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Abstract

Every realistic black hole possesses an inner or Cauchy horizon which signals the
breakdown of the two cornerstones of physics: causality and predictability. 1t has
long been known that that this inner horizon is unstable and it was generally assumed
that in a realistic black hole it would be preceded by a spacelike BKL type singulavity.
A more detailed analysis of the black hole core shows that this in not quite so.

The key observation that allows a detailed treatment of the problem is that descent
into a black hole necessarily is progress in time. Thus the analysis of the outer layers
does not require the knowledge of the physics of the Planckian core of the black hole.

A detailed analysis of the evohition of the kind of perturbitions expected in a
stellar collapse shows that the singularity that forms at the Canchy horizon is actnally
lightlike and mild. It slowly contracts to a strong, zevo- volunic singularity which is
expected to be spacelike and of BKL (oscillatory) type. This so called mass inflation
singularity is characterized by a divergence of the conformal curvature.

To study the structure of this singularity for a generic collapse a new double
null formalisin is developed which formulates Einstein’s equations in a concise and
transparent. way. This is achieved by working with manifestly geometric objects.

The application of this formalisin to the present sitnation shows that the mnass
inflation singularity is mild and smooth in the sense that the shear and the expansion
stay finite. Asymptotically the spacetime becomes of Petrov Type N, indicating the

presence of a collapsing gravitational shock wave.
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Chapter 1

Introduction

Black holes are probably the best examples of a successful marketing campaign. Be-
fore 1967, when John Archibald Wheeler coined the term “black hole”, most scien-
tists considerad their existence rather unlikely if not impossible. Things have changed
since then and black holes have become a popular topic of conversation for the general
public. But also the interest of scientists has risen dramatically as black holes have
become the key ingredient to the possible resolution of many puzzles ranging from
the structire of quasars to the problem of quantum gravity, a yet unknown theory. A
quick search in the literature database Spires yields only 537 documents before 1990
dealing with black holes, but over a thousand since then.

Black hole physics has made enormous progress since its birth at the beginning of
the century!. But there are still many unsolved problems in black hole physics. This
thesis tries to shed some light on one particular question that has hardly received any
attention: What is the internal structure of black holes? Even though one of the first
questions that comes to mind when thinking about black holes is “What happens if
I fall into one?” many physicists consider it meaningless to think about this because
no explorer can ever communicate his findings to the outside world. On the other
hand there are several reasons besides the classic “Because it’s there!” why studying
black hole interiors is worth the effort.

I'The first person to talk of something like black holes was Rev. John Michell in 1783. But he
was thinking of very massive newtonian stars, which cannot be treatec as “true” black holes. The
escape velocity of a star exceeding the speed of light does not mean that there is no escape from
that star, in contrast to a “real” black hole where the causal structure of spacetime prevents any
escape from a black hole.



There is no a priori reason to believe that the laws of physics suddenly lose their
validity once the event horizon is crossed,  Studying Einstein’s equations in such
extreme regimes of gravity as the black hole interior on the contrary might reveal new
insight into this complicated nonlincar ficld theory. Furthermore all known (vacuum)
sclutions of Einstein'’s equations describing black holes can be continaed analytically
past the event horizon, but with rather bizarre consequences. "The interior, with the
exception of the special Schwarzschild case, possesses o so-called inner or Canchy
horizon [1]. behind which a direct view onto the + = 0 singularity is possible. This
means physics loses its predictive power, one of the cornerstones of modern science.
Furthermore the inner horizon is the entrance to a tunnel that opens into o white
hole (the time reverse of a black hole). To save cansality we hawve to assume that it
opens into another universe.

The good news is, as was first pointed out by Roger Penrose [2], that the inner
horizon generically is unstable [3, 4]. Every tinicst perturbation falling into the black
hole gets exponentially amplified as it approaches the inner horizon and ceventuadiy
leads to its destruction. The butterfly flapping its wings in China not only canses
bad weathoer here but also rids us of the embarrassment. of naked singnlavities and
new universcs.

In this thesis T will take a closer look at the structure of the inner singular horizon.

The remainder of this chapter gives an overview of the various chapters to follow.

Review of basic black hole physics

In Chapter 2 I briefly review some facts about black holes of ilportance to the main
part of the thesis. Rather than building up the general theory, which is beyond
the scope of this introduction, I choose to demonstrate important issues on simple
examples. A more detailed treatment is found in standard texts [5, 6, 7}.

The simplest solution to Einstcin’s ficld equations describing a black hole is the
Schwarzschild solution which describes a spherically symmetric black hole in empty
space [8]. This simple solution already possesses many of the properties of the more
realistic Reissner-Nordstrém and Kerr-Newman solutions. Many basic ideas and tools
are best explained for the Schwarzschild spacctime. These methods - saitably mod-
ified — will then be applicd later to more complicated situations.

The next section deals with the formation of actual black holes. We will discusses
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a simmple, yer powerful model due to Oppenheimer and Sunyder [9] of a stellar collapse
into a black hole.

We then bricfly discuss the “no-hair” theorems which essentially tell us that black
holes are among the simplest objects found in nature. Their mass, angular momentum
and electric charge completely specify the black hole exterior. This feature will turn
out to play a crucial role in the late time behaviour of a stellar collapse. All the
perturbations present in the initial state of the collapsing star must die off as the star
radiates its hair away, a fact known as Price’s theorem [10]. Part of this radiation
will then fall back into the black hole with consequences described below.

Finally we give the Kerr-Newman solution which describes a rotating, electrically
charged black hole. This solution, in contrast to the Schwarzschild solution, possesses
an inner horizon with all its pathologies. This is most easily seen by considering the
nonrotating (i.c. static) limit, the Reissner-Nordstrom solution. The latter has a very
similar causal structure to the Kerr-Newman case which makes it an ideal model to
explore the structure of the inner horizon.

Radiative tails — leftovers of the collapse and predicted by Price’s theorem — get
highly blue shifted as they fall towards the inner horizon. For a pure inflow situation,
described by a Vaidya metric [11], this leads to a so-called whimper singularity along
the inner horizon [12). An observer crossing the inner horizon measures an infinite
energy density, but all scalar quantities formed from the curvature tensors remain
finite. Things change drastically once outflowing radiation is added to this setting.
The cross-flow now causes a true scalar curvature singularity to form, as discussed in
the following chapter.

Simple models of mass inflation

Chapter 3 gives an overview of different simple models of the inner horizon in the
presence of perturbations.

As we have seen every realistic gravitational collapse is accompained by small
perturbations in the form of gravitational radiation falling into the black hole. Once
behind the horizon, part of this radiation will be scattered, which leads to the afore
mentioned cross-flow situation. This, together with enormous blue shift effects near
the inner horizon, lgads to the formation of a scalar curvature singularity along the
contracting Cauch‘fﬁﬁrizon. This singularity is characterized by an exponential di-



vergence of the mass function of the hole. This led Poisss: i isracl [13]. who first
discussed this effect. to speak of a “mass inflation” singulayiiy.

The effects of the cross-flow are probably most easily seen in a simmple model due to
Amos Ori [14] which treats the outtlow as a thin shell of null dust. Solving Einstein's
equations then reduces to the matching of two Vaidya type spacetimes along the
shell. As announced, one finds the mass function diverging behind the shell as one
approaches the Cauchy horizon.

The singnlarity, although much stronger than the original whimper singularity, is
still weak in the sense that there are coordinate systems in which the metric tensor
stays finite. This means that tidal distortions are small even though tidal forees
diverge. This observation will be crucial when constructing approximate solutions for
more realistic settings discussed in the next chapter.

Generalizing the Ori model to Kerr type solutions is difficult and so far bas only
been done for the slow rotation limit [15]. But how could non spherical degrees of
freedom affect the mass inflation scenario? This is the main question answered in this
thesis. To get an idea of what to expect, a simple model is presented which is based
on work by P.R. Brady, W. Israel, S.M. Morsink and myself.

The crucial observation is that the inmer horizon has a finite radius. The spatial
curvature of the inner horizon therefore is negligible compared to the curvature con-
tribution from the singularity. This allows us to approximate the spacetime near the
inner horizon by plane wave spacetimes which simplifics Einstein’s equations sufhi-
ciently to study the effects of shear. Being away from spherical symmetry also means
that the gravitational field acquires dynamical degrees of freedom. Indeed we now
don’t have to model the effects of gravitational radiation by a scalar ficld but can just
consider the self gravitating case. Imposing the right boundary conditions (the Price
tail) on the shear we again recover the old mass inflation scenario, with the shear
decaying as a power of advanced time, similar to the Price tail outside the black hole
(which it: fact was used to model the shear).

This 1nodel seems to indicate that mass inflation is a generic feature of Canchy
horizons and not only an artifact of spherical symmetry.

However all these models have shortcomings that might render them invalid. The
crucial assumption is that an initial piece of the inner horizon exists. But a strong
enough outflux could lead to a total contraction of spacetime into a spacelike singi-
larity beforc a Cauchy horizon could form [16, 17, 18, 19, 20]. This issue needs careful
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examination which deserves its own chapter.

Initial conditions for mass inflation

Chapter 4 is concerned with two things: How do perturbations evolve once they have
entered 2 black hole and what is their effect on the inner layers? We specifically ad-
dress the issne mentioned at the end of the last section, namely the possible complete
destruction of the inner horizon versus the survival of an initially regular stretch of
this horizon. The work in this chapter is based on work done in collaboration with
A. Bonanno, S.M. Morsink and W. Israel {21].

The peculiar causal structure of the black hole interior makes this problem tract-
able. Descent into a black hole always means progress in time. We therefore do not
need to know the (quantum) physics of the high curvature region deep inside the core
of the black hole to calculate the evolution of fields through the outer layers.

Furthermore, the Price analysis gives exact initial conditions on the horizon of the
hole. With this in mind we can describe the evolution of infalling perturbations, again
modeled by scalar fields, as they fall towards the center of the black hole Specifically,
we do not prejudge the issue by postulating pre-existence of any segment of the inner
horizon.

The gravitational barrier which is responsible for scattering part of the infalling
radiation is concentrated around a fixed radius far above a potential inner horizon.
This implics that the catastrophic blue shift has not yet occurred and we can safely
neglect the backreaction of the infalling scalar field on the geometry. The problem
then reduces to @ two dimensional scattering problem on a fixed Reissner-Nordstrom
background. One finds that the scattering does not change the qualitative features of
the infalling radiation. We end up with two cross-flowing power law tails as was used
in the previous analyses. But soon after the scattering region has been passed we can
no longer neglect the backreaction and have to find an at least approximate solution
to the full Einstein-scalar field system. For the boundary conditions obtained from
the scattering analysis this is actually not too difficult to achieve. The reason for
this is the fact that, as mentioned before, the metric tensor stays finite (but not its
derivatives) in a suitably chosen coordinate system. Again the familiar mass inflation
singularity is recovered. A careful examination of the solution now shows that this

singularity gets weaker as we go back in time: The assumptions made before about
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the existence of an initially regular stretch of the inner horizon are justified.

Double null dynamics for Einstein gravity

In Chapter 5 a formalism is developed which will allow s to generalize the mass intla-
jon scenario in a ~oncise way to include all the degrees of freedom of the gravitatic mal
field.

Our formalism is based on a foliation of spacetime into two families of lightlike
surfaces, as opposed to the more traditional 3+ 1 splitting of ADM. The dynamics of
the specetime is then described by the evolution of two-dimensional spacelike surfaces.
This setting naturally offers itself for the description of our problem, the ceffects of
two cross-flowing streams of radiation on the Cauchy horizon.

Of course, 2+2 splitting of spacetime is nothing new. The novelty of our formalism
is the preservation of two dimensional covariance of geometrical objects like curvatures
etc.. This allows one to write Einstein’s equations for a completely general spacetime
in a clear and compact way. Furthermore most objects defined in this formalism
possess a direct geometrical meaning. It is these features that make it possible to
analyze complex problems like the structure of the inner horizon in all their generality.
This will be demonstrated in the next chapter. This chapter originates from a joint
publication together with P.R. Brady, W. Isracl and S.M. Morsink [22].

Generic structure of the Cauchy horizon

In this last major chapter of my thesis we finally investigate the structure of the
inner horizon without imposing any simplifying restrictions. We are not looking for
an exact solution to specific initial data but rather trying to find the behaviour of
the inner horizon for a large class of initial conditions representing various physically
allowed initial states resulting from an arbitrary stellar collapsc.

To get used to the 2 + 2 formalism we redo the plane wave analysis presented
in Chapter 3. Having gained sem¢ familiarity with this new formalism we are now
ready to pursue the general case, i.c. allow all the physical degrees of freedom of the
gravitational field to propagate.

We first discuss the gauge and initial conditions before solving Einstein’s equa-
tions. ’
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Clearly we cannot expect to find an analytic solution in closed form for such an
arbitrary sctting. But we are only interested in the dominant terms of the metric and
not. in the fine details, which would depend on the exact form of the initial data. It
will turn out, that to lowest order in curvature we nearly recover the spherical picture,
with the one exception being the presence of shear. This is of course expected, as the
shear describes the gravitational perturbations propagating into the black hole and
then causing the inner horizon to become singular.

Even to lowest order the equations governing the shear are nonlinear and thus
are extremely difficult to solve. However we will present an argument, based on the
solution of the linearized equations showing that the shear stays bounded and does
not alter the spherical picture qualitatively. This view is supported by a numerical
computation of the graavitational field near the Cauchy horizon.

To this extent the conclusion is that the mass inflation singularity is a generic
occurrence inside any realistic black hole.

The work in this chapter represents mostly my own views on the subject, though
strongly influenced by discussions with P.R. Brady, W. Israel and S.M. Morsink. The
numerical work was independently peformed by myself.

Credits

Most of the results presented in this thesis are based on work done in collaboration
with P.R. Brady, W. Isracl and S.M. Morsink. My warmest thanks to them for the
cnjoyable collaboration. The only exception (apart from the obvious ones in chapter

2) is the nmumerical work on the scattering of infalling perturbations presented in
Chapter 3 which I did on my own.



Chapter 2

Review of basic black hole physics

2.1 The Schwarzschild solution

Shortly after Einstein’s publication of his general theory of relativity Karl Schwarz-
schild! solved the field equations for a spherically symmetric mass distribution (8],
and calculated the peribelion shift of Mercury, which Einstein had caleulated before in
a post-Newtonian approximation to his field equations. Einstein was quite delighted
about this result:

« ..Imagine my joy at the feasibility of general covariance and the result,
that the equations give the perihelion motion of Mercury correctly. For a
few days I was beside myself with joyous excitement.”

Albert, Einstein to Paul Ehrenfest, January 17, 1916

However it took quite a few years to fully understand and anticipate the physical
centent and implications this solution.

The metric Schwarzschild found as a solution of the vacuum ficld equations is

given by
1

ds? = —f(r)dt* + )

dr?® + 12d§)?, (2.1)
where

f(r)y= (1 - 2_:1’ and  dQ? = db? + sin*(0) d?.

15chwarzschild found his solution under quite extraordinary conditions. In 1915 he wis assigned
to the Eastern front, where he soon fell seriously ill. While in hospital he solved Einstein’s cquations
for the solution which today bears his name. Shortly after he died.

8
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The parameter m is the mass of the system, as measured far away (Note, that the
metric becomes flat for ¥ — oc). The metric (2.1) possesses a coordinate singularity
at the gravitational or Schwarzschild radius r¢ = 2m and a physical singularity at

r = 0. Indeed, inspecting a curvature invariant such as

48m?
316 __
R(x[i”,éR ﬁ’ - T'("
shows nothing wrong at rq, but a divergence at 7 = 0. To understand what is

happening at the gravitational radius we have to introduce coordinates which are
rogular there. One particular set that achieves this goal are Kruskal coordinates [23].

To transform to these new coordinates, first introduce the tortoise coordinate

T
— —1j. 2.2
f(l) 2m (22)
We can then rewrite the line element (2.1) as
ds® = f(r) (dr* — dt) (dr* + dt) +r2d02. (2.3)
N AN A

=:—du =:dv

Unfortunately the metric in these coordinates is still not regular at r¢. But we

are now in a position to introduce the Kruskal coordinates

U= —e "o

2.4
and V= e, (24)

Here wg is a parameter, that will be determined by requiring ithe metric to be regular
at the gravitational radins. Note that the Kruskal coordinates can be defined for
an arbitrary function f(r) as long as 7* is a monotonic function of r. Inserting the
definition (2.4) into the metric (2.3) and requiring regularity at r = rg yields for the
Schwarzschild case kg = 1/(4m) and transforms (2.3) to

32m3
e

ds® = —

e~ dUdV + r2dQ2, (2.5)

which is perfectly regular at the Schwarzschild radius.

The quantity ko is called the surfac: gravity of the horizon and plays a rather
important role in various aspects of black hole physics {For more details see reference
[5], pages 331f).

The new coordinates U and V are originally only defined in the interval ] = o0,0]
and [0, oo[ respectively. But there is nothing that should prevent us from extending
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U and V to the whole real axis. This leads us to the maximal extension of the
Schwarzschild spacetime. This means that the manifold covered by the coordinates
U and V is geodesically complete. i.c. every geodesic is regular for all values of its
affine parameter, unless it runs into the r =0 singularity.

What is more important, is that the opening angle of a light cone is alwavs 007,
and they always point straight up (sce Fig. 1) as in Minkowski space.

From figure 1 it is obvious that once behind the gravitational radius there is no

singularity. Thus one is justified in calling the spacetime a black hole spacetime and

the surface r = 2mn the horizon.

V+U

4\

- t=const

- V-U

r = const.

Figurc 1: The maximally extended Schwarzschild manifold, plotted in
terms of V — U and V + U, with the radial coordinates suppressed. The
grey lines are t = const. hypersurfaces; r = const. surfaces correspond
to hyperbolas. The dotted line is a timelike geodesic, e.g the surface of
a collapsing star. In the latter case everything to the left of this line is

replaced a by different geometry representing the star’s interior.
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This becomes even more obvious when looking at the so-called Penrose or con-
formal diagram. These diagrams are an indispensable tool for examining the global
properties of a spacetime manifold. To construct the Penrose diagram for the Schwarz-
schild spacetime we first introduce (once again) a set of new coordinates given by

V =: tan(V) and U =: tan(U). (2.6)
Obviously V and U take values in (—n/2,7/2). The Kruskal metric (2.5) then reads

e m 32m?3

ds® = — dvaU + r2d2. (2.7)

r  cos2(U) cos?(V)

Figure 2: Penrose diagram of the Schwarzschild manifold. The dotted line
is the same timelike geodesic as in Figure 1. Note that the “points” It
etc. are not part of the physical manifold.

Note that the transformation (2.6) preserves the form of the light cones. The compact

support of the new coordinates allows us now to “z00m in” the infinitely far away

boundaries of the manifold. Technically this is achieved by performing a conformal

transformation to get rid of the reciprocal cosine terms. The ccaformas! manifold then

is compact, but possesses the same causal structure as the original manifoid. (This

is because conformal transformations do not alter the structure of the light cones.)
The different “boundaries” of the manifold are designated by the symbols:

I+: future timelike infinity, J+: future lightlike infinity,
I%  spacelike infinity,
J~: past lightlike infinity and I past timelike infinity.

Note, that these are not part of the physical manifold. This is easily forgotten and
can cause some confusion. For example the diagram in figure 2 might suggest that
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the » = 0 singularity touches the horizon at r = 2m. This is, of course. nonsense, and
reflects the facy that I+ is not an actual point (ov rather 2-sphere) of the spacetime.
For a more detailed review of conformal diagrams see [6] and the literature cited
therein.

2.2 Formation of black holes

From the discovery of the Schwarzschild metric in 1916 to the general acceptance of
the idea of black holes quite some time passed. In fact the term “black hole™ was
only coined on December 29th 1967 by J.A. Wheeler?.

In 1931 Chandrasekhar [25] showed that white dwarfs with masses M > 1AM,
are unstable and thus have to collapse. (An idea that was vehiemently disputed by
Eddington who did not believe that a star could exhibit such “absurd” behaviour.)

Finally, in 1939 Oppenheimer and Snyder in their classic paper [9] investigated for
the first time a simple model of a collapsing star. Even today their work is still one of
the most complete analyses available. Oppenheimer and Suyder considered a spherical
star of initial radius Rp whose pressure suddenly drops to zero, and thus initiates a
gravitational collapse. The Birkhoff theorem [26] guarantees that the outside of the
collapsing star is a patch of the Schwarzschild manifold. There is no unique solution
for the interior of the star, which is dependent on the equation of state of the star’s
matter. A particular solution, for example, is a collapsing Friedmann spacetime,
which corresponds to a homogeneous star with zero pressure.

The main features of the collapse are easily scen by realizing that due to the
absence of pressure the surface of the star fails along radial geodesics of the exterior
geometry. The equations of motion for a free falling particle are most casily derived
from the Lagrangian

2

T

70 = —1. (2.8)

L =gt = —f(r)t +

Here the * denotes differentiation with respect to the proper time 7 of the particle.
The Killing vector 9, (t is a cyclic coordinate) gives rise to a conserved quantity

oL : N

2]n the era before, terms like “frozen star” or “collapsed star” were used to describe what today
is called a black hole. For an excellent review of the history of black holes sce [24].
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Because f(rr) — | for 1 — oo E is the particle’s energy per unit rest-mass at infinity.
Inserting equation (2.9) into the Lagrangian (2.8) gives

7t = E? — f(r). (2.10)

The analytic solution of this equation is easily found but not particularly interest-
ing. The key observation is that the star’s surface reaches zero radius and thus the

singularity in a f{inite proper time, as mcasured by a clock on the star:

1
o JE=T0) 57 (3m) @11)
For a star of solar mass-density, slightly heavier than the Chandrasekhar limit this
time is about half an hour. It is important to note that equation (2.10) is regular at
the Schwarzschild radius re. Nothing particularly interesting happens there. In fact
for a massive enough star the tidal forces experienced there are perfectly tolerable.

The structure of a gravitational collapse to a black hole is best seen in Eddington-
Finkelstein coordinates. The ingoing Eddington-Finkelstein coordinate is defined by
v := t + 7+, which we already encountered in equation (2.3). The metric (2.1) then
takes the {onn

ds? = — f(r)dv® + 2drdv +r*dQ*. (2.12)

Ingoing light. rays travel along lines v = const., whereas outgoing lightlike geode-
sics are given by f(r)dv = 2dr. It is more convenient to draw the spacetime diagram
in terms ol the coordinates 7 and ¢ := v — r rather than r and v. Infalling light
rays then correspond to 45° lines as in Minkowski space. Note that, for large r, the
coordinate 7 becomes the proper time: ¢ = t.

From figure 3 we can easily deduce the qualitative features of the collapse. A
distant observer will see the surface of the star slowing down more and more (outgoing
light rays arc bent up) until it finally freezes as it approaches the horizon. However
a clock ticking on the surface of the star will not stop, but of course just tick along
while it passes the horizon. Furthermore the light that is emitted from the dying star
becomes more and more red shifted. The redshift is given by

gre(00) _
Gue(r)

1 ~ e —3 00 (t — o0)

e(t %9-5-10“/sec) )
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A far away observer sces an exponentially diverging red shift and the star

disap-
pears from sight within a fraction of & second.

Singulasity

outgoing
lightrays

ingoing
lightays

Figure 3: Gravitational collapse in Eddington-Finkelstein coordinates.

But how realistic is this simple model? Clearly once can neither neglect pressures
nor asphericities. Adding either of the two ingredients makes the problem nearly
intractable. The equations, that govern a realistic stellar collapse are only manageable
by complicated computer codes. But we should not forget that a star above the
Chandrasekhar limit must collapse. Imagine now a neutron star, close to that limit,
accompanicd by a gaseous companion. The neutron star will then gain mass until it
passes over the stability limit. The star then must collapse, regardless of its internal
pressures. It is also conceivable that a little rotation cannot change the scenario
drastically. An analysis by Richard Price of general perturbations on a Schwarzse hild
background [10] shows that there are no static perturbations, and furthermore that
all perturbations have to die out at late times. The black hole radiates its hair away
until it is bald.

Thus it seems conceivable that black holes are really formed in Nature, and that

the Oppenheimer-Snyder scenario at least catches the qualitative features of such an
event.
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In fact, data recently obtained by the Hubble Space Telescope almost unambigu-

ously implies the existence of large black holes in galactic nuclei [27].

2.3 Black hole uniqueness and Price’s theorem

One of the most remarkable facts about black holes is their uniqueness, or as J.A.
Wheeler phrased it, the fact that “Black holes bave no hair”. The no-hair theorem

essentially states:

Any stationary asymptotically flat, electromagnetic vacuum black hole
solution of the Einstein-Maxwell system?® is given by the Kerr—Newman
solution, i.c. is fully described by the three parameters mass, angular
momentum and electrical charge.

A proof and more exact formulation is given for example in [28].
The physical reason for this remarkable theorem lies in what is referred to as

Price’s theorem [10}, which essentially states

Everything that can be radiated away in a gravitational collapse must be
radiated away.

Thus any ficld coupling to a collapsing star must radiate away all its dynamical
degrees of freedom and only couserved quantities (hair) remain: The electric charge
of the Maxwell ficld and the mass and angular momentum of the gravitational field.
These quantities are exactly the free parameters in the Kerr-Newman metric described
below.

As this radiation moves away from the collapsing star (see Figure 4) it eventually
encounters a gravitational potential barrier. Part of the radiation will ilien be back-
scattered and fall into the black hole, while the remaining part will penetrate the
barrier and flow towards J+.

Detailed calculations and numerical simulations {10, 29] show that at late times
this radiation dies out in the form of radiative power-law tails. The I’th multipole
moment streaming to J behaves for fixed v like

¢z ('ll,) ~ u—2l—‘2

3Things get much more complicated when looking at nonlinear or non-Abelian matter fields.
These fields have been shown to violate the suitably generalized no hair hypothesis [30].
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and similarly the back-scattered tail behaves for fixed u as

wl (U) ~ ,U—'Zl—'z

where u© and v are the standard external retarded and advanced time coordinates.

Potential
Barrier

Figure 4: The exterior structure of a collapsing spacetime. The grey area is
the potential barrier which back-scatters out-flowing perturbations from
the star. The star starts to collapse after u = up, and the spacetime
therefore is static (or at least stationary) before uy.

These tails play an important part in the dynamics of the black hole interior as
will be shown later.

2.4 The Kerr-Newman solution

So far we have only briefly touched on the effects of rotation and the presence of
electrical fields on black holes. In the last section we have argued that adding angular
momentum should not drastically alter the dynamics of a stellar collapse. However the
slightest amount of electric charge or angular momentum changes the global structure
of the Schwarzschild solution drastically, and these changes have to be taken seriously.
After all most stars rotate.
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The most general asymptotically flat and stationary electromagnetic vacuum solu-
tion of the Einstein-Maxwell system with a regular event horizon is the K err-Newman

metric |31} given by

sin® 0

ds* = —é; (dl — asin’ 9(1(;’))
r

where A = 12 — 2mnr + a? + ¢ aud p? =12 +a?cos? 6. By expanding the metric (2.13)

for large r we sce that m is the mass, a the angular momentum per mass and e the

— ((* + a*)do — adt)” + ——-dr + p2df?, (2.13)

electric charge of the black hole. The following limiting cases are distinguished as

¢=0 the Kerr solution [32],
a=0 the Reissner-Nordstrom solution,
c=a=0 the Schwarzschild solution

and  m? = ¢2 +a® an extremal black hole.

The causal structure is quite different from the simple Schwarzschild case. For
m? > a?+¢? the spacetime possesses two horizons, corresponding to the two solutions
of A(ry) = 0. The first horizon at r = r againis an event horizon. The inner horizon,
located at r = r_ is a so-called Cauchy horizon, a surface behind which one has a
dircet. view onto the central singularity. Thus strong cosmic censorship is violated
and the Cauchy problem is ill-defined behind this surface. Furthermore the Cauchy
horizon is the entrance to a tunnel to a new universe, a fact particularly emphasized
by many science-fiction writers. To study the properties of this spacetime in a livtle
more detail we restrict our focus to the simpler Reissner-Nordstom case. For a more
detailed discussion of the full Kerr-Newman spacetime see for example reference (7},
chapter 7 or [33].

For a = 0 the Kerr-Newman metric again takes the form (2.1)

ds* = —f(r)dt* + dr? + r2dQ3, (2.14)

f()

f(r)= (l—gﬂ+ 2>. (2.15)

This geometry still possesses two horizons, corresponding to the zeros r+ of f(r). The
different coordinate systems discussed in Section 2.1 can easily be generalizd to the
Reissner-Nordstrom spacetime. Again the apparent singularities at the horizons 74
in (2.14) arc unphysical while at 7 = 0 there is a true (timelike) curvature singularity.

but now
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Cauchy
forizon

Apondugg

_,<

°
Event
oarizon

Singularity
AyremBuis

Figure 5: The Reissner-Nordstrom spacetime. The dotted line again is
a timelike geodesic, which could be the surface of a collapsing star in an
Oppenheimer-Snyder type of collapse. Unlike before, the star re-emerges
from a white hole. The wiggly arrows represent inf=lling radiation (trav-
elling along v = const. lines), which is present in every collapse. This
radiation causes an instability of the Cauchy horizon.

Furthermore, timeiike geodesics don’t hit the singularity, but have a turning point
after which they start to expand again to emerge through a “wkhite hole” into a new
universe (see Fig. 5). The geodesic equation for a radially infalling particle becomes
72 = E?— f(r), and thus # = 0 at rin = (\/m2 — (E? - 1)¢2—m)/(E*—1). The max-
imal extension of the Reissner-Nordstrom spacetime is a grid of such black hole-white

hole pairs patched together. It is important to note that the Reissner-Nordstrom
solution has a similar causal structure as the more realistic Kerr solution. This justi-
fies investigating this much easier spacetime, instead of the rather complicated Kerr
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spacetime.

S far. no one has ever seen a “white hole” spontanously exploding into a star
and it thus scems unlikely that a real black hole possesses such a structure.

In fact it is quite easy tc see and was already noted more than 25 years ago
by Roger Penrose [2] that the Cauchy horizon is unstable. Consider some radiation

which is always present — falling into the black hole at late times. This could,
for example, be some gravitational radiation, left over from the collapse, or some
clectromagnetic waves ete.. Louking at Figure 5 it is evident, that this radiation gets
enormously blue shifted at the Cauchy horizon. An observer passing through that
region of the spacetime gets hit by an enormously araplified flash of radiation. For a
pure inflow which was first considered by William Hiscock [12] the stress tensor is of
the form 75, = (L(v)/(47r?))8,00,v.

The spacetime is described by the Vaidya metric
ds? = 2drdv — f(r,v)dv? + r2dQ3,

where f(r,v) = 1 — 2m(v)/r + €?/r*. Einstein’s equations in this case reduce to the
simple equation L(v) = rh. In view of Price’s work [10], L(v) x v™P where p > 12. A

radially infalling observer with an energy E measures an energy flux given by

m ov\?
W T = s (E) ‘

Now Ov/dT = Qv /0r - 8r /7. But as the Cauchy horizon is reached in a finite proper
time and lics at a finite radius r_ the term 8r/9T stays finite. On the other hand for
an observer with cnergy 1 > 0 we find

and thus v ~ r*+0(1/v), where r* = [ dr/ f(r)|v=co is the familiar tortoise coordinate.
Note that for large v the function f hardly differs from the corresponding function
for the Reissner Nordstrom case. Thus v ~ —log(r —r_) and f ~ —k_(r —7-)/2

where s_ is the surface gravity of the inner horizon. Putting all this together we find
for the energy flux

-1
whu Ty ~ (log(r —r_ )P (r — 1'_)2) — 00 as T —T_

which is diverging,.
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However all the curvature invariants stay finite as the Cauchy horizon is ap-
proached. This type of behaviour is known as a whimper singularity, and is expected
to be generically unstable {2, 3. 34, 35].

It is the goal of this thesis to examine and describe the structure of the inner

horizon instablity in detail for a generic collapsc.



Chapter 3
Simple models of mass inflation

We have scen in the last chapter that generic black holes possess an inner horizon,
which seems to open a gateway to unknown lands, where one faces such bizarre things
as naked singularities and new universes.

However those spacetimes are not stable under perturbations. Neglecting per-
turbations is permissible for the exterior of the black hole. Once a black hole has
formed, Price’s theorem suggests that these perturbations have to die off with time.

Ultimately, the spacetiine has to settle down to the Kerr-Newman solution.

On the other hand, we expect that generic perturbations falling into the hole
cause more dramatic effects inside the black hole due to the large blue shift they

experience as they approach the inuer horizon. But it is not a priori clear what type
of singularity will form.

It is generally believed that the final 7 = 0 singularity is of an oscillatory BKL
[36) or Mixmaster type. But it is not obvious that infalling perturbations should
completely destroy the Cauchy horizon. In fact, general considerations [35] as well as
specific models suggest that this is not the case. The first to consider a more realistic
setting were Eric Poisson and Werner Israel in their 1989 paper [13]. They showed,
that once one looks at the full nonlinear equations for cross-flowing radiation a true
scalar curvature singularity develops at the inner horizon. This singularity, which
is characterized by an exponential blow up of the mass function m of the hole (and
hence is called a mass inflation singularity) is lightlike.

In this chapter we would like to present some simple models of the mass inflation
scenario to set the framework for the remaining parts of this thesis.

21
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3.1 The Ori model

o
A4

4

We have scen that pure infalling radiation causes a whimper singularity to form
at the Cauchy horizon. This singularity is unstable. and the slightest outtlowing
perturbation crossing the Cauchy horizon (see Figure 6) will cause the formation
of a true curvature singularity (The term “outflowing™ is somewhat a misnomer as
radiation in the interior of the hole is always flowing to smaller radii. However we
will continue using this terminology for the lack of a better one.) This ontflowing
radiation has various sources. The collapsing star will still emit radiation after it
crossed the event horizon. We expect this radiation to be weak towards the past
end of the Cauchy horizon, in order not to get singularities along the event horizon.
Another much stronger source near the past end is infalling radiation which gets
scattered at the inner gravitational potential barrier. These sources will he discussed
in more detail in the next chapter.

The full cross-flow problem was solved by Poisson and Isracl {37]. They assumed
a stress tensor of the form

1

Ty = ——
BT Aqrp2

(Lownwny + Linlul,,) , (3.1)
where [, = —9y,vand n, = —J,u arc in- and outgoing null vectors and for the interior
we have redefined the coordinate w as w = r* — t, so that u increases towards the
future. The couservation equations 7%, = 0 then demand that L,y and Ly, are
functions only of u and v respectively. Even though no closed form solution is known
for this particular stress tensor, Poisson and Isracl [37] were able to show that the
resulting spacetime possesses a curvature singularity at the Cauchy horizon.

We will not repeat this analysis, but instead present a simpler model due to Amos
Ori [14] that still catches the essentiai results.

The form of the outflow is not of particular importance [37], as long as it is not. too
strong to cause an immediate collapse of the Cauchy horizon. (We will discuss this
issue in greater detail in the next chapter.) We thus model the outflux by a thin shell
S of outflowing null matter. The outflowing matter is described by a stress tensor of
the form (3.1) with Loy, = 6(u — uo).

The shell splits the spacetime into two parts & and © cach described by a Vaidya
metric (See fig. 6)

ds? = — fydv: + 2dvidr + rdQP.
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The coordinates vy denote the standard advanced time coordinates in their re-
spective regions. Note that the radial coordinate r is continuous across the shell
because of its geometrical significance as the proper radius of the two-spheres with
metric r2d2%.

Event horizon ———————9

Figure 6: The contraction of the inner horizon caused by “outfalling”
radiation, here modeled by a thin shell 3, allows the infalling blue shifted
radiation to create a curvature singularity at the portion of the Cauchy
horizon in @ behind the shell. The dashed line is the inner apparent
horizon behind the shell.

The stress tensor now becomes T,jh,, = L4l,l, in the respective regions. Therefore
Einstein’s equations in the two regions reduce to

dmi

—(_{’ZZ = Li(vi). (3.2)

The influx in the ©-region is nothing but the Price tail discussed in the last section.
Thus we readily find m_ = mg — av~ P+l for p = 4l + 4.

The behaviour in the @-region behind the shell is then found by matching the
two metrics along . First define the vector n® tangential to X, i.e. n*n, = 0 and
nel, # 0. We conveniently choose r as a parameter and thus find

oz® 2
O — = | —,1 . .
n o (f:t, ,0,0) (3.3)
Continuity of the influx across the shell implies
L L_
(T:,, - T‘;,) it =0 = — = —5. (3.4)

2
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The relation between v_ and v, derives from the fact that ¥ is null, i.c.
—frdvy +2dr =0=> fidv; = f. dv_. (3.5)

Combining equations (3.2-3.5) gives the key equation for the behaviour of oy along
the shell 2: 5 5
-é')L:‘)i = %_(’)7_;; (3.6)

where we dropped the subscript — from v_. It is alrcady clear from this cquation
that the function m.y diverges at the Cauchy horizon. As v — oo the function f_
approaches zero whereas f, stays nonzero, because the mass of the shell dislocates
the inner apparent horizon behind ¥ a bit (r- — r_(1 — dm/vm? = ¢ + O(dm?))
where ém denotes the mass of the shell). Thus the combination f,/f_ blows up to
cause the singular behaviour of m .

Let us now solve equation (3.6) asymptotically. We first determine r(v) along the
shell from equation (3.5): 7 = 2/f_(r,v). For large values of v we find

a -1 -1 p4+ Dp(p—1
r =1+ —— 14 P ~|~p(;o2 D, G ).1(-1‘ ) 4
vP~ Ko7 VKo V2K§ IRy

(3.7)

where 7 = 1ng—+/m32 — €2 is the initial radius of the inner horizon and kg = — f (1) /2
its surface gravity.

Inserting this result into equation (3.6) finally gives an ordinary differential cqua-

tion for m.:
omy P 1
s =me (=L +0(53))

my(v) = me™vv77 (1 + O (%)) (3.8)

where m; is an integration constant. Thus the mass function diverges behind the

shell & as we approach the Cauchy horizon. This phenomenon has been dubbed mass
inflation.

Integrating for m gives

The mass inflation singularity, as opposed to a whimper singularity, is o troc
curvature singularity. The only nonvanishing Weyl curvature invariant, in spherical
symmetry is the Coulomb component

a2
_(E-m)

1 4
U, = -EC (PW = 3
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which now diverges exponentially because m does.
'The singularity, which is much stronger than a whimper singularity, is still weak
in the sense that there are coordinate systems in which the metric stays finite. In &

we hiave

2dv .

r

ds? = dv, (2dr — frdvuy) +72dQ¥* =

2
€ 9 )
(rdr + myduvy) — (1 + —2—) dv_z‘_ + 7=dS§2.
r
We now define a new coordinate

" . v . v _ 1
U:=@*=1)+2 [ doymy(v) = (r? —r3) + 2m,~/ dvv™? (1 + 0 (5))

L) vo

which is regular at the Cauchy horizon. In terms of U and dv, the line element

becomes .
2 2 . e? 9 102
db' = d‘U+ —dU —_ 1 + = d'U+ -+ ‘r"‘dQ’

T 72

which is perfectly regular at the horizon. This means that even though tidal forces
diverge, tidal distortions stay bounded. This leads to the speculation that one might

survive a crash through the mass inflation singularity [38], but see also [39].

3.2 Plane mass inflation

The work by Poisson and Israc! =« well as the Ori model presented in the last section
relied heavily on spherical symmetry. Furthermore, to get an inner horizon within
the framework of spherical symmetry, we had to electrically charge the black hole.
However stars generally are not electrically charged, and furthermore pair production
processes might discharge the core before the Cauchy horizon forms [40]. On the
technical side the presence of an electrostatic contribution unnecessarily complicates
the analysis.

It is therefore desirable to have a model that circumvents the above obstacles to
get a better understanding of the inner structure of a black hole.

The key observation, that leads to such a model is the fact that the inner horizon
has a finite radius ro. Thus the contribution to the total curvature from the two-
spheres r2d€2? is of the order 1/r3, which is finite and therefore negligible if the
curvature diverges due to gravitational effects. We thus can “flatten out” the two-
spheres: to a nearby observer the Cauchy horizon seems flat.
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Mathematically this amounts to approximating the spacetime locally by plane
waves. A simple metric with these properties is
(,’..’a
ds® = —2——dudv + 17 (:’:2“11.172 + c'”"’”dy"’) . (3.9)
"
The quantitics o, r and 8 are for the moment functions of v and v only.
For a pure lightlike cross-flow the ficld equations Ry, = 87T, with astress tensor
of the form (3.1) become

(r2) e + 402 (G0 + Boul2) = 0, (3.10)
(1) e = 0, (3.11)
2B, + Bullogr?) » + Bo(logr?),. = 0, (3.12)
20 5(12) 5 — 27 ([3,1,-)2 — (1) po = Lin(v) (3.13)

and
20 (13 0 — 202 (B)? — (1) e = Lowe(1e). (3.14)

The absence of an electrostatic contribution makes equation (3.11) for 72 partic-

ularly simple:
r2 = 1% + f(v) + g(u).

The two functions f and g are pure gauge but can’t normally be gauged to zero.
For standard advanced time a comparison with the Ori model suggests f(v) ~o ™7 1

Let us now turn our attention to the shear 8. First note that (3.12) for /3 is the
same as the wave equation O = 0.

The question is whether the presence of the shear 3 changes the spherical scenario
drastically. If not, we have some reason to believe that mass inflation is a generic
feature of Cauchy horizons. Let us now analyze the equation for f# in more detail.

The simple form of r? allows us to introduce new coordinates IR = ¢ and x =
f(v) — g(u). Equation (3.12) then becomes

B,RR - ﬁ,xx + % = (). (3 15)

This equation can be solved in terms of Fourier Bessel transforms
B=100+ [ dke™* (ClR)Yo(IkIR) + D(k) (kI 1))

where C(k) and D(k) are functions determined by the boundary conditions. The

function Y, diverges at the origin, but since the Cauchy horizon has a finite radius



3.2. PLANE MASS INFLATION 27

there is 1o need to worry. 13ut nevertheless it is difficult to extract the behaviour of
/4 near the Cauchy horizon from the above solution.
We can write the general solution of (3.15) as a series
B=f+ 3 AR (FEYR+x) + G(R - X)) . (3.16)
i>0
Here [0 and G are arbitrary functions, and the notation F' (-9 means the i-th integral
of F7. One finds for coefficients A; = Ag2i(31)3/(24)!, which diverge as ¢ — co. Let us
now choose the fnctions F' and G to be of the form F(z) = (z — zo)? for somne g,
and similarly for G (with possibly a different q, depending on the boundary data).
Inserting this into (3.16) we find after a little algebra
2i(i)3

DY = Bl — 10) T = _ i+q
A TN (x) =: Bi(x — =) (2i!)I‘(i+q+1)(w Zo)

iven though the A;’s diverge, the Bj’s decay faster than exponentially. Using the
Stirling formula we get By ~ (i +q+ 1)~ for large #’s. We conclude that in this case
the series (3.16) is convergent.

The Ori analysis suggests f(v) ~ v™P*!. The boundary conditions for 8 on a
w = const. surface is 8 ~ v~P/2+1. Therefore g takes the value ¢ = (p — 2)/(2p — 2)
and xo = r3. For this choice of F' the dominant contribution comes from the 7 = 0
term. As expectod the shear 3 decays as a power law tail at late times along u = const.
geodesics.

Similarly we expect G to stay regular for regular boundary conditions. However
the limit © — —oo is problematic. If we already are on the Cauchy horizon, i.e. for
v = oo we will stay on the Cauchy horizon forever. If we are at a finite value for v,
we will eventually end up on the event horizon. Therefore the respective limits for u
and v don’t commute. This results from the fact, that H = I't in Figure 6 is not part
of the spacetime (The event horizon does not touch the Cauchy horizon, see Figure
7 in the next Chapter). However we don’t expect any problems for finite values of u.

Knowing 8 and r? we can now integrate equation (3.10) for

o = a(u) +b(v) — [ du / 40B.uB.0- (3.17)

The two functions a(x) and b(v) are pure gauge. Because 8 and its derivatives decay
like a power law in u and v we expect the integral in (3.17) to be finite. For a given

choice of coordinates (standard retarded and advanced time in our case) the functions



3.2. PLANE MASS INFLATION 2

a and b have to satisfy the constraint equations (3.14) and (3.13). Inserting o into
(3.13) gives

P Lin(v) 3..2 (:d,l‘).l | 2
20, = ). + 2 —(—;—_,—)T + (lop,((l )"')),._-'

As we have seen before L(v)/(12) , ~ const, and so is (by construction) (£,.)/(r7)...
The last term decays as 1/v and can thus be neglected. Again we tind b(e) diverging
as —bov for some positive by ((#2), < 0). With 4 present this is even true for
Ly = 0. This is not too surprising. The influx is supposed to model gravitational
perturbations emerging from a collapse. As the gravitational ficld has no dynamics in
spherical symmetry we had to put these in by hand in that case. Here it already arises
in vacuo due to the shear. Analyzing the other constraint (3.14) gives a(u) = ayu.
Therefore near the Cauchy horizon

o = —(bov + apu) + O(log(u), log(v)).

The curvature is now more complicated than before. For the tetrad

a
e
o = )
lydet = \[:(ll),
7
o
ndat = —=du

Nz

7 .
and mydxt = —= HAdr + e ﬂll’_l/)

V2

we find the following nonzero tetrad components of the Weyl curvature

Yy = —'Caﬁltulu"nﬁlﬂ’rn'u = —re”* (zﬂ.uﬂ.u - 43(/’.1[’.3).11) >
—-20
e 3 ul3
U, = —C(,ﬁ“,,laTHHTh“’H,U _ 5 <4/,u£,n _ (20_ -3 l()t.';(_’l'))‘,,,,,)
-
and U, = —Cogun®m’ntm’ = —re™* (2/1,"0_1, —r Y /’1'.,,7'“)_.,,) )

Therefore R,,,,,,,,;R‘“’”‘s ~ e~ which diverges in the limit v — oo. The spacetime
is now asymptotically of Petrov Type N, with n, being the (only) principal null
direction, indicating the buildup of a gravitational shock wave traveling along the
Cauchy horizon (See e.g. [41] for a definition of the Petrov types).

This rather simple model will turn out to capture all the essential features of a
generic nonspherical Cauchy horizon singularity.



Chapter 4
Initial conditions for mass inflation

We have argued in the last chapter that small perturbations present in a stellar
collapse cause the formation of a lightlike curvature singularity along the Cauchy
horizon. This view has been challenged by other studies. Yurtsever [16] — based on
the behaviour of plane wave spacetimes — argues that a spacelike singularity should
develop before a Cauchy horizon can form. However his arguments are vague and
not very conclusive with regard to just how the interior corresponds to a plane wave
spacetime. Yurtsever’s point of view finds support from two numerical simulations of
a collapsing scalar field performed by Gnedin and Gnedin [17, 18]). This work clearly
shows the formation of a spacelike r = 0 singularity as the endpoint of the collapse.
But the simulation does not touch the region of interest to us, namely the very late
time regime of the collapse (the “corner” H in figure 8). The existence of the Cauchy
horizon is left in the dark despite the author’s claims of its nonexistence.

Nevertheless the above possibilities have to be investigated before one can go on
to discuss the structure of the inner horizon. The models presented in the last section
avoided this question by simply assuming the existence of an initially regular piece
of the Cauchy horizon. The Ori model as well as Poisson and Israel’s continuous
cross-flow scenario only switch the outflux on after a finite retarded time u = uy, and
the plane wave model just assumes the existence of the limit r — r_ (by choosing
the appropriate boundary conditions for r?).

For a spherical metric

ds® = gapdz®dz’ + r?dQ’
the behaviour of the Cauchy horizon is governed by Raychauduri’s equation (derivable

29
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from equation (A.10) in appendix A):

d*r . -
Tz = —Amr Tl = —dmrTw, (1.1)
o.rt
[ L = l”“) , g . '_Z
[ (.)/\ .‘] § H ‘ L] ( l )

where A is an affine parameter. Inspecting equation ((1.1) shows that o solution with

finite + for A — 0o does not exist, unless

lim A*Thy = 0. (-1.3)

4

Either a diverging Thx or ¢°* could lead to a violation of this condition.
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Figure 7: A spacetime diagram of the interior of a black hole with one an-

gular coordinate suppressed. Infalling radiation traveling along v = const.

lines gets partly backscattered off the internal potential barrier. The trans-

mitted radiation piles up along the inner horizon making it singular. The

scattered radiation traveling along u = const. lines leads to a slow con-

traction of the Cauchy horizon which initially is static (at Hz).

The analysis of this problem fortunately splits into two neariy independent parts.
The important point to note is that descent into the black hole is always a progress

in time. We can therefore start with what we know, the initial data on the surface
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of the collapsing star and the event horizon. The latter is — thanks to the no hair
property  exactly known. (Contrast this to the case of cosmology.) The structure of
deeper layers is then determined by evolving these data in time, and does not depend
on the unknown (quantuin) physics of the Planckian curvature region in the core of
the hole. For simplicity let us describe the matter again by a scalar field ¢. The
initizal conditions on the event horizon are given by the Price tail ¢ ~ v7? for some p.
The evolution of ¢ is determined by the wave equation D¢ = 0. Infalling radiation
will partly be scattered off the nner gravitational potential barrier into outflowing
radization. ‘This barrier is concentrated at a radius far above the troublesome high
blue shift region. This allows us to treat the scattering problem on a fixed Reissner-
Nordstrom background without having to worry about the much more complicated
back reaction problem.

Once the potential has been left behind the radiation again streams nearly freely.
Only now will it. experience the catastrophic blue shift that ultimately leads to the
destruction of the Cauchy horizon. At this stage the field ¢ can be modeled as a
streamn of high cnergy particles described by the Isaacson [42] stress tensor. This
allows us to finally get a handle on the back-reaction of the scalar field on the metric,

which at this stage cannot be neglected anymore.

4.1 The scattering problem

Let us now analyze the scattering of the infalling perturbations in more detail. Our
goal is to determine the strength of lie radiation crossing the Cauchy horizon. There
are two sources for this radiation, the matter emitted from the snurface of the star and
the back scattered parts of the infalling Price tail.

The first. contribution is weak, in fact exponentially weak in terms of the retarded

time w. To see this consider a pure out-flow of radiation along the event horizon,
described by the Viddya metric

ds® = —2drdu — f(r, u)du® + r2dQ?,

where f is of the same form as in equation (2.15) but with the mass function now

depending on «. This metric satisfies Einstein’s equations for an energy momentum
tensor of the form T, = [L(u)/(477?)]0,ud,u.
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e
1o

For a Kruskalized coordinate U the metric 1s regular at the horizon, Thus m s of
the form

m ~ my + mU + OU?) = my + mye 8 + ..

and we find L(u) = m = ¢7%0% ~ (¥ )% as u — +00. Thus in the standard retarded
time coordinate « the luminosity decays exponentially fast.

Calculating the strength of the backscattered part requires a little more effort. As
explained before, we can treat the scattering problem on a fixed Reissner-Nordstrom
background. The spherical symmetry once again allows one to decompose the seadar
field ¢ into its multipole components: ¢ =

S Y /r- The wave equation then
separates into the equation

Yo — Prope + V(1) =0, (-1.-4)

where we have dropped the indices I and m. 7* is now the inner tortoise coordinate
given by
. 1 1
=1+ —Ilogr (ry —r)+ —logr_(r. —r)
2H+ 2K ..
where k4 are the surface gravities of the inner and outer horizon respectively. Note

that x_ < 0 so that 7* — 400 at the inner horizon. V is the before mentioned
gravitational potential and takes the form

v=so) (51 2. (1.5)

It is concentrated around the zero of r*(r) at 7 = ¢?/my and falls off exponentially
fast for r* — xoo. Near the horizons we find

1 :
f(r) = Eni('r —Ty) (1.6)
and therefore
V(lr:-) ~ cnif'/fl
which goes to zcro at the respective horizons 4.

Equation (4.4) describes a one dimensional scattering problem for the (localized)
potential V:

Drope + (W2 = V(")) =0 (4.7)
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Figure 8: A conformal or Penrose diagram of the interior of a black hole.
Note that the points H; and H; in figure 7 are now merged into one point
H. The region below the potential barrier is characterized by two streams
of cross flowing radiation, which will ultimately cause the Cauchy horizon
to become singular.

Following (34, 19, 20] we are looking for solutions of equation (4.7) with an asymp-
totic behaviour

5~ Pol(w)e r* — —00
Po(w) (r(w)ei“’" + t(w)e"""") r* — 400,

where r(w) and t(w) are the reflection and transmission coefficients of the potential
V. The initial condition for 12; — posed on the event horizon, i.e. for r* — —oo0 is
the Fourier transform of the Price tail:

e—iwr‘ e—iwr‘

Ton / dte™ T (v) = e / dvf(v — vo)v~Pe™r = agw” !

where ag is the constant depending on vp and p. The solution of the wave equation
(4.4) behind the potential, i.e. for r* — +00 is given by ¥ = X(v) +Y(u) =

e Po(w) =
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ad

| dwe=*!: so that
X(v) = ﬁ/dwz];o(w)t(w)w”"(""‘"' (-1.8)
and Y(u) = —\;2:7;/dw't:/;o(w)r(w')w”"'«"“'“. (1.9)

The functions r(w) and t(w) for the potential (4.5) can only be caleulated numer-
ically. We are however oniy interested in X(v) and Y () for large values of ¢ and
u, that is their asymptotic behaviour near the “point™ H in figure 8. But for large
w and v ouly the low frequencies contribute to the integrals (4.8) and (4.9). For low

frequencies we expect 7 and £ to behave as
r =1+ O(w?) and t = tow + O(W?). (-1.10)

This is indced confirmed by a numerical calculation of 7 and t. (Sce figure 9.) Inserting
equations (4.10) into the integrals (4.8) and (4.9) then gives

X(v) = f;g%fdww”(l +OW))e = = oo 77! (1 +O (%» (1.11)

agp

‘and Y(u) = Ton /dww”" (1 + O (wz)) ¢t = apu " (1 + 0O (%_,))1 12)

where ag and 3y are some numerical constants.
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Figure $: A plot of the scattering (left) and the transmission coefficients
of the potential (4.5) for | = 0 and different values of €2 fmd.

In summary we have scen that inside a black hole the Price tail gets scattered a

second time to form the dominant source of the outflowing radiation irradiating the
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Cauchy horizon. The scattering does not alter the character of the infalling radiation;
the scattered radiation still decays as a — for late times, characteristic — power law
tail, although with a larger power in the case of the transmitted radiation. In the
next section we will investigate the effects of the two rasdiation tails on the geometry

of the Cauchy horizon without the assumptions made in the previous models.

4.2 Effects on the Cauchy horizon

As « first model of the Cauchy horizon we consider a spherical spacetime. The high
blue shift of the scalar field behind the potential barrier should make the Isaacson
effective stress tensor [42]

Tpu = (Loutn;tnu + Linlulv)/47”.2‘

a good description of the scalar radiation there (See Figure 8). In fact only the last
term, i.c. the term Linl,l,) experiences a blue shift and will dominate over the other
terms in the stress tensor. The exact form of the other terms is not important and
the outflux is merely needed as a catalyst to initiate mass inflation, whereas the cross
term o ln,y can be completely neglected. (We shall treat the full scalar field case
below.) From equations (4.11) and (4.12) we conclude

= qu—2tl 2
L = v (6) (4.13)
Lowe = bu™ ~ (d4)%
where a and b are some constants. As before the vectors | and n are defined as [, =
-9,V and n, = —3,U, where V' and U denote Kruskalized coordinates with respect
to the inr~+ i:orizon. The relation between these koordinates and the coordinates u
and v use’ . the last section is U = —e™*/xo and V = —e™?/ko. Here we have set
Kg = —K_ > 0.

We can choose the metric as

20
ds? = —2=—dUdV +r*dS’. (4.14)
In terms of the Kruskal coordinates U and V' the luminosity functions in (4.13) become
a
Lin(V) = .
V) = VR gV mo (4.13)
b

and  Low(U)

(koU)2(—log(—U)/Ko)?’ (4.16)
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Using the expressions derived in appendix A for the Ricei tensor we find the
following ficld equations:

o (e () w) = —26" Loull), (4.17)

o (%)) = —27Lu(V), (1.18)
C‘.!a :'.’.

2(7'_(1\/ = 57(1—-3;—_;) (ll‘))

and v = £ (-1.20)

T

Y
- ’A
wl e

!
~

Note that the two wave equations (4.19) and (4.20) have finite source terns. pre wided
€2? and r stay finite. In particular, these two equations contain no contributions from
the cross-flow. (This results from the lightlike structure of the stress tensor.) Under
these circunstances there is, in fact, hope that » and o behave regularly near the
Cauchy horizon. This particular form of the stress tensor suggests that the dominant.
correction due to the cross-flowing radiation to o is of the forin A(U) + B(V) for some
functions A and B. It is therefore possible to choose coordinates in which the metric
is finite and only derivatives diverge. This is precisely the behaviour we expect. of a
mass inflation singularity. Let us now proceed to show that this is indeed the case.

To start we define the two functions A(U) and B(V) by setting A"(U) := Lo (U)
and B"(V) := Liy(V). In the region near point H in figure 8, that is for the limits
U — —co and V = —0 we find A” < A’ < A — 0 but A" > A" and similarly
B" > B' — 0o; B — 0 and B"” > B™. These relations can be derived by integrating
and calculating limits like limy_,0 A”/A" = 0.

By defining the function x := e-29 the constraint equations (4.17) and (4.18) take
the simple form

o (x(r*)w) = —2xA"(U) (4.21)
and v (x(rz),v) = —-2xB"(V). (4.22)

We can now solve the field equations iteratively by taking the static solution
(denoted by a subscript s) as the zeroth order. This still is a formidable task. But
we are only interested in an approximation that is valid for the limiting values of
U— —occ and UV — 0.

The metric functions and its derivatives are easily calculated in Kruskal coordi-
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nates. With f =1 — 2mq/r + €2/r? one finds, for example,

. or or* rf rf
ol —_ —_——— = — 2 = =
(ry)r =2r or* oU 2k0U and  (7;)v = ...

Similarly one deduces
282UV
b}
rsf

v . e
XslJ = —KO.’ [1 -+ 2507‘5 (Lﬁ)]
s f

and y. v is obtained by exchanging U and V' in the last equation. Here we have set
Kk = —30f(r)/dr so that Ko = k(r_).
These expressions now allow us to determine the asymptotic behaviour of the

static solution. From the definition of U and V and equation (4.6) it follows that

Xs = —

f = —2UV. The behaviour of rspy etc. now follow trivially except for the derivatives

of x which require a little more care. To evaluate the latter we have to perform the

limit o2f of _
.. Ko—K . Ko
l = ——e | — T —
dim =y =2 Mm =5 o = %,
where we defined £p = —382 f(r)/0r*},=,_. The second equality follows from the rule

of Bernoulli-de ’'Hospital. Inserting these formulae into the expressions for xs and r;
we finally get

2

rg ~ r2—7 XS ~ TE%,
12y o~ =28, xou o~ —B1+4RY, (4.23)

12, o~ =220 xov o~ —2(1+4R)U

We can now formally integrate equations (4.21) and (4.22) to find

12 =2 2 / % / dUXA"(U) — 2 / % / dVxB"(V).

As explained before to a first approximation we can set X = Xs. After a partial
integration we obtain the result

12 =12 - 2(A(U) + B(V)) + e (4.24)

The error ¢ we make by discarding the remaining integrals is vanishingly small com-
pared to the term 2(A + B):

e~ U / B(V)dV +V / A(U)dU < A(U) + B(V) = 0.
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We can now substitute r? into equation (4.20) and solve for v.
expanding in A+ B, is

The result, after

2 2
reanvts

. ) 1
A~ Xe & (AU) + B(V)—5— = 0. (4.25)

Equations (4.24) and (4.25) show that our approximation scheme is excellent in
the region of interest. However the fact that the metric functions approach the static
solution does not mean that we deal with essentially the static metric. This is best

seen by calculating the mass function as defined in appendix A cquation (A.G). We
find

1 . - T e?
m= Z(Tz),l.:("“),vx +3 [1 - 7—3} = mg + XA (U)YB(V) + Min + Mou + O(A + 13),
(41.26)
where e terms myn(U) and moyue(V') denote the “Vaidya” contribution to the mass

and mp is the mass associated with the static solution. In the limit V. — 0 we have

B'(V) 1 _ erory—2p—2
“HOV(—lU:’I(—V)/HO)z"+2 N Ko oo

so that the mass function behaves as predicted by the carlier models of mass inflation.
It is important to note that A’(U) shows the opposite behaviour, i.e. as we go back
along the Cauchy horizon the singularity becomes weaker. This is the reason the old
models of mass inflation accurately predicted the behaviour near the Cauchy horizon.

We are now in the position to check the validity of condition (4.3). The relation
between the affine parameter A and the coordinate U is given by equation (4.2) which
for our approximate solution reduces to

ou

o= rx ~ const. + O(A + 3),

so that A oc U. Therefore the condition

lim AZTA,\ ~ Ul_l)lzl (log(___U))—'Zh -0

U-+-o0

is satisfied and we conclude that the Cauchy horizon exists and shows the expected
behaviour. Furthermore, as U — —oo the singularity gets weaker. This is of course
expected from the physical picture presented in figure 7: the longer we wait, the more

blue shifted radiation piles up on the inner horizon and makes it singular.
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S0, far we have not considered the true back-reaction problem between the gravi-
tational and scalar field. The latter was modeled as a stream of radiation propagating
on a fized Reissner-Nordstrom background. While the results of the last section sug-
gest, that this is indeed a good approximation, it is certainly desirable to have an
approximate solution which takes the full back-reaction into account. It is not very
difficult. to extend our previous analysis to include the full scalar field.

The equations governing a minimally coupled scalar field ¢ := ¥/r (with La-
grangian £ = 1—-/—gd,$d*¢) for the same metric (4.14) as before are the Einstein
cquations

2
ou (xr) ) = —r*x ((%) ) , (4.27)
U
2
(')v (X(T'z)'\/) = _,,_‘..’X ((%) ) y (4.28)
WV
] e? 1 (v )
200y = :‘2""\—’—{ (1 - 3;2—) - 5 (—’;) v (T) v , (429)

. 1 2
and (7'2)'”\/ = - (% — 1) (430)

and the wave equation

Doy — 1/;"’;{ LA (4.31)
What makes matters more difficult than before is the fact that the right hand sides of
cquations (-1.27) and (4.28) are not known anymore. Note that, as before, the source
term for the wave equation (4.30) contains no diverging terms if x and r stay finite.

Guided by our previous result, we now make the Ansatz
r? =72 —2(A(U) + B(V))

where A and B are two unknown functions and are assumed to be small for U — —oo0,

and V — 0. In the same spirit we can write for the scalar field
P =a(U) + V) +g(UV) (4.32)

with unknown functions «a, b and g. The only assumption we make is that g < a, b,
which is justified by the fact that in the limit r — 7, we get g — 0. Inserting % into
the wave cquation, and only keeping the dominant terms, gives the equation

a+b

rd

(A’(U)TS.V + B'(v}"s,U)

guv =
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and thus
a+b

b 4
ETy4
,S

~s

qg=

(A + B) + smaller terms,

so that g indeed is much smaller than a and b.

The functions a and b are then fully determined by the boundary conditions which
we pose right after the potential barrier. Comparing cquation {:1.32) with the results
of the scattering analysis (4.11) and (4.12) gives

a(U) = «glog(—-U)"? and (V) = Fa(— log(=V)) ™", (:4.33)

which confirins our assumptions about the relative size of a, b and its derivatives.

The constraint cquations (4.27) and (4.28) can now be used to determine A and £3.
To leading order we find

24"(U) = d'(U)? +4

@ (U)A'(U) L g AW

S s

~ a'(U)?,

provided that o' (U) > A'(U) = 3 | dUa'(U)?. This last condition is casily verificd by
looking at the expression (4.33) for a. The same analysis for b shows that Bp'(Vv) =
(V)2

Let us now integrate the wave equation (4.29) for o. Contrary to equation (4. 19)

there is now a diverging source term. To leading order, o has to obey

1 ¢? 1d't
~ 11 —-3=| — =—.
2xs12 72 2 r?

Fortunately the divergence is integrable and we find

ouv =

o — 1a(U)b(V)
T2 72 '

At this point we have recovered the same quantitative behaviour as in the cross-
flow case.

In summary, we have shown that perturbations falling into a black hole at late
times (i.e the Price tail) form decaying tails of radiation even after having been
scattered again off the interior potential barrier. These tails then disturb the inner
horizon in a manner that leads to a mass inflation type singularity, that is to @ null
curvature singularity along the former inner horizon. The tails however are not strong

enough to causc a complete collapse of the inner horizon to zero radius before the
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mnass inflation singularity occurs. In fact as we go back along the Cauchy horizon the
singularity becomes weaker.

We thus do not see the formation of an all-encompassing r = 0 spacelike singu-
larity as snggested by [16, 17, 18], Our conclusions indecd have been confirmed by a

numerical study recently performed by Brady and Smith 143].



Chapter 5

Double null dynamics of Einstein

gravity

5.1 Introduction

The classic analysis of Arnowitt, Deser and Misner (ADM) [44] formulates gravita-
tional dynamics in terms of the evolution of a spatial 3-geometry. The geometrical
framework is the imbedding formalism of Gauss and Codazzi for the foliation of
spacetime by spacelike hypersurfaces [6].

Quite often, however, one encounters circumstances where a lightlike foliation is
especially suitable. Because of the degeneracies that arise in the lightlike case the
imbedding relations are very different and the situation not quite so familiar and
under control. To bypass the degencracies, one is forced to fall back to a foliation
of codimension 2, by spaceclike 2-surfaces. It is our aim in this chapter to develop a
simple (2 + 2)-imbedding formalism of this kind.

Several (2 + 2)-formalisms are extant [45], the earliest and best known being
the generalized spin-coefficient formalism of Geroch, Held and Penrose (GHP) [46].
Basically, of course, all such formalisms have the same content, but they take very
different forms.

The essential feature of the present approach is that it maintains manifest two-
dimensional covariance while operating with objects having direct geometrical mean-
ing. Two-dimensional covariance permits reduction of the Einstein ficld equations to

an especially concise and transparent form: tnc ten Ricei components are cmbraced

42
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in a set of just three compact, two-dimensionally covariant expressions.

There is a limitation, at least in the version presented here. (It applies to most
of the formalisms we have listed [45].) The two independent normals to an imbedded
2-surface conveniently taken as a pair of lightlike vectors, since their directions are
uniquely defined-—are assumed from the beginning to be hypersurface-orthogonal.
This preciiudes choosing them as principal null vectors of the Weyl tensor for a twisting
geometry like Kerr. In this respect, the formalism is less flexible than GHP, and not
as well tailored for the study of algebraically special metrics.

(2+2) formalisms have a wide range of applications: to the analysis of the charac-
teristic initial-value problem [47], the dynamics of strings [48] and of real and apparent
horizons [49] and light-cone quantization [50] and gravitational interactions in ultra-
high energy collisions [51]. Last but not least we will employ this formalism in the
next Chapter to analyse the generic structure of the inner horizon.

We conclude this Introduction by briefly outlining the contents of this chapter.
The basic metrical notions (adapted co-ordinates, basis vectors and form of the met-
ric) arc defined in Sec. 5.2. In Sec. 5.3, we introduce in two-dimensionally covari-
ant form the geometrical information encoded in first derivatives of the metric: the
extrinsic curvatures and “twist,” as well as the invariant operators which perform
differentiation along the two lightlike normals. This comprises the basic formal ma-
chinery needed in Sec. 5.4, which presents the central result of this chapter, the tetrad
components of the Ricci tensor as three concise equations (5.27)—(5.29). (To make
direct access to these results easy, their derivation is deferred to the second half of
the chapter (Secs. 9-12), which also provides (Sec. 5.13) the tetrad components of
the full Ricinann tensor.)

The contracted Bianchi identities (Sec. 5.5) are applied in Sec. 5.7 to analyze
the structure of the characteristic initial-value problem. In Sec. 5.8 we sketch the
Lagrangian jormulation of covariant double-null dynamics.

The Ricci and Riemann components result from the commutation relations for
four-dimensional covariant differentiation. Their most efficient derivation calls for a
formalism that is both four- and two-dimensionally covariant. Unfortunately, these
two requirements do not mesh easily. Four-dimensional covariance tends to clutter
the formulac by treating subsidiary two-dimensional quantities, like shift vectors and
the two-dimensional connection, as 4-scalars on a par with the primary geometrical

properties, extrinsic curvature and twist. Those properties, for their part, are corre-
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lated, not with four-dimensional covariant derivatives, but with Lie derivatives, which
are non-metric and have no direct link to curvature. To patch up these ditferences,
and thus streamline the derivations. scems to need a cortain degree of artifice. In
Sec. 5.10 we address this (purely techmnical) problem by temporarily working with
a “rationalized” covariant derivative which exhibits both four-dimensional and re-
stricted (“rigid™) two-dimensional covariance.

Some brief remarks (Sce. 5.14) conclude the chapter.

5.2 (2 + 2)-split of the metric

We shall suppose that we are given a foliation of spacetime by lightlike hypersurfaces
¥0 with normal generators £, and a second, independent foliation by lightlike hy-
persurfaces L' with generators €} nowhere parallel to #O) The intersections of {39
and {Z'} define a foliation of codimension 2 by spacelike 2-surfaces S. (The topolowy
of S is unspecitied. All our considerations are local.) S has exactly two lighilike
normals at cach of its points, co-dirccted with £ and ¢,

In terms of local charts, the foliation is described by the imbedding relations
S g A na r
™ = 2"(u”,0). (5.1)

Here, 2® are four-dimensional spacetime co-ordinates (assumed admissible in the sense
of Lichnerowicz [52]); 4° and u! arc a pair of scalar ficlds constant over each of the
hypersurfaces £9 and ! respectively; and 62, 8% are intrinsic co-ordinates of the
2-spaces S, cach characterized by a fixed pair of values (u?, ul).

Notation: Our conventions are: Greek indices a, 3, ... run from 0 to 3; upper-
case Latin indices A, B, . .. take values (0, 1); and lower-case Latin indices a, b, ... tike
values (2,3). We adopt MTW curvature conventions [6] with signature (— + +-+) for
the spacetime metric gos. When there is no risk of confusion we shall often omit the
Greek indices on 4-vectors like £V and ef,,): they are casily identifiable as 4-vectors
by their parenthesized labels. Four-dimensional covariant differentiation is indicated
either by V., or a vertical stroke: VgA, = Agg. Four-dimensional scalar products
are often indicated by a dot: thus, £(a) - £(B) = Yup Z’('A) 1!7,,). Further conventions will
be introduced as the need arises. .

Without essential loss of generality we may assume the functions 2 (ut, 0") to be

smooth (at least thrice differentiable). (We are always free to make the co-ordinate
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choice £3 = . % = 0, but at the cost of losing manifest four-dimensional and

two-dimensional covariance.)

The lightlike character of the hypersurfaces ¥4 is encoded in
Vuh - VuB = ¢*P(0,u?)(9pu”) = et (5.2)
for some scalar field A(x"), where

7B = anti-diag(—1, —1) = nas; (5.3)

M and its inverse 74, are employed to raise and lower upper-case Latin indices,
C.g., ‘,’(()) = —f,

The generators €4 of $4 are parallel to the gradients of u#(z*). It is symmetrical
and convenient to define £(4) = e*Vul, i.e.,

(W) = A9 ut. (5.4)

Then

Z(A) - B(B) = c’\Ef, (55)
The pair of veetors e(q), defined from (5.1) by
e,y = 0z /06%, (5.6)

are holonomic basis vecwors tangent to S. The intrinsic metric gqp d60* de® of S is
determined by their scalar products:

Yab = €(a) * €(b)- (5.7)
Lower-case Latin indices are lowered and raised with gep and its inverse g°?; thus

e@ = gabe 0 are the dual basis vectors tangent to S, with e@ . ey = 62. Since £(4)
g cw g ()] b
is normal to every vector in £4, we have

(1(‘4) . c(a) = 0. (5.8)
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So

Figurc 10: The 2 + 2 splitting of the four dimensional spacetime into a

foliation of intersecting null surfaces u’ = const. and u! = const..

In general, 6* cannot be chosen so as to remain constant along both sets of gen-
erators £4. They are convected (Lie-transported) along the pair of vector fields
8z /du? (in gencral, non-lightlike).

From (5.4) and (5.5) one finds that 0z [Ou? — €4, is orthogonal to f), ic.,
tangent to S. This validates the decomposition

ox” .
o i £lay + Sh Cla)» (5.9)

thus defining a pair of “shift vectors” s% tangent to S (sce Fig. 10).
An arbitrary displacement dr® in spacetime is, according to (5.6) and (5.9), de-
composable as

dr® = £ du® + e, (d6” + 5% du®). (5.10)

From (5.5), (5.7) and (5.8) we rcad off the completeness relation
- n b ;
Gop = €18 + guel) . (5.11)
Combining (5.10) and (5.11) shows that the spacetime metric is decomposable as

Gapdr™dz? = e nap du? duP + gu(d6* + 5% du)(d6” + sb, du”). (5.12)
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53 Twou-dimensionally covariant objects embody-
ing first derivatives of the metric: extrin-
sic curvatures K., twist w* and normal Lie

derivatives D4

Absolute derivatives of four-dimensional tensor fields with respect to u? and 6°
are projections of the four-dimensional covariant derivative V,, and denoted by
5y oz"
Sur ~ QuA 56¢
From (5.6) and the symmetry of the mixed partial derivatives and the affine con-
nection,

Vo,, = €(a) - V. (5.13)

det & [0z* de de
{a) (a) (®)
= = —, .14
Jutr  66° ((')w“) ’ a6 a6a (5.14)
The object
re, = €9 - dey/o0° (5.15)

is, as the notation suggests, the Christoffel symbol associated with gas, as is easily
verified by lorming 9.ga, recalling (5.7) and applying Leibnitz’s rule.

Associated with its two normals £(4), S has two extrinsic curvatures K 44, defined
by

K au = €y - 80/ 860" = L(arals €y €y (5.16)

(Since wer are free to rescale the null vectors £(a), a certain scale-arbitrariness is

inherent in this definition.) Because of (5.8), we can rewrite

KAab = —1,'(,4) . (56(,,)/59'), (5.17)

which exhibits the symmetry in a, b.

A further basic geometrical property of the double foliation is given by the Lie
bracket of £ and £(4), i.c., the 4-vector

[eBy, €ay]™ = 2(€yB) - V)E{ay)- (5.18)

Noting (5.9) and the fact that the Lie bracket of the vectors 8r™/0uP and 8> /Ou?
vanishes identically, and recalling (5.14), we find

[€(B), £(a)] = caB W’ €(a), (5.19)
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where the 2-vector w?® is given by

= OB — STt (5.20)
the semicolon indicates two-dimensional covariant differentiation associated with met-
ric gap. and eyp is the two-dimensional permutation symbol, with ¢gy = +1. (Note
that raising indices with 72 to form €' yields €' = +1.)

The geometrical significance of the “twist” w® can be read off from (5.19): the
curves tangent to the generators £(g). ¢y mesh together to form 2-surfaces (orthogonal
to the surfaces S) if and only if w® = 0. In this case, it would be consistent to allow
the co-ordinates 82 to be dragged along both sets of generators. and thus to gange
both shift vectors to zero.

We denote by D4 the two-dimensionally invariant operator associated with differ-
entiation along the normal direction £(4). Acting on any two-dimensional geometrical
object X%, D, is formally defined by

DaX%: = (04 — L) X0 (h.21)
Here, 94 is the partial derivative with respect to u? and Ls‘f‘ the Lie derivative with

respect to the 2-vector s4.

As examples of (5.21), we have for a 2-scalar f (this includes any object bearing
upper-case, but no lower-case, Latin indices):

Daf = (04 — s20.)f = [J(A)onf (H.22)
(in which the second equality follows at once from (5.9)); and for the Zn tnic ga

Dagay = Oa9ab — 25A@ait) = 2K Aus, (5.23)

in which the second equality is derivable from (5.7), (5.14) and (.t For the detailed
derivation, see (5.75) below, or Appendix C.)

The geometrical meaning of Dy is quite generally the following (see Appendix C):
Da X% is the projection onto S of the Lie derivative of the equivalent, tangential
4-tensor

a. (b
X% = XG el ‘/1) e

with respect to the 4-vector £{,:

DaX%: = el ,(b) -Len Xy (5.24)

(A)
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The objects K g, w* and D4 comprise all the geometrical structure that is needed
for a succinet two-dimensionally covariant expression of the Riemann and Ricci cur-
vatures of spacetime. According to (5.16), (5.19) and (5.24), all are simple projec-
tions onto S of four-dimensional geometrical objects. Consequently, they transform
very simply under two-dimensional co-ordinate transformations. Under the arbitrary

reparametrization
0* — 0% = f2(6" u?) (5.25)

which leaves 2 and hence the surfaces £4 and S unchanged), w, and K g transform
b

cogrediently with

C(a) —r (Zza) = e(,,)t)e”/(?ﬁ“' (5.26)

(sce (5.6)), and D is invariant. By contrast, 9z /Ou? and hence the shift vectors sj
(see (5.9)) undergo a more complicated gauge-like transformation, arising from the

u-dependence in (5.25).

5.4 Ricci tensor

The geometrical and notational groundwork laid in the previous sections allows us
now to simply display the components of the Ricci tensor, deferring derivations to
Secs. 9-12. Our notation for the tetrad components is typified by

(4)Ru() = Raﬁc‘(ja)c?by RaA = RaﬁC?a)e?A).

The results are

DR = jlz- Rga — e > (Da + Ka) K3
+2e K Kiya — -;-e-” WaWy — Ajab — %A,a,\,b (5.27)
Rap = —DuKpy — KaaKp® + KaDpA
-——;—1;43 [(Dl" + KE) De) — e ww, + (e*)*® a] (5.28)
Raw = Kly— 0aKa— %BaDA/\ + %I{Aaa,\
+%e,me—* [(D® + K®)w, — waD?N], (5.29)

where @R is the curvature scalar associated with the 2-metric gqs, and Kaq = K 4.
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5.5 Bianchi identities. Bondi’s lemma

The Ricci components arc linked by four differential identities, the contracted Bianchi
identities |
VR, = 50.R. (5.30)

where the four-dimensional curvature scalar R = R, is given by

R=¢*RY + R",, (5.31)

according to (5.11).

As we show in Sec. 5.12, projecting (5.30) onto ¢(,) leads to

(D4+ Kas) R, = %0 RY4+ %e*a,, b, — ((:’\ “’n’:,);h. (5.32)
Projection of (5.30) onto €4y simidarly yiclds
Dpg (RBA — %6212”,,) - %(:’\DA (")R,"u
= & DRYK 2 — R Ky — (*R4)  +eanw" R, (5.33)

Equations (5.32) and (5.33) express the four Bianchi identities in terms of the
tetrad components of the Ricei tensor.

We now look at the general structure of these equations.

For A = 0 in (5.33), RY does not contribute to the first (parenthesized) term, sinee

1
—Ryy = Ry = R} = ER;}. (5.334)
This equation therefore takes the form
1 ,
DIROO + ‘é“ADO (4)RZ = —KOROI + E((ll)Rnhs R’()Oa I{”ll’ (l)u)a (‘r’:"r,)

in which the schematic notation £ implies that the expression is linear homogencous
in the indicated Ricci compoenents and their two-dimensional spatial derivatives d,.

The other (A = 1) component of (5.33) has the analogous structure
1 , .
DoRiy + 5¢* Dy WG = =K Roy + LOVRuty Rurs B, D). (5.46)
The form of the remaining two Bianchi identities (5.32) is

DORla -+ Dl Iz()u = E(M)Rll.by IZ(Jla [tA(n'aa)- (537)
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It, is noteworthy that the appearance of Roy in (5.35) and (5.36) is purely algebraic:
its vanishing would be a direct consequence of the vanishing of just six of the other
components. Bondi et al [54] and Sachs [47] therefore refer to the Ry field equation
as the “trivial equation.”

The structure of (5.35)—(5.37) provides insight into how the field equations prop-
agate initial data given on a lightlike hypersurface. Let us (arbitrarily) single out u®

as “time,” and suppose that the six “evolutionary” vacuum equations
®Ry, = 0, Rog = Roa = 0 (5.38)

are satisficd everywhere in the neighbourhood of a hypersurface u® = const. (Bondi
and Sachs refer to WR,, as the “main equations” and to Rgp, Ros as “hypersurface
cquations.” Ry is, in fact, the Raychaudhuri focusing equation [53], governing the
expansion of the lightlike normal £y = —¢M) to the transverse hypersurface u' =
const., and Ry, similarly governs its shear.)

Then (5.35) shows that the trivial equation Rpy = 0 is satisfied automatically.
From (5.36) and (5.37) it can be further inferred that if R;; and R;, vanish on one
hypersurface ©® = const., then they will vanish everywhere as a consequence of the six
evolutionary equations (5.38). This is the content of the Bondi-Sachs lemma [54, 47],
which identifies the three conditions R;; = Ry, = 0 as constraints—on the expansion
and shear of the generators £y of an initial hypersurface u° = const.—which are
respected by the evolution.

5.6 Co-ordinate conditions and gauge-fixing

The characteristic initial-value problem [47] involves specifying initial data on a given
pair of lightlike hypersurfaces £°, ! intersecting in a 2-surface So.

It is natural to choose our parameters u# so that u® = 0 on £° and u! = 0 on Z'.
The requirement. (5.2) that u? be globally lightlike already imposes two co-ordinate
conditions on (u",8%), considered as co-ordinates of spacetime. Two further global
conditions may be imposed. We may, for instance, demand that @* be convected
(Lie-propagated) along the lightlike curves tangent to £%) from values assigned arbi-
trarily on ¥°. According to (5.9), this means the corresponding shift vector is zero

everywherco:



5.7. CHARACTERISTIC INITIAL-VALUE PROBLENM! 5

In this casc. (5.20) shows that
w® = D5 (5.-10)
is just the “time”-derivative of the single remaining shift vector.
These global co-ordinate conditions can still be supplemented by appropriate ini-

tial conditions. We are still free to require that 64 be convected along generatoss of
¥0 from assigned values on Sp; then

st=0 (u’ = 0) (5.-11)

in addition to (5.39).

In addition to (or independently of) (5.39) and (5.41), we are free to choose ul
along 0 and u° along X' to be affine parameters of their gencrators. On ¥ for
instance, this means, by virtue of (5.9) and (5.4),

O dma) af 0 =\ afp(0)
) = <——T = —g™Opu’ = —e"gel,
' du gen.
so that ) vanishes over £0. There is a similar argument for £'. Thus, we can arrange
A=0 (2° and =h). (5.42)
Alternatively, in place of (5.42), vhe co-ordinate condition
1 () .
D[)\ = §K1 on %X (54-5)

could be imposed to normalize u'. (A corresponding condition on X! would normalize
u®.) The Raychaudhuri equation (5.28) for Ry on 0 would then become linear in
the expansion rate K; = 9, In g%, and that facilitates its integration (cf Hayward [45],
Brady and Chambers [49]).

5.7 Characteristic initial-value problem

We are now ready to address the question of what initial data are needed to presceribe
a unique vacuum solution of the Einstein equations in a neighbourhood of two lightlike
hypersurfaces ¥° and ! intersecting in a 2-surface Sy [47].

We arbitrarily designate u® as “time,” and shall refer to £° (u® = 0) as the “initial”
hypersurface and to =! (u! = 0) as the “boundary.”
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We impose the co-ordinate conditions (5.39), (5.41) and (5.42) to tie down 6 and
u?. While (5.39) and (5.41) control the way 6 are carried off Sp, onto 3% and into
spacetime, the choice of 6 on Sy itself is unrestricted. Thus, our procedure retains
covariance under the group of two-dimensional transformations 6 — g* = fo(6%).

In the 4-metric gog, given by (5.12), the following six functions of four variables
arc then left undetermined:

Jabs As ST (5.44)
(In place of ¢, it is completely equivalent to specify w® = psf, since the “initial”
value of 89 is pegged by (5.41).)

We shall formally verify that a vacuum 4-metric is uniquely determined by the

following initial data:

(a). On S, seven functions of two variables 6%
gar» @* Ka=0alng?  (So); (5.45)

(b). on £ and ¥!, two independent functions of three variables which specify the
intrinsic conformail 2-metric:

9 %gs  (Z° and ). (5.46)

Instead of (5.46). ‘t is equivalent to give the shear rates of the respective genera-
tors,

o2 on £, 0ol on T, (5.47)
defined as the trace-free extrinsic curvatures:

— 1 —_— 1 2 1
oA = K Aab — 5 9K a = 5953,4(9 2 Gab)- (5.48)

These two functions correspond to the physical degrees of freedom (‘radiation modes’)
of the gravitational field [47, 55].
To build a vacuum solution from the initial data (5.45), (5.47), we begin by noting

that (5.39) implies that Dy = 0, Koar = Koa, everywhere. Hence the general
expression (5.28) for Ry reduces here to

1
_ROO = (ao -+ —2-K0 — A'o) KO “+ O'()abagb. (549)
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On 1, we have A = Ag = 0 by (5.42). Thus, (5.49) becomes an ordinary differential
equation for

I{Q = 7\70 = 00 In _(]:-lE

as a function of 0. This can be integrated along the generators, using the given data
for 0p% on £', and the initial value of K¢ on So, to obtain g2, hence the full 2-metric
gab (hence also Kggp) over '

Expression (5.29) for Rg, reduces similarly to

1 1 . .
ROa == _56—)‘ (80 + Ko - )\,0) Waq — 5(60 —_ 1\'0)/\‘,1 + I(Q,I:;l, - 0,, ]\() (55())

in a spacetime ncighbourhood of £° and £!'. On B! since Kou is now known, and
A=A, = Ao =0, (5.50) is a linear ordinary differential equation for «, which may
be integrated along generators, with initial condition (5.45), to find w, (hence s¢).

Thus, our knowledge of the six metric functions (5.44) has been extended to all
of 2! with the aid of the evolutionary equations Ry = Ry, = 0.

A similar procedure, applied to the constraint equations Ry = Ry, = 0, deter-
mines the functions (5.44) (hence also K4) over the initial hypersurface ¥ (Here
we exploit (5.41)—implying D, = 0,—which holds on ¥ only. This limitation is of
little practical consequence, since the Bianchi identitics (Scc. 5.7) relieve us of the
need to recheck the constraints off 3°.)

Thus, the data (5.44), together with their tangential derivatives Oy, O, —which we
denote schematically by

D = {gup, A, Wa, s1, O, Ou} (5.51)

—are now known all over the initial hypersurface £° u® = 0. (Note that D includes
Kiab-)

We now proceed recursively. Suppose that D is known over some hypersurface 3 :
u® = const. We show that the six evolutionary equations MR, =0, Ryy = Ry, =0,
together with the known boundary values of gup, Koas, we and s} on £ determine
all first-order time-derivatives 8 of D, and hence the complete evolution of D.

Expression (5.27) for the evolutionary equations M2, = 0 can be written more
explicitly, with the aid of the identity

DaK4 — 2K (Ki)e = —2D1Koay + 4Kyt Ky + Wat)s (5.52)
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which is rooted in the symmetry

98K ajas = 0, K aue = Kaw + Sa@b) (5.53)

(sce (5.23) and Appendix C).

The equations MR, = 0 are thus seen to reduce to a system of three linear
ordinary differential equations for Kyq as functions of u! on ¥, whose coeflicients are
concomitants of the known data D on £. Together with the boundary conditions on

Ko at u' == 0 (i.c., the intersection of ¥ with 1), they determine a unique solution
for Ko, o X.

We next turn to (5.49) and (5.50) to read off the values of GpA and Gowa on .

Since the remaining time-derivatives are known trivially from
Bost =w®,  2O0gus = Kow = K.
0s8] = W, § 0Gub = 0ab = 1N 0ab;

we arc now in possession of the first time-derivatives of all the data D on X.
This completes our formal demonstration that the initial conditions (5.45) and

(5.46), or (5.45) and (5.47), determine (at least locally) a unique vacuum spacetime.

5.8 Lagrangian

According to (5.12) and (5.31), the Einstein-Hilbert Lagrangian density £ = v/ — 1gR2
decomposes as

L = giet(e R4+ “RY), (5.54)

in which ¢% refers to the determinant of ge. Substitution from (5.27) and (5.28)
yields the explicit form

g7iL = * PR — D4(2K* + D)) — KaK* — K Kj,

+%e"\w“wa —e* (2)&“ o+ %)\,a)\’“) . (5.55)

Second derivatives of the metric in (5.55) can be isolated in the form of a pure
divergence by calling on the identities

gEDA XA = 08, [(—4g)%e-*XAeg;,)] — g2 XAK 4, (5.56)

Ao+ A%A, = Va(4%,), (5.57)
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which follow from (5.102) below, and hold for any scalars XA and 2-vector At We
thus obtain

L= -0, [(— 1g)% ot (2K + DX) 3y +2 (- 19)F Ao, ]

LT ae . ! L
tgt [(,-‘- OR 4 KK — KK+ se wrw, + KD+ 50" \} 5.58)

W=

The divergence term integrates as usual to a surface term in the action S = [ Ldr,
and has no influence on the classical equations of motiou.

Variation of S with respect to

—e* = gy = Loy - 0y

reproduces the expression obtained from (5.27) for G" = 1e¢*Rg. Similarly, variation
with respect to s% yields the expression (5. 29) for G = R Aa, I we take account of
the implicit dependence of K aay, Da and w® on s% through

1
Kaa = §0Agub — SA(sb) (5.59)

(5.22) and (5.20). Finally, variation with respect to g, yields G if we note the
identity

l

g

u’Rq2 d%0 = gu, @ ¢ — Piab- (5.60)

Thus, variation of the action (5.58) yields eight of the ten Einstein equations.
The remaining two equations—the Raychaudhuri vquations for Ry and Ry cannot
be retrieved directly from (5.58), because the a priori conditions 7% = 7! =0
(expressing the lightlike character of u® and w!) which is built into (5.58), precludes
us from varying with respect to these “variables.” The two Raychaudhuri equations
can, however, be effectively recovered from the other cight cquations via the Bianchi
idendities.

The Hamiltonian formulation of the dynamics has been discussed in detail by
Torre [45]. We hope to pursue this topic elsewhere.

5.9 Gauss-Weingarten (first order) relations

In this second half of this chapter, we return to the beginning and to the task of laying

a more complete geometrical foundatinn for the Ricci and Bianchi formulas which we
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quoted withont, derivation in (5.27) (5.29) and (5.32), (5.33). We begin with the
first-order imbedding relations for the 2-surface S as a subspace of spacetime.

(5.15) and (5.17) allow us to decompose the 4-vector def, /86" in terms of the basis
(¢cay, Cay)- Recalling (5.5), we find

de _ ¢
= = —e Kl + Tiee:- (5.61)
Similarly, in view ol (5.16), we may decompose
6f
ﬁ = Lapa'® + K auwew) (5.62)

where the first, coefficient is given by
Lapa = ¢ gy - 68a)/06°. (5.63)
This cocfficient can be reduced to a much simpler form. Its symmetric part is
Ly = %6—’\3:;(3(,1) -£(B)) = ‘%TIABaa)\- (5.64)
To obtain the skew part, we note first that
efy (mylintiain) = 0- (5.65)

since £4y is proportional to a lightlike gradient (see (5.4)). With the aid of (5.65)
and (5.19) we now easily derive

_ 1 _
Liagla = e M{gliaysiachy = 3¢ Me(sys L)) e
1
= §€A3wae—)\, (5.66)

Combinine (5.64) and (5.66), we arrive at the simple expression
2L apa = i FuX + € eapwa (5.67)

for the first cocfficient in (5.62).
The Gauss-Weingarten equations (5.61) and (5.62) govern the variation of the

4-vectors {4y and e(q) along directions tangent to S. We now turn to their variation
along the two normals.

We have from (5.4),

Valaa = 2£(a)ja0p) A + Va Lia)s- (5.68)
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o8
Multiplying by 17"(’3) and symmetrizing in 4, B gives
([,7(3) . V)(’(,\) + ((’(A) . V)I},(B) = QE((_.\)D”)/\ — 'I]‘.\n("\v,\ (5.(35))
where D) is defined as in (5.22). It follows that
VA = e MY DA+ WO, (5.70)

On the other hand, the difference of the two termis on the left of (5.69) is given by
(5.19) as e pw,c. Adding finally yields

(Lasy - V)ay = Al — MLy g,et (h.71)

where
Nape = DuAisye — ?,12'71.1113D(f/\1 (h.72)
and L was defined in (5.67).
Proceeding finally to the transverse variation of ¢, we have from (5.11) and
(5.9),
%‘,‘l = ggz (£ + shewm) -
Substituting from (5.61) and (5.62). it is straightforward to reduce this to

de - e 3 .
(5;:) = (LABa — .S{'AC /\KBub)g(”) + K Au’ ) (5.7-‘)

where
T{-’Aub = I(Aub + S Abja- (574)
Applying Leibnitz’s rule to

é
aAgub = m(e(u) - (J(I:)),

we read off from (5.73) the result.

1 74 1 . .
EBAQuh = Kaaw = K/\(ub), (.75)

which gives direct geometrical meaning to the extrinsic curvature in terms of trans-
verse variation of the 2-metric.

The normal absolute derivatives of ¢(q) are given by (vecalling {5.9) and (5.13))
(a) {

bt (a) b Vi)
Uiy  V)eta) = =2 —sa” ==
(Lay - Ve = 53 ~ 54" i
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With the help of 15.73) and (5.61) this reduces to
(ﬁ.(,q) . V)(‘,(,‘) = L‘,‘”;..‘f,(”) =+ (R‘A" b_ SA CFZ,:)G([,) (576)

Correspondingly. the two normal derivatives of g, are
(f(A) . V),‘luh = Z_K.Aub - 5(/:48(:.(/411;- {577)

The two-dimensionally noncovariant terms which appear in (5.76) and (5.77) are
not. a mistake. They arise because the normal gradient £(ay - V, applied to objects
carrying lower-case Latin indices—let us say gay —does not preserve manifest two-
dimensional covariance, since it contains (sec (5.22)) a piece —s%0cgab involving ordi-
nary (rather than two-dimensional covariant) derivatives with respect to 6. Although
not. incorrect. this is a formal impediment: it threatens to clutter our formulac with
terms in the skift vectors s% which are, to boot, noncovariant. In the following sec-
tion, we explain how this can be remedied by introducing a “rationalized” gradient
operator \

5.10 Rationalized operators V, D4, YV,

The rationalized operator 6(, avoids the two-dimensionally noncovariant terms which
appear when V,, is applied to objects bearing lower-case Latin indices, as in (5.61),
(5.76) and (5.77).

Applied to sealar fields or to 4-tensors not bearing lower-case Latin indices, V is
identical with V. If the object does carry such indices, there are supplementary terms
involving the two-dimensional conncection 'y,

Specifically, we define
Vn = V(\ + p(a)(va — Cu) * V) (578)

in which ¢, - ¥V = §/80" is the absolute derivative introduced in (5.13), and the

operator V,, will be specified in a moment. We have introduced the pair of 4-vectors
(u) - V0", Q..

pl = 90° /9. (5.79)

Their projections onto the basis vectors are, according to (5.6) and (5.9),

p(“) cep) = dy, - p(a) -lay = —s%, (5.80)
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o)
from which follows the identity
5§ — pf;‘)("(fl) — c"‘“ff;")(’);z"*/i)u"‘. (H.81)
Hence (5.78) can be recast in terms of the absolute derivative 8 /dut:
vV = c"\(’(‘”é)/au‘" + plv,. (H.82)
We next introduce the differential operator
Da=tiy -V =y -V = s4(Va— 3/50"). (5H.83)
An alternative form
D= 68/6u — 54V, (5.8.1)
follows from (5.82).
Since €@y - V = V,, we can reconstrict. ¥ from (5.83) in yet another form:
6 = (:'F'\g('l‘)ﬁ,\ =+ (f(“)v,,. (NH.ND)

We now specify the operator V,,. It is defined so as to act as a two-dimensional
covariant derivative on all lower-case Latin indices (including parenthesized o),
and at the same time as an absolute derivative §/807 on Greek indices. Upper-case
Latin indices are treated as inert.

As an example,

Vie(a) = 50(,,)/5()" - I"peqo)- (5.86)

It is evident that, quite generally. the “correction” Vi, - 8/¢0" in (5.83) and (H.78)
is lincar and homogenecous in the two-dimensional connection I,

Examples of how V, and Dy act on scalars and 2-tensors are

Vof = 0, Daf = (4~ s48du) [ = Daf, (547)
VX% = X0 D DaX": = (Da — s34 Va) X" ‘
For the 2-metric gu, we have from (5.84),
D Agu, = Db, (5.88)

since Voo, = Gune = 0. Thus, (5.75) can be expressed as

s o |
§[)A.(]110 = KAulu (')8‘))
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which should be contrasted with (5.77).

Similarly, with the aid of (5.86) and (5.83). the noncovariant expressions (5.61)
and (5.76) become

VbC(u) = Va(f(b) = —e"\KAabE(A), (5.90)
EA(:(Q) = LAB,,Z(B) -+ EAabc(b). (5.91)

fmite generally, EA, V. and v preserve both four-dimensional covariance and
-+ riance under “rigid” two-dimeunsional co-ordinate transformations 6 — 6% =
,-(6%), with no dependence on u?. (u-dependence of f¢ would induce “gauge” trans-
formations of the shift vectors s%, sce the remarks following (5.26).)

With the aid of (5.85), the last two results can be put together to form the
rationalized covariant derivative of e(q):

(:'\636(“),, = (LBA,,ES,A) + Egabeg))e(ﬂB) - KAangA)eg’). (592)
Equations (5.62) and (5.71) similarly combine to produce
Valiaya = (¢ *Napc € — LBAaegl))e(ﬁB) + (LapstP + KAabeff))Cg))- (5.93)

(No distinction here between V and V, since £(4) carries no lower-case Latin indices.)

To swm up: equations (5.92) and (5.93) encapsulate the full set of first-order
(Gauss-Weingarten) equations, which control tangential and normal variations of the
basis vectors e(q), £(a)- The coefficients in these equations are given by (5.16), (5.67),
(5.20), (5.72) and (5.74). Their geometrical meaning emerges from (5.75), (5.19) and
remarks following those equations.

5.11 Rationalized Ricci commutation rules

The usual commutation relations need to be modified for V4. To derive the modified
form, consider the action of ¥V on any field object X, bearing just one lower-case
Latin and an arbitrary sct of other indices.

From (5.78) and (5.86),

V. V5 Xa = 55V — pITE)(88V 5 — pSITE,) Xo.
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Skew-symmetrizing with respect to 3 and 7. and noting from (5.79) that Vy, }:f;]") =0
leads to

— — - - m n 1 — A1) b -
Vi Ve X. = Vi, Vi Xa + b ){Pil)?ij amn — ¢ MGPOATL I N, (5.04)

in which 9,2 , has been expanded using

Dy = MM, + piMD,, (5.95)

which is a special case of (5.82).
The right-hand side of (5.94) can be further reduced: 94T%,, is a 2-tensor, given
by

b y 72l T B .
aAF1n¢1 = 2I{A(u;m) — K ina ' («r).(.“.))

according to (5.75); and in two dimensions we have

Rb amn = (Z)R(Sf'm.(],,],,. (5()7)
If €2, is substituted for X, (5.94), (5.92) and (5.93) can be used to express the

(a) J !
projection onto ¢,y of the four-dimensional Riemann tensor in terms of the first-order
Gauss-Weingarten variables K, L, N and their derivatives. If our inierest is primarily

in the Ricci tensor, the contracted form (y = a) of (5.94) suflices:

< - < o L Y N7d
(VaVg— V;;V,,)e‘(’a) = ("(a)Rﬂﬂ —3 (Z)R[)(a)ﬁ + ¢ '\(()u[(/\)ﬂ‘(,/‘) (5.98)
where
Ka=K%, =0alngs (5.99)

and g = det gup.

5.12 Contracted Gauss-Codazzi (second order) re-

lations. Ricci tensor

The Gauss-Codazzi relations are the integrability conditions of the system of first.
order (Gauss-Weingarten) differential equations (5.92), (5.93). As just noted, they
express projections of the four-dimensional Riemann tensor in terins of K, L, N and
their first derivatives.
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Contraction of these cquations gives frame components of the Rirci tensor. The
most, concise way of deriving these components in practice is through rec ourse to a
generalized form of Raychandhuri’s equation [53].

Lot A° be an arbitrary 4-vector (which may bear arbitrary label indices) and
B 4 second vector free of lower-case Latin indices, so that ’553“ = VgB® and the

standard commutation rules apply. Then it is easy to check the identity
R A" BP = V4(A"VBP) — A7 ,(VsB?) — (Vg A®)(VaB?). (5.100)

If, on the other hand, B is replaced by eq), then we call upon the commutation
law (5.98) for ¥V, with the result

Rn/iA"“/(z,) = 61*(/4"6(:36,)) - A(rﬁ:,(’ﬁﬁe(ﬁb)) - (GfiAa)(,Vva(ifb))
1, — ,
+5 P R(A - ) — M@K 5)(A - £, (5.101)

With the choices A = f(4) and e, B = {(p) we can recover all frame componcents
of the Ricei tensor from these equations in tandem with (5.92) and (5.93).

Some details of these calculations are recorded in Appendix B. The final results
have already been listed in (5.27)—-(5.29).

We next turn to the contracted Bianchi identities. The projection of (5.30) onto
Cla) yiclds

. ' o = . 1
vﬂ(Rge(u)) - Rgvﬁ €la) = 50‘112'
The second term is evaluated with the aid of (5.92). In the first term, we expand
ety RE = Rhely,y + e Ry,

and note the (often used) results

Vachy =0, Vgliy =Ka+Dak, (5.102)
which follow from (5.92) and (5.93). The result is (5.32), and (5.33) is obtained
similarly.
5.13 Riemann tensor

We list. here the tetrad components of the Riemann tensor, obtainable from the un-

contracted Ricei commutation rules (see, e.g., (5.94)). The notation for the tetrad
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components is as in Sec. 5.4,

R, = R 5[, «\" 207 KN ¢ A ffi
1 ry AnNWVE v «a 2\ .a
Rapep = Z €AB (:('[)\26 DD —30"w, + ¢ A /\“,)
R.-Mh(‘ = 2KAu[b;('] - I(Au[l)/\.(‘] - “—/\ €AB I\-‘{fl,wa']
1 . ) )
Roape = -2- GBc{D,\wa + Kw w’ — et 6.4,.;(DL(),,/\ “,,z\ ’) — Wl ,\}
y . 1
RAB, = —DWKD 4 KAKB + DUAK,) — - DpA K,
1
_'ITIAB(C W,Wp + CA/\,aA.b + 2("\’\31!’) - '—l‘(;‘”g% CabT.

We have here defined

e A = g"’ b Ou(e” o)

5.14 Concluding remarks

The (2+42) double-null imbedding formalisim developed in this chapter leads to simple
and geometrically transparent expressions for the Einstein field cquations (H.27)
(5.29) and the Einstein-Hilbert action (5.96). It should find ready application in o
variety of arcas, as indicated in the Introduction.

(2 4+ 2) formalisms are certainly not. new [45, 46], but, they have languished on the
relativist’s back-burner. We hope that this exposition will play a role in promoting

these versatile methods from the realm of esoterica into an everyday working tool.



Chapter 6

Generic structure of the Cauchy

horizon

In this final chapter we will apply the double null formalism developed in the last
chapter to explore the generic structure of the Cauchy horizon. By generic we mean
that there are no assumptions made about the initial data except that they should
originate from a realistic gravitational collapse, i.e. they should exhibit the Price
behaviour. In mathematical terms this means we can, once the gauge is fixed, specify
two arbitrary functions of three variables on each of the characteristic initial surfaces.
(A somewhat different definition of a generic singularity is given in [56].) In this sense
the mass inflation singularity offers an alternative to the BKL [36] singularity which
was thought to be the only generic singularity.

The analysis of the field equations is tricky but not impossible. What we attempt
to find is n self-consistent approximation to the true solution of Einstein’s equations
for a given class of initial conditions. We construct this approximation by making use
of our insider knowledge: Choosing a convenient gauge we expect certain quantities
(the mass {function, or more precisely the conformal curvature) to diverge. Thus it
makes sense to expand in inverse powers of this diverging quantity to obtain a set
of zeroth order equations. It should not come as a surprise that these equations are
very similar to the ones discussed in Chapter 3.

To begin we review the plane wave model presented in section 3.2 which fits
naturally into this framework. The insight gained in this warm-up exercise will then
guide us through the treatment of the more complicated generic case. To start this
we first discuss the gauge and boundary conditions before solving the full set of

65
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Einstein’s cquations. At the end of the chapter we will briefly deseribe the results of
some numerical work.

6.1 Plane wave mass-inflation revisited

In accordance with the notation introduced in Chapter 5 we rewrite the metrie (3.9)
as

ds? = —2e*dudv +1* (r:"’"d;u." + (‘__2”(1'!]2) ,
where the relation between A and o is given by A = 26 — logr. To keep matters
simple we restrict the functions A, 3 and 7 to depend only on the null coordinates «
and v.

The initial data will be posed on the two characteristic initial surfaces VU=
ug = const. behind the event horizon and £V : v = vy = const. belore the Cauchy
horizon. Note that we cannot chioose ¥ to coincide with the event horizon. This is for
two reasons. First it is not clear that any asymptotic expansion around the Cauchy
horizon still gives valid results near the event horizon. (Remember from Figure 7
that the event horizon is never “near” the Cauchy horizon.) But more impe wiantly
we don’t expecet our approximation to be good near the event horizon. The curvature
(or mass function) is finite and small near the cvent horizon. Thus expanding in
inverse curvatures would be a rather bad idea near the event horizon. furthermore
we don’t want to deal, in this part of the analysis, with the scattering process inside
the black hole because it already is well handled by the perturbation analysis on
the Reissner Nordstrém background performed in Chapter 4. Thus we want to sel
boundary data which are a result of scattered radiation falling into the hole. From
all this we conclude that the two characteristic initial surfaces should lie behind, i.c.
to the future, of the internal potential barrier.

Let us now specify the gauge and initial conditions. In view of Chapters 3 and 4

it is most convenient to choose u and v such that
) = — () || on TV
(), = — (p)* 077 on L%,
so that u — —o0 leads towards the event horizon and v — oo towards the Canchy

horizon. (Ancther possible choice wonld be (%), = 1 and (%), = —1 on the respec-
tive initial surfaces.)
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Figurc 11: The conformal diagram representing the interior of a general
black hole. The initial data are given on the two characteristics £* and
" which intersect in the two-space S. The surface T* is located behind

the event horizon and intersects the Cauchy horizon in a two-surface S’
The scalar field analysis of section 4.1 suggests initial data of the form

Bu = |u|"”/2fu(u) on ¥
Bv = v™Y2f (v) on T*.

The functions f4 (A = u,v) are arbitrary except for the requiremens that they shall
not. vanish anywhere and that the 3, and 8, have finite limits as u — —oo0 and
v — oo respectively. These requirements certainly make sense for b,. But one might
ask what meaning this has for 8, as XU lies at a finite value u = ug. However we can
choose up as small as we want and the limit 4 — —oo is understood in this sense.

These restrictions are not very severe. They even allow for mildly divergent fa’s.
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Lastly we have to specify A on the two-surface S. As we have excluded an 09
dependence of our metric functions. A is just constant on S.

Clearly. for the above metrie the shifts s, and thus also the twist w*, vanish.

Thercfore A .4 = K aap and we drop the bar for the remainder of this section.

The only nontrivial tetrad components of the Ricei tensor then read
MR, = —e*[(@a+Ka)K"w—2KasuK™n] =0
Rap = —0uKp — KA K™ + K10\ — %71,\,; (Op + Kp)oPx=0.
Using equations (5.45) and (5.48) for the expansion and the shear we find
O ava = 1B adiag(c®®,¢7*P) and K4 = (log %) A

Using these expressions, the Raa = 0 equation becomes

: 1 . , .
Atlogr?) = — 1) an +2(3a)° 17
( )b ),A (rz),/‘ (( ),A 1 (/ 'A) T )
which we can easily integrate for A on the initial surfaces T8 (B # A). Doing so for

u? = v on ©* we find asymptotically for large values of v

A+ logr? =~ — ' dv f2(w)rd — qlogv + O(1/v) (6.1)

Vo

where 1 is the value of » on the Cauchy horizon (i.c. the value of ¥ on S" in Figure
11). Because the integrand is strictly positive we sce that A — —00 as v — o0.

In a similar fashion one shows that on X"

. el . .
A+logr? ~ + / duf?(u)7s — plogu + O(1/u) (6.2)

uo

where Tp is the value of r on S. Thus A — +00 as u — —00.
We are now ready to solve for the functions 2. X\ and /4 in the region enclosed by
the characteristics 4.
The trace ¢ Ry, = 0 gives the wave equation for 2
2
OAKA + I(/.KA = -—2(—77):2—'11-1- = ().
It has a solution

2 2
. (63 - (64 ] —
7° = "‘0 + _-—__v_—'ul q __ ——‘l—-l-u'll r
qg—1 p—1
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which satisfics the boundary conditions and is well-behaved for all the interesting

values of 1 and .

The wave equation for A derives from Ry, = 0 and is

el 2
)‘uv == ‘]:'gl—_)—,'li,“—_)ﬂ - Zﬂuﬁv = 0. (63)
) 2 TZ v

If B 4 is regular the right hand side of equation (6.3) is well behaved and finite. The
solution to (6.3) is thus

A= /dudv (%ﬁ)—"i—g—,—z—)—g - 2ﬁ,uﬁ,v> + Fu(u) + Fy(v). (6.4)

The two functions F4 are determined by the boundary values for A on the initial
surfaces £, Comparing (6.4) with cquations (6.1) and (6.2) we find

F,(v) =~ — : dv f2(v)rs — qlogv + O(1/v)
ful
F,(u) ~ + duf?(u)Ts — plogu+ O(1/u)

which, of course, agrees with the result of Chapter 3.

The wave equation for 8 is the same as in Chapter 3:
2840 + Bu(logr?) » + Bu(logr?), = 0. (6.5)

The same comments as in Section 3.2 apply, and (6.5) has a series solution which
exhibits the power law fall-off imposed by the boundary data.

Thus, naturally, the double null formalism yields the same results as before. The
important points to keep in mind though are that we expect the shear o4 to stay
finite, but \ to diverge in the described manner. To treat the full case, i.e. allow for
a 0¢ dependence as well as the existence of a nonvanishing shift sj (we can always
gange one of the shift vectors s4 to zero), we will use this behaviour of A. In a first
approximation we neglect all the terms that are suppressed by a factor e*. This is
where the double null formalism comes in handy. All the equations are already ordered
in powers of ¢). Again we stress the point that we perform a self-consistent analysis.
The results of our approximations should not contradict these very approximations,
i.e. terms assumed to be small should not be forced to become large by some equation,

ete. With this in mind let us now proceed to uncover the generic structure of the
Cauchy horizon.
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6.2 The generic structure of the Cauchy horizon

6.2.1 Gauge and initial conditions

The setup for the general characteristic initial value problem treated in this section
is much the same as in the plane wave case. We start with two characteristic initial
surfaces " and ¥¥, as shown in Figure 11, on which we give the initial data.

As mentioned before we are frec to choose once of the shift vectors 5% to vanish
globally. It seems natural to choose s¢ = 0, as we are mainly interested in the lmit
v — oo. We are still free to choose s¢ on one hypersurface v = const. The most
convenient. choice is that s vanishes on the Cauchy horizon, i.c. in the limit o — oo,
If we were to choose a “large” s we would be choosing a coordinate system that
would twist near the Cauchy horizon, and thus artificially make certain quantities
behave singularly, which otherwise would be small for o better choice of coordinates.

As before we now have to specify the null coordinates © and ». But rather than
giving the derivatives of 1? = y/det(gq.) we choose to sct

K, = —a2(0*)v™ on 2" (6.6)
K, = —a2(@)|u|™ on X" (6.7)

for some yet unspecified functions «,,(6*).

The initial data are encoded in the shicar o 44, and are, as argued before, of tiw: tonn

Oupab = 'U_’I/Zf'uub('l),au) on X" ((5.8)
Cuap = |u|"’/2fm,,('u.,0“) on XV. (6.9)

The two functious fa of the last scction have now been promoted to two matrix
valued functions f Aab(uA, 6%). As before, we require o4, — 0 in the respective litnits
luj? — oo, and faufa® # 0 for large enough values of |u4]. Note that the functions
faas and a4 are not always independent . If w® = 0 then we have, on say £, the two
equations

va = _Kv,‘u - %(KU)Z - Uvuhrf'uu" + ](v/\,u = ()
1 1
Rua = Ovay— 5Awa+ 5Kodo =0

From these equations we can eliminate A and its derivatives to obtain a complicated
relation between K, and o, and similarly for K, and g, on ¥, This fact will

have some physical consequences, as we will shall see below.
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Finally we have to give w*(8%) and A(6%) on the two surface § = L* N Z¥. This
fully specifies the characteristic initial value problem describing the neighbourhood
of the Cauchy horizon.

6.2.2 Integration of Einstein’s equations

In the first step we have to determine the functions A and w* on the entire character-
istics 34 from their initial values on S. Let us start with the Ry, = 0 equation for A.
On X* we find

Ay = (log K)o + %Kv + TpapT .

Thus, using cquations (6.6) and (6.8) we get
A= —qlogv — a2(6*) v 1% — / " dv Foan(6%) f22(0%) /a2(6%) + Xo(6%) (6.10)
Jug

where )y is determined by the boundary data for A on S. Note that the integrand is
a positive and nonzero function so that the integral must diverge as v — o0o. Indeed
we cant bound the integral from below. Let #2 = minfeas fo**/a2 for all v, 6%. Because
Foanto™® # 0 it follows that k2 > 0 and thus A < —plogv — K2v + const. as v — co.
Thus, at least on L%, A diverges on the Cauchy horizon.

The next step is to determine the twist w® on T*. The leading order of the

equation e Ry, = 0 is rather simple, as s = 0:
(av + Kv - A,v) We = 0

which has the solution
A7 Kydv
We = wpe Yo .

Using the fact that K, = (logr?), we get

we = woe™/7? (6.11)

where wy is determined by the initial data on S. Because of our choice for the
asymptotic behaviour of s we find that s3 ~ e* because for s¢ = 0 we have w* =
—8,s¢. On first sight the integration for w® seems a little more tricky on XV as s% # 0.
However w, is always of the form (6.11) on any u = const. surface but with a different
wp. Thus we expect 8¢ ~ ¢* everywhere. To keep the analysis consistent we therefore
have to set. D, = 9, + O(e*). To our approximation we then find

(Ou+ Ky —A)wa =0
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-1
te

which is satisticd by (6.11). Here we have used the fact that now A, = K, 1 OWY).
Now that we have s “out of the way™, i.c. exponentially small, we can analvze
the R, = 0 eguation

. 1. .
/\,u == (log K u)'“ + T;I‘tt + (,.“”I,(T“ub

so that on &°

2 . ‘“I g " 12 N

= —plogu — a>u P + dtt fran(0) SO /5 (07) 4 No(07). (G.12)
UG

Again Ao is a function determined by the boundary data on S. Note the sign differenee

of the integral compared to (6.10). Thus in the limit of large negative w, A goes to

—+o00.

So far our analysis of A has been confined to the two characteristics 4. ‘The
behaviour of A on two intersecting null surfaces has been analyzed before by Brady
and Chambers [57] with the same result. In fact these authors sct 37 on the Cauchy
horizon and showed that the Weyl curvature there is singular.

However it is now possible to solve, at least to leading order, the full set of wave
equations describing the gravitational field near the Cauchy horizon. The fact that
e is expected to go to zero (and doces so at least on ¥*) makes this analysis possible.
Let us first look at

g2
e/\gub(4)1?“b = 2(, 7.)2‘”1Y = 0.

Again we have used the fact that to our approximation K, ~ (logr?) 4. Thus we
find
r? =12 + gy (v,0%) + gulu,0").

Comparing this expression to the boundary data (6.6) and (6.7) we find

gv(,“’ea) ~ ,Ul——q

gulu,0%) ~ |ul'7"

Again the expansion K4 decays as an inverse power law in u (respectively o) for the
respective limits. The key point is that 72 does not go to zero as v — 0o but to a
finite value. If this were not the casc our approximation would break down (becanse
1/r? would be large) and we would be dealing with an 7 = 0 type singularity which
has a very different structure from the mass-inflation singularity.
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Next we look at the wave equation R, =0, for A which to lowest order reads

. 1 a
/\,uv = d(uh vy + EKqu + OyabTv b-

We can formally integrate this equation for A
: 1
= [ duddo (0(,‘1(,., Kk, + aua,,orv“"> + F,(u, 0%) + Fo(v, 8%). (6.13)

The two functions Fy are determined by the boundary data on 8. We will argue
Lelow thiat the shear 74, does not diverge but in fact decays as an inverse power
of 1 and ©. Thus the source term over which we integrate exhibits an inverse power
law decay [rom which it follows that the integral itself should stay finite. From the
boundary values (6.10) and (6.12) for A it is clear on the other hand that F.(v,60%) —
—00 as v —7 0o and Fy(u,0*) = +00 as u — —00.

Lot us now look at the R4, = 0 equations again. Inserting equation (6.11) we are
left. with

I

20’/\,11';1, — A Aq + Ka\g ()(6'\) ~ {0

or after a little algebra,
(3/1. — (log 7'2),,1) Ao =204." (6.14)

r . . . . 1 )
I'his &5 an equation on surfaces of constant uP for A,. For uB = v we can formally
integrate (G.14) for A,

, o [V, Oad’,
Aa=27 [ doZAE2 4 ha(u,6").
o

T'he function h, is determined by the boundary data on 3¢ for A,. These data are
regular on the initial surface ¥ and because the integral is finite (0 aab 1S) A 1
finite as ¢ -> oo, This means that the diverging function Fy(v,6*) in (6.13) must be
independenit of £, i.e. F. is a function of v only. The same reasoning applied to A 4
then tells us that Fu(u, 075 must be independent of 6. Thus a pure rescaling of the
coordinates 1 and ¢ can make the metric function ¢* a well behaved finite function.
(Of course this coordinate transiormation would make derivatives of metric functions
like gae diverge. After all we are dealing with a curvature singularity.)

Finallv the shear is governed by tiwe traceless part of Rq = 0

D40 ), — 20 44007, = 0, (6.15)
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which is the equivalent of (3.12). For nondiagonal gu. cquation (6. 15Y is nonlinear,
which makes its analysis much more difficult than that of equation

To sce this we write the two-metric as

) , | €% cosh(y) sinh(v) (6. 16)
Ga =T . N Al
' sinh(y) ¢ cosh(x) ‘

so that det(gae) = r*. Inserting this into equation (5.15) and (H.18) and simplifving
gives

27'1!’.:11‘ -+ ("'2),ulj,r + U'z),v,d.u + e Lilllh') (7.11/‘7’.1' Vet 4".1:\) - 4 )
(617
2025 e 4 () Yoo + (1) 0V — 417 s10h(27) 3,05, = .

Clearly if v = 0 we get equation (3.12) back. However for v # 0 these two equations
are poulinear and cannot be solved analytically. We therefore have to resort to cither
perturbativc or numerical methods to solve these equations.

Lot us first solve these equations perturbatively. There is still the freedom to per-
form a rigid gauge transformation in the ¢ coordinates so that gu, becomes diagonad
at one instant, © = const. and v = const., which we can choose to be S, We can now
proceed to show that the shear indeed is bounded.

To zeroth order we can neglect the nonlinear terms in equations (6.17). T is
admissible because we have chosen a ga, e where v is small in the region of interest,
i.e. near the Cauchy horizon. The resulting equations are again of the form (3.12) and
can thus be solved by series of the form (3.16) which indeed decays near the Canchy
horizon.

To get a better approximation we now insert, this zeroth order solution into the
nonlinear parts and treat the latter as source terms 49 for the linear equations. The
solution to this new system of cquations then is a sum of a particular solution to the
inhomogencous cquations plus a solution to the homogencous equations. The latter
will be chosen so as to satisfy the boundary data. Let us now pre weeod Lo show that i
solution obtained in this manner stays bounded and does not diverge near the Cauchy
horizon.

Because (1Y) 4 = 0 we can, as in Section 3.2, rewrite these cqgnations ag

(1)

]
Dﬁ“) =2 ﬂ'(;))( — ﬂ(‘“ A7 J“ and CJ’/“) B

_ ;0
Wil I7; = Jp» d-4s
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where R and x are defined in much the same way as in Section 3.2. Note that R
and x in peneral depend on 64, But this dependence affects the solutions of these
equations only implicitly through their dependence on R and .

In Appendix D we show that these solutions have a formal solution given by
(:qlmt.iuu‘(l).:')}'.

AN = (2m)? / ARAXO(R — R')jS(R, X)R’ / dk (ap(R, X))o ( R, X') + c.c.)  (6.18)

and similarly for ¥V, The functions ay are the mode solutions to the homogeneous
equation Mg = 0 and are normalized with respect to the inner product (1.4).

A short. caleulation shows that these modes are given by

ay = \/—%‘cﬂ"kH((,?)(kR)

where 1-[((,2) (1 R2) arc the sncond Hankel functions of order zero.

We clainy that 30 and 41 are not diverging. The only potential danger in
equation (6.18) cowes o the divergence of the Hankel functions as & — 0. However,
as is well known HP(KR) o« log(kR) as k — 0. The integral fdklog(kR)? is not
divergent in this limit. Furthermore. as the source term decays towards the Cauchy
horvizon we expeet, the R and x/ integrals not to diverge cither. Thus A and (V) are
finite (but not necessarily small) functions near the Cauchy hovizon. To satisfy the
boundary condition we now have to add appropriate solutions of the homogeneous
equations to A4 and y("). These additions then will ensure that the final result is
indecd small near the inner horizon: because the initial data are small there, so that,
at least near the initial surfaces, the full solution must be small too.

We can ow iterate the shear equations in the described manner to get better and
better approximations. But these approximations will always decay, by construction,
in the way expeeted from the boundary data. Thus the shear 044 indeeu :izcays as
assumed previously.

Even though a perturbative analysis gives a good qualitative picture of the be-

haviour of the shear, only a munerical solution of equations (6.17) can yield a more

INote that the variables o and y which are used in Appendix D in the derivation of equation
(D.5) are in no way related to the coordinates 8%, While the latter are coordinates of a physical
spacetime the former are merely a mathematical construct, used in the derivation of the final result,
in which they no longer appear.
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quantitative picture of the solution. The lowest order equations (6.17) for the shear

and Ra4 = 0 for A, which now reads

1 . 1 2 R 2 Ty
()\ + 5 log 7"’) = — ((1")“4,1 + 2r%:5, cosh® 4 + ,.—;)"4) . (6.19)
Z 1 o e

"y
I (,'._)‘-“
are sufficicutly simple to make a numerical analysis possible. To this order none of

the functions 3. v and A depend on 6%,

l
¢

rCalculat.(s B and v on X4 from /3, and vy, nsiup;‘

| a second order method. |

|

From this calculate A on X% using the 12, =0

|

Insert this into R, to determine the mmusriun”

|

Use the wave equations (6.17) to caleulate

(Bo) e antel (7o) -

Calculate 3, and v, on w0 = S0 using o
v K] 14

cquation.

accuracy.

first order method.

4

Figure 12: This flow chart shows the principal workings of the progran
used to integrate the shear equations (6.17) and the constraints (6.19).
Only the main loop of the program is shown. v denotes surfaces of

constant w = ug + idu, where duis the “time” step of the nmerical grid.

The coordinates used for the munerical integration are the same v and v coordi-

nates as defined in equations (6.6). We first solve the coupled wave equations for f3
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and ~ and then integrate the I8, =0 for A. The R,. = 0 equation is monitored to
keep track of the numerical accuracy. (Another way to solve for A would have been to
solve the wave equation R, = 0 for A and then use both constraints Raa = 0 to check
the numerical accuracy.) Figure 12 shows a simplified flow chart of the program.

In a first. run we investigated the behaviour of the shear for the Price power law
bounelary conditious used in the text before. The results of a typical run are shown
in Figure 13. Clearly the shear components 3 and ~ show the expected power law
behaviour, whercas A “mass inflates”, i.e. behaves as predicted by the approximate
solution (6.13) for A. The Ricei component Ry, shown in the lower right of Figure
13, does not. vanish as it should, due to numerical errors. However ::.- we increase the
nunber of grid points R, becomes smaller.

To see how sensitive mass inflation is to the exact form of the boundary conditions
we performed a second set of numerical integrations in which we replaced the Price
tail initial data for v 4 by a Gaussian wave packet. While the quantitative features
clearly change, espaially for X, the qualitative features of mass inflation remain. The
larger derivative term of v 4 in equation (6.19) in fact drives A towards large negative
values even faster. Note that the difference between the u and v dependence, which
was symmetric before, is not too surprising. While before we had symmetric boundary
conditions o " and TV this is no longer the case here. Were we to switch the posit’: =
of the Gaussians, we would discover a fast decay in the v direction.

Also the asymmetry in the Ry, constraint is no mystery. It comes from the fact
that A is caleulated using the equation R, = 0, which is integrated from vo towards
large values of v. As mentioned before, the R, constraint is increasingly well satisfied
with an increasing number of grid points.

Overall it can be said that the numerical solutions of equations (6.17; and (6.19)
confirm the predictions made by the perturbative analysis of these equations.

This concludes our analysis of the generic black hoic interior. The results of this
Chapter indeed scem to confirm the predictions made by the simpler models treated
carlier. On top of that, it suggests that the mass inflation scenario is generic in the
sense that it allows 2 x 2 independent functions of three variables each (two on each

$4Y). It is therefore not just an artefact of some special symmetries or boundary
conditions.
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Chapter 7

Conclusions

As we have seen in the introduction, black hole physics has made enormous progress
since its difficult birth 80 :-:ars ago. This is even more true for the physies of black
hole interiors which only really started less than 30 year: ago with Penrose'’s 2]
speculations about the instabilities of the inner horizon of a realistic black hole.

It took more than 20 years since these first steps were takeu to fully understiud the
nature of this singularity, first by analyzing Hiscock’s pure inflow model [12] and then
later by looking at the more realistic cross-flow model of Poisson and Isracl {§3, 37]
Only now are we at a point where at least the dassical aspects of the Cauchy horizon
singularity are fully understood.

The analysis presented in Chapters 3, 4 and 6 suggoests that, the comparatively
simple model of Poisson and Israel indeed gives the correct picture: Radiative tails,
expected to be present in any stellar collapse fall back into the black hole. Part. of
these perturbations are then scattered off the internal gravitational potential barrier
and start iiradiating the initially static inner horizon, which as a result, starts Lo
slowly cout - *.

It is imporcant to note that the scattered tail is far too weak to cause an imiediate
destruction of the inner horizon, as was suggested by several authors (16, 17, 18].
Indeed the analysis in Chapter 4 shows that initially the inner horizon is static and
coincides with the Cauchy horizon of the unperturbed hole.

The contra:vion of the inner horizon, toguilir v thi < astrophic biue shift,
of the infalling radiasion then causes a scalar curvature singularity to forsa along
the inner horizon. This singularity, dubbed mass inflation singularity because oi the

exponential blow up of the (only in spherical symmetry well-defined) mass function

80
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of the black hole has a rather simple structure, even in the generic case.

While the final » = 0 singularity is believed to be of the BKL type [36] (which
exhibits chaotic behaviour) the mass inflation singularity seems to be “smooth™ in
the sense that, at least to leading order in curvatures, all the initial irregularities are
damped ont exponentially. This behaviour does not change in the presence of shear,
as was initially foared [58], and one is tempted to speak of a no-hair theorem for the
Cauchy horizon singularity.

What changes from the spherical picture is the presence of nonvanishing Weyl
curvature tetrad components besides the Coulomb component ¥,. Analyzing their
structure shows that the spacetime asymptotically is of Petrov type N [41, 59], in-
dicating the presence of a gravitational shock wave traveling along the contracting
Canchy horizon. »

This picture, supported by a recent numerical calculation {43], seems to be fairly
robust. and carlier doubts about the mass inflation scenario by now are hopefully
settled.

Despite this optimistic scenario, there are still open questions. Once curvatures
reach Planckian levels, classical physics should no longer be trusted. So far, however,
one-loop calculations [60, 61] are are rather inconclusive, as the behaviour of quantum
corrections depends crucially on a undetermined length scale, which is introduced into
the theory during regularisation. Things look even worse once one allows for a chaiged
core of the black hole. In the absence of any radiative tails, pair production effects
lead to the formation of a spacelike © = 0 singularity [40] before a Cauchy horizon can
forin. So far no work has been done to generalize this picture to include gravitational
perturbzcions and it is difficult to guess if pair procCuction or mass inflation wins the
'alCe.

Possible answers to these questions might come from the analysis of two dimen-
sional string inspired black holes [62]. These two-dimensional so called dilaton blaci
holes classically exhibit mass inflation [63]. The (in four dimensions) notoriotsly
diflicult quantun calculation generally become more tractable in two dimensions. In
fact, results for the uncharged case have already been obtained [64] and indicate, that
vacuum polarisation effects lead to a much stronger singularity than in the classical
case, indicating that a better theory of quantum gravity is needed.

Considering the charged case is much more difficult, as one now deals with inter-
acting theories which are much harder to treat.
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It is however desirable to find some more conclusive answers in the four dimen-
sional case. even for pure vacuum fuctuation effects. The plane wave model consid-
ered in Section 3.2 might be a good candidate to perform such calculations. While it
describes the mass inflation scenario very accurately it is simpler to work with than
the spherical models due to the absence of an electric charge.  (An clectric charge
would lead to a more complicated equation for r2). However chances are that again o
one-loop calculation renders rather inconclusive answers and a full, as of yet unknowi,
theory of quantum gravity is required.

This opens the door to speculation, as it is not even clear what (classical) sin-
gularities mean in this context. Recent work on string duality for example indicates
that certain singularities are not at all seen by a propagating string [65]: propagation
in a singular region of spacetime is, from the point of view of the string, equivalent,
to propagation in a region of weak gravity.

On top of that, certain ideas [66] claiming vo solve the famous black hole infor-
mation puzzle require the existence of (as we have scen classically forbidden) tinnss bs
to other information-hungry baby universes.

So presumably quantum gravity still has some surprises in store ard only <
will tell which of these cxisting theories will survive.  But despite this “quants
uncertainty” it is felt that our understanding of the (classical) black hole interior is
near completion, whereas the quantim pictuve will provide us still with many hours
of exciting physics.



Appendices

A Spherical Spacetimes

In this appendix we briefly review spherically symmetric spacetimes. A spacetime is
called spherically symmetric, if it admits the group SO(3) as an isometry group such
that the group orbits are spacelike two-manifolds.

From this definition one then deduces [7] that the metric can always be written
in the form

ds? = gapda®da® 4+ 12 (a) (de® sin® () + dd?) a=1,2, (A1)

where @ aud 9 are the usual angular coordinates, the x%’s are two arbitrary coordi-
nates and ¢ is a pseudo-Riemannian two-metric.

One easily calculates the Ricci tensor to be

4 2 >
( )Rab = )Rab - 2T;ab/’ (A2)
o -
Roy = sinT2(N Ry, =1 — (r0Or + 1% ,), (A.3)
where : denotes the two dimensional covariant derivative associated with g, and
0= _(]"b 2V“2V1,.

From this one calculates the Ricci scalar to be
WR = BR 4+ 2(1 — 2r0Or — rr,) /v (A.4)

It is convenient to split the Coulomb contribution B% = e*diag(—1,—1,1,1)/8m*
from the total energy momentum tensor (e = const.). Einstein’s equations then read
G, = 87(Tyu + E,»). We can now decompose T}, into Top = “Tw and TY = T% =P
where P denotes the trausverse pressure.
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T,., and E,, are separately conserved. Thus the conservation cquations take the
rather simple form

4 > )
(7"T‘Ii) = (7" P. (A.D)
1 b
One can now define the scalar quantities fom and # by
. 2m
f o= r'r,=11—-—+4 . (A.6)
, B

K = — (m, — ili) /1. (A7)

Thus Einstein’s equations become

Tab — .(lub(D’. + H‘) = '—(lﬂ".rlvuh (“\S)
ez 1
and Or — — — 57 R = 8mrl. ()
g 2

Taking the trace of equation (A.8) and replacing U in (A.8) and (A.9) linally gives

Tab + Juph = "’47”'('1‘(“': - .‘luhrlw) (A 1D)
; 2

and @R —47 + 65 = 8n(T — 2P), (A.11)
~ + 0~

where T = T*. For comparison with the static casc it is convenient. to introduce the
following compact notation. kirst we note that
1 of

T2 0

pt-—const.

Similarly cquation (A.11) can now be rewritten as

. Ok .
OR -2 — = & (I — 2/°). (A.12)
197} ]
=conxst.
Note sse partial differentiations with respect to r don’t assume Lo bhe i

coordin

B Computing Ricci components: some intermedi-
ate details

For the convenience of enterprising readers who wish to derive the Ricel components

(5.64)—(5.66) for themselves, we record here some intermediate steps of the computa-
tions.
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Computation of (DR, fros: (6.101) requires evaluation of

— —~ M A

VialetyVachy) = —¢ 2 (Da+ Ka)Kj,

=, — \ i . -~ = d 5
(Vu”('a))(vu"‘z,)} = 5('\11/\,!&6 Puwgwe) — 2¢ A*’{A(flif‘*/‘b)m

which can be verified from (5.92) and (5.67).

Computation of Rap frous (5.100) requires

[¢3 S 1 4
1‘(/\),,|/41f?,|;) = (DaA)(DpA) — -inAB(DE)\)(DE/\)
1 .
K /\nl;[(}i{b - ’2"6)‘77/1.3()‘.(1/\’“ + c—zl\wawa)
which follows from (5.93), (5.67) and (5.72).

Finally, computation of Ra, requires
T g 1 -~ 1 b
(Vael)inja = 5 AaDax + { Kaap + §AKAa1) X
1 .
-5—5 GABC”'\(QJ“DB/\ + AK‘ﬁ) wb)

in which

AKpww = Kaut — Kaay = Saba-

C The operator D,: coiamutation rules and other

properties

In Sce. 5.3 we pave two definitions—(5.21) and (5.24)—for the operator Da. It is

straightforward to show their equivalence. We have
ey, em] =0, [(?x/au"‘, eon) =0,

since the 1i» bracket of two holonomic vectors vanishes (cf (5.14)). In combination

with (5.9,. wnis yiclds

[(')(A), e(b)] = -—[Sffle(a), e(b)] = (\3(,3‘34)6(0). (C.l)

Henee, for any 2-vector X,

Lo (X)) = {(04— Lay )X"} eq (C.2)
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which proves the equivalence of (5.24) and (5.21) when applied to X"
This argiment is casily extended. For instance, for the 2-metric ggs, the delinition
(5.24) gives

o R . Hop
Daga = €y CamLentos = 200 Culinein

= ‘-ZI{AM;

by (5.16). which agrees with the form (5.23) obtained from the dehinition (Hh.21).
(Strictly speaking, (5.24) requires that the projector A,y = Cla r“',” should replace
Jag in the first cquality above. But, according to the completeness relation (5.11),
the difference involves the Lie derivative of (GV €y, which is lincar homogencous in
24y and projects to ZCro.)

Commutation relations for D i Mow most casily from the definition (5.2:1). For

a scalar ficld f,

2D{’3D/‘1f = [F""’rm' 1“.-"‘-A)]f = ["'[ﬂr,l;).l‘(,.\)l./. = apw' S,

where we have recalled the well-kown result that the commutator of two Lie derivia-
tives is the Lice derivative of the commutacor (i.c., Lic bracket), and made use ol

(5.19).

Consider next the operation on a 2-vector X¢. We have from (5H.24),

a) 3 )
D[;DAX"' = (55;)L,,{(“)((:/(,’)[),\X')
= ) Lo AL (0 XD}

(13)

The projection tensor Af can be replaced by 87, bhecause the Lie derivative, operating,
on the difference, rives terms proportional to !(/(’,,;) or Ly, which project to zero,
noting (C.2). Thus,

DpDaX" = el Ly, Lon (el X",

o 1)

We can now proceed exactly as for the scalar case to derive the commutator. The

result (gencralized to an arbitrary 2-tensor) is
... o...
[Ds, DAl X% = eanLl o X5 .

In particular,

[DBa DA].(/uh = 2€ApW(ab)-
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Recalling (B3). this may be written

. 1
D{u 1\.\;.xb = 5 AR -
which was used in (5.52). It contracts to
D 1 - —_— l ot
[BIVA] = S AW -

These last two identities also play a role in svimmetrizing  or. more properly,
recognizing the implicit svmmetry of - the raw expressions for 24 and By, that
emerge from the Ricei commutation relations. The manifestly syinmmetric expressions
listed in (5.28) and Secc. 5.13 have been symnetrized with the aid of these identities,

To conclude. we note the rule for commuting D,y and the two-dimensional covari-
ant derivative V,,. The commutator [Dy4, V, ], applied to any 2-tensor, is formed by a

pattern sinmilar to its two-dimensional covariant derivative, but with 1. replaced by
@ “w - R
DAr‘b{r = 21{/\((1;(:) - 1\ Abe -
As examples:

[Da, VaJX* = X'DsIl,,
[D/h Va.(]bc] = _Q(DAF:f(h).(/r)al == “'21\’z1l-4~;u
The justification for the rule is that the partial derivative éd, (applicd to any twao-

dimensional geomntrical object) commutes with both 94 and the two-dimensional Lie

derivative £ 4, so that, by (5.21),

(DA, 0. X = 0.

D Solving the inhomogeneous shear equations

Equations like {3.15) for the shear cannot generally be solved analytically  For the
homogeneous case one can at least find a series solution of the form (3.16). But this
does not work for the inhomogenecous equations which one enconnters for example in

the perturbation theory in Chapter 6. In this Appendix we present. i method, using
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standard results, to formally integrate such equations with the help of the Green
function for a more general wave equation. As usual the chmplete solution is then
obtained by adding a solution to the homogeneous equation, so that the sum of the
two satisfies the boundary conditions.

To start. consider a metric of the form
ds? = gdz*d2" + R(z") (11:52 + dy“") , a=020,1. (D.1)

(This metric serves merely as a mathematical tool, and has no physical meaning
attached to it.)

The four-dimensional d’Alambertian 40 then reads
14 1 2 ,a
O¢ = 775 (R*06+ 0uR" + dnu+ by

where g = — det g, and 20 is the wave operator associated with g,,.

For example choosing gepdz®dz? = 2dudv gives
RdDd) = 2R¢,uv + R,u¢,v + R,v(;b,u + ¢,a:z + ¢,yy

which is, up to the x and y derivatives exactly equation (3.12). Choosing ga,d2z®dz? =

dx? — dR? similarly gives

’ 0 £ 1
0p =2 (¢,xx — $,RR — X_ng) + 7] (D 2z + Dyy)

which, again up to the z and y derivatives, is equation (3.15).

To construct the Green function for the operator 40 we solve
10¢, =0 (D.2)
for the its modes ¢. The metric (D.1) induces a scalar product
A <> . -
f,9) =z/d2“f* a,,g.—_z/dxdy/daaf* d g, (D.3)
with respect. to which we normalize the modes ¢;.
To solve equation (D.2) we make the Ansatz

;. ”
Drw = Y™, m=2,3

where x? = r and 1® = y. Equation (D.2) then becomes

1 ) o
R (R O + Yrwa R + w'"wm¢kw) = 0 = Otpg, + _mR kw-
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For w,, = 0 the functions v, reduce to the complete set of orthonormal modes of
the operator O := 20 4 R“3,, which we require to be normalized with respect to the
inner product

(f.9) =i_/¢1ﬂ“f‘ Du y. (D)

Note that this is nothing but the inner product (D.3) without the “volume” integral
over the x — y space. This makes of course sense, as the operator O does not. contain
any derivatives with respect to x and y.

In terms of the standard mode expansion the Pauli-Jordan function for the oper-
ator 40 is given by
Az, 2') = / dkdw [z,/rkw,(a:)'(,/)z.w(:r')(ei“’"'(‘m‘1'"') 4 A () ()@ T
Thus for any timelike coordinate ¥ the (retarded) Green function
G(x,z') = Oz — £YA(x, '),

satisfies )

Ryqg
Thus a particular solution of the inhomogenecous equation Oeh(22) == j(2*) is given
by treating ¢ as a solution of the cquation 10¢(2?) = j(z*). Thus

0G(x,2") = — 6t — ).

¢(z*) = /R\/ﬁdzz'(lu:'dy'j(z"‘)G(:z:,:1:').

As the source does not depend on x and y the only contribution to the corresponding
Fourier modes come from the w,, = 0 modcs.We can now interchange the b -- w
integration and the z’ — 7/ integration. The latter can be performed explicitly thanks
to the x and y independence of j(2*). We find

p(z*) = (@n) [Rygdj(z")0(" - ")
/dk:dzw {\Ilkw(z")\Il,'w(z"‘)(:"“"‘""m + (:.(:.} 5 (win)
= (2m)? / R\/gd*Zj(2"*)O(° — 2) / dk (e (22) ot (2") + e.c.) . (D.5)

Note, that F(z¢%, 2"®) = R(2'*) [ dk (ax(z*)ai(2'*) + c.c.) is not the Green function
of O, as it fails to be symmetric in z and 2. However (D.5) produces the desired
solution of the equation O¢ = j.
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