in 1981 and now was that
adult starfish aggregate via chemical cues in the relatively shallow confines of
the GBR. Thus any factor like fresh water run-off, pollution from land sources,

cyclones, etc. could trigger a massive outbreak.

Based on optimal growth of the reef skeleton and aggregation by starfish,
Antonelli and Kazarinoff formulated a mathematical model of ordinary differ-

ential equations

N o N(=2aN —6F + )
dt

(2.1.1)
% = F(28N +rF? —¢).

In this model, N and F represent the populations of coral and

starfish respectively; ) is the intrinsic growth rate of coral and € the
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intrinsic death rate of starfish. The coefficients a,6,8 and r have pre-
cisely defined chemical interpretation based on the Antonelli-Rhoades allomet-
ric plant response mechanism (Antonelli, 1985, Chapter 2D). The parameters
a,6,f and r are positive constants. The constant p in (2.1.1) is inter-
preted as density-dependent aggregation index and is taken to be close to one.
It is pointed out that this model is different from traditional population model
by the term rFP*! called the cooperative term. Here, r is explained as
an environmental control parameter depending only on the environmental fac-
tors which cause the aggregation of starfish. On the other hand, with power
p # 1, the aggregation coefficient of F2 is no longer constant. If p < 1,
the coefficient is relatively large with small population F, which increases
cooperation. If p > 1, the starfish decreases in cooperation while in small
population. Using the theory of Hopf bifurcation and Hassard’s computer code
BIFOR 2, Antonelli and Kazarinoff conjecture that there exists a family of
small-amplitude stable periodic solutions of this system for p <1 (Antonelli

and Kazarinoff, 1988).

Our purpose in this chapter is to present a mathematical proof of existence
of such periodic solutions. In order to do this, the theory of Hopf bifurcation is
employed. The environmental control parameter r is chosen as our bifurca-
tion parameter. Hence, any environmental change could trigger the populations
to cycle from their steady states according to the theory of Hopf bifurcation.

The rest of this chapter is organized as follows. In Section 2.2, we study the
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model (2.1.1) in the case p=1. Qualitatively, we give global phase portraits
of solutions of (2.1.1) for various values of r; from which we will see later
on that the model (2.1.1) is essentially different for p#1 and p=1. The
existence and uniqueness of a Hopf bifurcation is shown in Section 2.3. The
direction of the bifurcation is also determined: it is supercritical when p<1
and subcritical when p is slightly greater than one (the definitions are in
Section 2.3). Section 2.4 contains some numerical results: tables showing a nu-
merical link between the coefficients and the period of the bifurcated solutions
of the model; a figure providing evidence that periodic solutions with larger
amplitude could also exist as the environmental conirol parameter r passes

the bifurcation point.

2.2 Qualitative Analysis for the Case p=1 .

In this section, we consider the system

N _ N(-2aN —S§F + 1))
dt

(2.2.1)
%—Ft: = F(26N +rF —¢)

with N >0, F>0.

First, we make the following technical hypothesis:

HypPoTHESIS H

Br\—ae>0, éc—Ar>0.
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REMARK. If Hypothesis H fails, then either there is no equilibrium in the
positive quadrant or the equilibrium in the positive quadrant never changes its
stability. Both cases do not happen in the coral-starfish population dynamics

of the GBR. So the hypothesis above is pretty reasonable.

We now turn to the equations (2.2.1). It is easy to see that under Hy-
pothesis H, there is only one equilibrium, denoted by (Np, Fy), in the positive

orthant. In fact,
_BA—oae N_A—&Fo
T BE—ar’ 07 Toq

Fo

and Hypothesis H implies 86 — ar > 0.

Let us look at the Jacobian matrix A of (2.2.1) at (Ny,F,). Evi-

—2aNo —5No
A= .
2,3F0 rF 0

By simple calculation, we find that the real part of the eigenvalues of A

dently,

are zero if and only if

__ 2alo
=52,

and the imaginary part of the eigenvalues of A do not vanish at this point.
If we choose r as the bifurcation parameter there exists an unique Hopf
bifurcation at r =r;, where r.= E’rﬁ’“ (see Theorem 2.3.1.) Moreover, we

have
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THEOREM 2.2.1. For the equations (2.2.1), the Hopf bifurcation at r = r¢
is neutral. In fact, if r # r. there is no periodic solution and if r =r.

the equilibrium is a center (i.e. the solutions starting in a neighborhood of

(No, Fy) all are periodic).

PROOF. First, we suppose r #r.. Let
B(N,F)= N*1f*-1,

where

rath) ,_alr+d)
k_ﬂé—ar’ h—ﬂﬁ-—ar'

Then

2 IN(-2aN — 6F + \)B(N,F) + 5r{F(6N + rF - )B(N, F)]

_ Ar(a+B) —ae(6+ 1)

2(B6 — ar) BN, F)

= (rFy — 2aN)B(N, F) # 0.

By the Dulac criterion, there is no periodic nor homoclinic solution in the

positive orthant.

Next, suppose r =r,.
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In this case, we have a first integral of (2.2.1)
G(N,F) = N*F*(2aeN + r A\F — Xe) = const.
Therefore, every sclution lying in the triangle
N=0, F=0 and 2aeN+rAF—-)d=0

is a periodic solution. a

REMARK. From the first integral of (2.2.1) at r =r., it is not difficult

to draw the following global phase portrait.
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> <

FIGURE 1 r=r,

We now investigate the global structure of the system (2.2.1) when r#

re. Obviously, there are four equilibria in the positive quadrant and its bound-

ary:
A €
EO(O’ 0)) EI(EI-,O)’ E2(07 ;)

and E3(No, Fp)-

The equilibria E,, E; and E; are saddle points; E; is a sta-
ble spiral as r < r. and unstable spiral as r > r.. Next, we study the

singularity of (2.2.1) at infinity by using the Poincare transforms.
Under the Poincare transform with respect to the N-axis:

N=-, F=2, zdr=dt,

Ne
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we obtain J
T =ul2a+ ) +(r+8u—(A+e)]
(2.2.2)
dz
7= 220 + bu — Az).
Under the Poincare transform with respect to the F-axis:
N=2 F=1 Lir=a,
z z
f,’-; =v[~(6+7)—2(a+ B+ (A +¢)] (2.2.3)
dz
e 2(—r — 2Pv + €2).

So there are only two critical points at infinity in the extended positive orthant:

E4(oc0,0), which corresponds to z =0, u=0;

E5(0,00), which corresponds to z=0,v=0.

Calculating the Jacobi matrix of (2.2.2) at E,, we find that E; is
an unstable star node. The same argument shows Es is a stable star node.
Combining with the fact that no periodic nor homoclinic trajectories exist in

the positive orthant and the Poincare-Bendixson theory, we can conclude

THEROEM 2.2.2. If r <r, then the global phase portrait is as shown in
Figure 2a. If r.<r < §¢/), the global phase portrait is as shown in Fig-

ure 2b.
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F
) A
E,
Y Es
> < > < N
E, N (o} E,
E/N
(a) 0<Y <Y (b rc<r<5 /
FIGURE 2

2.3 Bifurcation Analysis for the Case p#1 .

As we see in Section 2.2, the bifurcation is neutral for p=1. However,

the situation is quite different for p# 1.

Let us first consider the equations

9N N(=2aN —6F +))
dt

(2.3.1)
%1:— = F(28N + rF? —¢)

with 0<p<1.
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We now assume B)\—ea >0, then the two functions

ea— fA

ar

z=FP and z=£éF+
ar

intersect at only one point in the positive orthant. Hence, there is an unique

positive solution Fy for

g, P
ar ar

Setting
A-8F

2 ’

Ny

then (Np,Fp) is an equilibrium of (2.3.1). Again, choosing r as the bifur-
cation parameter and letting B(p) be the maximal value such that

No>0 for 0<r< B(p), we have

THEOREM 2.3.1. There is a Hopf bifurcation for (2.3.1) at the value

provided 0<p<1.

REMARK. B(1) = %,

PROOF. From the last four equalities, it is easy to verify that 0<r, <

B(p).
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The Jacobi matrix of (2.3.1) at (No, Fo) is
—2C!No —6No
A(r)= .
2,3Fo rpF(f
Thus, the corresponding characteristic equation is
12 + (2aNy — rpF¥)p — 2arpNoFy + 2B6No Fy = 0.

Hence, the real part Rep of the eigenvalues is zero only if

2aN 0

TR

On the other hand, since
2ﬂ6NoFo - 2arcpNoF3’ = 2pNo(ﬂ/\ - 60!) + 2(1 - p)ﬂ&NoFo >0
the real part Repu of the eigenvalues is zero if and only if r=r..

Finally, we show the transversality condition, i.e.
d
7 (Re p)lr=r, > 0.
From the identity
raF} — B6Fo + A —ea =0

by taking derivative of it at r=r;, we get

dFy,  _ 2aN, F§ ™! o0
dr """ 7 2B6NoFy — 2ar.pNo FY )
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Hence

d d
= (Re 1) = == (rpF§ = 2aNo) o=,

dr
_1, dF;
= pFP + (6 +rp*FPFY) -&r—" r=rc > 0.

So all conditions in the Hopf bifurcation theorem are satisfied. Therefore,

the theorem is proved. O

REMARK. It can be seen from the above proof that if the parameter p

is slightly greater than one, Theorem 2.3.1 still holds.

Next, we are going to decide the direction of the bifurcation obtained from

Theorem 2.3.1 and the stability of the bifuréated periodic solutions.

Before stating our result, we give two lemmas. Interested readers may

find the proofs in [3,7].

LEMMA 2.3.2. [3]. Given a two dimensional analytic ordinary differential equa-

tion in polar coordinates

d
d—z = Ry(0)p* + R3(6)p° +....

27

Ry(6)d6 =0

and

2T
g5 = /o [Ra(6) + 2Ra(8)r2(6)]d6 £ 0,
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where
0
ro(6) = / Ry (6)d,
0
then, the origin is a spiral. Moreover, if g3 < 0( resp. >0), the origin is

stable(resp. unstable).

LEMMA 2.3.3. [7]. For a quadratic system

dz

i —~y + agoz® + anzy + dozy®

(2.3.2)
d
-(-i% =z+ bzo:!:2 + biizy + b02y2'

Let
A= agg + ap2, B= byg + boz

&= ay1 +2boz,  B=1bu +2az
and Wi = Aa - Bﬁ

If we rewrite (2.3.2) in the polar coordinates

d
% = Ba(6)0" + Rs(0)0° +..

then g3 =5 W1, where g3 is given in Lemma 2.3.2.

We now state and prove our result.

THEOREM 2.3.4. The Hopf bifurcation obtained in Theorem 2.3.1 is supercriti-
cal when 0< p<1. That is, as the bifurcation parameter r passes rc a

family of small amplitude periodic solution appears and each of them is stable.
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REMARK. We will see in the proof below that for the case p is slightly
greater than one the Hopf bifurcation is subcritical, that is a family of small
amplitude unstable periodic solutions appears when r approaches but is less

than r..

PROOF. We first bring the equilibrium (Ng,Fy) to the origin by

$=N—No, y=F—Fo.

The equations (2.3.1) become

%; = —2aNoz — 6 Noy — 2az? — dzy,

(2.3.3)
d
d_‘t’ = 28Fz + 2Py + (rcFo +y)[(Fo + y)° — FE).

Observing that g3 in Lemma 2.3.2 only depends on R3(6) and Rj3(6),

it suffices to consider the third-order terms of (2.3.3)

%:— = —2aNyz — 6Noy - 2az? - 633/1
dy
E{ == 2ﬂFo$ <+ 2aN0y + Zﬂzy
P + ]_ _ -1 + 1 -
+rep(=5)F Ty + rep(Z 5 )(%—)Fcf' .

Set

wo = [286No Fy — (2a:Np)?]M/?
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and

Then under the transform

have p DN,
d_u=_v+2aﬂ(p—' ) °u2_2ﬂuv
! ., n » (2.3.4)
+ 26%r.(p — 1)p(p + 1)Fy o
3wy ?
dv 2af(p — 1)N2
E:u—?.a[l+ wﬁ o]u2

+ u—% (4a® Ny + 20Ny — B6Fo )uv + 2av?
0

_40fire(p—Dp(p+ DNFT 5
3wo ‘

Hence, for the truncated system without the third-order terms, we have

W, = ‘_19’_3_(1';_%_12& [2(c — B)BENo NoFo + 40B(p + 1) N3]

where W, is defined in Lemma 2.3.3.

We now consider the system (2.3.4) and its truncated system in the polar

coordinates. Suppose they are of fc.mns
d
£ = aa(0)0 + as(0)0’
(2.3.5)

df .
- =1+h(@)p+ by(6)p*
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d
f_ = az(6)p’

db
E =1 + bl(o)p’

respectively, where a3(0) = ¢; cos?>sinf + c;sin?fcos§ for some constants

cg and e¢;.

Then by Lemma 2.3.3,

%Wl = "[_bl(a)az(o)+az(0)rz(9)]d0,

here

ra(6) = /0 ’ aa(s)ds.

Also, using Lemma 2.3.2, to compute g3 for system (2.3.5), we get

27
g3 = | [03(0) = b1(6)aa(6) + ax(O)rz(6))de

27 T
= / az(0) + 1 W
0

where

2 — p 2 _ "
as(0) = 22— Vple+ DI 1y 40fPr(p—1p(p + DNoF;

i 0.
o 30, sin @ cos
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So,

7B%r(p — 1)p(p + 1)F
gz =
2wo

3
+ZW1

_ 2raf?6(a+pB)(p— NGFs

3
Wy

Hence, when 0 < p <1, g3 <0. That implies the equilibrium (No, Fp)
is a stable spiral. Therefore, by the continuity of solutions with respect to
parameters and the Poincare-Bendixson theory, there exists a limit cycle near

(No,Fy) when r just passes rc. 0

2.4 Numerical Results.

In this section, we present numerical results obtained by applying B.D. Has-
sard’s Computer Code BIFOR2 and E. Doedel’s computer code AUTO to the
model (2.1.1). All the computations are performed on a Sun Workstation granted

by NSERC.

Using the code BIFOR2, we computed the equilibrium (No, Fo), the
basic frequency wp, the Hopf bifurcation point r¢, the direction of bifur-
cation g, the correction coefficient 7 to the basic period 27/wo, and
the stability exponent f; to the model (1.1) for the following ranges of pa-

rameters: « is from 0.05 to 5.0; . 8 is from 0.5 to 3.5; p is from 0.5 to

1.0, =05 =10, and A=20.
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The result are shown in Table 1-3. In each “cell”, the numbers in the first
column are, in order, values of Np,Fy, and r.. Those in the second column
are, in order, values of wy,10%u2, 72, and p;. Those results show that
as p decreases, the stability of the periodic, bifurcating solutions strengthens.

For fixed p, their period lengthens as either « decreases or f increases.

We next run the code AUTO on the Sun Workstation to trace the peri-
odic, bifurcating solutions for p=0.5, a=0.05 and B =0.5. The plots
in Figure 3 shows a relation between the norm of the bifurcating solutions and
the bifurcation parameter r. The norm chosen here is the usual Lj-norm
of the periodic solutions over one period. From it, we s;ae that the norm of
the bifurcating solutions increases rapidly as r passes the bifurcation point
rc. Thus the bifurcating, periodic solutions are very sensitive to changes in r,

which supports the observation in the G.B.R. in recent years.
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Solution norm
6.30 7.70 9.10
o | '] | J J ]

3.50 4.90

T T
0.013501

L ) i ] L | | ] 1 | ]
0.015101 0.016701
Parameter r

FIGURE 3

| ESUSSL
0.018301.
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CHAPTER 3
ASYMPTOTIC BEHAVIOR OF AN EPIDEMIC MODEL

WITH A TIME DELAY AND A NONLINEAR INCIDENCE RATE

3.1 Introduction.

To study the spread of an infectious disease in a constant population,
one usually divides the total population into three disjoint classes: susceptible,
infectious and recovered (removed). In the susceptible class, individuals can
incur the disease but are not yet infected. The infectious class consists of those
who are transmitting the disease to others. The recovered class consists of
individuals who have removed from the disease and have temporary immunity.
We denote the fraction of the population in each class at time ¢ by z(t),y(?)

and 2(t), respectively.

In recent years, various epidemiological models (so called SIRS models)
have been formulated to investigate such interactions between these three classes.
Hethcote [2] studied a model with a bilinear incidence rate fzy, where S
is the contact rate. Hethcote, Stech and van den Driessche [3] studied a model
with a bilinear incidence rate and a time delay in the recovered class, which
means individuals gain a period of temporary immunity right after recovering.
Liu, Hethcote and Lewis [6] considered a model with a nonlinear incidence rate
of form pJz%y?, where p and ¢ are positive numbers, but without time

delay. The model we will study in this chapter was proposed by Hethcote, Lewis
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and van den Driessche [5]. A constant time delay and a nonlinear incidence rate
are taken into account m this model. It is assumed that the incidence r»t/ is
nonlinear and is of the form Pzy?. The recovery rate of individuals in the
infectious class is proportional to the infectious fraction at rate v and then
the average infectious period is 1/y. Furthermore, a constant period w of
temporary immunity is introduced so that the probability, P(t), of individ-
uals remaining immune ¢ unit time after recoveringis 1 for 0<?<w,
and 0 for t>w. According to the above assumptions, Hethcote et al. [5]

developed the following epidemiological model

y'(t) = —vy(t) + ByP($)=(t) | (3.1.1)

2(t) = z(t) + 7 /0 t y(s)P(t — s)ds (3.1.2)

—z§(t) — Bz(t)yP(t), for t<w,
2'(t) = (3.1.3)
1y(t — w) — Bz(t)yP(t), for t>w,

where z(t) is the fraction of the initial population which is initially in the
recovered class and is still in it at time ¢. It is reasonable to assume 2o(t)

is a differentiable, nonincreasing function with 2z(t)=0 for f>w.

In [5), Hethcote et al. analyzed the model (3.1.1)-(3.1.3) to determine the
equilibria and examine their stability by varying the index p and the contact
number o = f/v. For the case p>1 in particular, they proved that there
exists a threshold value o* such that the number of positive endemic equilib-

ria is zero(resp. one, two) , when the contact number o is below(resp. equal
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to, above) the threshold value o*. They then examined the local stability of
the disease-free equilibrium in each case and the positive endemic equilibria in
the case of o > o*. Moreover, they gave a sufficient condition for the global
stability of the disease-free equilibrium. They showed that there is a positive
01 < o* such that if o « o1, the disease-free equilibrium is globally asymp-
totically stable. They further conjectured that the disease-free equilibrium is

globally asymptotically stable for all o < o*.

In the present chapter, we will solve this conjecture. Also, we will analyze
the asymptotic behavior of solutions of the model (3.1.1)-(3.1.3) as the contact
number o takes the threshold value o*. The results we will prove show
that there is no periodic solution when o = o*. Every solution tends to either

the disease-free equilibrium or the unique positive endemic equilibrium.

The organization of the rest of this chapter is as follows. In the next
section, we present some known results obtained by Hethcote et al.[5]. for the
model (3.1.1)-(3.1.3) and their conjecture. Section 3.3 and Section 3.4 are the
statements and proofs of our results. In the final section, we discuss our results

and compare them with the results of Hethcote et al.[5)].

3.2 Summary of the Previous Results and the Conjecture.

We are going to recall some results obtained by Hethcote et al. in [5)].

Before doing that, we reduce the model (3.1.1)-(3.1.3) to an equivalent scalar

integrodifferential equation.
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Since z(¢)+y(t)+2(t)=1 forall t>0,
y'(t) = —yy(t) + By (D)1 — y(t) — ()}

Replacing 2(t) by =2o(t) +7 fot y(s)P(t — s)ds and noting P(t) =1 for
t<w, and P(t)=0 for t>w, we can write the following equivalent

integrodifferential equation: for t<w,
t
y'(t) = —vp(t) + By ()1 — y(t) — zo(t) — v /0 y(s)ds], (3.2.1)

and for &> w,

t

y(t) = —1(t) + B @1 - ¥(t) — 7 / y(s)ds]. (3:22)

t—w

Obviously, y(t)=0 is always an equilibrium of (3.2.1)-(3.2.2) This cor-
responds to the equilibrium (z,y,2) =(1,0,0) for (3.1.1)-(3.1.3). We call it
the disease-free equilibrium. It is easy to see that a solution of (3.2.1)-(3.2.2)
tends to an equilibrium if and only if the corresponding solution for (3.1.1)-
(3.1.3) tends to the corresponding equilibrium. Hence, studying the stability of
equilibria of the model (3.1.1)-(3.1.3) can be done by studying the stability of

equilibria of the equation (3.2.1)-(3.2.2).

It can be shown that the initial value problem of (3.2.1)-(3.2.2) is well-
posed and the interval [0,1] is a positive invariant set and an attractive region
for all nonnegative solutions. Moreover, the maximal interval for every nonneg-

ative solution is [0,00) (cf. [5]). Besides that, by analyzing the equation
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(3.2.2), Hethcote and his collaborators established the following theorems. We

refer the interested readers to [3] and [5] for the proofs and more details.

THEOREM 3.2.1. If p < 1, then the disease-free equilibrium is unstable. If
p =1, then the disease-free equilibrium is globally asymptotically stable for

oc=f/vy<1 andunstablefor 0 >1. If p>1, the disease-free equilibrium

is locally asymptotically stable.

THEOREM 3.2.2. Let o* =pP(1+r)P~1/(p—1)P"! where r=w. For the

equation (2.1)-(2.2), if
(i) p<1, then it has one positive equilibrium,
(i) p=1 and o<1, then it has no positive equilibrium,
(i) p=1 and o >1, then it has one positive equilibrium,
(iv) p>1 and o <o* then it has no positive equilibrium,
(v) p>1 and o=o0* then it has one positive equilibrium,

(vij p>1 and o >o*, then it has two positive equilibria and the smaller

positive equilibrium is locally asymptotically stable.

REMARK. In the cases (i), (iii) and (vi), the stability of the positive

equilibrium (the larger positive equilibrium in (vi)) depends on the value of
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o. Hetheote et al. have proved there is a Hopf bifurcation near it when one

properly chooses the value of o. (See [3] and [5].)

THEOREM 3.2.3. Let oy =p?/(p—1)P"1. If p>1 and o0 <o), thenall
solutions of (3.2.1)-(3.2.2) which start in [0,1] approach to the disease-free

equilibrium.

Based on this theorem, Hethcote et al. further made the following con-

jecture.

CONJECTURE: If p>1 and o <o*, then the conclusion of Theorem 3.2.3
is still true, i.e. all solutions of (3.2.1)-(3.2.2), starting in [0,1], approach to

the disease-free equilibrium.

3.3 Global Stability of the Disease-free Equilibrium when p>1 and

c<o* .

In this section, we will study the asymptotic behavior of solutions of
(3.2.1)-(3.2.2) when p>1 and o <o*. We will prove that if p>1 and
o < o*, all nonnegative solutions will approach to the disease-free equilibrium.

As a consequence, the conjecture of Hethcote et al. is established.

First, we introduce a definition, which will be used in our proofs.
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DEFINITION: Let f(t), t € [0,00), be a continuous function. f(t) is said
to be eventually (strictly) monotonic if there is a positive T > 0 such that

f(t) is (strictly) monotonic for t>T.

We now state and prove our results.

THEOREM 3.3.1. Suppose p >1 and o < o*. Then, every nonnegative
solution of (3.2.1)-(3.2.2) is an eventually decreasing function and it tends to

the disease-free equilibrium.

To prove Theorem 3.3.1, we need the following lemmas.

Let y(t) be a nonnegative solution of (3.2.1)-(3.2.2). Since [0,1] is
the attractive region, without loss of generality we may assume 0 < y(¢) < 1.
Define

6 =min{y(t); t € [(n - 1w,7w]}, n=12,....

Then, for each n, thereisa t, €[(n—1)w,nw] such that y(t,)= 6.

LEMMA 3.3.2. Suppose p>1 and o <o* Then, y(t) is an eventually

decreasing function or t, #nw forall n=1,2,---.

PRrROOF. If t,=nw for some n, then

y(ta) < y(t), t€[(n—1)w,nw].
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Thus

tn

Y'(tn) = —7y(ta) + ByP(ta)[1 - y(tn) — 7/ y(s)ds]

tn—w

< —y(ta) + BP(ta)1 - (L4 Yu(ta)] (sincetn =)

< yylta)( -1+ ;,07)-

The last two inequalities become equalities if and only if y(#)=0 or

y(t) = (p—1)/p(14r). In these cases, y(t)- is already an eventually decreas-
ing function. Hence, we assume that y(t) is not either one. So, we have
y'(tn) < 0. This implies that there is a #' >t, such that y(¢) is a strictly

decreasing function on |{tn,t").

Let
T, = sup{t';y(t) strictly decreases on [ts,t')}.
If T, <oo, then T, isa minimal pointof y(t). Thus, y'(T,) =0, and
y(Tp) <y(t) on [ta—w,Tn). Inparticular, y(Ta)<y(t) and y(Tn) #y(t),

for t€[Tn —w,Ty). Therefore, we have

Tn
V(T) = —1u(T) + BT~ o(T) =7 [ (o)

< —7y(To) + By?(Tw)[1 = (1 + r)y(Tn)]

<IN~ 14 ) S0,
which contradicts to y'(Ty) =0.

Hence, T, =oo. Consequently, y(t) isan eventually strictly decreas-

ing function. We complete the proof. 0
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LEMMA 3.3.3. Suppose p>1 and o <o*. K t, #nw, forall n=

1,2,--., then ép431>6, foral n=1,2,....

PROOF. If 6,41 <6, for some n, then 6,41 is the minimal value
of y(t) in [(n—1)w,(n+1)w]. From tn41 #(n+ 1w, t, € (n—1)w,(n+

1)w). Thus y'(tn41) =0. Again, we have

tn-l-l
Y (tn41) = ~vy(tns1) + By (tns1)[L — y(tat1) —7 /; y(s)ds]
n41—W
o
<7(tar)(~ 1+ =) <0,
a contradiction to y'(¥p41) =0. Hence the lemma is proved. a

LEMMA 3.3.4. Under the condition of Lemma 3.3.3, we have

1 o
5n+1—6n>;7(1—; .

PROOF. Since tn41 is a minimal point in [nw,(n+1)w] and tp41 #
(n + 1w,
¥'(tnt+1) 2 0. On the other hand,

tn-l-l

¥ (ta+1) = =7Y(Ent1) + BYP(tnt)[L — Y(tns1) — 7 / y(s)ds).

tny1—w

By Lemma 3.3.3, 6, is the minimal value in [(n — 1)w,(n+ 1)w]. Hence,

Y (tn+1) < =Von41 + B84 411 = Sntr — 76,

= ¥nt1{~1+ 065 1[1 — (1 +1)bns1 + r(6ut1 — En)]}.



41

From y'(tn+1) 20,

or(bny1 — 6n) 2 ar&ﬁn(&,.ﬂ - &a)

>1-0831[1 — (1 +7)bnt1]

ie.

LEMMA 3.3.5. f p>1 and o <o*, then y(t) isan eventually decreasing
function.
PROOF. If not, by Lemmas 3.3.2 and 3.3.4,
1 o
6n+1 — b > ;—r'(l - ;—:) > 0.

Thus, nll'n;o 6, = 00, which is impossible because y(t) is bounded. Therefore

we prove the lemma. a

PROOF OF THEOREM 3.3.1. From Lemma 3.3.5, we know that every
nonnegative solution y(f) of (3.2.1)-(3.2.2) is eventually decreasing. Let yo

denote the limit of y(t), as
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t = oco. Since y(t) and y'(t) are bounded, we have tlixgo y'(t) = 0. Hence,

let t— 0o in the equation (3.2.2), we obtain
—yyo + Byd[1 — (1 +r)ye] = 0.

But, for p>1 and o0 < o* only y =0 satisfy this equality. Hence
Yo = 0. This implies

lim y(t) = 0.

t—00
Therefore, the disease-free equilibrium is globally asymptotically stable to all

nonnegative solutions for the equation (3.2.1)-(3.2.2). O

3.4 Asymptotic Behavior of (3.2.1)-(3.2.2) when p>1 and o=o0*.

Theorem 3.2.1 shows that when p>1, o* is a bifurcation point for
the equation (3.2.1)-(3.2.2). The equation (3.2.1)-(3.2.2) has zero, one and two
positive equilibria when & <o*,0 =0¢* and o >0*. Moreover, in the case
o = o*, the unique positive equilibrium is degenerate, i.e. the characteristic
equation for its linear variational equation has a zero eigenvalue. Hence, the
stability of the positive equilibrium becomes very difficult to determine. In
'this section, we will show that if a nonnegative solution does not approach to
the positive equilibrium, it must approach to the disease-free equilibrium. In
other words, the feasible region is split into two disjoint regions: the attractive
region of the positive equilibrium and the attractive region of the disease-free

equilibrium. Furthermore, we give an estimation of the attractive region of the

disease-free equilibrium.
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When p>1 and o=o0* by Theorem 3.2.2, the equation (3.2.2) has
two equilibria: the disease-free equilibrium y =0 and the positive equilibrium

y=v.=(p—1)/p(1+r). In this situation, we have the following

THEOREM 3.4.1. Let y(f) be a nonnegative solution of (3.2.1)-(3.2.2). Then,

there are only two possibilities:

(i) y(t) is an eventually decreasing function and tends to one of the equi-

libria,
(i) y(t) is a damped oscillation and tlingo y(t) = Ye.

Therefore, there is no periodic solution for the equation (3.2.1)-(3.2.2).

PROOF. If y(t) is an eventually decreasing function, proceeding as in
the proof of Theorem 3.3.1, y(f) tends to one of the equilibria. Hence, (i) is

true.

If y(t) is not an eventually decreasing function, by Lemma 3.3.3, 6p41 >

b for n=1,2....
Thus, there is no periodic solution in either case.

We now prove that if y(t) is not eventually decreasing,

Jim 406 = ve



First,we claim that litm inf y(t) = ye.
—00

Otherwise, since {6,}32, is a strictly increasing sequence, by Lemma
3.3.3, there is a positive u such that |6,—I| >y, n > N for some integer
N. Noting that the function yP~!—(1+r)y? takes the unique maximal value
1/0* at y=y., we have

- —€
- (1+r)8hy, < - 2N,

for some positive e.

Thus, from the proof of Lemma 3.3.4,

1 -
bntr =8 > —— {1~ o*6h3 1l = (1+ r)6ppa]}

€
o*r

>

Hence, y(t) is unbounded, which is impossible. Therefore, we must have

litrg’ing y(t) = L.

By defining that
en = max{y(t);t € [tn —w,t4]}, n=1,2,...,

there is s, € [t, —w,t,] such that y(s,) =¢&,. We now claim lime, =
n—+00

Ye-
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If not, then there is a p > 0 and a subsequence, assumed to be
{n}52, itself without loss of generality, such that y(sp) > ye+3p. Observ-
ing from (3.2.2) that y'(t) is bounded, y(¢) is a Lipschitz function. Hence,
thereisa >0, independent of n, such that [t,—w, t,] contains a subin-
terval A, whose length is greater than a and on which y(t) > ye +2p.
Since 11Lng° 6. = ye, there is an integer N such that y(t) > ba+p for

t€Apy1, and n>N. Thus we have

y'(tn+1) = ’Y!l(tn+l){"1 + a"‘y”"l(tn+1)[1 — y(tnt1) — 7/ " y(s)ds]}

t 41w

< Ybnp1[~1+0"6031(1 — bat1 — r6a — vop)).
Because

im [-1+ 0*6271(1 — bn41 — 76n —yap)] = —a*yapy?™! <0,

n—oo

for sufficiently large n, y'(ta) <O , which contradicts that tn41 # (n+1)w.
Therefore, Lim s = ¥e. From tpy1# (n4+l)w, 1w € [tnp1—w,tapa]. We

in particular have nllngo y(nw) = ye.
Third, we claim that for any %o >0, nango y(to + nw) = Ye-

Obviously, the function §(t) = y(t +t) is a solution of (3.2.2). Hence,
the lemmas in the last section and the above statements remain true for #(2),

especially, nl-l—vlgo §(nw) = ye. This implies nango y(to + rw) = Ye-

Finally, we prove that limsup y(t) = ..
: t—o0



46

If there is p > 0 such that liiriil;p y(t) > ye + p, then there is a
sequence {3,}32, such that s, — o0, as n— oo, and y(s,)> Y.+ p.
Suppose 8, = knw+s),, where k, >0 isan integer and s, € [0,w). Then
there is f; € [0,w] and a subsequence of {s|}, denoted by {s} again

w.lo.g., such that lin;o s, =15. Hence,
n—

lim [tg + kpw — 85| = 0.
n-—o0
Recalling that y(t) is a Lipschitz function,
Jm y(to + knw) = Lm y(sn) 2 ye + 4 > ve.

This is impossible because lirr;o y(to + nw) = y.. Therefore, Limsup y(t) =
Lians t—o0

Ye-

With htmtx.}f y(t) = y., we have tlim ¥(t) = y.. Our proof is com-

pleted. O

It is now natural to ask how to locate the attractive regions of both
equilibria. In general, it is difficult to do so partially because they depend on
2o(t), the fraction of the initial population which is initially recovered and still
stays in the recovered class at time f. But the next theorem give us some

information about the attractive region of the disease-free equilibrium.

It is easy to see the equation P! —yP = L has exact two positive

roots. Let y; be the smaller root. Then we have
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THEOREM 3.4.2. Let y(t) be a nonnegative solution of (3.2.1)-(3.22). If
there is ty such that y(to) € [0,11], then y(t) € [0,31] for t =1 and
tlilixo y(t) =0. In particular, if y(0) € [0, yﬂ,}ir& y(t) =0. Therefore, [0,y1]

is a positive invariant, attractive region for the disease-free equilibrium.

PROOF. Since y; < y., the disease-free equilibrium is the only equi-
librium lying in [0,31]. Hence, it suffices to prove that if y(to) € [0,1],

then y(f) is a decreasing function for ¢ 2>%. This is true because for any

y(t) € [0,1),

t

y'(8) = ~u(8) + BP ()1 - v(t) — 7 / y(s)ds|

t—w

< yyB-14 0"y (B -y < 0.

The proof is completed. O
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CHAPTER 4
GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM

IN AN EPIDEMIC MODEL WITH SUBPOPULATIONS

4.1 Introduction.

The following system of 3n autonomous ordinary differential equations
has been widely used in the study of the spread of infectious diseases (see [5],
(13], [10], [6], [12], and [7]). It includes the general SI, SIS, SIR and SIRS

models used in mathematical epidemiology and it takes the form

ol = bi(Ni — 23) — 2 ) _ Aijyj + Kizi
J

yi = —(v +b:)yi + Ziz Xijy; (E=1,---,n) (4.1.1)
j

2= —(bi +k)zi +vivi
where z;(0),y;(0) and 2(0) > 0 . Here z; (resp. ;i ; Tesp. zi )
denotes the number of susceptible (resp. infected; resp. recovered) individuals
in the i -th subpopulation. N; (resp. b; ; resp, 7 ;resp. ; ) is the
total size (resp. birth and death rate; resp. recovery rate; resp. rate at which
recovered individuals loses immunity) for the i -th subpopulation. JA;; is
the effective contact rate between individuals in the i -th subpopulation with

individuals in the j -th subpopulation. All the parameters Nj,bi, i, Kiy Aij

are assumed to be non-negative.

It was pointed out in [9] that a major unsolved problem in mathemati-
cal epidemiology is to determine if the endemic equilibrium of (4.1.1), i.e. an

49
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equilibrium of the form (z*,y*, 2*) where =z!,yf,2 >0 , is globally stable.
In this paper we will make a contribution to this global stability question by
showing if 33~ <1 for all i , then the endemic equilibrium (if it exists)

is globally stable.

The rest of the chapter is organized as follows. In Section 4.2, we set up
the necessary notations and state some known results concerning the behaviour
of solutions of (4.1.1).. We also include new proofs for the existence, unique-
ness and local asymptotic stability of the endemic equilibrium. The question of
uniform persistence (as introduced in the mathematical population biology lit-
erature) will be considered in Section 4.3. It is shown that (4.1.1) is uniformly
persistent if and only if the endemic equilibrium exists. In Sections 4.4, the
global stability question will be considered. The endemic equilibrium is shown
to be globally stable under the assumption of small recovery rates for each

subpopulation.

4.2 Some Known Results with New Proofs.

In this section, we will recall some known results concerning (4.1.1) which
were proved in [6] and [7]. We will also present new proofs for the existence,

uniqueness and local asymptotic stability of the endemic equilibrium.

From now on, we will always make the following assumptions on the pa-

rameters:
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(H1) N;>0 forall :,

(H2) ;>0 forall ¢,

(H3) b;+ ;>0 forall i ,and

(H4) X\;j=>0 forall i,j and Aij=0 if and only if Xji =0 .

Also, we will only be interested in (4.1.1) on the positive cone R . It

is easily seen that R3" is positively invariant under (4.1.1).

Let z=(21,"*+%a) » Y=, " %) » 2=(21,"" ,2y) and N =
(N1,-++ yNn) . Hweset w= z+y+z , then by (4.1.1) w} = by(N; — w;)
so that wi(t)— N; as t— oo . Since the set

S={(z,y,2) R} :z+y+2z=N}
is positively invariant under (4.1.1), we can reduce (4.1.1) to a system of 2n
equations

yh = ~(bi + % )yi + (Ni—yi — )Y Ny
i (4.2.1)

zi = —(bi + Ki)zi + iy
Due to the reduction from (4.1.1) to (4.2.1), we will only be interested in

solutions of (4.2.1) lying in
B={(s,2) R :y+2<N)
Clearly, the origin Eg = (0,0) € R?™ is an equilibrium for (4.2.1) and it is

called the disease-free equilibrium. Let

Au oo /\1,,
A= - (4.2.2)
Aat -o- Ann
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N1/\11 e N]Aln
;\=( A ) (4.2.3)
Nodnt .. Nadpn
and
—(bl""‘)’l) 0
A= +A . (4.2.4)

0 e _(bn +7n)
It follows from Perron-Frobenius theory that the eigenvalue, s(A) , of A

with the largest real part is a real number.

THEOREM 4.2.1.[6] The set B is positively invariant under (4.2.1). If
8(A) <0 , the no-disease equilibrium E, is globally asymptotically stable on

B . If s(A)>0, E, isunstableon B .

THEOREM 4.2.2.[7) Assume A is irreducible and s(A) > 0 . Then
there exists a unique equilibrium E* = (y*,z*) , called the endemic equilib-
rium, in the interior, B , of B . Furthermore, E* (if it exists) is locally

asymptotically stable.

We will give a new proof for Theorem 4.2.2 by means of the following

theorem.

THEOREM 4.2.3. Given a system of ordinary differential equations
u:’ = -Fi(uh tee aun) (z =1,-- 9") (4'2'5)
where F=(F,---,F,) is C' and u=(uj,---,u,) € R_',‘_ . Assume

@) 20 (i#)),



53
(i) uw>v >0 implies DF(v) 2 DF(u) , where DF(u) . denotes the

derivative (Jacobian) of F at u , and

(iii) given any €¢>0 , there exists a vector v € R® such that 0<v;<e€

forall ¢ and F(v)>0 .

Then (4.2.5) has at most one positive equilibrium. If there is no positive
equilibrium, every solution is unbounded. I there is a positive equilibrium, this

equilibrium is globally asymptotically stable over R_'; .

REMARK. The statement above is a slight modification of Theorem 2.1 in [14].

It can be proved in a similar way.

PROOF OF THEOREM 4.2.2. To find an endemic equilibrium for (4.2.1)

is equivalent to solving
—(bi + )i + (Vi — i — ) D Nijyi =0 (4.2.6)
j
and
—(bi + Ki)zi +viyi =0 (4.2.7)

where y;,z; >0 and y;+2z <N; forall . From (4.2.7), 2= g35;¥i -

Substituting this into (4.2.6), we obtain

Ni Y op Nikyk B
(b +7) + (11Ld-'7‘)‘§k e T 0 . (4.2.8)

Denote the left hand side of (4.2.8) by Fi(y) and consider the system

y: = Fi(yla'” ,yn) (l = 1,.-- ’n), (42.9)
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We now verify hypotheses (i), (ii) and (iii) in Theorem 4.2.3 for system (4.2.9).

First of all,

OF; _ (bi + 7)) NiXij Y
Oy; (b +7)+Q+5E ) X daw Y

1

where §6;; is the Kronecker delta. Thus (i) is satisfied. ‘Since g—i_i is de-

creasing with respect to each of its variables y;,---,y, , (ii) is also satisfied.
As for (iiil), since A is an irreducible matrix with non-negative off-diagonal
entries, there exists a positive eigenvector v =(v;,---,v,) >0 corresponding
to the eigenvalue s(4) , i.e.

—(bi +7iJvi + N Y Nijuj = s(A)y;  forall i=1,---,n.
j

Hence, for any number p>0 ,

Fi(pv) = poils(A)N; — poi(1 + $3=)(s(4) + b; + %))
= T+ )N + poiL+ 525 ) () + 5 F 1)

Now s(A) >0 implies Fy(pv) >0 for p sufficiently small. Thus (iii)
is also satisfied. Finally, since Fi(y1, -~ ,ya) < Ni—yi , (4.2.9) cannot have
unbounded solutions. The existence and uniqueness of the endemic equiﬁbrium,
E* , for (4.2.1) now follow immediately from Theorem 3.2.3. Of course, one

needs to show yf+2} <N; for all i but that is clear from (4.2.6).

To demonstrate the local asymptotic stability of the endemic equilibrium,

we first note that by (4.2.6)

—(bi+ %)y + Wi —y? —23)) Xijy} =0 (i=1,---,n). (4.2.10)
i
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Let
(—(bl’i"h) 0
M=
\ 0 "(bn+7u)
4211
(Ni—yf—2 - 0 ( )
+ A
\ 0 Mi-y-z

Then M is irreducible and has non-negative off-diagonal entries. Moreover,
by (4.2.10),. My*=0 . Thus s(M)<0 (cf Lemma 4.4.1). Consequently,
there exists a diagonal matrix C = diag{cy,--+,cn} with positive diagonal
entries, i.e. ¢; >0 forall i ,such that s(CM+M'C)<0 (cf Lemma

4.4.3). The Jacobian matrix of right hand side of (4.2.1) at E* is given by
_(M+JT J
where J= diag {—Y;Mjvfr = Z;dejyi} » T= diag {71, 7}

and K = diag {—(b1+ 1), - ,—(bn + kn)} . Define S = diag{C,D} ,

where D = diag{dy,--,dn} and dj=23; Aijy; >0 . Then

te_ (CM+MIC+2CT 0
SQ+QS“‘( 0 DK

Since

CJ = diag{"‘cl Z Auy;, eee y—Cq Z An,]y;} ’
j J

. by + . bo +£ o
DK = diag{~ 211 51) ‘7 1 k1) ) :'\ljyja"'a"cn( " Y it}
j " j

and s(CM + M'C) <0, therefore SQ+ Q'S is a stable matrix. A well

known theorem of Liapunov (see [11]) shows that @ is a stable matrix. Hence

the endemic equilibrium is locally asymptotically stable. a
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REMARK. In the case when A is reducible, system (4.2.1) decouples into two
or more (smaller) irreducible subsystems, by (H4). We can then apply Theorem
4.2.2 to each of these irreducible subsystems. Thus, the endemic equilibrium,
if it exists, must be unique and is locally asymptotically stable. Moreover, the
endemic equilibrium exists if and only if s(Ax) >0 for all &k , where Ax

is the A for the k& -th irreducible subsystem.

THEOREM 4.2.4. K A is irreducible and s(A) > 0 , then there is a
unique positive equilibrium (z*,y*,2z*) of (4.1.1) and it is locally asymptoti-

cally stable.

PROOF. The existence and uniqueness of the positive equilibrium is clear.
In fact, z}=N;—y}—2! for all i . To show its asymptotic stability, we

use the ’equivalent’ system
w; = by(N; — w;)

vi=—(%+ by + (Wi -9 —2)) Xy (i=1,-,n) (4.2.12)
i

7 = —(bi + £i)zi + Yiyi
Clearly (z,y,2) = (z*,y*,2*) is an asymptotically stable equilibrium for

(4.1.1) if and only if (w,y,2) = (N,y* 2*) is an asymptotically stable equi-
librium for (4.2.12). But the latter follows immediately by linearizing (4.2.12)

about (N,y* 2*) and making use of Theorem 4.2.2. O

REMARK. As was pointed out in the Remark following the proof of Theorem
4.2.2, one can show that the endemic equilibrium for ‘(4.1.1), if it exists, is

asymptotically stable, irrespect of whether A is irreducible or not.
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4.3 Uniform Persistence.

In the last section it was shown that the endemic equilibrium is locally
asymptotically stable when it exists. Hereafter, we will study the global asymp-
totic behavior of solutions of (4.2.1) in the positively invariant set B . In this
section, we will show that if the endemic equilibrium exists, then the number
of each group (susceptible, infected and removed) in each subpopulation will
remain above a certain positive level. In other words, each group in each sub-
population persists. If, in addition, A is irreducible and the disease exists in

any subpopulation, then it will spread immediately to all subpopulations.
Let
B] = {(0,-.. ’0,21,-.. ’Zn) :0 <z < N" (i = 1,-.. ,n)}

Then B, is positively invariant under (4.2.1) and is negatively invariant rel-

ative to B . B; is referred to as the disease-free set.

Our first result says that if the disease exists in any one of the subpop-
ulations, then it will spread immediately to all subpopulations and remains in

every subpopulation from then on.

'HEOREM 4.3.1. Assume A is irreducible. Let (y(t),z(t)) be a so-
of(421)in B . If (y(0),2(0) € B\ By , then (y(t),2(t)) € B for

2 t>0 , wiere B denotes the interior of B .

Before we can prove this theorem, we need the following lemmas.
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LEMMA 4.3.2. If (y(0),2(0)) € B , then (y(t),2(t) € B for all t>

PROOF. Introduce the sets

D, ={(y,2)€B:0<2< N,y; =0 for some i} |,

D;={(y,2)€EB:y>0,zi=0 for some i} and

D3 ={(y,2)€EB:y;+2=N; and 2z >0 for some i}
Then the boundary, 0B , of B can be expressed as 0B =D, UD,UD; .
We first show that the solution (y(t),2(t)) cannot reach the set D, at
any finite (positive) time. Suppose not, i.e. suppose the solution reaches D,
at time %o >0 . Then y(f) >0 and 2i(fp) =90 for some i . Since
zi(t) 2 0 for all >0, 2zi(%)=0. On the other hand, zi(t,) =
~(bi +£:)zi(to) +vivi(to) = 7iyi(fo) > 0 , which is a contradiction. Similarly,
if the solution meets Dj; at some finite time o , then yi(t)+zi(to) = N; ,
zi(to) >0 and yi(to) + 2{(to) =0 for some i . However, yi(to)+ 2i(to) =
~biyi(to) — (bi + £i)zi(te) = ~b;N; — kizi(ty) < 0 , which is also a contra-
diction. Finally, we show that the solution (y(t),2(t)) cannot reach the set
D, at a finite time. Again suppose not. By permuting the indices 1,--- R
if necessary, we may assume y;(to) =--- = y,(ty) =0 and Yi(te) > 0 for
t=38+1---,n ,forsome tH) >0 ,where 1<s<n. I s=n , then
i(t) =~ =yu(te) =0 , ie. (y(to),2(ts)) € By . Since B; is negatively

invariant relative to B , (y(0),2(0)) € B, which is a contradiction. Thus
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s<n . As before, yi(to)=---=yi(t)=0 ,ie.

~(bi + 7i)yi(te) + (N; — yi(to) — zi(t0)) Z /\.'jyj(to) =0 forall t=1,---,s.
j

Since for i=1,---,8 , yi(to)=0 and zi(ty) <N; . Therefore,
ij\.-,-y,-(to) =0 forall i=1,---,8. Now uyj(to) >0 foral j=
s+1,---,n , implies that X;;j =0 for all ¢ =1,---,s and . j = s+
1,---,n . This contradicts the assumption A is irreducible. Hence the so-
lution (y(t),2(t)) cannot reach 8B at a finite time and thus it must lie in
B. 0
LEMMA 4.3.3. If (y(0),2(0)) € 3B\ B, , then there exists §>0 such

that

(v(t),z(t) € B forall 0<t<é . (4.3.1)

PROOF. Clea.rly, 0B \ By = (Dl \Bl) UDy, U (D3 \Bl) . Let
Di={(y,z)€B:yi=0 and z;=N; for some i}
Since DgycD; and ByN (Ds \ D4) = ¢ , we can divide into three cases.

Case 1. (y(0),2(0)) € Do U(D3\ Dy) . (4.3.1) follows easily because y(0) >
0 , therefore z!(0) >0 whenever 2(0)=0 and y}(0)+2{(0) <0 whenever

i(0) + z(0)=N; and z(0)>0 .
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Case 2. (y(0),2(0)) € D, \ B, . By reordering the indices 1,---,n if nec-
essary, we can assume ¢;(0)=-:--=y,(0) =0 for some 1<s<n and
yi(0) >0 forall ¢=s+41,---,n . Then there exists a &§ >0 such that
yi(t) >0 ,forall 0<¢t<§ and i=s+1,---,n . Claim: ;(f)>0 forall
0<t<éd and i=1,---,s8 . Suppose not, then thereis 0 <t <6 such
that yi(t') =0 for some 1< i< s . By reordering the indices 1,---,s
if necessary, we can assume y(t')=-:-=y,(t') =0 forsome 1<v<s
and wit') >0 forall i=v+13i,---,s . Using ths same .z ument as in
Lemma 4.3.2, we obtain yj(¢') =--- =y, (#) =0 . This implies };; =0 for
all é=1,---,v and j=wv+1,--,n , which contradicts the irreducibility

of A.

Case 3. (y(0),2(0)) € D4\ B; . By reordering the indices 1,---,n if nec-
essary, we can assume %;(0) =---=4,(0)=0, z(0)=N;,---z(0) =N, ,
and z{(0) < N; forall i=s+1,---,n . Since z!{(0) = —(bi+x;)N; <0 for
all i=1,---,s ,thereisa &§>0 suchthat z(t)<N; forall 0<t<§
and for all ¢=1,.--,n . K (3.3.1) does not hold, there exists 0 < # < §
such that y;(#) =0 forsome 1<i<s . By reordering the indices 1,---,s
if necessary, we can assume y;(t')=---=y,(t') =0 for some 1<v<s .

Repeating the argument as in case 2, we obtain a contradiction. a

PROOF OF THEOREM 4.3.1. Let (y(0),2(0)) € B\B; . If (y(0),2(0)) €

B, then (y(t),2(t) € B for t >0 by Lemma 4.3.2. If (y(0),2(0)) €
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OB\ B; , by Lemma 4.3.3 there exists § >0 such that (y(t),2(2)) € B for

all 0<t<é . Hence (y(t),z(t))€B forall t>0 . O

It is known that if s(A) < 0 then the no-disease equilibrium Eg ‘is
the unique equilibrium and it is globally asymptotically stable on B . When

s(A) >0 , we have the following result.

THEOREM 4.3.4. If A is irreducible and s{A) > 0 , then (4.2.1) is
uniformly persistent in B with respect to OB . That is, thereisa 7> 0
such that liminf, ..o yi(t) =7 , liminfe.2i(t) 29 , and limsup, yi(t)+

zi(t) < Ni—n , for all solution (y(t),z(t)) with initial condition in B\B, .

The biological interpretation of Theorem 4.3.4 is that if the threshold,
s(A) , exceeds zero, the disease will not only exist in every subpopulation but
in fact the number of individuals in each group (susceptible, infectious and
removed) will always remain beyond a certain positive level 17 . The proof of
Theorem 4.3 * depends on a theorem in [8] which we will state below for the

sake of easy reference. (See also [1] and [4]).

Let X be a metric space with metsic d , f:&X — & be continuous
and YCA beclosed with f(X\Y)C X\Y . Suppose X has a compact
global attractor X and let M be the maximal compact invariant set in

Y . Then we have
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THEOREM 4.3.5.[8] f is uniformly persistent with respect to Y if

and only if
1. M isisolated in X , and

2. W(M)CY , where W*(M) denotes the stable set of M .

PROOF OF THEOREM 4.34. Let X=B , Y =0B and f be the
time one map of the flow defined by (4.2.1). It follows from Thecrem 4.3.1 that
f(X\Y)C X\Y . Cleatly X =w(B) , where w(B) isthe w -limit set of
B is a global attractor of X . Let M be the maximal compact invariant

setin ) .
Claim: M = {Eo} .

Suppose not, then there exists (3°,z%) € M and either (i) (y°,2°) € B\ B;
or (ii) (¥°%2°) € By \ {Ey} . Let (y(t),2()) be the solution with initial
condition (3% 2°) . If (i) holds then (y(t),2(t) € B , by Theorem 4.3.1,
contradicting M C 0B . On the other hand, if (ii) holds then the solution

must take the form
(y(t), 2(t)) = (0,--- ,0, cle‘“’l"’"l)‘,... ¢ e—(b,.+n,,)t)

where ¢;,-+-,c, are not all zero. Clearly for ¢ sufficiently negative,

(y(t),2(t)) ¢ B , which contradicts the invariance of M .
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In order to show uniform persistence, it suffices to verify conditions 1

and 2 in Theorem 4.3.5. We__ will do this by constructing a suitable Lyapunov
function. Let V(y) = v‘y- where v = (v1,---,vn) is a positive eigeavectsr
of A! corresponding to the eigenvalue s(A) . Then there exists a > 0
such that V(y) > ally]| for all y >0 , where |ly|| = maxi{|yi|]} . Since

s(A) >0 and the derivative of V along solutions is
V' =s(A'y - O vy +2) Y Ny
i j

V' >0 in a neighbourhood N of Ey =rlative to B \ B; . It follows
that any solution in N must leave N at a finite time. Consequently, M

is isolated and the stable set of M , W?*(M) ,is equal to B; . D

REMARK. In the case when A is reducible, by using Theorem 4.3.4 and follow
the same line of reasoning as in the Remark following Theorem 4.2.2, one can
easily show that if the endemic equilibrium exists, then (4.2.1) is uniformly

persistent with respect to 0B .

THEOREM 4.3.6. If the endemic equilibrium ({z*,y*,2z*) exists, then
(4.1.1) is umformly persistent, i.e. there exists 7 > such that for all © we
have, liminfi.cozi(t) = n , liminfiweoyi(t) 27 » and liminfy_.oo zi(t) 2
n , for all solution (z(t), y(t), 2(t)) of (1.1) with (=(0), y(0), 2(0)) € R2™\So ,
where

So = {(373/72) € Rin;y___o}



4.4 Global Stability of the Endemic Equilibrium.

For the sake of simplicity of notation, we will make the following assump-

tion for this section.
Standing Assumption. N;=1 forall i=1,.--,n .

This assumption can always be achieved by a suitable rescaling of the
variables z;,yi,2; (i = 1,---,n) , namely, z; — oo -}{,‘T and

zi— 5 . Note that b;,7; and &; are not changed by this rescaling.

We will show that the endemic equilibrium is globally stable under the

assumption

7'. y — co
S G=100m) (4.4.1)

Before we can prove that, we need the following lemmas.

Let M =(m;;) bea n by n (real) matrix with non-negative off-

diagonal entries.

LEMMA 4.4.1. (cf. [2]) Assume M is irreducible. Then s(M)<0 if

and only if there exists a vector v € R® with v>0 such that My <0.

LEMMA 4.4.2. Assume M is irreducible and s(M) <0 . Then there
exists a diagonal matrix C with positive diagonal entries such that s(CM+

M'C) <0 .
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PROOF. Since M has non-negative off-diagonal entries and is irre-
ducible, sois M! . By Lemma 1, there exist two vectors v = (vy,--+,vq)" >
0 and u = (u3,-,u,)* >0 such that Mv <0 and M'u <0 . Let
C = diag{%,--- , %2} . Then (CM+M'C)v=CMv+M‘Cv= CMv+M'u £

0 . By Lemma 1 again, s(CM + M'C)<0 . O

LEMMA 4.4.3. (cf. [2]) Assume s(M)<O0 . Then there exists a diag-
onal matrix D = diag{dy,--- ,d,} with di>0 forall i=1,---,n such

that MD is diagonal dominant, that is, ) ;mi;d; <0 .

LEMMA 4.4.4. Assume s(M) <0 . Then, for all e¢>0 , there is a
diagonal matrix D = diag{dy,--- ,d,} with d;i >0 foral i¢=1,---,n

such that -3 .miid; <e .

PROOF. Consider the matrix M = M—el . Since M has non-negative
off-diagonal entries and s(M) < e< 0, we can apply Lemma 5.3 to M
and obtain a diagonal matrix D = diag{d;,-:-,d,} with positive diagonal
entries such that 3 .mijd;j —ed; < 0 . Thus, Z Ljmijdj—e <0, or

1
.T,-Ejmijdj<e . O

LEMMA 4.4.5. If A =();;) is irreducible and s(A)>0 , then
liminf, o0 ). ; Aijyj(t) > 0 for all i =1,---,n , where (y(t),2(t)) is a

solution of (4.2.1) with (y(0),2(0)) € B\ By .
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PROOF. By Theorems 4.3.1 and 4.3.4, liminf, oo y;(t)>0 forall j=
1,-.-,n . Since A is irreducible, for each ¢ there is a j; such that

Aij; >0 . Hence, liminf, oo 22 Xiiyi(t) 2 liminfe .o Aijy;(8)>0 . O

LEMMA 4.4.6. Let y(t) be a real-valued continuous function defined on
[0,00) . Define z(t) = ae~% +b f; e~t=)y(s)ds , where § >0, a and

b are constants. If lim ..oy(t)=0 , then lim; .o 2(t)=0 .

PROOF. It suffices to show lim;—oo j: e~ %(t=2)y(s)ds = 0 . Given any
€ > 0, there exists T; > 0 such that |y(s)| < % , whenever s > T .
Since y(t) is bounded on Ry , M = sup,g + [y(t)} < 0o . Choose any

T2>%ln%’- . For t>T, , we have

H
| / e~ =2y (s)ds| < %e_’f' <
o

N o

Thus, for ¢ > 2max(Ty,T;)

t 3 t
| [ eeueast < [ e ®ygast 4] [ yioyant < £4 £ =
0 0 £ :

We are now ready to state and prove the main result of this section.

THEOREM 4.4.7. Assume A is irreducible and s(A) >0 . If (44.1)
holds, then for any solution (y(t),z(t)) with (y(0),2(0)) € B\ By , we have,
lim¢oo(y(t), 2(t)) = E* . Hence, the endemic equilibrium E* is globally

stable over B\ B, .



67

PROOF. Integrating z!= —(bi + ki)zi +7iyi , we have
t
zi(t) = zi(0)e~Gitmdt 4 / e~ (Gitrid(t=0)y(5)ds (4.4.2)
0

and hence by (4.2.1)
yi = —(bi + 1)y
+(1-yi—7 /o ‘ e (itRd(t=2)y.(5)ds) z,: Aijyj — zi(0)e~ ikt 2,: Aijyi
Let §i=vyi—y; . Then
= =6+ )i + (L= vi =20) D Nl
J
— @i+ /o ‘ e~ (it rid(t=0)g,(5)ds) z Aijy; (4.4.3)
J
S AL QLR D

By (4.4.1) and Lemma 4.4.5, thereis d>0 and T} >0 such that

iy j(t} >d (4.4.4)

forall t> T, and for all ¢ . Since My* =0 and y* > 0 , where
M was defined in (4.2.11), therefore s(M)=0 , by Lemma 44.1. Choosing
€= g in Lemma 3.4.4, we obtain a diagonal matrix D = diag{d,--- ,dn}

with d; >0 for all ¢ such that

—(b; b))+ B A ZA.,d <4 S forall i=1,,m (4.4.5)
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Set y; =diu; , yf =du! and @; =u;—uf for all i . Then (44.3)

becomes 1
ﬂ:- = —(b.' + ‘y,')ﬁ,' y' Z z\ud uJ

t
— (7 /o e~ GrtmE-07,(5)ds) 3 iy (4.4.6)
J
1 i ONe—Gi =t S ).
_d—,( b+ 'ya +zi(0))e Z ij¥j
J

In order to show global stability of E* , we need to show limsup,_,, |ii(t)] =
0 for all i . Suppose not, i.e. suppose max;{limsup, . |@i(t)[]}=p>0 .

Then limsup,_,., |i#i,(t)] =p for some iy . Choose any 0< ¢ <1 such

that
d-o Z:,\,o,d, < 5d(1 —€) . (4.4.7)
Let T5 >0 be sufficiently large such that whenever ¢2> T, , we have
lii(?)| < p(1+¢€) for all i, (4.4.8)
T T - ) (149)

and

L (i _ye 4 2 (0))e” “w*"-o"L,\o, <lipg-e) . (a410)
d blo+ lo 5

Let T =2max(T,T;) . Given any t > T , we can choose t' suffi-
ciently large so that max,e(s o) [t ()l 2 p(1—¢) . Let tp € [3,t] bea

maximal point of |di,(s)] , ie. |@i(fo)] = max,gs o |iin(s)| . Then

i (to)] 2 (1~ €') (4.4.11)
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and

to
Bato)l = i [ ¢~ oMo~ (5)ds|
0

to . %
> [iig(to)] — i /% e~Grotri)to=|g (5)|ds — T / e~ biaHrio)(to=2) g
10 JO

e big ':“-’n ¢

2 litio(to)l = 3 :'_o,c. li,(to)] = d; (b%‘-’i-n )©
(1) to o\ "0 o

> (1= 2o, (to)| - 2(1 - p(1 - €)
bi, + i, 5 bi, + Kig

by (4.4.11). Thus,
to
lia 0)] — i / e~Giotria)o=9g, (5)ds|

)Iu..,(to)l

(4.4.12)
>%a- i +

Therefore, (ii,(t0) +7io fo"’ e~ (biotxio)(to=2) g, (s))ds) Y j Xioj¥i(to) has

the same sign as #;,(fo) and its absolute value is, by (4.4.4), greater than or

equal to 2dli,(to)] -

Consider the i -th equation of (4.4.6):

a(to) = —(b + a(ta) + L2 Z Aijdjij(to)

— (@ilto) + 7 ‘/: e~ Gitri)(t=0) g ( 5)ds) Z Xijyi(to) (4.4.13)

1 i . —(b: 4x;
S e R Q) DR TIC)
j
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If ﬁ.‘o(to) >0, then

ﬁ:-o(to) < [—(biy + i) + (1 — y.",, - z: )’\ioio]ﬁio(to)

11—y —
+ yu: o E Xioidjlii(to)l — -d“:o(to)
fo J#io
1 i * —(big+xi
B E(— bi, +°n.° Wiy + zig(0))e” Gt Z’\ioi

j

< [—(bis + %io) + y.o L Z Aiojdjltiio(to)

2p(1 —
+ p( yto )ZAgoné

J#io
4 ..
- gdu,‘o(to) + gdp(l - € ) .

By (4.4.7),
@, (t0) < “-o(tO) + -dp(l —€)- "d“:o(tO)
. (4.4.14)
< —gﬁio(to) < —p(l - é') <0
Since to is a maximal point of [i;(s)] on [3,#] , it follows that ¢
must be the left hand endpoint of the interval, i.e. ¢ = ::,- . On the other
hand, if ;,(¢) <0 , from (4.4.13) we have

ﬁ:-o(to) = [_(bio + 7"0) + (1 - y:?o - z? )Aiol'o]ﬁio(to)

1-yi, — 2
$ LY " e S i)
° J#io
— (g (to) + 7io / e~ (iotmio)tio=2)g; (s)ds) )~ Aiyju;(to)
0

J

1 -
- I-("'b, T!- Yio + 2io(0))e (Biotia)te Z XiojYj(to)
to 0 Kio j

2 ""[_'(bl'o + 7"0) + (1 - y:?o - z'-* )’\l'ol'o"al'o(to)l
1= y,o %y Z Xiojd;li;(to)|
diy J#lo

4.
+ £l (t)| - £dp(1~ €)
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where the estimate for the third term, the one with the integral, follows from
(4.4.12) and (4.4.4) and the estimate for the fourth term comes from (4.4.10).

Since |i;(to)| < i, (t0)| + 2p€' , the sum of the first and second terms is

> [~ (biy + i) + - ”'° '°Zx.o,d,uu.o(to)l-2‘pzx.o,d

Therefore

. . 4. 2¢
i (o) 2 — i (t)| - 3 pZ'\-o:d +z dlulo(to)l -d|“-o(to)|

> 2y (t0)] - 1 - ) (44.19)
1 '
gdp(l —€ ) >0

This again implies to = £ . Therefore, for any ¢2>T , we can choose t'
so lar¥e that the 'amx al point of |&i,(s)| , s € [§,t'] is the left hand

endpoint % . From this, one deduces that [&j()| is a decreasing function

on [£,00) .
Using the fact |[ii;,(t)| is decreasing, we get
Jim [64,(¢)] = limsup sy (8)] = p > 0.
—+oo t—o0
Consequently, 1;,(t) is of one sign for ¢ large.

Case 1. i, (t) is positive for ¢ large. By (4.4.14), limi.oo ;,(t) = —o0 ,

which is impossible.

Case 2. 1;,(t) is negative for ¢ large. By (4.4.15), limooiliy(t)=+o0 ,

which is also impossible.
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Therefore, lim¢o | (t)] = 0 and hence lim¢.oo@ii(t) = 0 for all
i . This implies limy,o9i(t) =0 for all ¢ and hence lims.co¥i(t) =y}

for all z .

Lastly, since 2} = ;-3=y] , by (4.4.2) we have,

ar® t
it) = 2 = (ai(0) = Lyt [ gm0y (5) — )

Using Lemma 4.4.6, we conclude that lim¢.oo zi(t) = zf and the proof is

O

complete.

THEOREM 4.4.8. If the endemic equilibrium E* for (4.2.1) is glob-
ally stable over B , then the endemic equilibrium (z*,y*2z*) for (41.1) is

globally stable over R3" .

PROOF. Let us first assume A is irreducible. Given any solution
(z(),y(t), 2(t)) of (4.1.1) with (=(0),y(0),2(0)) € R3® ,its w -limit set
must be contained in S , since z({)+y(t)+2(t) = N as t—o00 . We

will show that Q= {(z*,y*,2%)} .

Claim. Q # {(N,0,0)} . Suppose not, then z(t) =N and y(tf) =0 as
t —+ 00 . Let V(y) = vy be the Lyapunov function used in the proof of

Theorem 4.2.4. Then

V' = s(A)wly - Z vi(N; — 2y) Z Aijy;
i F
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Since y(tf) >0 and y(t) # 0 for all ¢ > 0, therefore V>0 for

sufficiently large t . This contradicts y(t) =0 as t— oo .

Hence, © must contain a point (z°,3°,2°) € S with either (i) =0
or (i) y° >0 . If (i) holds, since € is invariant, it contains the negative
orbit through (z°,y°2°) . However, this orbit is unbounded and this contra-
dicts the compactness of £ . Thus (i) is impossible. On the other hand, if

(ii) holds, since (N,0,0) is globally stable over S\ S1 , where
S ={(z,y,2) €RY :y =0} ,

therefore (z*,y*,2*) € 2 . However, since  is chain transitive and (z*,y*,2%)

is asymptotically stable, we have = {(z*,y*,2*)} , as desired.

In the case when A is reducible, all we need i: to apply the above
argument to each of the irreducible subsystems as was discussed in the remark

following the proof of Theorem 4.2.2. 0O
Using Theorems 4.4.7 and 4.4.8, we can conclude

THEOREM 4.4.9. If the endemic equilibrium (z*,y*,2*) for (4.1.1) ex-

ists and ¥~ <1 for all i , then it is globally stable over R3*\ S, .
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CHAPTER 5
QUALITATIVE ANALYSIS OF AN HIV/AIDS

TRAMSMISSION MODEL WITH SUBPOFULATIONS

5.1 Introduction.

In recent years, there is considerable interest in the study of AIDS epi-
demic in mathematical epidemiology. In fact, the research on modelling the
transmission dynamics of HIV/AIDS epidemic has become a major research
topic in mathematical epidemiology. A number of mathematical models have
been developed to study the transmission dynamics of the human immunud-
eficiency virus (HIV) and AIDS epidemic. Anderson et al. [1] and May and
Anderson [15] considered the AIDS spread in homosexual males which were
divided into groups by different contact rates with new partners. Proportion-
ate mixing was chosen in their model. Hyman and Stanley [10] used a similer
model as that of Anderson and May to study the spread of HIV in a sexual
active and drug using community. Hethcote [7] formulated a model to simulate
the spread of the HIV in metropolitan areas. Castillo-Chavez et al. [2],{3] used
models to identify the role played by the long period of incubation for homoge-
neous and heterogeneous populations. % similar work has been done by Dietz
[4] and Dietz and Hadeler [5]. Hsieh [9] studied an AIDS model with random

screening to describe the spread of HIV in a male homo:err::} population.

75
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The HIV transmission model discussed here has been proposed by Jacquez,
Simon, Koopman, Sattenspiel and Perry [11). In this model, they divided a ho-
mosexual population into subpopulations based on sexual activity, the number
of contacts per unit time. It is assumed that there is no migration between
subpopulations but they interact by way of sexual contacts. For each subpop-
ulation, HIV infection take finite number of stages and finally leads to AIDS.
Preferred mixing, which includes restricted mixing and proportional mixing as
special cases, was chosen as the pattern of contacts between subpopuiations
and the transmission probability from susceptibles to infecteds was assumed
to depend on the stage of infection. In their r«.:r [11], Jacquez et al. gave
a threshold condition so that below the threshold the disease-free equilibrium
is the only equilibrium and above the threshold a unique endemic equilibrium
occurs. However, no connections have been shown between the threshold condi-

tion and the stability of the no-disease equilibrium, which is common for most

epidemic modeis.

The purpose of this chapter is to extend the work of Jacquez et al. on the
qualitative analysis of the HIV/AIDS transmission model. In the next section
we will briefly describe the model and the results obtained in [11]. A new
threshold condition will be presented in Section 5.3. We will show that like most
other epidemic models the threshold can be chosen to be the stability rmodulus
of the Jacobian matrix at the disease-free equilibrium. Hence, the instability of

the disease-free equilibrium is a key factor to trigger the epidemic of the disease.
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Since we employ a new method to prove the above results, more information
about the stability of the endemic equilibrium is obtained, which could lead to
a proof of the local asymptotic stability of the endemic equilibrium. At the
end of Section 5.3, we show the equivalence of our threshold condition and that
obtained by Jacquez et al. in [11]. Because the model we are studying here is
very complicated and subpopulations are incorporated, it becomes very difficult
or may be impossible to show the (local or global) stability of the endemic
equilibrium above the threshold. Neveitheless, we can still expect the model to
have some stability-like property such as persistence. We will show in Section
5.4 that above the threshold the dynamics derived from the model persists
uniformly. In other words, above the threshold if there is some initial infection,
the number of susceptibles and infecteds not only in every subpopulation but
also in each stage of infection will eventually remain above a certain positive
level, which does not depend on the number of susceptibles who are initially
infected. In Section 5.5, we will consider the case of restricted mixing. We
sixow that above the threshold the endemic equilibrium is locally asymptotically
stable provided that the number of stages is less than three or the transfer rate
from one stage to the next stage is relatively small. In [11], Jacquez et al.
also gave a proof on the local asymptotic stability of the endemic equilibrium.
Unfortunately, the proof is incomplete because the Descarte’s rule of signs only
deals with the =swnber of resd roots, not real part of complex roots. Moreover,

the global asymptotic stsiility of the endemic equilibrium will be considered.
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We conclude that if the transier rate from one stage to the next does not
exceed the mortality rate from all other sources the endemic equilibrium is
globally asymptotically stable. In Section 5.6, we drop the restriction on the

transmission fractions and a sutficient condition for the existence of the endemic

equilibriwz is given.

5.2 The HIV/AIDS Transmission Model.

In this section, we state the HIV/AIDS transmission model proposed by
Jacquez et al. in [11]. Suppose that a population is divided into n subpopu-
lations by sexual activity. Sexual contacts between subpopulations are assumed
but there is no emigation between them. For each subpopulation, say, the i-th
subpopulation, it is again divided into three groups: susceptibles, infecteds and
persons with AIDS. Let us denote by z; the aumber of susceptibles, y; the
number of infecteds, and 2; the number of persons with AIDS respectively
in the i-th subpopulation. Furthermore, each infected is assumed to pass
through m stages f:om initial infection to having AIDS so that he or she
no longer takes pait in transmission. Hence, we can partition the infecteds in
the i-th subpopulation into m subgroups. We have Yi = iym where

r=
Vir is the number of infected in the r-th stage. Under the above assump-

tions, the transitions among these subpopulations are described by the following
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system of ordinary differential equations:

n m
Bijryjr
= p(Ui = z)—cizi ) pij ) —— (5.2.1)
3 ] ) 'J.—Zl J;zi + yj
n = Biirls
yh = —(k+ v + Gz y_pi ) o, (5.2.2)
=1 r=1 Tj + Yi
Yy = ki1 — (K + p)yir, T=2,...,m, (5.2.3)
zé = kYim — 6zi, (5.2.4)

for 1=1,...,n.
Here, all parameters but p;; are constants and the parameters have the
following definitions:
U;= the expected subpopulation size without HIV infection;

¢; = the number of persons contacted per person in the i-th subpopulation

per unit time, all ¢; are nonzero;

pij = the proportion of contacts of a person in the i-th subpopulation with

persons in j-th subpopulation. For preferred mixing it takes the

form
s = i (1 — i) i pidi ¥ 84) (5.25)
’§ICk(1 — pi)(zk + k)
end
pis = (1= pi) an(l —elzityi) gy (5.2.6)

> er(1 — pe)(zk + yk)
k=1
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where 0<p;<1,i=1,...,n, are constants. I pi=0 forall
i, we have proportionate mixing. If p; =1 for all ¢, we have
restricted mixing;
Bijr = the transmission fraction between a susceptible in the i-th subpopula-
tion and an infected in the j-th subpopulation at the r-th stage.
From this section to Section 5.5, we always assumed f;;, only de-

pends on stage r, not on ¢ and j, thatis, Bijr = Br and

Br>0 forall r ;
k = the fractional transfer rate from yir-1 to ¥ir;

p= the mortality rate from all other sources. In this paper it iz assumed to

be positive;
§ = the mortality rate for persons with AIDS.

REMARK. The model stated here has been modified slightly by replacing
U: with pU; in equation (5.2.1) for simplicity. When p is positive, the
dynamsics for both models are exactly the same. We will not discuss the case

p =0 in this paper.

Since 2z is not involved in the first three equations (5.2.1)-(5.2.3), it

suffices to study the model without the equation (5.2.4).

Some properties have been obtained by Jacquez et al. in [11].
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(i) The compact convex set
C = {(z,y); zi+vi < Ui 2 20, ¥ir 20, r=1,...,m,i=1,...,n},

where = = (Z1,..-1Zn), ¥ = (¥12,--. ,Ynm), is a positively invariant set. Ev-
ery solution of the system (5.2.1)-(5.2.3) will reach C after a certain time

and remain in C.

(ii) The point Eg : zi = Ui, ¥ir = 0, r=1,....,m; i =1,...,n, is

always an equilibrium of the system (5.2.1)-(5.2.3) and the set

Co = {(z,¥); ¥ir=0 forall r and i},

is an invariant set of the system (5.2.1)-(5.2.3). We call the equilibrivze o
the disease-free equilibrium and Co the disease-free set. It is shown &iwa. the
disease-free equilibrium is globally asymptotically stable with respect to <.

Therefore, without initial infection of HIV there is always no infection and

population size will approach the expected population size.

(iii) For all cases of preferred mixing (except restricted mixing) there exists

a threshold
Ec,'(l —_ p.')U,'
H= - = : (5.2.7)
0“,3“'.:2:16?(1 - Pi)zUi max{o,l—o,.ﬁ,.lc.-p.-,i=l,...,n,}
where
; k-t
1- ()" 3y f

= ;[1 & (5.2.8)
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When H >1 the disease-free equilibrium is the only equilibrium and when

H <1 there is a unique interior endemic equilibrium.

(iv) For the case of restricted mixing, the threshold is

1 .
=min{———, i=1,...,n}. 2.
H = min{ P i=1,...,n} (5.2.9)

When H >1 the disease-free equilibrium is globally asymptotically stable.

5.3 Threshold Condition and Stability of Equilibria.

We now establish a connection of the stability of the disease-free equilib-

rium with a threshold condition. First we simplify the system (5.2.1)-(5.2.3) by

defining w; =U; —z;—y;;, i=1,...,n. We obtain an equivalent system

wi = —pw; + kya, (5.3.1)
m
Pi Z:lﬂryir
- Cs U'- —) e — 2 r=
Yi1 z( w; y'l)[U,- “wityat- Fom
n m
(1-pi) 205(1 - pj) El Bryjr
+ 3 = - 1= (k + pyia,
kEl k(1= pr XUk —wi + Yoz + -+ + Yiem) (5.3.2)

Yir = kYiro1 — (kK + W)yir, r=2,...,m. (6.3.3)

for 1=1,...,n.

REMARK: Since there are now only n nonlinear equations, namely (5.3.2),
the calculation of the Jacobian matrix for this system becomes easier. Also,

the disease-free equ‘librium has been brought to the origin w; =0,y = 0,r =
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1,...,m;i = 1,...,n. Some other advantages to use this system can be seen

in the proof of persistence (Section 5.4).

If we suppose that (w{,...,w5,¥{1,..-,¥Y5m) 1S an equilibrium of the

system (5.3.1)-(5.3.3), then they satisfy the following identities

, kl-a) , , o (1-a

wi:ﬁ(l_:a_"z—)-yi’ y.'r=——1'—_£—a';;-‘l H (5.3.4)
and

Ui—wf+yfz+-..+yfm=Ui—lfamy.’, (5.3.5)

where y! =y} + -+ yin, a=k—_f_7.

Substituting the expressions (5.3.4)-(5.3.5) to the right hand side of (5.3.2),

we have, for i=1,...,n,

Fiwo-198) = =058 + Baci(Ui = = 40)
1-pi 3 1- k 3.
P, (1=pi) X erl1 - o)k | (5.3.6)
U m !

i ‘lg—ﬁ yf w 1— Up — =27 o2
3 aal1 - po)s - 155w w1

where 0,,8, are defined by (5.2.8).
REMARK: Most of the notatiors used in our paper follow those in [11].
We now introduce a new system of ordinary differential equations
vi= fily1,...,yn), i=1,...,n, 5.3.7)

where f; is defined by (5.3.6).
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It is easy to see that the equilibria of the systems (5.3.1)-(5.3.3) and (5.3.7)
can be obtained from one another by the identities (5.3.4)-(5.3.5). Moreover, if

we denote the right hand side of (5.3.2) by F;, then

ofi l—-a k OF; = ,; aF
= + r 5.3.8
dy;  1—a™'p Buw; Z ay;r (5.38)

provided that w;,y; and y;, r=1,...,m, satisfy (5.3.4)-(5.3.5).

Therefore, we can study the equilibrium distribution of the system (5.3.1)-
(5.3.3) and related properties(existence, uniqueness, stability, etc.), by means of

the system (5.3.7).

For the system (5.3.7), it is easy to see that
S = {(yla”-’yn}; 0 S Yi S (1 —am)Uj, 1= 1,...,n}
is a positive invariant set

Let Ay be the Jacobian matrix of the system (5.3.7) at the origin and
s(Ao) be the stability modulus of Ay, which is the maximum of the real

parts of the eigenvalues of Ay. Then we have

THEOREM 5.3.1. If s(Ay) <0, the origin is the only nonneg...ve equilibrium
for (5.3.7) and it is globally asymptotically stable in S . I s(4s) > 0,

there is a unique, positive, globally asymptotically stable equilibrium in S\
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{0}. Moreover, the stability modulus of the Jacobian matrix at the positive

equilibrium is negative, i.e. the Jacobian matrix is stable.
PROOF. We split the proof into six lemmas.
LEMMA 5.3.2. The system (5.3.7) has at most one positive equilibrium.

PROOF. Follewing the idea of Jacquez et al. in [11}, we introduce a
nonnegative variable K and consider the following n+1 equations

4 9,Lucipi(U; ~ _]El{;ﬁ Yi)vi

gy kel =)l T g W =0
i=1,...,n,
(5.3.9)
and .
> ck(1~ p)ye
k=1 =K. (5.3.10)

i
"Z_:ICI:(I — pe) (U — 12557 k)

Obviously, a positive equilibrium exists if and only if there is a positive X

such that the n equations (5.3.9) and (5.3.10) hold.

Let K = K;i(y;) be the function satisfying (5.3.9). Then differentiating

the both sides of (5.3.9) with respect to y;, we bhave

1t OuBrcipi(Ui — e %) BuBucipilliyi
Ui- 2= 4 (Ui - 12+ vi)?

- 9nﬂu°‘(11__ :;)Ki(yi)" +0,uBuci(1 — pi)(Ui —

¥i)Ki(yi) = 0.
(5.3.11)

l1-a™
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Thus for K >0, by (5.3.9)

uﬂuczl’t(U _am yi)

-1+ ™
Ui—i%;r?yz

<0,
then, Ki(y:) > 0.

Hence there exists the inverse function of K = K;(y;), denoted by y; =
¥i(K). and yi(K)= ﬁ; > 0.

We now prove

(1 - piu(K)
G(K)= —

kgl‘ S (U - 125 w(K))

is concave down, ie. G"(K)<0 1or K >0.

By differentiation,

(32 x(1 = p)URTer(l — o Jya(K)]
G'= =L £ (5.3.12)
[ (1 = pe)(Us — 125 we ()P

and
[ch(l Pk)Uk][ZCk(l o2) (Ui - yk)1
k=1 =1
zck(l ~ pu) Wi (K) + (1_,,:;'(,,? ‘;.f;,,,,,,l
[Eck(l — k) Uk — 225= w)P?
So, if

20™yL (K)

yk(K) + (1 a"‘)(Ug _ T—Tm' yk)

<0 for k=1,...,n



87

then G'" <0.

Define
Ui — =g Ui
¢'(y’) - Ui - 1g:m yi.

From (5.3.9) again, we have

i 0. Bucipiyi

OuBuci(1 — pi)Kilyi) = 77— 4 i U,"_:a',: yy,-
H 4 1-a™ ] 3 —™ 2
Therefore,
1
yi(K) = )
— o#ﬁuci(l - Pi)(Ui - r:la—m yi)2
U!(l - eltﬂ#cipi‘ﬁ?) ’ (5.3.13)

v (K) = ~2yi(K)
0”_ pci(l - Pt')(Ui - 'f__la? yi)(l - amgﬂﬁﬂcipi¢?)
(1-am™)U;(1 - 0,Bucipid?)? .

Thus
PR "1 M 7\ Chad ) -
(1 —a™)(U; - 12+ vi) (1= a™)Ui(1 - 8,Bucipié?)
e <
since

—am . n: 3 - "Pi
1—a™8,Bucipid; +a™¢; = 1+a"¢i < 0.

1- onﬂucil’i‘f’? T 1= 0, uCiP-.'d’?

Therefore G"(i) <0 for K > 0. It follows from G(K) 20 for

K>0 that G(K)=K has at mosi one positive solution. C
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REMARK. G(K) can take two values at K =0. We denote G(0) to

be the value satisfying G(0) = Kli_x:l‘}+G(K ). It is easy to verify that G(0) =0
if and only if 1—6uBucipi >0  for all i. In this case, G(K), K20,

is well-defined and G'(0) exists.

LEMMA 5.3.3. G(K)=K has no positive solutions if and only if G(0)=0

and G'(0)<1.
Proor. It is trivial. O

LEMMA 5.3.4. the system (5.3.8) is cooperative in S, e.g. gﬁ- >0,i#j

at any point in S.

PROOF. Since for j#1

3f; _ Buci(l = pi)Ui = mgm yi)i(1 = pi) iz ex(1 = o)V
ayj [ZZ:I ck(l - Pk)(Uk - 1.‘.’.:m yk)]2

>0 (5.3.14)

we complete the proof. O

LEMMA 5.3.5. Let E, be a positive equilibrium and A, be the Jacobian
matrix at E,. Then s(A,) < 0. Therefore, any positive equilibrium is lo-

cally asymptotically stable.

PROOF. We have already known that E, = (yf,...,¥z) exists if and
only if there exists K, >0 such that they satisfy (5.3.9) and (5.3.10). Thus

G(K,) = K,. From the concavity of G(K), G'(K,) < 1.
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Since yi,...,y5, K, satisfy (5.3.10) and (5.3.11),

O — i1 — Ui = 1y UDKD)

Oyi
Buci(1 - pi*(Ui ~ 1=4= ¥f) E ce(1 — pi)Uk (5.3.15)
+ .
[kZ_:ICk(l — pi)(Uk — 125= i)
Let
B, = diag{ ! i=1,...,n} X A,.

Buci(1 — pi)(Ui — _am yOKi(u?)’
It follows from (5.3.14) and (5.3.15) that

Zn: ce(1 — pr)Ux y1(K)
Ba =-~-I+ k=l : (cl(l-Pl), ey cn(l'_Pn))'

[ ea(1 - pe)0k = 125 vl \ g1 (Ko)

Hence

[5 ca(1~ pe)Us] 35 ca(l — pe)u(K)
s(B,) = -1 + =2 k=1 =-1+G'(K,) <0.

[3° k(1 — o) (U — 125 w12
k=1

Finally, since the stability modulus of A, and B, have the same sign, we

obtain s(4,) <0. | O

LEMMA 5.3.6. Let Ay be the Jacobian matrix at the origin. Then s(Ap) <

0 if and only if G(0)=0 and G'(0)<1.

ProoF. If G(0) >0, by the remark after Lemma 5.3.2, 1—6,f8,cip; <
0 for some i Thus, at least one of the diagonal elements of Ay is pos-

itive. This implies s(4g) > 0. Hence, we assume G(0) = 0. Under this
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assumption G'(K),K >0 is well-defined and G'(0) exists. An argument
similar to the proof of Lemma 5.3.5 can show that the sign of s(Ap) is the
same as that of —1+4G'(0). Therefore s(4o) <0 if and only if G'(0) <1.

O

LEMMA 5.3.7. If s(Ao) < 0, the origin is the only equilibrium, which is
globally asymptotically stable in S. If s(Ag) > 0, there is a unique positive

equilibrium, which is globally asymptotically stable in S\ {0}.

PROOF. The existence and uniqueness are an immediate corollary of

Lemma 5.3.3 and Lemma 5.3.6.

Let ¢(f) be the solution of the system (6.3.7) with
#(0) = (1 — a™)Uy,...,(1 —a™)Uy).

Then fi(#(0)) <0 for all i. By Lemma 5.3.4 and a theorem of Selgrade

[16], ¢(t) tends to an equilibrium in § as t— oo

If s(Ag) <0, the origin is the only equilibrium. Thus lim¢—eo $(t) =

Let ~4(f) be any solution with ~(0) € S, 4(0) #0. Thea, 7(0) < #(0).
Thus 0 < 4(t) < é(t) for t>0 by Lemma 5.3.4. Letting t — oo, we
have limy.co7(t) = 0. It follows that the origin is globally asymptotically

stable.
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Not we suppose 3(Ag) >0 and E, is the positive equilibrium. Then,

im0 §(t) = E,. From O0<4(t) < H(t), the w-limit set of +(t)
w(y)C[0,E]={y€ R 0<y<E,}.

On the other hand, since s(Ay) > 0 there is a positive eigenvector u of
Ay corresponding to s(Ag); here u is chosen so small that u < +(0)
(without the loss of generality, we assume +(0) >0 because y; =0 implies
Ji>0). Let () be the solution with (0)=u, then f;(4(0))>0 for

all i, Thus Lime.eo$(t) = E,.

By the same argument as before, ¥(t) < 4(f) for all ¢ > 0. Hence,
w(7) C [Es, $(0)]. Thus w(y) C [0, E,]N[E,,$(0)] = {E,}. That is,
lim;,oc ¥(t) = E,. Therefore E, is globally asymptotically stable in S\ {0}.

O

Theorem 5.3.1 shows that the system (5.3.7) has the same properties as

the Lajmanovich-Yorke’s model.

We now turn to the system (5.3.1)-(5.3.3). Let A be the Jacobian
matrix of the system (5.3.1)-(5.3.3) at the disease-free equilibrium and s(A)
be the stability modulus of A. With the help of Theorem 5.3.1, we have the

following results for system (5.3.1)-(5.3.3).

THEOREM 5.3.8. If s(A) <0, the disease-free equilibrium is a unique equi-

librium for system (5.3.1)-(5.3.3). If s(A)>0, the disease-free equilibrium is
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unstable. In this case there are only two equilibria: the disease-free equilibrium
and an interior, endemic equilibrium. Thus the stability modulus of the Jaco-
bian matrix at the disease-free equilibrium is a threshold. Furthermore, there
exists a nonnegative matrix D with detD =1 such that the product of

the Jacobian matrix at the endemic equilibrium and D is a stable matrix.

PROOF. By Theorem 5.3.1, to prove all but the last statement it suffices
to prove that s(A) <0 if and only if s(A4¢) <0. Rearranging the equations
in the system (5.3.1)-(5.3.3) in order wy,...,%n, Y11s.--sYnls- -y Ylms-+r Ynm,

we can write the matrix A as

( —ul kI 0 0 \
0 My M, M,,
0 kI —(k+p) ... 0
A= :
\ o KL —(k+ I/
where I isthe nxn identity matrix, M, =(ZE)lwi=0,y;,=0. Hence, 4

m
is off-diagonal nonnegative and from (5.3.8), Ao = 123, a" "' M,.
r=1

Now, let
I 5 I 0 0
0 I 0 0

D=]10 al

0 o™ ... ol I
Then D>0 and detD=1. Moreover,

—ul 2 0 0
0 1=2- 4, Ay A,
AD=]| 0 0 —(k+p)I ... 0
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m
where A, = Y a*"M,>0,r=2,...,m.

s=r
Thus, if s(Ag) < 0, then s(AD) < 0. Since AD is off-diagonal
nonnegative, there is a vector u > 0 such that ADu < 0. Let v = Du,

then v>0 and Av <0, so s(4)<0 (Theorem 5.4, [6]).

Inversely, assume s(A) <0. Then we have v >0 such that Av <0.
Define u=D"ly and rewrite u and v as u=(ulul,...;u™), v=

(»%v1,...,o™), where u",v",r=0,...,m are n-vectors. Since

I -2 o ... 0

o ' o ... 0
D1l1=]0 -al

0 0 —aof I

and Av<0, we have ul!=v!>0,u"=—av"™! 49" >0. Therefore

1-a™

l—a

l1-a™ = =
Agu! < Aou + ZA,.u" = ZM,.v" <0.

l-a r==2 r=1

This implies Apu’ < 0. It follows that s(4y) <0.

Finally, le¢ B be the Jacobian matrix at the endemic equilibrium. The

same argument can show

—ul 0 0o ... 0

% 1-a” 4, * .- *

Bp=| 0 8 —(k+wI ... 0
0 0 —(k+mI

where A; is the Jacobian matrix of the system (5.3.7) at the corresponding
interior equilibrium, which is stable by Theorem 5.3.1. Therefore, BD is a

stable matrix. We complete the proof. a
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In the next theorem, we will show that the threshold condition in Theorem

5.3.8 and the one obtained by Jacquez et al. in [11] are equivalent.

THEOREM 5.3.9. Let H be defined by (5.2.7) or (5.2.9) and s(A) be de-

fined in Theorem 5.3.8. Then, H>1 if and only if s(A)<0.

PROOF. From the proof of Theorem 5.3.8, we have shown that s(A) <0
if and only if s(Ao) < 0. In Lemma 5.3.6 we showed s(4o) <0 if and
only if G(0)=0 and G'(0)<1. Hence it suffices to prove G(0)=0 and

G'(0)<1 ifandonlyif H21.
K G0)=0, G'(0)<1, then 1-8,Bucipi>0 for all ¢. Hence
Y cx(1 = pi)Us

H = —*=1 )
2 (1—ps)2Us

- n
6ubu XI5 ucimn

On the other side, y;(0) =0 and from (5.3.13), yj(0) = 2“—1'25‘;%:—::;)—‘”—‘ .

Thus,

(35 ea(1 = pe)URIL S cx(1 = pi)w(0)]
1 2 Gl(o) = k=:‘ k=1
[Efk(l - 1)U — 25 w(O)P

n
8, ﬂ“ ’?:l 3 (1—pu)*Us

1-60uBucapr 1
— E,

n
g:lck(l - pe)Ui

Hence H 2> 1.
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Conversely, suppose H >1. Then 1-6,8,cipi >0 forall i. Thus
G(0) = 0. and G'(0) exists. Repeating the above procedure, we still have

G'(0)=4. So G'(0)<1. O

5.4 HIV Epidemic.

The mathematical notion of persistence has been utilized in the literature
of mathematical biology. Under the definition of persistence, if the dynamic
system modelling an ecosystem persists uniformly all the species in the ecosys-
tem will survive. In the biological point of view, it is of importance to study
persistence-extinction phenomena. The same idea can also be applied to math-
ematical epidemiology. Persistence of an epidemiological model here means that
the disease is endemic and the number of persons in each group: susceptible, in-
fected or removed (recovered) remains eventually above a positive lower bound.
On the other hand, when we model the dynamics of epidemic for heterogeneous
populations the model we obtain becomes so complicated that it is almost im-
possible to study the global, even local, stability of the endemic equilibrium if it
exists. Hence, persistence can be regarded as an appropriated global property

to describe the epidemic of the disease.

In this section, we will study the persistence of system (5.2.1)-(5.2.3). We
will show that above the threshold system (5.2.1)-(5.2.3) is uniformly persistent

with respect to C. More precisely, we have
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THEOREM 5.4.1. Let A be the Jacobian matrix at the disease-free equilib-
rium and s(A) be the stability modulus of A. If s(A) >0, there exists a
n>0 such that for any solution (zi(t),--. yZa(t), ¥y11(2), - -+ Yum(t)) with

(21(0), seey zn(o), yll(0)9 teey ymn(o)) €C\Cy, we have
lltxggf zi(t) 27
hgggf yir(t) 2, r=1,...,m

limsup (zi(t) +yi(t)) < Ui—m,

t—+00

for all i, where yi(t) = yaa (&) + + - - + vim(2)-

In Section 5.3, after defining w; = U; — zi —yi1, We came up with the
equivalent system (5.3.1)-(5.3.3) to system (5.2.1)-(5.2.3). For system (5.3.1)-

(5.3.3), the compact convex set C can be rewritten as

C = {(w,y); yiz + - + Vim S Wi, wi +ya < Ui,

Yir 20, r=1,...,m; i=1,...,n}

where w = (w1,...,Wa), ¥ = (¥11--+,Ynm). Hence, Theorem 5.4.1 can be

rewritten as the following theorem.

THEOREM EQ. Let A be the Jacobian matrix of the system (5.3.1)-(6.3.3)

at the disease-free equilibrium and s(A) be the stability modulus of A.
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If s(A) > 0, there exists a pumber 1 > 0 such that for any solution

(w(t),y(1)) with (w(0),y(0)) € C\ Co,

htrgggf yir() 29, r=1,...,m, (5.4.1)
liminf [wi(t) - ya(t) — -~ yim(t)] 2 m, (54.2)
and lim inf [Ui — wi(t) —yar ()] 2 1, (5.4.3)

for i=1,...,n.

Before proving Theorern EQ, we introduce some notations and establish
some preliminary results. Hereafter, we always denote the interior of C by

int C and the boundary of C by oC.

LEMMA 5.4.2. Let (w(t),y(t)) be a solution in C. If y(0) # 0, then

(w(t),y(t)) € intC for all t>0.

PROOF. Suppose not. Then there is a number ¢ > 0 such that

(w(to),y(to)) € BC. Let

D) = {(w,y); wi+yis =U; for some i}
D; ={(w,y); y#0 but y;, =0 for some i and r}

and D3 = {(w,y); wi =yi2+--+ Yim for some i}.

Thus 8C C CyUD; UD, U D;s.
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If (w(to),y(t)) € Co, it follows from the invariance of Co that
(w(0),y(0)) € Cs, ie. y(0)=0. This is a contradiction. Hence,

(w(t0)1y(t0)) ¢ Co.

¥ (w(to),y(ts)) € D1, then wi(to)+yir(to) =U; for some 1. Since
C is positive invariant, w!(to)+ y};(to) =0. But from the equation (5.3.1)

and (5.3.2),
wi(to) + yia(to) = —u(wi(to) +yir(o)) = —pUi <0,
an contradiction. So (w(%),y(te)) € Dh.

If (w(to),y(to)) € D2\ D1, then yir(ts) =0 for some i and .
Thus, y!(to) =0. From the equation (5.3.3), yir—1(to) =0, which implies
i ,—1(to) = 0. After r—1 steps, we have yi1(to) =0 and i (to) = 0.

Since w,‘(to) + yu(to) # Uh

m

Zﬂ,y,-,-(to) =0 for j=1,...,n.

r=1
_Hence, yjr(te) =0 for r=1,...,m; j=1,..,n Noting that Cy is

invariant, we have y(0) =0, which is a contradiction too.

Finally, if (w(%),y(to)) € D3\ D2, then, for some i,

wi(to) = Yiz(to) + -+ + Yim(to) and  wi(to) = yiz(to) + - + Yim(to)-
On the other hand, from the equation (5.3.1) and (5.3.3),

—pwilto) + kyia (o) = kyin(t) — (k + myiz(to) + - + ktfi,m—1(t0) = (K + #)yim(2)-



99

Hence yim(to) = 0.

Thus, (w(to),y(ts)) € Da. This is also impossible. Therefore
(w(to),y(te)) ¢ OC, which contradicts our assumption. Hence we conclude
that

(¥(t),w(t)) € int C for all ¢>0. O

LEMMA 5.4.3. Let (w(t),y(t)) be a solution which intersects with 8C\ {0}.

Then there exists a number t, such that (w(to),y(to)) ¢ C.

PRrOOF. We divide the proof into two parts.

() (w(®), y(t))' intersects with Cp \ {0}. In this case, the solution is
written as w(t) = w(0)e™ and y(t) =0, where w(0) # 0.
Thus, w(t) is unbounded on (—00,0], sois (w(t),y(t)). From

the boundness of C, we can choose to € (—00,0] such that

(w(t),y(t0)) ¢ C.

(i) (w(t),y(t)) intersects with AC\Co. Suppose (w(t'),y(t')) € 8C\Co.
Pick a number #o <. If (w(to),y(te)) ¢ C, we complete the
proof. I (w(to),y(ts)) € C, we have y(to)#0 because y(t')#
0. Considering the solution ((2),§(£)) = (w(t+to), y(t+10)), we
have §(0) = y(to) # 0, ((0),3(0) = (w(to),y(t)) € C but
(B(# — t0),§(t' — to)) = (w(t'),y(t')) € 8C. That contradicts to

Lemma 5.4.2. So we prove Lemma 5.4.3. : a



100

LEMMA 5.4.4. The origin is the only compact invariant set in the boundary of
C. If s(A) >0, the origin is repellent with respect to int C. Hence, the

origin is an isolated invariant set in C and its stable manifold lies in ocC.

PROOF. Let M be the maximal invariant setin 0C. ¥ M # {0},
there is a point (wo,%) € M, (wo,y0) # 0. By Lemma 5.4.3, we have a
solution (w(t),y(t)) with w(0) = wo,y(0) = yo such that there exists a
oumber f, such that (w(to),y(to)) € C. That is contradictory to the

invariance of M. Hemce M ={0}.

We now assume s(A)>0. Since A is off-diagonal nonnegative, there
is a positive eigenvector v of At to s(A). Define V(w,y) = vt (';’)
Then it is not difficult to show that along solutions in a sufficient small neigh-
bourhood of the origin in intC, V' (w(t),y(t)) > 0. Therefore the origin is

repellent with respect to int C. _ O

LEMMA 5.4.5 [8]. Let ¢(t,z) bea continuous dynamic system in a metric

space, X be a compact positive invariant set and Y CX be closed with
¢t X\Y)C X\Y forall t2 0. Let M be the maximal compact invariant

set in Y. Then ¢(t,z) is uniformly persistent if and only if
(i) M is isolated in X, and

(ii) The stable manifold of M liesin Y.
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REMARK. Lemma 5.4.5 is a version of Theorem 4.1 in (8] for continuous

dynamic system. It can be proved easily by using Theorem 4.1 in [8].

PROOF OF THEOREM EQ. Let ¢(t,z) be the dynamic system gener-
ated by the system (5.3.1)-(53.3), X =C, Y =8C and M = {0}. By
Lemma 5.4.4, the conditions (i) and (ii) in Lemma 5.4.5 are satisfied. Hence
#(t,z) is uniformly persistent with respeci to O0C. By the definition of uni-
form persistence, for any (w(t),y(t)) with (w(0),y(0)) € int C, (5.4.1),
(5.4.2) and (5.4.3) hold. For any solutior (w(t),y(t)) with (w(0),y(0)) €
C\ Co, (w(t),y(t)) € intC for t>0 by Lemma 5.4.2. Thus (5.4.1), (5.4.2)
and (5.4.3) still hold. Therefore we finish our proof. [0 We now restate the

above results in terms of biological interest.

BIOTHEOREM. Above the threshold s(A), the disease will remain epidemic
for all further time if there is initial infection in at least one subpopulation.
Moreover, the number of susceptibles and infecteds of each subpopulation at

each stage will be greater than a positive constant level, which is independent

of the initial levels.

5.5 Restricted Mixing.

We now consider the stability of the system (5.2.1)-(5.2.3) in the case of
restricted mixing. Jacquez et al. have shown in [11] that below the threshold

the disease-free equilibrium is globally asymptotically stable. In the previous
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sections we showed that above the threshold the system (5.2.1)-(5.2.3) has a
unique endemic equilibrium and it is uniformly persistent. However, the stabil-
ity of thé endemic equilibrium still remains unknown. In this section, we will
present sufficient conditions for the local stability and the global stability of the

endemic equilibrium in the case of restricted mixing.

For restricted mixing, the pattern of contacts takes the form
pi=1 and pij=0, j#i.

Hence, there are no contacts between subpopulations. Without the loss of gen-
erality, we can consider the system (5.2.1)-(5.2.3) with one population. In this

case, the system (5.2.1)-(5.2.3) reduces to the following system
cz
" R
e = p(U z) T4y r§=1:ﬂryr7

m
A &
gy = —(k+myr + - +y}:ﬂryr,

r=1

(5.5.1)

y:-= kyr-1 —(k+ﬂ)yr, r=2,...,m

where y=ym -+ + Ym.
For the system (5.5.1), combining the results in Jacquez et al. [11] and

the previous sections we obtain

THEOREM 5.5.1. If 6,8, <1, the disease-free equilibrium is globally asymp-

totically stable in C. K c0u8,>1, the disease-free equilibrium is unstable
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and there is a unique endemic equilibrium. Moreover, the system (5.5.1) is

uniformly persistent with respect to C.

We now give a sufficient condition for the local stability of the endemic

equilibrium.

m-—1

THEOREM 5.5.2. Assume that c8,8,>1. K Y = a" <cf,pf,, then the

endemic equilibrium is locally asymptotically stable.
To prove Theorem 5.5.2, we Begin with the following lemma.

LEMMA 5.5.3. Given a nXn matrix M = (m;;). Let

myy |m12| Iml,,l
" |m21| maa |m2n|

Imps| ... ... Mgn
If s(M)<0, then s(M)<0. Moreover, there is a positive diagonal matrix

D = diag{d,,...,d,} such that DM + M'D is negative definite.

PROOF. Since M is off-diagonal nonnegative and s(M) <0, there is
a positive diagonal matrix D = diag{dy,...,d,} such that DM +M*'D is

negative definite. We now show that DM + M'D also is negative definite.

For any n-vector u = (uj,...,u,)  #0, let &= (ju1l,...,|un]). Then
u‘(DM + M'D)u = 2Zd,-m,-;u? + Z d,-m,-ju,-u,-
i=1 i

n
< 2Zd.'m,','|u.°|2 + Zdiimijl ] I“jl = ﬁt(DM + MtD)ﬁ <0.
i=1 i
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Hence DM+M!D is negative definite. By the Lyapunov theorem, s(M) <0

(cf. [13)). o

PROOF OF THEOREM 5.5.2. Introducing a new variable w=U-z-1¥,
we rewrite the system (5.5.1) by
w' = —pw + kyla

' U—-w—-1%) =
' — _(k o z N 5.5.2
41 ( +I‘)y1+U—w+y2+...+ym By ( )

r=1

g =kyrr — (k+@)yr, T=2,0.0m

where y=y +* -+ Ym-

Suppose (W,Y1,--->Ym) 18 the endemic equilibrium. Then,

c(U—-—w—y1) -
—k Bt T T et ;ﬂryr=0

and w,y,...,Ym satisfy the identities (5.3.4)-(5.3.5). Hence, by calculation,

! B,y —a™ ?

k
W= and yr=a""ly, r=2,...,m

Let B be the Jacobian matrix at the endemic equilibrium. Then
(cp P B 0 . 0)

B=| "t
0 : M

Lo )
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where £=%5—Q: and

6, Bu—1 ¢0,8,—1
~(k+p) - Defet g b, Bl e, L T
M= k —(k+p) 0
0 k —(k+ p)
Since
m—1
1 3 a" —clufu
al ¢ = Buby -1 = 0 <0,
: Cgf;ﬂu :
am—l 0
s(M) <0
Moreover,
1 0
det M= det[Mx| ¢ ]
a™1l . a1l
m-—1
(k4 p)™ " (cBuBu — 1)( X2 a" —cOupy)
- — r=1 # 0.
| 2B,

Thus s(M) < 0.

By Lemma 5.5.3, there is a positive diagonal matrix D; = diag{di,...,dm}
such that DiM+M ‘Dl is negative definite. Define D = diag{dy,d,...,dn},

where dgy = -1- > 0. Then,

tn [ —2dop 0
DB+BD‘( 0 DM+MD,

is negative definite. Therefore s(B) < 0, which implies the endemic equilib-

rium is locally asymptotically stable. O
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COROLLARY 5.5.4. f m < 3, that is, the number of the infection stages is

less than three, the endemic equilibrium is locally asymptotically stable.

PROOF. It is trivial for m=1.

When m =2, then

m—1 k
Zaf=a=m_<_1<co,,ﬂ,‘
r=1
By Theorem 5.5.2, we complete the proof. O

COROLLARY 5.5.5. If k < min{cB1,...,cPm-1}, then the endemic equilib-

rium is locally asymptotically stable.

ProoF. From k< min{cﬁl, ceey cﬂm—l},

m-—1 m-—1 m

k Z al<e E a6, < cZa"'lﬂ,..
r=1 r=1 r=

=1

The last inequality implies yrlar < e,y O

COROLLARY 5.5.6. If k <y, then the endemic equilibrium is locally asymp-

totically stable.

PROOF. Since k<p, o=gi <3 Thus, Yrla" <1< By

Corollary 5.5.6 showed that if the transfer rate is not greater than the

mortality rate from all other sources, then the endemic equilibrium is locally
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asymptotically stable. In the next theorem we will see that in this particular
case the endemic equilibrium is not only locally but globally asymptotically

stable.

THEOREM 5.5.7. If k< pu, then the endemic equilibrium is globally asymp-

totically stable in C'\ Cy.

In the proof of Theorem 5.5.7 we need the following lemma.

LEMMA 5.5.8. Let ¢(t) be a bounded continuous function on [0,00) and
¥(t) be a solution of the differential equation ' = ad(t) — b, where a>

0,6 >0. Then,

a

7 liminfg(t) < liminfy(t) < limsupy(t) < -Z- lim supgy(). (5.5.3)
—+oo 00 t—00 —+00

PRrOOF. Evidently,
t
¥(t) = ¢¥(0)e ¥ +a / e~8t=2)g(3)ds.
0

Forany 1>&>0, thereisa T >0 such that when t2> T,

WO)le™ < 2,
2abM e~b < -;— and ¢(t) < limsupé(t) +¢,
t—oo

where 1+ ¢+ |¢(t)| < M.
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Herce for t 22T,

T t
P(t) < S taM / e~ tt=2ds +a / e~(t=2)(lim supg(t) + €)ds
2 0 T t—o00

<e+ 2 limsupé(t).
b t=—+00

Therefore, limsupt(t) < &limsupé(t).
t—o0

{—+00

A similar argument can prove the first half of (5.5.2). O

PROOF OF THEOREM 5.5.7. Let (w*,yf,...,ym) be the endemic equi-
librium and (w(t),y(t)) be a solution of (5.5.2) with (w(0),y(0)) € C \ Co.

By Theorem EQ in Section 5.4, we have
ligglfy,(t) >>0, r=12,...,m.

We now define (t) = w(t) — w*,§-(t) = yr() — 97, r = 1,...,m. Then it
follows from Lemma 5.5.8 that
k.. . cn . . o . . k. .
-I;hgg inf(¢) < liminfd(t) < lim: supib(t) < Zh?l supy (t)
and o " liminf§,(¢) < liminfj.() < limsupj(t) < a" " lim supi (t)
t—+00 t—00 t—00 t—00

r=1,...,m.

(5.5.4)
Hence, for a given ¢ >0, whose value will be chosen later, there isa T >0
such that for t>T, ¢=1,...,m,
k. . .. E . k.. . €
;hggfyx(t) -5 <d(t)< -ﬁhﬂgpyx(t) +3

o iminff () - £ < jult) < a" Nimsupfi(t) + : (5.5.5)
t—oo 2 f—r00 92

yr(t) > n,
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and c
supfj1(s) > limsupf (t) — 5
o2t oo . (5.5.6)
3%9‘1(3) < htxggfyl(t) + 2’
Suppose limsupg§;(t) > 6§ > 0. Now for a fixed ¢ > T, we can find an
t—00

arbitrary large ¢ >t such that max () 2 limsupf(t) — 3.
U282t t—00

Let ?o be the maximal point. Then at ¢ =1,

)=~ + ) + e it

my=y

y*(B(to) + §1(t0)) + (U — w* — y§)(§1(to) + - - + Gim(t0)) <
W —wt g+ T YT — 0lt0) + 1a(E0) F -+ Ym(10)) ;ﬁfy'(“)-

By (5.5.5) and (5.5.6),

. (U —-w® —y}) ¢« . k..
to) < E - ——E - 1 — =i (to)—
W) S gyt o _lﬂe U2 _lﬂ”x[y( i)

—y'e+ (U —w' ~ g1 -a = =™ Niy(te) = (m ~ (U ~ v’ = y})]
By (1= &)+ (U - w )L - == @™ Y ey
S - 7 r=1
U-w—yf) ~p, ¥ +m=1)U-v’—y)
+""’:[U—w'+y;+--l-+y:,.§ﬂ'+ U? !

Thus we can choose & so small that #{(¢) <0. Therefore, we have shown
that there exists a number T >0 such that for any ¢ > T, thereisa ' >t
such that the maximal point of §i(s) on [¢,¢#] is ¢ That implies that
#1(t) is monotonically decreasing on [T,00) and its derivative is less than -
a negative value. But that is impossible because of the boundness of #;(¢).

Hence, limsupg(¢) <0.
t—00
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Similarly, we can prove li‘minfgl (®)20.
. —+00
So ‘llrgo 1(t) =0. Finally, using the inequalities in (5.5.4), we obtain

lim @(t)=0 and tlixgﬁ,(t)=0, r=1,...,m.

t—+00

That implies the system (5.5.2) or (5.5.1) is globally asymptotically stable. ]

5.6 Results for General Models.

In the previous sections we analyzed the system (5.2.1)-(5.2.3) under the
assumption that fijr only depends on r. However, the transitions be-
tween susceptibles and infected may vary from subpopulations to subpopula-
tions, based on many factors such as age, race, geographic separation, etc.
Hence, in some circumstances it is more realistic to remove the restriction from
the transmission fractions. But this situation makes the model tremendously
difficult to deal with. The methods taken in [11] can nc; longer be used. Nev-
ertheless, some mathematical properties of the system (5.2.1)-(5.2.3) can be
obtained by using the techniques in Section 5.3 and 5.4 in this paper and the

theory of monotonic flows.

First, we notice that the system

yi = —0; yi + (Ui — ¥i)

1—-a™

1-pi) 3 ca(l - )i
piBiiyi (1-r )kglc"( pe)birte (5.6.1)
Ui — 1—-a™ Yi kz_:lck(l - Pk)(Uk _ ‘i‘.a:::_m yk)

<[

i=1,...,n
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where Bij = £5% Y a""16;jr, has the same equilibrium distribution as the
r=1

system (5.2.1)-(5.2.3) provided that they satisfy the identities (5.3.4) and (5.3.5).

It follows from Lemma 5.3.4 that the system (5.6.1) is cooperative and
from the proof of Theorem 5.3.1 that the disease-free equilibrium is unstable
if and only if the origin of (5.6.1) is unstable. Hence if we pick up a solu-
tion of (5.6.1), whose initial value is close to zero and is on the eigenvector
of the Jacobian matrix corresponding to the stability modulus at the origin,
the solution tends to a positive equilibrium. This equilibrium is the minimal
equilibrium. On the other haud, if we pick up the solution with the initial
value (1 —a™)(Ui,...,Um), the solution tends to an equilibrium, which is
maximal. In this case, the set of all positive equilibria is a partial order set

with a minimal point and a maximal point.

Next, we turn back to the system (5.2.1)-(5.2.3). Looking at the proof of
Theorem EQ in Section 5.4, we see that the proof does not use any properties of
Bijr- In other words, Theorem EQ is true no matter whether fB;jr depends

on ¢ and j or not. Thus if the disease-free equilibrium is unstable the

system (5.2.1)-(5.2.3) persists uniformly.

Summarizing the above argument, we can conclude as follows for this

general model.
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THEOREM 5.6.1. If the disease-free equilibrium is unstable then there exists at
Jeast one endemic equilibrium and this general system is uniformly persistent.
Furthermore, when there are more than one endemic equilibria we have two en-
demic equilibria (z!,y') and (z?,y*) such that for any endemic equilibrium

(=*y*), 22<z*<z! and y <y <y
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CHAPTER 6
ON THE UNIQUENESS AND NONUNIQUENESS
OF ENDEMIC EQUILIBRIA OF AN HIV/AIDS

TRANSMISSiON MODEL WITH SUBPOPULATIONS

6.1 Introduction.

In this chapter, we study the following HIV/AIDS transmission model,

n
vi
zi = U; — pz; — iz ; piibBij = -lJ-y,- )
n
v; (6.1.1)
yi = —(ki + w)yi + ciwi ; piibBij P> _; e

z§ = kyy; — bizi,

for 1=1,...,n.

In this model, a population is divided into n subpopulations by sex-
ual activity. Then each subpopulation is redivided into three epidemiological
classes: susceptibles, HIV infecteds and AIDS infecteds. Moreover, we denote
the number of persons in each class by zi, Ui and 2z respectively. It is
assumed that individuals having AIDS no longer take part in transmission. The

parameters in the system (6.1.1) are defined as follows:

U;= the constant recruitment rate of susceptibles into the i-th subpopula-

tion;

114
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¢; = the number of persons contacted per person in the i-th subpopulation

per unit time;

pij = the proportion of the contacts of a person in the i-th subpopulation

with persons in j-th subpopulation. In this chapter, we will only

consider proportionate mixing. So p;; takes form

__ci(zity;)
T = ’
> ck(zk + yx)
k=1
Pi; = the transmission rate between a susceptible in the i-th subpopulation

and an infected in the j-th subpopulation;
k; = the transfer rate from y; to =z
4= the mortality rate from all other sources;
§; = the mortality rate for persons with AIDS in the i-th subpopulation.

The n-group model (6.1.1) and its generalizations have been widely used
for studying the spread of HIV/AIDS by many authors. In a homogeneous pop-
ulation (n=1), Anderson, Medley, May and Johnson [1] considere¢ a model
similar to {6.1.1) except that they assume HIV infection does not always lead
to AIDS. Hence, a class of non-infectious seropositives was introduced. The
same model was studied by Castillo-Chavez, Cooke, Huang and Levin [2]. They
showed that the stability modulus of the Jacobian at the no-disease equilibrium

is a threshold. Below the threshold the no-disease equilibrium is unique and is
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globally asymptotically stable, and above it there is a unique positive endemic
equilibrium, which is locally asymptotically stable and globally asymptotically
stable under certain conditions. Many results have been obtained for a hetero-
geneous population (n > 1). Anderson et al. [1] studied the model (6.1.1)
with no recruitment (U; =0), zero competing mortality rate (x =0) and
group-independent transmission rate (Bij = B). Jacquez, Simon, Koopman,
Sattenspiel and Perry (8] also investigated the model (6.1.1) but assumed that
the HIV infecteds pass through m infective stages from initial infection to
having AIDS, and the transmission rates only vary with the stage of infection.
A threshold was found such that below it the no-disease equilibrium is the only
equilibrium and above it a (unique) positive endemic equilibrium occurs. We
extended the work of Jacquez et al. in the last chapter by showing that the
stability modulus of the J acobian at the disease-free equilibrium can be chosen
as a threshold. Hence, the existence of the positive endemic equilibrium com-
pletely depends on the stability of the no-disease equilibrium. Dropping the
restriction on the transmission rates, we also prove that there always exists a
positive endemic equilibrium provided the disease-free equilibrium is unstable.
Recently, some impressive results have been obtained for the model (6.1.1) by
Castillo-Chavez et al. [2,3]. For g =po, at which the stability modulus of the
Jacobian at the disease-free equilibrium is zero, they introduced an expression
h(po)- K Rh(po) #0, po isa bifurcation point. If h(ue) >0 (R(po) < 0),

there is a unique positive endemic equilibrium continuously depending on p
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when g is slightly less (greater) than po. In the case when g is slightly
greater than po and h(po) <0, they showed that the model (6.1.1) has at
least two positive endemic equilibria. They also showed that for u € (0,x0),
the model (6.1.1) has a positive endemic equilibrium (this result has been ex-
tended by us to more general models. See Section 5.5 of Chapter 5). However,
there are still some questions remaining unanswered. For instance, is the posi-
tive endemic equilibrium unique when p € (0,40)? If the answer is no, what
kind of conditions can guarantee the uniqueness of the positive endemic equi-

librium?
The purpose of the present chapter is to answer these questions.

The remainder of the chapter is organized as follows. In the next sec-
tion, some basic properties of the theory of monotone flows are presented. In
Section 6.3, we give several conditions under which the positive endemic equi-
librium exists and is unique. These conditions can be verified easily as long as
the parameters in (6.1.1) are known. In Section 6.4, we present a two-group
model. By properly choosing the parameters, we show that this model has at

least three positive endemic equilibria.

6.2 Preliminaries.

In this section, we will recall some known results on the theory of mono-

tone flows which will be essential to our work.
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Let IR® be the n-dimensional Euclidean space. For any two points
z = (21,...,%a) and y=(¥1,..-,Yn), We write
z<y if zi<yi for i=1,...,n,

z<y if z;<y; for :=1,...,n
Consider a systex'n of ordinary differential equations in R",
z' = f(z) (6.2.1)
where z €IR®, f=(f1,..-,fa) is continuously differentiable.

We say the system (6.2.1) is cooperative if at any point,

of; e
2 .
3s; = 0 for i#j

It is well-known that the flow generated by a cooperative system is a
monotone flow: for any solutions z(f) and y(t) of (6.2.1), if =(0) < y(0),

then z(t) <y(t) for all ¢20.

Let z* be an equilibrium of (6.2.1) and A* be the Jacobian of (6.2.1)
at z*. We denote s(A*) to be the stability modulus of A*, which is the

maximum of the real part of the eigenvalues of A*.

An equilibrium z* is called a sink if s(A*) <0, and a trap if there is
a (non-empty) open set N in IR"™ such that all solutions with their initial
values in N converge to z* as t— oo. It is easy to see if z* isa

trapthen s(4*)<0. I s(4%)>0, we say " g* is strongly unstable.
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The following theorems are due to Hirsch and Selgrade. We omit their

proofs and refer the interested readers to [4], [5] and [12].

THEOREM 6.2.1. Suppose system (6.2.1) is cooperative and let ¢(t) be a
bounded solution of (6.2.1) with $(0) =z. If one of the following conditions

holds:
@) f(z)20 (f(z)<0);
(i) §(T)>z (¢(T)<z) for some T >0.
Then the solution ¢(t) tends to an equilibrium, ie.

tlingo ¢(t) = z* for some equilibrium z*.

THEOREM 6.2.2. Let ¢(t) be defined in Theorem 6.2.1. If tlingo () =az*

and z*<z or z*>gz, then z* isa trap.

THEOREM 6.2.3. Let z* and z** be two equilibria of (6.2.1) and z* <
z**. If z* and z** both are sinks, there is an equilibrium £ such that
z* <i<z** and % is unstable I z* and z** are strongly unstable,

there is an equilibrium % such that z* <Z<z** and Z is a trap.

6.3 Sufficient Conditions for the Uniqueness of Endemic Equilibrium.
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Since the first two equations in (6.1.1) are independent of z; a.nd the
third equation in (6.1.1) is a linear equation in z; ( hence easily solved once
yi(t) is known), it suffices to consider the first two equations of (6.1.1) for the
moment. We begin this section with introducing an equivalent system of (6.1.1)
vl = —pv; + kiyi, (6.3.1a)

n

Y, ¢iBijyi

j=1

yt = —(ki + p)yi + ci(Us — poi — pyi) X 5 —,
E ce(Ur — pok) (6.3.1b)

k=1

for i=1,...,n.

Obviously, the system (6.1.1) and (6.3.1) can be derived from one another

by the relations

i .
Vi = — —Zi — Vi i=1,...,n.

Hence, for the rest of this section, we will study (6.3.1) instead of (6.1.1).
Let

K = diag{k,...,ka},

AUipu ... alitabin
L= : :

n

k;l kUt cnUnc ﬂnl ses c?;Unﬂnn

and

A(p) = —K - pE + L,
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where E is the n xn identity matrix. Thus, the Jacobian of (6.3.1) at

the diseasefree equilibrium: (v,y) = (0,0) is

(75" ao)
0 A(p))’
and the stability of the disease-free equilibrium is decided by the stability of

A(p).

Assume that at u = o, s(A(se)) =0. Then
s(A(n)) = s(A(po)) — (1 — po) >0,
for O0<p<p and s(A(p)) <0 for p> po.

The model (6.1.1) or (6.3.1) has been examined by many authors. We

summarize some of their results here for reference.

We introduce the expression
n _ n
h(uo) = > LLY  (cifij — kj)eilj,
i=1 Jj=1
where I=(h,...,I,) (resp. I=(ly,...,In)) is a positive eigenvector of
(koE + K)~1A(uo) (resp. AT(po)(poE + K)™) corresponding to the eigen-

value one. When I is irreducible, Castillo-Chavez et al. proved

THEOREM 6.3.1. ([6]) I h(po) #0, o is a bifurcation point. Moreover, if

h(po) > O (resp. h(uo) < 0), there is an & >0 and unique differentiable

functions z and y mapping (po—¢,po] = IRE  (resp. [po,po+e) — IRY)
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such that (z(po),y(p)) = (‘—"‘L ooy %ﬂ ,0,...,0) and (z(n),y(p)) is a
positive endemic equilibrium of (6.1.1). Furthermore, the endemic equilibrium

is locally asymptotically stable for p € (o — €, p0)  (resp. unstable for p €

(”01 Ho + 6))'

THEOREM 6.3.2. ([6] & Chapter 5 in this thesis) For each p€(0,p0), (6.1.1)

has a positive equilibrium.

THEOREM 6.3.3. ([6]) I h(mo) < 0, then there is an € > 0 such that

(6.1.1) has at least two positive equilibria for each p € (ft0s o +€)-

If we suppose PBij = B, ie. Bi; is independent of ¢+ and j in

(6.1.1), a threshold condition is given.

THEOREM 6.3.4. ([8] & Chapter 5 in this thesis) If s(A(p)) <0, then the
disease-free equilibrium is locally asymptotically stable and there are no positive
endemic equilibria. If s(A(n)) >0 and L is irreducible, the disease-free

equilibrium is unstable and (6.1.1) has a unique positive endemic equilibrium.

We now turn to our main results in this section. The standing assump-
tions hereafter are that: the transmission rates Pi; are arbitrary nonnegative

constants and L is irreducible.
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THEOREM 6.3.5. If A(u) is a nonnegative matrix, then the system (6.3.1)

has a unique positive equilibrium.

REMARK. The nonnegativity of A(g) is equivalent to

-ﬂ-— i=1,...,n (6.3.2)

Y el
k=1

p+k; <

Our method in the proof of Theorem 6.3.5 also can be also used for

preferred mixing (cf. [8] for the definition). The condition turns out to be

2(1 — 52U B::
p+k; < c':(l pi) Ui , i=1,...,n. (6.3.3)
kE cx(1 = pi)Us
=1

THEOREM 6.3.6. If
cifij—k; >0 forall i and j, (6.3.4)

then the system (6.3.1) exists a unique positive endemic equilibrium.

REMARK. If ¢ifij—kj >0 forall i{ and j, we automatically have

h([lo) >0.

We now begin to prove our results. First, we need the following lemmas.

LEMMA 6.3.7. Introduce a system of n ordinary differential equations,

: ) ng ¢iBijy;
vi = —(ki + wyi + (Ui — (ki + p)yi) 5——
l;l ce(Ue — keye) (6:3.5)

t=1,...,n.
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Then, the number of positive endemic equilibria of (6.3.1) is equal to the number

of equilibria of (6.3.5) in the region

G={0<yi<

PROOF. If (;:) is a positive equilibrium of (6.3.1), where v* = (vf,... ,uR),

v* = (y,...,¥)!, then, for i=1,...,n

k; U;
v=—yi vI<—, 6.3.6
y Yo WS (6.3.6)
z_:l c;iBiiy;
— (ki + p)y} + iUi — po} — py?) = =0.  (63.7)
Y ce(Ue— pvy)
=1
Replacing v! of (6.3.7) by (6.3.6), we have
gl c;Biiv;
— (ki + )y} +ci(Us = (ki + 0)93) = =0.
lZ ce(Ue — key?)
=1

Hence y* is an equilibrium of (6.3.5). It is easy to see y* € G. Conversely,

if y*€G is an equilibrium of (6.3.5), let

vt =

Ky*.

i

Then (;:) is a positive endemic equilibrium of (6.3.1). O
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LEMMA 6.3.8. The system (6.3.5) is cooperative on G.

PROOF. Denote the right-hand side of (6.3.5) by f;. Then for i # j,

[f: ce(Ue — keye)]ciBij + [t—il ceBitye]cik;

0 f.‘ =1

= = Ui—(ki“"l‘)yi n

Oy; ( ) [t;l ce(Ue - kc!ﬂ)]z
>0.

a

LEMMA 6.3.9. If the matrix (I‘BP Ij) is the Jacobian of (6.3.1) at an

equilibrum (;’:), then pu~'BK+ A is the Jacobian of (6.3.5) at the corre-
sponding equilibrium y*. Consequently A(p) is the Jacobian of (6.3.5) at

y*=0.

PROOF. Let us denote the right-hand side of (6.3.1b) and (6.3.5) by

F(v,y) and f(y), respectively. Then we have the identity

F(u™'Ky,y) = f(y)

Df(y) = p™ D1 F(u'Ky,y)K + D, F(u~' Ky, y).
Thus, at (;:),

Df(y*) = p~ D1 F(u ' Ky*,y*)K + D, F(u~ Ky*,y*)

= p7'D1F(v*,y*)K + D, F(v*,y*) = ™' BK + A.
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LEMMA 6.3.10. Let y* be a positive equilibrium of (6.3.5) in G. I A(p)y* >

0, then y* is a sink.

PROOF. By calculations, the Jacobian of (6.3.5) at y* is

(—c1(Fs + p)kE ckBrryi \
=1
* 1 0
Df(y") = =
121 ce(Ue — key}) 0 n :
= \ —cn(kn + 1) Y. exBakyr |
k=1 ’
1
+ n 2
(£ Ve k)]
cg (U1 — (ks + #)y;) klglckﬂlkyz ee € (U1 — (k1 + ”)y;)c“k"g_:lckﬂlky;
X

n n
cn(Un — (kn + I‘)y;)clklkzlckﬂnkyz e C2(Un—(kn + #)y;)knk);l%ﬁnkyi

1
—K—-pE+—

Y ce(Ue — keyp)
k=1

A -k +my)Pn ... ali—(kh+ 1)y} ) enBin

Cn (Un - (kn + P)y;)clﬂnl cee c?; (Un - (kn + I-‘)y;)ﬂnn
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Thus, the i-th component of Df(y*)y* is

n n
> erPicyi l;lcckt.'lz
A= [ = cilki + p)y? +ci(Ui = (ki + p)y}) —
Y ce(Ue — key}) Y ce(Ue — key?)
=1 =1
n
Y cxPiry;
— k=1
lZ ce(Ue — key})
=1

2 ceUe— 3 ce(Ue — keyy)
x [ = ci(ks + )y} + ci(Us — (k: + p)y}) E——22
> ce(Ue — keyy)

=1
> celUe > ckBiryi
=— [= (ki + p)y} + el o]
Y cl(Ue — key}) Y ceUs
=1 =1
Hence .
lE ceU,
Df(y*)y* = - —= A(p)y* <0.

lEI.Q(Uz — keyz)
It follows from the M-matrix theory that s(D f(y*)) < 0. Consequently,

y* is a sink. . [

PROOF OF THEOREM 6.3.5. Existence of an equilibrium is obvious for
s(A(p)) >0. Now, since A(y) is nonnegative and irreducible, for any posi-
tive equilibrium y* in G, A(u)y* > 0. Hence every equilibrium in G is
a sink. If there are two equilibria in G, it is easy to show that there are

two equilibria y* and y** such that y* < y**, because G is positive
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invariant and (6.3.5) is cooperative on  G. By Theorem 6.2.3, there exists an
unstable equilibrium in G, which is a contradiction. We complete the proof.

O

PROOF OF THEOREM 6.3.6. From Lemma 6.3.10 and the proof of Theo-
rem 6.3.5, it suffices to show that for any equilibrium in G, we have A(u)y* >

0.
Since y* is an equilibrium,

2 cibiiy;
—(ki + )} + (Ui — (ki + p)y}) = =0,

_Zlcj(Uj — kjy})
J:

i=1,...,n, where v* =(y},-..,yn). Thus,

— (ki + p)yry_ciUs + Uiy _cibiiy}

=1 j=1

n n
= c(ki + m)y} Y _eibisy) — (ki + p)E ) _&iKiyj
j:] j=1

= (ki + p)yl Y_(cibij — kj)ejy; > 0.
k=1 _

This implies A(p)y* > 0. a

6.4 A Two-group Model with at least Three Positive Endemic Equi-

libria.
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In the last section, we presented several sufficient conditions under which

the positive endemic equilibrium of the model (6.1.1) is unique if it exists. In
this section, we will see if these conditions are violated, the multiple group
model (6.1.1) may have multiple positive endemic equilibria, even in the case
that the discase-free equilibrium is unstable (4 < go) . This disprove a con-

jecture by Huang [7].

We now consider a two-group model (n =2). Let U=k =¢ =
1,i=1,2, and p=1. Forgiven 0<e<j, whose value will be chosen

later, define

Prz2 =

?

M| W

P11 = 3(3 —€) — b,

9
ﬂ22=Z,

_3(3-¢)
fa1 = 15 €Paz.

We obtain a two-group model:

_ g Pt + By
() +(z2ty2)’

i=1->1z

2
(6.4.1)

Bay1 + Bizy2
(z1+y1)+(z2+2)

13
Y= 2yt i

for :=1,2.
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By Lemma 6.3.7, the system (6.4.1) has the same number of positive

equilibria as the following system

(6.4.2)

3 By + Pizy2
"
3 P21 + P22y
' _ - - — —
vp=—gw+d 2) Q-+ —y2)

in the region G’:0<y1<§,0<y2<-§-.

Hence, it suffices to show the system (6.4.2) has at least three positive

equilibria in G.

CLAIM 1: the origin 0 and the point y* = (},5) are

system (6.4.2).

It is obvious for the origin.

equilibria of the .-

Let yf=73,y3=5. Then
3 3 . Puy; + Pr2yz 3 1  2(Bu+ebr)
+(1- X - =——--4-X
B R R S Tk e p e R Y S =2
3.1 338-¢) _
- 4+4>< 3—-¢
3 f i (1- )% Byt +Pny;  _ _ 3¢ 4-3 2(B21 +€P22)
S AU kT e e e R G=a
3, 4-se NE2
T4 4 3-¢

Thus (3,5

is an equilibrium.
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CLAIM 2: Both equilibria 0 and y* are unstable for sufficiently small €>

0.

Let Ao(¢) and A*(e) be the Jacobians of the system (6.4.2) at the

origin and the point (1 ,%), respectively.

Then
-3 4 Bu Biz
2T 2
Ao(e) = ( - . Ezz)
2 -z1t5
and
—6+ 3524 TS
A*e) = .
3e4(4-3¢)fn _3_ 9e + 3e+4-(4—3¢)B22
2(3~¢) 2 2(4—3¢) 2(3—¢)
Since
3, Bu_1
2 + 2 =3 (3-3¢) >0,

8(Ag) >0, i.. the origin is unstable.

Noticing

N0

_ 3(1+1)
A"'(e) - 2(3—¢
3e(445¢ 3 3(12-5¢) |

3G—) - - st 5659
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Thus, the determinant of A*(e)

9. 3 9¢ 3(12 — 5¢)

det Ae)== 3~ 5~ 573 T 8G9 |

9¢(4+5¢)  9(4+5¢)
T 16(3—¢)? 16(3—¢)?’

Let ¢ — 0. We have

. ey L
H’detA(e)— Z<0
Hence, we can choose sufficient small € >0 such that
det A*(e) < 0.
By the M-matrix theory, both eigenvalues of A*(¢) must be real.
With
det A*(e) < 0, we conclude that one of the eigenvalues of A*(¢) is posi-

tive and another is negative. Therefore, A*(¢) is an unstable matrix, which

implies the equilibrium y* is unstable.
CLAIM 3: There are two positive equilibria, denoted by § and #, such that
S - - 2

0<j<y’, ¥<I<(3

Therefore, the system (6.4.3) has at least three positive equilibria 7, y*, and
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Since 0 and y* are both strongly unstable and the system (6.4.2) is

cooperative, by Theorem 6.2.3, there exists a sink § such that 0 < § < y*.

To show there is an equilibrium between y* and the point (%, 2),
we pick the solution with its initial value being (2, 2). Then the w-limit
set of this solution is an equilibrium § because y!<0,:i=1,2, at (%-, % .
But this equilibrium cannot coincide with y*. Otherwise y* isa tfap which

contradicts to that y* is strongly unstable. Thus > y*.
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