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Abstract

Background: The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle,
Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark
beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host
and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost
importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark
beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of /.
typographus and D. ponderosae to identify members of the major chemosensory multi-gene families.

Results: Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with
specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were
found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding
proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors
(OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in /. typographus; and 31 putative OBPs, 11 CSPs, 3
SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts
in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila
melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions
were found. However, some clades contained receptors from all four beetle species, indicating a degree of
conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the
conserved antennal IRs were included in the identified receptor sets.

Conclusions: The protein families important for chemoreception have now been identified in three coleopteran
species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran
olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals,
is especially important as they might represent novel targets for population control.
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Background

The European spruce bark beetle, Ips typographus L., and
the North American mountain pine beetle, Dend-
roctonus ponderosae Hopkins (Coleoptera: Curculionidae:
Scolytinae) are serious pests of coniferous forests. I
typographus mainly attacks Norway spruce (Picea abies) in
Eurasia, whereas D. ponderosae infests several species of
pine in western North America. Currently, large-scale D.
ponderosae outbreaks have resulted in unprecedented eco-
nomic losses and turned North American forests into major
sources of carbon release [1]. The olfactory sense drives
bark beetle behaviors that are important for fitness, such as
the localization of suitable hosts and mates [2]. In the
search for suitable host material, bark beetles respond to
volatiles that emanate from both host and non-host plants
[3-5]. However, most individuals locate trees by means of
an aggregation pheromone that is released by beetles that
have already attacked the tree. This signal is responsible for
coordinated mass-attacks, which often lead to the death of
the host tree [2] and large-scale forest destruction. Due to
their ecological and economic impact, an extensive know-
ledge base on bark beetle chemical ecology and olfactory
physiology has been established [2,3,6,7]. However, informa-
tion on the molecular aspects of odor detection has been
lacking until now.

In insects, volatile molecules are detected by olfactory
sensory neurons (OSNs) that are housed within special
structures (sensilla) predominantly on the antennae, and
to a lesser extent on the maxillary palps. The cell mem-
brane of OSNs contains receptor proteins that bind odor
ligands [8,9]. The binding of a ligand to a receptor pro-
tein is the key event in olfactory transduction, as it con-
verts a chemical signal in the environment into an
electrical signal that can be interpreted by the insect ner-
vous system [10].

Receptors from three large and divergent multigene
families are expressed in insect OSNs [9,11-13], namely
the odorant receptors (OR), ionotropic receptors (IR),
and gustatory receptors (GR), the latter group notably
containing carbon dioxide-detecting receptors [14,15].
However, most GRs are expressed in gustatory receptor
neurons in taste organs and are involved in contact
chemoreception. These GRs typically detect different
sugars, bitter compounds, and contact pheromones [12].

Insect ORs are seven-transmembrane domain proteins
[16,17] with a reversed membrane topology (intracellular
N-terminus) compared to vertebrate ORs, which are G-
protein coupled receptors [18]. Insect ORs and GRs are
distantly related members of the same superfamily [19].
In general, ORs (and GRs) show little sequence hom-
ology to each other and they are unrelated to vertebrate
ORs. The conventional exchangeable OR that deter-
mines ligand specificity [20] forms heteromers of un-
known stoichiometry with a conserved co-receptor,
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known as Orco [21]. Orco is ubiquitously expressed in
OSNs that express ORs [22,23] and necessary for olfac-
tory responses and for localization of the conventional
OR in the cell membrane [18,24]. Putative insect ORs
have been identified mainly in species with sequenced
genomes [8,25]. Recently, however, studies on antennal
transcriptomes have led to the identification of OR sets
in several moth species [26-28] and one beetle [29]. The
ORs respond to a variety of volatile chemicals [20,30],
including pheromones [31] and plant or microbe-
derived compounds [32]. Some ORs are highly defined
in their response specificity [32], whereas others appear
more broadly tuned, especially at high stimulus concen-
trations [20].

IRs were recently discovered as another class of recep-
tors involved in chemoreception [9]. They are related to
ionotropic glutamate receptors (iGluRs) that function in
synapse communication, but have atypical binding do-
mains. IRs have been identified throughout protostome
lineages (including arthropods, mollusks, annelids and
nematodes) and, thus, constitute a far more ancient
group of receptors than the ORs [33]. IRs form com-
plexes with up to three subunits, including odor-specific
receptors and one or two broadly expressed co-receptors
[34]. In insects, the IRs are divided into two major
groups: the “antennal IRs” that have an olfactory func-
tion and are conserved across insect orders, and the
species-specific “divergent IRs”, some of which have
been assigned a tentative role in taste [33]. Antennal IRs
in Drosophila have different odor specificity compared
to the ORs and respond to nitrogen-containing com-
pounds (e.g. ammonia and amines), acids, and aromatics
(i.e. phenylacetaldehyde) [34].

In addition to the receptor genes, other multigene
families encode proteins with critical roles in olfaction.
Odorant binding proteins (OBP) are small soluble pro-
teins (generally 135-220 amino acids long) with two or
three disulfide bridges [35,36]. OBPs are highly abundant
in the sensillar lymph of insects and are thought to
solubilize hydrophobic molecules and deliver them to
the receptors [35]. Studies have shown conflicting results
whether or not OBPs affect the response specificity of
OSNs [37]. At least in some studies, the specificity of
pheromone receptors was improved by the presence of
OBPs (i.e. a class of OBPs called pheromone binding
proteins, PBPs) [38,39]. Some evidence suggests that
OBPs might undergo odor-induced conformational
changes, with a change in the OBP itself triggering the
response of the OSN [40]. In insects with sequenced ge-
nomes, the number of OBP coding genes normally
ranges from ca. 40—60 [35].

Chemosensory proteins (CSP) constitute another class
of small binding proteins (ca. 130 amino acids long).
They are more conserved than OBPs and are
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characterized by the presence of 4 cysteines that form
two disulfide bridges [41]. CSPs may have shared a com-
mon ancestor with the OBPs near the origin of the ar-
thropods [42]. Like OBPs, CSPs are present in high
concentration in chemosensory sensilla (outer sensillum
lymph [43,44]). However, the majority of them are also
expressed in various non-sensory tissues [45] and they
seem to play a role in development, moulting [45], and
leg regeneration [46]. Some CSPs bind pheromone com-
pounds [41,47], but their exact role in chemosensory
systems remains uncertain [35,48]. Most Drosophila ge-
nomes contain only 4 CSP coding genes and T.
castaneum has 20 [35]. The genome of Aedes aegypti
mosquitoes contains 43 members of this family, the lar-
gest number found in insects so far [49].

Finally, the sensory neuron membrane proteins
(SNMP) are proteins of the CD36 family that associate
with pheromone-responding OSNs [50]. Their functional
significance is still poorly understood, but SNMP is cru-
cial for proper pheromone detection in D. melanogaster
and also required for activation of a pheromone receptor
in Heliothis virescens moths [51]. In contrast, SNMP was
dispensable for responses of a fly receptor (DmelOR22a)
to fruit-related esters [51]. Insects generally have two
representatives of SNMPs (SNMP1 and SNMP2), al-
though copy numbers of each orthologue seem to vary
somewhat across species [52].

In the largest insect order, Coleoptera, ORs have been
identified from only two species: from the genome of the
red flour beetle, Tribolium castaneum [53], and recently
from the antennal transcriptome of the cerambycid beetle,
Megacyllene caryae [29]. Members of the other olfactory
gene families have been identified only in T. castaneum
[33,35,52-54]. Consequently, additional beetle species
need to be investigated to reach a better understanding
on the molecular biology of coleopteran and insect
olfaction.

In this study, we assembled and analyzed bark beetle
antennal transcriptomes from next-generation sequen-
cing. We report the results from gene ontology (GO) an-
notation as well as sets of putative OBPs, CSPs, SNMPs,
ORs, GRs, and IRs in L typographus and D. ponderosae.
Identification of the chemosensory genes in these devas-
tating insect pests is especially relevant because of their
potential as novel targets for pest control.

Methods

Mountain pine beetle

The source of D. ponderosae (obtained from lodgepole
pine, Pinus contorta) antennal tissue and the method of
sequencing have been reported previously in a larger
transcriptome study [55]. From this transcriptome
dataset originating from several tissue types, sequences
originating only from a non-normalized antenna-specific
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¢DNA library were re-assembled for the analyses
presented in the present study. This included 12,142
paired-end Sanger reads, 1,147 single-end Sanger reads
and 1,048,708 Roche 454 reads. Newbler (version 2.6,
Roche) was used for assembly using the "-cdna" switch
for transcriptome assemblies and a 45 bp cutoff to elim-
inate short reads. For identification of OBPs, CSPs, and
SNMPs in D. ponderosae we also used a combination of
Sanger-specific (CAP3 assembly) data and transcriptome
assemblies from other tissues and life stages, since these
proteins may have sensory or non-sensory functions in
non-antennal tissues. We did not have such assemblies
for L typographus.

European spruce bark beetle

Insects, RNA extraction and cDNA synthesis

L typographus was reared on Norway spruce (Picea
abies) logs in an environmental chamber (25°C, 70% RH,
20:4 L:D photoperiod) [56], starting from individuals col-
lected from their natural habitat near Asa and Almhult,
southern Sweden. Emerged adults were kept in a state of
low activity in a refrigerator (1-5°C) before being used
for RNA extraction.

Two hundred adult L typographus were collected in a
50 ml plastic tube, approximately two weeks after their
emergence. The tube was submerged in liquid nitrogen,
after which it was vigorously shaken using a vortex
shaker to separate extremities from the body. Body parts
were suspended in -20°C acetone (>99%, Fisher Scien-
tific AB, Sweden) and passed through meshes that fil-
tered out the antennae. After removal of the acetone, 0.6
ml TRI reagent (Ambion) was added to the antennae
and the sample was homogenized using a Tissue-tearor
(model 98370-365, Bartlesville, OK, USA). Total RNA
was extracted following the TRIZOL protocol, but using
1-bromo-3-chloropropane instead of chloroform. 1.7 g
total RNA was sent to Evrogen (Moscow, Russia) for
synthesis of duplex-specific-nuclease normalized cDNA
[57,58].

Sequencing and assembly

The I typographus cDNA was sequenced at LGC Gen-
omics (Berlin, Germany), using 454 GS/FLX sequencing
(Roche Applied Science, Mannheim, Germany) with ti-
tanium chemistry, to produce 350,000 reads for a total
of 114 megabases. Furthermore, Illumina sequencing
was performed at the Max Planck Institute for Molecu-
lar Genetics in Berlin to generate a further 3.6 million
reads for a total of 122 megabases.

Short or low-quality reads, as well as linker and
adapter sequences were removed by the Crossmatch
program (454 reads, Incogen Inc., Williamsburg, VA,
USA) or by the built-in sequence cleanup of Seqman
Ngen (Illumina reads, DNAStar, Madison, WI, USA).
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The 454 reads were assembled using Seqman Ngen to
generate a backbone; subsequently, the Illumina reads
were mapped onto this backbone using Seqman Ngen to
correct for technology-inherent read errors. The result-
ant contigs were annotated using a Codequest Worksta-
tion (Timelogic/Active Motif, Carlsbad, CA) [27].

Annotation

For an initial assessment of the two assembled beetle an-
tennal transcriptomes, gene ontology (GO) annotation
was performed using Blast2GO [59,60]. Blast2GO anno-
tation associates genes or transcripts with GO terms
using hierarchical vocabularies. Genes are described in
terms related to molecular function, biological process,
or cellular component, allowing for meta-analyses of
gene populations [27,61].

The BLAST step was performed with a lenient E-value
cutoff at 0.1 to account for the high sequence variability
among the olfactory gene families. The mapping step
was done using default settings, whereas a lenient
E-value (0.1) and lower annotation cut-off (55) and GO-
weight (5) were used in the first annotation step to
increase the proportion of annotated transcripts. Anno-
tation was further enhanced by merging annotation with
results of InterProScan database search at the EBI [62],
ANNEX procedure, and the Blast2GO validation step. A
subsequent GO-slim step was not used, as this proced-
ure removed the low frequency odorant protein families
from the annotation.

For annotation of ORs, IRs, GRs, OBPs, CSPs, and
SNMPs in L typographus and D. ponderosae, contigs
were analyzed with tBLASTx searches against custom-
made databases and the non-redundant nucleotide col-
lection at NCBI. Additionally, HMM-based searches of
the PANTHER database of domain family profiles were
done. We identified non-redundant translated proteins
with reciprocal BLAST wusing the comprehensive
datasets available for OBPs and CSPs [42], as well as
SNMPs [52].

For contigs/isotigs with hits against genes of interest,
open reading frames were identified and the annotation
verified by additional BLAST (http://blast.ncbi.nlm.nih.
gov/Blast.cgi) searches. Contigs containing suspected se-
quencing errors (mainly insertions/deletions in homo-
polymer regions) were edited manually after identifying
miss-assemblies through manual inspection of the as-
sembly files, ESTSs, or genomic data (D. ponderosae) [63].
The suffix “FIX” was added to the gene name of such
edited sequences, and also to those extended by RACE-
PCR (below).

TMHMM 2.0 (http://www.cbs.dtu.dk/services/ TMHMM/)
was used to predict transmembrane domains of candidate
ORs, IRs, and GRs. For all proteins studied, amino acid
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sequences were aligned using MAFFT [64], and
maximum-likelihood analysis and dendrogram construc-
tion were subsequently performed with FastTree [65].
Dendrograms were colored and arranged in Fig-
Tree (http://tree.bio.ed.ac.uk/software/figtree/). To ensure
that sequences corresponded to unigenes (and not to
fragments of the same gene), only those that showed suf-
ficient overlap in multiple sequence alignments were in-
cluded in the analysis. In addition, for contigs that
shared >98.5% amino acid identity only one “copy” (the
contig with the longest ORF) was included. I ty-
pographus 454- and Illumina sequences have been sub-
mitted to EBI (project accession number ERP001792).
The D. ponderosae antennal Sanger and 454 sequence
data have previously been submitted to NCBI (accession
numbers GT344964-GT358252 and SRX132062, re-
spectively). All bark beetle contigs/isotigs have been
submitted to the Transcriptome Shotgun Assembly
(TSA) sequence database at NCBI (accession numbers
GACR00000000 and GABX00000000 for I typographus
and D. ponderosae, respectively) or to GenBank (D.
ponderosae genes with representative full-length cDNA
clones) (see Additional file 1 for accession numbers for
the individual olfactory genes).

RACE-PCR

The assembled contigs from the 454- and Illumina se-
quencing of the Ips transcriptome did not always consti-
tute full-length transcripts. Therefore, for better
resolution of phylogenetic analyses, some sequences en-
coding putative ORs were elongated using RACE-PCR
(Rapid Amplification of ¢cDNA Ends; SMARTer cDNA
amplification kit, Clontech) with a nested protocol fol-
lowing the manufacturer’s instructions. Total RNA from
300 adult beetle antennae (extracted using RNeasy
MiniKit, Qiagen) was used as template to generate
RACE-ready c¢DNA. Primer design was performed
manually, but aided with Tm-calculations and self-
complementarity checks using Oligo Calc (http://www.
basic.northwestern.edu/biotools/OligoCalc.html). Ampli-
fied and extended DNA was cloned (TOPO TA cloning
kit dual promoter, PCRII®-TOPO® vector, Invitrogen)
before being sequenced (Eurofins MWG Operon,
Ebersberg, Germany).

Results

Assembly

The D. ponderosae antenna-specific assembly resulted in
19,523 isotigs from 15,736 isogroups and 19,343 single-
tons, of which 48 were Sanger reads. The isotigs assem-
bled by Newbler were comparable with the contigs
generated by other assemblers, with the exception that
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Newbler also considers alternative splice variants when
producing the isotigs, and these are grouped into differ-
ent isogroups. The N50 was 1,864 bp and the largest
isotig was 8,483 bp. The I typographus assembly
resulted in 20,298 contigs with an N50 of 717 bp. The
largest contig was 3,389 bp.

Gene ontology annotation

GO annotation indicated that the analyzed antennal
transcriptomes of the two bark beetle species were
highly similar with respect to GO terms (Figure 1,
Additional file 2). In L typographus, 8,713 contigs (43%)
were associated with GO terms. In D. ponderosae, this
number was 10,713 (55%). Thus, a substantial propor-
tion of contigs in both species was not associated with
any GO term, and possibly these contigs represent or-
phan genes. Among the annotated contigs, GO terms re-
lated to basic cell functions were the most abundant;
however, contigs with GO terms related to olfaction
were also present, such as “odorant binding”, “signal
transducer activity” (Figure 1A), and “response to
stimulus” (Figure 1B). Contigs with GO terms asso-
ciated with enzymatic activity were well represented,
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such as “hydrolase activity” and “transferase activity”
(Figure 1A).

Nonreceptor olfactory gene families

We identified 15 transcripts encoding putative OBPs in
L typographus, and 31 transcripts in D. ponderosae. All
but five transcripts (ItypOBP1, 8, 9, 11, and 13)
corresponded to full-length genes. One third of the tran-
scripts identified in D. ponderosae were not found in the
antennal cDNA library, but rather in the cDNA libraries
from other body parts (Additional file 3).

In general, OBPs can be classified into different phylo-
genetic groups. Classic OBPs are characterized by 6 cyst-
eine residues at conserved positions. The Plus-C class
has 4-6 additional cysteines and one characteristic pro-
line, whereas the Minus-C class has lost cysteine resi-
dues, generally C2 and C5 [35,66]. In our sequence
similarity dendrogram, the classic bark beetle OBPs were
spread out on various branches (Figure 2) where they
generally formed small subgroups together with OBPs
mostly from T. castaneum.

Two OBPs in L typographus (ItypOBP2 and ItypOBP10)
and one OBP in D. ponderosae (DponOBP2) were of
the Plus-C type and were grouped together with the
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Figure 2 Maximume-likelihood dendrogram based on protein sequences of candidate odorant binding proteins (OBPs). Included are
OBPs from Ips typographus (Ityp), Dendroctonus ponderosae (Dpon), Tribolium castaneum (Tcas) and Drosophila melanogaster (Dmel). One major
beetle-specific expansion of Minus-C OBPs is evident. Bark beetle proteins in this expansion have lost cysteine residue C2 and C5. Two OBPs in
I. typographus and one in D. ponderosae belong to the Plus-C group characterized by additional cysteine residues. Numbers refer to support
values, which are only displayed when < 0.9.

Plus-C OBP (TcasOBP47) from T. castaneum (Figure 2).  DponOBP3, DponOBP9, DponOBP11, DponOBP13,
ItypOBP2 and DponOBP2 shared 45% amino acid iden-  DponOBP19, DponOBP22, and DponOBP28. All bark bee-
tity. Members of the Minus-C class, i.e. 12 DponOBPs, 6 tle full-length Minus-C OBPs had lost C2 and C5.

ItypOBPs, and 18 TcasOBPs, formed a large clade Six bark beetle OBP orthologous pairs shared >50% amino
(Figure 2). Within this clade, we found a bark beetle- acid identity between species (ItypOBP14/DponOBP25: 78%;
specific expansion, containing ItypOBP1, ItypOBP15, ItypOBP11/DponOBP12: 76%; ItypOBP12FIX/DponOBP1:
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74%; ItypOBP7/DponOBP30: 60%; ItypOBP4/DponOBP7:
57%; ItypOBP3/DponOBP10: 51%). There were several
OBP pairs with high amino acid identity in D. ponderosae
(DponOBP14/DponOBP32:  98% identity; DponOBP20/
DponOBP21: 97%; DponOBP17/DponOBP18: 96%; Dpon
OBP7/DponOBP29: 91%).

We identified 6 transcripts encoding putative CSPs in
L typographus, and 11 transcripts in D. ponderosae
(Figure 3). Five of the transcripts encoded partial pro-
teins (ItypCSP1-4 and 6, of which 1 and 4 lacked only a
few C-terminal amino acids), whereas all the others rep-
resented full-length genes. Four of the transcripts identi-
fied in D. ponderosae were not found in the antennal
c¢DNA library, but rather in the cDNA libraries from
other body parts (Additional file 4). The bark beetle
CSPs were present on different branches throughout the
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dendrogram (Figure 3), and no major bark beetle-
specific expansion of CSP lineages was evident. Amino
acid identity among candidate simple orthologues in the
two bark beetles was high (e.g. ItypCSP6/DponCSP9:
91%; ItypCSP5/DponCSP4: 75%; ItypCSP1FIX/DponCSP1:
64%). Two CSP pairs in D. ponderosae (DponCSP3/Dpon-
CSP5 and DponCSP1/DponCSP10) had the highest (98%)
amino acid identity.

In each bark beetle species, we found two orthologues
of SNMP1 (SNMP1 and SNMP1a), and one orthologue
of SNMP2 (Figure 4). ItypSNMP1a was present only as a
fragment, whereas transcripts for the others likely repre-
sented full-length or very close to full-length genes. The
bark beetle SNMPs grouped together with orthologues
in T. castaneum, with the exception of ItypSNMP2 that
paired up with SNMP2 in D. melanogaster. SNMP1 and

TcasCSP20
--- TcasCSP19
--- TcasCSP18
TcasCSP13
TcasCSP17
TcasCSP14
--- TcasCSP9
--- TcasCSP15
ItypCSP1FIX
DponCSP1
DponCSP10
---- ltypCSP3

-- DponCSP3
-- DponCSP5
TcasCSP4
TcasCSP21_P
DponCSP8
TcasCSP11
DponCSP6
TcasCSP12
TcasCSP10
DmelCSP2
DmelCSP1

TcasCSP3
---- ItypCSP2
--- TcasCSP1

--- DponCSP9
ItypCSP6
DmelCSP4

0.4

support values, which are only displayed when < 0.9.

Figure 3 Maximume-likelihood dendrogram based on protein sequences of candidate chemosensory proteins (CSPs). Included are CSPs
from Ips typographus (Ityp), Dendroctonus ponderosae (Dpon), Tribolium castaneum (Tcas) and Drosophila melanogaster (Dmel). Numbers refer to

DponCSP11
L TcasCSPs
,,,,,,,,,,,,,,, DponCSP2
- ltypCSP4
TcasCSP6
TcasCSP2
DmelCSP3
- TcasCSP7
DponCSP4
ItypCSP5
DponCSP7
TcasCSP5
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Figure 4 Maximume-likelihood dendrogram based on protein sequences of candidate sensory neuron membrane proteins (SNMPs).
Included are SNMPs from Ips typographus (Ityp), Dendroctonus ponderosae (Dpon), Tribolium castaneum (Tcas) and Drosophila melanogaster (Dmel).
The T. castaneum orthologue of Crogemort, a non-SNMP member of the CD36 family, was used as outgroup to root the tree. Numbers refer to
support values, which are only displayed when < 0.9.

SNMP1la appeared more conserved across the two bark
beetles with 58% and 66% amino acid identity, respect-
ively, compared to the SNMP2 orthologues that shared
28% identity.

Receptor encoding genes

Odorant receptors

Similar numbers of putative OR encoding transcripts
were annotated in the two bark beetle species. We iden-
tified 43 OR candidates in 1. typographus. Eleven of these
were likely representing full-length genes, encoding pro-
teins with more than 374 amino acids. Partial transcripts
encoding ItypOR6, 7, 12, 13, 19, 31, 36, and 43 were ex-
tended by 3-RACE-PCR. In D. ponderosae, the number
of candidate OR transcripts was 49, and the number of
full-length candidates was 27. In addition, 4 short partial
transcripts in 1. typographus and 6 in D. ponderosae were
left unlabeled and excluded from analysis, since unigene
identity could not be conclusively confirmed. The
shortest partial OR candidate included was ItypOR38
(62 amino acids). Two pairs of receptors, i.e. ItypOR17
and ItypOR24, as well as ItypOR36 and ItypOR39,
showed the highest amino acid identity (98% for both
pairs).

Sequences of the bark beetle ORs were compared with
those of M. caryae and T. castaneum. For the latter spe-
cies we included only those ORs with confirmed expres-
sion in the adult head [53]. Several OR subgroups of
various size and content could be distinguished
(Figure 5). In order to standardize the numbering of
coleopteran OR subfamilies, we numbered these sub-
groups from 1 to 7 according to previous studies [29,53].
The majority (59 ORs, 64%) of bark beetle ORs were
present within group 7, which also contained 16 ORs
from M. caryae, but no ORs from T. castaneum. Fifty-
one of these bark beetle ORs formed two subgroups
(group 7a and 7b, with 31 and 20 ORs, respectively) that
were completely devoid of receptors from the other two
beetle species. However, considering only the bark beetle
ORs, only minor species-specific subgroups (containing
3-5 ORs) could be seen and they were found within
group 7a and 7b (Figure 5). In addition to the bark bee-
tle specific subgroups, group 7 also contained two M.
caryae-specific subgroups (with 9 and 4 McarORs, re-
spectively) that each formed a sister group to either of
the two bark beetle specific subgroups. Finally, a fifth
subgroup within group 7 contained ORs from all three
species, indicating conservation of some OR sequences
among the three xylophagous species. The complete lack
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Figure 5 Maximume-likelihood dendrogram based on protein sequences of candidate odorant receptors (ORs) and gustatory receptors
(GRs). Included are ORs and GRs from Ips typographus (Ityp), Dendroctonus ponderosae (Dpon), Tribolium castaneum (Tcas) and Megacyllene caryae
(Mcar). The branch containing bark beetle GRs was used as outgroup to root the tree. The different subgroups (numbered 1-7 according to
[29,53], and 7a-7b) are discussed in the main text. Originally, TcasOr339 and TcasOr340 were found within group 4 and 6 [53], as indicated here
by the numbers in brackets. Numbers at nodes refer to support values, which are only displayed when < 0.9.

06 Orco orthologs

of T. castaneum receptors within group 7, and the pres-
ence of specific subgroups in the other species, indicate
broad expansions of OR lineages in bark beetles and
cerambycids and/or losses of corresponding OR lineages
in T. castaneum.

Expansions of OR lineages were also seen in 7.
castaneum. Forty-five (41%) TcasORs formed a large

group that was exclusive to the flour beetle. Within this
group, the previously defined coleopteran OR subgroups
4—6 could be found [53]. These subgroups were collect-
ively rooted by a smaller clade containing receptors from
L typographus and M. caryae.

Receptor group 3 contained ORs only from T.
castaneum and M. caryae. The lack of bark beetle ORs
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in this group suggested that these OR lineages have been
lost in bark beetles (or not represented in our transcrip-
tome assemblies), while retained in cerambycids. Within
group 3, subgroups that were specific for 7. castaneum
or specific for M. caryae could be found.

The dendrogram also contained two groups (1 and 2)
with OR representatives from all four species (although
group 2 was dominated by expanded T. castaneum line-
ages). We found most of the candidate 1:1 orthologous
relationships among the bark beetle ORs within groups
1 and 2 (and a few in subgroup 7a) (e.g. Ityp/DponOR1-
10, 15). For these candidate orthologous pairs, amino
acid identity was 54—69% (excluding fragments <100
amino acids, i.e. OR4 and ORS8). The Orco orthologues
rooted group 2.

The co-receptor Orco was identified in the antenna-
specific assembly of D. ponderosae, but surprisingly not in
the antennal transcriptome assembly of I typographus.
However, by using PCR with primers designed from a
conserved region close to the C-terminus of the Dpon-
Orco, we amplified a 62 amino acid fragment of Orco
from I typographus antennal-specific cDNA. This Ityp-
Orco fragment shared 97% amino acid identity with
DponOrco. As expected, Orco in D. ponderosae shared
high amino acid identity with Orco orthologues in M.
caryae (McarOR1, 85% identity) and T. castaneum
(TcasOR1, 82 % identity).

Gustatory receptors

Six candidate GR-encoding transcripts were identified
(Figure 5) in I typographus, including putative con-
served carbon dioxide receptors (GR1-3) [15]. Two GR
candidates (GR1 and GR3) were identified in D.
ponderosae. Interestingly, GR2 was not found in our D.
ponderosae antenna-specific assembly, but was recovered
from the draft genome [63] and from larval RNAseq
data.

GR6 in L typographus could tentatively be assigned to
the trehalose receptor 1 in 7. castaneum (67% amino
acid identity). Since GRs and ORs are members of the
same superfamily, both were included in the same den-
drogram analysis, in which GRs formed a distinct clade
(Figure 5). All GRs except for ItypGR6 grouped within
this clade.

lonotropic receptors

We identified 7 transcripts for putative ionotropic recep-
tors in I typographus, and 15 transcripts in D.
ponderosae (Figure 6). We found bark beetle orthologues
for all 10 conserved antennal IRs with representatives in
T. castaneum [33]. However, we did not find all of them
in both species. In D. ponderosae, we identified candi-
dates for IR21a, IR41a, IR64a, IR76b, IR93a (al and a2),
five members of the IR75 group, as well as the co-
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receptors IR25a and IR8a. Transcripts for DponIR25a,
DponlIR8a, DponIR75p.1FIX, DponIR75p.2, DponIR75q,
and DponIR76b likely corresponded to full-length genes
(or very close to), whereas all the other identified IRs were
represented as partial genes. Candidate IR fragments located
on 8 isotigs in D. ponderosae were discarded from our den-
drogram analysis, as they were too short to confidently assign
them unigene status. However, among these, two fragments
(both 99 amino acids long) shared 72%, and 69% amino
acid identity with TcasIR40a and TcasIR68a, respectively.
Thus, in D. ponderosae it seems like orthologues for all
conserved antennal IRs found in T. castaneum [33] were
present. In contrast, we identified candidates only for
IR25a, IR64a, IR68a, IR76b, and three IR75 members in I
typographus. Thus, several orthologues found in D.
ponderosae and T. castaneum were lacking in the I
typographus assembly. IR8a, which is a broadly expressed
co-receptor, necessary for odor responses [34] and present
in all insects studied to date [33], was one of the receptors
lacking in L typographus.

Discussion

The gene sets reported here represent significant additions
to the pool of identified olfactory genes in Coleoptera. Prior
to this study, members of the major chemosensory gene
families in Coleoptera had been identified only from the
genome of T. castaneum (except for the ORs also identified
in the antennal transcriptome of the cerambycid, M.
caryae). Additionally, as the genes identified here underlie
the aggregation behavior that results in tree killing by mass-
attack, they represent novel targets for management pro-
grams of two of the world’s most destructive forest pests.

In general, we identified somewhat larger numbers of
transcripts encoding putative olfactory proteins (i.e.
ORs, IRs, OBPs, and CSPs) in D. ponderosae than in L
typographus. The greater depth of the 454-sequencing
and the access to Sanger data for D. ponderosae likely
account for this difference. In addition, duplex-specific
nuclease ¢cDNA normalization (performed only for I
typographus) seems to result in overrepresentation of
shorter full-length transcripts, which might explain the
lower number of OR and IR transcripts identified in I
typographus, and also the absence of Orco transcripts in
the transcriptome assembly. However, despite the slight
difference in methodology, the GO annotation demon-
strated a remarkable overall similarity in the types of
genes (with respect to associated GO terms) that are
expressed in the antennae of the two species. GO anno-
tation was previously conducted for the antennal tran-
scriptome of Manduca sexta moths by Grosse-Wilde
et al. [27], and comparison with their data reveals a
striking similarity to the bark beetles analyzed here. In-
deed, several GO terms with putative relation to olfac-
tory function showed identical (or near identical)
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Figure 6 Maximume-likelihood dendrogram based on protein sequences of candidate ionotropic receptors (IRs). Included are IRs from |ps

typographus (Ityp), Dendroctonus ponderosae (Dpon), Tribolium castaneum (Tcas) and Drosophila melanogaster (Dmel). Numbers refer to support
values, which are only displayed when < 0.9.

.

relative abundance, suggesting a kind of across-order
conservation of gene expression patterns in antennae, al-
though the data say nothing about expression levels of
the individual genes themselves.

Odorants are thought to interact with OBPs or CSPs
in the sensillum lymph prior to the ligand-receptor
interaction. The numbers of OBPs identified in the bark
beetles (15 in I typographus and 31 in D. ponderosae) are

clearly lower than the 49 OBP-encoding genes reported in
the genome of T. castaneum [54]. The same is true for the
CSPs, for which we identified 6 transcripts in I
typographus and 11 in D. ponderosae compared with 20
putative CSP encoding genes in the 7. castaneum gen-
ome [35]. However, it might be misleading to compare
the number of genes identified in a genome with the
number of transcripts in a specific tissue at a specific
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life stage. Some of the genes might, for instance, be
expressed only in the larva [53,67]. Indeed, many of the
identified OBPs and CSPs (ca. one third of the tran-
scripts) in D. ponderosae were not identified from the
antennal library, but seem to be expressed only in non-
olfactory tissue. Similar patterns have been found also
in other insects, suggesting that these proteins may
have physiological functions independent of olfaction
[41,45,68].

SNMPs are associated with pheromone-responsive
OSN:ss in Lepidoptera and Diptera [50,51]. In D. melanogaster,
SNMP1 was shown to be necessary for proper OSN
responses to the pheromone compound cis-vaccenyl
acetate, but not for OSN responses to food-related
fruit esters [51]. Benton et al. [51] also demonstrated
that SNMP was required for activation of Heliothis
virescens (Lepidoptera) pheromone receptor HR13 by
its corresponding ligand when heterologously expressed
in Drosophila neurons. It was suggested that the
hydrophobic tail of the fatty-acid derived dipteran and
lepidopteran pheromone molecules necessitates the
presence of SNMP. If so, that raises the question why
bark beetles that do not use pheromone compounds
with long hydrophobic tails [2] express SNMPs in
their antennae.

The numbers of putative OR-encoding transcripts
identified in the two bark beetles (43 in L typographus
and 49 in D. ponderosae) are close to the number
reported in the antennal transcriptome of M. caryae (57
ORs) [29], but lower than the number expressed in the
head of adult 7. castaneum (111 ORs), and much lower
than the number in the 7. castaneum genome (341 OR-
encoding genes, including 79 pseudogenes) [53]. In other
insects, the number of seemingly intact OR-encoding
genes identified from genomes is highly variable [25],
ranging from only 10 in the human body louse,
Pediculus humanus [69], to ca. 300 in the fire ant,
Solenopsis invicta [70]. It is not fully understood how
the number of ORs relates to the ecology of an insect. In
our case, one could expect that the flour beetle might
have a less complex sense of smell than the forest dwell-
ing beetles, since it has presumably adapted to an envir-
onment with a lower “semiochemical diversity” [71].
This would suggest a lower number of receptors, con-
trary to our results. Therefore, the chemical ecology of
T. castaneum may be more complex than currently
understood as also suggested by [53]. However, it is un-
known how many of the 111 ORs that are expressed in
the adult head are actually expressed in the olfactory or-
gans of T. castaneum. In addition, it is likely that some
bark beetle ORs have been missed in our transcriptome
analysis (especially in Ips due to the lower sequencing
depth), underestimating the true number of antennal-
expressed bark beetle ORs.
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Species (or taxon)-specific expansions of OR lineages
are seen in most insects studied e.g. [72,73], and some of
the largest expansions have been found in Hymenoptera,
particularly in the jewel wasp, Nasonia vitripennis [74].
The pattern of OR lineage expansion and conservation
observed in the present study likely reflects the evolu-
tionary and ecological relatedness among the four beetle
species. The beetle taxa analysed here all belong to the
more derived part of Coleoptera (Cucujiformia) [75].
However, the Curculionidea (with Ips and Dendroctonus)
and Tenebrionidea (with Tribolium) superfamilies are
the two furthest separated clades within Cucyjiformia,
sharing a common ancestor ca. 230-240 Mya. Thus, it
may come as no surprise that the ORs of these two taxa
largely fall into different subgroupings in the tree. On
the other hand, the Curculionidea is a sister group to
the Chrysomeloidea (including the longhorns) [75] and,
likewise, the closer relatedness of these taxa seems to be
reflected in the OR subgroupings. Within Scolytinae, the
Ips and Dendroctonus genera are separated by ca. 80
Mya [76]. However, despite the fact that Culex and Ae-
des mosquitoes are separated by only ca. 40 Mya [77],
they show more distinct species-specific OR lineage ex-
pansions than the bark beetles [78], indicating that eco-
logical adaptation and life cycle also play important roles
in shaping the OR repertoire of a species [25]. On this
note, the bark beetles and the cerambycid utilize similar
types of host material, i.e. conifer trees and hardwood,
respectively [2,79], whereas T. castaneum has been asso-
ciated with human populations and stored products, for
at least a few thousand years [80].

However, not all ORs were grouped in taxon-specific
expansions; some subfamilies contained ORs from all
four species. This might indicate preservation of ances-
tral functional patterns within Coleoptera, but since
non-coleopteran ORs were left out from the analysis we
are careful to draw any conclusions based on this finding
(ie. the clades might contain receptors also from insects
outside Coleoptera).

The close clustering of OR sequences from the two
bark beetles raises the question about how similar the
semiochemical environment is for I typographus and D.
ponderosae. They both live in conifers and would thus
be expected to share several biologically relevant com-
pounds. Due to their status as very serious forest pests,
the plant- and beetle-produced compounds that they re-
spond to are well studied in these two species. Mainly
based on a set of review papers [2,3,7,81-83], we com-
piled a table of all compounds that have been shown to
be physiologically and/or behaviorally active in I
typographus and D. ponderosae (Additional file 5). For
29 (54%) of the 54 listed compounds, there is evidence
of shared bio-activity. Not surprisingly, the host com-
pounds show a large overlap (61%), but there is also a
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large overlap (56%) among pheromone compounds of
beetle origin. For the non-host volatiles, the overlap is
lower (40%). One might speculate that the extent of this
shared “chemosphere” of semiochemicals could account
for the low degree of species-specific diversifications
among the bark beetle ORs and the other proteins stud-
ied here. However, functional data is required to test this
hypothesis.

We identified only a small number of putative GR-en-
coding transcripts (6 in I typographus; 2 in D.
ponderosae) from the antennal transcriptomes. The
identified bark beetle GRs included transcripts for car-
bon dioxide receptors, suggesting that the antennae of
bark beetles detect carbon dioxide. In addition, the pres-
ence of GR1-3 in I typographus indicates that carbon di-
oxide is detected by a heterotrimer receptor, like in
mosquitoes, Bombyx mori, and T. castaneum [15,84].
However, GR2 was not found in the analyzed transcrip-
tome of D. ponderosae. Hence, it is possible that D.
ponderosae uses a heterodimer receptor for carbon diox-
ide detection (like D. melanogaster) [85], but it seems
unlikely that expression of GR2 would have been lost in
only one of the bark beetle species analyzed here.

All the conserved antennal IRs that previously were
found in T. castaneum were also identified in D.
ponderosae. However, some of them were missing in the
I typographus data. As IRs are associated with
coeloconic sensilla that are relatively rare on the Ips an-
tenna [86], it is possible that the missing IR transcripts
are expressed only in a few neurons. A lower expression
level results in a higher probability that these transcripts
were missed during the random sequencing of the Ips
c¢DNA, which had a lesser depth than for D. ponderosae.
Generally in insects, the antennal IR subfamily consti-
tutes only a portion of the total number of IRs. The
others belong to the divergent IRs, a subfamily that
shows species-specific expansions that are particularly
large in Diptera [33]. In D. melanogaster, expression of
divergent IRs was detected only in gustatory organs
[9,33]. This is consistent with the scarcity of divergent
IRs in the bark beetle antennal transcriptomes.

Conclusions

We have carried out comprehensive analyses of the an-
tennal transcriptomes of two major tree-killing bark bee-
tle species. At an abstract level, the prevalence of
transcript types with respect to associated GO terms
was highly similar in the two beetles. In addition, we an-
notated members of six major gene families that encode
proteins with crucial roles in chemoreception. Thus,
these proteins have now been identified in three coleop-
teran species (four species considering the ORs). In
combination with the previously published data, the
gene sets identified here now allow for improved
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evolutionary analysis of coleopteran olfaction. We found
clear expanded bark beetle-specific lineages mainly
among the ORs, suggesting that in comparison to the
other analyzed protein families ORs are more tightly
linked to sensory specialization and adaptation to spe-
cific ecological niches and a shared space of
semiochemicals.

The results from the present study will also be fun-
damental for future functional studies. Functional char-
acterization is needed in order to connect the available
physiological and ecological knowledge with the mo-
lecular information presented here. Identification and
de-orphanization of receptor proteins in bark beetles is es-
pecially relevant, since they may represent new targets for
integrated pest management strategies.
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Additional file 1: Accession numbers for genes encoding olfactory
proteins that were submitted to GenBank and the Transcriptome
Shotgun Assembly sequence database (TSA) at NCBI.

Additional file 2: Gene ontology results. Gene ontology analyses as in
Figure 1, but here represented as bar diagrams that have a higher
resolution. A) Molecular function level 3 in Ips typographus, B) molecular
function level 3 in Dendroctonus ponderosae, C) biological process level 2
in I. typographus, and D) biological process level 2 in D. ponderosae.

Additional file 3: Presence of odorant binding proteins in various
tissues of Dendroctonus ponderosae. Analyses of Sanger-specific data
and normalized as well as non-normalized transcriptome assemblies from
various body parts of D. ponderosae indicate that large sets of odorant
binding proteins were found exclusively in non-antennal tissues. The
numbers in the tables represent reads found. The clones were sequenced
from both 5" and 3' directions. For further information see Keeling et al.
[55].

Additional file 4: Presence of chemosensory proteins in various
tissues of Dendroctonus ponderosae. Analyses of Sanger-specific data
and normalized as well as non-normalized transcriptome assemblies from
various body parts of D. ponderosae indicate that 4 of the 11 identified
chemosensory proteins were found exclusively in non-antennal tissues.
The numbers in the tables represent reads found. The clones were
sequenced from both 5' and 3' directions. For further information see
Keeling et al. [55].

Additional file 5: Shared chemosphere of I. typographus and D.
ponderosae. List of 54 semiochemicals that are produced by the two
bark beetle species, or present in their host or non-host plants and
whether the compounds are active at a physiological and/or behavioral
level in each species.
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