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Abstract 

Dynamic operation of catalytic reactors has attracted increasing attention in recent 

years. The most successful application of this type of reactors is based on a reverse 

flow operation, where the dynamic operation improves the overall thermal efficiency 

of the system. The design and modeling of catalytic reactors with reverse flow 

operation has been thoroughly investigated; however, control of such systems is an 

area that has not received much attention. Issues such as the distributed nature of 

the state variables, the nonlinear dynamics and the unsteady-state operation make 

the formulation of a controller for this type of systems a challenging but interesting 

problem. 

The goal of this thesis is twofold: firstly, the development of control strategies for 

catalytic reverse flow reactors is studied. Particular emphasis is put on the application 

of the reactor for mitigation of lean methane emissions. Secondly, the development 

of measures to quantify the nonlinearity in distributed parameter systems and, 

in particular, quasi-linear hyperbolic partial differential equations models. Such 

nonlinearity measures are intended for assessment of the suitability of linear control 

for such systems. 

To formulate control strategies for catalytic flow reversal reactors (CFRR), optimal 

control techniques were used. On a practical side, a Model Predictive Control 

(MPC) scheme was employed. On a theoretical side, LQ-feedback control for infinite 

dimensional systems was used. 



The control strategies were applied to a CFRR for the combustion of fugitive 

methane emissions. The CFRR technology has been successfully tested in 

underground coal mine applications, and its use in the oil and gas sector in Canada 

and around the world shows great promise. Outstanding issues to resolve include 

optimization of reactor design and development of suitable control strategies. It 

is expected that with the tools developed in this research, we will get closer to a 

successful control technique that can be used for a safe, stable and efficient operation 

of CFRR units. 

One of the main issues in developing a control scheme for a catalytic reactor or 

any other distributed parameter system is the nonlinear dynamics. While published 

results in this area of quantification of process nonlinearity are limited to lumped 

parameter systems, this thesis focus on distributed parameter systems. Specifically, 

we look at means of open- and closed-loop nonlinearity quantification for systems 

modeled by quasi-linear hyperbolic partial differential equations. 
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Introduction 

Chemical reactors have traditionally been operated at steady state; however, there are 

a large number of applications in which dynamic operation of the reactors provides 

significant advantages over steady-state operation. Transition from the usual steady-

state mode of continuous processes towards forced unsteady-state conditions (dynamic 

operation) has been discussed in chemical engineering literature since the beginning 

of the 1960s (Matros and Bunimovich, 1996). 

Reverse flow operation of a catalytic reactor is an example of forced unsteady-state 

conditions which creates an advantageous energetic effect by exploiting the reactor 

dynamics. The basic mode of operation does not include forced oscillations of inlet 

gas temperature or composition but rather comprises periodic reversal of cold gas 

flow to a preheated catalyst bed. The scope of possible applications of the technique 

includes both exothermic processes, such as sulfur dioxide oxidation for sulphuric 

acid production, or methanol synthesis and endothermic processes like hydrocarbons 

dehydrgenation. A number of publications relate to purification of volatile organic 

compounds, as well as nitrogen oxides and SO2. 

Increasing world-wide concerns about global warming and greenhouse emissions has 

brought researchers to look for advanced solutions and techniques to mitigate harmful 
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Sec. 1.1 Scope and Objectives 

emissions. One such solution includes the use of catalytic reverse flow reactors for 

combustion of fugitive methane emissions. Large amounts of methane are liberated 

daily from coal mines, biomass landfills and oil and gas transportation facilities, 

among others. Of all greenhouse gases, methane makes the second largest contribution 

to global warming. The reduction of methane emissions would therefore have a 

positive impact on the environment. Potentially, fugitive methane emissions can be 

used for energy generation; however, they often have low or fluctuating concentration 

of fuel value components that hinders their use in conventional fuel burners. 

1.1 Scope and Objectives 

The objective of this thesis is to develop control formulations for catalytic reactors 

with reverse flow operation. To assist in the formulation and testing of suitable 

control schemes, we develop a computer simulator that allows accurate simulation 

of process operation under different reactor configurations and operating conditions. 

Mathematical models that approximate the behavior of the catalytic reactor are also 

developed for control design. Computer implementation issues of the models are 

discussed in detail. 

From a systems point of view, catalytic reactors belong to the nonlinear distributed 

parameter system's type. Although the core of the control theory has been developed 

for lumped parameter systems with linear dynamics, formulating a controller for a 

nonlinear distributed parameter system is an area of intensive research in the process 

control community. 

A wide range of methods have been used to lump distributed parameter systems 

and obtain a system that is amenable to classical control techniques for lumped 

parameter systems. In this thesis, we studied the formulation of a model predictive 

controller for a reverse flow catalytic reactor using the method of characteristics. 

The method of characteristics is a technique that explores the geometric properties 

of the underlying distributed parameter system. In addition to the method of 

characteristics, we studied control techniques that use an infinite dimensional 

representation of the underlying reactor system. 

2 



Sec. 1.2 Thesis Outline 

Although there exist a wide range of nonlinear control techniques that can be used 

to formulate a controller for the resulting lumped or infinite dimensional system, these 

techniques are mathematically more involved than their linear counterparts. The 

classical control design approach for nonlinear systems is to linearize the system's 

model around a desired operating point and then use the resulting linear model for 

control formulation. In this thesis, we develop a measure of open-loop nonlinearity 

to quantify gain nonlinearity and locate operating regions where nonlinearity is 

significant. This aspect of nonlinearity can be used as preliminary information 

for the design of a control system. Moreover, we develop a closed-loop measure 

of nonlinearity to assess weather or not linear control techniques for (hyperbolic) 

distributed parameter systems provide a significant advantage over nonlinear control 

techniques. The measures of nonlinearity are applied to a chemical tubular reactor 

and a catalytic flow reversal reactor. 

1.2 Thesis Outline 

To enable easy travel through the thesis, each chapter begins with an abstract giving 

the reader an overall picture of the material presented therein. 

Chapter 2 introduces the concept of catalytic flow reversal reactor and its 

application for combustion of lean methane emissions for mitigation of greenhouse 

gases. In this chapter, a computer simulator of a pilot catalytic reactor unit is 

developed to have high fidelity numerical simulations of the reactor dynamics. The 

simulator has been an invaluable tool in this thesis to understand the dynamic 

behaviour and develop simplified models for control design. The simulator has also 

been useful for optimal design studies at the University of Alberta and CANMET 

Energy Technology Centre, Varennes, Canada. 

Chapter 3 deals with the control of catalytic flow reversal reactors for stable 

operation. During normal operation, the reactor unit is subject to disturbances in 

the inlet reactant concentration and inlet gas velocity. High concentrations may 

lead to instability by overheating and deactivation of the combustion reaction. Low 

concentrations can lead to extinction of the reaction. In this chapter, we aim at 

3 



Sec. 1.2 Thesis Outline 

developing a control scheme that keeps the reactor operating at stable conditions. 

The formulation of a model predictive control scheme is studied in this chapter. 

Chapter 4 deals with the control of catalytic flow reversal reactors for optimal 

operation from a theoretical point of view. Linear optimal control techniques for 

infinite dimensional systems are used to formulate a controller for the catalytic 

flow reversal reactor. The theory of infinite dimensional systems is a complex 

one and it requires an important mathematical background; however, it provides 

a systematic way to formulate a controller without neglecting the distributed nature 

of the underlying system. 

Chapter 5 studies the effect of process nonlinearity to aid in the selection of 

a suitable control technique for distributed parameter systems. A measure of 

nonlinearity is developed to quantify the magnitude of open-loop process nonlinearity 

in hyperbolic partial differential equation models. A plug flow reactor and a catalytic 

reverse flow reactor are used to show the application of the proposed nonlinearity 

measure. 

In Chapter 6, a performance sensitivity measure is developed to study the 

effect of process nonlinearity in closed-loop linear control performance of hyperbolic 

distributed parameter systems. A plug flow reactor and a catalytic reverse flow reactor 

are used to show the application of the proposed measure and to study its significance 

for analysis and control design. 

Conclusions to this work appear in Chapter 7 giving an overall summary and 

drawing inferences based on the overall work reported in this thesis. Future directions 

to the research are proposed towards the end of the chapter. 
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Modelling of Catalytic Flow Reversal 
Reactors 

In this chapter, the reader is introduced to the concept of catalytic reactors with re­

verse flow operation and the application of the reactors to the combustion of lean 

methane streams. A computer simulator of the catalytic reactor is developed to yield 

high fidelity numerical simulations of the reactor dynamics and to understand the 

dynamic behaviour of the reactor system. To assist in the formulation and testing 

of suitable control schemes for catalytic reactors with reverse flow operation, simpli­

fied mathematical models are developed to approximate the dynamic behaviour of 

the catalytic reactor. The models include a sufficient level of detail to assure that 

they can be used for simulation of process operation and control design. Numerical 

simulations of open-loop operation are used to analyze reactor dynamics to develop 

a control scheme. 
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2.1 Global Warming and Methane Emissions 

Global warming and its negative effects on the environment are capturing increasing 

attention from the scientific community and the public in general. The detailed causes 

of global warming in recent decades is an active field of research, but the scientific 

consensus identifies elevated levels of greenhouse gases due to human activity as the 

main influence. 

Greenhouse gases create an atmospheric greenhouse effect. The greenhouse effect 

in the earth's atmosphere is primarily a function of the concentration of water, 

carbon dioxide (CO2), methane (CH4) and other trace gases in the atmosphere that 

absorb terrestrial radiation leaving the surface earth (Agency, 2007). Changes in 

the atmospheric concentrations of these greenhouse gases can alter the balance of 

energy transfers between the atmosphere, space, land and oceans. Holding everything 

constant, increasing greenhouse gas concentrations in the atmosphere will produce a 

net increase in the absorption of energy by the earth. 

Greenhouse gases such as carbon dioxide, methane and nitrous oxide (N2O) are 

continuously emitted to and removed from the atmosphere by natural processes. 

Anthropogenic activities, however, can cause additional quantities of these and other 

greenhouse to be emitted or sequestered, thereby changing their global average 

atmospheric concentrations. Atmospheric concentrations of the most important 

greenhouse gases along with their rates of growth are given in Table 2.1 (Agency, 

2007). 

To quantify the effect of different greenhouse gases in the atmosphere, there exists 

two scales. The first scale, the atmospheric lifetime, describes how long it takes to 

restore the system equilibrium following a small increase of the gas in the atmosphere. 

The second scale is the global warming potential (GWP). The GWP depends on both 

the efficiency of the gas molecules as greenhouse gas and its atmospheric lifetime. 

GWP is measured relative to the same mass of C0 2 and evaluated for a specific time 

scale. The atmospheric lifetime and global worming potential for the most important 

greenhouse gases is given in Table 2.1. 

Domestic legislative efforts concentrate on raising fuel economy standards, capping 
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280 ppm 

376.7 ppm 

0.722 ppm 

1.756 ppm 

0.270 ppm 

0.319 ppm 

0 ppt 

5.4 ppt 

Table 2.1: Global atmospheric concentration, rate of concentration change, 
atmospheric lifetime and global warming potential of selected greenhouse gases. 

Atmospheric Variable C0 2 CH4 N2O SFe 

Pre-Industrial 
atmospheric 
concentration a 

Atmospheric 
concentration b 

Rate of cone. 1,610 ppm/yr 0.005 ppm/yr 0.0007 ppm/yr 0.23 ppt/yr 
change c 

Atmospheric lifetime 50-200d 12e 114e 3,200 
GWP / 1 21 310 23,900 

a The pre-industrial period is considered as the time preceding the year 1750. 
b Concentrations measured in 2004. 
c Rate is calculated over the period 1990 to 2004 for C0 2 , CH4, and N2; 
1996 to 2004 for SF6. 
d No single lifetime can be defined for C0 2 because of the different rates of uptake 
by different removal processes. 
e The lifetime has been defined as an 'adjustment time' that takes into account 
the indirect effect of the gas on its own residence time. 
f 100-year time horizon. 
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CO2 emissions from power plants, and investing in alternative energy sources. 

Recommendations to consumers also focus on CO2 by encouraging the public to 

buy fuel-efficient cars and appliances and to minimize their use. Unfortunately, the 

governments around the world and the environmental community have focused its 

efforts almost exclusively on abating carbon dioxide emissions. 

The focus solely on CO2 is fueled in part by misconceptions. It is true that human 

activity produces vastly more CO2 than all other greenhouse gases put together. 

However, this does not mean it is responsible for most of the earth's warming. Many 

other greenhouse gases trap heat far more powerfully than CO2, some of them tens 

of thousands of times more powerfully, see Table 2.1. 

By far the most important non-C02 greenhouse gas is methane. Methane is 

responsible for nearly as much global warming as all other non-C02 greenhouse gases 

combined. While atmospheric concentrations of CO2 have risen by about 31% since 

pre-industrial times, methane concentrations have more than doubled. 

With methane emissions causing nearly half of the planets human-induced 

warming, methane reduction must be a priority. Methane is produced by a number 

of sources, including coal mines, landfills and oil and gas transmittion facilities. 

2.2 Combustion of Fugitive Methane Emissions 

Methane combustion leads to the generation of carbon dioxide through the following 

chemical reaction: 

CH4 + 202 - • C0 2 + H20 

Methane has a global warming potential of 21 times that of carbon dioxide, that is, 

one tonne of methane has a GHG worming potential of 21 tonnes of CO2 based on 

a 100 year life analysis. The reduction of methane emissions would therefore have a 

large positive impact on the reduction of GHG emissions. Although the combustion 

of one mole of methane yields one mole of carbon dioxide, equivalent carbon dioxide 

emissions will be reduced by a factor of about 20. 

Globally, agriculture is a prominent source of methane along with underground 

coal mining and gas and oil production facilities. Worldwide coal mine methane 
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(CMM) emissions make up approximately 8 % of the world's anthropogenic methane 

emissions, which in turn comprise 17 % of all anthropogenic greenhouse gas emissions 

(Shi and Agnew, 2006). In the year 2000, methane emissions from mine ventilation 

air alone was over 237 Mtonnes CCvequivalent (EPA, July 2003). Moreover, 

underground mining is by far the most important source of fugitive mine methane, 

and approximately 70% of all coal mining related emissions are from underground 

ventilation air (Moore et al, June 1998). 

Canada's primary source of methane gas emissions are fugitive emission, which 

come from natural gas and petrochemical production and transmission (Hayes, 2004). 

The oil and gas industry accounts for about 15% of the total methane emissions, 

which amounts to about 47 Mtonnes /year (987 Mtonnes /year of C02 equivalent), 

according to (Moore et al, June 1998) based on 1990/1992 data. Overall, it has 

been estimated that fugitive methane emissions account for about 50 % of the GHG 

emissions of the conventional oil and gas sector in Canada. Estimates by Environment 

Canada give for the year 2000 a total GHG emissions of 726 M tonnes of C02 

equivalent. About 5.2% of 726 M tonnes of C02 equivalent are fugitive methane 

emissions from the oil and gas sector (1.8 Mtonnes of fugitive methane annually). 

Canada is responsible for about 2 % of the world emissions of GHG. 

Methane fugitive emissions are typically dilute (0.1-1.5 v/v%) and at ambient 

temperature and pressure. At low concentrations and flow rates it becomes difficult to 

combust methane using conventional methods. Methane, being a stable compound, 

requires a high temperature to initiate the combustion reaction. A significant amount 

of energy would be required to bring the dilute methane gas to a sufficiently high 

temperature to sustain combustion. 

Currently, there are two options for the combustion of fugitive methane emissions. 

The first one, and most common, is the homogeneous combustion using flares. This 

method of eliminating fugitive emissions has been used for many years, as it can be 

cost effective; however, flaring has its drawbacks. It requires high temperatures of 

combustion, which can lead to producing harmful substances such as NO^, another 

pollutant of significant concern. At low concentrations of emissions, flaring has the 

additional drawback that additional energy supply may be required to assisst with 
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flaring of emissions. In addition, flaring is not well tolerated by the public and 

government policies usually treat flaring negatively. Homogeneous combustion is best 

conducted when methane concentration is above 5% (Kushwaha, 2003). 

The second method for combustion of methane emissions the catalytic combustion. 

This is a nameless combustion process that uses a solid catalyst to promote the 

reaction. Catalytic combustion requires relatively low inlet temperatures when 

compared to homogeneous combustion. Low concentration of methane can be 

combusted without the use of any additional energy supply. The low temperatures 

required for the combustion result in lower NOx emission. Catalytic combustion is 

limited by the inlet gas temperature and catalyst activity (Hayes and Kolaczkowski, 

1997). 

Combustion of fugitive methane emissions in a catalytic reactor seems to be the best 

options; however, typical conditions involve lean streams at ambient temperature. To 

increase the temperature of the feed gas, a pre-heating step is usually employed before 

the combustion reaction. Preheating methods include external heat sources and the 

use of the thermal mass of the reactor by periodically reversing the flow direction. The 

former method can be associated with adittional cost of fuel. The main advantage of 

the second option of periodic flow reversal is that the energy released by the reaction 

can be stored in the reactor solid bed and used to preheat the cold inlet stream 

and any remaining energy can be removed and used for secondary processes such as 

heating or power generation. 

2.3 Background of Reverse Flow Operation of 
Catalytic Reactors 

Reverse flow operation of catalytic reactors is an example of forced unsteady-state 

(dynamic) operation of a reactor unit that creates a beneficial energetic effect due to 

appropriate use of whole reactor dynamics (Matros and Bunimovich, 1996). 

For exothermic reactions, the main advantage of the reverse-flow operation is that 

the solid bed is used not only to accelerate the chemical reaction but also as a heat 

exchanger and heat accumulation media (heat sink). The solid bed collects and 
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transfer the stored energy of the reaction to a cooler inlet gas. This makes it possible 

to provide continuous auto-thermal operation without external gas preheating in 

advance of the catalyst bed (Matros and Bunimovich, 1996). 

Reverse flow operation of catalytic reactors is an attractive technology for 

treatment of diluted gases which have an adiabatic temperature rise of about 15 °C 

to 20 °C. According to Matros and Bunimovich (1996), the technology has been 

comercialized for processes involving the catalytic incineration of noxious organic 

industrial waste gases, SO2 oxidation and NO^ reduction. Although most of the 

applications of reverse-flow operation are devoted to exothermic reactions, reverse-

flow operation has also been used for endothermic and combined endothermic and 

exothermic catalytic reactions. 

The principle of operation of a catalytic reactor with reverse-flow operation is 

illustrated in 2.1 (Hayes, 2004). Figure 2.1(a) illustrates a reactor temperature profile 

that might be observed in a standard unidirectional flow operation for a combustion 

reaction. If a temperature pattern, shown in Figure 2.1(a) and (b) is established, the 

reverse flow operation can then be used to take advantage of the high temperatures 

near the reactor exit to pre-heat the reactor feed. A quasi-steady state operation may 

be achieved in which the reactor temperature profile has a maximum value near the 

centre of the reactor, which slowly oscillates as the feed is switched between the two 

ends of the reactor, as shown in Figure 2.1 (c-e). The quasi-steady state operation 

will be referred to in this thesis as stationary state. 

2.4 Applications of Reverse Flow Catalytic 
Reactors 

Reverse flow catalytic reactors have been proposed for mitigation of lean methane 

emissions from coal mines and natural gas transmission facilities (Hayes, 2004). 

Unlike coalbed methane, which has a concentration of 50 — 90%(i>/v) methane, 

ventilation air in underground coal mines around the world generally contain methane 

at concentrations below 1.0 percent. Mine operators allow the release of methane, in 

the ventilation air, to the atmosphere without attempting to capture and use it. 
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Figure 2.1: Illustration of the heat trap effect for reverse flow operation. 

Sources of methane emissions also include solution gas venting (natural gas found 

in crude oil in underground reservoirs), upstream oil and gas production facilities and 

leaks in natural gas transmission facilities such as pipelines and compressor stations. 

In natural gas transmission facilities, the gas experiences pressure loss as it flows 

through the pipelines, and the gas must be periodically recompressed in compressor 

station. Methane emissions in compressor stations can be grouped into three sources. 

One source comprises emissions of methane resulting from incomplete combustion 

in engines. Another source of emissions includes leaks in valves, flanges and other 

equipment located within the compressor building; whilst the third source results 

from instrument venting (Hayes, 2004). 

2.5 Heat Recovery from Fugitive Methane 
Emissions 

Large amounts of methane are liberated from coal mines and gas transmission 

facilities. Potentially, these gases can be used for energy generation; however, they 

often have low or fluctuating concentration of fuel value components. It is possible 

to use catalytic flow reversal reactors to create an economically attractive process 
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by exploiting the heat from the combustion of methane vented from either coal gas 

mines or gas transmission facilities. Although many of the design issues have been 

thoroughly investigated, control of the catalytic units is an area that requires extensive 

research to develop a control scheme that guarantees operationally stable conditions 

and maximum heat recovery. 

Different control measures can be used to achieve stable operating conditions. 

Figure 2.2 show possible process types with intermediate heat exchange. Energy 

recovery can be accomplished by passing hot reactant gas through one or more 

intermediate coolers or by withrawal of part of the gas from reactor center, see Figure 

2.2 b) and d). In cases of low inlet reactant concentration, operationally stable 

« (b) 

Figure 2.2: Illustration of various control measures for reverse flow catalytic reactor: 
(a) intermediate electrical heater, (b) intermediate heat exchanger, (c) hot or cold 
gas injection, (d) intermediate gas removal. 

conditions can be obtained by gas preheating between two packed beds. The reactor 

can be configured with an electrical heater, fuel burner, or hot gas injection into the 

reactor center, see Figure 2.2 a) and c). 
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2.6 Mathematical Modelling 

To model the dynamic behaviour of a catalytic reactor with reverse flow operation, 

a suitable model for a catalytic reactor with unidirectional flow is required. Then, 

the behaviour of the reverse flow catalytic reactor can be modelled by setting the 

initial conditions of each semi-cycle equal to the solution of the previous semi-cycle. 

Starting from a given initial profile of the state variables in the system, x°(0,z), the 

initial condition for each subsequent semi-cycle depend on the preceding: 

^+1(0,l) = x^rs,L-z), (2.1) 

where j — 1,2,... is the number of semi-cycles and L is the total length of the reactor 

unit. 

The mathematical modelling of catalytic reactors with unidirectional flow is widely 

discussed in the literature. Good references include (Hayes and Kolaczkowski, 1997; 

Levenspiel, 1998; Fogler, 2005). Extensive investigation of catalytic flow reversal 

reactors, including numerical simulations and experimental analysis, have been 

performed and reviewed by Matros and Bunimovich (1996) and others. 

Various models were proposed to represent the dynamic behaviour of CFRR units. 

The main difference between the models depends on the way that heat dissipation 

is modeled. Heat dissipation, by means of axial heat conductivity, interphase heat 

transfer, or heat transfer inside a catalyst pellet and radial diffusion of heat leads 

to a diversity of possible models. Each model is developed according to the specific 

reactor under study. 

For example, Eigenberger and Nieken (1988) and Matros (1989) used a one-

dimensional pseudo-homogeneous model. In pseudo-homogeneous models, it is 

considered that the solid temperature and concentrations are the same as the fluid 

ones. Gawdzik and Rakowski (1988), Bhatia (1991), Gupta and S.K. (1991) proposed 

a one-dimensional heterogeneous model to account for the gas/solid temperature 

difference but neglected the axial diffusion terms. In heterogeneous models, the gas 

and solid interface is assumed to be a discontinuity and separate mole and energy 

balances are written for the solid and fluid phases (Hayes and Kolaczkowski, 1997). 

Sapundzhiev et al. (1990) used a heterogeneous model that included the axial 
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diffusion terms. Heterogeneous model with diffusion terms is now the most adopted 

model for simulation and design, see for example Marin et al. (2005). At a 

higher complexity level, Sapundzhiev et al. (1988) developed a two-dimensional 

heterogeneous model including radial diffusions and heat and mass transfer between 

the phases. Sapundzhiev et al. (1988) and Van de Beld and Westerterp (1996) added a 

heat balance term for the reactor wall since its heat capacity can be significant. They 

also suggested that, due to the presence of a thick layer of insulation, a considerable 

heat buffer can be created and the performance of a model might be improved by 

considering its heat capacity. In Aube and Sapoundjiev (2000) and Salomons et 

al. (2004), a two-dimensional heterogeneous model which included the effect of the 

reactor wall and insulation was simulated and validated. 

In the next sections, the development of a mathematical model, the implementation 

of the model in a computer simulator and the analysis of the simulation results to aid 

in the formulation and testing of suitable control schemes for the catalytic reactor 

unit are presented. 

2.7 Reactor Configuration 

The distinctive feature of reverse flow catalytic reactors is the solid material inside 

the reactor. The solid can be either formed by particles or be structured, see Figure 

2.3. The advantage of structured or monolithic supports in catalytic processes are 

well known (Marin et al, 2005): low pressure drop, greater mechanical strength, 

better mass transfer, minimal 'channelling' across the bed in uniform monoliths. In 

reverse flow reactors, the boundaries of the catalyst bed are replaced by inert packing 

material. In this way, the temperature in the reactor can be elevated with a reduction 

of the quantity of catalyst needed. The reactor is usually surrounded by a thick 

insulation layer that keeps the accumulated energy within the reactor. 

A set of on-off valves is used to regulate the fluid flow direction. A picture and 

schematic of the a pilot reverse flow reactor that is used in this thesis as the reactor "to 

be controlled" is shown in Figure 2.4. The pilot reactor unit is currently in operation 

at CANMET Energy Technology Centre, Varennes, Canada, 
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Structured bed. Particle bed. 

Figure 2.3: Pictures of different types of solid beds: ceramic monolith (left) and 
Denstone balls (right). 

2.8 Contributions 

Having introduced the catalytic reverse flow reactor for combustion of lean methane 

emissions, this section presents the main contributions of Chapter 2. 

Analysis of process dynamics and formulation of control algorithms for a CFRR 

unit, like any other chemical reactor unit, can be performed effectively by developing 

a mathematical model of the process. Mathematical models are usually implemented 

in a computer to perform extensive numerical simulations to learn about the dynamic 

behaviour of the process. 

(Salomons et al., 2004) presented a high fidelity model and a computer simulator 

developed in FORTAN 95 for the pilot scale CFRR unit in Figure 2.4. In 

this chapter, we present details of the implementation of the high fidelity model 

in COMSOL Multiphysics finite element modelling package and the MATLAB 

framework. This computer program provides a convenient and fast modelling 

platform for implementation of control strategies. The model outputs were validated 

against the earlier model used in Salomons et al. (2004). 

Simulations of open-loop reactor system behaviour are presented and used to aid 

in the formulation of a suitable control scheme in subsequent chapters. The reactor 
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Reactor Picture. Reactor Schematic. 

Figure 2.4: Pilot Reverse Flow Catalytic Reactor Unit. 

simulator was also used to perform parametric studies of the main process variables 

(Litto et al, 2006) and to develop low fidelity models that can adequately capture 

the dynamic (this thesis) and stationary state (Devals et al, 2006) behaviour of the 

reactor system. 

Devals et al. (2006) used the reactor simulator and a statistical design of 

experiments (DOE) to investigate and model the combustion of methane in 

the CFRR. More precisely, they modeled the stationary state of the maximum 

temperature and outlet methane concentration. The model was based on a 3-level full 

factorial design involving as factors the methane inlet concentration, the switching 

time, mass extraction and the gas superficial velocity. 

In this chapter, a low fidelity 1-dimensional pseudo-homogeneous model is 

developed and validated against the high fidelity model developed in COMSOL 
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Multiphysics. The low fidelity model captures sufficient process dynamics and is 

used in the next chapters as an integral part of two control schemes. 

2.9 Modelling Reactor Dynamics 

The dynamics of the catalytic flow reversal reactor can be described by partial 

differential equations (PDE's) derived from mass and energy balances. With the pilot 

scale unit shown Figure 2.4 in mind, Aube and Sapoundjiev (2000) and Salomons et 

al. (2004) introduced a high fidelity dynamic model that is presented in the next 

section and is used throughout this thesis to represent the actual pilot unit to be 

controlled. 

2.9.1 Heterogeneous Model 

A 2-spatial dimension (2-D) heterogeneous model for the catalytic flow reversal 

reactor in Figure 2.4 can be developed on the basis of material and energy balances 

giving two material balances and two energy balances (Salomons et al, 2004). The 

material and energy balance equations are given by : 

Mole Balance: 

Fluid Phase: 

19 frn r 9Y™*A i 9 (n r 9Y^A r. r
 dYcH^ 

kmavCf{YCHiJ - YCHitS) = 0 (2.2) 

' YCHi,f = Y(t) at z = 0, 
^ f ^ = 0 &tz = L, 

Boundary Conditions: < SYCHA t 
1 ^- — 0 at r = 0, 
l> dr = 0 &tr = R. 

Solid Phase: 

kmavCf(YCHU - YCHA,S) = (1 - e)rj(-RcH4) (2.3) 
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Energy Balance: 

Fluid Phase: 

~— [ rkr e 

r dr V r},e}i dr 

07} \ d / , <97} J - VsPfCp,f-^ + hav(Ts - Tf) = 0 (2.4) 

f 7} = T(t) 

Boundary Conditions: < 

Solid Phase: 

at z = 0, 
at 2 = L, 
at r = 0, 

krf,eff-g^\r=R- = ks,r-^\r=R+ &t r = R . 

^ = 0 

(1 - £)psCp„ 
57; 

! dt 
10/ dT8\ d ( dTs 

hav(Tf - T8) + (1 - e)AHRr](-RcH4) (2.5) 

Boundary Conditions: < 

2 = 0, 
z = L , 

8r = ° r = 0, 
= he(Ts-T0Q) r = R + S. 

if. 

Initial Conditions: { Ts = Ts(z) t = 0 

where 1/ represents the mole fraction of CH& in the fluid phase, Ys the mole fraction of 

CH4 in the solid phase, 7} the temperature of the fluid phase and Ts the temperature 

of the solid phase. A description of the model parameters is given in Appendix A. 

It is noted that for the inlet conditions, Dirichlet conditions of constant temperature 

and concentration were imposed for the fluid phase equations. Although strictly 

speaking Dankwerts type conditions are required with axial diffusion, the lack 
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of significant axial diffusion in the inlet sections of the inert sections makes the 

assumption of Dirichlet conditions reasonable at a reduction in complexity (Salomons 

et al, 2004). 

The parameters in equations (2.2) and (2.4) show a common feature of catalytic 

reactors, that is, the heat capacity of the solid phase is commonly three orders of 

magnitude higher than that for the gas. Taking this into account, heat accumulation 

in the gas phase is excluded from the reactor model. 

For process simulation and design, the model in (2.2) to (2.5) is recommended 

because it represents, with a high degree of accuracy, the complex behaviour observed 

in the pilot CFRR unit for combustion of methane emissions. 

To achieve stable operation of the CFRR unit, a controller needs to be designed. 

The formulation of a controller requires simpler models that can approximate the 

dynamic behaviour of the process. From a process control point of view, the models 

should be easy to use for control design and yet be detailed enough to capture the 

essential process dynamics. Simple models inevitably neglect some phenomena, either 

physical or chemical, but the neglected information is, in general, expected to be 

compensated for by the feedback usually used in control systems. 

In the next section, we present a simple model, i.e. a 1-D pseudo-homogeneous 

model that is used in subsequent chapters to formulate control systems for the CFRR 

unit. 

2.9.2 Pseudo-homogeneous Model 

A simplified model is developed in this section to approximate the dynamic behaviour 

of the catalytic reactor. The model is based on the plug-flow pseudo-homogeneous 

model assumptions, that is, axial dispersion is neglected and the process variables 

in the fluid phase, Tf and Yf, are the same as those in the solid phase, Ts and Y$, 

respectively. The model includes terms for heat and mass transfer by flow convection 

and reaction kinetics but neglects the diffusion phenomena. The basic equations for 
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the mass and energy balances are: 

dY avsMdY (-E\ . . 

dT avs,inpdT (-E\ . . 

where the parameters fco, 77 and p are given by &o = (l—e)peffk00,77 = ps(l—e)Cps and 

p = PfCpf, and with the boundary conditions given, for t > 0, by: 

r(o,t) = Tin.
 {Z-*} 

Y a n d T are the mole fraction of methane and temperature, respectively; vs^n is the 

inlet superficial velocity, a is the ratio of the actual superficial flow velocity and the 

inlet superficial flow velocity (a = vs/vSjin). a is used to represent the fraction of gas 

removed from the reactor. Other model parameters are: e, bed porosity; E, activation 

energy; peff, catalyst efficiency, Cp, heat capacity and p, density (subscript s is used 

to indicate solid material and / to indicate fluid properties). Values for the model 

parameters are given in Appendix A The initial conditions are given, for 0 < z < 1 

by: 
Y(z,0) = Y0, , , 
T(z,0) = T0.

 [Z-y) 

The fluid in the reactor is treated as an ideal gas: pf = - j ^ and C = -j^f. Any 

pressure drop in the reactor is neglected and it is considered that the density of the 

fluid phase is constant and is evaluated at the inlet conditions. 

A common feature of packed-bed reactors is that the heat capacity of solid catalyst 

is commonly three orders of magnitude higher than that of the fluid phase. Therefore, 

the system of equations (2.6) and (2.7) possesses an inherent two-time scale property, 

that is, the dynamic behaviour that results from the mole balance equation is much 

faster than the temperature dynamics. This implies that Y is the fast variable, 

while T is the slow variable. For catalytic combustion of methane, the mole fraction 

dynamics is typically three orders of magnitude faster than the temperature dynamics. 

The mole fraction dynamics is only significant for a short period of time that proceeds 

each flow reversal and comprises approximately a residence time of the gas within the 

reactor. For typical processing of large volumes of lean methane streams, the gas 
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residence time is about a few seconds; however, this time is usually small compared 

to the flow reversal or switch time (typically of the order of minutes). This leads to 

the assumption that the mass balance in the fluid phase is at quasi-steady state and 

the accumulation term in the gas phase is excluded from the model; however, such 

approximation requires the analysis of the stability of the fast dynamics. 

Following the procedure used in Christofides (2000), we obtain a singularly 

perturbed representation of the process, where the partition of the fast and slow 

variables is consistent with the dynamic characteristics of the process. A perturbation 

parameter e is defined as: 
e 
V 

Setting t = Kxi = Y,X2= T, the system of equations (2.6) and (2.7) can be written 

in the following singularly perturbed form: 

e-m+-ir^ = -koexp{R^)Xl (2-10) 

dx^av&pto* = (_AHr)koCexp(^E_)Xl ( 2 . n ) 

dt L dz \RgX2/ 

Performing a two-time-scale decomposition of the system (2.10) and (2.11), the fast 

subsystem takes the form: 

dxx avaMdxx ( -E \ f . 

where r = = and X\ depends only on the spatial variable z. 

As shown in Christofides (2000), the fast dynamics are exponentially stable, and 

thus they can be neglected from the model if the objective is to model the long time 

behaviour of the system. The resulting equation used to model the fast dynamics is: 

K(M) = y<«,0)«p ( f ( ^ ) * > « P ( ^ ) * ) (=13) 
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2.10 Classification of Partial Differential Equation 
Models 

For solution of the reactor model equations for simulation and control design, it is 

important to classify the system of PDE used to model the reactor unit. Depending 

on the type of PDE that model the system, there exist different analytical techniques 

and numerical approximations to solve the system of PDE. Generally, a PDE model 

for a distributed parameter system is of the form: 

r \Z\,..., zn, x, xZl,..., xZn, xZlZ2, ...,iii, ...um) = U, ^z.l4j 

where z = (zi,...,zn) are independent variables such as time and position, x 

is a dependent variable of (zi,...,zn), u is the manipulated variable, xZl = Jj-, 

xZlZ2 = d
d
zQz , etc. The order of equation (2.14) is the order of the highest derivative 

occurring in the equation. Moreover, the equation is considered linear if it depends 

linearly on the states x and its derivatives; if all derivatives of x occur linearly with 

coefficients depending only on z, then the equation is semilinear; and if the highest 

order derivatives of x occur linearly with coefficients depending on z, u, and lower 

order derivatives of x, then the equation is quasilinear. 

First-order and second-order PDE can be classified into hyperbolic, parabolic and 

elliptic equations. For first order PDE, consider the following quasi-linear system 

c^x c?x 
A(z, t, x ) — + B(z, t, x ) — = c(z, t, x), (2.15) 

where we assume that A is nonsingular. Without loss of generality, we consider that 

A = I and 

^ + B ( M , x ) | ^ = c(*,t,x). (2.16) 

Characterization of the system of first order PDE is obtained by the following 

definition (Mattheij et al, 2005): 

Definition 2.10.1 The system (2.16) is called hyperbolic in (z,t,x) if there exists a 

real diagonal matrix A(z, t, x) and a nonsingular matrix T(z, t, x) such that 

T(z, t ,x)B(z, t ,x) - A(z,t,x)T(z, t,x). (2.17) 
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In this definition A(z, £,x) = diag(\i(z,t,x),\2(z,t,'x.), ...,\m(z,t,x)) and T(z,t,x) 

is the matrix of corresponding left eigenvectors. 

For PDE with higher-order derivatives the classification may be reduced to first 

order systems. Consider the second order linear equation 

d2x , d2x d2x ,dx dx 
a-^r? + 07T77r- + C-TTT; + d— + e— = / , (2.18) 

dt2 dtdz dz2 ' ~dt ' ~dz 

where the coefficients a, 6, ...,e are assumed constant and where the right hand side 

/ possible depends on z, t and x. The independent variable z is a space coordinate, 

whereas t is either time or a space coordinate. Introducing the variables 

dx dx 
q = Tz> 

(2.19) 

we obtain the linear system 

a 0 
0 1 

d 
dt 

V 
_ q. 

+ 
b c" 

- 1 0 
d 
dz 

V 
. Q . 

= 
f -dp 

0 
eq (2.20) 

Clearly, this system is of the form of (2.15) with the coefficients matrices given by 

A = 
a 0 
0 1 

B = 
b c 

- 1 0 
(2.21) 

In the following, we assume that a ^ 0, so that A is nonsingular. We look for a 

transformation matrix S that can diagonalise the matrix 

B A i = 
± c 

a 

This will succeed if the characteristic equation 

detCBA-1 - AI) = A2 - -A + - = 0 
a a 

(2.22) 

(2.23) 

has two different real roots. Consequently, system (2.20) is hyperbolic if b2 — Aac > 0. 

If b2 — Aac — 0, we have only one "double" characteristic; in fact no S and A exist. 

If finally, b2 < Aac, there are no real characteristic values at all. This leads to the 

following definition (Mattheij et al, 2005): 

Definition 2.10.2 The PDE (2.18) is called 
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1. hyperbolic, if b2 — Aac > 0; 

2. parabolic, if b2 — ac = 0; 

3. elliptic, if b2 - Aac < 0; 

For quasilinear or fully nonlinear second-order equations, a similar classification 

can be made by linearization of the highest-order derivatives; but the resulting type 

(hyperbolic, parabolic, or elliptic) may depend upon the particular solution being 

considered. Higher-order systems can be decomposed into one or a combination of 

the three (Shang, 2002). 

Classification of the type of PDE model is essential for the selection of a suitable 

method of solution. In general, it is not possible to find an analytical solution of 

a PDE system; thus some approximation is required. The main difference in the 

techniques used to approximate PDE equations is the method used to discretize the 

equations. 

The most popular method to approximate PDE is the finite difference method. In 

this method, the PDE is discretized in space by replacing each spatial derivative in 

the equations by a discretization (usually from a truncated Taylor Series). The finite 

difference method is simple and easy to use. The method works well for problems 

with simple geometries and smoothly varying parameters. The main drawback of the 

method is that a high number of discretization points may be necessary to achieve 

satisfactory accuracy, which may require considerable computational effort (Dochain 

et al, 1992). 

In contrast to the finite difference method, where the PDE itself is discretized, 

there are modal or pseudo-modal decomposition techniques where the solution of the 

PDE is discretized. Modal decomposition techniques rely on the existence of basis 

functions such that the solution of the PDE can be written as a linear combination 

of the basis functions. Modal decomposition technique works well for parabolic 

PDE with linear spatial operator where the basis functions are obtained from the 

eigenfunctions of the linear spatial operator and the eigenvalues of the spatial operator 

are not bunched together (Ray, 1981); however, this technique relies on the existance 

and knowledge of the eigenvalues and eigenfunctions. For practical problems, the 
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determination of the eigenfunctions is not a simple task (Shang, 2002). For complex 

cases, the eigenfunctions can be obtained by using Karhunen-Loeve decomposition, 

which aims at obtaining empirical eigenfunctions from experimental or numerical data 

of a system. 

In general, modelling of catalytic reactors leads to a system of PDE of parabolic 

or hyperbolic type. Parabolic PDEs are the result of modelling the chemical 

phenomena as well as the physical phenomena, including convection and diffusion 

transport phenomena. There exist several different methods to obtain a numerical 

solution of a parabolic PDE system, see for for example (Lapidus, 1962; Hayes and 

Kolaczkowski, 1997; Grasselli and Pelinovsky, 2008). 

Hyperbolic PDEs are the result of modelling the chemical phenomena as well as 

the convection transport phenomena. For hyperbolic type of PDE, the method of 

characteristics is often used as an analytical solution method. This method uses 

special curves in the time-space plane, called characteristic curves, along which the 

solution of the partial differential equation is reduced to the integration of an ordinary 

differential equation. For hyperbolic PDE systems with a single characteristic, the 

method gives a system of ODEs that exactly describes the original distributed 

parameter system (Shang, 2002). There exist different numerical methods to obtain 

the solution of hyperbolic PDE systems, but the most popular ones are based on finite 

differences, i.e. backwards difference or upwind scheme, a first approximation of the 

Taylor series expansion, and Lax-Wendroff scheme, second order approximation in 

the Taylor series expansion, (Morton and Mayers, 1994) 

2.11 Computer Simulation 

The mathematical model given in equations (2.2) to (2.5) was implemented using 

COMSOL Multiphysics, and executed using a Matlab framework. COMSOL 

Multiphysics is a simulation package for the simulation of physical process described 

by partial differential equations (PDE). The package employs the the finite element 

method to solve the PDE system and allows for entering coupled systems of PDE. 

COMSOL Multiphysics offers a well-managed interface to MATLAB and its toolboxes 
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Figure 2.5: Domain used to model the CFRR unit in COMSOL Multiphysics. 

for a large variety of programming, preprocessing and postprocessing possibilities. 

The combined software was highly useful for sensitivity analysis of the CFRR unit 

and simulation of closed-loop behaviour under a set of different control schemes. 

The first step towards the implementation of the model is to define the different 

domains, each of which have a different set of PDEs and model parameters. The 

domain used to model the CFRR unit is illustrated in Figure 2.5. The domain 

includes the different materials used in the pilot scale reactor, that is 6 monolith 

sections separated by an open gap (to allow gas mixing), 2 packed-bed sections with 

the catalyst material which are separated by an open section, a stainless steel wall 

and a external insulation. The total length of the reactor is 2.73 m. 

Each 2-D domain is discretized using triangular elements and Lagrange quadratic 

shape functions are used to interpolate the function to be solved at the discrete nodes 

within the elements. 
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2.11.1 Model Validation 

The 2-D heterogeneous model in equations (2.2) to (2.5) was validated against 

experimental data in Salomons et al. (2004) through simulation using a computer 

code written in FORTRAN 95 language. To corroborate the validity of the simulation 

results obtained from the 2-D heterogeneous model implemented in COMSOL 

Multyphysics, we compared the outputs of the FORTRAN code and those from using 

the COMSOL package. 

We chose the following operating conditions, 

v8 — 0.21 m • s~l 

Tin = 298 K 

Yin = 0.8% 

to validate the outputs. Figures 2.6 and 2.7 show the temperature of the fluid phase 

of both simulators with unidirectional flow and no heat exchange to the reactor 

wall along the central open section. We observe a negligible difference between the 

output of both simulators. The same results were obtained for the other independent 

variables, i.e., Ts, Yf, Ys. When heat exchange is allowed at the central open section, 

the spatial temperature distributions differ slightly, see Figures 2.8 and 2.9. 

The way the heat transfer is modelled at the fluid-wall boundary along the 

central open section is the only deference between the two simulators. After several 

simulations using different operating conditions, it was concluded that the way that 

the heat transfer was modeled in the COMSOL simulator, see the boundary conditions 

used in (2.4), gives the correct results. 

2.11.2 Parametric Analysis 

To gain insight into the behaviour of the pilot reactor unit, the COMSOL simulator 

was used in Litto et al. (2006) to perform a parametric study to analyze the effects of 

cycle time, velocity, reactor diameter, insulation thickness, thermal mass and thermal 

conductivity of the inert sections, on the transient behaviour of the reactor. Emphasis 

was placed on the effects of geometry from a scale-up perspective. 
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Figure 2.6: Comparison of the outputs from COMSOL (solid line) and FORTRAN 
(dashed line) simulators at t = 5 min for a reactor model without heat exchange in 
the open middle section. The initial conditions for both simulators are shown by the 
dashed-dot line. 
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Figure 2.7: Comparison of the outputs from COMSOL (solid line) and FORTRAN 
(dashed line) simulators at t — 10 min for a reactor model without heat exchange in 
the open middle section. The initial conditions for both simulators are shown by the 
dashed-dot line. 

From the numerical simulations obtained by Litto et al. (2006), it was observed 

that the thermal stability of the the reactor was maintained for longer times when 

the thermal mass (product of density and heat capacity) of the inert sections was 

highest, while thermal conductivity has only a minor effect on reactor temperature. 

It was also observed that, provided that complete conversion is achieved, the highest 

reactor temperature was achieved with the highest switch time. 

time- 10 min. 

_i L_ 
0,5 1 1.5 2 2.5 3 

z(m) 
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Figure 2.8: Comparison of the outputs from COMSOL (solid line) and FORTRAN 
(dashed line) simulators at t = 5 min for a reactor model with heat exchange in the 
open middle section. The initial conditions for both simulators are shown by the 
dashed-dot line. 

Figure 2.9: Comparison of the outputs from COMSOL (solid line) and FORTRAN 
(dashed line) simulators at t = 10 min for a reactor model with heat exchange in 
the open middle section. The initial conditions for both simulators are shown by the 
dashed-dot line. 

The insulation was observed to not only prevent heat loss to the environment, but 

also to provide additional thermal mass. Moreover, the insulation effect was observed 

to lead to higher reactor temperature up to a maximum thickness. With increasing 
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reactor diameters, the radial temperature profiles became flatter, and the insulation 

effect diminished, leading to higher centreline temperatures. 

In Devals et al. (2006), the COMSOL simulator was used to study the impact on 

the methane conversion and the maximum temperature in the reactor of key process 

parameters such as the methane inlet concentration, the gas superficial velocity and 

the switching time. A three-level full factorial design was built to investigate the 

impact of the key process parameters. A three-level design means that k factors are 

considered, each at 3 levels. These are (usually) referred to as low, intermediate and 

high levels. These levels are numerically expressed as -1, 0, and +1 . A three-level 

designs can model possible curvature in the response function. 

The model is given by: 

4 4 

Y = a0 + E aiyi + E aiiV? + E aiiViVi + E ai^ViVj2 + 
i= l i= l i<j i<j 

E ^Wi + E a^Vf (2-24) 
i<j i<j 

where Y stands for the maximum temperature Tmax or the methane conversion rate 

X. The coefficients a in this equation, which were computed using Statistica (from 

StatSoft), are given in Table A.3 for Tmax and X. V\, V2, V3 and V4 correspond to 

the methane inlet concentration, the switching time, the inlet gas superficial velocity 

and the coefficient a respectively, but in their adimensional form (values between -1 

and 1), see Table 2.2. 

Table 2.2: Low (-1), mid-range (0) and high (+1) settings for the four factors. 

Factor 1 0 1 
Methane inlet concentration, V\ (%v/v) 0.2 0.75 1.3 
Switching time, V2 (s) 300 600 900 
Gas superficial velocity, V3 (ra • s_ 1) 0.3 0.525 0.75 
a, V4 0.8 0.9 1.0 

The model that relates the maximum reactor temperature and the key process 

parameters can be used to predict stable stationary state operational conditions. 

Figure 2.10 shows the stationary state mapping relating inlet reactant concentration 
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and mass extraction to the maximum reactor temperature. Figure 2.11 shows the 

stationary state mapping relating inlet superficial gas velocity and mass extraction 

to the maximum reactor temperature. The range of values for each variable in the 

mappings cover typical operating values used for the catalytic reactor with reverse 

flow operation for combustion of lean methane streams, i.e.: 

Yfo = 0 . 1 - 1 . 5 % 

vsM = 0 . 1 - l m ' T 1 

Figure 2.10: Stationary state mapping relating inlet reactant concentration Yfo and 
mass extraction a to the maximum reactor temperature Tmax. 

Results based on a full factorial design involving the methane inlet concentration, 

the gas superficial velocity and the switching time has revealed that this technique 

is efficient in predicting with, fair accuracy, the behaviour of the CFRR for various 

sets of parameters, and that it therefore shows promise for: 1) the determination of 

an operating window leading to a stable periodic steady-state operation regime; and 

2) the optimization of the CFRR with respect for instance to the amount of heat 

extracted. By stable operational conditions, we mean conditions that maintain the 

temperature above the extinction temperature of the reaction and below a critical 

value to avoid overheating or deactivation of the catalyst. 
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Figure 2.11: Stationary state mapping relating inlet superficial gas velocity vS}in and 
mass extraction a to the maximum reactor temperature. 

The model in (2.24) is used in the next chapter as part of the control scheme 

developed for the pilot scale reactor unit to predict stationary state conditions. 

2.11.3 Dynamical Analysis of the Heterogeneous Model 

For design and scale-up of the reactor system, prediction of the system stationary 

state is usually desired; however, for control of the reactor system, understanding the 

dynamic behaviour of the system is of great importance. 

We begin by simulating the 2-D heterogeneous model to evaluate the dynamic 

behaviour of the key variables that are most likely to be considered disturbances 

during normal process operation. We study the dynamics of the temperature spatial 

distribution along the axis of the reactor, the maximum and average temperature in 

the reactor for different amounts of gas extraction from the reactor mid-section, inlet 

reactant concentration, inlet gas velocity and frequency of flow reversal. 
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Using the following operating conditions 

vs — 0.3 m • s _ 1 

Tin = 298 K 

Yin = 0.01% 

and the initial temperature distribution shown in Figure 2.12, the evolution of the 

reactor variables of interest were evaluated. 

The dynamic behaviour of the reactor to changes in the heat extraction is shown 

first. Figure 2.13 (top) shows the evolution maximum temperature and the average 

temperature in the reactor for a trajectory of the gas extraction, a, given in Figure 

2.13 (bottom). The gas flow rate removed from the midsection of the reactor (Q) can 

be calculated from the following relation: 

Q ^ ( l - « ) (2.25) 

The reactor temperature spatial distribution is shown in Figure 2.14. The outlet 

Figure 2.12: Initial temperature distribution along the reactor centerline. 

methane conversion and the rate of energy removed from reactor midsection are shown 

in Figure 2.15 (top) and (bottom), respectively. 

From the dynamic behaviour of the system, the following observations are 

important: 
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Figure 2.13: Evolution of the maximum and average temperature along the reactor 
centerline (top) and trajectory of the mass extraction from the reactor midsection 
(bottom). 

0 0 time (h) 

Figure 2.14: Evolution of the temperature distribution along the reactor centerline. 
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Figure 2.15: Outlet methane conversion (top) and rate of energy removed from reactor 
midsection {Emi(i) relative to the total energy fed to the reactor (Ein). 

• the temperature dynamics has a settling time of the order of hours; 

• the maximum temperature follows the same trend as the average temperature; 

• the long term dynamic behaviour of the system is time-invariant as the 

stationary state values for the same operating conditions are the same regardless 

of the path taken; 

• for the long switching time considered (Tcycie = 20 min) , a large fraction of the 

energy released by the reaction leaves the reactor through the reactor outlet, 

i . e . , i z i / f j j j ^ / i i / j j j . 

The dynamic behaviour of the reactor in response to changes in the inlet mole 

fraction of reactant is shown next. Starting from the final stationary state achieved 

in Figure 2.14, a trajectory of the inlet mole fraction of reactants given by that in 

Figure 2.16 (bottom) leads to a maximum and average temperature trajectory shown 

in Figure 2.16 (top). The outlet methane conversion and the rate of energy removed 

from reactor midsection are shown in Figure 2.17 (top) and (bottom), respectively. 
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Figure 2.16: (Top) Evolution of the maximum and average temperature along the 
reactor center line. (Bottom) trajectory of the inlet mole fraction of reactants. 
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Figure 2.17: (Top) Outlet methane conversion. (Bottom) Rate of energy removed 
from reactor midsection {Emid) relative to the total energy fed to the reactor (Ein). 
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From the dynamic behaviour of the system, the same conclusions as those stated 

for changes in the fraction of gas extracted can be drawn for changes in the inlet mole 

fraction of reactants. 

The dynamic behaviour of the reactor to changes in the inlet gas velocity is shown 

next. Starting from the final stationary state achieved in Figure 2.14, a trajectory 

in the inlet gas velocity given that in Figure 2.18 (bottom) leads to a maximum 

and average temperature trajectory shown in Figure 2.18 (top). The outlet methane 

conversion and the rate of energy removed from reactor midsection are shown in 

Figure 2.19 (top) and (bottom), respectively. 
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Figure 2.18: Evolution of the maximum and average temperature along the reactor 
centerline (top) and trajectory of the inlet superficial gas velocity (bottom). 

From the dynamic behaviour of the system, it is observed observe that 

• the dynamic behaviour of the temperature to changes in the inlet flow velocity 

is much faster than that for changes in the inlet mole fraction and the fraction 

of gas removed from the reactor midsection; 

• the maximum temperature reacts in one direction right after the changes in the 

inlet flow velocity are applied and then it evolves towards a stationary state 

that is in the opposite direction. 
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Figure 2.19: Outlet methane conversion (top) and rate of energy removed from reactor 
midsection (Emici) relative to the total energy fed to the reactor (Ein). 

Not only operating conditions that are likely to change during normal operation 

are important to analyze, but also conditions that may remain constant (such as the 

frequency of flow reversal) can be useful to fully understand the reactor behaviour. 

Starting from the initial condition given in Figure 2.14, the temperature evolution for 

two different frequencies of flow reversal is given in Figure 2.20. The outlet methane 

conversion and the rate of energy removed from reactor midsection are shown in 

Figure 2.21 (top) and (bottom), respectively. 

From the dynamic behaviour of the system, it is observed that 

• longer switching times lead to shorter settling times; 

• longer switching times leads to large amounts of energy leaving the reactor 

through the end instead of through the stream at the reactor midsection. 

The use of the frequency of flow reversal to control the catalytic reactor is a possible 

option; however, in practice there are physical limits for the frequency of opening and 

closing of the valves used to change the flow direction. 
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Figure 2.20: Start-up simulation for different switching times. 
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Figure 2.21: Outlet methane conversion (top) and rate of energy removed from reactor 
midsection (Emid) relative to the total energy fed to the reactor (Ein). 

2.11.4 Validation of the Pseudo-Homogeneous Model 

Studying the dynamics of the 2-D heterogeneous model helps to understand the type 

of behaviour expected in the actual catalytic reverse flow reactor; however, the 2-D 

heterogeneous model is too complex for control design and even more for incorporation 
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into a model-based control algorithm. Therefore, a simpler 1-D pseudo homogeneous 

model was derived for control purposes. 

To assess the suitability of the model to predict the behaviour of the pilot CFRR 

unit, a wide range of simulations were performed for the reactor configuration given 

in Figure 2.22. 
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Figure 2.22: Illustration of the CFRR unit used for simulation in the case studies. 
Inert Sections: solid support without any catalyst material; Active Section: solid 
support with a catalyst material 

One of the main assumptions in the 1-D pseudo-homogeneous model is that the 

transport phenomena is in plug flow (no axial mixing). Theoretically, this assumption 

is justified by looking at the Peclet number in the 2-D heterogeneous model in the 

axial direction: 
LcvspfCpf Peh = p _ Lcvs , , - - , „ , (2.26) 

kaf,eff Va,eff 

where Lc is the characteristic length of each of the reactor sections. The Peclet 

number distribution in the reactor for a typical operating condition is shown in Figure 

2.23. In turbulent flow, the maximum value of the particle Peclet number for packed 

beds (Lc — DH) tends to a constant value independent of the Reynolds number. 

For gases, the constant for the axial Peclet number is about 2, see Pe definition in 

Table A.l. Therefore, we can observe from Figure 2.23 that plug flow assumption is 

justified. In the monolith sections, the Peclet number (Lc = L) is large and therefore, 

mass and heat diffusion can be neglected. The plug flow assumption might not be 

accurate after the first few seconds that follows the flow reversal process; however, 

this time is usually short compared to the total of time of each semi-cycle. 
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Figure 2.23: Distribution of the Peclet number along the reactor centerline. Solid line: 
Pem; dashed-dot line Pe^. Operating conditions: vSin — 0.3 m • s - 1 , T/o = 298 K, 
Y/0 = 0 .5%anda = l. 

Another assumption made in the 1-D pseudo-homogeneous model is that the 

process variables in the fluid and solid phase are the same. Figure 2.24 shows the 

difference between the fluid and solid temperature along the centreline of the reactor 

for a typical operation. Although the difference is small for the simulated case, and 

for a wide range of operating conditions, we cannot rule out the possibility that larger 

differences may occur; however, modelling such differences, if they occur at all, comes 

at the expense of a more complex heterogeneous model. 

An overall assessment of of the difference between the 2-D heterogeneous model 

and the 1-D pseudo-homogeneous model indicates that the output variables of both 

models agree in the short term, but they differ in the long term, see Figure 2.25. 

Figure 2.25 shows a comparison of the solid-phase temperature, Ts, of the 2-D model 

and the homogeneous T for the 1-D model. 

For design and simulation, plant/model mismatch might not be tolerable, but for 

control purposes mild mismatch is tolerable because the missing information can be 

recovered by feedback control schemes. 

To improve the accuracy of the 1-D model in an effective but simple way, a heat 

dissipation term can be added to model the heat transfer in the radial direction. An 

effective heat transfer coefficient would have to be computed to model the effective 
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Figure 2.24: Temperature difference between fluid and solid phase along the reactor 
centerline. Operating conditions: vSin = 0.3 m • s_ 1 , Tf0 = 298 K, Yf0 — 0.5% and 
a = 1. 

heat transfer between T to a heat source/sink variable that represents the insulation at 

some distance from the reactor centerline. For illustrative purposes, the 2-dimensional 

solid temperature distribution in the reactor is shown in Figures 2.26 and 2.27 for 

two different frequencies of flow reversal. 

2.12 Empirical Modelling 

It is well known that controllers designed from first principle models offer a wider 

range of operability. First principle models usually include a great level of detail of 

process dynamics; however, it is not always possible to find accurate first principle 

models, and therefore empirical models obtained from process input/outputs are 

needed. 

To the authors knowledge, studies that develop and use empirical dynamical models 

in a model based control scheme for a catalytic flow reversal reactor have not been 

published. In this section, a procedure to obtain empirical discrete linear models for 

catalytic reverse flow reactors units is described. The procedure is aimed at finding 

empirical models for a discrete number of inputs and outputs along the reactor. 
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Figure 2.25: Comparison between 1-D pseudo-homogeneous (dashed-dot line) model 
and 2-D heterogeneous model (solid line). Operating conditions: vSin = 0.3m • s""1, 
Tf0 = 298 K, Yf0 = 0.5 %, a = 1 and Tcycle = 10 min. 

Figure 2.26: 2-D plot of the axial and radial temperature distribution Ts at the 
stationary state at the end of the semi-cycle and full cycle for Tcycie = 20 min (flow 
direction is indicated by the arrows). 

44 



Sec. 2.12 Empirical Modelling 
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Figure 2.27: 2-D plot of the axial and radial temperature distribution Ts at the 
stationary state at the end of the semi-cycle and full cycle for Tcycie — 10 min (flow 
direction is indicated by the arrows). 

The main issue in finding empirical models is that the outputs at discrete spatial 

points reach a limit cycle at stationary state. Although linear models can be used to 

describe limit cycles, by for example using a periodic input or by placing the poles 

on the imaginary axis, modelling the inter-cycle behaviour of the reactor may not be 

necessary. When the goal is to model the long term behaviour of the output variables, 

a separation of the time-scales between the switching time and the thermal dynamics 

can be used. In this way, we can obtain models for the long term input/output 

behaviour by modelling the reactor dynamics with a sampling rate of, at least, one 

full cycle. 

To obtain empirical models of a catalytic flow reversal reactor, the following 

procedure is suggested: 

1. Bring the CFRR unit to stationary state at the operating conditions that are 

most likely to occur during normal operation. 

2. Perform a step test (or a set of step changes in the manipulated variables) 
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to obtain a first estimation of the time delay, time constant and gain of the 

input/output sets. Sample the outputs with a time period equal to the time 

length of a full cycle. 

3. Based on the estimated parameters, design a suitable input signal that excites 

the range of frequencies where the system has more energy. Measure the outputs 

at the end of each cycle. 

4. Perform typical data conditioning and estimate process models. 

2.13 Summary 

Catalytic combustion with reverse flow operation is a promising technology for 

combustion of lean methane emissions and mitigation of greenhouse gases. Moreover, 

this technology provides an economic incentive because it can be used to generate 

energy for secondary uses such as heating or power generation. 

In this chapter, we developed a computer simulator for a catalytic reactor with 

reverse flow operation. The computer simulator was based on a 2-D heterogeneous 

dynamic model. The simulator was used to gain understanding of the reactor 

dynamics to develop a controller in subsequent chapters. 

From the numerical simulations, we observed that the reverse flow reactor 

considered in this work has a slow time dynamics with a settling time in the order 

of hours. It was observed that the long term dynamic behaviour of the system is 

time-invariant as the stationary state values for the same operating conditions are 

the same regardless of the path taken. 

Regarding the energy extracted from the reactor midsection, it was observed that, 

at long switching (or reverse flow) times, a large fraction of the energy released by 

the reaction is lost through the reactor outlet. 

For control purposes, the dynamic of the temperature to changes in the inlet flow 

velocity is much faster than that for changes in the inlet mole fraction and in the 

fraction of gas removed from the reactor midsection. We observed that the maximum 

temperature reacts in one direction right after the changes in the inlet flow velocity 
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are applied and then it evolves towards a stationary state that is in the opposite 

direction. Similar results might be expected, although not observed at the operating 

conditions considered here, for other operating conditions when the inlet mole fraction 

or the fraction of gas extracted from the reactor midsection are changed. 

Regarding the flow switching time, long switching times lead to short settling times 

but large amounts of energy are lost through the end of the reactor instead of through 

the high temperature stream at the reactor midsection. The stream at the reactor 

midsection has a higher temperature and therefore it can be exploited to easily to 

recover the energy from this stream. 

In this chapter, a 1-D pseudo-homogeneous model was developed and validated 

so that it could be used in the proceeding chapters for control design. The model 

was tested against a more detailed 2-D model to assess the sensitivities of the model 

outputs the the assumptions used in the simplified model. 

Having understood the dynamic behaviour of a catalytic flow reversal reactor, we 

define here the conditions by which reactor is under " ideal" operating conditions. 

During ideal operation: 

• the temperature within the active sections of the reactor is high enough to keep 

the combustion reaction ignited. 

• the maximum temperature within the active sections of the reactor is below the 

deactivation temperature of the catalyst. 

• most the heat produced by the reaction is recovered for use in secondary 

processes. 

Disturbances to the ideal operation mainly occur from changes in the 

• inlet concentration; 

• inlet fluid flow velocity; 

A range of alternatives were proposed in the literature to keep the CFRR system 

under ideal operation; however, little has been done on control algorithms to achieve 

automatic control. The next chapters focus specifically on control of CFRR units. 
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Model Predictive Control of a Catalytic 
Flow Reversal Reactor 

In this chapter, the control of catalytic flow reversal reactors (CFRR) is studied. 

Like any chemical process, these reactors are subject to disturbances in the process 

variables. The main sources of disturbance in CFRR units are the inlet reactant 

concentration and inlet gas velocity. Disturbances may lead to operational instability 

by overheating of the catalyst material or extinction of the reaction. In this chapter, 

we aim at developing a control scheme that keeps the reactor operating at stable and 

optimal conditions. The formulation of a model predictive control scheme is studied 

in this chapter. l 

3.1 Model Predictive Control: Background 

Model Predictive control is a model based control technique that is widely used in 

the process industry, and is currently receiving much attention in the process control 
1Parts of this chapter are published in Fuxman et al. (2006) and Fuxman et al. (20076) 
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community. In this technique, an explicit model is used to generate predictions 

of the future plant behaviour. The objective of the MPC control calculations is 

to determine a sequence of control moves so that the predicted response moves 

to the desired set point in an optimal manner (Garcia et al., 1989; Camacho and 

Bordons, 1999; Maciejowski, 2001). In a single input-single output setting, the actual 

output y, the predicted output y, and the manipulated input u are shown in Figure 

3.1 (Seborg et al, 1989). At the current sampling instant, denoted by k, the MPC 

strategy calculates a set of M values of the input {u(k+i — l), i = 1,2,.., M}. The set 

consists of the current input u(k) and M— 1 future inputs. The input is held constant 

after the M control moves. The inputs are calculated so that a set of P predicted 

outputs y = {y(k + i), i — 1,2, . . ,P} reaches the set point in an optimal manner. 

The control calculations are based on optimizing an objective function, typically of 

the form: 

J = (r - y)TQ(r - y) + A u r R A u , (3.1) 

where r = {r(k + i), i — 1, 2,..., P} contain the set-point values, A u = {u(k + i) — 

u(k+i — l), i — 1,2,..., M)} and Q and R are positive semi-definite time independent 

weight matrices. The number of predictions P, is referred to as the prediction horizon; 

while, the number of control moves, M, is called the control horizon. 

- . - . r-, x . * Past • • Past output 
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— Past control action 

— — Future control action 

y * 
• 

• 
• • 

u 

k 

1 < 

-1 

Future 

~~*" Set Point 

9 o ° 
• o ° 

Control horizon, M 

I I 
, . I 1 I I ' u - J \ I 

,_ _ 1 Prediction horizon, P 

i i i i 

k k+1 k+2 k+M-1 k+P 
Sampling instant 

Figure 3.1: Basic concept of Model Predictive Control 
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A distinguishing feature of MPC is its receding horizon approach. Although a 

sequence of M control moves is calculated at each sampling instant, only the first 

move calculated in each control interval is implemented. Then a new sequence is 

calculated at the next sampling instant, after new measurements become available; 

only the first input move is implemented. This procedure is repeated at each sampling 

instant. 

Model predictive control is becoming increasingly popular (Maciejowski, 2001) 

because : 

• It handles multivariable control problems naturally. 

• It can take into account of actuator limitations. 

• It allows operation closer to constraints, which frequently leads to more 

profitable operation. 

• Control update rates in the applications where predictive control is successful 

are relatively low; so there is plenty of time for necessary on-line calculations. 

All of the above are of importance for the control of the reverse flow reactor as will 

become evident in subsequent sections. 

3.2 Model Predictive Control for Catalytic Flow 
Reversal Reactors 

From a process control point of view, catalytic reactors with reverse flow operation 

pose a challenging problem. Many of the inherent characteristics of this type of reactor 

are the focus of current research within the process control community. The design 

and modelling of catalytic flow reversal reactors have been thoroughly investigated; 

however, for a stable and optimal operation of the system, a robust control strategy 

is required. Control of such systems is an area that has not received much attention 

until recently. 

The control of CFRR units has been approached by different control techniques 

including feedback PID and feed-forward (Budman et al, 1996); linear quadratic 
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regulator (Edouard et al, 2005) and model predictive control (Dufour et al, 2003; 

Dufour and Toure, 2004; Balaji et al., 2007). 

Within the model predictive control framework, the main challenges in controlling 

catalytic reactors with reverse flow operation are summarized as follows: 

• Distributed Parameter Nature: In the area of process control, the bulk of the 

control theory and control applications deal with lumped parameter systems 

where ordinary differential equations are used to model the controlled process. 

Control of distributed parameter systems has been addressed in the literature 

by various schemes such as early lumping, where the distributed parameter 

system is discretized at the earliest opportunity into an approximate model 

consisting of a set of ordinary differential equations in time; or late lumping that 

takes advantage of available distributed control theory (Ray, 1981). Despite 

the advantages of late lumping, it requires greater knowledge of distributed 

parameter control theory. 

Within the model predictive control scheme, Dubljevic et al. (2006) and 

Dubljevic et al. (2005) used modal decomposition for parabolic PDE systems to 

derive a finite-dimensional approximation that captures the dominant dynamics 

of the infinite-dimensional system. For hyperbolic PDE models, Shang et al. 

(2004), exploited the underlying geometry of hyperbolic PDEs to produce a high 

performance MPC which was termed characteristics-based model predictive 

control. In Dubljevic et al. (2005) the MPC problem for hyperbolic PDE was 

approached through finite dimensional approximation of the underlying PDE 

system. 

All published studies on the control of catalytic reverse flow reactors by MPC 

use the early lumping approach and apply techniques drawn from conventional 

lumped parameter control theory. In this chapter, we study the application 

of a what can be considered a late lumping technique in which the method 

of characteristics for the solution of hyperbolic PDEs is embedded in a MPC 

scheme. The selection of the technique was inspired in the work of Shang et al. 

(2004), where a high-performance MPC that does not require substantial on-

51 



Sec. 3.2 Model Predictive Control for Catalytic Flow Reversal Reactors 

line computations and provides high accuracy in the prediction of the process 

output variables can be developed by using the method of characteristics. 

• Dynamic Operation and Nonlinear Dynamics: A basic feature of model 

predictive control is that it requires a model of the pocess dynamics to predict 

the future process behaviour. One of the main challenges with catalytic reverse 

flow reactors is that there is, currently, no mathematical model in closed form 

available to predict the short and long term process behaviour. Mathematical 

models are usually developed on the basis of a single flow direction, and then the 

boundary conditions are changed to account for the flow reversal (Matros and 

Bunimovich, 1996; Marin et al., 2005; Aube and Sapoundjiev, 2000; Salomons 

et al, 2004). On the basis of a single flow direction model, simulation of the 

process for a sequence of full cycles would require, for example, an analytical 

solution of the model equations that can then be assembled to generate the full 

solution. For complex distributed parameter systems, analytical solutions are 

generally not possible and thus we need to rely on a numerical approximation. 

Numerical approximations and their solutions applied to the dynamical models 

for reverse flow reactors require the solution of a series of PDE equations in 

a sequential fashion. Such numerical solutions may require, depending on the 

model fidelity, a high computational time to compute the process dynamics up 

to the stationary state. 

In addition to the dynamic operation, catalytic reverse flow reactors have 

nonlinear dynamics. There are a variety of MPC schemes that take advantage 

of nonlinear dynamic models. These schemes range from algorithms that 

employ a linearized model, which is updated regularly, to schemes that use 

the full nonlinear model directly (Biegler et al, 2002; Diehl et al., 2002; Bock 

and Plitt, 1984). In this chapter, a nonlinear MPC algorithm is used. The 

algorithm employs local linear models, which are computed from integration of 

characteristic ODEs that model the reactor system. Additional information is 

provided in the proceeding sections. 

• Manipulated Variables: In the majority of control studies for plug flow chemical 
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reactors it is considered that the reactor is surrounded by a cooling/heating 

jacket, see for example (Ray, 1981; Christofides, 2000; Aksikas, 2005), and the 

entire temperature spatial profile along the reactor is controlled. In general, 

for catalytic reactors, with reverse flow operation, a manipulated variable that 

is not distributed in space, but rather located in the reactor midsection is 

used, (see Section 2.5 for an overview of the different control configurations). 

Using a single or a set of actuators (manipulated variables) restricts the control 

achievements and it may not be possible to control the output variables spatial 

profile; however, it might be possible to control the output variables variables 

at a single or set of spatial locations along the reactor. 

• Controlled variables: In all of the studies that approach the control of catalytic 

reactors with reverse flow operation, the temperature at a single spatial location 

was controlled, see for example (Dufour et al, 2003; Dufour and Toure, 2004). 

The spatial point located in the middle section of the reactor or at the entrance 

of the catalytic sections is chosen on the basis that the maximum and minimum 

temperature is achieved at that location; however, there is no guarantee that 

the maximum temperature will be located at a single point if the the frequency 

of flow reversal is slow and if there is sufficient time for the fluid to shift 

the temperature profile back and forth by convection. Keeping the minimum 

temperature at the entrance of the active sections above a minimum value 

can guarantee that the reaction will not extinguish, but it might not be the 

optimal way of controlling the system because more energy can be removed 

without extinguising the reaction. The main assumption used in (Dufour et 

al., 2003; Dufour and Toure, 2004) is that the frequency of flow reversal is high 

and thus the temperature profiles inside the reactor do not move back and 

forth. High frequencies of flow reversal was justified by the type of application 

considered for the reactor. 
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3.3 Contributions 

The main contribution of this chaper is the analysis and development of a model 

predictive control scheme for CFRR units with slow frequency of flow reversal. Slow 

frequencies are required in the processing of large volumes of gas. Such slow frequency 

of operation leads to the movement or shifting of the spatial distribution of the state 

variables back and forth along the reactor. The movement poses a more challenging 

control problem than that observed when fast frequencies are employed. 

Through the development of the model predictive control scheme, the following 

contributions to the control of CFRR units are addressed: 

• Propose a weighted average of the temperature spatial profile along the reactor 

as the output variable that can be controlled to avoid reactor shutdown due to 

reaction extinction. 

• Use of mass extraction from the reactor midsection section as the manipulated 

variable. Mass extraction is, from an operational point of view, more 

advantageous than energy removal via heat exchange and is simpler to 

implement in practice; however, it poses some challenges for process control. 

• Develop a model predictive control scheme that incorporates the method of 

characteristics to predict the process output variables. Such an MPC approach 

has been proposed in the literature to produce a method that does not require 

substantial on-line computations and provides high accuracy in the prediction, 

but has not been applied to complex catalytic reactors such as CFRR units. 

• Discuss in detail the selection of the tuning parameters in an MPC controller 

for CFRR units. 

3.4 Control Objectives 

The control objectives for the purposes of this work are summarized, in order of 

importance, as follows: 
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1. to avoid reaction extinction by keeping the average temperature in the reactor 

as constant as possible at an appropriate level and at all times. 

2. to reduce or eliminate catalyst overheating by restricting the maximum 

temperature to be below a threshold value. 

3. to maximize the energy extraction from the reactor unit by maximizing the 

mass of extracted hot gas. 

3.5 Selection of Controlled Variables 

Under normal operation, it is required that the maximum temperature in the catalytic 

sections of the reactor remain below a catalyst deactivation temperature. Moreover, 

the temperature along the active catalytic sections should be such that the reaction 

does not extinguish. We attempt to achieve this objective by controlling the total 

energy within the reactor. For this purpose, we use the average temperature of the 

solid material in the reactor unit as an indication of the total energy. 

To show that the average temperature gives an indication of the total energy, an 

overall energy balance around the reactor system is used: 

d ^ fZi+1 rzi+i 
/ Pl

sCpl
s{Ts — Tfjin)dz = vSjinAAHrCinYcH4,in - vStOUtACpftOUtPftout • 

(Tf,out — Tftin) — VStmiciACpf!midPf,mid(Tf,mid ~ ?/ ,m) (3-2) 

In equation (3.2), I represents the total number of solid-bed materials inside the 

reactor. Other parameters in (3.2) are defined in Appendix A. In equation (3.2), it 

is assumed that the energy accumulation in the fluid phase (gas) is negligible with 

respect to the accumulation in the solid phase as the heat capacity of a typical solid 

bed is about three orders of magnitude larger that the gas. In general, ps and Cps 

are a weak function of the temperature and therefore they can be considered constant 

for each different solid bed material inside the reactor: 

— 2 ^ p\Cp\ ( / Tsdz - I TUndzj = vStinAAHrCinYCHan -

Vs,outACpfjOUtPf!OUt(Tf:out — Tfjn) - VStmidACpftmidPf,mid{Tf,mid ~ 7/ ,m) (3.3) 
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By dividing both sides of equation (3.3) by the total length of the reactor L, we 

obtain: 

d 1 J ^ . . /"z«+l 1 
-J-J 22 PlsCPls I Tsdz = T (v3,inAAHrCinYcH4,in ~ VsfiutACpf>outpftouf 

(Tf,out — Tftin) — VSjmidACpfiTnidPf,mid(Tf}mid ~ Tfjn) + ^ P\Cp%
sT^in(zi+\ — Zj) 

i= l 
(3.4) 

J a 

To compute the integral on the left-hand side of equation (3.4), a numerical 

approximation is needed. If, for example, the trapezoidal method is used (Lapidus, 

1962), 

f(x)dx = h ( I + j/i + y2 + • • • + ym-i + Y) + ° ( A / l 3 ) ' (3-5) 

where h — (b — a)/m, then the left-hand side of equation (3.4) becomes a linear 

combination of discrete temperature values along the axis of the reactor: 

, l 1 m 

|£l^E^' (3-6) 

i±t^-i^-^ (3-7) 
where n is the total number of discrete spatial nodes along the reactor centerline and 

w is a vector of appropriate weights. Equation (3.7) is the time derivative of the 

weighted average temperature that will be refereed in this chapter as average reactor 

temperature. By substituting equation (3.7) in (3.4), we obtain 

— ( w T s ) = -r (vStinAAHrCinYcH4,in ~ Va>outACpf!(mtPf,ouf 

{Tf,out — Tfjn) — Vs,midACpftmidPf,mid(Tf,mid ~ Tf<in) + ^ p\C'p*Tf;in(Zi+i — Zi) J 
i=l J 

(3.8) 

From an overall mass balance around the reactor system, we obtain 
vs,inPinA = VStOUtPoutA + Vs^midpmid-™- ("•"J 
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By assuming that the gas behaves as an ideal gas and that the change in the gas 

velocity due to changes in the temperature can be approximated by vs = vs<inT/Tin 

(Salomons et al, 2004), we obtain 

A' 
vs,in = vs,out T~ vs,mid~T (o.lUJ 

By denning a = vs/vStin, where v is the gas velocity at any point within the reactor, 

we obtain 

A' 

and 

~ftTavg = -J {vs^inAl±HrCinYcH4,in ~ OiVa>inACpfl(mtPf,(mf 

(Tf,out — Tfjn) — (1 — u)vStinACpf,midPf,mid(Tf!mid ~ Tftin) + 

J^plCpiTf^iz^-zA (3.12) 
t = l / 

By looking at equation (3.12), we observe that by manipulating a, we can control 

the average temperature which is an indication of the total energy contained in the 

reactor. By keeping the energy at set-point value, we can be certain that the reaction 

will maintained and will not extinguish after disturbances in uncontrolled process 

variables enter the system. 

It is important to note that the average temperature is used to control the total 

energy in the reactor, but does not address the problem of controlling the maximum 

temperature directly. In fact, a constant average temperature may come at the 

expense of a lower minimum temperature and a higher maximum temperature. A high 

maximum temperature can cause overheating and catalyst deactivation. Therefore, 

an additional control objective is needed to restrict the maximum temperature in the 

solid material within the reactor to be below a catalyst deactivation temperature. 

3.6 Selection of Manipula ted Variables 

To collect and recover energy from the reaction, and avoid sharp changes in the 

temperature distribution along the reactor, Aube and Sapoundjiev (2000) suggested 
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the use of gas extraction from the midsection of the reactor to keep the CFRR under 

control. Following this suggestion, we studied the formulation of a controller where 

the gas flow velocity from the reactor midsection is used as manipulated variable. 

By means of gas extraction from the reactor midsection, we can fulfill one of 

the main requirements for 'ideal' operation of the CFRR unit: i.e. recovery of the 

heat generated by the reaction for secondary processes. It should be noted that the 

maximum rate of energy recovered, at stationary state, can only be less or equal to 

the energy generated by complete depletion of reactants. Otherwise, the system will 

not reach stationary-state and reaction extinction or reactor overheating will occur. 

3.7 M P C Controller Formulation 

Conventional approaches to controller design for a distributed parameter systems use 

lumping techniques that discretize the underlying partial differential equation (PDE) 

model into a finite number of ordinary equations (ODE's). Discretization techniques, 

such as finite difference, finite element and finite volume can be used to discretize the 

model into a set of ODE's. Based on the approximate difference equations obtained 

from discretization, controllers can be designed using control methods for ordinary 

differential equations (ODE's). 

Recent approaches for control of distributed parameter systems have focused 

on the development of control methods that directly account for their spatially 

distributed nature. In this direction, the well known classification of PDE systems 

into elliptic, parabolic and hyperbolic, according to the properties of the spatial 

differential operator, essentially determines the approach followed for the solution of 

the control problem (Christofides, 2000). Christofides and co-workers have provided 

a considerable amount of work on nonlinear order reduction and control of nonlinear 

parabolic PDEs for systems where diffusion dominates convection (Christofides (2000) 

and references therein). Various extensions of nonlinear control techniques can be 

found in the literature for the control of hyperbolic PDE systems: sliding mode control 

(Hanczyc and Palazoglu, 1995); geometric control (Christofides, 2000); adaptive 

control (Hudon et al., 2005) and model predictive control (Shang et al., 2004). 
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In Shang et al. (2004), a characteristics-based model predictive control was 

proposed and applied to hyperbolic PDE systems with characteristic equations of 

same order of magnitude. In this chapter, the application of the characteristics 

based-MPC is extended to catalytic reactor systems. Due to the two time scales of 

the reactor's dynamics, the system possesses two characteristics, which differ though 

about three orders of magnitude. To address this issue, two cases were studied: one 

where both characteristic lines were considered {multiple chracteristics) and another 

one where only one characteristic (single charactreristic) is considered. 

The characteristics-based model predictive control consists of three basic steps: 

1. The method of characteristics is used to transform the PDE model to an 

equivalent set of ordinary differential equations (i.e., transform the distributed 

parameter model to an equivalent lumped parameter model); 

2. A nonlinear predictive controller is designed based on the equivalent lumped 

parameter model. 

3. A constrained quadratic program is solved to obtain the optimal input that 

minimize a control performance objective function. 

3.8 Method of Characteristics 

In this section, we briefly review the method of characteristics for hyperbolic 

distributed parameter systems. 

Consider the quasi-linear (explicit) first order PDE 

dx dx 
a(t, z, x)— + b(t, z,x)— = c(t, z, x). (3.13) 

Let x = $(t,z) be a solution of (3.13). A geometrical interpretation of this solution 

is as follows (Mattheij et al., 2005). The independent variables t and z and the 

dependent variable x constitute a two-parameter family of vectors (t, z, x)T that is 

lying on a surface 5 c t 3 . This surface <S, given by F(t, z, x) = $(£, z) — x — 0, is 

called integral surface of (3.13). A normal n on <S is given by 
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Hence, for an infinitesimal displacement dx = (dt, dz, dx)T along the surface, we find 

(3.15) 
&d,x d'dJ , n n • dx — -r—dt + -77-dz — dx = 0. 
ot dz 

Comparing (3.13) and (3.15), we find that for a solution x = $(t,z) of (3.13) the 

following should hold on the integral surface S: 

a b 
dt dz I dz 

c 
dx 

(3.16) 

The solution of the system is unique if and only if adz — bdt ^ 0. This result can 

be interpreted as follows (see Figure 3.2): suppose we have a smooth, one parameter 

curve J = (t(a),z(a),x(<j))\a € / C K. on S, where the condition adz — bdt ^ 0 

holds. Then the derivatives xt and xz are uniquely determined on J through (3.16). 

If, moreover, x is given along J, then the solution x = $(t, z) exists and is unique, 

at least in some neighborhood of J. The curve J is referred as a curve of initial 

values. The actual construction of the solution proceeds as follows. Suppose x is 

Figure 3.2: Initial curve J and a characteristic C on the integral surface S. 
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given along an initial curve J. Consider a curve C on S for which adz — bdt = 0. 

Then the system (3.16) has either no solution or infinitely many. In the latter case 

the relations 
oft = cfe = dx 

a b c 

should hold along C. Clearly, the vector (a, b, c)T is everywhere tangent to C. We can 

now introduce a parametrization C = (t(s),z(s),x(s))T\s 6 / c i such that 1 and 

s = 0 lie on the initial curve J. This way, we obtain the set of ODEs 

dt dz , dx .„ „„. 
— = a, — = 6, — = c 3.18 
ds ds ds 

coupled with initial condition of the form 

x(a; 0) = u(z{a, t(a))) for (z{a, t{a))) G J', (3.19) 

where J' is the projection of J on the (t, z) plane. The ODEs (3.18) are referred to 

as the characteristic equations and the curve C is a solution of (3.18) and is called 

the characteristic. 

For quasi-linear hyperbolic partial differential equations of the form (2.16), for 

which there exist a matrix T and A as defined by Definition 2.10.1, we can premultiply 

(2.16) by an arbitrary left eigenvector t£ of B, giving 

Sw^i^'d^af) =*"=*• (3-20) 

We can now find an equivalent ODE system of the form 

t£— = cfc, (3.21) 

which should hold on some curve K. — (t(s), z(s))\s 6 / C l . Since we have 

du du dt du dz 
ds dt ds dz ds 

we thus find by comparing (3.20) and (3.21) and using relation du = Tdu that 

dt dz duk „ 
Ts^h ^ = Afc' ~dT = Ck- (3"23) 

The curve /C is the characteristic Ck corresponding to the kth eigenvalue A&. If the 

system (2.16) is hyperbolic, there exist m such characteristics, see Definition 2.10.1. 
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3.8.1 2-Characteristics Model 

To predict the dynamic behaviour of the catalytic reactor, the PDE model equations 

(2.6) and (2.7) can be used for accurate short term predictions. According to the 

definition of hyperbolic PDE equations, it is easy to see that the model equations are 

hyperbolic since 

A = 
0 

0 T = 
1 0 
0 1 Lr, 

The equations can be transformed into a set of ODEs by using the method of 

characteristics. The resulting characteristic curves £i and £2 are 

dz avsMp_ , . 
6 = ^ = "ZT' ( } 

along which, the state variables Y and T are described by: 

f = -k'^{w)Y (3'26) 
— = (-AHr)koCexp[—)Y (3.27) 

To predict the future state variables at any spatial point, simultaneous integration of 

equations (3.26) and (3.27) along the two non-parallel characteristic curves (3.24) and 

(3.25) is required. Predictions of future state values can be obtained by discretizing 

the initial state at a finite number of spatial points (n) and then projecting the 

characteristic curves from each of these points and by computing the values of the 

state variables at the intersection points (Shang et al, 2004). Figure 3.3, illustrates 

the calculation of the state variables at a point C from the the values at point A and 

point B. As seen in Figure 3.3, the state variables at any future time is approximated 

by two points. 

The approximation of the state variable value within a segment AC by that at 

point A and B reflects the true solution of hyperbolic PDE systems more closely than 

other numerical methods (Shang et al, 2004); however, the spatial discretization of 

the initial solution affects the accuracy of the predictions. By varying point C and 

repeating the procedure, the values of the state variables at different grid points and 
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different future times can be calculated. These predictions of the state variables are 

then used to compute the optimal control input in the MPC scheme. 

Figure 3.3: Illustration of the computation of future state variables using the method 
of characteristics 

The main advantage of using the method of characteristics is that it allows for the 

conversion of the underlying PDE model into an ODE model and that the conversion 

does not require any numerical approximation; however, this advantage can be lost if 

the model consists of multiple characteristics. 

For multiple characteristics models, a numerical approximation is required; 

however, the method of characteristics can accommodate the use of larger spatial 

grids and time steps with minimal loss of accuracy (Shang et al., 2004). 

In Shang (2002), the method of characteristics for a system with multiple 

characteristics was applied to a counter flow plug-flow reactor. For such reactor 

model, it was observed that control performance was satisfactory and that it increased 

with a increasingly finer discretization. Nevertheless, the characteristic equations 

in the reactor model had non-homogeneous parts with similar order of magnitude. 

Application of the method to a system with widely different magnitudes in the non-

homogeneous part of the characteristic equations presents some computational issues. 

Application of the method to a complex process like a catalytic reactor modeled 

by a system with two characteristics, can provide useful information about possible 

extensions and limitations of the method in a model predictive control scheme. In 
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Section 3.10.1, we discuss the limitations of the practical application method for a 

catalytic reactor. 

To provide a computational efficient MPC scheme that uses the advantage of the 

method of characteristics, the quasi-steady state assumption (typical in catalytic 

reactor models) is used in the next section. 

3.8.2 1-Characteristic Model 

To predict the dynamic behaviour of the catalytic reactor, the model equations (2.6) 

and (2.7) can be further simplified by the assumption that the dynamic behaviour of 

the mole balance is at quasi-steady state when compared to the energy balance. 

Equation (2.7) can be described by a system of DAEs along the characteristic 

curves £: 

s dt Lrj v ; 

Along the characteristic curves, £, the state variables T is described by: 

— = (-AHr)koCexp[—)Y (3.29) 

Using equations (3.28) and (3.29), we can predict the dynamic behaviour of 

the temperature without any numerical approximation other that the integration 

of equation (2.13). For hyperbolic PDE systems with a single characteristic, the 

method of characteristics can be advantageous for an MPC scheme if, the sampling 

time used in the control calculations is dictated by the characteristic equation of the 

system and the controlled outputs are located at the end of the spatial coordinate 

(Shang, 2002). Under these conditions, no approximation is required to predict the 

dynamic behaviour of the states in the system. 

For the catalytic reactor under study, integration of (3.28) and (3.29) can be 

performed from a given initial condition. Because the average and maximum 

temperature are required, a sampling time dictated by the characteristic equation 

can be used and in this way the full advantage of the method of characteristics in 

an MPC scheme can be used; however, if the states are required at fixed points in 

a mesh, then a numerical interpolation can be used to obtain the solutions at fixed 

mesh points. 
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3.8.3 MPC problem formulation 

A nonlinear version of the traditional model predictive control technique is used in 

this chapter. The following approximations are necessary in order for the on-line 

optimization to be a QP at each sampling interval. 

• Effect of Past Manipulated Variables on Predicted Outputs: The model 

is described in the form of nonlinear differential equations. The contribution of 

the effect of past manipulated variables on the predicted outputs is defined as 

the value of the outputs if there are no input (manipulated variable) changes 

in the future. This is obtained by integrating the model differential equations 

from the current state over the prediction horizon with constant inputs. 

• Effect of Future Manipulated Variables on Predicted Outputs: The 

contribution of the future manipulated variables to the predicted output is 

represented with the use of a step model. A linear model obtained by 

linearization of the nonlinear model at each sampling time is used to compute 

the step response coefficients. 

• Effect of Future Disturbances on Predicted Outputs: The unmodeled 

effects at the current sampling time are computed as the difference between the 

plant measurements and the model outputs. In the absence of any information 

on unknown disturbances in the future, it is assumed that the future predicted 

values of the disturbances are equal to the current values. 

To use the predictions from either section 3.8.2 or 3.8.1 in the MPC scheme, an 

output vector is defined: 

y = Cx 

where C is an observation matrix, x n x i is a vector of state variables at the discrete 

spatial points. The future values of the outputs (y) are expressed, at each control 
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interval, in a locally linear form (Shang et al, 2004): 

y = c 

= c 

[x ( l , l ) , x ( l , 2 ) , . . . , x ( l , j y P ) ] r 

[x(2,l) ,x(2,2),- .- ,x(2,tfP)]T 

[x(2n,l) ,x(n,2),- . . ,x(n,fl-p)] r 

" [x 0 ( l , l ) ,x 0 ( l ,2 ) , . . . ,xo( l ,#p) f 
[xo(2,l),x0(2,2),.--,xo(2,Fp)f 

+ SAu (3.30) 

[x0(n, 1), xo(n, 2), • • •, x0(n, HP)f J 

where C is a (1 x n) matrix, x is a matrix of dimensions (n x Hp) of the predicted 

states for a prediction horizon Hp, x0 is a matrix of dimensions (n x HP) of predicted 

states in the absence of further control actions (M_I), A U is the vector of future 

control changes for a control horizon Hc 

A u = [«o - u- i , wi - u_i, • • •, uHc-i - «- i]T , 

and S is the rate of variation of the states about past control actions (w-i) 

S — [Si,S2, • • •, Sn] 

s(z,l) 0 
g = s(i,2) s(i, 1) 

0 
0 

i = 1, • • -,n 

s(i,HP) s(i,HP-l) ••• s(i,HP-Hc-l) 

where the elements of S are updated at each control interval and are computed via 

perturbation: 

s=(^] = ±lu~1+6 7 * k l (3.31) 
duj 0 5 

where 5 is a numerical perturbation on past input w_i, x|u_1+(5 and x\u-1 are the 

predicted future states under the control actions w_i+«5 and w_i, respectively. 

The control actions are calculated at each control interval by solving an 

optimization problem with a quadratic objective: 

min [(r - y)TQ(r - y) + A u T R A u + erTe] 
Au 

(3.32) 
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subject to equations (3.24) to (3.27) and input constraints 

Aum i r i < A u < A u 
max 

e > 0 

where r is the vector of set-points, e is a vector of slack variables used to soften 

the output constraints and Q, R and T are symmetric positive definite weighting 

matrices. 

To take into account possible plant/model mismatch and/or unknown disturbances, 

the locally linearized model is modified by adding a mismatch compensation term: 

yc = C{[x0 + SAu] + e} (3.33) 

where e is a mismatch term 

e = e_1 + ( y m - y _ 1 ) , (3.34) 

where e_i is the mismatch term computed at the previous control interval, yTO is the 

measured controlled output at the current control interval and y_i is the predicted 

controlled output at the previous control interval for the current control interval, e 

is taken to be zero initially and is updated iteratively at every control interval. It 

is assumed that the value of the state variable T, at all discrete spatial points, is 

measured. 

To address the problem of keeping the maximum temperature below a specified 

upper bound, an additional output constraint is added: 

YTmax ^ T m a x + C 

To model the future value of the maximum temperature, yTmax, as a function of 

the manipulated variable, two methods were considered. The reason for considering 

two different methods is that the 1-D pseudo-homogeneous model used to predict the 

future reactor behaviour might not be accurate enough for predicting the long term 

maximum temperature. 
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Method 1: In the first approach, a local linear model computed from a 

linearization of the 1-D pseudo homogeneous around the current value of the 

manipulated variable was used: 

YTmax = [^o,Tmax + STmaxAu] (3.35) 

S r- = {~~^r)0
 = s (3-36) 

where ~x.o,Tmax is a vector of predicted values in the absence of further control actions 

(w-i), 8 is a numerical perturbation on past input w_i, %.Tmax\u_1+6 and ^Tmax\u-x are 

the predicted future states under the control actions M_I+($ and w_i, respectively. To 

update the model and compensate for plant/model mismatch, an additive mismatch 

term computed from the measured maximum temperature at the current sampling 

time and the predicted value from previous sampling time was used. 

Method 2: In the second approach, the future values of the maximum 

temperature, yTmax, used were predicted values at stationary state, yTmax,ss • A linear 

model obtained from linearization of equation (2.24) about the manipulated variable 

was used. To update the model and correct for possible plant/model mismatch, the 

linear input-output model in (3.35) was used. The model was used to predict the 

behaviour of the maximum temperature in the near future, that is one step ahead, 

and the difference between current process output information and the predicted 

values was considered as an additive model mismatch term for the linear model used 

to predict the maximum temperature at stationary state. 

3.9 Controller Tuning 

For implementation of an MPC controller, the selection of the prediction horizon 

(Hp) is one of the most important parameters. In a typical MPC application, where 

linear lumped parameter models are used, a prediction horizon that approximates 

the time to steady-state of the process is usually chosen. In this way, most of the 

dynamic behaviour of the controlled process is known to the controller. This type 

of prediction horizon is not possible for a reverse flow reactor. Mathematical models 

are usually developed on the basis of a single flow direction, and then the boundary 
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conditions and flow sign are changed to account for the flow reversal. On the basis of 

a single flow direction model, simulation of the process for a sequence of full cycles 

would require, for example, an analytical solution of the model equations that can 

then be assembled to generate the full solution. For complex distributed parameter 

systems, analytical solutions are generally not possible and thus we need to rely on a 

numerical approximation. Numerical approximations and their solutions applied to 

the dynamical models for reverse flow reactors require the solution of a sequence of 

PDE model problems. 

In catalytic flow reversal reactors, the dynamic behaviour of the temperature with 

uni-directional flow is changed by the reversal of the flow direction and the dynamic 

behaviour is a function of the number of cycles. Thus, even if a sequential solution 

is used, the number of cycles required to capture the whole dynamic behaviour of a 

catalytic flow reversal reactor may be large. 

A long prediction horizon in the MPC would capture the whole dynamic behaviour 

and would give a smooth regulation and tracking of temperature within the reactor; 

however, the computational time for a long prediction may be prohibitive. On the 

other hand, a short prediction horizon would be computationally feasible, but it 

would give an aggressive control of the temperature. For MPC control of a reverse 

flow reactor, the computation of the control input is more tractable using a short 

prediction horizon that covers the reactor behaviour during either direct or reverse 

flow direction or a few full cycles. 

Two MPC formulations were considered. In the first formulation, we use a 

prediction horizon that covers only the dynamics of a semi-cycle (shrinking horizon). 

By using a shrinking horizon, we acknowledge that we may lose some control 

performance. As time progress during each semi-cycle, the prediction horizon shrinks 

until next flow reversal occurs. This type of implementation of MPC is similar 

to that used in batch applications. While conventional MPC employs a receding 

horizon framework and is suited for continuous processes, batch processes require a 

shrinking horizon because the time available for control shrinks as the end of the batch 

approaches (Soni and Parker, 2004). In the second formulation, we use the traditional 

receding horizon where we use an even number of full cycles as the prediction horizon. 
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The selection of the control interval (sampling interval) is another parameter for 

the MPC that needs to be selected. The control interval should be carefully chosen 

so that enough time is available for the control calculation. In general, for complex 

PDE-based reactor models, a long prediction horizon has a higher computational time. 

With a longer control interval, the control of fast processes may not be satisfactory. 

For the control of the temperature in a catalytic flow reactor, the control interval 

required to perform all the computations in an MPC, with a prediction horizon that 

shrinks until the next flow reversal, is usually much smaller than the settling time of 

the temperature dynamics. 

3.10 Numerical Simulations 

In this section, closed-loop numerical simulations are provided to show the 

performance of the formulated MPC controller. The section begins with short study 

of the control performance obtained with a shrinking horizon MPC that employs 

a 2-characteristics internal model. A discussion of the challenges faced in using 

such controller is provided. A receding horizon MPC controller that employs a 1-

characteristic internal model is presented in Section 3.10.1. The MPC controller 

with the 1-characteristic internal model allows for a faster online computation of the 

control algorithm and improved control performance. 

For all simulations presented in the proceeding sections, the controlled-plant 

outputs were computed using the model in (2.2) to (2.5); which in turn was solved 

using the finite element method in the COMSOL® Multi-physics simulation software. 

The combined simulation of the reactor and the MPC controller, including the 

solution of the optimization problem, was executed in MATLAB®. 

3.10.1 Shrinking Horizon M P C with 2-Characteristics 
Internal Model 

In this section, closed-loop simulations of a CFRR unit controlled with a shrinking 

horizon MPC with an internal model given by equations (3.24) to (3.27) is presented. 

A schematic of the reactor configuration is given in Figure 2.22. For simulation of 
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the closed-loop system, the following nominal operating conditions were used: 

Y{0,t) = 0.1% 

T(0,t) = 298 K 

vs^n = 1 m • s"1 

Tcyde = 10 min 

Using the nominal operating conditions and a nominal manipulated variable a(t) = 

u(t) = 0.95, the stationary state was computed and is given in Figure 3.4. 
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Figure 3.4: Spatial distribution of the temperature along the reactor centerline at 
stationary state. Solid line: temperature distribution at the beginning of the forward 
direction. Dashed line: temperature distribution at the beginning of the reverse 
direction. 

The controller was formulated to track a specified set-point trajectory for the 

average temperature along the reactor centerline. In this section, the set-point is 

chosen arbitrarily. No constraints were considered for the maximum temperature. A 

spatial domain discretization, n = 21, was used in the computation of the output 

predictions. 
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The controller was tuned using the following parameter values 

Ts — (l/Q)Tcycie 

Hc = 1 

R = 1 

Q = I#px.ffp 

r = 1100IHpXl 

and the following constraint parameters 

Atxmaa; = 0.05 

V>max ~ U.yo 

Umin = U. 1 

Figure 3.5 shows the control performance for a closed-loop simulation with 

disturbances in the inlet mole fraction of reactants (Y/o)- As seen in Figure 3.5 

(top), the controlled temperature is driven towards the specified set-point. Even 

when disturbances enter the system, Figure 3.5 (middle), the controller drives the 

controlled variable to the set-point. Figure 3.5 (bottom), shows the trajectory of the 

manipulated variable, which in turn indicates the gas extraction required to keep the 

average temperature along the specified set-point. 

The main issue regarding the closed-loop simulations with the 2-characteristics 

internal model was the computational time. To solve the model equations (3.24) to 

(3.27), the approached presented in Section 3.8.1 was used; however, this method 

required the solution of a set of nonlinear algebraic equations. Due to the wide 

difference in the time scale of (3.24) and (3.25), a fine discretization in the time 

domain was needed to reach the selected prediction horizon with good accuracy. The 

discretization not only increased with the prediction horizon, but also with the spatial 

discretization of the initial condition. 

Even when a model that includes the dynamics of both the fluid and solid 

phase would be more accurate, solution of the model equations by the method 

of characteristics is computationally intensive and limits the achievable control 

performance. 
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Figure 3.5: Top: trajectory of the maximum (dashed-dot line) and average 
temperature (solid line) along the reactor centerline. Set-point trajectory is indicated 
by a dotted-line. Middle: trajectory of the disturbance, i.e. Y/0.Bottom: trajectory 
of the manipulated variable a = u. 

A few important points deserve to be noted at this stage: 

• The control performance is satisfactory; i.e. the average temperature is driven 

towards the desired set-point but is too aggressive. The aggressiveness arises 

from the short prediction horizon used and sensitivity of the output process 

variable to changes in manipulated variable. To obtain a smoother closed-

loop behaviour, two measures will be considered in the next section: a longer 

prediction horizon and a larger weight for changes in the manipulated variable. 

• The maximum temperature follows the same trend as the average temperature. 

Therefore, it is possible to use the average and maximum temperature together 

to uniquely characterize the spatial distribution of the output variables at 

stationary state. Gas extraction from the reactor midsection can be used to 

drive the reactor system to a unique set of outputs without the need to control 
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the complete spatial distribution of the temperature, which is by nature an 

infinite dimensional variable and would require an infinite dimensional input. 

In the next section, the maximum temperature along the reactor centerline is 

controlled so that it is kept below an upper bound that would be represented 

by the deactivation temperature of the catalyst material. 

3.10.2 Receding Horizon MPC with 1-Characteristic 
Internal Model 

In this section, the reactor model given in equations (3.28) and (3.29) is used as the 

internal model in the MPC scheme to improve the computational time required to 

predict future output behavior. With a reduced computational load, it is possible to 

use longer predictions times, and thus a receding horizon formulation was used. The 

control formulation used in this section, not only includes the control of the average 

temperature but also a constraint for the maximum temperature. 

The average temperature that corresponds to a given maximum temperature and 

that is below the selected upper bound is, in general, not known in advanced. To 

overcome this issue, we use a simple logic scheme where, if the maximum temperature 

constraint is violated, the set-point value is adjusted to the value of the average 

temperature reached at the point where the maximum temperature reaches the upper 

bound. 

The MPC controller was tuned with a prediction horizon Hp, where each Hp interval 

contains an even number of full cycles. The elements of Q that corresponds to 

predicted errors early in the prediction horizon were weighted more heavily than 

the predicted errors at the end of the horizon. The tuning parameters used in the 
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MPC controller were: 

•*• s — 4 i cycle 

Hc = 1 

Hp = 4 

R = 500 
100 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Q = 

and the input/output constraints used were: 

&umax = 0.025 

Umax = -l 

l^min ~ U. i 

Tmaa; = 1300 K 

The spatial domain discretization used in the internal MPC model was n — 100. 

To perform the simulation of the closed-loop system, the following nominal operating 

conditions were used: 

Y(0,t) = 1% 

T(0,t) = 298 K 

vs>in = 0.3 m • s"1 

Tcyde = 10 min 

The reactor configuration used in all simulations presented in this section is shown in 

Figure 2.4. The reactor was started from the initial condition given in Figure 2.12. 

The initial condition does not correspond to the stationary state; and therefore, it 

allows for evaluation of the control performance during start-up of the reactor unit. 

We begin by studying the effect on control performance of disturbances in the 

inlet mole fraction of reactants. Without any control acting on the system (open-

loop operation), the evolution of the output variables is shown in Figure 3.6 a) for 
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an open-loop operation with a disturbance trajectory, Y/o, given in Figure 3.6 b). 

Clearly, the maximum temperature exceeds the selected upper bound if the reactor 

is operated in open-loop, i.e. the manipulated variable is constant as shown Figure 

3.6 c). Temperatures as high as 2000 — 3000 K might never be achieved in practice 

due to catalyst overheating and deactivation. Overheating and subsequent catalyst 

deactivation can be expected, but a mechanism for the catalyst deactivation was not 

included in the reactor model. 

£2000 

30 40 
time (h) 

Figure 3.6: a) Trajectory of the maximum and average temperature along the reactor 
centerline; b) trajectory of the inlet mole fraction of reactant and c) trajectory of 
the manipulated variable, u. The dotted line in a) indicates the maximum allowable 
temperature. 

When the reactor is operated in closed-loop, the control performance achieved 

is shown in Figure 3.7. Two cases were simulated to show the improvement in 
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control performance obtained by using a receding horizon formulation and adding 

a constraint for the maximum temperature. The method identified as method 2 in 

Section 3.8.3, was used, in what follows, to predict the future values of the maximum 

temperature in the MPC scheme. In one of the simulated cases, the controller used 

included a constraint for the maximum temperature (solid line), while in the other 

one the constraint was not included (dashed line). Figures 3.7 a) and b) show the 

progression of the maximum and average temperature along the reactor centerline, 

respectively. Figures 3.7 c) and d) show the trajectory of the inlet mole fraction used 

in the simulation and the trajectory of the manipulated variable, respectively. For the 

case where the maximum temperature constraint is included in the controller, it is 

observed that as the system evolves from the initial conditions, the controller drives 

the maximum temperature below the selected upper bound. Once the maximum 

temperature is below the upper bound, the set-point value is automatically adjusted. 

The system is kept at that set-point until a disturbance that leads to an increase in 

the maximum temperature above the upper bound enters the system. The controller 

drives the system back to a maximum temperature that is below the upper bound. 

The simulation results indicate that the controller provides good control performance, 

as the maximum temperature is kept below the chosen upper bound and stable 

operation is achieved during times of low inlet reactant concentration. 

To better study the closed-loop operation, Figure 3.8 a) shows the evolution of 

the outlet reactant conversion for closed-loop operation with disturbances in the inlet 

mole fraction. The controller used was the one that included a constraint for the 

maximum temperature. It is observed that as the average temperature is kept at a 

constant set-point value, the conversion achieves a constant value that is independent 

of the inlet reactant concentration. Figure 3.8 b) shows the ratio of the heat extracted 

from the reactor midsection and the total energy fed to the reactor. It is observed that 

more energy than that fed to the reactor (Ein = vinAAHrCYfo) is removed from the 

reactor midsection (Emid = mremovedCpf(Tmid — Tin)) during periods of high reactant 

concentrations. A ratio of extracted energy (Emid/Ein) larger than 1 is kept until the 

maximum temperature is driven below the upper bound. Figure 3.8 indicates that it 

might be possible to improve process operation by achieving higher conversions and 

77 



Sec. 3.10 Numerical Simulations 

higher yields of heat recovery from the reactor midsection. 
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Figure 3.7: a) Trajectory of the maximum and b) average temperature along 
the reactor centerline. c) Trajectory of the inlet mole fraction of reactant. d) 
Trajectory of the manipulated variable, u = a. The dotted line in a) indicates 
the maximum allowable temperature. Solid lines: closed-loop simulation of MPC 
with maximum temperature constraint; dashed lines: closed-loop simulation of MPC 
without maximum temperature constraint. 

Even though the method used to predict future values of the maximum temperature 

(method 2, see Section 3.8.3) can be used to achieve good control performance, it is 

always desired to have a simpler controller that does not require the identification and 

formulation of a steady-state model. In what follows, method 1 as defined in Section 

3.8.3 was used to predict future values of the maximum temperature in the MPC 

scheme. Nevertheless, similar control performance was observed with both methods. 

The closed-loop control performance for disturbances in inlet gas velocity is shown 

in Figure 3.9. As seen in Figure 3.9 (top), the maximum temperature is kept below 
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Figure 3.8: Top: reactant conversion at z/L = 1. Bottom: ratio of the heat extracted 
from the reactor midsection and the total energy fed to the reactor. 

the selected upper bound and the average temperature tracks a set-point value which 

guarantees stable operation despite disturbances. As inlet gas velocity disturbances 

enter the system, Figure 3.9 (middle), an optimal input trajectory is computed, Figure 

3.9 (bottom), to achieve specified control objectives. It is observed from Figure 3.9 

that rejection of disturbances in the inlet gas velocity is faster than those disturbances 

in the inlet mole fraction. This behaviour was expected as it was found in the open-

loop numerical simulations in Section 2.11.3 that a shorter settling time is obtained 

for step changes in the inlet gas velocity. The closed-loop simulation reveals that, 

for the trajectory of the inlet gas velocity considered (which comprise the range of 

expected values in practical applications), small deviations in the input and output 

variables are observed to keep the reactor under stable operation. 

Figure 3.10 (top) shows the evolution of the outlet reactant conversion. Even 

though it was observed that the deviation of the output as well as the input variables 

is small for the range of disturbances considered, large deviations in the reactant 

concentration are observed. Figure 3.10 (bottom) shows the ratio of the heat extracted 

from the reactor midsection and the total energy fed to the reactor. Heat removal as 
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well as reactant conversion show fast changes after the disturbances enter the system, 

while recovery to a new stationary state show a relatively slower dynamic transition. 
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Figure 3.9: a) Trajectory of the maximum temperature and b) trajectory of the 
average temperature, c) Trajectory of the disturbance (inlet gas velocity), c) 
Trajectory of the manipulated variable a = u. The dotted-line in a) indicates the 
maximum allowable value for the temperature. 
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Figure 3.10: Top: reactant conversion at z/L = 1. Bottom: ratio of the heat extracted 
from the reactor midsection and the total energy fed to the reactor. 
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The closed-loop control performance for tracking specified set-points in the average 

temperature is shown in Figure 3.11. As seen in Figure 3.11 (top), the average 

temperature tracks the specified set-point well. The input trajectory is shown in 

Figure 3.11 (bottom). Figure 3.12 (top) shows the evolution of the outlet reactant 

conversion. Figure 3.12 (bottom) shows the ratio of the heat extracted from the 

reactor midsection and the total energy fed to the reactor. 
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Figure 3.11: a) Trajectory of the maximum and average temperature for the set-
point trajectory indicated by the dashed-line. The dotted-line indicates the maximum 
allowable value for the temperature, b) Trajectory of the manipulated variable a = u. 
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Figure 3.12: Top: reactant conversion at z/L = 1. Bottom: ratio of the heat extracted 
from the reactor midsection and the total energy fed to the reactor. 
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3.11 Dealing with Manipulated Variable 
Saturation 

While operating in closed-loop, large disturbances in the inlet (boundary) conditions 

may lead to two extreme situations: 

1. High inlet reactant concentration: when high inlet concentrations occur, the 

rate of gas extraction from the midsection of the reactor must be increased to 

achieve stationary-state without burning the catalytic material. Under highly-

concentrated feed stream conditions, a large part of the flowing gas might need 

to be removed through the reactor midsection; and eventually, only half of the 

reactor will be effectively used. 

2. Low inlet reactant concentration: when low inlet concentrations occur, the 

rate of gas extraction from the midsection of the reactor must be decreased to 

achieve stationary-state without extinguishing the reaction. Under highly-dilute 

feed stream conditions, that persist for long periods of time, and without any 

additional control measure, nothing else can be done to keep a high temperature 

in the active catalyst sections to avoid reaction extinction. 

Additional control measures can be added to the reactor system to allow efficient 

operation under extreme conditions. Such measures include adding, through the 

reactor midsection, a hot air stream to increase the reactor temperature during lean 

inlet conditions or a cold air stream to reduce the reactor temperature during rich 

inlet conditions. In any case, these additional measures can be implemented using 

a logic control scheme. The MPC controller would be used to drive and keep the 

reactor operation within a stable and smooth operating region using mass extraction. 

Outside the operating region for which mass extraction is not sufficient, then the 

MPC controller will be turned off and the new measures will become active until a 

temperature reaches a level that allows the system to be controlled by mass extraction. 
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3.12 Summary 

In this chapter, the development of a model-based controller for a catalytic flow 

reversal reactor was presented. The controller was formulated to drive and to keep 

the reactor within stable operating conditions. An MPC scheme that uses the method 

of characteristics to predict future outputs values was employed. 

The formulation of the control scheme was aimed at CFRR units with slow 

frequency of flow reversal. Slow frequencies are required in the processing of large 

volumes of gas, and the movement or shifting of the spatial distribution of the state 

variables along the reactor is a inherent characteristic. 

In this chapter, we propose to use an average of the temperature profile along 

the reactor as the output variable that needs to be controlled to avoid reactor 

shutdown due to reaction extinction. In addition to the average temperature, the 

maximum temperature is constraint to be below an upper bound that represents the 

catalyst deactivation energy. Through the controller formulation and simulation, it is 

shown that the two variables can be used to keep the reactor within stable operating 

conditions despite disturbances in the most common uncontrolled variables, i.e. the 

inlet mole fraction of reactant and inlet gas velocity. It is shown that the use of 

the heat extraction by means of mass extraction in an MPC scheme can be used to 

control the reactor system. 

Detailed discussion about the selection of the tuning parameters in an MPC 

controller is provided. The selection of the prediction horizon is addressed in detail, 

since its selection is essential for the application of a model predictive control to a 

reverse flow reactor. We studied the formulation of model predictive controller where 

during each semi-cycle, the prediction horizon begins to shrink as time progress until 

the next flow reversal occurs shrinking horizon. This formulation is proposed to 

overcome the need of predicting a large number of full-cycles, which would become 

computational expensive; however, we observe that the controller is too aggressive. 

We also considered a second approach, where we used the traditional receding horizon 

and an even number of full cycles is used as prediction horizon. The receding horizon 

formulation along with a 1-characteristic model of the reactor system was shown to 
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provide satisfactory control performance in the numerical simulations of the closed-

loop system. 
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LQ-feedback Control of a Catalytic Flow 
Reversal Reactor 

In this chapter, the control of catalytic flow reversal reactors is studied by means of 

a linear quadratic (LQ) regulator for infinite-dimensional systems. The goal of this 

chapter is to study a control technique that can give a control performance bench­

mark for a catalytic reverse flow reactor with mass extraction. The formulation of a 

LQ-feedback scheme to control the temperature profile along the reactor centerline 

is the goal of this chapter. The theory behind analysis and control of infinite dimen­

sional systems is complex and practical applications are rare. This chapter provides 

an insight into the advantages and limitations of the technique for plug-flow catalytic 

reactors. 1 

1Parts of this chapter are published in Puxman et al. (2007a) and in Fuxman et al. (n.d.) 
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4.1 Introduction 

The typical approach to the control of PDE systems is based on the spatial 

discretization, by either finite difference or finite-element method, to transform a 

PDE system into a lumped parameter system amenable for the well-established 

control techniques for ordinary differential equations. The fact that the spatial 

discretization neglects the distributed nature of the original system may lead to false 

conclusion about conditions of controllability and observability or even erroneous 

conclusions concerning the stability properties of the open-loop and/or closed-loop 

system (Ray, 1981; Christofides, 2000). Motivated by these reasons, there has been 

great interest in the control of infinite-dimensional systems by using a functional 

analysis framework. 

In the functional analysis framework, systems modeled by partial differential 

equations can be formulated in a state space form similar to that for lumped 

parameter systems. This requires the introduction a suitable infinite-dimensional 

space and suitable operators instead of the usual matrices. Control theory for infinite-

dimensional linear time-invariant systems is well documented, e.g., (Curtain and 

Zwart, 1995); however, application of the theory to control of chemical reactors are 

rare. 

For reactor systems modeled by parabolic partial differential equations, and within 

the framework of geometric and model predictive control, Christofides and co-workers, 

develop an order reduction by partitioning of the eigenspectrum of the spatial operator 

to derive a finite-dimensional approximation that captures the dominant dynamics of 

the infinite-dimensional system (Christofides, 2000; Dubljevic et al, 2005; Dubljevic 

et al, 2006). 

Linear-Quadratic (LQ) optimal temperature and reactant concentration regulation 

problem was studied in (Aksikas et al, 2007a; Aksikas et al, 20076) for a hyperbolic 

partial differential equation model of a nonisothermal plug flow tubular reactor by 

using a nonlinear infinite dimensional Hilbert state space description. 

In this chapter, we study the application of control theory for infinite-dimensional 

systems to a catalytic reactor through the formulation of an LQ-feedback controller 
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for a catalytic flow reversal reactor. The LQ-feedback control problem for a catalytic 

reverse flow reactor was treated in Edouard et al. (2005) by using the traditional 

LQ solution for finite dimensional systems to control of the temperature at a single 

spatial point along the axis of the reactor. 

4.2 Contributions 

In this chapter, we use a plug-flow catalytic reactor model with unidirectional flow 

and develop an LQ controller based on an infinite dimensional representation of the 

model equations. Conditions for the existence of a solution of the optimal LQ problem 

are proved for the linear infinite dimensional model. An LQ-controller is developed 

for catalytic reactor model with unidirectional flow and conditions for stability of the 

reverse flow reactor are provided. Numerical simulations of the closed-loop system are 

used to illustrate the behavior of the catalytic reactor with the formulated controller. 

This chapter helps to provide an insight into the advantages and limitations of the 

technique for convection dominated catalytic reactors. 

We begin this chapter with a brief introduction of some fundamental concepts 

related to infinite-dimensional linear systems theory. Basic mathematical definitions 

used throughout the introductory material are given in Appendix B. Extensions to the 

introductory material can be found in, for example, (Atkinson and Han, 2001; Curtain 

and Zwart, 1995; Aksikas, 2005). 

4.3 Background 

The theory of infinite dimensional systems is a complex one and it requires important 

mathematical background. In this section, we show through an example the 

formulation of a PDE model as an infinite-dimensional system. Consider the following 

heat equation 

| - 0 ,€<0,1).«<0 (4.1) 

with boundary conditions x(0,i) = x(l , t) = 0 and initial condition x(z,0) = XQ{Z). 

The abstract approach to this problem is to recast it as an ordinary differential 

equation in an infinite-dimensional function space. For this purpose, one defines a 
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space Z which consist of functions of z defined on the interval (0,1). We then regard 

x as a function x(t), which, for every given t, takes values in X. That is, x(t) is still 

a function of z; to avoid ambiguous notation, we shall use square brackets to denote 

the z dependence: x(z,t) = x(t)[z\. The infinite-dimensional space X replaces Rn 

in lumped parameter systems. There are many possible choices for this function 

space; the one most commonly employed is the space of square integrable functions: 

X = I/2(0,1). The abstract version of the heat equation is 

^ = Ax i(0) = xo (4.2) 

where the operator A maps the function x[z] to the function x"[z] (i.e. x"[z] = - ^ p ) . 

In contrast to the case of ordinary differential equations, A is not defined on the 

whole space X. First of all, x"[z] does not exist, at least not as an element of X, 

unless we assume some smoothness of x. The appropriate space is defined as the 

space of all functions on (0,1), which have a second derivative which lies in L2(0,1). 

Even more importantly, the boundary conditions are viewed as a restriction on the 

domain of the operator A. The reason for incorporating the boundary conditions as 

a restriction on the domain of A is the objective of defining a meaningful eigenvalue 

problem Ax = ax. The eigenvalue problem solution gives the eigenvalues a = —n27r2, 

and the associated eigenfunctions xn[z] = sin(nnz). 

The solution of equation (4.2) is available in many introductory books of partial 

differential equations (Jeffrey, 2003, page 242), and can then be written as a linear 

combination of the eigenfunctions 

x(z, t) = 2_]xn(t)sin(rnrz) (4.3) 
neN 

Substitution of (4.3) into (4.2) and using Ax = ax, we can rewrite the heat equation 

in the form 

-n27r2:r„ (4.4) 
dt 

In this form, the abstract system ^ = Ax in (4.2) appears explicitly as an infinite 

system of ODEs, and we can read off the eigenvalues —n27r2. 
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4.3.1 Semigroup Theory 

The solution structures of many PDE systems can be expressed by semigroup 

operators (Curtain and Zwart, 1995). For the solution of linear infinite-dimensional 

systems, consider the abstract initial value problem 

/ x(t) = Ax(t) t<0 , . 
\ x(0) = x0 e D(A), ^ 

in the more general Hilbert space H. The linear operator A is defined in some subset 

D(A) of H. For finite dimensional systems of the form of equation (4.5), the solution 

is well known: x(t) = eAtx0. For infinite dimensional systems, we want to identify 

a class of operators A which, in some sense, define a 'solution' eAt and the abstract 

formulation of the solution on H becomes 

x(t) = S(t)x0 (4.6) 

To see how the concept of strongly continuous semigroup is closely related to that of 

a dynamical system with no inputs, suppose that x0 G X is the state of a dynamical 

system defined on a Hilbert space X at time zero, and that the state at time t is 

x(t). If we assume the dynamics that govern the evolution from XQ to x(t) are linear, 

time-invariant, and autonomous, then for each time t we can define a linear operator 

S(t) such that 

S{t) :X-^X, 5(0) = / , (4.7) 

x(t) = S(t)x0 (4.8) 

Let also assume that the state of the dynamical system satisfies the well-posedness 

conditions: 

• it is unique; 

• it varies continuously with the initial state. 

An operator S(t) that fulfills the above requirements is called in the semigroup 

theory, a strongly continous semigroup. In mathematical terms, a strongly continous 

semigroup is defined as follows 
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Definition 4.3.1 a strongly continuous semigroup (usually abreviated as Co-

semigroup) is an operator-valued function S(t) from R+ to C(H) that satisfies the 

following properties (Curtain and Zwart, 1995): 

1. S(0) = I; 

2. S(t + s) = S(t)S(s), t<0, s < 0; 

3. S(t)x0 -> x0, ast^0+ Vz0 e U. 

The conditions under which A generates a Co-semigroup S(t) are given by the Hille-

Yosida Theorem (Curtain and Zwart, 1995, Theorem 2.1.12), which characterizes 

the semigroup generation. Although, the theorem provides necessary and sufficient 

conditions, it is not, in general, possible to use the theorem to assess whether or not 

an operator generates a semigroup. 

A linear operator of importance for this chapter is 

rjnr 

Ax = -f- + kx Vxe D(A) (4.9) 

where the domain of A is given by 

D(A) = {xeH:xis a.c, — e U and x(0) = 0}, 

dz 

and kl is a bounded function. The operator A is an infinitesimal Co-semigroup on 

H. A proof can be found in Aksikas (2005). 

4.4 Stability Analysis of Infinite-Dimensional 
Systems 

The growth of a Co-semigroups plays an important role in the analysis of the stability 

of an infinite-dimensional system. A a strongly continuous semigroup on a Hilbert 

space H has the following property: 

Vu; > a>o, there exist a constant M^ such that Vt > 0, Ĥ OOH < Mwe -u>t 

The constant UJQ is called growth bound of the semigroup (Curtain and Zwart, 1995, 

page 18). A Co-semigroup on a Hilbert space is exponentially stable if there exist 
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positive constants M and u> such that 

\\S(t)\\ < Me-Ut V t > 0 , (4.10) 

where u is called decay rate. If S(t) is exponentially stable, then the solution to 

problem (4.5) tends to zero exponentially as t —* oo. 

In finite dimensional problems, one usually examines exponential stability via the 

eigenvalues of the operator or matrix A. For any matrix A e Rn x n , the finite-

dimensional linear system x(t) = Ax(t) is exponentially stable if and only if the 

number UIQ = supi<i<nRe(Xi), where a {A) — {\ : 1 < i < n} is the set of eigenvalues 

of A, is negative. For infinite dimensional systems, however, this is not possible 

because 

sup{Re(\), A € a(A)) < w, (4.11) 

where a (A) is the spectrum of A (Curtain and Zwart, 1995, page 223). 

The exponential stability of Co-semigroups can be characterized by a Lyapunov-

type criterion (Curtain and Zwart, 1995, page 217): 

Theorem 4.4.1 [Lyapunov Criterion for Stability] Suppose that A is the 

infinitesimal generator of the Co-semigroup S(t) on the Hilbert space 7i. Then S(t) is 

exponentially stable if and only if there exist a positive operator P € £(H) such that: 

(Ax, Px) + (Px, Ax) = -(x, x) Vx e D(A) (4.12) 

4.5 Linear Quadratic Regulator 

A classical problem in optimal control theory of finite dimensional systems is the 

well known Linear Quadratic Regulator (LQR). LQR is an optimal state feedback 

controller for linear systems of the form 

x = Ax + Bu, x(t0) = xo (4-13) 

with a control performance objective of the form 

JM = l^(tf)Bx(tf) + \ j\x(t)TQx(t) + u(t)TRu(t))dt. (4.14) 
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where H is positive definite, Q is positive semi-definite and R is positive definite. 

There are several ways to solve optimal control, among which the most commonly 

used is the variational method for optimal control. Although it is possible to find 

a solution for the general problem in equations (4.13)-(4.14) by solving a matrix 

Riccati differential equation, we consider the particular case where the terminal time 

approaches infinity. Without loss of generality, we assume that the steady state is the 

origin. Since the linear quadratic regulator gives a stable closed-loop dynamics under 

the condition that the open-loop system is controllable, then cost at the terminal 

moment lacks significance and it does not appear in the cost function, i.e., H = 0. 

The cost function for an infinite time regulator problem is 

1 f°° 
J(u) = =- / (x(t)TQx(t) + u(t)TRu(t))dt (4.15) 

2 Jo 

and the optimal control law is 

u(t) = - R B T K x ( t ) (4.16) 

where the constant symmetric square matrix K may be obtained by the following 

algebraic Riccati equation (Ray, 1981): 

KA + A T K - K B R ^ B ^ K + Q = 0 (4.17) 

The solution of the algebraic Riccati equation may not be unique. The desired solution 

is obtained by enforcing the requirement that K is positive definite. 

For a linear time-invariant infinite-dimensional linear system of the form 

x(t) = Ax(t)+Bu(t), x(t0) = x0 (4.18) 

y(t) = Cx(t) (4.19) 

where the following assumptions hold: 

1. the state x(t) G 7i, a real separable Hilbert space, the input u(i) G U and the 

output , where U and Y are real separable Hilbert spaces; 

2. A : D(A) C H —> H is the infinitesimal generator of a C0-semigroup; 
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3. B and C are bounded linear operators, 

the optimal control problem is defined by using the following cost function: 

/•oo 

J{u)= (y(s),y(s)) + (u(s),u(s))ds. (4.20) 

Jo 

The objective of the control problem is to minimize this cost functional along all 

trajectories. First note that if the system XX A ^> C) is exponentially stabilizable 

then for all XQ G H, there exists an input u G L2([0,oo);U) such that the cost 

functional J is finite, see (Curtain and Zwart, 1995, page 292). Therefore, the 

exponential stabilizability guarantees the well-posedness of the minimization problem. 

The solution of this problem can be obtained by finding the positive self-adjoint 

operator QQ G C{7i) that solves the following optimal Riccatti agebraic equation 

(ORAE) (Aksikas, 2005): 

[A*Qo + Q0A + C*C + QoBB*Qo}x = 0 Vx e D(A), (4.21) 

where Q0(D(A)) C D(A*). 

Theorem 4.5.1 [ (Aksikas, 2005) ] Consider an infinite-dimensional system 

^2(A,B,C). Assume that (A,B) is exponentially stabilizable and (C,A) is 

exponentially detectable. Then the ORAE J^.21 has a unique positive self-adjoint 

solution QQ G C{7i) and for any initial state XQ G 7i, the quadratic cost 4-20 is 

minimized by the unique control given ont>0 by 

uopt(t) = K0x(t), x(t) = e^+BK^x0, (4.22) 

where the optimal feedback 

K0 = -B*Q0 G £(H, U) (4.23) 

is stabilizing, i.e. the feedback semigroup e^A+BKo')t is exponentially stable. In addition, 

the optimal cost is given by J(xo,uopt) = (XQ,QOX0). 

The conditions for exponential stabilizability and detectability can be defined as 

follows: 

94 



Sec. 4.5 Linear Quadratic Regulator 

Definition 4.5.1 (Aksikas, 2005) Let ^2(A,B,C) be an infinite-dimensional linear 

system, given by (4-18). 

1. {A,B) is exponentially stabilizable if there exists a state feedback operator 

F e C(H, U) such that A + BF generates an exponentially stable Co-semigroup 

2. (C, A) is exponentially detectable if there exists an output operator G <E £(Y, 7i) 

such that A + GC generates an exponentially stable Co-semigroup 

If exponential stability can be proved for a given linear operator, then by Theorem 

4.5.1 the existence of a solution of the ORAE can be guaranteed. 

4.5.1 LQ-Control of a Catalytic Flow Reversal Reactor 

In this section, a linear-quadratic optimal controller is formulated for a catalytic flow 

reversal reactor. As shown in Section 2.9.2, a catalytic reactor can be modeled by a set 

of first order hyperbolic PDEs. A controller is developed on the basis of the catalytic 

reactor model with unidirectional flow and is formulated to regulate he distribution 

of the temperature along the axis of the reactor by using the fluid flow velocity. 

To formulate the controller, a linear infinite dimensional state space description of 

the PDE model is used. We take advantage of the two-time scale characteristic of 

catalytic tubular reactors to develop a controller that requires only the measurement 

of the temperature along the axis of the reactor. Using the infinite dimensional model, 

a state LQ-feedback operator is computed via the solution of a Riccati differential 

equation. 

4.5.2 Dimensionless Model 

In this subsection the dynamics of the catalytic reactor are described by means of 

an infinite-dimensional system description derived from an equivalent dimensionless 

nonlinear partial differential equation model. Such an approach is standard in tubular 

reactor models. Let us consider the reactor model given in (2.6)-(2.7) and the 

following state transformation: 

Y —Y T — T 
01 = £^JLt h = - ^ (4.24) 

* in J- in 
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Then we obtain the following equivalent representation of the model: 

^ = M ^ + fcl(1_,l)exp(_|_) (4.25) 

fh^i+w-fc^if^ (426) 

where 9 — a and the dimensionless vi,V2, iy,k\ and k2 are related to the original 

parameters as follows: 

Vin Vinp -E 

V RgTi •g-Lvn 

k0 1 (-AHr)Che (Yi in 
1 •"& \ rri 

e V \Ti7 

A typical feature of catalytic reactors where fluid and solid phases coexist is that 

the reactant wave propagates through the reactor with a significant larger speed then 

the heat wave. The different dynamics implies that the system of equations (4.25)-

(4.26) possess an inherent two-time-scale property, that is, the dynamics of the mole 

variable are much faster than the temperature dynamics. For catalytic combustion 

of methane, the mole fraction dynamics is typically three orders of magnitude faster 

than the temperature dynamics. In section 2.9.2, it is show that the fast dynamics 

in equation (2.6) are exponentially stable and they can be neglected in the controller 

design. Since we are interested in controlling the temperature, we neglect the dynamic 

term in equation (4.25) which reduces the equation to: 

d6i ( 1 ^ , M n , ( \i 
dz 

(_L)M1^ l )exp(_A_) (4.27) 

An analytical solution of equation (4.27) is possible 

di(z) = 1 - (1 - 6^0)) • exp ( f ^k1exp[T-^-)dz) (4.28) 

Remark: The reduction in the dimensionality of the original model of the reactor 

using the fact that the process exhibits a two-time scale property eliminates the need 

for measurements of concentration of reactant; which greatly facilitates its practical 

implementation (Christofides, 2000). 
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Substituting (4.28) in (4.26) gives 

dt 

an 
< M ^ + fc2(i-0i(o)) 

exp r i u 
/ -—kiexp 

Jo <M 

\L 

l + #2 
dz 1 exp V 

1 + 9, 
(4.29) 

4.5.3 Infinite Dimensional Linearized Model 

Let us denote by 92,e
 a n d 0e the dimensionless profile of the model (4.29) at the 

operating point. Let us consider the state transformation 

x(t) •.= e2(t) - e2,e, (4.30) 

and new input u(t) := 4>(t) — (j)e. Then, linearization of the system (4.25)-(4.26) around 

its operating profile leads to the following linear infinite-dimensional system on the 

Hilbert space H: 

x(t) = Ax(t) + Bu(t) 
x(0) = XQ 6 H . 

Here A is the linear operator defined on its domain: 

by 

dx 
D(A) — {x : x is a.c, — G 7i and x(0) = 0}, 

dz 

A dx . 
Ax = a——h px 

dz 

where the functions a and (5 are given by 

a(z) 

P(z) 

(j>e{z)v2, 

fc2(l-6>i(0))exp 

T1 
Jo 

V 

-h 

1 + #2,e 
exp F -

JO <Pe1 

hexp 
vi y \ i + e2,e 

V 

Vl
 L\(i + e2,ey exp 

V 
1 + 9 2,e 

dz + -V 

(4.31) 

(4.32) 

(4.33) 

dz 

(l + 02,e 

The operator B G £(L2(0, l),H) is the linear bounded operator given by 

B = il, (4.34) 
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where the function 7 is given by 

The following proposition deals with the exponential stability of the linearized model 

for the catalytic reactor with unidirectional flow. This property plays an important 

role in LQ-control design, especially the existence and the uniqueness of a solution. 

Proposition 4.5.1 Let us consider the operator A defined by (4.32)-(4.33). Then A 

generates an exponentially stable C0-semigroup on H. 

Proof: By Theorem 4.4.1, it suffices to prove that there exists a positive definite 

operator P G £(W) that satisfies the following Lyapunov equation (Curtain and 

Zwart, 1995, Theorem 5.1.3) 

P(D(A)) c D(A*)) and PA + A*P + I = 0. (4.35) 

In view of the form of the operator A, it seems natural to look for a solution of the 

form P = p(z)I, where p e l . By a straightforward calculation, it can be shown that 

if the function p is a solution of 

^ = 2ft,+ l , P ( l ) = 0 

- a S = ( 2 / 3 - S ) P + 1 ' P ( 1 ) = ° (4'3G) 

then P = pi is a solution of equation (4.35), since the final condition p(l) = 0 implies 

that P(D(A)) c D(A*). Moreover equation (4.36) admits a positive solution on 

[0,1], then P — pi is positive definite (Abou-Kandil et a/., 2003, Corollary 6.7.36). 

A detailed derivation of equation (4.36) is given in Appendix B.2. 

• 
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4.6 Controller Design 

In this section, we are interested in the linear-quadratic optimal (LQ) problem in 

order to design a state LQ-optimal controller for the linearized catalytic flow-reversal 

reactor described by (4.31)-(4.34). First let us define an output function y(-) by 

y(t) = Cx(t) := w x(t), t > 0, (4.37) 

Now let us consider the LQ-optimal control problem: for any initial state XQ e H, 

find a square integrable control uopt G L2[[0, oo); L2(0,1)] which minimizes the cost 

functional 
/>oo 

J(x0,u)= / ({Cx(t),Cx(t)) + (u{t),ru(t)))dt, 
Jo 

where r is a coercive operator (see Appendix B). The solution of this problem can 

be obtained by finding the positive self-adjoint operator Q0 G C(H) which solves the 

operator Riccati equation (4.21). 

By the Theorem 4.5.1, it is required that (A, B) be exponential stabilizable and 

that (C, A) be exponential detectable for the operator Riccati equation to admit a 

unique positive self-adjoint solution. In the proof of proposition 4.5.1, it is shown 

that the unique solution exists. Therefore, we can establish the following theorem: 

Theorem 4.6.1 Let us consider the linearized catalytic reactor model (4.31)-(4.33), 

with control operator B given by (4.34) and observation operator C given by (4.37). 

Let tp be the solutions of the system equations: 

I tf(i) - o. l4-d8j 

Then the optimal LQ-feedback operator is given for all x G 7i by 

K0x = - r _ 1 7 ^ x . (4.39) 

Proof: Let us solve the operator Riccati equation (4.21). Assume that this equation 

admits a solution under the form Q0 = tjj(z)I . Our concern is to find, if possible, 

a function tp such that Q0 = 4>(z)I is the unique self-adjoint positive semi-definite 
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solution of equation (4.21). First, let us substitute the expression for Q0 into the 

equation (4.21), which yields: 

— - • aib • I + Bib • I + iba • — + tbB • I + w2 • I - 7 2 r "V 2 • J = 0 
dz dz 

d(aV0 _no.i. , ...2 _.2„-l„/2 
dz 

2/?^ + w 2 - 7 V - V ,^(1) = 0. (4.40) 

The final condition -0(1) = 0 was deduced from the condition Q0(D(A)) C D(A*). 

A detailed derivation of equation (4.40) is given in Appendix B.3. On the other 

hand, equation (4.38) admits a unique positive solution ib, see e.g. (Abou-Kandil et 

al, 2003, Corollary 6.7.36). Hence the operator Q0 = ibl is positive. Consequently, 

the optimal control and the optimal cost are given by 

Uopt(t,z) = -'y(z)ib(z)x(t, z) 

and 

J(x0,uopt) = ipx2
0. 

n 

Remark 4.6.1 The LQ-feedback operator guarantees stability of the catalytic reactor 

model with unidirectional flow (4-31) for any initial state XQ € "H and boundary 

condition x(0) = 0. For the catalytic reactor model with reverse flow operation, we 

can look at the system as an impulsive dynamical system where the state distribution 

x(t) G H is periodically reversed with a time period T at tk = kT, k = 1,2,.., but 

where the boundary condition x(0) = 0 remains unchanged. Then the LQ-feedback 

operator provides stability of the catalytic reactor with reverse flow operation because 

after each flow reversal (tk), the LQ operator designed for the catalytic reactor model 

with x(0) = 0 guarantees stability from any initial condition. Therefore, the switching 

time does not affect the stability of the closed-loop reverse flow reactor system. 

We note, that the LQ-controller is designed to drive the reactor system 

asymptotically (t —> ooj to the operating point around which the nonlinear model 

was linearized. The optimal solution obtained from solving the ORAE satisfies the 

Lyapunov equation A*C1QQ+PACI — —Q, where A^ = A—BKQ andQ = C*C+KQrKo. 
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Since the Lyapunov function V = (x, Qox) is positive semi-definite, and the Lyapunov 

equation guarantees that V is non-increasing, then it is guaranteed that the closed-

loop system is driven towards the operating point. At the flow reversal instant, the 

value of the Lyapunov function does not change. Since V decreases throughout each 

semi-cycle, it can be conclude that the reactor system approaches the operating point 

asymptotically, even when the flow direction is changed periodically. It should be 

noted that the controller guarantees that the reactor system is driven towards the 

operating point for which it was designed only if the system is started from an initial 

condition away from the stationary state or if disturbances in the boundary condition 

are temporary; otherwise, an offset will remain. 

4.7 Numerical Simulations 

To simulate the operation of the catalytic flow reversal reactor, we use the one-

dimensional model given in equation (2.6)-(2.7). Model parameters are given in Table 

A.2. A scheme of the reactor configuration used in the numerical simulations is given 

in Figure 2.4. A full cycle time of 600 s was considered. 

Removal of gas from the reactor was used to control the temperature of the system. 

Removal of gas was shown to be to be advantageous over cooling by heat exchanger, 

see (Aube and Sapoundjiev, 2000), and was an effective means of control in Chapter 

3. Associated with the gas removed, energy is removed from the system and therefore 

the temperature is kept under control. At the spatial points where gas is removed, 

the velocity of the flowing gas changes. In theory, manipulation of the gas velocity 

at an infinite number of spatial points leads to the best control performance. We 

first study this theoretical situation to obtain an upper bound in the best achievable 

control performance. 

Using the nominal operating conditions, 

y(0, t) = 0.3%, T(0, t) = 298^, vin = lm- s'1, 

and the model given in equation (2.6)-(2.7), the stationary state was computed, see 

Figure 4.1. 
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An LQ-feedback operator was computed using the linearized model, equation 

(4.31). Linearization was performed around the temperature distribution at the 

stationary state. 

The LQ-control operator that results from solving the system of equations (4.38) 

is given in Figure 4.2 for w(z) — 1 and r(z) — 10. For the numerical simulations, the 
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Figure 4.1: Top: temperature distributions at stationary state (solid lines) and 
initial temperature distribution for closed-loop numerical simulatons (dashed-lines). 
Bottom: spatial distribution of the manipulated variable in the forward and reverse 
flow direction. 

control action was computed every 100 seconds (i.e. 1/6 of a full cycle). The time 

between the calculation of the control action is short compared to the slow dynamics 

of the temperature variable. For the controller calculations, the temperature along 

the axis of the reactor is assumed to be available. A total of 100 discrete points were 

used as the spatial locations were the outputs are measured and the manipulated 

variable is changed. 

To evaluate the control performance to regulate the system, we computed the 

closed-loop response of the nonlinear model and the LQ-controller from an initial 
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Figure 4.2: LQ-feedback function i\) for w(z) — 1 and r(z) = 10 . 

state that is not the stationary state, see Figure 4.1. Such a situation is encountered 

during reactor start-up and during impulsive disturbances affecting the system. The 

resulting closed-loop behavior is shown in Figure 4.3. It can be observed that the 

state converges to the stationary state, as expected. Distribution of the difference 

between the current temperature and the temperature at stationary state is shown 

in Figure 4.4. The trajectory of the manipulated variable at the beginning of the 

the beginning of each full cycle is shown in Figure 4.5. It can be observed that 

for the optimal regulation of the system, a faster velocity than that at stationary 

state is needed in the first half of the reactor and a slower velocity is needed in the 

second half. A comparison of the closed-loop, the open loop and the stationary state 

maximum temperature for the reactor system started from the same initial conditions 

is shown in Figure 4.6. As expected, it is observed that the closed-loop system drives 

the temperature to the stationary state much faster rate than the open-loop. The 

open-loop system is expected to evolve towards the stationary state (if no persistent 

disturbances affect the system) because the linear spatial operator A of the infinite 

dimensional representation of the catalytic model in (4.31) is exponentially stable, the 

B operator is bounded and the remark used in 4.6.1. To evaluate the ability of the 

controller to achieve stable operation, the closed-loop behaviour of the system with 

disturbance in the inlet mole fraction of reactant was simulated. The performance of 

the closed-loop system is shown in Figure 4.7 for a disturbance trajectory given at the 
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2000 v 

Figure 4.3: Closed-loop distribution of the temperature along the reactor centerline. 

bottom of the figure. For comparison, we included the open-loop dynamics in Figure 

4.8 for the same disturbance trajectory. It is observed that the open loop operation 

leads to extinction of the reaction, while the closed-loop keeps stable operation. 

Although manipulation of the fluid flow velocity along the axis of the reactor at a 

large (or infinite) number of points gives the best achievable control performance 

that is interesting to study and can be used as a benchmark for the maximum 

achievable performance, it is not practical for real operation. Since it is not practical 

to manipulate the fluid flow velocity along the axis of the reactor, we approximate 

the optimal spatial distribution of the manipulated variable by averaging its value as 

follows: 

i rzout 
uSub(t) = / -r(z)-1i(z)il){z)-x(t,z)dz (4.41) 

where subscripts mid and out denote midsection (z = 0.5) and outlet section of the 

reactor (z = 1), respectively. The fluid flow velocity is constant in the first half of the 

reactor, after which the fluid flow velocity is manipulated by using a control valve. 

Using equation (4.41) as input variable, we computed the closed-loop response of 

the system from an an initial state that is not the stationary state, see Figure 4.1. 

The closed-loop temperature response along the axis of the reactor is shown in Figure 
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Figure 4.4: Distribution of the difference between the current temperature and the 
temperature at stationary state, Tss. 

4.9. The trajectory of the manipulated variable, usub(t), is shown in Figure 4.10. We 

observe that the controller performs well, as the temperature distribution is driven 

towards the stationary state values.; however, when compared to the closed-loop 

system with the optimal LQ, see Figure 4.11, some control performance is lost. 

To evaluate the ability of the sub-optimal controller to achieve stable operation, we 

simulate the closed-loop behavior of the system to step disturbances in the inlet mole 

fraction. The performance of the closed-loop system is shown in Figure 4.12. Figure 

4.13 shows the trajectory of the manipulated variable usub(t). It is observed that the 

closed-loop system quickly reaches the stationary state for some inlet disturbances, 

but for very lean inlet reactant concentration the reaction is extinguished. It is noted 

that the suboptimal controller was arbitrarily selected and no stability properties 

were verified. 
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time (h) 

Figure 4.5: Evolution of the the manipulated variable spatial profile along the reactor 
centerline. 

1500 

1300 

1200 

1100 

1000 

i 
h 

* \ 1 \ 
- l \ \ \ "\ * \ I '\t 

\ '-\ \ 
V 

N *. . 

•*... 

' 

stationary-state 
- - - • closed-loop 

-

-

-

t(h) 

Figure 4.6: Trajectory of the maximum temperature along the axis of the reactor for 
open- and closed-loop simulations. 
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Figure 4.7: Evolution of the closed-loop temperature distribution along the axis of 
the reactor for step disturbances in the inlet mole fraction of reactant 
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Figure 4.8: Evolution of the open-loop temperature distribution along the axis of the 
reactor for step disturbances in the inlet mole fraction of reactant 
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Figure 4.9: Closed-loop distribution of the temperature along the reactor centerline 
with suboptimal controller, usub(i). 
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Figure 4.10: Trajectory of the manipulated variable with suboptimal controller, 

USub{t). 
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Figure 4.11: Trajectory of the maximum temperature along the axis of the reactor 
for different cases. 
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Figure 4.12: Closed-loop distribution of the temperature along the reactor centerline 
with suboptimal controller, usub(t) and mole fraction disturbance. 
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4.8 Summary 

In this chapter, we presented the formulation of an LQ-feedback controller for a 

catalytic reactor with reverse flow operation using an infinite dimensional state space 

description of the system. 

The LQ-controller was formulated by following the traditional approach to control 

systems design; i.e. linearization of the system around a desired operating distribution 

of the state variables, analysis of the resulting linear system for control purposes and 

finally the design of the controller using the linear model. More specifically, the 

controller was developed on the basis of a plug-flow pseudo-homogeneous catalytic 

reactor model with unidirectional flow and it was formulated to keep the temperature 

along the axis of the reactor at the stationary state values. 

The catalytic reactor studied is better controlled by an input variable whose 

distribution can be manipulated. A spatially distributed input variable, namely gas 

flow velocity, was considered to control the temperature distribution along the axis 

of the reactor and derive an upper bound on the best achievable control. Although 

manipulation of the fluid flow velocity along the axis of the reactor at a large (or 

infinite) number of points gives the best achievable control performance, it can be used 

as a benchmark for the maximum achievable performance. Since it is not practical to 

manipulate the fluid flow velocity along the axis of the reactor, we approximate the 

optimal distribution of the manipulated variable by averaging its values. 

From the results of this chapter, we can conclude that a proportional controller, 

such as computed and used in this chapter, can be used to drive the reverse 

flow reactor system to stationary state and to achieve reactor stability while inlet 

disturbances affect the system; however, control objectives such as offset elimination 

or temperature excursions above a maximum threshold cannot be fulfilled. 

The closed-loop control performance was tested numerically for the catalytic 

combustion of lean methane streams. The LQ-controller is shown to lead to stable 

operation for inlet concentration disturbances which comprise the main source of 

process disturbance. The ability of the controller to drive the system to stationary 

state is simulated and compared with suboptimal controllers formulated by averaging 
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the spatially distributed input variable. 
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Open-Loop Nonlinearity Assessment for 
Hyperbolic PDE Models 

Most processes, including the catalytic flow reversal reactor, are nonlinear. For anal­

ysis and control, it is important to understand the extent of process nonlinearity so 

that its impact on control design and closed-loop operation can be assessed. A wide 

range of measures have been proposed to quantify process nonlinearity to aid in the 

selection of suitable control techniques. While published results in this area are lim­

ited to lumped parameter systems, we focus in this chapter on distributed parameter 

systems. Specifically, we look at gain nonlinearity quantification of systems modeled 

by hyperbolic partial differential equations. The measure can help to identify operat­

ing regions in distributed parameter systems where process nonlinearity is significant 

and nonlinear control might need to be considered. The method to quantify open-

loop nonlinearity is applied to a tubular chemical reactor and a catalytic flow reversal 

reactor. 1 

1Parts of this chapter are published in the proceedings of the European Control Conference 
(ECC), Kos Island, Greece, 2007. 
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5.1 Motivation 

In general, the dynamics of catalytic reactors are nonlinear. Nonlinearities present 

themselves in different forms, i.e. chemical process characteristics (e.g., Arrhenius 

rate expressions), input saturation (e.g., valve limits), and output saturation (physical 

limits on output variables - e.g., mole fractions) (Guay et a/., 1995). A wide range of 

nonlinear control techniques have been used for tubular and catalytic reactors, see for 

example (Hanczyc and Palazoglu, 1995; Christofides, 2000; Shang, 2002; Dubljevic et 

al, 2005). On the other hand, linear control techniques have been successfully applied, 

see for example (Ray, 1981; Aksikas, 2005); however, no systematic approach has been 

developed to assess the impact of process nonlinearity in control design. The impact 

of nonlinearities on closed-loop stability and performance depends on: 1) the degree 

of nonlinearity of the process, 2) the intended range and direction of operation and 

3) the control objectives. 

Despite the advantages of nonlinear control, development, implementation and 

operation becomes more complex than linear control methods. From a practitioner's 

perspective, it is important to be able to assess when a process is sufficiently nonlinear 

to justify using a nonlinear control law (Guay et al, 1995). 

In this chapter, we address the following issues by developing a suitable measure 

of process nonlinearity: 

• How nonlinear is the steady-state map of a process for a given set of inputs? 

• How does the degree of nonlinearity change as a function of the operating point? 

• Is it possible to select a linear control law that will achieve satisfactory 

performance for the nonlinear process? 

5.2 Introduction 

In general, most physical processes as well as their associated mathematical models are 

nonlinear. The derivation of systematic methods to evaluate the degree of nonlinearity 

inherent to a process, and its impact on the design of suitable control systems, has 

been the focus of many research studies. 
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Initial steps towards a measure of nonlinearity were concerned with the open-loop 

'nonlinearity quantification'. Nonlinearity quantification is used to indicate whether 

linear control may be adequate for a nonlinear process (Nikolaou and Misra, 2003). 

Operator-based approaches have been proposed in the literature to assess process 

nonlinearity (Desoer and Wang, 1980; Nikolaou, 1993; Schweickhardt and Allgower, 

2004). In operator-based approaches, the nonlinearity is computed as the distance 

between a nonlinear operator from a suitably defined linear operator. 

A linear operator or transformation, L, is defined (see for example Ramkrishna and 

Amundson (1985)) as a mapping of the elements of a vector space C into elements of 

the same space that satisfies the conditions: 

L(x + y) = L(x) + L(y) \/x,y e £ 

L(ax) = aL(x) aeW,xe£ 

Nonlinearity measures appeared for the first time in Desoer and Wang (1980), 

where a nonlinearity measure was defined as the difference between a nonlinear system 

and its best linear approximation: 

v=mi\\N{u]-L[u}\\. (5.1) 
LeA 

The dynamic behaviour of the nonlinear and linear systems are described by the 

operators (mappings) 

N :U^y:,u^y = N[u] 

L :U —¥ y :,u i—> y = L[u] 

The minimization in (5.1) is performed over all linear operators in the set A, and the 

norm function can be any suitable norm. The norm of the error itself, v is not the best 

quantity to look at, as it heavily depends on the problem scaling (i.e., if the output of 

the nonlinear system is multiplied by a constant factor, then the nonlinearity measure 

is magnified by the same factor). Thus, the degree of the nonlinearity seems to get 

worse while there is no qualitative change in the behavior of the nonlinear system. 

To compute the nonlinearity measure in (5.1), Nikolaou (1993) constructed an inner 

product which can be iteratively computed to a desired accuracy. Ogunnaike et al. 
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(1993) proposed a different operator-based nonlinearity measure, where the degree of 

nonlinearity is computed by locally approximating the given nonlinear system by a 

set of linear systems and by computing the maximum distance between any pair of 

systems within such a set. 

Allgower (1995 a) proposed the following nonlinearity measure 

, . r | | M M ] - L [ W ] | | 
cj) = inf sup " ,, n • (5.2) 

L<EAU(:U \\U\\ 

The measure quantifies the largest difference between the output of the nonlinear 

operator and its best linear approximations for the worst-case input sequence. 

Allgower (1995a) tackled the computational problem by parametrizing the input 

signal u and the linear operator L in (5.2) through finite dimensional approximation 

and convex optimization. 

To overcome the scaling problems in (5.1) and (5.2), Allgower (19956) proposed a 

new nonlinearity measure 

6 i n f c u p l | i V M - L M I 1 (5 3) 
0 - i S S ? ||iv[«]|| (5-3) 

The measure 4> gives the 'relative error' of the output of the linear model L that best 

approximates the nonlinear system N. In other words, the value of <j> corresponds to 

the fractional deviation of the output of the best linear approximation L from the 

output of the nonlinear system N. An important property of the measure <f> is that 

its value is bounded by one, a value close to one corresponding to a highly nonlinear 

system. 

The computation of the nonlinearity measure 4> is performed by parametrization of 

the input signal u and the linear operator L through finite dimensional approximation, 

simulation and optimization. 

A lower bound on the nonlinearity measure </> can be computed if a family of 

sinusoids is selected, {Asin(cot)\u> £ Q,A £ A} as the space of admissible inputs 

(Allgower, 19956) . The Fourier series expansion of the system's stationary-state 

response is then computed, 

y = A0 + ] P Aksin(ku>t + pk), 
fc=i 
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where the Ak are the expansion coefficients and pk is the response phase lag, and the 

lower bound, x> becomes 

A\(u,A) 
X = sup 

A^eny 2^(u,,A) + £ ~ 1 % ^ ' 

Helbig et al. (2000) generalized the approach of Allgower (1995a) and proposed a 

measure that can be applied both to the analysis of steady-state operating points of 

continuously operated processes as well as to trajectory dependent analysis of batch 

or other transient process. The nonlinearity measure proposed is the following: 

0 = i n f sup inf \\m^No\-L[uxLfl]ll 
L£Au€U,xNfieXNt0

xL,oexLfi H-'Vp, £jV,oJ|| 

The measure focuses on the difference between the output of N and L as a function of 

both the initial conditions and inputs. It takes values between 0 and 1, thus allowing 

easy nonlinearity assessment for a value of (f>. An approximate computational strategy 

similar to that in Allgower (19956) was proposed by Helbig et al. (2000) to transfer 

the infinite dimensional nested optimization problem into a convex finite dimensional 

minimization problem. 

Common to all the techniques that have been introduced is the reliance on 

numerical simulations. The algorithms can be computationally intensive, requiring 

elaborate optimization schemes and simulations. To overcome the need of intensive 

numerical computations, various approaches have been proposed. 

Sun and Hoo (2000) define a nonlinearity measure for single-input-single-output 

nonlinear systems by 

4> = max < sup \\N[u] - I/up[it]||, sup \\N[u] - Li0[u] 
L u&A ueu 

where Lup and Li0 are linear systems such that the output y (in the time domain) of N 

lies at all times between the outputs yup and y\0 of Lup and L/OJ (yi0 — y)(yup — y) < 0. 

Harris et al. (2000), presented a method to derive lower and upper bounds for the 

nonlinearity measure <f> in (5.2) and (5.3) using functional expansion models instead 

of the calculating the exact nonlinearity measure, which is often computationally 

intensive. Kihas and Marquez (2004) looked at measuring the distance in the £2-sense 
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between the state of a nonlinear system and that obtained by Jacobian linearization. 

A different approach was taken by Guay et al. (1995) who quantified steady state 

nonlinearities by using curvature metrics of the steady-state locus. 

The basisc idea behind the open-loop nonlinearity measures is that a 'fairly' 

nonlinear operator would require nonlinear control. Nevertheless, they can be used 

to locate operating regions and input directions where nonlinearity is significant and 

may pose a challenge for linear control. 

5.3 Contributions 

All nonlinearity measures available in the literature and discussed in the preceding 

section were formulated and applied to lumped parameter models; however, there is no 

specific development nor application of open-loop nonlinearity measure for distributed 

parameter systems. 

In this chapter, we develop a measure of open-loop nonlinearity for systems 

modelled by quasi-linear hyperbolic PDE equations. Such models typically arise 

in modeling of chemical engineering processes, including chemical plug flow reactors, 

packed-bed reactors and heat exchangers, among others. 

Drawing from the results for lumped parameter systems, we extend an open-loop 

nonlinearity measure based on local geometry to hyperbolic distributed parameter 

systems. The approach used is based on the measure proposed by Guay et al. (1995) 

to assess the degree of nonlinearity of open-loop lumped parameter systems at steady-

state. 

The goal is to develop a nonlinearity measure that is easy to compute and that can 

provide information about the gain nonlinearity of the system under study. 

5.4 Nonlinearity Assessment based on Local 
Curvature 

The measure of nonlinearity proposed in this work to quantify open-loop nonlinearity 

employs a Taylor series approximation of the process model. By using a Taylor series 

approximation, the relative contribution of second or higher order terms can be used 
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to quantify nonlinearity around an operating point. 

In Guay et al. (1995), an open-loop nonlinearity assessment framework is proposed 

for nonlinear lumped parameter systems. The framework is based on the curvature 

of the steady-state locus obtained from the inputs u € 1RP to the states x € M.n 

or outputs y G M.m map. The geometry of the steady-state locus is described by 

considering the first and second order derivatives of the states with respect to the 

P-inputs of the process. To analyze and quantify the steady-state input to state 

nonlinearity, the first order derivatives are computed by evaluating the tangent space 

of the steady-state locus, E(u), at a given operating point of the input space (uo): 

v, = ^ | ^ , l < i < P (5.4) 
dui 

which forms a set of P n-dimensional velocity vectors. The extent of departure from 

linearity at any point Uo can be assessed by evaluating the magnitude of the second 

order derivatives 

.*«=a^-1^sp (5'5) 

which form a set of P x P n-dimensional vectors, called acceleration vectors. 

The second-order information can be decomposed into tangential and normal 

components; each of which gives different information regarding the nonlinearity of 

the process. The nonlinearity that results from tangential and normal acceleration 

components are called tangential curvature and normal curvature, respectively (Bates 

and Watts, 1988; Guay et al., 1995). The nonlinearity of a system can be assessed by 

the relative contribution of the second order terms of the Taylor series approximation 

of the steady-state locus at given operating conditions. 

5.5 Classification of PDE systems 

As opposed to lumped parameter systems, where model equations are either linear or 

nonlinear, partial differential equations with nonlinear terms are classified according 

to the following classification (Jeffrey, 2003): 

1. A PDE satisfied by a suitably differentiable function x of the independent 

variables Zi,-- -,zn is said to be linear if x and its partial derivatives only occur 
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linearly and, possibly, with coefficients that are functions of the independent 

variables. This PDE may, or may not, contain a function / that depends only 

on the independent variables. 

2. A PDE satisfied by a suitably differentiable function x of the independent 

variables z\,- • -,zn is said to be semilinear when all derivatives of x occur 

linearly, with coefficients that may be a functions of the independent variables, 

but x itself occurs nonlinearly. 

3. A PDE of order k satisfied by a suitably differentiable function x of the 

independent variables z\, • • •, zn is said to be quasilinear if its partial derivatives 

of order k appear linearly, possibly with coefficients that are functions of x and 

derivatives of x of order less that k and also the independent variables. 

4. A PDE that belongs to none of the above categories is said to be nonlinear. 

The definitions given above extend in an obvious way to systems of PDEs. We have 

chosen to analyze quasilinear types of PDEs because they are common in chemical 

engineering problems. 

5.6 Open-Loop Nonlinearity Assessment for 
Hyperbolic PDE models 

Consider the following type of quasi-linear n-first order hyperbolic partial differential 

equations: 

Mz, x>u)"^ + B ( z ' x> u ) ^ j = d(*>x'u) (5-6) 

with initial and boundary conditions 

I.C. x(0, z) = Mz) 

B.C.x(t,0) = xira 

where t and z are the independent variables, x = [xi(t, z),X2(t, z), ...,xn(t, z)]T is 

the state function vector and u = [ui(t,z),U2(t,z), ...,ui(t,z)]T is an input function 

vector. 
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Consider the output variables to be denned as follows: 

Vj = Cjh{x)=: cj(z)h(x{t,z))dz j = 1,2,..., m (5.7) 

where Cj(z) is a known smooth function of z. The operator Cj is typically 

used for practical applications in control design of distributed parameter systems 

(Ray, 1981; Christofides, 2000). For most of the practical applications, the input 

space is discretized in the space variable leading to a finite number of control actuators 

(Christofides, 2000): 

p 

i{t,z) = Y^bj(z)uj(t) i = l,2,...,l (5.8) Ui 

where bj(z) is a known smooth function of z. An schematic representation of the 

inputs and outputs is illustrated in Figure 5.1. To simplify notation, we consider 

1 
Yl(t) 

I n • • • ' | 

Vj(t) VmW 

Figure 5.1: Illustration of the input/output specification. 

in what follows, a single spatially distributed input (I = 1). We use the following 

notation to represent the discretization of the inputs and outputs: 

u = [u1(t),u2(t),...,uP{t)]T, 

y = Ch(x) = [2/1(f),2/2(i),..,|/m(t)f. 

(5.9) 

(5.10) 

where 

C = [(H(z - zx) - H(z - z2))d • • • (H(z - ZJ) - H(z - zm+1))Cm] (5.11) 
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and H is the heaviside function. Extension to multi-input case, I > 1, is 

straightforward. 

To study the geometry of the steady-state input-output map, we find the first 

order partial derivative of the steady-state locus, E(u)[z], with respect to the inputs 

(velocity vectors). The notation [z] is used to indicate that the steady-state locus is 

a function of the independent variable, z. 

Remark 5.6.1 Differentiation of a vector functions (Harville, 1997, Page 291): 

Suppose that there is a (column) vector f = (/i, • • •, fp)' of p functions to be 

differentiated and that the domain of all of these functions is a set S in R m x l . By 

letting x = (a?i,- • •, xp)'represent a vector of m variables and writing -^ for the 

p x m matrix whose sjth element is Q£ . In this context, - ^ ^ is called the first 

order derivative of f (x) with respect to x. 

To compute the velocity vectors, we set the system of equations (5.6) to its steady 

state: 
dx 

B(z, x, u ) — - d(z, x, u) = g (z, x, s, u) = 0n x i (5.12) 

where s = ^ . Then, we compute the total derivative of g with respect to the inputs: 

Theorem 5.6.1 Assume that g and all its partial derivatives g^, -^ and ^ ^ 

are continuous, and that x = x(z, u) and s = s(z, u) are themselves differentiable 

functions of u. Let g(z, u) = g(z, x(z, u),s(z, u), u). Then g is differentiable and 

dg dg dg _dx_ dg ds 
"*" x„T fl..T "+" a„T a..T ~ vnxP- {0.16) duT duT dxT duT 5 s T 5u T 

The term 
ds d {dx. 

duT duT \dz 

is equivalent to 
d fdx\ d f dx 

, \ 
duT \dz J dz \duTJ ' 

Proof: The solution of equation (5.12) is a mapping [0,1] x R p 

(5.14) 

(5.15) 

x = f(z,u). (5.16) 
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The partial derivative of (5.16) with respect to the inputs is given by 

dx df 
(5.17) 

duT duT' 

and the total derivative of (5.17) with respect to the independent variable, z, gives 

d ( dx 

dz \duT 

dH du d 
+ 1T-

df 

duduT dz dz V duT (5.18) 

Since the inputs u, as defined in (5.9) are independent of z, then ^ 

Therefore, 

= Op xl-

A. f dx\ 
dz V duTJ 

d ( dx 

dz \duT 

d ( df \ 
dz \duT J 
d ( 5x \ _ d (dx 
dz \duTJ duT \dz 
d /dx\ 

duT \dz J 

Using (5.15) in eq. (5.13) we obtain 

dg\ d_ f_dx_\ f dg 
. dsT dz\duT + TT^F — U n x p . 

• 

(5.19) 
<9xT J duT ' duT 

Equation (5.19) is a set of ordinary differential equations that can be solved 

simultaneously with (5.12) to obtain the velocity vectors, 

dx 
[A 

as(u) 
>]• (5.20) 

duT duT 

The initial conditions for (5.19) depend on the type of boundary condition in (5.6), 

i.e. for Dirichlet boundary conditions, |jj[0] = 0n xp. 

From the solution of (5.19), we obtain the velocity vectors for the input-output 

map: 
dy 

duT 
dh 

dxT 
0S(u) 
duT M (5.21) 

lH(uo)W 

To compute the acceleration vectors, the second total derivative of (5.13) with respect 

to the inputs is evaluated: 
d fdg\ d 

du \ duT du 
dg dg dx dg ds 

duT dxT duT dsT duT On xP 

(5.22) 
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Remark 5.6.2 Differentiation of a matrix functions: 

Suppose that there is a p x q matrix F of pq functions to be differentiated and that 

the domain of all these functions is a set S in R m x l (that contains at least some 

interior points). Each of the elements of F can be regarded as a function of a vector 

x = (xi,- • -,xm) ' of m independent variables. All mpq partial derivatives (of the 

lements of F) can be presented in the form of m x (p x q) three dimensional array 

where each face (of the m faces) is a p x q matrix of partial derivatives. 

From (5.22), we obtain 

d { dg\ <9x d2g d ( <9g dx \ <9x d f dg cbc \ 
<9x \duT) duT duduT <9x \dxT duT J du du \<9xT duTJ 

0_ fdg__ds_\ d x d [ d g d s \ _ ( , 
ax [da? dv?) du + du \dST OUT) ~ U n x P - [b-Z6) 

Remark 5.6.3 Product of a three-dimensional matrix and a two-dimensional matrix: 

The product of a three-dimensional matrix rax (px q) and a two-dimensional matrix 

pxqisapxm matrix for which the ith column is obtained by multiplying the ith face 

of the three-dimensional matrix and the ith column of the two-dimensional matrix. 

Expanding the partial derivatives in (5.23) and using (5.15), we obtain 

<92g /<9x\ d2g <92g / 9 x \ (®x\ ^ 2 g ( ^ x ^ 
dxduT \duj duduT dx2 \duT) \duj dudx.T \duT) 
dg f <92x \ d2g d f 0x\ / d x \ d2g d f <9x\ 

dxT \duduTJ &xdsT dz \duT J \duj dudsT dz \duTJ 

In (5.24), we used the following equality 

d2s d2 fdx.\ 
duduT duduT \dzj 

- i (SOT) • «**> 
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Proof: The solution of equation (5.12) is a mapping [0,1] x E p -> Rn 

x = f(z, u). (5.27) 

The first and second partial derivative of (5.27) with respect to the inputs is given by 

(5.28) 

duduT duduT' 

and the total derivative of (5.29) with respect to the independent variable, z, gives 

dx 
du 

d2x 

<9f 
du 

dH 

d_ f d2x \ _ d_ f dH \ du d_ ( dH \ 
dz \duduT J du \duduT ) dz dz \duduT ) 

(5.30) 

Since the inputs u, as defined in (5.9) are independent of z, then ^ = 0. Therefore, 

d ( d2x \ _ d ( dH \ 
dz \duduTJ dz \duduTJ 

d_ ( a2x \ _ d2 (dx. 
dz \duduTJ duduT \dz 

d f d2x \ 
dz \duduTJ duduT \dz 

d2 fdx 

(5.31) 

(5.32) 

Substituting (5.19) in (5.24), we obtain 

d2g fdx\ d2g cPjs ( dx \ 
dxduT \duj duduT dx2 \duTJ 

dx\T d2g f dx\ 
duTJ dudxT \duTJ 

dg ( d2x \ d2g 
dxT \duduT) dxdsT 

' dg 
dsT 

dg \ ( dx \ _ _^g_ 
dxT) \duT) duT 

d2 

dudsT 

(dg_ 
\dsT 

- l dg \ ( dx_ 
dxT) \duT 

dg 
duT 

+ 

+ 
dg d f d2x 
dsT dz \ duduT 

a 

(£•• 
= on XP-

(5.33) 

Theorem 5.6.2 For systems modelled by quasilinear hyperbolic PDE, the inverse of 

the matrix -^ exists. 
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Proof: For systems of quasilinear hyperbolic PDE, proving that -g^ exists reduces 

to prove that B has an inverse. By the definition of hyperbolic PDE, see Definition 

2.10.1, there exists a set of distinct and real eigenvalue matrix, A(z, x, u), and 

orthogonal eigenvectors, T(z, x, u), such that 

B(>,x,u) = T- 1 (^x ,u )A(^ ,x ,u )T(^ ,x ,u ) (5.34) 

B _ 1 (^ ,x ,u) = (T(^x,u) _ 1A(^,x,u)T(^,x ,u))"" 1 (5.35) 

- T(^ ,x ,u) - 1 A- 1 (^ ,x ,u)T(^ ,x ,u) . (5.36) 

Since there must exist a distinct eigenvalue for each dependent variable and each 

dependent variable depends on all independent variables, then the set of eigenvalues 

must be different from zero. Therefore, A_1(z, x, u) exists and thus B_ 1(^,x, u) also 

exists. 

• 

Equation (5.33) becomes a system of ordinary differential equations that can be 

solved simultaneously with the system given in (5.12) and (5.19) to yield the second-

order derivatives of the steady-state locus with respect to the inputs (acceleration 

vectors): 

<9u<9uT <9uduT 

In general, the solution of the system of equations (5.12), (5.19) and (5.33) is obtained 

numerically. The initial conditions for (5.33) depend on the type of boundary 

condition in (5.6), i.e. for Dirichlet boundary conditions, Q^Q*T [0] = Op 

From the solution of (5.33), we obtain the acceleration vectors for the input-output 

map: 

d2y = A d2h 
<9uduT I <9x<9xT 

5H(u) \ T a s ( u ) dh_ d2S(u) ' 

E(uo)[*? ^ 9U I 9 u T 9 x T 

(5.38) 

The relative contribution of the acceleration vectors with respect to the velocity 

vectors can be used to assess the nonlinearity of the system. The larger the 

magnitude of the acceleration vectors are relative to the velocity vectors, the more 
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significant is the nonlinearity. The second order derivative information can be 

decomposed into tangential and normal constituents. The tangential component 

depends on the parametrization of the model and presents itself as unequally spaced 

curves of constant input-parameter values on the steady-state locus. The normal 

component depends on the form of the steady-state locus, and presents itself as 

the curvature of the steady-state locus relative to its surrounding space (Bates and 

Watts, 1988; Guay, 1996). 

To separate the acceleration vectors into their tangential and normal components, 

we look for an orthogonal basis for the velocity and acceleration vectors (Bates and 

Watts, 1988). P basis vectors will span the tangent space, and PN basis vectors 

span the space normal to the tangent space. Note that PN is not necessarily equal to 

(n — P). The orthogonal basis is defined by first taking the velocity and nonredundant 

acceleration vectors, and arranging them in an n x (P(P+3)/2) matrix, [V, W], given 

by 

[ V , W ] = [viV2...VpVi)iVi>2V212...Vi,p...Vp)p] (5.39) 

The QR decomposition of [V, W] yields an orthonormal basis, QnXn, for the 

tangent space and the space normal to the tangent: 

[V,W] = QR=[Q l irQi, J VQ2] 
Ri A T 

0 AN 

0 0 
(5.40) 

R i ( P x P) contains the projections of V onto the first P columns of Q which span 

the tangent space to the steady state locus (Qi,r), Ax contains the projections of W 

onto (QI ,T) and AJV contains the projections of W onto the P/v columns that follow 

the first P columns of Q and span the normal space to the steady state locus (QI,JV). 

To remove the scale-dependence of the curvature on the output variables, scaling 

can be performed to reflect t h e in tended region of opera t ion on t h e o u t p u t space 

(Guay et al, 1995) 

A y X S . A y = 1, (5.41) 

where Sy is an invertible scaling matrix whose elements reflect the expected range of 

operation for the outputs and Ay is the deviation of the output variables from the 
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steady-state point of interest. Alternatively, one could specify an elliptical region in 

the input space. The equation for the ellipse in the input space is: 

Au T Sf„S i n Au=l . (5.42) 

This elliptical region is then mapped into the state space or output space, where 

it becomes non-elliptical due to nonlinearity. 

The corresponding elliptical approximation in the output space of the region defined 

in the input space is 

AyTSfgSe,Ay = 1, (5.43) 

where Seq = S i nV_ 1 . By using S to represent the output Sy, or the equivalent output 

scaling matrix, Se(?, the velocity and acceleration arrays can be scaled using the S 

matrix 

V = SV (5.44) 

W = SW, (5.45) 

where the tilde indicates a scaled quantity. If scaled quantities are used, then the 

QR decomposition should be performed on the [V, W]. 

A unit independent curvature measure can be defined in the basis defined by Q 

(Bates and Watts, 1988; Guay et al, 1995). The curvature of the steady-state locus 

or input-output map, is defined along a direction u = Uo + be as the ratio of the norm 

of the acceleration vector to the squared norm of the corresponding velocity vector 

c> - W' <5'46) 
where A r is a n-dimensional array of P x P matrices obtained from the n x P(P+1)/2 

matrix A = [AT, Ajv]T. The array Ar has the form 

A r = [ai,a2,- - , 4 (5.47) 

where each a is a complete P x P second derivative matrix or Hessian of the ith 

coordinate on the rotated state space, see Figure 5.2 (Benda, 2000). 

Pre-multiplication and post-multiplication by e in (5.46) is performed on each 

P x P submatrix (face) of A r . The tangential and normal contributions to the 
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d2xl d\xt 

()//," duxdu2 

r?2.v, Q\xt 

Sn2f'/U] du\ 

d A", d .V, 

dllvdllx dltpdlt-, 

Figure 5.2: Representation of the structure of A r . Each face represents the Hessian 
of the ith coordinate of the rotated space. 

overall curvature can be separated by evaluating the curvature for the first P and the 

next PN faces of A r , respectively. 

Remark 5.6.4 An important case that is not considered in (Guay et al., 1995) is 

the case where the v = OnxP- In such cases, there is no need to scale the norm of the 

acceleration vector in (5.46). 

To simplify the calculation of the curvature measure (5.46), we transform u to 

orthogonal inputs given by 

$ = Ri (u - UQ) = Rie . (5.48) 

such that the denominator of | |Rie| |2 = 1 for any 9 (an arbitrary direction in the 

3>-space) of unit length (Bates and Watts, 1988). 

The curvature becomes an array 

C r = ( R ^ A r C R r 1 ) , (5.49) 

which consists of P x P x P tangential curvature array, given by the first P faces of 

C r and a PN (< n — P)xPxP normal curvature array given by the last PN (< n — P) 
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c2 1 n 

P(P + 2) U 
CijJ 

faces of C. When the scaling S is used, C r is the relative curvature array for the 

region defined by S. 

5.6.1 Overall Measure of Curvature 

In Section 5.6, it was shown how model nonlinearity can be qualified in terms of its 

effect on the geometry of the steady-state locus or steady-state input-output map, 

which can be quantified by each term of the relative curvature array. 

Although the decomposition of the second order effects can be used to characterize 

many aspects of nonlinear behaviour of a process, it is desirable to have a unique 

measure of process nonlinearity. An overall measure of nonlinearity has been 

developed by Bates and Watts (1988) and used in (Guay et al, 1995) to obtain a 

measure of curvature averaged over all possible input directions. The overall measure 

is referred as the root mean square curvature measure (RMS), c, is given by: 

2££(c*)2+(x;. 
j=l fe=l \ j = l 

where Cy/. is the ith face, j t h row, kth element of the relative curvature array Cr. A 

convenient scale for the root mean square curvature c has been proposed in Bates 

and Watts (1988). The RMS measure quantifies the degree of deviation between a 

second-order approximation of a properly scaled model and a linear approximation, 

where the nonlinear steady-state locus is locally approximated by a sphere of radius 

1/c. The magnitude of the deviation from the tangent plane approximation can be 

measured at the boundary of the region of interest to be: 

\deviation\ = I - - (\ - 1J J x 100% (5.50) 

An illustration of the meaning of the scaling measure is given in Figure 5.3 As a 

benchmark value, Bates and Watts (1988) and Guay et al. (1995) suggest that an RMS 

curvature of 0.3 or greater indicates considerable nonlinearity. This RMS curvature 

value of 0.3 corresponds to a 15% deviation between the second order approximation 

and the linear approximation, measured at a unit distance in the z-coordinates from 

the point of linearization. This measure of deviation can be conveniently compared 

to the size of the region of interest, which has been scaled to unity. 
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1 / C - ( 1 / C 2 - 1 ) 1 / 2 

Figure 5.3: Scale fused or measuring the extent of nonlinearity. The steady-locus is 
approximated by a surface of constant curvature 1/c where c is the RMS curvature. 

5.7 Case Study: Plug-flow Reactor 

In this section, we study the nonlinearity of a non-isothermal plug-flow reactor with a 

heat exchanger. The control of such reactor system has been studied in a large number 

of publications (Smets et al, 2002; Christofides, 2000; Hudon et al, 2005; Aksikas 

et al, 2007c). A first order Arrenhius law rate of reaction is considered. The 

mathematical model used for the reactor system consists of a set of quasi-linear first-

order hyperbolic PDEs of the following form (Smets et al, 2002): 

—A;expV *2 ) x\ 

a2kexp{ xz ' Xi — a^(x2 — u) 

dxi dxi 
+ v dt 

dx2 

+ v 

dz 
dx2 

dt dz 

Initial Conditions : 

Boundary Conditions 

xx(§,z) = 2:1,0(2;) 

x2(0,z) = x2fi(z) 

(5.51) 

(5.52) 

(5.53) 

f X!(t,0) =Xi. 
<+ n\ ( 5 - 5 4 ) 

x2{t,0) = x2M 

where u is the jacket temperature (input variable) and x\ and x2 are the state variables 

which correspond to the concentration and temperature in the reactor, respectively. 

Model parameters are given in Table 5.1. 

We begin this case study by considering the case where the input is spatially 

uniformly distributed, i.e. u(t, z) — -u(t). In order to get a first qualitative impression 
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Table 5.1: Model Parameters for the Tubular Reactor Model 

Parameter 
V 

k 
OL\ 

a2 

az 

•^1,in 

%2,in 

L 

Value 
0.1 rn • s _ 1 

1E6 s'1 

5,665 K 
4,250 K-l- mol-
0.2 s"1 

0.02 mol • l~l 

340 K 
1 m 

-l 

of the nonlinearity of the system at steady-state, the steady-state locus is plotted in 

Figure 5.4 and 5.5 for equally spaced input values: UQ e {260,280, •• •, 440}. From the 

Figure 5.4: 3-dimensional plot of the steady-state locus for equally spaced input 
u0e {260, 280, •••,440}. 

steady-state locus, it can be observed that the states are unequally spaced when the 

input values are equally spaced. Such behavior will be quantified by the tangential 

curvature. It can also be observed that there is some curvature in the steady-state 

locus and that the curvature of the steady-state locus relative to its surrounding space 

changes with the operating conditions (UQ). 
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4 5 % 
m 

40G* 

350 

300 

250 

• 

0 0.005 0.01 

• z=0.2 
• z=1 

$£§. \ 

0.015 0.02 

Figure 5.5: 2-dimensional steady-state locus for equally spaced input UQ € {260,280, 
•,440}. 

To quantify the nonlinearity of the system, we choose as output variables the 

values of the states at z = 1, i.e. y = x(z = 1). The reason for choosing such 

an output is that typical control objectives in plug-flow reactors is the control of 

the outlet temperature and concentration. The velocity and acceleration vectors are 

computed using equations (5.19) and (5.33), respectively, and the projected velocities 

and acceleration matrices are scaled using 

500 0 
0 0.1 

(5.55) 

Both the tangential and normal components of the curvature or nonlinearity 

measure are shown in Figures 5.6 and 5.7, respectively. It can be observed that 

the reactor steady-state nonlinearity is significant around u0 = 360 K. Such behavior 

is the result of the relative contribution of the linear and nonlinear terms in the 

reactor model. At low jacket operating temperatures, the temperature of the fluid in 

the reactor (x2) is low and the effect of the nonlinear term is relatively small. At high 

jacket temperatures, the nonlinear term expv x* J is significant but its effect is not 

important at z = 1 because x\ —>• 0. Therefore, at high and low values of the jacket 

temperature, the reactor steady-state behavior is almost linear. 

To study how the nonlinearity changes for outputs located at different positions 

along the reactor, Figures 5.8 and 5.9 show the distribution of the tangential and 
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normal curvature, respectively, at a given input value for different value of the 

independent variable z. As expected, it can be observed that at low operating jacket 

temperatures the nonlinearity is small due the small contribution of the nonlinearity 

term, i.e. expV *•* ) is small when xi is small. At high operating temperatures, the 

nonlinearity is significant near the inlet section of the reactor. 

260 280 300 320 340 360 380 400 420 440 

Figure 5.6: Tangential curvature for y — [x\{z = l),X2(z = 1)]T. 

To study the effect of process nonlinearity on closed-loop operation, an input-

output linearizing controller was designed following the technique proposed in 

Christofides (2000). The formulation of the controller is given in Appendix C. Two 

controllers were formulated; one using the full nonlinear hyperbolic PDE model 

and another one using a local linearization of the PDE model. Both controllers 

were designed to drive the output, y = x2(z = 1) to a specified set-point value 

and keep it at that value. The closed-loop dynamic behavior of the input /output 

system is chosen to be the same for both controllers, i.e. same eigenvalues. Figure 

5.10 shows a comparison of the closed-loop performance at three different operating 

points. As expected, the closed-loop trajectory of the output of the system with the 

linear controller resembles that of the nonlinear one at high and low operating values 
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260 280 300 320 340 360 380 400 420 440 
u„ 

Figure 5.7: Normal curvature for y — [x\{z = l),X2(z = 1)]T. 

Figure 5.8: Distribution of the tangential curvature for y — [XI(ZO),X2(ZQ)]T at three 
different operating conditions. 

(uo); however, at intermediate values, UQ = 360K, the linear controller does not give 

good control performance. Nevertheless, a different linear controller may give better 

performance. The impact of nonlinearity on closed-loop operation is studied in more 

detail in the next chapter. 
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Figure 5.9: Distribution of the normal curvature for y = [XI(ZO),X2(ZQ)]T at three 
different operating conditions. 

A. 

i 

i 

1000 
time 

Figure 5.10: Closed-loop trajectories of y = X2(z = 1) for set-point changes about 
three different operating points. 
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5.8 Case Study: Catalytic Flow Reversal Reactor 

In this section, the open-loop nonlinearity of a catalytic flow reversal reactor is 

studied. The mathematical model of the catalytic reactor is given in equations (2.6) 

and (2.7). 

In order to get a first qualitative impression of the nonlinearity of the system 

at steady-state, the steady-state locus is plotted for equally spaced input values: 

«o ^ {0.8,0.82,- • -,1} and, for easy visualization, for only two selected points 

along the axis of the reactor, see Figures 5.11 and 5.12. The two points represent 

sections of the reactor were the mole fraction at stationary-state changes significantly 

(z = 0.65L), and where the change is minimal or null due to low temperatures or 

complete conversion [z = 0.4L). 

The operating conditions used to obtain the steady-state locus of the CFRR reactor 

unit are the following: 

YfQ = 5E-3;Tf0 = 298 K;vsM = 1 m/s 

*— z = 0.65*1-

i 

"~ """--© 

i 

* 
_ i i i 1 1 i 

- 1 0 1 2 3 4 5 6 
1 x10 

Figure 5.11: Steady-state locus for z = 0.65L and for equally spaced input values: 
«o £ {0.8,0.82, • • •, 1}. x\ represents the mole fraction Y and x<i represents the reactor 
temperature T. 

From the steady-state locus, it can be observed that for equally spaced input values, 

the value of the states at stationary-state are not equally spaced. Such behavior can 
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Figure 5.12: Steady-state locus for z = 0.4L and for equally spaced input values: 
«o G {0.8,0.82,- • -,1}. x\ represents the mole fraction Y and x2 represents the 
reactor temperature T. 

be quantified by the tangential curvature. It can also be observed that there is some 

curvature in the steady-state locus and that the curvature of the steady-state locus 

relative to its surrounding space changes with the operating conditions (ceo). 

To quantify the nonlinearity of the system, the states at equally spaced spatial 

points are chosen. The velocity and acceleration vectors are computed by numerical 

simulation of the stationary-state under different operating conditions and subsequent 

numerical approximation of the first and second order derivatives. The velocities and 

acceleration matrices are scaled using 

S = 
500 0 
0 0.01 

(5.56) 

Both the tangential and normal components of the curvature or nonlinearity 

measure are shown in Figures 5.13 and 5.14, respectively. It can be observed that 

the reactor steady-state nonlinearity is significant at low values of the input variable. 

It is noted that as the input values are lowered, less reaction occurs and the reactor 

temperature decreases. 

To study how the nonlinearity changes for outputs located at different positions 

along the reactor, we plotted in Figures 5.15 the distribution of the tangential and 

normal curvature at UQ = 0.9 for outputs located at different value of independent 
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variable z within the catalytic section of the reactor. Near the section of the 

reactor where most of the reaction occurs (z « 0.6), it can be observed that the 

normal curvature becomes more significant. Everywhere else in the catalytic section, 

the normal curvature is negligible and the nonlinearity is mainly due to tangential 

curvature which is caused by the nonuniform spacing of the reactor temperature for 

uniform spacing of the input variable. 
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0.12 

Figure 5.15: Spatial distribution of the tangential and normal curvature for y 
[x1(z0),X2(z0)]

T at u0 = 0.9. 
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5.9 Summary 

In this chapter, we presented a measure of nonlinearity for processes modeled by 

quasilinear hyperbolic partial differential equations. The measure of nonlinearity 

proposed here is based on the geometric properties of the steady-state locus of the 

model equations. The measure is an extension to distributed parameter systems of 

the open-lop measure of nonlinearity proposed by (Guay et a/., 1995) for lumped 

parameter models. 

This measure of nonlinearity can be used to characterize many aspects of nonlinear 

behavior of a hyperbolic PDE system. The measure quantifies the gain nonlinearity 

and can be used to locate regions of the output space where the nonlinearity is 

significant. This aspects of nonlinearity can be used as a preliminary information for 

the design of a controller for the system under study. 

Using a tubular reactor with heat exchanger as case study, the application of 

the measure of nonlinearity was illustrated. Operating regions were mapped to 

the nonlinearity measure so that regions with a larger degree of nonlinearity can be 

identified for control uses. Comparison of closed-loop control performance around the 

different operating regions using linear and nonlinear control was shown to highlight 

the application of the nonlinearity measure. 

The application of the nonlinearity measure was also shown on a catalytic flow 

reversal reactor. Due to the lack of a closed-form mathematical model of the process 

for direct computation of the stationary-state of the reactor, computer simulations 

were used to find the stationary state and use it to numerically approximate the 

first and second order derivatives. Operating regions that covered a significant range 

of input values were mapped to the nonlinearity measure proposed for quantifying 

gain nonlinearity. It was observed that normal curvature due to the combination of 

mole fraction and temperature in the reactor model was minimal. The main source 

of nonlinearity, i.e. nonuniform spacing of the reactor temperature, was successfully 

quantified by the tangential curvature. 
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Control Relevant Nonlinearity Assessment 
for Hyperbolic PDE Models 

For the catalytic flow reversal reactor studied in this thesis, control techniques that 

employ linear models, both online and offline, were used to compute control actions. 

For mildly nonlinear problems, one can attempt to use linear models and linear con­

troller design methods; however, this approach requires a rigorous justification in 

order to guarantee the proper operation of a linear controller in presence of the non­

linear system behavior. Due to the diverse and complex behavior of nonlinear systems, 

tools for nonlinear control design exhibit a much lower level of generality than their 

linear counterpart. In this chapter, we focus on developing tools to assess whether or 

not linear control of systems modelled by quasi-linear hyperbolic partial differential 

equations can provide satisfactory level of control performance, or if nonlinear control 

is required. Specifically, we focus on quantifying the sensitivity of a control perfor­

mance index to linear control. The sensitivity quantification is studied for a tubular 

chemical reactor and a catalytic flow reversal reactor. 
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6.1 Introduction 

In general, most processes as well as their associated mathematical models are 

nonlinear. Process nonlinearity is one of the most relevant factors for process analysis 

and controller design. Very often the formulation of controllers for nonlinear processes 

is addressed by first linearizing the nonlinear plant model equations around a steady-

state operating point or a nominal trajectory. Then a controller is designed using the 

well-developed techniques for linear systems. 

For systems where the range of linearity is small (highly nonlinear processes) 

or for processes that are operated over a large range of operating conditions, a 

controller must be designed in such a way that it is aware of the process nonlinearity. 

The controller must compensate the effects of the nonlinearity. Nonlinear control 

techniques are more complex than their linear counterpart and are mathematically 

more involved. Quantification of the extent and severity of a process inherent 

nonlinearity is crucial in order to decide whether linear system analysis and controller 

synthesis methods are adequate (Schweickhardt and Allgower, 2006). 

Open-loop nonlinearity measures were presented in Chapter 5. Different methods 

proposed in the literature to quantify the degree of open-loop nonlinearity were 

shown. The main assumption related to the use of open-loop nonlinearity measures 

in controller design is that highly nonlinear systems require nonlinear controllers. 

Although this may be true in a significant number of applications, proximity of a 

nonlinear process to a linear one is neither necessary nor sufficient for good closed-

loop linear control performance (Nikolaou and Misra, 2003). 

As discussed in Chapter 5, open-loop nonlinearity measures can be used to 

locate operating conditions where nonlinearity might be significant; but they do not 

directly address the question of whether linear controller design is suitable despite 

the nonlinear process behavior. In an effort to provide a more precise description 

of nonlinearity in control systems, a number of authors proposed control-relevant 

nonlinearity measures (Guay, 2006). 

In the area of control-relevant nonlinearity, the intended range of operation and 

the control performance objective are used to specifically address the question of 
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whether or not nonlinear control is needed. The main objective of a control-relevant 

nonlinearity assessment is to avoid unnecessary nonlinear control design. 

In Guay (1996) the idea of control-law nonlinearity was introduced. Control-law 

nonlinearity was defined as the degree of nonlinear compensation in a controller, a 

system property distinct from open-loop nonlinearity. As the inverse of the process 

steady-state map can be used to achieve perfect set-point tracking, Guay (1996) 

proposed to analyze the inverse of the steady-state map in order to obtain a measure 

of control law nonlinearity. 

To assess the effect of nonlinearity on closed-loop systems, the " Optimal Control 

Structure" was introduced to examine the nonlinearity of suitable controllers for a 

given nonlinear plant (Stack and Doyle III, 1995; Stack and Doyle III, 19976; Stack 

and Doyle III, 1997a). A control operator, called the optimal control structure, 

was derived using Lagranian optimization. The nonlinearity of the optimal control 

structure is defined as the degree of nonlinear compensation in the controller, and 

is determined by a performance objective, the region of operation and the nature of 

the open-loop system. The degree of nonlinearity of the control operator provides an 

indication of whether or not a nonlinear controller may be required. This approach is, 

as described in Guay (2006), counterproductive since one needs to design a nonlinear 

controller structure to find out if such structure is indeed needed. The main advantage 

of the approach is that it provides a very accurate description of the nonlinear control 

structure. Furthermore, it is not restricted to open-loop stable nonlinear systems. 

In Schweickhardt and Allgower (2004), the optimal control structure concept 

is combined with the nonlinearity measure proposed in (Allgower, 19956). The 

combination addresses the question of whether nonlinear control is needed. From 

a practical perspective, it is unclear whether the measurement of control law 

nonlinearity precludes the successful application of a linear controller. 

Hernjak and Doyle III (2003) used the open-loop nonlinearity measure proposed 

in (Allgower, 1995 a; Helbig et al, 2000) to find correlations between nonlinearity 

and the achievable performance of a variety of control structures for two benchmark 

processes: a quadruple tank process and a bioreactor system. 

In Eker and Nikolaou (2002), the internal model control framework (IMC) of Garcia 

144 



Sec. 6.2 Contributions 

and Morari (1982) was used to place bounds on an appropriately defined closed-loop 

nonlinearity measure. Two measures were proposed, the first measure was based 

on the difference (in terms of weighted incremental norm over set) between a linear 

control system with linear controller and linear model and a nonlinear control system 

with linear controller and nonlinear plant. The second measure was based on the 

difference between a linearly controlled nonlinear plant and a nonlinearly controlled 

plant. 

A different approach to assess control-relevant nonlinearity was taken by Guay and 

coworkers (Guay and Forbes, 2004; Guay et al, 2005; Guay, 2006) who developed a 

performance sensitivity measure to assess the effect of nonlinearity on linear quadratic 

regulator control performance. The measure in (Guay et a/., 2005) and (Guay, 2006) 

is based on quantification of initial conditions on the performance of optimal closed-

loop systems. The main principle of the approach is that the nominal performance 

is invariant to the choice of initial conditions, if the underlying control system is 

nearly linear. Thus, the sensitivity of the nominal performance to changes in initial 

conditions provides an effective means of investigating the nonlinearity effects in 

control systems. 

6.2 Contributions 

All control-relevant nonlinearity measures available in the literature have been 

formulated and tested on lumped parameter models. There is no specific development 

nor application of a control-relevant nonlinearity assessment for distributed parameter 

systems to aid in the formulation of a suitable controller. 

In this chapter, we focus on systems modeled by hyperbolic partial differential 

equations, and we address the problem of control-relevant nonlinearity. To address the 

problem, the approach studied by Guay and coworkers (Guay and Forbes, 2004; Guay 

et al, 2005; Guay, 2006) was extended. The approach is motivated by the 

general approach to the design of control systems, where one seeks a local linear 

approximation of the process and designs a linear controller to locally achieve control 

performance objectives. The degree to which these objectives are realizable depend 
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on the underlying structure of the process. Therefore, it seems natural to look into a 

method that allows quantification of the control performance lost due to linear control 

based on a process model obtained from, for example, a Jacobian linearization. 

To show the applicability of the proposed measure developed in this chapter, a 

plug-flow reactor and a catalytic flow reversal reactor are used. The conclusions 

reached in this chapter from a closed nonlinearity assessment are compared to those 

obtained from the open-loop nonlinearity assessment . 

6.3 Control Relevant Nonlinearity Assessment of 
Hyperbolic PDE Models 

A common approach to the design of control systems consists of the development 

of linear models of the process (i.e. by Taylor Series expansion) and the design of 

a suitable controller to regulate its local behavior. Nevertheless, nonlinear control 

techniques that are based on the original nonlinear model, such as nonlinear model 

predictive control, Lyapunov-based design and geometrical control, have been shown 

to provide improved control performance (Guay, 2006); however, their implementation 

is sometimes impeded by a considerable degree of mathematical sophistication or 

computational requirements. 

Guay and Forbes (2004) proposed the idea of a sensitivity measure to assess the 

performance degradation in a closed-loop system with a controller designed using 

a local linear model. The idea is to develop an index that measures the effect 

of process nonlinearity on linear controller performance. Then, such index would 

indicate whether sufficient benefit is available to warrant investment in a nonlinear 

controller (Guay et al, 2005). This approach to assessing the effect of process 

nonlinearity has the advantage over other methods proposed in the literature, that 

it does not require the solution of an optimization problem, as in (Schweickhardt 

and Allgower, 2004), nor the computation of a nonlinear optimal structure, as in 

(Stack and Doyle III, 19976), or intensive computational effort as in (Eker and 

Nikolaou, 2002). 

The goal of this chapter is to formulate a measure of nonlinearity for processes 
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modeled by quasi-linear hyperbolic partial differential equations. The measure is 

used to quantify the control performance degradation when linear control is used for 

nonlinear hyperbolic distributed parameter systems. 

6.4 Performance Sensitivity Measure 

In this chapter, we focus on systems modelled by quasi-linear first order hyperbolic 

partial differential equations of the form 

A ^ + B ( « , x , u ) ^ = f(s ,x,u) (6.1) 

with initial (I.C) and boundary (B.C.) conditions 

I.C.:x(0,z) = x0(z) 

B.C.:x(t,0) = xin 

where t and z are the independent variables, x = [x\(t, z),X2(t, z), ...,xn(t, z)]T is 

the state function vector and u = [ui(t,z),U2(t,z), ...,up(t,z)]T is an input function 

vector. Without loss of generality, it is considered in equation (6.1) that A = I, and 

it is assumed that the equilibrium profile of system of equations (6.1) is given by 
xe<j = 0nxi- The inputs and outputs variables for the system in (6.1) are defined in 

the the same way as in Section 5.6. 

We re-write the system (6.1) in the following form 

<9x 
-Q£ = g(2 ,x ,s ,u) + f (z,x,u), (6.2) 

where s = ^ . The jacobian linearization of the system (6.2) about the equilibrium 

spatial profiles is given by the following linear system of equations 

rf-v rf-v 

- = Ax(z)- + AQ(z)x + B(z)u (6.3) 

I.C. : x(t, 0) = x i n 

B.C. : x(0, *) = Xo(;s) 
y(t)=C{C(z)x(t,z)}, 
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where, 

dg 
_ #sT ° '^= 0 , u = 0 ' 

A0(z) = 

B(s) = 

C(z) = 

dg df 
—— H 
<9xT <9xT 

dg df 
+ 

dh , 

x=0,ff=0,u=0' 

lx=0,^=0,u=0' 

Q^T lx=0,ff =0,u=0 

and C is defined in equation (5.11). 

For the linear system in equation (6.3), a general linear feedback controller is given 

by 

m(t,z) = bT(z)il>(Ko(z)+K(z)x(t,z)) i = l,...,l (6.4) 

where 

K(z)=K1(z)+K2(z)^-z, (6.5) 

and 

b(z) = [(H(z-z1)-H(z-z2))bi(z),--;(H(z-zj)~ 

H(z - zm+1))bm(z)]T (6.6) 

$ = [{H{z-zl)-H{z-z2))il>1---{H{z-zi)-H{z-zm+1))M (6.7) 

M') = f"+\-)dz j = l ,2 , . . . ,P (6.8) 
JZj 

The controller gains, K 0( l x 1), Ki ( l x n), K2(l x n), are computed according to the 

linear control technique selected. To quantify the sensitivity of the closed-loop control 

performance to process nonlinearity, the following performance index J is chosen: 

/•oo 

J = / y(t)TQy(t)dt 
Jo 

f 
Jo 

J2J2Ci x& z)Q^c3 x& z)dt- (6-9) 

The matrix Q is used to weight the importance of specific outputs in the overall 

control performance of the distributed parameter system. The performance index J 

is commonly used in practice to evaluate closed-loop performance of a given controller. 
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As in Guay and Forbes (2004), the sensitivity of the control performance index 

to changes in the initial conditions is evaluated. The idea is that the nominal 

performance will be invariant to the choice of initial conditions if the underlying 

control system is nearly linear. The sensitivity of the performance index J to changes 

in the inlet conditions can be analyzed for any linear controller that gives stable 

closed-loop operation of the nonlinear PDE system around the nominal operation. 

To assess the effect of initial conditions on the performance of the 

closed-loop system, equation (6.9) is differentiated with respect to Xo(z) = 

[xoi(-z), xo2(z),..., xon(z)]T in a neighborhood of the the nominal operation: 

dx 01 

(6.10) 

d2j fn^/ c% dyin dVj . 

J° < = 1 7 = 1 
dxoidxom J0 ±~f 4^f \dxoidxom '3 dx0i dx0m 

%—1 J — 1 

Jo ~l~i \dxokdxoidxom 

i=l j=l 

d3j ,00 - - / QZy. Q2y. Qy 

dxoidxomdxok J0 4-f 4-f \dxokdxoidxom dx0idxokdxom 
1=1 ]=l 

d2Vj m dVi_ + dyi d2yj \ dt 

dx0idx0m dx0k dx0i dxomdxok J 

Jo ~f~1 h3 \dxQidxok dx0m dx0idx0m dxok 

dt l,m, k = 1, ...,n (6.12) 

i= l j=l 

dyi d2Vj 
dx0i dx0mdx0k, 

All derivatives in (6.10) to (6.12) are evaluated at the spatial distribution of the 

state variables at the nominal (equilibrium) conditions. 

To compute all the derivatives of J, it is required the calulation of the first and 

second order partial derivative (sensitivity coefficients) of x(t, z) with respect to the 

initial conditions, x0. 

Lemma 6.4.1 Assume that g, f and all its partial derivatives g^, J ^ and 

lj%r are continuous, and that x = x(z,x0) and s = s(^,x0) are themselves 
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differentiable functions o/xo. Let g(z,xo) = g(z,x(z,x0),s(z,xo)) and f(z, XQ) = 

f(z,x(z, x0),s(2, xo)). Then g andf are differentiable and 

d ( dx \ dg ax dg ds df dx . 
+ ^ ^ ^ - + ^ F ^ — i = l,... ,n (6.13) dt\dxoiJ dxT dx0i dsT dxoi dxT dxoi 

Lemma 6.4.2 Assume that all second order partial derivatives -^ and | ^ | are 

continuous, and that x = x(z, Xo) and s = s(z, Xo) are themselves twice differentiable 

functions ofxQ. Then, 

d ( d2x \ _ d ( dg dx dg ds df dx \ . _ 
dt\dxojdxoi) dxoj \dxT dxoi dsT dx<x dxTdxoiJ 

d2g dx dx dg d2x dg d2s d2f dx 

dx2 dxoj dx0i dxT dx0jdxoi dsT dxojdx0i dx2 dx0j 

dx df ( d2x \ . . 1 ,C1/1. 

The solution of the equations (6.13) and (6.14) can be obtained by solving the 

system of PDEs numerically and simultaneously. 

To solve equations (6.13) and (6.14), the following initial and boundary conditions 

are needed: 

dx 
— (0,£) = I n x n (6.15) 
<9x0 

a ^ r M = °»x(nx«) (6-16) 

— (t,0) = I n x n (6.17) 
dx0 

s S s 7 M ) = *•»(•»•' ((U8) 

Remark 6.4.1 Since the initial condition chosen to evaluate the sensitivity of the 

linear control performance is independent of the spatial distribution, then 

d2s d2 {dx" 

dxojdxoi dxojdxoi \dz 

9 ( °2* ' (6.19) 
dz \dxojdxoiy 

If ones computes the first and second order sensitivities about the equilibrium 

solution for a linear hyperbolic PDE system, then one finds that the second order 
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sensitivity coefficients, (dx
d.QX . J, are identically zero. The following proof was 

derived to prove that the second order coefficients are indeed identically zero: 

Proof: For linear hyperbolic PDE models, equation (6.14) becomes 

d dh 
dt \dxojdx0i 

a2 
X dg d2x dg d2s df 

dxdxojdx0i ds dxojdxa dx \dx0jdxt VOi 

Since 

dg df 
dx dx 

ds. 
— = -B{z,x\eq) 

d2x 
+ 

dg d dh 
dxojdxoi ds dz \dxojdxoi 

dg 

(6.20) 

ds 
-B(z ,0 ) , 

and B(z,x) admits diagonalization, then there exists a real diagonal matrix A(z,x) 

and a nonsingular matrix T(z, x) such that 

T(z,0)B{z,0) = A{z,0)T(z,0). 

Pre-multiplication of (6.20) by an arbitrary left eigenvector t£ of B, gives 

d 

dt \dxojdxoi 

d ( d2x 

d2x \ Tn, . d 
+ tT

kB(z, 0) 
dh 

+ Afe(z) — 

dz \dxojdxo, 

d2x 
k \dt \dxQjdxoi) ' '^K~' dz \dx0jdx0i 

An equivalent form of (6.23) is: 

= t 

= t 

dg dt 
dx dx 

dg + dt 
dx dx 

for each k. Since 

,dv T {dg df 
ds k dx dx 

dv dv dt dv dx 

ds dt ds dx ds' 

it can be obtained, by comparing (6.23) and (6.24), that 

dt _ 
ds 
dx 
ds 
dv 
ds 

Afe 

= t 
dg dt 
dx dx v 

The solution of equation (6.28) is given by 

v = exp tk 

dg+dt 
dx dx t v0. 

dh 
dxQjdxoi 

d2x 

dxojdxoi 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 
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The solution v can be linearly combined by t £ v to obtain the solution Vk along the 

characteristic curve given by A^. By equation (6.16), we obtain v = 0. For each 

Afc, we find that v^ = 0 and therefore, it is proven that the second order sensitivity 

coefficients v = dx
d.£x are identically zero. 

• 

Since the second order sensitivities are zero for linear hyperbolic PDE systems 

with linear controller, the third order derivative of the performance index can be 

used to assess the effect of nonlinearity on local controller performance by assessing 

the magnitude of the third order term. 

The third order Taylor Series approximation of the performance index about xo = 0 

is given by 

J (x 0 ) « J ( x 0 = O ) + d J X 0 + ^d 2 J x o + - d 3 J : 

1 , o . 1 

1J2r 1 

^d Jx o + -<r JX O 

\d2 Jx o + -dz Jxo (6.30) 

where is dkJKo defined as (Callen, 1985), 

dkJ*0 = f x0i~ \- x02- 1 +xon^— ) J(xo) k = 2,3 
V OXQI dXQ2 dx0nJ 

The second-order differential of J in equation (6.30) can be written in matrix form 

as: 

d2JX0 = x g V ^ J x o (6.31) 

where V X o J is the Hessian of J(x0). Vxo J is a symmetric positive definite matrix 

that is form using the partial derivatives given in equation (6.11). V^ 0 J is a real 

square symmetric matrix for which we consider the spectral decomposition 

Vl0J = 2 U T A d U (6.32) 

where A<j is a diagonal matrix with the eigenvalues of VXo J and U is an orthogonal 

matrix (U T = U _ 1 ) containing the eigenvectors. The decomposition in (6.32) can be 
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used to obtain a simplified measure to assess the effect of nonlinearity on linear 

controller performance. For a meaningful measure, we define, as in (Guay and 

Forbes, 2004), a quadratic operating region: 

a = { x 0 G iT|x^STSx0 = 1} (6.33) 

and we parametrize xo as follows 

w = USx0 (6.34) 

to obtain 

\<P Jxo = ^w T UVj 0 J U T w = wTAdw 

Along w and for any given value of w (such that ||w|| = 1), we can convert w into 

x0 through equation (6.34). The relative contribution of the third-order differential 

contribution can then be quantified by the ratio of the third-order differential to the 

second order differential: 

( l /6)d 3Jw , . 
e ( w ) = " ^ T (6"35) 

The quantity 0(w) provides a measure of the degree of departure of the linear 

controller performance in the actual nonlinear control system. 

By using the same definition used in Guay and Forbes (2004), we call 0(w) 

the performance sensitivity measure (PSM) and the root mean squared performance 

sensitivity measure (RMSPSM) is defined as RMSPSM = y/PSM. If the system 

behaves linearly, then we expect that the root mean square measure to be small. 

As the value increases, the contribution of the nonlinear terms to the closed-loop 

performance will become significant and the intended nominal performance will not 

be achieved. 

6.5 Case study: Chemical Tubular Reactor 

In this section, we study the application of the performance sensitivity measure to 

a chemical tubular reactor. To model the reactor system, the model equations (2.6) 

and (2.7) were considered. 
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The first step towards the computation of the sensitivity measure is the selection 

of a linear control technique. To formulate the linear controller, the geometric state-

feedback control technique for hyperbolic PDE systems proposed in Christofides 

(2000) is used. 

For the controller formulation, it is assumed that there are P actuators available, 

each of which has a unity distribution function, that is, bj(z)uj = Uj for all 

j = 1,..., P , which act over equispaced intervals. The desired control objective is 

selected as the control of the temperature, x2, at the end of each spatial interval, i.e. 

Vi = Iz-+1 S(z ~ z3+i)x2(t,z)dz. 

Using the specified inputs and outputs, the model that is used for synthesis of the 

state feedback controller is given by: 

dx 

Vi 

dx 
ATz + f(x) + 9(x) ^2{H{z - Zj)" H{z " Zi+l)) 

/ 5(z — Zj+i)x2(t, z)dz 
Jz-i 

(6.36) 

(6.37) 

where 

A = 

9(x) = 

—v 
0 

0 ' 
. a s 

0 
—v 

i 

/ ( * ) = 

h{x) = [x2]. 

—ke\ x? >X\ 

«2^ev ^ )x\ — (X3X2 

Using the model given above, the linear controller is derived in Appendix C. The 

controller has the following form: 

u(t) 
Cd> •jU.2 

-Pj - Cj(x2 - xf) - Cj I a2~K—h hxi + c2x2 (6.38) 

To study the application of the performance sensitivity measure, a set of three 

different operating conditions, i.e. uss(z) = [300 K, 360 K, 440 K], were selected. The 

open-loop equilibrium distribution of the state variables is shown in Figure 6.1. 

As a first approach to the study of the closed-loop nonlinearity of the tubular 

reactor, we study the control of the outlet temperature, i.e. y(t) = x2(t, z = 1). Such 

an approach is chosen because it the most common control requirement for tubular 

reactors is control of the outlet variables. 
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Figure 6.1: Equilibrium profiles of a) x^, b) x\s, c) uss, for selected operating 
conditions: uss(z) = 300K (dashed line), u{z) = 360if (dashed-dot line) and 
u{z) = AAOK (solid line). 

The second step towards the performance sensitivity measure is to compute the 

first and second order sensitivities for the set of equilibrium profiles shown in Figure 

6.1. The sensitivities are shown on Figures 6.2 and 6.3. 

The resulting performance sensitivity measure (RMSPSM) is given in Figure 

6.4. Figure 6.4 indicates that locally, the impact of nonlinearity in linear control 

performance becomes more important as uss increases. Local linear and nonlinear 

control performance are compared in Figure 6.5 for different operating conditions. 

a) 

J U U 
( 

0.02 

^ 0.015 
i _ 

o 0.01 

O 0.005 

450 

400 

* 350 

300 

250 

) 0.2 0.4 0.6 0.8 
z/L 

) 0.2 0.4 0.6 0.8 
z/L 

, ,«.. . ,< , . . - . . - . . „ . „ , _ , » . » . 

- - - . - . - . - - . - . - . - - _ - - . - - - . » - . » 

) 0.2 0.4 0.6 0.8 
z/L 

155 



Sec. 6.5 Case study: Chemical Tubular Reactor 

First order sensitivity x 10-5 '= 'rst order sensitivity 

10 20 
time (s) 

First order sensitivity 

10 20 
time (s) 

First Order Sensitivity 

i 

10 20 
time (s) 

30 
-0.5 

10 20 
time (s) 

30 

Figure 6.2: First order sensitivity for selected operating conditions: u(z) — 300K 
(dotted line), u(z) = 350K (dashed-dot line) and u(z) = A00K (solid line). Top-left 
figure: ^jp- vs. time; top-right figure: •^x- vs. time; bottom-left figure: j ^ 2 - vs. 

time; bottom-right fig ure: ^ vs. time. 

Initial conditions away form the steady-state conditions were selected, i.e. x(0, z) — 

[0.01,10]T. From the closed-loop dynamics in Figure 6.5, it can be observed that the 

RMSPSM correctly quantifies the local linear control performance difference at the 

different operating conditions. 

It is interesting to note that in the open-loop nonlinearity assessment, it was 

observed that the nonlinearity was significant at uss(z) = 360.fr but small at 

uss(z) = 440K. When the closed-loop dynamics in Figure 6.5 are compared to 

that observed in Figure 5.10, it is observed that when the system is driven from 

an operating condition to another by a set-point change, control performance follows 

the observations made from the open-loop nonlinearity assessment. The comparison 

between the information given by the two measures gives valuable information as it 

shows that the effect of process nonlinearity can affect control performance in different 
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Figure 6.3: Second order sensitivity for selected operating conditions: u(z) = 300K 

(dotted line), u(z) = 350K (dashed-dot line) and u(z) = 400K (solid line). Top-left 

figure: J£|* vs. time; top-right figure: a ^ ~ f c vs> time> b o t t o m - l e f t fiSure: dx^Zuo 

vs. time; bottom-right figure: 4-f2- vs. time. 

ways. Therefore, the open-loop nonlinearity measure and the performance sensitivity 

measure can be computed and used to assess the impact of nonlinearity on linear 

control design without the need to formulate a nonlinear control law. 

To further analyze the effect of the nonlinearity of the tubular reactor, we studied 

the effect of multiple control actuators along the axis of the reactor. For tubular 

reactors, it is often required that the spatial temperature distribution is controlled 

along the reactor length. We study two problems: the control of the temperature 

at five and ten spatial points using five and ten heat exchangers, respectively. The 

operating (equilibrium) profiles selected are those given in Figure 6.1. The resulting 

performance sensitivity measure (RMSPSM) is given in Figure 6.6. It is observed that 

as the number of controlled outputs increases, the the effect of process nonlinearity on 

linear control increases as well. It should be noted that the increase is small indicating 
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Figure 6.5: Closed-loop temperature at z/L = 1 for x0 = [0.01,10]T with linear 
(dashed line) and non-linear control (solid line). 

that, for the reactor under study, the effect of nonlinearity is more sensitive to the 

operating conditions than the spatial location of the controlled temperature. 
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Figure 6.6: RMSPSM vs. operating condition (7}) for the case where one (circles), 
five (diamonds) and ten (crosses) heat exchangers are used to control the reactor 
system. 

6.6 Case study: Catalytic Flow Reversal Reactor 

In this section, we study the application of the performance sensitivity measure to a 

catalytic flow reversal reactor. 

To model the reactor system, we consider the model equations in (5.51) to (5.52). 

To formulate the linear controller, the linear quadratic controller developed in Section 

4, and given in equation (4.41), was used. For the controller formulation, it was 

assumed that only one control input was available (i.e. removed gas from the reactor 

mid-section) and that the outputs were the temperatures at 100 equally-spaced spatial 

points along the axis of the reactor. 

Due to the complexity of the reactor model, numerical solutions were used. The 

first and second order sensitivities of the temperature with respect to the initial values 

were computed by numerical simulation of the closed-loop system under different 

initial conditions and subsequent numerical approximation of the first and second 
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order derivatives. 

To study the application of the performance sensitivity measure, a set of three 

different operating conditions, i.e.uss — [0.9,0.92,0.94], were selected and the open-

loop equilibrium distribution of the state variables were computed. The first and 

second order sensitivities for the set of operating conditions were then computed. 

For uss = 0.92, the first and second order sensitivities of the outputs with respect 

to the initial temperature values are shown in Figure 6.7 for three different spatial 

points along the axis of the reactor. 
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Figure 6.7: First and second order sensitivity for uss — 0.92 at three different spatial 
points along the axis of the reactor. 

The performance sensitivity measure (RMSPSM) for the selected operating 

conditions is given in Figure 6.8. Figure 6.8 indicates that locally, the impact of 

nonlinearity in linear control performance becomes more important as uss increases. 

Comparison of local linear and nonlinear control performance for the different 

operating conditions would give a definite answer to whether nonlinear control would 
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Figure 6.8: RMSPSM for selected operating conditions for the CFRR unit. 

provide a significant benefit. The formulation of a nonlinear controller, however, is 

not within the scope of this chapter. The goal of this case study is to infer whether or 

not linear control is sufficient without designing a nonlinear controller. Based on the 

RMSPSM values, it can be said that for the control the complete temperature profile 

along the reactor, the higher the operating value of mass extraction is, the higher will 

be the performance of the linear controller. 

6.7 Summary 

In this chapter, we presented a performance sensitivity measure to assess the impact 

of nonlinearity in linear control of processes modeled by quasilinear hyperbolic partial 

differential equations. 

The measure developed in this chapter is an extension for distributed parameter 
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systems of the work in Guay et al. (2005). The main principle of the performance 

sensitivity measure is that the nominal performance is invariant to the choice of initial 

conditions if the underlying control system is nearly linear. Thus, the sensitivity of 

the nominal performance to changes in initial conditions provides an effective means 

of investigating the nonlinearity effects in control systems. 

Using a tubular reactor with heat exchanger as a case study, the application of the 

performance sensitivity measure was illustrated. It was observed that the performance 

sensitivity measure gives useful information about the impact of nonlinearity for 

local control and that it can be combined with the open-loop nonlinearity measure 

developed in Chapter 5 to assess the impact of nonlinearity for control systems that 

not only regulates the process but also drives it from one operating point to another. 

The performance sensitivity measure was also applied to a catalytic flow reversal 

reactor. Due to the lack of a closed form amenable for the computation of analytical 

derivatives, sensitivities of the output variables with respect to the initial conditions 

were computed using numerical approximations using closed-loop data from numerical 

simulations. The reactor temperature along a fixed number of spatial points was 

considered as output variable. It was observed that using the linear quadratic 

controller developed in Section 4 and given in equation (4.41), the higher the operating 

value of mass extraction was, the higher is the expected level of linear control 

performance. Nevertheless, the gas extraction cannot be increased without limit 

as the reaction within the reactor will extinguish. This indicates that there is an 

optimum value of gas removal from the reactor midsection for best linear control 

of the 1-D pseudo-homogeneous model representation of the catalytic flow reversal 

reactor. 
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7.1 Conclusions 

Catalytic flow reversal reactor is a promising technology for efficient and economic 

processing of chemical reactants with low heats of reaction. Dynamic operation of 

catalytic reactors is not the most common or preferred mode of operation. Even 

though design and modeling of catalytic reactors with reverse flow operation have been 

thoroughly investigated, control of such reactors has not received much attention. 

In this thesis, tools were developed to address the control problem of catalytic flow 

reversal reactors. The tools were applied to a catalytic reactor for combustion of lean 

methane emissions. Such an application can have a great impact on the reduction 

greenhouse gas emissions from oil and gas transportation facilities and coal mines. 

The concept of catalytic reactor with reverse flow operation, as well as its 

application for the combustion of lean methane streams was introduced in Chapter 

2. Due to the complex reactor dynamics, computer simulations were needed to 

understand the main dynamic characteristics. 

In Chapter 2, a 2-D heterogenous mathematical model of a reactor pilot unit was 

implemented to obtain high fidelity numerical simulations of the reactor dynamics. 

Many interesting conclusions were drawn from the simulation results. 
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In particular, it was observed that the reverse flow reactor considered had a slow 

time dynamics with a settling time that was in the order of hours. Moreover, the 

temperature response to changes in the inlet gas velocity was observed to be much 

faster than to changes in the inlet mole fraction. Since the inlet mole fraction 

and inlet gas velocity are the most important sources of reactor disturbance, it 

would be interesting to study in future research a control scheme where the inlet 

concentration is controlled by, for example, an external air stream. In this way, the 

reactor temperature distribution would only be disturbed by the inlet gas velocity. 

As the dynamic behaviour of the temperature for changes in the gas velocity is fast, 

regulation of the reactor temperature can be achieved at a much faster rate. 

To assist in the formulation and testing of control schemes for catalytic reactors 

with reverse flow operation, a mathematically simple 1-D pseudo-homogeneous 

model was developed and validated for use in an online control strategy and a 

linear quadratic regulator controller. It was observed that under the 1-D pseudo-

homogeneous model assumptions, the short term dynamic behaviour of the reactor 

was accurately modeled. The long term (or multi-cycle) behaviour could not be 

predicted with sufficient accuracy. Nevertheless, it was observed that even when 

the simple model neglected some characteristics of the reactor, it can be used for 

process control as the feedback control techniques selected in this thesis compensate 

for unmodeled plant/model mismatch. 

In Chapter 3, the development of a model predictive control for a catalytic flow 

reversal reactor for large volumes of lean methane emissions was addressed. An 

average of the temperature along the axis of the reactor reactor was proposed as 

the output variable to be controlled to avoid reactor shutdown due to low reactor 

temperatures and reaction extinction. In addition to the average temperature, the 

maximum temperature was constrained with an upper bound that represented the 

temperature at which the catalyst deactivates at a fast rate. 

A model predictive control scheme that incorporates the method of characteristics 

to predict the process output variables was developed. The idea of using the method 

of characteristics in a model predictive control scheme had been proposed in the 

literature, but not applied to a complex catalytic reactor. Based on the results 
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obtained in Chapter 3, it can be concluded that the method can be efficient for 

catalytic reactors that have two widely different dynamic time-scale. 

Through closed-loop simulations, it was shown that two output variables, i.e. 

average temperature and maximum temperature, can be used to keep the reactor 

within stable operating conditions despite disturbances in uncontrolled process 

variables, i.e. inlet mole fraction of reactants and inlet gas velocity. It was shown 

that, at least theoretically, the use of the heat extraction by means of mass extraction 

in a model predictive control scheme can be used to control the reactor system. 

Chapter 4 presented the formulation of feedback control scheme for a catalytic 

reactor with reverse flow operation. A linear quadratic feedback operator was 

formulated from a infinite-dimensional representation of the catalytic reactor with 

unidirectional flow. As applications of the selected control technique are rare in 

the literature, this chapter provides an interesting and novel application. The 

application of the technique for the catalytic reactor unit can provide a theoretical 

threshold for the best achievable control performance. A spatially distributed input 

variable, namely gas flow velocity, was considered for control of the the temperature 

distribution along the axis of the reactor and derive an upper bound on the achievable 

control performance. 

Numerical simulations showed that a feedback proportional controller, such as the 

one computed in Chapter 4, can be used to drive the reverse flow reactor system 

to stationary state and to achieve reactor stability while inlet disturbances affect 

the system; however, control objectives such as offset elimination or temperature 

excursions above a maximum threshold cannot be fulfilled. Nevertheless, the 

technique provides a theoretical foundation for optimal optimal control and leads 

to a simple control law. Issues like practical implementation and robustness need to 

be further investigated. 

The control schemes developed in Chapters 3 and 4 were proven to be adequate 

for the control of the reverse flow reactor unit; however, we overlooked the fact that 

the system had a nonlinear dynamic. A major issue that control engineers face 

while selecting of a control technique for a given process is the impact of process 

nonlinearity on the closed-loop system. A wide range of measures have been proposed 
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to quantify process nonlinearity. While published results in this area are limited to 

lumped parameter systems, measures of nonlinearity were developed in Chapter 5 and 

6 for distributed parameter systems; in particular for systems modeled by hyperbolic 

partial differential equations. 

Chapter 5 presented a measure to quantify the magnitude of open-loop process 

nonlinearity in hyperbolic partial differential equation models. The measure quantifies 

the gain nonlinearity and can be used to locate regions of the output space where 

nonlinearity is significant. The gain nonlinearity can be used as preliminary 

information for the design of a controller for the system under study. 

A plug flow reactor was used to show the application of the proposed measure and 

to study the relation between the measure and the observed control performance. 

Operating regions were mapped to a nonlinearity measure so that regions with a larger 

degree of nonlinearity could be identified for control uses. Comparison of closed-loop 

control around the different operating regions using linear and nonlinear controllers 

was shown to be an effective way to highlight the importance of the measure. 

The open-loop nonlinearity measure was also applied to a catalytic flow reversal 

reactor. Unfortunately, the analytical method developed in Chapter 5 could not 

be used to derive the nonlinearity measure due to the lack of a closed-form 

mathematical model of the reactor for direct computation of the stationary-state. 

Computer simulations were used to find the stationary state and use it to numerically 

approximate the first and second order derivatives. Prom the results obtained, it 

was observed that normal curvature due to the combination of mole fraction and 

temperature in the reactor model was minimal. Moreover, the main source of 

nonlinearity, i.e. nonuniform spacing of the reactor temperature, was successfully 

quantified by the tangential curvature. Curvature profiles at different operating 

conditions can be created to analyze with great detail the operating regions where 

the nonlinearity might be significant. 

Even though an open-loop nonlinearity measure provides meaningful information, 

the main assumption related to the use of open-loop nonlinearity measures in 

controller design is that highly nonlinear systems will require nonlinear controllers. 

Although this may be true in a significant number of applications, proximity of a 
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nonlinear process to a linear one is neither necessary nor sufficient for good closed-

loop linear control performance. 

Chapter 6 presented a performance sensitivity measure to assess the impact of 

nonlinearity in linear control of processes modeled by quasilinear hyperbolic partial 

differential equations. The measure is an extension to distributed parameter systems 

of the sensitivity measure available in the literature for lumped parameter systems. 

The main principle of the performance sensitivity measure is that the nominal 

performance is invariant to the choice of initial conditions if the underlying control 

system is nearly linear. Thus, the sensitivity of the nominal performance to changes in 

initial conditions provides an effective means of investigating the nonlinearity effects 

in control systems. 

A tubular reactor with heat exchanger was used to show the application of the 

performance sensitivity measure. It was observed that the performance sensitivity 

measure gives useful information about the impact of nonlinearity for local control 

and that it can be combined with the open-loop nonlinearity measure developed in 

Chapter 5 to assess the full impact of nonlinearity, not only for regulation but also 

for set point-tracking. 

The performance sensitivity measure was also applied to a catalytic flow reversal 

reactor. Due to the lack of a closed form model amenable for the computation 

of analytical derivatives, sensitivities of the output variables with respect to the 

initial conditions were computed using closed-loop data from numerical simulations 

and numerical approximations. The reactor temperature along a fixed number of 

spatial points was considered as output variable. It was observed that using the 

linear quadratic controller developed in Section 4 (equation (4.41), the higher the 

operating value of mass extraction is, the higher is the expected level of linear control 

performance. The study indicates that there is an optimum value of gas removal from 

the reactor midsection for best linear control of the 1-D pseudo-homogeneous model 

representation of the catalytic flow reversal reactor. 
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7.2 Recommendations 

7.2.1 Modeling of Catalytic Flow Reversal Reactors 

In Chapter 2, a 1-D pseudo-homogeneous low fidelity model was used to represent the 

catalytic reactor dynamics and to develop control strategies. The model was observed 

to provide good short term predictions, but it failed to provide long term estimations 

of the reactor dynamics. It is suggested to improve the reactor model by including 

a third dependent variable to model the temperature of the insulation and to add 

an effective heat transfer coefficient to model the heat transfer between the reactor 

temperature and the insulation. Moreover, experimental data would be beneficial for 

validation of the model predictions; specially the long term predictions. 

Although a first principle model can provide extensive information about the 

dynamic behavior of the reactor system, it would be interesting to evaluate empirical 

models that can be used directly into commercial MPC software packages. Until now, 

there has been no research work that studies exclusively the identification of empirical 

models for CFRR units. It is recommended to perform such a study by modeling 

the cycle-by-cycle dynamic behaviour and neglecting the inter-cycle dynamics; i.e., a 

sampling time of one full cycle. 

7.2.2 Control Design for CFRR units 

The main issue regarding model predictive control is that a good mathematical 

representation of the the controlled system is required. While the vast majority 

of the MPC implementations employ a linear lumped parameter dynamic model of 

the controlled process, most chemical processes, and especially catalytic reactors, 

are nonlinear distributed parameter systems. Despite the advantage of accuracy of 

a nonlinear model, nonlinear models have the disadvantage of necessitating online 

nonlinear optimization, which may require large computational effort and might not 

provide significant improvement in the control performance. . 

In Chapters 3, a model predictive control scheme was used to control the simulated 

pilot catalytic flow reversal reactor unit. A linear approximation of the reactor 

dynamics was used to predict the future output behavior in the MPC scheme. Periodic 
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updating of the linear model was used and good control performance was observed in 

the numerical simulations results. The good control performance observed indicates 

that the system behaves linearly in the region of operation selected, i.e. the changes in 

the operating conditions used were small enough to keep the reactor within a linear 

region. Even though experimental results would be needed to provide a definite 

answer about the suitability of the linear models in the model based control scheme, 

the measures developed in Chapters 5 and 6 can be used to quantify the impact of 

nonlinearity on the closed-loop system. Numerical simulations and approximations 

can be used to compute first and second order derivatives or sensitivities, although 

an extension of the analytical methods developed in Chapters 5 and 6 to processes 

that operate under unsteady-state conditions would provide a more precise answer to 

the problem. 

Application of the control schemes developed in this thesis, more specifically the 

MPC scheme, in the pilot reactor unit can provide the much needed control scheme for 

industrial application and can help to improve the control scheme by the identification 

potential problems that are not evident in the design stage. In this thesis, there was 

significant model/plant mismatch and the controller provided satisfactory control in 

the numerical simulations, so it can be expected that it will be sufficiently robust 

in practice; however, other issues such as stochastic components have not been 

considered or tested. 

An important issue that was briefly discussed in Chapters 3 was the possibility 

of saturation of the manipulated variable during extreme conditions, i.e. lean or 

concentrated inlet stream. If such cases exist, then a logic control scheme can be 

added. Using the mass extraction as manipulated variable, the MPC controller 

would be used to drive and keep the reactor operation within a stable operating 

region. If that is not possible due to saturation of the manipulated variable and 

extreme conditions, then the temperature of the reactor will be driven outside the 

stable operating region. A solution for that situation would be to automatically turn 

off the MPC and to use new control measures such as injection of hot or cold air 

stream through the reactor midsection. Once the temperature is driven back to safe 

operating conditions, then the system will be again controlled by the MPC through 
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mass extraction. 

7.2.3 Nonlinearity Assessment of Hyperbolic PDE 

In Chapters 5 and 6, open-and closed-loop nonlinearity measures for quasi-linear 

hyperbolic PDE models were developed. To show the application of the measures, a 

plug flow reactor and a catalytic reactor with reverse flow operation were used. 

For the study of the catalytic reactor with reverse flow operation, numerical 

simulations were required to compute the nonlinearity measures. Further extension 

of the method proposed in this thesis would be required for such a complex system. 

Nevertheless, numerical simulations and approximation helped to obtain the measures 

of nonlinearity and gain deeper insight into the impact of process nonlinearity on the 

control of such system. 

It is recommended to apply the concept of performance sensitivity assessment to 

the closed-loop system composed of the 2-D heterogeneous model and the model 

predictive control. Even though this performance assessment can only be performed 

by using numerical simulations at this time, it can give a definite answer about the 

impact of nonlinearity on linear control performance of the catalytic flow reversal 

reactor. 

It is recommended to extend the application to other types of PDEs. An interesting 

extension would be to parabolic PDE equations. Parabolic PDE models arise in 

catalytic reactors when dispersive transport phenomena is significant. Issues like the 

effect of diffusive transport phenomena on the process nonlinearity measures would 

be interesting for future study. 

This thesis is a starting point in the area of nonlinearity quantification in 

distributed parameter systems. Further study is required to gain full understanding 

of the strengths and limitations of the methods. 
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Appendix A 

A.l Mathematical Model: Parameters 

Table A.l: Model Parameters used in the Heterogeneous Model of the Catalytic 
Reactor 

Monolith Sections: 
Parameter Expression or Value Units 

Dr,eff 0 m2 • S 1 

D^ff e (DAB + $ £ £ ) m2 • s-i 

Kfeff ksG W-m-i-K-1 

kaf,eff K(l-e) W-m-l-K-1 

krs,eff 0 W-m-l-K-x 

kas,eff PfCpf (a+ !*§£) W-m-l-K'^ 

G 0.2 
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Sec. A.l Mathematical Model: Parameters 

Table A.l: Continuation 
Monolith Sections: 
Parameter Expression or Value Units 

DAB 

DH 

e 

Lc 
av 

"TO 

cs 
Cps 
Ps 
Kg 

h 

9.86 x 10-
0.00216 
0.75 

(Pe-r)m 

{JrCr ) m 

p 
RgTs 1020 
1683 
1.46 
0 
# - (2.977 

-lOj-1.75 

[i + 3.e 

- 1 
m" 
m 

1 
0 

m 
1 

• s 

• m 

mol • m~3 

J-
kg 
W 

kg-1•. 

• m 
• m~l • 

m • s 

K~ 

K-

(2.977[1 + 3.6(Gz)°*exp(-§)]) W • m~2 • K~ 

Packed-Bed Sections: 
Parameter Expression or Value Units 

Dr,eff 
Da,eff 

(Per)m 

(Pea)m 

(Per)h 

(Pea)h 

Pr 
Gz 
Re 

Sc 

Cs 

DH 

DHVS 

DHVS 
(Pea)m 

0.1 + 
0.73e 

0.66e1 
ReScl 

- 1 

+ 
0.5 

ReSc ' l+(9 .7e /ReSc 

0 6 6 e l _ 1 

0.1 + 
0.73e 

RePrS 

+ 
0.5 

RePr 

kf 

^f-RePr 

JL 

l+(9.7e/RePr 

- 1 

Pf£>AB 
P 

Rqls 
Df 

(3DR/2Dc)(l~e)+l 

m? • s l 

1 — 1 

m • s 

mol • m 3 

m 
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Sec. A.l Mathematical Model: Parameters 

Table A.l: Continuation 
Packed-Bed Sections: 
Parameter Expression or Value Units 

Dc 

Lc 
e 
r 
av 

""m 

h 
krf,eff 

kaf,eff 

"rs,e/ / 

Kas,eff 

B 
Ps 
CPs 

Ks 

rp 

—Re HA 

AHr 

V 

</> 

Deff 

DK 

Kinfty 

0.0075 
0.00125 
0.51 
2 
6(l-e) 

Dc 
D^(2 + l.lSc1/3Re0-6) 
^-C(2 + l.lPr1/3jRe°-6) 
VsDcPfCpj 

(Per)h 
vsDcpfCpJ 

(Pea)h 
2kf(l-e)0-5 ( l-(kf/ks)B 
l-(kf/ks)B \(l-B(k-F/ks))^) 
B+l B-l \ 

2 l-(kf/ks)Bj 

Krs,eff 
1 2 ( i f ) l / 0 . 9 

1240 £ 

1020 
0.5 
5 x 10-9 

" ' O O ^ S ^ S 

-806.9 +1.586 x 10"2TS 

3.963 x 10~9TS
3 + 2.16 x 

tanh{(p) 
<t> 

M r̂ 
DKe 

T 

97rP (g ) ' 

1.35 x Wxp I^YT) 

ln( 

i 

10" 

•Bkj) 

S.485 x 10-6TS
2-

1 s 

m 
m 
-

-
9 — 3 

m • s _ 1 

W • m~2 

W-m~l 

W • m~l 

W • mr1 

W • m~l 

— 

kg • m~3 

J-kg-1-
W • rrT1 

m 
mol • s _ 1 

kJ • mol" 

-

-

9 —1 
m • s 

9 —1 m • s 

mol • s"1 

•K-1 

•K-1 

•K~l 

•K-1 

•K-1 

K-1 

•K-1 

• m 
-1 
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Sec. A.l Mathematical Model: Parameters 

Table A.l: Continuation 
Insulation: 
Parameter Expression or Value Units 

ps 1240 
Cps 1020 
ks 0.5 

he 3 

Stainless steel wall: 

ps 7800 
Cps 460 
ks 14.3 

Open Sections: 

Dr,eff 100 x DAB 

Da,eff 10 X DAB 

DH DR 

e 1 
krf>eff 100 kf 
kaf,eff 10 X kf 
Km 0 
h 0 

Fluid Phase: 

v VL 

r< e P 
°f R3Tf 
pf RaTf 

li 7.701 x 10" 
M 0.02896 

6 + 4.166 

kf 0.01679 + 5.073 x 
kf 

Oi — ^ — PfcP,f 

io-

x 10" 

- 5 T / 

-%- - 7.531 x 10-1 2!}2 

kg • m 3 

J • % - * • K - 1 

W • m'1 • K-1 

W-m-2- K'1 

kg • m~3 

J • kg-1 • K-1 

W-m'1- K-1 

9 —1 

m • s i —1 m • s 
m 
-
W-m'1- K-1 

W-m-1- K-1 

m • 5 _ 1 

W-m~2- K-1 

m • s^1 

mol • m~3 

kg • m - 3 

Pa • s 

kg • m o l - 1 

W-m'1- K-1 
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Sec. A.l Mathematical Model: Parameters 

Table A.2: Model Parameters used in the Pseudo-Homogeneous Model of the 
Catalytic Reactor 

Parameter 
k 
e 
E 
Rg 
PB 

Cpf 

CPs 

AHr 

P 
M 

Veff 
L 

Value 
1.35E5 
0.51 
54,400 
8.314 
1240 
1066 
1020 
-802E3 
101325 
0.02896 
1 
3 

Units 
s"1 

kg • m2 • s~2 • mol - 1 

kg • m2 • s - 2 • mol - 1 • K_ 1 

kg-1" 1 

J • kg"1 • K-1 

J • kg-1 • K-1 

J • mol - 1 

kg • m~ I s - 2 

kg • mol"1 

m 

Table A.3: Model Coefficients 

a 
T 
J-max X 

a 
T 

X 
a 

T 
-'-max X 

a 
T 
-*- max X 

a 
T 
-1-max X 

a0 

965.88 
65.0574 

«13 

-131.974 
-10.0481 

044 

-248.346 
-29.6010 

«331 

-147.587 
-8.3026 

^1133 

-118.639 
-9.5791 

a± 
820.391 
52.5745 

«14 

157.156 
0.5321 

an2 
157.156 
0.5321 

«332 

-17.931 
-0.9875 

01144 

242.276 
29.7057 

^2 

-307.538 
-23.7093 

^22 

6.555 
-5.1499 

«113 

6.555 
-5.1499 

«334 

-29.869 
0.2558 

^2233 

44.307 
9.0768 

0 3 

-235.504 
-26.5325 

«23 

-156.524 
-12.9644 

an4 
-156.524 
-12.9644 

0441 

-16.1864 
-0.3859 

^2244 

44.828 
-0.093 

0 4 

400.918 
32.4804 

«24 

-189.822 
-5.6211 

0221 

-189.822 
-5.6211 

&442 

1.597 
4.8699 

«3344 

-11.444 
-0.6428 

an 
189.04 
-8.7747 

033 

-50.857 
-4.3463 

0223 

-50.857 
-4.3463 

«443 

32.481 
5.8887 

012 

-255.868 
-8.6759 

Q34 

-85.366 
-5.2924 

0224 

-85.366 
-5.2924 

&1122 

-107.967 
-6.9788 
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Appendix B 

B.l Mathematical Background 

Definition B . l . l [Linear Vector Space] A linear vector space V is a collection of 

elements called vectors on which two fundamental operations, called sum and scalar 

multiplication, are defined. V is called linear space if these operations satisfy the 

following properties for u,v,w &V and a, /3 € K: 

1. Commutativity: 

u + v = u + v. 

2. Associativity: 

(u + v) + w = u + (v + w) 

a(f3u) = {afS)u. 

3. Distributivity: 

(a + j3)u = au + (3u 

a(u + v) = au + av. 
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Sec. B.l Mathematical Background 

4- There exists a zero element 0 E V such that u + 0 = u. 

5. For every element u G V there exists an additive inverse v E V such that: 

u + v = 0; v is denoted —u. Substraction of a vector v from u, denoted u — v, 

is defined as u — v = u+ (—v). 

6. Scalar multiplication is such that lu = u \/u E V, where "1" is the unity 

element in K. 

A linear vector space is called real vector space ifK = lSL, where W is the field of real 

numbers. IfK = C, where is C the field of complex numbers, then the vector space is 

called complex vector space. 

Definition B. l .2 [Normed Space] Given a linear space V, a norm \\ • \\ is a 

function from V to R with the following properties. 

1. \\v|| < 0 for any v € V, and \\v\\ = 0 if and only if v = 0; 

2. \\civ\\ = |Q;|| HI for any v EV and a E K; 

3. \\u + v\\ < \\u\\ + \\v\\ for any u,v EV. 

The space V equipped with the norm 11 • 11 is called normed space. 

Definition B. l .3 [Banach Space] 

In the finite dimensional space M.d, anu Cauchy sequence is convergent. However, 

in a general infinite-dimensional space, a Cauchy sequence may fail to converge. 

Definition B. l .4 [Inner Product] Let V be a linear space over K = K. or C. An 

inner product (•, •) is a function from V x V to K with the following properties. 

1. For any u EV, (U, U) > 0 and (u, u) = 0 if and only ifu = 0. 

2. For any u,v EV, (U, v) = (v, u). 

3. For any u,v,w E V, and a, (3 E K, (au + /3v, w) = a(u, w) + (3{v, w). 

The space V together with the inner product (•, •) is called an inner product space. 
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Sec. B.l Mathematical Background 

Definition B. l .5 [Hilbert Space] Let V be a linear space equpped with the inner 

product < • , • > . V is called Hilber space if it is a Banch space under the norm induced 

by the inner product. 

Definition B. l .6 [IP Space] For p G [l,oo),Lp(0,1) is the linear space of 

measurable functions x : [0,1] —•>• M such that 

\\x\\P= (f \x(z)\pdz\ <oo (B.l) 

For p G [1, oo], Lp(011) is a Banach space. 

Definition B. l .7 [Linear Operator] A linear operator maps elements of a linear 

space V into elements of a space W, i.e. L : V —»• W. The linear operator L further 

satisfies the conditions 

L(u + v) = L(u) + L(v) Vu,veV (B.2) 

L(au) = aL(u) VaeK,u&V (B.3) 

Definition B.1.8 [Bounded Operator] An operator L is called bounded if there 

exists a constant 7 > 0 such that 

\\Lu\\w < l\\u\\v VueV. (B.4) 

where V and W are two normed linear spaces. 

Definition B.1.9 [Adjoint Operator] Let L be a linear operator on a Hilbert space 

H. Then L*, called its adjoint operator, satisfies the relation 

< Lx, y >—< x, L*y > 

for every pair of elements x,y G 1~i. If L* = L, we say that L is a self adjoint 

operator. The notion of an adjoint operator is a generalization of the matrix transpose 

to infinite-dimensional spaces. 

Definition B. l . 10 [Coercive Operator] A self-adjoint operator L is called 

coercive if there exist c > 0 such that 

< Lx,x >> c\\x\\2. 
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Sec. B.2 Exponential Stability of a Linear Operator 

Example: for finite dimensional systems, the quadratic form Q(x) = xT Ax is 

coercive iff A is positive definite. If A is positive definite, then it can be shown 

that xTAx > Xmin(A)xTx 

B.2 Exponential Stability of a Linear Operator 

The exponential stability of the operator 

A = al ^- + (51 (B.5) 

dz 

can be probed by using the Lyapunov criterion 4.4.1. 

To show the existence of a positive definite solution of the Lyapunov equation, we 

begin by replacing A and P = p(z)I into (4.12) to obtain 

pi (al^-+/3l\ + (alJ-Z+Pl) pi +1 = 0 (B.6) 

By the adjoint property: 

(A + B)* = A* + B*, (B.7) 

we can write 

pal £- + ppi + (a^-\ pi + fpl + 1 = 0 (B.8) 

pal^- + (a^-\ pi + 2(3pl + 1 = 0 (B.9) 
dz \ dz I 

By the adjoint property: 

we can write 

(AB)* = B*A* (B.10) 

*4) = (s.) °v ^ 
d' ' apl (B.12) 

^dz 

The adjoint of the operator (d/dz) can be obtained as follows 

Let X = 1/2(0,1) and consider the operator A given by 

(Ax) = 4-x (B.13) 
dz 
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Sec. B.3 LQ-Feedback Controller Formulation 

where D(A) = { i £ L2(0, l)\x is absolutely continuous with dx/dz G L2(0,1), x(0) = 

0}. By definition, the adjoint is given by (Ax, y) = (x,y*) = (x,A*y), where (•, •) 

represents the inner product, 

—(z)y(z)dz = [x(z)y(z)]l -

[ x(z)-hz)dz = x(\)y(l) - [ x(z)^-(z)dz (B.14) 
Jo dz J0 dz 

Equation (B.14) is obtained from the following general mathematical equation 

f(b)9(b)-f(a)g(a) = J ±(f(z)g(z))dz (B.15) 

- / % ^ + p < 2 > ^ , ,B,e, 
Equation (B.14) can be written in the form (x,y*) if and only if y(l) = 0 and 

A*y = —dy/dz with D(A*) = {y G L2(0, i)\y is absolutely continuous with dy/dz G 

L2(0,1), y(l) = 0}. By replacing A* = —d/dz in equation (B.9), we obtain 

Id._d{^n.+ = 0 
dz dz 

By the chain rule, we obtain equation (4.36) 

B.3 LQ-Feedback Controller Formulation 

The solution of the LQ-control problem in (4.38) can be obtained by finding the 

positive self-adjoint operator Q0 G C(H) which solves the operator Riccati equation 

(4.21). 

To solve the Riccati equation, we look for a solution Q0 = q(z)I G CiTi.). We write 

A = (al£- + pi\ (B.18) 

and 

QoA = (qI)(aI^+pi\ (B.19) 
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Then, we write 

A* = (alj- + pi) (B.20) 

and 

A*Q0=(aI^ + pi) (ql) (B.21) 

By the adjoint properties: 

(A + B)* = A*+T* (B.22) 

(AB)* = B*A* (B.23) 

we can write 

A*Q0 = (aI^) (Ql) + Fql (B.24) 

^) (al)*(ql) + (3*ql (B.25) 

Since a* = a and (3* = (3, we obtain 

A*Qo=(^) (<*qI)+PqI (B.26) 

The adjoint of the operator A = (d./dz) was obtained in Section B.2 and is given by: 

(A*x) = ~x (B.27) 
(JJZ 

where D(A*) = {x G L2(0,l)\x is absolutely continuous with dx/dz £ 

L2(0,l),x(l) = 0}. 

By combining Q0A + A*Q0, we obtain 

Q0A + A*Q0 = (aqI)^-^(aqI) + 2(3qI (B.28) 

By the chain rule, we obtain 

Q0A + A*Q0 = -^{aqI) + 2(3qI. (B.29) 

Combining equation (B.29) with 

C*C = w2I (B.30) 
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and 

QoBBT^B * Q0 = q-rr-^ql (B.31) 

leads to the result in equation (4.38): 

d(aq) 

dz 
= 2(5q + w2 - q-rr-ljq. (B.32) 
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Appendix C 

C.l Feedback Control of Hyperbolic PDE Systems 

For a hyperbolic PDE system of the form 

Yt = AYz
+fix) + 9{x)u ( a i ) 

m 

u(t,z) = ]£>(*)«(*) (C.2) 

y = Ch(x) (C.3) 

R(t) --= ClX(za,t) + C2x{zb,t) (C.4) 

with a finite set of input and output variables 

u = [«!••• up}
T (C5) 

v = [yi---ym]T (c.6) 

b(z) = [(H(z-z1)-H(z-Z2))b1---mz-Zj)-H(z-zm+1))bm] (C.7) 

C = [(ff(* - zi) - # ( * - z2))C1 • • • (H(z - Zj) - H(z - zm+1))Cm], (C.8) 

we followed the input/output linearizing feedback techniqued proposed in Christofides 

(2000). 
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To formulate an input/output linearizing controller, the first step is to compute 

the characteristic index of the system (Khalil, 1996; Marquez, 2003). For hyperbolic 

PDEs, Christofides (2000) defined the characteristic index of the output %• with 

respect to the input Uj is calculated as the smallest integer Uj for which 

C^ (E IS + L f ) h{x)bj{z) * ° (c,9) 

where a,j denotes the j t h column vector of the matrix A. For the tubular reactor 

in (5.51) and (5.52), the resulting index is 1. Therefore, we should check that the 

zero dynamics of the system (i.e. dynamic of the states that are unobservable from 

the output) are stable. As discussed in Section 2.9.2, equation (5.51) has a stable 

dynamic behavior around any equilibrium profile. 

Christofides (2000) proposed a distributed state feedback law that enforces the 

input-output response of the closed-loop system. We modify the controller to add 

integral action in the form of 

Vj = e3 j = l,...,m (CIO) 

ej = Cj(x-xss). (C.ll) 

For the tubular reactor given in (5.51) and (5.52), the model states are shifted so that 

the cero profile corresponds to the equilibrium profile of the system: 

at oz \ 

^ + v-^ = a2ke\*^J (5i + x?) - a3(x2 - u) - I a2ke\ "5" Jx? 

'(C.13) 

Initial and boundary conditions \ Xl^ 2 = XlM ^S' *\ = Xlfi[Z\ (C.14) 
{ x2{t,0) = x2,in x2(0, z) = x2fi[z) 

where 

xi = xi — xf (C.15) 

x2 = x2-x
s
2
s (C.16) 

u = u-uss (C.17) 
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The nonlinear controller for the tubular reactor becomes 

Uj(t) 
Cjg2{x) 

-fifj - iCj{x2 - xs
2
s) -Cj[a2-^ + h{x) (C.18) 

where 

a2 = -v 

g2(x) = a3 

f2(x) = a2k ( exp '0l ^ (*i - *T) - exp ( - £ ) x? 

(C.19) 

(C.20) 

a3x2 (C.21) 

guarantees zero offset and exponentially stable closed-loop dynamics. The closed-

loop behavior for each input/output pair is tuned to 7 = 1 which leads to closed-

loop eigenvalues located at r = —0.5 ± 0.866z. The resulting controller for the 

tubular reactor in (5.51) and (5.52) with linearized dynamics around an operating 

(equilibrium) profile is: 

Uj(t) = 

where 

1 

CM*) 
-Wj ~ lCj{x2 - xs

2
s) -Cj [a2—^ + b2(z)xi + c2(z)x2 (C.22) 

a2 

b2(z) 

c2(z) 

d2{z) 

= —v 

= a2k exp 

= a2k exp 

a3 

-ati 

OCn 

- O i 

Xn (Xfy)( x°s) a* 

(C.23) 

(C.24) 

(C.25) 

(C.26) 

The integral action in (C.22) and (C.18) is obtained from the solution of 

<Pj = Cj[x2 - xs
2
s) j = 1,..., m (C.27) 
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