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ABSTRACT

In this thesis we investigate the modelling of stage structured population growth using
systems of ordinary differential equations with time delays. We study four models; stage
structured single species growth with constant time delay, competition between two stage
structured species, a stage structured predator prey model, and finally, stage structured
single species growth with a state dependent time delay. For each systern we establish that
we have a model that make sense both biologically and mathematically. As well, we
investigate the existence and stability of equilibria, and we establish criteria for extinction or
nonextinction of a species. For each model we study the global behavior of solutions, and for
the predator prey model we look at the possibility of a Hopf bifurcation. Finally we present
numerous computer simulations that illustrate the behavior of some of the models.
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CHAPTER 1

INTRODUCTION

1.1 Background
Modelling population growth has a long history in mathematics, but the
modern developments in the field of population dynamics can be said to have

started with the simple model of single-species growth used by Malthus in 1798,
(t) = g=(t)

where ¢ is a constant. This very simple expression, which is still utilized by
some even today, suffers from the obvious deficiency of unrestrained, unlim-
ited growth. Observing that the mathematical expression for the model should
reflect competition for space and food, Verhulst in 1838 proposed the logistic
equation,

#(t) = gz(t) — dz?(t) (1.1)

to more realistically describe single-species growth. Here the constant g repre-
sents the intrinsic growth rate of the species, and d represents the logistic death
rate. This differential equation has a stable equilibrium at the point K = g/d,
and populations with z(0) > K decrease monotonically to K, while those with
£(0) < K increase monotonically to K. Those populations for which z(0) = K
remain at K. The constant K is called the carrying capacity of the environ-

ment since, when the population is at this level, the ability of the environment



to sustain increased numbers is exhausted, and the total number of births into
the population is matched by the total number of deaths.

Then in the 1920’s Lotka (1925) and Volterra (1927) independently con-
sidered a model for predator-prey interactions. In this model, prey growth was
Malthusian but the growth rate was reduced by a factor proportional to the
predator density. The predator growth rate was proportional to the prey den-
sity, and the predator death rate was constant; in the absence of prey the
predator population would decrease exponentially to zero. The Lotka-Volterra

predator-prey model was expressed as,

T = az — Py
(1.2)
y=bézy—y a,B,7,6 >0

For initial conditions z(0) > 0 and y(0) > 0 all solutions of equation (1.2)
are periodic, and the solution (z(t),y(t)) = (v/6,a/B) is a center interior equi-
librium. This would seem to indicate that predator-prey systems are inherently
periodic, an observation that seems to be well-known by zoologists and tc be
corroborated by trapping records kept by the Hudson’s Bay Company (cited in
Gilpin, 1973), and by field reports (cited in Gilpin, 1973).

The Lotka-Volterra system (1.2) has the disadvantage of oversimplifica-
«.ny all solutions except the equilibrium are periodic with period 8 > 0. Thus
in 1967 Samuelson modified system (1.2) to include increasing and decreasing
returns, whereby the growth rate of a species is either augmented or decre-
mented by increased population density. In the case of increasing returns, in-
terior nonequilibrium solutions spiral away from the interior equilibrium, and
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interior nonequilibrium solutions of the system with decreasing returns spiral
inward toward the equilibrium.

Thus far, the systems we have discussed have solutions that are either
periodic, or are of such a nature that no solution that does not start at the in-
terior equilibrium is periodic. As well, the Lotka-Volterra model and the model
with increasing returns both suffer the fauit of Malthusian growth of the prey
in the absence of a predator. The systems with increasing returns also suffer
the obvious deficiency of unlimited growth of both prey and predator.

In 1967 Samuelson, and more recently in 1975 Freedman and Waltman
(1975a, 1975b) proposed a more realistic perturbed model,

i(t) = az ~ Bzy — efi(z,y)
(1.3)
¥(t) = bzy — vy — efo(z,y)

where ¢, f;, and f, satisfied conditions that gave the system increasing re-
turns for values near the equilibrium point and decreasing returns for values
sufficiently distant from the equilibrium. The existence of a stable limit cycle
could then be shown using the Poincaré-Bendixon theorem, which is discussed
in Coddington and Levison’s 1984 book.

A thorough discussion of just what conditions ¢, f, and f; must satisfy
in order to give system (1.3) a stable limit cycle is given in Freedman (1987).

A more general model of predator-prey population dynamics is the following:

#(t) = zg(x) — yp(z)
(1.4)

y(t) = ye(z) - vy



where g(z) is the growth rate of prey in the absence of predators and p(z) is
the predator response function for y with respect to the particular prey z. This
system, as well as the even more generalized Kolmogorov model, is discussed
by Freedman in his 1987 book.

Lotka’s and Volterra’s concept for modelling single species growth has also

been applied to systems of competing species. For example, the system

i;(t) =017 — alzflkl - ﬂl.‘tz
(1.5)
:i'z(t) = Q9T9 — azzg/kg - ﬂzzl

is an example of a competition model where each species in the absence of
the other demonstrates logistic growth. If an interior equilibrium exists, it can
be either globally asymptotically stable, or an unstable saddle point. If it is
unstable, all solutions approach one of the two boundary equilibria (k;,0) or
(0, kz) except those on the separatrix I' formed by the stable manifold of the
interior equilibrium. If no interior equilibrium exists, all nonboundary solutions
approacl. (k;,0) or they all approach (0,k2), depending on the parameters.
One can also consider three dimensional systems of two competitors and

a predator. A Lotka-Volterra example would be,

£1(t) = z1(h1 — anz1 — 61272 — P1y)

£2(t) = z2(h2 — @212 ~ 62272 — P2y) (1.6)

¥(t) = y(—s + aip121 + c2p222)

In this model, the two prey species z; and z, display logistic growth in the
absence of the other prey and the predator. For there to exist a stable interior
equilibrium, there must exist a stable competition equilibrium (Z;,72,0) such
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that ¢;p;T1 + c2p2Z2 > s holds. If eyp1Z) + c2p2Z2 < s the predator cannot
survive on the available prey, and if the interior competition equilibrium were
not stable, one of the prey would go extinct.

However, by making the predator response constants p; and p; into suit-
able functions of z; and z; it is possible to stabilize a bistable competition
equilibrium by predator switching. As the numbers of a given prey species de-
creases, the predator can switch to the other prey, allowing the first prey to
replenish itself.

All of the population dynamics models discussed thus far suffer the inad-
equacy that they assume the birth and death processes to be age independent.
Lotka and Sharpe in 1911, and McKendrick in 1926 formulated models where
the birth and death processes were linear functions of population densities and
of age. Such models as were developed in this period were linear; they did not
consider crowding or other environmental constraints.

One such age-dependent model that arises out of work done by Lotka

(1925) and Von Foerster (1959) is given by the system
o0
X(t) = / o(a,t)da (172)
0
Dp(a,t) +v(a)p(a,t) =0 (17b)
[+ ]
p0,0)= [ Halpla,t)da (17¢)
0
Equation 17a simply states that X(t), the total population at a given time t,

is the sum total of the populations p(a,t) of members of the species in the age

interval (a,+ da).



In addition there is a death function d(a,t) giving the number of individ-
uals of age a who die per unit time ¢. One can then assume that d(a,t) =
v(a)p(a, t), where v(a) is a death rate for individuals of age a per unit popula-
tion at age a. With this model the rate at which the number of individuals of
age a at time t changes with time, plus the number of individuals d(a,t) per
unit age and time who die at time ¢, must equal zero. This relationship gives
us that

Dp(a,t) = lim Z(o(a -+ h,t + h) = p(a,1)) = —d(a,)

which is just equation (17b).

As well, there is a birth function b(a) which gives the average number of
immatures produced per unit time by an individual of age a. The total number
of births at time ¢ is then expressed by equation 17c.

The system (1.7a, 1.7b, and 1.7c), when combined with the initial con-
dition p(a,0) = ¢(a) constitute what is called the Lotka-Von Foerster model.
Note that equation (1.7c) will not hold at ¢ = 0 unless the initial function ¢(a)
satisfies the compatibility criterion that the initial data be consistent with the
birth process.

In 1974 Gurtin & MacCamy generalized this model to correct the defi-

ciency that the birth and death processes were independent of total population.



The Gurtin-MacCamy model became,

Dp(a,t) +v(a, X)p(a,t) =0
X(@) = /ooo pla,t)da (1.8)
p(0,4) = /0 ” ba, X)p(a, t)da

coupled with the initial condition p(a,0) = ¢(a). Gurtin and MacCamy gave
sufficient conditions for existence and uniqueness of solutions, and gave neces-
sary and sufficient conditicns for the existence of an equilibrium solution p(a, ¢)
independent of time. The stability of such solutions was also discussed.

Then in 1983 Gyllenberg considered a more general model that included
several previous extensions to the Lotka-Von Foerster model. He gave a crite-
rion for local asymptotic stability of equilibrium solutions and then applied his
results to the Gurtin-MacCamy model, and also to models considered by Rorres
in 1979, and to a previous model of his own (Gyllenberg, 1981, 1982).

Also in 1983 Gurney, Nisbet and Lawton analyzed a lumped age class
model based on the Lotka-Von Foerster model that avoided the mathematical
intractability of the continuous model, and illustrated its use as applied to
Nicholson’s famous blowflies (1954, 1957) and to Pielou’s larval competition
model of the Indian mealmoth (1969).

In the 1985 work of Nisbet, Blythe and Gurney and of Murphy in 1983,
some stage-structured models where development in any stage depends not only

on age, but on other factors such as size were discussed.



Another development of the Lotka-Von Foerster model of stage-structured
growth was done by Zachmann in 1987. His model applied to population where
no individual lives past age a = L and where immature individuals of age
0 < a < L* < L are cannibalized by older individuals of age L* < a < L.
Some results concerning existence and uniqueness of equilibrium solutions were
obtained.

Thus one branch of development of the study of stage-structured growth
of populations has developed out of the Lotka-¥on Foerster model using integral
equations. However these models are characterized by a degree of mathematical
intractability that precludes all but a fairly restricted analysis. Another direc-
tion the modeling of population dynamics has taken has been from Verhulst’s
logistic growth equation using differential rather than integral equations. Cole-
man (1979) and Coleman, Hseih and Knowles (1979) analysed a model where
both the intrinsic growth rate g and the carrying capacity K = g/d in equation
(1.1) both vary with time. Further in this direction, Arrigoni and Steiner in
1985 obtained some results in the area of fluctuating environments by explicitly

solving the logistic equation

#(t) = g(t)=(t)(1 - =™(t)/K)

which incorporates not only a time dependent growth coefficient but a general-

ized nonlinearity as well.



In another investigation into nonlinear forms of the logistic equation, in

1973 Gilpin and Ayala investigated the theta-selection model

=m0t~ (22)]

which was used to simulate the growth of Drosophila populations. This theta-
selection model was further investigated by Gilpin, Case, and Ayala in 1976, by
Mueller and Ayala in 1981, and by Rosen in 1987.

These models which were developed from the logistic equation that we
have discussed thus far do not incorporate stage-structure into the system, nor
do they take into account such factors as gestation or time to maturity. For this
reason time delays were introduced into the logistic equation to give a retarded

functional differential equation. The delay logistic equation

i(t) = go(t) [1 -z - T)]

is known as Hutchinson’s equation, and has served as the basis for several
models of single species growth. Wright in 1955, Kakutani and Markus in 1958,
Jones in 1962, and May in 1973 have all contributed to the investigation of
Hutchinson’s equation. A generalized form of Hutchinson’s equation where both
the growth rate g and the time delay = are functions of time was considered
in 1988 by Zhang and Gopalsamy, where sufficient conditions for oscillation
and nonoscillation of solutions were obtained. In another development in the

area of generalizations of Hutchinson’s equation, Aiello (1990) obtained sufficient



conditions for nonoscillatory solutions of a nonlinear form of the retarded logistic
equation to exist.

We see that, in general, the study of population dynamics models has
been characterised by the use of integral equations with their flexibility, gener-
ality, and mathematical intractability, or by application of ordinary differential
equati ns with their relative mathematical simplicity and restrictiveness.

1.2 Thesis Outline

In an attempt to achieve the generality gained by including stage struc-
ture into the model yet retain enough mathematical simplicity to enable us to
do a thorough analysis of the model, we propose a stage structure model of
single-species growth that assumes the species to be divided into immatures
and matures. The mathematical expression of the model consists of two equa-
tions, one for the rate of change of growth of the immatures, the other for
the matures. The model assumes a constant time 7 required for a newly born
individual to join the mature population from the immature population. The
birth rate is a constant function of numbers of mature individuals; in that re-
spect the number of immatures born depends only on the number of matures
present. The death rate of immatures is a constant, while the death rate of
matures is logistic. The only way a new mature individual can appear is for an
immature individual who has survived for time r to move from the immature

to the mature population.
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Thus we simplify the general Lotka-Von Foerster model into two retarded
- functional differential equations in two unknowns giving an expression modelling
a single species population divided into two stages, immature and mature. A
thorough analysis of this system is carried out in chapter two. In chapter three,
we apply this model to two competitive populations, each divided into imma-
tures and matures. In chapter four another four variable model is investigated
that describes populations of predator and prey, each divided into matures and
immatures. For this predator-prey model, we must use a system of integro-
differential equations which is equivalent to a five varaiable system of retarded
functional differential equations. In chapter five we consider a single-species

model with a state-dependent time delay.
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CHAPTER II

SINGLE SPECIES GROWTH WITE STAGE STRUCTURE

2.1. Introduction

It is the purpose of this chapter to develop and analyze a model of single-
species growth where the individual memBers of the population have a life his-
tory that takes them through two stages, immature and mature. In particular,
we have in mind mammalian or bird populations, which exhibit these two dis-
tinct stages.

There has been & fair amount of previous work on models of single-species
population growth which consider various stages of life history. Stage structure
has been introduced into population models in several different ways. For ex-
ample, Bulmer (1977), Fisher and Goh (1984), and Desharnais and Lin (1987)
approached the problem by utilizing discrete models. Continuous models (the
approach taken in this thesis) were used by Anderson (1960), Landahl and Han-
son (1975), Barclay and Van den Driessche (1980), Gurney, Nisbet and Lawton
(1983), Koslesov (1983), Gurney and Nisbet (1985), and Wood, Blythe, Gur-
ney, and Nisbet (1984). A stochastic model was even introduced by Tognetti
in 1975.

In the present chapter we develop a continuous model which after time 7
consists of two autonomous differential equations, one for each of the life-stages
of the population, incorporating a discrete time delay 7 representing the time

from birth to maturity.
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Single-species models consisting of one equation with discrete time delays
have been studied extemsively. In the earlier stages of the history of single-
species models, the work usually involved some numerical analysis, as in Cun-
ningham (1954), Wangersky and Cunningham (1956), and Mazenov (1973), or
some simple mathematical analysis, as in Ross (1972) or Stirzaker (1975).

In 1975 Beddington and May gave conditions under which certain models
would be stable for all values of the delay, and DeAngelis {1975) and Freedman
and Gopalsamy (1986) gave conditions under which the models would remain
globally asymptotically stable for all values of the delay. As well, in 1990 Aiello
established sufficient conditions for a generalized nonlinear form of the delay
logistic equation to have nonoscillatory solutions.

However, in most cases the models exhibit destabilization leading to oscil-
lations as outlined in Kakutani and Markus’s 1958 work on Hutchinson'’s logistic
equation and in Caswell (1972), May, Conway, Hassell, and Southwood (1974),
MacDonald (1978), Gurney, Blythe and Nisbet (1980), Rosen (1987), Kulenovic
and Ladas (1987), and Hsieh (1988) as well.

For our model we will show that under appropriate conditions, there exists
a globally asymptotically stable positive equilibrium. We also show that under
suitable assumptions on the initial functions, the corresponding solutions are
nonoscillatory.

In the next section we develop our model and establish several of its

important properties. In section 3 we analyze the equilibria and their stability

13



properties. Section 4 is devoted to the oscillation - nonoscillation question. In
section 5 we ascertain how the total carrying capacity behaves as a function of

the time delay. We give a brief discussion of our results in section 6.

2.2. Derivation of the Model

Let z;(t) and z,,(t) denote the concentration of immature and mature
populations of a given species respectively. We will assume that these popula-
tions are growing in a closed, homogeneous environment. We further assume
that the number of mature individuals over a time interval equal to the length
of time from birth to maturity is known (either from observation or assump-
tion), and that the immature individuals entering the population during that
period enter only as a result of the mature individuals already present giving
birth. Let this time interval be 7 > 0 and assume that the interval where both
populations are known is —7 <t < 0. We then wish to follow the population
dynamics for ¢ > 0.

Let ¢(t) be the observed or assumed number of matures present at time
t, =7 <t <0. Let z;(0) be the observed value of z;(t) at time ¢ =0. At this
point we note that for the values of ¢, —7 < ¢ < 0, we will sometimes write
#(t) as zp(t).

We now derive our model. Noting that for ¢, —7 <t <0, z,(t) = 4(2) it

takes the form,

zi(t) = azm(t) — yzi(t) — ae™ T zn(t — 1) (2.1)
Em(t) = ae” Tz n(t = 1) — Bz (1), 0<t (2.2)

14



where “” = -;";, a,B,v > 0 are constants. This model is derived as follows.

We assume that at any time ¢ > —r birth into the immature population is
proportional to the existing mature population with proportionality constant .
We then assume that the death rate of the immature population is proportional
to the existing immature population with proportionality constant y. We as-
sume for the mature population that the death rate is of a logistic nature, i.e.
proportional to the square of the population, with proportionality constant 8.
Finally we assume that those immatures born at time ¢t — 7, and which survive
to time ¢, exit from the immature population and enter the mature population.
This would be computed as follows. If N(t) is a given population at time ¢,
then assuming a constant death rate 4, the number from that group who sur-
vive from time t; to time t; is given by N(¢2) = N(t;)e~"(~*%), Hence if
ty =t—7 and ¢; =t then N(t) = N(t —7)e”"". So given our assumptions
on the growth of the immature population, in the time interval ¢ — 7 to t the
number of individuals born into the immature population and surviving until
time ¢ is given by, f:_, azm(s)e s = a :+r Tm(s — 7)e"14-247)ds for
t 2 0. Note that when ¢ = ( our assumptions on the initial conditions give us

that

zi(0) = - /. Zm(s)e’’ds = a /; Zm(s —7)e7*"ds 2.3)

which is the total surviving immature population from the observed births on

-r<tL0.
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Taking zi(0) from equation (2.3) and assuming ¢(t) is continuous (for
mathematical reasons) and nonnegative (for biological reasons), then solutions
to systems (2.1)-(2.2) exist and are uniquely continuable for all positive time

provided that all solutions are bounded (Driver, 1977).

2.3. Positivity and Boundedness

Now we must establish two important properties of this model, (i) that
all solutions are indeed bounded; and for the model to make good biological
sense, (ii) that all sc itions are nonnegative. In fact we show that if z;(0) >0
and zp,(t) >0, —7 <t <0, then all solutions are positive for t > 0.

Property (i) will follow as a consequence of the global asymptotic stability

proved in the next section. Theorem 2.1 below establishes property (ii).

THEOREM 2.1. Let z,(t) > 0 on —7 <t < 0. Then system (2.1)-(2.2) with
initial conditions T.,(t) and z;(0) as given by equation (2.3) has strictly positive

solutions for t > 0.

PROOF: We first show that z,(t) > 0 for all £ > 0. By our assumptions on
initial conditions zm(0) > 0, so that by continuity of solutions if zm(t) =0 for

some value of ¢, then that ¢ > 0. Let t* =inf{t > 0: z,(t) =0}. Then
tm(t*) = ae T Tzn(t* —7)

so that &m(t*) > 0. Hence for sufficiently small € > 0, &m(t* —€) > 0. But
by the definition of t*, #m(t* — €) < 0 must hold, so we have a contradiction.
Hence z,(t; >0 for all ¢t > 0.
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Now suppose there existe a ¢ > 0 such that z;() = 0. Then let ¢t* =
inf{t > 0: z;(t*) = 0}. Since z;(0) > 0, by continuity of solutions ¢* > 0 must
be true. So by integrating equation (2.1) we get,

‘.
0 = z;(t*) = e~ 24(0) + e~ 7" / ez, (s)ds
°

t.
—ae” " / e’ "z (s —1)ds (2.4)
0
By substituting from equation (2.3) into equation (2.4) we get the equality,

0 t*
ae""‘/ e”mm(s)ds-{-ae""/ eV’ z,,(s)ds
0

-7
-

=ae” " / ez (s~ 7)ds.  (2.5)
0

Combining the two integrals on the left hand side equation (2.5) becomes,
t* t*

ae""‘/ € zm(s)ds = ae""‘./ ez (s — 7)ds.
—r 0

Then substituting r = s — 7 in the right hand side and then resubstituting s for

r we get,

t* t*—r
ae""./ e"”z,,.(s)ds:/ e"zm(s)ds,

- —

so that

/‘. e’z n(s)ds = /t‘-r e’z n(s)ds (2.6)

~r -r
must hold. Since e"z,,(¢) > 0 for all, equation (2.6) gives us a contradiction.
Therefore such a t* cannot exist and z;(t) > 0 for all £ > 0 must hold. The

theorem is then proved.
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Note here that the expression z(t) = f:_r azm(s)e~7t~2)ds is an invari-
ant integral of equation (2.1), with initial conditions z;(0) = a fff e p(s)ds.
Biologically, this expresses the fact that at any time ¢ > 0, z;(t) represents the
accumulated survivors of all those immatures born between time ¢ —7 and time
t. This provides another, simpler proof that z;(t) > 0 for ¢ > 0.

We remark here that if the initial function ¢m(t) > 0 on —7 <t £ 0,
then z,(t) has a strictly positi: - lower bound depending on initial conditions.
This can be seen as follows. Let 6m = 3 min{inf_r<ico $m(t), ef~'e™ 7"}, If
we assume the existence of a t* such that t* = infiso{t : Tm(t) = 6}, we see
immediately that by continuity of solutions ¢* > 0 must hold. Then at * we

have,

bm(t) = Qe T pm(t* = 1) — B (¢%)
> ae~ 16, — B2,

S>ae” oy =~ %ae""&m = %ae""'&n > 0.

Thus #n,(t*) > 0, contradicting the definition of t*. Therefore such a t*
does not exist, and we can conlude that z,(t) is bounded below by a strictly

positive lower bound, depending on initial conditions.

As a final remark regarding our model, we note that the model is similar
to the one discussed in Wood, Blythe, Gurney, and Nisbet (1989) in the case of
two stages. The main thrust of the work in their paper however is to estimate

the death rate (y in our model).
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2.4. Equilibria and their stability
The equilibria for our model are determined by setting #; = &, =0 in
system (2.1)-(2.2) and solving the resulting algebraic equations
a(l-e My —9z;,=0
(2.7)
ae "z, ~ ﬂz?,, = 0.
There are two nonnegative solutions giving rise to two equilibria, Ey(0,0) and
E(:?:,—,i:,,,), where
Zi=a?f Iy leT (1 - 7T,

(2.8)

Em=af e,

We first show that Ep is a “saddle point”, i.e. it has both positive and
negative eigenvalues. To do this, we examine the variational system of system

(2.1)-(2.2) about Ey, which takes the form

w(t)\ _ =y a [u(?) 0 —ae™ ™\ fu(t—17)
(i)(t)) - ( 0 0) (v(t) tlo e v(t—1) (2.9)
so that the eigenvalues for the system about Ey must solve

A+v —a+ae” e T

0 A—ae~ e~ | T 0.

Thus the characteristic equation resulting from the matrix expression (2.9) is
A+ 7)(A — ae" ") =0, (2.10)

We immediately see that X = —y < 0 is always a negative eigenvalue. To show
that there exists a positive eigenvalue, we note that the graphs of y = ) and

y = ae~"(A*7) must intersect at a positive value of .
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In a similar manner, we could show that E is locally asymptotically stable.
However, the following theorem gives us a much stronger result, namely that E

is globally asymptotically stable.

THEOREM 2.2. Suppose z,(t) >0 on —7 <t < 0. Then tlir{.xo(z.-(t),zm(t)) =

(ii, im)
PROOF: We prove this result in three steps.

1. First we show that if z,(2) is eventually monotonic, then ‘E% Tm(t) =
#m. Hence, we suppose that there exists T > 7 such that z,,(t) >0 for ¢ > T.
We can use that :llglo zm(t) # 0, since £, (t) has a strictly positive lower bound
if () >0 on —7 <t < 0. Further, we can show that tlix& Zm(t) # oo since

the second equation of system (2.2) can be written as
Tm(t) = ﬂ[immm(t -7)=- z?n(t)]’ (2.11)

and if p,(f) — oo monotonically, then for sufficiently large T, ¢ > T +
7, &m(t) > 0 must hold, but z,(t) > &m and zp,(t) 2 zm(t — 7) implies by
equation (2.11) that Z,(t) <0, a contradiction.

Thus tl_l.x{.xo Tm(t) = Em, where 0 < Z,; < co and tliq.xo Zm(t) = 0. Hence
from equation (2.11), taking ‘1_1_’:20 , we get that Z,, must satisfy EnZm—72, =0

and since %, # 0, then Z,;, = &p,.

2. Now suppose that z,(t) is not eventually monotonic. Then there must

be either an infinite sequence of maxima greater than Z,, or an infinite sequence
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of positive minima less than Z,,, or both. Assume without loss of generality
that the former occurs, i.e. there exists a sequence of times {¢;}, j =1,2,...,
such that ¢; = 0o as j — 00, t) 227, Tp(t;) > Em, Em(t;) = 0,where zm;(t;)
is a local maxirnum.

We first show that f;l}) Zm(t) = zm{tg) for some k. For if not, then

2t

there is a subscquence of {j} (relabelled as {j}) such that zpn(t;) > zm(t) for
2r <t <tj, tj = o0 as j — oo. But then from equation (2.11) we get that
Zm(tj) < 0 contradicting the definition of ¢;.

Let t; = supy>y, (zm(t)). Let s; =%;. By an analogous argument for the
interval ¢ > t, we can find a £, (£ > k) such that tsug Zm(t) = zm(te). Let

»<

83 =ty. Similarly we define s;,.... The sequence {s;} has the properties that
8j < 8j41, 8j — 00 a8 j — oo and Tpm(8j) 2 zm(t) for t > s; (and of course
Em(sj) =0).

Let ym(t) = zm(t) — Zm. Then ym(s;) =0, and ym(s;) = ym(sj+1) >

0, =2,3,.... Then by equation (2.11), we have that
0 = &m(s;) = BlEm(Yym(s; — 7) + Em) — (ym(s;) + Em)’]

so that,

EmYm(85 — T) + 22, — y4(3;) — 2Zmym(s;) — 5, =0

giving us,

EmYm(8j = T) — Y% (5;) — 2Emym(s;) =0
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so that
ym(8; — 7) = 2ym(s;) + 3’—"3(—::—)3 (2.12)
Hence, from equation (2.12), ym(s;j) < 1ym(sj —7). Since s; — o0 as j — oo,
we choose a sub-sequence (again labelled {s;}) so that sj41 —s; > 7. Then
Ym(8j = 7) < Yym(8j-1), ie. ym($j) < 3Ym(8;j-1). This shows tha.t'ym(s,‘) -0
as j — oo, proving that lim¢—eo Zm(t) = Em. Similarly limico Zm(t) = Em.
Thus lim,_  Zm(t) = Zm-
3. We now need to show that tllpgo zi(t) = £;. Let € < &; be arbitrary.
Choose T > 21 so large that Zm(t) = £m+6(t) where |8(t)| < s57=i==vy When

t > T — 7. Corresponding to this choice of T, zi(T") will be determined from

the initial condition z;(0). Choose Ty > T such that e~7 < 5o for t2Th.

Finally choose T; > T such that for t > T3, e~ 1t-T) ¢ =

3zi—c"
From (2.2) for ¢ > T,and hence for ¢t > T, we have
zi(t) = zi(T)e~ 74T 4 =7 /Tt e’ Daz(s) — ae™ " Tpm(s — 7)|ds
=z;(T)e” "¢ e~ /It e[0T m(s) — ez m(s ~ 7)|ds
so that for ¢t > T3,
|zi(t) = #i] < 2i(T)e™ ") 4 e~ /Tt e[azm(s) — ae” T zm(s — 7)lds — &
Now t > Ty so that z;(T)e~"(*~") < £. Noting that zm(t) = Zm + 6(t) we get,
|zi(t) = 24| < % + |ae™ " /T' e[ + 0(8) — Eme™ " — e 770(s — 7)]ds — Zi
< 2 Hler e (e - €T (dm — me )] ~ &l
+ |ae™ /; e?’(6(s) — e~ 70(s — 7))ds|.
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Since t > T, 6(t) < 552ty so that

“ £ -1 A
lzi(t) — 2i| < 5 + oy 12m(1—-e D)1 - e777) - 3]
t
=t vs &y — o—T
+ |ae /I" e 3ol e“"’)(l e~ 7" )ds|
E
=3+ lay 12 m(1 = e D)1 - e~ - 34|

=1 ~te 4t __ T —
+ |a7 € (e e )( 30(1 —‘YT) )(1 e 'Yr)l
Now, by equations (2.7) we have that ay~!(1 — e~ ")z, = £;, so that

l2i(t) = 2:()] < 5 +18:(1 = 7T — ] 4 e - )3

3
§-+e -Tg. 4+ = (1_8-7(t—T))
=& L emv(t-T) ¢
3+e (% 3)+3
Again since t > Ty, e=7*-T) < 55._‘_‘ so that,
. € € 3t;—¢ € € € ¢
({t) — T; < - . — = e - - =€,
lei) —&ils 3+ 55— —3 tz=3t3zt;3=¢

This proves the theorem.

2.5. Oscillation and nonoscillation of solutions

In this section we consider the question of whether or not solutions may
oscillate about the carrying capacity. For our purposes, we say that a solution
of system (2.1) - (2.2) oscillates or is oscillatory, if for any T > 0, there exists
ti,tm > T such that zi(t;) = &, 2i(%) #0, and zpm(tm) = Em, Tm(tm) #0.
If, however, there exists T > 0 such that z;(t) # &; and z,(¢) # &, for all
t > T, we say that the solution is nonescillatory. Finally if the solution is such
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that z;(t) oscillates and zm(t) does not, or z,(t) oscillates and zy(3; s nut,
we say that the sclution is mized oscillatory - nonosciliatory (MON).

Note that as 7 — 0, equations 2.1 and 2.2 tend fto,

i(t) = —yzi(t) zi(0) = =i

Em(t) = azm(t) — Bzh(t), zm(0) = 4(0).

As 7 — 0, the system uncouples, reflecting the fact that with smaller time
delays, the time spent in the immature state shortens, and if 7 = 0, the im-
mature stage is skipped and new members of the species go directly into the
adult stage. This point is further illustrated by observing what happens to the

equilibria as 7 — 0:

im 2 = R 231, -1 =Y7(1 _ o,=7T) —
,l_l_r%z. ’l_xg})aﬁ‘ye (1—e")=0

lim #, = af~1.
r—0
Thus with no time delay the system becomes the classical logistic equation
(t) = az(t) — B=*(t), =(0)= =0,

with equilibrium at z =0 and at z = af~!. It is well-known that all solutions
of this equation are nonoscillatory.

Our first result for system (2.1) - (2.2) in this regard gives an upper bound
on the distance between consecutive times at which z,(t) can cross 2m. Let

t* > 7 be such that zn(t*) = 2, and &,(t*) # 0. Withont loss of generality,
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assume Z;,(t*) > 0 (the analysis for 2,(7*) < O follows analogously). Then,
since 0< z,(t*) =Pz, [zm(t‘—r)—-i:m], we have that z,(t*-7)> #,,. But
clearly z,(t* —¢€) < £m for sufficiently small €, since Z,(t*) > 0. Hence there
exists t** with ¢t* — 7 < #** < t* such that z,(t**) = 2,,. Thus by continuity

of solutions the following statement is clear.

THEOREM 2.3. Let t] < tj be such that z;n(1]) = zm(t]) = &m and T,(t) #

£,, for t] <t <t3. Then t;-ti<T.

Note that the above theorem implies that if there were solutions with
zm(t) oscillatory and 7 small, then the oscillation would have to be rapid indeed.
Note also that if there is a value of ¢t (say ¢*) such that z,(t*) = Z,,
then there must also be such a value in every previous interval of time of length

7. From this fact, our next theorem follows directly.

THEOREM 2.4. Let ¢(t) be such that ¢(t) # £y, for —7 <t < 0. Then

Zm(t) # &m for all t > 0 (and hence is nonoscillatory).

This theorem further implies that there exist for system (2.1) - (2.2) ei-
ther nonoscillatory or MON solutions. Unfortunately, this is as far as we are
able to carry out the mathematical analysis at this time. However, Y.-L. Cao
(personal communication) has a proof that oscillatory solutions exist, but that
the manifolds containing the initial functions which lead to oscillatory solutions

is so “thin” that they can never be found numerically.
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We originally had a conjecture that all solutions are nonoscillatory.

The computer evidence for this conjecture is illustrated by considering
system (2.1) - (2.2) with a=.5, §=.3, v=4, 7 =1, & = .460398, z,(0) =
Em = 11172, dn(t) = 2,(1 + .9sin 10nt), giving zm(0) = Zm, (see Fig. 2.1).
We see that on 0 <t < 7, the populations tend to fluctuate considerably. There
are minor fluctuations on 7 <t < 27, and solutions are monotonic for ¢ > 27.
This is typical for the many computer solutions for a variety of parameter values
and fluctuating initial functions. However, as mentioned, oscillatory solutions

do exist, but, cannot be found numerically.

2.6. 7-Dependence of total carrying capacity

The z; and z,, values for the interior equilibrium point E’, for the #; and
&m, may be thought of as functions of 7. “Ve define the total carrying capacity
K(r) as

K(r) = &i(r) + &m(7). (2.13)

We wish to determine how K(7) changes with increasing 7. Hence we

compute

K(r)= -a—e"”'(a +y—ae”™™). (2.14)
By
Note that K(0) = /B and K(oo) =0. From equation (2.14) we get that

d(K(T)) _ e (@ — e TT) + e~ (aye™ ")

dr By By

=af e (—a—v+ae" ) +af e (ae™")

=afle” (207 —a— 7). (2.15)
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Then, for any given value of 7, ﬂ;{-’-n < 0 if and only if 2ae™"" —a - v < 0,
that is, if and only if 2ae™" < a++4. This inequality will be true for all values
of 7 if & <+, since then, 2ae™"" < 2a < a + 7.

However, if a > v, the inequality will be true only for sufficiently large r,
and since 2ae™ " is strictly monotone decreasing in 7, there will be one and
only one value 7* for which 2ae™ """ =a + 4.

Thus if a <4, then % < 0 and K(7) is a strictly decreasing function
for all 7> 0. If a >, then K(7) is increasing on 0 < 7 < 7* and decreasing

for r > r*, where

=yt (L), (2.16)

We compute K(7*) from substituting equation (2.16) into equation (2.14):

k()= 2t

e (2.17)

Further

K(r) _ (@+7)
K(0) 4avy

>1 if - a>49.

For example, if a = 2v, then K(r*) = $K(0). Thus if @ > v, we have an
optimal time delay r* that maximizes the total population.

One can get a second perspective as to the relevance of 7* fram the point
of view of mutation and invasibility. Suppose that a genetic mutation occurs so

that only the time delay is affected. Can the mutant strain successfully invade

the already established strain?
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To analyze this situation, let z;(t) and zm(t) represent the strain with
time delay ™ and yi(t) and ym(t) represent the strain with time delay 7.
Suppose the two strains compete for the same resources and hence satisfy the
competitive system

$i(t) = azm(t) — v2i(t) — ae" Mz p(t — 1) = 6izi()(Yi(t) + ym(?))
Em(t) = e Mz m(t = 11) = B27(t) — cmTm()(Wi(t) + ym ()
§i(t) = aym(t) — 19i(t) — ae" M ym(t — 2) — civi(t)(zi(t) + Tm(t))  (2.18)
Jm(t) = ae™ 2 ym(t — 12) — Byn(t) — cmym(t)(zi(t) + 2m(1))
zi(0) 20, zm(0)20, %(0)20, ym(0)20,
where ¢; and c,, are the common competition constants.
The linearization of system (2.18) is, where z;, m, %1, and ym are un-

derstood to be functions of t,

T;
Tm
Vi
Ym
ay a —C:T; —C;T;
_ 0 as —CmZTm —CmTm
—Ci¥i —CiVYi as «a
—CmYm —CmYm 0 ay
z;
x| |+
Yi
Ym
0 —ae™™™ 0 0 zi(t—n)
0 ac™™m 0 0 Zm(t—71) +
0 0 6 0 yi(t ~ )
0 0 00 Ym(t —71)
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000 0 zi(t — m2)
000 0 Zm(t — 72)
0 0 0 —ae ' yi(t — m2)
0 0 0 ae ' Ym(t — 12)

where a) = =y = ¢i(¥i +Ym), @2 = ~2Bzm — cm(¥i + Ym), a3 = =y — ci(z; +
Tm)s, 4= —2Bym = cm(Zi+ Tm).

To test the invasibility, we consider the characteristic matrix about the
equilibrium Fj = (%i,%m,0,0), corresponding to (yi,yn) attempting to invade
the (z;,2m) population which is at equilibrium.

At Fy = (8i,%m,0,0) we observe that #; + £m = .+(m1), and that %; =

afi~le™". At F} the linearization becomes,

z; -y a —Ci%; —CiZ; z;
Zm | _ | 0 -2Bin —CmEm —CmZm Tm +
% |1 0 0 - —-¢;K(ny) a Vi
Um 0 0 0 —emK(m1) Ym

0 —ae™™™ 0 0 zi(t—m)

0 ae ™™™ 0 0 zm(t —71)

0 0 00 yit-n) | T

0 0 00 Ym(t —11)

0 0 0 0 zi(t — m2)

000 0 Zm(t —2)

0 0 0 —ae™™ yi(t — m2)

0 0 0 aqe ™ Yym(t — 72)

so that the characteristic matrix, denoted Ay works out to be

Ay =
A4y ae~O+NN _ ¢ ciZ; Gi; 1
0 Atae "m(2-e™1) CmEm Cmim
0 0 A+v+c¢K(n) ae—(A+Nm _ 4
L 0 0 0 A—ae~ Q01 Lol K(7) ]

(2.19)
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Since A, is diagonal, the eigenvalues of the variational matrix about F, are

Ar=—v
Az, where Ay =ae T (e~MM —2)

(2.20)
A3 = —y—ciK(n)

Ay, Wwhere Ay = ae~ (Mt N2 _ cmK(11).

Now, A; and )3 are easily seen to be negative. We then consider A3, the
roots of the equation \; = ae™ 7" (e~ 2™ — 2).

Let \; = a + b. Then the equation becomes,
a+bi=ae” (e %" cosbr — ieT* " sinbry —2).
Separatii:g into real and imaginary parts we get.

2qe"™ 7" +a=ae e cosbny

b= —ae e M sinbn
squaring and adding,
(20e™ "™ + a)? +b% = (ae™ T2,
Now suppose a > 0. Then
(2ae™7)? 4+ B2 < (2ae™ ™ +a)? + b2 = (ae” e ) < (ae’

giving us a contradiction. Therefore all A; have negative real pats.
So the question of whether or not y can invade z is reduced to the question
of whether or not there exists any )4 with positive real parts.
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We now consider the roots of
Ay = ae” Q¥ o K(7)) (2.21)

i ¢m = 0, we can see by comparing the graphs of w — Ay and w()\) =
ael~24+N7: that equation (2.21) has at least one positive real root.

For fixed ¢, > 0, one could easily visualize cases where if 7, is close to
7*, then K(m) is close to K(7*) and all A\4’s have negative real parts, but if 7,
is far from 7* (higher or lower), then K (1) is considerably smaller than K(r*)
so that some )4’s have positive real parts. In other words, if K(7m) is close to
its maximum value (at 71 = 7*), the y’s could not invade the z’s, but away

from its maximum value invasion of mutated populations could occur.

2.7. Discussion

In this chapter we have considered a stage-structured population with
two life stages, immature and mature, with the time from birth to maturity
represented by a constant time delay.

We showed that there exists a globally asymptotically stable equilibrium
for this model. That is, all populations with positive initial functions tend to
a constant population level, either directly or through an oscillatory process.
This extends a similar property for models with only one stage (and no time

delay).

We have given criteria for the model to have nonoscillatory solutions.
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We have also defined a total carrying capacity for the population. Under
the biologically reasonable assumption that birth rate exceeds the death rate of
immatures, we have shown that the carrying capacity reaches a maximum for
a certain value of the time to maturity. This may be interpreted as an evolu-
tionary strategy in changing the length of time to maturity so as to maximize
the total stable equilibrium population values in a given environment.

In this chapter we have obtained results which both agree and disagree
with results obtained in other papers. QOur results agree with those authors (see
for example the 1975 paper of Beddington and May) who claim that time delays
are not necessarily destabilizing, and our results differ (see for example Barclay
and Van den Driesshe (1980)) from those authors who observe an oscillation
due to time delays.

Some questions which arise from our work need to be addressed. Can the
model be extended to include varying times to maturity and will this affect the
stability? What is the effect of a predator or a competition on the population?

We leave these to future investigations.
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CHAPTER III

COMPETITION MODELS BETWEEN TWO STAGE-STRUCTURED SPECIES

3.1. Introduction

It is the purpose of this chapter to develop and analyse a model of compe-
tition between two species, each of whose members pass through an immature
and a mature stage of their development.

The simplest competition models are of the Lotka-Volterra type, where
species growth depends on the number of individuals present. An example of

such a system with two carrying capacities is,

£y(t) = z1(ay — p1z2 — N 71)

E2(t) = z3(az — faz1 — Y222)

The behavior of this system is very simple. There are four possible equilib-
ria. The origin Ey = (0,0) is an unstable equilibrium. On the axis there is
E; = (a1/71,0) and E; = (0, a2/v;). As well an interior equilibrium will exist
if and only if ,31'1 2'17172 # 0 holds. Now, if alﬂf] > 027;1 and a3 < azﬂ{l
both hold, E; and E, will repel in the z, and z; directions, respectively, and
the intszior equilibrium will be a stable attractor in the first quadrant. How-
ever, if ay B !« L 7%7% ! and aymy > azfy ! both hold, F;, and E; will become
asymptotically stable and the interior equilibrium will be an vnstable saddle.
If neither of these conditions hold there will be either a continuum of equilibria

connecting Ey and E; or there will be no interior equilibrium.
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Much work has been done on this model and its variants, e.g. see Leung
(1976), Pielou (1974), and Gopalsamy (1982). Gopalsamy (1982) for example
analyzed the Lotka-Volterra competition model when the intrinsic growth rates
of both species are periodic functions of time. As well, Lotka-Volterra models in
a resource-based competition system have been considered by MacArthur (1970,
1972), by Hsu (1981), by Waltman (1983), and by Gopalsamy (1986).

Competition in a chemostat is another direction of development in this
area, including investigations by Freedman, So and Waltman (1986, 1989) that
consider chemostat competition with time delays. Keener (1983) is another
example of investigation done in the chemostat competition area.

Another investigative area in the field of competitive systems is the more
general Kolmogorov model. Some examples of work in this direction can be
found in Farkas (1984) and in Farkas and Freedman (1989).

The model that we consider here can be looked upon as another variant of
the basic Lotka-Volterra model with logistic growth. Our model is a two-stage
structured system that divides each of the competing species into immatures and
matures, giving us a four dimensional system of retarded functional differential
equations.

In the next section we develop the model and establish that the result-
ing system is both dissipative and remains nonnegative for appropriate initial
conditions. In section three we investigate the equilibria and their stability.

Then in section four we analyse the global behavior of solutions. In section
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five we consider the results of computer simulations of some specific examples
that illustrate the behavior of solutions in light of the analysis done in previous

sections. We then give a brief discussion of the results in section six.

3.2. Derivation of the model
In chapter two we considered a model for single species growth with stage

structure, given by

2i(t) = azm(t) — yzi(t) —ae™ T zn(t — 1)

Em(t) = ae™ T zy,(t — 1) — Bz (1)

where z; and z,, represent the immature and mature population densities re-
spectively. In this model we assumed a constant time 7 to maturity, and o, 3,
and y were positive constants.

Here, we assume two competing species, each with stage structure. Hence

we consider the system:

zi(t) = azm(t) — yzi(t) —ae™ " zm(t — 7)

Em(t) = ae™ "z ,(t — 1) = Bzl (t) — 62 (t)ym(t)
(3.1)
9i(t) = uym(t) — Eyi(t) — pe ™" ym(t — o)
Um(t) = #e-fﬂ'ym(t —-0)— ﬂy?n(t) = pYm(t)zm(t)
where z; and z,, represent population densities of the immature and mature
members of the first species, and y; and yn represent population densities of
immature and mature members of the second species. We assume that the

pressure of competition is felt only by the adults of each species. This is rarely
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true but is valid in some special cases, for example, where the immatures are
protected by the adults as is the case with some birds and their nestlings with
breeding and feeding territories.

a > 0 and u > 0 represent the intrinsic growth rates of the competing
species, 7 > 0 and £ > 0 represent the intrinsic death rates of the immature
populations, and § > 0 and 5 > 0 represent the logistic death rates of the
mature populations. Each of the two species has a different maturation period,
represented by 7 > 0 for the first species and by ¢ > 0 for the second. The
competition between the two species is represented by § > 0 and p > 0, where
6 > 0 is the intrinsic competition rate that a unit population density of the
second species adults imposes on the first species adults, and p > 0 is the
intrinsic cémpetition rate that a unit population density of first species adults
imposes on the second species adults.

As wasv noted in chapter 2, z;(t) and y;(t) can be expressed in integral
form, z;(t) = af:__r e~ 1=z, (s)ds and y;(t) = pf,‘_a e~80=2)y . (s)ds.

We shall say that a set of initial conditions ¢;(0),pm(t), $i(0), dm(2)),
where ¢ and ¢ are defined on the interval [~7,0] and on [—0, 0] respectively,
is admissible if ©;(0) > 0 and ¢;(0) > 0, if Ym(t) >0 and ¢,u(t) > 0 on [~7,0]
and on [-a,0] respectively, and if pm(t) and ¢,(t) are continuous on the closed
interval [—7,0] and [-0,0] respectively. The derivatives at the left and right

endpoints are taken from the right and left, respectively.
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For a set of initial conditions to be admissible we further require that

»i(0) and ¢,(0) also satisfy,

vi(0) = /0 apm(8)e?ds and ¢4(0) = /0 podm(s)e~¢%ds

-7 -
so that at any given time ¢ > 0 , z;(t) and y;(t) will represent the accumulated
survivors of those born into the immature population in the time intervals [t —
7,t} and [t — 0,1], respectively.

Now given an admissible set of initial conditions for system (3.1), let there

exist a point to, where ¢y = infi50{t: zm(t) = 0}. Then we have
.’i:m(to) = oze"'”xm(to - 1') >0

by definition of to. This gives us a contradiction, thus zn,(¢) > 0 for ¢ > 0.
One can similarly conclude that y,,(t) > 0 for ¢ > 0 also holds.

Then using the same arguments we used in the previous chapter for the
single species case, we can conclude that z;(t) > 0 and y;(t) >0 for ¢t > 0. We

have proved the following

THEOREM 3.1. Given an admissible set of initial conditions, solutions to system

(3.1) will always remain positive.

Next we note that #.,(t) < ae~ 7"z, (t —7)— Bz2,(t), and since we showed
in Chapter 2 that solutions to the equation w(t) = ae™ " w(t — 1) — fw?(t) are
bounded above, we can apply a comparison theorem (Birkhoff and Rota (1969)
) to conclude that zm(t) and ym(t) are both bounded above. Again, the proof
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that z;(t) and y;(t) are bounded above is virtually the same as for the single

species case. Thus we have proved the following

THEOREM 3.2. Given an admissible set of initial conditions, solutions to system

(3.1) are bounded above.

In fact, we can say more about the boundedness of solutions to system
(3.1) in that we can set bounds to the system that are independent of the initial

function:

THEOREM 3.3. Given an admissible set of initial conditions, system (3.1) is

dissipative.
PROOF: Set 2(t) = zi(t) + z,u(t). Then

3(t) = QT (t) — 12i(t) — B2, (t) — 6Zm()ym(t).
Since 6 > 0, and by Theorem 3.1, z,,() > 0 and ym(t) > 0 it follows that
#(t) < azm(t) = 12i(t) — Bzh(t)
= —2(®) + (o + Nzmlt) - B

The last two terms of this expression satisfy the inequality,

(ot v)em ~ 2%y < SET

the maximum value being attained when z,, = 3’%1 Thus we have the relation,

#(t) < —yz(t) + (a + 7)*/48
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and applying a comparison theorem (Birkhoff and Rota (1969) ) and integrating
we get

2(t) < 2(0)e™ + (a +7)*/4B7.

Using exactly the same procedure for w(t) = yi(t) + ym(t) we get,

—et, (B+E)?
‘W(t) S UJ(O)C ¢ + ——a—n?—

So, as ¢t tends toward infinity, there is a bounded attracting region in .he
positive cone, towards which all solutions tend, which is independent of initial

conditions. Therefore system (3.1) is dissipative, proving the theorem.

3.3. Stability and Existence of Equilibria

There are three types of equilibria, one at the origiz Zenoted Eo(0,0,0,0),
two boundary equilibria, denoted E,(:Eg, #m,0,0) and Ey(O, 0, #i, m ), and finally
at most ore interior equilibrium denoted by E(Z:i,%m, TirGm)-

The boundary equilibria represent the states when one of the competitors
exists without the other. As we have seen in the previous section each of the
two species represented has a globally asymptotically stable equilibrium point

in its plane. Thus
Fi=a?f e (1 =), Em = af e "

and

§i = pPn e (1 - e7), gm = pn e

for the boundary equilibria E;(&,%m,0,0) and Ey(0,0, 7, Im).
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If an interior equilibrium did exist, it would have to satisfy the following

~ system:
0=atm —yz;—ae" "z, (3.2a)
Tm =afle” " - B 6y, (3.2b)
0 = pym — Eyi — pe %y (3.2c)
Ym = pn e —n~lpz,y (3.2d)
so that

zi=ay lzp(l—-e"T)
(3.3)
Yi = s ym(1 ~ ™)

is true. This tells us that if we have positive solutions of (3.2b) and (3.2d) at
points £m and §m, then #; and #; can be found from (3.2a) and (3.2¢). They
will also be ypositive, and (%;,%m, §;,Jm) Will be an interior equilibrium.

We can solve (3.2) and (3.3) explicitly to get expressions for #;,#m,§; and

Um in terms of the parameters:

-1 ,=yr __ -16 -1 _,~§o
#i=ay™? (aﬁ ¢ B~ Sun"e )(1 —e™ )

1—-8-1n"1p
. _afle™™ — f1gun=le~te
om= 1~ B=Tén-1p
-1,~§o -1,,-1_,, =97
- -1 e —aBT " pe 1— e~
yl —”E ( l_ﬂ_lb-n_lp )( € )
. _ pn”le™87 —afIn Tl pem
Ym = 1-B-16n~1p

if 1 — 371677 'p # 0. Note that there is no guarantee that these solutions are

positive.
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Now, to get positive solutions of (3.2), system (3.3) allows that we need

only consider solutions of the system

Tm = aﬂ_le_‘" - ﬂ_lsym.

(3.4)

Ym = pn"te™ — 7oz .
It is readily apparent by looking at the graphs of these linear equations that
positive solutions of (3.4) can exist if and only if one of the following pair of

two part conditions holds:
Condition A: af~le™ " > up~le ¢’ and ad~le~7" < up~le~¢

Condition B: af~e~"" < up~le %% and ab~le™" > un~le 4.

Further, any such solution will be unique due to the linear nature of (3.4).
In addition, we observe that if either of conditions A or B is true, then 1 —
B~26n"lp # 0. We see this in the following manner: first assume condition A

is true. Then

aﬂ-—le—-yr #P—l eso "
ad~le-1m 7 pup=le—ée ne

76 =

so that =169~ 1p > 1 giving us that 1 — f~'6n~1p < 0. Similarly if condition
B holds then 1—-8-16n"1p > 0 holds. Finally, noting that since condition A or
condition B implies a positive solution of (3.4) exists then (3.3) would indicate

that a positive solution to (3.2) exists as well. Thus we have the following

THEOREM 3.3. If either condition A or condition B is true, then there exists a

unique interior equilibrium, for system (3.1).
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Next, we would like to investigate the stability of system (3.1) about each

of these equilibria. Linearizing the system we get,

z;(2) -7 o 0 0 zi(t)
di(t) 0 0 ~¢ p ui(t)
Ym(t) 0 —PYm 0 —2nym —pzm Ym(?)
0 —ae™™ 0 O zi(t—1)
0 ae™™ 0 0O Tm(t—7) +
0 0 00 vi(t—1)
0 0 00 Ym(t —7)
0 00 0 zi(t—0)\
0 00 0 Tm(t— o) |
0 0 0 —peé° yi(t — o) ) )
0 0 0 pete ym(t — o)
Then the characteristic equation becomes,
A+ —a 4 e~ e AT 0 0
0 A+ 2Bz, + 6ym — ae~ e AT 0 bz
0 0 A+€ —p + pe€oe~A0
0 PYm 0 A+2nym +pzm — pe~%eNe
= 0.
At E, (0,0,0,0) this becomes,
Aty —atae~TH) 0
0 A-ae ™V 9 0 0
0 0 A€ —p+pes@EN| T
0 0 0 A — pemo€+d)

Thus A = —y and A = —¢ are eigenvalues at the origin. In addition to

these two negative eigenvalues, :olutions to the equations

A=ae 7Ot apd

A= pe o+
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give further eigenvalues at E;. Both of these equations will have a real, posi-
tive solution, making Eo a saddle point. Complex solutions to these equations
exist, but as we have seen, solutions to (3.1) that arise out of admissible initial
conditions do not have components in the eigenspace of complex eigenvalues,
since such components would necessarily be oscillatory about Ey. We have seen
that solutions arising out of admissible initial conditions remain positive hence
such oscillations could not occur.

Next we consider the equilibria on the boundary, namely E., and Ey. At

the equilibrium point E, the characteristic equation becomes

A+ —a + ae~ T+ 0 0
0 A+2B%,—ae e 0 6Zm =0
0 0 A+€ —p + pe=oty) | T
0 0 0 A+ pim — pe~oE+)
Again, A = —y and )\ = —¢ are two negative, real eigenvalues. The other

eigenvalues are given by the roots of
(A + 2Bim — ae "IV 4 piy — pe~?UF Ny = 0,

First consider roots of A + 28%m — ae~7(¥tA) = 0. Since 28%y, = 20”77
this is equivalent to

A ae™(2-e2") =0. (3.5)

Now let A = a + ib be a root of equation (3.5), where a > 0. Then equation

(3.5) becomes,

a+itb+ac”(2— (e cosbr —ie™*"sinbr)) =0
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so that,

a+20e” " = ae” e % cos br

b = —ae” Te % sinbr
Squaring and adding,
(a+22e™ ") + b = (@e™""e™%T)2.
Since we are assuming a to be positive, we have
40’ + B2 < a?e27",

giving us a contradiction. Thus all roots of (3.5) give us eigenvalues with neg-
ative real part.

Next we consider roots of the equation
A+ pip — pe 76+ =g, (3.6)
Again let A = a 4-ib. Then, noting that
Em=af leTT
we have
a+ib+ afpe™ " ~ ue™¢%(e7% cos bo — ie"*" sinbo) = 0.
Expressing this in terms of its real and imaginary parts we get,

a+aflpe™ " = pe~ 8 cosbo
b = —pe~ 0+ sin bo
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Squaring and adding,
(a+ aflpe~ TV 4+ B2 = ”26—2a(a+€).
Now let condition A hold, which implies that
afle™ " > pup~ et

is true. Then

.aﬂ-lpe—-'yr > ue-fa

will hold. Now let us assume a > 0. Then,

_(a+ aﬂ"lpe“’”)2+bz — #26—2056—200 <

(aﬂ—lpe—--yr)Zeraa < (aﬂ—lpc—-yr)2

giving us a contradiction. Thus if condition A holds, all eigenvalues have neg-
ative real parts, and E; is asymptotically stable.

If condition A does not held yet af~'e™"" > pp~le¢% still does hold,
we will, of course, have no interior equilibrium (since neither conditions A nor
B can hold), yet E, is asymptotically stable.

If af~le™7" < pup~le €% were true (which would be the case if condition
B were to hold) then since this is equivalent to pim < pe¢?, the equation

A+ pim = pe” oY

would have at least one real positive root making E, a saddle point.
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The analysis for the equilibrium I.:J,,(O, 0,%:,9m) is similar. The eigenvalues

'ier  are again A = —y and A = —¢, plus the roots of the expression
(A + 20fm ~ pe~"E VYA + 6 — ae V) =0
Using the fact that §m = up~le ¢ we see thas
A+ 2fm — ae ") = ) 4 pe=o(2 ~ e~29).

First we consider the roots of A+pue~¢°(2~e2?) = 0. Again, letting A\ = a+ib
and separating into real and complex parts, we obtain

a+2ue™8 = pe~t%e% cosbo

b = pe~¢%e~% gin bo.

Then making the assumptions that @ > 0, and squaring and adding we get,

similar to the analysis for E,,
(a + 2;16—6”)2 + b = (#e-Eoe-—aa)Z

and the assumed positivity of a gives us a contradiction. Thus all roots of the
expression

(A +29im — ae"’(f""‘)) =0

give us negative real, or complex roots with negative real parts.

We now consider the roots of the expression

A+ 6jm — ae” TN =g (3.7)
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Let A = a + ib, and again assume condition A to be true, so that aé~'e™7" <

un~1e~€? holds, or ae~ 7" < éun~'e™¢?. Then (3.7) becomes,
a+bi+6unte 4% —ae” (™% cosbr —ie"*"sinbr) =0,
or, separating into real and complex parts,

a+6un~te ¢ = ae~ e %" cosbr

b = ae” "¢ %" sinbr.
Squaring and adding, we obtain
(a +6#n—le—£a)2 + b = (ae—-yre—ar)2

Now with our assumption that condition A holds, we further assume that a > 0.

Then

a+6 n—le—fa 2+b2 - ae—-yre—ar 2 <
7

(6#7]-16—&0)28—%1' < (6#17—18‘60)2

would have to hold, contradicting our assumption that a > 0. Thus if condition

A holds E, is asymptotically stable as is E.. If condition A does not hold yet
ad™le™ " < ppTle~é?

still does hold, E, is still asymptotically stable but there is no interior equilib-

rium.
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On the other Land, if
ab™" 7T > up~le~te

were true (which would be the case if condition B were to hold), then since

this is equivalent to

6m < ae™ "

the expression

A+ bfim —ae™ e ™A =0

would have at least one positive, real root and E, would be a saddle point.

We can summarize what we have done in the following theorem:

THEOREM 3.5. Given system (3.1) with an admissible set of initial conditions:

1) If condition A is true, then

a) An interior equilibrium exists,

b) E.(3i,%m,0,0) and Ey(0,0,5;,9m) are both asymptotically stable.
2) If condition A does not hold, yet af~1e~"" > up~le~47,

a) there is no interior equilibrium,

b) E.(%;,%m,0,0) is asymptotically stable,

c) Ey(0,0,3i,3m) is saddle point.
3) If condition A does not hold yet a6~1e™"" < un~te~t,

a) There is no interior equilibrium

b) E.(%i,%m,0,0) is a saddle

¢) E,4(0,0,4i,Jm) is asymptotically stable.
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4) If condition B holds,
a) An interior equilibrium exisis,

b) E,(:i:.-,a’im,O, 0) and E,,(O, 0, ¥i,Jm) are both saddles.

There remains the critical case where 1 — ~'6n~'p = 0. There would
then exist a continuum of equilibria, and at least one of the eigenvalues for
both E, and E, would be zero.

Finally we consider the stability about the interior equilibrium under the

conditions when it exists. The characteristic equation about E(i',',:i’:m,g],-,f]m) is

given by,
Aty —a + ae O+ 0 0
0 A+2B%m+ 6fm —ae~ 7N 0 6% m
0 pim 0 A+20jm + pim — pe—7E+N)
=0.
Clearly A = —y and A = —¢{ are negative, real eigenvalues. We are then
left with,
A+ 2B%m + 6jjm + e TV 6% m —o
Pijm A+ 20iim + pEm — pe~7E+Y '

We therefore need to examine roots of the equation

A+ [2B%m + 6Fm — ae~THN) 4 (20fm + pEm — pe €M)y
+ (2BEm + 6§m — ae~TOHNY 2 + pm — e EHN) — $pEmim = 0,
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ie.

N+ [(2B%m + 8Gm — ae™" V) 4 (2 + pim — peEFVY)
+ (28%m — ae” TN (20, — peoE+N)

+ (20Gm — pe= CE N6 + (2BFm — ae~ "Nz, =9

or

A%+ (2B%m + Gtim + 20iim + PEm)A + 4BNEmiim + 20652,
+2B8p32, — (ae™ e ™ + e - SjjmeE%e7>
—apime e ™ — 28uine %" — 2anjme e~ A

+ ape~1Te~ e AM+9) =

This is equivalent to
A2+ (2B%m + 6Gm + 20m + pEm)A + (4BNEmiim + 20652, + 2BpE2,)
= (ae~ T+ 4 peoE+N)) 4 ae” ") (i + pEm) (3.8)
+ ue"(€+")(2ﬂ:’ém + 6§m) — (ae"'("'*"\))( pe~ @+,

The left hand side of equation (3.8) is a quadratic equation in A with a
vertex at a negative value of A and concave up. Thus the left hand side of
equation (3.8) is positive at A = 0 and monotone increasing from A > 0, with
its limit going to infinity as ¢ approaches plus infinity.

The right hand side of (3.8) is an expression that tends to zero as ¢ tends

to plus infinity. Thus if

(4803 mim + 20655, + 28p%%,) <
(3.9)
o€~ (20 + pEm) + e~ (205m + i) — (e )(ue™6%)
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then we have at least one positive, r&:ii root and the interior ¢ :ilibrium be-
coimnes an unstable saddle noint.

Since we have explicit expressions for £, and §, in terms of the yurame-
ters, we can substitute these into equation (3.9) to get sufficient conditions for
the interior equilibrium to be unstable in terms of the parameters. Inequality
(3.9) becomes

(ae™¥" —bun~te~47)(pe~t? — i~ pe=T)
(= F167-1p)
+ 2(ue~4" — af~ pe~ V") (pn~16e4 — af 70" pbe™ ")
(1-B-1én~1p)?
4 2ae™ — bpn~ e )@ pe~ B loun~16e) _
(1-pB-16n"1p)?

4

(3.10)
e [ 2" = 2087 o™ + 0 pe T — B-éun"tpe=t"
(1-B"16n"1p)
4 pemto [ 22eTTT = 2 le ™ + pn6eE — of iy phe
(1—-pB"1én"1p)

— (™) (pe~¢")
We will consider the left hand side and the right hand side of equation

(3.10) separately.

The left hand side of equation (3.10) becomes,
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4(ae”17)(pe”%7) — 4(ae” " )(af pe=TT)
(1—B"16n1p)?
_ Aépn"remt)(ue™4%) + 4(6pun~te 47 Y (aB " pe~T)
(1 - B~16n~1p)?
4+ Ane™)(pn 7 6e™4%) — Apue™*7) (B n" pbe ")
(1-B8-16n~1p)?
2(aB™ pe~)(un " 8e"%) + 2(af ™ pe= 7" )(aBIn"! pSe7)
B (1-B-1é6n~1p)?
4 AaeT ) (@B pet”) — 2ae™ T)(B71un " pe™¢7)
(1—p-1én~1p)?
2(6pn" e~47) (@B~ pe~T) -+ 2bpn " e=47) (B~ Sun " pe=¢7)
B (1-8-167-1p)?

4ae™ ) (ue™4) — 2 ae ") (af " pe™ ") — 2(pue~¢7)(Sun~le~4)
- (- Tenpp
—4af~18un~1pe=(17+8) 4 2B pe~217)(B~ 167~ p)
* (1= p"1én~1p)?
2(pn~tée~2o)(B2én"" p)
(1= p-1én~1p)?

_ YaeT ) (ne57) — 20287 pe277(1 - B18n 1 p) — 24’0 ée~20(1 — B o0 p)
- (L= B=Ten-1p)?

_ daemmm) (e~ 04 p)
(1~ Fon-To7

_ 4(ae-1r)(#e-€¢) - 2azﬂ—1pe—2‘yr - 2p2n—158-2€a
- (1=B"1én""p) '
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The right hand side of equation (3.10) becomes,

2ae~77)(pe=¢7) — 2026~ pe =277 + o B pe~*IT — (ae™ ") (pe"E7) (B én "1 p)
1-4-1én"1p
2ae= ) (ue=47) — 2utn~ 18647 + un~ 66~ — (ae~ ") (ue¢7) (180" p)
+ -
1-8"16n"1p

— (ae™")(ne™*)

_ 2(ae”")(pe®?) + 2ae= ") (pe¢7)(1 — 876 p)

— (ae™ ) (pe™)

1-p8-16n~1p
_ a?f1 pe=21" + p2y16e=2e
1-p-1én=1p
2 a2ﬂ—lpe—27r + #2,7—-166-250
= —T -£o —
(oe™ e )(l i- ﬂ"én“p) 1-pB-16n~1p '

Thus a real, positive eigenvalue at the interior equilibrium will exist if
4(06—7")([16_6’) - 2a2,3—1pe—271' - 2#217—166—260
(1—-p8~1n"1p)

2 a2ﬂ—lpe—27r + "27’—1 6e—2€a
—T ~§o -
< (o™ e )(1 1 -ﬂ‘15n“p) 1= pTén1p

which is equivalent to,

2((:0,'8-7')(#6-5’) - azﬂ—lpe—rrr _ ”20—166—250
1-p8"16n"1p

< (ae” ") (pue~t%)  (3.11)

Unforwunately, one cannot apply either condition A or condition B to this in
order to conclude that the presence of either of these conditions would indicate

the presence of a positive eigenvalue for the interior equilibrium.

3.4. Global Behavior of Solutions
As we have seen, the presence of either condition A or condition B will

tell us something about the stability of the boundary equilibria, and about the
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presence of an interior equilibrium. However, as we have observed, we cannot
draw any conclusions about the stability of the interior equilibrium from the
presence of either condition A or of condition B. The only thing we can say
about the stability of the interior equilibrium is that if equation (3.11) is true,
the interior equilibrium will be a saddle point. Equation (3.11) being true is

equivalent to

(ae™ ) (ue~ 7)1 + B 60" 2p) — (ae™ ") B~1p — (ue~¢7)’n 16
1~p8-16n"1p <

0.

We call the left side of this inequality the characteristic equation factor, or
CEF. Ii the behavior of this time delay system has any parallel to that of
the non-time-delay Lotka-Volterra case, we would expect a negative CEF to be
associated with condition A and a positive CEF to be associated with condition
B. I.: the next section we will consider an example where this behavior is indezsd

the case.

3.5. Computer Simulations and Fxamples
We consider here a series of examples where all parameters remain con-
stant except for the maturation time o of the second species. Specifically we

have the system,

&; = 0.5z — 0.4z; — 0.5¢~4*0 7z, (¢t - 0.7)
Em = 0.5e~%4%0Tz (¢t - 0.7) ~ 0.3z%, - 0.22mym
(3.12)
Vi = 0.5ym — 0.4y; — 0.5e~%4%y,..(t — o)
Um = 0.5e"%4%y (¢t — o) ~ 0.3y%, — 0.2y Z
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where the variables are functions of time unless otherwise noted.

If the quantity o is set to the value 0.7, which makes it equal to 7,
we have an interior equilibrium whose (z;,zm) and (yi,ym) values are equal.
Condition B is true, the CEF is positive and the interior equilibrium appears
to be globally asymptotically stable judging by the numerical evidsence.

The series of phase-plane graphs we have done for system (3.12) have
the second species maturation period o range from 0.7 to 2.0. (see figures 1-
5). The stable interior equilibrium moves toward the first species boundary
equilibrium, and the CEF decreases as o increases. At approximately the value
o = 1.7136, the interior equilibrium merges with the boundary equilibrium, the
CEF becomes zero, and the pos;itive eigenvalue at the boundary also becomes
zero. As o is increased further the CEF contirues to decrease, no interior
equilibrizm. «xists, the first species boundary equilibrium E, stabilizes, while
the second species boundary equilibrium E, remains unstable. Thus we see
that by changing the time delay, a stable interior equilibrium can disappear,
and an unstable boundary equilibrium may be made to become stable.

The second series of examples we present concerns the system

#; = 0.52, — 0.4z; — 0.5¢~4*%Tz,(t - 0.7)

Em = 0.5¢"04%% Tz (t — 0.7) — 0.222, — 0.3ZmYm
(3.13)
i = 0.5ym — 0.4y; ~ 0.5¢7 %4y (t - o)

Ym = 0.5¢~04%y,.(t — o) ~ 0.2y2, — 0.3y ;nZTm

With ¢ = 7 = 0.7 we have an interior equilibrium whose (z;,z,,) and
(vi»ym) components are again equal. Condition A is true, the CEF is negative

56



and the numerical evidence indicates an unstable interior equilibrium, while
the boundary equilibria are stable. The basins of attraction of the boundary
equilibria are divided by a separatrix I', which is also a stable manifold for the
interior equilibrium.

Increasing o from 0.7 to 2.0 results in the unstable interior equilibrium
moving toward the E,(O, 0, Ji,m) boundary equilibrium, merging with E,,, and
vanishing. Ey becomes unstable, while E, becomes globally asymptotically sta-
ble. See figures 6-10.

The third series of examples, covered in figure 3.11 through figure 3.13, is

of the system

&; = 05Ty, — 0.4z; ~ 0.5¢704%0 Tz (¢ - 0.7)
Em = 0.5e704%0Tz, (t - 0.7) — 0.32%, - 0.2z, Y

¥i = 0.5y, — 0.2y; — 0.5¢"%2%%y,.(t — 0)

-0.2x0

Ym = 0.5¢ Ym(t — @) — 0242, — 0.3ymZym.

With o = 0.7 there exists a continuum of interior equilibria, if ¢ = 1.2
the z-species boundary equilibrium becomes globally asymptotically stable, and
when o = 0.4 the y-species boundary equilibrium becomes globally asymptopti-
cally stable. In none of these cases is either condition A or condition B true,
indicating that, in the nongeneric case at least, either condition A or condition

B being true is not necessary for the existence of interior equilibria.
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3.8 Concluding Remarks

The results of the analysis of system (3.1) indicates that system (3.1) does
not deviate radically in its behavior from the two dimensional case with no time
delays. In the generic delay case the presence of either condition A or condi-
tion B is necessary and sufficient for the existence of an .interior equilibrium.
Condition A and condition B are similar to those necessary conditions for the
existence of an interior equilibrium in the case where the system has no time
delays. Setting the delays to zero gives those conditions; the presence of either
one being sufficient, and the presence of one or the other being necessary, for
the existence of an interior equilibrium in the case with no time delays, and the
presence of one or the other conditions determining the stability of the interior
equilibrium.

By varying the time delay we can make an interior equilibrium disappear,
and either destabilize a stable boundary equilibrium or stabilize an unstable
boundry equilibrium. In the time delay case we have sufficient conditions for
an interior equilibrium to be stable, but unlike the case with no time delays
we cannot draw any conclusions about the stability of the interior equilibrium

from the presence of either condition A or of condition B.
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Figure 3.2 Competition Set #6
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Figure 3.3 Competition Set #7
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Figure 3.4 Competition Set #8

Species #2 Mat.
;‘ 0.6 0.8

9.2
A

0.0

L B L T T T L

L T L - N ¥ A ] L] L LN
2 0.4 0.6 6.8 1.0 1.2 1.4 1.6 1.8 2.0
Species #1 Mat.

Species! Intrinsic Growth Rate: 0.5000000

Speciest! Mature Death Rate: 0.3000000

Species! Immature Death Rate: 0.4000000

Speciesl - Species2 Competition Constant: 0.2000000
Species! Maturation Period: 0.7000000

Species2 Intrinsic Growth Rate: 0.5000000

Species2 Mature Death Rate: 0.3000000

Species2 Immature Death Rate: 0.4000000

Species? - Species! Competition Constant: 0.2000000
Species2 Maturation Period: 1.7136000

Interior Equilibrium: Xi = 0,38452 Xm = 1.25961
Yi = 0.00002 Ym = 0.00004

Characteristic equation factor: 0.00000

Condition B is true

X-boundary equilibrium: Xi = 0.38454 Xm = 1.25967

Y-boundary equilibrium: Yi = 0.52080 Ym = 0.83978

62



Figure 3.5 Competition Set #9

°_ L 1 L A Iy A
o~

03

Specles J2 Mat.
0‘-0

0.6
L

4

0.2

™

Species1 Intrinsic Growth Rate:

0.0 0.2 & 0.4 & 0.6 0.8
Species §1 Mat.

Species! Mature Death Rate:

Species! Immature Death Rate:

AJ T
1.0

T T T
1.2 1.

0.5000000
0.3000000
0.4000000

Species1 - Species2 Competition Constant:
Species! Maturation Period:

Species2 Intrinsic Growth Rate:

Species2 Mature Death Rate:

Species2 Immature Death Rate:

0.7000000
0.5000000
0.3000000
0.4000000

Species2 - Species! Competition Constant:
Species2 Maturation Period:

X-boundary equilibrium: Xi
Y-boundary equilibrium: Yi

63

2,0000000

0.34292
0.51548

Xm
¥m

0.2600000

0.2000000

1.12332
0.74888



Figure 3.6 Competition Set #10
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Figure 3.7 Competition Set #11
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Figure 3.8 Competition Set #13
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Figure 3.9 Competition Set #14
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Figure 3.10 Competition Set #15
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Figure 3.11 Competition Set #20
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Figure 3.12 Competition Set #21
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Figure 3.13 Competition Set #22
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CHAPTER FOUR

A STAGE-STRUCTURED PREDATOR-PREY MODEL

4.1. Introduction

In this chapter we will consider a model of predator and prey populations
that incorporates time delays into the system in order to take into account
an immature stage of growth for both predator and prey. As we saw in the
introduction, chapter one, much work has been done in the area of modelling
predator-prey systems, and we discussed some work by several invesiigators
who modified simple Lotka-Volterra systems that had the property of having
all solutions periodic into systems ‘:.at gave more realistic dynamics.

As well, we can also use more general models such as the Gause interme-
diate model (Freedman, 1987) to get results that better correspond with reality.
Much work has also been done using these models, see for example Kuang and
Freedman (1988) for a discussion on the uniqueness of limit cycles in Gause
intermediate systems, or Hofbauer and So (1990) who give an example of a
Gause type predator-prey model with concave prey isocline and at least two
limit cycles. As well, Freedman and Wolkowicz (1986) and Wolkowicz (1988)
investigate generalized Gause type models involving group defense.

An even more general model is the Xolmogorov model (Kolmogorov, 1936)

which is expressed in the form

&(t) = z(t)f(z,y)

y(t) = y(t)g9(z,v)
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where conditions are imposed on f and g that makes z a prey and y a predator.
This model was further modified and investigated by Rescigno and Richardson
(1965), May (1972), Albrecht, Gatzke, and Wax (1973), and Albrecht, Gatzke
Haddad and Wax (1974).

These more general models have been utilized by investigators to better
understand some phenomena found in nature. The work done on group de-
fense is an example. The paper by Freedman and Wolkowicz (1986) proposed a
model of a predator-prey system where the prey exhibits group defense against
the predator and where an enrichment of the prey food source could lead to ex-
tinction of that predator. Freedman and Quan (1988) then showed that, given
such a system, it is possible to introduce a third population which will stabilize
the system to allow all three populations to coexist without extinction.

The effect of parasites on a predator-prey system has also been investi-
gated. Hadeler and Freedman (1989) proposed a model where a predator popu-
lation could not survive on uninfected prey, but could avcid extinction if enough
prey became infected by a parasite. Freedman (1990) also gave 1esults in this
area.

Another example of work done to account for conditions found in na-
ture is the investigation by Hainzl (1988) on a predater-prey model that al-
lows for satiation effects on the predator. As well, predator-prey models where
the prey is dispersed in a patchy environment were given by Freedman and

Takeuchi (1989). Mukherijee and Roy (1990) considered a model of a pair of
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predator-prey systems where the two prey species compete. Finally, Dunbar,
Rybakowski,and Schmitt (1986) and Freedman and Shukla (1989) investigated
models of diffusive predator-prey systems using partial differential equations.

The development of predator-prey models incorporating a time lag have
not been ignored. May (1973) investigated models of vegetation-herbivore and
vegetation-herbivore-carnivore populations where resource limitations have de-
layed effects. Freedman and Rao (1986) applied some results concerning a sys-
tem of two autonomous ordinary differential equations with two discrete time
delays to draw conclusions regarding a Kolmogorov predator-prey system.

In the next section we develop our time delay model. In section 4.3 we
establish positivity and boundedness of the system. In section 4.4 we establish
the existence of boundary equilibria and analyse their stability, and in section
4.5 we show when interior equilibria exist. In section 4.6 we discuss the stability
of the interior equilibrium, indicating that the possibilitiy of a Hopf bifurcation
exists. Then in section 4.7 we discuss the results ¢{ numerical simulations,
and in the final section we discuss the conclusions that we can draw from the

investigation.

4.2. Derivation of the Model

Let z;(t) and zp(t) denote the concentration of immature and mature prey
populations, and let y;(t) and yn,(t) denote the concentration of immature and
mature predator populations, respectively. We will assume that the populations

are growing in a closed, homogeneous environment. Let the time interval from
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birth to maturity of the prey and predator be + and o respectively, and denote
the larger of these intervals by A, so that A = max(r,o) throughout this
chapter.

We further assume that in the initial time interval, no immatures of either
the prey or the predator are introduced except through birth from the existing
respective mature populations. The model does not account for any immatures
introduced into the system except through the birth process.

We alsc ¢ 7 ~* in the initial time interval [~A, 0], no prey are intro-
duced before tim: t = ~ and no predators are introduced before time t = —o.
Thus the system is started up by introducing mature prey between time —r
and 0, and by introducing mature predators into the system between time —o
and 0.

In addition we assume that, once intreduced, a prey individual does not
drop out of the population through any means other than dying at the normal
death rate, or being eaien by the predator under the predaiion conditions laid
down by the model. Likewise, a predator does not drop out by any means
wther than ncrmal death process.

The model we develop also assumes that the immature predators do not
themselves hunt prey, but that they thrive on prey that are normally caught
by the mature predators. We further simplify the model by #ssﬁming Lotka-

Volterra dynamics on the parameters.
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So we have strictly positive initial functions ¢i(t), #m(t), and 8m(t) which
represent the immature prey, mature prey, and predator populations, respec-
tively, in the initial time interval —A <t < 0. We further require that ¢;(t), #m(?),
and 6,,(t) be continuous for —A <t < 0. Of course, ¢m(t) =0 on [-A,—7] if
A > 7, and O,(t) =0 on [~A,—0) if A > 0. As well, ¢;(t) =0 on [-A,—7]
since no prey matures are introduced into the system before ¢ = —7. With

these initial functions the model becomes,

£4(8) = am(t) = 12i(t) ~ Ym(Di(2) — azm(t = r)e~ e Jior Im (e
bn(t) = azm(t = e~ SO g2 (1) g ()pza(t)
9i(t) = cym(DMazi(t) + prm(t)] — yi(t) (4.1)

— e yYn(t — o)[kzi(t — 0) + pTm(t — o))
gm(t) = ce™ym(t ~ 7)[Kzi(t = 0) + pTm(t — 0)] — {ym(?t).
Note that z;(tj and yi(t) both satisfy on invariant integral conditions.

The initial conditions gie us that at ¢ =0,

0 °
z;(t) =/ ae""’cﬁm(s)e—"f- b (r)dr g

-

yi(0) = / B (5)[ki(5) + Pm(s)]eS*ds.

-0

For valued or ¢ > 0, these initial conditions give us solutions of the form

~t ¢
zi(t) = [ ae"’“”)e“"(‘—’)e—"j; Ym(rdr g o (8)ds
t~r

y.'(t)=/t e~y (8)[kzi(s) + pzm(s)]ds.

-0
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In this manner the admissible initial conditions give us solutions that remain
in the manifold defined by this condition, so that at any given time t = 0, the
matures of either species are the accumulated survivors of those born between
t—r1 and ¢ (or t— o and t).

Here, we assume all functions, in particular the initial functions, to be
sufficiently smooth to ensure existence and uniqueness of the initial function

problem (Driver, 1977). The parameter: -7 s'stem (4.1) are as follows:

a - birth rate of immature prey ir. : “ms of the conceniration of mature
prey,

B - logistic death rate of mature p:2y,

~ - intrinsic death rate of immature prey,

% - intrinsic predation consta.ﬁt on immature prey,

p - intrinsic predation constant on mature prey,

7 - maturation time for prey species,

c - efficiency of conversion of prey biomass into predator biomass when prey

is eaten by predator,
€ - intrinsic death rate of immature predator species,
£ - intrinsic death rate of mature predator species,
o - maturation time for predator species.
All constants are strictly greater than zero. The expression

s
azm(t— r)e""’e-"ft—' ym(2)ds gives the number of prey individuals leaving the
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immature population and entering the mature population at time ¢. It is ob-
tained by observing that at any time s, the number of immature prey who die
from natural causes is yzi(s), and the number of who are eaten by predators

is z;(s)(kym(s)). Solving the expression
£i(8) = —zi(8)(7 + £ym(3)), when z;(tp) = azn(t — 7),

we get the number of immature prey who survive until they mature at time ¢
t

. _ (o)

as being az,(t—1)e™ e "f,_,y (9) g

As well, for a set of initial conditions to be admissible as described above,

(¢i(t)1 ¢m(t)70i(t)70m(t)) must satisfy

t 0
é:(t) = / ae"’d)m(s)e-“f- fm(drgs _r<t<o0,

-r

8:(t) = / o (8)[kbi(s) + pdm(s))et?ds 0 <t <0,

-0

In the sequel we assume

zi(t) = ¢i(t),
Zm(t) = ¢m(t),

vi(t) = 6i(t),
Yym(t) = Om(t),

on the interval —A <t <0.

4.3. Positivity and Boundedness
We must now establish that the model (4.1) makes good biological sense,
that is, given an admissible set of initial conditions, we must prove that solutions
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to system (4.1) do not become negative and that those solutions do not increase

without bound.

First we show that the mature prey population remains positive:

THEOREM 4.1. Given system (4.1) with an admissible set of initial conditions,

the mature prey component z,(t) of a solution to system (4.1) remains positive.

PROOF: Let zm(t) be the mature prey component of a solution of system (4.1)
with an admissible set of initial conditions. Suppose z,(t) = 0 for some value
of t. Then let ¢y = infy5o{t: z,,(t) =0}. From the admissibility of initial con-
ditions we know that z,,(0) > 0, so by continuity of solutions we can conclude

that to > 0. Since yn(fo)pzm(to) =0 we have,

—x ' m(8)d
i"‘(to) = azm(to - T)e-"’re “ch—r v (3) ’.

0
. - -5 ym(a)ds
Now since, a, e~77, and ¢ f'o-7 "

are all positive, and by definition of tg,
zTm(to — T) is positive, we must have that (fy) > 0, contradicting our definition

of tyg. Therefore z,(t) >0 for all ¢ > 0, and the theorem is proved.

Now we can prove that the immature prey population remains positive as

well.

THEOREM 4.2. Given system (4.1) with an admissible set of initial conditions,
the immature prey component z;(t) of a solution to system (4.1) remains pesi-

tive.
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PROOF: Integrating the expression

£(t) = azm(t) — 12i(t) = KYm()Ei(E) = aTm(t — T)e= e " Jerr I (4 9)

with the initial condition

0 0
z;(0) = / ae”¢m(s)e—kfa e P get, for ¢ > 0,

-7

t t [
zi(t) = e=te~" s ym(o)de (. (0) +/ eret)s ¥ (T ot m(8)ds (4.3)
0
t . .
- / 67’6"!; y'n(r)drazm(s — T)e-‘yfe-“ .j.a—f Y1 “ersl
0

Assume that there exists some value of ¢ such that z;(t) = 0. 72 +* be the
infimum of all such values of . Then at t* equation (4.3) gives,
1 g
z,-(0)+/ evoet Jo ymin "z m(s)ds
0

o s (4.4)
= ] e‘l(s—r)e"j; vm(")d"azm(‘s ~ 7)ds.
0

With a change of variables ¢ = s — 7 in the right hand side of equation (4.4)
and substituting s back for ¢, we get by combining the initial condition with

equation (4.4),

0 . & )
/ evet e Um(rr o2 a(5)ds +/ eve” Jo Y (Nr 2 (8)ds
0

-7

t°—r ®
— e " fo y"'(r)dra.’tm(.S)dS
v—r

or

t* » d t'—r o d
/ evoe” Jo ym") "az m(s)ds =/ eret Jo wm(®) "azm(s)ds

- —

which is clearly impossible. Therefore no such t* exists and z;(¢) >  for all
t>0.

80



An alternate proof to theorem 4.2 results from the previously ment..aed
invariant integral condition satisfied by z;(¢), where for t > 0,
zit)y=a f,__ e=t=0g=" ), ym(@de  (s)ds.

Now we are in a position to prove that the mature predator population

remains positive.

THEOREM 4.3. Given system (4.1) with an admissible set of initial conditions,

the mature predator component ym(t) of a solution to system (4.1) remains

positive.

PROOF: Assume ym(t) = 0 for some value of . Then let o = infs5o{t: ym(t) =
0}. to must be positive by the admissibility of initial conditions and by conti-

nuity of solutions. Then at o,
Im(to) = ce™* ym(t = O){Kzi(t - 0) + pTm(t — 7).

But we have already proved that z;(t) and zm,(t) are strictly positive. By
definition of ¢y, ym(t — @) > 0 so that ym(Zs) > 0, contradicting our definition

of tg. Therefore y,(t) > 0 for all ¢t > 0 and the thecrem is proved.

Finally, we can prove that the immature predator population remains pos-

itive.

THEOREM 4.4. Given system (4.1) with an admissible set of initial conditions,
the immature predator component y;(t) of a solution to system (4.1) remains
positive.
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PROOF: Integrating the expression

9i(t) = cym(t)[£zi(2) + pzm(?)] —evi(t)

— ce™ % ym(t — o)|[rzi(t — 0) + pzpm(t — o)}

we get for ¢ > 0,

yi(t) = e~ (i(0) + / €% cym(3)[Ki(5) + pm(s)]ds
0 (4.5)

t
- / e“’ce " Ym(s — a)[kzi(s — o) + pzm(s — 0)]ds)

0
Now we hypothesize the existence of a ¢* > 0 such that y;(t*) = 0. Let ¢* be

the infimum of all such ¢t*. Then we get at ¢*,
‘.
w00+ [ ce*um(s)ineils) + pym(s)ds
° . (4.6)

= /o ce*= Dy, (s — o)[kzi(s — 0) + pTm(s — 0)]ds

Now we know that y;{t) satisfies the initial condition,
0 .
w0 = [ ce*um(s)lnzils) + prm(a)lds (1)
-0

by admissibility of initial conditions.

Combining equation (4.6) and equation (4.7) we get,

[ t*
/_ ey (s)inai(e) + pem(a)ds + / e ym(8)K2i(5) + pZm(3)}ds

. (4.8)
= /o‘ cefC=%)y (s — o)[kzi(s — 0) + pTm(s — o)}ds.

By a change of variable ¢ = s — o in the right hand side of equation (4.8) and
then substituting s back for ¢ and by combining the two expressions in the left

hand side of equation (4.8), the equation becomes,

t*—o

/ ce® ym(8)[rzi(3) + pzm(s)]ds = / ce®*Ym(8)[rzi(3) + pTm(s)lds (4.9)

- -0
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Equation (4.9) is clearly impossible, so no such t* can exist and y;(t) > 0 for

all ¢t > 0. This proves the theorem.

Again, the invariant integral condition met by y;(t) gives us an alternate
proof of the positivity of y;(t) for ¢t > 0.

Note that theorem 4.3 and theorem 4.4 do not rule out the possibility
of the predator going extinct; the values of y;(t) and ym,(t) are not necessarily
bounded away from zero. All we can conclude is that mathematically solving
the system gives us values for y;(¢) and (%) that do not go to zero in finite
time. That is not to say that, in finite time, these values cannot get small
enough to become biologically indistinguishable from zero, however.

In the single species case that we covered in chapter two, we saw that
solutions to the prey system without the predator tended towards a globally
asymptotically stable equilibrium point which was independent of initial con-
ditions. Since in the presence of predators one might expect the numbers of
prey to be even smaller, and since a finite number of prey can support only a
finite number of predators, one might come to the conclusion that the system
is dissipative, that is, that there would exist a bounded attracting region in the

positive cone. We shall see that such a conclusion is correct.

THEOREM 4.5. System (4.1) is dissipative.
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PROOF: Let z(t) = czi(t) + cxm(t) + yi(t) + ym(t). Then

#(t) = czi(t) + cEm(t) + 9i(t) + Im(?)

= cazm(t) — cvzi(t) — cBzi(t) — eyilt) — Eym(t).
Let § = min(v,¢,£), and we have

5(2) < cazm(t) — 8(cai(t) + i(t) + ym(2)) — B (2)

= —62(t) + (o + 8)zm(t) — cBzh(t)

Now, the expression c(a+8)z,(t)—cfz2,(t) has a maximum value of c(a+6)?/48

when zp,(t) = (a +6)/2B. So,
(t) € =6z + c(a + 6)*/4B.

Now if w(t) is a function satisfying the ordinary differential equation w(t) =
—8w(t) + c(a + 6)%/4B with the initial condition w(0) = z(0), integrating would
give us

w(t) = e™2(0) + (c(a + 6)*/488)(1 — e~*)

Thus limg—.c w(t) = c(a+86)?/436, and applying a comparison theorem (Birkhoff
and Rota, 1969) we conclude that lim¢— 2(t) < c(a+6)?/486. Now if imy—oo(czi(t)+
cZm(t) + ¥i(t) + ym(t)) < c(a + 6)2/4p6, we can conclude that lim¢—oo(zi(t) +
Zen(8) 95 (1) + Ym(t)) < Feoo(2i(t)+2m(8)+ 29i(t)+ 2ym(t)) = Bmioo 22(1) <
(a +86)?/486 since c < 1. This value is independent of initial conditions, so sys-

tem (4.1) is dissipative, and the theorem is proved.
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We have shown that system (4.1) makes some biological sense in that
solutions do not become negative and solutions are eventually bounded above
by some value that is independent of initial conditions. We are now able to

discu1ss the local and global behavior of solutions.

4.4. Existence and Local Stability o Boundary Equilibria

System (4.1; has three types of equilibria, namely the equilibrium point
Eo(0,0,0,0) at the origin, one equilibrium on the boundary, E, = (#;,%m,0,0),
and interior equilibria, possibly unique, E*(zf,z;,,y"y,). The prey values at

@ boundary equilibrium FE, are,

.’i‘,’ = a2ﬂ—17—le—-‘1r(1 - e—‘yr) = ima'f—l(l - e—‘yr),

B = af e,

In order to analyse the local stability at the boundary equilibrium, we
must linearize the system. To do this with the integro-differential system (4.1),
we first make a substitution of a new variable into the system in order to trans-
form the distributed delay f:_ ,Ym(s)ds into a fixed delay which will simplify
the linearization process. Thus we let Y,,(t) = f:_ - Ym(s)ds and add the equa-
tion Yin(t) = ym(t) — ym(t — ) with the initial condition ¥;,(0) = ff, ym(s)ds

to the system. Here ym(3) = 0m(s) on the interval [~7,0]. Thus we get the
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augmented system,

£i(t) = azm(t) — 72i(t) — Kym(t)Ti(t) — azm(t — T)e~ e~ kYm(®)
Em(t) = azm(t — T)e™ e m ) — a2 (8) — ypu(t)pTm(2)

4i(t) = cym(t)[wzi(t) + pTm(t)] — eyilt) — ce™* ym(t — o)[kzi(t — @) + prm(t ~
Ym(t) = ce™"yYm(t — o)[kzi(t — 0) + pm(t - o) - Eym(t)

Yn(t) = ym(t) = yen(t — 7) (4.10)

with the initial conditions as above.

Note that system (4.10), the augmented system, will have an equilibrium
Fy(0,0,0,0,0) at the origin, a boundary equilibrium Fy(Z;, #m,0,0,0) and possi-
ble interior equilibria F*(z}, 27,45, ym, Ty ). The values Z;,&m,z!, 25, 47,05
do not change from those given for the four dimensional system (4.1), since
Ym(t) does not appear in the first four equations.

As well, we observe that there is a one-to-one correspondence between
solutions to system (4.1) and a subset of solutions to the augmented system

(4.10) by the relation,

(xi(t)a zm(t)a yi(*)‘v ym'(";)) hd (xi(t)a zm(t)’ yi(t)’ ym(t)7 [_f y'n(s)ds)' (411)

The linearization of the auvgmented system (4.10) becomes,

ui(s) —v+aym(®) a 0 —xzi(t) Jis u;(s)
11,,,(3) 0 Jzz 0 —p:c,,,(t) J25 u,,,(s)
v(s) | = ckym{t)  Jsz —€ Jaa 0 vi(s) | +
om(s) 0 6 0 = 0| vm
Vi (8) 0 0 O 1 0 Vim(s)
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where

0o J, 0 0 O ui(s—1)

0 J, 0 0 O Um(s —7)

0 0 0 0 O vi(s—71) | +

0 0 0 0 o Vm(s —1T)

0o 0 0 -1 0 V(s —17)

0 0 0 O ui(s — o)

0 0 0 O (s — o)
Jq9 J§Hh 0 J3, vi(s—0o) |. (4.12)
Jh J&h 0 Jg, V(s — o)

0 0 0 0 Vin(s — o)

Jis = kazpn(t — r)e""'e“"‘Ym(‘)
Jaz = =202 (t) — pym(t)

Jos = —KQTm(t — T)e" e " ¥m(9
Ja2 = cpym(t)

Jag = c[kzi(t) + prm(t)]

Il = —ae” 1T~ ¥m(®)
Jp = ae~ e~ F¥m(?)
J§ = —cke™ % ym(t — o)

J32 = —cpe™* ym(t — o)

J5 = —ce”[kzi(t — 0) + pzm(t — 7))

Ji = cke™*ym(t — o)

Ji2 = cpe”“ym(t — o)

Jia = ce*kzi(t - o) + prm(t — 0)]
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Then, at the equilibrium point Fp at the origin all the J;; values are zero except
for JJ, = =J3, = —ae™ ",

Thus at Fy the linearization becomes

ui(t) -y a 0 0 O ui(2)
tm(t) 0 0 0 0 O um(2)
@) |=1 0 0 - 0 oll w)y |+
im® ] {0 0 0 —& 0] {vm®
Vin(?) 0 0 0 1 0/ \Vn(t)
0 —ae™ 0 0 O ui(s —r)
0 ae™™ 0 0 O Umis — T)
0 0 0 0 O vi(s —7) (4.13)
1o 0 0 0 O Vm(s —T)
\o o0 o0 -10 Vin(s — 1)

with there being no nonzero terms in any variables in (¢—0o). The characteristic

equation then becomes,

A4+ —a+ae” e 0 0 0
0 A—ae~ e 0 0 0
0 0 Ate 0 0(=0
0 0 0 A+¢ 0
0 0 0 —l+e27 A

~ As we note later, the eigenvalue A =0 in the augmented system is not an
eigenvalue that corresponds with any admissible initial function of the wriginal
system. The agumented system then has three negative eigenvalues; A = —«,
A= —¢, and A = —£. As well, we have eigenvalues resulting from roots of
the expression A = ae~"("*}), We can readily see that this expression has
a real, positive root by observing that when A = 0, the right hand side of
the expression is strictly positive, and that as A increases, the right hand side

decreases to zero.
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Therefore, £y is a “saddle” point, and by our previous discussion we can
conclude that Ep is also a “saddle” point equilibrium.

Next, we observe that any solution about E, that has a component that
is in the eigenspace of an eigenvalue that has a nonzero imaginary part will
oscillate about Ey. This would necessitate some component or components of
the solution going from positive to neg~tive values. But we have shown that
given a set of admissible initial conditions, this does not happen. Thus no
set of initial conditions can have a component in the eigenspace of a complex
eigenvalue.

As a further remark, we will note that the eigenspace of the zero eigen-

value consists of functions w(t) for which,

0=9qw; — (a+ae”"Mw

= —ae” w,
0 =cws
0 = fws
0=(-14+1)ws.

So ws(t) is arbitrary, and all the rest of the components of w(t) are zero. Such
a function does not correspond with any nonzero admissible initial function of
system (4.1).

Next, we investigate the behavior of system (4.1) near the boundary equi-

librium point E;. To do this we look at the behavior of the augmented system
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(4.10) near the equilibrium point F}, noting the correspondence (4.11) between

- solutions of system (4.1) and the augmented system (4.10). At F the linearized

system of the augmented system becomes,

u;(t) —y a 0 —KE; KaZne= " u;(t)
Um(t) 0 -28z, 0 —pEm —~KaZpe= 1T Um(t)
LF)=1] %) | =] 0 0 —&  c[KEi + pEm)] 0 vi(t) | +
Om(y) 0 0 0 = 0 vm(y)
V() 0 0 0 1 0 Vn(t)
0 —~ae™™ 0 0 O ui(t— 1)
0 ae™™™ 0 0 O [ um(t— T)
0 0 0 0 O vi(t—7) | +
¢ 0 0 0 o vm(t —7)
0 0 0 -1 0/ Vn(t — 1)
0 0O -0 0 ui(t — o)
0 00 0 0 Um(t — o)
0 0 0 —ce[x#;+pim] 0 vi(t — o)
0 0 0 +ce[kZ; +p2m] O vm(t — o)
0 00 0 0 Vin(t — )

Then the characteristic equation of the augmented system is,

A4 —a + ae"TTe"TA 0 K —KaEme~ 1"
0 A+28E,—ae” e 0 PIm KaZme=TT
0 0 A+e a 0 =0
0 0 0 a; 0
0 0 0 —14em A
where here ay = —c[ki;i+pEm|(1—-e~7+N) and a; = A—c[xF;+pEm]e~o ¢+ +¢.

We see immediately that the augmented system has two negative eigen-
values, A = —y and A = —e. We then observe that we get more eigenvalues

from the expressions,

A= 2% +ae" e (4.14)

A = c[ki; + pim)e o) _ ¢ (4.15)
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Finally we observe that A =0 is also an eigenvalue of the augmented system.
Let us first consider equation (4.14). Since £, = af~le”"", we can

rewrite equation (4.14) as,
A=ae e~ — 20”7 = ae” (" ~ 2).

when )\ = 0 the right hand side is negative,and as A decreases, the right hand
side increases, becoming positive when X decreases below —1¢n2. Thus equation
(4.14) has a negative, real solution.

We can say more; all solutions of equation (4.14) have a negative real

part. To see this, let A = a +ib. Then equation (4.14) becomes
a+ib=ae "Te"%"(cosh — isinTb) — 2ae™""
or,

a+2ae” " =ae”"Me %  cosTh

b= —ae""e'“" sin 7b.
Squaring and adding we get,
(a+2ae~"")? + b = (ae™""e™T)2,
Now suppose a > 0. We would then have, since A =0 is not a solution,

(20e” ") < (a+ 227" + b = (ae™""e™%7)? < (ae™7)?
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contradicting our assumption that a > 0. Therefore equation (4.14) has at least
one negative root, and any other roots of equation (4.14) will have a strictly
negative real part.

We now consider equation (4.15).
A= cem N N (kg 4 pin) — €.

This expression will have a positive, real solution if H = ce™*(k%; + pim] > €.
Now suppose ce~?%[kZ; + pim] < £&. We shall see that under these condi-
tions, equation (4.15) has no solution with positive real part. To see this, let

H = ce™?%[x; + pEm], and let A = a+ib. Then equation (4.15) becomes
A=He * ~¢ =a+ib= He "*(cosob — isinab) — £.
or

a+é=He 7®cosob

b=—-He "®sinob.
Squaring and adding, we get
(a+€)? + 82 = (He~"%)?
But we are assuming that H < ¢ and a > 0, so we bave
€2 < (a+€&)?+ b2 =(He "°)? < H?

contradicting our hypothesis. Therefore if H < ¢ then equatisn (4.15) has no
solution with zero or positive real part.
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Thus we see that if ce™7¢[x; + pZm] < £ then the boundary equilibrium
E, is stable, and if ce?¢[k%; + pZm] > £, the equilibrium E; is an unstable
saddle.

Now we consider the eigenvalue A = 0. We will look at the eigenvectors
corresponding to th.s eigenvalue. Let us denote the linearized system of the
augmented system (4.10) at the equilibrium point Fy by L(F1). Let w(t) be a

function satifying L(Fj)w(t) = Aw(t). Then,

Awy(t) = —ywy + (ae"""*"“)wz — KTiwy + KaZme” Twy

(4.16a)
Aws(t) = (-28%m + ae"'u""’))a)g — pipwy — Katme T ws

(4.16b)
Aws(t) = —ews — c|ad; + pEm](1 — e~ole+)y,, (4.16¢)
Awy(t) = {c[ssdi + pimle” 7N — £}w, (4.16d)
/\ws(t) = (1 - e"‘\)u.u (4168)

If )\ is an eigenvalue such that A = 0, wy(t) = 0 by equation (4.16e),
making ws(t) arbitrary. 0 = —ew;(t) by equation (4.16¢) implying that w; =
0. Thus no admissible initial function starting in the interior can be in the
eigenspace corresponding to the eigenvalue A = 0.

Thus, we have shown that if H < £, all eigenvalues except A = 0 have
negative real part, and that the eigenspace corresponding to the zero eigenvalue
contains no admissible initial functions or solutions. We can conclude then, that

given system (4.10) with admissible initial functions, if H < §, the boundary
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equilibrium F; will act as an asymptotically stable equilibrium. If H > ¢, Iy
will be unstable, since at least one positive, real eigenvalue will exist.

Thus our analysis indicates that given system (4.1) with admissible initial
functions, the boundary point E; will be asymptotically stable if H < ¢, but
will be unstable if H > £. This is intuitive, since H represents the growth rate
of the predator when the prey population is at its carrying capacity, and £ is
the death rate of the predator. Clearly, if the growth rate of the predator is
less than its death rate when its food supply is at its carrying capacity, the
predator cannot survive. If H > £, some predator population will be supported
by the prey population, its numbers being dependent on how large H — £ is.
Indeed, computer evidence indicates that when H > £, system (4.1) exhibits

persistence.

4.5. Existence of an Interior Equilibrium
In this section we consider the existence of an interior equilibrium E* for

system (4.1). Such an equilibrium must result from a solution of
0= —z}(7 + xyp) + (azy —ae™ e IR "z)
0= —y*pz* + 2 (ae" e~ ¥m" — fz?,)
(4.17)
0 = cym(kzi + pzi )(1 — €7%°) — ey

0=cyne *(kz} + pzy,) — EUm
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with each of z},z%,,u7, and y}, being strictly greater than zero. Rewriting ihe

- sations (4.17) we get,

_azy,(l- e~ T(vHayn)

: 4.

' v+ Ky (418)
Y = p HaeT(HIR) — gan) (4.18b)
yi = e ym(rai + pr (1 —e7°7) (4.18¢c)

€ =ce % (rkz + pzyy) (4.18d)

Now, equation (4.18d) reflects the fact that at any interior equilibrium,
the rate at which new mature predators are being brought into the system must
equal the mature predator death rate.

Equation (4.18b) gives a relation between z;, and y;,. It will have a
solution for any nonzero value of z¥, such that ae~7" — 8z}, > 0. This can be
easily seen since if y%, = 0 such a value of z}, would give the right hand side of
equation (4.18b) a positive value, and increasing yy, would cause the right side
of equation (4.18b) to decrease monotonically to zero. Thus for every z7, >0
such that ae~7" — Bz% > 0 one and only one y;, > 0 can be found to solve
equation (4.18b).

Then for any solution (z%,,y%) of equation (4.18b), equation (4.18a) gives
us a value for z7 and equation (4.18c) gives us a value for y;. Note that if =7,
is a very small value, then equation (4.18a) will give a small value for z}. And

as z°, increases toward m = af~'e~ 7", equation (4.18b) will give values of yy,
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that decrease toward zero. Then values of z} obtained by equation (4.18a) will
increase toward %; = Emay~1(1 —e~7").

We see then, that as z}, increases from zero to #m,, z! will increase from
zero to £;. Thus if ce™7(kZ; + pE;m) > €, there will be at least one value
(z},zy,) such that equation (4.18d) is satisfied, giving us an interior equilibrium
(zF, 20 U5 Um)-

We car then summarize the preceeding discussion in the form of a theo-

rem:.

THEOREM 4.6. Given system(4.1), if ce™°(k%; + pZ,) > € then at least one

interior equilibrium exists.

Conditions for uniqueness of the interior equilibrium seem difficult to ob-
tain at this time but numerical evidence indicates that uniqueness of interior
equilibria is easy to achieve.

Observe that an interior equilibrium for system (4.1) will also be an in-
terior equilibrium for the augmented system (4.10),and that an interior equi-
librium for the augmented system will be an interior equilibrium for system

{4.1).

4.8. Hopf Bifurcation at Interior Equilibria
Now, given the existence of an interior equilibrium, we would like to inves-
tigate its stability. Specifically, we consider the existence of a Hopf bifurcation

at E°.



We first calculate the characteristic equation about E*. Referring to equa-

tion (4.12) we compute the characteristic equation to be,

A+a;;  ap 0 a4 as
0 Atapg O azqy G5
asi as? A+e a3e 0 |=0.
aq ae 0 Ad4au O
0 0 0 asy A
Since (A + ¢) factors out, this is equivalent to,
A+an a2 ayy a3
0 A+aa G ax _
(A+e) aq ag2  Atay 0|7 0
0 0 ass A
where
ayn =7 + Kyp,
Qg = KZ;
a5 = -—naz‘,’ne"'("'*"":n)

a4 = pTp,
azs = Koz, e~ T(v+nryn)
—a(e+)

ag) = —CKYpe

Qg = __cpy:ue-c(c-i-k)
an = —c|kz? + pzl)e 7N 4 ¢

Qg4 = 6-'x -1
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Thus the characteristic equation becomes

(A + €)[A{(/\ + au)[(z\ + 022)(/\ + (144) -— 024042]
+ ag1(a12a24 — a14(X + a22))}

= as4{(A + an1)(—a2s642) + 641 (a12a25 — ays(A + az3)}} = 0

or,

4 3
(A +€)[A% + (@11 + az2 + agq)X® + (811022 + ar1044 + G32a44)N?
2
+(@11022044)A — az4a420% — a11a24a49) + ay3a24a4; )
— 22— A A
aj4Q41 G14022Q41 A + G25G42G54 A + Q11Q25Q42054

— G12025G41054 + Q15041854 + A15G22841a5¢) = 0
so that the characteristic equation equals,

4 3
(A +€)[A% + (a11 + @22 + 644)A® + (@11822 + G11G44 + 22644 ~ G24a42 — a14a41)A2
+ (a11822a44 — G11a24642 + @12a24a41 — a14a22a4;
+ agsa42a54 + G15G41a54)A

+ (411025042454 = G12a25G41as54 + 015022041054)] =0

Ciearly A = —¢ is an eigenvalue. For the rest of the characteristic equation
we substitute the original algebraic expressions back in for the a;; components,
at the same time observing that since the equilibrium point (z¥,z%,y!,y5)

solves equations (4.18) we have that

ce™? (k2] + pr) = £
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so that

a4q = —Ee" N +E=E(1— ).

In this manner the characteristic equation becomes,

M+ [(7+ xym) + (2B + pym) — (ae ™7 OF I tN) 4 (1 - e7N)A3
+[(7 + Ky (2B, + pyr) — ae”THEIREN)
+ (7 + mYR J(E(L = e™72) + (2Ba7, + pym — e TTHIRIN)L(] ~ €77
+ (pm(m))(ey"pe ™7 V) + (rat)(cryme TN
+[(1 + 5y ) (2B + pys, — ae TN )(£(1 — 7))
+ (7 + Ky Moz )(cpyme " HY)
+ (= ae~ IRtV (ool )(eryr, e (HY)
+ (123)(2B2h, + Py, — ae”TTFIR N ) eyl e oY)
+ (Razh e~ n)) (cpyh e~ (¢ V)(1 — ™)
+ (naz:ne"("'""‘”;'))(cny:,,e"’("'"\))(e'“’" - 1)],\
+ [(7 + mym)(kaz eI cpyr eI (1 — e77)
+ (naa::nc"("'*""’;'))(Zﬂx;‘,, + pyt — ae—f('ﬁw;.-i-»\))
(cry™ e~V (=™ _ 1)

o — reo=T(VHEY+A) * o—T(v+eyy,) * o—0(e+A)Y(o=TA _ 1)) =
(a — ae Y(kaz),e J(ckyme )e D=0
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Then moving those expressions in the equation that involve exponential

functions in A over to the right hand side of the equal sign we get,

M+ (v + syf) + (2825, + pyl) + EN°
+ [(v + £y )(2B27, + pyr) + (7 4 5y% )€ + (2825, + pyl )EIN?

+ [(7 + sym)(2Bz5, + Py )EIA

— [ae-r(7+ny:"+x) + Ee~MA3

AT G B CR A e

+ (§ae—f(7+ny;.+k)) + (282, + py,‘,,)Ee°°'\ - afe"("*"":"""\)e'“
= Pz (cpyme™ ") = (wz])(cnypme T+ I)N?

+ (7 + kym (2B + pym)Ee ™} + (v + Ky}, )(ae TR )

— (7 + kym Nae TOF IRt NEe =X — (4 4 kyr Y(cp 2 hym e~ HY)
— (@pzmeryne™"*Y) + (prrae TITIR ) ) oyl om0 (H )

— (Kk27)(2Bam + py3)(cryme ™7 H)

+ (kz})(ae™ I (ery; e ()

- (,mm.;‘e—r(vﬂy;.))(cpy:nc—v(ﬂz\))

+ (kazt, e~ TOHRm) ) (cpyt e~ 76+ V)=

+ (icaz:,,e"("'""‘”:"))(cny:,,e"’(‘+"))
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- (fcaz;‘,,e""("'*"‘":"))(c;cy;'e“’(”"))e"f"],\

+ [~ (7 + Kyl ) (sazl,e R ) (cpy, Je 7 HY)

+ (v + ,gy:n)(‘,caz;'ne—f('ﬁxy;.))(cpy:n)e—c(e-h\)e—r,\

+ (Razh, e "I ) (2627, + pyl)(chyme ™ (HY)

— (kazh e " TIR)) (2825, + pyh)(ehyme N )e A

- (naz:,,e"(""*"‘"v'n))(ae—r(7+~r.‘..+»\))(c,cy:n e=o(e+N))

+ (,Caz;e—f(v-fny;.))(ae—r('ﬁny;.+f\))(c,;y:ne—a(e+4\))e—n\
— (a?kz® e~ TTHRYR) ) (eryl e oY)

+ (a® Ic:z:,',,e"(""'"”:"))(cny:,,e-a(“'"‘))e""\

+ (ae—r(1+uv:,+k))( naz:,,e"'(""""v'u))(cny,‘,,e"’(‘"’*))

—{ae~ TSI (cagt, e~ TR ) eyt e (EF N )=

Grouping like terms in A,e~"*,e~?* and e~M™+9) we get,

M4 (7 + ky) + (2825, + pym) + EIN°
+ (7 + 5y ) (2823, + pym + €) + 2Bz, + pym)EIN?

+ [(v + £ym)(2Bz7, + pym )EIA
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= [ae—f(‘y"’“y:")e__ﬂ\ + 66—0A1A3
+ [{(y + Ky + )(@e™T(rHIR) ) e=mA

+{(7 + cym )€ + (2B, + pyn)E — pTi(cpylme™"¢) — ckzlyt e~}

+ {afe""“"”‘”;')}e‘(""”)'\],\?

+ {7+ (e TR o=

+ {(y + cym)(€(28z7, + pym) — (pzrcoyme™))

— (chyme™"* Y apzy, + K2} (2Bam + pyhy) — Kaz),e T(THEVR))
— (cpuise=(razpe™ T oo

— {(ae IR (7 + Ky} )E — prmcnyme ™" ~ ck?zTyn e
- epRTL e + oty e PN

+ {(raz},e T IR ((v + Kz}, )(coyme %)

— (2Bzy, + pyj, — a)(chypme™"))}e™ N e™™ - 1)
(4.19)

We see immediately that A = 0 is a root of the characteristic equation
(4.19). We choose as a Hopf parameter the value ¢, which is the rate at which
prey that are caught by predators are transformed into predator biomass. To
satisfy the Hopf hypothesis, we need a value of ¢, call it cy, for which the
following statements are true:

1) the real part of all eigenvalues, except for that belonging to one conjugate
pair which we call A\y,, and Apy,, must be negative,

2) The real parts of Ay, and Ay, must be zero,
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3) The imaginary parts of Ay, and Ay, are nonzero,
4) As a function of the Hopf parameter c, the derivatives of the real parts
of Ay, and Ay, with respect to ¢ must be nonzero when ¢ = cy.

We immediately see that the augmented system (4.10) does not satisfy
the conditions in the Hopf hypothesis since A = 0 is always an eigenvalue of
the system. However, we suspect that no admissible initial function has any
component in the eigenspace corresponding to this eigenvalue, and that despite
the presence of this zero eigenvalue a Hopf bifurcation does indeed exist in the
augmented system. Relation (4.11) would then ensure that we would have a
Hopf bifurcation in the original system (4.1) as well, at the same value cy of
the Hopf parameter ¢. Numerical evidence seems to give support to the truth of
this conjecture. We should also remark at this point that the invariant integral
condition satisfied by z;(t) and y;(¢) defines for us an invariante manifold, which
may enable us to drop the A = 0 eigenvalue and study the Hopf bifurcation in
the invariant manifold containing the solutions, giving us another approach to

the resolution of the matter of the zero eigenvalue.

4.7. Computer Simulations and Examples

To further investigate the possibility of a Hopf bifurcation in the predator-
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prey model, we consider the specific system,
Zi(t) = 2.0zm(t) — 0.3z;(t) — 0.2y (t)x;(t)
— 2.0z m(t ~ 0.2)e=03%0.2¢=02 " o g Ym(a)ds
Em(t) = 2.0z, (t — 0.2)e0-3%0-2,702 Joosymtards _ 0.122,(t) — 0.6ym(t)zm(2)
i(t) = cym(D)[022:(t) + 0.62m(t)] - 0.43i(2)
— ce™ %y (t — 1.0)[0.22;(t — 1.0) + 0.6z, (t — 1.0)]

Im(t) = ce " ym(t — 1.0)[0.22;(t — 1.0) + 0.6z, (t — 1.0)] — 0.3ym(t)
(4.20)

where ¢, "he rate at which the prey biomass that has been captured by the
predator is converted into predator biomass, is variable. For initial conditions
we assume a constant dm(t) and a constant 6,,(t), with the values ¢;(¢t) and
0:(t) beiné evaluated accordingly.

The figures show the results of numerical computations using subroutine
DELAYS with this example. These phase plane diagrams plot the concentra-
tion of mature prey on the z-axis versus the concentration of mature predator
on the y-axis for eight different values of c¢. Figure 4.1, with a value of ¢ equal
to 0.1, indicates that the interior equilibrium near (2.5, 6.6, 0.67, 1.8) shows all
indications of being stable. As the value of ¢ increases to 0.14 in figure 4.2, to
0.16 in figure 4.3 and to (.18 in figure 4.4, we see that the interior equilibrium
appears to be becoming less stable, with the solutions approaching the equilib-
rium more and more slowly. The equilibrium also moves in the direction of the

point (1.4, 3.7, 0.83, 2.25) in the process.
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Then as ¢ increases to 0.20 in figure 4.5, to 0.22 in figure 4.6, and to 0.24
in figure 4.7, the interior equilibrium appears to destabilize, going from stable to
unstable. The application of several root finders for finding roots of nonlinear
systems to this problem gave iuconclusive results, but they seemed to indicate
that the real part of one conjugate pair of eigenvalues goes from negative to
positive as ¢ increases. Of course, it is very difficult to tell that an equilibrium
is stable or unstable by looking at phase plane diagrams, since a small amplitude
periodic solution is often indistinguishable from a stable equilibrium point when
the real part of an eigenvalue is sufficiently small in absolute value. However, we
can readily see in figure 4.9 and figure 4.10 that a periodic solution to the four
dimensional system may very well exist, as solutions starting sufficiently distant
from the interior equilibrium spiral inwards, while solutions starting sufficiently

close to the equilibrium spiral outwards from the equilibrium.

4.8. Discussion

To summarize, we have shown that system (4.1) is meaningful as a model
for predator-prey population dynamics bofh biologically and mathematically in
that the values that result from solving the system with admissible initial condi-
tions neither become negative, nor do they become unbounded. We also showed
that the equilibrium at the origin is always an unstable “saddle” , and that there
exists an equilibrium in the prey plane that may be either unstable or stable,

depending on whether or not the predator can survive on the prey available.
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We also showed that when the boundary point is unstable, at least one interior
equilibrium point exists.

Looking at the characteristic equation about an interior equilibrium, we
saw that A = 0 is always an eigenvalue of the system, so that the Hopf hypoth-
esis is not applicable. However, numerical simulation indicates that using the
value ¢ as a variable parameter, the system undergoes what appears to be a
Hopf bifurcation notwithstanding the zero eigenvalue. With our example, that
value of ¢y appears to be somewhere between 0.18 and 0.22.

Thus we conjecture that despite the zero eigenvalue that always exists,
system (4.1) undergoes a Hopf bifurcation for properly chosen values of 2 Hopf
parameter, giving us stable periodic solutions of the system for appropriate
parameter values.

Of course it is difficult to judge whether or not the particular parameters
we chose to make up the particular example we investigated have any merit in
the field. For example, the values of 0.2 for the predation on immature prey
and 0.6 for mature prey may appear to be unrealistic. However, it may be
that the prey species strongly protects its young, with the weight of predation
falling mostly on its aged members. This would make this particular example
meaningful in the real world.

As well, there is no particular reason why the prey to predator conversion
factor c is the only choice for the “Hopf” parameter. For instance, it might be

informative to choose the predator gestation period ¢ as a “Hopf” parameter.
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We should also note here that the use of a single value ¢ for the conversion of
prey into predator biomass constant for both immature and mature prey is unre-
alistic. Subsequent models that incorporate stage structure should use different
values of ¢ for immature and mature prey conversion to predator biomass,

It might also be informative to get away from the Lotka-Volterra dynam-
ics that we assumed in our model. One generalization that readily comes to
mind is to make the predator response functions on the immature and mature
prey populations something other than the constants x and p that we used. A
more meaningful choice for predator response functions might be to have the
predation on immatures a function of not only predator concentration, but of
mature prey concentration and immature prey concentration, giving us a func-
tion &(Zi,Tm,Ym). As well, predation on matures could also be expressed as a
function of predator matures, prey immatures, and prey matures, giving us a
function p(z;i,Zm,ym). In this manner, factors such as group defense, protec-
tion of immature prey by mature prey or risk involved to mature prey trying
to protect relatively large numbers of immature prey may be considered. It
may be that study of such generalized systems will have to rely more heav-
ily on numerical simulation, but the richer dynamics may well make the effort

worthwhile.
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Figure 4.1 Predator-Prey Set #5
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Predator-Prey Data Set #5

Prey Intrinsic Growth Rate: 2.0000{

Prey Mature Death Rate: 0.10000

Prey Immature. Death Rate: 0.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.10000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium: Xi = 7.313
Xm = 18.835
Predator Efficiency 0.85557530
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Predator Mat.

Figure 4.2 Predator-Prey Set #6
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Predator-Prey Data Set #6

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000

Prey Imrature Death Rate: 0.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.14000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7.313
Xm 18.835

Predator Efficiency 1.19780542
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Fiqure 4.3 Predator-Prey Set #7
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Predator-Prey Data Set #7

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000

Prey Immature Death Rate: 9.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.16000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7,313
Xm = 18.835
Predator Efficiency 1.36892048
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Figure 4.4 Predator-Prey Set #8
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Predator~Prey Data Set #8

Prey Intrinsic Growth Rate: 2,00000

Prey Mature Death Rate: 0.10000

Prey Immature Death Rate: 0.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.18000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7.313
Xm = 18.835
Predator Efficiency 1.5400355¢4
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Figure 4.5 Predator-Prey Set #9

4

3.6

2:0 4 Z;B 3.2

Predator Mat.
6

, 0:8

0.4
1

0.0 )

0.0 1.0 2.0 @ 3.0 ' 40 @ 5.0 @ 60 ' 70 80 0 10.0
Prey Mat.

Predator-Prey Data Set #9

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000 ‘

Prey Imm7 ire Death Rate: 0.30000

Immatu~ vrey Predation Constant: 0.20000
Mature ¢rey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.20000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7.313
Xm = 18.835
Predator Efficiency 1.71115060
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Figufe 4.6 Predator-Prey Set #10
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Predator-Prey Data Set #10

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000

Prey Immature Death Rate: 0.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.22000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7,313
Xm = 18,835
Predator Efficiency 1.£8226566
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Figure 4.7 Predator-Prey Set #11
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Predator-Prey Data Set #11

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000

Prey Immature Death Rate: 0.30000

Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000

Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.24000000
Predator Immature Death Rate 0.40000

Predator Mature Death Rate: 0.30000

Predator Maturation Period: 1.00000

Boundary E~uilibriun Xi = 7,313
Xm = 18.835
Predator Efficiency 2.05338072
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Figure 4.8 Predator-Prey Set #12
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Predator-Prey Data Set #12

Prey Intrinsic Growth Rate: 2.00000

Prey Mature Death Rate: 0.10000

Prey Immature Death Rate: 0.30000
Immature Prey Predation Constant: 0.20000
Mature Prey Predation Constant: 0.60000
Prey Maturation Period: 0.20000

Predator => Prey Conversion Factor: 0.26000000

Predator Immature Death Rate 0.40000
Predator Mature Death Rate: 0.30000
Predator Maturation Period: 1.00000

Boundary Equilibrium Xi = 7.313
Xm = 18.835
Predator Efficiency 2.22449578
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Predator Mature

Figure 4.9 Predator-Prey Set #10
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Predator Mature

Figure 4.10 Predator-Prey Set #11
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CHAPTER FIVE

SINGLE SPECIES GROWTH WITH STATE DEPENDENT TIME DELAY

5.1. Introduction

In chapter two, a stage-structured model of population growth consisting
of immature and mature individuals was developed and analyzed, where the
stage-structure was modeled by the introduction of a constant time delay. As we
mentioned in the introduction to chapter two, many other models of population
growth with time delays have been covered in the literature. Included in these
investigations are studies by Aiello (1990), Fisher and Goh (1984), Freedman
and Gopalsamy (1986), Gurney, Blythe, and Nisbet (1980), Gurney and Nisbet
(1985), Koselsov (1983), May, Hassell, Conway, and Southwood (1974), Rosen
(1987), and Wangersky and Cunningham (1956). In addition age and stage
structured models using both discrete and distributed time delays, as well as
stochastic time delays, have been considered. Some of the work using models
of these types include Barclay and Van denDriessche (1980), Gurney, Nisbet,
and Lawton (1983), Landahl and Hanson (1975), Tognetti (1975), and Wood,
Blythe, Gurney, and Nisbet (1989).

In Gambell (1985), it was observed that for Antarctic whale and seal
populations, the length of time to maturity is a function of the amount of food
(mostly krill) available. Previous to the Second World War, it was observed
that individual seals took five years to mature, small whales took seven to ten

years and large whale species took twelve to fifteen years to mature. Subsequent
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to the introduction of factory ships after the war and with it a depletion of the
large whale populations, there was an increase in the krill available for the seals
and the remaining whales. It was then noted that seals took three to four years
to mature and small whales now only took five years. Maturation time for large
whales also significantly decreased.

Since the amount of food available per biomass for a fixed food supply in
a closed environment is a function of the total consumer biomass, we modify the
model considered in chapter two to include a monotonically increasing, density
dependent time delay. It is the purpose of this chapter to analyze as best we
can the proposed model.

In the next section, we develop our model. In Section 3, we obtain posi-
tivity and ‘boundedness results. An equilibrium analysis will follow in Section 4.
In particular, we show that multiple positive equilibria can exist (where the con-
stant time delay case only allows at most one), and we obtain criteria for the
uniqueness of an equilibrium and for its asymptotic stability. In Section 5, we

examine the gobal behavior of solutions. A brief discussion follows in Section 6.

5.2. Derivation of the Model
In chapter two, we utilized the system

zi(t) = azpm(t) — yzi(t) —ae™ " zm(t — 1)
(5.1)
m(t) = ae™ " en(t —7) = Bz (2)

where z(t) and z,,(t) represented the immature and mature population den-

sities respectively in modeling stage-structured population growth. There, 7

119



represented a constant time to maturity, and a, 3,y were positive constants.
Integrating the equation for the immature population in system (5.1) under the

assumption that z;(0) = ffr aTm(s)eTds, we get that the number of immature
individuals who are born during the time interval t — 7 to ¢ and who survive

until time ¢ is given by the expression,
t
/ azm(s)e?*"ds for all ¢ > 0.
t—r

Given the invariant intergral condition and the initial conditions of this system
the expression also represents the total population of immatures at time t.
Biologically this represents the fact that z;(t) is the accumulated survivors of
those members of the immature population born between times ¢ — r and t.
Here we modify system (5.1) to account for the observed dependence of
7 on the population density. We then let 7(z; + zm) be an increasing function
of z; + z,» whose range lies in the interval [r,,7y]. Hence we consider the

system, where 2(t) = z;(t) + zm(t),
£i(t) = azm(t) — y2i(t) — ae” TNz (¢ — 7(2(2))) (5.2a)
Em(t) = ae” TNy (¢ - 7(2(t))) - Bk (t) (5.2b)
where z,(t) = pm(t) > 0,—7m < t < 0, and ¢;(t) is defined below. Here,
.= -f;,a >0,8>09>0 and 0 < 7 £ 7(2) £ 7™M < o0o. Since 7(z) is

observed to be an increasing function of population density with a lower limit,

we further assume that £7(z) exists, so that

%r(z) >0, and that 0 <7y <7(2) <M.
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©om(t) represents the number of matures in the pcpulation at time ¢, —7p <
t<o0.

Now, in order for the model to make senss, we must impose conditions
on 7(z(t)) so that t — r(2(t)) is a monotone increa: ug function of £. Thus we

need %£7(z) = 7'(z)#(t) < 1. This is equivalent to,
T(2)(&i(t) + 2m(t)) < 1,
7'(2)(azm(t) — vei(t) - Bz () < 1.

We know that 7'(z) > 0 is true. Then, if 7/(2) =0, we have a constant delay,

so that t — 7(z(t)) is monotone increasing. So assuming 7'(2) > 0,

7'(2)(ezm(t) = 12i(t) = Bz (1)) < T'(2)(azm(t) — Bz, (1)),

provided of course that z;(t) > 0. Thus if 7'(z)(aznm(t)—Bz2,(t)) <1, t—7(2(t))
is monotone increasing. But (azn,(t) — Bz2,(t)) attains its maximum value of

a?/48 when z, = a/28. Thus if
7'(z) < 4B/o?,

t — 7(2(t)) will be monotone increasing.
Now, let 7, be defined so that

0
7o = 7(om(0) + / apm(8)e??ds). (5.3)

~-Ts
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Such a 7, exists, since if we regard equation (5.3) as an expression in which
Ts is a variable, as the left hand side increases from zero towards infinity, the
right hand side will increase, but staying between the values 7, and Tps. ‘The

value 7, so defined may not be unique, so we set

0
Ts = i%f{‘l't ¢ 7o = 7(em(0) +/ apm(s)e?ds)}.

-7t

We then define ¢;(0) = f_o_f. aypm(s)e?ds, which by a change of variable r =

s + 1 and then resubstituting s for r becomes,

vi(0) = / ] apm(s — r,)e"("")ds.
0

In this manner, ¢;(0) represents the accumulated survivors of those mem-
bers of the immature population born between time —7, and 0.

For values of ¢, —7, <t < 0 we understand that z,,(t) = pm(t), and that
zi(0) = v:(0).

Note also that 7(z(0)) = 7,.

5.3. Positivity and Boundedness

In order that our model (5.2) makes sense, we must show that solutions to
the system do not become negative, and that those solutions remain bounded.
Boundedness may be interpreted as a natural restriction on the size of popula-

tions as a consequence of limited space and other resouces.
THEOREM 5.1. Let ¢m(t) > 0 for —ry <t < 0. Then z,(t) >0 for t > 0.
PROOF: Suppose z,(t) = 0 for some value of ¢, Since z,,(0) > 0, by continuity

of solutions, such a value -{ t must be stictly greater than zero. Let ¢* = inf{¢:

T
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t > 0,zm(t) = 0}. Then from equation (5.2) Em(t*) = oe~ TGN (g, (2" —
7(2(¢*))). Since 7(z) > 0, t* —7(z(t*)) < t*, implying that z,(t* —7(2(¢t*))) > 0
by definition of ¢*. This in turn implies that z,(¢*) > 0, giving us a contra-

diction. Therefore no such t* exists, and the theorem is proved.

THEOREM 5.2. Let pm(t) > 0 for —ryy < t < 0. Then there exists a oy =

8m(pm) > 0 such that z,(t) > ém for all t > 0.

PROOF: Let 6m(¢m) = 1 min{inf_ry <<y pm(t),@f~1e~ 7™ }. Then assume there
exists a t* such that t* =inf{t: ¢t > 0,zx(t) = 6m}. Since z,(0) = p,n(0), and

¢m(0) = 28m, by continuity ¢* > 0. Then,

Em(t*) =ae TN (1 — 7(2(t%))) — Bk (¢*) >
ae”T™™§,, — (62, >
- | 1 _
ae”TTM§ . — Eae VMG = Eae TMEL > 0.
Since z{¢*) > 0 is impossible by definition of ¢*, we have a contradiction. There-

fore no such t* exists and z,(t) > dm(¢m) for all ¢ > 0. This proves the

theorem.

THEOREM 5.3. Let om(t) > 0 for —7a¢ < t < 0. Then there exists Ay =

Amn(pm) > 0 such that z,(t) < Ay fort > 0.

PROOF: Assume the contrary. Our proof is split into two cases.
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(a) First suppose that £m(t) > 0 for all ¢ > T for some T > 0. Then for

t>T+ 1y,

0 < im(t) = ae™ "Gy, (t - 7(2(2))) - Bz?,(t)

< ae” Oz, (1) ~ B3 (2)
since Tm(t — 7(2(t))) < zm(t). This in turn implies that
Zm(t) < aﬂ-le—'rf(z(t)) < aﬂ-le-'”'m

for t > T, since z,,(t) > 0, giving us our desired result.

(b) Now assume that there exists a sequence {t,}32, such that zn,(t,) =0,

ans such that z,(¢,) is a local maximum where z,(¢) < z,n(t,),

0<t<ty,, for all n. Then at t = t,,

0 = Em(tn) = ae~ TNz, (1 2(2(t,))) — Bz2,(tn)

< ae""(‘("'))zm(t,.) - .Bz?u (tn)

which again implies that z,(ts) < afle~17(3(tn)) < qf~1e=1Tm

Thus Ap(pm) = max{sup_,,, <¢<co ¥m(t),af~ """} This proves the the-
orem.

Now, Theorems 5.2 and 5.3 show that, given an admissible set of initial
conditions, solutions zn,(t) to system (5.2) will remain positive and will be
bounded. We can also prove that solutions z;(t) will be bounded above by a

bound that depends on initial conditions.
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THEOREM 5.4. Let om(t) > 0 for —7n <t < 0. Then there exists a Ai(pm) =

azi(0) + ay~*Ap, such that zi(t) < A; for all t.

PROOF: First we observe that since z;(0} = ff , aem(s)e7’ds as discussed in

r

the previous section, A; is indeed a functional depending only on ¢n(t). Then

from system (5.2},
Ei(t) = azm(t) — vxi(t) — ae~ 1Tz (t — 7(2(1))).
Integrating this expression we get for ¢ >0,

¢
zi(t) = ae~"z;(0) + ae™" / e’z m(s)ds
o

t
—aem [ e Do~ (6.
0
Hence

zi(t) < ae™"zi(0) + ae™* /o ‘ e’z (8)ds
< ae~"z;(0) + e -/; t Ameds
= ae~"7;(0) + ae "'y Ap(e™ ~ 1)
= ae~"z{(0) + ay ' Am(l — ™)

< azi0)+ a7 Anm

proving the theorem.

Finally, we would like to prove that z;(t) > 0 for all values of . However,

this does not seem to be possible without placing additional restrictions on
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either the initial conditions or on the delay function 7(z). For example, if we
assume that 7/(z) = 0, then we have seen in chapter two that z;(t) remains
positive for all ¢, but then we have no state dependence of the time delay.
However, we can impose less stringent conditions on 7'(z) that for a given
set of initial conditions will give us the positivity of z;(t) that we need while

still maintaining some of the character of the state dependent time delay.

THEOREM 5.5. Suppose 7'(z) > 0 is small enough .o that the inequality
bm f:—r,,. e’ds > A f:‘-r'" U;i—t;{%;ye""ds holds for all values of t. Then z;(t) >

0 for all t > 0.

PROOF: Suppose zi(t) = 0 for some value of ¢. Then let t* = inf{t > 0 :
z;(t) = 0}. Since z;(0) > 0, t* > 0 by continuity. Then integrating equation

(5.2a) we get,

“
0 = z;(t*) = e~ 2;(0) + ae™"" / €7’z pm(3)ds
0

_ ae__yto / e.,,e—f(z(a))zm(a — -,-(-z(s))ds.
[1)

Since zi(t*) =0 and since z;(0) = ff r, @€' Tm(s)ds this is equivalent to

0 e
ae""'/ ez ,(s)ds +ae""‘/ e’ z,(s)ds
- 0

=ae” " / eYoTEOM g (5 — 7(2(2)))ds
0

or,

‘. L]

/ e’z (8)ds =/ e?(0— (@ (s — r(2(s)))ds. (5.5)
-Ts 0
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Substituting r = s — 7(2(s)) into the right hand side of equation (5.5) and

then resubstituting r for s we get,

¢* t*—r(z(t")) Ya
/ e"‘zm(s)ds =/ ._E_f_'.'.'_('_s.)_.d

- —r, 1—7'(2)z(s) .
Now, since z;(t) > 0 for t < t* we have t — 7(z(t)) an increasing function
of ¢t for ¢t < t*, so that 1 —7'(2)2(¢t) > 0 holds for -1, <t < t* —7(2(¢*)). Since

Tm(t) > 0 as well, we get the inequality

¢ ¢ =Tm e‘”zm(s)
¥s vds < Im\: )
/ e’zp(8)ds < [_r‘ T r'(z)z‘(s)ds

-1,

This gives us,

</t:-.'-rm e T m(s)ds < ‘/:.—f"‘ (T—_—;,-(l-&-z;)- 3 1) €7 m(s)ds

- (5.6)
3 -Tm 1"'?:'(8) o
- L, e
Now the left hand side of inequality (5.6) satisfies
12 t°
/ e’z n(s)ds 2> 6m eeds. (¢.7)
P —Tm t*~Tm
The right hand side satisfies,
£-tm  r(2)i(s) £=rm '(2)z2y. .
— N7 o8 < ——l A
/ I AEOMEA /. ST r ()
But 7'(z) > 0, and t'(2)#(t) > 1, so since %; is an incressing » - for

] o
1 <z < oo, T:Jr%-'f:-()-;)- is maximized when #(t) is at its maximum value,

which as we saw in the previous section is #(t) = a?/48. So we have that,

' =Tm T'(2)#(s) ot a27(2)
3 < Y8
/.r. AT )i @S Am /_ F—arr(z)’ o
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is true. Thus we have the following inequality,

£=rm  p(2)i(s) .,
/_ . 1—r'(t)é(s)e1 Zm(s)de (5.8)

=T a21.l(z)

<A —_ N
=-=m -, 48 — a?71'(2)

e’’ds

Finally putting inequality (5.6), inequality (5.7) and inequality (5.8) to-

gether we get that at ¢*

t* t* -7 2.1
™ atr'(2)
é eds < A —eTds
" t® —~Tm " -7 4ﬂc217.'(z)

must be tzue. This contradicts the hypothesis of our theorem, so no such ¢*

can exist and z;(t) > 0 for all ¢ > 0. This proves the theorem.

Whether or not theorem 5.5 imposes conditions on 7/(z) that are too
stringent must remain the subject of further research. For the rest of this
chapter, however, we must assume that z;(t) is positive for all £. In any case,
since our conditions for z;(t) remaining positive depend in part on 6, (¢m) and
on Ap(pm), a given set of initial conditions for system (5.2) may or may not
be admissible depending on the system parameters. Thus we achieve sufficient
conditions for the positivity of z;(t) by placing restrictions on both 7'(z) and
on the initial conditions.

However, noting that Theorem 5.5 gives only sufficient conditions for an

initial function to give a meaningful solution, we can also state the following
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THEOREM 5.6. Suppose e~ 7™ < {*:-. Then z;(t) >0 for all t > 0.

PROOF: From the proof of Theorem 5.5, we know that if t* = inf{t > 0 :

z;(t) > 0} < 0o, then equation (5.5)

/ ! €7z m(s)ds = / U eomr oMz (5 — 1(2(s)))ds

~Ts "0

is true. The left hand side of equation (5.5) satisfies,
t.

bmy 2 (€™ —e" ") < / e’z (s)ds (5.9)

-Ts

by substituting the lower bound é,, for the function z.,(s) and integrating. In

a similar manner, the right hand side of equation (5.5) satisfies,

/ - TGNz, (s~ 7(2(s)))ds S AmyTle T (€™ 1), (5.10)
0

Now, let

fi(t) = bmy (€M - e7™™),

and

fo(t) = Ay~ le” T (e? = 1).

As well, fi(t) = 6me™ and f}(t) = Ame™7™me™. Then, if e”7™ < %’:— were
true, then fi(t) < fI(t) would be true for all t. Since f2(0) < f1(0) is true, then
f2(t) < fi(t) would have to be true for all t if e~7™ < 6,,/A,, were to hold.
But equation (5.5) together with equation (5.9) and equafion (5.10) imply that
£1(t*) < f2(t*). Therefore if e™7™ < §,,/Ap then no such ¢* could exist, and
zi(t) = 0 would be impossible for any t. This proves the theorem.
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Theorem 5.5 seems to imply tkat as 7/(z) gets larger, the more restricted
becomes the set of admissible initial functions, and that if 7'(z) approaches
the value 48/a? for some value of z(t) that the set of admissible functions
approaches the null set. Theorem 5.6, however, seems to imply that there will
always be some initial function that gives a solution to the system where z;(t)
remains positive, independent of any behaviour of 7(z).

We are not able, however, to bound z;(t) below by any value strictly
greater than zero. Just what conditions we must impose on the system and its
initial conditions to get such a strictly positive lower bound for z;(t) remains a
subject for further study. However, in section five we will see that the limit a
t approaches infinity of z;(t) is strictly positive given some simple assumptions

on 7(2).

5.4. Equilibria: Existence and Lecal Stability.

There are only two types of equilibria, namely the origin (denoted Ey(0,0))
and one or more interior equilibria (denoted E(#;,%m)).

Clearly there are no axial equilibria other than Ey. This is obvious biologi-
cally as well since the mature population cannot survive without the immatures,
and vice versa.

To show that E always exists is equivalent to showing that the algebraic
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system

L I T ae~ "z =0 . (5.11)

ae~ " Bz =0 (5.12)

always has at least one positive solution. Let I'; be the solution curve for
zi 20, Z;m > 0 of equation (5.11) and let I'; be the solution curve for equation
(5.12).

Let us first consider the solution curve I';. This curve is strictly decreas-
ing, passing through (0,a) in the z; — 2 plane, where a is the unique positive
root of Ba = ae~17(8), To show that I'; is strictly decreasing, we compute

gﬁm along I';. From equation (5.12) we have that z,, = af~'e~7"(3), so that

differentiating equation (5.12) we get,

dmm = -1 ‘YT(Z) dzm
s af™ ve ()1 + =— o
or,
dzrn -1 r(z) .t ()t
(1+ aflye” I (2)) = —af T yeT T T(2).
Hence,

dom _ a'ye"”(‘)'r’(z)
dz; = B+ aye~(Ar!(2)’

which is always less than zero since 7/(z) > 0 is assumed. Further, z!igloozm(z,-) =

b along I'z, where b= g"lae~1™,
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I'; has the following properties. (0,0) € I'y. Further, on I'y, lim z,{z;) =
Ti~=00

co. Hence I'y and I'; must intersect at positive values, establishing the existence

-

of E.

It is not necessarily the case that E is unique, since I'; and T, may
intersect at more than one point.

It is therefore desirable to obtein criteria for there to exist a unique equi-
librium. Both I'; and T'; define z,, as a function of z;, z,, = gi(z;) and
Zm = g2(2:), respectively. Then E will be unique provided 91(:) > g5(&:) for
every such E, since if there were more than one E, the reverse inequality must
hold for alternate equilibria.

Now from equation (5.11) we have that azy, —vz; —ae~ "9z, =0 along

I';. Hence along this curve,
Tm(a — ae""’(")) = yz;.

Taking derivatives with respect to z; gives us,

drm, —v7(z) —yr(z) .t dZpm =
To; a - ae )+ zmavye '(z)(1 + d:z,-)—7
so that,
% (o~ ae™") + arene 7 (2)] = 2(1 ~ azme™TI(2))
Ty

which gives us,

v(1 - azme"()7(2))
a(l — e=77(2) + yz e T3 7I(2)) !

g1(zi) = (5.13)
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From equation (5.12), we saw that

ave~T(37(z)
Bt are@r(s)

9a(zi) = - (5.14)

where in equation (5.13) and equation (5.14), z,, is the appropriate function of
z;.
Now from equation (5.12) and equation (5.11) we get the relations,

e~ (® = a-lﬂima
(5.15)
= 7—l(a - ﬂém)ima
and also 1 - pa2 )]
tay o ML= BELT(E
R ROk

(5.16)

gy = — YEmT(E)
92(3'!) = 1+7im1.l(2) .

Hence g1(&;) > g3(&:) provided

1l1 - a4 (2)] Yom'(3)
o= fom +BrEEr () . THrEmr () (5.17)

\

Now from equation (5.12), clearly £,, < af~}. Hence a—pB%,+B8v32,7'(3)

Bv£2,7'(2) 2 0. Hence inequality (5.17) is equivalent to
(1 +72mt'(2))(1 — BELT'(2)) > EmT'(£)(—a + BEm — BYERT'(2)).
But the left hand side of this equality becomes,

14 y8m7'(2) = BET'(2) — ByEL,T'(2)%,
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or
14 Em7'(2)(7 — Bim) — Bya%,T'(2).
Thus the inequality becomes,
14 8m(y = BEm)7'(2) = B2 (2)* > Emt'(2)( = a + BEm — Byi2,T'(2)),
which by combining terms gives us that g}(%;) > gh(%;) provided,
14+ 2n7'(2)(a+v—2B2m) > 0. (5.18)

We are now ready to state and prove a theorem giving criteria for unique-

ness of F.

THEOREM 5.7. If any one of (i) v > a; (ii) &m < %5 for all #m; (iii)

T'(z) < mﬁz—i’.‘-m holds, then E is unique.

PROOF: If (ii) holds, then inequality (5.18) is valid. Since #m < af7}, if (i)
holds then (ii) holds. Finally, it is clear that if (iii) holds, then inequality (5.18)

is valid. This proves the theorem.

We carry out as much as we can a stability analysis of the equilibria
noting that the linearized stability theory for state dependent delays is not yet
completely developed. The following analysis, then, is only formal in nature.
Lev E*(z},z},) be an arbitrary equilibrium. Then the variational system of
system (5.2) about E* is given by

A=)\ _(—7+& atf ) (wi(t))
dt \ zm(t) —§* 2Bz, - ¢ Zm(t)
0 —ae~(z%) zi(t — 7(z*))
tlo aemm) J\zmt-r(z) )
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where

£* = aye TG H(2N)ak,. (5.20)

This leads to a characteristic equation given by

,\1 + 7 — E‘ ae_r(z.)(x‘f‘y) -— - {'

det | e T A4 280% 4 £ — ae-TEIOHN | =

0. (5.21)
For the equilibrium Ey(0,0), clearly £* = 0 and equation (5.21) reduces to
(A +9)A - e~y =g,

A\ = —v is one of the eigenvalues. All other eigenvalues are given by solutions

of

A= ae‘fm('\""f),

which always has a real, positive solution. Hence E; is a saddle point.

For any interior equilibrium, E(;,#,,), we set
£ = ave™ "D (3)im = ByiZ r'(3).
Expanding the characteristic equation (5.21) gives us,
A% + [+ 2B2m — ae” TN

+ (€ + 285 — ae~ DN _ §(€ 4 205, — aeT@OHN

= €(—a — € + ae~T(ATHA)
which is equivalent to,

A2 4 [y + 283 m — ae" DN 4 y(€ + 203 — ae B+

- é(zﬂim) = —aé
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so that

X+ [y + 282 m)A + 1(€ + 2B%m) — £282m + af

= ae"(i)('\""’))(/\ +7)
Then, since £ = aye~ "I 7!(5)i,, = Byi2,1'(5) we have

A2 4 [y + 282 m] A + BVEm[VEmT'(2) + 2 - 2822, 7'(2) + aim1'(2))

= Bime "I (A + )

which gives us
A2 4 [28%m + YA + BVEm[2 + Em(a + ¥ — 2B%,)7'(2)]

(5.22)
= BEme” "IN\ 4 7)

as the characteristic equation.
In chapter two, where 7'(z) =0, it was shown that E is globally asymp-
totically stable. Our first stability result for a density varying time delay is

that if 7/(2) = 0, local asymptotic stability holds.

THEOREM 5.8. Let 7/(3) =0. Then E is asymptotically stable.

ProOF: If 7/(2) = 0, the characteristic equation (5.22) can be written as,
A2 4+ 2BEm(A+7) + YA = Bimie”TENA + )

or,

(A +7)(A +2B8m — BEme™TER) =0, (5.23)
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Again )\ = —« is one eigenvalue, and the others are given by the equation
A+ 20, = Bime T, (5.24)
From equation (5.24) we compute the real parts of A and get

Re A+ 282y, = Bige1T(AIRe A og (r(2)Sm })

< Bim.

Hence Re A < —f%,, < 0, proving the theorem.

We now consider the case where 7/(2) > 0. We let A = u+iv and separate

the characteristic equation (5.22) into real and imaginary parts giving

p? = V2 +(28%m + 1) + 0 = Bime T#[(y + p) cos #v + vsin 7]
(5.25)
2uv + (2B%m +7)v = Bime™ v cosfv — (y + p)sin v,

where
T= 77(2)7 n= ﬂ'yim[z + im(a +9- 2:357"')7"(2)]’

We will think of n as a parameter which varies with 7'(£). When 7/(2) = 0,
then 7 = 28v%m, and for this value of 5, E is asymptotically stable.

Suppose, now that there is a first value of 7'(2) > 0 such that for this
value = 7 gives us that u = 0, so that E loses its stability. Then equation
(5.25) becomes

v — ij = —B& [y cos v + vsin v
(5.26)
(2B%m + 7)v = BEm|v cos fv — vsin Fv).

Squaring and adding equation (5.26) gives the equation

v +[(2BEm +7) = 2002 + 7 = B%i%, (v +7°)
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or

vt + (36787, + 4BvEm + 4* - 270? + [7? - B*y232] = 0. (5.27)

In order for such 7} o exist, equation (5.27) must have real roots. He::ce we

can now prove the following theorem.

THEOREM 5.9. If either (i) #m < %E or (i) 2m > X and 7'(2) <

ﬁm(zﬂfm_ ==y holds, then E is asyrr ptotically stable.
PROOF: After substituting for 77 equation (5.27) becomes

v + [30%22, + 4BvEm +7° — 2B72m(2 + Emla + ¥ = 288 5)7'(2)))V?
+ ﬂ272m3,.(4 + 45:,,,((1 + 7' - 2ﬂ5m)7'(2) + [-i'm(a‘ +7- 2ﬂ5m)7'(2)]2)

- B%4%2% =0.
Then, combining like terms, and rearranging,

vt = 2ByE5(a + 5 — 28Em)T'(2) + B2y’ 2 (e + v — 268m)7'(2)]
+ [38%2% +7v* + 3627’2}, + 487220 (o + v — 2B m)7'(5) = 0.
so that we get the relation,
f(*) = W* = ByEhr'(2)e + 7 — 288m)* + 3%}, -+ 7*)V°
+ 3629287, +46%9* 5] (a + v - 20Em)r'(2) = 0.

Observe that the first three expressions in f(v?) are always positive. So,

if 2, < 921%1 the last expression is also positive since £, > 0, 7/(2) > 0 by
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assumption, and (a + v — 282,) > 0 will be true. Hence f(¢2?) > 0, and no
such # can exist.
Now, if &, > 2EX %5, then (a+v—2B%m) < 0. Then if '(z) < 3(Em(2BEm—

a —+)) we have,
394755 + 45 e (k7 = 22 (8) 2 3R, — 4578, - o= =0,
m

Since the first two terms of f(v?) are positive, then f(¥?) > 0 must hold. So if
either (i) or (ii) holds, then f(#?) > 0 for all »? > 0 and equation (5.27) has no
real solution. Then for that value of 7/(£), 4 = 0 is impossible. Hence, since
4 < 0 when 7/(2) = 0, by continuity, u < 0 for that value of 7/(2) proving the

theorem.

We note that in the case that E is not unique, unstable (saddle point)

equilibria must exist.

5.5 Global Behavior of Solutions

In this section we are interested in obtaining some global properties of the
solutions of our model. In particular, we wish to ascertain that their behavior
is reasonable provided the initial inputs are reasonable.

The first results show that if the mature population remains below or

above a certain value for length of time 74, it will do so from then on.

THEOREM 5.10. Let z(t), zm(t) be a solution of system (5.2).
(i) I there exists t, > =Ty, such that z,(t) < af~le™ "™ fort; <t <ty +7m,
then z,(t) < af~le™ 1™ for all t > t.
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(ii) If there exists t > —7m such that zm(t) > af~le~ "™ fort, < t < ty+7u,

then zy,(t) 2> af~le™ "™ for all t > t,.

PROOF: We prove the result for case (i). The proof of case (ii) follows analo-
gously. Suppose there exists t* > t; + ) such that zm(t*) = af~le~ "™ and
Zm(t) < af~le=7™™ for t; < t < t*. Then Zm(t*) 2 0. However, from system

(5.2),

Zp(t™) = ae"""(‘)zm(t' - 7(z)) = B2,(t*)
= ae" "z, (t* - 7(z)) - a?f " le 27"

Sae” " zn(t* —7(2)) —afle™7™"] <0,
a contradiction.

Fsorn this theorem, the following corollary follows immediately.

COROLLARY 5.11. (i) If pmit) < afle™ "™, —7p <t <0, then zp,(t) <
af~le="™m for all t > 0. (ii) If pm(t) > af~le "™, —1py < t < 0, then

Tm(t) 2 af~le” ™ for all t > 0.

In the case where we know that z,(t) is monotone, then we can show

that the limit as ¢ — 0o ui z,(t) lies in a certain bounded interval.

THEOREM 5.12. Suppose zm(t) is eventually monotonic. Then aff~le™ "™ <

limymoo Zm(t) < @B~ le™ 1™,
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PROOF: Since z,,(t) is eventually monotonic and zm,(t) is bounded, there exists
0 < Z,, < oo such that ‘lirgo Zm(t) = Zm, tlir& Zm(t) = 0. Hence from system
(5.2), taking the limit superior as t — co, we have that,

—yr(Hm zi(t)+2m)
0=z, (ae 7r(‘-°°° =il - BZn).

Thus Z, = af~ e~ (liMmco Zi(t)+Zm), 0 that af~le™ "™ < 7, < af~le~ 1™,

proving the theorem.

We are now in a position to state bounds on the eventual behaviour of

Tm(t), independent of admissible initial conditions.
THEOREM 5.13. Let (z;(t),zm(t)) be a solution of system (5.2). Then

afle” ™ < lim infz,m(t) < lim supzm(t) < af~le” 1™, (5.28)

PROOF: If z,,(t) is eventually monotonic, the result follows from Theorem 5.12.
Hence we assume that z,(t) is oscillatory. We prove that limsupz,(t) <

t—o0o
af~le=7™m_ The other inequality follows analogously.

Define the sequence {tx} as those times for which z,,(t) achieve a maxi-

mum, i.e. Zm(t) =0, Zm(tx) <0. Define
Zm = limsup{z,(ts)}. (5.29)
k—o0

Then 0 < &, < 00 and limsupzp,(t) = Em.
t—00

If 2n < af~le~7m, we are done. Hence assume that

Em > af"le” ™™, (5.30)
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Then from system (5.2), 0 = @m(tx) = ae™ YNz, (tx — 1(2k)) ~ Brm(ts)?,
where 2x = z;(ti) + 2 (te)-

We now choose a subéequence of {ti} relabelled as {ti} so that klim Tm(te) =

- 00
Em and tg4;1 = tx + 7M. We then choose a further subsequence of {t;}, again
relabelled {t;} so that lim z; = %, where 7 = limsupz;.
koo k—oo
Now let z# = li:n SUpTm(ty — 7(2x)) for this subsequence {tx}. We choose
—00

a final subsequence of {f;}, once again relabelled {t;}, so that
Bm zp(te — 7(2:)) = ¥,
k—o0

Now from the definition of 7, and inequality (5.3C), we gei, taking the

limit as k — oo,
0= e " Oz# — 832 < ae” " (=% - F,).

If 2# < %,,, we have a contradiction.
Hence we assume that xﬁ > Zm. Then we have that for each k, we can
choose a value ¢; such that &p,(t;) = 0, #m(t;) < 0, and limsupz,,(¢;) > z# >
i—00

im- But this contradicts the definition of #,, in expression (5.29), so z¥ > z,,

cannot be true. This eliminates the last possibility and proves the theorem.

We are now in a position to use the above estimates in obtaining estiinates

on the z;. We first note that we can find T'(¢) > 0 so large that

afle™ ™ e < zp(t) < afTle” V™ 4 (5.31)
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for given € > 0 whenever ¢ > T. Then the first equation of (2.2) can be written

in the integral equation form
t

zi(t) = e~ Dizy(T)+a / "D (2, (s)—e" "Nz, (s—7(2(s)))ds. (5.32)
T

Although inequality (5.32) is valid for all ¢, we will utilize it only for those

t>T4 M.

THEOREM 5.14. Let (zi(t),zm(t)) be a solution of system (5.2). Then

limsup z;(t) < a?f~1y~}(e™7™ — e721M),
t——00

PRooF: Utilizing inequalities (5.31) and (5.32), we get for t > T + T4y,

o

zi(t) € e~ D z(T)+a / e~ (af™ e 4e—e” 1™ (af " ™M —¢))ds],
T

(5.33)

where € > 0 is arbitrary. Hence from equation (5.33) we get that

limsup zi(t) < limsup e"""‘n.g;é(T)
t—00 t—00
+ limsup ae‘“’("T) [Qﬂ‘le""lfm - aﬂ-—le-2~/ru)
t-—00
t
+e(1+e” ™)) / =T
T
= [azﬂ“l(e"‘"m - e—27ru)
¢
+ ag(l + e~ 7™)] limsup e~ 7= / e70=T) 4g
t~+00 T

=y a?B " (e~ 1™ — e~ 2™M) 4 ag(1 - e~ T™)|(1 - ‘linoloe"“’("'T))

=a?f 7y (e "™ — e”2TT™) 4 ay~leg(l — e77™),

Siiice € is arbitrary, the theorem is proved.
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Similarly we can obtain a lower bound on z;(t).

THEOREM 5.15. Let Ta < 27m. Let (2i(t),zm(t)) be a solution of system (5.2).

Then li}nyz,(t) > 0238—17—1(6—7"” —e=2Tm ).

PROOF: The proof for this theorem is symmetrical to the proof of theorem 5.14.

In this theorem for the lower bound, we require that 7 < 27, in order for
the lower bound to be positive. Otherwise we do not have any new information.
That is, if it is the case that 7pr — T > Tm, (too large a spread) we are unable

to obtain an explicit limiting lower bound on z;(t).

5.6. Discussion

The ‘main purpose of this chapter was to analyze a model of stage-structured
population growth where the age to maturity is state dependent. It was found
that there always exists a positive equilibrium, but unlike the constant delay
case, this equilibrium may not be unique. Criteria for uniqueness were obtained.

In Section 5, we obtained explicit bounds for the eventual behavior of
z;(t) and z,(t). These bounds were in terms of 7, and 7). In the case that
TM = Tm, i.€. in the case where our system reduces to the constant delay
case, then tl_x.rg (zi(t),zm(t)) exists and tends to (#;,Zsm) (which is unique),
thus incorporating the results of chapter two. We should note that theorem
5.15 allows for the possibility of the number of immatures, z;(t), becoming
arbitrarily small if 7y < 27,. Neither our requirement that 7'(z) < 48/a® to

avoid retrogression of matures intc immatures, nor our requirement for theorem
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5.5 that 6, f:_,_m e'ds > Ap f_‘_::"' Tf'g;’;%%;;e"‘ds for all ¢ precludes 73y from
being less than 27, since for any difference 7ar — T, 7'(2) can still be made
as small as we need to satisfy our requirements for a valid model. In any case,
theorem 5.6 assures us that we can find admissible initial functions for a wide
variety of cases.

We should also note that the requirement that 7/(z) < 48/a? to avoid ret-
rogression and the requirement that ém ft‘-f... e~ ds > Ap f:::"‘ ;3‘{2—:;-(,5,%;;3"'113
in theorem 5.5 that gives sufficient conditions for the positivity of z;(t) are
linked; as 7'(z) approaches the value 43/a? where retrogression of mature and

immatures occurs, the set of admissible initial functions allowed by that theorem

approaches the null set.
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APPENDIX ONE
Documentation for subroutine DELAYS
SUBROUTINE DELAYS (FEVL, G, FINEVL, N, NTD, IWD1, IWD2,
TINIT, TSTOP, X, H, IDIG, IND, WK1, WKZ2, WK3, WK4, WK5)
SUBROUTINE NAME: DELAYS
SUBROUTINE LIBRARY: MATH:DELAYS.LIB
SUBROUTINE TITLE: Solving Systems of First Order Retarded FDE's with
Continuous 1Initial Conditions and Delays Bounded
Away from Zero and Infinity
PRECISION: DOUBLE
ORIGIN/AUTHOR: Walter G. Aiello, Department of Mathematics, UQV
DATE: October, 1989
SOURCE LANGUAGE: FORTRAN
PURPOSE: Subroutine  DELAYS uses an Adams-Moulton fourth order
predictor-corrector method with varying stepsize to solve the first
¢der system of retarded FDE's of the form,
X' = F(T, X(T), X(G,(T,X)) ,..., Z(G,a(T.X))

Where X is an N-vector, G, is a function from N+1 dimensional space to
the time domain, and F is the defining function which gives X', as a
functiorn of T, X(T), and the X(G,}'s, for i = 1,...,NTD. Notice that
the time delay functions G, can depend on both the independent and
dependent variables, T and X{¥). Here N is the number of equations in
the system, and NTD is the number of time delays.

The stepsize H is checked at each step to ensure it is small
enough for convergence. If not, the stepsize is cut in half. The

stepsize may also be doubled in some cases to improve speed without
sacrificing accuracy.

USAGE: In program, CALL DELAYS(FEVL, -G, FINEVL, N, NTD, IWD1, IWDZ2,
TINIT, TSTOP, X, H, IDIG, IND, WK1, WK2, WK3, WK, WK3)

Compile, then $RUN -OBJ+MATH:DELAYS.LIB, vhere -OBJ is the
compiled object program.
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PARAMETER LIST: (DOUBLE PRECISION ARGUMENTS)

FEVL

User supplied SUBROUTINE that evaluates the derivative of
each of the N components of X as a function of T, X(T), and
X(G,(T,X(T))), wvwhere i =1,...,NTD. It must be of the
following form:

SUBROUTINE FEVL(T, X, XDEL, F)
DOUBLE PRECISION T, X(#N%), XDEL(#*NTD#,*N#%), F(%N%)

where *NTD# is the actual number of time delays, and *N#% is
the actual number of equations 1in the system. X is the
dependent variable described below, XDEL returns the values
of each of the N components of X at each of the NTD time
delays, and F returns the derivatives of X back to the
calling program. F must be defined by the user, being a
function of T, X, and XDEL. The time delays are given by
XDEL, where XDEL(i,j) refers to the i'th time delay of the
j'th conponent of the X wvector. FEVL must be declared
EXTERMAL Dy the user in the calling program,.

User supplied@ FUNCTION program that evaluates the I time
delays from time T for a given value of X. G must be bounded
away from zero, must have a fin.ite upper bound, and it must
be in the following form: .

DOUBLE PRECISION FUNCTION G(T, X, 1)
DOUBLE PRECISION X{*Nz), T

where *N# is the number of equations in the system, and
where 1 is supplied to the function routine by the calling
program to indicate which time delay is to be evaluated. The
user must have G as being a function of T, X, and I in the
following manner: ’

IF (I .EQ. 2) G = gz(T, X)

IF (I .EQ. NTD) G = gn.4(T, X)

G must be declared EXTERNAL. by the user in the calling
progran.
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FINEVAL User supplied SUBROUTINE that evaluates each of the N

NTD
IWD1
IWD2

TINIT

TSTOP

X(N)

IDIG

IND

components of the initial function at time T. FINEVAL must
define an initial function FINIT that is continuocus on its
closed domain of definition, and it must be in the following
form:

SUBROUTINE FINEVL(T, FINIT)
DOUBLE PRECISION T, FINIT(*N#)

e e

where #N* is the actual number of equations in the system.
FINIT returns the N components of the initial function
evaluated at time T to the calling program, and must be
defined in the subroutine by the user. FINEVL must be
declared EXTERNAL by the user in the calling program.

Number of eguations in the system of FDE's

Number of time delays in the system of FDE's

Workspace dimension. Set equal to 6#(NTD+1)

Workspace dimension. Set equal to 3#N + 1

On INPUT: Starting point of independent variable.
On OUTPUT: Stopping point of independent variable.

Stopping point of independent variable; value at which
solution is desired. -

N-vector of values of components of dependent variable. On
input initial values are given by the initial function
FINEVL. On output X contains the computed values of the
dependent variable X at time TSTOP

Initial stepsize, may be changed by program

Desired number of digits accuracy

Indicator. To be set to 1 for first call. Program will set
IND to 0 for subsequent calls in order to indicate that
computed values of X are stored in history arrays.

Work area dimensioned to (10000, N)

Work area dimensioned to (10000, N)

Work area dimensioned to (N, IWD1) where IWD1 = E*(NTD+1)
Work area dimensioned to (NTD,IWDZ) where IWD2 = 3sN + 1

Work area dimensioned to (16%N)
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REMARKS:

EXAMPLE:

1. Typically, H will be set to a value somewhere between
10-5 and 10°%, but in any case H must be smaller than the
minimium value the time delay can achieve. The program will
increase H to a maximum value of (TSTOP-TINIT)/10. So if H
is initially set to too small a value, the storage tables
containing past information are likely to overflow. If such
an overflow occurs, one should either increase the stepsize
H, and/or decrease the number of digits accuracy IDIG.

2. The desired number of digits accuracy IDIG is only a
relative figure. One may get more, or less, accuracy than is
reflected by IDIG. In general, increasing IDIG will increase
accuracy, and decreasing IDIG will decrease accuracy. For
some systems too small a value of IDIG will cause problems.
Generally, a value of IDIG less than 8 is indicated.

REAL*8 X(2), T, TSTOP, TINCR, H
REAL*8 WK1(10000,2), WK2(10000,2), WK3(2,24), WK4(3,7), WK5(32)
INTEGER N, NTD, IWD1, IWD2, IDIG, IND

EXTERNAL FEVL, G, FINEVL
N .

= 2

NTD = 3

IWD1 = 6% (NTD+1)
IWD2 = 3N + 1
T = 0.D0

TSTOP = . 1D0
TINCR = .1D0

H = .0001D0
IDIG = 7

IND = 1

DO 3000 K=1,5

CALL DELAYS(FEVL, G, FINEVL, N, NTD, IWD1, IWD2, T,TSTOP,
> X, H, IDIG, IND, WK1, WK2, WK3, WK, WKS)

C Write out results here.

TSTOP = TSTOP + TINCR

3000 CONTINUE
STOP
END
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SUBROUTINE FEVL(T, X, XDEL, F)
REA”.%8 X(2), XDEL(3,2), F(2), T
Define the system of FDE's here, eg:

F(1)
F(2)

XDEL(3,2) - %(1)
-XDEL(1,1)*XDEL(2,1) - X(2)

being an example of two equations in three time delays.
Notice that the first dimension in the array XDEL gives which
time delay is indicated, and the second dimension gives the
component of X that is indicated.

Thus this example would be for the system:

X'| = X:(G;) - X.
X'z = ‘x;(G|)*X1(Gz) = Xz
where G,, G2, and G, are functions of X and T.
RETURN
END

DOUBLE PRECISION FUNCTION G(T,X,I1)

REAL#*8 X(2), T
Define the time delay function here. A typical case is for a
constant time delay: G = T - TAU. 1f more than one time delay is
involved, one will need a function of the type:

IF (I .EQ. 1) G = T - TAUI
IF (I .EQ. 2) G = T - TAU2
IF (I .EQ. 3) G = T - TAU3

being an example that include® three time delays and no dependence
on the dependent varisble X.

RETUDN

END

ST”BROUTINE FINEVL(T, FINIT)
REAL#8 FINIT(2), T
Define initial function here, ec:
FINIT(1) = 1.D0
FINIT(2) = DSIN(T)
being an example for a two-dimensional system.
RETURN

END
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APPENDIX TWO

Fortran source code for subroutine DELAYS
SUBROUTINE DELAYS(FEVL, G, FINEVL, N, NTD, IWD1, IWD2, TINIT,
> TSTOP, X, H, IDIG, IND, WK1, WK2, WK3, WK4, WK5)
INTEGER N, IDIG, IND, NTD
INTEGER IC!, I1c2, 1D3, ID4, IDS, 1ID6, ID7, 1IDB, IDS, ID10
INTEGER ID11, ID12, ID13, ID14, ID15, ID16

REAL*8 FEVL, G, FINEVL

REAL*8 WK1{10000,N), WK2(10000,N), WK3(N,IWD1}, WK4(NTD,IWD2)
REAL*8 X(N), WKS(1), TINIT, TSTOP, H

EXTERNAL FEVL, G, FINEVL

This is merely an interfacing routine placed here in order to
shorten and simplify the already long and complicated argument
list. For a description of the variables, see the comments for
subroutine DELA4 which follows.

FEVL(T, X, XDEL, F)
X(N)
XDEL(NTD x N)
F(N)

Evaluates system of time delay eguations

G(7,1) Evaluates I'th time delay

FINEVAL(T, FINIT) Evaluates initial function
FINIT(N)

N
NTD
WD
IWD2

Number of egquations in time delay differential equations
Number of time delays

Set equal to 65(NTD+1)

Set equal to 3sN + 1

T
TSTOP
X{N)
H
1DIG
IND

Starting time

Stopping time

independent vector variable

Stepsize of time T

Desired number of digits accuracy

Set to 1 for first call, 0 for subseguent c¢alls

(10000, N)

{10000, N)

(N, IWD1) where IWD! = 63(NTD+1)
(NTD,IWD2) where IWD2 = 3sN + 1
(16*N)

dimensioned to
dimensioned to
dimensioned to
dimensioned to
dimensioned to

WK1
WK2
WK3
WK¢
WKS

ICt
1C2
ID2
1D3
ID4
IDS
ID6
D7

N+2

ICI+N
N+1

ID2+N
ID3+N
ID4+N
IDS+N
ID6+N
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ID8 = ID7+N
IDS = IDB+N
ID10 = ID9+N
ID11 = ID10+N
ID12 = ID11+N
ID13 = ID12+N
ID14 = ID13+N
ID15 = ID14+N
ID16 = IDI15+N

This interfacing routine simply relieves the user of a longer
calling list than there already is via the splitting apart of
the working storage array WK4. If this is not compatible with
the compiler, call the subroutine DELA4 directly.

CALL DELA4(FEVL, G, FINEVL, N, NTD, IWD1, TINIT, TSTOP,

> X, H, IDIG, IND, WK1, WK2, WK3, WK4&(1,1), WK4(',2),
> WK4(1,IC1), WK4(1,1C2), WKS5(1), WKS(ID2), WK5(ID3),
> WKS(ID4), WKS(IDS), WKS(ID6E), WRS5(ID?), WKS5(ID8),

> WK5(ID9), WKS5(ID10), WKS(ID11), WKS5(ID12),

> WKS5(ID13), WK5(ID14), WKS(ID1S), WKS5(ID16) )}
RETURN

END

SUBROUTINE DELA4(FEVL, G, FINEVL, N, NTD, IWD1, TINIT, TSTOP,
X, HINIT, IDIG, IND, XTAB, FXTAB, WK1,
TDEL, XDEL, XDELP, WK2, WK3, F, FINIT, XINIT,
XIs XP, XC, F1, F2, F3, F4, Ki, K2, K3, K4,
KS

vVvVvy

Subroutine DELA4 (Adams-Moulton 4TH) uses the Adams-Moulton
fourth order predictor~corrector method with varying stepsize

to solve the first order nonautcnomous delay differential equation
X' = F(T,X(T),X(G(T))) where G(T) gives the time delay. The
stepsize H is checked to ensure it is small enough for
convergence. If not, the stepsize is cut in half.

A predicted value for X (XP) is computed, and using XP, a
corrected value for X (XC) is next computed.

If XP and XC are equal and if there are already enough X values
computed, stepsize H will be doubled to increase the speed of
computation for succeeding X's if a convergence criterion is met,

However, if a second convergence criterion and an accuracy
criterion are not met, stepsize H is halved, and computations
from the present X are repeated with the smaller stepsize.

PARAMETERS USED: :

FEVL Subroutine for calculating the N-dimensional array
X' = P(T,X,R(G(T))). FEVL must be declared EXTERNAL in
the calling routine.

G Function subroutine to compute the delay values for T. The
time delays will then be given by T - G(T,1), I=1,...,NTD.
Needless to say, G must be positive, but G must also be
bounded away from zero, and must be finite,

G must be declared EXTERNAL in the calling routine.

FINEVL Subroutine for calculating the N-dimensional array FINIT
vhich contains the values of the N-dimensional initial
function at a given time T. FINEVL must be declared
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EXTERNAL in the calling routine.

N Number of equations in the system.

NTD Number of time delays in the system.

IWD1 Firr.: dimersion of WK1 array, must be equal to 6 + BxNTD.

TINIT On IMPUT, T value at the beginning of interval.
On QUTPUT, gives T value at end of interval.

TSTOP INPUT value of minimum T for which solution is given.

X(N) On OUTPUT, gives approximation of X at end of interval.
Output value of T will be interpolated from TSTOP+H

H On INPUT, next stepsize of T. Must be smaller than delay.
On OUTPUT, last stepsize used.

IDIG INPUT value of number of digits accuracy required.

IND INPUT value of 1 indicates first call to DELA4. Is reset
to 0 if integration was successful.
INPUT value of 0 indicates that this is not the first
call for the problem. Previous values c¢f X are stored
from last call. IND is unchanged on output.

VARIABLES AND ARRAYS (Carries an Nth dimension when appropriate):

WK1 Stores the present value of X in WK1(1), the values of
X(T-nH) in WK1(n+1), the values of X at G(T,1) in WK1(7),
and of X(G(T-nH,1)) in WKi(n+7), and so on, with the
values of X(G(T,NTD) in WK1(1+6#NTD), and of X(G(T-nH,NTD)
in WK1(1+n+6#NTD). Here, n=1,...,5, and WK1(I) contains N
values, since X is a vector of length N. (N, 6#%(NTD+1) )

WK2 Stores values of X at G(T,1) where I=1,...,NTD, for call
to FEVL. Dimension (NTD, N).

WK3 Stores valwe of vector X for call to FEVL. Dimension N.

T Intermediate values of T

TDEL NTD dimenzional vector contzining values of retarded T;
G(T,I) where I=1,...,NTD.

TTAB Table of values of T for which a value of X exists

PTTAB Full table containing values less than TTAB(1) if the
a time value less than TTAB(1) may not be handled by the
initial function.

XI N-dimensional intermediate values of X

XDEL NTD by N dimensional intermediate values of X at retarded
times. ZXDEL(I,K) = X(G(T,1)) for the Kth entry of X.

XDELP NTD by N dimensional predicted values of X at times
G(T+H,1) where 1l=1,...,NTD.

XTAB Table of previously computed or assigned X values

PXTAB Full table of X values corresponding to time values less
than TTAB(1). Accessed only if X values for time T less
than TTAB(1) may not be defined by the initial function.

HINIT 1Initial value of stepsize H

TOL Tolerance: set to 1/IDIG

IXCNT Number of previous X values stored in WK array.

xp Predicted value for next value of X

XC Corrected and final value for next value of X

FULL .TRUE, only if time values less than TTAB(1) may not be
in the domain of definition of the initial function.

LINITL .TRUE. when tabels of previous values have been filled no
more than once, and the initial function may be referred
to for values not in the tables.

TABERR .TRUE. only if an attempt is being made to access a time
value which is not stored in the tables,

P Parameter used in computing five-point interpolation for
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X at TSTOP when solution goes past TSTOP.

SUBROUTINES CALLED:

WKINIT(TINIT, TDEL, X, XDEL, WK1, IXCNT, N, NTD, IWD1, H, WK3)
Initializes the work array WK! from which the
Adams-Moulton steps are taken.

UPDATD(FINEVL, G, N, NTD, IWDi, T, TDEL, Xi, XDEL, FINIT, WK1,

IXCNT, H, XC, FULL, TTAB, XTAB, PTTAB, PXTAB, KHIGH, KPHIGH)
Advances position along T - axis. To do this, T is reset
to T+H, X to XC, and WK is advanced along T axis. IXCNT
is incremented if it is less than 6. TTAB and XTAB are
also updac-ed.

HDSTEP(H, N, NTD, IWD!, WK1, IXCNT)

Halves the stepsize H, interpolates new values for
WK1(1/2) and WK1(3/2), resets WK accordingly, and
reinitializes IXCNT to 5 if IXCNT is greater than 5.

XG(FINEVL, FINIT, TDEL, N, K, FULL, LINITL, TTAB, XTAB, PTTAB,

> PXTAB, KHIGH, KPHIGH)
Interpolates the K'th value of X(G(T)) from the tables at
time TDEL.

APROX(TTABLE, XTABLE, N, K, NHIGH, TDEL, XVAL, DX)

Given a time value TDEL, APROX searches a table of time
values, and then interpolates a value for XVAL from a
corresponding table of X values to approximate X(TDEL).

STORE(FULL, N, TTAB, XTAB, PTTAB, PXTAB, KHIGH, KPHIGH)

When the table of previous values becomes full, the table
is stored in an array of previous values, and a new table
is started. In this manner, we maximize the storage of
previous values without resorting to huge arrays. We will
never have less than 10000 previous values available to
us bearing in mind that we will have the initial function
at the start.

ERMS5G1(H, HINIT, TINIT, TSTOP)

Gives appropriate error message if H is made tco small,
H is set to zero or less, or if TINIT > TSTOP.

ERMSG2(TABERR)

Gives appropriate error message if an attempt is made to
access 2 time value less than what is in the tables.

OO0 O000O000000000

INTEGER N, NTD; IWD1

INTEGER KRHIGH, KPHIGH, IND, IDIG, I, K, IXCNT

REALs8 TTAB(10000), XTAB(10000,N), PTTAB(10000), PXTAB{10000,N)
REAL#8 WK1(N,IWD1), WK2(NTD,N), WK3(N), TEMP, MINDEL

REAL#*8 F(N), FINIT(N), X(N), G, TINIT, TSTOP, H, HINIT, HMAX
REAL#8 XDEL(ND,N), XDELP(NTD,N), XINIT(N), XI(N), XP(N),XC(N)
REAL#8 K1(N), K2(N), K3(N), K4(N), K5(N)

REAL#8 TDEL(NTD), TOL, T, TMH, TPH, CONV, P, XABS, XG

REALsB F1(N), F2(N), F3(N), F4(N)

LOGICAL TABERR, FULL, LINITL

EXTERNAL FEVL, G, FINEVL

SAVE TTAB, PTTAB, T

an

C Initializations. If first call to DELA4 initialize WK vector
C using call to WKINIT. Else use values left over from last call.
H = HINIT
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IF (TINIT .GE. TSTOP)
> CALL ERMSG1(H, HINIT, TINIT, TSTOP)
1F (# .LE. 0) CALL ERMSG1(H, HINIT, TINIT, TSTOP)
TOL = 1.D0/(10.D0**{IDIG+2)})
HMAX = (TSTOP - TINIT)}/10.D0
IF (IND .EQ. 1)} THEN
TABERR = .FALSE.
FULL = .FALSE.
LINITL = .TRUE.
KHIGH = 0
T = TINIT
C
C Evaluate initial value of X
CALL FINEVL{TINIT, FINIT)
DO 3020 K=1,N
XINIT(K) = FINIT(K)
#1{K) = RINIT(K)
win) = XINIT(K)
3020 CONTINUE
(o
C Evaluate time delays at initial time with initial values of X
DO 3050 I=1,NTD
TDEL(I) = G(TINIT, XINIT, I)
3050 CONTINUE
C
C Evaluate X at initial time delays determined by TINIT and XINIT
DO 3070 K=t,N
DO 3071 I=1,NTD
XDEL(I,K) = XG(FINEVL, FINIT, TDEL(1), N, K, FULL,
> LINITL, TTAB, XTAB, PTTAB, PXTAB, KHIGH, KPHIGH)
3071 CONTINUE
3070 CONTINUE
C
C Put the initial values of X and T into the tables. Include three
C values of T, namely TINIT - IsH, I=0,1,2 in TTAB and
C FINEVL(TINIT - IsH) in XTAB.
T™H = T
DO 3080 J=0,2
TTAB(3-J) = TMH
CALL FINEVL(TMH, WK3)
DO 3085 R=1,N
XTAB(3-J,K) = WK3(K)
3085 CONTINUE
TMH = TMH - H
3080 CONTINUE
KHIGH = 3
Cc
C Now we call subroutine WKINIT to fill the WK1 array at T=0 for the
C given stepsize H.
DO 3090 RK=i,N
WK3(K) = XINIT(K)
3090 CONTINUE
CALL WKINIT{TINIT, TDEL, X, XDEL, WK1, IXCNT, N, NTD, IWD1,
> H, WK3)
ENDIF
(o )
C Check to see if we are done, then proceed to check first
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C convergence criterion., Halve stepsize H if necessary.
310> CONTINUE
IF (T .GT. TSTOP) GO TO 3500
C
C Evaluate F at time T: F1.
DO 2110 K=1,N
WK3(K) = WK1(K, 1)
DO 3111 I1=1,NTD
WK2(I,K) = WKI(K,6%1+1)
3111 CONTINUE
3110 CONTINUE
CALL FEVL(T, WK3, WK2, F1)
C
C Evaluate F at time T-H: F2.
DO 3120 K=1,N
WK3(K) = WK1(K,2)
DO 3121 I=1,NTD
WK2(I,K) = WK1(K,621+2)

3121 CONTINUE
3120 CONTINUE
T™H = T - H

CALL FEVL(TMH, WK3, WK2, F2)

C 1If H is too large, must halve the stepsize.
MINDEL = 1.D75
DO 3123 1=1,NTD
TEMP = T - G(T, WK3, 1)
IF (TEMP .LT. MINDEL) MINDEL = TEMP
3123  CONTINUE

DO 3130 K=1,N
IF (WK1(K,1) .EQ. WK1(K,2)) GO TO 3130
IF (F1{(X) .EQ. F2(K)) GO TO 3130
TEMP = 2,6D0/DABS((F2(K) -F1(K))/(WK1(K,2)-WK1(K,1)))
IF ( (H .LT. TEMP) .AND. (2.DOsH .LT. MINDEL)) GO TO 3130
IF (H .LT. (HINIT+(1.D0/256.D0)))
> CALL ERMSG1(H, HINIT, TINIT, TSTOP)
IF (T .EQ. TINIT) THEN
H = H/2.D0
po 3132 J=1,N
WK3(K) = XINIT(K)
3132 CONTINUE
CALL WKINIT(TINIT, TDEL, X, XDEL, WK1, IXCNT, N, NTD,
> IWD1, H, W¥3)
ELSE
CALL HDSTEP{H, N, NTD, IWD1, WK1, IXCNT)
ENDIF
GO TO 3100
3130 CONTINUE
C
C All is well with H. Compute XP for time T+H, and XDELP for time
C G(T+H). Next compute the corrected approximation XC for X at T+H.
C Then put these latest values for T and X(T) in the tables.
C
C Now calculate F at time T-2H: F3.
DO 3140 K=1,N
WK3(K) = WK1(K,3)
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DO 3141 I=1,NTD
WK2(I,K) = WKI(K,6%1+3)
3141 CONTINUE
3140 CONTINUE
TMH = T - 2.D0O=*H
CALL FEVL(TMH, WK3, WK2, F3)
C
C Then calculate F at time T-3H: F4.
DO 3150 K=1,N
WK3(K) = WK1(K,4)
DO 3151 I=1,NTD
WK2(1,K) = WKI1(K,6%I+4)
3151 CONTINUE
3150 CONTINUE
TMH = T - 3.D0%H
CALL FEVL(TMH, WK3, WK2, F4)
o
C Get XP by the Adams-Moulton fourth order method using F1 - F4.
DO 3190 K=1,N
XP(K) = WKI1(K,1) + (H/24.D0)
> + (55.D0*F1(K)- 59.D0*F2(K) + 37.D0s3F3{(K) - 9.D0*F4(K))
WK3(K) = XP(K)
3190 CONTINUE

c
C Get each of the NTD time delays, TDEL.
TPH = T + H
DO 3200 i=1,NTD
TDEL(1) = G(TPH,XP,I)
3200 CONTINUE
c
C Get the values of X(i), i=1,N at each of the NTD time delays.
DO 3205 K=1,N
DO 3206 1=1,NTD
XDELP(I,K) = XG(FINEVL, FINIT, TDEL(I), N. K, FULL,

> LINITL, TTAB, XTAB, PTTAB, PXTAB; KHIGH, KPHIGH)
3206 CONTINUE
3205 CONTINUE
c
C Now compute the corrected values of X.
3210 K=1,N

CALL FEVL(TPH, WK3, XDELP, F)
XC(K) = WK1(K,1) + (H/24.D0)
> +(9, DO'F(K) + 19.D0%F1(K) - 5.D0*F2(K) + F3(K))
WK3(K) = XC(K)
3210 CONTINUE
(o
C If w2 can get away with doubling the stepsize, do so for next X.
DO 3300 K=1,N
IF (DABS((XC(K) - XP(K))/XC(K)) .GE. TOL#5.D-1) GO TO 3301
3300 CONTINUE

Find the minimum time delay and be sure that H is no more than
half that value. This prevents extrapolation from the history
tables. Also make sure H is small in relation to the interval of
integration to avoid integrating too far past TSTOP and forcing
an extrapolation there as well.

MINDEL = 1.D75

0OO0O0O0OO0n0
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DG 3363 I=1,NTD
TEMP = TPH - G(TPH, XC, I)
IF (TEMP .LT. MINDEL) MINDEL = TEMP
3303 CONTINUE
IF ((2.D0*H .GE. HMAX) .OR. (4.DO0%H) .GE. MINDEL) GO TO 3301

C
C All the relative errors for 1 to N are less than TOL/2. Can
C double H. To double H, we must have 6 previous X's stored in WK1.
C We then proceed as we would in subroutine UPDATE, except that we
C use 2H.
C
C If the main delay tables are already full, put them into the
C backup tables and start with fresh delay tables by calling STORE.
IF (IXCNT .LT. 6) GO TO 3310
T = T+H
DO 3305 I=1,NTD
TDEL(I1) = G(T,XC,1)
3305 CONTINUE
C
IF (KHIGH .GE. 10000)
> CALL STORE(FULL. LINITL, N, TTAB, XTAB, PTTAB, PXTAB,
> KHIGH, KPHIGH}
C

C Update the values of X and XDEL at present time T.
DO 3315 K=1,N
XI(K) = XC(K)
DO 3316 I=1,NTD
XDEL(I,K) = XG(FINEVL, FINIT, TDEL(1), N, K, FULL,
> LINITL, TTAB, XTAB, PTTAB, PXTAB, KHIGH, KPHIGH)
3316. CONTINUE
3315 CONTINUE
o
C Now put the latest values into the delay tables.
KHIGH = KHIGH + 1
TTAB(KHIGH) = T
DO 3317 K=1,N
XTAB(KHIGH,K) = XC(K)

3317 CONTINUE
C .
C Update the work array WK1.
H = 2.D0*H

DO 3320 K=1,N
WK1(K,1) = XC(K)
WK1(K,2) = WK1(K,2)
WK1(K,3) = WK1(K,4)
WKi1(K,4) = WKi(K,6)
DO 3321 I=1,NTD

WK1(K,6%I+1) = XDEL(I,K)
WK1(K,621+2) = WK1{K,681+2)
WK1(K,621+3) = WK1(K,6%1+4)
WK1(K,6%1+4) = WK1(K,6%I+6)
3321 CONTINUE
3320 CONTINUE
IXCNT = 4
GO TO 3400

C
C We go here if we have less than six entries in the WK1 array.
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C Fill up WK1 and forget trying to .ouble the stepsize.
3310 CONTINUE
CALL UPDATD(FINEVL, G, N, NTD, IWD1, T, TDEL, X.
> XDEL, FINIT, WK1, IXCNT, H, XC, FULL, LINITL, TTAB, «»TAB,
> PTTAB, PXTAB, KHIGH, KPHIGH)

GO TO 3400
C
3301 CONTINUE
C
C We caunot double stepsize. Better check 2nd convergence
C criterion and accuracy criterion. Halve stepsize and do over
c if needed.
C
o Evaluate F at T and call it F.
DO 3340 K=1,N
WK3(K) = WK1(K,1)
DO 3341 I=1,NTD
WK2(I,K) = WK1(K,6%I+1)
3341 CONTINUE
3340 CONTINUE
CALL FEVL(T, WK3, WK2, F)
C

DO 3350 K=1,N
XABS = DABS((XC(K) - XP(K))/TOL)
CONV = 1.D75
IF (F(X) .NE. 0.D0) CONV = 2.6D0/(H*DABS(F(K)))
IF ((XABS .GE.14.D0) .OR. (XABS .GE. CONV)) GO TO 3360
3350 CONTINUE
c Do not need to halve stepsize, so call UPDATE and go on to
c the next step. All N X values are in specifications.
CALL UPDATD(FINEVL, G, N, NTD, IwWD1, T, TDEL, XI, XDEL,
> FINIT, WK1, IXCNT, H, XC, FULL, LINITL, TTAB, XTAB, PTTAB,
> PXTAB, KHIGH, KPHIGH)

GO TO 3370
c
C Halve stepsize H.
3360 CONTINUE
IF (H .LT. HINIT#(1.D0/256.D0))
> CALL ERMSG1(H, HINIT, TINIT, TSTOP)
IF (T .EQ. TINIT) THEN
H = H/2.D0
DO 3362 K=1,N
WK3(K) = XINIT(K)
3362 CONTINUE
CALL WKINIT(TINIT, TDEL, X, XDEL, WK1, IXCNT, N, NTD,
> IWD1, H, WK3)
ELSE
CALL HDSTEP{H, N, NTD, IWD1, WK1, IXCNT)
ENDIF
3370 CONTINUE
3400 CONTINUE
GO TO 3100

3500 CONTINUE
We have a solution past TSTOP. Interpolate .back to TSTOP using

Cc
Cc
C the Lagrange five point interpolation formula. WK1 array is
C equally spaced.
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TINIT = TSTOP
P = (2.D0*H + TSTOP - T)/H
DO 3600 K=1,N

X(K) = ({P*P-1.D0)*P*(P-2.D0)/24.D0)*WK1{K,5)

- ((P-1.D0)*P*(P*P-4.D0)/6.D0)*WK1(K,4)

(P*P-1.D0)*(P*P-4.D0)/4.D0)*WK1(K,3)
(P+1.,D0)*P*(P*P-4.D0)/6.D0)*WK1(K,2)
{P*xP~1.D0)*P*(P+2.D0)/24.D0)*WK1 (K, 1)

S wWwN =

+ (
- A
+ (
3600 CONTINUE

IND = 0

RETURN

END

SUBROUTINE WKINIT(TINIT, TDEL, X, XDEL, WK1, IXCNT, N, NTD,
> IWD1, H, F)

Subroutine WKINIT initializes the work array WK1 when T = TINIT.

[eXsXg]

INTEGER N, NTD, IWDI

REAL#8 WK1(N, IWD1), XDEL(NTD, N), X{(N), TDEL(NTD)
REAL#*8 F(N), TINIT, T, H, G

INTEGER IXCNT

First put the TINIT initial values of X and XDEL into their
appropriate places in the WK1 array. See the comments for DELA4
for an explanation of the structure of WKI1.
DO 3000 K=1,N
WK1(K,1) = Xk}
DO 3010 I=1,NTD
WK1(K, 6*I+1) = XDEL(I,K)
3010 CONTINUE
3000 CONTINUE
c .
C Then we take the values of X and XDEL at times T-H ,..., T~4#*H
C and put them into the work array WKi.
T = TINIT
DO 3100 J=1,4
T=T-H

(e XeXeXgl

c
C Evaluate X(TINIT - nH) and put these into the work array.
DO 3110 K=1,N
CALL FINEVL(T, F)
WK1(K, 1+J) = F(K)
3110 CONTINUE
C Evaluate the time delays for time T and X, where X is evaluated at
C F(T). Then evaluate X at those values TDEL, again by referring to
C the initial function.
DO 3120 1=1,NTD
TDEL(1) = G(T, F, I)
CALL FINEVL(TDEL(I), F)
DO 3121 K=1,N
WK1(K, 6%I+1+J) = F(K)
3121 . CONTINUE
3120 CONTINUE
3100 CONTINUE
C
C Set the number of values in WK1 array to five.
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IXCNT = 5
RETURN
END
SUBROUTINE UPDATD(FINEVL, G, N, NTD, IwD1!, T, TDEL, XI, XDEL,
> FINIT, WK1, IXCNT, H, XC, FULL, LINITL, TTAB, XTAB, PTTAB,
> PXTAB, KHIGH, KPHIGH)
INTEGER N, NTD, IWD1, J
REAL*8 TTAB(10000), XTAB(10000,N), PTTAB(10000), PXTAB{(10000,N)
REAL*8 WK1(N,IWD1), XI(N), XDEL(NTD,N), XC(N), FINIT(N)
REAL*8 G, T, TDEL(NTD), H, XG
INTEGER KHIGH, KPHIGH, IXCNT, I, K, NTDP1, IKOUNT
LOGICAL FULL, LINITL
EXTERNAL FINEVL
c
C Reset T, XI, and increment IXCNT if necessary.
IXCNT = MINQ(IXCNT+1,6)
T = T+H

DO 3000 K=1,N
XI{(K) = XC(X)
3000 CONTINUE
c
DO 3100 1=1,NTD
TDEL(I) = G(T,XI,I)
3100 CONTINUE
C
DO 3150 K=1,N
DO 3155 I=1,NTD
XDEL(I,K) = XG(FINEVL, FINIT, TDEL(I), N, K, FULL, LINITL,
> TTAB, XTAB, PTTAB, BXTAB, KHIGH, KPHIGH)
3155 CONTINUE
3150 CONTINUE
o
KHIGH = KHIGH + 1
IF (KHIGH .GT. 10000) CALL STORE(FULL, LINITL, N, TTAB, XTAB,
> PTTAB, PXTAB, KHIGH, KPHIGH)

TTAB(KHIGH) = T
DO 3200 K=1,N ,
XTAB(KHIGH,K) = XI(K)
3200 CONTINUE
C
C Then update WK1 vector to advance X's one stepsize up T axis.
DO 3300 K=1,N
NTDP1 = NTD + 1
I =0
DO 3310 IKOUNT=1,NTDP1
DO 3315 J=1,5
WK1(K, 6¢I+7-J) = WK1(K,6+I+6-J)
3315 CONTINUE
I =14+
3310 CONTINUE
WK1(K, 1) = XC(K)
DO 3320 I=1,NTD
WK1(K,6%1+1) = XDEL(I,K)
3320 CONTINUE
3300 CONTINUE
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e XeKeXe]

o
c

c

QOO0OOOO0O0

RETURN

END

SUBROUTINE HDSTEP(H, N, NTD, IWD1, WK1, IXCNT)
INTEGER IXCNT, IKOUNT, NTDPi, I, K

REAL#*8 WK1(N,IWD1), WIHALF, W3HALF, H

Divide H by two, and compute W(1/2) and W(3/2).
Interpolate using a five point formula for both X and the delay
values of X.
H = H/2.D0
DO 3000 K=1,N
NTDP1 = NTD + 1

I1 =20
DO 2700 » 7 P=1,NTDP1
Willal ©.5128.D0) * (35.DO*WKI(K,6%1+1)
> © - 9,DO*WK1(K,6%I+2)- 70.DO*WK1(K,6%1+3)
> 7. ,DO*WK1(K,6%1+4) - S5.DO*WKI1(K,6%1+5))
W3 2ZF = {7.71/64.D0) * (-WK1(K,6*I+1) +24.DO*WK1(K,6%1+2)
> + 54 ,DO*WK1(K,6%I+3)- 16.DO*WK1(K,6%1+4)
> + 3.DO*WK1(K,6%I+5) )

WK1(K,6%I+5)

WK1(K,6+1+3)

WK1(K,6*I+4) = W3IHALF
WK1(K,6%I+3) = WK1(K,6%I+2)
WK1(K,6%I+2) = WIHALF

WK1(K,6%1+1)

WK1(K,621+1)
1 =1+ 1 .

3100 CONTINUE
3000 CONTINUE

Reset IXCNT to 5 or IXCNT, whichever is less.
IXCNT = MINO{IXCNT,S)
RETURN
END
DOUBLE PRECISION FUNCTION XG(FINEVL, FINIT, TDEL, N, K, FULL,
> LINITL, TTAB, XTAB, PTTAB, PXTAB, KHIGH, KPHIGH)

REAL*8 XTAB(10000,N), TTAB(10000), PXTAB(10000,N), PTTAB(10000)
REAL#8 FINIT(N), TDEL, XVAL, DX, P

INTEGER KHIGH, KPHIGH

LOGICAL TABERR, FULL, LINITL

For a specific index K, find a value for the function
X(k)(T, X, R(G(T)) given an initial function FINIT. Call
the routine APROX to approrimate a value for X(G(T)) = XVAL if
needed. Use the initial function to evaluate X{(G(T)) only if
values of TDEL = G(T) less than TTAB(1) are in the domain of
definition of the initial function FINIT. Otherwise search the
tables of previous values PTTAB for G(T).
IF ((KHIGH .EQ. 0) .AND. (FULL)) CALL ERROR
IF ((KHIGH .EQ. 0) .aND. (.NOT. FULL)) GO TO 3210
IF ((TDEL .LT. TTAB(1)) .AND. (.NOT. FULL)) GO TO 3210

IF (TDEL .GT. TTAB(KHIGH)) GO TO 3220
IF (TDEL .GE. TTAB(1)) GO TO 3230
IF (TDEL .GE. PTTAB(1)) - GO TO 3240
IF ((TDEL .LT. PTTAB(1)) .AND. LINITL) GO TO 3210
1F ((TDEL .LT. PTTAB(1}} .AND. (.NOT. LINITL)) GO TO 3250
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C

3210

3220

3230

3240

3250

3300

CALL ERROR

CONTINUE
CALL FINEVL(TDEL, FINIT)
XG = FINIT(K)

GO TO 3300

CONTINUE
P = (TDEL - TTAB(KHIGH-1)})/({TTAB(KHIGH) - TTAB(KHIGH-1))
XG = XTAB{KHIGH,K) + P*{XTAB{KHIGH,K) - XTAB(KHIGH-1,K))
GO TO 3300

CONTINUE
CALL APROX(TTAB, XTAB, N, K, KHIGH, TDEL, XVAL, DX)
XG = XVAL

GO TO 3300

CONTINUE
CALL APROX(PTTAB, PXTAB, N, K, KPHIGH, TDEL, XVAL, DX)
XG = XVAL

GO TO 3300

CONTINUE
TABERR = .TRUE. .
CALL ERMSG2(TABEE:)
CONTiNUE

RETURN
END

" SUBROUTINE APROX(TTABLE, XTABLE, N, K, NHIGH, TDEL, XVAL, DX)

INTEGER N

REAL#8 TTABLE(10000), XTABLE(10000,N), TDEL, XVAL, DX
REAL#8 TA(4), XA(4), C(4), D(4), HO, HP, DEN, WK1, WK2
INTEGER NHIGH, KBOT, KTOP, KMID, NS, I, M, NMM, K

C Use a binary search to compute the index to TTABLE(i) such that

OO0 00000

TTABLE(i) , TDEL < TTABLE(i+1), where T - TDEL is the time delay.
NOTE that for T .LE. 0, the value of X(T) will be the initial
function at that point. :
TDEL Present time value
XTABLE Table of previously computed or assigned X values
TTABLE Table of time values for which X has a value
NHIGH The highest time value for which X has been computed
XVAL Approximated value of X(k) at time TDEL
)54 Approximation of error
KBOT = 1 /
KTOP = NHIGH
KMID = (KTOP + KBOT)/2
3120 CONTINUE :
IF ({KTOP - KBOT) .LE. 1) GO TO 3125
KMID = (KTOP + KBOT)/2
1I¥ (TDEL .LE. TTABLE(KMID)) GO TG 3123
IF (TDEL .GT. TTABLE(KMID)) GO TO 3124
3123 CONTINUE ’
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KTOP = KMID
GO TO 3120
3124 CONTINUE
KBOT = KMID
GO TO 3120
3125 CONTINUE
KMID = KBOT

Cc
C Now compute the X(TDEL) value. TTABLE(KMID) should be the highest
C encry in TTABLE that is lower than TDEL. Find the closest entry
C in TTABLE to TDEL. It is either at KMID or KMID+1, Approximation
C to X(TDEL) is made using an improved Meville's algorithm. We must
C remember that entries in XTABLE may not be equally spaced. See the
C reference NUMERICAL RECIPES, article 3.1 for the algorithm.

WK1 = DABS(TTABLE(KMID+1) - TDEL)

WK2 = DABS(TDEL - TTABLE(KMID))

NS = KMID

IF (WK1 .LT. WK2) NS = KMID + 1
C

IF (KMID .GE. NHIGH-1) GO TO 3160

IF (KMID .GE. 2) GO TO 3170

IF (KMID .EQ. 1) GO TC 3200
C

C TDEL is between TTABLE(NHIGH-1) and TTABLE(NHIGH).
3160 CONTINUE
DO 3161 1=1,4
TA(I) = TTABLE(NHIGH-4+I)
XA(I) = XTABLE(NHIGH-4+:,K)
c(1) = xa(1)
D(1I) = XA(1)
3161 CONTINUE
NS = NS = KMID+3
GO TO 3190
c
C TDEL has at least two values of TTABLE both higher and lower than
Cit.
3170 CONTINUE
DO 3171 I=1,4
TA(I) = TTABLE(KMID-2+1)
XA(I) = XTABLE(KMID-2+I,K)
c{1) = 2a(1)
D(1) = XA(1)
3171 CONTINUE
NS = NS = KMID+2
GO TO 3190
(o
C TDEL is between TTABLE(1) and TT2BLE(2)
3200 CONTINUE
DO 3201 I=1,4
TA(1) = TTABLE(I)
XA(I) = XTABLE(I,K)
c(1) = 2a(1)
D(I) = XA(I)
3201 CONTINUE
NS = NS - KMID+1 '
GO TC 3190 g
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¢ We have the four values of XTABLE that we are going to use in XA.
C NS is the closest of these four values to TDEL. Now use the
C modified Neville's algorithm to approximate XVAL. DX approximates
C the error at the end of the process.
3190 CONTINUE
XVAL = XA(NS)
NS = NS - 1
DO 3192 M=1,3
NMM = 4§ - M
DO 3193 I=1,NMM
HO = TA(I) - TDEL
HP = TA(I+M) - TDEL
DEN = (C(1+1) - B{I))/(HO - HP)
C(I) = HO+*DEN
D(I) = HP=*DEN
3193 CONTINUE
IF (2%NS .LT. 4-M) GO TO 3185

DX = D(NS)
NS = NS - 1
GO TO 3196

3195 CONTINUE
DX = C(NS+1)
GO TO 3196

3196 CONTINUE
XVAL = XVAL + DX
3192 CONTINUE

RETURN

END

SUBROUTINE STORE(FULL, LINITL, N, TTAB, XTAB, PTTAB, PXTAB,
> KHIGH, KPHIGH)

REAL*8 PTTAB(10000), TTAB(10000), PXTAB(10000,N), XTAB(10000,.N)
INTEGER KPHIGH, KHICH, I, K
LOGICAL FULL, LIMITL

Store the previous tables. Put tables TTAB and XTAB into tables

of previous values, and initialize TTA* and XTAB from the values

found in the last four values in that urray. Note that there is

no value in the tables corresponding to KHIGH, so decrement it.
KHIGH = KHXGH - 1

a aOGoonn

DO 3000 I=1,KHIGH
PTTAB(I) = TTAB(I)
3000 CONTINUE
c
DO 3050 K=1,N
po 3051 I=1,KHIGH
PXTAB(Y ,K) = XTAB(I,K)
3051 CONTINUE
3050 CONTINUE

KPHIGH = KHIGH

a0 o

C Now initialize the tables TTAB and XTAB go-that the first four
C entries have values. 1f the previous table is already full ve
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C cannot go to the initial function in case we try to access a time
C previous to PTTAB(1), and we set LINITL = .TRUE. if this is the
C case. In any case we set FULL = .TRUE. to signal that the the
C table of previous values is active.
DO 3200 1=1,4
TTAB(I) = TTAB(KHIGH-4+1)
3200 CONTINUE
C
DO 3250 K=1,N
DO 3251 1=1,4
XTAB(I,K) = XTAB(KHIGH-4+I,R)
3251 CONTINUE
3250 CONTINUE

c
KHIGH = 4
If (FULL) LINITL = .FALSE.
FinT - .TRUE,
R |
Uiy
« JBROUTIWE =RMSG1(H, HINIT, TINIT, TSTOP)
REAL%*8 ¥, HINIT, TINIT, TSTOP
Cc
IF (H .LE. 1.D-8) GO TO 301
iIF (H .LE. 0) GO TO 302
IF (TINIT .GE. TSTOP) GO TO 303
C

WRITE(6,100) H
100 PFORMAT(' *#* WARNING -- Stepsize H is set to ',6tPDI18.11,/
> ' and error or convergence criteria are not yet met.')
HINIT = H
GO TO 359

301 CONTINUE
WRITE(6,101) H

101 FORMAT(' =** ERROR -- Stepsize H hus been set to ',1PD18.11,/
> ' and error or convergence criteria azre not met.')
CALL ERROR

302 CONTINUE
WRITE(6, 102)

102 FORMAT(' «*x ERROR ~- Stepsize H has a2 value less than’,
> ' or equal to zero')
CALL ERROR

303 CONTINUE
WRITE(6,103) TINIT, TSTOP
103 FORMAT(®' s#2z ERROR -- Initial T value, ',1PD18.11,/
> ' is set greater than TSTOP, ',D18.11)
CALL ERROR
399 CONTINUE
-SUBROUTINE ERMSG2(TABERR)
LOGICAL TABERR

IF (TABERR) GO TO 300
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300 CONTINUE
WRITE(6,100)

100 E‘ORMAT(' +++ ERROR -- Attempt to access value of T smaller',/
> than smallest stored value in tables’ )
CALL ERROR
RETURN
END
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