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Abstract

Data-driven approaches have been profoundly studied and successfully applied for process

industries, such as in the development of inferential sensors. Among a variety of modelling

techniques, the latent variable modelling approaches are widely preferred, which can learn

informative features from massive industrial data. In order to make latent variable models

more practical for process data analytics, the temporal correlations should be considered

in feature extraction. Following the probabilistic modelling procedure, dynamic models are

developed in this thesis to describe the latent feature. Besides several probability models,

novel inferencing algorithms are elaborated for different application scenarios.

In most chemical processes, features with large inertia and small varying velocity are

believed to be more informative. By imposing this modelling preferences as prior distribu-

tions of model parameters, the first contribution of this thesis builds the dynamic latent

features under a fully Bayesian framework. The preference for large inertia is implemented

through a constraint and a prior distribution for the dynamic model of latent features,

namely the transition function. The consideration of regularization is implemented through

the generative model of raw process data, namely the observation function. Based on the

variational Bayesian inference, a novel learning method is developed to extract the slowly

varying features and learn model parameters.

The second contribution of this thesis forms a transition function for the constrained

latent features. As a hierarchical extension of the hidden Markov model, it describes a

dynamic model for the probabilities of discrete variables. By using the Beta distribution

to replace the Gaussian distribution, the novel transition function retained similar dynamic

characteristics in the constrained domain. The preferred region of transition parameters

can be determined for Bayesian inference. In this feature extraction model, a non-linear ob-

servation function is used to learn the constrained feature from unconstrained observations,

where novel smoothing and marginalizing algorithms are created.

In the third contribution of this thesis, a more practical observation function is proposed

to extract dynamic features from multiple operating regions and outlier contaminated data.
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Specifically, multiple linear models are utilized to accommodate switching operation regions,

and a heavy-tailed noise distribution is used to improve robustness. In order to integrate

multiple observation models into the unified dynamic latent feature, a novel Bayesian state

estimation algorithm is developed. In its online application, the proposed method is also

extended to general multiple model state estimation.

In the fourth contribution of this thesis, another observation function is proposed, which

generalizes the ARMAX identification problem under the probabilistic framework. In this

work, the dynamic latent feature is used to represent the random (time-variant) time delay,

and the proposed Bayesian algorithm can solve the problem of parameter estimation and

time delay estimation jointly. In particular, the random time delay is studied for three

scenarios, where a static model, a hierarchical model, and a Markov model are developed.

With the consideration of temporal correlations, the Markov model provides better per-

formance for system identification. Besides, the hierarchical model also demonstrates its

effectiveness of modelling sequentially independent time delay.

The practicality of these proposed feature extraction models and inferencing algorithms

are verified using numerical examples, benchmark simulations, and case studies on indus-

trial data. Specifically, the application includes modelling the emulsion quality from the

subsurface recovery process, modelling the steam quality from the steam generation process,

and a target tracking problem with multiple models.
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Chapter 1

Introduction

In this chapter, the motivations of this thesis are introduced at first. Literature related to

process data analytics is reviewed for latent variable modelling and probabilistic modelling.

After that, the outline and the contributions of this thesis are provided.

1.1 Motivation

In the process industry, abundant sensors and transmitters are installed for control and

monitoring applications. In the corresponding Process History Database, both steady and

dynamic behaviours can be recorded for the target process. In recent years, with the de-

velopment of data analytics technologies, historical data becomes more valuable for process

control and optimization. For example, in the robust optimization problem, historical data

can be used to learn statistical moments and confidence regions to describe the uncertain

constraints [1]; in the root cause analysis problem, historical data can be used to extract log-

ical connections between process variables [2]. Besides its use in preliminary data analysis,

availability of historical data makes the data-driven approaches viable for model develop-

ment. For example, in the statistical process monitoring approaches, the model can be built

by using the data from normal operating regions and then be used to detect and diagnose

conditions that are deviated from the normal operations [3]. The essence of historical data

can be learned as a model, upon which the real-time decision can be made once new data

samples have arrived.

In this thesis, the objective of analyzing process data is to build a model for the on-

line estimation of key process variables. Monitoring of key process variables, typically

the quality variables in chemical processes, is important for process operations. Real-time

availability of these variables is crucial for control and optimization. However, hardware

instruments do not always work satisfactorily. Advanced analyzers, such as those based

1



on nuclear technologies, may be useful in pilot projects. However, they usually suffer from

reliability issues and have a high maintenance cost in practical applications. For example,

in a bitumen recovery process of the oil-sand industry, maintaining multiphase flow meters

for produced emulsions can be prohibitively expensive. As a conventional solution, sparse

accurate measurements can be obtained from the sampled product. Usually, these results

can be used for certain regulatory and performance reports. However, because of the slow-

rate and time-consuming analyzing procedure, they are not sufficient for Advanced Process

Control. As an alternative solution, estimating key process variables with inferential sensors

has become a more favourable solution for the on-line measurement of key process variables

[4, 5, 6].

There are several noticeable features and advantages of inferential sensors in comparison

with traditional instrumentation.

• Performance satisfaction. The sampling rate of input variables is normally fast, which

makes the outputs of the inferential sensor granular enough for the online application.

More importantly, the customized regression model can be established and optimized

for certain real-time application scenarios.

• Insight of processes. Since the regression model of an inferential sensor is built from

historical data of the designated unit, the parameters can reveal the connection be-

tween regularly measured process variables and the quality variables. Besides, the

prediction performance of soft sensors will also be improved by taking both process

knowledge and data analytics into consideration.

• Robustness. The inferential sensors are more than a regression model. As an in-

tegrated algorithm package, the inferential sensor protects the model by using data

preprocessing and filtering techniques, which can improve the robustness in the pres-

ence of abnormal situations.

• Adaptation. The inferential sensors are often implemented with an adaptation mech-

anism, which conducts the on-line updating by using the latest reference samples.

With the inherited parameter learning methods, further improvement of inferential

sensors can be realized automatically with the addition of new process data.

It can be observed that the essential part of an inferential sensor is the predictive model,

which predicts the quality variables from the related and reliable process measurements. In

ideal cases, this model can be determined based on physical understandings and conservation

2



laws, such as establishing the mass balance and the energy balance equations. However,

similar to the hardware instruments, the knowledge-based models can frequently fail due

to unattainable physical assumptions, biased process measurements, and harsh operating

conditions. On the other hand, with the increasing size of process data and the well-

developed data analytics algorithms, data-driven models are proved to be useful in those

situations [7, 8, 9]. The main advantage of data-driven methods is their flexibility for various

applications. Typically, for the chemical processes with a variety of operating conditions,

the historical data becomes more important in dealing with the modelling challenges. In

what follows, two industrial processes will be briefed to introduce the primary interest of

this thesis.

Figure 1.1: Sketch of SAGD Subsurface Recovery Process

The first process is about the subsurface portion of the Steam Assisted Gravity Drainage

(SAGD) process. In this subsurface recovery process, two horizontal wells are drilled into

underground bitumen reservoir, where the high-pressure steam is injected through the top

injector well to heat the heavy crude oil, and a mixture of oil and water (emulsion) is

pumped out through the bottom producer well. The injected steam is used to form a steam

chamber in the bitumen reservoir. The heated bitumen can flow down along the edges

of this steam chamber. In order to maximize water usage and monitor the production

efficiency, the composition of produced emulsion should be measured. Specifically, an on-

line estimation of the total flow rate of water and oil (mwater + moil) and an associated

composition ratio ( mwater
mwater+moil

× 100%) are desired for subsequent control applications.

Based on the physical understanding, the production of oil (moil) is known to be highly
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dependent on the chamber’s condition, such as the chamber temperature, the chamber

pressure, and the porosities of bitumen reservoir. Unfortunately, such properties are difficult

to measure or only sampled sparsely in reality. On the other hand, many other process

measurements can be used to infer those hard-to-measure ones. For example, Figure 1.1

illustrates a typical topology for one well-pair. Available input variables are shown with

green boxes, and the most prominent features are contained within the blue box. In some

pilot project, the advanced analyzers, as denoted in the red box, may be available to provide

the reference outputs in real-time. In more general cases, only a limited number of certain

references can be obtained from a downstream test separator. To build a “predictive” model

from available input variables to the quality variable, the latent features in the blue section

will play an important role.

Figure 1.2: Sketch of Once Through Steam Generator Process

The second process is about generating the high-pressure steam for the injector well.

The most widely used methodology is based on Once-Through Steam Generators (OTSGs).

In this process, the fuel gas is burned with air flow to boil the feed water into the high-

pressure wet steam. Since the produced fluid is a mixture of steam and water, the steam

portion needs to be further separated before being used in the subsurface recovery process.

The efficiency of this steam generation process is closely related to the composition of wet

steam, for which a steam quality measure ( msteam
mwater+msteam

× 100%) is used as an indicator.

If this steam quality can be accurately measured in real-time, its operational variations can

be reduced, and the efficiency of water usage can be improved. In Figure 1.2, a brief flow

diagram summarises the process and available measurements of a typical OTSG. In this

process, the inlet flow of boiler feed water is divided into several individual passes in order

to improve heat transfer. As a common practice, fuel gas flow-rate, feed water flow-rate,
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feed water temperature and pressure, and steam temperature and pressure are available.

Based on process knowledge, the crucial part of heat transfer occurs in the radiation section,

which affects the steam quality dominantly. Unfortunately, in most application cases, no

reliable sensors can be implemented there. Thus, to build an interpretable model from the

input variables (green) to the quality variable (red), it is necessary to extract the latent

variations/features in the blue section.

It can be observed that in both of these two industrial processes, the quality variables

of interest are not directly related to the available process measurements. In Figure 1.1,

the water content depends on the underlying condition of bitumen reservoir and the steam

chamber, while this condition can be indirectly determined by the injected steam and be

reflected by the “down-hole” and producer measurements. In Figure 1.2, the steam quality

depends on the operation condition of the radiation section, but available measurements of

input variables do not directly reveal this condition. To correctly model the quality variable

in such scenarios, latent variable models are usually favoured comparing to other data-driven

models. Besides, the probabilistic approaches are demonstrated to be effective in dealing

with real-world process data. In the following section, related studies and algorithms will

be reviewed for latent variable modelling and probabilistic approaches.

1.2 Literature Review

1.2.1 Latent Variable Modelling for Process Data

The historical data of most processes is rich, but it usually suffers from information re-

dundancy [8]. For example, concurrent variations from numerous process variables can be

originated from the same source, such as the correlated pressure and temperature shown

in Figure 1.2. Without an effective dimension reduction method, the regression model will

be affected by the co-linearity of process variables, which results in an inaccurate and mis-

leading estimation of model parameters. On the other hand, within a specified operating

range, most process variables can be determined by a small set of manipulated variables.

For the example shown in Figure 1.1, the pump frequency affects both “down-hole” pres-

sure and temperature. Usually, the significant variations can be captured by the pump

speed. However, for specific prediction objectives, the residual variation or the insignificant

trends could be more informative for predicting the output. For example, in one application

case, the steam quality is found to be highly correlated with the residual variation after

correlating the steam temperature and the steam pressure. Based on the above examples
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and modelling challenges, the latent variable modelling techniques, or representation learn-

ing methods [10], are widely applied in learning the shared causes. Instead of building an

input-output model directly, this approach formulates a latent space to represent useful

information in the input variables.

Formulating the latent variables is a step to extract informative features from raw data,

which is critical for multivariate data analysis [10, 11]. It is expected that latent features can

provide higher effectiveness and more robustness than the raw input data itself. Originally,

feature extraction is used in image processing [12, 13] to identify specific objects. For

example, in geographical image processing, analyzers are designed to detect linear objects

such as roads and airport runways, or non-linear objects such as rivers and trails. While

applied for general latent variable models, the scope of feature extraction has been extended,

and the features are not necessarily related to the real objects. In the most important

latent variable modelling approach, principal component analysis (PCA) [14], the features

(or the latent scores) are extracted to represent the variability of multivariate observations.

In the regression-oriented latent variable models such as partial least squares (PLS) [15],

the features are extracted to capture common variations between inputs and outputs. In

these methods, specified preferences are used to formulate the latent features, for example,

emphasizing the large variance in PCA and emphasizing the large mutual correlation in

PLS.

Figure 1.3: Validating Latent Variable Models with Regression Tasks in TEP

As a demonstration for latent variable modelling, an initial numerical experiment is

performed to test the prediction performance on the Tennessee Eastman simulation [2]. The

result is presented in Figure 1.3, where several popular regression methods are compared.

Root mean square error (RMSE) is evaluated by varying the sampling interval of the training

output samples. In practice, these large sampling intervals correspond to the slow sampling

rate of accurate output measurements. As shown in Figure 1.1 and Figure 1.2, the accurate
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measurements of water content come from a shared test separator [16], and the accurate

measurements of steam quality are obtained from manual sampling and laboratory analysis.

Thus, a slower sampling rate is commonly encountered in the measurements of quality

variables. In this simulation, the ordinary least squares (OLS) method has shown degraded

performance for large output sampling intervals, but the other latent variable models provide

more consistent performance when the sampling interval increases. The best performance

in this simulation is achieved by the slow feature based regression model (SFR), which has

a more favourable modelling preference in process data analysis.

As the basis for this best regression model shown in Figure 1.3, slow feature analysis

(SFA) is an unsupervised learning approach for extracting dynamic latent features [17].

Comparing to PCA, the learning objective of SFA focuses on the slowness of latent features

rather than the magnitude of variations. To describe the slowness, an averaged varying

velocity [17] for the stochastic sequence s1:T = {s1, s2, ..., sT } can be defined as

v(s) = E
[
‖st+1 − st‖2

]
≈ 1

T − 1

T−1∑
t=1

(st+1 − st)2 , (1.1)

where E[·] stands for the average over whole sequence of features. In SFA, the latent

feature with the smallest varying velocity is favoured. Based on the above definition, an

optimization problem can be formulated to extract the slowest latent feature:

min
g

v(s),

s.t. st = g(Xt), ∀ t ∈ {1, 2, ..., T},

E [st] = 0, (1.2)

E
[
s2
t

]
= 1, (1.3)

where g is the encoding function, which maps each observed data sample Xt to each latent

state st. Combined with the constraints of zero-mean (1.2) and unit-variance (1.3), an

optimal solution can be attained deterministically. In this optimization procedure, these

two constraints prevent the trivial solution of a straight line. When applied to extract

multiple latent features, another constraint on mutual independence is enforced as

s(i) ⊥ s(j), ∀ i 6= j. (1.4)

Based on the above three constraints, a complete slow feature extraction is amenable.

Specially, by using a linear encoding function g(j)(Xt) = p′j · Xt, the projection can be

formulated similar to the PCA modelling, resulting in a matrix of projection coefficients

P = [p1, p2, ..., pm].
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The effectiveness of SFA comes from its preference for slowness. Typically, in a chemical

process, slower variation is usually believed to be more informative than the fast variation

because of the comparatively large inertia of chemical processes. Therefore, the consider-

ation of temporal correlation between consecutive latent samples can improve modelling

performance. Based on this consideration, several variants and applications have been de-

veloped [18, 19].

In addition to the extraction methods mentioned above, latent features can also be for-

mulated according to other modelling preferences, such as through the canonical correlation

analysis [20] and the co-integration analysis [21]. Enrichment of modelling preferences and

more detailed description of latent space will improve the efficiency of feature extraction

procedure, as well as extend the application scope. Motivated by the improved result from

the consideration of temporal correlation, this thesis considers building the dynamic model

to describe latent features, which can be presented in an auto-regressive form: st = f(st−1).

Consequently, the observed data is expressed as the output of a decoding function, for ex-

ample Xt = g(st−1). In what follows, this decoding format of feature extraction and related

probabilistic modelling approaches will be introduced.

1.2.2 Probabilistic Modelling for Process Data

Generally, a feature extraction model can be formulated with two complementary formats:

one models the latent feature as a function of observations, and the other treats the observed

data as a projection from latent features. A comparison is presented in Figure 1.4. With

a set of invertible functions, these two formats are convertible. As an example, for linear

PCA, after having the encoding matrix P learned from the eigenvectors of
∑T

t=1XtX
′
t, the

corresponding decoding matrix can be modelled as P ′ (the transpose of P ). However, in

more general cases, these two formats have significant differences. In the encoding formu-

lation, the learning objective is usually formulated as a deterministic function of the latent

features, such as the averaged varying velocity in slow feature analysis. On the opposite,

the decoding format is commonly formulated as a maximum likelihood estimation prob-

lem, which uses a conditional distribution to describe the observed data. Based on the

specified probabilistic formation, the features and parameters with the best performance in

explaining the observed data will be the optimal solution.

For example, as the decoding counterpart of the linear PCA, probabilistic principal

component analysis [22] has been widely acknowledged. In this model, the formulation of

Xt = [h1, ..., hm]′ · St + et is considered, where the latent states are denoted with a vector

8



Figure 1.4: Feature Extraction with Encoding and Decoding Format

St. Based on the assumed observation noise et, the conditional distribution of observed

data can be written as p(X | H). The modelling objective thus becomes maximizing this

likelihood function p(X | H) in terms of the parameter matrix H = [h1, ..., hm]. Unlike

the deterministic optimization techniques from the encoding formulation, the probabilistic

inference approaches can be introduced for the decoding formulation, where a variety of

probability distributions are available to reinforce the learning procedure.

As the mainstay of engineering and computer science, the probability theory is viewed

as a preferred tool in formulating models and learning parameters from data [23]. In proba-

bilistic approaches, the model can be built under an explicit prior preference, the structure

can be selected based on certain Bayesian evaluation indices, and the model predictions can

be assigned with specific beliefs for on-line usage [8]. In addition to the aforementioned

probabilistic PCA, most deterministic data analysis approaches have their probabilistic

extensions as well [24, 25]. In the following discussion, it will be illustrated that the de-

coding format and the associated probabilistic algorithms are capable of providing a better

interpretation for the latent features, and improving the learning efficiency.

First, better modelling performance is achieved by adopting a better and more robust

description of observation noises. In engineering problems, particularly for industrial process

data, the raw inputs are often contaminated by different types of noises, including outliers.

Usually, data pre-processing methods, such as wavelet analysis, can be applied individually

for a filtering purpose. However, the resultant signals could be distorted inevitably, and a

strong filter may mask informative variations of the raw data. By using the decoding format

and the probabilistic framework, the measurement uncertainties will be modelled together

with the latent features. In particular, an explicit noise term et is used to describe the

disturbances, and the remaining part (the informative/relevant variations) can be reflected
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in the latent space. By assigning an appropriate probabilistic description to et, such as

requirements on statistical moments or certain forms of probability distributions, the noise

of observations can be well described by et, and thus be screened out of the latent space.

For example, the robustness against outliers and sparse measurements can be improved by

using appropriate probability distributions for observed data [24, 26].

Second, the better interpretation of latent features comes from the explicit model for

latent feature s1:T . In the probabilistic PCA case, each latent state st is assumed to be

drawn from the standard Normal/Gaussian distribution N (0, 1). This description of latent

feature materializes the normalization requirements of original PCA. In the mixture mod-

els, the discrete latent states are usually formulated with a hierarchical model, where the

parsimony principle can be materialized [27]. In the emerging deep learning approach [28],

the distribution of latent state can be described by a multi-layer neural network. In the

above decoding formats, the specification of latent features is summarised by a probability

distribution of p(s1:T ). In this thesis, by considering a dynamic model for the latent fea-

tures, the formulation of p(s1:T ) will be realized for the sequentially dependent latent states,

namely st−1 6⊥ st. Comparing to those dynamic statistics of s1:T enlisted in the encoding

format, such as the velocity form in (1.1), establishing an explicit dynamic model for s1:T

can provide more information and obtain more detailed descriptions for the latent feature.

With broad modelling scope comes a large solution space. Regarding the decoding

format, the maximum likelihood estimation could yield multiple solutions and might be

stuck in local optima. For example, the probabilistic PCA needs a well-established initial

point, which is usually obtained by applying the original PCA method first [22]. In order to

avoid the difficulties in parameter estimation, some assumptions about available data can

be considered in the theoretical derivation, which helps to achieve a consistent parameter

estimation [22, 25]. As for the applications on industrial data, practical challenges, such

as the time-varying parameters and the lack of distributional normality [16], can introduce

more difficulties to parameter estimation. To overcome these difficulties, from a probabilistic

modelling framework, the Bayesian inference approach [8, 26] is used throughout this thesis.

When the Bayes rule is applied to estimate model parameter, the available process

knowledge and modelling preferences can be implemented through the prior distribution of

model parameters. During the inference procedure, instead of point estimation, model pa-

rameters can be learned along with their probability distributions. Regarding the objective

of feature extraction, the Bayesian framework can also provide an explicit indicator for the

training performance [29], leading to an automatic selection of the optimal model structure.
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In this thesis, several Bayesian models and their inferencing algorithms are developed for

various modelling problems in process data analytics.

1.3 Thesis Outline

Having introduced the background of latent variable models and probabilistic approaches,

the following chapters of this thesis are organized as follows.

In Chapter 2, a review of related models and inference algorithms is provided as the

mathematical background. It focuses on two main aspects, dynamic linear models and the

variational Bayesian inference. The dynamic linear model, describing the temporal connec-

tion of latent states, is used as a basis of the decoding format for extracting dynamic latent

feature. Depending on different supporting domains, the dynamic models can be distin-

guished between the state space model and the hidden Markov model. In the first section

of Chapter 2, these two fundamental structures are reviewed under the context of feature

extraction. For each structure, a sample method is introduced for parameter estimation.

In the second section of Chapter 2, the variational Bayesian inference is introduced as an

advanced probabilistic learning approach. Its concept and usage are presented using the

general structure for dynamic feature extraction. Under this Bayesian framework, model

parameters and latent features can have flexible representations. Notably, the particle-

based representation is introduced as a preferred option. In the last section of Chapter 2,

the related particle-based algorithms are reviewed.

The novel contribution of this thesis is organized into four chapters, from Chapter 3

to Chapter 6. The first two chapters focus on designing the novel transition function

for underlying dynamics, and the latter two chapters present more practical observation

functions for the application of dynamic latent features. Figure 1.5 shows their relation in

the dynamic feature extraction process.

In Chapter 3, the aforementioned slow feature analysis model is interpreted under a

Bayesian framework. Based on a state space formulation of the probabilistic slow feature

analysis, prior distributions are developed for the transition parameters and the observation

parameters. In the inference process for those constrained parameters, a novel algorithm is

designed by integrating the importance sampling into the variational inference framework.

Based on the validation results on simulated datasets, the established Bayesian model shows

its strength for feature extraction, and the learning results are robust to randomized ini-

tial guesses. Therefore, the problem of inconsistent parameter estimation is prevented by

developing the fully Bayesian framework and using the variational inference algorithm for
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Figure 1.5: Extracting Dynamic Latent Features for Process Data Modelling

this decoding format. Based on the validation with industrial datasets, the proposed model

is demonstrated to have advantages over other similar feature extraction models. For this

inferential sensing application, the extracted dynamic features provided more accurate and

more robust predictions.

In Chapter 4, the transition function of hidden Markov model is generalized for con-

strained continuous variables. Rather than modelling the transition between discrete states,

this chapter considers the transition between their parameters. As the probabilities for the

original discrete states, they have a constrained supporting domain. In the two-dimensional

case, this latent state describes a possibility in (0, 1). For such constrained states, a tran-

sition function is developed by generalizing the hidden Markov model with the Beta dis-

tribution for the two-dimensional case and generalizing with the Dirichlet distribution for

the multi-dimensional case. In this study, it is found that the transition function with Beta

distribution yields more consistent learning results for the feature extraction. The proper-

ties of associated transition parameters are shown to be comparable with the general state

space formation in Chapter 2. The connection between the transition parameters and the

averaged characteristics of latent features is studied through numerical simulations, where

the preferred regions of model parameters are provided. Thus, a guideline for selecting the

prior distribution is available for probabilistic inference. In order to project constrained

dynamic latent features onto the general and unconstrained observations, a non-linear ob-

servation function is used, which is similar to the reversed sigmoid function. In order to

learn these constrained dynamic latent features, the inference algorithm is developed under
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the variational Bayesian framework, and a particle-based representation is adopted following

the Beta distribution. As a result, the constrained and non-linear state estimation prob-

lem is solved with higher efficiency. Besides, a novel marginalization method is proposed

for estimating the transition parameters, which provides more informative estimates from

their joint distribution. Based on numerical simulations, this marginalization algorithm has

significantly improved the estimation of variance parameters. The overall performance of

the proposed model is tested with the case study on a SAGD subsurface recovery process,

where the underground variables have a constrained operating range.

In Chapter 5, the observation function is considered to have multiple linear models. In

order to model a time-varying process where the quality variable is controlled under several

operating conditions, a combinatorial feature extraction model is developed. By assuming

consistent dynamics for the quality variable under different operating conditions, the tran-

sition function is kept the same as that in Chapter 3. However, the observation function

is extended to have multiple linear models for different operating conditions. In order to

avoid false modelling caused by outliers, the observation noise is described by a heavy-tailed

distribution. In off-line learning, the number of emission models tends to be smaller when

adopting the student-t distribution. Similarly, in the online application, the switching ac-

tions become less sensitive to abnormal samples or outliers. For the inferencing algorithm,

a novel Bayesian method is developed to estimate the latent states by merging multiple

models. To determine the model structures, the variational lower bound is evaluated as a

performance index for selecting the dimension of latent space, as well as for selecting the

number of emission models. Unlike the conventional cross-validation approach, this index

has incorporated the parsimony principle through the prior distributions. Its effectiveness

is demonstrated through simulated datasets. Furthermore, a case study on steam quality

inferential sensors is used to demonstrate the strength of extracted dynamic latent features.

A study of variational Bayesian methods for multiple model state estimation problem

is also included in Chapter 5. For the general multiple model problem, both the observa-

tion function and the transition function are formulated with multiple linear models. By

solving this state estimation problem under the variational Bayesian framework, the origi-

nal estimation objective becomes a minimization problem of a Kullback-Leibler divergence.

Under this framework, the distribution of the state variable and the distribution of the

model identity variable can be optimized simultaneously. Based on an integration-based

approximation strategy, the resultant algorithm improves the estimation accuracy, as well

as reduces the computational load when comparing to other state-of-art algorithms.
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In Chapter 6, the observation function is developed to represent a likelihood function

of the autoregressive-moving-average model with exogenous inputs (ARMAX) system. In

this case, the latent feature itself represents a time-variant time delay variable. Based on

the transition function of the hidden Markov model, which is introduced in Chapter 2, the

time delay variable can be considered to possess first-order Markov properties. Usually, the

prediction error method in system identification optimizes the parameters with a determin-

istic optimization algorithm. Through the proposed probabilistic interpretation, a novel

representation of the coloured noise is used to formulate ARMAX identification as a max-

imum likelihood problem. After the corresponding validations, this maximum likelihood

formulation is extended to integrate the probability models of time delay. In this work,

the variational inference method is developed to determine the random time delay along

with identifying the parameters for the ARMAX model. The challenge in learning this

dynamic feature, namely time-variant time delay, is that the “observations” are correlated

because of the coloured noise in the ARMAX model. In other words, one instant of time

delay can affect multiple observation data samples. In order to solve this problem under the

variational Bayesian framework, an augmentation of the original hidden states is proposed,

and a novel state estimation algorithm is developed. Through numerical simulations and

industrial case studies, the proposed probability model of time delay is validated and proved

to have advantages in system identification.

In Chapter 7, concluding remarks are presented, and the possible future work and further

improvements are discussed.
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1.5 Main Contributions

The main contributions of this thesis can be summarized as follows.

1. Development of four probabilistic feature extraction models to extract dynamic latent

features based on historical process data and modelling preferences.

2. Development of an integration procedure between the variational Bayesian inference

and the particle-based algorithms to deal with constraints and non-conjugate prior.

3. Development of constrained continuous latent states with a transition function to

investigate the dynamic property of probability vectors.

4. Development of Bayesian inference for ARMAX model identification to include more

flexible and more detailed modelling structures.

5. Formulating process knowledge as the specific prior distributions of latent feature and

parameters towards better modelling performance for quality variables in process in-

dustries, particularly with application to the steam generation process and the SAGD

subsurface recovery process.
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Chapter 2

Mathematical Fundamentals

In this chapter, a review is provided for the mathematical models and the inference algo-

rithms that have been adopted in this thesis. As aforementioned, the transition behaviour of

latent features can be described explicitly through dynamic models. Here, two fundamental

structures are introduced, namely the state space model and the hidden Markov model.

As a selected inferencing framework, the variational Bayesian approach is introduced as

well, which supports the algorithms that will be developed in the later chapters. Besides,

particle-based inferencing methods are also introduced as a preliminary for dealing with

practical challenges.

2.1 Dynamic Linear Models

Dynamic linear models are capable of describing a general class of time series models. By

formulating a transition function for the consecutive states, the conditional distribution of

state st can be modelled as a function of the preceding state st−1. Thus, the entire state

sequence can be described by a unique probability distribution p(s1:T ). Usually, it only

uses a first-order transition function, and if necessary, the order can be increased by using

a multi-dimensional latent space. For the application on industrial datasets, this first-order

transition function also avoids additional inferencing and maintenance difficulties.

In this thesis, a general form of the first-order transition model is studied in the form of

st ∼ f(s; st−1, θtr), (2.1)

where θtr represents the transition parameters. The function f(·) is modelled as a proba-

bility distribution for the state st, where st−1 and θtr are regarded as the associated param-

eters. Unlike the deterministic transition functions, such as the Long Short-Term Memory

in recurrent neural networks, the transition function (2.1) defines the stochastic behaviour
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of s1:T . Although the consecutive state st still depends on st−1, it has a certain level of

variability through the transition function (2.1), which is used as a conditional distribution.

This consideration of stochastic behaviour is based on the inevitable uncertainties of the as-

sumed transition function (2.1). When adopted for process data analysis, this consideration

matches the common understanding about the stochastic behaviour of physical systems. As

a result, the possibilities of inaccurate transition parameters and low-quality observations

can be accommodated in modelling.

In the observation function, the observation sample xt is connected with the latent state

st through a general form of

xt ∼ g(x; st, θob). (2.2)

Similarly, the observation function g(·) is used to describe a probability distribution of xt,

where the latent state st and the observation parameter θob are regarded as the parameters.

By assuming that all the dynamic behaviour has been included in the function (2.1), this

observation function is usually used as a static portion of the model, only describing the

static connections. Although other forms of non-linear functions can be utilized [30], this

basic one is preferred in many practical applications. It has the demonstrated modelling

advantage [31], as well as the associated practical attractiveness for on-line implementation

[32]. By doing so, the variation of x1:T can be split into the variation with temporal

connections and the variation without temporal connections. Usually, the first portion that

is captured by the dynamic latent features will be treated as the informative trends of

process data.

Unlike the system identification problem, there is no “input” signal in the transition

function (2.1). Based on the objective of feature extraction, it is considered unnecessary

to have the “input” signal in the dynamic model of latent features. The main reason is

that there may not exist an explicit input in the historical process data, especially for the

process with multiple control loops and a complex operational mechanism. Alternatively

speaking, the available measurements may not necessarily be the “system input” to affect

the transition of latent states. Thus, for the objective of feature extraction, available process

measurements can either be treated as the observation xt in (2.2), or become the regressors

for the quality variable yt:

yt ∼ g(y; xt, st, θob). (2.3)

In the first case of (2.2), the quality variable yt will be treated as another projection

from the latent feature. Theoretically, this strategy can also integrate yt into the observation
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function (2.2). However, in reality, there could be differences between xt and yt, such as

their sampling intervals. In the second case of (2.3), the latent feature is built to assist the

regression analysis between the input x1:T and the output y1:T . As the example in Chapter

6, the latent feature is used as time-variant parameters, and the corresponding dynamic

model is learned for the possible switching behaviour.

In the remaining part of this section, two typical structures of (2.1) and (2.2) for feature

extraction are introduced. Along with them, the Expectation-Maximization algorithm will

be reviewed as a basic solution.

2.1.1 State Space Model

For latent states with the continuous supporting domain, st ∈ (−∞,+∞), the state space

model can be used by adopting a linear transition function:

st = a · st−1 + wt, wt ∼ N (0, σ2), (2.4)

where the additive noise wt is assumed to follow a Normal/Gaussian distribution “N” with

the zero-mean and the variance σ2. The transition parameter is formed as θtr = {a, σ2},

and the probabilistic formation becomes

st ∼ f(s; st−1, θtr) = N (s; a · st−1, σ
2). (2.5)

The coefficient parameter “a” determines the strength of this auto-correlation. For a sys-

tem with inertia, this coefficient “a” is believed to be positive, which can propagate the

similarities from st−1 to st. For a stable system, this coefficient “a” is constrained inside

the unit circle. The variance parameter σ2 (also the precision parameter ρ = σ−2) is always

positive, reflecting the accuracy of this connection. If the mapping linearity between st−1

and st is not so assured or the parameter “a” is inaccurate, a larger variance (or a smaller

precision) can be used to reflect a higher uncertainty level.

By extending this transition model to the multivariate case, a basic dynamic feature

extraction model can be formulated for continuous variables:

St = A · St−1 + wt, wt ∼ N (0, Q), (2.6)

Xt = H · St + vt, vt ∼ N (0, R). (2.7)

As an extension of the coefficient parameter “a”, the coefficient matrix A is usually formed

as a diagonal matrix. The observation function is built on another linear mapping function

with the projection matrix H and the noise term vk. The extended noise terms wk and vk are
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modelled by the multivariate Normal distribution, which are determined by the covariance

matrices Q and R, respectively.

Comparing to the SFA method mentioned above, rather than using the whole observa-

tion sample Xt, this decoding format allows Xt to have a certain “useless” part vk. After

describing vk with a zero-mean distribution, it makes the latent sample St concentrate more

on the remaining “useful” part. More importantly, the dynamic linear model can describe

the latent feature more explicitly. In the deterministic SFA method, only required statistics

are calculated to describe the latent feature, such as through the equations of (1.1), (1.2),

and (1.3). In comparison, the explicit dynamic model (2.6) allows more detailed descrip-

tions of the latent feature. For example, if the student-t distribution is selected to describe

wk, excess kurtosis can also be considered in the learning procedure. As another special

advantage in Bayesian inference, this decoding format can implement the prior knowledge

about the latent feature onto the transition parameter. In other words, by manipulating A

and Q, a preferred set of S1:T can be defined before using the observation data.

Comparing to the probabilistic PCA model [22], rather than describing the latent feature

as a collection of independent random variables, the above dynamic linear model uses A and

Q to describe itself as an auto-correlated stochastic process. For the application of process

data analysis, where the meaningful driving forces are often believed to have the temporal

correlation, this description can provide more physical significance. From the statistical

perspective, the independence assumption in probabilistic PCA restricts the distribution of

latent feature s1:T to have the mutual independence:

p(s1:T ; θs) =

T∏
t=1

p(st). (2.8)

Meanwhile, a transition function of latent states can relax this restriction. In the case of

first order Markov model (2.6), the distribution of s1:T becomes

p(s1:T ; θs) = p(s1) ·
T∏
t=2

p(st | s1:t−1) = p(s1) ·
T∏
t=2

p(st | st−1)

= p(s1) ·
T∏
t=2

p(st, st−1)

p(st−1)
=

∏T
t=2 p(st, st−1)∏T−1
t=2 p(st)

, (2.9)

which actually covers the case of (2.8) as one specific realization.

After increasing the modelling scope, the parameter estimation problem has naturally

become more challenging than those for static modelling. That is, the parameters in (2.6)

and (2.7) should be determined through their interaction with the estimation of S1:T .
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At this point, one possible approach for the maximum likelihood estimation, namely the

Expectation-Maximization (EM) algorithm, can be adopted [33]. A brief review of the EM

algorithm is presented here. In the following derivation, all the parameters in (2.6) and

(2.7) are denoted with Θ = {θtr, θob}.

First, the objective function of EM algorithm, L{q(S1:T ),Θ}, can be formulated as a

function of parameter Θ and a distribution of latent feature q(S1:T ):

L{q(S1:T ),Θ} ≡Eq(S1:T ) ln p(X1:T , S1:T | Θ) +H{q(S1:T )}

=

∫
q(S1:T ) ln p(X1:T , S1:T | Θ)dS1:T −

∫
q(S1:T ) ln q(S1:T )dS1:T

=

∫
q(S1:T ) ln p(X1:T | Θ)dS1:T −

∫
q(S1:T ) ln

q(S1:T )

p(S1:T | X1:T ,Θ)
dS1:T

= ln p(X1:T | Θ)−DKL{q(S1:T ) ‖ p(S1:T | X1:T ,Θ)}, (2.10)

where Eq(·) stands for the probability expectation with respect to distribution q(·), and

H{q(·)} stands for the entropy of distribution q(·). The Kullback-Leibler (K-L) divergence

DKL{q||p} is used as a similarity measure between probability distributions. It has been

proven that if p(S1:T | X1:T ,Θ) varies continuously with Θ, this constructed objective

function shares the same maxima Θ∗ as the marginalized likelihood function [34]:

arg max
Θ

p(X1:T | Θ) ∈ arg max
{Θ, q(S1:T )}

L{q(S1:T ),Θ}. (2.11)

The EM algorithm, as a realization of coordinate ascent strategy for the objective func-

tion L{q(S1:T ),Θ}, consists of iterative updating steps for Θ and q(S1:T ) respectively:

(E − step) q(S1:T )(z) = arg max
q(S1:T )

L{q(S1:T ),Θ(z)} = p(S1:T | X1:T ,Θ
(z)), (2.12)

(M − step) Θ(z+1) = arg max
Θ
L{q(S1:T )(z),Θ}

= arg max
Θ

Eq(S1:T )(z) ln p(X1:T , S1:T | Θ), (2.13)

where the superscript (z) stands for the index of each updating step. It should be noted that

the E-step is based on the fact that H{q(S1:T )} is irrelevant to parameter Θ, and the M-step

is based on the fact that the minimum of DKL{q||p} is only achieved when q(·) = p(·). In

this sense, the latent feature will be learned jointly with the model parameters.

In the updating step (2.12) for the latent feature, given the observation X1:T and pa-

rameter Θ(z), it yields the optimal solution for the posterior distribution of latent features.

Based on its formulation in (2.9), this estimation can be simplified as estimating each joint

distribution for consecutive latent states p(st, st−1 | X1:T ,Θ
(z)). For this state estimation

problem, the algorithms for fixed interval smoother are applicable. Specifically, for the
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model shown in (2.6) and (2.7), the Rauch-Tung-Striebel (RTS) smoother can be applied.

As a quick review, a nominal solution for p(st, st−1 | X1:T ,Θ) is provided here through the

sequential forward-backward algorithm.

• Forward path, starting with p(s0 | Θ):

p(st | x1:t−1,Θ) =

∫
p(st, st−1 | x1:t−1,Θ) dst−1

=

∫
p(st | st−1,Θ) p(st−1 | x1:t−1,Θ) dst−1, (2.14)

p(st | x1:t,Θ) =
p(st, xt | x1:t−1,Θ)

p(xt | x1:t−1,Θ)

=
p(xt | st,Θ) p(st | x1:t−1,Θ)∫
p(xt | st,Θ) p(st | x1:t−1,Θ) dst

. (2.15)

• Backward path, starting with p(sT | x1:T ,Θ) from the final step of forward path:

p(st, st−1 | x1:T ,Θ) = p(st | x1:T ,Θ) p(st−1 | st, x1:T ,Θ)

= p(st | x1:T ,Θ) p(st−1 | st, x1:t−1,Θ)

= p(st | x1:T ,Θ)
p(st, st−1 | x1:t−1,Θ)

p(st | x1:t−1,Θ)

= p(st | x1:T ,Θ)
p(st | st−1,Θ) p(st−1 | x1:t−1,Θ)

p(st | x1:t−1,Θ)
, (2.16)

p(st−1 | x1:T ,Θ) =

∫
p(st, st−1 | x1:T ,Θ) dst. (2.17)

On the basis of above derivations, the E-step algorithm can be formulated not only for the

latent feature in (2.6) and (2.7), but also for other dynamic features with more sophisticated

realizations of (2.1) and (2.2).

In the updating step (2.13) of model parameters, namely the M-step, detailed methods

should be subjective to the problem at hand. For example, based on the formulation of

(2.6) and (2.7), the transition matrix A, the emission matrix H, and the covariance matrices

Q and R can all be optimized based on the quadratic function ln p(X1:T , S1:T | Θ):

max
Θ

Eq(S1:T ) ln p(X1:T , S1:T | Θ)

⇔ max
{A,Q,H,R}

Eq(S1:T ){−(T − 1) · ln |Q| −
T∑
t=2

[St −A · St−1]′ Q−1 [St −A · St−1]

− T · ln |R| −
T∑
t=2

[Xt −H · St]′ R−1 [Xt −H · St]}. (2.18)

In this formulation, the expectation Eq(S1:T ) can be achieved from (2.17) and (2.16). It

should be noted that given q(S1:T ), the optimization step of each model parameter is inde-

pendent from each other.
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2.1.2 Hidden Markov Model

For latent states with a finite set of possible values, st ∈ {1, ..., k}, the hidden Markov model

is usually applied via a transition model:

Pr(st = i | st−1 = j) = ai,j , ∀ i, j ∈ {1, ..., k}. (2.19)

Different from the probability density function p(·), here Pr(·) is used for the probability

mass function. By enumerating every combination of two consecutive states, the transition

parameter θtr = Ak×k = [ai,j ]i,j=1,··· ,k can provide a comprehensive description for the

dynamic behaviour of s1:T , such as calculating its stationary distribution p(s∞) and return

time [35]. In the corresponding probabilistic formation, the categorical distribution “Cat”

can be used [23]:

st ∼ f(s; st−1, θtr) = Cat(s; A:,st−1) =

k∏
i=1

ai,st−1
[s=i], (2.20)

where [·] is the Iverson bracket. Given st−1, a column vector of the transition matrix,

A:,st−1 = [ai,st−1 ]i=1,··· ,k, can be selected as the k-dimensional parameter vector for this

categorical distribution. Based on its definition in (2.19), each column of this transition

parameter Ak×k must regulate its elements to have the unit-sum. Comparing to the state

space model that has θtr = {A,Q}, this transition function only uses θtr = Ak×k to deter-

mine p(s1:T ).

In the observation function, each possible value of st should be assigned with an obser-

vation probability, which is based on its interaction with the observation sample xt. If xt

also has a finite set of possible values xt ∈ {1, ..., p}, the observation function can be formed

as

Pr(xt = i | st = j) = hi,j , ∀ i ∈ {1, ..., p}, j ∈ {1, ..., k}. (2.21)

Similar to matrix Ak×k, the observation matrix θob = Hp×k = [hi,j ]i=1,··· ,p;j=1,··· ,k has the

constraint of unit-sum for each column vector. However, process observations are normally

continuous-valued. In this case, st can be used as a mode identity variable to determine

the distribution of observed samples. Generally, two kinds of observation functions can be

proposed to relate between the discrete data and the continuous data. In the first case, the

observation sample Xt is assumed to have a Normal distribution, where the mean and the

variance are determined according to st:

Xt ∼ N (X; m(j), R(j)), if st = j. (2.22)
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In the other case, the connection between the observation sample Xt and the quality variable

yt can be determined by the latent state st:

yt ∼ N (y; H(j) ·Xt, R
(j)), if st = j. (2.23)

In these realizations, the observation function parameters usually contain k parallel sets,

such as k vectors of [m(j)]j=1,··· ,k to describe the possible mean vector and k matrices of

[R(j)]j=1,··· ,k to describe the possible covariance matrix. Based on the selecting criterion st =

j, the probability connection between the continuous Xt and the discrete st is built on these

parallel sets of parameters. To proceed with the probabilistic inference, a unified description

of the observation function is provided here as a summary of the above discussion:

p(Xt | st) =

k∏
j=1

p(Xt | st = j)[st=j], (2.24)

where the Iverson bracket [·] is used.

The parameter estimation for s1:T with discrete value is similar to that for the continuous

case. According to the EM algorithm, the objective function can be transformed from (2.10),

which converts Eq(·), H{q(·)}, and DKL{q||p} to the objective function for the discrete

variable. For example, the K-L divergence DKL{q||p} is converted to

DKL{q(st) || p(st)} =

k∑
i=1

q(st = i) ln
q(st = i)

p(st = i)
. (2.25)

Thus, the iterative updating steps can be generalized from (2.12) and (2.13):

(E − step) q(s1:T )(z) = p(s1:T | X1:T ,Θ
(z)), (2.26)

(M − step) Θ(z+1) = arg max
Θ

Ep(s1:T |X1:T ,Θ(z)) ln p(X1:T , S1:T | Θ), (2.27)

where the superscript (z) stands for the index of each learning step. Similarly, the E-step

(2.26) estimates the posterior distribution for the sequenced latent variables, and the M-step

(2.27) optimizes the model parameters based on a given distribution of latent variables.

In the E-step, the algorithm (2.14) − (2.16) is still applicable when learning q(s1:T )(z).

Besides this sequential algorithm, a parallel forward-backward algorithm is reviewed here,

which is more efficient in learning the discrete state st. To estimate the posterior p(s1:T |

X1:T ,Θ
(z)) with the form of (2.9), each elementary distribution can be factorized as

p(st | X1:T ,Θ) =
p(Xt+1:T , st | X1:t,Θ)

p(Xt+1:T | X1:t,Θ)
∝ p(Xt+1:T | st,Θ) p(st | X1:t,Θ), (2.28)

p(st, st−1 | X1:T ,Θ) =
p(Xt:T , st, st−1 | X1:t−1,Θ)

p(Xt:T | X1:t−1,Θ)
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∝ p(Xt+1:T | st,Θ) p(Xt | st,Θ) p(st | st−1,Θ) p(st−1 | X1:t−1,Θ), (2.29)

where the Markov property and the chain rule are used. On the basis of above factorization,

the parallel forward-backward algorithm is presented as follows.

• Forward path, starting from p(s0 | Θ) = 1:

p(st | X1:t,Θ) ∝ p(yt | st,Θ)
∑
st

p(st | st−1,Θ) p(st−1 | X1:t−1,Θ). (2.30)

• Backward path, starting from p(XT+1:T | sT ,Θ) = 1:

p(Xt+1:T | st,Θ) =
∑
st+1

p(Xt+2:T | st+1,Θ) p(Xt+1 | st+1,Θ) p(st+1 | st,Θ). (2.31)

Here, the summation
∑

st
enumerates all possible values of st. Because of its finite sup-

porting domain, the discrete st here has a simplified normalization procedure in comparison

with the continuous case. As a consequence, the backward path becomes independent of

the forward path. In practice, this property also facilitates a parallel estimation algorithm

for latent features, which increases the computational efficiency.

In the optimization step for Θ(z+1), namely the M-step, detailed algorithms depend

on specified models [36]. Typically, for the observation function parameters, the learning

algorithm is determined by the selected observation function, such as that introduced in

(2.21) − (2.23). As for the transition function parameters θtr = [ai,j ]i,j=1,··· ,k, because of

their independence from θob in the M-step, it is usually optimized individually. For example,

an optimization can be performed as

ai,j
(z+1) =

∑T
t=2 Pr(st = i, st−1 = j)∑T

t=2 Pr(st−1 = j)
, (2.32)

where the numerators come from (2.29) and the denominators come from (2.28).

2.1.3 Practical Deficiency

Two structures of dynamic linear models and their inference algorithms have been intro-

duced so far. However, from both modelling and inference perspective, the above solutions

are not yet sufficient for complete process data analysis.

From the modelling point of view, these structures are too general to be useful for

extracting representative latent features. In Chapter 1, it has been discussed that the

latent features should be formulated to represent certain process variations. For example,

Figure 1.3 shows that the “meaningful” variations should have large inertia for certain
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applications. Besides this slowness preference, the informative features may also contain

either stationary or non-stationary behaviours. In the structures mentioned above, however,

the latent features are built for almost all types of variations. In order to learn certain

variations with these general structures, a large number of observations, with repeated

dynamic behaviours, are required for parameter estimation. Unfortunately, in practice, not

all dynamic behaviour is repeated frequently. Thus, the model structure should be more

specific for specific trends or modelling objectives, where some constraints and preferences

are desired.

From the inference point of view, the parameter may not be optimally identifiable from

the likelihood function directly. To have the shared optimal point with the maximized like-

lihood function p(X1:T | Θ), the EM algorithm requires a condition [34]: p(S1:T | X1:T ,Θ)

must vary continuously with Θ. In the structures mentioned above, this condition may not

be satisfied. An intuitive example can be found in the case of multiple realizations of a state

space model [37]. Through the similarity transformation, multiple sets of model parameters

can yield the same marginalized likelihood: p(X1:T | Θ(1)) = p(X1:T | Θ(2)). Thus, a struc-

tural regulation is essential for the uniqueness of the estimation. As a well-known example

of the structural regulation, the probabilistic PCA [22] forces the covariance matrix R in

(2.7) to be a diagonal matrix, as well as the latent features are restricted to be mutually

independent. In the following chapters, several structural constraints will be illustrated

based on specific application scenarios. Besides that, a Bayesian inference framework is

introduced in the remainder of this chapter, which improves the uniqueness property of

parameter estimation through the prior distribution p(Θ).

2.2 Variational Bayesian Inference

After introducing model structures for dynamic feature extraction, a general probability

formulation can be written through the following conditional distributions:

p(S1:T | θtr) and p(X1:T | S1:T , θob). (2.33)

It should be noted that the case with output variable related observation function is also

included, since

p(y1:T | X1:T , S1:T , θob) = p((y1:T | X1:T ) | S1:T , θob) = p(X̂1:T | S1:T , θob).

Thus, either the observation X1:T or the observation pairs X̂1:T = y1:T | X1:T can be

determined according to the latent feature S1:T . In this section, the model (2.33) is used as

an introduction to the variational Bayesian inference.
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As a Bayesian approach, it first assigns the model parameters Θ = {θtr, θob} with a prior

distribution:

p(Θ | η) = p(θtr | ηtr) · p(θob | ηob). (2.34)

Here, η = {ηtr, ηob} is the set of hyper-parameters, representing the prior belief about the

transition function and the observation function. According to this prior distribution and

the marginalized likelihood:

p(X1:T | Θ) =

∫
p(X1:T | S1:T , θob) · p(S1:T | θtr) dS1:T , (2.35)

the posterior distribution of model parameters can be formulated through

p(Θ | X1:T , η) =
p(X1:T | Θ) · p(Θ | η)

p(X1:T | η)
=

p(X1:T | Θ) · p(Θ | η)∫
p(X1:T | Θ) · p(Θ | η) dΘ

. (2.36)

With an explicit expression of this distribution, the optimal estimate of the parameters, as

well as the estimate of uncertainties can be obtained. Unfortunately, the derivation for this

exact posterior is usually computationally prohibited. Especially for the case with latent

feature S1:T , the calculation of likelihood term in (2.35) and the denominator in (2.36) will

contain the inseparable integration between S1:T and Θ. Without further simplification,

such as letting R → 0 in model (2.7) [25], calculating this integration is generally an NP-

hard problem [23]. Furthermore, if the prior distribution (2.34) is not a conjugate prior to

the likelihood (2.35), the exact posterior distribution may not belong to a known distribution

family. As a conventional solution, the maximum-a-posterior (MAP) method can provide

the point-estimation for Θ. However, on the other hand, it fails to evaluate the estimation

uncertainties and cannot use them in the inference procedure. In this thesis, the variational

Bayesian inference is introduced as a more advanced learning strategy.

According to the definition of “variational”, this method optimizes a proposal distribu-

tion of unknown (to-be-estimated) variables to approximate the true posterior distribution:

q(S1:T ,Θ)→ p(S1:T ,Θ | X1:T , η). (2.37)

The proposal distribution is usually selected to have an explicit form, which makes it easier

to estimate this proposal distribution than to calculate the integrations. Thus, the infer-

encing objective can be transformed to the minimization of the distance between the two

distributions in (2.37). From the probability point of view, several divergence functions

are available to describe this distance. Here, the K-L divergence DKL{q||p} is used for the

variational Bayesian inference:

DKL{q(S1:T ,Θ) || p(S1:T ,Θ | X1:T , η)}
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=

∫
q(S1:T ,Θ) ln

q(S1:T ,Θ)

p(S1:T ,Θ | X1:T , η)
dS1:T dΘ. (2.38)

As an asymmetric function, DKL{q||p} is selected instead of DKL{p||q} because of the

advantages from using the explicit properties of q(S1:T ,Θ). In most of other divergence

functions, including DKL{p||q}, there are additional challenges owing to the integration

operation of (2.38).

According to the chain rule, the marginal distribution of observed data p(X1:T | η) only

depends on the selected model structure and the hyper-parameter η, which are irrelevant to

the proposal distribution q(S1:T ,Θ). The variational Bayesian inference uses this concept

to convert the minimization problem of (2.38) into a maximization problem:

ln p(X1:T | η) =

∫
q(S1:T ,Θ) ln p(X1:T | η) dS1:T dΘ

=

∫
q(S1:T ,Θ) ln

p(X1:T , S1:T ,Θ | η)

p(S1:T ,Θ | X1:T , η)
dS1:T dΘ

=

∫
q(S1:T ,Θ) ln

p(X1:T , S1:T ,Θ | η)

q(S1:T ,Θ)
dS1:T dΘ

+

∫
q(S1:T ,Θ) ln

q(S1:T ,Θ)

p(S1:T ,Θ | X1:T , η)
dS1:T dΘ

= Lq(S1:T ,Θ) + DKL{q(S1:T ,Θ) || p(S1:T ,Θ | X1:T , η)}. (2.39)

Because of the constant value taken by ln p(X1:T | η), minimizing the K-L divergence in

(2.38) is equivalent to maximizing Lq(S1:T ,Θ). Since the K-L divergence is always non-

negative, Lq(S1:T ,Θ) becomes a lower bound measure for ln p(X1:T | η). It is usually called

the variational lower bound, which is a function of the proposal distribution:

Lq(S1:T ,Θ) =

∫
q(S1:T ,Θ) ln

p(X1:T , S1:T ,Θ | η)

q(S1:T ,Θ)
dS1:T dΘ

=

∫
q(S1:T ,Θ) ln p(X1:T , S1:T ,Θ | η) dS1:T dΘ +H{q(S1:T ,Θ)}. (2.40)

In this expression, H{q(·)} is used in the same way as that in (2.10), and the joint likelihood

of observations, latent features, and model parameters can be established according to model

(2.33):

p(X1:T , S1:T ,Θ | η) = p(X1:T | S1:T , θob) · p(S1:T | θtr) · p(θob | ηob) · p(θtr | ηtr). (2.41)

To maximize the variational lower bound Lq(S1:T ,Θ), multiple optimization methods can

be adopted from the variational calculus. In order to obtain an efficient solution, mean

field assumption [38] is generally applied to reduce the computational load in the varia-

tional Bayesian inference process. This assumption decomposes the proposal distribution
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to a product of independent proposal distributions. Usually, this factorization procedure

is determined by the probabilistic dependencies in the likelihood function. Based on the

likelihood in (2.41), the mean field assumption gives

q(S1:T ,Θ) = q(S1:T ) · q(θob) · q(θtr). (2.42)

On the basis of this introduced probabilistic independence, the coordinate ascent strat-

egy can be applied to update the individual proposal distributions. For example, by keeping

q(θob) and q(θtr) unchanged, the variational lower bound Lq(S1:T ,Θ) can be simplified as an-

other K-L divergence, which only has one unknown part q(S1:T ):

Lq(S1:T ) = Lq(S1:T ,Θ) | q(θob), q(θtr)

=

∫
q(S1:T ) q(θob) q(θtr) ln p(X1:T , S1:T ,Θ | η) dS1:T dθob dθtr +H{q(S1:T )}+ const.

=

∫
q(S1:T )

[∫
q(θob) ln p(X1:T | S1:T , θob) dθob +

∫
q(θtr) ln p(S1:T | θtr) dθtr

]
dS1:T

+H{q(S1:T )}+ const.

=−DKL{q(S1:T ) || c · eEq(θob) ln p(X1:T |S1:T ,θob)+Eq(θtr) ln p(S1:T |θtr)}+ const.. (2.43)

In this derivation, const. stands for the constant value, and the normalizing factor c is used

to transfer the exponential term to a probability density function. As a result, the optimal

q(S1:T ) can be derived given q(θob) and q(θtr):

ln q∗(S1:T ) = Eq(θob) ln p(X1:T | S1:T , θob) + Eq(θtr) ln p(S1:T | θtr) + const.. (2.44)

Similarly, the updating equation for q(θtr) and q(θob) can be derived as

ln q∗(θtr) = Eq(S1:T ) ln p(S1:T | θtr) + ln p(θtr | ηtr) + const., (2.45)

ln q∗(θob) = Eq(S1:T ) ln p(X1:T | S1:T , θob) + ln p(θob | ηob) + const.. (2.46)

2.2.1 Comparison with Expectation-Maximization Algorithm

Based on the equations (2.44) – (2.46), an iterative algorithm, namely variational Bayesian

Expectation-Maximization (VBEM) algorithm, can be developed. It can be observed that

this algorithm has a similar structure as that of the EM algorithm. For the dynamic feature

extraction problem, a comparison between these two iterative algorithms is presented in this

section.

First, the objective functions of EM algorithm (2.10) and VBEM algorithm (2.40) can

be compared through

L(EM)
q(S1:T ),Θ = Eq(S1:T ) ln p(X1:T , S1:T | Θ) +H{q(S1:T )},
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L(V BEM)
q(S1:T ,Θ) = Eq(S1:T ,Θ) ln p(X1:T , S1:T ,Θ | η) +H{q(S1:T ,Θ)}

= Eq(S1:T ,Θ) ln p(X1:T , S1:T | Θ) +H{q(S1:T )} −DKL{q(Θ) || p(Θ | η)}.

It should be noted that L(V BEM)
q(S1:T ,Θ) has been further simplified based on the independence

assumption in (2.42). There are two differences that can be observed: (1) both q(S1:T ) and

q(Θ) are used in the VBEM algorithm to calculate the expectation of joint log-likelihood

term ln p(X1:T , S1:T | Θ), instead of only using q(S1:T ) as in the EM algorithm; (2) the

VBEM algorithm adds an additional K-L divergence between q(Θ) and its prior distribution

p(Θ | η). In the following discussion, the advantages of VBEM are illustrated based on these

two differences.

Figure 2.1: Advantage of Using Parameter Distributions

The first extension of VBEM can improve the learning performance of q(S1:T ) in the

iterative steps. In the VBEM method, the model parameter Θ is described by a probability

distribution, which contains much more information than a single point estimation. By using

this distributional description of Θ, the E-step can be generally improved. As an example,

Figure 2.1 compares the updated q(S1:T ) between EM and VBEM. In this example, one-

dimensional latent feature and one-dimensional observation are generated from (2.6) and

(2.7) accordingly. Specifically, the coefficient parameter in the observation function is set as

h = 2, where “h” is used for one-dimensional H. As an intermediate result in the iterative

algorithm, the estimated “h” can be assumed to have a distance from the true “h”. Here

in the left plot of Figure 2.1, the intermediate result of EM algorithm (2.13) is assumed

to be “h” = 3, and the intermediate result of VBEM algorithm (2.46) is assumed to be

q(h) = N (h; 3, 1). In the right plot of Figure 2.1, the estimation results from the following E-

step are compared, where the mean values of q(S1:T ) are plotted. It can be observed that the

estimate from VBEM (the blue curve with crosses) is closer to the optimal estimation (the
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red curve with dots) than the estimate from EM (the green curve with circles). Intuitively,

it is because that the distribution q(h) has included the true “h” with a certain possibility,

which can contribute to learning the correct s1:T . Technically speaking, the variance in

q(h) has enlarged the uncertainty of the observation function so that the state estimation

algorithm has less confidence in the observation samples. Therefore, q(s1:T ) becomes more

robust to the inaccurate observation parameter.

Figure 2.2: Kullback-Leibler Divergences between Normal Distributions

The second extension of VBEM is an implementation of the Bayes rule, which uses

p(Θ | η) to regulate the learning of Θ. It is materialised through the subtracted K-L

divergence DKL{q(Θ) || p(Θ | η)}. Conceptually, the proposal distribution that is far

from the prior distribution will be penalized more in L(V BEM)
q(S1:T ,Θ). As a visualization, some

estimated Normal distributions are plotted in Figure 2.2. The distance between these

dashed proposal distributions and a prior distribution p(θ) = N (θ; 0, 1) is shown in the

legends. Other than introducing this quantitative measure about dissimilarity, this K-L

divergence DKL{q(Θ) || p(Θ | η)} is also useful when implementing the constraint on model

parameters. For example, if some parameters are defined as positive values only, the prior

distribution will have p(θ < 0) = 0. According to the definition of K-L divergence in (2.25),

any proposal distribution with non-zero probability for θ < 0 will make DKL{q(θ) || p(θ)}

towards the positive infinity:

DKL{q(θ) || p(θ)} =

∫ 0

−∞
q(θ) ln

q(θ)

p(θ)
dθ +

∫ +∞

0
q(θ) ln

q(θ)

p(θ)
dθ

= +∞+

∫ +∞

0
q(θ) ln

q(θ)

p(θ)
dθ. (2.47)
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From the optimization point of view, this constraint of model parameters has been in-

tegrated into the objective function, and has been transferred to the updated proposal

distribution q(θ).

2.2.2 Limitations of Variational Bayesian Inference

In the above introduction of variational Bayesian inference, the mean field assumption in

(2.42) is necessary for tractability of the inference procedure. Without this assumption,

the iterative updating is not amenable. However, this assumption also introduces a gap

between the optimal proposal distribution and the exact posterior distribution. According

to the Bayes rule, even if θ1 and θ2 are independent in their prior distribution, the posteriors

p(θ1 | X) and p(θ2 | X) are mutually dependent given the likelihood p(X | θ1, θ2). Thus, the

divergence in (2.38) can never become zero after introducing the independence assumption.

As an intuitive example, if the exact posterior is a multivariate Normal distribution with

a non-zero covariance term, Cov(θ1, θ2) 6= 0, the two independent distributions q(θ1) and

q(θ2) can never converge to this posterior.

Without the mean field assumption (2.42), the proposal distribution q(S1:T ,Θ) has the

ability to reach the exact posterior distribution. However, from practical consideration, this

assumption (or approximation) is necessary. First, the resultant model is usually expected

to be used for the prediction of future data. In particular, the model parameters Θ =

{θtr, θob} will be used to extract features from future observations. However, q(S1:T ) is

learned only for the past (training) samples. The proposed feature extraction method

should use Θ independently from q(S1:T ). Comparing to separating Θ from q(S1:T ,Θ) after

the optimization procedure, directly optimizing the independent distributions will be more

efficient for model interpretation. Also, from the computational point of view, without

the independence assumption for q(S1:T ) and q(Θ), the complexity of updating q(Θ) will

also increase with the number of training samples. Thus, the independence assumption is

necessary for the variational Bayesian inference in order to yield an implementable result.

2.3 Particle Based Algorithms

One important advantage of variational Bayesian inference is the flexibility of selecting

proposal distributions. To achieve the approximation (2.37), any type of probability distri-

butions may be used as the proposal distribution in (2.42). In conventional applications,

the proposal distributions are usually selected for computational convenience. For example,

when the conjugate prior is selected, the proposal distribution will be in the same distri-
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bution family [39]. However, as discussed in Chapter 1, the prior distribution in this thesis

will not necessarily be limited by the conjugate prior. There are two main reasons: (1)

the likelihood formulation of a specified feature extraction model may not always have a

conjugate prior, (2) the prior distribution will be determined by certain constraints and

preferences for the specific problem.

To have more flexibility for modelling process data, the particle-based representation is

introduced for the proposal distribution:

qN (θ) =
1

N

N∑
j=1

δ(θ = θ(j)), (2.48)

where N is the number of particles, and δ(·) is the Dirac delta function. In this section,

three particle-based inference approaches are reviewed.

2.3.1 Sampling Algorithms

Based on the representation in (2.48), most applications of a probability distribution can

be realized through the sampled particles. Specifically, if a sufficient number of particles

θ(1,··· ,N) have been sampled from q(θ), any q(θ) related integration can be approximated by

the particle representation qN (θ):

1

N

N∑
j=1

f(θ(j))
N→∞−→

∫
f(θ) q(θ) dθ. (2.49)

For example, in the variational updating step (2.44), the expectation E(θ) and E(θ · θ′) can

be approximated by using qN (θ). According to the central limit theorem, the approximation

error of (2.49) will follow a converged distribution:

[EqN (θ)f(θ)− Eq(θ)f(θ)] ∼ N (0,
σ2
f

N
), (2.50)

as long as the variance of f(θ) is not diverged with respect to q(θ):

σ2
f = Eq(θ)f2(θ)− [Eq(θ)f(θ)]2 < +∞. (2.51)

To achieve this convenience of approximating qN (θ), it is important to ensure that a suffi-

cient number of particles are generated exactly from q(θ).

It is known that given the cumulative distribution function F (θ) of a probability distri-

bution, sampling from this distribution can be easily achieved. In this approach, the inverse

function F−1 is used to yield the target samples by manipulating samples of the uniform

distribution “U ” [23]:

θ = F−1(u) ∼ dF (θ), if : u ∼ U (0, 1).
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However, for our inference tasks, the target distribution cannot be known by its cumu-

lative distribution function. For example, the normalizing constants in (2.45) and (2.46)

are generally unavailable. To solve this problem, the importance sampling technique is

introduced.

In the importance sampling algorithm, the particle based distribution qN (θ) is extended

to include a weight for each particle:

qN (θ) =

N∑
j=1

w(j) δ(θ = θ̂(j)). (2.52)

To be consistent with (2.48), these weights are constrained to have
∑N

j=1w
(j) = 1. By using

these additional parameters, it is not required that the particles are generated from q(θ).

For instant, a distribution p0(θ) can be used if eligible samples θ̂(1,··· ,N) can be drawn from

it. Then, the difference between p0(θ) and q(θ) will be accounted by the weights w(1,··· ,N),

as long as q(θ) can be evaluated at any specified point of θ. Specifically, these weights will

be calculated from

N∑
j=1

w(j) = 1, ∀ j : w(j) ∝ q(θ̂(j)) / p0(θ̂(j)). (2.53)

With these weighted particles, the integration procedure becomes

N∑
j=1

w(j) f(θ̂(j))
N→∞−→

∫
f(x) w(θ) p0(θ) dθ =

∫
f(x) q(θ) dθ. (2.54)

It can be observed that a weighting function is defined in the importance sampling:

w(θ) = q(θ)
p0(θ) . While applied in variational Bayesian inference, for example to estimate

q(θtr), this weighting function can be separated from the variational updating step (2.45):

ln q(θtr) = lnw(θ) + ln p0(θ)

= Eq(S1:T ) ln p(S1:T | θtr) + p(θtr | ηtr) + const.,

⇒ lnw(j) = Eq(S1:T ) ln p(S1:T | θ(j)
tr ) + const.

θ
(j)
tr ∼ p0(θtr) = p(θtr | ηtr). (2.55)

Thus, the importance sampling technique becomes a suitable solution for the variational up-

dating step. In the next chapter, more specific discussion will be provided for incorporating

the importance sampling into the variational Bayesian inference.
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2.3.2 Particle Filter and Smoother

After the importance sampling is introduced for updating model parameters, another particle-

based algorithm can be adopted for estimating q(S1:T ). According to (2.44), this updating

procedure is amount to deriving a state estimation algorithm with the additional consider-

ation of parameter distributions:

ln q∗(S1:T ) = Eq(θ) ln p(X1:T , S1:T | θ) + const.

= Eq(θ) ln p(X1:T , S1:T | θ)− Eq(θ) ln p(X1:T | θ) + const.,

⇒ q∗(S1:T ) = c · eEq(θ) ln p(S1:T |X1:T ,θ). (2.56)

Since Eq(θ) ln p(X1:T | θ) is independent of S1:T , it is omitted in the following derivation of

learning q(S1:T ). One can also treat this case as replacing q(θ) with the Dirac delta function

[23]. Also, the one-dimensional latent feature s1:T is considered in the following illustration.

Similar to the aforementioned sequential forward-backward algorithm, the particle-based

state estimation consists of two sequential paths: particle filtering (forward) and particle

smoothing (backward). There exist several variants of the filtering path, as well as of the

smoothing path [40]. Here, a sample algorithm is included to illustrate its applicability in

extracting the dynamic latent feature. First, the particle representation of each latent state

can be illustrated with a set of particle-weight pairs:

q
(f)
N (st) =

N∑
j=1

ŵ
(j)
t δ(st − s(j)

t )→ p(st | X1:t),

q
(s)
N (st) =

N∑
j=1

w
(j)
t δ(st − s(j)

t )→ p(st | X1:T ). (2.57)

In the filtering path, both particles and their weights will be determined, but in the smooth-

ing path, only the weights will be recalculated. Here, a common assumption has been added

that the transition function should be available for sampling the particles, which has actually

been indicated by the form in (2.1).

Similar to the Kalman filtering algorithm, the filtering path updates qN (st | X1:t) recur-

sively. First, the predicted distribution is obtained based on sampling procedure:

s
(j)
t ∼ p(st | s

(j)
t−1, θtr), ∀ j = 1, ..., N, (2.58)

where the initial particles can be generated from p(s1 | θtr). Then, these particles are

weighted by the observation function for the filtered distribution:

ŵ
(j)
t ∝ p(Xt | s(j)

t , θob), ∀ j = 1, ..., N. (2.59)
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The efficiency of this filtering algorithm is usually determined by the distribution of ŵ
(1,...,N)
t

[40], such as through an effective number: 1/
∑N

j=1(ŵ
(j)
t )2. If the sampled particles have

diverged too much, this indicator will become small, and the re-sampling algorithm should

be applied to update the particles.

After the particles are generated for the entire sequence and the filtered distributions

are ready, a recursive reweighing function can be applied for obtaining the smoothed distri-

bution. According to the general backward path in (2.16) and (2.17), this smoothing path

can be derived as

p(st | X1:T ) =

∫
p(st+1 | X1:T )

p(st+1 | st) p(st | X1:t)

p(st+1 | X1:t)
dst+1

= p(st | X1:t)

∫
p(st+1 | st) p(st+1 | X1:T )∫
p(st+1 | st) p(st | X1:t)

dst+1

≈
N∑
j=1

ŵ
(j)
t δ(st − s(j)

t )

∫
p(st+1 | st)

∑N
k=1w

(k)
t+1 δ(st+1 − s(k)

t+1)∫
p(st+1 | st)

∑N
l=1 ŵ

(l)
t δ(st − s(l)

t )dst
dst+1

=

N∑
j=1

ŵ
(j)
t δ(st − s(j)

t )

N∑
k=1

w
(k)
t+1 p(s

(k)
t+1 | st)∫

p(s
(k)
t+1 | st)

∑N
l=1 ŵ

(l)
t δ(st − s(l)

t )dst

=
N∑
j=1

ŵ
(j)
t

N∑
k=1

w
(k)
t+1 p(s

(k)
t+1 | s

(j)
t )∑N

l=1 ŵ
(l)
t p(s

(k)
t+1 | s

(l)
t )

δ(st − s(j)
t ). (2.60)

In the third row above, the approximation is made by using q
(f)
N and q

(s)
N in (2.57). Com-

paring the final result to the representation in (2.57), the adjusted weight for smoothing

path can be obtained as

w
(j)
t =

N∑
k=1

w
(k)
t+1

ŵ
(j)
t p(s

(k)
t+1 | s

(j)
t )∑N

l=1 ŵ
(l)
t p(s

(k)
t+1 | s

(l)
t )

. (2.61)

With the above estimation procedure for obtaining particles and their weights, a particle-

based representation q(S1:T ) can be updated in the variational Bayesian inference. In the

forth chapter of this thesis, the above inferencing approach will be modified to extract the

constrained dynamic latent feature.

2.3.3 Stochastic Variational Inference

Other than being used to represent q(Θ) and q(S1:T ), the particle-based algorithms can also

be applied to optimize the parameters in the proposal distributions. For example, if the

proposal distribution can be parametrised by the variational parameter η̂, optimizing this

proposal distribution q(Θ | η̂) will be equivalent to optimizing the variational parameter η̂.
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Based on the objective function defined in (2.40), the optimal proposal distribution will be

obtained at the maxima point of η̂∗.

If the corresponding gradient Oη̂Lq(S1:T ,Θ) can be calculated with respect to η̂, the

following stochastic optimization approach can be applied:

η̂(z+1) = η̂(z) + ρz · Oη̂Lq(S1:T ,Θ)

= η̂(z) + ρz · [Oη̂Eq(S1:T ,Θ) ln p(X1:T , S1:T | Θ)

− Oη̂DKL{q(Θ | η̂) || p(Θ | η)}], (2.62)

where ρz is a step-size variable for the updating step z. For the second part in this gradient

term, the K-L divergence Oη̂DKL{q(Θ | η̂) || p(Θ | η)} is usually an analytical function

of η̂. For the first gradient part, the following particle-based algorithm can be used to

approximate this gradient calculation:

Oη̂ Eq(S1:T ,Θ) ln p(X1:T , S1:T | Θ)

=Oη̂

∫
Eq(S1:T ) ln p(X1:T , S1:T | Θ) q(Θ | η̂)dθ

=

∫
Eq(S1:T ) ln p(X1:T , S1:T | Θ) Oη̂q(Θ | η̂)dθ

=

∫
Eq(S1:T ) ln p(X1:T , S1:T | Θ) q(Θ | η̂) Oη̂ ln q(Θ | η̂)dθ

≈ 1

N

N∑
j=1

Eq(S1:T ) ln p(X1:T , S1:T | Θ(j))Oη̂ ln q(Θ(j) | η̂), (2.63)

where the particle Θ(j) is independently sampled from q(Θ | η̂). Therefore, given η̂(z), a

sufficient number of parameter particles Θ(1,...,N) can be generated for this approximation.

In practice, after q(Θ | η̂) being parametrised within the exponential distribution family,

Oη̂ ln q(Θ(j) | η̂) can also be calculated analytically for each η̂ = η̂(z) [41]. Thus, the

stochastic optimization approach in (2.62) can be realized. By adopting this particle-based

inferencing approach, the variational Bayesian inference has become more attractive in

dealing with large data sets [41] and has been widely used for improving the deep neural

networks [28].
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Chapter 3

Bayesian Learning for Slow Feature
Analysis ∗

In this chapter, based on the probabilistic formulation of slow feature analysis, a novel

learning framework is proposed to extract dynamic latent features. Under this full Bayesian

framework, the prior knowledge of process dynamics is materialized as a Beta distribution

for the transition parameters. Unlike the conventional method dealing with a static model,

in this study, a latent dynamic model is learned by considering the nominal velocities of the

latent features. By applying the variational Bayesian inference, the estimation uncertainties

can be accounted for by using a probabilistic description for model parameters. By using a

variational lower bound as the evaluation indicator for this learning process, the number of

latent features can be determined automatically. Through the modelling tasks on simulated

datasets and an industrial application case, the effectiveness and practicability of this feature

extraction method have been demonstrated.

3.1 Introduction

In the process industry, the on-line measurement of quality variables constitutes an indis-

pensable part of process control and optimization. Due to the unsatisfactory performance

of real-time hardware instruments, inferential sensing technologies, which make predictions

with commonly available process data, became favourable alternative solutions. Because of

unattainable assumptions and simplifications in first-principles formulations, they usually

cannot be effectively applied to prediction tasks. Meanwhile, the increasing number of in-

strumented sensors and a large number of historical records make the process data analytic

∗A version of this chapter has been published in Ma, Yanjun, and Biao Huang. “Bayesian learning for
dynamic feature extraction with application in soft sensing.” IEEE Transactions on Industrial Electronics
64, no. 9 (2017): 7171-7180.
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a strong modelling alternative to build inferential sensors [7]. As a data-driven project,

the most challenging task is to develop a model for accurate real-time measurement for the

quality variables.

In order to build predictive models, the properties of historical data are worth delib-

erately exploring, such as discussed in Chapter 1. Specifically, an effective dimensionality

reduction method and appropriate feature selection criteria are required to avoid misleading

regression coefficients and avoid losing informative features for quality prediction. Based

on the above considerations, the modelling approach with the dynamic latent feature, as

discussed in Section 2.1, is considered in this chapter. From the modelling point of view,

these applications formulate a latent space to filter data and propagate information from

the input space to the output space, instead of directly building an input-output model,

and expect to achieve more effectiveness and robustness of the predictions through building

relation on this latent layer.

Since the inferential sensing usually serves as the supplement for a control improvement

project, where the output of inferential sensor could be used as the input for a feedback

controller, the original target system is often operated by less satisfactorily designed con-

trollers. Along with the inevitable fluctuations and the inertia of processes, process data

contains dynamic properties encapsulated as temporal correlations among process variables.

Ignoring process dynamics will inevitably limit the ability to discover the statistical map-

ping, and lose important information conveyed from stochastic data sequences. Most of

the current considerations of process dynamics focus on the temporal correlation in the

observed sequences directly, such as including lagged data samples for a dynamic augmen-

tation [42, 43]. However, as the representation of observed process data, the extracted latent

features can also contain and in fact better represent dynamic properties, which makes them

more suitable to capture the hidden driving causes of process variations. Unfortunately, for

general process data analytic with the assumption of the steady state, inadequate efforts

have been made towards revealing data dynamics other than the statistical analysis of pro-

cess data. One of the approaches considering the dynamic connection in latent space is the

subspace identification [44, 45], in which the definition of states is inherited from system

identification, influenced by inputs and revealed by outputs.

On the other hand, the process variables in inferential sensing applications may not

be the inputs of a physical system. Instead, they are usually measured outputs of other

variables. The features that are mathematically projected from these measurements will be a

better choice to effectively and efficiently capture process trends, sharing the similarity with
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feature extraction in pattern recognition. Another approach, named as slow feature analysis

(SFA) [17], constructs the latent space by minimizing the averaged difference in the sequence

of latent features, formulated as a variant of independent component analysis (ICA). This

approach combines the noise removal advantage of ICA and the slowness preference in

process modelling, based on which the performance of quality variable prediction and process

monitoring can be improved through modelling and monitoring in the latent space [46].

As the mainstay of engineering and computer science, the probability theory is viewed

as the best tool to formulate models and estimate parameters from data [23]. As pre-

sented with the probabilistic in Section 2.2, the model can be learned with an explicit prior

preference, the structure can be selected according to specific evaluating indices, and the

predictions can be assigned with specific beliefs in application [8]. With a quadratic objec-

tive function and relatively clean data sets, the deterministic methods, such as eigenvalue

based approaches can solve the modelling problem. However, as a deterministic solution,

the objective is dictatorial and difficult to evaluate in the whole context of feature extrac-

tion. Moreover, the projection matrix is likely to down-weigh more noisy measurements

of the inputs. In order to provide better insights into feature extraction, the knowledge-

based modelling preference should be mathematically merged into the model evaluation,

where a probabilistic framework is naturally adopted. Most of deterministic data analy-

sis approaches also have their probabilistic extensions [22, 24] to be robust to abnormal

sampled data and allow more extensions from the original version. In the dynamic latent

variable extraction of this chapter, the probabilistic approach and the Bayesian framework

can provide compact interpretation for dynamics in the latent space, and related inference

algorithms can merge the prior preference with the model of observations.

3.2 Problem Statement

In this chapter, a novel Bayesian dynamic feature extraction method is proposed to discover

latent features along with auto-regressive properties, sufficiently capture process fluctua-

tions, and predict quality variables from latent features. The feature extraction established

in the Bayesian framework is capable of bringing two significant advantages: the integration

of process knowledge and historical data, and the completeness of simultaneous parameter

and states estimation. The first one is to be achieved by using a random variable to describe

the varying velocity of each latent feature and formulating its probabilistic dependency. The

second one is to be obtained through a compact Bayesian approximation algorithm, which

not only approximates the posterior of model parameters but also evaluates the model
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structures with an explicit index.

This chapter proceeds as follows. In the next section, the feature extraction is formulated

with a probabilistic framework, and detailed explanations are provided. In the third section,

the parameter estimation and the model learning technologies are introduced, along with

the proposed modifications and extensions. The fourth section demonstrates the strength of

our modelling algorithm in a simulated data, a benchmark simulation and a real application

in industry. Finally, concluding remarks and future perspectives are presented.

3.3 Probabilistic Formulation

In this section, a probabilistic framework is formulated to connect data and the latent space,

as well as a layer of prior distributions for parameter estimation. Based on the modelling

objective, the feature extraction is designed to represent the process dynamics by sequences

of autocorrelated latent variables. With the probabilistic interpretation of SFA [25], further

characteristics of the latent features and the Bayesian framework are discussed with the

following state space formulation:

St = A · St−1 + wt, wt ∼ N (0, Q), (3.1)

Xt = H · St + vt, vt ∼ N (0, R), (3.2)

where A is a d-by-d matrix to model the auto-correlation, H is a m-by-d matrix describing

the projection from latent space to observations. Both the transition noise and the observa-

tion noise are assumed to have the multivariate Normal distribution N , with the covariance

matrices Q and R respectively.

For the aforementioned model, imposing the independence condition forces the transition

matrix and the covariance matrix in (3.1) to be diagonal: A = diag{a1, ..., ad} and Q =

diag{ρ(−1)
1 , ..., ρ

(−1)
d }. In addition to de-correlating input space, the model with independent

latent features allows the process dynamics to be represented among different frequency

bands, without interfering each other [47].

3.3.1 Statistical Dependency

In order to incorporate the modelling preference and describe dynamic properties explicitly,

some characteristics of the latent features need to be investigated. For the proposed feature

extraction model, the preference of different velocities can be used as a guide. To exploit

the varying velocity, or the “slowness”, explicitly, the stationary constraint is considered for

the latent feature S in (3.1).

40



The stationary constraint forces the latent variable sample St to have an invariant

mean and an invariant variance for prior, which states that given a set of parameters,

p(St) = p(St−1) for any time t. As inherited from conventional constrained in slow feature

analysis, the zero-mean in (1.2) and the uni-variance in (1.3) are adopted. This constraint

is not only inherited from traditional latent variable models but also based on physical

understandings about target processes. In most of the inferential sensing projects, quality

variables are operated in a continuous manner, requiring the extracted features to capture

the continued variations.

To impose these constraints in the state space form, an additional equation for transition

parameters are introduced. Since the latent features are considered as independent, this

constraint is also discussed for one-dimensional case. For the i-th feature s(i), the stationary

constraint is implemented as (3.3) and (3.4):

s
(i)
t = ai s

(i)
t−1 + w

(i)
t , w

(i)
t ∼ N (0, ρ−1

i ), (3.3)

where : a2
i + ρ−1

i = 1, ρi > 0. (3.4)

By imposing (3.4), if s
(i)
t−1 follows the standard Normal distribution N (0, 1), it can be verified

that s
(i)
t will then follow the same standard Normal distribution according to the first order

Markovian property. Thus, the original constraints in SFA, (1.2) and (1.3), are satisfied

now with probabilistic interpretation [47]. Other than constraint (3.4), to better represent

the concept of “slow” feature, the support domain of the transition coefficient is limited as

ai ∈ (0, 1), ∀ i ∈ {1, ..., d}. (3.5)

Since ρi stays positive, |ai| must be smaller that 1. The negative part is eliminated in this

study to avoid the extreme noisy variations.

Intuitively, this constraint states that to maintain a constant variation level, the feature

with weaker auto-regressive strength will be affected more by the noise. As one can see

from (3.4) that a smaller ai corresponds to a larger variance of noise ρ−1
i . Based on this,

each pair of diagonal terms in A and Q shrinks to one free random variable (ρi = 1
1−a2

i
),

and the averaged varying velocity in (1.1) can be represented by and controlled through the

auto-regressive parameter ai:

v(s(i)) = E
[
‖s(i)
t − s

(i)
t−1‖

2
]

= 2 (1− ai). (3.6)

For a visual illustration, two independent features under invariant distribution assumption

are shown in Figure 3.1. The one with larger value of ai demonstrates an obviously slower

trend comparing to the other.
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Figure 3.1: Latent Features with Different Varying Velocities

This random variable based representation of varying velocity allows the modelling strat-

egy to optimize each ai within a probabilistic framework for all observed data, rather than

only maximizing it without considering other performances, such as SFA does [17]. In the

proposed Bayesian framework, by assigning a prior distribution to each coefficient param-

eter ai, the prior knowledge of auto-regressive dynamics can be integrated mathematically.

For example, while there exist a prior guess for the time constant of informative trends, it

can be converted as a prior distribution for this parameter:

Gp =
S(s)

U(s)
=

K

τ s+ 1

⇒ st = e−
TS
τ st−1 + k(1− e−

TS
τ ) ut−1

⇒ a = e−
TS
τ , (3.7)

where Gp is a transfer function between U and S in the frequency domain and TS is the

system sampling interval for its discrete counterpart. It can be observed that for this first

order system, its time constant is related to the transition coefficient of auto-regression

function (3.3).

As discussed in Chapter 2, the joint distribution of observations X1:T and hidden features

S1:T represented by (3.1) and (3.2) plays a central role in statistical inference, which is
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expressed as following conditional distribution given a set of parameters {A,H,R}:

p(X1:T , S1:T | A,H,R) = p(X1:T | S1:T , H,R) · p(S1:T | A)

=

T∏
t=1

p(Xt | St, H,R) ·
T∏
t=2

ln p(St | St−1, A) · p(S1). (3.8)

Based on joint likelihood in (3.8), the Maximum-Likelihood is amenable [47]. However, in

order to fully utilize the integrity of probabilistic framework and incorporate the parsimony

principle, the proposed feature extraction strategy is formulated in a Bayesian framework

with the prior distributions for parameters.

3.3.2 Prior Distributions

One major innovation of this chapter is introducing a prior distribution for the constrained

transition parameter A. Based on that, the modelling preference of varying velocity of

latent feature S can be implemented through the connection in (3.6). For each element ai,

Beta distribution is chosen as the prior distribution to govern the continuous value of ai in

the range of (0, 1):

Beta(ai | αa, βa) =
(ai)

αa−1(1− ai)βa−1

B{αa, βa}
. (3.9)

The parameters of Beta distribution, αa and βa, as the hyper-parameters for entire Bayesian

model can determine the preferred varying velocity. In Figure 3.2, the left plot shows the

cases that larger ai possesses larger prior probability, representing a preference of slower

features; the right one shows the other way around with a specified varying velocity (E [ai] =

0.3).

Figure 3.2: Different Choices of Hyper-Parameters in the Beta Distribution

Another important component is the parsimony principle in formulating multiple latent

features. In most tasks of modelling [48] and identification [49], since the divergence caused
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by over-fitting is not desired, the model with less complexity or a lower order is preferred.

In the proposed structure of observation function (3.2), this preference is translated to using

zero as an expectation for the prior mean of emission matrix H. For one row vector hi in

H, the prior distribution can be selected as the Normal distribution:

hi ∼ N (~0,Λ−1
0 ), (3.10)

where Λ0 is a d-by-d precision matrix for the strength of prior information. With such

prior distributions, the posterior estimation of H tends to be zero while the likelihood from

observation, p(X1:T | S1:T , H,R), is not significant for non-zero H. This mechanism allows

the Automatic Relevance Determination [50], which can reduce the weight of irrelevant

latent features during the inference procedure. Besides, particular prior distributions, such

as the exponential distribution, can be chosen for stronger dimensionality shrinkage [51].

Figure 3.3: Proposed Bayesian design for slow feature extraction

At this point, the hierarchical probabilistic graphical model corresponding to model

(3.1)-(3.2) can be summarized in Figure 3.3. The probability expression of its directed

connections are summarized as

p(St | St−1, A) = N (St; A · St−1, Id −A2), ∀ t = 2, ..., T, (3.11)

p(Xt | St, H,R) = N (Xt; H · St, R), ∀ t = 1, ..., T, (3.12)

where Id is the d-dimensional identity matrix and the covariance of transition noise Q is

replaced with Id − A2 for simplicity. These two likelihood terms are detailed probabilistic

connections for latent features and observations in (3.8). The prior distribution or the

hierarchical modelling is expressed as

p(A | αa, βa) = p(diag{a1, ..., ad} | αa, βa) =

d∏
i=1

Beta(ai; αa, βa), (3.13)
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p(H | Λ0) = p([h1, ..., hm]′ | Λ0) =
m∏
i=1

N (hi; ~0,Λ
−1
0 ), (3.14)

p(R | αγ , βγ) = p(γ−1 · Im | αγ , βγ) = G(γ; αγ , βγ), (3.15)

p(S1 | m0, P0) = N (S1; ~0, Id). (3.16)

As illustrated before, distribution in (3.13) provides the prior distribution for varying veloci-

ties, and the prior of row vectors of emission matrix H is expressed in (3.14). The covariance

of emission noise R is set as the scaled identity matrix, where Im is the m-dimensional iden-

tity matrix. This prior distribution is adopted from the probabilistic mapping strategy [22]

to model each observation dimension with an equal weight; the usage of Gamma distribution

G(·) as conjugate prior in (3.15) facilitates the parameter estimation procedure. Regard-

ing the prior distribution for initial state in (3.16), the standard Normal distributions are

assigned for each dimension, m0 = ~0, P0 = Id, which is accordance with the original slow

feature analysis.

3.4 Variational Inference Methods

Regarding the parameter inference work, Bayesian learning methods gain their popularity

because of the explicit synthesis of data and modelling preference. Based on a set of given

probability dependencies, specific estimation algorithms can be formulated to incorporate

different uncertainties. As the feature extraction model has been formulated as the di-

rected probability graphical model shown in Figure 3.3, which is an extended model from

Dynamic Bayesian Network [36], the posterior distribution of parameters {A,H,R} and

latent features S1:T can be determined simultaneously. Because of the high dimension of

parameters, the analytical derivation of posterior distribution is prohibitively expensive.

As illustrated in Chapter 2, the approximate Bayesian inference is applied to obtain the

applicable posterior distributions.

The joint log-likelihood of observations X1:T , latent features S1:T , and model parameters

{A,H,R} is presented as

ln p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)

= ln p(S1 | m0, P0) +

T∑
t=2

ln p(St | St−1, A) +

T∑
t=1

ln p(Xt | St, H,R)

+
d∑
i=1

ln p(ai | αa, βa) +
m∑
i=1

ln p(hi | ~0,Λ0) + ln p(γ | αγ , βγ). (3.17)
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Based on introduction of variational algorithms in Section 2.2, proposal distribution of the

latent features and model parameters can be used to approximate their true posterior:

q(S1:T , A,H,R) = q(S1:T ) q(A) q(H) q(R). (3.18)

The updating for all components will be derived from above joint likelihood, such as for the

proposal distribution of latent features q∗(S1:T ):

ln q∗(S1:T ) = Eq(A)q(H)q(R) [ln p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)] + const., (3.19)

where the q(A)q(H)q(R) is obtained from the previous updating step.

In the linear case, most of distribution updating steps can be facilitated by assigning

the prior as conjugate of the likelihood [52]. For example, we choose the prior of elements

in R to be inverse Gamma distribution. According to the Bayes rule, these prior distribu-

tions will uniquely yield posterior distributions with the same form as their corresponding

priori, leaving only their parameters to be updated. Typically in this chapter, the updating

equations for H and R are obtained as

q∗(H) =

m∏
i=1

q∗(hi) =

m∏
i=1

N (hi; m̂i, Λ̂
−1
i ), (3.20)

q∗(R) = q∗(γ) = G(γ; α̂γ , β̂γ). (3.21)

The stepwise optimal hyper-parameters are derived as

Λ̂i = Λ0 + 〈γ〉
T∑
t=1

〈StS′t〉, (3.22)

m̂i = Λ−1
i 〈γ〉

T∑
t=1

〈St〉 ·X(i)
t , (3.23)

α̂γ = αγ +
T ·m

2
, (3.24)

β̂γ = βγ +
1

2

m∑
i=1

[
T∑
t=1

X
(i)
k X

(i)
t − 2

T∑
t=1

X
(i)
t 〈St〉′〈hi〉+ tr{

T∑
t=1

〈StS′t〉〈hih′i〉}

]
. (3.25)

In these equations, 〈·〉 is the shorthand for statistical expectation of a random variable

under its own distribution.

While the conjugate exponential family significantly reduces the load of calculation,

solutions to updating equations for q∗(S1:T ) and q∗(A) are not straightforward: the first

one requires the uncertainty compensation in the sequenced data, and the difficulty for the

second one is from handling non-conjugate prior (Beta distribution). In what follows, the

detailed development for these two updating steps will be illustrated.
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3.4.1 Estimation of Dynamic Latent Features

In order to obtain the updating equation for latent features S1:T , the following transforma-

tion is made according to the Bayes rule:

ln q∗(S1:T ) ∝ Eq(A)q(H)q(R) [ln p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)]

= Eq(A)q(H)q(R)

[
ln
p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)

p(X1:T , A,H,R | αa, βa,Λ0, αγ , βγ)

+ ln p(X1:T , A,H,R | αa, βa,Λ0, αγ , βγ)]

= Eq(A)q(H)q(R) [ln p(S1:T | X1:T , A,H,R)] . (3.26)

While given a set of distributions of parameters, the expectation of ln p(X1:T , A,H,R | ...) is

independent from the distribution of latent features. The final term of this transformation

p(S1:T | X1:T , A,H,R) brings out a state estimation problem based on the model in (3.1)

and (3.2). In the case with deterministic value of model parameters, the optimal solution

can be obtained through Kalman smoothing algorithm [53]. However, under this Bayesian

framework, the parameters are given as the probability distributions instead of the point

estimations, where the uncertainty of parameters implies following inequality:

Eq(A)q(H)q(R) [ln p(S1:T | X1:N , A,H,R)]

6= ln p(S1:T | X1:T , 〈A〉, 〈H〉, 〈R〉). (3.27)

In the linear case with Gaussian distributed latent states, the difference between two

sides of inequality (3.27) can be determined through the fluctuation terms [54]:

Ft = 〈A′ · (Id −A2)−1 ·A〉 − 〈A · (Id −A
2)−1〉〈(Id −A2)−1 ·A〉
〈(Id −A2)−1〉

, (3.28)

Fo = 〈H ′ ·R−1 ·H〉 − 〈H ′〉〈R−1〉〈H〉, (3.29)

where Ft stands for fluctuation from the transition function, and Fo describes fluctuation

in the observation function. Because of the non-zero property of these fluctuation terms,

using the right side of (3.27) directly from the Kalman smoothing algorithm will introduce

error to the latent feature. In the study of [54], factorized components of these fluctuation

terms are applied to compensate this differences, making the original Kalman smoothing

algorithm feasible for the left side of (3.27).

With the fluctuation terms identified, it can be factorized as UA and UB through the

Cholesky decomposition:

UA · U ′A = Ft,
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UB · U ′B = Fo.

The inequality can thus be compensated by augmenting each observed data vector Xt, the

emission matrix H, and the covariance matrix R with these components:

X̃t =
[
X ′t, ~01×d, ~01×d

]
, ∀ t = 1, ..., T, (3.30)

H̃t =

{
[〈H〉, UA, UB], ∀ t = 1, ..., T − 1,

[〈H〉, ~0, UB], if : t = T,
(3.31)

R̃ = diag{〈R〉, Id, Id}. (3.32)

Regarding the transition parameters, the adjustments are performed as

Ã =
〈A · (Id −A2)−1〉
〈(Id −A2)−1〉

, (3.33)

Q̃ = 〈(Id −A2)−1〉−1. (3.34)

It should be noted this transformation is a little bit twisted comparing to the direct transfor-

mation, such as 〈A〉 or 〈Id−A2〉. However, these replacements are based on the expectation

terms on the logarithm expansion for the state likelihood in (3.11). Based on above re-

placements, a time-varying state space model with augmented observations and augmented

model parameters can be derived as the following model:

St ∼ N (Ã · St−1, Q̃),

Xt ∼ N (H̃t · St, R̃), (3.35)

where these parameters are all deterministic values. Based on this augmented model, a

solution equivalent to (3.26) is given below:

Eq(A)q(H)q(R) [ln p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)]

= ln p
(
S1:T | X̃1:T , Ã, Q̃, H̃1:T , R̃

)
+ const.. (3.36)

Thus, solving the posterior on the right side of (3.36) will provide updated distributions for

latent features S1:T in VB framework, where the optimal solution for this posterior in the

model of (3.35) is the Kalman filtering and smoothing algorithm [33].

The updated distribution of q∗(S1:T ) will then be used to calculated the expectation of

latent states. In the learning framework of this chapter, the required statistics include 〈St〉,

〈StS′t〉, and 〈St−1S
′
t〉. Based on the illustration in Section 2.1, the posterior distribution

of latent states can be obtained in the form of p(St | X̃1:T , Ã, Q̃, H̃1:T , R̃) and p(St−1, St |

X̃1:T , Ã, Q̃, H̃1:T , R̃). As in the linear model with Normal distributions, these statistics are

available from result multivariate Normal distributions.
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3.4.2 Estimation of Transition Parameters

The last set of parameters to be estimated is diagonal elements in the transition matrix A.

The prior distribution in (3.13) is determined by considering both the support domain in

(3.5) and the modelling preference on dynamic properties. However, the selection of Beta

distribution makes it a non-conjugate prior for the likelihood in (3.11). Consequently, the

posterior distribution does not belong to any known analytical distributions. In Section

2.3, particle-based algorithms have been reviewed for such challenges. In this chapter, the

importance sampling methods are adopted for the transition parameters.

Since each latent dimension is assumed as independent from each other, it will be up-

dated individually then. The updating equation for the i-th term can be detailed with an

explicit form:

ln q(ai) = ln p(〈s(i)
1:T 〉 | ai) + ln p(ai | αa, βa) + const., (3.37)

where : ln p(〈s(i)
1:T 〉 | ai) =

T − 1

2
ln

1

1− a2
i

− 1

2

T∑
t=2

〈s(i)
t s

(i)
t 〉

1

1− a2
i

+
T∑
t=2

〈s(i)
t−1s

(i)
t 〉

ai
1− a2

i

− 1

2

T−1∑
t=1

〈s(i)
t s

(i)
t 〉

a2
i

1− a2
i

. (3.38)

The elemental statistics 〈s(i)
t−1s

(i)
t 〉 and 〈s(i)

t−1s
(i)
t 〉 are obtained as the diagonal terms of whole

statistic of 〈StS′t〉 and 〈St−1S
′
t〉. It is true that the rest off-diagonal terms are ignored in

learning the transition coefficients, which becomes an inevitable assumption in this proposed

learning structure.

As a sampling technique, importance sampling uses samples to stochastically approx-

imate the exact posterior distribution. In its procedure, a support distribution (p0(x)),

which has a wider non-zero domain than the target distribution (q(x)), is proposed to gen-

erate Monte Carlo samples. When the importance vector of the target distribution over the

support distribution (w(x) = q(x)
p0(x)) is achievable for each sample point, any expectation

value of the target distribution can be asymptotically obtained with these independently

drawn samples:

N∑
j=1

f
(
x(j)
)
w
(
x(j)
)
N→∞−→

∫
f (x)w (x) p0 (x) dx =

∫
f (x) q (x) dx, (3.39)

where N denotes the total number of samples. Regarding the updating step for q(ai),

the support distribution is chosen as the prior distribution p0 = p(ai | αa, βa), and the

importance weight can be evaluated from the likelihood term p(〈s(i)
1:T 〉 | ai) in (3.38). The
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required statistics should also be estimated from the sample based distribution q(ai). Here,

three required statistics are derived below to utilize the q(ai) in VB formulation:

〈(Id −A2)−1〉 = diag{〈ρ1〉, ..., 〈ρd〉}, 〈ρi〉 =
N∑
j=1

1

1− [a
(j)
i ]2

w
(
a

(j)
i

)
, (3.40)

〈A(Id −A2)−1〉 = diag{〈ρ1 a1〉, ..., 〈ρd ad〉}, 〈ρi ai〉 =
N∑
j=1

a
(j)
i

1− [a
(j)
i ]2

w
(
a

(j)
i

)
, (3.41)

〈A′(Id −A2)−1A〉 = diag{〈ρ1 a
2
1〉, ..., 〈ρd a2

d〉}, 〈ρi a2
i 〉 =

N∑
j=1

[a
(j)
i ]2

1− [a
(j)
i ]2

w
(
a

(j)
i

)
, (3.42)

where a
(j)
i is the j-th sample drawn from Beta distribution for ai, and N the total number

of samples.

3.4.3 Variational Lower Bound

The learning objective of variational Bayesian learning algorithm is the variational lower

bound of evidence probability, for which the general formulation has been given in Section

2.2. Here the specified formulation for the proposed feature extraction model is detailed as

Lq(S1:T )q(A)q(H)q(R) = Eq(S1:T )q(A)q(H)q(R) ln p(X1:T , S1:T , A,H,R | αa, βa,Λ0, αγ , βγ)

+H{q(S1 : T )}+H{q(A)}+H{q(H)}+H{q(R)}. (3.43)

The first term is about the expected complete likelihood. Based on the formation in (3.17),

it is achievable with the aforementioned proposal distributions. For entropy of distribution

q(S1:T ), a representation of chained Normal distributions are utilized as

q(S1:T ) =
q(S1, S2) q(S2, S3) · · · q(ST−1, ST )

q(S2) · · · q(ST−1)
. (3.44)

With above factorization, the entropy H{q(S1 : T )} can be obtained as a summation of

individual entropies. For the parameters with conjugate prior (H and R), the required mo-

ments can be obtained directly from estimated probability density function. For transition

parameter ai, the entropy is approximated through a histogram based estimation [55].

Typically, in our feature extraction model, the dimension of latent space d is selected

according to the corresponding lower bound value. Although with different values of d, the

lower bound is maximized with different realizations of hyper-parameters, its maximized

value still represents the best data explanation we could obtain given d [29]. In the next

section, this dimension determination is examined on a constructed data set, and further

utilized in a regression task.
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3.5 Simulations

In this section, properties of the dynamic latent feature extraction model and its appli-

cation in prediction, namely the Bayesian dynamic feature regression (BDFR), are in-

vestigated. The principal component analysis with its regression application (PCR) and

slow feature analysis with its regression application (SFR) are also performed as compet-

ing algorithms. First, three feature extraction methods are compared in constructed data

for dimensionality reduction. After that, the predictive abilities are tested on the simu-

lated Tennessee Eastman Process (TEP) and a real inferential sensor modelling problem

in the oil sands industry. Throughout this section, the hyper-parameters are chosen as

{αa, βa,Λ0, αγ , αγ} = {5, 1, diag{1, ..., d}, 1, 1}.

3.5.1 Numerical Examples

In the constructed data, five sequences of the latent feature S∗ are generated with different

varying velocities: A∗ = diag{0.99, 0.90, 0.50, 0.43, 0.24}, and a randomly generated emis-

sion matrix H∗10×5 projects S∗ to the 10-dimensional observation data X∗, along with a

certain degree of emission noise: X∗k = H∗10×5 · S∗k + v∗k. Besides that, a regression vector

b∗1×5 = [0.4, 3, 0.2, 1, 6] provides a sequence of quality variable y∗ from the latent features:

y∗k = b∗1×5 · S∗k + t∗k. This contrived data is constructed from the linear dynamic model in

(3.1) and (3.2), where a good result of BDFR will prove that the Bayesian dynamic fea-

ture extraction is able to effectively model this generated data. Besides this verification

for Bayesian estimation, further discussions on the applicability of the proposed model in

Figure 3.3 will be performed later on.

As the fundamental property of feature extraction methods, the evaluation of each

latent sequence helps to determine the optimal dimension of the latent space. In Principal

Component Analysis, the explained variance of each feature (σ2) forms an importance index.

In Slow Feature Analysis, the latent features are formulated according to the velocity (λ),

which is the importance index in measuring the slowness. In our method, values of lower

bound for each latent dimension d are calculated for the dimension reduction. Figure 3.4

compares these three indices that determine the latent dimension in different methods.

The significant difference between these three indices is that the first two generated by

PCA and SFA are monotonously increasing or decreasing, while the third one has a maximal

point. The latent dimension of PCA and SFA cannot be determined by their extreme points

from this unsupervised procedure. However, as explained in the probabilistic framework, the
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Figure 3.4: Unsupervised indices to determine the latent dimension

maximal point in our evaluating index indicates an optimal value of the latent dimension.

In the third plot of Figure 3.4, the dimension of 5 (or 6) is more suitable since a relatively

high value of lower bound is reached, which matches better to the theoretical value.

Latent dimension can also be determined by their predictive abilities. With different

latent dimensions, the prediction result is evaluated through the Pearson correlation co-

efficient on a validation data set. The performance is shown in Figure 3.5, where BDFR

can give the highest correlation coefficient for the same dimension selected according to

Figure 3.4. While the other two methods require cross-validation, the Bayesian dynamic

feature extraction is capable of utilizing the probabilistic lower bound to determine the

optimal latent dimension, and its optimality is reflected by prediction performance.

3.5.2 Process Data Examples

In this section, the proposed Bayesian modelling strategy is tested on benchmark data,

which is from a simulation of the Tennessee Eastman Process [56]. This process is about a

plant of synthesis reactions, and the simulated data contains process variables from sensors,

controllers and analyzers as described in [2]. In this case study, the objective is to build

a predictive model from 33 commonly measured process variables to predict three quality
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Figure 3.5: Supervised indices to determine the latent dimension

variables in the normal operating region. To have a fair competition, the inputs and outputs

for both three competitors are normalized with the same mean vector and the same variance

matrix.

To build a latent variable model, the dimension of the latent space (#LV s) is selected

by 5-fold cross-validation for PCR and SFR and by the lower bound value for BDFR respec-

tively. The model is trained on 500 input-output samples and tested on 960 data samples.

The model prediction is evaluated by the correlation coefficient (r-value), as listed in Table

3.1.

Table 3.1: Comparison in the Tennessee Eastman Process

Corr-Coef
PCR SFR BDFR

#LVs r-value #LVs r-value #LVs r-value

Product A 24 0.6319 8 0.6354 23 0.6336

Product B 22 0.2389 9 0.2823 23 0.2389

Product C 2 0.6493 6 0.6705 23 0.6757

From this table, all three methods show similar predictive abilities for product A, while

SFR is better for product B, and SFR and BDFR are better for the product C. Based on the

comparison result of benchmark data, it is verified that this Bayesian modelling approach

can extract meaningful features in this benchmark process simulation.

However, in the general comparison between deterministic modelling algorithm (PCA

and SFA) and probabilistic approach, while the probabilistic approach always brings the

53



ability to handle abnormal data [22], the estimated parameters from iterative optimization

may be more sensitive to initial points. Therefore, the Monte Carlo experiments with

different initial points are usually conducted to reduce this sensitivity for the probabilistic

approach, but it still suffers from the inefficiency caused by the high dimensional parameters.

In our proposed modelling approach, the complete Bayesian framework can reduce this

uncertainty by assigning a layer of prior distributions. In order to investigate the stability

of parameter estimation, the value of lower bound in each optimization iteration is selected

as an indicating index for the training procedure. Three runs from different initial points

are performed and plotted in Figure 3.6.

Figure 3.6: Consistency of the proposed variation methods

Along with the randomized initial point, the estimation results from PCA and SFA are

also selected as the two other initial points for comparison. In Figure 3.6, three paths from

different initial points reach a similar level of the final value, representing similar optimized

results. As a consequence, given the prior distributions of parameters in Figure 3.3, the

predicting result is robust to the changes in the initial point.

3.5.3 Industrial Case Study

The strength of the Bayesian dynamic feature extraction method is further tested on an

industrial modelling problem. The process to be studied is the Steam Assisted Gravity

Drainage (SAGD) in the oil sands industry. Two horizontal wells are drilled into under-

ground bitumen reservoir, where the steam is injected through the top injector well to heat
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the heavy crude oil and a mixture of oil, water and gas is pumped out through wellbores on

the bottom producer well. Figure 1.1 shows a typical topology for one well-pair. Two on-line

measurements of the produced emulsion (water and oil), emulsion flow rate (EF) and the

proportion of water, water content (WC), are required for subsequent control application.

There are 18 process variables available for predicting the two quality variables, consisting

of pump frequency, sampled underground pressure and emulsion temperatures. For off-line

validation, the reference is provided by a limited number of analyzers with nuclear detection

technology, and the data is averaged within an acceptable time range to reduce the delay

effects.

Table 3.2: Comparison in the SAGD Data 1
PCR SFR BDFR

#LVs r-value MAE #LVs r-value MAE #LVs r-value MAE

WC 4 0.61 0.70 10 0.87 0.36 9 0.85 0.31

EF 6 0.91 0.51 13 0.95 0.32 9 0.98 0.30

Table 3.3: Comparison in the SAGD Data 2
PCR SFR BDFR

#LVs r-value MAE #LVs r-value MAE #LVs r-value MAE

WC 3 0.76 0.50 4 0.78 0.55 10 0.82 0.50

EF 14 0.91 0.25 11 0.93 0.26 10 0.97 0.20

Following the same approach as in the previous example, #LV s is selected by 5-fold

cross-validation as well as the value of lower bound for different competing algorithms

respectively. In addition to the correlation coefficient, the mean absolute error (MAE)

forms as another evaluating index, which is usually required by practitioners. In this study,

two sets of SAGD data are selected from two well-pairs in the same operation site to test

the prediction performance. The comparison results are illustrated in the following tables.

From these two tables, considering both correlation coefficient and mean absolute error,

the BDFR gives better performance, indicating the Bayesian dynamic features extraction

can generate more informative features from data. Also, BDFR provides similar numbers

of latent features in different data sets, which is promising to develop a general model

structure for different well-pairs rather than determining the structure for each well-pair.

Besides the quantified evaluation, the visual examination is a meaningful way to validate

the performance. In Figure 3.7 and Figure 3.8, the predicting results are compared with the

reference on the testing data sets, where BDFR can track the trend of the reference better

than other competing algorithms. Especially for the part of first 300 samples in Figure 3.7
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Figure 3.7: Validation Results for Modelling SAGD Data 1

and the part around 350 samples in Figure 3.8, both flow rate and water content can be

captured by BDFR model, while significant deviations are observed in PCR and SFR.

3.6 Conclusion

In this chapter, a new data-driven modelling approach for dynamic feature extraction is

developed. The observed process variables are assumed as a projection from the dynamic

latent features. Constraints and prior distributions of model parameters are implemented

to formulate a Bayesian probabilistic graphical model for feature extraction. Then the

estimation algorithm for the proposed graphical model is elaborated from the variational

Bayesian inference and importance sampling, which has utilized both historical data and

prior modelling preferences. One of the advantages in the Bayesian extraction framework

is to determine the dimension of latent space automatically. In this study, approximate

Bayesian inference provided a lower bound value for the marginal likelihood of observa-

tions, which is validated to be useful in model selection. Later, the prediction strength

of the extracted latent features is demonstrated with the simulated data, the benchmark

simulation, and two cases of industrial data.

These verification results state that, by formulating informative latent features, the pro-

posed Bayesian dynamic feature extraction and related estimation algorithm are applicable
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Figure 3.8: Validation Results for Modelling SAGD Data 1

for prediction applications such as inferential sensing in a SAGD related process. In the fu-

ture, the proposed Bayesian dynamic feature extraction can be extended with a supervised

learning strategy, which could extract features with specified dynamic properties. Besides,

the estimated feature velocities can be incorporated in the online prediction, which could

make the model more robust to the abnormal observations.
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Chapter 4

Bayesian Generalization of Markov
Transition Model ∗

When the dynamic latent feature is modelled with discrete variables, the transition function

is commonly formulated as the hidden Markov model (HMM). As a structural extension,

a dynamic model for the parameters of original discrete states, which represent the prob-

ability of discrete events, is considered this chapter. In order to formulate the transition

function for this constrained dynamic latent features, a new probabilistic model is devel-

oped by using either the Dirichlet distribution or the Beta distribution for the transition

noise. Properties of this new transition model have been discussed and compared with the

conventional state transition function. By incorporating a non-linear observation function,

a feature extraction model is proposed for extracting constrained dynamic features from

unconstrained observations. For the detailed inference procedure, two novel learning al-

gorithms are developed. To demonstrate the effectiveness of proposed algorithms and the

applicability of the proposed model, the validation part of this chapter has used numerical

examples, a benchmark simulation, and industrial data sets.

4.1 Introduction

Extracting informative features is a critical step in data analysis [10, 11]. Originally, feature

extraction mainly serves for image processing [13] to find specific objects. For example, in

geographical image processing, analyzers are designed to detect linear objects such as roads

and airport runways, or non-linear objects such as rivers and trails. While applied for general

latent variable models, its scope has been extended, and features are not necessarily related

to real objects. In the most celebrated latent variable extraction, principal component

∗A version of this chapter has been accepted as Ma, Yanjun, Shunyi Zhao, and Biao Huang. “Feature
Extraction of Constrained Dynamic Latent Variables.” by IEEE Transactions on Industrial Informatics
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analysis (PCA) [14], the features (or latent scores) are extracted to represent the variability

of multivariate observations. In the regression-oriented latent variable models such as partial

least squares (PLS) [15], the features are extracted to capture common variations in both

inputs and outputs. These methods formulate the latent features with specified preferences,

for example, pursuing larger variance in PCA and larger mutual correlation in PLS. Thus,

enrichment of modelling preferences and detailed descriptions of latent space will extend

application scope and amplify efficiency of the feature extraction model.

Feature extraction techniques have been widely used for modelling key quality variables

in process industries. Since accurate measurements of quality variables are usually obtained

in a time-consuming and slow-rate sampling manner, an on-line estimation solution is de-

sirable. It has the regression model to use related and reliable process variables for quality

variable estimation in real-time. As illustrated in Chapter 1, the emphasis on temporal cor-

relation between consecutive latent samples does contribute to process data analytics. On

the other hand, constraints commonly exist in practice [57, 58]. One motivation comes from

the commonly used position limits in industry, such as the saturation constraint in control

valves and boundaries for pressures in oil extractions well [16]. Given this, a forward step is

to investigate the case such that the latent features not only contain temporal correlation

but also are constrained within certain boundaries.

When formulating the constrained latent features, there are two approaches. One is

modelling with an encoding format s = g(x; θ), which projects unconstrained observation x

to the constrained latent feature s, where θ denotes parameters. The other is modelling with

a decoding format x = f(s; θ), where the latent features are generated within constraints.

In this study, the latter is selected based on the following considerations.

• Parameters of the encoding format are usually learned as deterministic values [59, 60]

and through extra trim algorithms [61]. To obtain consistent and robust results, the

number of training samples should be sufficient for asymptotic convergence.

• The decoding format allows the probabilistic and Bayesian interpretation for parame-

ter estimation [23]. More importantly, only desirable features are generated to improve

learning efficiency.

Following the decoding format, a new description of the constrained dynamic latent fea-

ture is proposed in this work, which is combined with a non-linear observation function for

latent variable modelling. A distinct characteristic of the proposed framework is that un-

certainties of features and parameters are considered jointly, where appropriate probability
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distributions can be used to increase robustness.

A good example of constrained latent features with the decoding format can be found at

the probabilistic PCA model [22], where each latent feature is restricted to be independent,

and the observation noises of each dimension are constrained to be independent. By incor-

porating these regulations, the latent features become capable of decorrelating multivariate

observations. For the dynamic model, besides, constraints have been imposed to form the

probabilistic slow feature model [47]. Specifically, the transition coefficient a and variance

σ2 in (2.4) are restricted to the following constraints:

a ∈ (0, 1), a2 + σ2 = 1. (4.1)

With constraint (4.1), the standard Normal distribution N (0, 1) will be a solution for the

stationary distribution of the transition model (2.4). Thus, the zero-mean and unit-variance

regulation in slow feature analysis [17] has been realized. More importantly, the constrained

parameter “a” ensures positive temporal correlation and illustrates the “slowness” math-

ematically, which has been elaborated in Chapter 3. Thus, the aforementioned feature

selection criterion, namely preference for smaller first order difference, can be materialized

through a prior distribution of “a” in the previous chapter.

Because of the low quality and auto-correlated behaviours of raw process data, con-

structing a latent dynamic model has become a favourable option for extracting informative

latent features. Other than the state space formulation in Chapter 3, the Markovian model

[35] has also been widely applied for the transition function of latent features. This model

describes the dynamic characteristics of discrete variables. However, the finite number of

possible values limits its general modelling strength. For example, each possible value of

the latent state st can only represent one possible transit mode. It reveals a switching

behaviour, where different modes cannot happen at the same time. However, there are

other cases where multiple models could contribute at the same time. In such cases, the

latent state should no longer represent an index for the possible model but represent a set

of probabilities for all possible models. It is another more important motivation for this

study, where the latent feature of the conventional hidden Markov model is generalized to

their possibilities.

4.2 Problem Statement

Instead of imposing a constraint on transition parameters, a constraint on the dynamic

features st is considered. By considering a constraint on the l1 norm for the positive latent
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states, the conventional hidden Markov model is extended hierarchically. By considering

boundaries for multiple latent features, robustness against significant deviations in raw ob-

servations can be achieved through the formulated constrained features. Consequently, in

this chapter, a new transition model is proposed to describe the constrained dynamic fea-

tures in a probabilistic way. Furthermore, we incorporate the proposed transition model into

a feature extraction model and learn the corresponding parameters through the variational

Bayesian inference.

The remainder of this paper is organized as follows. In the next section, a mathematical

formulation for the constrained dynamic features is described through the comparison with

its unconstrained counterpart, and the proposed model for feature extraction is also intro-

duced. Following that, a probabilistic inference method is elaborated for the model fitting

task, where particle methods are integrated within the variational Bayesian inference [39]

to realize the dynamic features in the constrained domain. In the simulation and validation

section, the proposed learning algorithm and the feature extraction model are validated

through numerical examples, benchmark simulations, and an industrial case study.

4.3 Probabilistic Formulation

In this section, the probabilistic framework of the proposed feature extraction model for

dynamic latent features will be provided. First, two approaches to consider the constrained

dynamic latent feature are discussed along with constructing their transition functions.

Following that, one possible observation function is presented with a non-linear form. The

feature extraction model is then finalized.

4.3.1 Apply Dirichlet Distribution for Hierarchical Hidden Markov Model

In hidden Markov model, a transition matrix is usually used to model the transition be-

haviour, such as reviewed in Chapter 2. For example, if we redefine the discrete latent state

as qt, it transition behaviour is modelled with:

Pr(qt = i | qt−1 = j) = ai,j , ∀ i, j ∈ {1, ..., d}, (4.2)

where Pr stands for a probability, and the transition matrix Ad×d = [ai,j ]i,j = 1, ..., d is the

transition parameters. While parametrising the latent state qt by its probabilities on each

possible value, a continuous and constrained latent state st can be formed as

Pr(qt = i | st) = s
(i)
t , ∀ i ∈ {1, ..., d}, (4.3)
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where : s
(i)
t ≥ 0, ∀ i ∈ {1, ..., d}, (4.4)

‖st‖1 =

d∑
i=1

|s(i)
t | =

d∑
i=1

s
(i)
t = 1. (4.5)

Regarding such continuous latent variable as a column random vector, the transition func-

tion in (4.2) is translated as

s
(i)
t =

d∑
j=1

Pr(qt = i | qt−1 = j) Pr(qt−1 = j | st−1) =
d∑
j=1

ai,j s
(j)
t−1 = Ai,: · st−1,

⇒ st = A · st−1. (4.6)

In above transition function (4.6), the A is the only transition parameter. Comparing to the

transition function for general continuous states, such as in (2.6), it lacks a parameter for

the uncertainty, such as the covariance parameter Q. While the latent state st, instead of qt,

is directly involved in the observation function, the above transition function (4.6) limited

the modelling strength by not considering the stochastic property of the latent features.

Therefore, a novel transition function is developed for the latent state st, which representing

the probability vector for the latent state in the conventional hidden Markov model. An

illustration of such extending proposal is shown in Figure 4.1, where the connection of blue

dots arrow will be presented.

Figure 4.1: Extending Hidden Markov Model with Constrained Dynamic Latent Feature

From (2.4), we can state either that the transition noise is sampled from a zero-mean

distribution or that st is distributed around the expected location a · st−1. To ensure that
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St satisfies the constraints in (4.4) and (4.5) at any given time t, Dirichlet distribution is

introduced to replace the Normal distribution. The d dimensional Dirichlet distribution is

defined as

Dir(x; α) = Γ{
d∑
i=1

αi}
d∏
i=1

[x(i)]αi−1

Γ{αi}
, (4.7)

where Γ{·} is the Gamma function. This distribution makes the mean of each dimension

distributed around E[x(i)] = αi/
∑
αi. Dirichlet distribution is utilized because it has the

same support as the proposed states in (4.4) and (4.5). Following the conventional design

of HMM, the transition equation (4.6) is used to model the expected position E[St]. In

addition, a precision variable ρ is introduced to make a stochastic transition function. The

proposed process then has the transition probability as

p(St | St−1) = Dir(St; ρ ·A · st−1). (4.8)

The precision parameter ρ is a positive value determining how st distributes around the

centre of A · st−1. Comparing to the transition model designed in the previous Chapter 3,

the transition matrix A can also be limited with one degree of freedom, such as

Ai,i = a, a ∈ (0, 1), ∀ i ∈ 1...d,

Ai,j =
1− a
d− 1

, ∀ i 6= j. (4.9)

Thus, the inertia represented by this stochastic process can be uniquely determined by the

coefficient a. Besides that, the learning procedure for a single scaler a requires much less

excitation than inferencing a complete transition matrix A.

This transition function has generalized the hidden Markov transition model by intro-

ducing the stochastic uncertainty for the probability vector of each mode. However, on

the other hand, it also contains the dependency in the latent space. It means each latent

dimension is not independent of each other: S
(i)
1:T 6⊥ S

(j)
1:T , which could result with difficult in

modelling the observations. Also, when it comes to high latent dimension cases, the effect of

constraints becomes trivial for the feature dynamics. Thus, in the following content, above

constrains (4.4) and (4.5) are applied to d = 2 case. Actually, for this case, the degree of

freedom is one: S
(2)
t = 1−S(1)

t , and the latent feature can be treated as in the single latent

dimension.

4.3.2 Transition Model Design with Beta distribution

In this part, the single dimensional dynamic feature s1:T with constraint st ∈ (0, 1), 1 6 t 6

T , is formulated from the probabilistic perspective. As can be seen, the primary constraint
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is selected as

st ∈ (0, 1). (4.10)

Other specified ranges can be regarded as linear projections from this primary range of

(0, 1). To this end, the Beta distribution [62] is used to model the transition probability

p(st|st−1), and two transition parameters, coefficient a and precision ρ, are used to govern

the dynamic behaviours.

To ensure that st satisfies the constraint (4.10) at any given time t, Beta distribution is

introduced to model the transition probability:

p(st | st−1) = Beta(st; αt, βt) =
(st)

αt−1(1− st)βt−1

B{αt, βt}
, (4.11)

where αt > 0, βt > 0, and B{·} is the Beta function [62]. By interpreting αt and βt with

s
(c)
t and ρ, we can rewrite (4.11) as

p(st | st−1) = Beta(st | ρ s(c)
t︸ ︷︷ ︸

αt

, ρ (1− s(c)
t )︸ ︷︷ ︸

βt

) , (4.12)

where s
(c)
t = αt

αt+βt
denotes the expected location of (4.11), and ρ = αt + βt is considered

as the precision of (4.11). Using the property of Beta distribution, the variance of (4.12) is

computed:

Var [st | st−1] =
s

(c)
t (1− s(c)

t )

ρ+ 1
. (4.13)

By adopting (4.9), the function for s
(c)
t can be formulated as[

s
(c)
t

1− s(c)
t

]
=

[
a (1− a)

(1− a) a

] [
st−1

1− st−1

]
, (4.14)

where a ∈ (0, 1). The expected position s
(c)
t can thus preserve the same constraint, i.e.,

s
(c)
t ∈ (0, 1). Similar to the conventional models, in the proposed transition model, the

expected location is positively correlated with st−1, and the variance is negatively correlated

with ρ.

With the transition equation (4.12), the feature will arrive at a stationary state has

given sufficient time, and information of the initial s0 will gradually vanish because of the

stabilizing coefficient a. After the arrival at the stationary state, statistical measures can

be determined uniquely by a and ρ. In order to demonstrate these, several simulations are

conducted with different parameters. Intuitively, the coefficient a determines the memory
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strength of a dynamic feature. In Figure 4.2, the estimated time to the stationary stage

is plotted for different a, where the precision ρ is neglected because of no contribution of

it on average. As expected, the memory strength (the amount of time to forget s0) is

proportional to coefficient a: the larger the parameter a, the stronger the memory is. Also,

individual runs from three specific a’s are plotted in sub-figures, where the mean trends of

them are in black. With this figure, a range of the underlying a can be selected based on

the preferred transition behaviour.

Figure 4.2: Transition Properties of Constrained Dynamic Features

At the stationary stage, the standard deviation (STD)
√

Var [st→∞] and the expected

velocity (mean squared first order difference) E‖st − st−1‖2 are studied to represent the

variance level and the inertia level accordingly. Similar as in the aforementioned simulations,

the averaged statistics are plotted in Figure 4.3. With the increase of precision ρ, both STD

and velocity show a decreasing trend. This point can be interpreted by the fact that a less

noisy transition model (4.12) gives smaller stationary variance and larger inertia. With the

increase of coefficient a, on the other hand, STD shows an increasing trend, indicating that

a stronger memory can distribute s1:T in a wider range. Because a larger a introduces larger

inertia, a decreasing trend can be observed in the velocity curve. To visualize these statistics

more clearly, two nominal features (one is from the uniform distribution on [0.25, 0.75], and

the other is the sinusoidal signal) are also plotted in Figure 4.3. As can be seen, a range of

the underlying parameters can be selected roughly in advance, by comparing an observed

feature with stationary behaviours shown in the sub-figures of Figure 4.3.
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Figure 4.3: Stationary Properties of Constrained Dynamic Features
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4.3.3 Emission Model Design

Based on the proposed transition model (4.12) and (4.14), the stochastic feature retains the

ability to cover the constrained domain (0, 1). While applied in latent variable modelling,

this constrained domain shall be projected to the general unconstrained observation space

(−∞,+∞). The emission function considered in this paper is formulated as

Xt = b+H · lnSt + vt, (4.15)

where the latent feature is introduced as multiple constrained dynamic features St =

[s
(1)
t , ..., s

(d)
t ]′, and the observed data sample Xt has dimension m. The logarithm operator

is applied on each element to project (0, 1) to (−∞, 0). Together with matrix H and bias

b, the latent space is connected with the unconstrained observation space. Corresponding

uncertainty is introduced by the noise term vt ∼ N (0, R).

Comparing (4.15) with the encoding feature learning cell with logistic function [11, 59]:

st =
ext

1 + ext
⇔ xt = ln st − ln(1− st),

a difference is that ln(1− st) is neglected. In latent variable models, since the dimension of

latent features, d, is determined from data, both st and (1−st) can be potentially extracted

by the learning procedure. Besides that, the element Hij of emission matrix determines the

direction from latent dimension j to observation dimension i. By extracting multiple latent

features and learning the latent dimension d from data, our proposed emission model (4.15)

shares the similar modelling scope as this widely applied encoding function.

4.3.4 Prior Distributions

Now, the feature extraction model considered in this paper has been formulated as fol-

lowing: Equation (4.12) gives the linear but non-Gaussian transition model, and Equation

(4.15) denotes the non-linear emission model. To perform parameter estimation and feature

learning, the Bayesian inference approach is adopted. To this end, prior distributions of the

parameters in (4.15) are assigned for automatic relevance determination [36]:

p(b | Σb) = N (b; 0,Σb), (4.16)

p(H | Σh) = p([h1, ..., rm]′ | Σh) =

m∏
j=1

N (hj ; 0,Σh), (4.17)

p(R | αr, βr) = p(diag{r−1
1 , ..., r−1

m } | αr, βr) =
m∏
j=1

G(rj ; αr, βr). (4.18)
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Here, similar to the probabilistic PCA [22], the noise in each observation dimension is

assumed to be independent, making the covariance R a diagonal matrix specified in (4.18)

with Gamma distribution G(·). The hyper-parameters, matrices Σb and Σh, as well as αr

and βr are given as the prior information.

Figure 4.4: Proposed Bayesian design for constrained dynamic feature extraction

Since the multiple latent features are expected to be independent of each other, the

parameters of transition model (4.12) and (4.14) can be presented as diagonal matrices

A = diag{a1, ..., ad} and Λ = diag{ρ1, ..., ρd}. To cover all the corresponding support

domain, the Beta distribution and the Gamma distribution are selected as the prior of the

transition coefficients and precision parameters, respectively; as for the initial latent state,

the uniform distribution U (0, 1) is used to cover its support domain (0, 1):

p(A | αa, βa) =

d∏
i=1

Beta(ai; αa, βa), (4.19)

p(Λ | αρ, βρ) =
d∏
i=1

G(ρi; αρ, βρ), (4.20)

p(S1) =
d∏
i=1

U (S
(i)
1 ; 0, 1). (4.21)

According to Figure 4.2 and Figure 4.3, the hyper-parameters, αa, βa, αρ, and βρ, can

be selected to represent preferred ranges of a and ρ. With these prior distributions, a

probabilistic graphical model of the problem considered is shown in Figure 4.4, from which

the complete joint probability distribution between observations and all random variables,
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P ≡ p(X1:T , S1:T , A,Λ, b,H,R), can be written as

P =

T∏
t=1

p(Xt | St, b,H,R) · p(b) · p(H) · p(R)

·
T∏
t=2

p(St | St−1, A,Λ) · p(S1) · p(A) · p(Λ). (4.22)

4.4 Variational Inference Methods

In this section, we adopt the variational Bayesian inference (VB) approach [39] to approx-

imate the posterior distribution of the parameters and dynamic latent features. A general

introduction of this approach can be found in Chapter 2. In Figure 4.4, these variables have

been grouped into three sets based on their probabilistic dependencies, thus the proposal

distribution is factorized as

q(S1:T ) · q(A,Λ) · q(H, b,R)

→ p(S1:T , A,Λ, b,H,R | X1:T ), (4.23)

where latent features S1:T form their own group, A and Λ form a second group, and the

emission parameters form the last one. This “mean field” approximation implements the

independence among groups to facilitate the learning procedure [39]. In addition, this fac-

torization for dynamic latent features can make q(A,Λ) a compact result to make pre-

dictions on new data. Mathematically, the approximation (4.23) is usually evaluated

by the Kullback-Leibler divergence DKL[q||p] for tractability. The variational Bayesian

Expectation-Maximization strategy [39] is then applied to update q(S1:T ), q(A,Λ), and

q(H, b,R) by minimizing this divergence. For example, the updating equation for q(H, b,R)

is presented as

min
q(H,b,R)

DKL [q(H, b,R)q(A,Λ)q(s1:T ) ‖ p(s1:T , A,Λ, H, b, R | x1:T )]

⇔ max
q(H,b,R)

∫
qH,b,R

∫
qA,Λ

∫
qS1:T

ln
p(X1:T , S1:T , A,Λ, b,H,R)

q(H, b,R) q(A,Λ) q(S1:T )

⇔ max
q(H,b,R)

∫
qH,b,R

[
Eq(A,Λ)q(S1:T ) lnP − ln q(H, b,R)

]
⇔ min

q(H,b,R)
DKL

[
q(H, b,R) ‖ c · eEq(A,Λ)q(S1:T ) lnP

]
. (4.24)

The first equivalence in above derivations uses the Bayes’ rule as well as the fact that the

evidence probability p(X1:T ) is irrelevant with these proposal distributions [23]. The second

equivalence is based on the fact that q(S1:T ) and q(A,Λ) stay constant in this step. With
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re-organization of the third equivalence, the optimal solution can be obtained by minimizing

this step-wise DKL[q||p] in the last row:

ln q∗(H, b,R) = Eq(s1:T )q(A,Λ) lnP + const.. (4.25)

Other updating equations will be formulated similarly, and an overall diagram for the

proposed learning algorithm is summarized in Figure 4.5. For the initialization procedure,

three components are realized sequentially to start the iterative updating. It will ensure that

only desirable latent features will be utilized; also, with such initialized emission parameters,

the following estimation for latent features will not result with most near-boundary samples.

Since the transition parameters and emission parameters are not dependent on each other,

the corresponding updating can be performed in parallel. With the proposed constrained

features, technical challenges appear when formulating q∗(s1:T ) and q∗(A,Λ), which will be

illustrated in details.

Figure 4.5: Learning Algorithm for the Proposed Feature Extraction Model
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4.4.1 Estimate Latent Features with Revised Particle Smoother

Estimating the proposal distribution for a hidden Markovian sequence q(s1:T ) usually shares

the same objective as the smoothing task for p(s1:T | x1:T ). However, in the VB framework,

this estimation interacts with the other proposal distributions:

ln q∗(S1:T ) = Eq(H,b,R)q(A,Λ) lnP + const.

= Eq(H,b,R)q(A,Λ) ln p(S1:T | X1:T , A,Λ, H, b, R) + const′.

=
T∑
t=2

Eq(A,Λ) ln p(St | St−1, A,Λ) + ln p(S1)

+
T∑
t=1

Eq(H,b,R) ln p(Xt | St, H, b, R) + const′.. (4.26)

In unconstrained case, the linear transition model (2.5) propagates the Normal distribu-

tion from St−1 to St, and the linear emission function retains the Normal distribution for

the posterior p(St | X1:T ). Therefore, q(S1:T ) can be parametrised with their mean and

covariance, which will be updated explicitly through forward and backward algorithms. In

this study, however, the proposed transition model (4.12) does not preserve above features

because of the non-conjugate connections. To solve this problem, particle based approaches

are adopted.

Generally, the particle state estimation consists of two basic mechanisms, sampling and

weighing [40]. To simplify the statistical expectation in terms of q(H, b,R), a nominal X̃t

is introduced to replace a part of (4.26):

ln p(X̃t | St) = Eq(H,b,R) ln p(Xt | St, H, b, R). (4.27)

By using X̃t to represent the sufficient information of q(H, b,R) (without any approxima-

tion), the weighing procedure of generated particles can be realized in the conventional

way.

The emission function contributes to the updating of q(S1:T ) through the following

function:

Eq(H,b,R)
ln p(Xt | St, H, b, R) =− 1

2
tr{〈H ′R−1H〉 lnSt lnS′t}

+ 〈(xt − b)′R−1H〉 lnSt −
1

2
〈(Xt − b)′R−1(Xt − b)〉, (4.28)

where involved statistics, 〈H ′R−1H〉, 〈b′ R−1H〉, 〈R−1H〉, 〈b′ R−1b〉, 〈b′ R−1〉, and 〈R−1〉

can be obtained from above derivations.
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As for the other part of (4.26), the expected diagonal elements of A and Λ are used to

approximate the expectation in terms of q(A,Λ):

ln p̃(St | St−1) =
∑d

i=1 ln p(S
(i)
t | S

(i)
t−1, 〈ai〉, 〈ρi〉)

≈ Eq(A,Λ) ln p(St | St−1, A,Λ). (4.29)

Thus, 〈ai〉 and 〈ρi〉 can be used as deterministic values to generate and propagate particles.

We will illustrate these two statistics within the updating procedure of q(A,Λ) shortly.

Besides (4.27) and (4.29), a new strategy is proposed for state representation. Instead of

completely relying on particles and their weights to describe latent states[40], intermediate

state distributions are fitted to represent the particles. Specifically, after assigning weights

at each time instant, the traditional re-sampling procedure is replaced by a procedure of

fitting an intermediate distribution. By doing this, extreme particle weights can be avoided,

and more importantly, the backward propagation can be simplified considerably.

Accordingly, the following intermediate distributions are proposed: the (one-step) pre-

dicted distribution q(St|X1:t−1) and the filtered distribution q(St|X1:t) are approximated

with Beta distribution in forward path; as well as q(St|X1:T ) in backward path, accord-

ingly:

q(St | X1:t−1) ≈
d∏
i=1

Beta
(
S

(i)
t | [α

(p)
t ](i), [β

(p)
t ](i)

)
,

q(St | X1:t) ≈
d∏
i=1

Beta
(
S

(i)
t | [α

(f)
t ](i), [β

(f)
t ](i)

)
,

q(St | X1:T ) ≈
d∏
i=1

Beta
(
S

(i)
t | [α

(s)
t ](i), [β

(s)
t ](i)

)
.

The above usage of the Beta distribution is motivated from its support domain [0, 1] as well

as its ability to capture the uni-mode distribution. Based on the transition model (4.12),

for each single dimensional feature s1:T , if q(st−1) can be formed as a uni-mode distribution,

q(st) will preserve this mode due to transition behaviour:

s
(mode)
t | st−1 = arg max

∫
st−1

p(st|st−1)p(st−1)

= (2a− 1) s
(mode)
t−1 + 1− a. (4.30)

Assuming the predicted distribution p(st | X1:t−1) as a uni-mode distribution and has

been approximated by Beta(st | α(p)
t , β

(p)
t ). The observation function is simplified from

(4.28) to the one dimension case. The filtered distribution is then presented as

ln p(st | x1:t) = ln p(st | X1:t−1) + ln p(Xt | st)
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≈ −k1

2
(ln st)

2 + k2 ln st + (α
(p)
t − 1) ln st + (β

(p)
t − 1)(1− ln st), (4.31)

where k1(> 0) and k2 are generalized from (4.28). As long as β
(p)
t > 1, the first order

derivative of (4.31) will be monotonously decreasing and will have only one feasible root,

which leads p(st | X1:t) to be the uni-mode distribution. Thus, with parameters α and β

fitted accurately, for example by the algorithm from [62], Beta distribution can represent

those weighted particles within (0, 1) reasonably well.

Based on above modifications for adopting particle state estimation under the VB frame-

work, the learning procedure for q(S1:T ) can now be formulated as a standard forward-

backward algorithm. In the following, i-th latent dimension is denoted with superscript

“(i)”, and k-th individual particle is denoted by “[k]”. The prediction step consists of sam-

pling particles for St−1, propagating them to St, and estimating intermediate parameters:

S
(i)
t−1[k] ∼ Beta([α

(f)
t ](i), [β

(f)
t ](i)), ∀ k = 1, ..., N,

S
(i)
t [k] ∼ p̃(st | s(i)

t−1(k)), ∀ k = 1, ..., N,

[α
(p)
t ](i), [β

(p)
t ](i)

Fit←− {S(i)
t [1, ..., N ]}, ∀ i = 1, ..., d. (4.32)

Note that p̃ is introduced in (4.29), where 〈ai〉 and 〈ρi〉 are involved. In the correction step,

weights are provided to these samples by considering all d dimensions, and individual Beta

distributions are then estimated for each latent dimension:

wt[k] ∝ p(X̃t | St[k]), ∀ k = 1, ..., N,

[α
(f)
t ](i), [β

(f)
t ](i)

Fit←− {s(i)
t [1, ..., N ], wt[1, ..., N ]}, ∀ i = 1, ..., d. (4.33)

One typical advantage of introducing these intermediate Beta distributions is to simplify

the backward propagation (or smoothing) step. In the conventional particle smoothers, the

updating equation for p(St | X1:T ) is computational intense, where two sampling steps are

required [40]. In the proposed method, the smoothing step becomes more explicit with the

imposed Beta distribution:

p(St | X1:T ) = p(St | X1:t)

∫
p(St+1 | St) p(St+1 | X1:T )

p(St+1 | X1:t)
dSt+1

≈ p(St | X1:t) E
q(St+1|α(s)

t+1,β
(s)
t+1)

[
p(St+1 | St)

q(St+1 | α(p)
t+1, β

(p)
t+1)

]
. (4.34)

At each time step, since {α(s)
t+1, β

(s)
t+1} and {α(p)

t+1, β
(p)
t+1} are available, only one sampling and

one weighing are required to compute (4.34) with particles, which is specified by

Ŝ
(i)
t [k] ∼ Beta([α

(f)
t ](i), [β

(f)
t ](i)), ∀ k = 1, ..., N, ∀ i = 1, ..., d, (4.35)
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ŵt[k] ∝ E
q(St+1|α(s)

t+1,β
(s)
t+1)

[
p(St+1 | Ŝt[k])

q(St+1 | α(p)
t+1, β

(p)
t+1)

]
, ∀ k = 1, ..., N, (4.36)

[α
(s)
t ](i), [β

(s)
t ](i)

Fit←− {ŝ(i)
t [1, ..., N ], ŵt[1, ..., N ]}, ∀ i = 1, ..., d. (4.37)

Since this sampling and weighing only depend on the adjacent feature states, its computa-

tional efficiency can be further improved by parallel computing among latent dimensions. A

flow diagram shown in Figure 4.6 summarizes the proposed algorithm for feature estimation.

Figure 4.6: Updating Latent Feature with Particle Based State Estimation

4.4.2 Estimate Transition Parameters with Revised Importance Sam-
pling

Since each latent feature S
(i)
1:T is modelled as independent random variables, the correspond-

ing updating procedure of transition parameter a(i) and ρ(i) can be derived individually.

Based on the probability dependency in Figure 4.4, the updating equation is simplified to

ln q∗(a(i), ρ(i)) = Eq(H,b,R)q(S1:T ) lnP + const.

= Eq(S1:T ) ln p(S
(i)
1:T | a

(i), ρ(i)) + ln p(a(i), ρ(i)) + const′., (4.38)

where const. and const′. are normalizing constants. In the following, the superscript related

to the latent dimension is omitted, and the single dimensional feature s1:T is investigated

for simplicity. Since the updated q∗(a, ρ) will only be utilized for calculating 〈a〉 and 〈ρ〉 as

in the previous discussions, this section will focus on deriving the representative estimates

for these two statistics.
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First, the log-likelihood of s1:T in (4.38) can be factorized as

ln p(s1:T | a, ρ) = ln p(s1) +
T∑
t=2

ln p(st | st−1, a, ρ).

To investigate the likelihood on transition parameters, the logarithm of conditional proba-

bility distribution between consecutive states is expended as

ln p(st | st−1, a, ρ) =− ln Γ{ρ(2a− 1)st−1 + ρ(1− a)}

− ln Γ{ρa− ρ(2a− 1)st−1}+ ρ(2a− 1) st−1 ln
st

1− st
+ [ρ− ρa− 1] ln st + [ρa− 1] ln(1− st) + ln Γ{ρ}. (4.39)

With the objective function defined as Q(a, ρ), the gradients of a and ρ are derived as

follows for Maximum a Posterior estimation:

∂Q

∂a
=ρ ·

T∑
t=2

(2〈st−1〉 − 1) [ln〈st〉 − ψ{ρ〈ct〉}]

+ (1− 2〈st−1〉) [ln(1− 〈st〉)− ψ{ρ(1− 〈ct〉)}]

+ (αa − 1)/a− (βa − 1)/(1− a), (4.40)

∂Q

∂ρ
=

T∑
t=2

〈ct〉 · ln〈st〉+ (1− 〈ct〉) · ln(1− 〈st〉)

− 〈ct〉 · ψ{ρ〈ct〉} − (1− 〈ct〉) · ψ{ρ(1− 〈ct〉)}

+ (1− αρ)/ρ+ βρ/ρ
2, (4.41)

where 〈ct〉 = (2a− 1)〈st−1〉+ 1− a and ψ{·} is the Di-gamma function.

The expansion of ln p(st | st−1, a, ρ) is provided in Equation (4.39). In the VB frame-

work, joint terms about two consecutive latent states, st and st−1, should be evaluated from

q(s1:T ). In the linear and unconstrained case, the joint distribution q(st, st+1) can be derived

for corresponding statistical expectations. As for the constrained case, the expectation of

above log-likelihood is approximated as

Eq(s1:T ) ln p(s1:T | a, ρ) ≈ ln p(〈s1:T 〉 | a, ρ) ≡ Q(a, ρ), (4.42)

where 〈·〉 stands for expected value from q(s1:T | α(s)
1:T , β

(s)
1:T ). The main rationale for this

approximation consists of two aspects. First, since the intermediate distributions have

been developed for q(s1:T ), the joint distribution q(st, st+1) should also be used. How-

ever, as being presented by (4.39), complicated consecutive terms, such as st−1 ln st and

ln Γ [ρ(2a− 1)st−1 + ρ(1− a)], prevent an explicit integration. Second, the theoretically
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compact method, sampling whole sequences from q(s1:T ), is inefficient for the long and

multivariate sequence, where the sampled sequences can be easily distorted. Instead, with

correct parameters for intermediate state distribution, the expected sequence 〈s1:T 〉 would

be representative. Thus, above approximation is considered as an effective and efficient way

to represent the latent sequence for updating the transition parameters.
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Figure 4.7: Log-Likelihood Function for a and ρ

To estimate 〈a〉 and 〈ρ〉 from (4.42), a preliminary solution can be provided through

Maximum-a-Posterior estimation. With the detailed equation for ln p(s1:T |a, ρ), it can be

easily proved to be a differentiable and concave function, which is illustrated in Figure 4.7

as an example. The objective function, as a combination of Q(a, ρ) and the logarithm of

prior distributions (4.19) and (4.20), is still a differentiable and concave function. There-

fore, a global optimum can be obtained through gradient-based optimization methods. The

required derivatives are provided in (4.40) and (4.41). As for the proposed variational infer-

ence approach, we use a modified importance sampling method to estimate the distribution

q(a) and q(ρ).

Basic importance sampling method [63] can be applied to generate samples from the

prior distribution and assign weights according to likelihood. However, for the two dimen-

sional weighing function shaped as in Figure 4.7, it is not efficient to calculate the weight

76



for each ρ(j) through the conventional marginalization method:

w(j)
ρ =

Na∑
i=1

Q(a(i), ρ(j)), (4.43)

where Na is the total number of particles associated with each ρ(j). The main reason is that

weighing function ln p(〈s1:T 〉|a, ρ) can vary in a very large range for a given ρ. See the case

with ρ(j) = 15 in Figure 4.7. The result from (4.43) will be almost completely determined

by the area with lower (log-)likelihood. Thus, the high likelihood area, the yellow part in

Figure 4.7, will be less represented. To develop a more meaningful estimate of 〈ρ〉, the

maximization operation is utilized as another marginalising method, resulting in

w(j)
ρ = max

i=1...Na
Q(a(i), ρ(j)) . (4.44)

Graphically, the highest ridge of each direction in Figure 4.7 is selected as the marginal-

ized distribution. Thus, the “meaningful” (with higher weight) area will no longer be

concealed by the “meaningless” area and will receive more attention after marginalization.

Based on the marginalized weights, a Gamma distribution is fitted to summarize Nρ number

of particles ρ(1:Nρ) and their weights w
(1:Nρ)
ρ , and a Beta distribution is obtained from a(1:Na)

and w
(1:Na)
a . Corresponding 〈a〉 and 〈ρ〉 can then be determined as expectation values from

the fitted distributions.

4.5 Simulations

This section provides validation of the proposed designs from three aspects. First, a sim-

ulated example is designed to validate the proposed estimation algorithm, illustrating the

learning ability for latent feature and model parameters. Then, a practical feature extrac-

tion procedure is established and applied to a benchmark dataset for regression task on time

series data. At last, an application to industrial data is performed to validate the usefulness

of the proposed feature extraction model.

4.5.1 Numerical Examples

To validate proposed estimation algorithms, constrained latent features and observations

are simulated with given transition model (4.12) and emission model (4.15). For instant,

3-dimension latent features with 5-dimension observations are generated for 100 samples.

To test the core part of the proposed learning algorithm as shown in Figure 4.5, the

estimate of latent feature q(s1:T ) is compared first with actual model parameters. One
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Figure 4.8: Estimation of Constrained Dynamic Latent Features with Model

example of the estimated results is presented in Figure 4.8, where the three features possess

distinct transition parameters: [a1 = 0.99, ρ1 = 300], [a2 = 0.95, ρ2 = 100], and [a3 =

0.9, ρ3 = 20]. It can be observed that for these different latent dynamics, all the estimated

features (blue curves) are able to capture the corresponding real value (red curves). Also the

estimated bounds (based on the standard deviation of fitted Beta distribution) can cover

most of values.

Next, the proposed updating procedure for transition parameters q(a, ρ) is verified. In

particular, the proposed modification on importance sampling (4.44) is compared with basic

importance sampling, where the target feature s1:T is generated with the real transition

parameters. In Figure 4.9, the two updated distributions for a and ρ are plotted along with

their real values and the utilized prior distributions. The numbers in legend boxes represent

the corresponding estimates of 〈a〉 and 〈ρ〉. It can be observed that the maximization based

marginalization (pos-max) can capture the real parameter value from the relatively trivial

prior for both the coefficient a and the precision ρ. In the top plot for the probability

density function p(a), the result of the conventional marginalizing method (pos-sum) is

roughly distributed around the real value (the red dot). Although its statistic 〈a〉 captured

the real value accurately, it can be seen that the shape of the marginalized distribution is

skewed. As for the result from “pos-max”, the shape of the density function is well balanced,
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Figure 4.9: Estimation of Transition Parameters for Constrained Dynamic Feature

and a more narrow bell-shape is given to bring the maximum point closer to the real value.

In the bottom plot for the probability density function p(ρ), it is clear that “pos-sum” is

failed in estimating the precision parameter ρ. Whereas, “pos-max” has demonstrated its

strength. Furthermore, the Monte Carlo tests (20 runs for each) are performed for multiple

ρ’s and the fixed a = 0.995. Table 4.1 compares the mean and standard deviation from

these two marginalization methods. Based on these, the effectiveness of proposed method

(4.44) has been validated.

Table 4.1: Validation Results of Estimating Precision Parameter

ρ∗ 100 300 500 700 900

〈ρ〉sum 18±7.9 59±22 95.7±38 134±49 176±77

〈ρ〉max 101±3.9 302±20 511±24 702±32 904±41

Based on above verifications, the complete learning algorithm in Figure 4.5 can now be

performed to extract the latent features and learn the parameters simultaneously. Other

than aforementioned three sets of transition parameters, the observation noise is simulated

with R = diag{10, 10, 50, 50, 400}. As for the proposed VB inference algorithm, the hyper-

parameters are selected as {αa = 9, βa = 1, αρ = 1, βρ = 10−3,Σb = 10−8,Σh = 10−4, αr =

0.1, βr = 0.1} for a non-informative prior, and the initial values are randomized as in
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Figure 4.10: Estimation of Constrained Dynamic Latent Features without Model

Figure 4.5. Because of the inherit stochastic properties, the results of individual simulations

could be different.

In Figure 4.10, the extracted dynamic latent features from three sampled individual

runs are plotted. In this figure, the real features are simulated by the proposed transition

model (4.12). “run-1”, “run-2”, and “run-3” are converged learning results with the afore-

mentioned hyper-parameter set. It can be observed that the differences among individual

realizations are not significant, indicating a numerically consistent learning procedure from

fully random initial values. Specifically, the second latent feature, which possesses signifi-

cant variations and has a certain level process inertia, has been well captured. Other than

Figure 4.10, one additional visualization of extracted dynamic latent feature is shown in

Figure 4.11. In this figure, the state estimation result, with the actual model parameter

θ∗ in simulating, is also plotted. These state estimation results have close accordance with

real features. Similarly, the significant variations of “State-2” are captured with more ac-

curacy. However, the third feature, which has the smallest auto-correlation coefficient a3

and the smallest precision ρ3, cannot be captured accurately for the given hyper-parameter

set, especially for the part around t = 160. The main reason for this deviation is that the

estimated â3 is not as small as the given one, where the fast fluctuations are not distin-

guished from observation noise. Another particular deviation is at the part around t = 280
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Figure 4.11: Estimation of Emission Matrix for Constrained Dynamic Feature
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in the top plot. Roughly speaking, this peak shares similar shape as the concurrent part

in “State-3”. It reveals the lacking of mutual independence in the latent space. In the

following application section, this shortness will be overcome by iterative feature extraction

procedure.

Figure 4.12: Example-1 Estimation of Emission Matrix for Constrained Dynamic Feature

In addition to the learned features, the estimated emission matrix is also compared with

the real emission matrix H. For a better illustration, two examples are considered. The

first one contains only positive entries, which has been plotted in Figure 4.12. In this plot,

two axes denote the position in matrix H, and the vertical axis shows the value of this

element. It can be observed that the bars with same colour share a similar shape. In other

words, the relative sizes of elements in each column H:,j in H have been captured correctly.

On the other hand, for different latent dimension, the strength of emission magnitude is

not learned well. That is, while the yellow bar is lower than the green bar for the real case,

the estimated yellow bar is higher than the green one.

The second one contains both positive coefficients and negative coefficients and has

been plotted in Figure 4.13. We can observe that for the first two slowest features, the

significant emission weights, such as H2,1, H4,1, and H4,2, are identified correctly. Based

on this, the proposed algorithm has shown abilities to extract constrained latent features

and learn correct parameters for the features with significant inertia. However, due to the

insufficient excitation of short observation sequences, some estimated parameters, typically

for the features with small inertia, have distance from corresponding real ones. Besides, the

estimated features still have certain correlations. In order to overcome such drawbacks, the

proposed approach will be applied to extract the latent features iteratively.
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Figure 4.13: Example-2 Estimation of Emission Matrix for Constrained Dynamic Feature

4.5.2 Process Data Examples

In this section, the proposed feature extraction model is applied to process data. Since

there are no real reference features to compare with (as in most practical cases), the ap-

plicability of the proposed feature extraction model will be verified through the regression

tasks. As stated in the introduction section, the latent features are extracted for inferential

sensor modelling and used as regressors to predict the quality variable. In this application,

the constrained dynamic latent features are extracted iteratively to avoid possible mutual

correlation. More specifically, one single dimensional feature will be extracted at one time;

after convergence, the extracted component 〈H:,j〉 · ln〈s(j)
1:T 〉 will be removed, leaving the

’residual’ for the next feature extraction. Following the general feature extraction proce-

dure, this iterative learning can be stopped according to either unsupervised criteria such as

the level of estimation noise [23] or supervised criteria such as the correlation with training

outputs [47]. To extract the latent features on testing data with the estimated model, the

revised particle filter based on (4.32) and (4.33) is utilized.

The first validation is on the benchmark simulation of the Tennessee Eastman Process.

In this problem, 33 variables are used as inputs to predict the concentration of chemical

components [2]. Similar to the description in the introduction section, the training outputs

are down-sampled by ten sampling units to mimic real inferential sensing application, where

the outputs are typically sampled much more slowly than the inputs. Widely applied fea-

ture extraction based regression models, including principal components based regression

(PCR), slow features based regression (SFR), and partial least squares (PLS), are used for

comparison, while the multivariate linear regression (MLR) is selected as a baseline. The

prediction performance on the testing data is evaluated by two statistics: (Pearson) Corre-
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Figure 4.14: Prediction Performance on Tennessee Eastman Process Simulations

lation Coefficient for trend capture and the Mean Absolute Error for a robust measure of

accuracy. The performance on Component-A is presented in Figure 4.14. The performance

of the proposed method (CDFR) is comparable with the best one (SFR) of the consid-

ered references in both statistics. Based on this benchmark, applicabilities of the proposed

feature extraction have been validated. To further demonstrate its advantages, another

data set from a real-world process is used, where latent features have constrained variation

ranges.

4.5.3 Industrial Case Study

This practical application is on Steam Assisted Gravity Drainage process, an enhanced oil

recovery approach. The heated steam is injected into the underground reservoir to form a

steam chamber, where the heavy oil/bitumen can be extracted with Electric Submersible

Pumps. To configure a better control strategy, the quality of produced emulsion, such as

the water content, needs a granular on-line estimation. Current measurements are obtained

from a test separator, which is available to measure the water content every second week.

Due to the complex and uncertain mechanism of the underground heating and drainage,

the data-driven model is used, where primarily measured process variables, such as the flow

rate, temperature, and pressure measurements are used as inputs to the data-driven model.

Based on first-principles knowledge, 14 related variables are utilized as inputs. Based on

process knowledge, the water content is affected by several underground variables, such as
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bitumen viscosity and “down-hole” pressures. Because their values are not the same for

an extended heat chamber (around 1 kilometre), it was physically challenging to estimate

them in a distributed manner. However, it is known that their variations must be contained

in an operation range. In this application, the proposed constrained latent features are

expected to reveal the variations of these unmeasurable variables within certain ranges.

In order to illustrate the advantage/usage of the proposed model, an industrial case with

potential constrained variations is selected as a regression exercise. The process is called

Steam Assisted Gravity Drainage (SAGD) process, where the hot steam is injected to

underground bitumen reservoir, and a mixture of oil and water (emulsion) is lifted through

Electric Submersible Pumps. Real-time estimation of the emulsion water content is expected

for process optimization, for which the current measurement is from an off-line separator.

Table 4.2: Validation Results of Estimating SAGD Water Content

d
Correlation Coefficient (Mean Absolute Error Improvement %)

PCA SFA PLS sLDS CDLF

2 0.19(9.4) 0.25(8.0) -0.18(2.7) 0.11(7.2) 0.06(7.7)

3 0.30(9.9) 0.24(7.4) -0.28(1.4) 0.14(7.4) 0.10(8.7)

4 0.09(8.5) 0.20(6.4) -0.33(-3.7) 0.03(6.3) 0.26(9.8)

5 0.01(7.9) 0.11(2.7) -0.25(-1.6) 0.13(2.2) 0.32(11.8)

6 -0.14(5.6) -0.02(4.5) -0.21(-4.0) 0.28(1.8) 0.30(8.0)

In Table 4.2, the Correlation Coefficient and the relative improvement of Mean Abso-

lute Error (based on OLS) are compared over the retained latent dimension d (no further

improvement). In Fig. 4.15, a trend visualization is plotted to compare the proposed model

with the best competitor in Table 4.2. Besides the methods mentioned above, an additional

competitor (sLDS) is realized, which also extracts dynamic latent features with a proba-

bilistic model. It can be observed that the proposed method provides the highest correlation

and the most significant improvement with five latent features. The widely applied PCA

and SFA yield large deviations on testing data, which are exampled as peaks of the blue

dash in Fig. 4.15. Although SFA produces a better correlation with small latent dimen-

sions, its best performance is not competitive because of its only preference on “slowness”.

As a supervised method, the less satisfactory performance of PLS is due to the sparsity

and randomness of training outputs. As one of its probabilistic extensions, sLDS improves

the performance in this application case, but it is still not as good as other unsupervised

ones. Instead, CDLF has considered both probabilistic dynamic modelling and potential
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constraints.

Figure 4.15: Estimation of Water Content in SAGD Process

4.6 Conclusions

In this chapter, a learning framework for extracting constrained dynamic features has been

developed, where a novel latent transition function is designed. Based on typical character-

istics of process data, the latent features are modelled to have the constrained range and the

dynamic behaviour. By replacing the Normal distribution with the Beta distribution in the

state transition model, the latent states are limited within (0, 1). Through the comparison

with the conventional unconstrained features, both stationary and transition properties of

the proposed dynamic feature have been shown to be comparative to the unconstrained

features.

To apply this constrained dynamic feature to latent variable modelling, an emission

model is added, and the associated learning algorithm is developed through the variational

Bayesian inference, where novel solutions are provided for the non-conjugate challenges.

By testing it on numerical examples, the proposed combination of the variational Bayesian

inference and particle state estimation methods is shown to be useful for parameter esti-

mation. By testing it on benchmark examples and industrial data, the practical advantage

of the proposed feature extraction approach has been demonstrated through the predictive

modelling tasks.
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Chapter 5

Dynamic Latent Feature for
Multiple Model Problems ∗

In this chapter, the dynamic feature extraction is considered in the context of multi-mode

observations. To address switching behaviours in industrial processes, multiple emission

models are used to formulate the observation function. To address the temporal correlation

from continuously operating processes, the transition function for continuous variables is

implemented to describe the dynamic latent feature. Based on the variational Bayesian

framework, a novel learning algorithm is developed to estimate the latent feature along with

the multiple sets of emission parameters, where the estimation uncertainties are considered

in variational updating steps. The effectiveness and practicability of the proposed model

are illustrated through benchmark simulations and an industrial case study. In addition

to the off-line modelling, the Bayesian state estimation algorithm is also extended to the

online filtering application, where multiple models are considered in both transition function

and observation function. Through the application of tracking problems, the proposed

variational Bayesian filter has demonstrated its advantages.

5.1 Introduction

Sensors and transmitters are abundantly installed for process control and monitoring. With

the development of data analysis technologies, historical data records become more valuable

for monitoring and optimization. Typically, on-line estimation of quality variables can be

improved by modelling process data and developing inferential sensors [4, 5, 6]. Similar

∗A version of this chapter has been published in Ma, Yanjun, and Biao Huang. “Extracting dynamic
features with switching models for process data analytics and application in soft sensing.” AIChE Journal
64, no. 6 (2018): 2037-2051.
Section 5.6 of this chapter has been published in Ma, Yanjun, Shunyi Zhao, and Biao Huang. “Multiple-
Model State Estimation Based on Variational Bayesian Inference.” IEEE Transactions on Automatic Control
(2018)
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to the hardware instruments. However, knowledge-based soft sensors can frequently fail

due to harsh operating conditions and unattainable assumptions. Data-driven approaches

have proven to be a good alternative for inferential sensor development [7, 8, 9]. The main

advantage of data-driven methods is their flexibility for various applications. Especially in

the chemical process, with a variety of operating conditions, the same process can exhibit

quite different behaviours. Rather than establishing first-principles-based models for various

conditions, modelling with specific process data can learn the multiple operating conditions

automatically and then provides more accuracy.

As a valuable package for industrial applications, inferential sensing requires the studies

from both practical and theoretical point of view. The accuracy of its predictive model (es-

timating quality variables with regularly measured process variables) is essential. Although

there exist plenty of modelling approaches for this regression task, many of them are facing

challenges in dealing with process data. First, the excitation of model inputs, which are typ-

ically measured in a routine operating process, is usually insufficient and there is a common

occurrence of co-linearity [64, 65]. Second, the reference outputs of inferential sensors are

usually sparse and contain time-domain uncertainty. For an output as a quality variable,

its reference value is often obtained from infrequent laboratory analysis, which has large

sampling intervals and usually is lagged from the actual sample time. Such difficulties can

make classical regression methods less practical. To overcome aforementioned challenges,

latent variable models were proposed and have become popular in process data analytics

[66, 67, 68]. In these approaches, the raw measurements are projected to construct informa-

tive latent features with linearly or non-linearly functions. The prediction is then performed

with these features. Appropriate latent feature can improve the modelling effectiveness and

robustness through a variety of methods [69, 70]. In particular, some improvements are

achieved by considering the ubiquitous system inertia in chemical processes [71]. For ex-

ample, the Markovian model can be added to capture temporal data correlations in the

latent space [72, 73]. In Chapter 2, the general formulation of dynamic feature extraction

has been presented.

In addition to the challenges above, various operating modes are often observed in

historical data. In chemical engineering, operating modes usually vary with the changes

in feed or product quality. From the modelling point of view, a single model is usually

insufficient for multiple modes, and divide-and-conquer strategies are expected to make

improvements. Under some scenarios, scheduling variable(s) can be selected to identify

the switching behaviours [74, 75]. However, in many other cases, the identification of
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operating mode requires additional analysis. As for modelling an input-output system, the

model identity of each data point is usually determined together with parameter estimation

[76, 77, 78]. As for the latent feature extraction, several structures have also been proposed

from different assumptions. If switching behaviours are assumed to follow a Markovian

transition, Hidden Markov Models [79, 80] and other extended hierarchical structures [81,

82] can be used to estimate the model identity sequence. If observations were assumed as

representation of specific latent variables, switching states space models [83, 84, 85] can be

constructed. In this study of feature extraction for multi-mode process data, we proposed

to use switched emission models and unique feature variables to capture switching and

dynamic behaviour of the processes.

Other than from the modelling perspective, the multiple model scenario has also been

widely studied in the state estimation perspective. During the last three decades, state es-

timation from various types of noisy measurements has drawn considerable attention. The

most well-known method is inarguably the Kalman filter (KF) [86], which provides the opti-

mal Bayesian estimates for the linear state-space model with white Gaussian noises. For the

state estimation of multiple-model systems, it has been proved that the optimal Bayesian

estimation is computationally intractable due to the exponentially increasing number of

possible hypotheses (trajectories). Therefore, some suboptimal approaches have been de-

veloped [87, 88, 89], and the critical point is to limit the number of underlying hypotheses

with an approximation of the respective probability density functions (PDFs).

For example, randomly selecting a predetermined number of hypotheses and discard-

ing the remaining ones was proposed in [90], and a selection of the most likely hypothesis

was developed in [91, 92]. Later, the generalized pseudo-Bayesian (GPB) algorithm that

approximates the posterior Gaussian mixture distribution by a single Normal distribution

after filtering was proposed in [83, 93]. Different from the GPB method, the interacting

multiple model (IMM) [94] algorithm conducts Normal distribution approximation before

filtering, which results in a good trade-off between accuracy and robustness. This method

has been used in many practical applications including moving target tracking, fault de-

tection, signal processing, etc., and one can also find various extensions and modifications

[95, 96]. To name a few, the IMM strategy has been extended to the non-linear state-space

model in [97] using the particle approximation, and the exponential cost function is mini-

mized for multiple-model state-space models to get the risk-sensitive IMM filter, which is

further extended to the non-linear case in [98]. The multiple-model estimation with variable

structure is developed in [99] to deal with uncertain model parameters.
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Moreover, an improvement of the IMM method using the expectation-maximization

(EM) approach is developed in [100], with the aim of finding more accurate mode weights.

A deterministic algorithm, as well as a stochastic algorithm, is given in [101] to obtain the

marginal maximum of a sequential posterior state estimate of jump Markov linear systems.

On-line Bayesian estimation of model transition probabilities is proposed and realized in

the framework of multiple-model estimation, and the corresponding maximum likelihood

modifications are further proposed in [102]. For more details, one can refer to [103] and

references therein.

Probabilistic learning methods have been considered effective to accommodate various

structures and improve performance in comparison with deterministic approaches [23]. For

mixture models, clustering with probabilities allows obtaining the labels and model pa-

rameters more efficiently [104]. For latent variable models, properly assigned probability

distributions help in dealing with noisy observations [22] and infrequent measurements [105],

and increase the robustness against outliers [24]. The probabilistic inference and associated

Bayesian framework are also preferred in dealing with many challenges in process data an-

alytics [8, 26]. In these approaches, the background knowledge or process understanding

can be implemented mathematically based on Bayes rule, and model parameters can be

estimated with probability distributions rather than point estimations. As for modelling

with latent features, Bayesian inference methods not only improve efficiency by considering

parameters uncertainties but can also provide an explicit indicator of modelling performance

[29], leading to an automatic selection of proper model structures.

Since the continuous latent feature utilized in this chapter is modelled similarly as

in the general state space model, the proposed variational learning algorithm become a

suitable candidate to solve the state estimation problem. It has revealed in the iterative

updating procedure in Section 2.2. In order to compute the overall state estimates and error

covariances in multiple-model estimation, a strategy that extracts the exact posterior PDF

from all the possible trajectories is necessary. By analyzing methods mentioned above, it

can be observed that approximating the posterior PDF (Gaussian mixture distribution in

linear Gaussian systems) by a single Gaussian distribution with the mean and variances

calculated through weighted summation is a common practice. Therefore, the proposed

variational learning step for latent feature S1:T can be applied as a better method to obtain

the overall estimates of the state and error covariance from a Gaussian mixture distribution,

which motives this work.
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5.2 Problem Statement

In this study, the feature extraction method is considered to have multiple emission models

and autoregressive latent features. While those emission models describe the switching

properties, a unique set of latent features is modelled to capture the continuous process

dynamics. To learn this structure from process data, a Bayesian inference algorithm is

developed to increase the robustness for parameter estimation. With the proposed learning

framework, the structural parameters, such as the number of switched models and the

dimension of latent space, can also be automatically determined in unsupervised learning.

Considering the switching scenarios, the variational learning method for dynamic latent

features is novel. This variational Bayesian (VB) inference is used to approximate the joint

PDF of the state and the model identity variable. Based on this strategy, the approximation

accuracy in the tracking problem is expected to be improved.

The remainder of this chapter proceeds as follows. In the next section, the problem

formulation and detailed explanations are given for the proposed structure of feature ex-

traction. In Section 5.4, the specific learning method is developed for the (off-line) feature

extraction model, where the state estimation is performed as a smoothing problem. Two

numerical simulations are used here to validate the off-line feature extraction model. In

Section 5.5, the corresponding on-line estimation algorithm is developed. The subsequent

application demonstrates the proposed modelling approach through an industrial case study.

Besides, the state estimation step is applied as a filtering algorithm in Section 5.6, which is

then demonstrated through tracking problems. Finally, concluding remarks are presented

in Section 5.7.

5.3 Probabilistic Formulation

In this section, multiple emission models are introduced to describe the changing operation

regions, and the probability graphical model is proposed for our feature extraction task.

5.3.1 Multiple Emission Models

Switching of operating mode is commonly seen in process industries. Usually in the context

of inferential sensing, these changing modes are results of unknown and random events,

such as the changing of product price or the composition of feed materials. In this study,

the proposed feature extraction model generalizes the emission function (2.7) with multiple

emission models. While k-th model M (k) = {µ(k), H(k), v
(k)
· } is selected, the observation is
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described with

Xt = µ(k) +H(k) · St + v
(k)
t , if : rt = k, (5.1)

where µ(k) is the mean of observations, H(k) is the projection matrix, and v
(k)
t is observation

noise. The model identity variable rt ∈ {1, ...,K} assigns one emission model to each

observation.

As for the transition function, the model and the constrained described in Chapter 3 is

retained.

St = A · St−1 + wt, wt ∼ N (~0, Q), (5.2)

where : A = diag{a1, ..., ad} Q = diag{1− a2
1, ..., 1− a2

d}. (5.3)

The transition matrix A and the noise covariance Q for dynamic latent features are fixed

as diagonal and constrained Q in (5.3). It assures that the prior distribution of each di-

mension of latent features is mutual independent, and the standard Normal distribution is

its stationary distribution. It should be noted that the constraint (5.3) is implemented for

the continuous or relatively steady process, providing the benefit as a regulator. While it

is necessary to assume significant transition, such as batch process, this constraint could

be removed, and the switching structure is not limited to (5.3). Thus, an illustration of

this extraction model can be presented in Figure 5.1: (1) S1:T is connected with the transi-

tion model to capture common driving forces among different modes; (2) multiple emission

models M (1:K) map the latent feature to observations X1:T and reflect the mode changes.

Figure 5.1: Multiple Emission Model for Dynamic Latent Feature

The feature extraction objective of this chapter is thus formed as that based on a

sequence of observations X1:T , identify the multiple emission models M (1:K) and the tran-

sition matrix A. The latent feature S1:T in this model is independent of the model identity

sequence r1:T , and follows a single transition matrix.
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This structure is different from the common assumption of switching state space model

or switched dynamical systems, which usually contains multiple state transition models and

multiple emission models. Although the conventional switching structure is more general

in representation, it could be difficult in inferential sensing practice. On the one hand,

the historical records from an operating plant, especially for continuous operations, often

contain insufficient excitations to learn over multiple model parameters. On the other hand,

since both H(k) and the dimension of latent space are determined from data, the switched

dynamics could also be captured by different latent sequences and presented through H(k).

Thus, an appropriate model that is desired in practical applications should have a simpler

structure and less number of parameters. In the following development, we will adopt a

robust noise model to reduce the sensitivity to outliers, and use a Bayesian learning method

to allow temporal correlations in the posterior distribution of the model identity sequence

r1:T .

5.3.2 Robust Realization of Noise Model

While establishing a probabilistic model, the distribution of noise should be carefully se-

lected [23]. As for feature extraction, the multi-dimensional observations are to be de-

correlated by emission models, leaving the residual noises to follow independent Normal

distributions such as the case in the probabilistic principal component analysis (PPCA)

[22]. Depending on different applications, the magnitude of the variance of each output can

be either the same or different [106]. In this study, v
(k)
· is modelled with a diagonal and

isotropic covariance matrix (γ(k))−1 · I for each emission model.

Noise modelling should also be robust, especially for industrial process data. Here the

robustness refers to less sensitive to the outlier and abnormal observations [107]. Student-t

distribution has been considered as a proper probabilistic description of data with outliers

[108, 109]. Figure 5.2 shows an illustrative example of the advantage of using Student-

t distribution. In its top plot, one example of raw process measurement is shown, where

several peaks can be observed. In the bottom plot, the two fitted distributions are compared,

and one can see Student-t distribution can accommodate the outliers better than the Normal

distribution.

One mathematical explanation of this robustness is based on the Normal-Gamma fac-

torization for the distribution of v
(k)
t :

v
(k)
t ∼ S(~0,

1

γ(k)
I, ν) =

∫ +∞

0
N (~0,

1

u γ(k)
I) · G(u;

ν

2
,
ν

2
) · du, (5.4)
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(a) outliers in raw process measurement

(b) comparison between Normal and Student-t distribution

Figure 5.2: Handling Outliers with Student-t distribution
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where ν is the degree of freedom and G stands for Gamma distribution. The intermediate

variable u can be introduced to scale the variance of Normal distribution, and the Student-t

distribution becomes an infinite summation of scaled Normal distributions. Hierarchically,

u should distribute according to a Gamma distribution with parameter ν. In application, a

certain value of u can be assigned for each data sample. Thus, the integration is simplified

according to an application of the Mean Value Theorem [110]. It should be noted that even

for multivariate Student-t distribution, this decomposition is always performed with one-

dimensional u. This means that ν controls an isotropic fading rate of probability density,

and the covariance matrix in the Normal distribution determines the direction. Similar as

in Chapter 3, the covariance matrix is set as identity matrix I, which makes the dimension

reduction feasible.

As the result, one additional latent variable, defined as U
(k)
t for each emission model

M (k), is introduced to the proposed model:

p(Xt | µ(k), H(k), St, γ
(k), U

(k)
t ) = N (Xt; µ

(k) +H(k) · St,
1

U
(k)
t γ(k)

I), (5.5)

p(U
(k)
t | ν) = G(U

(k)
t ;

ν

2
,
ν

2
). (5.6)

The effect of U
(k)
t is to calibrate the likelihood of Xt for the k-th model, and the actual

value of it will be learned from both data and the prior in (5.6). When a small value of

U
(k)
t is determined, the observation will be considered as an outlier, and its likelihood will

be down-weighed. Since there are multiple emission models, different calibration levels will

be associated with different M (1:K). Based on this calibrated likelihood (5.5), the number

of false switching actions (caused by outliers) will be generally reduced, and the estimation

of model parameters, such as µ(k) and H(k), can be improved.

5.3.3 Use Identity Vector for Switching Mechanism

As is common in the statistical learning and probabilistic inference, the log-likelihood plays

a crucial role in the derivation. To avoid inconvenience of deriving a logarithm before a

summation operator, the discrete scalar rt in (5.1) is re-defined by a vector variable It

specified as

It =
[
I

(1)
t , I

(2)
t , ..., I

(K)
t

]
, (5.7)

where : I
(k)
t ∈ {0, 1}, ∀ k = 1, ...,K,

K∑
k=1

I
(k)
t = 1.
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The activation of the kth model is now translated as I
(k)
t = 1. With rt governed by the

categorical distribution, It can be described with the Multinomial distribution (Mul):

Mul (It | π1:K) =
K∏
k=1

[πk]
I

(k)
t , (5.8)

where the parameter π1:K is a sum-one vector with all elements being positive. Each πk

stands for the statistical expectation of I
(k)
t , which also represents the responsible weight

of the kth model. Thus, it has the following properties:

Pr (rt = k) = EMul(It|π1:K)[I
(k)
t ] = Pr

(
I

(k)
t = 1

)
= πk ≥ 0, (5.9)

K∑
k=1

πk =
K∑
k=1

Pr (rt = k) = 1. (5.10)

This vectorial representation of the model identity can provide a compact probability

description of {St, It} in the log-likelihood formulation, which facilitates the approxima-

tion of posterior considerably. For example, the conditional probability of the observation

function becomes

p(Xt | St, It,M) =
K∏
k=1

[
p(Xt | St, It,M (k))

]I(k)
t
. (5.11)

With the product operator, It serves as the exponential terms for St. Considering that It

described by equation (5.8) belongs to a conjugate prior distribution of the likelihood, the

posterior of It will have a closed form and can be derived conveniently [111]. Besides, by

using its statistical expectation, It will be free from discrete values in the inference proce-

dure. Thus, a more granular interaction between the model identity and St is introduced

by this vectorial representation It, which merges multiple models without waiting until the

final calculation step.

5.3.4 Prior Distributions

To complete this feature extraction in probabilistic approaches and formulate it under the

Bayesian framework, other probability dependencies and modelling preferences should also

be clarified. The first one is about reducing the risk of over-fitting from the increasing

number of sub-models. To avoid generating unnecessary sub-models, the following prior

distributions are assigned to parameters µ(k), H(k) and γ(k) as regulators:

p(µ(k) | Λµ) = N (µ(k); ~0,Λ−1
µ ), (5.12)

p(H(k) | ΛH) = p(
[
h

(k)
1 , ..., h(k)

m

]′
| Λ−1

H ) =

m∏
j=1

N (h
(k)
j | 0,Λ

−1
H ), (5.13)
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p(γ(k) | αγ , βγ) = G(γ(k); αγ , βγ), (5.14)

where m is the dimension of Xt, and h
(k)
i is the transpose of the i-th row in H(k). Hyper-

parameters Λµ, ΛH , αγand βγ are used to represent a non-informative prior distribution,

which are only preventing the weird values. With these regulatory prior distributions,

the parameters of an insignificant emission model will become trivial, such as discussed in

Chapter 3.

Figure 5.3: Selecting model identity from Dirichlet distribution

To set the preference for a smaller number of sub-models, π1:K is described by a prior

of Dirichlet distribution Dir to allow Automatic Relevance Determination (ARD):

p(π1:K | α1:K) = Dir(π1:K ;α1:K), ∀ k = 1, ...,K, αk < 1. (5.15)

With the fixed K and αk < 1, the sample with I
(k)
t near either zero or one will receive high

value from this probability distribution. As a three-dimensional (K = 3) example, Figure 5.3

shows the samples and a collapsed density function of the case with α1:3 = [0.4, 0.4, 0.4].

Thus, the number of “useful”, assigned with a significant value for the weight, models is

preferred to be smaller, which means ARD can be performed through Bayesian inference

with this prior distribution.

To summarize all the probabilistic dependencies, a probability graphical model is drawn

in Figure 5.4. The probabilistic description for the dynamic latent feature S1:T (St ∈ Rd)

and the transition matrix A (= diag{a1:dS}) is adopted as in Chapter 3:

p(S1:T | A) = P (S0) ·
T∏
t=1

P (St | St−1, A)
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Figure 5.4: Proposed Bayesian design for Multi-Model Dynamic Feature

= N (S0; ~0, Id) ·
T∏
t=1

N (St; A · St−1, Q), (5.16)

p(A | αa, βa) =

d∏
j=1

P (aj) =

d∏
j=1

Beta(aj ; αa, βa), (5.17)

where Q is defined in (5.3). The robust noise modelling (presented in earlier section) with

multi-model results in the relation between U
(1:K)
t and I

(1:K)
t as

p(U
(1:K)
t | I(1:K)

t , ν) =
K∏
k=1

[
G(U

(k)
t ;

ν

2
,
ν

2
)
]I(k)
t
, (5.18)

which is detailed in [75]. Then, the likelihood of (finite length) observations conditioned on

S1:T and M (1:K) is given by

p(X1:T | S1:T , I
(1:K)
1:T , U

(1:K)
1:T ,M (1:K))

= p(X1:T | S1:T , I
(1:K)
1:T , U

(1:K)
1:T , {µ,H, γ}(1:K))

=

T∏
t=1

K∏
k=1

[
N (Xt; µ

(k) +H(k) · St,
1

U
(k)
t γ(k)

Im)

]I(k)
t

. (5.19)

Finally, the objective of feature extraction is transformed as to inference the following

posterior:

p(θ | X1:T , η) = p(S1:T , I
(1:K)
1:T , U

(1:K)
1:T , µ(1:K), H(1:K), γ(1:K), A, π1:K | X1:T , η). (5.20)
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where θ is a short notation for the whole parameter set. It should be noted that, usually

the outlier in process measurements are not believed to be sufficient enough to learn the

degree of freedom in the Student-t distribution. Thus, in this study, the parameter ν will

not be learned from data; instead, it will be included into the set of hyper-parameters:

η = {Λµ,ΛH , αγ , βγ , αa, βa, α1:K}. (5.21)

5.4 Off-line Variational Inference Methods

In the learning procedure, the proposal distribution can be updated through coordinate

ascent strategies or sampling methods [112]. For our proposed model, the coordinate ascent

approach, as introduced in Chapter 2, is chosen to avoid unnecessary computational load

and retain a meaningful interpretation, where q(θ) is defined with assumption:

q(θ) = q(S1:T ) · q(I(1:K)
1:T , U

(1:K)
1:T ) · q(µ(1:K), H(1:K), γ(1:K)) · q(A) · q(π1:K). (5.22)

Following the general derivation in Section 2.2, the objective of variation learning algorithm

can be formulated as

L(q(θ)) = p(X1:T | η)−DKL{q(θ) ‖ p(θ | X1:T , η)}

= Eq(θ)p(X1:T , θ | η) +H{q(θ)}. (5.23)

Then the coordinate ascent algorithm will maximize variational lower bound L(q(θ)) based

on the following three equations:

ln q∗(A) = Eq(S1:T ) [ln p(X1:T , θ | η)] + cA, (5.24)

ln q∗(S1:T ) = E
q(A)q(I

(1:K)
1:T ,U

(1:K)
1:T )q(µ(1:K),H(1:K),γ(1:K))

[ln p(X1:T , θ | η)] + cS , (5.25)

ln q∗(µ(1:K), H(1:K), γ(1:K)) = E
q(S1:T )q(I

(1:K)
1:T ,U

(1:K)
1:T )

[ln p(X1:T , θ | η)] + cM , (5.26)

ln q∗(I
(1:K)
1:T , U

(1:K)
1:T ) = Eq(S1:T )q(µ(1:K),H(1:K),γ(1:K))q(π1:K) [ln p(X1:T , θ | η)] + cIU , (5.27)

ln q∗(π1:K) = E
q∗(I

(1:K)
1:T ,U

(1:K)
1:T )

[ln p(X1:T , θ | η)] + cΠ, (5.28)

where cA, cS , cIU , cM , cΠ are normalization constants. By iteratively applying these updat-

ing equations, the variational Lower Bound will increase monotonically. It can be observed

that the dynamics of latent feature S1:T is modelled similar as in Chapter 3, the updating

procedure of (5.24) can be solved similarly. With the usage of importance sampling, the

required statistics in this chapter become available from equations in (3.40), (3.41), and

(3.42). As for the updating step (5.45), it depends on the most of proposal distributions,
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also its result will be used for nearly every other updating steps. In later this section,

the innovative steps will be detailed for it. With aforementioned probability dependen-

cies, the updating equations from (5.26) to (5.28) can be derived based on conjugate prior

distributions.

5.4.1 Learning Multiple Robust Emission Models

In this part, the updating equation for the parameters in the multiple emission models

will be detailed. Following the detailed equations for (5.26), the updating procedure of

(5.27) and (5.28) will be provided. Since the feature extraction model is developed in an

off-line manner, and the model identity variables are assumed as temporal independent, the

proposal distribution q(I
(1:K)
1:T , U

(1:K)
1:T ) and the proposal distribution of the latent features

q(S1:T ) can be learned individually.

Here, an iterative updating procedure for multiple emission models is presented.

1. For µ(k), the updated proposal distribution is still a Normal distribution q(µ(k)) =

N (µ(k); m
(k)
µ , P

(k)
µ ):

m(k)
µ = P (k)

µ · 〈γ(k)〉
T∑
t=1

〈U (k)
t I

(k)
t 〉(Xt − 〈H(k)〉〈St〉), (5.29)

P (k)
µ =

[
〈γ(k)〉

T∑
t=1

〈U (k)
t I

(k)
t 〉 · Im + Λµ

]−1

. (5.30)

2. ForH(k), the transpose of i-th row h
(k)
i is updated with a Normal distribution q(h

(k)
i ) =

N (h
(k)
i ; m

(k)
hi
, P

(k)
hi

):

m
(k)
hi

= P
(k)
hi
· 〈γ(k)〉

T∑
t=1

〈U (k)
t I

(k)
t 〉

[
Xt − 〈µ(k)〉

]
(i)
〈St〉, (5.31)

P
(k)
hi

=

[
〈γ(k)〉

T∑
t=1

〈U (k)
t I

(k)
t 〉〈StS′t〉+ ΛH

]−1

, (5.32)

where [·](i) denotes the ith elements of the inside vector. Thus, the expectation statis-

tics for the overall emission matrix are formed as

〈H(k)〉 =
[
m

(k)
h1
, ...,m

(k)
hm

]′
, (5.33)

〈H(k)′ ·H(k)〉 =
m∑
j=1

m
(k)
hj
· (m(k)

hj
)′ + P

(k)
hi
. (5.34)
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3. The proposal distribution for γ(k) is updated as a Gamma distribution with two

parameters q(γ(k)) = G(γ(k); α
(k)
γ , β

(k)
γ ):

α(k)
γ = αγ +

m

2

T∑
t=1

〈I(k)
t 〉, (5.35)

β(k)
γ = βγ +

T∑
t=1

〈U (k)
t I

(k)
t 〉

2
〈σ2
t 〉. (5.36)

The residual term 〈σ2
t 〉 is an expected observation noise, which has the form as

〈σ2
t 〉 =X ′tXt + tr{〈µ(k)(µ(k))′〉}+ tr{〈StS′t〉〈(H(k))′H(k)〉}

− 2X ′t〈H(k)〉〈St〉 − 2X ′t〈µ(k)〉+ 2〈µ(k)〉′〈H(k)〉〈St〉, (5.37)

where tr{·} stands for the matrix trace operator.

Regarding the model identity variable I1:T and the intermediate variable U1:T , their

proposal distribution q(I
(1:K)
1:T , U

(1:K)
1:T ) will not be further factorized. It is based the original

Student-t distribution of each mission noise, which requires the dependency between these

two sets of random variables[109]. For the conditional uncertainty U
(k)
t | I(1:K)

t , the posterior

is developed with a Gamma distribution based on given I
(1:K)
t :

q(U
(k)
t | I(1:K)

t ) = G(U
(k)
t | I(1:K)

t ; α
(k)
Ut
, β

(k)
Ut

).

For I
(k)
t , it follows a Multinomial distribution:

q(I
(1:K)
t ) = Mul(I

(1:K)
t ; α

(1:K)
It

).

The corresponding likelihood term has marginalized the intermediate variable U
(1:K)
t out

to making the actual Student-t distribution for observation noise:

α
(k)
Ut

=
ν

2
+
m

2
, (5.38)

β
(k)
Ut

=
ν

2
+
〈γ(k)〉

2
〈σ2
t 〉, (5.39)

α
(k)
It

= e〈lnπk〉 ·
Γ(ν+m

2 )

Γ(ν2 )(νπ)
m
2

· 〈γ(k)〉
m
2 · [1 +

〈γ(k)〉
ν
〈σ2
t 〉]−

ν+m
2 , (5.40)

where 〈σ2
t 〉 is the expected residual that defined in (5.37). As for this joint proposal dis-

tribution, the required statistics from other variational updating steps can be determined

as

〈I(k)
t 〉 =

α
(k)
It∑K

k′=1 α
(k′)
It

, (5.41)
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〈U (k)
t I

(k)
t 〉 =

α
(k)
Ut

β
(k)
Ut

· 〈I(k)
t 〉, (5.42)

〈lnU (k)
t I

(k)
t 〉 =

[
ψ{α(k)

Ut
} − ln{β(k)

Ut
}
]
· 〈I(k)

t 〉. (5.43)

In order to update the distribution for π1:K , aforementioned parameters of α
(1:K)
I1:T

can be

treated as samples from q(π1:K). Based on the statistical conjugacy, a Dirichlet distribution

is selected: q(π1:K) = Dir(π1:K ; α
(1:K)
π ), and the parameters are updated as

α(k)
π = αk +

T∑
t=1

〈I(k)
t 〉, ∀ k ∈ {1, ...,K}. (5.44)

Other than the introduced statistics for upcoming variation learning step, other con-

ventional self-expected statistics, such as the first order or second order moments, can be

easily found with the estimated variable posteriors.

5.4.2 Smoothing States with Multiple Emission Models

The updating equation for q∗(S1:T ) is considered as

ln q∗(S1:T ) = E
q(A)q(I

(1:K)
1:T ,U

(1:K)
1:T )q(µ(1:K),H(1:K),γ(1:K))

[ln p(X1:T , θ | η)] + cS , (5.45)

which requires a study about the probability distribution over a sequenced latent variables

S1:T . Typically, calculating the sufficient statistics and entropy for this latent sequence is

solved by filtering and smoothing [40]. By considering the distribution of model parame-

ters, updating q(S1:T ) has been developed for a single emission model in Chapter 3. By

considering multiple models with deterministic parameters, the problem can be solved by

interacting multiple model methods [103]. However, with multiple emission models along

with their uncertainties (described with probability distributions), this estimation problem

becomes more challenging. In this study, a novel algorithm is developed to merge different

models based on the distribution of model parameters q(µ(1:K), H(1:K), γ(1:K)), as well as

the uncertainty of model identity sequence q(I
(1:K)
1:T , U

(1:K)
1:T ).

For a better illustration, (5.45) needs to be explicitly expanded as

ln q∗(S1:T ) = E
q(I

(1:K)
1:T ,U

(1:K)
1:T )q(µ(1:K),H(1:K),γ(1:K))

[ln p(X1:T | S1:T , θ)]

+ Eq(A) [lnP (S1:T | A)] + const.,

=

T∑
t=1

〈lnP (Xt | St, I(1:K)
t , U

(1:K)
t , µ(1:K), H(1:K), γ(1:K))〉+

T∑
t=1

〈lnP (St | St−1, A)〉+ const.

=

T∑
t=1

−1

2
S′t

K∑
k=1

〈U (k)
t I

(k)
t 〉〈γ(k)(H(k))′H(k)〉St + S′t

K∑
k=1

〈H(k)〉′〈U (k)
t I

(k)
t 〉〈γ(k)(Xt − µ(k))〉
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+

T∑
t=1

−1

2
S′t〈

1

I−A2
〉St + S′t−1〈

A

I−A2
〉St −

1

2
S′t−1〈

A2

I−A2
〉St−1 + const., (5.46)

where 〈·〉 is the expectation operator. The covariance of transition noise Q is replaced with

I−A2, where the square operator is applied to each element of A. Based on this quadratic

function of each individual latent sample St and adjacent latent samples (St−1, St), it can

be concluded that their posteriors have Normal distributions. For deriving the Normal

distribution over the latent variable sequence, the original Kalman filter and smoother have

proven to be optimal. To benefit from its optimality, a parameter calibration procedure is

developed to factorize (5.46) into traditional posterior formula of S1:T [40].

The parameters for transition function (5.2) are calibrated similar as in (3.33) and (3.34):

Ã = Ã′ = 〈 A

I−A2
〉〈 1

I−A2
〉−1 = diag{〈 a1

1− a2
1

〉/〈 1

1− a2
1

〉, ..., ad
1− a2

d

〉/〈 1

1− a2
d

〉}, (5.47)

Q̃−1 = 〈 1

I−A2
〉 = diag{〈 1

1− a2
1

〉, ..., 〈 1

1− a2
d

〉}. (5.48)

Different from the Chapter 3, the observations and the emission parameters are not aug-

mented directly because of the multiple model cases. On the hand, since the latent features

are modelled with a single set of S1:T , and it has posterior distribution as sequenced Nor-

mal distributions, there always exist two coefficients to summarize the observation function:

one for first order moment, and another for the second moment. In this study, for the first

summation in (5.46), these two coefficients are calibrated as

F̃
(P )
t =

K∑
k=1

〈U (k)
t I

(k)
t 〉〈γ(k)(H(k))′H(k)〉+ 〈 A2

1−A2
〉 − Ã′Q̃−1Ã, ∀ t < T, (5.49)

F̃
(P )
T =

K∑
k=1

〈U (k)
T I

(k)
T 〉〈γ

(k)(H(k))′H(k)〉, (5.50)

F̃
(m)
t =

K∑
k=1

〈H(k)〉′〈U (k)
t I

(k)
t 〉〈γ(k)(Xt − µ(k))〉, ∀ t = 1...T. (5.51)

With these intermediate parameters, (5.45) can be rewritten as

ln q∗(S1:T ) =

T∑
t=1

−1

2
S′t · F̃

(P )
t · St + S′t · F̃

(m)
t

+
T∑
t=1

−1

2

[
St − Ã · Sk−1

]′
Q̃−1

[
St − Ã · Sk−1

]
+ const.. (5.52)

This formulation has factorized adjacent samples, allowing recursive filtering and smoothing

steps to obtain the posterior of S1:T . Before introducing the updating steps, the definition
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of forward and backward paths is given as

P (St | Ã, Q̃, F̃ (P )
1:t−1, F̃

(m)
1:t−1) = N (St; m

(p)
t , P

(p)
t ), (5.53)

P (St | Ã, Q̃, F̃ (P )
1:t , F̃

(m)
1:t ) = N (St; m

(f)
t , P

(f)
t ), (5.54)

P (St | Ã, Q̃, F̃ (P )
1:T , F̃

(m)
1:T ) = N (St; m

(s)
t , P

(s)
t ). (5.55)

The proposed estimation procedure is then presented with the following three steps.

1. Prediction step (inherited from Kalman filter):

m
(p)
t = Ã ·m(f)

t−1, (5.56)

P
(p)
t = Ã · P (f)

t−1 · Ã
′ + Q̃. (5.57)

2. Update step (revised updating step):

m
(f)
t = P

(p)
t ·

[
F̃

(m)
t − Ct · F̃ (m)

t

]
+ Lt ·m(p)

t , (5.58)

P
(f)
t = Lt · P (p)

t , (5.59)

Ct = F̃
(P )
t ·

[
(P

(p)
t )−1 + F̃

(P )
t

]−1
, (5.60)

Lt = Id − P
(p)
t ·

[
F̃

(P )
t − Ct · F̃ (P )

t

]
, (5.61)

where Id is the identity matrix in d-dimensional space.

3. Smoothing step (inherited from Kalman smoother):

m
(s)
t = m

(f)
t +Gt ∗

[
m

(s)
t+1 −m

(p)
t+1

]
, (5.62)

P
(s)
t = P

(f)
t +Gt ∗

[
P

(s)
t+1 − P

(p)
t+1

]
∗G′t, (5.63)

Gt = P
(f)
t · Ã′ ·

[
P

(p)
t+1

]−1
. (5.64)

This proposed estimation procedure maintains the optimality of Kalman filter and smoother

within this variational updating step. The proof can be verified by integrating Normal

distributions (5.53)-(5.55) and applying the Woodbury matrix identity [113]. In fact, this

updating procedure handled the uncertainty in the transition model (5.2) with calibrated

parameters Ã and Q̃, and simultaneously considered the probability of different emission

models with expectation terms F̃
(P )
t and F̃

(m)
t . As a result, the switching uncertainty is

addressed within the standard forward-backward algorithm. To describe q∗(S1:T ) in other

variational updating steps, the following sufficient statistics are prepared as

〈St〉 = m
(s)
t , (5.65)
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〈St · S′t〉 = P
(s)
t + 〈St〉 · 〈St〉′, (5.66)

〈St+1 · S′t〉 = P
(s)
t+1 ·G

′
t + 〈St+1〉 · 〈St〉′. (5.67)

5.4.3 Selecting Model Structures with Variational Lower Bound

In this probability model, hyper-parameters in (5.12)-(5.14) and (5.15)-(5.18) are fixed as

constant to represent the modelling preference. As discussed before, by assigning zero-

mean prior for µ(k) and H(k), only “necessary” latent feature dimensions remain active in

the resulting posteriors. By assigning a specific Dirichlet distribution to π1:K , the number of

“active” emission models tends to be smaller. Therefore, process knowledge has been math-

ematically integrated, but the iterative optimization algorithm may still stop at different

local maxima and result in several possible solutions. However, according to (5.23), solution

with the highest L(q(θ)) is said to have achieved the best approximation of p(θ | X1:T , η)

[39]. Thus, the optimized value of L(q(θ)) will be used for model selection.

The detailed expression is of the variational lower bound is repeated as

L(q(θ)) =

∫
q(θ) · ln p(X1:T , θ | η) · dθ −

∫
q(θ) · ln q(θ) · dθ.

The first term can be calculated from the probability dependencies in Figure 5.4 and ex-

plicit forms in (5.12)-(5.19); the second term is determined individually by each proposal

distribution. Here, a detailed presentation of these two statistics is listed for a reference

The first term is explicitly presented as in the following equation, where 〈·〉 is the

expectation based on q(θ):∫
q(θ) · ln p(X1:T , θ | η) · dθ

=

T∑
t=1

K∑
k=1

[
〈ln p(Xt | St, U (k)

t , I
(k)
t , {µ,H, γ}(k))〉+ 〈ln p(U (k)

t | I(k)
t , ν)〉+ 〈ln p(I(k)

t | π1:K)〉
]

+

T∑
t=1

〈p(St | St−1, A)〉+ 〈ln p(π1:K | α1:K)〉+ 〈ln p(A | αa, βa)〉

+

K∑
k=1

[
〈ln p(µ(k) | Λµ)〉+ 〈ln p(H(k) | ΛH)〉+ 〈ln p(γ(k) | αγ , βγ)〉

]
=

T∑
t=1

K∑
k=1

[
−m · ln 2π

2
〈I(k)
t 〉+

m

2
〈ln γ(k)〉〈lnU (k)

t I
(k)
t 〉 −

1

2
〈U (k)

t I
(k)
t 〉〈σ2

t 〉
]

+

T∑
t=1

K∑
k=1

[
〈I(k)
t 〉[

ν

2
ln
ν

2
− ln Γ(

ν

2
)] + (

ν

2
− 1)〈lnU (k)

t I
(k)
t 〉 −

ν

2
〈U (k)

t I
(k)
t 〉+ 〈I(k)

t 〉〈lnπk〉
]

+

T∑
t=1

d∑
j=1

[
1

2
〈ln 1

1− a2
j

〉 − 1

2
〈StS′t〉j〈

1

1− a2
j

〉+ 〈StS′t−1〉j〈
aj

1− a2
j

〉 − 1

2
〈St−1S

′
t−1〉j〈

a2
j

1− a2
j

〉

]
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− T · d
2

ln 2π +

K∑
k=1

[
−m

2
ln 2π +

1

2
ln |Λµ| −

1

2
tr{〈µ(k)(µ(k))′〉 · Λµ}

]

+
K∑
k=1

[
−m · d

2
ln 2π +

dX
2

ln |ΛH | −
1

2
tr{〈(H(k))′H(k)〉 · ΛH}

]

+

K∑
k=1

[
αγ ln(βγ)− ln Γ(αγ) + (αγ − 1)〈ln γ(k)〉 − βγ〈γ(k)〉

]
+

d∑
j=1

[− ln B(αa, βa) + (αa − 1)〈ln aj〉 − (βa − 1)〈ln(1− aj)〉]

+ ln Γ(
K∑
k=1

αk) +
K∑
k=1

[(αk − 1)〈lnπk〉 − ln Γ(αk)], (5.68)

where | · | stands for the determinant of a matrix. and ln Γ(·) is the Log-Gamma function.

The residual term 〈σ2
t 〉 is defined in (5.37).

The second term in the variational lower bound (5.23) is presented as the summation of

individual entropies:

H{q(θ)} =
d∑
j=1

(aj)ent + (U | I)ent + Ient + Sent +
K∑
k=1

[
µ

(k)
ent +H

(k)
ent + γ

(k)
ent

]
+ πent. (5.69)

The entropy (aj)ent of sample-based posteriors is calculated by distributing samples into

Nbin bins, aggregating the weights fn(aj) for the n-th bin, and calculating entropy with the

width widn of n-th bin as

(aj)ent ≈ −
Nbin∑
n=1

fn(aj) · ln
fn(aj)

widn
, (5.70)

The entropy for the conditional random variable U | I is obtained from the estimated

Gamma distributions:

(U | I)ent =
T∑
t=1

K∑
k=1

〈I(k)
t 〉

[
α

(k)
Ut
− ln{β(k)

Ut
}+ ln Γ(α

(k)
Ut

) + (1− α(k)
Ut

)ψ{α(k)
Ut
}
]
. (5.71)

Regarding identity variables, the entropy calculation is simply enumerating the possibilities

of discrete events:

Ient =
T∑
t=1

K∑
k=1

−〈I(k)
t 〉 · ln〈I

(k)
t 〉. (5.72)

Similar as in Chapter 3, the entropy of latent feature S1:T is based on a representation of

sequenced Normal distributions. Here, the detailed equation is listed, where the results

from aforementioned smoothing step are utilized:

Sent =

[
T · d− (T − 2) · d

2

]
ln(2πe)− 1

2

T−1∑
t=2

ln|P (s)
t |
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+
1

2

T−1∑
t=1

ln

∣∣∣∣∣ P
(s)
t+1 P

(s)
t+1 ·G′t

Gt · P (s)
t+1 P

(s)
t

∣∣∣∣∣. (5.73)

The entropies from multiple emission models are mutual independent, for each model M (k),

the entropy consists of following terms:

µ
(k)
ent =

m

2
(1 + ln(2π)) +

1

2
ln |P (k)

µ |, (5.74)

H
(k)
ent =

m∑
i=1

[
dS
2

(1 + ln(2π)) +
1

2
ln |P (k)

hi
|
]
, (5.75)

γ
(k)
ent = α(k)

γ − ln{β(k)
γ }+ ln Γ(α(k)

γ ) + (1− α(k)
γ )ψ{α(k)

γ }. (5.76)

As for the overall weight of model identities, the entropy is calculated from the Dirichlet

distribution:

πent = − ln Γ(

K∑
k=1

α(k)
π )− (K −

K∑
k=1

α(k)
π ) · ψ{

K∑
k=1

α(k)
π }+

K∑
k=1

[ln Γ(α(k)
π )

− (α(k)
π − 1)ψ{α(k)

π }]. (5.77)

In addition to the selection among multiple results, two structural parameters d (the

dimension of latent space) and K (the number of emission models) can also be optimized by

the converged L(q(θ)). Usually, d and K are initialized with large values for a comprehensive

description of data. Then, benefiting from ARD, the learning procedure can be accelerated

with the preliminary results from Variational Inference. While different heuristic strategies

can be adopted to search d and K [39], the principle is always to maximize L(q(θ)). A

practical realization will be discussed in the following application section.

5.4.4 Numerical Simulations

In this section, the learning strength of the proposed algorithm is demonstrated with two

simulation examples. The first simulation will illustrate the abilities of the proposed model

in fitting non-linear data. The second simulation shows that our algorithm can determine

the number of modes and the dimension of latent space simultaneously.

In the first example, a set of non-linear data is generated to illustrate the procedure

of fitting local linear models. By this simulation, practical steps for applying this learning

algorithm are discussed. The data, consisting of 600 samples from a noisy shrinking spiral,

is produced as [39]

Xi = [(13− 0.5ti) cos ti, −(13− 0.5ti) sin ti, ti] + wi,
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ti =
4π

T
· i, T = 600, wi ∼ N (0, diag[0.5, 0.5, 0.5]), (5.78)

where the parameter ti is the temporal position along the spiral. Visualization from two

angles is presented in Figure 5.5.

Figure 5.5: The Spiral Data in 3-Dimension Space with a 1-Dimension Non-Linearly Em-
bedded

As the dimension of observations m is 3, the modelling procedure starts with two-

dimensional latent space (d = 2), similar to the application of PPCA [22]. The initial

number of emission models is set to seven (K = 7) for a sufficient description of the data.

Figure 5.6 shows five individual evolutions of parameter learning, where the x-axis is the

updating iterations and the y-axis is L(q(θ)). Although all these L(q(θ))s correctly (mono-

tonically) increase, the converged values are different, representing several local minima.

The optimal model will be selected according to these converged values of variational Lower

Bound, such as selecting the third iteration in this example.

In order to explore further structural settings, the model with smaller latent dimension

and less number of models could also be tried. As one advantage of ARD, the number

of active models can be determined from the posterior of π1:K . If the k-th cluster is not

responsible for any observation, the estimated 〈πk〉 will be smaller than 1
T , indicating a

possible removal of this cluster. For example, with four modes being useful in the first trial,

following tests for K shall start from four. Several values of L(q(θ)) are listed in Table 5.1

for additional structure sets, and typical differences are visualized in Figure 5.7. In addition,

it can be observed that the converged L(q(θ)) is neither dependent on initial L(q(θ)) nor

the optimizing speed, which is from the inherit complexity of this feature extraction model.

108



Figure 5.6: Evolutions of the variational Lower Bound with Randomized Initializations

By comparing different latent dimensions, it is found that both one-dimensional and two-

dimensional features can represent the driving force well. Particularly, the two-dimensional

features have a good approximation of sinusoidal signals. When the latent dimension is

reduced to one, distortion in S1:T is observed, which is also reflected by a less optimal

value in Table 5.1. For the comparison of different K, labelling results are visualized in

the bottom plots of Figure 5.7, where different models are well clustered along the spiral.

As indicated by L(q(θ)), either K = 3 or K = 2 can be considered appropriate for the

proposed model. Conventional Bayesian mixture of factor analysers yields 14 clusters [39].

To summarize, when the non-linearity of process data is from the variations along time, the

estimated dynamic latent features can capture it through temporal relations and reduce the

number of emission models (or analyzers) significantly.

model [dS=2, K=7] [dS=1, K=7] [dS=2, K=4] [dS=2, K=3] [dS=2, K=2]

L -3512 -4677 -3494 -3469 -3622

Table 5.1: Comparison of the Variational Lower Bounds

In the second example, a synthetic data set was generated to show the strength of iden-

tifying true model identities by the proposed method. Here, the data is projected from 3

sequences of latent features through 3 emission models, generating 5-dimensional observa-

tions. The latent features are generated with a transition matrix A = diag{0.97, 0.9, 0.85},

and emission models are given as

µ(1) = [10, 8, 20,−10, 0], µ(2) = [10, 8, 10, 0, 6], µ(3) = [6, 8, 2, 6, 6],
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(a) comparison of feature in different dimensions

(b) comparison of different clustering results

Figure 5.7: Comparisons of Features and Clusters for Different Identified Models
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H(1) =


5 0 0
0 3 0
0 0 2
2 3 1
4 −2 0

 , H(2) =


3 0 0
0 −2 0
2 0 1
0 0 3
0 2 −4

 , H(3) =


0 0 1
0 4 0
4 0 2
−1 −1 2
1 3 2

 ,
γ(1) = 1, γ(2) = 3, γ(3) = 1.5,

Figure 5.8: Selecting the Number of Latent Dimension and the Number of Emission Models

Similar to the previous example, the inference procedure starts from K = 6 and gradu-

ally attempts latent dimensions from d = 1 until d = 6. The simulation results are presented

in Figure 5.8, where the variational Lower Bound L(q(θ)) and the number of “active” mod-

els (K∗) are plotted against the dimension of latent space (d). Based on these two trends,

the latent dimension can be selected at the peak of L(q(θ)) (d = 3), and the corresponding

K∗ is 3. From this demonstration, it is shown that the proposed learning algorithm can

identify the number of emission models and the dimension of latent space correctly.

To validate the result of learning the model identity sequence, the proposed method is

compared with three popular methods for modelling mixtures. The first one is the “K-

means” method, which fits a given number of Gaussian mixtures in input space. The

second is the mixture of probabilistic principal component analysis (MPPCA) [114], which

can learn both latent features and the number of models. The last one is the robust mixture

of probabilistic principal component analysis (RMPPCA) [109], which enhances MPPCA

by implementing noise modelling with Student-t distributions. The dimension of latent

space for MPPCA and RMPPCA is set to the real value of three, and multiple trials are

conducted to ensure that only their optima are compared with the proposed method for
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Figure 5.9: Comparison of Estimated Model Identities

fairness. The estimated result of model identities is plotted in Figure 5.9. It can be observed

that the proposed feature extraction method can provide the best identification result for

model identities, which has only two misclassified samples.

5.5 On-line Application with Variational Inference Results

Based on the above two simulations, the proposed method is validated in the off-line learning

procedure. In order to apply this off-line estimated model, an online feature extraction

procedure is expected. In this section, the result from the aforementioned Bayesian learning

is used to learn the latent feature for new measurement samples. In the industrial application

of a steam generation process, the corresponding latent features are shown to be informative

in estimating the steam quality.
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5.5.1 Filtering States with Results of Variational Inference

To apply the result from Bayesian extraction of dynamic latent features, the distribution

of the time-invariant parameters will no longer be updated. In this study, the converged

proposal distribution q(A), q(π1:K), and q(µ(1:K), H(1:K), γ(1:K)) will be utilized.

While applying mixture models with static latent features, such as in MPPCA, the

estimation of current model identity It only depends on the current observation Xt (or

some predefined prior belief in Bayesian modelling). As an enhancement, model identities

will be determined from both observations and dynamic latent features in our proposed

method. As a part of the off-line learning procedure, the online feature extraction strategy

can be derived as follows.

• Step-1, estimate the predicted distribution for latent state St, which is Normal distri-

bution N (m
(p)
t , P

(p)
t ). For the initial case, set m

(p)
1 = ~0 and P

(p)
1 = Id; For the case

with t > 1, calculate m
(p)
t , P

(p)
t based on (5.56) and (5.57).

• Step-2, estimate the identity variable It and associated Ut | It:

〈I(k)
t 〉 ∝ 〈S(Xt | µ(k) +H(k) · S(p)

t , (γ(k))−1Im, ν)〉,
K∑
k=1

〈I(k)
t 〉 = 1,

〈U (k)
t I

(k)
t 〉 = 〈I(k)

t 〉 ·
ν +m

ν + 〈γ(k)〉〈σ2
t 〉
,

where 〈σ2
t 〉 can be obtained from (5.37).

• Step-3, calculate F̃
(P )
T , F̃

(m)
T based on (5.50), (5.51), and 〈U (k)

t I
(k)
t 〉.

• Step-4, estimate St = S
(f)
t based on (5.60) and (5.59).

In this online learning strategy, the forward path (5.54) is performed with updating

equation for It and Ut, where the distribution of parameters and dynamic properties of S1:T

can be fully utilized. By implementing this on-line algorithm, It and the current latent

feature St will be estimated jointly. It should be noted that since future information cannot

be used to smooth current It in the online application, the expectation terms such as F̃
(P )
T

and F̃
(m)
T are only calculated with the t = T case. Also, the overall weight of π1:K is not

applicable to tune the identity variable, such as in the updating equation (5.40). Thus,

slight differences may exist between off-line and online results. Figure 5.10 shows model

identities from these two learning procedures. In this figure, the green line shows the result

of the off-line training algorithm in the previous section; the blue dot line shows a repeat
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Figure 5.10: Comparison between Off-line and On-line Model Identity Estimations

application with the online learning algorithm. It can be observed that most variations

in the model identity sequence can be captured with the above on-line algorithm, and the

off-line training method indeed prevented some unnecessary peaks.

5.5.2 Process Description of Steam Quality Inferential Sensor

Equipped with on-line feature extraction, the proposed method can be tested with industrial

applications. In this case study, an inferential sensing project in steam generation processes

is introduced to test our algorithm. Figure 5.11 and Table 5.2 illustrate a simplified diagram

and sensor network for the steam generation plant, called Once-Through Steam Generator

(OTSG). In this process, boiler feed water (BFW) and fuel gas (FG) are sent to the heat

exchanger (including both convection section and radiation section) to produce wet steam

(combination of steam and water). The water fluid is split into several passes within the

heat exchanger and recombined at the outlet end for the further separation. In order to

reduce unnecessary fuel consumption, the steam quality (mass fraction of steam) needs to

be monitored.

The current solution relies on the slow-rate manual sampling, shown as the yellow circle

in Figure 5.11. On the other hand, there are fast-sampled process variables related to steam

quality: BFW-T, BFW-P, and In-F measure temperature, pressure and flow rate for the

inlet fluid; Skin-T, WS-P, and DP measure temperature, pressure and differential pressure

for the outlet fluid; FG-F shows the flow rate of energy flow. Above measurements have
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Variable Description Unit Sampling interval

BFW-T Temperature of boiler feed water ◦C 1 minute
BFW-P Pressure of boiler feed water kPa 1 minute

In-F Inlet flowrate of individual passes t/hr 1 minute
Skin-T Outlet temperature of individual passes ◦C 1 minute

DP Differential pressure of individual passes kPa 1 minute
WS-P Pressure of recombined wet steam kPa 1 minute
FG-F Flowrate of input fuel gas kg/hr 1 minute

SQ Reference output of steam quality % ∼ 6 hours

Table 5.2: List of available process variables

included all the direct measurements for the individual passes and were suggested as the

influential variables by engineers and also by our previous studies [115]. The objective is to

provide a reliable on-line estimation for individual pass SQ by using these fast-rate process

measurements. From the background information, the switched behaviour is mainly due

to the multiple operation regions and the composition of energy flow. Because of the fixed

equipment size and a relatively steady set-point (SP), the latent features can be assumed

to follow a unique dynamic model.

Figure 5.11: Flow Diagram of Once Through Steam Generator

5.5.3 Apply the Bayesian Feature Extractions

From the data visualization in Figure 5.12, there are three significant challenges in this

project: (1) unknown disturbances, the composition of fuel gas is not measured and will

115



result in different regions for FG-F; (2) frequent occurrence of outliers (also shown in Fig-

ure 5.2), since the DP measurements are unreliable and possess relatively large noise; (3) the

random sampling of reference outputs, since although the 7 inputs are regularly measured

at 1-min interval, the reference output is manually measured at roughly 6-hour interval.

Considering the significant difference in sampling intervals between the model inputs and

output, unsupervised learning for feature extraction is preferred.

Figure 5.12: Typical Measurements from an Operating Steam Generator

As discussed in previous sections, the robust emission models and the probabilistic learn-

ing algorithm are designed to overcome the challenge from these noisy measurements and

outliers. To address the unknown disturbances, the switched emission models are learned

along with dynamic latent features in the proposed method. Due to the limited computing

power in the industrial DCS system, complete online learning strategies are deemed not

suitable. In this study, three developed and widely applied algorithms: principal compo-

nents regression (PCR), partial least squares (PLS), and slow feature regression (SFR)[46]

are compared with our proposed algorithm. As a natural enhancement, lagged inputs are

incorporated to extend the above methods to their dynamic versions.

In this validation, 2-month data from 2 OTSGs are available; the first quarter of data

is used for training and the rest for verification. In the off-line learning procedure, the

proposed method identified the latent feature as in four-dimensional space (dS = 4) for

both 2 OTSGs, representing the number of hidden correlations. It also identified three

switched models (K = 3) for OTSG-1 and two switched models (K = 2) for OTSG-2,

relaxing the traditional modelling assumption of linear and unchanged correlations among
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Figure 5.13: Comparison of Prediction from Different Latent Features

process variables. As the switching behaviours have been addressed in this feature extraction

procedure, the regression model can then be established between the extracted features and

the reference output.

OTSG-1 OTSG-2
CC MAE RMSE CC MAE RMSE

DPCR 0.23 1.14 1.28 ¡0.1 0.93 0.95

DPLS 0.23 1.22 1.28 ¡0.1 1.04 1.03

DSFA 0.39 1.03 1.30 0.30 0.64 0.94

Proposed 0.52 1.10 1.24 0.32 0.69 0.86

Table 5.3: Validation Results of Steam Quality Inferential Sensing

As for the aforementioned MPPCA and RMPPCA, reference data points have to be

distributed to different clusters. With a limited number of reference output samples, this

will severely harm the regression results (in fact even worse than DPCR). In the on-line

validation, each predicted SQ is evaluated with the Pearson correlation coefficient(CC),

mean absolute error (MAE), and root mean square error (RMSE) respectively. Table 5.3

summarizes the optimal performance of each method, where CC is used to determine the

optimal latent dimension for each algorithm. It can be observed that our proposed method

can provide the highest correlation and the lowest RMSE for both OTSGs. Figure 5.13

shows the time trend of each prediction against the reference (DPCR is omitted for clarity),

where the y-axis is the steam quality value. Although the reference itself is relatively steady

but noisy, the proposed method still captured the overall trend of steam quality. The testing
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results on these two sets of industrial data indicate that the features extracted from our

prosed method can predict steam quality better than other competing algorithms.

5.6 Extending On-line Feature Learning Algorithm States to
General Multiple Models

In this part, we convert the above on-line learning algorithm to a new approach to state

estimation of multiple state-space models. Unlike the traditional methods (including the

interacting multiple model (IMM) algorithm) that approximate a Gaussian mixture dis-

tribution with a single Normal distribution, the proposed method approximates the joint

probability density functions (PDFs) of state and model identity through Bayesian infer-

ence. It is shown that the proposed method reduces the approximation error considerably,

and improves estimation accuracy without increasing computational cost. Analysis of its

specific features as well as a potential extension is also presented. Numerical examples with

a practical-oriented simulation are employed to illustrate the effectiveness of our proposed

method.

5.6.1 General Linear Multiple State-Space Models

By assuming that the switching actions are independent of state propagation and denoting

the model identity as rt ∈ {1, ...,K}, the linear multiple-model state-space system under

consideration is specified by

xt = F (rt) · xt−1 + T (rt) · vt, (5.79)

yt = H(rt) · xt + wt, (5.80)

where k is the time instant, xt denotes the state, yt is the observation, and vt ∼ N (0, Q(rt))

and wt ∼ N (0, R(rt)) denote the process and measurements noise with Gaussian distribu-

tions, respectively. In this paper, it is assumed that all the parameters involving F (rt), T (rt),

H(rt), Q(rt), and R(rt) are available once the model identity rt is determined. Here, rt can

be described with the Markovian dynamics:

Pr(rt = j | rt−1 = i, rt−2, ...) = Pr(rt = j | rt−1 = i) = pij , (5.81)

where i, j = 1, 2, ...,K.

Following a general definition, the objective of a state estimator is to estimate the state

variable xt given the observations Y1:t , {y1, y2, ..., yt}. In other words, the state estimator
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shall provide the posterior distribution p(xt | Y1:t) under the probabilistic framework. A pre-

defined cost function is then employed for the point estimate. For the models considered,

if the model identity rk is known, the conventional KF can provide the optimal estimates

conveniently. Otherwise, estimation algorithms should consider the uncertainty of rt during

filtering.

The problem considered in this paper is formulated as follows. Given the system model

(5.79) and (5.80), derive an estimator by calculating the posterior distribution p (xt | Y1:t)

using the VBI approach. The main purpose is to reduce the approximation error introduced

in the IMM method without increasing computational load.

5.6.2 State Estimation with Variational Methods

This vectorial representation of the model identity, in Section 5.3, is able to provide a

compact probability description of {xt, It} in the log-likelihood formulation, which facilitates

the approximation of posterior considerably. Using It in (5.7), the probabilistic description

for the transition and emission function will be

p(xt | xk−1, It) =
K∏
k=1

[
N (xt; F

(k)xt−1, Q̂
(k))
]I(k)
t
, (5.82)

p(yt | xt, It) =

K∏
k=1

[
N (yt; H

(k)xt, R
(k))
]I(k)
t
, (5.83)

where Q̂(k) , T (k)Q(k)(T (k))′. With the product operator, It serves as the exponential terms

for xt.

Since we are interested in the posterior PDF p (xt | Y1:t) and p (It | Y1:k), two proposal

distributions q(It) and q(xt) are used to approximate the joint posterior distribution as

q(xt) · q(It)→ p (xt, It | Y1:t) . (5.84)

The quality of this approximation is evaluated by the Kullback-Leibler (K-L) divergence as

DKL{q(It) q(xt) || p (xt, It | Y1:t)} =

∫
q(It) q(xt) · ln

q(It) q(xt)

p(xt, It | Y1:t)
· dxt · dIt. (5.85)

Note that this divergence can be minimized to zero if both sides of (5.84) are exactly

same; otherwise, it remains positive. To avoid calculating with the unknown distribution

p (xt, It | Y1:t), VB uses the following equality to increase explicitness:

ln p (yt | Y1:t−1) = DKL{q(It) q(xt) || p (xt, It | Y1:t)}+ Lq(It)q(xt) [yt | Y1:t−1] , (5.86)
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where Lq(It)q(Xt) [·] is defined as the variational Lower Bound (LB):

Lq(It)q(xt) [yt | Y1:t−1] =

∫
q(It) q(xt) · ln

p (yt, xt, It | Y1:t−1)

q(It) q(xt)
· dxt · dIt. (5.87)

Combining (5.85) and (5.87), equation (5.86) can be verified through the Bayes’ rule. Since

the recurrent likelihood p (yt | Y1:t−1) is independent from states, it can be treated as a

constant. Under this framework, the proposal distributions q(It) and q(xt) that provide the

highest value of Lq(It)q(xt) [yt | Y1:t−1] will be treated as the best approximation.

5.6.3 Approximate the Filter with Proposal Distributions

The realization of above approximation consists of two steps: deriving the posterior distri-

bution p (It | Y1:t) and estimating the proposal distribution q(xt). Before describing these

estimation equations, it would be helpful to clarify all the available information in the joint

distribution p (yt, xt, It | Y1:t−1). The superscripts (p) and (f) will be used to denote the pre-

dicted (given Y1:t−1) and filtered (given Y1:t) results, respectively. First, the model identity

can be separated out through

p(yt, xt, It | Y1:t−1) = p(yt, xt | Y1:t−1, It) · p(It | Y1:t−1),

where p(It | Y1:t−1) = Mul(It; π
(p)
1:K) can be obtained from the transition function for model

identity in (5.81). Then, p (yt, xt | Y1:t−1, It) can be written as∫
xt−1

p(yt | xt, It) · p(xt | xk−1, It) · p(xt−1 | Y1:t−1).

Since we focus on the mean and variance of the estimated state, p (xt−1 | Y1:t−1) is denoted

as N (m
(f)
t−1, P

(f)
t−1). With the likelihood terms introduced in equations (5.82) and (5.83), the

joint distribution can be expanded as

p(yt, xt, It | Y1:k−1) =

K∏
k=1

[
π

(p)
j · N (yt; H

(k) · xt, R(k))
]I(k)
t

×
∫
xt−1

K∏
k=1

[
N (xt; F

(k) · xt−1, Q̂
(k))
]I(k)
t · N (xt−1; m

(f)
t−1, P

(f)
t−1)

=

K∏
k=1

[
π

(p)
j · N (yt; H

(k) · xt, R(k)) · N (xt; m
(p)
t [k], P

(p)
t [k])

]I(k)
t
.

The second equality is because of the binary property of I
(k)
t , allowing the exchange of

integration and product operator. Thus, the predicted parameters can be derived as

m
(p)
t [k] = F (k) ·m(f)

t−1, (5.88)
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P
(p)
t [k] = F (k) · P (f)

t−1 · (F
(k))′ + Q̂(k). (5.89)

Based on this joint distribution, the posterior probability of It is obtained by applying

Bayes’ rule and integrating xt, which is given by

p(It | Y1:t) =
p(It, yt | Y1:t)

p(yt | Y1:t)
∝
∫
xt

p (yt, xt, It | Y1:t−1),

where p(yt | Y1:t) is the normalizing constant. This integration is straightforward within

conjugate distributions. First, the support of identity vector in allows a move-in of predict

distribution of Xt:

p(Yt, Xt, It | Y1:t−1)

=

K∏
k=1

[
N (Yt; µ

(k) +H(k) ·Xt, R
(k)) · π(p)

k · N (Xt; m
(p)
t , P

(p)
t )

]I(k)
t
. (5.90)

Then, switching the integration and summation will provided the result as∫
xt

p(yt, xt, It | Y1:t−1) =
K∏
k=1

[
π

(p)
k · Λk(yt)

]I(k)
t
,

where Λk(yt) , N (yt | H(k)m
(p)
t [k], R(k) + H(k)P

(p)
t [k](H(k))′). After normalization, the

posterior (or filtered) distribution is formed as p (It | Y1:t) = Mul(It; π
(f)
1:K), where

π
(f)
k ∝ π

(p)
k · Λk(yt). (5.91)

As can be seen, for the model identity, this derivation shares the same formulation as the

counterpart in the IMM algorithm. Since there is no further approximation conducted, we

will use (5.91) in the derivation of approximate p (xt | Y1:t).

Instead of updating and merging mixtures of Gaussian distribution, the proposed esti-

mator formulates q(xt) as a single Gaussian distribution and directly estimates it. Following

the updating equation , this proposal distribution can be calculated with the parameter from

(5.91), which is

ln q(xt) = Ep(It|Y1:t) [ln p(yt, xt, It | Y1:t−1)] + c.

Taking the logarithm of p (yt, xt, It | Y1:t−1) results in a quadratic function of xt. After cal-

culating the expectation, i.e., replacing It with π
(f)
j , the 2-nd order and 1-st order moments

of xt can be derived explicitly. At this point, q(xt) is updated as N (xt; m
(f)
t , P

(f)
t ) with

m
(f)
t = P

(f)
t

K∑
k=1

π
(f)
k

[
(H(k))′R(k)−1

yt + P
(p)
t [k]

−1
m

(p)
t [k]

]
,
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P
(f)
t

−1
=

K∑
k=1

π
(f)
k

[
(H(k))′R(k)−1

H(k) + P
(p)
t [k]

−1
]
. (5.92)

To conduct a sufficient optimization for both q(It) and q(xt), normally adequate updat-

ing steps should be performed iteratively, until “L” converges. In this study, however, the

optimal posterior p(It | Y1:t) can be obtained analytically as (5.91). Based on this result,

the optimization for q(xt) can then be achieved in one single step. In other words, as long

as the optimal estimate for model identity It is kept, the above approximation q(xt) will be

the optimal solution with respect to the K-L divergence to achieve

q(xt) · p (It | Y1:t)→ p (xt, It | Y1:t) . (5.93)

The core algorithm for our proposed identity expectation estimator (IEE) can now be

summarized as follows:

1. Predict: Get distributions of (5.88) and (5.89);

2. Identify: Derive the posterior p (It | Y1:t) with (5.91);

3. Approximate: Use (5.92) to estimate p (xt | Y1:t).

A recurrent filtering algorithm can always be written as a function of the prediction

term and the correction term. To have a clear picture, the same state transition parameters

are assumed for all models, making x
(p)
t as the unique solution in the prediction step. Its

updating step with multiple emission models is then formulated as

x
(f)
t = x

(p)
t +

K∑
k=1

π
(f)
k ·Gk ·

[
yt −H(k) · x(p)

t

]
, (5.94)

where π
(f)
k is the posterior weight for different emission models, which shares the same results

between IMM and IEE. The differences exist in the associated filter gains Gk, compared as

G
(IMM)
k = P

(p)
t · (H(k))′[H(k)P

(p)
t (H(k))′ +R(k)]−1,

G
(IEE)
k = [P

(p)
t

−1
+

K∑
k′=1

µ
(f)
j′ (H(k′))′R(k′)−1

H(k′)]−1(H(k))′R(k)−1
.

It can be noted that, for different models, IMM has a factor of [H(k)P
(p)
k (H(k))′+R(k)]−1, and

IEE has (H(k))′[R(k)]−1. Recalling the result of model identity in (5.91), the variance factor

[H(k)P
(p)
t (H(k))′ + R(k)] has been engaged in the Gaussian likelihood Λk(yt). Therefore,

IMM amplifies this variance factor again in each filter gain Gk, causing a sensitive estimate

of x
(f)
t ; whereas the result of IEE avoids this problem and leads to a smoother state estimate.

Another advantage is the reduction in computational load. Within the formulation (5.94),

matrix inverse operator is performed K times in IMM filter, whereas only twice in IEE.
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5.6.4 Extension for Other Latent Variables

This framework of utilizing the mathematical expectation can be easily extended to a

broader application scope. As is often the case, additionally hidden states or more compli-

cated models could be necessary for some specific requirements. By adopting a derivation

similar to that in the previous section, the approximate state estimation can be conducted

as long as the probabilistic description is available. As an example, the extension to robust

filtering is illustrated below.

In order to be more robust to the observation outliers, the Student’s t-distribution has

been widely used for modelling the noise [116]. In this extension, the measurements noise

wt is assumed to be independently and identically distributed as

wt ∼ S(0, R(k), ν), if : rt = k, (5.95)

where ν is the degree of freedom (DoF) for Student’s t-distribution (S). Rather than in-

vestigating this DoF further, this extension focuses on the procedure for a robust filtering.

When applied to data analysis, the Student’s t-distribution is usually split into an integra-

tion of Gaussian distribution and Gamma distribution (G) [117]. In the realization, if the

additional hidden variable Ut is introduced at each sample point to represent the sampled

scaling of variance, such as described in Section 5.3, the noise wt in the j-th model can be

described as

wt ∼
∫ ∞

0
N
(
0,
R(k)

u

)
· G
(
u;

ν

2
,
ν

2

)
du = N

(
0,
R(k)

U
(k)
t

)
. (5.96)

While formulating with VBI, U
(k)
t is estimated with the prior of Gamma distribution and

the corresponding likelihood. As discussed in previous sections, the posteriori expectation

can be derived with the time-variant assumption for Ut:

〈U (k)
t 〉 =

ν +m

ν + (yt −H(k) · x(p)
t )′R(k)−1

(yt −H(k) · x(p)
t )

, (5.97)

where m is the dimension of yt. Then, the posterior of model identity vector It will be able

to incorporate U
(k)
t as

E
p(I

(k)
t |Y1:k)

[I
(k)
t ] ≈ π(f)

k ∝ π
(p)
j · N (yt; H

(k) · x(p)
t ,

R(k)

〈U (k)
t 〉

+H(k)P
(p)
t (H(k))′). (5.98)

Since u
(k)
t has been introduced, the posterior of the identity vector is also an approximation

from π
(f)
k . With above two expectations, the implicit integration of Gaussian and Student’s
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t-distribution can be avoided. The estimation of xt is then turned out as

x
(f)
t = P

(f)
t

[
P

(p)
t

−1
x

(p)
t +

K∑
k=1

π
(f)
k 〈u

(k)
t 〉(H(k))′R(k)−1

yt

]
,

P
(f)
t =

[
P

(p)
t

−1
+

K∑
k=1

π
(f)
k 〈u

(k)
t 〉(H(k))′R(k)−1

H(k)

]−1

.

5.6.5 Application Examples of Filtering Algorithm

In the first set of simulations, the proposed algorithm is tested through a set of scalar jump

Markov linear systems (JMLS). Then, a manoeuvring target tracking example is used for

validation in the multi-dimensional case. After that, the strength for a robust estimation

will be discussed for the cases with outliers.

Figure 5.14: Root Mean Squared Error for 19 Examples

In this simulation, examples in [94] are adopted to compare the proposed IEE with IMM

as well as a re-weighed IMM algorithm (RIMM) [100]. The switched model identities are

generated with transition function according to (5.81), where the transition probabilities

are represented as

p11 = 1− 1/τ1, p12 = 1/τ1, p22 = 1− 1/τ2, p21 = 1/τ2. (5.99)

The states and observations are generated with equation (5.79) and (5.80), where the pa-

rameters are assigned as same as in [94] for 19 individual cases. For each case, 100 Monte

Carlo tests were performed with randomized initial points generated from N (0, 1). The

root mean square errors (RMSE) are compared in Figure 5.14, where the Opt represents
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the estimate with known model identities. The typical improved performance against IMM

and RIMM can be observed for case 3, 4, and 13. These three cases either have a large

observation noise or possess an infrequent jump behaviour, indicating that our proposed al-

gorithm has a stronger ability to eliminate observation noises for systems with large inertia

(large τ1:2). The step-wise root mean squared errors (RMSE) are compared in Figure 5.15

for this case.

Figure 5.15: Root Mean Squared Error for Example-4

To test the proposed algorithm in multi-dimensional cases, a target tracking problem

is adopted from [118]. The target is moving in 2D space, and the positions and velocities

forms 4D states, where the positions are measured with noise. Three transition models are

used to describe the straight, left-turn, and right-turn moves:

F (ω) =


1 0 sin(ω)

ω
cos(ω)−1

ω

0 1 cos(ω)−1
ω

sin(ω)
ω

0 0 9cos(ω)
10 −9sin(ω)

10

0 0 9sin(ω)
10

9cos(ω)
10

 , T =


1
2 0
0 1

2
1 0
0 1

 ;

F (1) = F (ω → 0), F (2) = F (ω), F (3) = F (−ω);

T (1) = T (2) = T (3) = T, Q(1) = Q(2) = Q(3) = σ2
q · I2;

H(1) = H(2) = H(3) =

[
1 0 0 0
0 1 0 0

]
;

R(1) = R(2) = R(3) = σ2
r · I2.

In this simulation, a nominal setting of {ω = 0.01;σq = 0.5;σr = 5} was utilized, and the

transition of model identities in (5.81) is described by matrices tr1 and tr2 for two types of
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dynamics:

tr1 =

 0.99 0.05 0.05
0.05 0.99 0.05
0.05 0.05 0.99

 , tr2 =

 0.8 0.1 0.1
0.8 0.1 0.1
0.8 0.1 0.1

 .

Case
IMM RIMM IEE

EP EV EP EV EP EV

tr1, ω, σq, σr 5.49 2.38 4.17 1.51 3.53 1.06

tr2, ω, σq, σr 5.45 2.36 3.52 1.06 3.52 1.06

tr1, 10ω, σq, σr 5.49 2.39 4.12 1.48 3.56 1.08

tr1, ω, 2σq, σr 5.49 2.70 4.48 2.21 4.12 1.85

tr1, ω, σq, 0.6σr 3.32 1.57 2.66 1.21 2.38 0.97

Table 5.4: Error from Monte Carlo Tests for the Tracking Problem

Each estimation algorithm was tested 100 times in several different cases around the

nominal setting, and the MAE was calculated for the Euclidean distance of position (EP)

and velocity (EV) from their true values respectively. The detailed settings and related

performance are presented in Table 5.4. It shows that IEE outperformed IMM in all these

five cases, and also performs better than RIMM in cases with tr1 as the transition matrix.

Two samples of the tracking results are shown in Figure 5.16 and Figure 5.17. IEE ap-

proach provided the closest tracking to the real one, and it was also the smoothest tracking

comparing to IMM and RIMM. It can be said that when the target moves with resistance

and turns with a certain level of consistency, IEE is expected to estimate more precisely

and be less affected by noise and misclassification.

In the last application example, the proposed estimator (IEE) and its extension to

Student’s t-distribution (IEE-t) are tested for a 2D state estimation. To focus on the extra

latent variable in (5.97), the system is built with identical transition models and distinct

emission models:

F =

[
0.95 2

0 0.84

]
, T =

[
1 0
0 1

]
, Q =

[
10 0.3
0.3 0.5

]
;

H(1) =

[
1 0
0 0

]
, H(2) =

[
1 0
2 0

]
, R(1) = R(2) = 150 · I2.

The outliers are generated from a contaminated Gaussian distribution: (1 − ε) · N (0, R) +

ε · N (0, k ·R) , where ε controls the proportion of outliers and k determines the magnitude

of outliers. The DoF of t-distribution could be determined from these parameters, but in

this study, small values of ε and a fixed value of ν (= 10) are used for a basic verification

of IEE-t.
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Figure 5.16: Example-1 of Tracking Results

Figure 5.17: Example-2 of Tracking Results

Methods
ε = 0.05, k = 9 ε = 0.1, k = 9 ε = 0.1, k = 16

State 1 State 2 State 1 State 2 State 1 State 2

IMM 8.44 1.39 9.62 1.47 11.75 1.68

IEE 7.22 1.15 7.93 1.16 9.08 1.21

IEE-t 7.12 1.14 7.69 1.15 8.31 1.18

ID-KF 6.37 1.13 6.96 1.13 8.09 1.18

Table 5.5: Error from Monte Carlo Tests for Different Outliers
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With 200 times of Monte Carlo test, the errors of each state are presented in Table

5.5 for three different outlier settings, where ID-KF is the estimation assuming known true

model identities but still unaware of noise contamination. Compared to the regular IEE,

introducing t-distribution has improved the performance and becomes more favourable when

more severe outliers present. The step-wise RMSE for the third outlier setting is shown in

Figure 5.18. It can be observed that ID-KF is not always optimal because of the existence

of outliers, and the IEE-t can even provide better performance.

Figure 5.18: Step-wise RMSE of Estimation with Outliers

5.7 Conclusions

In this chapter, a feature extraction method with multiple emission models is developed for

inferential sensor modelling. Based on the objective of solving the switching problem in pro-

cess data analytics, the proposed approach introduced multiple robust models to analyze

observations in different operation regions and formulated the latent features with tem-

poral correlation. By implementing a probabilistic formulation, an approximate Bayesian

inference algorithm is developed. In particular, a novel variational method is proposed for

state updating with multiple emission models along with their uncertainties. Through two

simulation examples, the proposed learning methods are shown to have the advantage of

automatic structure selection: the latent dimension and the number of active models can

be determined according to the variational lower bound. Through the industrial example,

an online feature extraction procedure is developed, and the extracted features are demon-

strated to be informative for the inferential sensing task. These simulation and industrial

application results conclude that our proposed feature extraction has advantages in both
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learning model identities and predicting the output.

In the extension part of this chapter, the on-line state estimation algorithm is developed

for the multiple model state estimation. Based on the objective of minimizing the statis-

tical distance from the exact but implicit posterior distribution, a novel state estimator is

designed from a vectorial representation of model identities and the variational learning

strategy. The strength of our proposed estimator is verified through benchmark studies for

the scalar JMLS and a problem of manoeuvring target tracking. Additionally, the usage of

the expected term for intermediate variables, like model identity, is proved to be useful for

more complicated models in state estimation. Most significant advantages are found for the

system with large inertia and considerable measurement noise.
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Chapter 6

Dynamic Latent Feature for Time
Delay Problems ∗

The uncertain time delay is a challenging problem in system identification. Accurate esti-

mates of input-output delay can bring significant improvement for system parameter estima-

tion. In this paper, a probabilistic identification framework is developed with consideration

of both time-invariant and time-variant time delays. Especially, the autoregressive moving

average model with exogenous inputs (ARMAX) is selected as the model structure, and its

estimation is conducted under the Bayesian inference framework. Within this framework,

a static model, a Markov model, and a hierarchical model are proposed to describe ran-

dom time delays under different application scenarios. For each scenario, the corresponding

learning algorithm is developed based on the variational Bayesian inference, which estimates

time delay and model parameters simultaneously. The proposed identification algorithms

are validated with numerical simulations along with an industrial application example.

6.1 Introduction

Identification performance of a data-driven model critically depends on how to model the

error (the noise). In a static input-output model y = f(x) + e, noise e denotes a distance

between model output f(x) and actual output y, and samples of e are usually assumed to

be independent and identically distributed. With this formulation of the probability distri-

bution, the optimal estimate of f(·) can be obtained by maximizing the likelihood function.

Generally, the modelling performance can be improved by a more accurate description of

the noise distributions. For example, high-order moments of the noise can be considered

when dealing with outliers [119, 120]. When it comes to time series analysis, coloured noise

∗A version of this chapter will be submitted for a journal publication
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ε is considered as a more appropriate description for error/disturbance [49], which describes

the temporal dependency as the auto-correlation: εt 6⊥ εt−1. As a typical example [121],

the autoregressive moving average model with exogenous inputs (ARMAX) is given as

yt + a1 · yt−1 + ...+ ana · yt−na

= b1 · ut−k + ...+ bnb · ut−k−nb+1

+ c0 · et + c1 · et−1 + ...+ cnc · et−nc , (6.1)

where the coloured noise is described through a weighted moving average of white noise e.

In this dynamic model, an input-output time delay k is also considered which is typically

assumed to be a constant. To take the randomness of time delay k into consideration, a

probabilistic framework for ARMAX identification should be developed.

6.1.1 Random Time Delays

In model (6.1), k is used to align unsynchronized input-output pairs. Usually, it is con-

sidered as a deterministic parameter, where either experimental approaches or data-driven

approaches can be used to infer it [122, 123]. In the data-driven approaches, both the

prediction error methods [122] and the impulse response methods [124] are used. To ac-

commodate non-linear systems, a sliding mode method has also been developed to identify

time delay within certain boundaries [125]. In the on-line identification case, a modified

least squares method can be used [126]. As for the state-space formulation, identifiability

of the delay parameter has also been investigated [127].

In a more challenging case, unknown time delay may show randomness at different time

instants [128, 129]. For example, in some cases where output data are collected from dif-

ferent locations, the time delay is determined by the transportation time of materials [130].

Figure 6.1 illustrates such random time delay, where two different bars represent a time-

variant time delay. In other cases where the output variables are measured in an off-line

manner, the input-output time delay can be affected by the time spent in laboratory anal-

ysis. In these scenarios, to facilitate parameter estimation, time delay should be identified

as a sequence of unknown parameters [131, 132].

When being treated as deterministic values, this time delay sequence may be determined

by dynamic time warping algorithms [133] in off-line estimation, or a recursive filter [134]

in on-line estimation. However, the aforementioned causes of time delay, either due to the

uncertain material transportation or due to uncertain off-line analysis delay, suggest it is

more appropriate interpreting time delay k as sequenced random variables. Comparing to
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Figure 6.1: Random Time Delays

the previous interpretation as an unknown constant parameter, this treatment does not

demand a different set of model parameters for different time delays. More importantly,

probability models [23] can be developed to incorporate modelling assumptions to describe

the random time delay. For example, the hidden Markov model can be used to describe a

dynamically varying time delay [135, 136].

6.1.2 Probabilistic Identification

In terms of the system identification objective, conventional algorithms usually search for

the optimal point for each parameter, such as the prediction error methods [122] and the

covariance analysis based methods [137]. In other modelling problems, such as regression

analysis, probabilistic learning approaches have been widely utilized in the recent decades

[38, 28]. Among these approaches, the Bayesian methods extend the point-estimation by in-

troducing the probability distribution for model parameters [23]. Through this probabilistic

description, modelling preferences and constraints can be integrated mathematically [38].

For example, the Laplace distribution can be used to describe a sparse parameter set [51],

and the Beta distribution can be used to describe constrained parameters [138]. To improve

the learning efficiency of Bayesian methods, the variational Bayesian inference [39] has been

commonly used. As an emerging learning method [28], it uses an explicit proposal distri-

bution q(·) to approximate the implicit posterior [39], which makes full use of estimation

uncertainty in the learning procedure.

For the discrete time delay variables considered in this paper, a vector representation of

time delay along with its corresponding probability distribution can be utilized [82, 139].

In this representation, a random vector It is used to represent time delay at time t: It =

[I
(0)
t , I

(1)
t , ..., I

(K)
t ]′, where each element determines a possible realization of time delay k.

While the formal definition will be presented in the next section, we use Figure 6.2 to

illustrate this formulation conceptually. Here, I
(k)
t determines whether the output sample
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Figure 6.2: Modelling Time Delay with Latent Variable

yt should be aligned with the prediction ŷt−k. In the Bayesian approach, the prior p(It) can

be updated according to the likelihood of each alignment, and the resultant posterior of It

can be used to assist identification algorithms [140, 141]. Unlike building multiple models

corresponding to different time delays, only one set of model parameters is identified owing

to the use of It [135, 136].

6.2 Problem Statement

In this study, system identification of the ARMAX model is developed with variational

Bayesian inference, where the proposal distribution q(·) will be utilized to approximate

exact posterior distributions. Within this framework, three modelling assumptions about

those delay variables will be realized, and advanced identification algorithms [141, 140] can

be integrated. In this chapter, the proposed time delay formulation and learning algorithms

are illustrated for the single-input-single-output ARMAX model in (6.1). It should be noted

that there is no significant barrier preventing the extension to non-linear or multivariate

processes.

The remainder of this chapter is organized as follows: Section 6.3 describes the proposed

probabilistic identification framework for ARMAX modelling. Section 6.4 discusses three

modelling assumptions for uncertain time delays and formulates a model for each assump-

tion. Section 6.5 and Section 6.6 illustrates novel learning algorithms for the time-invariant

time delay the time-variant time delays, respectively. Besides proper validations for each
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algorithm, the overall performance is presented with a simulated example and a practical

case study in Section 6.8. Concluding remarks are then presented in Section 6.9.

6.3 Bayesian Interpretation of ARMAX Identification

As introduced above, the ARMAX model is a representative example in the system identifi-

cation algorithms [121]. To investigate random time delay from the perspective of a dynamic

latent feature, the likelihood function of the ARMAX model should be first reflected as the

corresponding observation function of time delay. Also, in this section, its estimation proce-

dure is formed within the variational Bayesian inference. The proposed structure provides

a flexible probabilistic framework for the specific design for time delay modelling, and the

proposed inference methods have superior performance to the conventional gradient-based

optimization methods in system identification. Its usefulness is demonstrated by comparison

with the identification algorithm in MATLAB system identification toolbox.

To have a compact representation for the data samples and the model parameters in

(6.1), the following notations are introduced:

ψ
(k)
t ≡ [yt, ..., yt−na ,−ut−k, ...,−ut−k−nb+1]′, (6.2)

θab ≡ [1, a1, ..., ana , b1, ..., bnb ]
′, (6.3)

εt ≡ c0 · et + c1 · et−1 + ...+ cnc , (6.4)

where ψ
(k)
t is an “na + nb + 1” dimensional column vector stacking all related inputs and

outputs, and θab is the associated parameter vector. In this section, the models of time delays

will not be discussed for the time being and the superscript (k) is temporarily neglected.

Thus, the model is now abbreviated as θ′ab ∗ ψt = εt. The likelihood of training samples

(u1:T , y1:T ) can be formulated through the probability distribution of noise terms ε1:T :

p(ε1:T | θc) = p(y1:T | u1:T , θab, θc), (6.5)

where θc = [c0, ..., cnc ]
′. In the above probability distribution expression for εt, the likelihood

function for the ARMAX identification has been converted to considering a distribution of

coloured noises ε1:T .

6.3.1 Probability Density of Coloured Noise

Based on the definition in (6.4) and the assumption that et−nc:t are independently and

identically distributed, εt is auto-correlated but only correlated with nc’s preceding instants.
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If et is assumed to have a standard Gaussian distribution, namely et ∼ N (0, 1), the following

statistics can be used for a sufficient description of εt:

ri ≡ E[εt εt−i] =

{ ∑nc−i
j=0 cj · cj+i, ∀ i ∈ {0, ..., nc},

0, otherwise.
(6.6)

According to the Gaussian distribution and the linear transformation in (6.4), these 2nd

order moments are sufficient to represent the original noise model parameter θc [122].

Based on this finite length of auto-correlation, a proposition is presented here to describe

the probability density function of coloured noise.

Proposition 1 For nc order colour noise defined in (6.4), the temporal dependence can be

modelled as an nc + 1 order Markov sequence:

p(εt | εt−1, ..., ε1) = p(εt | εt−1, ..., εt−nc). (6.7)

Furthermore, by defining adjacent noise samples with Υt ≡ [εt, εt−1, ..., εt−nc ]
′ and Ῡt ≡

[εt−1, ..., εt−nc ]
′ the probability density function of sequenced noises ε1:T is formulated as

p(ε1:T ) =

T∏
t=nc+1

p(Υt) /

T∏
t=nc+2

p(Ῡt). (6.8)

Proof. It can be verified through the Bayes’ rule that

p(ε1:T ) =
T∏
t=2

p(εt | εt−1, ..., ε1)

=
T∏

t=nc+1

p(εt | εt−1, ..., εt−nc) · p(εnc , ..., ε1).

Thus, the distribution of Υt and the distribution of Ῡt can be used to describe the

coloured noise. In this study, these stacked noises follow the multivariate Gaussian distri-

bution: Υt ∼ N (0, R) and Ῡt ∼ N (0, R̄). The covariance matrix R, as well as its principal

sub-matrix R̄, is a semi-positive definite symmetric Toeplitz matrix, comprising of nc+1 (or

nc) distinct parameters shown in (6.6):

R = Toeplitz(r0, r1, ..., rnc), (6.9)

R̄ = Toeplitz(r0, r1, ..., rnc−1). (6.10)

By replacing the original noise parameter θc with these covariance matrices, the probability

distribution of ε1:T can be formulated through the covariance matrix R. Comparing to
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using the covariance of the whole sequence, such as Ω ≡ cov(Y |θ)/λ2 in Complement C7.7

of [122], the usage of R has eliminated those unnecessary zero elements, and only leaves

a minimum number of matrix elements in identification algorithms. In addition, it also

allows use of other probability distributions to describe Υt. In more general cases, where

noises are correlated in a non-linear way or distributed with non-Gaussian distribution, the

probability distribution for Υt is not necessarily multivariate Gaussian distribution. For

example, multivariate student-t distributions could be used to help increasing robustness.

In this study, we will use this probabilistic description to formulate a likelihood function

for the ARMAX model.

6.3.2 Log-Likelihood and Bayesian formulation of ARMAX Model

Similar to the coloured noise, the input-output pairs are also stacked for this likelihood

formation:

Ψt ≡ [ψt, ..., ψt−nc ]
′, (6.11)

Ψ̄t ≡ [ψt−1, ..., ψt−nc ]
′. (6.12)

According to ψt in (6.2), eligible samples of Ψt are drawn from

Ts = nc + max{na, nb + k − 1}+ 1. (6.13)

Based on Proposition 1, the log-likelihood function of ARMAX model (6.1), with a given

time delay k and et ∼ N (0, 1), can be formed as

L ≡ ln p(y1:T | u1:T , a1, ..., ana , b1, ..., bnb , c0, ..., cnc)

=

T∑
t=Ts

ln p (Υt | R)−
T∑

t=Ts+1

ln p
(
Ῡt | R̄

)
=

T∑
t=Ts

lnN (Ψt · θab; 0, R)−
T∑

t=Ts+1

lnN
(
Ψ̄t · θab; 0, R̄

)
. (6.14)

In terms of the model parameters θab, this log-likelihood is a quadratic function. Thus, con-

ventional challenges from the non-linearity is converted to the challenges in the estimation

of covariance matrix R. It can be seen that R̄ is part of R.

In Figure 6.3, one example of L is plotted as a function of two-dimensional R from the

definition (6.9). Based on this formulation of log-likelihood, the covariance parameters, for

example {r0, r1}, can be optimized by using partial derivatives:

∂L
∂ri

=− T − Ts + 1

2
tr{R−1 · ∂R

∂ri
}+

T − Ts
2

tr{R̄−1 · ∂R̄
∂ri
}
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− 1

2
tr{−R−1

T∑
t=Ts

ΥtΥ
′
t R
−1 · ∂R

∂ri
}+

1

2
tr{−R̄−1

T∑
t=Ts+1

ῩtῩ
′
t R̄
−1 · ∂R̄

∂ri
}, (6.15)

where tr{·} is the trace operator for a matrix. Υt and Ῡt are defined in Theorem 1. The

matrices ∂R/∂ri and ∂R̄/∂ri contain binary elements of {0, 1}, indicating the position of

ri in corresponding matrix. For example, ∂R̄/∂r0 is the nc-dimensional identity matrix.

Thus, the derivative based algorithm can be realized for searching the optimal point of

[r0, r1, ..., rnc ]. An feasible initial point can be selected as the identity matrix as the rule-of-

thumb, representing the prior assumption about white noise. From the optimized covariance

parameters, the original model parameters can be recovered uniquely according to the nc+1

equations from (6.6). Thus, a deterministic optimization becomes a feasible solution to the

maximum likelihood estimation of the ARMAX model.

Figure 6.3: Log-Likelihood Function of ARMAX Covariance Parameters

However, for our probabilistic modelling within the Bayesian framework, the prior dis-

tributions are needed. As for the prior of θab, to deal with this quadratic log-likelihood

function, the Gaussian distribution can be used as a conjugate prior in the variational

Bayesian inference:

p(θab) = p(a1, ..., ana , b1, ..., bnb) = N (0, Pab). (6.16)
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In this distribution, Pab as an na + nb dimensional covariance matrix can be assigned with

large magnitude to represent a non-informative prior.

On the other hand, selecting a distribution for the covariance matrix R is not straightfor-

ward. The specific properties about R – symmetric, semi-positive definite, Toeplitz – make

the common matrix distributions unsuitable. For example, Inverse-Wishart distribution

violates the definition of a Toeplitz matrix. Also, other matrix decomposition techniques

will introduce more additional independent parameters, which reduces learning efficiency.

In this study, within the variational Bayesian inference, a particle-based representation of

p(R) is proposed as

p(R) = p(r0 ·R0) = p(r0) · P (R0)

= G−1(r0; αr0 , βr0) · Unc(R0; − 1, 1). (6.17)

The first element (the scale variable) r0 is described with Inverse-Gamma distribution G−1,

and the normalized correlation matrix R0 = R/r0 is described through a particle generating

procedure Unc , where the Uniform distribution U(−1, 1) is used. Here, the specific sampling

algorithm [142] of R0 ∼ Unc(−1, 1) serves as a prior for the following Bayesian inference.

Algorithm 1 Sample (nc+1)-dim Correlation Matrix

1: for i = 1 to nc do
2: ϕi,i = αi ∼ U(−1, 1);
3: for j = 1 to i− 1 do
4: ϕi,j = ϕi−1,j − αi ∗ ϕi−1,i−j ;

5: ρi =
∑i

j=1 ϕi,j · ρi−j ; ρ0 = 1;

6: return R0 ← Toeplitz(1, ρ1, ..., ρnc);

6.3.3 Identification with Variational Bayesian Inference

To conduct approximate inference, the parametrization of proposal distributions should be

clarified. Based on the probabilistic conjugacy [38], the proposal distribution of θab can be

chosen as

q(θab) = N (θab; m̂ab, P̂ab), (6.18)

where m̂ab and P̂ab are hyper-parameters in this proposal distribution. With particles of

R0 being generated from Unc(R0), the log-likelihood (6.14) can provide the correspond-

ing weights for these particles. Thus, based on the concept of importance sampling, the
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approximated posterior is represented by N pairs of sample R
(i)
0 and weight ŵ(i):

q(R) ≈ G−1(r0; α̂r0 , β̂r0)

N∑
i=1

ŵ(i)δ(R0 −R(i)
0 ). (6.19)

With sufficient number of particles, q(R) can be well represented by the particles [142].

where r0 still follows the Inverse-Gamma distribution because of conjugacy, and δ(·) stands

for the Dirac delta function.

The learning objective is then formulated through an approximation of posterior:

q(θab) · q(R)→ p(θab, R | u1:T , y1:T ). (6.20)

Instead of searching the posterior directly, the proposal distributions, specifically their

hyper-parameters, can be manipulated to minimize the statistical difference between the

two sides of (6.20). According to the variational Bayesian inference, the best estimation

can be obtained when the Kullback-Leibler (K-L) divergence is minimized:

min
q(θab)q(R)

DKL{q(θab) q(R) ‖ p(θab, R | u1:T , y1:T )}. (6.21)

With the use of factorized and parametrised proposal distribution in (6.20), the inference

problem becomes tractable.

Based on the multivariate Normal distribution adopted in the objective L, two key

intermediate statistics are crucial for solving this learning problem. The first one is the

trace function for evaluating covariance parameters:

ftr(R0 | q(θab)) = tr{R−1
0

T∑
t=Ts

Ψt〈θab · θ′ab〉Ψ′t}

− tr{R̄−1
0

T∑
t=Ts+1

Ψ̄t〈θab · θ′ab〉Ψ̄′t}. (6.22)

It depends on the proposal distribution q(θab) in (6.18), where 〈θab · θ′ab〉 is achieved as the

second moment from this Normal distribution. The second one is about an expectation

matrix for updating model parameters:[
〈λ0〉 〈mθ〉′
〈mθ〉 〈Λθ〉

]
=

T∑
t=Ts

Ψ′t〈R−1〉Ψt −
T∑

t=Ts+1

Ψ̄′t〈R̄−1〉Ψ̄t. (6.23)

It depends on the proposal distribution q(R) in (6.19). where 〈R−1〉 and 〈R̄−1〉 are obtained

from this particle based distribution.
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Thus, the detailed variational updating steps for the proposed objective (6.21) can be

realized. Based on the step-wise KL divergence, the optimal q∗(θab) is obtained as

ln q∗(θab) = 〈ln p(y1:T , θab, R | u1:T )〉+ const.

= 〈L〉+ ln p(θab) + const.

⇒ m̂∗ab = −P̂ ∗ab · 〈mθ〉; P̂ ∗ab = (P−1
ab + 〈Λθ〉)−1, (6.24)

where L is obtained from (6.14). Based on the quadratic form of L and Gaussian distri-

butions for both prior and proposal distribution, the variational parameters can then be

determined uniquely. The necessary statistics are obtained as

〈θabθ′ab〉 =

[
1 m̂′ab
m̂ab m̂ab · m̂′ab + P̂ab

]
. (6.25)

Similarly, the updating equation for q(R) is obtained as

ln q∗(R) = 〈L〉+ ln p(r0) + ln p(R0) + const.

⇒ α̂r0 = αr0 + (T − Ts + nc + 1)/2, (6.26)

β̂r0 = βr0 +
1

2

N∑
i=1

ŵ(i) · ftr(R(i)
0 ), (6.27)

ln ŵ(i) = −T − Ts + 1

2
ln |R(i)

0 |+
T − Ts

2
ln |R̄(i)

0 | −
α̂r0

2β̂r0
· ftr(R(i)

0 ). (6.28)

Essentially, r0 and R0 are assumed to be independent in the proposal distribution, which

makes it possible to update them separately. The necessary statistics for other variational

updating steps can be obtained as follows:

〈R−1〉 = α̂/β̂ ·
N∑
i=1

ŵ(i) · [R(i)
0 ]−1,

〈R̄−1〉 = α̂/β̂ ·
N∑
i=1

ŵ(i) · [R̄(i)
0 ]−1. (6.29)

Especially, in terms of the particle-based representation of the covariance parameter R,

one empirical re-sampling algorithm is also proposed to increase the efficiency of importance

sampling. It has been illustrated in Algorithm 2. In practice, it can concentrate particles

around the interested area, and thus forms a better sample distribution.
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Figure 6.4: Estimating Covariance Parameters through Re-Sampling Methods

Algorithm 2 Re-Sampling Correlation Matrices

1: data particles p(1:N) and weights w(1:N);
2: require αp for wth :

∑N
i=1 1(w(i) < wth) = αp ·N ;

3: for i = 1 to N do
4: if w(i) < wth then
5: pgood ← rand{p(j) : w(j) > wth};
6: p(i) ← αp · p(i) + (1− αp) · pgood;
7: else
8: p(i) ← p(i);

A validation example is shown in Figure 6.4 for two-dimensional R0 = Toeplitz(ρ0, ρ1).

The initial particles (blue circles) are distributed sparsely according to Unc , but the re-

sampled ones are gradually concentrated on the high probability area. Typically, as shown

in the sub-figure, particles from the 6th re-sampling step (black crosses) have distributed

around the “useful” area, and present a granular shape for q(R).

In order to recover the original “C-polynomial” parameters in (6.4), the mean estimate

from these particles: 〈R〉, is used to solve equations in (6.6). Numerical simulations have

been conducted to validate this procedure with both methods (M) including the partial
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Table 6.1: Estimate C Parameters with Different Orders
n∗c M nc = 2 nc = 3

1
Opt 2.97,−1.91, 0.01 2.99,−1.87, 0.01, 0.06
Sam 2.98,−1.87, 0.02 3.00,−1.85, 0.01, 0.06

2
Opt 2.98,−1.92, 0.92 2.96,−1.92, 0.99, 0.08
Sam 2.99,−1.86, 0.89 2.97,−1.87, 0.96, 0.09

3
Opt 5.74,−4.29, 5.74 2.98,−1.90, 0.97,−0.41
Sam 2.92,−1.85, 1.21 2.98,−1.89, 0.97,−0.44

derivative based optimization (Opt) and the proposed sampling algorithm (Sam). Table

6.1 shows a comparison result for the second order case and the third order case. The

true noise is generated for n∗c ∈ {1, 2, 3} cases by using the true parameters c∗ = [3,−2],

c∗ = [3,−2, 1], and c∗ = [3,−2, 1,−0.5], respectively. In the inference procedure, the noise

polynomial order is assumed to be nc = 2 or nc = 3. From the result in Table 6.1, it can

be observed that both methods can provide accurate results when the assumed noise order

is equal to or higher than the true order. However, as for the case when the assumed order

is lower than the true one, the sampling based method shows more robustness.

In addition to validating the identification algorithm for “C-polynomial” parameters,

the advantage of proposed probabilistic identification of the ARMAX model is compared

with the identification toolbox in MATLAB. A benchmark Stirred Tank Heater simulation

is used to generate data, using a Random Binary Signal at the steam valve as the input

and collecting temperature data as the output. With a given set-point of water level, 1000

samples are collected as the training data and 500 samples as the validation data. For a

fair comparison, our proposed algorithm (VI-ID) is compared with the MATLAB built-

in function for the ARMAX model (denoted as MATLAB) for a given time delay value

(k∗=3). The performance is evaluated for several possible combinations of {na, nb, nc}.

The “goodness-of-fit” is calculated by using the normalized root mean square error between

the actual output y and the ∞-step prediction ŷ:

Fit% = 1− ‖y − ŷ‖2
‖y −mean(y)‖2

.

The result is shown in Figure 6.5, where the sufficiency of our proposed identification

algorithm is validated. Comparing to the existing method, VI-ID also has a wider range of

good performance, which indicates that by applying the proposed probabilistic algorithm,

identification results show less sensitive to variations in structural parameters na and nb.
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Figure 6.5: Validating Identification Performance of Bayesian ARMAX
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6.4 Probabilistic Formulation of Time-Invariant Time Delays

The proposed probabilistic framework has provided a solid identification performance, mak-

ing itself a good foundation for the probabilistic modelling of ARMAX with random time

delay k. Besides the previous introductory description about the lag variable It, here we

present a formal definition for time delay variables and their functionality.

Definition 2 For the bounded integer time delay parameter, k ∈ {0, ...,K}, in the discrete-

time ARMAX model (6.1), a lag vector It with K+1 binary elements:

It = [I
(0)
t , I

(1)
t , ..., I

(K)
t ]′, ∀ k : I

(k)
t ∈ {0, 1}, (6.30)

can be defined with a constraint that ‖It‖0 = 1. By using It to replace k in (6.2):

ψt = ψ
(k)
t ⇔ I

(k)
t = 1, (6.31)

the dependency between the noise εt and this lag vector It is then formulated as

p(εt | It) =
K∏
k=0

[
p(θ′ab · ψ

(k)
t )
]I(k)
t
. (6.32)

In this definition, ‖·‖0 stands for l0 norm, indicating the number of non-zero elements. It

can be verified that It is only defined at K+1 possible values, which is consistent with

the original time delay k. By using this lag vector, the time delay is introduced with the

probability dependency, as shown in (6.32), which facilitates the probabilistic identification

of the ARMAX model.

The motivation of this lag vector representation is from the study on multi-modes ob-

servations, which has been presented in Chapter 5. Instead of being used as weighting

coefficients for all possible cases, this vectorial realization of time delay allows more effec-

tive development of probabilistic algorithms. Technically, the location of the exponential

term of original probability can simplify the derivation, which becomes the summation of

coefficients in the log-likelihood term.

Based on its discrete support domain, the Multinomial distribution Mul is usually used

to describe It:

p(It | π) = Mul(It; π) =

K∏
k=0

[π(k)]I
(k)
t , (6.33)

where the parameter π = [π(0), π(1), ..., π(K)]′ is a sum-one vector with non-negative ele-

ments: ∏K
k=0[π(k)] = 1, ∀ k ∈ {0, ...,K} : π(k) ≥ 0.
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This parameter actually represents the occurrence possibility of each delay value:

Pr[I
(k)
t = 1] = π

(k)
t .

Based on this parametrization, the prior knowledge of It can be imposed through a param-

eter vector π0, and its updated posterior can be described by a specified parameter vector

π̂t, such as those visualized by the blue bars in Figure 6.2.

However, for the sequenced input-output pairs, the proposal distribution should be

defined on the sequenced I1:T :

q(I1:T )→ p(I1:T | y1:T , u1:T ).

The formation for q(I1:T ) as well as for p(I1:T ) depends on the modelling assumptions

and application scenarios. In this study, three probability models are used to describe

the behaviour of time delays in distinct conditions. As for this section, the probability

distribution for a time-invariant time delay is illustrated, and one example application of

this case is provided to illustrate probabilistic ARMAX modelling with time-invariant time

delay.

6.4.1 Modelling Assumption

This basic case deals with the static time delay, by assuming that all lag variables share

the same value. Under the proposed probabilistic framework, this condition is presented by

a single delay vector Ink . Consequently, the parametrization of prior distribution p(I1:T )

becomes

I1 = I2 = · · · = IT = Ink

⇒ p(I1:T ) = p(Ink) = Mul(Ink ; π0). (6.34)

With the use of the elementary likelihood defined in Definition 2, the variational updating

procedure will result in a conjugate posterior, for which the proposal distribution q(I1:T ) is

formed as

q(I1:T ) = q(Ink) = Mul(Ink ; π̂). (6.35)

Based on such parametrization, each pairing possibility introduced in Figure 6.2 can now be

summarized by the vector π̂. The probability graphical model of this assumption is shown

in Figure 6.6, where green circles denote random variables and blue diamonds are their

parameters to be estimated. After a joint learning procedure for both model parameters

and the lag variables, the most likely time delay value can be taken from the converged π̂.
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Figure 6.6: Modelling Assumptions for Time-Invariant Time Delays

6.4.2 Variational Inference

Before the discussion about identification procedure for time-variant cases, the time-delay

model in Figure 6.6 should be connected with probabilistic ARMAX model. Since all the

lag vectors share a same value, both data vector ψt and stacked data matrix Ψt have K+1

different time delay realizations:

Ψt = Ψ
(k)
t = [ψ

(k)
t , ψ

(k)
t−1, ..., ψ

(k)
t−nc ]

′ ⇐⇒ I(k)
nk

= 1,

where the superscript (k) denotes delay unit. From Theorem 2, the conditional probability

for the noise vectors becomes

p (Υt | Ink , R) =
K∏
k=0

[
N (Ψ

(k)
t · θab; 0, R)

]I(k)
nk
, (6.36)

p
(
Ῡt | Ink , R̄

)
=

K∏
k=0

[
N (Ψ̄

(k)
t · θab; 0, R̄)

]I(k)
nk
. (6.37)

Thus, the original log-likelihood in (6.14) can be extended with the condition on Ink , and

the log-likelihood with time-invariant time delay becomes

LTI ≡ ln p(y1:T | Ink , u1:T , θab, R)

=
T∑

t=Ts

ln p (Υt| Ink , R)−
T∑

t=Ts+1

ln p
(
Ῡt| Ink , R̄

)
=

K∑
k=0

I(k)
nk
·

[
T∑

t=Ts

lnN (Ψ
(k)
t · θab; 0, R)−

T∑
t=Ts+1

lnN (Ψ̄
(k)
t · θab; 0, R̄)

]
. (6.38)

It can be observed that the elements of lag vector Ink appear as the summation coefficients

before lnN terms, which facilitates the learning procedure of Ink :

ln q∗(Ink) = 〈LTI〉(θab,R) + ln p(Ink) + const.

146



⇒ ln π̂(k) = lnπ
(k)
0 − 1

2
tr{(

T∑
t=Ts

Ψ
(k)′

t 〈R−1〉Ψ(k)
t

−
T∑

t=Ts+1

Ψ̄
(k)′

t 〈R̄−1〉Ψ̄(k)
t )〈θabθ′ab〉}, (6.39)

where 〈·〉 denotes the expectation operator with respect to q(θab) and q(R).

As presented in the previous section, learning θab and R only depends on two key

intermediate statistics in (6.23) and (6.22). With an unknown but time-invariant time

delay, these two statistics shall be revised by considering a dependency on q(Ink):

f
(TI)
tr (R0) = tr{R−1

0 ·
K∑
k=0

〈I(k)
nk
〉

T∑
t=Ts

Ψt〈θabθ′ab〉Ψ′t}

− tr{R̄−1
0 ·

K∑
k=0

〈I(k)
nk
〉

T∑
t=Ts+1

Ψ̄t〈θabθ′ab〉Ψ̄′t},

[
〈λ0〉 〈mθ〉′
〈mθ〉 〈Λθ〉

](TI)

=

K∑
k=0

〈I(k)
nk
〉{

T∑
t=Ts

Ψ′t〈R−1〉Ψt −
T∑

t=Ts+1

Ψ̄′t〈R̄−1〉Ψ̄t},

where 〈I(k)
nk 〉 is calculated from the Multinomial parametrization in (6.33). Actually, above

two equations have revealed the essential advantage of introducing a probability modelling

for time delay: learning model parameters with a consideration about the time delay un-

certainty. In each updating step, 〈I(k)
nk 〉 is obtained from the latest estimation of time delay.

With these additional weighting factors, use of the mode and uncertainty of time delay can

make improvements for optimization effectiveness [39].

For validation, this inference algorithm is tested by the aforementioned Stirred Tank

Heater simulation example. As indicated by Figure 6.5, a set of structural parameters

[na, nb, nc] is selected as [3, 1, 1]. In Figure 6.7, the learning procedure for the case K = 9

has been shown with the first three evolutions of π̂ and q(b1). It can be observed that

the mode of π̂ has quickly converged to the optimal time delay k = 3, and the proposal

distribution of b1 has evolved correspondingly.

In addition to the use of the non-informative initial guess, a wrong initial guess (k = 8)

is used deliberately for a robustness test. Similar plots are shown in Figure 6.8, where q(b1)

was deviated initially but was gradually corrected along with the convergence of π̂. Thus,

it has been validated that by considering the randomness of time-invariant time delay, the

proposed algorithm can simultaneously learn the parameters and unknown time delay k.
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Figure 6.7: Learning Time Invariant Delay with Trivial Initial

Figure 6.8: Learning Time Invariant Delay with Wrong Initial

148



6.5 Probabilistic Formulation of Independent Time-Variant
Time Delays

Similar as in the previous discussion for the time delay inference, the connection between

time delay models and probabilistic ARMAX model should be elaborated. As for the

ARMAX modelling with time-variant time delays, the stacked data matrix will be associated

with several time delays, making the indexing as

Ψ
(k0,...,knc )
t ≡ [ψ

(k0)
t , ψ

(k1)
t−1 , ..., ψ

(knc )
t−nc ]′.

Therefore, the noise vectors Υt and Ῡt also depend on several lag vectors. The log-likelihood

of ARMAX model with time-variant time delays is thus formulated as

LTV ≡ ln p(y1:T | I1:T , u1:T , θab, R)

=
T∑

t=Ts

ln p (Υt | It:t−nc , R)−
T∑

t=Ts+1

ln p
(
Ῡt | It−1:t−nc , R̄

)
, (6.40)

where the calculation of each conditional distribution of noise vectors requires an enumer-

ation of all possible delays:

p(Υt | It:t−nc , R) =
K∏

k0=0

· · ·
K∏

knc=0

[
N (Ψ

(k0,...,knc )
t · θab; ~0, R)

]I(k0)
t ···I(knc )

t−nc
, (6.41)

p(Ῡt | It−1:t−nc , R̄) =
K∏

k1=0

· · ·
K∏

knc=0

[
N (Ψ̄

(k1,...,knc )
t · θab; ~0, R̄)

]I(k1)
t−1 ···I

(knc )
t−nc

. (6.42)

Based on this log-likelihood, the remaining learning procedure, specifically the calculation

of those key statistics f
(TV )
tr (R0), 〈mθ〉(TV ) and 〈Λθ〉(TV ), requires the joint estimation of

〈I(k0)
t , ..., I

(knc )
t−nc 〉 and 〈I(k1)

t−1 , ..., I
(knc )
t−nc 〉. It can be observed that a large number of enumera-

tions are involved in the parameter estimation with time-variant time delay. In the later part

of this section, a practical constraint will be proposed to prune unnecessary calculations.

6.5.1 Modelling Assumption

When time delays are time-varying but sequentially independent, there is no need to model

their dynamics, for example, when the actual delay comes from the human error or the

inconsistent sampling procedure. In this case, the prior distribution p(I1:T ) and the proposal

distribution q(I1:T ) are parametrised as independent individual distributions:

p(I1:T ) =
T∏
t=1

p(It) =
T∏
t=1

Mul(It; π), (6.43)
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q(I1:T ) =

T∏
t=1

q(It) =

T∏
t=1

Mul(It; π̂t). (6.44)

Different from the proposal distribution (6.35) in time-invariant case, here the proposal

distribution (6.44) is parametrised with multiple parameters π̂t|t=1,··· ,T . Each of these pa-

rameters determines a posterior of time delay at one time instant. By investigating the

probability distribution of these posterior realizations, a general behaviour of time delays

can be summarized.

To realize such hierarchical modelling, the parameter π in (6.43) is first modelled as a

random vector, as denoted with the green circle in Figure 6.9. Based on its definition as the

sum-one vector with all positive elements, the prior distribution π is selected as a Dirichlet

distribution for the probabilistic conjugacy:

p(π | α) = Dir(π; α) =
1

B(α)

K∏
k=0

[π(k)]α
(k)−1, (6.45)

where B(·) is the multivariate Beta function. Similarly, the proposal distribution for π is

formulated as

q(π) = Dir(π; α̂). (6.46)

During the variational Bayesian inference, this hyper-parameter α̂ will be updated with the

estimated π̂t, resulting the collection of primary modelling results.

Figure 6.9: Modelling Assumptions for Independent Time-Variant Time Delays

6.5.2 Variational Inference

In this part, the estimation of q(I1:T ) is obtained based on LTV in (6.40) and the proposed

hierarchical model. Since the prior distributions of I1:T and π have been defined in (6.43)
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and (6.45) respectively, the updating procedure of q(I1:T ) becomes

ln q∗(I1:T ) = 〈LTV 〉(θab,R) + 〈ln p(I1:T | π)〉(π) + const..

Based on the independence assumption in (6.44), the detailed updating equation for each

individual q(It) can be formulated based on the knowledge of all the other lag vectors

q(I{1:T}\t):

ln q∗(It) =〈LTV 〉(θab,R,I{1:T}\t) + 〈ln p(It | π)〉π + const.

= − 1

2

T∑
t=Ts

Knc∑
k0,...,knc

〈V (k0,...,knc )
t 〉q(I{1:T}\t) · tr{〈Ψ

(k0,...,knc )
t R−1(Ψ

(...)
t )′〉〈θabθ′ab〉}

+
1

2

T∑
t=Ts+1

Knc∑
k1,...,knc

〈V̄ (k1,...,knc )
t 〉q(I{1:T}\t) · tr{〈Ψ̄

(k1,...,knc )
t R̄−1(Ψ̄

(...)
t )′〉〈θabθ′ab〉}

+
K∑
k=0

I
(k)
t · 〈lnπ

(k)
t 〉+ const.

=

K∑
k=0

I
(k)
t · [S

(k)
t + 〈lnπ(k)〉] + const., (6.47)

where 〈·〉q(I{1:T}\t) stands for the expectation with respect to distribution of other lag vectors.

Thus, the optimal π̂
(k)
t for proposal distribution q(It) can be obtained by normalizing the

factor [S
(k)
t + 〈lnπ(k)

t 〉]. The innovation part S
(k)
t is obtained from the trace terms in which

It is involved and ψt is fixed as ψ
(k)
t . Mathematically, it is defined as

S
(k)
t =

t+nc∑
tn=t

∑
I{tn:tn−nc}\t

〈I{tn:tn−nc}\t〉 · ln{ Γ
(k0,...,knc )
t | ψt = ψ

(k)
t }. (6.48)

A complete formulation of the observation term Γ
(k0,...,knc )
t will be illustrated later in

(6.57), where the proposal distribution q(θab) and q(R) are utilized. Here, two special cases

are presented as illustrative examples. When applied to the white noise case, where nc = 0,

it becomes

S
(k)
t = −1

2
tr{ ψ(k)′

t 〈R−1〉ψ(k)
t 〈θabθ′ab〉 }.

When it comes to the first order colour noise, namely nc = 1, the innovative term becomes

S
(k)
t =

K∑
k′=0

〈I(k′)
t−1 〉 ln{Γ

(k,k′)
t }+

K∑
k′′=0

〈I(k′′)
t+1 〉 ln{Γ

(k′′,k)
t }

=
K∑
k′=0

〈I(k′)
t−1 〉tr{[ψ

(k)
t , ψ

(k′)
t−1 ]′〈R−1〉[ψ(k)

t , ψ
(k′)
t−1 ]〈θabθ′ab〉}
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+

K∑
k′′=0

〈I(k′′)
t+1 〉tr{[ψ

(k′′)
t+1 , ψ

(k)
t ]′〈R−1〉[ψ(k′′)

t+1 , ψ
(k)
t ]〈θabθ′ab〉}

− tr{ψ(k)′

t 〈R̄−1〉ψ(k)
t 〈θabθ′ab〉}.

The independence among the proposal distributions in (6.44) also leads to a production

formation for the joint statistic:

〈I(k0)
t I

(k1)
t−1 · · · I

(knc )
t−nc 〉 = 〈I(k0)

t 〉〈I(k1)
t−1 〉 · · · 〈I

(knc )
t−nc 〉. (6.49)

A similar production applies to 〈I(k1)
t−1 · · · I

(knc )
t−nc 〉. As for updating the proposal distribution

for parameter π defined in (6.46), the prior distribution (6.45) will be used to form the

following updating equation:

ln q∗(π) = 〈ln p(ITs−nc:T | π)〉I1:T
+ ln p(π | α) + const.

⇒ α̂(k) = α(k) +
T∑

t=Ts−nc

〈I(k)
t 〉. (6.50)

Based on the Dirichlet distribution in (6.45), the necessary statistic in updating equation

(6.47) is obtained as

〈lnπ(k)〉 = ψ{α̂(k)} − ψ{
K∑
k′=0

α̂(k′)},

where ψ{·} stands for the Digamma function. The validation of above modelling algorithms

will be discussed later, together with the case of sequentially dependent time-variant time

delays.

6.6 Probabilistic Formulation of Dependent Time-Variant Time
Delays

Similar to the discussion in Chapter 2, a dynamic model can be used to describe sequentially

dependent time-variant time delays and improve the representation of latent variables. In

the above probability model of time delay, the assumption/parametrization of time-variant

time delay in (6.43) and (6.43) is only a special probability description of the latent sequence

I1:T . With a dynamic model, in particular the hidden Markov model, the probability de-

scription can be generalized by considering the joint distribution of consecutive lag vectors,

namely p(It−1, It).
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6.6.1 Modelling Assumption

When time delays are sequentially dependent, it is necessary to model their dynamics. For

example, the time delay can be caused by material transportation or other related processes.

In this case, the probability distribution of the time delays I1:T cannot be assumed to be

independent. As a conventional dynamic model for discrete variables, the (first-order)

Markov model with a probability transit matrix Π is usually imposed [82, 136]:

p(It | It−1,Π) =
K∏
i=0

K∏
j=0

[Πi,j ]
I

(i)
t−1·I

(j)
t .

where Πi,j defines the transition probability from ith case to jth case. The prior for I1:T is

then determined by this matrix Π and a parameter vector π0 for the initial state I1, which

is formed as

p(I1:T | π0,Π) = Mul(I1; π0) ·
T∏
t=2

p(It | It−1,Π). (6.51)

When applied in the conventional hidden Markov model, the (step-wise) posterior of I1:T

can be learned by the forward-backward algorithm, which has been detailed in Chapter 2.

Actually, this method learns the posterior of I1:T with a form of

q(I1:T ) =

∏T
t=2 q(It, It−1 | π̂πt,t−1)∏T−1

t=2 q(It | π̂t)
. (6.52)

The parameters π̂πt,t−1 and π̂t determine the joint distribution of consecutive states and

the marginal distribution of single state, respectively. Thus, a probability graphical model

can be illustrated in Figure 6.10. However, for modelling the coloured noise in ARMAX

model, the “observation” εt needs to be considered in the stacked noise vector Υt, where

multiple lag vectors will be involved. To solve this “high-order” emission model challenge, a

modification on conventional HMM inference will be proposed as a novel learning algorithm.

6.6.2 Variational Inference

With the transition function defined as the Markov model in (6.51) and the observation

function defined as LTV in (6.40), the updating equation of q(I1:T ) will be solved through

a novel algorithm for the hidden Markov model with a “high-order” emission model. In

order to achieve this, the conventional Markov chain is first transferred to a higher state

dimension by using the following result.
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Figure 6.10: Modelling Assumptions for Independent Time-Variant Time Delays

Proposition 3 Define an augmented state Vt ≡ [It, ..., It−nc ], and parametrise its proba-

bilistic description with a multi-dimensional πππt:

p(Vt | πππt) =

K∏
k0=0

· ·
K∏

knc=0

[
πππ

(k0,..,knc )
t

]I(k0)
t ··I(knc )

t−nc
. (6.53)

and formulate a nominal transition probability p(Vt | Vt−1,Π) between MMM(Vt−1; πππt−1) and

MMM(Vt; πππt) as

πππ
(k0,...,knc )
t = Πk1,k0

∑K
knc+1=0πππ

(k1,...,knc+1)
t−1 . (6.54)

Then, a prior distribution equivalent to p(I1:T | π0,Π) in (6.51) can be written as

p(Vnc+1:T |π0,Π) =MMM(Vnc+1;πππ0)
T∏

t=nc+2

p(Vt|Vt−1,Π),

where each element of πππ0 is obtained from

πππ
(k0,...,knc )
0 = π

(knc )
0 ·Πknc ,knc−1 · · ·Πk1,k0 . (6.55)

Proof. As an operator between two probability distributions, p(Vt | Vt−1,Π) is formulated

according to

MMM(Vt; πππt) =

∫
It−nc−1

p(Vt | Vt−1,Π)MMM(Vt−1; πππt−1).

As a conditional probability, it can be simplified as

p(Vt | Vt−1,Π) = p(It, ..., It−nc | It−1, ..., It−nc−1,Π)

= p(It | It−1, ..., It−nc−1,Π) = p(It | It−1,Π),
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where Vt | Vt−1 has a same support as It | It−1. Thus, the equivalence can be formulated as

p(I1:T | π0,Π) = { M(I1;π0)
∏nc+1
t=2 p(It | It−1,Π) }

· {
∏T
t=nc+2 p(It | It−1, ..., It−nc−1,Π) }

=MMM(Vnc+1;πππ0) ·
∏T
t=nc+2 p(Vt | Vt−1,Π).

Conceptually, the augmented state Vt is designed to redeem the independence in obser-

vation equations. The updating equation can thus have a standard formation:

ln q∗(I1:T ) =
T∑

t=Ts+1

ln p(Vt | Vt−1,Π) + ln p(VTs | πππ0) +
T∑

t=Ts

ln p(Γt | Vt), (6.56)

where the initial index Ts is obtained by substituting k with K in (6.13), and all the

previous samples of lag variable are treated as redundant information. The observation

term is derived from 〈LTV 〉(θab,R):

p(Γt | Vt) =

K∏
k0=0

· · ·
K∏

knc=0

[
Γ

(k0,...,knc )
t

]I(k0)
t ···I(knc )

t−nc
, (6.57)

where : ln Γ
(k0,...,knc )
Ts

= −1

2
tr{〈θabθ′ab〉 ·Ψ

(k0,...,knc )′

t 〈R−1〉Ψ(..)
t }, if : t = Ts,

ln Γ
(k0,...,knc )
t = −1

2
tr{〈θabθ′ab〉[ Ψ

(k0,...,knc )′

t 〈R−1〉Ψ(..)
t

− 1

(K + 1)
Ψ̄

(k1,...,knc )′

t 〈R̄−1〉Ψ̄(..)
t ]}, ∀ t > Ts,

where q(θab) and q(R) are used to calculate the expectations 〈·〉.

With the above setting, calculating the hyper-parameters in q∗(I1:T ) is equivalent to

estimating the posterior distribution for hidden Markov sequence. An illustrative plot is

shown in Figure 6.11 for an example of the second order case. Accordingly, the modified

forward-backward algorithm is proposed as follows. Based on the fact that It ⊥ Γt−i, ∀ i > 0,

the predicting path is defined as follows:

α
(p)
t ≡ p(Vt | Γ1:t−1) = p(It, ..., It−nc | Γ1:t−1)

=
∑

It−nc−1

p(It, It−1, ..., It−nc−1 | Γ1:t−1)

=
∑

It−nc−1

p(It | It−1, ..., It−nc−1,Γ1:t−1) · p(It−1, ..., It−nc−1 | Γ1:t−1)

=
∑

It−nc−1

p(It | It−1) · αt−1. (6.58)
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Figure 6.11: Estimate Hidden Markov Sequence with High Order Observations

Based on the fact that all Γ1:T are given values in this variational updating step, the forward

(filter) path is derived as

αt ≡ p(Vt | Γ1:t) = p(It, ..., It−nc | Γ1:t)

=
p(Γt, It, ..., It−nc | Γ1:t−1)

p(Γt | Γ1:t−1)

=
p(Γt | It, ..., It−nc ,Γ1:t−1) · p(It, ..., It−nc | Γ1:t−1)

p(Γt | Γ1:t−1)

∝ p(Γt | It, ..., It−nc) · α
(p)
t . (6.59)

The final posterior is obtained from the backward (smoother) path based on all the predict

and forward statistics:

γt ≡ p(Vt | Γ1:T ) = p(It, ..., It−nc | Γ1:T )

=
∑
It+1

p(It+1, It, ..., It−nc | Γ1:T )

=
∑
It+1

p(It+1, ..., It−nc+1 | Γ1:T ) · p(It−nc | It+1, ..., It−nc+1,Γ1:T )

=
∑
It+1

γt+1 · p(It−nc | It+1, ..., It−nc+1,Γ1:t)

156



=
∑
It+1

γt+1 ·
p(It+1, ..., It−nc+1, It−nc | Γ1:t)

p(It+1, ..., It−nc+1 | Γ1:t)

=
∑
It+1

γt+1 ·
p(It+1 | It, ..., It−nc+1, It−nc ,Γ1:t) · p(It, ..., It−nc+1, It−nc | Γ1:t)

p(It+1, ..., It−nc+1 | Γ1:t)

= α
(p)
t ·

∑
It+1

γt+1 ·
p(It+1 | It)

α
(p)
t+1

. (6.60)

In order to connect the forward path and the backward path, the fact that γT = αT is

utilized.

The updated hyper-parameter π̂ππt is for each augmented state in above backward path

p(Vt | Γ1:T ), which is ready for 〈I(k0)
t · · · I(knc )

t−nc 〉 to do variational updating. From Figure 6.11,

it can be observed that It exists in both Vt and Vt+1 in the posterior. Based on the backward

path derived above, the marginalized estimate of 〈It〉 from either augmented state will be

identical, which guarantees a consistent calculation for 〈I(k0)
t · · · I(knc )

t−nc 〉 and 〈I(k1)
t−1 · · · I

(knc )
t−nc 〉.

The numerical demonstration will be provided shortly.

6.7 Practical Consideration for Time-Variant Time Delays

A key idea of the proposed probabilistic identification method is to formulate the ran-

dom time delay as a multi-mode problem. For its practical application, a constraint on

the dynamic behaviour of time-variant time delay should be considered. If the system is

causal, meaning that model outputs only depend on the past (and current) inputs, the

non-negativity in Definition 2 will be sufficient. However, if the system is assumed to be

incapable of using the input signal in reverse order, some controversial cases may be found.

For example, the case that I
(1)
t−1 = I

(3)
t = 1 should not occur in reality. In other words, if

the system has generated yt−1 by the inputs up to ut−2, it cannot miss ut−2 and only use

inputs up to ut−3 in generating yt.

This kind of “first-come-first-serve” rule can be informally defined as follows. The effect

of the latest input sample on a future output sample must occur later than the effect of

the latest input sample on the current output sample. As for model (6.1) with the unit

sampling interval, this rule can be interpreted as an additional constraint for the lag vector

defined in Definition 2:

kt+1 − kt ≤ 1, if : I
(kt+1)
t+1 = I

(kt)
t = 1. (6.61)

A similar concept has been discussed in a study of the stability issue in [132]. As for the

identification objective, this constraint can be realized by limiting the supporting domain
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of It:t−nc . Practically, the integration operator in (6.41) can be trimmed as

K∏
k0=0

K∏
k1=0

·
K∏

knc=0

⇒
K∏

k0=0

K∏
k1=k0−1

·
K∏

knc=knc−1−1

. (6.62)

In this study, it has been realized for the sequentially independent delay case.

As for the sequentially dependent time delays, this constraint is further interpreted

through the parameter of lag variables:∑K
k=0 k · [π

(k)
t+1 − π

(k)
t ] ≤ 1. (6.63)

Strictly speaking, this condition should be satisfied in the converged result of each It, where

the constrained state estimation algorithms [61] can be considered. In this study, the above

constraint (6.63) is transferred to the transition matrix Π in (6.51) – that is, an eligible Π

must have the following inequality hold for any πt defined in (6.33):

π′t · (Π− IK+1) · [0, 1, ...,K]′ ≤ 1, (6.64)

where IK+1 is the K + 1 dimensional identity matrix. The effectiveness of the constrained

matrix Π will be shown before validating the inferencing algorithm for q(I1:T ).

Table 6.2: Validation Results for Constrained Transition Matrix

α 0.9 0.8 0.7 0.6

〈I1:T 〉ss 0.6605 0.7710 0.8500 0.9073

〈I1:T 〉base 0.7468 0.8362 0.9127 0.9591

〈I1:T 〉cons 0.7040 0.7962 0.8805 0.9346

In particular, the tridiagonal matrix Π: Πi,j = 0, ∀|i−j| > 1 is suitable for the constraint

(6.64), and has been used in this study. Here, we give a brief demonstration on using such

tridiagonal Π to improve the estimation of I1:T . In this simulation, the actual I1:T with

T = 1000 and K = 5 is generated by a tridiagonal matrix. The principal diagonal elements

are set to α, and the other element(s) uses 1 − α. Given the model parameters θ, I1:T is

estimated by the forward-backward algorithm in three cases: (1) with the actual Π, (2)

learning an unconstrained Π [82], and (3) learning a tridiagonal Π. As a result, the mean

absolute error is evaluated for the three corresponding I1:T estimates: 〈I1:T 〉ss, 〈I1:T 〉base,

and 〈I1:T 〉cons. In Table 6.2, the performance from Monte Carlo simulations (×100) is

presented for different α values. A clear deficiency can be observed in the unconstrained

case, indicating that when (6.61) is considered as a necessary constraint, restricting Π can

improve the estimation of I1:T .
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6.8 Simulation

By integrating the probabilistic model and the Bayesian inference method, this proposed

approach can improve the estimation of model parameters. In this section, applications of

the proposed time delay structure will be demonstrated, and the numerical example will

be presented to illustrate the detailed learning procedure. To further validate the proposed

approach, two industrial applications will be used for demonstrating the advantages.

6.8.1 Validation for Time Delay Estimation

In order to validate the updating procedure of q(I1:T ) for both independent and dependent

time-delay assumptions, a short sequence of deterministic time delays is used to generate

Γ1:T with nc = 1. With these nominal “observations” Γ1:T , two modelling approaches of

time delay can recover the latent states from different perspectives. A preliminary result

is shown in Figure 6.12, where the time delays are plotted with cumulative bars to reveal

the probability of each estimated time delay value. It can be observed that the modes

of both two posteriors have captured the correct time delays for these seven samples, if

maximum-a-posterior criterion is used to determine the time delays. As for the result from

Markov modelling, the estimation at the fifth sample is less assured because of a conflicting

likelihood between “transition” and “observation”. The preference would to be k = 1

according to the transit matrix, but it would be k = 2 based on Γt and Γt+1. As for the

result of hierarchical modelling, there exists a small probability of k = 0 for the fourth and

sixth sample, which is caused by the updated prior distribution of π.

Figure 6.12: Effects of Two Assumptions for Time Variant Time Delays
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For the hyper-parameter π in the hierarchical modelling, its prior distribution in (6.45)

and the updated proposal distribution in (6.46) can be visualized in Figure 6.13. It can be

observed that for the posterior estimation, the mode has been brought closer to the vertex

[π(0) = 0, π(1) = 1, π(2) = 0], representing that the most frequent case k = 1 has been

captured with this distribution.

Figure 6.13: Describe Random Delays with Dirichlet Distribution

Another example of the updating results of the hierarchical modelling is shown in Fig-

ure 6.14. The prior distribution of the hyper-parameter π and a regression parameter θ1 are

shown in the first row, the results after first and third VB updating step are shown in the

second and the third row, and the converged distributions are plotted against the actual

ones in the last row. Starting from the equally weighted prior, this expectation 〈π〉 has fi-

nally converged around the true π∗ (which has been re-scaled in yellow bar). The evolution

updating procedure for θ1 can also be found. Starting from a trivial prior distribution (low

probability density), the mean of updated Normal distribution has gradually shifted to the

real θ∗1, and its spread of distribution has gradually been reduced.

6.8.2 Validation for System Identification

Following the above preliminary simulation studies, the complete identification procedure

is implemented in this section to validate the algorithms for identification of ARMAX with

time-variant time delay. In the first validation example, a set of simulated data is generated

with an ARMAX model with na = nb = 2 and nc = 1, where the time delay is selected

from {0, 1, 2}. As for the two proposed algorithms for time-variant time delay, the upper

limit of time delay is chosen as K = 4. A comparison of the actual time delay sequence and

the estimated sequences is presented in Figure 6.15. It can be observed that the Markov

modelling assumption provided a better result for estimating the time delay sequence, where
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Figure 6.14: Evolutions in the Distribution of π in VB Inference

the dominating time delay value is significant at every time instant. On the other hand,

although one can still roughly differentiate several regions from the bottom plot based on

the hierarchical modelling, the margins of each region are not as distinctive as the Markov

modelling result.

In addition to the comparison between time delay estimates, as the main objective

of system identification, the parameter learning progress is plotted along the VI updating

steps. Figure 6.17 and Figure 6.16 have shown the parameter estimation result from Markov

modelling and hierarchical modelling respectively.

Along with the updating curves (VTD) for variational inference, the 3σ range at each

updating step is plotted as an error bar, where σ is obtained from the proposal distribution

q(θab) in (6.18). It can be observed that within this range, both modelling approaches

can capture the real model parameters eventually. In Figure 6.16, a competing estimation

(denoted as Existing) result from the existing identification toolbox in MATLAB is also

plotted. It can be observed that without considering the time-variant uncertainties of time

delay, this method has failed to capture the correct parameters for this example. Similar

to Figure 6.15, the Markov model shows its advantages over the hierarchical model with a

quicker convergence of parameter estimation.

The proposed algorithm with the Markov model of time-variant time delay shows supe-

rior performance in this identification study, indicating that the time delay sequence does

have the sequential correlations. In reality, in the process of system identification, the
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Figure 6.15: Comparison of Delay Estimations in ARMAX Identification

Figure 6.16: Learning Procedure with Independent Time Delays
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Figure 6.17: Learning Procedure with Dependent Time Delays

input-output pairs are usually sampled at an appropriately selected rate. Under this sam-

pling rate, the time delay sequence may appear to have a sequential dependency in common

scenarios. Thus, using a dynamic model to describe I1:T is sufficient, and the prior distri-

bution in (6.51) can provide a reasonable preference. On the other hand, the hierarchical

model of random time delay still has its practical usage. In the next validation example,

its effectiveness is demonstrated through an industrial application example.

6.8.3 Validation for Inferential Sensor Modelling

In this section, the problem of time-varying time delays from two inferential sensing projects

is briefly introduced. Since the main focus is on the demonstration of the proposed algo-

rithm for independent time-variant time delays, only linear and widely applied algorithms

are considered, such as the linear regression model (OLS), linear regression with lagged

input samples (DOLS), and the principal components regression with lagged input samples

(DPCR) [69].

First, the problem is found in the inferential sensor modelling for Once-Through Steam

Generators (OTSGs), where the outlet steam quality of individual passes is the model output

[115]. Due to the equipment limitation and the capital cost, reliable analyzers cannot be

implemented to have on-line measurements for steam quality. The current references of the

steam quality are manually sampled once in roughly every 6 hours. The field operators use

the sample container to collect the target fluid continuously. Once the container is filled,

a conductivity electrode will be placed. After waiting for some time for a stable reading,
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the analyzed value is recorded and time is stamped. The uncertain delays are originated

from: (1) the sampling procedure, since the conductivity reading needs to be stable before

recording the sample; (2) the calculation procedure, as both inlet and outlet conductivities

are required to obtain steam quality; (3) the human error, the time stamps may be delayed

because of operators’ shift schedules.

Figure 6.18: Demonstration of Hierarchical Model in Steam Quality Soft Sensor

In this application, the hierarchical model of random time delays is treated as a reinforc-

ing tool to improve conventional models, specifically for the multivariate linear regression

model. The distinctive characteristic of target data is the different sampling rate between

the inputs and the output. The reference output samples have a significantly slower sam-

pling rate comparing to inputs (which are regularly measured process variables). For exam-

ple, the steam quality is manually sampled every 6 hours, but flow-rate, temperature, and

pressure measurements are available every minute. In such scenarios, the assumption be-
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hind hierarchical modelling, namely sequential independence of time delays, becomes quite

suitable. In Figure 6.18, the reinforced linear regression model (OLS-BTD) demonstrates

the advantage of hierarchical modelling for time-variant time delays. In this comparison,

the regular multivariate linear regression model and the two most dominate linear models

are used. For a fair competition, these models are provided with augmented inputs; that

is, all the lagged inputs are considered in the principal component regression method and

the partial least squares method. It can be seen that the proposed model has more effective

usage of the lagged inputs, which results in improvements in both accuracy and robustness

(less stiff peaks).

Figure 6.19: Demonstration of Hierarchical Model in Water Content Soft Sensor

The second case is from an oil treating process, where operators usually take manual

samples twice per shift. Once the sampled fluid is obtained in the lab, the centrifuge will

spin the sample for about 40 minutes to get the reference value (water content). These

readings are usually entered at the end of the shift. In practice, the time stamps of the

entered data could be either the sampling time or the time when a sample is entered into

the database. The delays of the references in this project could be up to one hour and

inconsistent due to different operators. Figure 6.19 shows the estimation results on this

data set, where “CC” stands for the Pearson’s Correlation Coefficient and “RMS” stands for

the root mean squared error. Similar to the previous application, the proposed hierarchical
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modelling approach provided the most accurate validation result. It should be noted that

the relatively low “CC” values are because of the quite noisy reference sequence. Although

it may not be very significant, the improvement of “CC” is valuable for demonstrating the

predictive ability of the models in practice.

6.9 Conclusions

In this study, a probabilistic modelling framework is proposed and applied for ARMAX

model identification. Three typical assumptions are considered to describe random time

delays. The graphical probability models for these three modelling assumptions are pro-

vided in Figure 6.6, Figure 6.9, and Figure 6.10 respectively. where green circles denote

random variables, yellow rectangles denote given numbers, and blue diamonds denote the

parameters.

Using the approximate Bayesian learning strategies, technical details are provided for

each time delay models. During the parameter learning procedure, novel algorithms are

proposed and validated for probabilistic ARMAX modelling. Other than the validations

of each learning step, the overall performance of the proposed identification framework is

validated through both the system identification and the practical inferential sensor mod-

elling. As shown through the examples, the proposed modelling framework is capable of

estimating both time-invariant and time-variant time delays, improving existing identifica-

tion algorithm by considering the random time delays and strengthening existing regression

models with more effective use of lagged input samples.
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Chapter 7

Concluding Remarks and Future
Directions

In this chapter, the concluding remarks are provided for the preceded chapters of this thesis.

The connection between these chapters to the central theme of this thesis is explained.

Furthermore, possible studies of future research are also discussed.

7.1 Concluding Remarks

The main topic of this thesis is extracting dynamic latent features to improve process data

modelling. By formulating this problem under the Bayesian framework, and learning the

probability model with the variational Bayesian inference, practicability and advantages

of the developed probabilistic methods have been demonstrated via multiple application

examples. In particular, better solutions have been demonstrated in the modelling problem

for the steam quality and emulsion water content, the state estimation problem of target

tracking problems, and the system identification problem with time-variant time delay.

In Chapter 2, the mathematical fundamentals of this thesis are explained. To formulate

a decoding format for latent variable modelling, two primary probabilistic models are in-

troduced to describe the dynamic latent features. Along with them, conventional learning

algorithms have been briefly reviewed. Motivated by their deficiency in process data anal-

ysis, the variational Bayesian inference is introduced as an advanced Bayesian algorithm

for feature extraction. To reveal the computational advantages of the variational Bayesian

inference, a comparison to the conventional EM algorithm is detailed in each updating

step. Additionally, the particle-based algorithms are reviewed to reinforce the variational

Bayesian inference for dealing with practical challenges. Typically, they are suitable for

solving the non-Gaussian distribution with the constrained variables.
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To demonstrate the applicability of dynamic latent features in process data modelling,

theoretical contributions are presented in the four chapters respectively.

• The first contribution, as introduced in Chapter 3, provided a Bayesian solution to the

probabilistic slow feature analysis. Through the probabilistic modelling approach, the

dynamic latent features are formulated by a transition model, which has constrained

transition parameters. By adopting a Beta distribution for the prior distribution of

transition parameters, the modelling preference on the slow varying trend can be

materialized mathematically. Unlike the conventional maximum likelihood estima-

tion, the proposed Bayesian framework can combine both the training data and the

modelling preferences for the inference. In the inferencing procedure, the importance

sampling techniques are adopted to estimate the constrained transition parameters.

After imposing other prior distributions for the observation parameters, the automatic

relevance determination can be realized by using a variational lower bound to select

the model structure. The proposed algorithm is validated with numerical simulations.

Despite the randomness of initial values, the proposed algorithm can provide a consis-

tent estimation result for this feature extraction problem. The proposed algorithm is

then applied to an industrial case study for modelling emulsion water content, where

the effectiveness is validated through the prediction performance.

• The second contribution, as introduced in Chapter 4, provided a generalization of

the hidden Markov model. Instead of using the discrete latent state to represent the

separated events, their probabilities are directly modelled as the constrained and con-

tinuous latent feature. Thus, the distribution of the original discrete states can be

directly used to describe the observation. To extend the transition function for this

continuous supporting domain, a Dirichlet distribution is used to describe the con-

strained transition uncertainty, where the original transition matrix is only used to

provide an expected value. The two-dimensional specification with Beta distribution

can be used to describe multiple individual features. Through the comparison with the

unconstrained state transition model, specific functionalities of the proposed transition

parameters have been studied. In particular, the preferred range of these transition

parameters is determined by simulating the constrained latent feature, which facili-

tates the development of Bayesian inference. To integrate the constrained dynamic

feature into a feature extraction model, a non-linear observation function is proposed

to describe the unconstrained observations with the constrained feature. In the in-
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ferencing procedure, novel algorithms have been developed for solving a problem of

constrained state estimation and a problem of transition noise estimation. According

to the numerical simulations, the proposed algorithms have shown satisfactory results.

In the modelling problem of emulsion water content, the proposed structure of the

constrained dynamic feature is validated through the case study with sparse reference

data.

• The third contribution, as presented in Chapter 5, is the development of the obser-

vation function with multiple linear models. While using a single transition function

to represent a consistent process dynamic, the observation function is extended with

multiple models to reflect switching operations. To prevent unnecessary switching due

to disturbance, a heavy-tailed noise distribution is used to make each model more ro-

bust to observation outliers. Comparing to learning an explicit hidden Markov model,

this strategy has less dependency on the repeatable switching actions. In the inferenc-

ing process, the uncertainties of multiple models are considered in learning a unified

latent feature. For its online usage, a more general variational filtering algorithm

has been developed for solving the multiple model state estimation problem. In an

application to the steam quality modelling problem, the proposed feature extraction

method has shown to be able to capture the multiple regions in the operating OTSG.

In an application to the target tracking problem, the developed state estimator has

improved both the effectiveness and efficiency.

• The fourth contribution, as presented in Chapter 6, is the application of the dynamic

latent feature to model time-variant time delays in solving the system identification

problem. By describing the time delay sequence as a dynamic feature, the corre-

sponding observation function is developed as a likelihood formulation of the ARMAX

model. Three possible assumptions are discussed to describe the random time delay:

time-invariant, independent time-variant, and dependent time-variant. Regarding the

system identification task, the last assumption with a Markov connection is demon-

strated to be more useful. In this scenario, the proposed observation function assigned

multiple observation terms to one latent state (an instant of time delay). To estimate

this unconventional hidden Markov model, an augmented transformation has been de-

veloped, and the novel forward-backward algorithm is proposed, which is proved to be

able to retain the original Markov transition and preserve the estimation uniqueness.

In another industrial case study, the second assumption of sequentially independent
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time delay is also demonstrated to be useful for the regression analysis. Specifically, if

the actual outputs are obtained through manual sampling and lab analysis, the pro-

posed structure can improve the regression results by accommodating the inevitable

human errors.

To summarize, this thesis is motivated by the modelling advantage of dynamic latent

features in process data analysis, which has been illustrated in Chapter 1. Based on the

mathematical foundation shown in Chapter 2, the dynamic latent feature can be established

through a transition function and an observation function, for which the inferencing process

can be realized with the variational Bayesian inference and the particle-based algorithms.

In Chapter 3 and Chapter 4, novel transition functions are developed under the Bayesian

framework. In Chapter 5 and Chapter 6, more practical observation functions are stud-

ied regarding their impact on extracting latent features. Theoretically, the challenges of

constrained parameters, constrained latent features, multiple-model state estimation, and

auto-correlated observations have been encountered and addressed in this thesis. Practically,

the modelling preferences of process inertia, the assumptions about process limitations, the

multiple operating regions, and the time-variant time delays are discussed in this thesis.

7.2 Future Directions

Based on the flexibility of the variational Bayesian inference and the commonly observed

process dynamics, there exist many directions that can be proceeded further. For example,

from the modelling point of view, further application scenario of the novel transition model

proposed in Chapter 4 can be considered for multiple-model cases. From the inferencing

point of view, the iterative updating strategy can be further optimized for multiple sets of

model parameters, such as optimizing the order of variational updating steps in Chapter 5.

Also, the fusion between the particle-based algorithm and the variational Bayesian inference

can be extended beyond the proposed “step-wise” integration. In what follows, two more

exciting directions are illustrated based on emerging modelling techniques.

7.2.1 Bayesian Co-integration Analysis

A shared assumption made in the models mentioned above is that the latent feature is a

stationary process. It means that with the determined transition parameters, the generated

stochastic process should have a time-invariant distribution as its stationary solution. For

example, with the constraint a2 + ρ−1 = 1 in Chapter 3, the standard Normal distribution
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N (0, 1) becomes the stationary solution. Generally, the statistical properties of a stationary

process are independent of time. For a stationary latent feature, the first two moments are

assumed as E[st] = 0 and E[s2
t ] = 1. However, in reality, chemical processes can be non-

stationary. Possible causes may come from the multiple operating modes, the inevitable

equipment ageing, or the possible accumulative deposit. For a better understanding of these

processes, analyzing the non-stationary feature is as important as analyzing the stationary

feature.

Specifically, the accumulation in chemical processes, such as fouling build-up in the

steam generation process, is a very likely situation for the non-stationary feature. Due to

its complexity, it is difficult to monitor fouling build-up through hardware sensors. In some

obvious cases, the total amount of fouling build-up can be monitored with some simple

calculations, such as the pressure drop. However, these indicators are usually affected

by operating regions as well. Relying on a single indicator may not give the consistent

estimate, and tuning the multiple calculations in real-time may not be practical. However,

by extracting the non-stationary feature from the historical data, a more realistic indicator

can be developed from multiple process measurements. Figure 7.1 shows an example of the

estimated monitoring curve for the fouling build-up, where the non-stationary properties

and the co-integration method are used in the feature extraction.

Figure 7.1: Scaling Monitoring in Steam Generation Process

Co-integration analysis, which has been widely applied in the econometrics area, can
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be applied to investigate the relationship between stationary and non-stationary features.

By treating the co-integration analysis as a feature extraction method, a projection matrix

can be formulated to learn the stationary feature from the observed data [143]. In the

reversed order, the most non-stationary feature can also be formulated as another projection:

St = β · Xt. Successful application of co-integration analysis in chemical engineering can

be found in [144, 145]. In Figure 7.1, the plotted feature is extracted from the reversed

co-integration analysis.

To model this linear feature extraction under the Bayesian framework, the dynamic

latent feature can be useful in formulating a probabilistic decoder. A possible approach

can start by describing a non-stationary stochastic process by manipulating the transition

parameters of the dynamic latent feature, such as in the nominal case:

st = a · st−1 + wt, where : a = 1, wt ∼ N (0, 1). (7.1)

By incorporating the constraint of a = 1, the existing transition function with a ∈ (0, 1) is

actually extended with much wider modelling scope. The separated modelling strategies of

the stationary and non-stationary work could thus be unified with one feature extraction

model. However, the associated estimation challenges can also be increased, where more

constraints on other transition parameters may be necessary to have a consistent estimation.

7.2.2 Transition Noises in Recurrent Neural Networks

It can be observed that in the parameter estimation process, the variational learning meth-

ods require the posterior of entire latent features q(S1:T ), but only use it to update the model

parameters once. While dealing with a large dataset, such an updating algorithm can be

impractical. Moreover, although the variational lower bound can be used to select the final

results, each variational updating cycle can still be affected by the initial point. For some

heavily loaded algorithms, this trial-and-error strategy becomes extremely computationally

expensive.

Meanwhile, as briefly introduced in Chapter 2, the stochastic variational inference has

the advantage to overcome the issue of local optima and can be adjusted well for large

datasets. More importantly, the combination of an encoding feature learning model and the

probabilistic decoding model has provided considerable improvements in computer science

[28, 146]. To address the dynamic of a stochastic feature in the hidden layer, temporal

connections have been implemented with several considerations [147, 148, 149]. However,

to the best of author’s knowledge, no literature explicitly discussed the transition noise.

172



Figure 7.2: Possible Structure for Recurrent Variational Auto-Encoder

Taking the advantages of stochastic variational inference and extend the application of

variational auto-encoder from static modelling to dynamic modelling, a recurrent variational

auto-encoder can be proposed as shown in Figure 7.2. The encoder function is built to

project the observations for the mean and the variance of latent features. Based on the

particle-based representation in [28], the distribution of latent state can be represented by

the particles that are generated from these parameters. Then, the recovered observation

can be obtained from these sampled states. In order to introduce the recurrent properties,

the transition function should be built for both mean and variance, where the transition

function for the variance is commonly ignored in the existing literature. An explicit model

for such a positive random variable not only imposes the auto-correlated uncertainties but

also contributes to weighing the recovery cost for the parameter learning objective.
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Nonparametric entropy estimation: An overview. International Journal of Mathe-
matical and Statistical Sciences, 6(1):17–39, 1997.

[56] Leo H Chiang, Evan L Russell, and Richard D Braatz. Tennessee Eastman Process. In
Fault Detection and Diagnosis in Industrial Systems, pages 103–112. Springer, 2001.

[57] Christopher V Rao, James B Rawlings, and Jay H Lee. Constrained linear state
estimationa moving horizon approach. Automatica, 37(10):1619–1628, 2001.

[58] Wei He, Yuhao Chen, and Zhao Yin. Adaptive neural network control of an uncertain
robot with full-state constraints. IEEE transactions on cybernetics, 46(3):620–629,
2016.

[59] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recurrent temporal
restricted boltzmann machine. In Advances in neural information processing systems,
pages 1601–1608, 2009.

177



[60] Tong Zhang, Wenming Zheng, Zhen Cui, Yuan Zong, and Yang Li. Spatial-Temporal
Recurrent Neural Network for Emotion Recognition. IEEE Transactions on Cyber-
netics, (99):1–9, 2018.

[61] Xinguang Shao, Biao Huang, and Jong Min Lee. Constrained Bayesian state estima-
tionA comparative study and a new particle filter based approach. Journal of Process
Control, 20(2):143–157, 2010.

[62] Arjun K Gupta and Saralees Nadarajah. Handbook of beta distribution and its appli-
cations. CRC press, 2004.

[63] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An
introduction to MCMC for machine learning. Machine learning, 50(1-2):5–43, 2003.

[64] Dong Dong and Thomas J McAvoy. Nonlinear principal component analysisbased on
principal curves and neural networks. Computers & Chemical Engineering, 20(1):65–
78, 1996.

[65] S Joe Qin. Recursive PLS algorithms for adaptive data modeling. Computers &
Chemical Engineering, 22(4):503–514, 1998.

[66] S Joe Qin. Neural networks for intelligent sensors and controlpractical issues and
some solutions. Neural Systems for Control, pages 213–234, 1997.

[67] Sungyong Park and Chonghun Han. A nonlinear soft sensor based on multivariate
smoothing procedure for quality estimation in distillation columns. Computers &
Chemical Engineering, 24(2):871–877, 2000.

[68] Eliana Zamprogna, Massimiliano Barolo, and Dale E Seborg. Estimating product
composition profiles in batch distillation via partial least squares regression. Control
Engineering Practice, 12(7):917–929, 2004.

[69] Evan L Russell, Leo H Chiang, and Richard D Braatz. Fault detection in industrial
processes using canonical variate analysis and dynamic principal component analysis.
Chemometrics and intelligent laboratory systems, 51(1):81–93, 2000.

[70] Pabara-Ebiere Patricia Odiowei and Yi Cao. Nonlinear dynamic process monitoring
using canonical variate analysis and kernel density estimations. IEEE Transactions
on Industrial Informatics, 6(1):36–45, 2010.

[71] Manish Misra, H Henry Yue, S Joe Qin, and Cheng Ling. Multivariate process mon-
itoring and fault diagnosis by multi-scale PCA. Computers & Chemical Engineering,
26(9):1281–1293, 2002.

[72] Gang Li, S Joe Qin, and Donghua Zhou. A new method of dynamic latent-variable
modeling for process monitoring. IEEE Transactions on Industrial Electronics,
61(11):6438–6445, 2014.

[73] Le Zhou, Gang Li, Zhihuan Song, and S Joe Qin. Autoregressive Dynamic Latent
Variable Models for Process Monitoring. 2016.

[74] Vincent Laurain, Marion Gilson, Roland Tth, and Hugues Garnier. Refined instru-
mental variable methods for identification of LPV BoxJenkins models. Automatica,
46(6):959–967, 2010.

178



[75] Yaojie Lu and Biao Huang. Robust multiple-model LPV approach to nonlinear process
identification using mixture t distributions. Journal of Process Control, 24(9):1472–
1488, 2014.

[76] Minjin Kim, Young-Hak Lee, In-Su Han, and Chonghun Han. Clustering-based hybrid
soft sensor for an industrial polypropylene process with grade changeover operation.
Industrial & engineering chemistry research, 44(2):334–342, 2005.

[77] Yaojie Lu, Biao Huang, and Shima Khatibisepehr. A variational bayesian approach
to robust identification of switched arx models. IEEE transactions on cybernetics,
46(12):3195–3208, 2016.

[78] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. A
clustering technique for the identification of piecewise affine systems. Automatica,
39(2):205–217, 2003.

[79] X Jin and B Huang. Identification of switched Markov autoregressive eXogenous
systems with hidden switching state. Automatica, 48(2):436–441, 2012.

[80] Nima Sammaknejad, Biao Huang, R Sean Sanders, Yu Miao, Fangwei Xu, and Aris
Espejo. Adaptive Soft Sensing and On-line Estimation of the Critical Minimum Veloc-
ity with Application to an Oil Sand Primary Separation Vessel. IFAC-PapersOnLine,
48(8):211–216, 2015.

[81] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model:
Analysis and applications. Machine learning, 32(1):41–62, 1998.

[82] Yujia Zhao, Alireza Fatehi, and Biao Huang. A data-driven hybrid ARX and markov
chain modeling approach to process identification with time-varying time delays. IEEE
Transactions on Industrial Electronics, 64(5):4226–4236, 2017.

[83] G Ackerson and K Fu. On state estimation in switching environments. IEEE Trans-
actions on Automatic Control, 15(1):10–17, 1970.

[84] Chang-Jin Kim. Dynamic linear models with Markov-switching. Journal of Econo-
metrics, 60(1-2):1–22, 1994.

[85] Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-
space models. Neural computation, 12(4):831–864, 2000.

[86] Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction
theory. Journal of basic engineering, 83(3):95–108, 1961.

[87] Samuel S Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE
Aerospace and Electronic Systems Magazine, 19(1):5–18, 2004.

[88] Yaakov Bar-Shalom, Peter K Willett, and Xin Tian. Tracking and data fusion. YBS
publishing, 2011.

[89] Yafeng Guo and Biao Huang. Moving horizon estimation for switching nonlinear
systems. Automatica, 49(11):3270–3281, 2013.

[90] Hajime Akashi and Hiromitsu Kumamoto. Random sampling approach to state esti-
mation in switching environments. Automatica, 13(4):429–434, 1977.

179



[91] G David Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

[92] Amir Averbuch, Samuel Itzikowitz, and Tal Kapon. Radar target tracking-Viterbi
versus IMM. IEEE Transactions on Aerospace and Electronic Systems, 27(3):550–
563, 1991.

[93] Chaw-Bing Chang and Michael Athans. State estimation for discrete systems with
switching parameters. IEEE Transactions on Aerospace and Electronic Systems,
(3):418–425, 1978.

[94] Henk AP Blom and Yaakov Bar-Shalom. The interacting multiple model algorithm
for systems with Markovian switching coefficients. IEEE transactions on Automatic
Control, 33(8):780–783, 1988.

[95] L Campo, P Mookerjee, and Y Bar-Shalom. State estimation for systems with sojourn-
time-dependent Markov model switching. IEEE Transactions on Automatic Control,
36(2):238–243, 1991.

[96] X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking. Part V.
Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems,
41(4):1255–1321, 2005.

[97] Y Boers and JN Driessen. Interacting multiple model particle filter. IEE Proceedings-
Radar, Sonar and Navigation, 150(5):344–349, 2003.

[98] Shunyi Zhao, Fei Liu, and Xiaoli Luan. Risk-sensitive filtering for nonlinear Markov
jump systems on the basis of particle approximation. International Journal of Adap-
tive Control and Signal Processing, 26(2):158–170, 2012.

[99] Xiao-Rong Li and Yaakov Bar-Shalom. Multiple-model estimation with variable struc-
ture. IEEE Transactions on Automatic control, 41(4):478–493, 1996.

[100] Leigh A Johnston and Vikram Krishnamurthy. An improvement to the interact-
ing multiple model (IMM) algorithm. IEEE Transactions on Signal Processing,
49(12):2909–2923, 2001.

[101] Arnaud Doucet, Andrew Logothetis, and Vikram Krishnamurthy. Stochastic sampling
algorithms for state estimation of jump Markov linear systems. IEEE Transactions
on Automatic Control, 45(2):188–202, 2000.

[102] Vesselin P Jilkov and X Rong Li. Online Bayesian estimation of transition probabilities
for Markovian jump systems. IEEE Transactions on signal processing, 52(6):1620–
1630, 2004.

[103] Efim Mazor, Amir Averbuch, Yakov Bar-Shalom, and Joshua Dayan. Interacting
multiple model methods in target tracking: a survey. IEEE Transactions on aerospace
and electronic systems, 34(1):103–123, 1998.

[104] A. Jasra, C. C. Holmes, and D. A. Stephens. Markov Chain Monte Carlo Methods
and the Label Switching Problem in Bayesian Mixture Modeling. Statistical Science,
20(1):50–67, 2005.

180



[105] Mudassir M Rashid, Prashant Mhaskar, and Christopher LE Swartz. Multi-rate mod-
eling and economic model predictive control of the electric arc furnace. Journal of
Process Control, 40:50–61, 2016.

[106] Alexander T Basilevsky. Statistical factor analysis and related methods: theory and
applications, volume 418. John Wiley & Sons, 2009.

[107] Peter J Huber. Robust regression: asymptotics, conjectures and Monte Carlo. The
Annals of Statistics, pages 799–821, 1973.

[108] Markus Svensn and Christopher M Bishop. Robust Bayesian mixture modelling.
Neurocomputing, 64:235–252, 2005.

[109] Cdric Archambeau and Michel Verleysen. Robust bayesian clustering. Neural Net-
works, 20(1):129–138, 2007.

[110] Chuanhai Liu and Donald B Rubin. ML estimation of the t distribution using EM
and its extensions, ECM and ECME. Statistica Sinica, pages 19–39, 1995.

[111] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with
flash cards. arXiv preprint arXiv:0911.4863, 2009.

[112] Matthew D Hoffman and Andrew Gelman. The No-U-turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,
15(1):1593–1623, 2014.

[113] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[114] Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal
component analyzers. Neural computation, 11(2):443–482, 1999.

[115] Li Xie, Yu Zhao, Daniel Aziz, Xing Jin, Litao Geng, Errol Goberdhansingh, Fei Qi,
and Biao Huang. Soft sensors for online steam quality measurements of OTSGs.
Journal of Process Control, 23(7):990–1000, 2013.

[116] B KOVACEVIC, Z DUROVIC, and S GLAVASKI. On robust Kalman filtering. In-
ternational journal of control, 56(3):547–562, 1992.

[117] Cl Masreliez and R Martin. Robust Bayesian estimation for the linear model and
robustifying the Kalman filter. IEEE transactions on Automatic Control, 22(3):361–
371, 1977.

[118] Chang Joo Lee, Jung Min Pak, Choon Ki Ahn, Kyung Min Min, Peng Shi, and
Myo Taeg Lim. Multi-target FIR tracking algorithm for Markov jump linear systems
based on true-target decision-making. Neurocomputing, 168:298–307, 2015.

[119] Ayen D Akkaya and Moti L Tiku. Robust estimation in multiple linear regression
model with non-Gaussian noise. Automatica, 44(2):407–417, 2008.

[120] Weiyu Xu, Er-Wei Bai, and Myung Cho. System identification in the presence of out-
liers and random noises: A compressed sensing approach. Automatica, 50(11):2905–
2911, 2014.

181



[121] Paul Douglas Gilbert. State space and arma models: An overview of the equivalence.
Bank of Canada, 1993.

[122] Torsten Sderstrm and Petre Stoica. System identification. 1989.

[123] Jean-Pierre Richard. Time-delay systems: an overview of some recent advances and
open problems. automatica, 39(10):1667–1694, 2003.

[124] Svante Bjrklund. Experimental evaluation of some cross correlation methods for time-
delay estimation in linear systems. Linkping University Electronic Press, 2003.

[125] Gang Zheng, Andrey Polyakov, and Arie Levant. Delay estimation via sliding mode
for nonlinear time-delay systems. Automatica, 89:266–273, 2018.

[126] XM Ren, Ahmad B Rad, PT Chan, and Wai Lun Lo. Online identification of
continuous-time systems with unknown time delay. IEEE Transactions on Automatic
Control, 50(9):1418–1422, 2005.

[127] Milena Anguelova and Bernt Wennberg. State elimination and identifiability of the
delay parameter for nonlinear time-delay systems. Automatica, 44(5):1373–1378, 2008.

[128] G Rao and L Sivakumar. Identification of time-lag systems via Walsh functions. IEEE
Transactions on Automatic Control, 24(5):806–808, 1979.

[129] Jose Luis Guzmán, Pedro Garcia, Tore Hägglund, Sebastian Dormido, Pedro Albertos,
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