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Abstract 

Clinical evaluation of the integrity of the bone-implant interface of percutaneous implants is 

important to prescribe loading, to identify the risk of failure, and to monitor the long-term health 

of the implant. The same concept of interface integrity can be applied in dentistry where the 

interface is the periodontal ligament (PDL) connecting the tooth root to the surrounding alveolar 

bone. Similarly, ongoing clinical evaluation of tooth stability (or mobility) has important 

applications in dental trauma, orthodontics, and periodontology.  

This clinical need has led to the development of several noninvasive methods for stability 

measurement of both percutaneous implant systems as well as natural teeth. Many of these 

currently available systems rely on resonance frequency analysis (RFA) or similar analysis of the 

fundamental frequency of vibration of the system. With these measurement techniques, the 

details of the system are not taken into account in the interpretation. As a result, there is no clear 

understanding of how the output values relate to the actual stiffness characteristics at the 

interface. To have a better understanding of the physical properties at the interface, a coupled 

experimental-analytical modeling approach has been proposed for percutaneous implants. The 

approach uses an acceleration measurement during an impact with the abutment and an 

analytical model is included in the interpretation to isolate the properties at the interface. 

This study builds upon previous approaches to develop a measurement system for noninvasive 

evaluation of interface stiffness that is applicable across a range of applications including bone 

anchored hearing aid (BAHA) implants and natural teeth. The system is termed the Advanced 

System for Implant Stability Testing (ASIST) and the interface stability measure is termed the 

ASIST Stability Coefficient (ASC). The ASIST is developed through in vitro laboratory testing 
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for two commercial BAHA systems. A comparison is presented between the developed ASIST 

and the commercially available OsstellTM ISQ system for BAHA stability measurement. The 

ASIST is then used in vivo with a longitudinal clinical evaluation for BAHA patients during the 

first year following surgery. The ASIST technique is also developed for natural teeth and 

evaluated with longitudinal clinical data during orthodontic treatment. 

Through in vitro laboratory testing, the ASIST measure was found to be essentially independent 

of attached components for BAHA implants with variations due to abutment length of 

approximately 2.9 ASC (less than 10% of the measure). The ASIST was shown to be sensitive 

enough to detect changes in interface properties between different implant installations. The 

ASIST showed significant advantages over the commercially available OsstellTM ISQ system for 

stability measurement of BAHA systems. The OsstellTM ISQ appears to be more sensitive to 

geometric variations such as abutment length than actual changes in interface properties, while 

the ASIST was found to be more sensitive to interface changes and essentially independent of 

abutment length. 

Clinical evaluation of BAHA implants showed a wide variety of stability values and healing 

patterns across patients. The ASIST shows promise to detect differences in implant stability with 

different surgical techniques or different implant designs. The ASIST was able to provide an 

indication of longitudinal changes in implant stability for BAHA patients during the first year 

following surgery.  

The ASIST technique was applied to natural teeth to estimate the PDL stiffness. A three degree 

of freedom analytical model was presented for a single-rooted tooth system. Several geometric 

approximations were presented and compared. The model prediction of the acceleration was 
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found to provide a good match with the measured acceleration suggesting that the ASIST 

technique can be applicable to natural teeth. A longitudinal evaluation was presented showing 

changes in PDL stiffness properties throughout orthodontic alignment and cuspid retraction. 

Similar patterns of longitudinal changes were observed for the two maxillary cuspid teeth within 

individual patients as well as between patients. All patients showed a reduction in PDL stiffness 

during treatment. This work presented a significant contribution to the experimental-analytical 

modeling approach for natural teeth, and the work presented here shows promise for future 

research in this area.  

The ASIST has the potential to provide a valuable clinical tool enabling clinicians to quickly and 

noninvasively evaluate the status of percutaneous implant systems or natural teeth across a 

variety of applications. 
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Chapter 1:  Introduction 

1.1. Background 

Percutaneous implants are used in prosthetic reconstruction of the head and neck to improve 

function and aesthetics in a variety of applications. Implants can be used to reconstruct dental 

arches, to install bone anchored hearing aids (BAHA) and prosthetic ears, and to reconstruct 

craniofacial features after trauma or cancer treatment. The use of implants in such applications 

can result in a tremendous improvement in the quality of life of patients. The procedure involves 

installing a screw-shaped titanium implant into the bone. An attached abutment permanently 

penetrates the skin surface and the device (i.e. the prosthetic tooth or the hearing processor) can 

then be attached to the abutment for use by the patient.  

Percutaneous implants have been used for clinical tooth replacement and for BAHA for decades 

with great success (Brånemark et al., 1985; Tjellström et al., 1983). The concept of bone 

anchored implants relies on a structural integration between the implant and the bone, termed 

osseointegration (Brånemark et al., 1985). The conditions to promote osseointegration of an 

implant include biocompatibility of the implant material (e.g. titanium), minimal trauma to the 

bone during the surgical procedure, and an immobile healing phase (Brånemark, 1983; 

Brånemark et al., 1985). During this healing phase bone is deposited onto the implant surface 

and remodeling occurs resulting in a bone-implant interface in which the implant is directly 

connected to the living bone (Brånemark, 1983; Brånemark et al., 1985; Ellingsent and 

Lyngstadaas, 2003). The success of these implants is dependent on the quality of 

osseointegration at the bone-implant interface.  

While in the long term the success rate is very high, with implant losses typically reported less 

than 10% for BAHA implants (Dun et al., 2012; Fontaine et al., 2014; House and Kutz, 2007; 

Nelissen et al., 2014; Tjellström and Granström, 1994), there is uncertainty in the optimal time to 

begin functional loading of BAHA systems. This is evidenced by a large variation in clinical 

practices. From the patient perspective, it would be beneficial to begin loading (i.e. begin using 

the hearing processor) as soon as possible, allowing them to experience significant functional 
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improvements. At the same time however, proper healing to achieve adequate osseointegration is 

necessary for long term success of the implant. Traditionally, functional loading of BAHA 

implants has begun at 3 months post-surgery for adults and 4-6 months for children (Albrektsson 

et al., 1981; Wazen et al., 2007). However, more recently, loading of BAHA systems has been 

reported at 6 weeks (Foghsgaard and Caye-Thomasen, 2014; Wazen et al., 2007), 4 weeks 

(McLarnon et al., 2012), 3 weeks (Faber et al., 2012; Nelissen et al., 2016), and as early as 7-14 

days (Hougaard et al., 2015) post-surgery. Due to this uncertainty in appropriate loading times as 

well as for longer term stability checks, it is important to monitor the integrity of the bone-

implant interface during healing and throughout the life of the implant. 

Similar concepts of interface integrity can be applied to natural teeth in the clinical fields of 

dentistry, periodontology, and orthodontics. In this case the interface of interest is the periodontal 

ligament (PDL) which connects the tooth root to the surrounding alveolar bone (Nishihira et al., 

2003). Clinical assessment of the tooth interface has important applications in diagnosing 

periodontal disease, assessing the condition of the PDL after trauma, understanding the changes 

that occur in the PDL during and after orthodontic treatment, and assessing outcomes from 

treatment aimed at improving the integrity of the tooth root or the PDL (Laster et al., 1975; 

Nakago et al., 1994). 

In many clinical situations, particularly with bone anchored implants, the term “stability” is often 

used to describe the stiffness at the interface and is used as a measure of the integrity of the 

interface. While stability in an engineering sense has a strict and well-understood definition, 

clinical stability of both bone-anchored implants and natural teeth may follow a different 

definition with more variability in the interpretation. In the context of the work presented here, 

the term stability refers to a clinical stability of the interface and is often used interchangeably 

with the stiffness at the interface. An implant with a stiffer interface would be considered more 

stable and would be assumed to have better interface integrity. With this understanding, an 

unstable interface may show large displacements when subjected to relatively low forces and 

may be at risk of failure. 
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This research is focused on the development of a measurement system for non-invasively 

assessing the interfacial properties in a clinical setting that is applicable across a range of 

applications including bone anchored implants and natural teeth. 

1.2. Literature Review 

1.2.1.  Bone Biology 

Bone anchored implants are anchored into the living bone tissue. In order to understand the 

osseointegration process and implant healing, it is important to first consider the structure and 

components of these tissues as well as the mechanisms for growth and remodeling. Bone tissue is 

composed of approximately 65% minerals such as calcium and phosphate primarily in the form 

of hydroxyapatite and approximately 35% organic matrix, cells, and water (Cowin, 2001; Nordin 

and Frankel, 2001). The organic matrix is composed primarily (approximately 90%) of Type I 

collagen fibers which account for 25 – 30% of the dry weight of bone. The remaining organic 

matrix is composed of noncollagenous proteins and contains glycosaminoglycans (GAGs) 

primarily in the form of proteoglycans (PGs) (Cowin, 2001; Nordin and Frakel, 2001). Water is 

an important component of living bone and comprises approximately 25% of its total weight 

(Nordin and Frankel, 2001). 

There are four major types of bone cells: osteoclasts, osteoblasts, osteocytes, and bone-lining 

cells.  Osteoclasts are bone resorbing cells, while osteoblasts are bone forming cells. During the 

formation of new bone, osteoblasts synthesize the unmineralized bone matrix. This matrix 

formation is then followed by mineralization (Cowin, 2001). The most abundant cell type in 

mature bone is the osteocyte. Osteocytes can sense changes in the magnitude and distribution of 

strains in the tissue and influence modeling and remodeling behavior (Cowin, 2001). The final 

cell type is the bone-lining cell. These are formed by osteoblasts that are inactive and are 

sometimes called resting osteoblasts (Cowin, 2001). Bone-lining cells may also respond to strain 

within the bone tissue and may be involved in the bone remodeling process (Cowin, 2001; 

Crockett et al., 2011). 
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Growth, modeling, and remodeling are processes that control the shape, size, strength, and 

anatomy of bones and joints (Cowin, 2001). Growth and modeling result in an increase in the 

amount of bone. Modeling helps to control the development of the bone structure during growth 

and helps to regulate the bone architecture in response to varying mechanical conditions (Cowin, 

2001). Bone remodeling involves the resorption of either old bone or immature woven bone 

followed by the formation of new lamellar bone (Cowin, 2001). The bone remodeling unit 

(BRU) passes through six stages: resting, activation, resorption, reversal, formation and 

mineralization, and subsequent resting. In adults, the majority of the bone surfaces are inactive 

and are in the resting stage. The initiation of bone remodeling is activation and this phase is 

believed to occur in response to structural or biomechanical factors (Cowin, 2001). Osteoclasts 

are recruited in this phase. Resorption occurs when osteoclasts begin to erode the bone surface 

and this phase can take 1 – 3 weeks (Cowin, 2001). Resorption is followed by a 1 – 2 week 

period before formation begins referred to as reversal or coupling. Bone formation is then 

performed which occurs in two stages. The osteoblasts first synthesize the bone matrix followed 

by a period of mineralization. 70% of the mineralization occurs after approximately 5 – 10 days; 

however, complete mineralization can take up to 3 – 6 months (Cowin, 2001). Following the 

formation of new bone, the BRU returns to its resting state. In the context of percutaneous 

implants, this implies that significant changes in the bone-implant interface can be expected in 

the first few weeks followed by a gradual improvement. 

1.2.2.  Osseointegration 

Osseointegration of an implant occurs when the living bone grows directly onto the implant 

surface and the two become integrated together at their interface (Brånemark, 1983; Brånemark 

et al., 1985; Ellingsent and Lyngstadaas, 2003) (Figure 1.1). Proper surgical techniques must be 

followed to promote osseointegration. If proper techniques are not followed, for example if there 

is too much surgical trauma, a soft connective tissue layer may form at the interface (much like a 

scar tissue) and osseointegration will not be achieved (Brånemark, 1983). 
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loading by some researchers has been that micromotion during healing would not lead to 

osseointegration (Akagawa et al., 1986; Brunski, 1992; Brunski et al., 1979; Lum et al., 1991; 

Szmukler-Moncler et al., 1998). However, many reports with early loading, particularly in dental 

implants, have shown successful osseointegration despite some amount of micromotion during 

healing (Akagawa et al., 1993; Deporter et al., 1990; Hashimoto et al., 1988; Szmukler-Moncler 

et al., 1998). It is generally accepted that “excessive” micromotion is what leads to the formation 

of a fibrous tissue layer and that motion below some threshold can still lead to successful 

osseointegration (Brunski, 1991; Brunski, 1993; Pilliar, 1991; Szmukler-Moncler et al., 1998). It 

has been suggested that implant design (such as a screw-type implant) is one factor that can help 

to achieve adequate primary stability to prevent excessive micromotion and allow for proper 

osseointegration (Szmukler-Moncler et al., 1998).   

1.2.3.  Bone Conduction Hearing Aids 

Traditional hearing aids transmit sound from a small speaker in the device, placed within the ear 

canal, through the middle ear to the cochlea (Taghavi, 2014). This type of transmission is known 

as air conduction (AC). Some patients cannot use traditional AC hearing aids and instead rely on 

bone conduction (BC) hearing aids to transmit sound through vibrations in the skull directly to 

the cochlea (Hagr, 2007; Taghavi, 2014). For example, many patients with conductive and mixed 

hearing loss or single-sided deafness as well as those with chronic middle ear disease or 

congenital malformations can benefit from BC hearing aids (Taghavi, 2014). 

Direct bone conduction hearing aids or bone anchored hearing aids (BAHA) transmit the sound 

to the skull bones though an osseointegrated implant installed in the mastoid portion of the 

temporal bone (Tjellström et al., 1983). A skin-penetrating abutment is attached to the implant 

and the hearing processor is connected via a mechanical coupling from outside the skin (Figure 

1.2). Percutaneous BAHA provide a good method for hearing rehabilitation with very good 

audiological results; however, they have some drawbacks associated with the skin-penetrating 

abutment including implant loss, skin complications, and aesthetic appearance (Reinfeldt et al., 

2015). More recently, transcutaneous BC devices have been developed to overcome some of the 

drawbacks of percutaneous BAHA. 
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the most widely used BC devices available today with over 150,000 patients world-wide 

(Reinfeldt et al., 2015). 

BAHA implants are typically installed with a single-stage surgery where the implant is installed 

into the bone and the abutment is attached at the time of surgery. The implants are then left for 

some time before loading to allow for proper osseointegration to occur (Wazen et al., 2007). 

Functional loading of BAHA implants occurs through fitting and attachment of the sound 

processor. The load is applied to the abutment during daily attachment and detachment of the 

processor by the patient and through the weight of the processor (13 – 17 grams) during normal 

use (www.cochlear.com; www.oticonmedical.com). Various loading times for BAHA implants 

have been reported ranging from 3 months (4-6 months for children) to 7-14 days post-surgery 

(Albrektsson et al., 1981; Faber et al., 2012; Foghsgaard and Caye-Thomasen, 2014; Hougaard et 

al., 2015; McLarnon et al., 2012; Nelissen et al., 2016; Wazen et al., 2007). 

1.2.4.  Dental Biology 

There are 32 teeth in the adult human mastication system: four incisors, two canines or cuspids, 

four premolars, and six molars in each of the upper (maxilla) and lower (mandible) jaws (Gray, 

1918). There are several notation systems for designating teeth, with the two-digit system of the 

Fédération Dentaire Internationale (FDI) being one of the most widely used (Türp and Alt, 

1995). With the FDI system, the teeth in the upper right jaw are designated with a number 1 and 

the teeth in the upper left jaw are designated with a number 2. Similarly, the lower left teeth 

begin with a number 3 and the lower right teeth begin with a number 4 (Figure 1.3). 
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The tooth root is connected to the surrounding alveolar bone by the PDL (Nishihira, 2003). The 

PDL consists of collagen fibers as well as a ground substance matrix including blood vessels and 

nerve endings (Carvalho et al., 2006; Romanyk et al., 2013; Toms et al., 2002). The PDL is a 

viscoelastic tissue that is approximately 0.15 – 0.25 mm in thickness (Carvalho et al., 2006; 

Romanyk et al., 2013). It stabilizes the tooth root in the bone while allowing for tooth movement 

in response to applied forces (Fill et al., 2011; Romanyk et al., 2013; Toms et al., 2002). 

Additionally the PDL provides nutritive, proprioceptive, and reparative functions to the area 

(Toms et al., 2002). Like many viscoelastic tissues, the PDL behaves elastically under rapid 

loading such as mastication because the high loading rate does not provide enough time for 

viscoelastic effects to occur, while it behaves viscoelastically under continuous loading such as 

orthodontic forces (Romanyk et al., 2013; Toms et al., 2002). The collagen fibers resist tensile 

forces while the ground substance allows for the viscoelastic response (Carvalho et al., 2006; Fill 

et al., 2011; Romanyk et al., 2013). 

Material properties of the PDL reported in the literature vary widely with reported values for the 

Young’s modulus spanning several orders of magnitude (0.01 – 1750 MPa) and reported values 

for Poisson’s ratio ranging from 0.28 to 0.49 (Fill et al., 2011). This variation is largely due to 

difficulties in experimental measurement and the wide range of approaches used for measuring 

or estimating these properties (Fill et al., 2011).  

The PDL is an important element in orthodontic tooth movement. Orthodontic forces are applied 

continuously over an extended period of time. It is generally accepted that orthodontic forces 

cause bone resorption on the compression side and bone apposition on the tension side of the 

PDL resulting in tooth motion towards the compression side (Dolce et al., 2002; Fill et al., 2011).  

1.2.5.  Implant Stability Measurement 

Implant stability is thought to occur in two stages: primary and secondary stability (Atsumi et al., 

2007; Cehreli et al., 2009). Primary stability is achieved during installation and is the result of 

mechanical engagement between the threaded implant and the bone (Atsumi et al., 2007; Cehreli 

et al., 2009). Secondary stability can be referred to as biological stability and is the result of bone 

remodeling and the osseointegration process (Atsumi et al., 2007; Brånemark, 1983; Brånemark 
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et al., 1985; Cehreli et al., 2009; Ellingsent and Lyngstadaas, 2003). This secondary stability is 

important for the lifelong success of the implant. There are many techniques that can be used to 

estimate implant stability or the integrity of the bone-implant interface (Atsumi, 2007). This 

section outlines some of the techniques that have been used including both destructive and non-

destructive techniques. 

1.2.5.1.  Destructive Techniques 

There are several invasive or destructive techniques such as histologic analysis and reverse 

torque or removal torque tests that have been used to assess the integrity of the bone-implant 

interface. Histologic analysis requires removal of the implant and preparation of the interface 

specimen and can provide valuable information about osseointegration and the cell structure 

surrounding the implant (van der Pouw et al., 1998). Removal torque testing measures the torque 

required to rupture the bone-implant interface and remove the implant from the bone. This 

method quantifies the torsional strength or a threshold for torsional failure of the implant 

(Cehreli et al., 2009). Removal torque has been used in animal studies to understand the 

osseointegration process and longitudinal healing of implants (Johansson and Albrektsson, 1987) 

and to evaluate different implant designs (Johansson et al., 2015). Because of their destructive 

nature, these techniques are not suitable for clinical use and have primarily been used in research 

settings and experimental animal studies (Cehreli et al., 2009). 

1.2.5.2.  Non-Destructive Techniques 

A clinically useful measure of implant stability should be noninvasive and non-destructive. 

Conventional imaging techniques such as radiography have been used with the idea that 

increased radiolucency around the implant indicates failure of osseointegration (Sundén et al., 

1995). However, these types of imaging techniques (including radiography, magnetic resonance 

imaging, and computed tomography) are limited in their ability to monitor the bone-implant 

interface because the presence of the implant often causes distortion on the image within the area 

of interest making it difficult to note the subtle changes that may be occurring (Atsumi et al., 

2007; Sundén et al., 1995; Swain et al., 2008a).  
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Several mechanical testing methods have been developed to assess implant stability which rely 

on the principle that the amount of osseointegration at the interface is related to the stiffness at 

this interface. A well-integrated implant is believed to be stiffer than a poorly integrated one 

(Swain et al., 2008a; Swain et al., 2008b). To measure this stiffness, resonance frequency 

analysis (RFA) uses the idea that the resonance frequency (or natural frequency) of the system 

comprised of the implant, adjoining superstructure, and supporting bone is dependent on the 

stiffness at the bone-implant interface. Assuming the other components in the system remain 

constant, changes in the resonance frequency indicate changes at the interface (Faulkner et al., 

1999; Meredith et al., 1996; Meredith, 1997; Swain et al., 2008a; Swain et al., 2008b). 

The OsstellTM ISQ (Osstell, Göteborg, Sweden) is a commercially available instrument based on 

the concept of RFA (Sennerby and Meredith, 2008). The OsstellTM provides an implant stability 

quotient (ISQ) between 1 and 100 which indicates the stability of the implant, with higher 

numbers having greater stability (McLarnon et al., 2012; Sennerby and Meredith, 2008). The 

OsstellTM system is widely used clinically (Faber et al., 2012; Foghsgaard and Caye-Thomasen, 

2014; Hougaard, et al., 2015; McLarnon et al., 2012; Nelissen et al., 2015; Nelissen et al., 2016); 

however it has several limitations. The system makes use of SmartPegs which are metallic pegs 

that must be attached directly to the system components, either the implant or the abutment. This 

makes their clinical use inconvenient or limited for several reasons. A specific SmartPeg must be 

used for each type of implant or abutment. There are over 50 different types of SmartPegs 

available to accommodate the wide range of implant systems currently used (www.osstell.com). 

As the SmartPeg must be directly attached to the implant or abutment, the OsstellTM system 

cannot be used with dental implants unless the prosthetic tooth is removed. This is not practical 

for cemented teeth. In addition, it cannot be used with natural teeth. The other major limitation of 

the OsstellTM is that it does not consider the system components such as the abutment or 

superstructure in the interpretation of the resonance frequency. Because of this, different results 

can be obtained for the ISQ value of a given interface depending on the superstructure that is 

used. It has been recommended that single ISQ values should not be interpreted individually and 

clinical conclusions should not be based on ISQ values at a particular time (Nelissen et al., 

2015). Because of the variation due to the implant and abutment geometry, ISQ values are most 

meaningful as a trend for an individual patient (Nelissen et al., 2015). This makes it difficult to 



13 
 

compare between patients or between different implant systems and makes it difficult to draw 

clinical conclusions based on this measure. 

The Periotest® (Medizintechnik Gulden, Modautal, Germany) is another commercially available 

system, originally developed to monitor the mobility and damping of natural teeth, which makes 

use of an impact technique to assess the interface (Lukas and Schulte, 1990). A handpiece is used 

to drive a metal rod towards the implant-abutment system. The non-striking end of the rod has an 

accelerometer attached, which records the acceleration response due to the impact. The impact 

event comprises approximately half of one cycle at the fundamental frequency of vibration of the 

system and the time for this half cycle to occur is termed the contact time. The contact time is 

used to calculate a Periotest value (PTV) between -8 and +50 with lower numbers representing 

stiffer systems. The equations used to calculate the PTV are as follows (Lukas and Schulte, 

1990): 

For PTV >13: PTV = 10√(
contact time

0.06 ms − 8.493) − 4.17 

For PTV <13: PTV = contact time
0.02 ms − 21.3 

The idea with the Periotest® is that a shorter contact time indicates a stiffer interface. This 

system has been applied to implants with limited success mainly due to the fact that the stiffness 

range for the PDL and natural teeth is considerably larger than for the bone-implant interface of 

osseointegrated implants (Aparicio et al., 2006; Hobkirk and Wiskott, 2006). The advantage of 

the Periotest® is that it does not require attachment to the implant system, so it can be used for 

natural teeth as well as any type of implant-abutment system even with permanently attached 

superstructures such as prosthetic teeth. Similar to the OsstellTM however, the disadvantage of 

the Periotest® is that it does not take the system components into account, so it is unclear how 

the PTV actually relates to the interface properties. Additionally, the Periotest® analysis uses a 

filtered acceleration signal which removes significant features in the system response (Swain et 

al., 2008a; Swain et al., 2008b) (Figure 1.5). 
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(representing the alveolar bone). This method has also be adapted for dental implants and has 

been evaluated in vitro with a simulated implant model where a cylindrical titanium rod 

(representing the implant) was embedded in a soft lining material and surrounded by urethane to 

simulate soft tissue in a bone defect area and the alveolar bone, respectively (Hayashi et al., 

2010). 

The Periotest® described above is a widely used device for measuring tooth mobility in a clinical 

setting (Goellner, et al., 2012; Goellner et al., 2013; Jönsson et al., 2007; Tanaka et al., 2005). It 

uses an impact with the tooth and measures the acceleration response during the time of contact. 

This contact time is then used to determine the PTV and related to tooth mobility (Lukas and 

Schulte, 1990) (Table 1.1).  

Table 1.1: Relationship between contact time, Periotest value, and tooth mobility (adapted from Lukas and Schulte, 1990) 

Contact 
Time 

Periotest
Value 

  Degree of Mobility 

(ms)   

1.21 30 III Can be moved with labial pressure 
0.86 20 II mobility can be seen 
0.65 10 I mobility can be felt 
0.502 4 0 stable anchored 
0.426 0 Ankylosis (without periodontium) 
0.266 -8     

 

The limitations of the Periotest® for use with implants have been identified above and similar 

limitations exist for use with natural teeth. The Periotest® measurement and PTV value 

calculations are based on a correlation of the signal parameters with clinical tooth mobility as 

defined by Lukas and Schulte (1990) and are not based on an understanding of the system 

response under impact loading. Thus it is unclear how the PTV actually relates to the health or 

stability of the periodontal tissues. 

1.2.7.  Development of an Improved Stability Measurement Based on the 
Periotest® 

As was described in the sections above, the original Periotest® measure is based on a simple 

correlation between the contact time and clinical tooth mobility and is not based on an 
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understanding of the system response or the health of the tissue interface. To better understand 

the impact response and physical properties at the bone-implant interface, several researchers 

have coupled the impact technique using the Periotest® handpiece with an analytical model of 

the implant-abutment system and the surrounding bone at the interface for percutaneous 

implants.  

Giannitsios (2001) developed a two degree of freedom model where the implant-abutment 

system were considered as a single rigid body and the Periotest® impact rod was modeled as a 

particle. The bone-implant interface was modeled with horizontal and vertical springs and 

dampers distributed over the implant length. Giannitsios (2001) used the filtered Periotest® 

signal showing a single vibration mode in the analysis. The analytical model was reduced to a 

single degree of freedom system by assuming that the mass of the implant and abutment were 

negligible compared to the mass of the impact rod. Through in vitro testing this work determined 

that the implant diameter, length of engagement at the bone-implant interface, angulation of the 

Periotest®, and the striking height along the abutment all affect the output of the Periotest®. 

In a follow-up study, Hurst (2002) applied an improved testing protocol to control the testing 

parameters that had been identified. Additionally, Hurst (2002) was able to extract the unfiltered 

accelerometer signal from the Periotest® device and used a two degree of freedom model based 

on the work of Giannitsios (2001). By including the implant and abutment mass, the system was 

able to return two natural frequencies similar to the measured accelerometer results. The model 

was compared to a single implant-abutment system using in vitro testing, but was met with 

limited success suggesting that a more complex model was required to adequately represent the 

experimental system.   

Swain et al. (2006; 2008a; 2008b) extended this work and developed a four degree of freedom 

model considering the implant and abutment as separate rigid bodies. The connections between 

the impact rod and the abutment and between the implant and abutment were model as linear and 

torsional springs respectively. Their approach uses the raw acceleration signal and was evaluated 

for a variety of implant and abutment lengths. The inclusion of the analytical model, allows the 

measurement to be essentially independent of the details of the implant-abutment system. This 

approach has been evaluated with in vitro experiments for BAHA implants (with a modified 
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cylindrical abutment) as well as in vivo experiments for BAHA patients (Swain, 2006). A similar 

approach was then extended by Mo (2009) to evaluate dental implants through in vitro testing. 

While the coupled impact technique and analytical model is a promising method, the previous 

work has several limitations. The approach relied on the contact time as the only criterion for 

calculation of the interface stiffness. Further, the raw acceleration measurement extracted from 

the Periotest® unit suffered from drifting in the reference voltage which directly affected the 

estimated contact time and did not accurately represent the acceleration response of the system. 

The previous work also used qualitative matching between the measured accelerometer signal 

and the analytical model to estimate various parameters and to assess the quality of the model 

prediction. Additionally, the analytical models are limited in their scope, considering only a 

BAHA implant with a modified abutment (instead of clinically used abutments) as well as dental 

implants. To use this technique for BAHA patients, the commercially available abutments must 

be included in the system. The in vivo study by Swain (2006) required removal of the BAHA 

abutment and attachment of a modified abutment prior to testing, which is not practical for 

widespread clinical use. Moreover, the previous work included a damping model (proportional 

damping) that may not adequately represent the physiological system. Finally, these techniques 

have not been extended beyond the percutaneous implant application; however, the techniques 

can be applicable to the dental or orthodontic fields by considering natural teeth instead of 

implant-abutment systems. To use a similar approach in the dental field, an analytical model of a 

natural tooth must be developed for the system.  

1.3. Objectives 

The objective of this study is to develop a clinically useful measurement system to noninvasively 

evaluate the interface stiffness that is applicable across a range of applications and stiffness 

values including BAHA implants and natural teeth.  

The measurement system will be termed the Advanced System for Implant Stability Testing 

(ASIST) and will consist of three major components. The first is a mechanical handpiece used to 

obtain experimental accelerometer data from an impact with the superstructure of the system of 

interest (BAHA abutment, tooth crown, etc.). The second component is an analytical model of 



18 
 

the system of interest. The third component is the correlation between the experimental data and 

the numerical model to estimate the interface stiffness for the particular application. 

The ASIST will be developed through in vitro laboratory testing for two commercial BAHA 

systems: the Oticon Medical Ponto System and the Cochlear Baha® Connect System. A 

longitudinal clinical study will be conducted in collaboration with the Institute for 

Reconstructive Sciences in Medicine (iRSM) to evaluate in vivo BAHA implant stability during 

the first year following surgery. 

The ASIST technique will be developed for natural teeth and evaluated with in vivo clinical data 

collected over the course of one year for patients undergoing orthodontic treatment. 

1.4. Thesis Outline 

This thesis presents the development and evaluation of a noninvasive measurement system for 

evaluation of interface stiffness properties for both BAHA implants and natural teeth. 

Chapter 1 provides an introduction to the research topic, motivates the clinical significance of the 

measurement system, and presents a review of relevant literature in the area. 

Chapter 2 presents the ASIST for BAHA implant-abutment systems. The hardware and 

experimental measurement system is presented. The analytical model is developed along with 

techniques for estimating the interface parameters by matching the analytical model prediction 

with the measured acceleration response. The results of a parametric sensitivity analysis of the 

analytical model are presented as well as the details of the numerical analysis and matching 

procedure. 

Chapter 3 presents the in vitro experimental development of the ASIST for two commercially 

available BAHA implant-abutment systems (Oticon Medical Ponto System and Cochlear Baha® 

Connect System). The experimental methods are presented along with an analysis of the 

precision and reliability of experimental testing. The ASIST system is compared with the 

commercially available and widely used OsstellTM ISQ for BAHA implant-abutment systems and 

the experimental methods of this comparison are presented in this chapter. 
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Chapter 4 presents the experimental results including the in vitro testing for BAHA implant-

abutment systems as well as the comparison with the commercially available OsstellTM ISQ 

system. 

Chapter 5 presents the clinical evaluation for BAHA patients with an in vivo longitudinal study 

evaluating implant stability during the first year following surgery. 

Chapter 6 presents the development of the ASIST for natural teeth including the analytical model 

development and numerical analysis procedure. The results of a parametric sensitivity study for 

the tooth analytical model are presented. An evaluation of the ASIST for natural teeth and results 

are presented for longitudinal clinical data with orthodontic patients. 

Chapter 7 concludes the thesis with a discussion of the major findings as well as limitations and 

a proposal for future research. 

Portions of this thesis have been presented or submitted for publication. 
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Chapter 2:  ASIST for Bone Anchored Hearing 
Aids 

In this chapter, we build on the ideas of the coupled impact technique and analytical model and 

develop a new Advanced System for Implant Stability Testing (ASIST) which provides a non-

invasive, quantitative measure of implant stability that is independent of the system components. 

This chapter presents the development of the analytical model and a parametric sensitivity 

analysis. The goals of this chapter are to describe the ASIST for BAHA implant systems 

including the hardware and measurement system, the analytical model, and the analysis 

procedures for estimating the interface properties. A parametric sensitivity analysis of the 

analytical model is presented to understand the behaviour of the model and the sensitivity to 

various parameters and assumptions. Finally, the details and assumptions of the numerical 

analyses are investigated and their effects on the ASIST solution are briefly discussed.  

2.1. Hardware and Measurement 

The previous work described in Section 1.2.7. has shown that the impact technique using the 

Periotest® handpiece has many practical advantages (Giannitsios, 2001; Hurst, 2002; Mo, 2009; 

Swain, 2006; Swain et al., 2008a; Swain et al., 2008b). This method provides versatility in the 

stability measurement system as it can be used with any implant-abutment system as well as with 

other anatomical systems such as natural teeth as it does not require attachment to the system 

components. Additionally, the acceleration response provided by the handpiece gives an 

appropriate level of detail to estimate interface stiffness parameters of the system (Mo, 2009; 

Swain, 2006; Swain et al., 2008a; Swain et al., 2008b). Because of these advantages, the ASIST 

continues to use the handpiece of the Periotest® with some modifications to improve the data 

collection procedure, making it more suitable for regular clinical use. In particular, the 

electronics to drive the impact rod and collect the acceleration data are redesigned to eliminate 

the drift in the reference voltage (as discussed below), providing a more accurate representation 

of the actual acceleration response. The data collection procedure is made wireless using 

Bluetooth to transfer the acceleration signal to a computer, which greatly improves the clinical 

utility of the system compared to the wired data acquisition of previous approaches. Finally, the 
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where {𝑥} =
⎩⎪
⎨
⎪⎧

𝑥1
𝑥2
𝜃1
𝜃2⎭⎪

⎬
⎪⎫

 as illustrated in Figure 2.3. 

The impact event is modeled as a free vibration problem during the time of the strike (when the 

impact rod is in contact with the abutment). The initial conditions for the problem are zero 

displacement for all coordinates, an initial velocity of the impact rod (𝑥̇1(0) = 𝑣0), and zero 

velocity for all other coordinates. 

The details of the mass [𝑀], stiffness [𝐾], and damping [𝐶] matrices can be obtained for this 

system using the method of influence coefficients (Den Hartog, 1985). The details of these 

derivations are shown in Appendix A. 

The matrix [𝑀] is given by: 

[𝑀] =

⎣
⎢
⎢
⎢
⎢
⎡𝑚𝑝 0 0 0

0 𝑚𝐼 + 𝑚𝐴 𝑚𝐴𝑦𝐴̅ − (𝑚𝐼 + 𝑚𝐴)ℎ −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ )
0 𝑚𝐴𝑦𝐴̅ − (𝑚𝐼 + 𝑚𝐴)ℎ 𝐽𝐴 + 𝑚𝐴(ℎ − 𝑦𝐴̅)

2 + 𝑚𝐼 ℎ2 𝑚𝐼 ℎ(𝐿𝐼 − 𝑦𝐼̅ )
0 −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ ) 𝑚𝐼 ℎ(𝐿𝐼 − 𝑦𝐼̅ ) 𝐽𝐼 + 𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ )

2⎦
⎥
⎥
⎥
⎥
⎤

 

where: 

𝐿𝐼 = length of the implant 

𝑦𝐴̅ = distance from the bottom of the abutment to the center of mass 

𝑦𝐼̅ = distance from the bottom of the implant to the center of mass 

ℎ = distance from the bottom of the abutment to the striking location 

 

The stiffness matrix [𝐾] is: 
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[𝐾] =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝐼 −𝐾𝐼 0 0
−𝐾𝐼 𝐾𝐼 + 4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶) −4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ −2𝑘𝑅0(𝐿𝐼

2 − 𝐿𝐶
2 )

0 −4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ 𝐾𝑇 + 4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ2 −𝐾𝑇 + 2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ

0 −2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 ) −𝐾𝑇 + 2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ 𝐾𝑇 + 4
3

𝑘𝑅0(𝐿𝐼
3 − 𝐿𝐶

3 ) ⎦
⎥
⎥
⎥
⎥
⎤

 

where 𝐿𝐶  is the portion of the implant that extends above the bone surface i.e. the distributed 

stiffness at the bone-implant interface ݇ only acts along the length 𝑙𝑖 = 𝐿𝐼 − 𝐿𝐶  and 𝑅0 is the 

radius of the implant. 

As with any real system, it is expected that some damping will occur which should be taken into 

account in the analytical model. One of the major changes to the analytical model compared to 

the work of Swain et al. (2008a) is the damping assumption that is used. In the present model, we 

use a general viscous damping model, while Swain et al. used a proportional damping model. In 

the BAHA implant-abutment system, proportional damping is not believed to be representative 

of the physiological conditions where higher damping is expected to occur at the bone-implant 

interface with relatively minimal damping in the rest of the system. As a result, our model 

assumes that damping is distributed along the bone-implant interface (similar to the interface 

stiffness) and is negligible elsewhere. In particular (unlike with proportional damping) there is no 

damping at the spring locations 𝐾𝐼  and 𝐾𝑇 . Moving away from proportional damping to general 

viscous damping means that a numerical procedure must be used to solve the equations of 

motion rather than using the analytical approach of modal analysis. 

The damping matrix [𝐶] is given by: 

[𝐶] =

⎣
⎢
⎢
⎢
⎢
⎡0 0 0 0
0 4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶) −4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ −2𝑐𝑅0(𝐿𝐼

2 − 𝐿𝐶
2 )

0 −4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ 4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ2 2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ

0 −2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 ) 2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ 4
3

𝑐𝑅0(𝐿𝐼
3 − 𝐿𝐶

3 ) ⎦
⎥
⎥
⎥
⎥
⎤

 

where 𝑐 is the viscous damping coefficient per unit area surrounding the implant. 
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2.3. Estimating the Interface Properties 

A custom Mathematica program (Wolfram Mathematica 10, Champaign, IL, USA) was 

developed to process the data collected from the ASIST device. 

2.3.1.  Measured Acceleration Signals – Curve Fit Approximation 

From the measured accelerometer signals, two dominant frequencies are readily visible (Figure 

2.2 B). The time of one strike represents approximately half of one cycle at the first natural 

frequency. 

To correlate the measured signal with the acceleration response of the analytical model, it is 

necessary to extract relevant information (such as the amplitude and damping content) from the 

measured signal. This can be done by fitting a curve to the measured data using a least squares 

minimization procedure. This procedure allows the damping in the measured signal to be 

estimated and provides a measure of the amplitude of the signal which can be used to normalize 

the acceleration response as described in Section 2.3.2.   

Since the measured accelerometer signals show two prominent modes of vibration, the curve fit 

model is based on a simplified 2-DOF vibration response:  

𝑥1(𝑡) = 𝐴𝑒−𝜁1𝑝1𝑡 sin(𝜔𝑑1𝑡 + 𝜙1) + 𝐵𝑒−𝜁2𝑝2𝑡 sin(𝜔𝑑2𝑡 + 𝜙2) 

where 𝑝𝑛 are the natural frequencies of the system and 𝜔𝑑𝑛 = √1 − 𝜁𝑛
2𝑝𝑛 are the damped natural 

frequencies. 

The form of the acceleration of the impact rod (𝑥̈1) can then be found by differentiating the 

displacement response above. An estimate for the unknown parameters in the 2-DOF response 

(𝐴, 𝐵, 𝜁1, 𝜁2, 𝑝1, 𝑝2, 𝜙1, 𝜙2) can be found by determining the value of these parameters that 

minimizes the difference between the measured accelerometer data and the model equation in a 

least squares sense. Since only half of a cycle of the first natural frequency is present in the data, 

the estimate for the first mode damping ratio cannot be accurately determined and is thus not 

included in the curve fit model (𝜁1 = 0).  Additionally, for the curve fit equation to accurately 
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model the experimental system, the initial condition 𝑥̈1(0) = 0 should be enforced. To do this, a 

constraint is placed on the amplitude of the second mode. The parameter ܤ is not independently 

varied, but is expressed as a function of the other variables such that 𝑥̈1(0) = 0. This curve fit 

procedure provides a single approximate analytical description of the measured accelerometer 

data. An example of the measured accelerometer data and the resulting curve fit model are 

shown in Figure 2.4.  

 

Figure 2.4: Measured accelerometer data (colored) with the curve fit model (red). Vertical dashed line defines the end of 
the strike. 

2.3.2.  Extracting Information from the Curve Fit 

The curve fit provides an analytical description of the experimental data which will ultimately be 

used to determine the best stiffness parameters to match the model predicted acceleration with 

the experimentally measured data. To ensure proper matching between the measured data and the 

modeled signal, the modeled acceleration response must be normalized (Swain et al., 2008a). 

This is because the model simulation has units of acceleration (m/s2) while the experimental 

accelerometer data is measured in volts (V). 

If we assume that the voltage measured from the accelerometer is linearly proportional to the 

acceleration of the impact rod, then we can determine the proportionality constant 𝑉𝑎𝑚𝑝 from the 

curve fit parameters. 

𝑢(̈𝑡) = 𝑉𝑎𝑚𝑝𝑥̈(𝑡) 

0.0002 0.0004 0.0006
Time s
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where 𝑥̈(𝑡) is the acceleration of the impact rod (m/s2) and 𝑢(̈𝑡) is the normalized acceleration 

from the accelerometer. 𝑉𝑎𝑚𝑝 must be determined such that the amplitude of the first mode 

frequency of the model signal matches that of the measured data. The first mode displacement 

response of the measured data as represented by the curve fit is simply: 

𝑥(𝑡) = 𝐴 sin(𝑝1𝑡 + 𝜙1) 

where the parameter 𝐴 is determined from the curve fit procedure above. 

Now, from the above equations: 

𝑢(𝑡) = 𝑉𝑎𝑚𝑝 [
𝑢(̇0)
𝑝1

sin(𝑝1𝑡 + 𝜙1)] 

where 𝑢(̇0) is the initial velocity of the impact rod (𝑢(̇0) = 0.2 m/s) (Swain et al., 2008a). 

The amplitude of 𝑥(𝑡) is chosen to match the amplitude of 𝑢(𝑡). Thus, 

𝐴 = 𝑉𝑎𝑚𝑝
𝑢(̇0)
𝑝1

    ⇒       𝑉𝑎𝑚𝑝 = 𝐴
𝑝1

𝑢(̇0)
 

where 𝑢(̇0) is known to be 0.2 m/s as indicated above, 𝐴 is the amplitude of the first mode and 𝑝1 

is the first mode frequency, both taken from the curve fit parameters. 

The damping values used in the analytical model can also be determined from the curve fit 

parameters. In the case of general viscous damping, it is necessary to find the viscous damping 

coefficient at the bone-implant interface (𝑐). This parameter can be estimated based on the curve 

fit and the mass parameters of the particular system. 

For a single degree of freedom system with a single mass, spring, and viscous damper, the 

damping ratio of the system is given by (Den Hartog, 1985): 

𝜁 = 𝑐
2√𝑚𝑘

  or  𝑐 = (2√𝑚)𝜁√𝑘 

So that the damping coefficient is proportional to the damping ratio and the square root of the 

stiffness (where in the case of a single DOF system the proportionality constant would be 2√𝑚).   
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Using an analogous relationship to the 4-DOF system of the BAHA implant-abutment system 

with damping only at the interface, we assume: 

𝑐 = 𝛾𝜁2√𝑘 

where: 𝑐 is the damping coefficient at the bone-implant interface per unit area (Ns/m3) 

𝑘 is the stiffness at the bone-implant interface per unit area (N/m3) 

𝜁2 is the second mode damping ratio determined from the curve fit for a particular set of data 

𝛾  is the constant of proportionality which must be determined for each implant-abutment system 

because we can assume that it is related to the mass and other stiffness properties of the system 

(kg1/2) 

The value of 𝛾  for each implant-abutment combination was determined using the following 

procedure and the results were included in the Mathematica program for the ASIST model. 

For one implant-abutment system (e.g. narrow diameter 4 mm implant with 9 mm abutment) a 

test grid was defined covering a range of 𝑘-values and a range of 𝑐-values. For each combination 

of 𝑘 and 𝑐, the acceleration response was calculated from the analytical model and a curve was 

fit to the resulting signal following the curve fit procedure defined previously. The output of 

interest from the curve fit procedure was the second mode damping ratio 𝜁2.  This produced a set 

of data where for every 𝑘 and 𝑐 within the test grid, 𝜁2 predicted from the curve fit is known. The 

Mathematica function NonlinearModelFit[] was used to determine the value of the 

parameter 𝛾  to match the model (𝑐 = 𝛾𝜁2√𝑘) with the data. An example of the grid data and the 

resulting model are shown in Figure 2.5 below, where 𝛾  was found to be 181 kg1/2. 



 

Figure 2.5:
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The developed model allows the matching to be done using multivariable minimization. For 

example, the combination of 𝐾𝐼  and 𝑘 in the analytical model that would result in the best match 

with the given measured acceleration signal can be determined. This multivariable minimization 

can be used to determine appropriate values for the model parameters (i.e. 𝐾𝐼  and 𝐾𝑇 ) that are 

applicable across the range of cases for each BAHA system. Once these appropriate values are 

determined, they can be fixed in the model leaving the interface stiffness as the only unknown. 

The interface stiffness from a measurement is then estimated using single-variable minimization 

to match the analytical model to the given dataset.  

2.3.4.  Outcome Measure 

The primary outcome measure is the ASIST Stability Coefficient (ASC) which is a non-

dimensional value that is directly related to an effective interface stiffness (over the entire 

implant area) and normalized to a nominal stiffness at the impact site (𝐾𝐼 ). The effective 

stiffness 𝐾𝑒𝑓𝑓  at the bone-implant interface is given by: 

𝐾𝑒𝑓𝑓 = 4𝑘𝑅0𝑙𝑖 

where 𝑙𝑖 = 𝐿𝐼 − 𝐿𝑐  is the length of the threaded portion of the implant and the interface stiffness 

per unit area (𝑘) is assumed to be constant with a linear relationship between the force and 

displacement. 𝐾𝑒𝑓𝑓  represents an effective stiffness of the bone-implant connection with units of 

N/m. The derivation for the effective stiffness expression is shown in Appendix A. The ASC 

value relates this effective interface stiffness to a nominal stiffness at the impact site, providing a 

non-dimensional stiffness ratio: 

ASC = 𝐾𝑒𝑓𝑓
𝐾𝐼

= 4𝑘𝑅0𝑙𝑖
𝐾𝐼

  with 𝐾𝐼 = 4 × 106 N/m 

2.4. Parametric Sensitivity of Analytical Model 

This section presents the results of a theoretical analysis of the analytical model. The details for 

this analysis are shown in Appendix B. First, the analytical model is examined through modal 

analysis to provide an understanding of the behavior of the model. Subsequently, an evaluation 
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2.4.4.  Analytical Model Frequency Response versus Geometric and Inertial 
Parameters 

The important geometric and inertial parameters for the implants in the analytical model are the 

mass (𝑚𝐼 ), the length of the threaded portion (𝑙𝑖), the diameter (𝑑𝑖 = 2𝑅0), the location of the 

center of mass (𝑦𝐼̅ ), and the mass moment of inertia (𝐽𝐼 ). Similarly, the important geometric 

parameters for the abutments in the analytical model are the mass (𝑚𝐴), the length (𝐿𝐴), the 

location of the center of mass (𝑦𝐴̅), and the mass moment of inertia (𝐽𝐴). 𝑙𝑖, 𝐿𝐴, 𝑚𝐼 , 𝑚𝐴, and 𝑑𝑖 

are straightforward to determine and are not subject to appreciable error. 

Using the analytical model, the relationships between the geometric parameters and the first and 

second mode frequency components are examined following the same procedure as the stiffness 

parameters. This can provide an understanding of the effect of the various geometric parameters 

on the theoretical acceleration response. Additionally, this analysis will provide an understanding 

of the sensitivity of the ASIST measure to errors in the estimated parameters such as 𝑦𝐼̅ ,𝑦𝐴̅, 𝐽𝐼 , 

and 𝐽𝐴. The details of this analysis are shown in Appendix B. 

Both the first and second mode frequency components of the model response were found to be 

virtually insensitive to changes in the implant mass, location of the center of mass, and mass 

moment of inertia. The center of mass and moment of inertia were estimated for the implants 

based on simplified geometry. Since the model is fairly insensitive to these parameters, errors in 

these estimates would not have a large impact on the overall model performance. 

The model response is sensitive to changes in implant length and the relationship is nearly linear. 

The first mode frequency is relatively more sensitive than the second mode frequency. Consider 

for example an implant with a 9 mm abutment. A change in length from 3 mm to 4 mm (33% 

increase) results in a change in first mode frequency from 1120 – 1429 Hz, which is an increase 

of 309 Hz or a 28% increase. The same change in length results in an increase in second mode 

frequency from 17054 – 18193 Hz, which is an increase of 1139 Hz or a 7% increase. The model 

response was found to vary slightly with changing implant diameter and again the relationship is 

nearly linear. Consider again an implant with a 9 mm abutment. A change in diameter from 3.75 

mm to 4.50 mm (20% increase) results in an increase of first mode frequency of 69 Hz (5% 

increase) and a change in second mode frequency of 417 Hz (2% increase). 
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found to decrease with increasing abutment length. Other measurement methods such as the 

Periotest® and OsstellTM ISQ that rely on a correlation between the first mode frequency and the 

interface stiffness without consideration for the abutment length will produce different answers 

for the stability measurement for varying abutment lengths because of this sensitivity shown 

here. This is why it is important in the ASIST model to account for the abutment length in the 

analysis procedure. 

2.4.5.  Model Solution (ASC and Fit with Measured Data) with Geometric 
Parameters 𝒚𝑨̅ and 𝑱𝑨 

In the analytical model, the location of the center of mass and mass moment of inertia of the 

implant and abutment were estimated based on assumed, simplified geometry. In Section 2.4.4.  

it was found that the implant parameters including 𝑦𝐼̅  and 𝐽𝐼  have very little effect on the model 

response, thus errors in these parameters should not have a large effect on the model 

performance. Conversely, the abutment parameters including  𝑦𝐴̅ and 𝐽𝐴 were found to have 

more of an effect on the second mode frequency response of the analytical model (particularly 

𝑦𝐴̅). In this section, we will evaluate the sensitivity of the model solution to errors in these 

abutment parameters. As 𝑦𝐴̅ or 𝐽𝐴 are varied, the calculated interface stiffness and associated 

ASC value are determined along with the resulting 𝑅2 fit between the model predicted signal and 

the measured acceleration. For each analysis, a sample dataset is used in order to calculate the 

ASC and 𝑅2 values. The details of this analysis are shown in Appendix B while exemplary 

results are presented here. 

Consider for example the long/narrow implant (M50128) with a 9 mm abutment. Figure 2.18 

shows the variation in ASC and 𝑅2 value with changing 𝑦𝐴̅. The two plots are overlaid with the 

scale for the ASC value (blue line) on the left of the figure and the scale for the 𝑅2 value (black 

line) on the right of the figure. 
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technique is to estimate the stiffness of the bone-implant interface 𝑘 and to identify differences 

between well-integrated implants and poorly integrated ones. With a poorly integrated implant, 

the interface stiffness 𝑘 may decrease substantially, and with the proportional damping model, 

the damping in this location would also decrease. However, in the actual system, the bone-

implant interface of a poorly integrated implant may have significantly higher damping, for 

example, due to the formation of scar tissue. For this reason, an alternative damping model was 

investigated. A comparison is presented to understand the influence of the damping assumption. 

The details of this comparison are shown in Appendix B. 

The ASIST procedure was used to estimate the interface stiffness and calculate the associated 

ASC value using both the proportional damping assumption and the general viscous damping 

assumption for a subset of clinical data from 11 BAHA patients. The second mode damping ratio 

was extracted from the curve fit for each dataset and used in the analysis. The damping content 

for the BAHA patients is generally very low with an average damping ratio of 0.034 (3.4%) and 

a range of 0.020 – 0.066 for the sample data. There are very small differences in the results for 

the two procedures with a maximum difference in the ASC value of 2.2% and differences in the 

𝑅2 value below 1%. With such a small damping content, it was found that the choice of damping 

assumption does not have a large impact on the results. It should be noted that this analysis was 

done for “good” implants; however, a failing implant may have a different behavior.  

2.5. Detail of the Numerical Analysis 

There are two major numerical procedures used in the ASIST technique, namely the curve fit 

approximation to the measured acceleration signals (described in Section 2.3.1. and 2.3.2.) and 

the optimization procedure for matching the analytical model to the measured acceleration 

described in Section 2.3.3. We examined some of the assumptions and procedures associated 

with these numerical techniques in order to determine their effect on the ASIST solution and the 

details of these analyses are shown in Appendix C. In general, the model solution was found to 

be insensitive to variations in the numerical analysis parameters. In some cases, variations in the 

parameters can cause either the curve fit or the optimization procedure to fail to find a solution; 

however, when a solution is found, it is typically able to find a unique solution within a very 

small numerical error. 
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2.6. Summary 

This chapter presented the ASIST for BAHA implant systems including the hardware and 

measurement system, the analytical model, and the analysis procedures. The ASIST development 

built upon previous work in this area (Giannitsios, 2001; Hurst, 2002; Mo, 2009; Swain, 2006; 

Swain et al., 2008a; Swain et al., 2008b). The contributions of the current author to the final 

ASIST design include: (1) iterative consultation with collaborators during the development of the 

hardware (ASIST unit) and data collection software (Kamal et al., 2015), (2) improvements to 

the analytical model including the use of commercially available BAHA implant-abutment 

systems (Oticon Medical Ponto and Cochlear Baha® Connect Systems) and the use of a more 

physiologically appropriate damping model, (3) the analysis procedures including automatic, 

quantitative, and objective matching between the measured acceleration and the analytical model 

and evaluation of the quality of fit, which has made the ASIST usable in a clinical situation. 
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3.1. Application to Oticon Ponto Implant-Abutment System 

Four different sizes of Oticon Ponto BAHA implants were obtained from the manufacturer 

(Ponto System, Oticon Medical). The standard implants developed by Oticon are 4 mm in length 

and 3.75 mm in diameter. A newer wide version of the implant has also been developed which is 

4.50 mm in diameter, increasing the surface area of the bone-implant interface. Both of these 

implants are also available in a shorter 3 mm length, which are often used in paediatric patients 

or patients with a thinner mastoid bone. The four types of implants are shown in Table 3.1. 

Initially, three different lengths of Ponto abutments were obtained: 6 mm, 9 mm, and 12 mm. An 

additional 14 mm Ponto abutment was added after the initial testing, which will be discussed 

later in Section 4.1.3. Three samples of each implant and one sample of each abutment were 

used. 

Table 3.1: Oticon BAHA implant sizes 

 
Short/Narrow

M50106 
Long/Narrow 

M50128 
Short/Wide 

M51061 
Long/Wide 

M51062 

Diameter (mm) 3.75 3.75 4.50 4.50 

Length (mm) 3.0 4.0 3.0 4.0 

 

The location of the center of mass and the mass moment of inertia for the implants and 

abutments were calculated based on approximate, simplified geometry. Figure 2.3 shows a 

representative example of the simplified geometry. The schematic is to scale for a long/narrow 

implant and 12 mm abutment. The nominal diameter and length (Table 3.1) were used for the 

dimensions of the threaded portion of the implants. For the abutments, it was assumed that the 

geometry of the upper coupling portion as well as the shaft diameter were constant across 

abutment sizes. The shaft length was varied such that the total length of each abutment was equal 

to its nominal length (6 mm, 9 mm 12 mm). 

The model response was found to be sensitive to the location of the center of mass of the 

abutment (𝑦𝐴̅) (Section 2.4). The center of mass of each abutment was adjusted from the 

calculated value to an average value that best matched sample data from implant specimens 
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examined in the laboratory setting. The 𝑦𝐴̅ values calculated from the simplified geometry are 

shown in Table 3.2. 

Table 3.2: Location of the center of mass for Oticon abutments calculated from the simplified geometry 

  𝒚𝑨̅ (base value) (𝐦) 

6 mm 0.00284 
9 mm 0.00457 
12 mm 0.00620 

 

One sample of data from each implant-abutment combination for the eight implant samples was 

used (Note: the implant samples are described in Section 3.3.1. The eight photoelastic FRB-20 

samples were used for this analysis). For each data sample, the location of the center of mass of 

the abutment was varied േ10% from the calculated value in a total of 20 discrete values. For 

each value of 𝑦𝐴̅, the model was used to estimate the appropriate interface stiffness (𝑘) and 

determine the 𝑅2 value between the model prediction and the data. The value of 𝑦𝐴̅ that 

produced the best fit between the model and the data as measured by the 𝑅2 value was recorded. 

For a given abutment, eight values were determined (one from each sample) as shown in Table 

3.3. The average of the eight values were calculated for each abutment and used as the fixed 

values for 𝑦𝐴̅ in the model. 

Table 3.3: Best fit value of Oticon abutment center of mass (𝒚𝑨̅) for one dataset with each of the FRB-20 implant samples 
(units of 𝐦) 

  6 mm 9 mm 12 mm 

M50106 FRB-20 (1) 0.00312 0.00445 0.00584 
M50106 FRB-20 (2) 0.00255 0.00455 0.00630 
M50128 FRB-20 (1) 0.00312 0.00435 0.00577 
M50128 FRB-20 (2) 0.00255 0.00455 0.00577 
M51061 FRB-20 (1) 0.00312 0.00460 0.00597 
M51061 FRB-20 (2) 0.00312 0.00450 0.00597 
M51062 FRB-20 (1) 0.00312 0.00474 0.00617 
M51062 FRB-20 (2) 0.00312 0.00440 0.00577 

Average 0.00298 0.00452 0.00595 
SD 0.00026 0.00012 0.00020 
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The approximated mass and geometry properties for the Oticon implants and abutments are 

shown in Table 3.4. The mass of the abutment includes the mass of the screw that connects the 

abutment to the implant. Note that the location of the center of mass is measured from the bottom 

of the component and the mass moment of inertia is about the center of mass. 

Table 3.4: Mass and geometry properties for Oticon implants and abutments 

Oticon Implants Mass (𝐠) Diameter (𝐦𝐦) Length (𝐦𝐦) 𝒚𝒊̅ (𝐦𝐦) 𝑱𝑰  (𝐠 𝐦𝐦𝟐)

M50106 0.126 3.75 3.00 2.19 0.31 

M50128 0.157 3.75 4.00 2.71 0.51 

M51061 0.173 4.50 3.00 2.04 0.46 

M51062 0.222 4.50 4.00 2.54 0.76 

Oticon 
Abutments 

Mass (𝐠) 
Shaft Diam. 

(𝐦𝐦) 
Length (𝐦𝐦) 𝒚𝑨̅ (𝐦𝐦) 𝑱𝑨 (𝐠 𝐦𝐦𝟐)

6 mm 0.51 5.00 6.00 2.98 2.72 

9 mm 0.72 5.00 9.00 4.52 5.99 

12 mm 0.97 5.00 12.00 5.95 13.07 

 

3.2. Application to Cochlear Baha® Connect Implant-
Abutment System 

One type of Cochlear Baha® Connect implant (BI300) was obtained from the manufacturer 

(Cochlear Bone Anchored Solutions, Göteborg, Sweden). The implant diameter is approximately 

4.45 mm and the nominal length is 4 mm. Four different lengths of the BA400 abutment were 

obtained (nominal lengths: 6 mm, 8 mm, 10 mm, 12 mm). One sample of the implant and one 

sample of each abutment were used. 

The general components of the Cochlear system are the same as for the Oticon system, thus the 

developed analytical model is applicable for both systems. To use the analytical model for the 

Cochlear Baha® Connect system, the mass and geometry properties must be modified. The 

values determined for the Cochlear system are shown in Table 3.5. 
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Table 3.5: Mass and geometry properties for Cochlear implants and abutments 

Cochlear Implant Mass (𝐠) Diameter (𝐦𝐦) Length (𝐦𝐦) 𝒚𝒊̅ (𝐦𝐦) 𝑱𝑰  (𝐠 𝐦𝐦𝟐)

BI300 0.22 4.45 4.00 2.66 0.78 

Cochlear 
Abutments 

Mass (𝐠) 
 

Length (𝐦𝐦) 𝒚𝑨̅ (𝐦𝐦) 𝑱𝑨 (𝐠 𝐦𝐦𝟐)

6 mm 0.50 N/A 4.67 2.15 2.68 

8 mm 0.70 N/A 6.67 3.85 4.42 

10 mm 1.03 N/A 8.67 4.93 8.22 

12 mm 1.40 N/A 10.67 6.01 14.39 

 

3.3. ASIST Development and Experimental Evaluation 

3.3.1.  Experimental Testing 

Each implant was installed into a disc of either photoelastic FRB-20 (Measurements Group Inc., 

Raleigh, NC) or a 3D printed PLA (Cubify, 3D Systems Inc.) to simulate a well-integrated 

implant in bone. Two samples of each Oticon implant type were installed in FRB-20 and one 

sample was installed in PLA. For each implant sample, a pilot hole that is slightly smaller than 

the implant diameter was drilled through the material. The implant, which is self-tapping, was 

screwed into the hole by hand to create the threads and then removed. The threaded portion of 

the hole was coated with 5-minute epoxy (for the FRB-20 samples) or standard super glue (for 

the PLA samples) and the implant was then re-installed. The adhesive was used to ensure a more 

uniform interface between the implant and the material and to simulate osseointegration in bone. 

The different materials and different adhesives were used to simulate a range of interface 

stiffness values (i.e. the FRB-20 samples were expected to be stiffer than the PLA samples). 

Each of the Oticon Medical implant samples were tested with each of the three corresponding 

abutments (6 mm, 9 mm, 12 mm). 
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The maximum torsional stiffness for a given system 𝐾𝑇 (𝑚𝑎𝑥) is determined similar to the work of 

Swain (2006; 2008a). The details for this approximation are shown in Appendix A. It can be 

shown that 𝐾𝑇 (𝑚𝑎𝑥) is dependent on the abutment length. The 𝐾𝑇 (𝑚𝑎𝑥) values for all abutments 

are shown in Table 3.6. 

Table 3.6: Maximum torsional stiffness values 

Oticon System Cochlear System 

Abutment Length 
(𝐦𝐦) 

𝐾𝑇 (𝑚𝑎𝑥)
 (𝐍𝐦) 

Abutment Length 
(𝐦𝐦) 

𝐾𝑇 (𝑚𝑎𝑥)
 (𝐍𝐦) 

6 mm 2963 

6 mm 2183 8 mm 1732 

9 mm 1191 10 mm 1404 

12 mm 856 12 mm 1125 

 

It is assumed that the actual torsional stiffness is less than the maximum value because the screw 

connection between the implant and abutment will not provide a rigid fixed connection.  Thus, 

the actual value of ்ܭ was assumed to be some fraction of the maximum value:  

𝐾𝑇 = 𝛼𝐾𝑇 (𝑚𝑎𝑥) 

The torsional stiffness coefficient (𝛼) is assumed to be constant within each BAHA system. 

The impact stiffness 𝐾𝐼  represents the local deformation of the impact rod and the abutment at 

the location of the strike. The value of 𝐾𝐼  is similarly assumed to be constant across abutments 

from the same system. 

Appropriate average values for 𝐾𝐼  and 𝛼 were determined for the Oticon system using the 

numerical model. Multivariable minimization was used to first determine an appropriate value 

for 𝛼 which was found to be 0.26. The data was processed again using multivariable 

minimization (keeping 𝛼 fixed) to determine 𝐾𝐼 . The final value for the impact stiffness for the 

Oticon system was found to be 𝐾𝐼 = 2.90 × 106 N/m. The appropriate values for the Cochlear 

system were determined in a similar manner and found to be 𝛼 = 0.50 and 𝐾𝐼 = 4.74 × 106 N/m. 
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3.3.3.  ASIST Evaluation 

The measured data was analyzed with the model parameters chosen as described above. For each 

measurement, an appropriate interface stiffness was determined. The ASC values were 

determined for each individual measurement. 

3.4. Precision of Experimental Testing 

This section presents an evaluation of the repeatability and sensitivity of measurements with the 

ASIST in a laboratory setting with BAHA implant-abutment systems.  

3.4.1.  Laboratory Test Set-up 

Each test specimen was created by installing a BAHA implant into a disc of FRB-20 material 

and securing the implant with an adhesive (either epoxy or super glue) as outlined in Section 

3.3.1. Both Oticon Ponto and Cochlear Baha® Connect implant-abutment systems were used in 

this study. The specific implant-abutment combinations that were used for each test are outlined 

in the sections below. The repeatability of measurement, sensitivity to handpieces, and 

sensitivity to clinical variables were tested using an apparatus to hold the handpiece to accurately 

control the positioning. The intra-user and inter-user repeatability was examined holding the 

device by hand, to better represent the clinical situation. 

3.4.2.  Outcome Measures 

The primary outcome measure of the ASIST is the ASIST Stability Coefficient (ASC).  All 

repeatability and sensitivity measures were analyzed using the ASC value. The intra-user and 

inter-user reliability were assessed using the intraclass correlation coefficient (ICC) and the 

standard error of measurement (SEM) calculated using SPSS (IBM SPSS Statistics 23, Armonk, 

NY, USA). An ICC of 1.0 indicates perfect agreement, while an ICC of zero indicates only 

random agreement (Hallgren, 2012). The commonly cited ranges for the ICC rate the quality of 

reliability as poor (<0.40), fair (0.40 – 0.59), good (0.60 – 0.74), and excellent (0.75 – 1.0) 

(Hallgren, 2012).  The SEM provides an indication of the precision of the measurement 
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(expressed in the units of the measurement i.e. ASC in this case) and is based on the distribution 

of the measurement error (Shultz et al., 2006). 

3.4.3.  Repeatability of Measurement and Effect of Different Handpieces 

The repeatability of measurement was examined using a long/wide Oticon Medical implant 

(M51062 FRB-20(2)) with both 9 mm and 12 mm Oticon Medical abutments. The ASIST device 

was positioned using the custom apparatus to strike the upper rim of the abutment. The 

handpiece was placed at an angle of 5 degrees above the horizontal and the tip of the handpiece 

was held 1.0 mm away from the lip of the abutment. The handpiece was positioned so the middle 

of the impact rod would strike the lip of the abutment. The ASIST was designed with a 

removable handpiece, so multiple handpieces can be used with the same device. This allows the 

front portion of the handpiece to be removed and cleaned or sterilized during clinical use. Three 

handpieces were tested (labeled with a colored sticker “Green”, “Orange”, and “Gray”) to 

evaluate any additional variability caused by exchanging multiple handpieces. For each 

handpiece, seven sets of five consecutive measurements were taken. The ASIST was 

repositioned between each set of five measurements for a total of 35 measurements with one 

handpiece. These 35 measurements were then repeated with each of the three handpieces for a 

total of 105 measurements for each implant-abutment combination (210 measurements in total). 

The ASC results for each handpiece are shown in Figure 3.3. The subfigures show the 

measurements for each handpiece. The measurements shown are the average of the five 

consecutive measurements and the error bars represent one standard deviation. The averages of 

all 35 measurements with each handpiece are shown in Figure 3.4 along with the average of all 

105 measurements for each implant-abutment combination. For the 9 mm abutment the mean 

ASC value is 33.7 and the standard deviation of all measurements is 1.5. For this sample, the 

maximum difference in the average measurement between the three handpieces is 3.0 ASC. For 

the 12 mm abutment the mean ASC value is 34.4 and the standard deviation of all measurements 

is 1.4. For this sample, the maximum difference in the average measurement between the three 

handpieces is 2.1 ASC.  
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abutments (6 mm, 9 mm, 12 mm) described in Section 3.3.1. were tested with one handpiece. 

The apparatus was used to control the handpiece position and five measurements were recorded 

with each implant-abutment combination. The results of these measurements are reported in 

Section 4.1.1. and here we can further analyze this data to determine the repeatability of 

measurement when the handpiece position is controlled using the apparatus. Each of the 36 

implant-abutment combinations was treated as a separate condition and the ICC and SEM for 

intra-tester repeatability were calculated. The ICC was found to be 0.998, indicating excellent 

reliability (Hallgren, 2012) and the SEM was 0.96 ASC. 

3.4.4.  Sensitivity to Clinical Variables 

The previous section evaluated the repeatability of the ASIST when the handpiece position is 

controlled using an apparatus. The sensitivity to clinical variables such as handpiece distance 

from abutment, striking height, and handpiece angulation were examined to understand the effect 

of variations in the handpiece position on the outcome measure. For this analysis, the analytical 

model was not changed (the nominal values were used) and ASC was determined to understand 

the effect of variations in handpiece positioning. A long/wide Oticon implant sample (M51062 

FRB-20(1)) was tested with the 9 mm Oticon abutment and the Cochlear implant sample BI300 

was tested with the 10 mm BA400 Cochlear abutment. For both tests the green handpiece was 

used. In all cases, the custom apparatus was used to control the position of the handpiece and 

five consecutive measurements were recorded without repositioning. 

3.4.4.1.  Handpiece Distance 

To examine the effect of the handpiece distance from the abutment, the handpiece was 

positioned at an angle of 5 degrees from the horizontal with the middle of the striking rod at the 

lip of the Oticon abutment. Five consecutive measurements were recorded at each of the 

following distances from the abutment: 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, and 3.0 mm. 

Since there is no lip on the Cochlear abutment, the handpiece was positioned with the striking 

rod at the bottom of the abutment chamfer (Figure 3.5). Five consecutive measurements were 

recorded at 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. 
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students in Civil Engineering at the University of Alberta. Since, this second set of participants 

were not familiar with the measurement system, they were given verbal instructions and a 

demonstration of the proper handpiece positioning. These participants were also given a chance 

to practice a few measurements before testing began. 

Intra-user repeatability was also assessed for the Cochlear BI300 implant with the 10 mm 

abutment with two testers (primary author and research assistant).  

For all tests, the handpiece was held by hand as would be done clinically. The handpiece was 

positioned between 0-5 degrees from the horizontal at a distance of 1-2 mm away from the 

abutment as per the instructions given to the participants. For the Oticon system the striking rod 

was positioned at the lip of the abutment and for the Cochlear system the striking rod was 

positioned at the bottom of the abutment chamfer. Ten consecutive measurements were recorded 

with each implant-abutment combination for each participant.  

For the Oticon implants, the ICC and SEM were calculated for each tester and the intra-user 

repeatability is reported as the average ICC and average SEM over the range of testers. For the 

Cochlear implant, the ICC could not be calculated because only one sample was tested. The 

repeatability is assessed through the standard deviation of the measurements. 

Figure 3.10 shows the average ASC measurements for the Oticon Medical implant samples for 

each of the 14 participants. The average values for 10 measurements are shown for each tester 

along with error bars representing one standard deviation. The ASC values for the higher 

stiffness implant samples were 37.4 േ 4.3 and 34.3 േ 3.7 (mean േ SD) for the M51062 FRB-

20(1) 9 mm and M51062 FRB-20(2) 12 mm samples, respectively. The ASC values for the 

lower stiffness implant samples were 8.0 േ 0.4 and 14.2 േ 1.0 for the M50128 PLA 6 mm and 

M51061 PLA 9 mm samples, respectively. For the higher stiffness samples, the maximum 

standard deviation for the measurements from an individual tester was 5.7 while the lowest was 

0.8. It should be noted that some outlier measurements existed for the higher implant samples. 

For Tester 1, one high ASC measurement was recorded (48.6 versus the mean value of 34.4 for 

this tester) for the 9 mm abutment specimen. This was the first measurement recorded from this 

tester and the high value is due to an increased angle in the handpiece position. The position was 

corrected for the remaining measurements from this participant. For Tester 2, there are four 
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contributing to the low ICC for this set. The average ICC for the low stiffness implant samples is 

0.994 (excellent reliability) and the average SEM is 0.33. Considering all of the data, ICC was 

found to be 0.941 (excellent reliability) and the SEM was 1.52 (or 0.97 excluding outliers) for 

intra-user reliability. These values indicate only slightly higher variability than the values 

reported for the full range of ASC values using the stand to control handpiece position (Section 

3.4.3.). 

Table 3.7: Intra-User Reliability Measures for Oticon Medical Implant Samples (ICC and SEM)  

  Tester ICC SEM 

High 
stiffness 

ASC 
>30 

Tester 1 0.074 4.50 

Tester 2 0.686 5.09 

Tester 3 0.153 1.82 

Tester 4 0.876 1.59 

Tester 5 0.364 2.58 

Tester 6 0.776 1.40 

Tester 7 0.307 1.94 

Average 0.533 2.70 

Average (removing outliers)   1.86 

        

Low 
Stiffness 

ASC 
<15 

Tester 8 0.997 0.20 

Tester 9 0.995 0.36 

Tester 10 0.994 0.36 

Tester 11 0.989 0.48 

Tester 12 0.992 0.38 

Tester 13 0.994 0.26 

Tester 14 0.994 0.27 

Average 0.994 0.33 

All Data 
Average 0.941 1.52 

Average (removing outliers)   0.97 
 

The ASC measurements for the Cochlear implant sample were 30.2 േ 0.8 and 37.1 േ 1.2 

(average േ SD) for testers 1 and 2, respectively (Figure 3.11). For this sample, within tester 

variability is low with a maximum standard deviation of 1.2. The high inter-user variability in 

this case is likely due to a difference in handpiece position, for example Tester 2 may have struck 

slightly lower on the abutment than Tester 1.  
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Table 3.8: Inter-User Reliability Measures for Oticon Medical Implant Samples (ICC and SEM) 

  Trial ICC SEM     Trial ICC SEM 

High 
stiffness 

ASC 
>30 

Trial 1 0.28 4.10   

All Data 

Trial 1 0.976 2.62 
Trial 2 0.159 3.14   Trial 2 0.975 2.27 
Trial 3 -0.17 3.83   Trial 3 0.974 2.55 
Trial 4 0.029 3.44   Trial 4 0.966 2.61 
Trial 5 0.052 2.57   Trial 5 0.966 2.40 
Trial 6 0.163 7.80   Trial 6 0.909 4.83 
Trial 7 0.179 3.58   Trial 7 0.966 2.71 
Trial 8 0.019 3.85   Trial 8 0.965 2.77 
Trial 9 0.253 3.45   Trial 9 0.969 2.50 

Trial 10 0.264 4.49   Trial 10 0.941 3.71 

Average 0.124 4.02   Average 0.964 2.90 

                  

Low 
Stiffness 

ASC 
<15 

Trial 1 0.962 0.74   

All Data 
(removing 
outliers) 

Trial 1 0.976 2.62 

Trial 2 0.973 0.63   Trial 2 0.975 2.27 

Trial 3 0.968 0.64   Trial 3 0.974 2.55 

Trial 4 0.955 0.88   Trial 4 0.966 2.61 

Trial 5 0.961 0.64   Trial 5 0.966 2.40 

Trial 6 0.952 0.77   Trial 6 0.952 3.19 

Trial 7 0.977 0.35   Trial 7 0.979 2.24 

Trial 8 0.973 0.63   Trial 8 0.965 2.77 

Trial 9 0.982 0.39   Trial 9 0.976 2.32 

Trial 10 0.973 0.58   Trial 10 0.973 0.58 

Average 0.969 0.63   Average 0.971 2.36 
 

The ASC measurements for the Cochlear implant sample were reported in the previous section 

(Figure 3.11). Between testers there is a difference in the mean ASC value of 6.9 and a standard 

deviation of all measurements of 5.1. With this limited sample, the results suggest that hand 

testing with the Cochlear implant-abutment system introduces more variability compared to the 

Oticon implant-abutment system, particularly between testers. This is likely due to the difference 

in abutment design between the two systems. The lip on the Oticon abutments makes it much 

easier to consistently strike the same location compared to the chamfer and straight edge design 

of the Cochlear abutments. More samples of the Cochlear implant-abutment system should be 

tested with more participants to get a better idea of the intra-user and inter-user reliability across 

the range of conditions. A more specific clinical protocol or instructions and training may be 

required for testing with the Cochlear abutments. 
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3.5. Comparison Between ASIST and OsstellTM for BAHA 
Systems 

This section presents a comparison of the ASIST and OsstellTM ISQ for BAHA implant stability 

measurement in a laboratory setting. The two techniques are compared in terms of the ability to 

assess interface properties independent of system components and sensitivity to changes in 

interface properties for a BAHA implant-abutment system. 

3.5.1.  Experimental Testing 

The 12 Oticon Medical implant specimens described in Section 3.3.1. were used in this analysis. 

Four types of Oticon Medical implants were tested. Two samples of each type were installed in 

FRB-20 and one sample of each type was installed in PLA. Each of the 12 implant specimens 

were tested with three different sizes of Oticon Medical Ponto abutments (6 mm, 9 mm, 12 mm) 

for a total of 36 implant-abutment combinations. One Cochlear Baha® Connect implant sample 

(BI300) installed in the FRB-20 material was tested with four sizes of BA400 abutments (6 mm, 

8 mm, 10 mm, 12 mm). 

The following test protocol was performed for each implant specimen. The disc containing the 

implant was clamped to a platform. Five measurements with the OsstellTM were recorded at the 

level of the implant, removing and reattaching the SmartPegTM (type 9) between measurements. 

An abutment was attached with 25 Ncm of torque and five measurements with the OsstellTM 

were recorded, removing and reattaching the SmartPegTM (type 55) between measurements. The 

OsstellTM system was tested in one orientation and kept constant throughout testing. In the few 

cases where two measurements were reported by the OsstellTM, the lower number was recorded 

as a more conservative estimate of the implant stability. The abutment was removed and another 

abutment was attached. The process was repeated for each implant-abutment combination. For 

the Cochlear implant specimen, OsstellTM measurements were not recorded at the level of the 

implant because the appropriate SmartPegTM (type 30) was not available at the time of testing 

and thus measurements were taken only with each of the four abutments. 
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The OsstellTM system uses RFA which is based on the idea that changes in the resonance 

frequency (or natural frequency) of the system indicate changes at the bone-implant interface, 

assuming there are no other changes in the system (Meredith et al., 1996). 

The aim of this section is to compare the ASIST and OsstellTM for stability measurement of 

BAHA implants in terms of their ability to assess the interface stability independent of the 

abutment length and their sensitivity to changes in the support conditions. The effect of abutment 

length is assessed by examining each implant specimen with the different sized abutments 

attached. Since the interface does not change when the different abutments are used, the stability 

assessment should ideally remain constant for a given implant specimen. Additionally, the 

sensitivity to differences in support conditions is assessed for the Oticon Medical system by 

examining the differences in the stability measurement (ASC or ISQ) for the different 

installations of the same implant type. 
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Chapter 4:  Experimental Results with Bone 
Anchored Hearing Aid Systems 

This chapter presents the results of the laboratory evaluation of the ASIST for BAHA systems. 

The experimental procedures for application of the ASIST to the Oticon Medical Ponto System 

and the Cochlear Baha® Connect System were described in Chapter 3 above and the goal of this 

chapter is to present the results of those analyses. Additionally, the experimental procedures for a 

laboratory comparison between the ASIST and the commercially available OsstellTM ISQ for 

BAHA implant systems was presented in Chapter 3 and the results of that comparison are 

presented and discussed in this chapter. 

4.1. Application to Oticon Medical Ponto System and 
Cochlear Baha® Connect System 

4.1.1.  Oticon Medical Ponto System 

The results from a representative Oticon Medical implant sample (4.50 mm diameter, 4 mm 

length) with three abutment lengths are shown in Figure 4.1. The differences in the acceleration 

signal with each abutment are clearly visible in the figure. These differences are expected and 

illustrate that changing the abutment changes the system and thus changes the measured 

acceleration. It can be observed that the shorter abutments (e.g. 6 mm) result in a higher 

fundamental frequency than the longer abutments (e.g. 12 mm). There is a good fit between the 

measured acceleration signal and the analytical model prediction in all cases with average 𝑅2 

values between 0.97 and 0.98 (averaged over repeated measurements for each implant-abutment 

combination). Additionally, as shown in the figure, despite the significant change in the 

measured response, the calculated ASC values are within 4.0 points (range: 37.9-41.9) for this 

example. 
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average value that best matched sample data from the FRB-20 implant specimens. One sample of 

data from 7 of the 8 FRB-20 implant samples was used (Note: the short wide implant M51061 

FRB-20(2) was not used because the implant had come loose from the FRB-20 material prior to 

testing). For each data sample, the location of the center of mass of the abutment was varied 

േ10% from the calculated value in a total of 20 discrete values. For each value of 𝑦𝐴̅, the model 

was used to determine the 𝑅2 value between the model prediction and the measured data. The 

interface stiffness (𝑘) was fixed to the average value obtained using the 6 mm, 9 mm, and 12 mm 

abutments with the particular implant specimen. The value of 𝑦𝐴̅ that resulted in the best fit 

between the model and the data as measured by the 𝑅2 value was recorded and the average of all 

7 values was used as the value of 𝑦𝐴̅ in the model. The values determined for the 7 implant 

samples are shown in Table 4.2 along with the average value. 

Table 4.1: Mass and geometry parameters of the Oticon 14 mm abutment 

Oticon Medical 
Abutment 

Mass (𝐠) 
Shaft Diam. 

(𝐦𝐦) 
Length (𝐦𝐦) 𝒚𝑨̅ (𝐦𝐦) 𝑱𝑨 (𝐠 𝐦𝐦𝟐)

14 mm 1.13 5.00 14.00 6.96 20.16 

 

Table 4.2: Average interface stiffness values (average of 6 mm, 9 mm, and 12 mm abutments) and center of mass values 
for the 14 mm abutment for the FRB-20 implant specimens 

  
Average 𝒌  

(× 𝟏𝟎𝟏𝟐 𝐍/𝐦𝟑) 
𝒚𝑨̅ 14 mm 

(𝐦) 

M50106 FRB-20 (1) 11.64 0.00691 
M50106 FRB-20 (2) 12.72 0.00676 
M50128 FRB-20 (1) 3.36 0.00699 
M50128 FRB-20 (2) 7.99 0.00668 
M51061 FRB-20 (1) 8.21 0.00706 
M51061 FRB-20 (2)    
M51062 FRB-20 (1) 4.49 0.00714 
M51062 FRB-20 (2) 3.84 0.00714 

Average  0.00696 
SD  0.00018 

 

The 14 mm abutment was tested with one FRB-20 specimen of each type of implant following 

the same protocol that was used for the other abutments. 
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specimen is likely due to the fact that is in the higher ASC range where the results are sensitive 

to small changes in the measured frequency (see sensitivity results in Section 2.4.2.). In a clinical 

situation, an implant with an ASC of this range would be considered stable regardless of the high 

difference in the ASC value between abutments. 

Table 4.3: ASC values for the FRB-20(1) specimens. Comparison of the average ASC from 6 mm, 9 mm, and 12 mm 
abutments and the 14 mm abutment. 

  

Average ASC                   
(6 mm, 9 mm, 12 mm abutments)

ASC              
(14 mm abutment) 

Difference 

M50106 FRB-20(1) 65.5 78.1 12.7 
M50128 FRB-20(1) 25.2 25.4 0.2 
M51061 FRB-20(1) 55.4 56.4 1.0 
M51062 FRB-20(1) 40.5 41.4 0.9 
 

Example signals from each of the implant types with the 14 mm abutment are shown in Figure 

4.6. The measured data and model response are shown for each sample. The 𝑅2 values are the 

average of the five strikes for each sample. The average and standard deviation of the ASC 

values are also shown for each sample. 
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range of 0.005 – 0.081. The Oticon FRB-20 samples had a significantly lower damping ratio 

(0.021 ± 0.010) than the Oticon PLA samples (0.037 ± 0.023) with 𝑝 = 1.6 × 10−9. The Oticon 

implant samples were found to have a significantly higher damping ratio than the Cochlear 

samples, which had a damping ratio of 0.015 ± 0.006 (𝑝 = 0.003 using all Oticon samples and 

𝑝 = 0.005 using only FRB-20 Oticon samples). It should be noted that there was only one 

Cochlear sample, so this group consists of only 20 measurements (5 trials with each of 4 

abutments on the single implant sample) while the Oticon group consists of 180 measurements (5 

trials with 36 implant-abutment combinations). In general, it was found that the BAHA implant 

samples had relatively low damping with average damping ratios less than 4% across groups. 

4.2. Comparison Between ASIST and OsstellTM for BAHA 
Systems  

The ASC and ISQ measurements for each Oticon Medical implant-abutment combination are 

shown in Figure 4.7. Each sub-figure shows one implant specimen. The different colored bars 

represent the different abutment lengths and, for the ISQ, the implant level measurement is also 

shown. In this case, bars that are at the same height are considered “better” since they are meant 

to indicate the underlying interface condition, which are the same for each group of bars. It can 

be seen that abutment length has only a small effect on the measured ASC value. The difference 

in ASC due to changing abutment length was found to be 2.9 േ 3.0 (average േ SD) or 8.0% of 

the ASC value on average as discussed earlier. Conversely there are large variations in ISQ value 

with varying abutment lengths with a clear relationship of decreasing ISQ with increasing 

abutment length as has been noted previously by many researchers (Nelissen et al., 2015). For 

example, consider the long/narrow implant (M50128) FRB-20(2) installation. The ISQ values 

range from 53.0 – 90.6 (average over repeated measures). According to the clinical guidelines 

cited by Osstell (www.osstell.com/clinical-guidelines/), an implant with ISQ greater than 70 is 

considered to have high stability and is eligible for immediate loading while an implant with ISQ 

less than 60 is at risk and should be monitored. According to these guidelines, this example 

implant could be classified having low stability, medium stability, or high stability depending on 

the abutment that is used or if the measurement is taken at the implant level resulting in vastly 

different clinical recommendations.  
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terms of the relative ranking of the three specimens in each case. The ASIST was found to be 

more sensitive to differences in implant stability than the OsstellTM (including both differences in 

installation technique and differences in the support material) by showing a much larger 

variation in the stability measurements between the different specimens. For example, we can 

consider the FRB-20 specimens of the long/narrow implant type (M50128). Both the ASIST and 

OsstellTM show a difference in the stability measurement between these two specimens; however 

the ASIST shows a much greater difference than the OsstellTM.  If we consider for example the 

12 mm abutment, the increase in ASC from the FRB-20(1) specimen to FRB-20(2) is 40.3 (from 

23.5 to 63.8; 172% increase) while the increase in ISQ is 9.0 (from 44 to 53; 21% increase). 

Similarly, we can consider the change in implant stability from the FRB-20(1) specimen to the 

PLA specimen for the long/wide implant type (M51062) with the 12 mm abutment. The decrease 

in ASC is 34.0 (from 41.5 to 7.5; 82% decrease) while the decrease in ISQ is 12 (from 49 to 37; 

24% decrease). 

4.3. Summary 

For the ASIST system, there is a good fit between the measured acceleration signal and the 

analytical model in all cases, indicating that the analytical model is a good representation of the 

systems analyzed. It was shown that there is minimal effect due to abutment length on the ASC 

value, indicating that the method is able to isolate the interface properties from the overall 

system and the measurement is independent of the attached components. In clinical use, the 

abutment is only changed in rare cases, so one may argue that having the measure independent of 

the abutment length is not important when looking at relative changes over time. However, this 

aspect of the ASIST gives us confidence that the measurement is representative of the interface 

properties and would allow for consistent comparisons across clinical situations. It also allows 

comparison over time for the few patients where the abutment must be changed. Additionally, it 

may allow comparisons between patients or development of a suggested range of ASC values 

that indicate normal or healthy implants. Independence from the system components simplifies 

the interpretation of the results for the clinician because the interpretation of the ASC is the same 

regardless of the abutment length for the particular patient. 
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The ASIST measurement was found to be sensitive to changes in interface stiffness which is of 

primary importance.  Ultimately this system will be used clinically to detect changes over time 

so it must be sensitive enough to detect meaningful changes. 

This chapter also presented a laboratory comparison between the ASIST and OsstellTM ISQ for 

the stability measurement of the Oticon Medical Ponto and Cochlear Baha® Connect implant-

abutment systems. The implant installations used in this study were used to simulate BAHA 

implants installed in bone. The range of ISQ values reported in this study (32.0 – 65.4 for 

installations with an abutment) are similar to values for clinical ISQ measurements reported in 

the literature (44 – 76) for a variety of BAHA implant-abutment systems (Faber et al., 2012; 

Foghsgaard and Caye-Thomasen, 2014; McLarnon et al., 2012). This suggests that the results 

presented here should be representative of typical clinical situations.  

Because of the use of an analytical model, the ASIST was better able to isolate the actual support 

conditions than the OsstellTM. This is evident from Figure 4.7 and Figure 4.8 which illustrate the 

much lower variation in stability values with changing abutments on an individual implant 

installation (maximum difference of 12%) compared to the ISQ measurements (maximum 

difference of 34%). The large variation in ISQ with the same implant installation would make it 

more difficult to establish clinical guidelines because the abutment length must be included in 

the interpretation. Because of the comparatively low variation with different attachments to the 

implant, the ASC has the potential to establish guidelines for clinical assessment independent of 

the specific details of the components connected to the implant.  

The ASC and ISQ values for different installations of the same type of implant were examined 

(Figure 4.9). For all implant-abutment combinations, the ASC and ISQ values were in agreement 

in terms of the ranking of stiffness for the three installations of each type of implant. The relative 

changes in stability values were larger for the ASIST than the OsstellTM ISQ. The ASIST had a 

maximum variation in ASC of 64.7 (83% decrease), while the OsstellTM ISQ showed a maximum 

variation of 19 (37% decrease). In both cases, this maximum difference occurred between the 

FRB-20 (2) and the PLA samples of the short/narrow implant (M50106). In general, the variation 

in ISQ due to abutment length was found to be larger than the variation due to differences in 

interface stiffness between installations. This suggests that the OsstellTM appears to be more 



87 
 

sensitive to geometric changes (i.e. changing abutment length) than actual changes in the 

interface properties. Conversely, the ASIST is more sensitive to the interface stiffness and would 

thus be better able to detect small variations in interface properties compared to the OsstellTM 

ISQ. 

The OsstellTM company (Osstell, Göteborg, Sweden) provides clinical guidelines indicating low, 

medium, and high implant stability based on the ISQ value (Figure 4.10) where ASC < 60 

indicates low stability, ASC between 60 – 65 and between 65 – 70 indicate varying levels of 

medium stability, and ASC > 70 indicates high stability. The clinical guidelines do not account 

for the length of the abutment in their interpretation. However, we have shown that the abutment 

length has a significant impact on the resulting ISQ value. For example all of the installations for 

the Oticon implant system examined here have ISQ values that span the entire range indicated in 

the clinical guidelines (from less than 60 to greater than 70) depending on the abutment length 

that is used or if the measurement is taken at the implant level (Figure 4.7). Thus with the ISQ 

measurement, a clinician may interpret the same implant installation as having very low stability, 

medium stability, or high stability depending on the abutment that is used for testing. 

Additionally, we found that even implants with very high stability (for example the short/narrow 

M50106 or long/narrow M50128 FRB-20(2) installations) can have ISQ values below 60 when a 

12 mm abutment is used (Figure 4.7). This suggests that patients with long abutments such as the 

12 mm or 14 mm abutment may never register an ISQ reading above the “low stability” level 

simply because of the length of their abutment. These clinical interpretations make it essential to 

have to ability to isolate the actual interface properties from the implant-abutment system and 

present the stability measurement independent of the attached components. The results for the 

OsstellTM ISQ presented here agree with findings by Nelissen et al. (2015) as well as their 

recommendations that the implant and abutment type and length should be specified when 

presenting ISQ values because these parameters influence the ISQ value. Additionally, Nelissen 

et al., (2015) recommended that in clinical use conclusions should not be based on individual 

ISQ measurements at a certain time, but that ISQ measurements are most meaningful as a trend 

in an individual patient or population over time. From the comparison presented here, the ASIST 

shows tremendous potential to provide more meaningful stability measurements in a clinical 

setting compared to the ISQ.  
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Chapter 5:  BAHA Clinical Study 

This chapter describes a clinical evaluation of BAHA implant stability using the ASIST. The 

longitudinal observational study was carried out in collaboration with the Institute for 

Reconstructive Sciences in Medicine (iRSM) located at the Misercordia Community Hospital in 

Edmonton Alberta. The aim of the study was to evaluate longitudinal changes in interface 

stability for BAHA patients from the time of surgery to one year post-operative. As per the usual 

clinical protocol at iRSM, the patients received their hearing processor at three months post-

surgery. Approval was obtained from the University of Alberta Health Research Ethics Board 

and all patients signed informed consent prior to participation in the study. ASIST measurements 

were collected at the time of surgery and at the regular clinical follow up appointments over 

approximately one year. 

5.1. Participants 

The patient study group is summarized in Table 5.1. Patients who were selected to receive a bone 

anchored hearing aid at iRSM as part of their rehabilitation for hearing loss were considered for 

this study. There were 39 participants enrolled with an average age at the time of surgery of 50.1 

(range: 17 – 79 years). One third of the participants (n = 13) were male and two-thirds (n = 26) 

were female. All participants had a one-stage surgery to install a bone anchored implant and 

abutment and all participants had a single implant installed (i.e. no bilateral patients). Implants 

were installed with 40 Ncm of torque, and abutments were attached with 25 Ncm of torque. 

Participants from three different surgeons were included in the study. All participants had the 

Oticon Ponto implant-abutment system. Thirty-one (79%) of the patients had the 4 mm narrow 

platform (3.75 mm diameter) implant. Later in the study, seven patients (17.9%) had the 4 mm 

wide platform (4.50 mm diameter) BHX implant which was the newer design from Oticon and 6 

of those 7 patients had the Minimally Invasive Ponto Surgery (MIPS) surgical technique which is 

designed to reduce disruption to the surrounding soft tissue. For these 7 patients, the implants 

and abutments were preassembled in the package and installed in one step. One patient (2.6%) 

had a 3 mm narrow platform implant due to a reduced bone thickness. For each patient, the 

abutment size was chosen by the surgeon at the time of surgery. Four patients (10.3%) had a 6 
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mm abutment, 25 patients (64.1%) had a 9 mm abutment, and 10 patients (25.6%) had a 12 mm 

abutment. It should be noted that one of the patients with a 12 mm abutment (Patient 4) had his 

abutment changed for clinical reasons to a 14 mm abutment approximately 8 months after 

surgery. 

Table 5.1: Clinical Study Participant Summary 

Total Participants 39   
Age at Surgery (yr) 50.1 (range: 17 - 79)   
Gender (n(%)) 
        Male 13 (33.3%) 
        Female 26 (66.7%)   
Surgeon (n(%)) 
        Surgeon 1 15 (38.5%) 
        Surgeon 2 15 (38.5%) 
        Surgeon 3 9 (23.1%)   
Implant (n(%)) 
        Oticon 4 mm/Narrow 31 (79.5%) 
        Oticon 4 mm/Wide (BHX) 7 (17.9%) 6 MIPS 
        Oticon 3 mm/Narrow 1 (2.6%)   
Abutment (n(%)) 
        Oticon 6 mm 4 (10.3%) 
        Oticon 9 mm 25 (64.1%) 
        Oticon 12 mm 10 (25.6%)   

 

5.2. Methods 

5.2.1.  Data Collection 

ASIST measurements were collected at the time of surgery and at each of the clinical follow up 

visits for the first year following surgery. A total of 7 visits were planned at the following 

approximate time points: surgery, 3 days, 2 weeks, 1 month, 3 months, 6 months, and 12 months. 

The measurements were completed at the patients’ regularly scheduled visits to minimize 

additional time commitments for the patients participating in the study. The surgical 

measurement was taken inside the operating room while the patient was lying down. The 2 week 

measurement was taken at the surgeon’s office (patient seated) and all other measurements were 

taken in the clinical operatory rooms at iRSM with the patients in a seated position. The majority 



91 
 

of the measurements at surgery were taken by the operating surgeon, while a few were taken by 

the primary author. The majority of the follow up measurements were taken by the primary 

author; however, some measurements were taken by a research assistant or a clinical assistant at 

iRSM as scheduling required. 

At each visit a target of 2 ASIST measurements were recorded. Typically, 1 – 3 ASIST 

measurements were recorded with the majority of visits having 2 measurements. During testing, 

the measured accelerometer signal is displayed on the computer screen. A third measurement 

was recorded in cases when the accelerometer signal from one of the earlier measurements 

appeared to be different or a clean signal was not obtained. A third measurement was also 

recorded in the event that there was a poor contact between the impact rod and the abutment with 

one of the measurements due to either poor handpiece control or movement from the patient. 

Several measurements were discarded based on a subjective analysis of the accelerometer 

measurement or the testing conditions. These cases sometimes resulted in only 1 usable 

measurement for a clinic visit. It is worth noting that a single measurement consists of 16 strikes 

with the abutment as described in Section 2.1. 

It should be noted that over a period of five months from Feb 27, 2015 – July 29, 2015 the 

electronic unit of the ASIST device had problems with connectivity which resulted in some poor 

measurements for the clinical study during that time frame. In many instances, the ASIST was 

unable to maintain a connection to the computer and was unable to download the recorded data. 

Several visits during this time period resulted in no usable measurements. 

There were a total of patient 228 visits completed. Eight patients were followed for 1 year, 19 

additional patients were followed for 6 months, 11 patients were followed for 1 – 3 months, and 

1 patient was lost to follow up after the 2 week visit. Of the completed visits, 185 (81.8%) have 

resulted in good ASIST measurements, while 16 measurements (7.0%) were missed due to 

problems with the ASIST device or measurement error. Additionally, 27 visits (11.8%) have 

been missed for various reasons including patient no shows, visits not scheduled by the 

clinicians, or changes in schedule causing the researcher to miss the visit. 

An overview of the timing of clinic visits is shown in Table 5.2 where 𝑛 indicates the number of 

good measurements available to date. It should be noted that four of the patients who had the 
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MIPS surgical technique (Patient 1D: 36-39) had their two-week visit scheduled at 6 weeks post-

surgery. This change in protocol was decided by the operating surgeon and was primarily due to 

the lack of sutures used in the surgical procedure (for prior patients the sutures were typically 

removed at the two-week visit). 

Table 5.2: Overview of Clinic Visits 

Visit 
Days after Surgery 

Mean (Range) 
𝒏 

Surgery 0 28 
3 Days 3.2 (2 - 4) 33 

2 Weeks 18.5 (10 - 41) 34 
1 Month 33.8 (26 - 60) 31 
3 Months 101.2 (83 - 148) 30 
6 Months 196.5 (153 - 287) 22 

1 Year 374.0 (363 - 397) 7 

 

5.2.2.  Data Analysis 

The ASC values were determined for each of the ASIST measurements. For each visit, the mean 

ASC value is reported in the case of multiple measurements. Longitudinal changes over time 

were reported for each patient. The damping ratio of the higher frequency component of the 

measured acceleration was estimated from the curve fit approximation (𝜁2). The mean value was 

reported for each visit and a 𝑡-test (𝑝 < 0.05) was used to investigate differences between the 

damping ratio of the clinical data and the laboratory data with BAHA implants reported in 

Chapter 4. 

The ASC values can be categorized into “Low” (ASC < 20), “Moderate” (20 ≤ ASC < 40), and 

“High” (ASC ≥ 40) values. A value of 20 was chosen as the cutoff to define low stability based 

on the laboratory experimental work presented in Chapter 2. The PLA implant installations were 

designed to have a lower stability than the FRB-20 installations. All of the PLA implants 

reported an ASC value of less than 20; thus 20 was chosen as a cutoff for this category. It should 

be noted that this does not indicate that patients showing ASC values in the low stability range 

are at risk of implant failure. This categorization is simply used to aid in the interpretation of 

some of the data presented here. Further clinical evaluation will need to be conducted to draw 
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conclusions about the risk of implant failure. At the upper limit, an ASC of 40 was chosen to 

define the high stability range based on the parametric sensitivity analysis presented in Chapter 

3. From Figure 2.9 it can be seen that for ASC values above approximately 40 for all implant-

abutment combinations, the curve representing the relationship between the first mode frequency 

and the ASC value begins to plateau. Beyond this region, small differences in the measured 

acceleration signal can cause larger variations in the ASC measurement. Conversely, large 

increases in the interface stiffness or ASC value in this region do not have a large impact on the 

acceleration response of the system. Considering the analytical model, this indicates that in the 

high stability range, further increases in the interface stiffness do not have a large effect on the 

system response. The ASIST is less precise in this region, but since the implant is stable this may 

be of less importance.  

Correlations were investigated between ASC values and several parameters including operating 

surgeon, age at surgery, gender, and implant type. Differences in implant stability between 

groups were investigated using a t-test (𝑝 < 0.05) with a Bonferroni adjustment for multiple 

comparisons where appropriate. As a preliminary analysis simple correlations were conducted to 

assess the effect of individual parameters; however, the problem is multifactorial in nature. A 

larger sample size would allow for a multiple regression analysis to account for the effects of 

multiple confounding variables. This may be of interest and should be investigated in a larger 

study. The analyses presented here can provide preliminary insight into the effect of various 

parameters for the sample of patients included in this study. 

5.3. Results 

5.3.1.  ASC Results and Model Fit 

The ASC values for the patient data ranged from 11.9 to 74.5 (average ± SD: 30.5 ± 16.2). This 

is similar to the range of ASC values for the laboratory data reported in Chapter 4, suggesting 

that the laboratory results can provide an appropriate simulation of the clinical situation. 

Additionally, this wide range suggests that there is a large variability in implant stability across 

patients.  
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5.3.3.  Initial Implant Stability 

All participants had at least one good measurement in the first two weeks following 

implantation. The average measurement in the first two weeks following surgery was used as an 

indication of the initial stability of the implant. It was found that 10 participants had high initial 

stability with ASC ≥ 40, 18 participants had moderate initial stability with 20 ≤ ASC < 40, and 

11 participants had low initial stability with ASC < 20 (Table 5.3).  

There appears to be differences in initial implant stability level between surgeons (Table 5.3), 

suggesting that surgical technique can play a role in initial implant stability. Differences between 

surgeons can be further explored by considering the mean initial ASC value for the three surgical 

groups (Figure 5.3). Significance was investigated using a Bonferroni adjusted t-test with three 

comparisons (comparisons between each surgeon) (𝑝 < 0.0167). The average initial ASC value 

for the patients of Surgeon 2 (ASC = 21.0 ± 10.6; mean ± SD) was found to be significantly 

lower than those of Surgeon 1 (ASC = 39.1 ± 16.2; 𝑝 = 0.0012) and Surgeon 3 (ASC = 35.0 ±

10.7; 𝑝 = 0.0049). No significant differences were found between the initial ASC value for the 

patients of Surgeons 1 and 3 (𝑝 = 0.51). 

Table 5.3: Participant Groupings based on Initial Stability (average of first 2 weeks) and Surgeon 

Low Moderate High Total 

Surgeon 1 2 7 6 15 
Surgeon 2 9 5 1 15 
Surgeon 3 0 6 3 9 

Total 11 18 10 39 
Low: ASC < 20; Moderate: 20 ≤ ASC < 40; High: ASC ≥ 40 
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Figure 5.3: Mean initial implant stability (average of first 2 weeks) based on surgeon. Average values over all 
participants. Error bars indicate one standard deviation. * indicates significant difference based on Bonferroni adjusted t-

test (𝒑 < 𝟎. 𝟎𝟏𝟔𝟕).  

 

There appears to be no correlation between initial implant stability and age at surgery across the 

participants (Figure 5.4).  

 

Figure 5.4: Initial implant stability as a function of participant age at surgery 
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Table 5.4 shows the initial stability groupings separated by gender. The majority of the male 

participants (8/13; 62%) had moderate initial stability while the female participants were split 

almost equally across the three categories. There were no significant differences in the mean 

initial stability between the two groups (𝑝 = 0.71) with males having an initial ASC of 32.5 ± 

15.1 and females having an initial ASC of 30.5 ± 15.6. 

Table 5.4: Participant Groupings based on Initial Stability (average of first 2 weeks) and Gender 

Low Moderate High Total 

Male 2 8 3 13 
Female 9 10 7 26 

Total 11 18 10 39 
Low: ASC < 20; Moderate: 20 ≤ ASC < 40; High: ASC ≥ 40 

 

Table 5.5 shows the initial stability groupings separated by implant type including the 4 mm 

narrow platform implant (M50128), the 4 mm wide platform BHX implant, and the 3 mm 

narrow platform implant (M50106). It should be noted that six out of the seven BHX implants 

also used the MIPS surgical technique while the remaining implants were installed using an 

incision technique with the implant placed in the incision line. It should also be noted that all 

BHX implants as well as the shorter 3 mm implant were installed by the same surgeon (Surgeon 

1). Approximately half of the 4 mm narrow implants had moderate initial stability (16/31; 52%) 

with the others split between low (9/31; 29%) and high (6/31; 19%). For the BHX implant, 4/7 

had high initial stability (57%), including the patient with the BHX implant and the incision 

surgical technique, while 2/7 (29%) had low and 1/7 (14%) had moderate initial stability. 

Although there was a small sample size of BHX implants tested, the initial stability of these 

implants seems to be significantly higher than the 4 mm narrow platform (𝑝 = 0.03) based on a t-

test between the two groups. The initial ASC of the M50128 implants was 28.4 ± 13.1 while the 

initial ASC of the BHX implants was 42.0 ± 20.7. This is a preliminary result that should be 

explored further with increased sample sizes and accounting for possible differences between 

surgeons or other confounding variables. 
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Table 5.5: Participant Groupings based on Initial Stability (average of first 2 weeks) and Implant Type 

Low Moderate High Total 

M50128 9 16 6 31 
BHX 2 1 4 7 

M50106 0 1 0 1 

Total 11 18 10 39 
Low: ASC < 20; Moderate: 20 ≤ ASC < 40; High: ASC ≥ 40 

5.3.4.  Longitudinal Changes in Implant Stability 

Many studies investigating longitudinal changes in implant stability (as measured by the ISQ) 

group the patients together and present average and SD values or box and whisker plots across 

the study period (Dun et al., 2011; Faber et al., 2012; Foghsgaard and Caye-Thomasen, 2014; 

Marsella et al., 2012; Nelissen et al., 2016). The large variability in the data across patients often 

makes the longitudinal changes difficult to interpret from this kind of presentation. In the present 

study, grouping all of the patients together, we see only small changes in the average ASC values 

throughout the study period (Figure 5.5). There appears to be a slight decrease in the ASC up to 

approximately three months post-surgery followed by a slight increase. However, like stability 

measurements reported in the literature, there is a large amount of variability in the data as 

shown by the large error bars (one standard deviation) which makes it difficult to draw 

conclusions on average trends for the group as a whole. 

 

Figure 5.5: Average ASC values across all patients at each visit. Visit day is averaged for all patients. Error bars 
represent one standard deviation. 
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We can instead focus on longitudinal changes for individual patients. In general, there was a 

large variability in the patterns of longitudinal changes across patients. However, there were 15 

patients who showed a similar trend with generally small changes in ASC over time and many 

within this group showing a gradual increase in ASC (Figure 5.6). All 11 of the patients that 

were classified as having low initial stability were found to have this trend of longitudinal 

changes as well as 4 patients with moderate initial stability. The patients with moderate initial 

stability had ASC values in the lower end of the moderate range with initial stability values 

between 22.0 and 28.8. However, it should be noted that there were many patients with moderate 

initial stability within this range that did not follow this same trend of longitudinal changes. For 

this set of 15 patients, two were operated on by Surgeon 1 using the MIPS surgical technique, 10 

were seen by Surgeon 2, and 3 were seen by Surgeon 3. 
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5.4. Summary 

This chapter presents a clinical evaluation of the longitudinal changes in implant stability for 

BAHA patients during the first year following surgery. The acceleration measurements from the 

patient data matched closely with those from the laboratory data presented in Chapter 4 and the 

range of ASC values from the clinical data was very similar to the range that was found for the 

laboratory data suggesting that the laboratory results should provide a good representation of the 

clinical situation. Additionally, the ASIST technique was found to provide a good fit between the 

model response and the measured acceleration indicating that the analytical model is able to 

provide a good approximation of the physiological system. 

Using the ASC measure, we were able to detect differences in the initial stability of BAHA 

implants between different surgeons. Additionally, we have shown that there is potential to 

detect differences in ASC values between different implant types by comparing a small sample 

of BHX wide diameter implants from Oticon Medical with the standard narrow platform 

implants from the same manufacturer. These are important results and suggest that the ASIST 

may be used to detect differences between surgical techniques, implant designs, or other 

variables of clinical interest. 

The pattern of longitudinal changes in implant stability as measured by the ASC value was found 

to vary across the 39 patients that were included in this study. There was a large group (15 

patients) with generally low initial stability who showed similar longitudinal trends with ASC 

values that were relatively constant or gradually increasing over time. Many of the remaining 

patients showed large increases or decreases in ASC values between visits. This suggests that 

healing patterns can vary substantially across patients, at least in the early stages following 

surgery. There are many studies in the literature investigating longitudinal changes in BAHA 

implant stability for various situations using the ISQ measure (Dun et al., 2011; Faber et al., 

2013; Foghsgaard and Caye-Thomasen 2014; Nelissen et al., 2016). These studies tend to report 

a large variability in the ISQ values across patients (even when abutment height is controlled), 

which is consistent with the implant stability results presented here. Additionally, the finding that 

the patients with generally low initial stability showed similar longitudinal changes suggests that 

the initial implant stability can influence the subsequent implant healing patterns. This is 
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consistent with the idea that adequate primary (mechanical) stability is required for successful 

secondary stability and osseointegration (Atsumi et al., 2007). 

It should be emphasized that “low stability” in this analysis is not meant to indicate a problem 

with the implant integration as none of the implants in this study failed. With further study it may 

be possible to establish ASC levels that would indicate implants at risk of failure; however we 

are not at that stage with this preliminary study. The ASIST appears to be sensitive enough that 

the goal of establishing such a criterion appears to be feasible. 

We have shown promising results using the ASIST in a clinical setting with the clinical 

evaluation presented here. The ASIST has the potential to provide a better understanding of the 

changes that occur at the bone-implant interface during healing and throughout the life of the 

implant.   
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Chapter 6:  Development of the ASIST for 
Natural Teeth 

This chapter presents the development and evaluation of the ASIST for the application to natural 

teeth. In this case, the interface stability is related to the mechanical properties of the periodontal 

ligament (PDL) which connects the tooth root to the surrounding alveolar bone (Nishihira et al., 

2003). This chapter presents the analytical model and ASIST procedure for the tooth application, 

a parametric sensitivity study from the analytical model, and a clinical application of the ASIST 

for patients undergoing orthodontic treatment. 

6.1. Analytical Model 

To adapt the ASIST technique for any other application such as natural teeth, an appropriate 

analytical model must be developed. The analytical model (Figure 6.1) is similar to that 

developed for the BAHA implant-abutment systems presented in Section 2.2. Here, a single-

rooted tooth is modeled as a 3-DOF system composed of a rigid body (the tooth with mass 𝑚𝑡 

and moment of inertia 𝐽𝐺) as well as the impacting rod which is again modeled as a particle with 

a mass of 𝑚𝑝 = 9.4 g.  

The internal stiffness parameter 𝐾𝐼  is a spring at the impact site between the impact rod and the 

tooth at a height ℎ above the center of mass of the tooth (Figure 6.1). The periodontal ligament is 

modeled as a distributed stiffness 𝑘 and viscous damping 𝑐 per unit area surrounding the tooth 

root. The PDL stiffness is oriented perpendicular to the root surface (Carvalho et al., 2006). The 

coordinates used to describe the system are the horizontal displacement of the impact rod (𝑥1), 

the horizontal displacement of the center of the tooth at the height of impact (𝑥2), and the 

rotation of the tooth (𝜃). With these coordinates, 𝑥̈1 represents the acceleration of the impact rod 

which is experimentally measured by the accelerometer. 
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The stiffness matrix [𝐾] is given by: 

[𝐾] =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝐼 −𝐾𝐼 0

−𝐾𝐼 𝐾𝐼 + 4 ∫ 𝑘𝑟 cos2 𝛼 𝑑𝑦
𝐿𝑟

0
−4 ∫ 𝑘𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)𝑑𝑦

𝐿𝑟

0

0 −4 ∫ 𝑘𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)𝑑𝑦
𝐿𝑟

0
4 ∫ 𝑘𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)2𝑑𝑦

𝐿𝑟

0 ⎦
⎥
⎥
⎥
⎥
⎤

 

Where: 

𝑘 is the stiffness per unit area surrounding the tooth root 

𝑟 is the radius of the tooth root as a function of the height 𝑦 (𝑦 = 0 at the bottom of the root) 

𝛼 is the angle between a line perpendicular to the tooth root and the horizontal axis as a function 

of the height 𝑦 

𝐿𝑟 is the total length of the tooth root 

𝐿 is the total length of the tooth 

𝐿𝑜 is the distance from the top of the tooth (crown tip) to the location of the strike 

 

The damping matrix [𝐶] is given by: 

[𝐶] =

⎣
⎢
⎢
⎢
⎢
⎡0 0 0
0 4 ∫ 𝑐𝑟 cos2 𝛼 𝑑𝑦

𝐿𝑟

0
−4 ∫ 𝑐𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)𝑑𝑦

𝐿𝑟

0

0 −4 ∫ 𝑐𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)𝑑𝑦
𝐿𝑟

0
4 ∫ 𝑐𝑟 cos2 𝛼 (𝐿 − 𝐿𝑜 − 𝑦)2𝑑𝑦

𝐿𝑟

0 ⎦
⎥
⎥
⎥
⎥
⎤

 

Where 𝑐 is the damping coefficient per unit area surrounding the tooth root. Viscous damping 

was assumed only at the interface with negligible damping in the rest of the system, following 

the same assumptions used for the BAHA model described in Section 2.2. 
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6.2. Geometry and Assumptions 

The geometry of the tooth must be approximated in the model for two reasons. The first is to 

define the root profile since the effective interface stiffness is dependent on the root shape, and 

the second is to define the mass and geometry parameters of the tooth. As shown in the stiffness 

(and damping) matrices above, the radius and angle of the tooth root as a function of the height 

must be estimated. In the analytical model, the tooth root is modeled as a paraboloid. This shape 

has been used previously to model the tooth root shape (Provatidis, 2001). The tooth crown is 

modeled as a simple cylinder with a radius equal to the radius of the root at the crown-root 

junction. The detail of the tooth crown is only required in the model to determine its contribution 

to the mass, the position of the center of mass, and the moment of inertia of the tooth. 

The following geometric parameters are needed in the model: the length of the root (𝐿𝑟), the 

length of the crown (𝐿𝑐), the radius of the tooth at the crown-root junction (𝑅0), the tooth mass 

(𝑚𝑡), the location of the center of mass (𝑦𝐶̅𝐺) measured from the root tip, and the mass moment 

of inertia measured about the center of mass (𝐽𝐺). These parameters can be estimated for a 

particular tooth from computed tomography (CT) scans; however, when not available, an 

approximate shape can be used to estimate the parameters as will be discussed later.  

6.3. ASIST Procedure 

6.3.1.  Osseometer to ASIST Transformation 

A large amount of useful accelerometer data for the tooth application exists from previous 

studies, particularly the clinical data that will be discussed in Section 6.5. This data was collected 

with a previous version of the ASIST unit termed the Osseometer. As described in Section 2.1, 

the acceleration measurement was collected by extracting the raw accelerometer signal from a 

commercial Periotest® unit. This acceleration measurement suffered from the zero-overshoot in 

the signal as shown previously in Figure 2.2. Prior to analyzing the existing data with the ASIST 

procedure, it is important to transform the data to compensate for the zero-overshoot.  
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The amplitude is normalized following the procedure outlined in Section 2.3.2. where the 

normalization factor 𝑉𝑎𝑚𝑝 is determined from the curve fit model.  

The damping coefficient 𝑐 in the analytical model can be estimated from the curve fit model 

following a similar procedure to that outlined in Section 2.3.2. The second mode damping ratio 

𝜁2 from the curve fit model is related to the damping coefficient 𝑐 through the mass and stiffness 

matrices. For the BAHA implants described in Section 2.3.2, there were a discrete set of cases to 

be considered (i.e. each implant-abutment combination) and a proportionality constant was 

determined for each case. In the case of natural teeth, the mass and geometry parameters vary 

between teeth. The same procedure could be applied here; however it would have to be 

customized for each individual tooth. This is not practical for widespread use of the ASIST 

procedure with teeth, thus a slightly different procedure was adopted. The mass of the tooth (𝑚𝑡) 

was explicitly expressed in the relationship: 

𝑐 = 𝛾√𝑚𝑡√𝑘𝜁2 

This expression is analogous to that presented in Section 2.3.2; however, in this case the mass 

appears directly in the expression and the proportionality constant 𝛾  would be equal to 2 for a 

single degree of freedom system. An approximate value for the proportionality constant 𝛾  was 

estimated based on visual appraisal of the resulting model fit for the full set of clinical tooth data 

that was available.  

6.3.3.  Matching the Analytical Model to the Measured Acceleration 

Once the mass and geometry parameters of the particular tooth are estimated, there are three 

unknown variables left in the analytical model: the striking location (𝐿𝑜), the impact stiffness 

(𝐾𝐼 ), and the interface stiffness surrounding the tooth root (𝑘) which is the primary variable of 

interest. The striking location should be estimated when conducting the acceleration 

measurement test and input into the ASIST model. It should be noted however that much of the 

data analyzed in this study had been collected previously thus an accurate striking height was not 

known for this data. For the clinical data, the striking height was estimated based on visual 
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appraisal of the resulting model fit for several samples and was fixed in the model for all 

analyses with all patients. 

The unknown stiffness parameters in the model were determined by matching the model 

predicted acceleration to the measured data following the procedure outlined in Section 2.3.3. 

where the Mathematica function FindMinimum[] is used to minimize the Euclidean norm 

between the analytical model acceleration response and the curve fit approximation of the data. 

For the tooth application, multivariable minimization is used to find both the impact stiffness 

(𝐾𝐼 ) and the interface stiffness per unit area (𝑘) that minimize the specified norm. In this case, 

contrary to the BAHA implant application, the impact stiffness was allowed to vary in the model. 

This is because there may be some variability in this stiffness and in the striking conditions 

between teeth. Additionally, since much of the data had been previously collected prior to this 

study, the exact striking conditions were unknown.  

6.3.4.  Outcome Measure 

The primary outcome measure for this application is again the ASIST Stability Coefficient 

(ASC). Similar to the BAHA implant application, the ASC is a non-dimensional quantity that is 

directly related to the effective interface stiffness surrounding the tooth root and normalized to a 

nominal stiffness value.  

The effective interface stiffness is: 

𝐾𝑒𝑓𝑓 = 4 ∫ 𝑘𝑟 cos2 𝛼 𝑑𝑦
𝐿𝑟

0
 

Using the paraboloid model, the radius and angle of the tooth root are: 

𝑟 = 𝑅0√
𝑦

𝐿𝑟
 

𝛼 = tan−1
(

𝑟
2𝑦) 
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With a static force applied through 𝐶𝑅𝑒𝑠, the deformed shape of the system will have the tooth 

remaining in a vertical position (i.e. the deformed shaped will be a simple horizontal translation 

without rotation) by definition. The equilibrium equations for the system are then: 

∑ 𝐹𝑥 = 0   →    4 (∫ 𝑘𝑟 cos2 𝛼 𝑑𝑦
𝐿𝑟

0 ) 𝑥 − 𝐹𝐼 = 0   →    𝐹𝐼 = 4 (∫ 𝑘𝑟 cos2 𝛼 𝑑𝑦
𝐿𝑟

0 ) 𝑥 

∑ 𝑀𝐶𝐺 = 0   →    4 (∫ 𝑘𝑟 cos2 𝛼 (𝑦𝐶̅𝐺 − 𝑦)𝑑𝑦
𝐿𝑟

0 ) 𝑥 − 𝐹𝐼 (𝑦𝐶̅𝐺 − 𝑦𝐶𝑅) = 0 

Where 𝑥 is the horizontal translation of the tooth. Solving these equations for the location of the 

center of resistance, we find: 

𝑦𝐶𝑅 = 𝑦𝐶̅𝐺 −
⎝
⎜
⎜
⎛∫ 𝑘𝑟 cos2 𝛼 (𝑦𝐶̅𝐺 − 𝑦)𝑑𝑦𝐿𝑟

0

∫ 𝑘𝑟 cos2 𝛼 𝑑𝑦𝐿𝑟
0 ⎠

⎟
⎟
⎞
 

Where 𝑟, 𝛼, and 𝑦𝐶̅𝐺 are defined by the shape and mass distribution of the tooth. For example, 

consider a tooth with a root length of 𝐿𝑟 = 13 mm, a crown length of 10 mm, and a radius of 

𝑅0 = 3.5 mm. Consider also, a tooth shape with a paraboloid for the root, a cylinder for the 

crown, and a uniform mass distribution. For such a tooth model, the center of mass is located at 

𝑦𝐶̅𝐺 = 14.32 mm from the tip of the root. The center of resistance is located 6.19 mm below the 

center of mass at a distance of 8.13 mm from the bottom of the root. For comparison, Marcotte 

(1990) cites that the center of resistance is located approximately 2/5H from the top of the root, 

where H is the amount of root that is covered by bone (i.e. the root length in the present model). 

With this approximation, the center of resistance would be located 7.8 mm from the bottom of 

the root, which is a difference of only 4% from the location calculated here. 

6.4.2.  Modal Analysis 

The undamped natural frequencies 𝑝𝑛 and mode shapes {𝜙}𝑛 of the system were determined for 

the tooth model by solving the eigenvalue problem with the matrices [𝐾] and [𝑀].  

The natural frequencies and mode shapes are dependent on the system parameters. The analysis 

was completed for a tooth with root length 𝐿𝑟 = 13.03 mm, crown length  𝐿𝑐 = 10.28 mm, and 
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radius 𝑅0 = 3.84 mm. The mass, the location of the center of mass, and the moment of inertia 

were assumed to be constant at 𝑚𝑡 = 1.17 g, 𝑦𝐶̅𝐺 = 13.95 mm and 𝐽𝐺 = 38.01 gmm2, 

respectively. These parameters correspond to measurements from a maxillary cuspid tooth used 

for the clinical evaluation that will be presented in Section 6.5. The impact stiffness was fixed at 

𝐾𝐼 = 2.9 × 106 N/m for all analyses. The effect of the striking height, the root shape, and the 

interface stiffness on the resulting mode shapes and undamped acceleration response were 

examined. 

The striking location on the tooth will have an effect on the system response. This was 

investigated by varying the striking height from 𝐿𝑜 = 5 mm to 𝐿𝑜 = 8 mm from the crown tip. 

Figure 6.9 show examples of the mode shapes and undamped acceleration response for various 

striking height locations. The grey dashed lines represent the initial position of the system, while 

the solid black lines represent the normalized mode shapes. The solid dots represent the location 

of the center of mass of the impact rod, the center line of the tooth at the height of the strike, and 

the bottom of the tooth root.  
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When th

the secon

that the s

is moved

and the m

case, the

example,

third mod

 Mode shapes a

e strike is n

nd mode is 

second mode

d lower on th

modal partic

e three mod

, the last cas

de shape ten

and undamped 
crown

ear the top o

approximate

e contributes

he tooth, the 

cipation of t

dal frequenci

se in Figure 

nds to have a

acceleration res
n tip. Interface 

of the tooth 

ely one orde

s very little t

frequency o

the second m

ies can be o

6.9). Additio

a larger contr

121 

sponse with var
stiffness 𝒌 = 𝟎.

(e.g. 𝐿𝑜 = 5

er of magnit

to the accele

of the second

mode increa

observed in

onally, as th

ribution of h

rying striking lo
𝟎𝟏 × 𝟏𝟎𝟏𝟐 𝐍/𝐦𝟑

5 mm), the m

tude less tha

ration respo

d and third m

ases compare

n the undam

he strike is m

horizontal tra

ocations: 𝑳𝒐 =
𝟑. 

modal partic

an the third 

onse in this c

modes becom

ed to the thi

mped acceler

moved lower

anslation. Th

𝟓, 𝟔, 𝟕, 𝟖 𝐦𝐦 fro

cipation fact

mode indic

case. As the s

me closer tog

ird mode. In

ration signal

r on the tooth

his may be d

 

om the 

tor of 

cating 

strike 

gether 

n this 

l (for 

h, the 

due to 



122 
 

the fact that the strike is moving closer to the center of resistance of the tooth. It should be noted 

that the horizontal scale in Figure 6.9 has been adjusted for the third mode shape with 𝐿𝑜 =

7 mm and 𝐿𝑜 = 8 mm to accommodate the large relative horizontal displacement within the 

frame of the figure. 

6.4.3.  Analytical Model Frequency Response versus Stiffness Parameters 

The important stiffness parameter in the analytical tooth model is the impact stiffness (𝐾𝐼 ) while 

the primary variables of interest are the interface stiffness (݇) and the related ASC value. Using 

the analytical model, the relationship between the stiffness parameters and the first and second 

mode frequency components was examined. This provides an understanding of the effect of the 

internal stiffness parameters on the theoretical acceleration response, which will aid in 

interpreting the measured acceleration signals.  

The relationship between the undamped first and second mode frequencies (𝑝1 and 𝑝2) and the 

interface stiffness 𝑘 can be seen in Figure 6.10 for a maxillary canine tooth. The first mode 

frequency is sensitive to changes in the interface stiffness showing an increase in 𝑝1 with 

increasing stiffness. The slope of the curve tends to decrease at the higher stiffness values. The 

second mode frequency is relatively less sensitive to changes in interface stiffness particularly at 

the moderate or high stiffness values where the curve begins to plateau. It can be seen from the 

figures that these relationships become nearly linear at higher interface stiffness values. A unit 

change in interface stiffness from 𝑘 = 1 × 1010 N/m3 to 𝑘 = 2 × 1010 N/m3 results in an increase 

in the first mode frequency of 126 Hz (27% increase) while a unit change in interface stiffness 

from 𝑘 = 4 × 1010 N/m3 to 𝑘 = 5 × 1010 N/m3 results in an increase in the first mode frequency 

of 74 Hz (9.6% increase). The same changes in interface stiffness result in increases in the 

second mode frequency of 1101 Hz (15% increase) and 154 Hz (1.7% increase) for the lower 

and higher stiffness ranges, respectively. 
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larger values of 𝐿𝑜. For example, a change in 𝐿𝑜 from 1.05 mm to 2.10 mm results in an increase 

in the first mode frequency of 33 Hz (6.9% increase) while a similar change in 𝐿𝑜 from 6.84 mm 

to 7.90 mm results in an increase in the first mode frequency of 69 Hz (9.6%). It can be seen 

from Figure 6.21 that the second mode frequency is relatively insensitive to changes in 𝐿𝑜 for 

low values with only a slight increase. Beyond a threshold of approximately 4 mm for this tooth 

model, the second mode frequency decreases quite substantially with increasing 𝐿𝑜. For 

example, the same changes in 𝐿𝑜 result in changes in the second mode frequency of 223 Hz 

(2.6% increase) and -785 Hz (12% decrease) for the lower and higher 𝐿𝑜 ranges respectively. 

Unlike the other geometric and inertia parameters, the model response was found to be relatively 

insensitive to changes in both the radius at the crown-root junction and the tooth mass. 

6.4.6.  Model Solution (ASC and Fit with Measured Data) with Location of the 
Center of Mass 

The location of the center of mass of the tooth was found to have an effect on the second mode 

frequency response of the analytical model. In this section, we will evaluate the sensitivity of the 

model solution to variations in this parameter. As 𝑦𝐶̅𝐺 is varied, the calculated interface stiffness 

and associated ASC value are determined along with the resulting 𝑅2 fit between the model 

predicted signal and the measured acceleration for a sample dataset (maxillary canine from the 

available clinical data). The location of the center of mass was varied across a range of values in 

20 discrete steps. The model was used to determine the ASC value and 𝑅2 fit for each variation 

in 𝑦𝐶̅𝐺.  

Figure 6.22 shows the variation in ASC and 𝑅2 value with changing 𝑦𝐶̅𝐺. The two plots are 

overlaid with the scale for the ASC value (blue line) on the left of the figure and the scale for the 

𝑅2 value (black line) on the right of the figure. 
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6.4.7.  Damping Assumption 

The damping in the analytical model can be included in a variety of ways and two methods were 

investigated in this study: proportional damping and general viscous damping at the interface. 

The details of these different methods are described for the BAHA implant-abutment system in 

Appendix B and the same assumptions can be applied for teeth. These two damping methods 

were evaluated on a subset of clinical data (11 samples) from patients undergoing orthodontic 

treatment. The ASIST procedure was used to estimate the interface stiffness and calculate the 

associated ASC value using both the proportional damping assumption and the general viscous 

damping assumption. The second mode damping ratio was extracted from the curve fit 

approximation for each dataset and used in the analysis. 

The average damping ratio for this sample data is 0.092 (9.2%) with a range of 0.038 – 0.172. 

The ASC values and 𝑅2 values using both damping methods are presented in Table 6.1. The 

average difference in ASC value between the two methods is 5.6% with a maximum difference 

of 14.7%. The 𝑅2 fit is better for the viscous damping than the proportional damping in all cases 

with an average difference in 𝑅2 of 18.9%. 
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Table 6.1: Comparison of ASC and 𝑹𝟐 values using different damping assumptions for example datasets from clinical 
orthodontic patients 

Dataset 
Damping Ratio 

(Curve Fit) 
ASC 

Viscous 
ASC 

Proportional
% Diff 
ASC 

𝑅2 
Viscous

𝑅2 
Proportional 

% Diff 
𝑅2 

1 0.076 0.52 0.52 0.6 0.84 0.69 18.7 

2 0.095 0.78 0.84 7.2 0.91 0.78 14.4 

3 0.078 0.41 0.41 1.3 0.89 0.70 21.1 

4 0.081 0.35 0.33 5.4 0.74 0.45 39.4 

5 0.172 1.39 1.59 14.7 0.96 0.78 18.7 

6 0.038 0.85 0.82 3.4 0.69 0.53 22.0 

7 0.119 0.41 0.45 10.3 0.91 0.80 12.0 

8 0.110 0.74 0.84 13.8 0.95 0.85 10.1 

9 0.066 0.50 0.50 0.1 0.84 0.70 16.4 

10 0.094 0.83 0.86 3.4 0.91 0.76 16.9 

11 0.088 0.79 0.78 1.2 0.84 0.69 18.3 

 

Figure 6.24 shows the data with the model response using viscous damping and using 

proportional damping. The difference between the two damping assumptions can be clearly seen 

from the figures with the viscous damping showing a better fit with the measured acceleration in 

general. This is evident by visual appraisal of the figures and is further supported by the higher 

𝑅2 values with viscous damping in Table 6.1. 
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6.5.1.  Description of the Data 

Acceleration measurements were collected for 12 adolescent female participants (12-15 years) 

during orthodontic treatment as part of a previous study. Participants were recruited from the 

pool of patients seeking orthodontic treatment at the University of Alberta Graduate Orthodontic 

Clinic. All participants in the study required extraction of the first maxillary premolars for 

overjet reduction. For each patient, stability measurements were recorded for the two maxillary 

cuspid teeth (teeth ID 13 and 23) at approximately 12 visits over a 1 year span (range: 11 – 14 

visits). At each visit, three acceleration measurements were typically collected for each tooth 

(range: 1 – 5 measurements). In some cases, no usable measurements were collected at a 

particular visit, which may have been due to an error in the data collection. In total, 6 visits were 

excluded for this reason. 

At the initial visit, the first maxillary premolars were extracted and full fixed orthodontic 

appliances (Ormco Orthos, Orange CA, USA) were placed. The participants attended several 

check-up visits during the initial alignment and leveling phase. Following this, an 

osseointegrated palatal implant (Straumann, Basel, Switzerland) was installed to provide 

posterior anchorage for the retraction phase. Cuspid retraction was achieved through specialized 

hooks and shape memory alloy springs. Forces were applied to the cuspids such that the force on 

one side was half the force on the other side and these force levels were randomly assigned to 

each side (left and right) for all participants. Maxillary impressions were taken at the initial 

activation of the retraction phase and spring adjustments were made at subsequent follow-up 

visits to achieve the desired force levels. Following the retraction phase, the palatal implant was 

removed and participants attended a final check-up visit to conclude the study. After cuspid 

retraction, the participants continued with any remaining orthodontic treatment that was required. 

CT volumetric scans were obtained for both maxillary cuspid teeth for each participant during 

treatment (NewTom, Verona, Italy). The mass and geometry parameters were estimated from the 

3D reconstructed models from the CT data (Table 6.2). 
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Table 6.2: Mass and Geometry Parameters for Clinical Tooth Data from CT Scans 

Patient 
ID 

Tooth ID 
Tooth 

Length 
Root 

Length 
Crown 
Length 

Radius 𝒚𝑪̅𝑮 Mass 𝑱𝑮 

 
(Maxillary 
Cuspids) 

(mm) (mm) (mm) (mm) (mm) (g) (𝐠 𝐦𝐦𝟐) 

1 23 23.74 12.90 10.84 3.92 14.27 1.19 38.27 
1 13 23.32 13.03 10.28 3.84 13.95 1.17 38.01 
2 23 25.51 15.78 9.73 3.84 14.62 1.17 47.59 
2 13 26.34 16.77 9.57 3.83 15.51 1.15 47.13 
3 23 26.10 14.06 12.03 3.58 15.29 1.18 43.85 
3 13 25.89 15.06 10.83 3.65 15.66 1.11 37.59 
4 23 25.23 14.55 10.68 3.24 15.03 1.22 40.19 
4 13 25.69 15.05 10.65 3.49 15.07 1.20 38.77 
5 23 22.71 12.33 10.38 3.68 12.96 1.27 34.35 
5 13 21.83 11.44 10.38 3.61 12.27 1.19 31.56 
6 23 20.81 11.34 9.47 3.73 11.17 0.96 25.57 
6 13 23.62 13.87 9.75 3.62 13.81 0.88 25.99 
7 23 23.61 13.68 9.93 3.37 13.70 1.26 35.95 
7 13 25.39 15.03 10.36 3.59 15.16 1.21 37.80 
8 23 25.53 15.16 10.37 3.48 14.74 1.14 37.88 
8 13 22.69 12.87 9.82 3.41 13.24 1.11 34.44 
9 23 26.01 15.97 10.04 3.85 15.68 1.36 50.48 
9 13 24.25 13.64 10.61 3.93 13.61 1.33 46.28 
10 23 21.40 11.97 9.43 3.75 12.38 1.07 26.68 
10 13 21.81 12.15 9.66 3.62 12.63 0.99 23.85 
11 23 26.89 16.48 10.41 3.61 16.44 1.13 44.20 
11 13 25.24 14.98 10.26 3.47 15.01 1.02 40.49 
12 23 22.51 11.87 10.64 3.47 12.87 1.04 33.30 
12 13 22.84 12.71 10.13 3.57 13.00 1.05 33.99 

 

Initially, the mass, the location of the center of mass, and the moment of inertia were estimated 

assuming the tooth volume has a uniform density (results reported in Table 6.2). For each tooth 

the average density was estimated from the Hounsfield units (HU) determined from the grayscale 

pixels over the CT scan. The density was calculated from the average HU using the regression 

equation reported by Lagravère et al. (2006) for a NewTom QR-DVT 9000 cone-beam CT unit:  

𝜌 = 0.002𝐻 − 0.381 

Where 𝜌 is the density in g/cm3 and 𝐻  is the Houndsfield Units (HU). The average density over 

all of the teeth with this method is 𝜌 = 1192 kg/m3. 
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range. To demonstrate this, the moment of inertia was varied ±15% for three example datasets 

with original 𝐽𝐺 values of approximately 47 gmm2 (high), 38 gmm2 (mid-range), and 24 gmm2 

(low). An example for the mid-range 𝐽𝐺 is shown in Figure 6.28. It can be seen from the figure 

that there is virtually no change in the model fit across the range. The maximum changes in the 

𝑅2 values were 0.01, 0.01, and 0.02 for the high, mid-range, and low 𝐽𝐺 examples, respectively. 

The maximum changes in ASC values were 0.006 (0.9%), 0.012 (1.4%), and 0.004 (0.4%) for 

the high, mid-range, and low 𝐽𝐺 examples, respectively. This indicates that varying 𝐽𝐺 has very 

little effect on both the ASC value and the fit between the model and the measured acceleration. 

For this reason, the original moment of inertia values determined from the uniform density 

model were used in subsequent analyses of the clinical data. 
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understand the effectiveness of the ASIST for applications to natural teeth and (2) the 

longitudinal changes in ASC for individual patients to provide some understanding of the 

changes in the PDL throughout orthodontic treatment. 

Since the CT scan data was available for both teeth for all patients, the data was first analyzed 

using the geometric parameters from the CT scans as described above. The tooth mass, root 

length, crown length, radius at the crown-root junction, location of center of mass, and mass 

moment of inertia were input individually into the Mathematica model. The exact striking height 

during data collection was unknown, so this value was estimated and fixed in the model. It was 

found that a striking height of 𝐿𝑜 = 0.006 m below the tooth tip produced an appropriate model 

response for this data. The proportionality constant for the damping coefficient was estimated to 

be 𝛾 = 1000 and fixed for all analyses. 

Appropriate values were chosen as initial guesses for the impact stiffness and the interface 

stiffness per unit area, and the ASIST optimization procedure was used to determine the final 

values for these parameters, along with the ASC value, for each set of data. 

6.5.3.  Data Analysis – Optimized CT Geometry 

It was shown above that the mass of the tooth and the location of the center of mass can affect 

the fit between the model prediction and the measured acceleration (Figure 6.27). Additionally, 

the values for these parameters calculated from the solid models are simple approximations that 

may not accurately reflect the physiological values. For these reasons, a second analysis was 

performed with the clinical data using adjusted mass and center of mass values. For each tooth, 

the mass was increased by 15%. This value was chosen because it was able to provide some 

improvement in the fit between the model prediction and the measured data while maintaining a 

reasonable deviation from the originally calculated mass. Additionally, the location of the center 

of mass was increased (moved towards the crown tip) by 15% in 10 increments for each tooth. A 

sample dataset was analyzed with the ASIST procedure at each variation of 𝑦𝐶̅𝐺 to determine the 

ASC value and the fit between the model and the measured acceleration. The value of 𝑦𝐶̅𝐺 that 

produced the best fit as measured by the 𝑅2 value was chosen as the “optimized” center of mass 
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for each tooth. Across all datasets, it was found that the optimized center of mass was 9.6 ± 

1.9% higher than the original center of mass (average ± SD). 

The second analysis with the clinical data used the original length, diameter, and moment of 

inertia parameters from the CT data along with these adjusted values for the mass and center of 

mass which were deemed the optimized values. The increase in the center of mass of the teeth 

altered the mass and stiffness matrices, which in turn altered the damping in the model. In this 

case the proportionality constant for the damping coefficient was estimated to be 𝛾 = 2000 and 

was fixed in the model for all analyses. The results using the optimized CT geometry were 

compared with the original CT geometry for each patient. 

6.5.4.  Data Analysis – Approximate Geometry 

In a general application of the ASIST for natural teeth, it is unlikely that CT scans will be 

available for the tested tooth. In this case, the mass and geometry parameters can be 

approximated using some parameters that would be readily available in a clinical setting. An 

approximate geometric model of the tooth was developed with the assumption that the radius of 

the tooth and one length parameter could be easily approximated. In the ASIST procedure 

presented here, the user is required to input the total length of the tooth and the radius at the 

crown-root junction and all other mass and geometry parameters are calculated according to the 

approximate model (Figure 6.29). 

The tooth root shape was approximated as a paraboloid and the crown shape was approximated 

as a cylinder. The length of the root was assumed to be 57% of the total tooth length while the 

crown was assumed to be 43% of the total tooth length. These values were determined as the 

average values from the 24 teeth available from the clinical data. The density of the root was 

estimated to be 𝜌𝑟 = 1500 kg/m3 based on the assumption that the root is composed of a 

combination of pulp and dentin as described for the two density model in Section 6.5.1. The 

crown was assumed to be composed of both enamel and dentin with the enamel making up the 

top 30% of the crown and dentin making up the lower 70% as shown in Figure 6.29. This 

distribution was chosen because it resulted in mass and center of mass values that were relatively 

close to the optimized values and the resulting model prediction produced a good match with the 
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To compare the stiffness values determined in the present study with those reported in the 

literature, we can use our analytical model to determine the effective tooth stiffness with a load 

applied near the top of the tooth. Consider a horizontal force applied on the tooth with the force 

and displacement defined by the following: 

[𝐾] {
𝑥
𝑥
𝜃} = {

0
𝐹
0 } 

The effective stiffness of the system is defined as the force 𝐹  resulting from a unit displacement 

𝑥. The stiffness matrix can be developed for example for a tooth with 𝐿𝑟 = 13.03 mm,  

𝐿𝑐 = 10.28 mm, and 𝑅0 = 3.84 mm. We can assume a striking height of 𝐿𝑜 = 6 mm. 

Additionally, we can assume an interface stiffness per unit area 𝑘 = 2.91 × 1010 N/m3 

corresponding to an effective stiffness at the interface equal to the average value over all the 

patient data (3.25 × 106 N/m). Solving the above equation with these parameters, we find that the 

effective tooth stiffness is 3.61 × 105 N/m which is within the range of values reported by 

Nakago et al. (1994). 

6.7. Summary 

This chapter presented the ASIST application for natural teeth. This is the first application of the 

combined experimental technique and analytical model used to estimate the PDL characteristics. 

An analytical model for a single-rooted tooth system was developed and evaluated using clinical 

data from 24 maxillary cuspid teeth from 12 orthodontic patients. A parametric sensitivity 

analysis was presented, evaluating the effect of internal stiffness and geometric parameters on 

the analytical model response. 

The analysis of the clinical data allowed comparisons of several methods for estimating the mass 

and geometry parameters of individual teeth including measurements from CT scans and a 

simplified approximate geometry model. Both methods were able to provide a good match 

between the model predicted response and the measured acceleration. Additionally, the clinical 

study presented here provided some insight into the changes in PDL stiffness during orthodontic 

alignment and cuspid retraction. Using the ASC value as the outcome measure, all patients 
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showed a substantial decrease in PDL stiffness during treatment. The PDL showed some 

recovery in stiffness at the end of the study (approximately 1 year); however, it did not reach its 

pre-treatment stiffness value in any of the cases. Orthodontic tooth movement is associated with 

remodeling in the dental and periodontal tissues including changes at the cellular, molecular, and 

tissue levels (Dolce et al., 2002; Krishnan and Davidovitch, 2006; Zainal Ariffin et al., 2011). 

Although it was difficult to find reports of longitudinal changes in the mechanical properties of 

the PDL within the literature, the biological changes reported during orthodontic tooth 

movement seem to support the reduction in PDL stiffness and ASC value that was observed in 

this study. Additionally, tooth mobility has been shown to increase during orthodontic treatment 

(mean treatment duration of 21.5 months) and decrease following a retention phase (mean 

duration of 27.9 months) as measured by the Periotest® (Tanaka et al., 2005). The reduction in 

PDL stiffness and ASC during treatment in this study is consistent with the increase in tooth 

mobility reported in the literature. The ASIST technique for natural teeth has the potential to 

provide valuable insight into the behavior of the PDL and tooth root interface as well as tooth 

stability across a range of clinical situations.  
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Chapter 7:  Summary and Conclusions 

7.1. Summary 

This research presents the development of a noninvasive system for evaluation of the interface 

integrity for both percutaneous implants and natural teeth. The developed system is termed the 

Advanced System for Implant Stability Testing (ASIST). The ASIST combines experimental 

acceleration measurements from an impact with the system of interest with an analytical model 

of the system to estimate the stiffness characteristics at the interface. The inclusion of the 

analytical model aids in the interpretation of the acceleration measurement and provides an 

improved understanding of the physical system. 

This research builds upon previous work for percutaneous implants combining the experimental 

acceleration measurement with an analytical model of the system. This work presents several 

significant improvements over previous approaches. First was the development of a new 

electronic system for acceleration measurement which provides a cleaner acceleration signal that 

more accurately reflects the system response. To apply the ASIST technique in a clinical setting, 

appropriate analytical models were developed to include the two commercial BAHA systems 

that are commonly used across the bone anchored hearing community. A numerical analysis was 

presented to provide a robust method for estimating interface properties by matching the 

acceleration response from the analytical model with the measured acceleration through an 

optimization procedure. An alternative damping model using viscous damping was implemented 

to better reflect the physiological conditions, which may be particularly important for failing 

implants. 

The ASIST was developed for the Oticon Medical Ponto and the Cochlear Baha® Connect 

implant-abutment systems and evaluated through in vitro laboratory testing with a variety of 

implant and abutment sizes. The ASIST is able to isolate the interface properties and provide a 

stability measure that is essentially independent of the attached components. In addition, it was 

shown that the system is able to detect differences in interface properties by evaluating a range of 

installations with the same type of implants.  
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The ASIST acceleration measurement is carried out with a handpiece which makes it a versatile 

tool for clinical use; however, it was important to understand how variations in handpiece 

position can influence the resulting ASC measure. This was evaluated through in vitro laboratory 

testing with controlled variations in handpiece position and through an intra-tester and inter-

tester reliability analysis. It was shown that both intra-tester and inter-tester variations were low 

with an ICC of 0.941 and SEM of 1.52 ASC (6.5% of the average) for intra-tester reliability and 

an ICC of 0.964 and SEM of 2.90 ASC (12% of the average) for inter-tester reliability. The ICC 

values indicate excellent reliability for bother intra- and inter-tester reliability (Hallgren, 2012).  

There are currently available commercial devices that have been used for interface stability 

measurement for many years. For example, the OsstellTM system is widely for BAHA implants; 

however it is known to suffer from several limitations. We presented a comparison of the ASIST 

and the OsstellTM ISQ system through an in vitro laboratory evaluation with BAHA implants. 

The ASIST was found to provide significant advantages over the OsstellTM in terms of the ability 

to isolate interface properties independent of attached components as well as sensitivity to 

changes in interface stiffness properties. The OsstellTM ISQ was shown to be more sensitive to 

changes in system components such as variations in abutment length than actual changes in 

interface properties, while the ASIST was found to be more sensitive to interface changes and 

essentially independent of the system components.  

This research also presented a clinical evaluation of the ASIST for BAHA patients through a 

collaboration with iRSM. It was found that the ASIST shows potential to detect differences in 

interface stability between surgeons or surgical techniques and between various implant designs; 

however, additional larger studies are required to confirm these findings. Longitudinal changes 

in implant stability were evaluated for BAHA patients within the first year following surgery. 

The ease of use and ability to isolate the properties of the bone-implant interface will allow the 

ASIST to be a valuable clinical tool, enabling clinicians to quickly and noninvasively evaluate 

the status of bone anchored implants throughout their entire life. 

Finally, this research presented the development of the ASIST technique for natural teeth. The 

development and evaluation was presented using longitudinal clinical data from maxillary cuspid 

retraction for adolescents during orthodontic treatment. A three degree of freedom analytical 
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model was presented for a single-rooted tooth system. Several geometric approximations were 

presented and compared. The first was based on mass and geometry parameters estimated from 

CT scans of individual teeth while the second was a completely approximated model based 

solely on the length and radius of the tooth. The model prediction of the acceleration was found 

to provide a good match with the measured acceleration suggesting that the ASIST technique can 

be applicable to natural teeth. A longitudinal evaluation was presented showing changes in PDL 

stiffness properties throughout orthodontic alignment and cuspid retraction. Similar patterns of 

longitudinal changes were observed across patients with all patients showing reductions in PDL 

stiffness during treatment and many patients showing some degree of recovery near the end of 

treatment (approximately 1 year). The PDL stiffness parameters at the end of treatment did not 

return to pre-treatment levels for any of the patients during the time of the study. This work 

presented a significant contribution to the experimental-analytical modeling approach for natural 

teeth and shows promise for future research in this area. The ASIST for natural teeth can provide 

a valuable clinical tool for assessment of tooth stability properties and PDL stiffness in a variety 

of clinical situations such as dental trauma, orthodontics, and periodontology. 

7.2. Conclusions 

 The ASIST technique was developed for commercial bone anchored hearing aid systems 

including the Oticon Medical Ponto and the Cochlear Baha® Connect systems. 

 The ASIST was shown to have significant advantages over commercially available 

systems such as the OsstellTM ISQ for evaluation of BAHA implant stability. 

 The inclusion of the analytical model in the interpretation allows the ASIST Stability 

Coefficient (ASC value) to be essentially independent of attached components such as 

abutment length. The ASIST was found to be sensitive to changes in interface properties. 

 The ASIST has shown promising results with an in vivo longitudinal clinical evaluation 

with BAHA patients. Differences in initial stability values were identified between 

surgeons and between implant types.  

 Implant stability measurements were found to vary substantially across patients. 

 Patients with relatively low initial stability were found to have a similar trend of 

longitudinal changes with minimal variations or gradual increases in ASC over time. The 
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remaining patients were found to have varied patterns of longitudinal changes with 

increases and decreases over time. 

 The ASIST procedure was developed for natural teeth and was found to show promise for 

future work with this application. 

 The stiffness of the PDL was found to be approximately two orders of magnitude less 

than the bone-implant interface of BAHA systems. 

 Longitudinal changes in PDL stiffness were evaluated with clinical data for patients 

undergoing orthodontic alignment and cuspid retraction. The ASIST was able to detect 

substantial changes in PDL stiffness over time. Longitudinal changes were similar 

between two maxillary cuspid teeth within individual patients as well as between 

patients. 

7.3. Limitations 

The work presented has several limitations that could be addressed in future applications of the 

ASIST method. The analytical model assumes that the interface is both uniform over the area 

and represented by a linear force-displacement relationship. Physiologically, the interface may 

vary along the length or over the interface area for a variety of reasons. A non-uniform interface 

model was investigated in this work for BAHA implant systems showing minimal effects on the 

system response; however, these effects may be more important for different implant systems or 

for both implants and natural tooth systems with compromised or variable interface integrity. 

Additionally, the interface relationship of both bone anchored implant systems and natural teeth 

may not be linear (i.e. constant 𝑘). In this work, we found a good match between the measured 

acceleration and the analytical model for both BAHA systems and teeth suggesting that the 

analytical model is a good approximation of the physiological situation; however, situations with 

compromised interface integrity were not investigated. For implants with poor osseointegration 

or a fibrous tissue interface or for teeth with very low stability, a non-linear interface may more 

accurate reflect the physiology. These assumptions should be investigated for varying levels of 

interface integrity.  

In the experimental work for BAHA systems, the preparation of the interface was not strictly 

controlled resulting in varying interfaces for similar installations and we do not have an 
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alternative measure of the actual interface properties with which to compare the ASIST (or 

OsstellTM) measure. Additionally, a clamp was used to fix the implant installation to the 

platform, which may not provide a consistent and rigid connection. 

The BAHA clinical study had several limitations including missing data due to a poor RF 

connection between the ASIST unit and the computer with an early version of the ASIST and 

differences in the data collection position between the surgical and post-operative measurements, 

which may have resulted in additional variability in the measure. Additionally, the sample size 

was limited in terms of the ability to account for multiple confounding variables through multiple 

regression analysis. It should also be noted that one of the primary functions of the ASIST is to 

detect compromised or failing implants; however, such interfaces were not investigated in this 

work. Implants with lower interface stability were evaluated in the laboratory setting, but these 

implants were still close to the range observed in the clinical study. The implants for all patients 

seen in the clinical BAHA study did not show any signs of failure. While this is a very good 

clinical result with obvious benefits to both the patients and the clinicians, it did not allow for 

evaluation of implants at risk of failure.  

Finally, there were several limitations associated with the application to natural teeth, most 

notably the use of data from a previous study that was collected with an older variation of the 

ASIST device (the Osseometer). The data had to be transformed before use in order to remove 

the zero overshoot in the acceleration response. Additionally, the initial data collection did not 

have real-time feedback of the quality of the signal and we only had limited information 

regarding the data collection procedure in terms of the striking location and striking conditions. 

Some longitudinal changes in PDL stiffness were noted for all patients; however, with the 

limited data we do not have a sense of the variability in the measure thus making it difficult to 

assess the statistical or clinical significance of the stiffness changes that were noted. An 

evaluation of the repeatability of the measure for tooth systems would allow a power calculation 

to estimate an appropriate sample size for future clinical studies. 
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7.4. Future Considerations 

7.4.1.  Further Expansion for BAHA Systems 

This work should be extended to provide robust and accurate models for the full range of 

clinically available BAHA implant-abutment systems. An extensive analysis was presented for 

the Oticon Medical Ponto system; however, further laboratory testing should be done with the 

Cochlear Baha® Connect system. Following this, the ASIST can be extended to a multi-center 

clinical study to provide further evaluation of the technique from a variety of clinicians and 

clinical protocols from other centers. Such a study would help to build the pool of clinical data 

which is critical to provide more concrete answers to important clinical questions such as an 

appropriate timeline for implant loading and thresholds for implant failure. 

7.4.2.  Evaluation of Implant Designs 

New implant designs and methods of improving or promoting osseointegration are often tested 

through experimental animal studies where the level of osseointegration is evaluated through 

destructive testing such as removal torque (Johansson et al., 2015). A laboratory evaluation 

should be conducted to understand the correlation between the ASC measure and the removal 

torque for percutaneous implants. This would first provide an understanding of how the ASIST 

measurement relates to a standard measure of the level of osseointegration. If a positive 

correlation exists this would allow future studies to evaluate different implant designs 

noninvasively instead of using destructive methods. 

7.4.3.  Application to Other Percutaneous Implant Systems 

This study focused on the development and evaluation of the ASIST for BAHA implant systems; 

however, percutaneous implants are used in many other applications including individual dental 

implants, full or partial dental arches, facial prosthetics and craniofacial reconstruction, and the 

attachment of prosthetic limbs. The methods presented here can be expanded to these other 

applications to understand healing patterns, identify patterns associated with failure, and provide 

ongoing stability evaluation in a wide variety of applications. For each application, an 
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appropriate analytical model must be developed along with laboratory testing and evaluation to 

develop a robust measure of interface integrity. 

7.4.4.  Further Investigations with Natural Teeth 

The research presented here was the first application of the ASIST methodology for natural 

teeth; thus there are a variety of potential areas for future research in this area. In this work, the 

development and evaluation of the method was presented using a set of clinical data that had 

been previously collected. Future work should include a controlled laboratory study with a 

variety of teeth (both natural teeth and manufactured teeth where the dimensions and geometry 

can be controlled). Various materials can be tested to simulate the PDL. For example, a 

combination of silicone and gasket sealant can be developed with different ratios to control the 

material stiffness of a simulated PDL (George et al., 2015; Xia and Chen, 2013) to evaluate 

sensitivity to varying interface properties. Additionally, the precision of experimental testing 

should be investigated with natural teeth to understand the influence of handpiece positioning 

and to develop an appropriate protocol for testing with this application. An understanding of the 

intra-tester and inter-tester reliability would be beneficial. 

Further investigation of the analytical model assumptions should be explored. For example 

different distributions of stiffness at the root interface could be investigated as well as different 

damping models. Additionally, a more robust treatment of the impact stiffness should be 

investigated. Controlled experimental studies with consistent striking conditions would help to 

develop appropriate assumptions for this parameter. The analytical modeling assumptions 

presented in this research showed promising results for the data examined with a good match 

between the model and the measured data. These assumptions provided a good baseline for the 

method; however, they may not be the best representation of the physiological situation and an 

investigation of other options would be beneficial. Further, the research presented here only 

focused on single-rooted teeth and the data investigated was only for maxillary cuspids. Future 

studies should expand the analytical model and experimental methods to include other single-

rooted teeth as well as multiple-rooted teeth. 
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Finally, there is a lot of potential for further clinical studies in the dental area to evaluate various 

applications of orthodontic treatment, root resorption, treatments aimed at improving the root 

condition, dental trauma, and periodontal disease. 
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Mass: ∑ 𝐹𝑥 = 0   →    𝑚14 = 0 

 

Implant: ∑ 𝐹𝑥 = 𝑚𝑎𝑥    →    𝑅𝑥 = −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼 ) 

(∑ 𝑀𝑐)𝐹𝐵𝐷
= (∑ 𝑀𝑐)𝑀𝐴𝐷

   →    𝑚44 = 𝐽𝐼 + 𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ )
2 

 

Abutment: ∑ 𝐹𝑥 = 𝑚𝑎𝑥    →    𝑚24 = −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ ) 

(∑ 𝑀𝑐)𝐹𝐵𝐷
= (∑ 𝑀𝑐)𝑀𝐴𝐷

   →    𝑚34 = 𝑚𝐼 ℎ(𝐿𝐼 − 𝑦𝐼̅ ) 

 

The matrix [𝑀] is given by the following: 

[𝑀] =

⎣
⎢
⎢
⎢
⎢
⎡𝑚𝑝 0 0 0

0 𝑚𝐼 + 𝑚𝐴 𝑚𝐴𝑦𝐴̅ − (𝑚𝐼 + 𝑚𝐴)ℎ −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ )
0 𝑚𝐴𝑦𝐴̅ − (𝑚𝐼 + 𝑚𝐴)ℎ 𝐽𝐴 + 𝑚𝐴(ℎ − 𝑦𝐴̅)

2 + 𝑚𝐼 ℎ2 𝑚𝐼 ℎ(𝐿𝐼 − 𝑦𝐼̅ )
0 −𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ ) 𝑚𝐼 ℎ(𝐿𝐼 − 𝑦𝐼̅ ) 𝐽𝐼 + 𝑚𝐼 (𝐿𝐼 − 𝑦𝐼̅ )

2⎦
⎥
⎥
⎥
⎥
⎤

 

Where: 

𝐿𝐼 = length of the implant 

𝑦𝐴̅ = distance from the bottom of the abutment to the center of mass 

𝑦𝐼̅ = distance from the bottom of the implant to the center of mass 

ℎ = distance from the bottom of the abutment to the striking location 
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Mass: ∑ 𝐹𝑥 = 0   →    𝐾14 = 0 

 

Implant: ∑ 𝐹𝑥 = 0   →   −𝑅𝑥 − ∫ 4𝑘𝑅0𝑙𝑑𝑙𝐿𝑖
𝐿𝑐

= 0  →    𝑅𝑥 = −2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝑐

2) 

∑ 𝑀𝑐 = 0   →    𝐾44−𝐾𝑇 − ∫ 4𝑘𝑅0𝑙2𝑑𝑙
𝐿𝐼

𝐿𝑐

= 0  →     𝐾44 = 𝐾𝑇 + 4
3

𝑘𝑅0(𝐿𝐼
3 − 𝐿𝑐

3) 

 

Abutment: ∑ 𝐹𝑥 = 0   →    𝐾24 = −2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝑐

2) 

∑ 𝑀𝑐 = 0   →    𝐾34 = −𝐾𝑇 + 2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝑐

2)ℎ 

 

The stiffness matrix [𝐾] is given by the following: 

[𝐾] =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝐼 −𝐾𝐼 0 0
−𝐾𝐼 𝐾𝐼 + 4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶) −4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ −2𝑘𝑅0(𝐿𝐼

2 − 𝐿𝐶
2 )

0 −4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ 𝐾𝑇 + 4𝑘𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ2 −𝐾𝑇 + 2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ

0 −2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 ) −𝐾𝑇 + 2𝑘𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ 𝐾𝑇 + 4
3

𝑘𝑅0(𝐿𝐼
3 − 𝐿𝐶

3 ) ⎦
⎥
⎥
⎥
⎥
⎤

 

 

Where 𝐿𝐶  is the portion of the implant that extends above the bone surface (i.e. the distributed 

stiffness at the bone-implant interface ݇ only acts along the length 𝐿𝐼 − 𝐿𝐶) and 𝑅0 is the radius 

of the implant. 

A.3 Approximation of the Torsional Stiffness 𝑲𝑻  

The assumptions for the torsional stiffness coefficient 𝐾𝑇  are based on the work of Swain (2006; 

2008a). Let us assume that the abutment is fixed at its connection to the implant. Let us also 

assume that there is an applied load 𝑃  at the impact site, a distance 𝐿 from the fixed support 

(Figure A.11). 
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We can integrate this expression over the length of the abutment to get the total strain energy of 

the beam: 

𝑈 = ∫
𝑃 2(𝐿𝐴 − 𝑥)2

2𝐸𝐼𝑠

𝐿𝑠

0

𝑑𝑥 + ∫
𝑃 2(𝐿𝐴 − 𝑥)2

2𝐸𝐼𝑢

𝐿𝐴−𝐿𝑙

𝐿𝑠

𝑑𝑥 + ∫
𝑃 2(𝐿𝐴 − 𝑥)2

2𝐸𝐼𝑙

𝐿𝐴

𝐿𝐴−𝐿𝑙

𝑑𝑥 

Once the strain energy is known, the deflection of the free end of the beam (where the load 𝑃  is 

applied) can be determined from Castigliano’s method (Beer et al., 2012): 

Δ = 𝜕𝑈
𝜕𝑃

 

Finally, the maximum 𝐾𝑇  for each abutment is given by the expression: 

𝐾𝑇 (𝑚𝑎𝑥) =
𝑃 𝐿𝐴 2

𝛥
 

Table A.1: Maximum 𝑲𝑻  values for Oticon Abutments 

Abutment Length (𝐦𝐦) Maximum 𝑲𝑻 (𝐍𝐦) 
6 mm 2183 
9 mm 1191 
12 mm 856 
 14 mm 725 

 

Again, the actual torsional spring coefficient used in the model is some fraction of this maximum 

value for each abutment. 

𝐾𝑇 = 𝛼𝐾𝑇 (𝑚𝑎𝑥	) 
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Appendix B: Parametric Sensitivity of the 
Analytical Model for BAHA Implant-Abutment 
Systems 

B.1 Modal Analysis 

A program was implemented in Mathematica (Wolfram Mathematica 10, Champaign, IL, USA) 

to determine the natural frequencies and mode shapes of the implant-abutment system. The 

natural frequencies and mode shapes are dependent on the system parameters, so the analysis 

was completed for two different levels of interface stiffness for each implant-abutment 

combination (𝑘 = 2 × 1012 N/m3; ASC between 11 – 18 and 𝑘 = 5 × 1012 N/m3; ASC between 

28 – 45 ). The mode shapes for the long/narrow Oticon Medical implant (M50128) with each of 

the abutments (6 mm, 9 mm, 12 mm, 14 mm) and both high and low interface stiffness values 

are shown in Figures B.1 – B.4 for illustration. The grey dashed lines represent the initial 

position of the system, while the solid black lines represent the normalized mode shape. The 

solid dots represent the location of the center of mass of the impact rod, the center line of the 

abutment at the height of the strike, the implant-abutment connection, and the bottom of the 

implant. The patterns of the mode shapes are the same in all cases.  
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The four natural frequencies of the system were calculated for each implant-abutment 

combination at the two levels of interface stiffness. The first mode frequency ranged from 

530 Hz − 1915 Hz for the systems analyzed. On average, the second mode frequency is 16 times 

larger than the first mode (range: 12 – 25 times), the third mode frequency is 69 times larger than 

the first mode (range: 53 – 90 times), and the fourth mode frequency is 165 times larger than the 

first mode (range: 96 – 262). In general, the ratio of a higher mode frequency to the first mode 

frequency for a given implant interface condition increases with increasing abutment length. 

As expected, when increasing from a softer interface (𝑘 =  2 × 1012 N/m3) to a stiffer interface 

(𝑘 =  5 × 1012 N/m3), all of the natural frequencies increase. For the given change in interface 

stiffness (150% increase), the average increase in first mode frequency is 42% for the shorter 

3 mm implants (range: 39 – 44%) and 32% for the longer 4 mm implants (range: 29 – 35%). 

For each implant interface condition, the natural frequencies decrease as the abutment length is 

increased, as expected. It can be seen from Figure B.5, that there is an approximately quadratic 

relationship between the first mode frequency and the abutment length (𝑝1 decreases as a 

function of 𝐿𝐴
2 ). The 𝑅2 correlation values are essentially equal to 1.0 in each case and are 

displayed on the chart with the polynomial equations. 
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stiffness parameters on the theoretical acceleration response, which will aid in interpreting the 

measured acceleration signals. Additionally, this analysis will provide an understanding of the 

sensitivity of the ASIST measure to errors in the estimated parameters such as 𝐾𝐼  and 𝐾𝑇 . 

The relationship between the first mode frequency 𝑝1, the second mode frequency 𝑝2, the ratio 

𝑝2/𝑝1 and the interface stiffness 𝑘 can be seen in Figure B.6 for each type of Oticon Medical 

implant. Each subfigure shows the relationship for each abutment length (6 mm, 9 mm, 12 mm, 

14 mm). It can be seen that the first mode frequency varies sharply with changing interface 

stiffness for the low stiffness values and starts to plateau for larger stiffness values.  

As expected, the interface stiffness is sensitive to changes in the first mode frequency. In the 

higher stiffness range, where the curves become flatter, small errors in the frequency 

measurement can result in large changes in the calculated interface stiffness. These errors should 

not be clinically important because implants in the high stiffness range would be considered 

stable. In the lower frequency range, smaller changes in stiffness would result in considerable 

changes in the first mode frequency and would thus be detected by the ASIST measurement. 
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interface stiffness (𝑘 = 11 × 1012 N/m3) results in a first mode frequency of 1701 Hz, which is 

an increase of 29 Hz or a 2% increase. Alternatively, we can consider a doubling of the interface 

stiffness. For the lower stiffness range, doubling the interface stiffness from 2 × 1012 N/m3 to 

4 × 1012 N/m3  results in an increase in the first mode frequency of 279 Hz (26% increase). 

While for the higher stiffness range, doubling the interface stiffness from 10 × 1012 N/m3 to 

20 × 1012 N/m3 results in an increase in the first mode frequency of 179 Hz (11% increase). This 

further illustrates that the frequency response is most sensitive to interface stiffness at low 

stiffness values. 

The second mode frequency is also shown to increase with the increasing interface stiffness; 

however, less of a plateau effect is present compared to the first mode frequency. In general, the 

second mode frequency is less sensitive to changes in the interface stiffness than the first mode 

frequency. It can also be noted that the second mode frequency is much less sensitive to changes 

in the interface stiffness for the longer abutments compared to the shorter abutments. For 

example, consider the long/narrow implant (M50128) with the 6 mm abutment compared to the 

14 mm abutment. With the 6 mm abutment, a unit change in interface stiffness from 2 ×

1012 N/m3 to 3 × 1012 N/m3  results in an increase in the second mode frequency of 1169 Hz 

(6% increase). The same change in interface stiffness with the 14 mm abutment results in an 

increase in the second mode frequency of 289 Hz (2.1% increase).  

The same relationships are presented in Figure B.7 using the ASC measure. Consider again the 

long/narrow implant (M50128) with a 9 mm abutment in the lower stiffness range (ASC of 23 

corresponding to an interface stiffness of 3.07 × 1012 N/m3). A unit change in ASC from 23 to 

24 results in an increase in first mode frequency of 17 Hz (from 1234 – 1251 Hz) or an increase 

of 1.4%. A doubling of ASC from 15 to 30 results in an increase in first mode frequency of 340 

Hz (24% increase). In the high stiffness range (ASC of 75 corresponding to an interface stiffness 

of 10 × 1012 N/m3), a unit change in ASC from 75 to 76 results in an increase in first mode 

frequency of 4 Hz (0.2% increase). 
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The relationship between the frequency components and the torsional connection stiffness 𝐾𝑇  is 

shown in Figure B.9 for the different Oticon Medical implant types and abutment sizes. The first 

mode frequency is sensitive to changes in the torsional stiffness parameter only in the low 

stiffness range. Beyond a threshold, both the first and second modes are virtually insensitive to 

changes in 𝐾𝑇 . In such a situation, the implant/abutment is essentially responding as a rigid 

body. The sensitivity in the lower 𝐾𝑇  range, suggests that the ASIST measure may be able to 

detect changes in the implant-abutment connection such as loosening of the abutment screw. 

Consider a long/narrow implant (M50128) with a 9 mm abutment. For this implant-abutment 

combination, a 100 unit increase in the torsional stiffness from 300 to 400 Nm results in an 

increase in the first mode frequency of 39 Hz (3% increase) and an increase in the second mode 

frequency of 66 Hz (0.4% increase). In the lower torsional stiffness range, an increase in 𝐾𝑇  

from 100 – 200 Nm results in an increase in the first mode frequency of 159 Hz (13%) and an 

increase in the second mode frequency of 244 Hz (1.4%). In the higher torsional stiffness range 

approximately corresponding to a torsional stiffness coefficient of 0.5, and increase in 𝐾𝑇  from 

600 – 700 Nm results in an increase in the first mode frequency of 13 Hz (0.8%) and an increase 

in the second mode frequency of 23 Hz (0.1%). In each case the second mode frequency is 

proportionally less sensitive to changes in 𝐾𝑇  than the first mode frequency. 
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𝑅2 value. Over the full range, the ASC values range from 22 – 37, with the ASC value 

corresponding to the best fit with the data of 27.9 at an impact stiffness of 3.05 × 106 N/m. If we 

consider the region close to the best fit (i.e. 𝑅2 values above 0.98), the impact stiffness values 

vary from 2.84 × 106 - 3.26 × 106 N/m and the calculated ASC values vary from 25 – 31, which 

is a difference of 6 ASC values or 21% of the “best-fit” value. Figure B.11 show the variation in 

the shape of the signals as 𝐾𝐼  is varied. The measured data is shown in the colored lines (the 

same for all subfigures) and the model predicted signal is shown in black. The subfigure that is 

highlighted with a red outline corresponds to the best match between the measured signal and the 

model response (𝐾𝐼 = 3.05 × 106 N/m, ASC = 27.9 for this sample dataset). It is clear from the 

figures that variations in the impact stiffness affect the second mode frequency of the model 

response, which can result in a poor fit between the measured data and model signal. 
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B.4 Analytical Model Frequency Response versus 
Geometric and Inertial Parameters 

The important geometric and inertial parameters for the implants in the analytical model are the 

mass (𝑚𝐼 ), the length of the threaded portion (𝑙𝑖), the diameter (𝑑𝑖 = 2𝑅0), the location of the 

center of mass (𝑦𝐼̅ ), and the mass moment of inertia (𝐽𝐼 ). Similarly, the important geometric 

parameters for the abutments in the analytical model are the mass (𝑚𝐴), the length (𝐿𝐴), the 

location of the center of mass (𝑦𝐴̅), and the mass moment of inertia (𝐽𝐴). 𝑙𝑖, 𝐿𝐴, 𝑚𝐼 , 𝑚𝐴, and 𝑑𝑖 

are straightforward to determine and are not subject to appreciable error. 

Using the analytical model, the relationships between the geometric parameters and the first and 

second mode frequency components are examined following the same procedure as the stiffness 

parameters. This can provide an understanding of the effect of the various geometric parameters 

on the theoretical acceleration response. Additionally, this analysis will provide an understanding 

of the sensitivity of the ASIST measure to errors in the estimated parameters such as 𝑦𝐼̅ ,𝑦𝐴̅, 𝐽𝐼 , 

and 𝐽𝐴. For each parameter, the value was varied over the range of values used in the analytical 

model from 10% less than the lowest value to 10% greater than the highest value. All other 

values were kept fixed in the model. It should be noted that when the abutment mass was varied, 

the abutment mass moment of inertia was adjusted as a function of the mass based on the 

simplified geometric model shown in Figure 2.3. Similarly, when the abutment length was 

varied, the location of the abutment center of mass and the abutment moment of inertia were 

adjusted as a function of the length. An interface stiffness of 𝑘 = 5 × 1012 N/m3 (corresponding 

to an ASC value of approximately 30 – 40) was used for all analyses. 

The relationship between the first mode frequency 𝑝1, the second mode frequency 𝑝2 , and the 

ratio 𝑝2/𝑝1, and the implant geometric parameters can be seen in Figures B.17 – B.21 for the 

Oticon Medical implants. The different curves on each figure show the relationships for each 

abutment length (6 mm, 9 mm, 12 mm, 14 mm). The vertical gridlines in each of the figures 

show the actual sizes for the different Oticon Medical implants in the analytical model. 
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In general, the model response was found to be significantly more sensitive to the abutment 

geometric parameters compared to the implant parameters, particularly in the second mode 

frequency. The first mode frequency was found to be insensitive to changes in the abutment 

mass, while the second mode frequency decreases with increasing abutment mass showing a 

decreasing slope with increasing mass. Consider for example a long/narrow implant (M50128). 

Increasing the mass from 0.707g to 0.995g (approximately the change from a 9 mm to 12 mm 

abutment) which is a 41% increase in mass results in a decrease in first mode frequency of only 7 

Hz (0.5% decrease). The same change in mass results in a decrease in second mode frequency of 

3888 Hz (20% decrease). Similarly, the first mode frequency was found to be virtually 

insensitive to changes in the location of the center of mass and the moment of inertia, while the 

second mode frequency was more sensitive to these parameters. Consider again a long/narrow 

implant. An increase in the center of mass from 4.515 mm to 6.085 mm (approximately the 

change from a 9 mm to 12 mm abutment) results in a decrease in first mode frequency of 6 Hz 

(0.4% decrease). The same change in 𝑦𝐴̅ results in a decrease in second mode frequency of 2957 

Hz (16% decrease). The model response was found to be only slightly sensitive to changes in the 

abutment moment of inertia. Again for the long/narrow implant, an increase in the mass moment 

of inertia from 5.56 × 10−9 kgm2 to 1.08 × 10−8 kgm2 (nearly double: 94% increase) results in a 

decrease in first mode frequency of 2 Hz (0.1% decrease) and a decrease in second mode 

frequency of 1090 Hz (6% decrease).  

As expected, the first mode frequency was found to be sensitive to changes in the abutment 

length, while the second mode frequency was less sensitive. In both cases the frequency was 

found to decrease with increasing abutment length. For a long/narrow implant, an increase in 

abutment length from 9 mm to 12 mm (33% increase) results in a decrease in the first mode 

frequency of 249 Hz (18% decrease) and a decrease in the second mode frequency of 793 Hz 

(4% decrease). Other measurement methods such as the Periotest® and OsstellTM ISQ that rely 

on a correlation between the first mode frequency and the interface stiffness without 

consideration for the abutment length will produce different answers for the stability 

measurement for varying abutment lengths because of this sensitivity shown here. This is why it 

is important in the ASIST model to account for the abutment length in the analysis procedure. 
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B.5 Model Solution (ASC and Fit with Measured Data) with 
Geometric Parameters 𝒚𝑨̅ and 𝑱𝑨 

In the analytical model, the location of the center of mass and mass moment of inertia of the 

implant and abutment were estimated based on assumed, simplified geometry. It was shown that 

the implant parameters including 𝑦𝐼̅  and 𝐽𝐼  have very little effect on the model response, thus 

errors in these parameters should not have a large effect on the model performance. Conversely, 

the abutment parameters including  𝑦𝐴̅ and 𝐽𝐴 were found to have more of an effect on the 

second mode frequency response of the analytical model (particularly 𝑦𝐴̅). In this section, we 

will evaluate the sensitivity of the model solution to errors in these abutment parameters. As 𝑦𝐴̅ 

or 𝐽𝐴 are varied, the calculated interface stiffness and associated ASC value are determined 

along with the resulting 𝑅2 fit between the model predicted signal and the measured 

acceleration. For each analysis, a sample dataset is used in order to calculate the ASC and 𝑅2 

values. 

For a given set of data with a known implant and abutment, the location of the center of mass 

was varied േ 30% from the value used in the analytical model for the particular abutment in a 

total of 20 discrete steps. The model was used to determine the ASC value and 𝑅2 fit for each 

variation in 𝑦𝐴̅. As before, an initial guess for the interface stiffness was chosen for the first 

analysis and each subsequent analysis used the previously calculated interface stiffness as the 

initial guess. Similarly, the mass moment of inertia was varied േ 30 % from the value used in the 

analytical model for the particular abutment. 

Consider for example the long/narrow implant (M50128) in FRB-20 with a 9 mm abutment. 

Figure B.26 shows the variation in ASC and 𝑅2 value with changing 𝑦𝐴̅. The two plots are 

overlaid with the scale for the ASC value (blue line) on the left of the figure and the scale for the 

𝑅2 value (black line) on the right of the figure. 
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Since the model prediction and 𝑅2 fit are sensitive to the location of the center of mass of the 

abutment, which is an estimated parameter, this parameter was adjusted for each abutment to 

find an average value that produced a good fit with each implant type. The procedure for this 

adjustment is outlined in Section 3.1. Conversely, since the moment of inertia of the abutment 

was found to have minimal effect on the model outcome, the values estimated based on the 

simplified geometry were used as the final values in the model with no further adjustment. 

 

B.6 Damping Model 

Proportional Damping: 

The damping assumption used in the previous work of Swain et al. (2006) was proportional 

damping which maintains the ability to uncouple the equations using modal analysis. This is a 

case of classical damping and in this case the damping matrix [𝐶] is assumed to be proportional 

to the stiffness matrix [𝐾], so that [𝐶] = 𝛽[𝐾]. The mass matrix was not considered in the 

proportional damping assumption because the mass matrix is constant for a given implant-

abutment configuration; thus the inclusion of the mass matrix would simply add a constant term 

to the damping expression. The constant 𝛽 is related to the damping ratio of each mode 𝜁𝑛 and 

the natural frequency of each mode 𝑝𝑛 by: 

𝛽 =
2𝜁𝑛
𝑝𝑛

 

For the implant-abutment system, the damping ratio of the second mode of vibration is assumed 

(i.e. 𝜁2 = 0.03), and the constant 𝛽 is determined from the above relation. Subsequently, the 

damping ratios for the remaining vibration modes can be determined. With this assumption for 

the damping model, the damping ratio is directly proportional to the natural frequency for a 

particular mode, and thus the higher modes will be damped out faster than the lower modes. 

For the case of proportional damping, modal analysis can be used to solve the equations of 

motion. The resulting displacement response is of the form: 
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{𝑥(𝑡)} = ∑{𝜙𝑛}𝑒−𝜁𝑛𝑝𝑛𝑡
[𝑞𝑛(0) cos(𝜔𝑑𝑛𝑡) +

𝑞𝑛̇(0) + 𝜁𝑛𝑝𝑛𝑞𝑛(0)
𝜔𝑑𝑛

sin(𝜔𝑑𝑛𝑡)]

𝑁

𝑛=1
 

where: 

𝑁  is the number of degrees of freedom in the system (number of modes of vibration) 

𝜙𝑛 is the 𝑛𝑡ℎ mode shape 

𝜁𝑛 is the damping ratio of the 𝑛𝑡ℎ mode 

𝑝𝑛 is the natural frequency of the 𝑛𝑡ℎmode 

𝜔𝑑𝑛 = √1 − 𝜁𝑛
2 𝑝𝑛 is the damped natural frequency of the 𝑛𝑡ℎ mode 

𝑞𝑛(0) is the initial displacement of the 𝑛𝑡ℎ degree of freedom in modal coordinates 

𝑞𝑛̇(0) is the initial velocity of the 𝑛𝑡ℎ degree of freedom in modal coordinates 

Of course it is also possible to solve the equations numerically using the same procedure that has 

been used in the ASIST technique for general viscous damping. 

General Viscous Damping: 

In developing a model of the implant-abutment system, viscous damping can be included in 

much the same way as the spring stiffness. If a damper is included at the location of each spring 

(𝐶𝐼 , 𝐶𝑇 , 𝑐), then a damping matrix can be assembled using the same procedure of influence 

coefficients that was used for the stiffness matrix. We have assumed that the damping only 

occurs at the bone-implant interface with negligible damping in the rest of the system (i.e. 

𝐶𝐼 = 𝐶𝑇 = 0). The damping matrix [𝐶] is thus given by: 

[𝐶] =

⎣
⎢
⎢
⎢
⎢
⎡0 0 0 0
0 4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶) −4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ −2𝑐𝑅0(𝐿𝐼

2 − 𝐿𝐶
2 )

0 −4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ 4𝑐𝑅0(𝐿𝐼 − 𝐿𝐶)ℎ2 2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ

0 −2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 ) 2𝑐𝑅0(𝐿𝐼
2 − 𝐿𝐶

2 )ℎ 4
3

𝑐𝑅0(𝐿𝐼
3 − 𝐿𝐶

3 ) ⎦
⎥
⎥
⎥
⎥
⎤
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Where ܿ is the viscous damping coefficient per unit area surrounding the implant. 

When general viscous damping is used, modal analysis cannot be used to solve the equations of 

motion. In this case, the equations must be solved numerically for the known set of initial 

conditions. 

Damping Assumption Comparison 

The two damping methods were implemented in Mathematica (both using the numerical solution 

procedure) and were evaluated on a subset of clinical data from 11 BAHA patients. The patient 

data is summarized in Table B.5. 

Table B.5: Patient demographics for data used in the damping assumption comparison 

Dataset Patient ID Sex Age at Surgery Abutment Length Visit 
1 21 F 64 6 mm 1 Month 
2 7 F 43 6 mm 6 Month 
3 25 F 30 9 mm 3 Month 
4 27 F 48 9 mm 3 Month 
5 20 M 58 9 mm 3 Month 
6 13 F 49 9 mm 3 Month 
7 26 F 24 9 mm 2 Week 
8 9 M 17 9 mm 3 Month 
9 6 F 36 9 mm 6 Month 

10 17 F 56 12 mm 1 Month 
11 4 M 63 12 mm 6 Month 

 

The ASIST procedure was used to estimate the interface stiffness and calculate the associated 

ASC value using both the proportional damping assumption and the general viscous damping 

assumption. The second mode damping ratio was extracted from the curve fit for each dataset 

and used in the analysis. It can be seen from Table B.6, that the damping ratio for the BAHA 

patients is generally very low with an average damping ratio of 0.034 (3.4%) and a range of 

0.020 – 0.066 for this sample data. The ASC values and 𝑅2 values using both damping methods 

are also presented in Table B.6. It can be seen that there are very small differences in the results 

for the two procedures with a maximum difference in the ASC value of 2.2% and differences in 

the 𝑅2 value below 1%. With such a small damping content, we can see that the choice of 

damping assumption does not have a large impact on the ASC results.  
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Table B.6: Comparison of ASC and 𝑹𝟐 values using different damping assumptions for example datasets from clinical 
BAHA patients 

Dataset 
Damping Ratio 

(Curve Fit) 
ASC 

Viscous 
ASC 

Proportional 
% Diff 
ASC 

𝑅2 
Viscous 

𝑅2 
Proportional 

% Diff 
𝑅2 

1 0.066 27.2 27.4 0.84 0.99 0.99 0.11 

2 0.026 67.7 67.6 0.12 0.99 0.99 0.01 

3 0.023 15.8 15.8 0.32 0.98 0.97 0.33 

4 0.033 14.8 14.9 1.05 0.97 0.96 0.57 

5 0.020 21.0 21.1 0.27 0.98 0.98 0.09 

6 0.044 16.9 17.2 1.70 0.98 0.97 0.42 

7 0.027 22.2 22.3 0.66 0.99 0.98 0.24 

8 0.039 17.1 17.3 1.37 0.97 0.96 0.74 

9 0.027 12.5 12.6 0.84 0.97 0.96 0.42 

10 0.033 31.6 32.2 2.03 0.98 0.98 0.20 

11 0.038 27.8 28.5 2.21 0.96 0.95 0.32 

 

Figure B.33 shows the data with the model response using viscous damping (shown in black) and 

using proportional damping (shown in red). It can be seen that there are very minor differences 

in the model response with the two damping assumptions for this sample data. 
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B.7 Effective Interface Stiffness 

In the analytical model, we consider the bone-implant interface to be a uniform stiffness 

distributed over the osseointegrated area of the implant. We can also consider the interface 

stiffness to be represented by an equivalent effective stiffness model. This will allow 

investigation of the effect of various interface stiffness distributions.  

Considering a differential element though the implant of height 𝑑𝑙 and considering the 

component of the interface stiffness acting in the direction of the applied loading, the effective 

stiffness on the differential element was found to be: 

𝐾𝑒𝑓𝑓 (𝑑𝑙) = 4𝑘𝑅0𝑑𝑙 

Integrating over the length of the implant, the effective interface stiffness is: 

𝐾𝑒𝑓𝑓 = 4𝑘𝑅0𝑙𝑖 

It is possible to instead consider the interface stiffness as a single effective stiffness 𝐾𝑒𝑓𝑓  acting 

at a height ℎ𝐼  and a torsional stiffness 𝐾𝑅. This would allow us to model a non-uniform interface 

by varying the parameter ℎ𝐼 . Note that ℎ𝐼 = 𝑙𝑖/2  corresponds to the situation with a uniform 

interface over the length of the implant. Also note that the torsional stiffness 𝐾𝑅 is required 

because the implant has a rotational degree of freedom 𝜃2. 

Consider a rod with a distributed stiffness 𝑘𝑓 (𝑦) in the horizontal plane with two degrees of 

freedom (Figure B.36-A): 𝑥 is the horizontal displacement at the centroid of the distributed 

stiffness and 𝜃 is the angle of rotation about the centroid of the distributed stiffness. In general, 

the distributed stiffness is a function of the height ݕ measured from the bottom of the rod. This 

system can be represented by an equivalent effective stiffness 𝐾𝑒𝑓𝑓  acting at a height ℎ𝐼  and a 

rotational stiffness 𝐾𝑅 at the height of ℎ𝐼  (Figure B.36-B). 
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𝐹1 = ∫ 𝑘(𝑎𝑦 + 𝑏)

𝐿

0

𝑑𝑦 = 𝑘 [𝑎 𝑦2

2
+ 𝑏𝑦]0

𝐿
= 𝑎 𝑘𝐿2

2
+ 𝑏𝑘𝐿 

𝑀1 = ∫ 𝑘(𝑎𝑦 + 𝑏)𝑦

𝐿

0

𝑑𝑦 = 𝑘 [𝑎 𝑦3

3
+ 𝑏 𝑦2

2 ]0

𝐿
= 𝑎 𝑘𝐿3

3
+ 𝑏 𝑘𝐿2

2
 

Equating the forces and moments: 

𝐹1 = 𝐹2 ⇒ 𝑎 𝑘𝐿2

2
+ 𝑏𝑘𝐿 = 𝐾𝑒𝑓𝑓 (𝑎ℎ𝐼 + 𝑏) 

𝑀1 = 𝑀2 ⇒ 𝑎 𝑘𝐿3

3
+ 𝑏 𝑘𝐿2

2
= 𝐾𝑒𝑓𝑓 (𝑎ℎ𝐼 + 𝑏)ℎ𝐼 + 𝐾𝑅𝑎 

Comparing coefficients: 

Force Equation 𝑎: 𝑘𝐿2

2 = 𝐾𝑒𝑓𝑓 ℎ𝐼     ⇒      ℎ𝐼 = 𝐿
2  

Force Equation 𝑏: 𝑘𝐿 = 𝐾𝑒𝑓𝑓  

Moment Equation 𝑎: 𝑘𝐿3

3 = 𝐾𝑒𝑓𝑓ℎ𝐼
2 + 𝐾𝑅   

Substituting for ℎ𝐼  and 𝐾𝑒𝑓𝑓  gives:  𝑘𝐿3

3 = 𝑘𝐿(
𝐿
2)

2 + 𝐾𝑅    ⇒      𝐾𝑅 = 𝑘𝐿3

12  

In the BAHA implant-abutment system, replacing the uniformly distributed interface stiffness 

with an equivalent system of 𝐾𝑒𝑓𝑓 , ℎ𝐼 ,  and 𝐾𝑅 results in the following stiffness matrix: 

[𝐾] =

⎣
⎢
⎢
⎢
⎡ 𝐾𝐼 −𝐾𝐼 0 0
−𝐾𝐼 𝐾𝐼 + 𝐾𝑒𝑓𝑓 −𝐾𝑒𝑓𝑓 ℎ −𝐾𝑒𝑓𝑓 (𝐿𝐼 − ℎ𝐼 )

0 −𝐾𝑒𝑓𝑓 ℎ 𝐾𝑇 + 𝐾𝑒𝑓𝑓 ℎ2 −𝐾𝑇 + 𝐾𝑒𝑓𝑓 ℎ(𝐿𝐼 − ℎ𝐼 )
0 −𝐾𝑒𝑓𝑓 (𝐿𝐼 − ℎ𝐼 ) −𝐾𝑇 + 𝐾𝑒𝑓𝑓 ℎ(𝐿𝐼 − ℎ𝐼 ) 𝐾𝑇 + 𝐾𝑒𝑓𝑓 (𝐿𝐼 − ℎ𝐼 )2 + 𝐾𝑅⎦

⎥
⎥
⎥
⎤
 

𝐾𝑒𝑓𝑓 , ℎ𝐼 , and 𝐾𝑅 are dependent on the specific distribution 𝑘𝑓 (𝑦). 
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Appendix C: Details of the Numerical Analysis 

C.1 Curve Fit Initial Guess 

The curve fit procedure provides a single analytical description representing the average of the 

measured acceleration data. This is done using the Mathematica function 

NonlinearModelFit[], which uses nonlinear regression to find the best fit parameters for 

the specified model to match the given data. The procedure requires an initial guess for each of 

the model parameters. In this section, we evaluate the performance of the curve fitting procedure 

for variations in the initial guess for each of the parameters.  

The curve fit model is a 2-DOF response with unknown model parameters 𝐴, 𝑝1, 𝑝2, 𝜁2, 𝜙1, 𝜙2. 

For this analysis, nine sample datasets were used from the three Oticon Medical long/narrow 

implant specimens (M50128: FRB-20(1), FRB-20(2), PLA) with each of the three abutment 

lengths (6 mm, 9 mm, 12 mm). The model was used to determine the ASC value for each dataset 

with variations in the initial guess for each of the curve fit parameters. The outcome measures 

were the resulting best fit parameters from the curve fit procedure and the ASC value. The range 

of ASC values for these datasets was approximately 13 – 68. 

The initial guess for the amplitude parameter 𝐴 is 𝐴0 = 1. Variations in the initial guess from 

10−8 to 108 were investigated. Values for the best fit 𝐴 value ranged from 1.69 × 10−8 to 

3.23 × 10−8. The average difference in 𝐴 due to variations in the initial guess was 8.18 × 10−18( 

2.76 × 10−8 %) and the average difference in ASC was 0.003 (0.009%). 

The initial guess, 𝑝10 for the first mode frequency 𝑝1 is determined from the average contact time 

for each strike in a dataset. The average contact time is determined in order to specify an 

appropriate cutoff time for the measured data since many values of zero voltage are recorded 

beyond the end of the actual strike event. Using this value gives a reasonable approximation to 

the first mode frequency. The initial guess for the first mode frequency 𝑝10 was varied ± 40% 

from the model value. Values for the best fit 𝑝1 ranged from 4864 to 12477 rad/s. In general 

there was a very small difference in the best fit 𝑝1 value due to variations in the initial guess. 

There was one case (M50128 FRB-20(1) – 6 mm) where a variation in the initial guess produced 
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a different model fit with a 1.3% change in the resulting first mode frequency and a 6.5% change 

in ASC. This case represents a situation with a high frequency and very little amplitude 

contribution from the second mode. Some numerical instability caused a slightly different model 

solution to be found. However, this was only 1 case out of the 153 cases that were examined. 

With the exception of this case, the average difference in 𝑝1 due to variations in the initial guess 

was 1.06 × 10−6 rad/s (1.86 × 10−8 %) and the average difference in ASC was 0.003 (0.009%).  

The initial guess for the second mode frequency 𝑝2 is 10 times the initial guess for the first mode 

frequency. From the data examined for BAHA implant-abutment systems, the second mode 

frequency was found to be approximately one order of magnitude larger than the first mode 

frequency. The initial guess for the second mode frequency 𝑝20 was varied between ±10% to 

±40% for each dataset. The best fit values for 𝑝2 ranged from 90854 to 180073 rad/s. For some 

datasets, varying the initial guess by a large margin caused the curve fit procedure to be unable to 

find a solution. In these cases, the range was shortened to either ±20% or ±10%. With the cases 

tested, there were several instances where no solution was found from the curve fit procedure. 

Again there was one case with the M50128 FRB-20(1) – 6mm implant-abutment sample where a 

slightly different result was found resulting in a 34% difference in the best fit 𝑝2 and a 6.5% 

difference in the ASC value. With the exception of this case, the average difference in 𝑝2 was 

1.63 × 10−5 rad/s (1.40 × 10−8 %) and the average difference in ASC was 0.003 (0.008%). 

The initial guess for the second mode damping ratio 𝜁2 is 𝜁20 = 0. Variations in the initial guess 

from 0 to 0.1 were investigated. The best fit values for 𝜁2 ranged from 0.006 to 0.058. There 

were a few cases where no solution was found and there was one case with the M50128 FRB-

20(1) – 9 mm implant-abutment sample where a slightly different model was found resulting in a 

difference in damping ratio of 0.037 and a difference in ASC of 3.1%. With the exception of this 

case, the average difference in damping ratio with variations in the initial guess was 1.16 × 10−10 

(1.10 × 10−6 %) and the average difference in ASC was 0.003 (0.010%). 

The initial guess for both phase angles 𝜙1 and 𝜙2 were set to 0.1 rad. Variations in the initial 

guess for these parameters was varied from 0 to 1.6 rad. Best fit values for 𝜙1 typically ranged 

between 0.056 and 0.27 rad while best fit values for 𝜙2 were more varied and typically ranged 

between -3.54 and 2.68. There were several cases where no solution could be found. For 
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example, with the initial guess for the phase angles equal to zero, no solution could be found 

from the curve fit procedure. Additionally, with large values for the initial guess (i.e. larger than 

1.2 rad) the curve fit procedure produced a solution with a negative amplitude causing the 

subsequent model optimization to fail to find an appropriate solution. In some cases, essentially 

the same model was found; however, the produced phase angle was offset by a factor of a 

multiple of 𝜋 or 2𝜋. The average difference in ASC for all cases tested was 0.003 (0.008%).  

For the datasets examined, it was found that varying the initial guess in the curve fit procedure 

results in negligible differences in the calculated best fit parameters with differences in the 

resulting ASC values less than 0.01% on average. Varying the initial guess can sometimes cause 

the curve fit procedure to fail to find a solution; however, when a solution is found, it is typically 

able to find a unique solution within a very small numerical error. 

C.2 Curve Fit Time Cutoff 

When the data is recorded for the impact event as described in Section 2.1 some data is collected 

following the end of the strike, thus the actual end of the strike must be identified. To do this, 

each individual strike is filtered using a moving average filter and the absolute difference 

between consecutive data points is determined for each of the filtered strikes. Starting from the 

end of the data and working towards 𝑡 = 0, the end of each strike is estimated as the time when 

the absolute difference between the voltage recorded for consecutive data points exceeds a given 

tolerance. This tolerance was set to 0.01 as this value was found to provide a good estimate of 

the end of the strike for the full range of data. The end of the impact event is then taken as the 

average of the time estimated for each strike. For example, the dashed line in Figure C.1 shows 

the end of the impact event for this set of data. 

 
Figure C.1: Acceleration data for 16 strikes. The dashed line shows the end of the strike. 
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The cutoff time identifies the range of data that is used for the curve fit procedure. Only the data 

points that fall between 𝑡 = 0 and the cutoff time are included. The sensitivity of the curve fit 

procedure and resulting model prediction to changes in the data cutoff time were investigated. 

The same nine datasets described in the previous section were used for this analysis. The cutoff 

time was varied ± 5% from the calculated value (in 1% increments) and the change in the best fit 

first mode frequency (𝑝1) from the curve fit and the ASC from the model were evaluated. In 

several cases where the cutoff time was increased, the curve fit procedure failed to find a 

solution (10/99 cases). For the remaining cases, the average difference in first mode frequency 

from the curve fit was 65.6 rad/s (0.82 %) and the average difference in ASC was 0.88 (1.97 %). 

C.3 Data Resampling 

The curve fit procedure is based on the measured accelerometer data which is recorded with a 

sampling frequency of 294 kHz. We investigated the behavior of the curve fit solution when the 

measured acceleration data was uniformly reduced by 1/𝑛 where 𝑛 took integer values from 1-10. 

This analysis can provide some understanding about the effect of a lower sampling frequency on 

the results. The same nine datasets described in the previous sections were used for this analysis. 

An example of the reduced datasets and the resulting curve fit models are shown in Figure C.2 

for one implant-abutment combination (M50128 FRB-20(2) – 12 mm). The curve fit procedure 

failed to find a solution in 15/90 cases (7 of those cases were with the same dataset M50128 

FRB-20(2) – 6 mm abutment greater than 1/3 reduction in data).  



 

Figure C.2
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With a reduction in the data of 1/2, the average change in first mode frequency from the curve fit 

was 12.3 rad/s (0.15%) and the average change in ASC was 0.25 (0.53%). With a reduction in 

the data of 1/5, the average change in first mode frequency from the curve fit was 26.8 rad/s 

(0.38%) and the average change in ASC was 0.40 (0.92%). With a reduction in the data of 1/10, 

the average change in first mode frequency from the curve fit was 85.6 rad/s (1.08%) and the 

average change in ASC was 1.10 (2.94%). For all of the datasets examined, the average change 

in first mode frequency from the curve fit was 70.3 rad/s (0.94%) and the average change in ASC 

was 0.85 (2.0%). A lower sampling frequency in the acceleration measurement would reduce the 

time required to transfer the data to the computer and would slightly reduce the computation time 

from the model. This analysis suggests that the sampling frequency of the ASIST measurement 

may be reduced without substantially affecting the ASC value.  

C.4 Individual Strikes 

Each impact event with the ASIST handpiece consists of 16 individual strikes. The ASIST 

modeling procedure uses the data from all 16 strikes to provide a single average estimate of the 

ASC. It is also possible to use the modeling procedure to calculate an ASC value for each 

individual strike. An average estimate of the interface stability can then be determined by 

calculating the average ASC over the 16 strikes. The difference in these two solution procedures 

was investigated for one sample dataset of each of the 9 implant-abutment combinations 

described in the previous sections: the Oticon Medical long/narrow implant specimens (M50128: 

FRB-20(1), FRB-20(2), PLA) and each of the three abutment lengths (6 mm, 9 mm, 12 mm). 

The results of this analysis is shown in Table C.1. For the datasets analyzed the average 

difference in average ASC between the two procedures was 0.07 (0.20%). Analyzing each strike 

individually provides an indication of the variability between the 16 strikes. The maximum and 

minimum ASC values for each dataset are shown in Table C.1. On average, the standard 

deviation of the 16 measurements was found to be 1.1 with a maximum standard deviation of 3.6 

(M50128 FRB-20(2) – 6 mm dataset with average ASC = 63.90). 
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Table C.1: ASC Values Using All Data and Average ASC Values for Individual Strikes 

 
ASC 

(All Data) 

Average 
ASC 

(Individual 
Strikes) 

Min ASC 
(Individual 

Strikes) 

Max ASC 
(Individual 

Strikes) 

Diff 
ASC 

% 
Diff 
ASC 

M50128 FRB-20(1) - 6 mm 32.10 32.21 30.77 35.08 0.11 0.35 
M50128 FRB-20(1) - 9 mm 30.07 30.10 28.87 31.45 0.02 0.08 
M50128 FRB-20(1) - 12 mm 32.00 32.14 30.68 33.51 0.14 0.43 
M50128 FRB-20(2) - 6 mm 63.88 63.90 60.65 66.85 0.01 0.02 
M50128 FRB-20(2) - 9 mm 57.83 57.83 55.53 60.54 0.01 0.01 
M50128 FRB-20(2) - 12 mm 68.87 69.17 63.73 78.15 0.30 0.44 
M50128 PLA - 6 mm 16.81 16.82 16.38 17.27 0.01 0.06 
M50128 PLA - 9 mm 16.54 16.58 16.23 16.88 0.04 0.23 
M50128 PLA - 12 mm 13.17 13.19 12.54 13.79 0.02 0.19 
Average 0.07 0.20 
SD 0.10 0.17 
 

C.5 Interface Stiffness Initial Guess 

The optimization procedure to match the model response to the measured acceleration from the 

impact (Section 2.3.3.) requires an initial guess for the solution and finds a local minimum for 

the specified objective function. The effect of the initial guess for the interface stiffness per unit 

area (𝑘) was investigated for the nine sample datasets described above. The interface stiffness 

values for these datasets ranged from 1.75 × 1012 −  9.19 × 1012 N/m3.  For each dataset, the 

initial guess for 𝑘 was varied from 1 × 1012 − 10 × 1012 N/m3 and the model was used to 

determine the ASC value. 

For each dataset, the curve fit for each case was the same, with the only difference being the 

initial guess for the matching optimization procedure. The matching procedure was unable to 

find a solution in 13/90 cases. For the remaining cases, the average difference in ASC was 0.005 

(0.014%). For the datasets examined it was found that varying the initial guess for the interface 

stiffness can sometimes cause the matching procedure to fail to find a solution; however, when a 

solution is found, it is a unique solution within a small numerical error. 
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C.6 Matching: Numerical Optimization 

The matching procedure outlined in Section 2.3.3. minimizes the Euclidean norm between the 

model predicted acceleration and the curve fit approximation of the measured acceleration signal 

and the ASC is determined from the interface stiffness (𝑘) that minimizes this objective function. 

The choice of this objective function assumes that the curve fit procedure provides a good 

approximation to the measured acceleration data from the 16 strikes. It is possible instead to use 

an objective function representing the error between the model predicted acceleration and the 

original data from the measured signal. Thus, an alternative objective function is: 

𝜖0 =
√∑(𝑓𝑖 − 𝑓𝑑𝑖)

2

𝑖
 

where: 𝑓𝑖 is the model predicted acceleration of the impact rod (normalized) at the 𝑖𝑡ℎ time point 

𝑓𝑑𝑖
 is the measured acceleration signal at the 𝑖𝑡ℎ time point 

𝜖0 is a measure of the distance between the two functions over the entire strike 

It should be noted that the use of the original data in the objective function does not eliminate the 

need for the curve fit procedure in the ASIST modeling technique. The curve fit approximation 

of the data is still used to estimate the amplitude of the measured acceleration signal (to calculate 

the normalized acceleration) and to estimate the damping content of the measured acceleration 

signal. 

Five sample datasets for each of the implant-abutment combinations described in the previous 

sections were used for this analysis the: Oticon Medical long/narrow implant specimens 

(M50128: FRB-20(1), FRB-20(2), PLA) and each of the three abutment lengths (6 mm, 9 mm, 

12 mm). 

Table C.2 shows the average ASC values (average of 5 measurements) for each implant-

abutment sample using both objective functions. For each implant-abutment sample, the average 

difference in ASC between the two procedures and the average percent difference in ASC 

between the two procedures are also shown. For the datasets investigated, it was found that there 
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was minimal difference in the calculated ASC value between the two minimization procedures. 

Considering all of the measurements, the average difference in ASC between the two procedures 

was 0.45 (1.09%).  

Table C.2: ASC values using curve fit for minimization (ASC (CF) – average of 5 measurements), ASC values using 
original data for minimization (ASC (OD) – average of 5 measurements), Average difference in ASC values between the 

two procedures, and Average percent difference in ASC values between the two procedures. 

  
ASC (CF) 
(Average) 

ASC (OD) 
(Average) 

Diff ASC 
(Average) 

% Diff ASC 
(Average) 

M50128 FRB-20(1) - 6 mm 31.15 31.08 0.08 0.26 
M50128 FRB-20(1) - 9 mm 30.10 30.24 0.14 0.45 
M50128 FRB-20(1) - 12 mm 29.00 29.17 0.18 0.61 
M50128 FRB-20(2) - 6 mm 64.44 62.06 2.38 3.69 
M50128 FRB-20(2) - 9 mm 58.47 58.33 0.14 0.24 
M50128 FRB-20(2) - 12 mm 69.09 68.49 0.59 0.86 
M50128 PLA - 6 mm 16.62 16.64 0.02 0.13 
M50128 PLA - 9 mm 16.75 17.05 0.30 1.80 
M50128 PLA - 12 mm 13.44 13.20 0.24 1.81 
Average 0.45 1.09 
SD 0.74 1.17 

  

The minimization procedure uses the Euclidean or 𝐿2 norm as the objective function to be 

minimized. This is a commonly used measure that is often used in regression analysis, curve 

fitting, and measuring lengths of vectors or distances between points. However, it is possible to 

choose other norms for the minimization procedure.  

With a different choice of norm, the minimization procedure is not guaranteed to produce the 

same result. This can be illustrated with a simple example. Consider a point (0,1) on the plane 

(𝑥1, 𝑥2) and suppose we want to determine a point on the line 𝑥1 = 𝑥2 that minimizes the 

distance (norm induced metric) between the given point and the line (Figure C.3).  
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Using the ASIST modeling procedure, we investigated the 𝐿1 norm and compared the results to 

the original results with the 𝐿2 norm. The objective function in the case of the 𝐿1 norm is: 

𝜖1 = ∑|𝑓𝑖 − 𝑓𝑐𝑖|
𝑖

 

where: 𝑓𝑖 is the model predicted acceleration of the impact rod (normalized) at the 𝑖𝑡ℎ time point 

𝑓𝑐𝑖
 is the curve fit approximation of the measured acceleration signal at the 𝑖𝑡ℎ time point 

𝜖1 is a measure of the distance between the two functions over the entire strike 

Table C.3 shows the average ASC values (average of 5 measurements) for each implant-

abutment combination using both the Euclidean (𝐿2) norm and the absolute value (𝐿1) norm. For 

each implant-abutment sample, the average difference in ASC between the two procedures and 

the average percent difference in ASC between the two procedures are also shown. Considering 

all of the measurements, the average change in ASC with the two different norms was 0.43 

(1.08%). Thus, for the datasets investigated, it was found that there was minimal difference in 

the calculated ASC value for the two choices of norm in the objective function. 

Table C.3: ASC values using Euclidean or 𝑳𝟐 norm (average of 5 measurements), ASC values using 𝑳𝟏 norm (average of 
5 measurements), Average difference in ASC values between the two procedures, and Average percent difference in ASC 

values between the two procedures. 

  
ASC (𝑳𝟐) 
(Average) 

ASC (𝑳𝟏) 
(Average) 

Diff ASC 
(Average) 

% Diff ASC 
(Average) 

M50128 FRB-20(1) - 6 mm 31.15 30.49 0.66 2.11 
M50128 FRB-20(1) - 9 mm 30.10 30.41 0.31 1.01 
M50128 FRB-20(1) - 12 mm 29.00 29.27 0.29 0.98 
M50128 FRB-20(2) - 6 mm 64.44 66.19 1.75 2.71 
M50128 FRB-20(2) - 9 mm 58.47 58.17 0.30 0.52 
M50128 FRB-20(2) - 12 mm 69.09 69.31 0.23 0.33 
M50128 PLA - 6 mm 16.62 16.59 0.03 0.16 
M50128 PLA - 9 mm 16.75 16.85 0.10 0.60 
M50128 PLA - 12 mm 13.44 13.27 0.17 1.29 
Average 0.43 1.08 
SD 0.55 0.95 
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Where: 

𝑘 is the stiffness per unit area surrounding the tooth root 

𝑟 is the radius of the tooth root as a function of the height 𝑦 

𝛼 is the angle between a line perpendicular to the tooth root and the horizontal as a function of 

the height 𝑦 

𝐿𝑟 is the total length of the tooth root 

𝐿 is the total length of the tooth 

𝐿𝑜 is the distance from the top of the tooth (tip) to the location of the strike 

 


