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ABSTRACT

This research aims at tackling a specific production enginepraiem in sand retention testing
(SRT). One common practice of operational oil companies is to prevent sanding by deploying
standalone screens (SAS). SAS cossiétslotted lines (SL), wire wrap screens (WWSand

puncledscreens (PSpanong others

A systematic methodology was developedSardesign using the SRT feteamassisted gravity
drainage (SAGD) injectar Although the solution is particular for the SAGD injector, the same
similar methodology caralso beapplied for any otheinjection or evenprodudion well. SRT
investigation for SAGD injector flowback was considered as a demonstration for the capability of
the proposed methodology in comparison to previous techniques. The previous techniques
sometimes rely on hypotheticat invalid assumptions due the lack of necessary field data to
perform such a study. Often, field daére confidential and nearly impossible to obfaina

hazardouscenaridike a thermal injector flowback

The proposed methodology consists of threats. The first front is to estimate the laboratory
testing variables or operational parameters based orspas#ic dateand reservoisimulatiors

to assesthe flowbackThe simulatioraccounts fotheunique reservoir characteristics that change
from one field to anotherThe STARS module of theComputer Modelling Group (CMG)
simulatorwas used to predict the consequences of SAGD injector flowback, which is the only
possible way of sanding from a reservoir engineering viewpoint. Moreover, one ofured gas

flow correlations was coupled to the CMG model to ease the modification of production system
variability by an interactive, smouse developed, excel program. The coupling reduces the

computationatime from about 20 hours to less than 1 houre Thmputationatime reduction



was due to using 2D-model, based on symmetry, instead of them3@del. Accounting for
thermodynamic equilibrium changes the understanding of the problem drastically by avoiding

inaccurate assumptionsed in the past.

The second front is to develop a new SRT-gptspecialized for SAGD injector flowback
laboratory testing and maintain a ceffective research budget. Intensive testing was performed

to troubleshoot the associated problems with Jvigllocity gas flow

The fnal front was to verify the performance and efficiency of the developed testhugp &gt
conducting six tests. Furthermore, more representative reproducibility criteria were proposed to

ensure testing repeatability.

SRT results show that the current uistty practices foiSL selection, which rely upon field
experience or rules of thumb, are not conservative as previous researches claim. Eventually, this
research should be considered as a sisigle only in SRT for SAGD injector flowback, and

necessary methodology enhancemaemtd facility upgrades should be investigated in future work.
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Chapter 1INTRODUCTION

1.1 Background

Oil sand represents a unique reservoir, where the porexohsolidated reservoir sediments are
filled with very viscous hydrocarbenlike bitumen and kerogemwhich requires thermal

techniques to commercializis production (Boggs, 2009)

Albertaocilsandr e pr esent 95 % o {1 0C% noafd atbhse owol r IrdeGsse roviel
a total area of 142 thousand %riThe oil sandgontain overl.7 trillion barrelsof Initial Oil in
Place(IOIP). Only 3% of the IOIPcan be extracted by surface mining and the remaining 97% to

be produced by Hsitu extractionlt is economically unfeasible to yield more than 10% of IOIP,
equivalent tal66 billion barrels, by the current thermal technolofye largest, in terms of areal
extension, by far isthabascafollowed byCold Lake, and Peace Riv@ihese three regiomsake

up the majority ofAlberta oil. ("Oil Sand Geology & the Properties of Bitumen," Sep. 23, 2019)

FurthermoreMcMurray formationthickness varies from few millimetres up to more than 110
meers in the eastern part of AlbertBlowever, the overburden thickness varies frarfew
centimetes present in outcrops alotige Athabasca Riveand increases towartise southwest to

reach a maximum value of 450 metéksassanpour, 2009)

However thermal recovery is one of the most efficient Enhar@iédRecovery(EOR) techniqug
which comprises steam injection anekitu combustionThe geam ingction includes cyclic steam
stimulation (CSS) and steaassisted gravity drainage (SAGD) operatitingt mainly involve
different steam injection strategid$e aim igo reduce the viscosity of bitumen (uHnaavy oi),
which results ina production rate exceedj the economic limit. Investigation shows that steam
injection temperatuserangng from 200C to 350C are neededo reducebitumen viscosity
dramatically.The ¢eam drivehas beenconsideredo be aprimary technique before theviention

of CSS, which shows significant improvement of sweep efficiency compared to stean driv
(Green, 1998)

Moreover, he selection othe CSS or SAGD process is dictated by the geology of the reservoir.
Cold Lake deposit lends itself better to CSS, whetba#\thabasca deposit responds better to
SAGD. The statistics bthe Alberta Energy Regulator show a dramatic increasternin-situ

bitumen production rate in the la€i tears due to the contribution of Athabasca oil gdimdsitu



Bitumen Extraction,” Sep. 23, 2018&)bertad snconventional basin productibias a decline rate
of only 4 % per year compared to conventional oil msiith a typical decline rate of 20% per
year The average decline rate fdrade depositionss 40% per yegrwhichimplies a continuous
rig demand and associated exploration.r{8®il Sand Geology & the Properties of Bitumen,"
Sep. 23, 2019)

In general, SAGD operation involvessand control screen in both steam injection and oil
production wells. The screens are dgplbto prevent the sesand particlerom enteringthe
wellbore. In production wells, sand control aimsratintainingwell productivity and preventing

sand productionlt results inminimizing the negativeenvironmental impastof processing
contaminag¢dsandwith oil that requires chemical treatment before dumpingtand-alone screen
(SAS)has beemproven to be aisefulsand control tool in unconsolidated sa8tbtted liner (SL)
wire-wrapped(WWS), punched(PS) and expandable meshre the common SAS types. SAS
performance is very dependentthecharacteristic design parameters to specify slot aperture size
(slot width) while plugging, mechanical integrity, and cost management are based on slot density
andcorresponding open aréaflow. (Fattahpour et al., 2018b)

It is widely believed that in the current design procedureSiary, the aperture size is specific

ratio to a single poindf the particle size distribution (P$.go O orp& 'O .The aperture

size design inheSL is based orthe PSD descriptiothatmaintairs astable bridg of sand grains

above the screen slots. However, the impact of the selected slot aperture should not cause
significant permeability reduction in the neaellbore region. A good measure of such impact can

be quantifiedby the ratio of finalpermeabiliy (0 ) to the initial intact permeabilitgd ).

Retained permeability O( O jo ) representshe reduction in permeability
because of firemi gr ati on and por e pl.Uhgarrentgccaptabdeloiver | i ne
limit is an aperture size that resultsairetained permeability ratiof more than 50% anshtisfies

the upper limit taestrict sand production volume to less than 1% of the liner vol(fragahpour

et al., 2018bMontero, 2019; Roostaei et al., 2018)

Often, hie SAS performance is evaluated by laboratory testing using sand retention testing (SRT)
facilities. Most oftheresearchlworksfocused orsand control in SAGD producers to come up with
sand control design criteria f&Ls (Mahmoudi, 2017and wire wrap screer(®ontero, 2019)

slots profile influence, and open hole gravel pack degtgiostai et al., 2018)



The SL has the advantages of other SAS because of its reasonable mechanical integrity and
acceptable produced sand volumes, in addition to its cost efficiency, which makesnibghe
favourablecandidate for SAGD injectoompletion(Fattahpour et al., 2018Bh steam injection

wells, sand control aim® prevent sand accumulation in the wellbore while a stegeator
undergoes either a normal stint wellhead closureor an unexpected flowbadkased orthe
differential potential between the reservoir and the welli&ietahpour et al., 2018a; Mahmoudi

et al., 2018a)

1.2 Problem Statement

Aperture size selection is wadkplored forSLs in SAGD producershut there are no design
criteria for SAGD injectorsfor any SASpther than the belighat the current design criteria for
SAGD produces maywork for theSAGD injectors, which may not be necessarily true under real
circumstances and operatior@@nditions.SAGD injectors in McMurry are equipped wiBLs
with maximum available slot density and smallest possible slot aperture to ensureesantdqn
which is considered as a conservative sele¢iattahpour et al., 2018a; Mahmoudi et al.,&401
Often, industry practice prefers being conservative rather than d@sggcially in vague sanding

mechanisms and scenarios.

However, current understanding of SAGD injectors shuttonsequencegossibleflowback
scenarios, sanding mechanisassociatedhermodynamics, and their impact on optimal SAS
selection are still untouche@lhere were &éw preliminarypieces of researaonductedeforethis
investigationThose researalorks were intended to explo8AS performance in SAGD injectors
based on hypothetical assumptiowhich mag be inconsistent witlsRT operational parameters,
testing procedureand SRT configurations.HE experimentafindings from past researatiid not
match sand production expectationShe authors proposed a relatively largperturesize of
(P8 O ) in well-sorted sando maintain acceptabBLs performanceyet the industry prefers
the smallest possible aperture sizarthermorethe investigation was conducted &single PSD
with low clay contentwhich does not ensure that the proposed apertureappesto another
PSD. Finally,the flowback fluid usedwas liquid waterto mimic low Steam Quality $Q)

flowback which is unlikely the case for steam injection welldahmoudi et al., 2018a)

However, applyingthe p& 'O ) size criterion in the high SQ flowback caseproposed by
Fattahpour et al. (2018&@sults innegligibleproduced sandt meanghatthe proposedriterion



by Mahmoudi et al. (2018a$ very conservativeompared tdhat of Fattahpour et al. (2018a)
Accordingly,anycriteria forslot design foSLs should maintain sand production below acceptable
limits. The criteria proposefbr low-SQ flowback SRT is already decided to be relativeigder

than thefavourable industrysize.Besides several flowback stages were conducted in each SRT
test and onlythe cumulative produced sand was compared thiélperture size to evaluate SAS
performanceEventually, the decision of whether the industry standards are conservative or not

depend on SRT performance evaluation rather than the sel&ttegberture size.

1.3 Research Hypothesis

Logic indicates thatsand control design criteria are equatiyucial for SAGD injector and
producer While the literature covers mosaspectsof design forSAGD produces, there isa
considerald gap intheliteraturewhen it comes to sand control design criteria for SAGD injsctor
It seemsthe industry overcomes this situatitwy being conservativeaccording toprevious
researchin this field (Fattahpour et al., 2018a; Mahmoudi et al., 2018agre is a need faa
systematic SRT procedute quantify and evaluatthe sanding performance 8Ls in SAGD
injectors. Indeed, developing sand control design criteria for SAGQ€ctors may not be as easy
as it isfor SAGD producerbut technically it should be possible to assB#sS performance by
SRTin the laboratory

The ndustry tends to use small aperture size slots for SL completion. However, some researches
argue that this strategy may result in considerable formation damage and injectivity loss due to
fines migration in case of an injector flowback. The conclusionserbggrevious researches are
guestionable because the research neglected reservoir, production and thermodynamics principles
in the assessment t&fsting variables. Moreover, the SRT-agptflowlinesappear taonsume most

of the applied pressure. Accordiy, the working hypothesis of this research is the small aperture
size will not caise formation damaga the SRTexperiments

1.4 Research Objectives
The primary objective of this research is to eliminate as rhgpgtheticarssumptions as possible
by exploring SAGD injector flowback possibility and incorponag reservoir engineering,

reservoir simulatiopand thermodynamid® evaluate representative operational paramelass.



testing incorporatesitial sample saturation, flowbagsarameters such asimber of stages,

flowback fluids, applied stress durinigsting flowback differential pressurend other related

SRT parameterdhe research examindése flowback in SAGD injector basedn reservoir and

production engineering concepts.

To allow emulating SAGD injection wells during flowbathe existing SRT testing facilitiegere

modified tomimic SAGD injector flowback and yield representative resklirthermore, another

objectiveis to examine the industry practice for aperture size seldoti@lLsin SAGD injectos.

In summary the objectives include:

15

Obtain reasonabl8RT operational parametets mimic SAGD flowback
Operational parameters guittee modifications to the existif§RT facility.

Propog a systematictestingschemethat best represesithe SAGD injector flowback
scenario

Examire the current industry practicéy using the modified SRT facility & testing
scheme.

ResearchMethodology

The research is performén the following steps:

1.

Acquire an n-depth understanding &RT forSAGD injectorflowback.

2. Developarepresentative SAGD model usi@@mputer Modelling GroupGMG) STARS.

Coupke CMG model witha suitable correlation to predict flowing bottom hole pressure
(BHP) during injector flowbackccordingto nodalsystemanalysis(NSA) concepts.
Obtainthe operational parameters forepresentative SR&sting based othheworstcase
scenario.

Modify the isting SRTfacility to adapto SAGD injector testing

6. Explore several testing procedures and nonertiaé most suitable technique.

Examire the current industry aperture size selection for SAGD injetttayugh SRT

experimentation



1.6  Significance ofWork

The purposeof this workis to initiate a systematic procedure for conducting SRfe research
involves using the CMG STARS model understanishg compressible fluid flow ira conduit,
constructing and modifying SRT facility and scheméelp future investigations related to SAGD
injector near wellbore regigandjustifying the current industry selection practices@lecting the

aperture size dbLs.

TheCMG STARS modelvas used to overcontieelack ofdata related tpossibleSAGD injector
failures that may follow asevere flowbackCoupling a natural gadlow correlation withthe
simulatorexpeditesthe simulatios. The current SRT testintacility was modifiedto adapta
testing procedure suitable for injectilowback scenariosUsing the modified SRT provethat
incomplete and misleading conclusideading to clainthat the industry practids conservative

in aperture size does not have any detectable impabeavell performance

1.7 Thesis Layout

Thisthesis includes the following seven chapters.

Chapter 1: contains an introduction to Alberta oil santhermal EORand SAS importance in
SAGD operationfollowed byproblemstatement, research hypothesis, objectives, methodology,

andcontributions
Chapter 2: provides a brief literature review of the concayttbzed in this study

Chapter 3: describeshe CMG STARS model, a natural gas flow correlation and emphasizes

similaritiesin the propertiebetween natural gas and superheated steam.

Chapter 4. combinesthe STARSresultswith gas flow correlation in an iterative technigiee

assesflowing BHP during injectoflowback andassign the SRT operational parameters.

Chapter 5: demonstrates stages of modifications and developments for SRT facility and testing

procedure.

Chapter 6: elaborates on SRT results to examthe performanceof SLs based on industry

selection practicg the mostsuitabletesting program, ananalysis otestingresuls.



Chapter 7: summarizes research findings and discuisegossible futuralirectionof this

work.



Chapter 2LITERATURE REVIEW

This chapter includesssentiatopicsrelated tosand control testing f@AGD wells, particularly,
injectionwells. It involves sandatharacterizationgeneral review fooil sands and bitumemock
and fluid properties for gas flow in porous media, thermodynamiesn SAGD productionsand

controltestingfor SAGD and Bernoull i 6s equation applicat

2.1 Sand Chaacterization

Reservoir geology is often a valuable key for understanding seseevoirphenomenahatalter
petrophysical propertieendmaylead toreduad injectivity. Geologists believe thdhe chemical
and physical properties geomaterialsare closely related to depositional environments and the

saturatingluids.

Sedimentary rocksare classified into three fundamentdypes: terrigenous siliciclastic,
chemical/biochemical, and carbonacedtech of these major groups of sedimentary rocks can be
further subdivided based on grain size and mineral compagiighigenic constituents represent
minerals precipitated from pore water within prepacked sediments thatHesocalled cement
materid. (Boggs, 2009)

The following section includstopicslike the geological description of McMurragil sand the
description ofunconsolidated particles, atige classificationof the McMurray formationbased

on the particle size distribution (PSD)

2.1.1 McMurray Oil Sandfrom Geology Prospective

Oil sand is oHrich sediments that contaion averagea weight fraction of 10% bitumen, 5%
water, and 85% solids. Bitumen content can be as high as 20 wt.% in some sections. The solids
are mainly formed of primarily quartz silica samdually over 80 wt.%, witla smal fraction of

fine clay and potassium feldspar. Clay material consists of chlorite, illite, kaolinite and smectite.
Furthermore, there is an inversely proportional trend betwees dorgent and bitumen weight
fraction that affects reservoir quality. Moreer, water content varies from almost zero to as high
as 9 wt%. The water contenhas beenfound to be directly proportional to fiseontent and
inversely proportional to both bitumen content and section quéli®yl Sand Geology & the
Properties of Bitumen," Sep. 23, 2019)



The McMurray formation belongs to the lower parttbé Mannville Group, which exists within
the fluvial-estuarine channel point of lower Cretacedlise ypper Mannville Group in lower
Cretaceous contains the Wabiskaw member, which tfteonsidereé cap rockTheClearwater
formation and Grand Rapids formation belong to overburden |a5iguse 2.1 presents the typical
geological stratigraphy iNorthern Alberta. McMurray formation thickness varies franfew
millimetres up to more than 110 meters in the eastern part of Alberta. Theulesr thickness
varies fromafew centimettes present in outcrops alotige Athabasca River and increases towards
the southwest to reach a maximuepthof 450 metersA thick oil sand formationpalong with
considerable overburden thicknessakesthe site aright candidate for SAGD operations.
However, the variety of depositional environmentsthie McMurray formation results in a

complex heterogeneiipn thereservoir (Hassanpour, 2009)

TheMcMurray formationis divided intothelower, middle, and upper units based on the associated
depositional environment and the corresponding reservoir quality. The lower unit waisedepos
within the fluvial environment and tthextremdy poorsorted PSD ranging from hitghangular
finesto coarse sand. The upper unit is horizontal strata, vihadten insharp contrast to Inclined
Heterolithic Strata (IHS)}igure 2.2 presents a schematic diagram that descthmE$iS. It has a
upwardcoarseningendency in two cycles separated by a thin lzamd within each cycleseveral

lithofacies are present, whiahdicate a significant degree of heterogenditassanpour, 2009)

The Middle McMurry formation is the thickest part and has the best resaquality. It can be
subdivided into two units, Largecale Crosstratified Sand and IHS. The first unit has a large
scale cross stratified coarse sand, which is characterizexcejent permeability, porosity, and
bitumen saturationThe thin segregated shale laminations that angbedded into a thick
homogenous bed set, with a minimum thickness of half a nebalievedto be due tahemarine

tidal depositional environment. Tlsecond unit consists of heterogenous IHS bodies distributed
within the first unit. IHS plays wdital role inthesteam chamber development ofsitu processes.
The depositional environment i s as -typeodaitpsl e x

prograding northward into a standing lacustrine or lagoonal.bdgassanpour, 2009)

N
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2.12 Geologst Classification of UnconsolidatedParticles
Grain size is an essential descriptiaetor that reflects weathering and erosion processes. In
general, sediments can range in size from boulder to clay size particles. Sedimentologists are
interested in grain size measuring techniqgdegrmining particle size distributioand theuse of

data togain perspective about thepositional environment.

UddenWentworth modified scale, shown imable 2.1, was proposed by Uddein 1898 and
extended by Wentworth in 1922 ¢tassify solid particles. According to this classificatiolay
sizemeasuesless than 1/256 mnKrumbein made a significant contribution 1934 by adding
logarithmic Phi( «), which enhances representatidmlities by usinganequal steps scalgq. 2.1

shows the mathematical relation of the propd3eikcale

- mo | (Eg. 2.1)
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where (%9 is Phi size and() is grain diameter in millimegs. It is a common practicen PSD

graphgto plot the coarse sizes to the left and the fine sizes to the(Bglgs, 2006)

There are several techniques used to meagane size The selectioms based on the objective of

the study, range of grain size to be measured, and the degree of consolidation of sediments. Sieving
or sieve analysis is considered to have sufficient accuracy for guiaeeio siltsized particles for
unconsolidated sedimentéowever, sedimentation techniques based on pagdicles et t | i ng v e
provide better accuracy for clayzed particles compared to coarsee particlesThe reason is

thegrain shapés measured by such parametergasn sphericy, affects the settig velocity in

large grainssdrag forces are size sensitittowever the technology of associated measurements

which use photdnydrometer, Sedjraph, lasediffractor analyzer, electroesistance analyzand

image analysisare costly because thegquire sophisticated equipment amgh experience to

run such measurements to produce reliable re¢Blggs, 2009)

Mechanicakieving is considered at the top of the list tuis relatively cheap cost in producing
representative measurements. Thin section analysis preparation combinedefigictedlight
binocular microscope is recommended to estimate consolidated sediments grain size with minimal
disturbance of its origin@ondition.Table 2.2 summarizes the methods of grain size analysis based

onthesample categoryBoggs, 2009)
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Table2.1: UdderWentworth Modified Scal€Boggs, 2006)

Millimeters (mm) Micrometers (um) |Phi (¢)| Wentworth size class
ﬁ _: I
4096 12.0 Boulder
256 . -8.0 o
Cobble o
64 { -6.0 [3
Pebble
4 - —-——— —— — - 20 [ — — — — — — -
Granule
2,00 : -1.0
Very coarse sand
100 | — — — — — — — — 0.0
Coarse sand
2 0.50 500 1.0 E
Medium sand ﬁ
1/4 025 —— — — 250 — — —| 20— — — —— — -
) Fine sand
1/8 0125 4 — — — 428 — — —| 30 A ———— — — -
Very fine sand
118 0.0625 — 63 4.0
Coarse silt
1/32 0.031 1 a1 5.0
Medium silt
1/64 0015861 — — — 156 — — —| 60 -|— — — — — — - =
Fine silt w
1128 0.0078 — 7.8 7.0
Very fine silt
1/256 0038 — -
0.003 3.8 8.0 . g
0.00006 0.08 14.0 lay s

Table2.2: Methods of Measuring Sediment Grain Size (Boggs, 2009).

Type of sample Sample grade Method of Analysis
Boulders
Cobblers Manual measuremnts of individual clasts
Pebbles
Unconsolidated sedimen| Granules o . . .
Sand Sieving, settling-tube analysis, image analysis
Sitt Pipette analysis, sedimentation balances, sedigrap,
Clay laser difiractometry, electro-resistance size analysi
Boulders
Cobblers Manual measuremnts of individual clasts
Pebbles
Lithified sedimentary rock| Granules . : : .
Thin-section measurement, image analysis
Sand
Sit Electron microscopy
Clay

The measured grain size of a specific sample can be illustrated in a graphical formswhech
most common use in this domairne gaphical representation includes three methods: histogram
and frequency curveumulative arithmeticurve, and log prolmlity scalecumulative curveas

shown inFigure 2.3 (Boggs, 2006)
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The frequency curve is very similar in appearance to Probabéitgityfunction (PDF)but it has
asymmetric belshape. The awmulative curve is a clear representation tbé PSD and
mathematically correspondsttee cumulativedistributionfunction (CDF), which is defined as the
integral of PDHSoong, 2004)The cumulative arithmeticurve produces-Shapeand the slope

of the Sshape is an indicator for size sorting. A good sorting sample exhibits a very steep slope
S-shape, whereas a poorly sorted sample exhibits a gentle slope edliapes Furthermoréhe
evaluation oPSDis acommon practice for sand control pketms and evaluating PDF would not

be hard based on the previously mentioned mathematical relation between CDF a(Bog5s;.

2006)

B
Raw Individual Cumulative
& Size weight (gm) weight percent  weight percent p
1
-1.0 0.43 05 05 - f
-05 213 25 30 g 47
0.0 425 50 8.0 § Mt histogram }£ frequency
0.5 6.80 8.0 16.0 = curve
1.0 9.35 1.0 27.0 5 10
15 12.75 15.0 42.0 @
2.0 13.58 16.0 58.0 =
2.5 12.75 15.0 73.0 3 6
3.0 9.35 11.0 84.0 2
35 6.80 8.0 92.0 3 5
40 425 50 97.0 = 2
45 2.13 2.5 99,5 e
5.0 0.43 05 100.0 = e T N EN EVAR
85.00 b Size
(4 D
100 100
- 5
3] 80 o_
ol Ei?—sf 9 |
ot b
g © 82 ok
v .2 T& 50F
z E; 3
-.g = 40 §§ 10 +
S8 S&
E 20 E
= 3
O Q
0 0 N, [N N NN S T R S S— — — —
-1 0 i 2 3 4 5
¢ Size 4 Size

Figure2.3. Graphical representation of grain size: A) tabular form, B) frequency cureen@jative
arithmeticcurve (or PSD), and D) log probability scale cumulative c(iBaggs, 2006)

Mathematical representation of grain size is considered as a better tool compared to the previously
mentioned graphical techniques due to providing better understanding and more informative
details about a givesample PSD. The definitions and mathematical expressions of a few statistical

parameters that are usually reported for a given sample are given next.
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Modesizeis the most frequelyt occurring particle size in a samplEhemode isshown as a peak

on the frequency curve and the inflection point or the steepest point of a cumulativé/iadham

size o or'O ) is defined as the midpoint of grain distributidfalf of thegrains by weight are
larger than the mediaand the othr halfaresmaller Arithmetic Mean size is approximated with

a graphical mean because iingpractical to count the number of grains in a sample or measure
the individual size of each grain to evaluate the arithmetic n@@phical Mean({ ), inclusve
graphical standard deviatiop J, inclusive graphical skewnes¥ ()), and graphical kurtosi® ()

are all calculated based tre five percentile valueshown inFigure 2.4. (Boggs, 2006)

100

80

60

40

20

Cumulative weight percent
(arithmetic scale)

Figure2.4. Method for calculating percentile values from cumulative c(Bagygs, 2006)

Graphical mean can be estimated ugtigg 2.2as a function of Phi
0 _— (Eq. 2.2)

Standard deviation isuniquemathematical expression for grain sortiripwever conventional
formulation cannot be used with grasize data A graphicaistatistical version of inclusive
graphical standard deviatiokq. 2.3 can provide an acceptable approximation andlkestrate
the sorting degree that corresponds to each standardideviBoggs, 2006)

(Eg. 2.3)
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Phi standard deviation
<0.35

0.35 t00.50

0.50t0 0.70

0.70 to 1.00

1.00 to 2.00

2.00 to 4.00

>4.00

Verbal value expression

very well sorted

well sorted
moderately well sorted
moderately sorted
poorly sorted

very poorly sorted

extremely poorly sorted

Skewness is a measure of grain size sorting that reflects thbudish of grain size in the tail of

the diagram. It isessentiabecause sand size often yields asymmetric frequency curve or non

perfect belshaped curve with positive or negative skewnessshown inFigure 2.5. The

numerical value of skewness is obtained using the mathematical representation of inclusive

graphical skewness expresd®dEq. 2.4with the corresponding verbal value expression given

below. (Boggs, 2006)

Frequency (weight %) >

Frequency (weight %) @

Positively (fine) skewed

Mode
Median

Mean

fine
particle “tail”

Coarse Fine

Particle size (¢)

Negatively (coarse) skewed

Median

Mean

cccccc
particle “tail”

Coarse . Fine
Particle size (&)

Figure2.5. Skewed grain size frequency curB®ggs, 2006)

"YU

(Eq. 2.4)
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Calculated skewness Verbal skewness

> +0.30 strongly fine skewed
+0.30 to +0.10 fine skewed

+0.10 t0-0.10 nearsymmetrical

-0.10 t0-0.30 coarse skewed

<-0.30 strongly coarse skewed

Kurtosis refers to the sharpness of the frequency curve. It indicates the degree of sorting in the

Leptokurtic

Normal

Platykurtic

central portion

Figure 2.6 shows kurtosis for normal distribution compared with a higher and lower kurtosis

number.

Leptokurtic

Normal

Platykurtic

Figure2.6. Kurtosis of a normal distribution curve

The mean sizédf ), standard deviatiofy, ), skewnesg"YU ), and kurtosig0 ) of grain size

distribution can be calculated without referenceth&ePSD curvausingEq. 2.5throughEq. 2.8 A
detailed solved example is presentedfable 2.3. (Boggs, 2009)

B

o (Eq. 2.5)
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(Eq. 2.6)

(Eq. 2.7)

(Eqg. 2.8)

where(f) is theweight percentagé’h (m) is the midpoint in each intervabnd(n) is total
number inasamplen =100 wherf is presentedn percenage as shown in the following
example inTable2.3.

Table2.3: Form for Computing Moment Statistics Using %2 Size ClafBeggs, 2009)

Class interval midpoint ~ weight % product deviation deviation square
() m f fm m- 0 (m-0)
0-0.5 0.25 0.9 0.2 -2.13 453
05-1.0 0.75 2.9 2.2 -1.63 2.65
1.0-15 1.25 12.2 15.3 -1.13 1.27
15-20 1.75 13.7 24.0 -0.63 0.39
20-25 2.25 23.7 53.3 -0.13 0.02
2.5-3.0 2.75 26.8 73.7 0.37 0.14
3.0-35 3.25 12.2 39.7 0.87 0.76
3.5-4.0 3.75 5.6 21.0 1.37 1.88
>4.0 4.25 2.0 8.5 1.87 3.50
total 100 237.8
Class interval product deviation cubed product deviation quadrupled product
() f. (m-OdmrB)4f3 (m-0)YM3b)~4 f. (m-
0-0.5 4.08 -9.64 -8.67 20.51 18.46
05-1.0 7.69 -4.31 -12.51 7.02 20.37
1.0-15 15.52 -1.44 -17.51 1.62 19.75
15-20 5.40 -0.25 -3.39 0.16 2.13
2.0-25 0.39 0.00 -0.05 0.00 0.01
2.5-3.0 3.71 0.05 1.38 0.02 0.51
3.0-3.5 9.28 0.66 8.09 0.58 7.05
3.5-4.0 10.54 2.58 14.46 3.54 19.84
>4.0 7.01 6.56 13.12 12.28 24.56
total 63.61 -5.09 112.69
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2.13 Description of McMurry Formation Sands

Statistical parametergresented ifEq. 2.1throughEg. 2.8 associated witthe UddenrWentworth
modified scale presented ifTable 2.1, can describe any unconsolidated formation. However,
extensive work was done to categorize Pike 1 project in McMurray formatidrmore advanced
parangters pregnted inTable 2.4, were used to describe sand PSD when the range of digtnibut

is narrow.Less than 1% of the McMurray formation particles are larger than the sand size of 2000
‘@& and they were discardei the PSD formulation(Abram & Cain, 2014)

Table2.4: PSD Coefficiers (Abram & Cain, 2014)

Sorting coefficient, SC d90/d10
Uniformity coefficient, UC d60/d10
Devon slope factor, DSF d65/d35
Percent fines % volume <44 pm

Abram and Cain (2014goncluded that McMurray formatiomespecially in Pike Eite, can be
categorized ito four primarysand footprintsTable 2.5 presents the sand footprints along viita
PSD coefficient for each sandahmoudi (2017Jeplicatedhose characteristics with commercial

sandfor SRTtesting, hencegliminating the neetbr field sandcoresamples

An essentiatemark for the notationf PSD percentiles, e.g. d90, d50 and d1@hésmall letter
d representthe cumulative percentage of passing grain siZé® capital letter D represesithe
cumulative percentage of retained grain sigagure 2.7 represents two identical P&Danalyzed

with passing and retained sieviagalysisechniques.

Table2.5: Synthetic SandClasses Characteristi(Bbram & Cain, 2014)

Sandprint 1 Sandprint 2 Sandprint 3 Sandprint 4
n 22 26 26 17
Uniformity
coefficient B.5 27 24 45
Sorting
coefficient 9.0 34 31 7.3
Devon
Slope
Factor 1.5 1.3 1.3 1.8
d90 235 260 315 1,220
dal 145 175 215 570
d10 25 70 100 165
Yefines 14.5 7.4 5.4 4.2
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Figure2.7. Demonstration oEumulative percentage of passing and retained grain sizes.

2.2 SandRetention Testing for SAGD Application

SRT is a powerful technique to assess $A8gravel pack performance in laborataxgntrolled
conditions. Howeverthe results of SRTare prone to aifacts andentirdy dependent on
experimental conditionsThe two dominant testing schemes are slurry and sand paciBiaitisd

& Beare, 2006)The following topicsarediscussed in this section: SRT description, gravel pack
and slot profile impact, SAGD injectors operational conditions, common SRT facilities for SAGD
injectors and testing resultdpossible scenarios famjector flowback.

2.21 Overview of Sand Pack SRT

Sandpack testingwith SRT (call prepack SRT)has beeriound togive a properdescriptionfor
SAGD neaswellbore conditions The prepack SRTis favoured over another SRType, called
Slurry SRT(Montero et al., 2018)n most SRTresearch foSAGD wells. Schematics of SRT
equipment forSAGD producer and injectdestingare presented irFigure 2.8 and Figure 2.9,
respectively

TheSRT setup consists afflowback unit or injection unit, sand pack and data acquisition system
for axial stress, pressure, and volumetrimasslow rate The injectionunit in producer SRT has
the capacity of threephase simultaneous injectiorlhe versatile design allows several

investigations to be conducted with minor changes ttegtengparameters. Brine salinity aipet
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effects on fines migration(Mahmoudi, 2017)WWS design citeria for SAGD producefMontero,
2019) steam breakthrough impag@¥ahmoudi et al., 2018b)and gravel pack design criteria
(Roostaei et al., 2018re some of the topics investigated by such versatile design.

The resultshave beenanalyzedregardingsanding and flow performances. Often, sanding
performance is used to identify the upfperit of SAS aperture size, whereas flow performance is
used to quantify the associated formation damage dplegging off o r ma porethnoad. $he
optimal goalis to minimize the aperture size as muahpossible without inducing severe
formation danage(Montero et al., 2019)The assessment operational testingarameters was

based a in-depth understating of the problem.

However, SRT for injector facilitgchematiovas developed to account féww-steamquality or
compressediquid flowbackscenarigasproposed byMahmoudi et al., 2018and high-steam
quality or saturatedteam flowbaclkcenarigasproposed byFattahpour et al., 2018&)he €sting
resuls mainly focts on sanding performance only withogiving any attention toflow
performance. Furthermore, the operational parameters were assigned based on hypothetical

assumptions.

BAL K PHISM EL &

_ nuapmEcnos SATLEATRON LT

UNIT I
|

OATA ACQUBTION AND

N IONTTORING SysTEN ™

COAFTTR
S

DATA LBGOER

s coras A, ) S—
Il-m'.-.m RE TRANSIN r.l-'e.-.l

]
Turbidity mater (TS

5 SANIF AND FINES =
MEASUREMENT UNIT

Figure2.8. SRT facility schematidor SAGD producefMontero et al., 2019)
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Figure2.9. SRT facility (2 in 1) schematic for SAGD injector

2.22 Gravel Pack and Slots Profile

Open hole gravel pack (OHGP) is a widely used completion practice in dtesnwells, often
associated with SAS. It is well known thae gravel pack creates a higher permeability zone
adjacent to the well, which reduces the pressure gradient and ultimately mafin@genigration.

A largescale SRT facility was used to mimthis type of completion to investigate sand
production, absolute pressurelse differential pressure across several sections of the SRT to
enable accurate performance assessments of the gravel pa@dssaitie literature is rich with
gravel pack desig based on designérperspective to minimize fines invasion to avoid pore
plugging of the gravel pack itsglRoostaei et al., 2018\ summary of the gravel pack design
based on sand PSi2scription of either E) or Diois presented iffable 2.6.

Table2.6: Gravel Size and Slot Aperture Design Criteria Sumni&oostaei et al., 2018)

Design Coberly (1938)| Hill (1941) | Saucier (1974) Tiffin (1998)

Gravel criteria (Bto10)xDo |(Bto10)xDo| (Bto6)x o | (7 to 8) x Do

Screeraperture size 50% to 75% othesmallest gravel size
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